Sample records for cell lines compounds

  1. Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves.

    PubMed

    Malek, Sri Nurestri Abdul; Shin, Sim Kae; Wahab, Norhanom Abdul; Yaacob, Hashim

    2009-05-06

    Dihydroactinidiolide (1) and a mixture of sterols [campesterol (2), stigmasterol (3) and beta-sitosterol (4)], together with the previously isolated individual compounds beta-sitosterol (4), 2,4-di-tert-butylphenol (5), alpha-tocopherol (6), phytol (7) were isolated from the active ethyl acetate fraction of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Cytotoxic activities of the above mentioned compounds against five human carcinoma cell lines, namely the human nasopharyngeal epidermoid carcinoma cell line (KB), human cervical carcinoma cell line (CasKi), human colon carcinoma cell line (HCT 116), human hormone-dependent breast carcinoma cell line (MCF7) and human lung carcinoma cell line (A549); and non-cancer human fibroblast cell line (MRC-5) were investigated. Compound 5 possessed very remarkable cytotoxic activity against KB cells, with an IC(50 )value of 0.81microg/mL. This is the first report on the cytotoxic activities of the compounds isolated from Pereskia bleo.

  2. Dehydroleucodine, a Sesquiterpene Lactone from Gynoxys verrucosa, Demonstrates Cytotoxic Activity against Human Leukemia Cells.

    PubMed

    Ordóñez, Paola E; Sharma, Krishan K; Bystrom, Laura M; Alas, Maria A; Enriquez, Raul G; Malagón, Omar; Jones, Darin E; Guzman, Monica L; Compadre, Cesar M

    2016-04-22

    The sesquiterpene lactones dehydroleucodine (1) and leucodine (2) were isolated from Gynoxys verrucosa, a species used in traditional medicine in southern Ecuador. The activity of these compounds was determined against eight acute myeloid leukemia (AML) cell lines and compared with their activity against normal peripheral blood mononuclear cells. Compound 1 showed cytotoxic activity against the tested cell lines, with LD50 values between 5.0 and 18.9 μM. Compound 2 was inactive against all of the tested cell lines, demonstrating that the exocyclic methylene in the lactone ring is required for cytotoxic activity. Importantly, compound 1 induced less toxicity to normal blood cells than to AML cell lines and was active against human AML cell samples from five patients, with an average LD50 of 9.4 μM. Mechanistic assays suggest that compound 1 has a similar mechanism of action to parthenolide (3). Although these compounds have significant structural differences, their lipophilic surface signatures show striking similarities.

  3. Part-1: Design, synthesis and biological evaluation of novel bromo-pyrimidine analogs as tyrosine kinase inhibitors.

    PubMed

    Munikrishnappa, Chandrashekar Suradhenupura; Puranik, Sangamesh B; Kumar, G V Suresh; Prasad, Y Rajendra

    2016-08-25

    A novel series of 5-bromo-pyrimidine derivatives (5a-l, 6a-h, 9a-m and 10a-d) were synthesized through multi step reactions starting from 5-bromo-2,4-dichloro pyrimidine. The newly synthesized compounds were characterized using elemental analysis and spectral data (IR, (1)H NMR, (13)C NMR and LC-MS) analysis. The titled compounds were evaluated for their in vitro cytotoxic activity against tumor cell lines panel consisted of HCT116 (human colon cancer cell line), A549 (human lung cancer cell line), K562 (human chronic myeloid leukemia cell line), U937 (human acute monocytic myeloid leukemia cell line), and L02 (human normal cell line) by using MTT assay Mosmann's method. As most of the compounds are highly potent against K562 cells, all the synthesized compounds were evaluated for Bcr/Abl tyrosine kinase inhibitory activity by using well-established ADP-Glo assay method. Dasatinib was utilized as positive control to validate in both biological evaluations. The biological activity revealed that the compounds 5c, 5e, 6g, 9e, 9f and 10c were potent Bcr/Abl kinase inhibitors among the titled compounds. Thus these compounds may be promising lead compounds to be developed as an alternative for current Dasatinib therapy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  4. Effects of 1,3,5-triphenyl-4,5-dihydro-1H-pyrazole derivatives on cell-cycle and apoptosis in human acute leukemia cell lines.

    PubMed

    Santos Bubniak, Lorena Dos; Gaspar, Pâmela Cristina; de Moraes, Ana Carolina Rabello; Bigolin, Alisson; de Souza, Rubia Karine; Buzzi, Fátima Campos; Corrêa, Rogério; Filho, Valdir Cechinel; Bretanha, Lizandra Czermainski; Micke, Gustavo Amadeu; Nunes, Ricardo José; Santos-Silva, Maria Cláudia

    2017-05-01

    Pyrazoline is an important 5-membered nitrogen heterocycle that has been extensively researched. Ten derivatives were synthesized and tested for antileukemic effects on 2 human acute leukemia cell lines, K562 and Jurkat. The most cytotoxic of these derivatives, compound 21, was chosen for investigation of cytotoxicity mechanisms. The results obtained with selectivity calculations revealed that compound 21 is more selective for acute leukemia (K562 and Jurkat cell lines) than for other tumor cell lines. Moreover, compound 21 was not cytotoxic to normal cell lines, indicating a potential use in clinical tests. Compound 21 caused a significant cell cycle arrest in the S-phase in Jurkat cells and increased the proportion of cells in the sub G0/G1 phase in both cell lines. Cells treated with compound 21 demonstrated morphological changes characteristic of apoptosis in the EB/AO assay, confirmed by externalization of phosphatidylserine by the annexin V - fluorescein isothiocyanate method and by DNA fragmentation. An investigation of cytotoxicity mechanisms suggests the involvement of an intrinsic apoptosis pathway due to mitochondrial damage and an increase in the ratio of mitochondrial Bax/Bcl2. Pyrazoline 21 obeyed Lipinski's "rule of five" for drug-likeness. Based on these preliminary results, the antileukemic activity of compound 21 makes it a potential anticancer agent.

  5. High-throughput testing in head and neck squamous cell carcinoma identifies agents with preferential activity in human papillomavirus-positive or negative cell lines.

    PubMed

    Ghasemi, Farhad; Black, Morgan; Sun, Ren X; Vizeacoumar, Frederick; Pinto, Nicole; Ruicci, Kara M; Yoo, John; Fung, Kevin; MacNeil, Danielle; Palma, David A; Winquist, Eric; Mymryk, Joe S; Ailles, Laurie A; Datti, Alessandro; Barrett, John W; Boutros, Paul C; Nichols, Anthony C

    2018-05-25

    Head and neck squamous cell carcinoma (HNSCC) is a common cancer diagnosis worldwide. Despite advances in treatment, HNSCC has very poor survival outcomes, emphasizing an ongoing need for development of improved therapeutic options. The distinct tumor characteristics of human papillomavirus (HPV)-positive vs . HPV-negative disease necessitate development of treatment strategies tailored to tumor HPV-status. High-throughput robotic screening of 1,433 biologically and pharmacologically relevant compounds at a single dose (4 μM) was carried out against 6 HPV-positive and 20 HPV-negative HNSCC cell lines for preliminary identification of therapeutically relevant compounds. Statistical analysis was further carried out to differentiate compounds with preferential activity against cell lines stratified by the HPV-status. These analyses yielded 57 compounds with higher activity in HPV-negative cell lines, and 34 with higher-activity in HPV-positive ones. Multi-point dose-response curves were generated for six of these compounds (Ryuvidine, MK-1775, SNS-032, Flavopiridol, AZD-7762 and ARP-101), confirming Ryuvidine to have preferential potency against HPV-negative cell lines, and MK-1775 to have preferential potency against HPV-positive cell lines. These data comprise a valuable resource for further investigation of compounds with therapeutic potential in the HNSCC.

  6. Synthesis and biological evaluation of Fotemustine analogues on human melanoma cell lines.

    PubMed

    Winum, Jean Yves; Bouissière, Jean Luc; Passagne, Isabelle; Evrard, Alexandre; Montero, Véronique; Cuq, Pierre; Montero, Jean Louis

    2003-03-01

    Two new analogues of Fotemustine have been synthesized and tested on two melanoma cell lines. Compounds 4 and 8 proved to be more potent than the reference compound on A375 cell line which express the MGMT enzyme involved in the chemoresistance of tumoral cells.

  7. Synthesis, stereochemistry determination, pharmacological studies and quantum chemical analyses of bisthiazolidinone derivative

    NASA Astrophysics Data System (ADS)

    Mushtaque, Md.; Avecilla, Fernando; Hafeez, Zubair Bin; Jahan, Meriyam; Khan, Md. Shahzad; Rizvi, M. Moshahid A.; Khan, Mohd. Shahid; Srivastava, Anurag; Mallik, Anwesha; Verma, Saurabh

    2017-01-01

    A new compound (3) bisthaizolidinone derivative was synthesized by Knoevenagel condensation reaction. The structure of synthesized compound was elucidated by different spectral techniques and X-ray diffraction studies. The stereochemistry of the compound (3) was determined by 1Hsbnd 1H NOESY, 1Hsbnd 1H NMR COSY and single crystal X-ray diffraction studies as (Z, Z)-configuration. The computational quantum chemical studies of compound(3) like, IR, UV, NBO analysis were performed by DFT with Becke-3-Lee-Yang-Parr (B3LYP) exchange-correlation functional in combination with 6-311++G(d,p) basis sets. The DNA-binding of compound (3) exhibited a moderate binding constant (Kb = 1 × 105 Lmol-1) with hypochromic shift. The molecular docking displayed good binding affinity -7.18 kcal/mol. The MTT assay of compound (3) was screened against different cancerous cell lines, HepG2, Siha, Hela and MCF-7. Studies against these cell lines depicted that the screened compound (3) showed potent inhibitory activity against HepG2 cell (IC50 = 7.5 μM) followed by MCF-7 (IC50 = 52.0 μM), Siha (IC50 = 66.98 μM), Hela (IC50 = 74.83 μM) cell lines, and non-toxic effect against non-cancerous HEK-293 cells (IC50 = 287.89 μM) at the concentration range (0-300) μM. Furthermore, cell cycle perturbation was performed on HepG2 & Siha cell lines and observed that cells were arrested in G2/M in HepG2, and G0/G1 in Siha cell lines with respect to untreated control. Hence, compound (3) possesses potent anti-cancerous activity against HepG2 cell line.

  8. Synthesis and characterization of 2-substituted benzimidazoles and their evaluation as anticancer agent

    NASA Astrophysics Data System (ADS)

    Azam, Mohammad; Khan, Azmat Ali; Al-Resayes, Saud I.; Islam, Mohammad Shahidul; Saxena, Ajit Kumar; Dwivedi, Sourabh; Musarrat, Javed; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal

    2015-05-01

    In this work, we report a series of benzimidazole derivatives synthesized from benzene-1,2-diamine and aryl-aldehydes at room temperature. The synthesized compounds have been characterized on the basis of elemental analysis and various spectroscopic studies viz., IR, 1H- and 13C-NMR, ESI-MS as well by X-ray single X-ray crystallographic study. Interaction of these compounds with CT-DNA has been examined with fluorescence experiments and showed significant binding ability. All the synthesized compounds have been screened for their antitumor activities against various human cancer cell lines viz., Human breast adenocarcinoma cell line (MCF-7), Human leukemia cell line (THP-1), Human prostate cancer cell lines (PC-3) and adenocarcinomic human alveolar basal epithelial cell lines (A-549). Interestingly, all the compounds showed significant anticancer activity.

  9. Synthesis and anti-tumor evaluation of panaxadiol halogen-derivatives.

    PubMed

    Xiao, Shengnan; Chen, Shuai; Sun, Yuanyuan; Zhou, Wuxi; Piao, Huri; Zhao, Yuqing

    2017-09-01

    In the current work, 13 novel panaxadiol (PD) derivatives were synthesized by reacting with chloroacetyl chloride and bromoacetyl bromide. Their in vitro antitumor activities were evaluated on three human tumor cell lines (HCT-116, BGC-823, SW-480) and three normal cells (human gastric epithelial cell line-GES-1, hair follicle dermal papilla cell line-HHDPC and rat myocardial cell line-H9C2) by MTT assay. Compared with PD, the results demonstrated that compound 1e, 2d, 2e showed significant anti-tumor activity against three tumor cell lines, the IC50 value of compound 2d against HCT-116 was the lowest (3.836μM). The anti-tumor activity of open-ring compounds are significantly better than the compounds of C-25 cyclization. Compound 1f, 2f, 2g showed the strong anti-tumor activity. The IC50 value of compound 2g against BGC-823 and SW-480 were the lowest (0.6μM and 0.1μM, respectively). Combined with cytotoxicity test, the IC50 value of compound 1e, 2d, 2e are greater than 100. the open-ring compounds (1f, 2f, 2g) showed a strong toxicity. The toxicity of 1f is lower than 2f and 2g. These compounds may be useful for the development of novel antiproliferative agents. Copyright © 2017. Published by Elsevier Ltd.

  10. A flavonoid isolated from Streptomyces sp. (ERINLG-4) induces apoptosis in human lung cancer A549 cells through p53 and cytochrome c release caspase dependant pathway.

    PubMed

    Balachandran, C; Sangeetha, B; Duraipandiyan, V; Raj, M Karunai; Ignacimuthu, S; Al-Dhabi, N A; Balakrishna, K; Parthasarathy, K; Arulmozhi, N M; Arasu, M Valan

    2014-12-05

    The aim of this study was to investigate the anticancer activity of a flavonoid type of compound isolated from soil derived filamentous bacterium Streptomyces sp. (ERINLG-4) and to explore the molecular mechanisms of action. Cytotoxic properties of ethyl acetate extract was carried out against A549 lung cancer cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cytotoxic properties of isolated compound were investigated in A549 lung cancer cell line, COLO320DM cancer cell line and Vero cells. The compound showed potent cytotoxic properties against A549 lung cancer cell line and moderate cytotoxic properties against COLO320DM cancer cell line. Isolated compound showed no toxicity up to 2000 μg/mL in Vero cells. So we have chosen the A549 lung cancer cell line for further anticancer studies. Intracellular visualization was done by using a laser scanning confocal microscope. Apoptosis was measured using DNA fragmentation technique. Treatment of the A549 cancer cells with isolated compound significantly reduced cell proliferation, increased formation of fragmented DNA and apoptotic body. Activation of caspase-9 and caspase-3 indicated that compound may be inducing intrinsic and extrinsic apoptosis pathways. Bcl-2, p53, pro-caspases, caspase-3, caspase-9 and cytochrome c release were detected by western blotting analysis after compound treatment (123 and 164 μM). The activities of pro-caspases-3, caspase-9 cleaved to caspase-3 and caspase-9 gradually increased after the addition of isolated compound. But Bcl-2 protein was down regulated after treatment with isolated compound. Molecular docking studies showed that the compound bound stably to the active sites of caspase-3 and caspase-9. These results strongly suggest that the isolated compound induces apoptosis in A549 cancer cells via caspase activation through cytochrome c release from mitochondria. The present results might provide helpful suggestions for the design of antitumor drugs toward lung cancer treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Synthesis and characterization of 2-substituted benzimidazoles and their evaluation as anticancer agent.

    PubMed

    Azam, Mohammad; Khan, Azmat Ali; Al-Resayes, Saud I; Islam, Mohammad Shahidul; Saxena, Ajit Kumar; Dwivedi, Sourabh; Musarrat, Javed; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal

    2015-05-05

    In this work, we report a series of benzimidazole derivatives synthesized from benzene-1,2-diamine and aryl-aldehydes at room temperature. The synthesized compounds have been characterized on the basis of elemental analysis and various spectroscopic studies viz., IR, (1)H- and (13)C-NMR, ESI-MS as well by X-ray single X-ray crystallographic study. Interaction of these compounds with CT-DNA has been examined with fluorescence experiments and showed significant binding ability. All the synthesized compounds have been screened for their antitumor activities against various human cancer cell lines viz., Human breast adenocarcinoma cell line (MCF-7), Human leukemia cell line (THP-1), Human prostate cancer cell lines (PC-3) and adenocarcinomic human alveolar basal epithelial cell lines (A-549). Interestingly, all the compounds showed significant anticancer activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Bioactivity-guided isolation of anticancer agents from Bauhinia kockiana Korth.

    PubMed

    Chew, Yik Ling; Lim, Yau Yan; Stanslas, Johnson; Ee, Gwendoline Cheng Lian; Goh, Joo Kheng

    2014-01-01

    Flowers of Bauhinia kockiana were investigated for their anticancer properties. Gallic acid (1), and methyl gallate (2), were isolated via bioassay-directed isolation, and they exhibited anticancer properties towards several cancer cell lines, examined using MTT cell viability assay. Pyrogallol (3) was examined against the same cancer cell lines to deduce the bioactive functional group of the phenolic compounds. The results showed that the phenolic compounds could exhibit moderate to weak cytotoxicity towards certain cell lines (GI50 30 - 86 µM), but were inactive towards DU145 prostate cancer cell (GI50 > 100 µM). It was observed that pyrogallol moiety was one of the essential functional structures of the phenolic compounds in exhibiting anticancer activity. Also, the carboxyl group of compound 1 was also important in anticancer activity. Examination of the PC-3 cells treated with compound 1 using fluorescence microscopy showed that PC-3 cells were killed by apoptosis.

  13. Eco-friendly synthesis of novel cyanopyridine derivatives and their anticancer and PIM-1 kinase inhibitory activities.

    PubMed

    Abouzid, Khaled A M; Al-Ansary, Ghada H; El-Naggar, Abeer M

    2017-07-07

    Targeting Pim-1 kinase recently proved to be profitable for conquering cancer proliferation. In the current study, we report the design, synthesis and biological evaluation of two novel series of 2-amino cyanopyridine series (5a-g) and 2-oxocyanopyridine series (6a-g) targeting Pim-1 kinase. All of the newly synthesized compounds were evaluated for their in vitro anticancer activity against a panel of three cell lines, namely, the liver cancer cell line (HepG2), the colon cancer cell line (HCT-116) and the breast cancer cell line (MCF-7). Most of the compounds showed good to moderate anti-proliferative activity against HepG2 and HCT-116 cell lines while only few compounds showed significant cytotoxic activity against MCF-7 cell line. Further, the Pim-1 kinase inhibitory activity for the two series was evaluated where most of the tested compounds showed marked Pim-1 kinase inhibitory activity (26%-89%). Moreover, determination of the IC 50 values unraveled very potent molecules in the submicromolar range where compound 6c possessed an IC 50 value of 0.94 μM. Moreover, apoptosis studies were conducted on the most potent compound 6c to evaluate the proapoptotic potential of our compounds. Interestingly, it induced the level of active caspase 3 and boosted the Bax/Bcl2 ratio 22704 folds in comparison to the control. Finally, a molecular docking study was conducted to reveal the probable interaction with the Pim-1 kinase active site. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  14. Oligosaccharide receptor mimics inhibit Legionella pneumophila attachment to human respiratory epithelial cells.

    PubMed

    Thomas, Richard J; Brooks, Tim J

    2004-02-01

    Legionnaire's disease is caused by the intracellular pathogen Legionella pneumophila, presenting as an acute pneumonia. Attachment is the key step during infection, often relying on an interaction between host cell oligosaccharides and bacterial adhesins. Inhibition of this interaction by receptor mimics offers possible novel therapeutic treatments. L. pneumophila attachment to the A549 cell line was significantly reduced by treatment with tunicamycin (73.6%) and sodium metaperiodate (63.7%). This indicates the importance of cell surface oligosaccharide chains in adhesion. A number of putative anti-adhesion compounds inhibited attachment to the A549 and U937 cell lines. The most inhibitory compounds were polymeric saccharides, GalNAcbeta1-4Gal, Galbeta1-4GlcNAc and para-nitrophenol. These compounds inhibited adhesion to a range of human respiratory cell lines, including nasal epithelial, bronchial epithelial and alveolar epithelial cell lines and the human monocytic cell line, U937. Some eukaryotic receptors for L. pneumophila were determined to be the glycolipids, asialo-GM1 and asialo-GM2 that contain the inhibitory saccharide moiety, GalNAcbeta1-4Gal. The identified compounds have the potential to be used as novel treatments for Legionnaire's disease.

  15. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines

    PubMed Central

    Yu, Channing; Mannan, Aristotle M.; Yvone, Griselda Metta; Ross, Kenneth N.; Zhang, Yan-Ling; Marton, Melissa A.; Taylor, Bradley R.; Crenshaw, Andrew; Gould, Joshua Z.; Tamayo, Pablo; Weir, Barbara A.; Tsherniak, Aviad; Wong, Bang; Garraway, Levi A.; Shamji, Alykhan F.; Palmer, Michelle A.; Foley, Michael A.; Winckler, Wendy; Schreiber, Stuart L.; Kung, Andrew L.; Golub, Todd R.

    2016-01-01

    Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control1-4. Here, we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes. PRISM displayed the expected patterns of cell killing seen in conventional (unpooled) assays. In a screen of 102 cell lines across 8,400 compounds, PRISM led to the identification of BRD-7880 as a potent and highly specific inhibitor of aurora kinases B and C. Cell line pools also efficiently formed tumors as xenografts, and PRISM recapitulated the expected pattern of erlotinib sensitivity in vivo. PMID:26928769

  16. 3-(4-chlorophenyl)-[1, 2, 3] oxadiazol-3-ium-5-olate and its 4-formyl analog-Ultrasound assisted synthesis and in-vitro anticancer evaluation against human tumor cell lines.

    PubMed

    Bhosale, Sachin K; Deshpande, Shreenivas R; Wagh, Rajendra D

    2017-03-01

    The title compound, 3-(4-chlorophenyl)-4-formyl-[1, 2, 3] oxadiazol-3-ium-5-olate 5 was synthesized under ultrasonication by formylation of 3-(4-chlorophenyl)-[1, 2, 3] oxadiazol-3-ium-5-olate 4 and characterized by spectral studies. The ultrasonic method of synthesis was found to be simple, ecofriendly, economical, reduces reaction time and gave good yield when compared with traditional methods of synthesis. Anticancer activity of the compounds were tested against 60 human tumor cell lines and compared with standard drug vincristine sulphate. Compound 5 was found to be active against CNS (SNB-75, %GI=46.71), renal (UO-31, %GI=31.52), non small cell lung (NCI-H522, %GI=25.65), leukemia (MOLT-4, %GI=23.02) human tumor cell lines whereas, compound 4 against breast (MDA-MB-231/ATCC, %GI=19.90, T-47D %GI=16.50, MCF-7 15.10) and ovarian (IGROV1 %GI=19.30, OVCAR-4 %GI=17.90) human tumor cell lines. Compound 5 showed higher cytotoxicity against NCI-H23 cells (non small lung cancer cell panel) as compared to standard drug vincristine sulphate. Further structural modification of these compounds may lead to potent anticancer activity.

  17. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines.

    PubMed

    Yamamoto, Kimiyo N; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P; Witt, Kristine L; Tice, Raymond R

    2011-08-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the US Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in seven isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. Copyright © 2011 Wiley-Liss, Inc.

  18. Characterization of environmental chemicals with potential for DNA damage using isogenic DNA repair-deficient chicken DT40 cell lines

    PubMed Central

    Yamamoto, Kimiyo N.; Hirota, Kouji; Kono, Koichi; Takeda, Shunichi; Sakamuru, Srilatha; Xia, Menghang; Huang, Ruili; Austin, Christopher P.; Witt, Kristine L.; Tice, Raymond R.

    2012-01-01

    Included among the quantitative high throughput screens (qHTS) conducted in support of the U.S. Tox21 program are those being evaluated for the detection of genotoxic compounds. One such screen is based on the induction of increased cytotoxicity in 7 isogenic chicken DT40 cell lines deficient in DNA repair pathways compared to the parental DNA repair-proficient cell line. To characterize the utility of this approach for detecting genotoxic compounds and identifying the type(s) of DNA damage induced, we evaluated nine of 42 compounds identified as positive for differential cytotoxicity in qHTS (actinomycin D, adriamycin, alachlor, benzotrichloride, diglycidyl resorcinol ether, lovastatin, melphalan, trans-1,4-dichloro-2-butene, tris(2,3-epoxypropyl)isocyanurate) and one non-cytotoxic genotoxic compound (2-aminothiamine) for (1) clastogenicity in mutant and wild-type cells; (2) the comparative induction of γH2AX positive foci by melphalan; (3) the extent to which a 72-hr exposure duration increased assay sensitivity or specificity; (4) the use of 10 additional DT40 DNA repair-deficient cell lines to better analyze the type(s) of DNA damage induced; and (5) the involvement of reactive oxygen species in the induction of DNA damage. All compounds but lovastatin and 2-aminothiamine were more clastogenic in at least one DNA repair-deficient cell line than the wild-type cells. The differential responses across the various DNA repair-deficient cell lines provided information on the type(s) of DNA damage induced. The results demonstrate the utility of this DT40 screen for detecting genotoxic compounds, for characterizing the nature of the DNA damage, and potentially for analyzing mechanisms of mutagenesis. PMID:21538559

  19. Phenylpropanoids from Phragmipedium calurum and their antiproliferative activity

    PubMed Central

    Starks, Courtney M.; Williams, Russell B.; Norman, Vanessa L.; Lawrence, Julie A.; O’Neil-Johnson, Mark; Eldridge, Gary R.

    2012-01-01

    Two new and five known stilbenes and one new alkylresorcinol were isolated from the orchid Phragmipedium calurum during a screen for new anticancer compounds. The compounds were evaluated for antiproliferative activity against multiple human cancer cell lines. Two of the compounds (1 and 7) displayed moderate activity against several cell lines. PMID:22805176

  20. [Inhibitory effects of 11 coumarin compounds against growth of human bladder carcinoma cell line E-J in vitro].

    PubMed

    Yang, Xiu-wei; Xu, Bo; Ran, Fu-xiang; Wang, Rui-qing; Wu, Jun; Cui, Jing-rong

    2007-01-01

    To screen antitumor active compounds, drug-like or leading compounds from Chinese traditional and herbal drugs. Eleven coumarin compounds isolated from the Chinese traditional and herbal drugs were studied for their antitumor activities in vitro by determining the inhibition rates against growth of human bladder carcinoma cell line E-J. It showed that umbelliferone, scoparone, demethylfuropinarine, isopimpinellin, forbesoside, columbianadin, decursin and glycycoumarin inhibited the growth of human bladder carcinoma cell line E-J in vitro and their activities showed a concentration-effect relationship. The inhibitory effects of forbesoside, columbianadin, decursin and umbelliferone, with IC50 values of 7.50x10(-7), 2.30x10(-6), 6.00x10(-6) and 1.30x10(-6) mol/L, respectively, were stronger than those of the other tested compounds. However, xanthotoxin, esculin and sphondin did not inhibit the growth of human bladder carcinoma cell line E-J in this assay condition. These findings indicate that forbesoside, columbianadin, esculin, decursin and umbelliferone would be effective or regarded as potent drug-like or leading compounds against human bladder carcinoma.

  1. Novel menadione hybrids: Synthesis, anticancer activity, and cell-based studies.

    PubMed

    Prasad, Chakka Vara; Nayak, Vadithe Lakshma; Ramakrishna, Sistla; Mallavadhani, Uppuluri Venkata

    2018-01-01

    A series of novel menadione-based triazole hybrids were designed and synthesized by employing copper-catalyzed azide-alkyne cycloaddition (CuAAC). All the synthesized hybrids were characterized by their spectral data ( 1 H NMR, 13 C NMR, IR, and HRMS). The synthesized compounds were evaluated for their anticancer activity against five selected cancer cell lines including lung (A549), prostate (DU-145), cervical (Hela), breast (MCF-7), and mouse melanoma (B-16) using MTT assay. The screening results showed that majority of the synthesized compounds displayed significant anticancer activity. Among the tested compounds, the triazoles 5 and 6 exhibited potent activity against all cell lines. In particular, compound 6 showed higher potency than the standard tamoxifen and parent menadione against MCF-7 cell line. Flow cytometric analysis revealed that compound 6 arrested cell cycle at G0/G1 phase and induced apoptotic cell death which was further confirmed by Hoechst staining, measurement of mitochondrial membrane potential (ΔΨm) and Annexin-V-FITC assay. Thus, compound 6 can be considered as lead molecule for further development as potent anticancer therapeutic agent. © 2017 John Wiley & Sons A/S.

  2. Synthesis of 1,2,4-triazole-linked urea/thiourea conjugates as cytotoxic and apoptosis inducing agents.

    PubMed

    Tokala, Ramya; Bale, Swarna; Janrao, Ingle Pavan; Vennela, Aluri; Kumar, Niggula Praveen; Senwar, Kishna Ram; Godugu, Chandraiah; Shankaraiah, Nagula

    2018-06-01

    A new series of 1,2,4-triazole-linked urea and thiourea conjugates have been synthesized and evaluated for their in vitro cytotoxicity against selected human cancer cell lines namely, breast (MCF-7, MDA-MB-231), lung (A549) prostate (DU145) and one mouse melanoma (B16-F10) cell line and compared with reference drug. The compound 5t showed significant cytotoxicity on MCF-7 breast cancer cell line with a IC 50 value of 7.22 ± 0.47 µM among all the tested compounds. Notably, induction of apoptosis by compound 5t on MCF-7 cells was evaluated using different staining techniques such as acridine orange/ethidium bromide (AO/EB), annexin V-FITC/PI, and DAPI. Further, clonogenic assay indicates the inhibition of colony formation on MCF-7 cells by compound 5t. Moreover, the flow-cytometric analysis also revealed that compound 5t caused the arrest of cells at G0/G1 phase of cell cycle. In addition, the compounds when tested on normal human cells (L-132) were found to be safer with low cytotoxicity profile. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Effects of the tumor-vasculature-disrupting agent verubulin and two heteroaryl analogues on cancer cells, endothelial cells, and blood vessels.

    PubMed

    Mahal, Katharina; Resch, Marcus; Ficner, Ralf; Schobert, Rainer; Biersack, Bernhard; Mueller, Thomas

    2014-04-01

    Two analogues of the discontinued tumor vascular-disrupting agent verubulin (Azixa®, MPC-6827, 1) featuring benzo-1,4-dioxan-6-yl (compound 5 a) and N-methylindol-5-yl (compound 10) residues instead of the para-anisyl group on the 4-(methylamino)-2-methylquinazoline pharmacophore, were prepared and found to exceed the antitumor efficacy of the lead compound. They were antiproliferative with single-digit nanomolar IC50 values against a panel of nine tumor cell lines, while not affecting nonmalignant fibroblasts. Indole 10 surpassed verubulin in seven tumor cell lines including colon, breast, ovarian, and germ cell cancer cell lines. In line with docking studies indicating that compound 10 may bind the colchicine binding site of tubulin more tightly (Ebind =-9.8 kcal mol(-1) ) than verubulin (Ebind =-8.3 kcal mol(-1) ), 10 suppressed the formation of vessel-like tubes in endothelial cells and destroyed the blood vessels in the chorioallantoic membrane of fertilized chicken eggs at nanomolar concentrations. When applied to nude mice bearing a highly vascularized 1411HP germ cell xenograft tumor, compound 10 displayed pronounced vascular-disrupting effects that led to hemorrhages and extensive central necrosis in the tumor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Sulfamic and succinic acid derivatives of 25-OH-PPD and their activities to MCF-7, A-549, HCT-116, and BGC-823 cell lines.

    PubMed

    Zhou, Wu-Xi; Cao, Jia-Qing; Wang, Xu-De; Guo, Jun-Hui; Zhao, Yu-Qing

    2017-02-15

    In the search for new anti-tumor agents with higher potency than our previously identified compound 1 (25-OH-PPD, 25-hydroxyprotopanaxadiol), 12 novel sulfamic and succinic acid derivatives that could improve water solubility and contribute to good drug potency and pharmacokinetic profiles were designed and synthesized. Their in vitro anti-tumor activities in MCF-7, A-549, HCT-116, and BGC-823 cell lines and one normal cell line were tested by standard MTT assay. Results showed that compared with compound 1, compounds 2, 3, and 7 exhibited higher cytotoxic activity on A-549 and BGC-823 cell lines, together with lower toxicity in the normal cell. In particular, compound 2 exhibited the best anti-tumor activity in the in vitro assays, which may provide valuable data for the research and development of new anti-tumor agents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Antiproliferative Activity of Xanthones Isolated from Artocarpus obtusus

    PubMed Central

    Hashim, Najihah Mohd; Rahmani, Mawardi; Ee, Gwendoline Cheng Lian; Sukari, Mohd Aspollah; Yahayu, Maizatulakmal; Oktima, Winda; Ali, Abd Manaf; Go, Rusea

    2012-01-01

    An investigation of the chemical constituents in Artocarpus obtusus species led to the isolation of three new xanthones, pyranocycloartobiloxanthone A (1), dihydroartoindonesianin C (2), and pyranocycloartobiloxanthone B (3). The compounds were subjected to antiproliferative assay against human promyelocytic leukemia (HL60), human chronic myeloid leukemia (K562), and human estrogen receptor (ER+) positive breast cancer (MCF7) cell lines. Pyranocycloartobiloxanthone A (1) consistently showed strong cytotoxic activity against the three cell lines compared to the other two with IC50 values of 0.5, 2.0 and 5.0 μg/mL, respectively. Compound (1) was also observed to exert antiproliferative activity and apoptotic promoter towards HL60 and MCF7 cell lines at respective IC50 values. The compound (1) was not toxic towards normal cell lines human nontumorigenic breast cell line (MCF10A) and human peripheral blood mononuclear cells (PBMCs) with IC50 values of more than 30 μg/mL. PMID:21960741

  6. Design and Synthesis of Curcumin-Like Diarylpentanoid Analogues as Potential Anticancer Agents.

    PubMed

    Qudjani, Elahe; Iman, Maryam; Davood, Asghar; Ramandi, Mahdi F; Shafiee, Abbas

    2016-01-01

    Curcumin is a polyphenolic natural compound with multiple targets that used for the prophylaxis and treatment of some type of cancers like cervical and pancreatic cancers. Some recent patent for curcumin for cancer has also been reviewed. In this study, ten new curcumin derivatives were designed and synthesized and their cytostatic activity evaluated against the Hela and Panc cell lines that some of them showed more activity than curcumin. In the present study, a series of mono-carbonyl derivatives of curcumin were designed and prepared. The details of the synthesis and chemical characterization of the synthesized compounds are described. The cytostatic activities of the designed compounds are assessed in two different tumor cell lines using MTT test. In vitro screening for human cervix carcinoma cell lines (Hela) and pancreatic cell lines (Panc-1) at 24 and 48 hour showed that all the analogs possessed good activity against these tumor cell lines and compounds 5a, 5c and 6 with high potency can be used as a new lead compounds for the designing and finding new and potent cytostatic agents. Docking studies indicated that compound 5c readily binds the active site of human glyoxalase I protein via two strong hydrogen bonds engaging residues of Glu-99 and Lys-156. Our results are useful in guiding a design of optimized ligands with improved pharmacokinetic properties and increased of anti-cancer activity vs. the prototype curcumin compound.

  7. Response of transformed and normal mouse cell lines to anti-melanin compounds, hyperthermia, and radiation.

    PubMed

    Raaphorst, G P; Azzam, E I

    1992-02-01

    Five cell lines (one parental, two transformed melanin producing, and two transformed non-melanin producing) were evaluated for the responses to 2- and 4-hydroxyanisole (2HA, 4HA) alone or combined with hyperthermia or radiation. All cells exhibited a non-specific toxic response to the two compounds and the effect was exposure time and concentration dependent and was greater for 4HA compared to 2HA. In addition, the two melanin-producing cell lines were more sensitive, demonstrating specific toxicity to such cell lines. The treatment with either 2HA or 4HA combined with heat and radiation resulted mostly in additive or antagonistic effects, except for one combination of 2HA plus radiation in the melanin-producing R25 cells. Thus, while these compounds may be useful in therapy for pigmented melanomas, combined treatment with radiation is not recommended.

  8. Synthesis, DNA binding ability and anticancer activity of 2-heteroaryl substituted benzimidazoles linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates.

    PubMed

    Kamal, Ahmed; Pogula, Praveen Kumar; Khan, Mohammed Naseer Ahmed; Seshadri, Bobburi Naga; Sreekanth, Kokkonda

    2013-08-01

    As a continuation of our efforts to develop the benzimidazole-PBD conjugates as potential anticancer agents, a series of heteroaryl substituted benzimidazole linked PBD conjugates has been synthesized and evaluated for their anticancer potential in 60 human cancer cell lines. Most of the compounds exhibited promising anticancer activity and interestingly, compounds 4c and 4d displayed significant activity in most of the cell lines tested. Whereas, compound 4e showed selectivity in renal cancer cells with GI50 values of <10 and 70 nM against RXF 393 and UO-31 cell lines, respectively. Further, these compounds also showed significant DNA-binding affinity by thermal denaturation study using duplex form of calf thymus (CT) DNA.

  9. Identification of small-molecule inhibitors of the colorectal cancer oncogene Krüppel-like factor 5 expression by ultrahigh-throughput screening.

    PubMed

    Bialkowska, Agnieszka B; Crisp, Melissa; Bannister, Thomas; He, Yuanjun; Chowdhury, Sarwat; Schürer, Stephan; Chase, Peter; Spicer, Timothy; Madoux, Franck; Tian, Chenlu; Hodder, Peter; Zaharevitz, Daniel; Yang, Vincent W

    2011-11-01

    The transcription factor Krüppel-like factor 5 (KLF5) is primarily expressed in the proliferative zone of the mammalian intestinal epithelium, where it regulates cell proliferation. Studies showed that inhibition of KLF5 expression reduces proliferation rates in human colorectal cancer cells and intestinal tumor formation in mice. To identify chemical probes that decrease levels of KLF5, we used cell-based ultrahigh-throughput screening (uHTS) to test compounds in the public domain of NIH, the Molecular Libraries Probe Production Centers Network library. The primary screen involved luciferase assays in the DLD-1/pGL4.18hKLF5p cell line, which stably expressed a luciferase reporter driven by the human KLF5 promoter. A cytotoxicity counterscreen was done in the rat intestinal epithelial cell line, IEC-6. We identified 97 KLF5-selective compounds with EC(50) < 10 μmol/L for KLF5 inhibition and EC(50) > 10 μmol/L for IEC-6 cytotoxicity. The two most potent compounds, CIDs (PubChem Compound IDs) 439501 and 5951923, were further characterized on the basis of computational, Western blot, and cell viability analyses. Both of these compounds, and two newly synthesized structural analogs of CID 5951923, significantly reduced endogenous KLF5 protein levels and decreased viability of several colorectal cancer cell lines without any apparent impact on IEC-6 cells. Finally, when tested in the NCI-60 panel of human cancer cell lines, compound CID 5951923 was selectively active against colon cancer cells. Our results show the feasibility of uHTS in identifying novel compounds that inhibit colorectal cancer cell proliferation by targeting KLF5.

  10. Identification of Small-Molecule Inhibitors of the Colorectal Cancer Oncogene Krüppel-Like Factor 5 Expression by Ultrahigh-Throughput Screening

    PubMed Central

    Bialkowska, Agnieszka B.; Crisp, Melissa; Bannister, Thomas; He, Yuanjun; Chowdhury, Sarwat; Schürer, Stephan; Chase, Peter; Spicer, Timothy; Madoux, Franck; Tian, Chenlu; Hodder, Peter; Zaharevitz, Daniel; Yang, Vincent W.

    2011-01-01

    The transcription factor Krüppel-like factor 5 (KLF5) is primarily expressed in the proliferative zone of the mammalian intestinal epithelium where it regulates cell proliferation. Studies showed that inhibition of KLF5 expression reduces proliferation rates in human colorectal cancer cells and intestinal tumor formation in mice. To identify chemical probes that decrease levels of KLF5, we used cell-based ultrahigh-throughput screening (uHTS) to test compounds in the NIH’s public domain, the Molecular Libraries Probe Production Centers Network (MLPCN) library. The primary screen involved luciferase assays in the DLD-1/pGL4.18hKLF5p cell line, which stably expressed a luciferase reporter driven by the human KLF5 promoter. A cytotoxicity counterscreen was performed in the rat intestinal epithelial cell line, IEC-6. We identified 97 KLF5-selective compounds with EC50<10 µM for KLF5 inhibition and EC50>10 µM for IEC-6 cytotoxicity. The two most potent compounds, CIDs (PubChem Compound IDs) 439501 and 5951923, were further characterized based on computational, Western blot, and cell viability analyses. Both of these compounds and two newly-synthesized structural analogs of CID 5951923 significantly reduced endogenous KLF5 protein levels and decreased viability of several colorectal cancer cell lines without any apparent impact on IEC-6 cells. Finally, when tested in the NCI-60 panel of human cancer cell lines, compound CID 5951923 was selectively active against colon cancer cells. Our results demonstrate the feasibility of uHTS in identifying novel compounds that inhibit colorectal cancer cell proliferation by targeting KLF5. PMID:21885866

  11. Synthesis and Evaluation of the Tumor Cell Growth Inhibitory Potential of New Putative HSP90 Inhibitors.

    PubMed

    Bizarro, Ana; Sousa, Diana; Lima, Raquel T; Musso, Loana; Cincinelli, Raffaella; Zuco, Vantina; De Cesare, Michelandrea; Dallavalle, Sabrina; Vasconcelos, M Helena

    2018-02-13

    Heat shock protein 90 (HSP90) is a well-known target for cancer therapy. In a previous work, some of us have reported a series of 3-aryl-naphtho[2,3- d ]isoxazole-4,9-diones as inhibitors of HSP90. In the present work, various compounds with new chromenopyridinone and thiochromenopyridinone scaffolds were synthesized as potential HSP90 inhibitors. Their binding affinity to HSP90 was studied in vitro. Selected compounds ( 5 and 8 ) were further studied in various tumor cell lines regarding their potential to cause cell growth inhibition, alter the cell cycle profile, inhibit proliferation, and induce apoptosis. Their effect on HSP90 client protein levels was also confirmed in two cell lines. Finally, the antitumor activity of compound 8 was studied in A431 squamous cell carcinoma xenografts in nude mice. Our results indicated that treatment with compounds 5 and 8 decreased the proliferation of tumor cell lines and compound 8 induced apoptosis. In addition, these two compounds were able to downregulate selected proteins known as "clients" of HSP90. Finally, treatment of xenografted mice with compound 5 resulted in a considerable dose-dependent inhibition of tumor growth. Our results show that two new compounds with a chromenopyridinone and thiochromenopyridinone scaffold are promising putative HSP90 inhibitors causing tumor cell growth inhibition.

  12. Anti-tumor and anti-angiogenic ergosterols from Ganoderma lucidum

    NASA Astrophysics Data System (ADS)

    Chen, Shaodan; Yong, Tianqiao; Zhang, Yifang; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen

    2017-10-01

    This study was carried out to isolate chemical constituents from the lipid enriched fraction of Ganoderma lucidum extract and to evaluate their anti-proliferative effect on cancer cell lines and human umbilical vein endothelial cells. Ergosterol derivatives (1-14) were isolated from the lipid enriched fraction of G. lucidum. Their structures were established on the basis of spectroscopic analyses or by comparison of mass and NMR spectral data with those reported previously. Amongst, compound 1 was isolated and identified as a new compound. All the compounds were evaluated for their inhibitory effect on tumor cells and human umbilical vein endothelial cells in vitro. Compounds 9-13 displayed inhibitory activity against two tumor cell lines and human umbilical vein endothelial cells, which indicated that these four compounds had both anti-tumor and anti-angiogenesis activities. Compound 2 had significant selective inhibition against two tumor cell lines, while 3 exhibited selective inhibition against human umbilical vein endothelial cells. The structure–activity relationships for inhibiting human HepG2 cells were revealed by 3D-QASR. Ergosterol content in different parts of the raw material and products of G. lucidum was quantified. This study provides a basis for further development and utilization of ergosterol derivatives as natural nutraceuticals and functional food ingredients, or as source of new potential antitumor or anti-angiogenesis chemotherapy agent.

  13. Synthesis and Evaluation of Cytotoxic Activity of Some Pyrroles and Fused Pyrroles.

    PubMed

    Fatahala, Samar S; Mohamed, Mosaad S; Youns, Mahmoud; Abd-El Hameed, Rania H

    2017-01-01

    Pyrrole derivatives represent a very interesting class as biologically active compounds. The objective of our study was to investigate the cytotoxic and apoptotic effects and antioxidant activity of the newly synthesized pyrrole derivatives. A series of novel pyrroles and fused pyrroles (tetrahydroindoles, pyrrolopyrimidines, pyrrolopyridines and pyrrolotriazines) were synthesized and characterized using IR, 1H NMR, 13C NMR, MS and elemental analysis techniques. The antiproliferative activity of our synthesized compounds and their modulatory effect apoptotic pathway were investigated. The effect on cellular proliferation and viability was monitored by resazurin assay. Apoptotic effect was evaluated by caspase glo 3/7 assay. Synthesized compounds are then tested for their anticancer activities against three different cell lines representing three different tumor types, namely; the HepG-2 (Human hepatocellular liver carcinoma cell line), the human MCF-7 cell line (breast cancer) and the pancreatic resistant Panc-1 cells. Compounds Ia-e, IIe, and IXc, d showed a promising anti-cancer activity on all tested cell lines. Antioxidant and wound healing invasion assays were examined for promising anticancer candidate compounds. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. A phenotypic screening approach to identify anticancer compounds derived from marine fungi.

    PubMed

    Ellinger, Bernhard; Silber, Johanna; Prashar, Anjali; Landskron, Johannes; Weber, Jonas; Rehermann, Sarah; Müller, Franz-Josef; Smith, Stephen; Wrigley, Stephen; Taskén, Kjetil; Gribbon, Philip; Labes, Antje; Imhoff, Johannes F

    2014-04-01

    This study covers the isolation, testing, and identification of natural products with anticancer properties. Secondary metabolites were isolated from fungal strains originating from a variety of marine habitats. Strain culture protocols were optimized with respect to growth media composition and fermentation conditions. From these producers, isolated compounds were screened for their effect on the viability and proliferation of a subset of the NCI60 panel of cancer cell lines. Active compounds of interest were identified and selected for detailed assessments and structural elucidation using nuclear magnetic resonance. This revealed the majority of fungal-derived compounds represented known anticancer chemotypes, confirming the integrity of the process and the ability to identify suitable compounds. Examination of effects of selected compounds on cancer-associated cell signaling pathways used phospho flow cytometry in combination with 3D fluorescent cell barcoding. In parallel, the study addressed the logistical aspects of maintaining multiple cancer cell lines in culture simultaneously. A potential solution involving microbead-based cell culture was investigated (BioLevitator, Hamilton). Selected cell lines were cultured in microbead and 2D methods and cell viability tests showed comparable compound inhibition in both methods (R2=0.95). In a further technology assessment, an image-based assay system was investigated for its utility as a possible complement to ATP-based detection for quantifying cell growth and viability in a label-free manner.

  15. Isolation and characterization of an anticancer catechol compound from Semecarpus anacardium.

    PubMed

    Nair, P K Raveedran; Melnick, Steven J; Wnuk, Stanislaw F; Rapp, Magdalena; Escalon, Enrique; Ramachandran, Cheppail

    2009-04-21

    The fruits and seeds of Semecarpus anacardium are used widely for the treatment of human cancers and other diseases in the Ayurvedic and Sidda systems of medicine in India. The principal aim of this investigation was to isolate and characterize the anticancer compound from the kernel of Semecarpus anacardium nut. The bioactivity-tailored isolation and detailed chemical characterization were used to identify the active compound. Cytotoxicity, apoptosis, cell cycle arrest as well as synergism between the identified anticancer compound and doxorubicin in human tumor cell lines were analyzed. GC/MS, IR, proton NMR, carbon NMR and collisionally induced dissociation (CID) spectra analysis showed that the isolated active compound is 3-(8'(Z),11'(Z)-pentadecadienyl) catechol (SA-3C). SA-3C is cytotoxic to tumor cell lines with IC(50) values lower than doxorubicin and even multidrug resistant tumor cell lines were equally sensitive to SA-3C. SA-3C induced apoptosis in human leukemia cell lines in a dose-dependent manner and showed synergistic cytotoxicity with doxorubicin. The cell cycle arrest induced by SA-3C at S- and G(2)/M-phases correlated with inhibition of checkpoint kinases. SA-3C isolated from the kernel of Semecarpus anacardium can be developed as an important anticancer agent for single agent and/or multiagent cancer therapy.

  16. New benzimidazoles and their antitumor effects with Aurora A kinase and KSP inhibitory activities.

    PubMed

    Abd El-All, Amira S; Magd-El-Din, Asmaa A; Ragab, Fatma A F; ElHefnawi, Mahmoud; Abdalla, Mohamed M; Galal, Shadia A; El-Rashedy, Ahmed A

    2015-07-01

    A newly synthesized series of anticancer compounds comprising thiazolo[3,2-a]pyrimidine derivatives 6a-q bearing a benzimidazole moiety was produced via a one-pot reaction of N-(4-(1H-benzo[d]imidazol-2-yl)phenyl)-2-cyanoacetamide 5 with 2-aminothiazole and an appropriate aromatic aldehyde. Compound 7 was obtained via the reaction of 4-(1H-benzo[d]imidazol-2yl)benzenamide 1 with carbon disulphide and methyl iodide in the presence of concentrated aqueous solution of NaOH, then treated with o-phenylenediamine to give N-(4-1H-benzo[d]imidazol-2-yl)phenyl)-1H-benzo[d]imidazol-2-amine 8. The structures of the newly synthesized compounds were confirmed by analytical and spectroscopic measurements (IR, MS, and (1) H NMR). The synthesized products were screened and studied for their in vitro antitumor activity against three human cancer cell lines (namely colorectal cancer cell line HCT116, human liver cancer cell line HepG2, and human ovarian cancer cell line A2780) and their Aurora A kinase and KSP inhibitory activities. All newly synthesized compounds revealed marked results comparable with the standard drug CK0106023. The compounds 6e and 6k of the thiazolopyrimidine derivatives were the most active compounds when tested against the three cell lines in comparison with the standard drug CK0106023, and showed potent dual KSP and Aurora A kinase inhibition. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. New isopimarane diterpenes and nortriterpene with cytotoxic activity from Ephorbia alatavica Boiss.

    PubMed

    Rozimamat, Rushangul; Hu, Rui; Aisa, Haji Akber

    2018-06-01

    Three new isopimarane diterpenes and one new nor-triterpenes, along with five known diterpenes were isolated from the whole areal part of Ephorbia alatavica Boiss. The structures of the new compounds (1-4) were determined based on extensive spectroscopic analysis, including HR-ESIMS, 1D and 2D NMR data. A plausible biosynthetic pathway for new compounds (1-4) were hypothesized. All isolated compounds were screen for cytotoxicity activity against MCF-8, HeLa and A549 cell lines in vitro by MTT assay. New compound 1 and known 9 showed potential cytotoxic activities with IC 50 values of 15.327 μg/mL, 23.066 μg/mL against MCF-8 cell lines, compound1 showed noteworthy cytotoxic activity with IC 50 13.033 μg/mL against A549 cancer cell line. New compounds 2, 4 and 4 showed moderate cytotoxic activities three human cancer lines with IC 50 value around 50 μg/mL, which compared with positive control doxorubicin (DOX). Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Synthesis, Characterization, and Anti-Cancer Activity of Some New N'-(2-Oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazones Derivatives.

    PubMed

    El-Faham, Ayman; Farooq, Muhammad; Khattab, Sherine N; Abutaha, Nael; Wadaan, Mohammad A; Ghabbour, Hazem A; Fun, Hoong-Kun

    2015-08-13

    Eight novel N'-(2-oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazone derivatives 4a-h were synthesized and fully characterized by IR, NMR ((1)H-NMR and (13)C-NMR), elemental analysis, and X-ray crystallography. The cyto-toxicity and in vitro anti-cancer evaluation of the prepared compounds have been assessed against two different human tumour cell lines including human liver (HepG2) and leukaemia (Jurkat), as well as in normal cell lines derived from human embryonic kidney (HEK293) using MTT assay. The compounds 3e, 3f, 4a, 4c, and 4e revealed promising anti-cancer activities in tested human tumour cells lines (IC50 values between 3 and 7 μM) as compared to the known anti-cancer drug 5-Fluorouracil (IC50 32-50 μM). Among the tested compounds, 4a showed specificity against leukaemia (Jurkat) cells, with an IC50 value of 3.14 μM, but this compound was inactive in liver cancer and normal cell lines.

  19. Subtype and pathway specific responses to anticancer compounds in breast cancer.

    PubMed

    Heiser, Laura M; Sadanandam, Anguraj; Kuo, Wen-Lin; Benz, Stephen C; Goldstein, Theodore C; Ng, Sam; Gibb, William J; Wang, Nicholas J; Ziyad, Safiyyah; Tong, Frances; Bayani, Nora; Hu, Zhi; Billig, Jessica I; Dueregger, Andrea; Lewis, Sophia; Jakkula, Lakshmi; Korkola, James E; Durinck, Steffen; Pepin, François; Guan, Yinghui; Purdom, Elizabeth; Neuvial, Pierre; Bengtsson, Henrik; Wood, Kenneth W; Smith, Peter G; Vassilev, Lyubomir T; Hennessy, Bryan T; Greshock, Joel; Bachman, Kurtis E; Hardwicke, Mary Ann; Park, John W; Marton, Laurence J; Wolf, Denise M; Collisson, Eric A; Neve, Richard M; Mills, Gordon B; Speed, Terence P; Feiler, Heidi S; Wooster, Richard F; Haussler, David; Stuart, Joshua M; Gray, Joe W; Spellman, Paul T

    2012-02-21

    Breast cancers are comprised of molecularly distinct subtypes that may respond differently to pathway-targeted therapies now under development. Collections of breast cancer cell lines mirror many of the molecular subtypes and pathways found in tumors, suggesting that treatment of cell lines with candidate therapeutic compounds can guide identification of associations between molecular subtypes, pathways, and drug response. In a test of 77 therapeutic compounds, nearly all drugs showed differential responses across these cell lines, and approximately one third showed subtype-, pathway-, and/or genomic aberration-specific responses. These observations suggest mechanisms of response and resistance and may inform efforts to develop molecular assays that predict clinical response.

  20. Antitumor Effect of Burchellin Derivatives Against Neuroblastoma.

    PubMed

    Kurita, Masahiro; Takada, Tomomi; Wakabayashi, Noriko; Asami, Satoru; Ono, Shinichi; Uchiyama, Taketo; Suzuki, Takashi

    2018-02-01

    Neuroblastoma is one of the most commonly encountered malignant solid tumors in the pediatric age group. We examined the antitumor effects of five burchellin derivatives against human neuroblastoma cell lines. We evaluated cytotoxicity by the MTT assay for four human neuroblastoma and two normal cell lines. We also performed analysis of the apoptotic induction effect by flow cytometry, and examined the expression levels of apoptosis- and cell growth-related proteins by western blot analysis. We found that one of the burchellin derivatives (compound 4 ) exerted cytotoxicity against the neuroblastoma cell lines. Compound 4 induced caspase-dependent apoptosis via a mitochondrial pathway. The apoptosis mechanisms induced by compound 4 involved caspase-3, -7 and -9 activation and poly (ADP-ribose) polymerase cleavage. In addition, compound 4 induced cell death through inhibition of the cell growth pathway (via extracellular signal-regulated kinase 1 and 2, AKT8 virus oncogene cellular homolog, and signal transducer and activator of transcription 3). Compound 4 exerted cellular cytotoxicity against neuroblastoma cells via induction of caspase-dependent apoptosis, and may offer promise for further development as a useful drug for the treatment of advanced neuroblastoma. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  1. Characterization of antiproliferative activity constituents from Artocarpus heterophyllus.

    PubMed

    Zheng, Zong-Ping; Xu, Yang; Qin, Chuan; Zhang, Shuang; Gu, Xiaohong; Lin, Yingying; Xie, Guobin; Wang, Mingfu; Chen, Jie

    2014-06-18

    Artocarpus heterophyllus is an evergreen fruit tree cultivated in many tropical regions. Previous studies have shown that some of its compositions exhibited potential tyrosinase inhibition activities. This study indentified 8 new phenolic compounds, artoheterophyllins E-J (1-6), 4-geranyl-2',3,4',5-tetrahydroxy-cis-stilbene (7), and 5-methoxymorican M (8) and 2 new natural compounds (9 and 10), 2,3-dihydro-5,7-dihydroxy-2-(2-hydroxy-4-methoxyphenyl)-4H-benzopyran-4-one and 6-[(1S,2S)-1,2-dihydroxy-3-methylbutyl]-2-(2,4-dihydroxyphenyl)-5-hydroxy-7-methoxy-3-(3-methyl-2-buten-1-yl)-4H-1-benzopyran-4-one, together with 23 known compounds (11-33), from the ethanol extract of the wood of A. heterophyllus. The structures of the eight new compounds (1-8) and two new natural compounds were established by extensive 1D- and 2D-NMR experiments. The anticancer effects of the isolated compounds were examined in MCF-7, H460, and SMMC-7721 human cancer cell lines by MTT assay. Compounds 5, 11, 12, and 30 significantly reduced the cell viabilities of these cell lines. Especially, compounds 11 and 30 resulted in more potent cytotoxicity than the positive control, 5-fluorouracil (5-Fu), in SMMC-7721 cell line, with IC50 values of 15.85 and 12.06 μM, whereas compound 30 exhibited more potent cytotoxicity than 5-Fu in NCI-H460 cell line, with an IC50 value of 5.19 μM. In addition, this study suggests that compounds 11 and 30 from the wood of A. heterophyllus have anticancer potential via MAPK pathways.

  2. Antiproliferative activity and interactions with cell-cycle related proteins of the organotin compound triethyltin(IV)lupinylsulfide hydrochloride.

    PubMed

    Barbieri, F; Sparatore, F; Cagnoli, M; Bruzzo, C; Novelli, F; Alama, A

    2001-03-14

    Organotin compounds, particularly tri-organotin, have demonstrated cytotoxic properties against a number of tumor cell lines. On this basis, triethyltin(IV)lupinylsulfide hydrochloride (IST-FS 29), a quinolizidine derivative, was synthesized and developed as a potential antitumor agent. This tin-derived compound exhibited potent antiproliferative effects on three different human cancer cell lines: teratocarcinoma of the ovary (PA-1), colon carcinoma (HCT-8) and glioblastoma (A-172). Cytotoxic activity was assessed by MTT and cell count assays during time course experiments with cell recovery after compound withdrawal. Significant cell growth inhibition (up to 95% in HCT-8 after 72 h of exposure), which also persisted after drug-free medium change, was reported in all the cell lines by both assays. In addition, the cytocidal effects exerted by IST-FS 29 appeared more consistent with necrosis or delayed cell death, rather than apoptosis, as shown by morphologic observations under light microscope, DNA fragmentation analysis and flow cytometry. In the attempt to elucidate whether this compound might affect genes playing a role in G1/S phase transition, the expressions of p53, p21(WAF1), cyclin D1 and Rb, mainly involved in response to DNA-damaging stress, were analyzed by Western blot. Heterogeneous patterns of expression during exposure to IST-FS 29 were evidenced in the different cell lines suggesting that these cell-cycle-related genes are not likely the primary targets of this compound. Thus, the present data seem more indicative of a direct effect of IST-FS-29 on macromolecular synthesis and cellular homeostasis, as previously hypothesized for other organotin complexes.

  3. Design and synthesis of aminocoumarin derivatives as DPP-IV inhibitors and anticancer agents.

    PubMed

    Soni, Rina; Soman, Shubhangi S

    2018-09-01

    DPP-IV "a moonlighting protein" has immerged as promising pathway to control Type 2 diabetes as well as found to play key role in earlier stages of cancer. Here we have reported design, synthesis and applications of aminocoumarin derivatives as DPP-IV inhibitors. Compounds have been synthesized and studied for their DPP-IV inhibition activity. Three compounds have shown moderate inhibition at 100 µM concentration. All compounds were also screened for their anticancer activity against A549 (Lung cancer cell line), MCF-7 (Breast cancer cell line) using MTT assay. One of the compounds has shown very good anticancer activity with IC 50 value 24 ± 0.1 nM against A549 cell line. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Synthesis and cytotoxic activity of two steroids: icogenin aglycone analogs.

    PubMed

    Guan, Yu-Yao; Li, Shu-Zhen; Lei, Ping-Sheng

    2017-05-01

    During the process of icogenin analog research, we obtained two cytotoxic steroids: compound 4 and compound 6 casually. Their in vitro antitumor activities were tested by the standard MTT assay. The results disclosed that compound 4 (IC 50  = 3.65-6.90 μM) showed potential antitumor activities against HELA, KB cell lines and compound 6 (IC 50  = 2.40-9.05 μM) showed potential antitumor activities against HELA, BGC-823, KB, A549, HCT-8 cell lines.

  5. Synthesis and biological evaluation of pyrimidine bridged combretastatin derivatives as potential anticancer agents and mechanistic studies.

    PubMed

    Kumar, Bhupinder; Sharma, Praveen; Gupta, Vivek Prakash; Khullar, Madhu; Singh, Sandeep; Dogra, Nilambra; Kumar, Vinod

    2018-08-01

    A number of pyrimidine bridged combretastatin derivatives were designed, synthesized and evaluated for anticancer activities against breast cancer (MCF-7) and lung cancer (A549) cell lines using MTT assays. Most of the synthesized compounds displayed good anticancer activity with IC 50 values in low micro-molar range. Compounds 4a and 4p were found most potent in the series with IC 50 values of 4.67 µM & 3.38 µM and 4.63 µM & 3.71 µM against MCF7 and A549 cancer cell lines, respectively. Biological evaluation of these compounds showed that selective cancer cell toxicity (in vitro using human lung and breast cancer cell lines) might be due to the inhibition of antioxidant enzymes instigating elevated ROS levels which triggers intrinsic apoptotic pathways. These compounds were found nontoxic to the normal human primary cells. Compound 4a, was found to be competitive inhibitor of colchicine and in the tubulin binding assay it showed tubulin polymerization inhibition potential comparable to colchicine. The molecular modeling studies also showed that the synthesized compounds fit well in the colchicine-binding pocket. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. New sesquiterpene lactones from Ambrosia cumanensis Kunth.

    PubMed

    Jimenez-Usuga, Nora Del Socorro; Malafronte, Nicola; Cotugno, Roberta; De Leo, Marinella; Osorio, Edison; De Tommasi, Nunziatina

    2016-09-01

    Eleven sesquiterpene lactones, including three new natural products (1-3), were isolated from the n-butanolic extract of Ambrosia cumanensis Kunth. aerial parts. The structure of all isolated compounds was elucidated by 1D- and 2D-NMR, and MS analyses. All compounds were tested for their antiproliferative activity on HeLa, Jurkat, and U937 cell lines. Compound 3, 2,3-dehydropsilostachyn C, showed cytotoxic activity with different potency in all cell lines. By means of flow cytometric studies, compound 3 was demonstrated to induce in Jurkat cells a G2/M cell cycle block, while in U937 elicited both cytostatic and cytotoxic responses. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Antibacterial and cytotoxic activity of isoprenylated coumarin mammea A/AA isolated from Mammea africana.

    PubMed

    Canning, Corene; Sun, Shi; Ji, Xiangming; Gupta, Smiti; Zhou, Kequan

    2013-05-02

    The stem bark of Mammea africana is widely distributed in tropical Africa and commonly used in traditional medicine. This study aims to identify the active compound in Mammea africana and to evaluate its antimicrobial and antiproliferative activity. Methanol extract from the bark of the Mammea africana was separated by liquid-liquid extraction, followed by open column chromatography. A principal antimicrobial compound was purified by high performance liquid chromatography (HPLC) and its structure was elucidated by nuclear magnetic resonance spectroscopy (NMR) and mass spectrometry (MS). The antibacterial activity of the purified compound was determined using the broth microdilution method against 7 common pathogenic bacteria. The compound was also evaluated for cytotoxicity by cell proliferation assay (MTS) using the mouse embryonic fibroblast cell line NIH 3T3 and the non-small cell lung cancer cell line A549. The purified active compound was determined to be mammea A/AA and was found to be highly active against Campylobacter jejuni (MIC=0.5 μg/ml), Streptococcus pneumoniae (MIC=0.25 μg/ml), and Clostridium difficile (MIC=0.25 μg/ml). The compound exhibited significant antiproliferative activities against both NIH 3T3 and A549 cell lines. Mammea A/AA isolated from Mammea africana exerts specific inhibitory activity against Campylobacter jejuni, Streptococcus pneumoniae, and Campylobacter difficile. Mammea A/AA was also found to exhibit significant cytotoxicity against both cancer and normal cell lines. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. In vitro anticancer activity of Betulinic acid and derivatives thereof on equine melanoma cell lines from grey horses and in vivo safety assessment of the compound NVX-207 in two horses.

    PubMed

    Liebscher, G; Vanchangiri, K; Mueller, Th; Feige, K; Cavalleri, J-M V; Paschke, R

    2016-02-25

    Betulinic acid, a pentacyclic triterpene, and its derivatives are promising compounds for cancer treatment in humans. Melanoma is not only a problem for humans but also for grey horses as they have a high potential of developing melanoma lesions coupled to the mutation causing their phenotype. Current chemotherapeutic treatment carries the risk of adverse health effects for the horse owner or the treating veterinarian by exposure to antineoplastic compounds. Most treatments have low prospects for systemic tumor regression. Thus, a new therapy is needed. In this in vitro study, Betulinic acid and its two derivatives B10 and NVX-207, both with an improved water solubility compared to Betulinic acid, were tested on two equine melanoma cell lines (MelDuWi and MellJess/HoMelZh) and human melanoma (A375) cell line. We could demonstrate that all three compounds especially NVX-207 show high cytotoxicity on both equine melanoma cell lines. The treatment with these compounds lead to externalization of phosphatidylserines on the cell membrane (AnnexinV-staining), DNA-fragmentation (cell cycle analysis) and activation of initiator and effector caspases (Caspase assays). Our results indicate that the apoptosis is induced in the equine melanoma cells by all three compounds. Furthermore, we succeed in encapsulating the most active compound NVX-207 in 2-Hydroxyprolyl-β-cyclodextrine without a loss of its activity. This formulation can be used as a promising antitumor agent for treating grey horse melanoma. In a first tolerability evaluation in vivo the formulation was administered every one week for 19 consecutive weeks and well tolerated in two adult melanoma affected horses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Synthesis, Antitumor Activity, and Mechanism of Action of 6-Acrylic Phenethyl Ester-2-pyranone Derivatives

    PubMed Central

    Fang, Sai; Chen, Lei; Yu, Miao; Cheng, Bao; Lin, Yongsheng; Morris-Natschke, Susan L.; Lee, Kuo-Hsiung; Gu, Qiong; Xu, Jun

    2015-01-01

    Based on the scaffolds of caffeic acid phenethyl ester (CAPE) as well as bioactive lactone-containing compounds, 6-acrylic phenethyl ester-2-pyranone derivatives were synthesized and evaluated against five tumor cell lines (HeLa, C6, MCF-7, A549, and HSC-2). Most of the new derivatives exhibited moderate to potent cytotoxic activity. Moreover, HeLa cell lines showed higher sensitivity to these compounds. Particularly, compound 5o showed potent cytotoxic activity (IC50 = 0.50 – 3.45 μM) against the five cell lines. Further investigation on the mechanism of action showed that 5o induced apoptosis, arrested the cell cycle at G2/M phases in HeLa cells, and inhibited migration through disruption of the actin cytoskeleton. In addition, ADME properties were also calculated in silico, and compound 5o showed good ADMET properties with good absorption, low hepatotoxicity, and good solubility, and thus, could easily be bound to carrier proteins, without inhibition of CYP2D6. A structure-activity relationship (SAR) analysis indicated that compounds with ortho-substitution on the benzene ring exhibited obviously increased cytotoxic potency. This study indicated that compound 5o is a promising compound as an antitumor agent. PMID:25800703

  10. Induction of Apoptosis of 2,4′,6-Trihydroxybenzophenone in HT-29 Colon Carcinoma Cell Line

    PubMed Central

    Lay, Ma Ma; Karsani, Saiful Anuar

    2014-01-01

    2,4′,6-Trihydroxy-4-methoxybenzophenone was isolated from the ethyl acetate fraction of Phaleria macrocarpa (Scheff.) Boerl. fruits. It was found to inhibit cell proliferation in HT-29 human colon carcinoma cell line but caused little damage to WRL-68 normal human liver and MRC-5 normal human fibroblast lung cell lines. The compound was found to sharply affect the viability of HT-29 cells in a dose- and time-dependent manner. HT-29 cells treated with the compound showed morphological changes under microscopic examination such as cell shrinkage, membrane blebbing, DNA fragmentation, and the occurrence of apoptotic nuclei. The percentage of early apoptotic, late apoptotic, and dead or necrotic cells was determined by flow cytometry using annexin V-FTIC/PI staining. In addition, flow cytometry showed that, when the HT-29 cells were treated with 115 µM of the compound, it resulted in G0/G1 phase arrest in a time-dependent manner. Western blot revealed an upregulation of PUMA, Bak, Bcl-2, and Mcl-1 proteins suggesting that the compound induced apoptosis in HT-29 cells by regulating these proteins. PMID:24579081

  11. Imidazopyridine-fused [1,3]-diazepinones: synthesis and antiproliferative activity.

    PubMed

    Gallud, Audrey; Vaillant, Ophélie; Maillard, Ludovic T; Arama, Dominique P; Dubois, Joëlle; Maynadier, Marie; Lisowski, Vincent; Garcia, Marcel; Martinez, Jean; Masurier, Nicolas

    2014-03-21

    A series of 15 pyrido-imidazo-1,3-diazepin-5-ones and pyrido-1,3-diazepine-2,5-diones were synthesized and their anticancer activities were evaluated. Among tested compounds on a cell lines panel, compound 6a presents the best growth inhibition activity on 21 cell lines with a cytotoxic effect on MDA-MB-435 melanoma cells. This compound led to deep cell morphological changes and revealed to be an inhibitor of the Hepatocyte progenitor kinase-like kinase (HGK), which is known to be implicated in the migration, adhesion and invasion of various tumor cells. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  12. Green synthesis and anticancer potential of chalcone linked-1,2,3-triazoles.

    PubMed

    Yadav, Pinki; Lal, Kashmiri; Kumar, Ashwani; Guru, Santosh Kumar; Jaglan, Sundeep; Bhushan, Shashi

    2017-01-27

    A series of chalcone linked-1,2,3-triazoles was synthesized via cellulose supported copper nanoparticle catalyzed click reaction in water. The structures of all the compounds were analyzed by IR, NMR and Mass spectral techniques. All the synthesized products were subjected to 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay against a panel of four human cancer cell lines (MCF-7, MIA-Pa-Ca-2, A549, HepG2) to check their anticancer potential. Compound 6h was found to be most active against all the tested cancer cell lines with IC 50 values in the range of 4-11 μM and showed better or comparable activity to the reference drug against all the tested cell lines. Cell cycle analysis revealed that compound 6h induces apoptosis and G2/S arrest in MIA-Pa-Ca-2 cells. Compound 6h triggers mitochondrial potential loss in pancreatic cancer MIA-Pa-Ca-2 cells. Further, Compound 6h also triggers caspase-3 and PARP-1 cleavage, which increases in dose dependent manner. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  13. Detection of increased choline compounds with proton nuclear magnetic resonance spectroscopy subsequent to malignant transformation of human prostatic epithelial cells.

    PubMed

    Ackerstaff, E; Pflug, B R; Nelson, J B; Bhujwalla, Z M

    2001-05-01

    In this study, a panel of normal human prostate cells (HPCs) and tumor cells derived from metastases were studied by (1)H NMR spectroscopy to determine whether the malignant transformation of HPCs results in the elevation of choline compounds. Although an elevated choline signal has been observed previously in clinical studies, the contribution of the different Cho compounds to this elevation, as well as their quantification, has not been established until now. Here we have shown that HPCs derived from metastases exhibit significantly higher phosphocholine as well as glycerophosphocholine levels compared with normal prostate epithelial and stromal cells. Thus the elevation of the choline peak observed clinically in prostate cancer is attributable to an alteration of phospholipid metabolism and not simply to increased cell density, doubling time, or other nonspecific effects. Androgen deprivation of the androgen receptor-positive cell lines resulted in a significant increase of choline compounds after chronic androgen deprivation of the LNCaP cell line and in a decrease of choline compounds after a more acute androgen deprivation of the LAPC-4 cell line. These data strongly support the use of proton magnetic resonance spectroscopic imaging to detect the presence of prostate cancer for diagnosis, to detect response subsequent to androgen ablation therapy, and to detect recurrence.

  14. In vitro antiproliferative/cytotoxic activity on cancer cell lines of a cardanol and a cardol enriched from Thai Apis mellifera propolis.

    PubMed

    Teerasripreecha, Dungporn; Phuwapraisirisan, Preecha; Puthong, Songchan; Kimura, Kiyoshi; Okuyama, Masayuki; Mori, Haruhide; Kimura, Atsuo; Chanchao, Chanpen

    2012-03-30

    Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, Apis mellifera propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity. Propolis was sequentially extracted with methanol, dichloromethane and hexane and the cytotoxic activity of each crude extract was assayed for antiproliferative/cytotoxic activity in vitro against five human cell lines derived from duet carcinoma (BT474), undifferentiated lung (Chaco), liver hepatoblastoma (Hep-G(2)), gastric carcinoma (KATO-III) and colon adenocarcinoma (SW620) cancers. The human foreskin fibroblast cell line (Hs27) was used as a non-transformed control. Those crude extracts that displayed antiproliferative/cytotoxic activity were then further fractionated by column chromatography using TLC-pattern and MTT-cytotoxicity bioassay guided selection of the fractions. The chemical structure of each enriched bioactive compound was analyzed by nuclear magnetic resonance and mass spectroscopy. The crude hexane and dichloromethane extracts of propolis displayed antiproliferative/cytotoxic activities with IC(50) values across the five cancer cell lines ranging from 41.3 to 52.4 μg/ml and from 43.8 to 53.5 μg/ml, respectively. Two main bioactive components were isolated, one cardanol and one cardol, with broadly similar in vitro antiproliferation/cytotoxicity IC(50) values across the five cancer cell lines and the control Hs27 cell line, ranging from 10.8 to 29.3 μg/ml for the cardanol and < 3.13 to 5.97 μg/ml (6.82 - 13.0 μM) for the cardol. Moreover, both compounds induced cytotoxicity and cell death without DNA fragmentation in the cancer cells, but only an antiproliferation response in the control Hs27 cells However, these two compounds did not account for the net antiproliferation/cytotoxic activity of the crude extracts suggesting the existence of other potent compounds or synergistic interactions in the propolis extracts. This is the first report that Thai A. mellifera propolis contains at least two potentially new compounds (a cardanol and a cardol) with potential anti-cancer bioactivity. Both could be alternative antiproliferative agents for future development as anti-cancer drugs.

  15. Evaluation of in silico pharmacokinetic properties and in vitro cytotoxic activity of selected newly synthesized N-succinimide derivatives.

    PubMed

    Milosevic, Natasa P; Kojic, Vesna; Curcic, Jelena; Jakimov, Dimitar; Milic, Natasa; Banjac, Nebojsa; Uscumlic, Gordana; Kaliszan, Roman

    2017-04-15

    Design of a new drug entity is usually preceded by analysis of quantitative structure activity (properties) relationships, QSA(P)R. Six newly synthesized succinimide derivatives have been determined for (i) in silico physico-chemical descriptors, pharmacokinetic and toxicity predictors, (ii) in vitro biological activity on four different carcinoma cell lines and on normal fetal lung cells and (iii) lipophilicity on liquid chromatography. All compounds observed were predicted for good permeability and solubility, good oral absorption rate and moderate volume of distribution as well as for modest blood brain permeation, followed by acceptable observed toxicity. In silico determined lipophilicity, permeability through jejunum and aqueous solubility were correlated with experimentally obtained lipophilic constants (by use of high pressure liquid chromatography) and linear correlations were obtained. Absorption rate and volume of distribution were predicted by chromatographic lipophilicity measurements while permeation through blood bran barrier was predicted dominantly by molecular size defined with molecular weight. Five compounds have demonstrated antiproliferative activity toward cervix carcinoma HeLa cell lines; three were cytotoxic against breast carcinoma MCF-7 cells, while one inhibited proliferation of colon carcinoma HT-29 cell lines. Only one compound was cytotoxic toward normal cell lines, while other compounds were proven as safe. Antiproliferative potential against HeLa cells was described as exponential function of lipophilicity. Based on obtained results, lead compounds were selected. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Potent Insulin Secretagogue from Scoparia dulcis Linn of Nepalese Origin.

    PubMed

    Sharma, Khaga Raj; Adhikari, Achyut; Hafizur, Rahman M; Hameed, Abdul; Raza, Sayed Ali; Kalauni, Surya Kant; Miyazaki, Jun-Ichi; Choudhary, M Iqbal

    2015-10-01

    Ethno-botanical inspired isolation from plant Scoparia dulcis Linn. (Sweet Broomweed) yielded six compounds, coixol (1), glutinol (2), glutinone (3), friedelin (4), betulinic acid (5), and tetratriacontan-1-ol (6). There structures were identified using mass and 1D- and 2D-NMR spectroscopy techniques. Compounds 1-6 were evaluated for their insulin secretory activity on isolated mice islets and MIN-6 pancreatic β-cell line, and compounds 1 and 2 were found to be potent and mildly active, respectively. Compound 1 was further evaluated for insulin secretory activity on MIN-6 cells. Compound 1 was subjected to in vitro cytotoxicity assay against MIN-6, 3T3 cell lines, and islet cells, and in vivo acute toxicity test in mice that was found to be non-toxic. The insulin secretory activity of compounds 1 and 2 supported the ethno-botanic uses of S. dulcis as an anti-diabetic agent. Copyright © 2015 John Wiley & Sons, Ltd.

  17. Cytotoxic 2',5'-dihydroxychalcones with unexpected antiangiogenic activity.

    PubMed

    Nam, Nguyen-Hai; Kim, Yong; You, Young-Jae; Hong, Dong-Ho; Kim, Hwan-Mook; Ahn, Byung-Zun

    2003-02-01

    A series of 2',5'-dihydroxychalcones were synthesized and evaluated for cytotoxicity against tumor cell lines and human umbilical venous endothelial cells (HUVEC). It was found that chalcones with electron-withdrawing substituents on the B ring exhibited potent cytotoxicity against a variety of tumor cell lines while compounds with electron-releasing groups were less potent in general. Those compounds with B ring replaced by extended or heteroaromatic rings exhibited significant bioactivity. Several compounds were shown to have marked cytotoxic selectivity towards HUVECs. Especially, among the synthesized compounds, 2-chloro-2',5'-dihydroxychalcone (2-3) showed the highest selectivity index up to 66 in comparison to HCT116 cells. This compound also exhibited strong inhibitory effects on the HUVEC tube formation in an in vitro model. When administered into BDF1 mice bearing Lewis lung carcinoma cells at 50 mg kg(-1) day(-1), 2-3 was found to inhibit the growth of tumor mass by 60.5%.

  18. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines

    PubMed Central

    Kustiawan, Paula M.; Puthong, Songchan; Arung, Enos T.; Chanchao, Chanpen

    2014-01-01

    Objective To screen crude extracts of propolis, bee pollen and honey from four stingless bee species [Trigona incisa (T. incisa)], Timia apicalis, Trigona fusco-balteata and Trigona fuscibasis) native to East Kalimantan, Indonesia for cytotoxic activity against five human cancer cell lines (HepG2, SW620, ChaGo-I, KATO-III and BT474). Methods All samples were extracted with methanol, and then subpartitioned with n-hexane and ethyl acetate. Each crude extract was screened at 20 µg/mL for in vitro cytotoxicity against the cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, four previously shown bioactive components from propolis (apigenin, caffeic acid phenyl ester, kaempferol and naringenin) and two chemotherapeutic drugs (doxorubicin and 5-fluorouracil) were used to evaluate the sensitivity of the cell lines. Results Overall, crude extracts from propolis and honey had higher cytotoxic activities than bee pollen, but the activity was dependent upon the extraction solvent, bee species and cell line. Propolis extracts from T. incisa and Timia apicalis showed the highest and lowest cytotoxic activity, respectively. Only the HepG2 cell line was broadly sensitive to the honey extracts. For pure compounds, doxorubicin was the most cytotoxic, the four propolis compounds the least, but the ChaGo-I cell line was sensitive to kaempferol at 10 µg/mL and KATO-III was sensitive to kaempferol and apigenin at 10 µg/mL. All pure compounds were effective against the BT474 cell line. Conclusions Propolis from T. incisa and Trigona fusco-balteata contain an in vitro cytotoxic activity against human cancer cell lines. Further study is required, including the isolation and characterization of the active antiproliferative agent(s). PMID:25183275

  19. In vitro cytotoxicity of Indonesian stingless bee products against human cancer cell lines.

    PubMed

    Kustiawan, Paula M; Puthong, Songchan; Arung, Enos T; Chanchao, Chanpen

    2014-07-01

    To screen crude extracts of propolis, bee pollen and honey from four stingless bee species [Trigona incisa (T. incisa)], Timia apicalis, Trigona fusco-balteata and Trigona fuscibasis) native to East Kalimantan, Indonesia for cytotoxic activity against five human cancer cell lines (HepG2, SW620, ChaGo-I, KATO-III and BT474). All samples were extracted with methanol, and then subpartitioned with n-hexane and ethyl acetate. Each crude extract was screened at 20 µg/mL for in vitro cytotoxicity against the cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. In addition, four previously shown bioactive components from propolis (apigenin, caffeic acid phenyl ester, kaempferol and naringenin) and two chemotherapeutic drugs (doxorubicin and 5-fluorouracil) were used to evaluate the sensitivity of the cell lines. Overall, crude extracts from propolis and honey had higher cytotoxic activities than bee pollen, but the activity was dependent upon the extraction solvent, bee species and cell line. Propolis extracts from T. incisa and Timia apicalis showed the highest and lowest cytotoxic activity, respectively. Only the HepG2 cell line was broadly sensitive to the honey extracts. For pure compounds, doxorubicin was the most cytotoxic, the four propolis compounds the least, but the ChaGo-I cell line was sensitive to kaempferol at 10 µg/mL and KATO-III was sensitive to kaempferol and apigenin at 10 µg/mL. All pure compounds were effective against the BT474 cell line. Propolis from T. incisa and Trigona fusco-balteata contain an in vitro cytotoxic activity against human cancer cell lines. Further study is required, including the isolation and characterization of the active antiproliferative agent(s).

  20. [Effects of Aptamer-siRNA Nucleic Acid Compound on Growth and Apoptosis in Myeloid Leukemia Cell Line K562].

    PubMed

    Ping, Juan; Shen, Zhi-Hui; Wang, Bao-Quan; Zhao, Na; Li, Rui; Li, Mian; Pang, Xiao-Bin; Chen, Chuan-Bo

    2015-04-01

    To explore the effects of aptamer-siRNA nucleic acid compound on growth and apoptosis in myeloid leukemia cell line K562. the changes of cellular morphology and structure were observed by using fluorescence microscope, laser confocal microscope, JEM-4000EX transmission electron microscopy; MTT assay were performed to evaluate the sensibility of K562 cells to aptamer-siRNA compound, the apoptosis was detected by DNA gel electro-phoresis. The remarkably changes of morphology and structure of K562 cells treated with 200 µmol/L aptamer-siRNA were observed under fluorescence microscopy and electromicroscopy. As compared with control, the aptamer-siRNA compound showed more inhibitory effect on K562 cells and there was significant difference (P<0.05). The MTT assay showed that the IC50 value of aptamer-siRNA compound for K562 cells was 150 µmol/L. According to agarose gel electrophoresis observation, when the aptamer-siRNA compound showed effect on K562 cells, the typical DNA lader could be observed. The aptamer-siRNA compound can significantly induce K562 cell apoptosis, and provide reference for gene therapy of patients with chronic myelocytic lenkemia.

  1. 5-(Furan-2-yl)-4-(3,4,5-trimethoxyphenyl)-3H-1,2-dithiol-3-one oxime (6f), a new synthetic compound, causes human fibrosarcoma HT-1080 cell apoptosis by disrupting tubulin polymerisation and inducing G2/M arrest.

    PubMed

    Zuo, Daiying; Pang, Lili; Shen, Jiwei; Guan, Qi; Bai, Zhaoshi; Zhang, Huijuan; Li, Yao; Lu, Guodong; Zhang, Weige; Wu, Yingliang

    2017-06-01

    In the current study, we synthesized a series of new compounds targeting tubulin and tested their anti-proliferative activities. Among these new synthetic com-pounds, 5-(furan-2-yl)-4-(3,4,5-trimethoxyphenyl)-3H-1,2-dithiol-3-one oxime (6f) exhibited significant anti-proliferative activity against different human cancer cell lines including human gastric adenocarcinoma SGC-7901, human non-small cell lung cancer A549, and human fibrosarcoma HT-1080. As a result, 6f was selected to further test the sensitivity to different cancer cell lines including human cervical cancer cell line HeLa, human breast cancer cell line MCF-7, non-small cell lung cancer cell line A549, human liver carcinoma cell line HepG-2, human oral squamous cell carcinoma cell lines KB, SGC-7901 and HT-1080. Among these cell lines, HT-1080 and HeLa are the most sensitive. Therefore, HT-1080 was selected to further explore the properties of anti-proliferative activity and the underlying mechanisms. Our data proved that 6f exhibited strong anti-proliferative effects against HT-1080 cells in a time- and dose-dependent manner. We showed that the growth inhibitory effect of 6f in HT-1080 cells was related with microtubule depolymerisation. Molecular docking studies revealed that 6f interacted and bound efficiently with the colchicine-binding site of tubulin. In addition, 6f treatment induced G2/M cell cycle arrest dose-dependently and subsequently induced cell apoptosis. Western blot study indicated that upregulation of cyclin B1 and p-cdc2 was related with G2/M arrest. 6f-induced cell apoptosis was associated with both mitochondrial and death receptor pathway. In conclusion, our data showed that 6f, among the newly synthetic compounds, exhibited highest anti-proliferative activity by disrupting the microtubule polymerisation, causing G2/M arrest and subsequently inducing cell apoptosis in HT-1080 cells. Hence, 6f is a promising microtubule depolymerising agent for the treatment of various cancers especially human fibrosarcoma.

  2. Synthesis and biological evaluation of some novel triazole hybrids of curcumin mimics and their selective anticancer activity against breast and prostate cancer cell lines.

    PubMed

    Mandalapu, Dhanaraju; Saini, Karan S; Gupta, Sonal; Sharma, Vikas; Yaseen Malik, Mohd; Chaturvedi, Swati; Bala, Veenu; Hamidullah; Thakur, Subhadra; Maikhuri, Jagdamba P; Wahajuddin, Muhammad; Konwar, Rituraj; Gupta, Gopal; Sharma, Vishnu Lal

    2016-09-01

    The anti-cancer property of curcumin, an active component of turmeric, is limited due to its poor solubility, stability and bioavailability. To enhance its efficacy, we designed a novel series of twenty-four monocarbonyl curcumin analogue-1,2,3-triazole conjugates and evaluated their anti-cancer activity towards endocrine related cancers. The new compounds (17-40) were synthesized through CuAAC click reaction and SAR analysis carried out. Out of these all, compound 17 showed most significant anti-cancer activity against prostate cancer cells with IC50 values of 8.8μM and 9.5μM in PC-3 and DU-145 cells, respectively. Another compound 26 showed significant anti-cancer activity against breast cancer cells with IC50 of 6μM, 10μM and 6.4μM in MCF-7, MDA-MB-231 and 4T1 cells, respectively while maintaining low toxicity towards non-cancer originated cell line, HEK-293. Compounds 17 and 26 arrested cell cycle and induced mitochondria-mediated apoptosis in cancer cells. Further, both of these compounds significantly down-regulated cell proliferation marker (PCNA), inhibited activation of cell survival protein (Akt phosphorylation), upregulated pro-apoptotic protein (Bax) and down-regulated anti-apoptotic protein (Bcl-2) in their respective cell lines. In addition, in vitro stability, solubility and plasma binding studies of the compounds 17 and 26 showed them to be metabolically stable. Thus, this study identified two new curcumin monocarbonyl-1,2,3-triazole conjugate compounds with more potent activity than curcumin against breast and prostate cancers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Multicomponent synthesis of some new (1S,4S)-2,5-diazabicyclo[2.2.1]heptane-dithiocarbamates and their in vitro anti-proliferative activity against CaSki, MDA-MB-231 and SK-Lu-1 tumour cells as apoptosis inducing agents without necrosis.

    PubMed

    Laskar, Sujay; Sánchez-Sánchez, Luis; López-Ortiz, Manuel; López-Muñoz, Hugo; Escobar-Sánchez, María L; Sánchez, Arturo T; Regla, Ignacio

    2017-12-01

    Identification of a new class of antitumor agent capable to induce apoptosis without triggering necrotic cell death event is challenging. The present communication describes the multicomponent synthesis of seven new (1S,4S)-2,5-diazabicyclo[2.2.1]heptane-dithiocarbamates and their in vitro antiproliferative activity on cervical cancer cell line (CaSki), breast cancer cell line (MDA-MB231), lung cancer cell line (SK-Lu-1) and human lymphocytes. Among the synthesized dithiocarbamates, compound 9e displayed significant antiproliferative activity without inducing any necrotic cell death (both on tumour cells and lymphocytes) and induced apoptosis in tumor cells by the caspase dependent apoptotic pathway. The compound 9e also exhibited greater tumor selectivity than human lymphocytes. In silico ADME predictions revealed that compound 9e has the potential to be developed as a drug candidate. Rapid chemical modifications of this lead are thus highly necessary for further investigation as a drug like safer antitumor candidate and also to achieve compounds with better activity profile.

  4. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds.

    PubMed

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F; Furling, Denis

    2017-04-01

    Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. © 2017. Published by The Company of Biologists Ltd.

  5. Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds

    PubMed Central

    Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F.

    2017-01-01

    ABSTRACT Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. PMID:28188264

  6. Identification of genotoxic compounds using isogenic DNA repair deficient DT40 cell lines on a quantitative high throughput screening platform

    PubMed Central

    Nishihara, Kana; Huang, Ruili; Zhao, Jinghua; Shahane, Sampada A.; Witt, Kristine L.; Smith-Roe, Stephanie L.; Tice, Raymond R.; Takeda, Shunichi; Xia, Menghang

    2016-01-01

    DNA repair pathways play a critical role in maintaining cellular homeostasis by repairing DNA damage induced by endogenous processes and xenobiotics, including environmental chemicals. Induction of DNA damage may lead to genomic instability, disruption of cellular homeostasis and potentially tumours. Isogenic chicken DT40 B-lymphocyte cell lines deficient in DNA repair pathways can be used to identify genotoxic compounds and aid in characterising the nature of the induced DNA damage. As part of the US Tox21 program, we previously optimised several different DT40 isogenic clones on a high-throughput screening platform and confirmed the utility of this approach for detecting genotoxicants by measuring differential cytotoxicity in wild-type and DNA repair-deficient clones following chemical exposure. In the study reported here, we screened the Tox21 10K compound library against two isogenic DNA repair-deficient DT40 cell lines (KU70 −/−/RAD54 −/− and REV3 −/−) and the wild-type cell line using a cell viability assay that measures intracellular adenosine triphosphate levels. KU70 and RAD54 are genes associated with DNA double-strand break repair processes, and REV3 is associated with translesion DNA synthesis pathways. Active compounds identified in the primary screening included many well-known genotoxicants (e.g. adriamycin, melphalan) and several compounds previously untested for genotoxicity. A subset of compounds was further evaluated by assessing their ability to induce micronuclei and phosphorylated H2AX. Using this comprehensive approach, three compounds with previously undefined genotoxicity—2-oxiranemethanamine, AD-67 and tetraphenylolethane glycidyl ether—were identified as genotoxic. These results demonstrate the utility of this approach for identifying and prioritising compounds that may damage DNA. PMID:26243743

  7. Synthesis and mechanistic studies of curcumin analog-based oximes as potential anticancer agents.

    PubMed

    Qin, Hua-Li; Leng, Jing; Youssif, Bahaa G M; Amjad, Muhammad Wahab; Raja, Maria Abdul Ghafoor; Hussain, Muhammad Ajaz; Hussain, Zahid; Kazmi, Syeda Naveed; Bukhari, Syed Nasir Abbas

    2017-09-01

    The incidence of cancer can be decreased by chemoprevention using either natural or synthetic agents. Apart from synthetic compounds, numerous natural products have exhibited promising potential to inhibit carcinogenesis in vivo. In this study, α, β-unsaturated carbonyl-based anticancer compounds were used as starting materials to synthesize new oxime analogs. The findings from the antiproliferative assay using seven different human cancer cell lines provided a clear picture of structure-activity relationship. The oxime analogs namely 7a and 8a showed strong antiproliferative activity against the cell lines. The mechanistic effects of compounds on EGFR-TK kinases and tubulin polymerization and BRAF V 600E were investigated. In addition, the efficacy of compounds in reversing the efflux-mediated resistance developed by cancer cells was also studied. The compounds 5a and 6a displayed potent activity on various targets such as BRAF V 600E and EGFR-TK kinases and also exhibited strong antiproliferative activity against different cell lines hence showing potential of multifunctional anticancer agents. © 2017 John Wiley & Sons A/S.

  8. Inhibition of PCAF histone acetyltransferase, cytotoxicity and cell permeability of 2-acylamino-1-(3- or 4-carboxy-phenyl)benzamides.

    PubMed

    Park, Woong Jae; Ma, Eunsook

    2012-11-05

    Small molecule HAT inhibitors are useful tools to unravel the role of histone acetyltransferases (HATs) in the cell and they also have relevance in oncology. We synthesized a series of 2-acylamino-1-(3- or 4-carboxyphenyl)benzamides 8–19 bearing C6, C8, C10, C12, C14, and C16 acyl chains at the 2-amino position of 2-aminobenzoic acid. Enzyme inhibition of these compounds was investigated using in vitro PCAF HAT assays. The inhibitory activities of compounds 8–10, 16, and 19 were similar to that of anacardic acid, and 17 was found to be more active than anacardic acid at 100 μM. Compounds 11–15 showed the low inhibitory activity on PCAF HAT. The cytotoxicity of the synthesized compounds was evaluated by SRB (sulforhodamine B) assay against seven human cancer cell lines: HT-29 (colon), HCT-116 (colon), MDA-231 (breast), A549 (lung), Hep3B (hepatoma), HeLa (cervical) and Caki (kidney) and one normal cell line (HSF). Compound 17 was more active than anacardic acid against human colon cancer (HCT 116, IC(50): 29.17 μM), human lung cancer (A549, IC₅₀: 32.09 μM) cell lines. 18 was more active than anacardic acid against human colon cancer (HT-29, IC₅₀: 35.49 μM and HCT 116, IC₅₀: 27.56 μM), human lung cancer (A549, IC₅₀: 30.69 μM), and human cervical cancer (HeLa, IC₅₀: 34.41 μM) cell lines. The apparent permeability coefficient (P(app), cm/s) values of two compounds (16 and 17) were evaluated as 68.21 and 71.48 × 10⁻⁶ cm/s by Caco-2 cell permeability assay.

  9. Design new P-glycoprotein modulators based on molecular docking and CoMFA study of α, β-unsaturated carbonyl-based compounds and oxime analogs as anticancer agents

    NASA Astrophysics Data System (ADS)

    Sepehri, Bakhtyar; Ghavami, Raouf

    2017-02-01

    In this research, molecular docking and CoMFA were used to determine interactions of α, β-unsaturated carbonyl-based compounds and oxime analogs with P-glycoprotein and prediction of their activity. Molecular docking study shown these molecules establish strong Van der Waals interactions with side chain of PHE-332, PHE-728 and PHE-974. Based on the effect of component numbers on squared correlation coefficient for cross validation tests (including leave-one-out and leave-many-out), CoMFA models with five components were built to predict pIC50 of molecules in seven cancer cell lines (including Panc-1 (pancreas cancer cell line), PaCa-2 (pancreatic carcinoma cell line), MCF-7 (breast cancer cell line), A-549 (epithelial), HT-29 (colon cancer cell line), H-460 (lung cancer cell line), PC-3 (prostate cancer cell line)). R2 values for training and test sets were in the range of 0.94-0.97 and 0.84 to 0.92, respectively, and for LOO and LMO cross validation test, q2 values were in the range of 0.75-0.82 and 0.65 to 0.73, respectively. Based on molecular docking results and extracted steric and electrostatic contour maps for CoMFA models, four new molecules with higher activity with respect to the most active compound in data set were designed.

  10. Synthesis and in vitro antiproliferative activity of 2-methyl-3-(2-piperazin-1-yl-ethyl)-pyrido[1,2-a]pyrimidin-4-one derivatives against human cancer cell lines.

    PubMed

    Mallesha, Lingappa; Mohana, Kikkeri N; Veeresh, Bantal; Alvala, Ravi; Mallika, Alvala

    2012-01-01

    A series of new 2-methyl-3-(2-piperazin-1-yl-ethyl)-pyrido[1,2-a]pyrimidin-4-one derivatives 6a-j were synthesized by a nucleophilic substitution reaction of 2-methyl-3-(2-piperazin-1-ylethyl)-pyrido[1,2-a]pyrimidin-4-one with various sulfonyl chlorides. The compounds were characterized by different spectral studies. All the compounds were evaluated for their antiproliferative effect using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay method against four human cancer cell lines (K562, Colo-205, MDA-MB 231, IMR-32) for the time period of 24 h. Among the series, compounds 6d, 6e and 6i showed good activity on all cell lines except K562, whereas the other compounds in the series exhibited moderate activity. Compound 6d could be a potential anticancer agent and therefore deserves further research.

  11. Discovery of potent cytotoxic ortho-aryl chalcones as new scaffold targeting tubulin and mitosis with affinity-based fluorescence.

    PubMed

    Zhu, Cuige; Zuo, Yinglin; Wang, Ruimin; Liang, Baoxia; Yue, Xin; Wen, Gesi; Shang, Nana; Huang, Lei; Chen, Yu; Du, Jun; Bu, Xianzhang

    2014-08-14

    A series of new ortho-aryl chalcones have been designed and synthesized. Many of these compounds were found to exhibit significant antiproliferation activity toward a panel of cancer cell lines. Selected compounds show potent cytotoxicity against several drug resistant cell lines including paclitaxel (Taxol) resistant human ovarian carcinoma cells, vincristine resistant human ileocecum carcinoma cells, and doxorubicin resistant human breast carcinoma cells. Further investigation revealed that active analogues could inhibit the microtubule polymerization by binding to colchicine site and thus induce multipolar mitosis, G2/M phase arrest, and apoptosis of cancer cells. Furthermore, affinity-based fluorescence enhancement was observed during the binding of active compounds with tubulin, which greatly facilitated the determination of tubulin binding site of the compounds. Finally, selected compound 26 was found to exhibit obvious in vivo antitumor activity in A549 tumor xenografts model. Our systematic studies implied a new scaffold targeting tubulin and mitosis for novel antitumor drug discovery.

  12. Identification of anti-proliferative kinase inhibitors as potential therapeutic agents to treat canine osteosarcoma.

    PubMed

    Mauchle, Ulrike; Selvarajah, Gayathri T; Mol, Jan A; Kirpensteijn, Jolle; Verheije, Monique H

    2015-08-01

    Osteosarcoma is the most common primary bone tumour in dogs but various forms of therapy have not significantly improved clinical outcomes. As dysregulation of kinase activity is often present in tumours, kinases represent attractive molecular targets for cancer therapy. The purpose of this study was to identify novel compounds targeting kinases with the potential to induce cell death in a panel of canine osteosarcoma cell lines. The ability of 80 well-characterized kinase inhibitor compounds to inhibit the proliferation of four canine osteosarcoma cell lines was investigated in vitro. For those compounds with activity, the mechanism of action and capability to potentiate the activity of doxorubicin was further evaluated. The screening showed 22 different kinase inhibitors that induced significant anti-proliferative effects across the four canine osteosarcoma cell lines investigated. Four of these compounds (RO 31-8220, 5-iodotubercidin, BAY 11-7082 and an erbstatin analog) showed significant cell growth inhibitory effects across all cell lines in association with variable induction of apoptosis. RO 31-8220 and 5-iodotubercidin showed the highest ability to potentiate the effects of doxorubicin on cell viability. In conclusion, the present study identified several potent kinase inhibitors targeting the PKC, CK1, PKA, ErbB2, mTOR and NF-κB pathways, which may warrant further investigations for the treatment of osteosarcoma in dogs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Oxaphosphinanes: new therapeutic perspectives for glioblastoma.

    PubMed

    Clarion, Ludovic; Jacquard, Carine; Sainte-Catherine, Odile; Loiseau, Séverine; Filippini, Damien; Hirlemann, Marie-Hélène; Volle, Jean-Noël; Virieux, David; Lecouvey, Marc; Pirat, Jean-Luc; Bakalara, Norbert

    2012-03-08

    This paper reports the design and the synthesis of a new family of compounds, the phostines, belonging to the [1,2]oxaphosphinane family. Twenty-six compounds have been screened for their antiproliferative activity against a large panel of NCI cancer cell lines. Because of its easy synthesis and low EC(50) value (500 nM against the C6 rat glioma cell line), compound 3.1a was selected for further biological study. Moreover, the specific biological effect of 3.1a on the glioblastoma phylogenetic cluster from the NCI is dependent on its stereochemistry. Within that cluster, 3.1a has a higher antiproliferative activity than Temozolomide and is more potent than paclitaxel for the SF295 and SNB75 cell lines. In constrast with paclitaxel and vincristine, 3.1a is devoid of astrocyte toxicity. The original activity spectrum of 3.1a on the NCI cancer cell line panel allows the development of this family for use in association with existing drugs, opening new therapeutic perspectives.

  14. Synthesis of mono Mannich bases of 2-(4-hydroxybenzylidene)-2,3-dihydroinden-1-one and evaluation of their cytotoxicities.

    PubMed

    Tugrak, Mehtap; Yamali, Cem; Sakagami, Hiroshi; Gul, Halise Inci

    2016-10-01

    Chalcones and Mannich bases are a group of compounds known for their cytotoxicities. In this study restricted chalcone analogue, compound 2-(4-hydroxybenzylidene)-2,3-dihydroinden-1-one MT1, was used as a starting compound to synthesize new mono Mannich bases since Mannich bases may induce more cytotoxicity than chalcone analogue that they are derived from by producing additional alkylating center for cellular thiols. In this study, cyclic and acyclic amines were used to synthesize Mannich bases. All compounds were tested against Ca9-22 (gingival carcinoma), HSC-2, HSC-3 and HSC-4 (oral squamous cell carcinoma) as tumour cell lines and HGF (gingival fibroblasts), HPC (pulp cells) and HPLF (periodontal ligament fibroblasts) human normal oral cells as non tumour cell lines. Cytotoxicity, selectivity index (SI) values and potency selectivity expression (PSE) values expressed as a percentage were determined for the compounds. According to data obtained, the compound MT8 with the highest PSE value bearing N-methylpiperazine moiety seems to be a good candidate to develop new cytotoxic compounds and is suited for further investigation.

  15. Cancer stem cells CD133 inhibition and cytotoxicity of certain 3-phenylthiazolo[3,2-a]benzimidazoles: design, direct synthesis, crystal study and in vitro biological evaluation.

    PubMed

    Al-Ansary, Ghada H; Eldehna, Wagdy M; Ghabbour, Hazem A; Al-Rashood, Sara T A; Al-Rashood, Khalid A; Eladwy, Radwa A; Al-Dhfyan, Abdullah; Kabil, Maha M; Abdel-Aziz, Hatem A

    2017-12-01

    Cancer stem cells (CSCs) have been objects of intensive study since their identification in 1994. Adopting a structural rigidification approach, a novel series of 3-phenylthiazolo[3,2-a]benzimidazoles 4a-d was designed and synthesised, in an attempt to develop potent anticancer agent that can target the bulk of tumour cells and CSCs. The anti-proliferative activity of the synthesised compounds was evaluated against two cell lines, namely; colon cancer HT-29 and triple negative breast cancer MDA-MB-468 cell lines. Also, their inhibitory activity against the cell surface expression of CD133 was examined. In particular, compound 4b emerged as a promising hit molecule as it manifested good antineoplastic potency against both tested cell lines (IC 50  = 9 and 12 μM, respectively), beside its ability to inhibit the cell surface expression of CD133 by 50% suggesting a promising potential of effectively controlling the tumour by eradicating the tumour bulk and inhibiting the proliferation of the CSCs. Moreover, compounds 4a and 4c showed moderate activity against HT-29 (IC 50  = 21 and 29 μM, respectively) and MDA-MB-468 (IC 50  = 23 and 24 μM, respectively) cell lines, while they inhibited the CD133 expression by 14% and 48%, respectively. Finally, a single crystal X-ray diffraction was recorded for compound 4d.

  16. Investigating the antiproliferative activity of quinoline-5,8-diones and styrylquinolinecarboxylic acids on tumor cell lines.

    PubMed

    Podeszwa, B; Niedbala, H; Polanski, J; Musiol, R; Tabak, D; Finster, J; Serafin, K; Milczarek, M; Wietrzyk, J; Boryczka, S; Mol, W; Jampilek, J; Dohnal, J; Kalinowski, D S; Richardson, D R

    2007-11-15

    The structure-activity relationships of new quinoline based compounds were investigated. Quinoline-5,8-dione and styrylquinoline scaffolds were used for the design of potentially active compounds. The novel analogues had comparable antiproliferative activity to cisplatin when evaluated in a bioassay against the P388 leukemia cell line. However, these compounds appeared far less efficient against SK-N-MC neuroepithelioma cells. Analogues without the 5,8-dione structure but containing the 8-carboxylic acid group were also found to induce antiproliferative activity. Hydrophobicity as measured by HPLC did not correlate with antiproliferative activity.

  17. Discovery of antitumor ursolic acid long-chain diamine derivatives as potent inhibitors of NF-κB.

    PubMed

    Jiang, Wei; Huang, Ri-Zhen; Zhang, Jing; Guo, Tong; Zhang, Meng-Ting; Huang, Xiao-Chao; Zhang, Bin; Liao, Zhi-Xin; Sun, Jing; Wang, Heng-Shan

    2018-05-08

    A series of inhibitors of NF-κB based on ursolic acid (UA) derivatives containing long-chain diamine moieties were designed and synthesized as well as evaluated the antitumor effects. These compounds exhibited significant inhibitory activity to the NF-κB with IC 50 values at micromolar concentrations in A549 lung cancer cell line. Among them, compound 8c exerted potent activity against the test tumor cell lines including multidrug resistant human cancer lines, with the IC 50 values ranged from 5.22 to 8.95 μM. Moreover, compound 8c successfully suppressed the migration of A549 cells. Related mechanism study indicated compound 8c caused cell cycle arrest at G1 phase and triggered apoptosis in A549 cells through blockage of NF-κB signalling pathway. Molecular docking study revealed that key interactions between 8c and the active site of NF-κB in which the bulky and strongly electrophilic group of long-chain diamine moieties were important for improving activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Isolation and biological evaluation of jatrophane diterpenoids from Euphorbia dendroides.

    PubMed

    Aljancić, Ivana S; Pesić, Milica; Milosavljević, Slobodan M; Todorović, Nina M; Jadranin, Milka; Milosavljević, Goran; Povrenović, Dragan; Banković, Jasna; Tanić, Nikola; Marković, Ivanka D; Ruzdijić, Sabera; Vajs, Vlatka E; Tesević, Vele V

    2011-07-22

    From the Montenegrin spurge Euphorbia dendroides, seven new diterpenoids [jatrophanes (1-6) and a tigliane (7)] were isolated and their structures elucidated by spectroscopic techniques. The biological activity of the new compounds was studied against four human cancer cell lines. The most effective jatrophane-type compound (2) and its structurally closely related derivative (1) were evaluated for their interactions with paclitaxel and doxorubicin using a multi-drug-resistant cancer cell line. Both compounds exerted a strong reversal potential resulting from inhibition of P-glycoprotein transport.

  19. Cytotoxic sesquiterpene lactones from the leaves of Vernonia guineensis Benth. (Asteraceae)

    PubMed Central

    Toyang, Ngeh J.; Wabo, Hippolyte K.; Ateh, Eugene N.; Davis, Harry; Tane, Pierre; Sondengam, Luc B.; Bryant, Joseph; Verpoorte, Rob

    2015-01-01

    Ethnopharmacological relevance Vernonia guineensis Benth. (Asteraceae) preparations are used in folk medicine in Cameroon to treat a number of ailments, including prostate cancer and malaria, and is used as an anthelmintic, adaptogen and antidote. The aim of this study was to continue the validation of the activity of Vernonia guineensis Benth. extracts and isolated molecules against cancer cell lines following the previous isolation of an anti-prostate cancer sugar ester from the root extract. Materials and methods Acetone extracts of Vernonia guineensis Benth. leaves were tested for activity against 10 cancer cell lines (Breast—MDA-MB-231, Breast—MCF-7, Colon—HCT-116, Leukemia—HL-60, Lung—A549, Melanoma—A375, Ovarian—OVCAR3, Pancreas—Mia-paca, Prostate—PC-3 and Prostate—DU-145). The acetone extract was subjected to bioactivity guided fractionation. Anti-proliferation and clonogenic activity of the isolated compounds were tested. The WST-1 assay was used for the anti-proliferation activity, while the standard clonogenic test was used to determine the clonogenic activity. Results The acetone extract of Vernonia guineensis Benth. demonstrated in vitro activity ranging from IC50 4–26 mg/mL against the 10 cell lines. Activity guided fractionation of this extract yielded two sesquiterpene lactones, isolated for the first time from the genus Vernonia. The compounds were characterized using spectroscopic experiments, including a combination of 1D and 2D NMR data. Vernopicrin (1) and Vernomelitensin (2) demonstrated in vitro activity against human cancer cell lines with IC50 ranging from 0.35–2.04 μM (P < 0.05) and 0.13–1.5 μM (P < 0.05), respectively, between the most and least sensitive cell lines for each compound. Vernopicrin was most active against the human melanoma (A375) cell line and least active against the lung cancer (A549) cell line, while Vernomelitensin was also most active against the human melanoma (A375) cell line and least active against the breast cancer (MCF-7) cell line. Both compounds also demonstrated anticlonogenic activity. Conclusion The cytotoxicity demonstrated by the crude extract and isolated sesquiterpenes against cancer cell lines highlights the medicinal potential of V. guineensis. The selective anti-proliferation and dose dependent anticlonogenic activities suggest that the identified sesquiterpenes could be potential antitumor agents.. PMID:23376285

  20. Cajanus cajan- a source of PPARγ activators leading to anti-inflammatory and cytotoxic effects.

    PubMed

    Schuster, Roswitha; Holzer, Wolfgang; Doerfler, Hannes; Weckwerth, Wolfram; Viernstein, Helmut; Okonogi, Siriporn; Mueller, Monika

    2016-09-14

    Cajanus cajan is an important legume crop in the human diet in many parts of the world. Due to its pharmacological properties, C. cajan is, moreover, used in traditional medicine for treating skin diseases, diabetes, inflammatory disorders and various other dysfunctions. In this study, we focused on the role of peroxisome proliferator-activated receptor gamma (PPARγ) as a potential therapeutic target of Cajanus cajan and its main compounds for the treatment of cancer, inflammation and inflammation-related disorders. The anti-inflammatory potential of C. cajan and its bioactive compounds and their cytotoxicity on the human cervical adenocarcinoma cell line HeLa, the human colorectal adenocarcinoma cell line CaCo-2 and the human breast adenocarcinoma cell line MCF-7 were elucidated. C. cajan and its compounds exerted significant anti-inflammatory activity on lipopolysaccharide-stimulated macrophages, showed good cytotoxic effects on the 3 different cancer cell lines and proved PPARγ activity in vitro. The main active compounds were orientin, pinostrobin and vitexin. Cajaninstilbene acid and pinosylvin monomethylether were identified as novel PPARγ activators. Based on these data, C. cajan provides excellent beneficial medicinal attributes and may be used as a potential food or a pharmaceutical supplement.

  1. Synthesis and antiproliferative activity of novel symmetrical alkylthio- and alkylseleno-imidocarbamates.

    PubMed

    Ibáñez, Elena; Plano, Daniel; Font, María; Calvo, Alfonso; Prior, Celia; Palop, Juan Antonio; Sanmartín, Carmen

    2011-01-01

    The study described here concerns the synthesis of a series of thirty new symmetrically substituted imidothiocarbamate and imidoselenocarbamate derivatives and their evaluation for antitumoral activity in vitro against a panel of five human tumor cell lines: breast adenocarcinoma (MCF-7), colon carcinoma (HT-29), lymphocytic leukemia (K-562), hepatocarcinoma (Hep-G2), prostate cancer (PC-3) and one non-malignant mammary gland-derived cell line (MCF-10A). The GI(50) values for eighteen of the compounds were below 10 μM in at least one cell line. Two cancer cells (MCF-7 and HT-29) proved to be the most sensitive to five compounds (1b, 2b, 3b, 4b and 5b), with growth inhibition in the nanomolar range, and compounds 1b, 3b, 7b, 8b and 9b gave values of less than 1 μM. In addition, all of the aforementioned compounds exhibited lower GI(50) values than some of the standard chemotherapeutic drugs used as references. The results also reveal that the nature of the aliphatic chain (methyl is better than benzyl) at the selenium position and the nature of the heteroatom (Se better than S) have a marked influence on the antiproliferative activity of the compounds. These findings reinforce our earlier hypothesis concerning the determinant role of the selenomethyl group as a scaffold for the biological activity of this type of compound. Considering both the cytotoxic parameters and the selectivity index (which was compared in MCF-7 and MCF-10A cells), compounds 2b and 8b (with a selenomethyl moiety) displayed the best profiles, with GI(50) values ranging from 0.34 nM to 6.07 μM in the five cell lines tested. Therefore, compounds 2b and 8b were evaluated by flow cytometric analysis for their effects on cell cycle distribution and apoptosis in MCF-7 cells. 2b was the most active, with an apoptogenic effect similar to camptothecin, which was used as a positive control. Both of them provoked cell cycle arrest leading to the accumulation of cells in either G(2)/M and S phase. These two compounds can therefore be considered as the most promising candidates for the development of novel generations of antitumor agents. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  2. Novel urea and bis-urea primaquine derivatives with hydroxyphenyl or halogenphenyl substituents: Synthesis and biological evaluation.

    PubMed

    Perković, I; Antunović, M; Marijanović, I; Pavić, K; Ester, K; Kralj, M; Vlainić, J; Kosalec, I; Schols, D; Hadjipavlou-Litina, D; Pontiki, E; Zorc, B

    2016-11-29

    A series of novel compounds 3a-j and 6a-j with primaquine and hydroxyl or halogen substituted benzene moieties bridged by urea or bis-urea functionalities were designed, synthesized and evaluated for biological activity. The title compounds were prepared using benzotriazole as the synthon, through several synthetic steps. 3-[3,5-Bis(trifluoromethyl)phenyl]-1-{4-[(6-methoxyquinolin-8-yl)amino]pentyl}urea (3j) was the most active urea and 1-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]-3-[3-(trifluoromethyl)phenyl]urea (6h) the most active bis-urea derivative in antiproliferative screening in vitro against eight tested cancer cell lines. Urea derivatives 3a-g with hydroxy group or one halogen atom showed moderate antiproliferative effects against all the tested cell lines, but stronger activity against breast carcinoma MCF-7 cell line, while trifluoromethyl derivatives 3h-j showed antiproliferative effects against all the tested cell lines in low micromolar range. Finally, bis-ureas with hydroxy and fluoro substituents 6a-d showed extreme selectivity and chloro or bromo derivatives 6e-g high selectivity against MCF-7 cells (IC 50 0.1-2.6 μM). p-Fluoro derivative 6d, namely 3-(4-fluorophenyl)-1-[({4-[(6-methoxyquinolin-8-yl)amino]pentyl}carbamoyl)amino]urea, is the most promising compound. Further biological experiments showed that 6d affected cell cycle and induced cell death of MCF-7 cell line. Due to its high activity against MCF-7 cell line (IC 50 0.31 μM), extreme selectivity and full agreement with the Lipinski's and Gelovani's rules for prospective small molecular drugs, 6d may be considered as a lead compound in development of breast carcinoma drugs. Urea 3b and almost all bis-ureas showed high antioxidant activity in DPPH assay, but urea derivatives were more active in lipid peroxidation test. Only few compounds exhibited weak inhibition of soybean lipoxygenase. Compound 3j exhibited the strongest antimicrobial activity in susceptibility assay in vitro (MIC = 1.6-12.5 μg ml -1 ). Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. New cytotoxic diarylheptanoids from the rhizomes of Alpinia officinarum Hance.

    PubMed

    Liu, Dan; Liu, Yan-Wen; Guan, Fu-Qin; Liang, Jing-Yu

    2014-07-01

    Two new dimeric diarylheptanoids, named Alpinin C (1) and D (2), a new natural product of diarylheptanoid (3) along with three known diarylheptanoids (4-6) were isolated from the rhizomes of Alpinia officinarum Hance. Their structures were elucidated based on extensive spectroscopic analyses (1D and 2D NMR, HRTOFMS, IR). The isolated compounds were evaluated for their cytotoxicity against human tumor cell lines HepG2, MCF-7, T98G and B16-F10. Compound 1 showed selective cytotoxicity against cell lines of MCF-7 and T98G, while compound 6 showed significant cytotoxicity to the all tested tumor cell lines with IC50 in the range from 8.46 to 22.68 μmol/L. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Identification of pyrogallol as an antiproliferative compound present in extracts from the medicinal plant Emblica officinalis: effects on in vitro cell growth of human tumor cell lines.

    PubMed

    Khan, Mahmud Tareq Hassan; Lampronti, Ilaria; Martello, Dino; Bianchi, Nicoletta; Jabbar, Shaila; Choudhuri, Mohammad Shahabuddin Kabir; Datta, Bidduyt Kanti; Gambari, Roberto

    2002-07-01

    In this study we compared the in vitro antiproliferative activity of extracts from medicinal plants toward human tumor cell lines, including human erythromyeloid K562, B-lymphoid Raji, T-lymphoid Jurkat, erythroleukemic HEL cell lines. Extracts from Emblica officinalis were the most active in inhibiting in vitro cell proliferation, after comparison to those from Terminalia arjuna, Aphanamixis polystachya, Oroxylum indicum, Cuscuta reflexa, Aegle marmelos, Saraca asoka, Rumex maritimus, Lagerstroemia speciosa, Red Sandalwood. Emblica officinalis extracts have been studied previously, due to their hepatoprotective, antioxidant, antifungal, antimicrobial and anti-inflammatory medicinal activities. Gas chromatography/mass spectrometry analyses allowed to identify pyrogallol as the common compound present both in unfractionated and n-butanol fraction of Emblica officinalis extracts. Antiproliferative effects of pyrogallol were therefore determined on human tumor cell lines thus identifying pyrogallol as an active component of Emblica officinalis extracts.

  5. Antiproliferative activity of cardenolide glycosides from Asclepias subulata.

    PubMed

    Rascón-Valenzuela, L; Velázquez, C; Garibay-Escobar, A; Medina-Juárez, L A; Vilegas, W; Robles-Zepeda, R E

    2015-08-02

    Asclepias subulata Decne. is a shrub occurring in Sonora-Arizona desert (Mexico-USA). The ethnic groups, Seris and Pimas, use this plant for the treatment of sore eyes, gastrointestinal disorders and cancer. To isolate the compounds responsible for antiproliferative activity of the methanol extract of A. subulata. A bioguided fractionation of methanol extract of A. subulata was performed using MTT assay to measure the antiproliferative activity of different compounds on three human cancer cell lines (A549, LS 180 and PC-3), one murine cancer cell line (RAW 264.7) and one human normal cell line (ARPE-19). The methanol extract was partitioned with hexane, ethyl acetate and ethanol. The active fractions, ethanol and residual, were fractioned by silica-column chromatography and active sub-fractions were separated using HPLC. The chemical structures of isolated compounds were elucidated with different chemical and spectroscopic methods. A new cardenolide glycoside, 12, 16-dihydroxycalotropin, and three known, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin, were isolated of active sub-fractions. All isolated compounds showed a strong antiproliferative activity in human cancer cells. Calotropin was the more active with IC50 values of 0.0013, 0.06 and 0.41 µM on A549, LS 180 and PC-3 cell lines, respectively; while 12, 16-dihydroxycalotropin reached values of 2.48, 5.62 and 11.70 µM, on the same cells; corotoxigenin 3-O-glucopyranoside had IC50 of 2.64, 3.15 and 6.62 µM and desglucouzarin showed values of 0.90, 6.57 and 6.62, µM. Doxorubicin, positive control, showed IC50 values of 1.78, 6.99 and 3.18 µM, respectively. The isolated compounds had a weak effect on murine cancer cells and human normal cells, exhibiting selectivity to human cancer cells. In this study, we found that 12, 16-dihydroxicalotropin, calotropin, corotoxigenin 3-O-glucopyranoside and desglucouzarin are responsible of antiproliferative properties of A. subulata, and that these compounds are highly selective to human cancer cells. Further studies are needed in order to establish the action mechanisms of the isolated compounds. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  6. In vitro antiproliferative/cytotoxic activity on cancer cell lines of a cardanol and a cardol enriched from Thai Apis mellifera propolis

    PubMed Central

    2012-01-01

    Background Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, Apis mellifera propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity. Methods Propolis was sequentially extracted with methanol, dichloromethane and hexane and the cytotoxic activity of each crude extract was assayed for antiproliferative/cytotoxic activity in vitro against five human cell lines derived from duet carcinoma (BT474), undifferentiated lung (Chaco), liver hepatoblastoma (Hep-G2), gastric carcinoma (KATO-III) and colon adenocarcinoma (SW620) cancers. The human foreskin fibroblast cell line (Hs27) was used as a non-transformed control. Those crude extracts that displayed antiproliferative/cytotoxic activity were then further fractionated by column chromatography using TLC-pattern and MTT-cytotoxicity bioassay guided selection of the fractions. The chemical structure of each enriched bioactive compound was analyzed by nuclear magnetic resonance and mass spectroscopy. Results The crude hexane and dichloromethane extracts of propolis displayed antiproliferative/cytotoxic activities with IC50 values across the five cancer cell lines ranging from 41.3 to 52.4 μg/ml and from 43.8 to 53.5 μg/ml, respectively. Two main bioactive components were isolated, one cardanol and one cardol, with broadly similar in vitro antiproliferation/cytotoxicity IC50 values across the five cancer cell lines and the control Hs27 cell line, ranging from 10.8 to 29.3 μg/ml for the cardanol and < 3.13 to 5.97 μg/ml (6.82 - 13.0 μM) for the cardol. Moreover, both compounds induced cytotoxicity and cell death without DNA fragmentation in the cancer cells, but only an antiproliferation response in the control Hs27 cells However, these two compounds did not account for the net antiproliferation/cytotoxic activity of the crude extracts suggesting the existence of other potent compounds or synergistic interactions in the propolis extracts. Conclusion This is the first report that Thai A. mellifera propolis contains at least two potentially new compounds (a cardanol and a cardol) with potential anti-cancer bioactivity. Both could be alternative antiproliferative agents for future development as anti-cancer drugs. PMID:22458642

  7. Synthesis, characterization, X-ray crystal structures of heterocyclic Schiff base compounds and in vitro cholinesterase inhibition and anticancer activity

    NASA Astrophysics Data System (ADS)

    Arafath, Md. Azharul; Adam, Farook; Al-Suede, Fouad Saleih R.; Razali, Mohd R.; Ahamed, Mohamed B. Khadeer; Abdul Majid, Amin Malik Shah; Hassan, Mohd Zaheen; Osman, Hasnah; Abubakar, Saifullah

    2017-12-01

    Four heterocyclic embedded Schiff base derivatives (1-4) were synthesized and characterized by melting point, elemental analysis, FTIR, 1H, 13C NMR, UV-Visible spectral data. The structures of compounds 1, 2 and 4 were successfully established through single crystal X-ray diffraction analysis. In vitro cholinesterase inhibition assays showed that the cyclized derivative 1 displayed higher BuChE enzyme inhibitory activity with IC50 value of 1.45 ± 0.09 μM. The anti-proliferative efficacies of the compounds were also evaluated using human colorectal HCT 116 and breast MCF-7 adenocarcinoma cell lines. In addition, a human normal endothelial cell line (Ea.hy926) was also tested to assess the safety and selectivity of the compounds towards normal and cancer cells, respectively. Among the compounds tested, compound 2 displayed potent cytotoxic effect (IC50 = 34 μM) against HCT 116 cells with highest selectivity index of 3.1 with respect to the normal endothelial cells. Whereas, compound 4 exhibited significant anti-proliferative effect (IC50 = 21.1 μM) against MCF-7 cells with highest selectivity index of 3.3 with respect to the normal endothelial cells. The docking result of these compounds against hAChE showed potent activities with different binding modes. These compounds could be a promising pharmacological agent to treat cancer and Alzheimer's disease.

  8. Antiangiogenic 1-Aryl-3-[3-(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas Inhibit MCF-7 and MDA-MB-231 Human Breast Cancer Cell Lines Through PI3K/Akt and MAPK/Erk Pathways.

    PubMed

    Machado, Vera A; Peixoto, Daniela; Queiroz, Maria João; Soares, Raquel

    2016-12-01

    Breast cancer is the most frequently diagnosed cancer and the second leading cause of cancer related deaths among women worldwide. The purpose of this study is to evaluate the cytotoxic effects and possible molecular mechanisms of the antiproliferative properties of the antiangiogenic 1-aryl-3-[3-(thieno[3,2-b]pyridin-7-ylthio)phenyl]ureas 1a-e, prepared earlier by us, on two human breast cancer cell lines of distinct histological types: hormone-dependent MCF-7 (ER positive), and hormone independent MDA-MB-231 (ER/PR/HER2 negative), this latter being the most aggressive and difficult to treat. Our findings clearly demonstrated that compounds 1a-e suppress breast cancer cell survival, proliferation, migration, and colony formation at very low concentrations, not showing cytotoxicity in normal human mammary cells (MCF-10A). TUNEL assay demonstrated that compounds 1a-e induced apoptosis in MDA-MB-231, but not in MCF-7 at the concentrations tested. PI3K/Akt and MAPK/Erk cell signaling pathways were investigated using Western blot analysis, revealing that these compounds decrease their activity in both breast cancer cell lines. Compounds 1b (R 2  = F), 1c (R 2  = Me), and 1e (R 1  = Cl, R 2  = CF 3 ) were the most effective particularly in MDA-MB-231 cells. Overall, 1c and 1e compounds are the most promising antitumor compounds. These findings, together with the antiangiogenic activity previously described by us, render these compounds a relevant breakthrough for cancer therapy. J. Cell. Biochem. 117: 2791-2799, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Antiproliferative Cardenolide Glycosides of Elaeodendron alluaudianum from the Madagascar Rainforest1

    PubMed Central

    Hou, Yanpeng; Cao, Shugeng; Brodie, Peggy; Callmander, Martin; Ratovoson, Fidisoa; Randrianaivo, Richard; Rakotobe, Etienne; Rasamison, Vincent E.; Rakotonandrasana, Stephan; TenDyke, Karen; Suh, Edward M.; Kingston, David G. I.

    2010-01-01

    Bioassay-guided fractionation of an ethanol extract of a Madagascar collection of Elaeodendron alluaudianum led to the isolation of two new cardenolide glycosides (1 and 2). The 1H and 13C NMR spectra of both compounds were fully assigned using a combination of 2D NMR experiments, including 1H-1H COSY, HSQC, HMBC, and ROESY sequences. Both compounds 1 and 2 were tested against the A2780 human ovarian cancer cell line and the U937 human histiocytic lymphoma cell line assays, and showed significant antiproliferative activity with IC50 values of 0.12 and 0.07 μM against the A2780 human ovarian cancer cell line, and 0.15 and 0.08 μM against the U937 human histiocytic lymphoma cell line, respectively. PMID:19058971

  10. Cyclohexa-2,5-diene-1,4-dione-based antiproliferative agents: design, synthesis, and cytotoxic evaluation.

    PubMed

    Petronzi, Carmen; Festa, Michela; Peduto, Antonella; Castellano, Maria; Marinello, Jessica; Massa, Antonio; Capasso, Anna; Capranico, Giovanni; La Gatta, Annalisa; De Rosa, Mario; Caraglia, Michele; Filosa, Rosanna

    2013-04-30

    Tumors are diseases characterized by uncontrolled cell growth and, in spite of the progress of medicine over the years, continue to represent a major threat to the health, requiring new therapies. Several synthetic compounds, such as those derived from natural sources, have been identified as anticancer drugs; among these compounds quinone represent the second largest class of anticancer agents in use. Several studies have shown that these act on tumor cells through several mechanisms. An important objective of this work is to develop quinoidscompounds showing antitumor activity, but with fewer side effects. The parachinone cannabinol HU-331, is a small molecule that with its core 4-hydroxy-1,4-benzoquinone, exhibits a potent and selective cytotoxic activity on different tumor cell lines. A series of derivatives 3-hydroxy-1,4-benzochinoni were thus developed through HU-331 chemical modifications. The purpose of the work is to test the ability of the compounds to induce proliferative inhibition and study the mechanisms of cell death. The antitumor activities were evaluated in vitro by examining their cytotoxic effects against different human cancer cell lines. All cell lines tested were plated in 96-multiwell and treated with HU-100-V at different concentrations and cell viability was evaluated byMTT assay. Subsequently via flow cytometry (FACS) it was possible to assess apoptosis by the system of double labeling with PI and Annexin-V, and the effect of the compounds on ROS formation by measuring the dichlorofluorescein fluorescence. The substitution by n-hexyl chain considerably enhanced the bioactivity of the compounds. In details, 2-hexyl-5-hydroxycyclohexa-2,5-diene-1,4-dione (V), 2,5-Dimethoxy-3-hexyl-2,5-cyclohexadiene-1,4-dione (XII) and 2-hydroxy-5-methoxy-3-hexyl-cyclohexa-2,5-diene-1,4-dione (XIII) showed most prominent cytotoxicity against almost human tumour cell lines. Compound V was further subjected to downstream apoptotic analysis, demostrating a time-dependent pro-apoptotic activity on human melanoma M14 cell line mediated by caspases activation and poly-(ADP-ribose)-polymerase (PARP) protein cleavage. These findings indicate that 2-hexyl-5-idrossicicloesa-2,5-diene-1,4-dione can be a promising compound for the design of a new class of antineoplastic derivatives.Carmen Petronzi, Michela Festa, Antonella Peduto and Maria Castellano: equally contributed equally to this work.

  11. Polyprenylated polycyclic acylphloroglucinol: Angiogenesis inhibitor from Garcinia multiflora.

    PubMed

    Cheng, Lin-Yang; Chen, Chun-Lin; Kuo, Yueh-Hsiung; Chang, Tsung-Hsien; Lin, I-Wei; Wang, Shih-Wei; Chung, Mei-Ing; Chen, Jih-Jung

    2018-06-01

    A new polyprenylated polycyclic acylphloroglucinol, garcimultiflorone K (1), has been isolated from the stems of Garcinia multiflora, together with two known compounds, garcimultiflorone A (2) and garcimultiflorone B (3). The structure of new compound 1 was determined through spectroscopic methods including 1D and 2D NMR and MS analyses. The anti-angiogenic and anti-cancer effects of compounds 1-3 were evaluated in human endothelial progenitor cells (EPCs) and cancer cells. Of these, garcimultiflorone K (1) displayed the most potent anti-angiogenic property by suppressing cell growth and tube formation of EPCs. Compound 1 also exhibited growth-inhibitory activities against human hepatocellular carcinoma cell line SK-Hep-1 and hormone refractory prostate cancer cell line PC-3 with GI 50 values of 4.3 ± 1.6 and 6.6 ± 0.4 μM, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Aromatic compounds produced by Periconia atropurpurea, an endophytic fungus associated with Xylopia aromatica.

    PubMed

    Teles, Helder Lopes; Sordi, Renata; Silva, Geraldo Humberto; Castro-Gamboa, Ian; Bolzani, Vanderlan da Silva; Pfenning, Ludwig Heinrich; de Abreu, Lucas Magalhães; Costa-Neto, Claudio Miguel; Young, Maria Claudia Marx; Araújo, Angela Regina

    2006-12-01

    6,8-Dimethoxy-3-(2'-oxo-propyl)-coumarin (1) and 2,4-dihydroxy-6-[(1'E,3'E)-penta-1',3'-dienyl]-benzaldehyde (2), in addition to the known compound periconicin B (3), were isolated from the ethyl acetate extract of Periconia atropurpurea, an endophytic fungus obtained from the leaves of Xylopia aromatica, a native plant of the Brazilian Cerrado. Their chemical structures were assigned based on analyses of MS, 1D and 2D-NMR spectroscopic experiments. Biological analyses were performed using two mammalian cell lines, human cervix carcinoma (HeLa) and Chinese hamster ovary (CHO). The results showed that compound 1 had no effect when compared to the control group, which was treated with the vehicle (DMSO). Compound 2 was able to induce a slight increase in cell proliferation of HeLa (37% of increase) and CHO (38% of increase) cell lines. Analysis of compound 3 showed that it has potent cytotoxic activity against both cell lines, with an IC50 of 8.0 microM. Biological analyses using the phytopathogenic fungi Cladosporium sphaerospermum and C. cladosporioides revealed that also 2 showed potent antifungal activity compared to nystatin.

  13. GDA, a web-based tool for Genomics and Drugs integrated analysis.

    PubMed

    Caroli, Jimmy; Sorrentino, Giovanni; Forcato, Mattia; Del Sal, Giannino; Bicciato, Silvio

    2018-05-25

    Several major screenings of genetic profiling and drug testing in cancer cell lines proved that the integration of genomic portraits and compound activities is effective in discovering new genetic markers of drug sensitivity and clinically relevant anticancer compounds. Despite most genetic and drug response data are publicly available, the availability of user-friendly tools for their integrative analysis remains limited, thus hampering an effective exploitation of this information. Here, we present GDA, a web-based tool for Genomics and Drugs integrated Analysis that combines drug response data for >50 800 compounds with mutations and gene expression profiles across 73 cancer cell lines. Genomic and pharmacological data are integrated through a modular architecture that allows users to identify compounds active towards cancer cell lines bearing a specific genomic background and, conversely, the mutational or transcriptional status of cells responding or not-responding to a specific compound. Results are presented through intuitive graphical representations and supplemented with information obtained from public repositories. As both personalized targeted therapies and drug-repurposing are gaining increasing attention, GDA represents a resource to formulate hypotheses on the interplay between genomic traits and drug response in cancer. GDA is freely available at http://gda.unimore.it/.

  14. Antioxidant and biological properties of bioactive phenolic compounds from Quercus suber L.

    PubMed

    Fernandes, Ana; Fernandes, Iva; Cruz, Luís; Mateus, Nuno; Cabral, Miguel; de Freitas, Victor

    2009-12-09

    Phenolic compounds, namely, hydrolyzable tannins and low molecular weight phenolic compounds, were isolated and purified from Portuguese cork from Quercus suber L. Some of these compounds were studied to evaluate their antioxidant activity, including free-radical scavenging capacity (DPPH method) and reducing capacity (FRAP method). All compounds tested showed significant antioxidant activity, namely, antiradical and reducing properties. The antiradical capacity seemed to increase with the presence of galloyl groups. Regarding the reducing capacity, this structure-activity relationship was not so clear. These compounds were also studied to evaluate the growth inhibitory effect on the estrogen responsive human breast cancer cell line (ER+) MCF-7 and two other colon cancer cell lines (Caco-2 and HT-29). Generally, all the compounds tested exhibited, after a continuous exposure during a 48 h period, a dose-dependent growth inhibitory effect. Relative inhibitory activity was primarily related to the number of phenolic hydroxyl groups (galloyl and HHDP moieties) found in the active structures, with more groups generally conferring increased effects, except for HHDP-di-galloyl-glucose. Mongolicain B showed a greater potential to inhibit the growth of the three cell lines tested, identical to the effect observed with castalagin. Since these compounds are structurally related with each other, this activity might be based within the C-glycosidic ellagitannin moiety.

  15. Synthesis and Anticancer Activity of 3-(Substituted Aroyl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole Derivatives.

    PubMed

    Zhan, Xiao-Ping; Lan, Lan; Wang, Shuai; Zhao, Kai; Xin, Yu-Xuan; Qi, Qi; Wang, Yao-Lin; Mao, Zhen-Min

    2017-02-01

    A series of 3-(substituted aroyl)-4-(3,4,5-trimethoxyphenyl)-1H-pyrrole derivatives were synthesized and determined for their anticancer activity against eleven cancer cell lines and two normal tissue cell lines using MTT assay. Among the synthesized compounds, compound 3f was the most potent compound against A375, CT-26, HeLa, MGC80-3, NCI-H460 and SGC-7901 cells (IC 50  = 8.2 - 31.7 μm); 3g, 3n and 3a were the most potent compounds against CHO (IC 50  = 8.2 μm), HCT-15 (IC 50  = 21 μm) and MCF-7 cells (IC 50  = 18.7 μm), respectively. Importantly, all the target compounds showed no cytotoxicity towards the normal tissue cell (IC 50  > 100 μm). Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  16. Thiazole-based nitrogen mustards: Design, synthesis, spectroscopic studies, DFT calculation, molecular docking, and antiproliferative activity against selected human cancer cell lines

    NASA Astrophysics Data System (ADS)

    Łączkowski, Krzysztof Z.; Świtalska, Marta; Baranowska-Łączkowska, Angelika; Plech, Tomasz; Paneth, Agata; Misiura, Konrad; Wietrzyk, Joanna; Czaplińska, Barbara; Mrozek-Wilczkiewicz, Anna; Malarz, Katarzyna; Musioł, Robert; Grela, Izabela

    2016-09-01

    Synthesis, characterization and investigation of antiproliferative activity of ten thiazole-based nitrogen mustard against human cancer cells lines (MV4-11, A549, MCF-7 and HCT116) and normal mouse fibroblast (BALB/3T3) is presented. The structures of novel compounds were determined using 1H and 13C NMR, FAB(+)-MS, and elemental analyses. Among the derivatives, 5b, 5c, 5e, 5f and 5i were found to exhibit high activity against human leukaemia MV4-11 cells with IC50 values of 2.17-4.26 μg/ml. The cytotoxic activity of compound 5c and 5f against BALB/3T3 cells is up to 20 times lower than against cancer cell lines. Our results also show that compounds 5e and 5i have very strong activity against MCF-7 and HCT116 with IC50 values of 3.02-4.13 μg/ml. Moreover, spectroscopic characterization and cellular localization for selected compound were performed. In order to identify potential drug targets we perform computer simulations with DNA-binding site of hTopoI and hTopoII and quantum chemical calculation of interaction and binding energies in complexes of the five most active compounds with guanine.

  17. Cytotoxic withanolides from Physalis angulata L.

    PubMed

    He, Qing-Ping; Ma, Lei; Luo, Jie-Ying; He, Fu-Yuan; Lou, Li-Guang; Hu, Li-Hong

    2007-03-01

    Four new withanolides, physagulins L-O (1-4), were isolated from the MeOH extract of the aerial parts of Physalis angulata L. (Solanaceae), together with seven known withanolides, compounds 5-11. Their structures were determined by spectroscopic techniques, including 1H-, 13C-NMR (DEPT), and 2D-NMR (HMBC, HMQC, 1H,1H-COSY, NOESY) experiments, as well as by HR-MS. All eleven compounds were tested for their antiproliferative activities towards human colorectal-carcinoma (HCT-116) and human non-small-cell lung-cancer (NCI-H460) cells. Compound 5 exhibited the highest anticancer activity against the HCT-116 cell line, with an IC50 value of 1.64+/-0.06 microM. Compound 9 exhibited the highest cytotoxicity towards the NCI-H460 cell line, with an IC50 value of 0.43+/-0.02 microM.

  18. Identification of a selective small molecule inhibitor of breast cancer stem cells.

    PubMed

    Germain, Andrew R; Carmody, Leigh C; Morgan, Barbara; Fernandez, Cristina; Forbeck, Erin; Lewis, Timothy A; Nag, Partha P; Ting, Amal; VerPlank, Lynn; Feng, Yuxiong; Perez, Jose R; Dandapani, Sivaraman; Palmer, Michelle; Lander, Eric S; Gupta, Piyush B; Schreiber, Stuart L; Munoz, Benito

    2012-05-15

    A high-throughput screen (HTS) with the National Institute of Health-Molecular Libraries Small Molecule Repository (NIH-MLSMR) compound collection identified a class of acyl hydrazones to be selectively lethal to breast cancer stem cell (CSC) enriched populations. Medicinal chemistry efforts were undertaken to optimize potency and selectivity of this class of compounds. The optimized compound was declared as a probe (ML239) with the NIH Molecular Libraries Program and displayed greater than 20-fold selective inhibition of the breast CSC-like cell line (HMLE_sh_Ecad) over the isogenic control line (HMLE_sh_GFP). Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. High-throughput microfluidic mixing and multiparametric cell sorting for bioactive compound screening.

    PubMed

    Young, Susan M; Curry, Mark S; Ransom, John T; Ballesteros, Juan A; Prossnitz, Eric R; Sklar, Larry A; Edwards, Bruce S

    2004-03-01

    HyperCyt, an automated sample handling system for flow cytometry that uses air bubbles to separate samples sequentially introduced from multiwell plates by an autosampler. In a previously documented HyperCyt configuration, air bubble separated compounds in one sample line and a continuous stream of cells in another are mixed in-line for serial flow cytometric cell response analysis. To expand capabilities for high-throughput bioactive compound screening, the authors investigated using this system configuration in combination with automated cell sorting. Peptide ligands were sampled from a 96-well plate, mixed in-line with fluo-4-loaded, formyl peptide receptor-transfected U937 cells, and screened at a rate of 3 peptide reactions per minute with approximately 10,000 cells analyzed per reaction. Cell Ca(2+) responses were detected to as little as 10(-11) M peptide with no detectable carryover between samples at up to 10(-7) M peptide. After expansion in culture, cells sort-purified from the 10% highest responders exhibited enhanced sensitivity and more sustained responses to peptide. Thus, a highly responsive cell subset was isolated under high-throughput mixing and sorting conditions in which response detection capability spanned a 1000-fold range of peptide concentration. With single-cell readout systems for protein expression libraries, this technology offers the promise of screening millions of discrete compound interactions per day.

  20. New dihydro-β-agarofuran sesquiterpenes from Parnassia wightiana wall: isolation, identification and cytotoxicity against cancer cells.

    PubMed

    Lv, Chao; Zheng, Zuo-Lue; Miao, Fang; Geng, Hui-Ling; Zhou, Le; Liu, La-Ping

    2014-06-20

    Five new (4-8) and three known (1-3) dihydro-β-agarofuran sesquiterpene polyesters were isolated from the whole plants of Parnassia wightiana. The structures of all compounds were elucidated through spectroscopic analysis including 2D-NMR and HR-MS. The absolute configuration of these compounds was established by X-ray diffraction analysis, comparison of NOESY spectra and biogenetic means. The cytotoxities of compounds 2-8 were evaluated in vitro against HL-60, SMMC-7721, A549, MCF-7 and SW480 cell lines. Compounds 5-7 exhibited the highest activities with IC₅₀ values of 11.8-30.1 μM in most cases. The SAR revealed that the introduction of hydroxyl group was able to significantly improve the activities of the compounds for most of the cell lines.

  1. Evaluation of 6-chloro-N-[3,4-disubstituted-1,3-thiazol-2(3H)-ylidene]-1,3-benzothiazol-2-amine Using Drug Design Concept for Their Targeted Activity Against Colon Cancer Cell Lines HCT-116, HCT15, and HT29.

    PubMed

    Zhu, Ming-Li; Wang, Cui-Yue; Xu, Cheng-Mian; Bi, Wei-Ping; ZHou, Xiu-Ying

    2017-03-05

    BACKGROUND Colorectal adenocarcinoma is the second leading cause of cancer-related death in the world. The stage of the disease is related to the survival of the patient, and in early phases surgery is the main modality of treatment. The main aim of modern medicinal chemistry is to synthesize small molecules via drug designing, especially by targeting tumor cells. MATERIAL AND METHODS A new series of 19 compounds containing benzothiazole and thiazole were designed. Molecular docking studies were performed on the designed series of molecules. Compounds showing good binding affinity towards the EGFR receptor were selected for synthetic studies. Characterization of the synthesized compounds was done by FTIR, 1HNMR, Mass and C, H, N, analysis. RESULTS The anticancer evaluation of the synthesized compounds was done at NIC, USA at a single dose against colon cancer cell lines HCT 116, HCT15, and HC 29. The active compounds were further evaluated for the 5-dose testing. Compounds were designed by using docking analysis. To ascertain the interaction of EGFR tyrosine kinase binding, energy calculation was used. CONCLUSIONS The results of the present study indicate that the designed compounds show good activity against colon cancer cell lines, which may be further studied to design new potential molecules.

  2. Design, synthesis, crystallization and biological evaluation of new symmetrical biscationic compounds as selective inhibitors of human Choline Kinase α1 (ChoKα1).

    PubMed

    Schiaffino-Ortega, Santiago; Baglioni, Eleonora; Mariotto, Elena; Bortolozzi, Roberta; Serrán-Aguilera, Lucía; Ríos-Marco, Pablo; Carrasco-Jimenez, M Paz; Gallo, Miguel A; Hurtado-Guerrero, Ramon; Marco, Carmen; Basso, Giuseppe; Viola, Giampietro; Entrena, Antonio; López-Cara, Luisa Carlota

    2016-03-31

    A novel family of compounds derivative of 1,1'-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))-bispyridinium or -bisquinolinium bromide (10a-l) containing a pair of oxygen atoms in the spacer of the linker between the biscationic moieties, were synthesized and evaluated as inhibitors of choline kinase against a panel of cancer-cell lines. The most promising compounds in this series were 1,1'-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))bis(4-(dimethylamino)pyridinium) bromide (10a) and 1,1'-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))-bis(7-chloro-4-(pyrrolidin-1-yl)quinolinium) bromide (10l), which inhibit human choline kinase (ChoKα1) with IC50 of 1.0 and 0.92 μM, respectively, in a range similar to that of the previously reported biscationic compounds MN58b and RSM932A. Our compounds show greater antiproliferative activities than do the reference compounds, with unprecedented values of GI50 in the nanomolar range for several of the cancer-cell lines assayed, and more importantly they present low toxicity in non-tumoral cell lines, suggesting a cancer-cell-selective antiproliferative activity. Docking studies predict that the compounds interact with the choline-binding site in agreement with the binding mode of most previously reported biscationic compounds. Moreover, the crystal structure of ChoKα1 with compound 10a reveals that this compound binds to the choline-binding site and mimics HC-3 binding mode as never before.

  3. 1,1-Diphenyl-2-picrylhydrazyl radical-scavenging compounds from soybean miso and antiproliferative activity of isoflavones from soybean miso toward the cancer cell lines.

    PubMed

    Hirota, A; Taki, S; Kawaii, S; Yano, M; Abe, N

    2000-05-01

    Guided by their DPPH radical-scavenging activity, nine compounds were isolated from soybean miso. Of these, 8-hydroxydaidzein, 8-hydroxygenistein and syringic acid had as high DPPH radical-scavenging activity as that of alpha-tocopherol. The antiproliferative activity of four of the isolated isoflavones toward three cancer cell lines was examined. 8-Hydroxygenistein showed the highest activity (IC50=5.2 microM) toward human promyelocytic leukemia cells (HL-60).

  4. Establishment of a novel immortalized human prostatic epithelial cell line stably expressing androgen receptor and its application for the functional screening of androgen receptor modulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Shan; Wang, Ming-Wei; Yao, Xiaoqiang

    2009-05-15

    In this study, we developed a human prostatic epithelial cell line BPH-1-AR stably expressing AR by lentiviral transduction. Characterization by immunoblot and RT-PCR showed that AR was stably expressed in all representative BPH-1-AR clones. Androgen treatment induced a secretory differentiation phenotype in BPH-1-AR cells but suppressed their cell proliferation. Treatments with AR agonists induced transactivation of a transfected PSA-gene promoter reporter in BPH-1-AR cells, whereas this transactivation was suppressed by an AR antagonist flutamide, indicating that the transduced AR in BPH-1-AR cells was functional. Finally, we utilized BPH-1-AR cells to evaluate the androgenic activities and growth effects of five newlymore » developed non-steroidal compounds. Results showed that these compounds showed androgenic activities and growth-inhibitory effects on BPH-1-AR cells. Our results showed that BPH-1-AR cell line would be a valuable in vitro model for the study of androgen-regulated processes in prostatic epithelial cells and identification of compounds with AR-modulating activities.« less

  5. Involvement of apoptosis and autophagy in the death of RPMI 8226 multiple myeloma cells by two enantiomeric sigma receptor ligands.

    PubMed

    Korpis, Katharina; Weber, Frauke; Brune, Stefanie; Wünsch, Bernhard; Bednarski, Patrick J

    2014-01-01

    Over-expression of σ receptors by many tumor cell lines makes ligands for these receptors attractive as potential chemotherapeutic drugs. Enantiomeric piperazines (S)-4 and (R)-4 were prepared as potential σ-receptor ligands in a chiral pool synthesis starting from (S)- and (R)-aspartate. Both compounds showed high affinities for the σ₁ and σ₂ receptors. In the human multiple myeloma cell line RPMI 8226, a line expressing high levels of σ receptors, both compounds inhibited cell proliferation with IC₅₀ values in the low μM range. No chiral differentiation between either the σ receptor binding affinity or the cytotoxicity of the two enantiomers was observed. Both compounds induced apoptosis, which was evidenced by nuclear condensation, binding of annexin-V to phosphatidylserine in the outer leaf of the cell membrane, cleavage products of poly(ADP-ribose) polymerase-1 (PARP-1) and caspase-8 as well as the expression of bcl₂ family members bax, bad and bid. However, apoptosis appeared to be caspase independent. Increased levels of the phosphorylated form of the microtubule associated protein light chain 3-II (LC3-II), an autophagosome marker, gave evidence that both compounds induced autophagy. However, further data (e.g., treatment with wortmannin) indicate that autophagy is incomplete and not cytoprotective. Lipid peroxidation (LPO) was observed in RPMI 8226 cells treated with the two compounds, and the lipid antioxidant α-tocopherol attenuated LPO. Interestingly, α-tocopherol reduced significantly both apoptosis and autophagy induced by the compounds. These results provide evidence that, by initiating LPO and changes in mitochondrial membrane potential, both compounds induce apoptosis and autophagy in RPMI 8226 cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. In vitro screening of organotin compounds and sediment extracts for cytotoxicity to fish cells.

    PubMed

    Giltrap, Michelle; Macken, Ailbhe; McHugh, Brendan; McGovern, Evin; Foley, Barry; Davoren, Maria

    2011-01-01

    The present study reports an in vitro screening method for contaminants in sediment samples utilizing an RTG-2 cell line. This technique integrates cytotoxicity testing with analytical chemistry with the aim of achieving a toxicity evaluation of the sediment sample. The toxic effect of individual organotin (OT) compounds and their presence in the sediment sample is the focus of the present study; however, other contaminants are also discussed. The following OT compounds: tributyltin (TBT), dibutyltin (DBT), monobutyltin (MBT), triphenyltin (TPT), diphenyltin (DPT), and a sediment solvent extract are exposed to the RTG-2 fish cell line. Both the alamar blue (AB) and neutral red (NR) assays are used to assess cytotoxicity after 24-h and 96-h exposure. Methodology for preparation of a sediment solvent extract suitable for biological testing and analytical determination is also described. With the RTG-2 cells, the AB and NR assays had comparable sensitivity for each individual OT compound exposure after 24 h, with TPT being the most toxic compound tested. The individual OT compound concentrations required to induce a 50% toxic effect on the cells (369 ng ml⁻¹ TBT, 1,905 ng ml⁻¹ DBT) did not equate to the concentrations of these contaminants present in the sediment extract that induced a 50% effect on the cells (294 ng ml⁻¹ TBT, 109 ng ml⁻¹ DBT). The solvent extract therefore exhibited a greater toxicity, and this suggests that the toxic effects observed were not due to OT compounds alone. The presence of other contaminants in the solvent extract is confirmed with chemical analysis, warranting further toxicity testing of contaminant mixtures and exposure to the cell line to further elucidate a complete toxicity evaluation. © 2010 SETAC.

  7. Cytotoxic deoxybenzoins and diphenylethylenes from Arundina graminifolia.

    PubMed

    Hu, Qiu-Fen; Zhou, Bin; Ye, Yan-Qing; Jiang, Zhi-Yong; Huang, Xiang-Zhong; Li, Yin-Ke; Du, Gang; Yang, Guang-Yu; Gao, Xue-Mei

    2013-10-25

    Eight new C-4-alkylated deoxybenzoins (1-8), three new diphenylethylenes (9-11), and five known diphenylethylenes were isolated from Arundina graminifolia. The structures of 1-11 were elucidated by spectroscopic methods including extensive 1D and 2D NMR techniques. Compounds 9-11 are the first naturally occurring diphenylethylenes possessing a hydroxyethyl unit. Compounds 1-11 were evaluated for cytotoxicity against five human tumor cell lines. Compounds 4, 5, and 9-11 showed significant cytotoxicity against five cancer cell lines, with IC50 values ranging from 1.8 to 8.7 μM.

  8. Synthesis and evaluation of (Z)-2,3-diphenylacrylonitrile analogs as anti-cancer and anti-microbial agents.

    PubMed

    Alam, Mohammad Sayed; Nam, Young-Joo; Lee, Dong-Ung

    2013-11-01

    In the present study, a series of (Z)-2,3-diphenylacrylonitrile analogs were synthesized and then evaluated in terms of their cytotoxic activities against four human cancer cell lines, e.g. lung cancer (A549), ovarian cancer (SK-OV-3), skin cancer (SK-MEL-2), and colon cancer (HCT15), as well as anti-microbial activities against three microbes, e.g. Staphylococcus aureus, Salmonella typhi, and Aspergillus niger. The title compounds were synthesized by Knoevenagel condensation reaction of benzyl cyanide or p-nitrobenzyl cyanide with substituted benzaldehydes in good yields. Most of the compounds exhibited significant suppressive activities against the growth of all cancer cell lines. Compound 3c was most active in inhibiting the growth of A549, SK-OV-3, SK-MEL-2, and HCT15 cells lines with IC50 values of 0.57, 0.14, 0.65, and 0.34 mg/mL, respectively, followed by compounds 3f, 3i, and 3h. Compound 3c exhibited 2.4 times greater cytotoxic activity against HCT15 cells, whereas it showed similar potency against SK-OV-3 cells to that of the standard anti-cancer agent doxorubicin. Structure-activity relationship study revealed that electron-donating groups at the para-position of phenyl ring B were more favorable for improved cytotoxic activity, whereas the presence of electron-withdrawing groups was unfavorable compare to unsubstituted acrylonitrile. An optimal electron density on phenyl ring A of (Z)-2,3-diphenylacrylonitrile analogs was crucial for their cytotoxic activities against human cancer cell lines used in the present study. Qualitative structure-cytotoxic activity relationships were studied using physicochemical parameters; a good correlation between calculated polar surface area (PSA), a lipophobic parameter, and cytotoxic activity was found. Moreover, all compounds showed significant anti-bacterial activities against S. typhi, whereas compound 3k showed potent inhibition against both S. aureus and S. typhi bacterial strains. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  9. Cytotoxic cardiac glycosides and other compounds from Asclepias syriaca.

    PubMed

    Araya, Juan J; Kindscher, Kelly; Timmermann, Barbara N

    2012-03-23

    Phytochemical investigation of the dried biomass of Asclepias syriaca afforded five new compounds (1-5), along with 19 known structures. Overall, the secondary metabolites isolated and identified from this plant showed a wide structural diversity including pentacyclic triterpenes, cardiac glycosides, flavonoid glycosides, lignans, a phenylethanoid, and a glycosylated megastigmane. In addition, the isolates were tested against the cancer breast cell line Hs578T, and those showing IC(50) values lower than 50 μM (1 and 6-9) were further investigated in three additional breast cancer cell lines (MCF-7, T47D, and Sk-Br-3) and the normal breast cell line Hs578Bst.

  10. Synthesis and in vitro antiproliferative activities of (5-aryl-1,2,4-oxadiazole-3-yl) methyl d-ribofuranosides.

    PubMed

    Avanzo, Romina E; Padrón, José M; D'Accorso, Norma B; Fascio, Mirta L

    2017-08-15

    The emergence of multidrug resistance cell lines is one of the major obstacles in the success of cancer chemotherapeutic treatment. Therefore, it remains a big challenge the development of new and effective drugs to defeat cancer. The presence of nitrogen heterocycles in the architectural design of drugs has led to the discovery of new leading compounds. Herein, we report the synthesis, characterization and in vitro antiproliferative activity against six cancer cell lines of d-ribofuranoside derivatives bearing a 1,2,4-oxadiazolic ring, with the aim of developing new active compounds. Most of these derivatives exhibit significant antiproliferative activities in the micromolar range. Noteworthy, the most potent compound of the series showed better selectivity towards the more resistant colon cancer cell line WiDr. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Anticancer activity of Sargassum oligocystum water extract against human cancer cell lines.

    PubMed

    Zandi, K; Ahmadzadeh, S; Tajbakhsh, S; Rastian, Z; Yousefi, F; Farshadpour, F; Sartavi, K

    2010-08-01

    Antitumor drug resistance and side effects of antitumor compounds are the most common problems in medicine. Therefore, finding new antitumor agents with low side effects could be interesting. This study was designed to assay antitumor activity of the extract from brown alga Sargassum oligocystum, gathered from Persian Gulf seashore, against K562 and Daudi human cancer cell lines. The research was performed as an in vitro study. The effect of the alga extract on proliferation of cell lines were measured by two methods: MTT assay and trypan blue exclusion test. The most effective antitumor activity has been shown at concentrations 500 microg/ml and 400 microg/ml of the alga extract against Daudi and K562 cell lines, respectively. The results showed that the extracts of brown alga Sargassum oligocystum have remarkable antitumor activity against K562 and Daudi cell lines. It is justified to be suggested for further research such as algal extract fractionation and purification and in vivo studies in order to formulate natural compounds with antitumor activities.

  12. Synthesis, characterization and in vitro anticancer activity of C-5 curcumin analogues with potential to inhibit TNF-α-induced NF-κB activation.

    PubMed

    Anthwal, Amit; Thakur, Bandana K; Rawat, M S M; Rawat, D S; Tyagi, Amit K; Aggarwal, Bharat B

    2014-01-01

    In a search of new compounds active against cancer, synthesis of a series of C-5 curcumin analogues was carried out. The new compounds demonstrated good cytotoxicity against chronic myeloid leukemia (KBM5) and colon cancer (HCT116) cell lines. Further, these compounds were found to have better potential to inhibit TNF-α-induced NF-κB activation in comparison to curcumin, which show their potential to act as anti-inflammatory agents. Some compounds were found to show higher cytotoxicity against cancer cell lines in comparison to curcumin used as standard.

  13. Synthesis of novel fluorinated chalcones derived from 4‧-morpholinoacetophenone and their antiproliferative effects

    NASA Astrophysics Data System (ADS)

    Kurşun Aktar, Bedriye Seda; Oruç-Emre, Emine Elçin; Demirtaş, Ibrahim; Yaglioglu, Ayse Sahin; Guler, Caglar; Adem, Sevki; Karaküçük Iyidoğan, Ayşegül

    2017-12-01

    The fluorinated chalcones were synthesized by Claisen-Schmidt condensation between 4‧-morpholineacetophenone and various fluorinated benzaldehydes in the presence of NaOH in methanol. The synthesized compounds [1-7] were evaluated their antiproliferative activity against HeLa and C6 cell lines. Among them, compounds 4 and 5 were determined to have anticancer activity against HeLa cells line (IC50 values of 7.74 and 6.10 μg/mL, respectively). The anticancer activity results were shown that compounds 3, and 6 had inhibitory against C6 cells (IC50 values of 12.80 and 4.16 μg/mL, respectively). The compounds 1 and 2 had high antiproliferative activity with non-cytotoxicity. All of the new compounds, except for compound 4 showed inhibition against the human isozyme hCA I with IC50 in the range of 0.5-1,16 mM. Pyruvate kinase M2 (PKM2) was effectively inhibited by compound 4 with IC50 = 26 μM.

  14. Chalcone derivatives from the fern Cyclosorus parasiticus and their anti-proliferative activity.

    PubMed

    Wei, Han; Zhang, Xuenong; Wu, Guanghua; Yang, Xian; Pan, Songwei; Wang, Yanyan; Ruan, Jinlan

    2013-10-01

    Three new chalcone derivatives, named parasiticins A-C (1-3), were isolated from the leaves of Cyclosorus parasiticus, together with four known chalcones, 5,7-dihydroxy-4-phenyl-8-(3-phenyl-trans-acryloyl)-3,4-dihydro-1-benzopyran-2-one (4), 2'-hydroxy-4',6'-dimethoxychalcone (5), 2',4'-dihydroxy-6'-methoxy-3',5'-dimethylchalcone (6), 2',4'-dihydroxy-6'-methoxy-3'-methylchalcone (7). The chemical structures of the new isolated compounds were elucidated unambiguously by spectroscopic data analysis. The cytotoxic activities of compounds 1-7 were evaluated against six human cancer cell lines in vitro. Compounds 3 and 6 exhibited substantial cytotoxicity against all six cell lines, especially toward HepG2 with the IC₅₀ values of 1.60 and 2.82 μM, respectively. Furthermore, we demonstrated that compounds 3 and 6 could induce apoptosis in the HepG2 cell line, which may contribute significantly to their cytotoxicity. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Three sesquiterpene compounds biosynthesised from artemisinic acid using suspension-cultured cells of Averrhoa carambola (Oxalidaceae).

    PubMed

    Yang, Li; Zhu, Jianhua; Song, Liyan; Shi, Xiaojian; Li, Xingyi; Yu, Rongmin

    2012-01-01

    A new sesquiterpene glycoside, artemisinic acid 3-β-O-β-D-glucopyranoside (3, 31.24%) and other two biotransformation products, 3-β-hydroxyartemisinic acid (2, 36.69%) and 3-β-hydroxyartemisinic acid β-D-glucopyranosyl ester (4, 7.03%), were biosynthesised after artemisinic acid (1) was administered to the cultured cells of Averrhoa carambola. The three biotransformation products were obtained for the first time by using the suspension-cultured cells of A. carambola as a new biocatalyst system, and their structures were identified on the basis of the physico-chemical properties, NMR and mass spectral analyses. The results indicate that the cultured cells of A. carambola have the abilities to hydroxylate and glycosylate sesquiterpene compounds in a regio- and stereoselective manner. Furthermore, the anti-tumour activity of compounds 3 and 4 was evaluated against K562 and HeLa cell lines. Compound 4 showed strong activity against HeLa cell line, with the IC₅₀ value of 0.56 µmol mL⁻¹.

  16. Evaluation of Anticancer Activity of Curcumin Analogues Bearing a Heterocyclic Nucleus.

    PubMed

    Ahsan, Mohamed Jawed; Ahsan, Mohamed Jawed

    2016-01-01

    We report herein an in vitro anticancer evaluation of a series of seven curcumin analogues (3a-g). The National Cancer Institute (NCI US) Protocol was followed and all the compounds were evaluated for their anticancer activity on nine different panels (leukemia, non small cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer and breast cancer) represented by 60 NCI human cancer cell lines. All the compounds showed significant anticancer activity in one dose assay (drug concentration 10 μM) and hence were evaluated further in five dose assays (0.01, 0.1, 1, 10 and 100 μM) and three dose related parameters GI50, TGI and LC50 were calculated for each (3a-g) in micro molar drug concentrations (μM). The compound 3d (NSC 757927) showed maximum mean percent growth inhibition (PGI) of 112.2%, while compound 3g (NSC 763374) showed less mean PGI of 40.1% in the one dose assay. The maximum anticancer activity was observed with the SR (leukemia) cell line with a GI50 of 0.03 μM. The calculated average sensitivity of all cell lines of a particular subpanel toward the test agent showed that all the curcumin analogues showed maximum activity on leukemia cell lines with GI50 values between 0.23 and 2.67 μM.

  17. Secondary metabolites from marine-derived Streptomyces antibioticus strain H74-21.

    PubMed

    Fu, Shuna; Wang, Fan; Li, Hongyu; Bao, Yixuan; Yang, Yu; Shen, Huifang; Lin, Birun; Zhou, Guangxiong

    2016-11-01

    A new secondary metabolite, (2S,3R)-l-threonine, N-[3-(formylamino)-2-hydroxybenzoyl]-ethyl ester (streptomyceamide C, 1), together with four known compounds 1, 4-dimethyl-3-isopropyl-2,5-piperidinedione (2), cyclo-((S)-Pro-8- hydroxy-(R)-Ile (3), cyclo-((S)-Pro-(R)-Leu (4), and seco-((S)-Pro-(R)-Val) (5), were isolated from the EtOH extract of the fermented mycelium of the marine-derived streptomycete strain H74-21, which was isolated from sea sediment in a mangrove site. The structure of the new compound was established on the basis of its spectroscopic data, including 1D and 2D NMR, HR-TOF-MS. Their antifungal activities against Candida albicans and cytotoxicities against human breast adenocarcinoma cell line MCF-7, human glioblastoma cell line SF-268 and human lung cancer cell line NCI-H460 were tested. Compounds 1 only displayed cytotoxicity against human breast adenocarcinoma cell line MCF-7 with the IC50 value of 27.0 μg/mL. However, compounds 1-5 do not show antifungal activities at the test concentration of 1 mg/mL, and 2-5 have no cytotoxicities at the test concentration of 50 μg/mL.

  18. Quinazolinones-Phenylquinoxaline hybrids with unsaturation/saturation linkers as novel anti-proliferative agents.

    PubMed

    Palem, Jyothsna Devi; Alugubelli, Gopi Reddy; Bantu, Rajashaker; Nagarapu, Lingaiah; Polepalli, Sowjanya; Jain, S Nishanth; Bathini, Raju; Manga, Vijjulatha

    2016-07-01

    A new series of novel quinazolinones with allylphenyl quinoxaline hybrids 9a-n were efficiently synthesized in good yields by the reaction of 3-allyl-2-methylquinazolin-4(3H)-one (5a-n) with bromophenyl)quinoxaline (8) utilizing Pd catalyzed Heck-cross coupling and evaluated for anti-proliferative activity against four cancer cell lines such as HeLa (cervical), MIAPACA (pancreatic), MDA-MB-231 (breast) and IMR32 (neuroblastoma). Compounds 9a, 9e, 9g and 9h exhibited promising anti-proliferative activity with GI50 values ranging from 0.06 to 0.2μM against four cell lines, while compounds 9e and 9k showed significant activity against HeLa and MIAPACA cell lines and compounds 9b, 9d, 9h and 9j showed selective potency against IMR32 and MDA-MB-231 cell lines. This is the first report on the synthesis and in vitro anti-proliferative evaluation of E-2-(4-substituted)-3-(3-(4-(quinoxalin-2-yl)phenyl)allyl)quinazolin-4(3H)-ones (9a-n). Docking results indicate a sign of good correlation between experimental activity and calculated binding affinity (dock score), suggesting that these compounds could act as promising DNA intercalates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. New Cytochalasin from Rosellinia sanctae-cruciana, an Endophytic Fungus of Albizia lebbeck.

    PubMed

    Sharma, Nisha; Kushwaha, Manoj; Arora, Divya; Jain, Shreyans; Singamaneni, Venugopal; Sharma, Sonia; Shankar, Ravi; Bhushan, Shashi; Gupta, Prasoon; Jaglan, Sundeep

    2018-03-24

    To explore the potential of Rosellinia sanctae-cruciana an endophytic fungus associated with Albizia lebbeck for pharmaceutically important cytotoxic compounds. One novel cytochalasin, named Jammosporin A (1) and four known analogues (2-5) were isolated from the culture of the endophytic fungus Rosellinia sanctae-cruciana, harbored from the leaves of medicinal plant Albizia lebbeck. Their structures were elucidated by extensive spectroscopic analyses including 1D and 2D NMR data along with MS data and by comparison with literature reports. In preliminary screening the ethyl acetate extract of the fungal culture was tested for the cytotoxic activity against a panel of four cancer cell lines (MOLT-4, A549, MIA PaCa -2 and MDA-MB-231), was found to be active against MOLT-4 with IC 50 value of 10 μg/mL. Owing to the remarkable cytotoxic activity of the extract the isolated compounds (1-5) were evaluated for their cytototoxicity against MOLT-4 cell line by MTT assay. Interestingly, compounds 1-2, 4 and 5 showed considerable cytotoxic potential against the human leukemia cancer cell line (MOLT-4) with IC 50 values of 20.0, 10.0, 8.0 and 6.0 μM, respectively, while compound 3 showed IC 50 value of 25 μM. This is the first report of existence of this class of secondary metabolites in Rosellinia sanctae-cruciana fungus. This study discovered a novel compound, named Jammosporin A, isolated for the first time from Rosellinia sanctae-cruciana, an endophytic fungus of Albizia lebbeck with anticancer activity against MOLT-4 cell line. Rosellinia sanctae-cruciana represents an interesting source of a new compound with bioactive potential as a therapeutic agent against human leukemia cancer cell line (MOLT-4). This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  20. In Vitro Growth Inhibitory Activities of Natural Products from Irciniid Sponges against Cancer Cells: A Comparative Study

    PubMed Central

    BenRedjem Romdhane, Yosr; Elbour, Monia; Carbone, Marianna; Ciavatta, Maria Letizia; Gavagnin, Margherita; Mathieu, Véronique; Lefranc, Florence; Ktari, Leila; Ben Mustapha, Karim; Boudabous, Abdellatif; Kiss, Robert

    2016-01-01

    Marine sponges of the Irciniidae family contain both bioactive furanosesterterpene tetronic acids (FTAs) and prenylated hydroquinones (PHQs). Both classes of compounds are known for their anti-inflammatory, antioxidant, and antimicrobial properties and known to display growth inhibitory effects against various human tumor cell lines. However, the different experimental conditions of the reported in vitro bioassays, carried out on different cancer cell lines within separate studies, prevent realistic actual discrimination between the two classes of compounds from being carried out in terms of growth inhibitory effects. In the present work, a chemical investigation of irciniid sponges from Tunisian coasts led to the purification of three known FTAs and three known PHQs. The in vitro growth inhibitory properties of the six purified compounds have been evaluated in the same experiment in a panel of five human and one murine cancer cell lines displaying various levels of sensitivity to proapoptotic stimuli. Surprisingly, FTAs and PHQs elicited distinct profiles of growth inhibitory-responses, differing by one to two orders of magnitude in favor of the PHQs in all cell lines. The obtained comparative results are discussed in the light of a better selection of drug candidates from natural sources. PMID:27597966

  1. Ferrocene-cinchona hybrids with triazolyl-chalcone linkers act as pro-oxidants and sensitize human cancer cell lines to paclitaxel.

    PubMed

    Podolski-Renić, Ana; Bősze, Szilvia; Dinić, Jelena; Kocsis, László; Hudecz, Ferenc; Csámpai, Antal; Pešić, Milica

    2017-08-16

    Recently, we demonstrated that ferrocene-containing compounds with a cinchona moiety displayed marked anticancer activity. Here we report on the effects of the most promising isomers encompassing quinine- (compounds 4 and 5) and quinidine-epimers (compounds 6 and 7) - synthesized using improved methods providing controlled diastereoselectivity - in three different human multidrug resistant (MDR) cancer cell lines and their sensitive counterparts (non-small cell lung carcinoma NCI-H460/R/NCI-H460, colorectal carcinoma DLD1-TxR/DLD1 and glioblastoma U87-TxR/U87). We observed that the presence of the MDR phenotype did not diminish the activity of the compounds suggesting that ferrocene quinine- and quinidine-epimers are not substrates for P-glycoprotein, which has been indicated as a major mechanism of MDR in the cell lines used. Considering that metal-based anticancer agents mainly act by increasing ROS production, we investigated the potential of ferrocene-quinidine epimers to generate ROS. We found that 6 and 7 more readily increased ROS production and induced mitochondrial damage in MDR cancer cells. According to cell death analysis, 6 and 7 were more active against MDR cancer cells showing collateral sensitivity. In addition, our data suggest that these compounds could act as inhibitors of autophagy. Importantly, simultaneous treatments of 6 and 7 with paclitaxel (PTX) increased the sensitivity of MDR cancer cells to PTX. In conclusion, the ferrocene-quinidine epimers, besides being selective towards MDR cancer cells, could also possess potential to overcome PTX resistance.

  2. 12-Chloracetyl-PPD, a novel dammarane derivative, shows anti-cancer activity via delay the progression of cell cycle G2/M phase and reactive oxygen species-mediate cell apoptosis.

    PubMed

    Wang, Xu De; Sun, Yuan Yuan; Zhao, Chen; Qu, Fan Zhi; Zhao, Yu Qing

    2017-03-05

    (20R)-Dammarane-3β, 12β, 20, 25-tetrol (25-OH-PPD) is a ginsenoside isolated from Panax ginseng (C. A. Meyer). This compound exhibits anti-cancer activities on many human cancer cell lines. In this study, we investigated anti-cancer mechanisms of 12β-O-( L -Chloracetyl)-dammar-20(22)-ene-3β,25-diol(12-Chloracetyl-PPD), a modified 25-OH-PPD. We found that compound 12-Chloracetyl-PPD resulted in a concentration-dependent inhibition of viability in prostate, breast, and gastric cancer cells, without affecting the viability of normal cell (human gastric epithelial cell line-GES-1, hair follicle dermal papilla cell line-HHDPC and rat myocardial cell line-H9C2). In MDA-MB-435 and C4-2B cancer cells, 12-Chloracetyl-PPD induced G2/M cell cycle arrest, down-regulated mouse double minute 2 (MDM2) expression, up-regulated p53 expression, triggered apoptosis, and stimulated reactive oxygen species production. Apoptosis can be attenuated by the reactive oxygen species scavenger N-acetylcysteine. Our results suggested that compound 12-Chloracetyl-PPD showed obvious anti-cancer activity based on delaying cell cycle arrest and inducing cell apoptosis by reactive oxygen species production, which supported development of 12-Chloracetyl-PPD as a potential agent for cancer chemotherapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Screening Active Compounds from Garcinia Species Native to China Reveals Novel Compounds Targeting the STAT/JAK Signaling Pathway

    PubMed Central

    Xu, Linfeng; Lao, Yuanzhi; Zhao, Yanhui; Qin, Jian; Fu, Wenwei; Zhang, Yingjia; Xu, Hongxi

    2015-01-01

    Natural compounds from medicinal plants are important resources for drug development. In a panel of human tumor cells, we screened a library of the natural products from Garcinia species which have anticancer potential to identify new potential therapeutic leads and discovered that caged xanthones were highly effective at suppressing multiple cancer cell lines. Their anticancer activities mainly depended on apoptosis pathways. For compounds in sensitive cancer line, their mechanisms of mode of action were evaluated. 33-Hydroxyepigambogic acid and 35-hydroxyepigambogic acid exhibited about 1 μM IC50 values against JAK2/JAK3 kinases and less than 1 μM IC50 values against NCI-H1650 cell which autocrined IL-6. Thus these two compounds provided a new antitumor molecular scaffold. Our report describes 33-hydroxyepigambogic acid and 35-hydroxyepigambogic acid that inhibited NCI-H1650 cell growth by suppressing constitutive STAT3 activation via direct inhibition of JAK kinase activity. PMID:26090459

  4. Marine Cyanobacteria Compounds with Anticancer Properties: A Review on the Implication of Apoptosis

    PubMed Central

    Costa, Margarida; Costa-Rodrigues, João; Fernandes, Maria Helena; Barros, Piedade; Vasconcelos, Vitor; Martins, Rosário

    2012-01-01

    Marine cyanobacteria have been considered a rich source of secondary metabolites with potential biotechnological applications, namely in the pharmacological field. Chemically diverse compounds were found to induce cytoxicity, anti-inflammatory and antibacterial activities. The potential of marine cyanobacteria as anticancer agents has however been the most explored and, besides cytotoxicity in tumor cell lines, several compounds have emerged as templates for the development of new anticancer drugs. The mechanisms implicated in the cytotoxicity of marine cyanobacteria compounds in tumor cell lines are still largely overlooked but several studies point to an implication in apoptosis. This association has been related to several apoptotic indicators such as cell cycle arrest, mitochondrial dysfunctions and oxidative damage, alterations in caspase cascade, alterations in specific proteins levels and alterations in the membrane sodium dynamics. In the present paper a compilation of the described marine cyanobacterial compounds with potential anticancer properties is presented and a review on the implication of apoptosis as the mechanism of cell death is discussed. PMID:23170077

  5. Synthesis and QSAR study of novel α-methylene-γ-butyrolactone derivatives as antifungal agents.

    PubMed

    Wu, Yong-Ling; Wang, De-Long; Guo, En-Hui; Song, Shuang; Feng, Jun-Tao; Zhang, Xing

    2017-03-01

    Thirty-six new α-benzylidene-γ-lactone compounds based α-methylene-γ-butyrolactone substructure were prepared and characterized by spectroscopic analysis. All compounds were evaluated for antifungal activities in vitro against six plant pathogenic fungi and the half maximal inhibitory concentration (IC 50 ) against Botrytis cinerea and Colletotrichum lagenarium were investigated. Compounds 5c-3 and 5c-5 with the halogen atom exhibited excellent fungicidal activity against B. cinerea (IC 50 =22.91, 18.89μM). The structure-activity relationships (SARs) analysis indicated that the derivatives with electron-withdrawing substituents at the meta- or para-positions improves the activity. Via the heuristic method, the generated quantitative structure-activity relationship (QSAR) model (R 2 =0.961) revealed a strong correlation of antifungal activity against B. cinerea with molecular structures of these compounds. Meanwhile, the cytotoxicity of 20 representative derivatives was tested in the human tumor cells line (HepG2) and the hepatic L02 cells line, the result indicated that the synthesized compounds showed significant inhibitory activity and limited selectivity. Compound 5c-5 has the highest fungicidal activity with IC 50 =18.89μM (against B. cinerea.) but low cytotoxicity with IC 50 =35.4μM (against HepG2 cell line) and IC 50 =68.8μM (against Hepatic L02 cell line). These encouraging results can be providing an alternative, promising use of α-benzylidene-γ-lactone through the design and exploration of eco-friendly fungicides with low toxicity and high efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. New Dihydro-β-agarofuran Sesquiterpenes from Parnassia wightiana Wall: Isolation, Identification and Cytotoxicity against Cancer Cells

    PubMed Central

    Lv, Chao; Zheng, Zuo-Lue; Miao, Fang; Geng, Hui-Ling; Zhou, Le; Liu, La-Ping

    2014-01-01

    Five new (4–8) and three known (1–3) dihydro-β-agarofuran sesquiterpene polyesters were isolated from the whole plants of Parnassia wightiana. The structures of all compounds were elucidated through spectroscopic analysis including 2D-NMR and HR-MS. The absolute configuration of these compounds was established by X-ray diffraction analysis, comparison of NOESY spectra and biogenetic means. The cytotoxities of compounds 2–8 were evaluated in vitro against HL-60, SMMC-7721, A549, MCF-7 and SW480 cell lines. Compounds 5–7 exhibited the highest activities with IC50 values of 11.8–30.1 μM in most cases. The SAR revealed that the introduction of hydroxyl group was able to significantly improve the activities of the compounds for most of the cell lines. PMID:24955789

  7. Acrylamide affects proliferation and differentiation of the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y.

    PubMed

    Attoff, K; Kertika, D; Lundqvist, J; Oredsson, S; Forsby, A

    2016-09-01

    Acrylamide is a well-known neurotoxic compound and people get exposed to the compound by food consumption and environmental pollutants. Since acrylamide crosses the placenta barrier, the fetus is also being exposed resulting in a risk for developmental neurotoxicity. In this study, the neural progenitor cell line C17.2 and the neuroblastoma cell line SH-SY5Y were used to study proliferation and differentiation as alerting indicators for developmental neurotoxicity. For both cell lines, acrylamide reduced the number of viable cells by reducing proliferation and inducing cell death in undifferentiated cells. Acrylamide concentrations starting at 10fM attenuated the differentiation process in SH-SY5Y cells by sustaining cell proliferation and neurite outgrowth was reduced at concentrations from 10pM. Acrylamide significantly reduced the number of neurons starting at 1μM and altered the ratio between the different phenotypes in differentiating C17.2 cell cultures. Ten micromolar of acrylamide also reduced the expression of the neuronal and astrocyte biomarkers. Although the neurotoxic concentrations in the femtomolar range seem to be specific for the SH-SY5Y cell line, the fact that micromolar concentrations of acrylamide seem to attenuate the differentiation process in both cell lines raises the interest to further investigations on the possible developmental neurotoxicity of acrylamide. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Antiproliferative efficacy of curcumin mimics through microtubule destabilization.

    PubMed

    Khwaja, Sadiya; Fatima, Kaneez; Hasanain, Mohammad; Behera, Chittaranjan; Kour, Avneet; Singh, Arjun; Luqman, Suaib; Sarkar, Jayanta; Chanda, Debabrata; Shanker, Karuna; Gupta, A K; Mondhe, D M; Negi, Arvind S

    2018-05-10

    Curcumin possesses an attractive chemical structure with highly conjugated diferuloylmethane core. Curcumin mimics have been designed and prepared with an additional bridged phenyl ring in conjugation. Fourteen diverse analogues were evaluated against a panel of human cancer cell lines. The best analogue of the series i.e. compound 6a exhibited potent cytotoxicity against A431, epidermoid carcinoma cell line (IC 50  = 1.5 μM) and DLD1, colorectal adenocarcinoma cell line (IC 50  = 6.9 μM). In tubulin kinetics experiment, compound 6a destabilized polymerisation process (IC 50  = 4.68 μM). In cell cycle analysis, compound 6a exerted G2/M phase arrest in A431 cells and induced apoptosis. In Ehrlich Ascites Carcinoma in Swiss-albino mice, compound 6a showed 78.6% tumour reduction at 80 mg/kg dose and 57% solid tumour reduction at 150 mg/kg dose. Further, in acute-oral toxicity experiment in rodent model, compound 6a was given in three different oral doses to Swiss albino mice. There were non-significant changes in various biochemical parameters and major body organs studied, including their absolute and relative weights. It was tolerable up to 300 mg/kg dose in Swiss-albino mice. The present study shows that the novel curcumin mimic 6a is a safe and efficacious anticancer compound. However, it needs to be optimized for better efficacy. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  9. Synthesis of novel forskolin isoxazole derivatives with potent anti-cancer activity against breast cancer cell lines.

    PubMed

    Burra, Srinivas; Voora, Vani; Rao, Ch Prasad; Vijay Kumar, P; Kancha, Rama Krishna; David Krupadanam, G L

    2017-09-15

    Forskolin C 1 -isoxazole derivatives (3,5-regioisomers) (11a-e, 14, 15a-h and 15, 16a-g) were synthesized regioselectively by adopting 1,3-dipolar cycloadditions. These derivatives were tested using estrogen receptor positive breast cancer cell lines MCF-7 and BT-474. Majority of the compounds exhibited activity against the p53-positive MCF-7 breast cancer cells but not against the p53-negative BT-474 breast cancer cells. Among forskolin derivatives, compounds 11a, 11c, 14a, 14f, 14g, 14h, 15b, 16g and 17b exhibited higher anti-cancer activity against MCF-7 cell line with an IC 50 ≤1µM. The derivative 14f exhibited highest activity in both p53-positive (MCF-7) and p53-negative (BT-474) breast cancer cell lines with an IC 50 of 0.5µM. Copyright © 2017. Published by Elsevier Ltd.

  10. Antitumor activity of four macrocyclic ellagitannins from Cuphea hyssopifolia.

    PubMed

    Wang, C C; Chen, L G; Yang, L L

    1999-06-01

    We evaluated the antitumor activities of four macrocyclic hydrolyzable tannin dimers, cuphiin D1, cuphiin D2, oenothein B and woodfordin C isolated from Cuphea hyssopifolia (Lythraceae). All significantly inhibited the growth of the human carcinoma cell lines KB, HeLa, DU-145, Hep 3B, and the leukemia cell line HL-60, and showed less cytotoxicity than adriamycin against a normal cell line (WISH). All four compounds inhibited the viability of S-180 tumor cells in an in vitro assay and an in vivo S-180 tumor-bearing ICR mice model. Oenothein B demonstrated the greatest cytotoxicity (IC50 = 11.4 microg/ml) against S-180 tumor cells in culture, while cuphiin D1 resulted in the greatest increase in survival on S-180 tumor-bearing mice (%ILS = 84.1%). Our findings suggest that the antitumor effects of these compounds are not only related to their cytotoxicity on carcinoma cell lines, but also depended on a host-mediated mechanism; they may therefore have potential for antitumor applications.

  11. New Small Molecules Targeting Apoptosis and Cell Viability in Osteosarcoma

    PubMed Central

    Maugg, Doris; Rothenaigner, Ina; Schorpp, Kenji; Potukuchi, Harish Kumar; Korsching, Eberhard; Baumhoer, Daniel; Hadian, Kamyar

    2015-01-01

    Despite the option of multimodal therapy in the treatment strategies of osteosarcoma (OS), the most common primary malignant bone tumor, the standard therapy has not changed over the last decades and still involves multidrug chemotherapy and radical surgery. Although successfully applied in many patients a large number of patients eventually develop recurrent or metastatic disease in which current therapeutic regimens often lack efficacy. Thus, new therapeutic strategies are urgently needed. In this study, we performed a phenotypic high-throughput screening campaign using a 25,000 small-molecule diversity library to identify new small molecules selectively targeting osteosarcoma cells. We could identify two new small molecules that specifically reduced cell viability in OS cell lines U2OS and HOS, but affected neither hepatocellular carcinoma cell line (HepG2) nor primary human osteoblasts (hOB). In addition, the two compounds induced caspase 3 and 7 activity in the U2OS cell line. Compared to conventional drugs generally used in OS treatment such as doxorubicin, we indeed observed a greater sensitivity of OS cell viability to the newly identified compounds compared to doxorubicin and staurosporine. The p53-negative OS cell line Saos-2 almost completely lacked sensitivity to compound treatment that could indicate a role of p53 in the drug response. Taken together, our data show potential implications for designing more efficient therapies in OS. PMID:26039064

  12. Isolation of Chlorogenic Acid from Soil Borne Fungi Screlotium rolfsii, their Reversal of Multidrug Resistance and Anti-proliferative in Mouse Lymphoma Cells.

    PubMed

    Ahmad, Bashir; Rizwan, Muhammad; Rauf, Abdur; Raza, Muslim; Bashir, Shumaila; Molnar, Joseph; Csonka, Akos; Szabo, Diana; Mubarak, Mohammad S; Noor, Mah; Siddiqui, Bina S

    2017-01-01

    Fungi performing a wide range of function in soil by secreting low molecular weight compound known as secondary metabolites. S. rolfsii is a soil borne phytopathogenic fungi was used for the production of bioactive compounds. The present study belongs to evaluate the anticancer potentials of a secondary metabolites isolated from S. rolfsii, their multidrug resistance (MDR), and molecular docking study. (1S,3R,4R,5R,E)-3-(3-(3,4-Dihydroxyphenyl)acryloyloxy)-1,4,5 trihydroxycyclohexanecarboxylic acid (1), or best known as chlorogenic acid, was isolated from the ethyl acetate fraction of crude secondary metabolites produced by the soil borne Fungus Screlotium rolfsii. Structure of chlorogenic acid (1) was confirmed by means of FT-IR, 1H NMR, 13C NMR, and mass spectrometry as well as by melting point. Effect of compound 1 on the reversion of multidrug resistant (MDR) mediated by Pglycoprotein (P-gp) against cancer cells was evaluated with a rhodamine-123 exclusion screening test on human mdr1 gene transfected mouse gene transfected L5178 and L5178Y mouse T-cell lymphoma. Compound 1 was also evaluated for Anti-proliferative effect on the L5178 mouse Tcell lymphoma cell line. Results from the present investigation revealed that compound 1 exhibits excellent MDR reversing effect in a dose-dependent manner against mouse T-lymphoma cell line. Compound 1 also showed anti-proliferative effect on L5178Y mouse T-lymphoma cell line. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  13. Biological evaluation of water soluble arene Ru(II) enantiomers with amino-oxime ligands.

    PubMed

    de la Cueva-Alique, Isabel; Sierra, Sara; Muñoz-Moreno, Laura; Pérez-Redondo, Adrián; Bajo, Ana M; Marzo, Isabel; Gude, Lourdes; Cuenca, Tomás; Royo, Eva

    2018-06-01

    New water soluble, enantiopure arene ruthenium compound S Ru S N -(1R,4S)-[(η 6 -p-cymene)Ru{ĸNH(Bn),ĸNOH}Cl]Cl (Bn = benzyl, 1a') has been synthesized. The novel compound along with that previously described R Ru R N -(1S,4R)-[(η 6 -p-cymene)Ru{ĸNH(Bn),ĸNOH}Cl]Cl (1a) was evaluated by polarimetry, ultra-violet and circular dichroism spectroscopy. The structure of novel ruthenium derivative 1a' was determined by single crystal X-ray crystallography. Both enantiomers have been tested against several cancer cell lines in vitro: prostate PC-3, lung A-549, pancreas MIA PaCa-2, colorectal HCT-116, leukemia Jurkat and cervical HeLa. Both enantiomers are active and versatile cytotoxic agents, showing IC 50 values from 2 to 12 times lower than those found for cisplatin in the different cell lines evaluated. The mechanism of cell death induced by the metal compounds was analyzed in A-549 and Jurkat cell lines. Derivatives 1a and 1a' induced apoptotic cell death of A-549 cells while dose-dependent cell death mechanisms have been found in the Jurkat cell line. Compound-DNA interactions have been investigated by equilibrium dialysis, Fluorescence Resonance Energy Transfer (FRET) melting assays and viscometric titrations, revealing moderate binding affinity of 1a and 1a' towards duplex DNA. Finally, the efficacy of 1a in a preliminary in vivo assay of PC-3 xenografts in nude mice has been evaluated, resulting in a promising inhibition of tumor growth by 45%. Analysis of tumor tissue also showed a significant decrease of levels of crucial molecules in the invasive phenotype of PC-3 cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Molecular interaction of novel benzothiazolyl triazolium analogues with calf thymus DNA and HSA-their biological investigation as potent antimicrobial agents.

    PubMed

    Maddili, Swetha K; Katla, Ramesh; Kannekanti, Vijaya Kumar; Bejjanki, Naveen Kumar; Tuniki, Balaraju; Zhou, Cheng-He; Gandham, Himabindu

    2018-04-25

    The binding behaviour between calf thymus DNA and synthesized benzothiazolyl triazolium derivatives as potent antimicrobial agents was explored by means of spectroscopic applications together with molecular docking study at the sub-domain IIA, binding site I of human serum albumin (HSA). Most of the synthesized derivatives presented significant antimicrobial inhibition when compared with the clinical Norfloxacin, Chloromycin, and Fluconazole. In particular, compound 5q presented efficient anti-Bacillus subtilis, anti-Escherichia coli, anti-Salmonella typhi, and anti-Psuedomonas aeruginosa activity with low MIC values of 2-8 μg/mL which were relatively superior to the reference drugs. The preliminarily investigation of interaction studies with calf thymus DNA demonstrated that the most active compound 5q could effectively intercalate into DNA to form 5q-DNA complex. Further investigations revealed that human serum albumin could effectively transport compound 5q while molecular modelling studies with good docking score showed that hydrophobic interactions as well as hydrogen bonds played a significant role in the interaction of compound 5q with HSA. In addition, the cytotoxic investigation carried out on four different cancerous cell lines (3 human cell lines and 1 murine cell lines) by MTT assay presented that compound 5n is active against MDA cell lines with IC 50 values less than 100 μg/mL. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  15. Synthesis, Antiviral and Cytotoxic Activity of Novel Terpenyl Hybrid Molecules Prepared by Click Chemistry.

    PubMed

    Pertino, Mariano Walter; Petrera, Erina; Alché, Laura Edith; Schmeda-Hirschmann, Guillermo

    2018-06-03

    Naturally occurring terpenes were combined by click reactions to generate sixteen hybrid molecules. The diterpene imbricatolic acid (IA) containing an azide group was used as starting compound for the synthesis of all the derivatives. The alkyne group in the terpenes cyperenoic acid, dehydroabietinol, carnosic acid γ-lactone, ferruginol, oleanolic acid and aleuritolic acid was obtained by esterification using appropriate alcohols or acids. The hybrid compounds were prepared by combining the IA azide function with the different terpene-alkynes under click chemistry conditions. The cytotoxic activity of the terpene hybrids 1 ⁻ 16 was assessed against Vero cells and tumour cell lines (HEP-2, C6 and Raw 264.7). Compounds 1 , 2 , 3 and 7 showed cytotoxic activity against the tested cell lines. The antiviral activity of the compounds was evaluated against HSV-1 KOS, Field and B2006 strain. For the pairs of hybrid compounds formed between IA-diterpene (compounds 3 ⁻ 8 , except for compound 7 ), a moderate activity was observed against the three HSV-1 strains with an interesting selectivity index (SI ≥10, SI = CC 50 /CE 50 ) for some compounds.

  16. Novel hydroxyamides and amides containing D-glucopyranose or D-fructose units: Biological assays in MCF-7 and MDST8 cell lines.

    PubMed

    Carreiro, Elisabete P; Costa, Ana R; Cordeiro, Maria M; Martins, Rute; Pires, Tiago O; Saraiva, Mafalda; Antunes, Célia M; Burke, Anthony J

    2016-02-01

    A novel library of 15 compounds, hydroxyamides and amides containing a β-D-glucopyranose (D-Gluc) or a β-D-fructose (D-Fruc) units was designed and synthesized for antiproliferative assays in breast (MCF-7) and colon (MDST8) cancer cell lines. Twelve of them were hydroxyamides and were successfully synthesized from β-D-glucuronic acid (D-GluA). Six of these hydroxyamides which were acetylated hydroxy-β-D-glucopyranuronamide 2a-2f (1st Family) and the other six were their respective isomers, that is, hydroxy-β-D-fructuronamide 3a-3f (2nd Family), obtained by acid-base catalyzed isomerization. These compounds have the general structure, D-Gluc-C=ONH-CHR-(CH2)n-OH and D-Fruc-C=ONH-CHR-(CH2)n-OH, where R=an aromatic, alkyl or a hydrogen substituent, with n=0 or 1. Eight of these contained a chiral aminoalcohol group. Three compounds were amides containing a D-glucopyranose unit (3rd Family). SAR studies were conducted with these compounds. Antiproliferative studies showed that compound 4a, the bromo-amide containing the β-D-glucopyranose ring, potently inhibits the proliferation of the MDST8 cells. Five compounds (2e, 2f, 3d, 3e, and 3f) were shown to potently selectively inhibit the proliferation of the MCF-7 cells. Compound 4b was the only one showing inhibition in both cell lines. In general, the more active compounds were the amides and hydroxyamides containing the β-D-fructose moiety, and containing an alkyl group or hydrogen. Half-inhibitory concentrations (IC50) of between 0.01 and 10 μM, were observed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. In vitro antitumour activity of orsellinates.

    PubMed

    Bogo, Danielle; de Matos, Maria Fatima Cepa; Honda, Neli Kika; Pontes, Elenir Curi; Oguma, Patricia Midori; da Santos, Evelyn Cristina Silva; de Carvalho, João Ernesto; Nomizo, Auro

    2010-01-01

    Lichen phenolic compounds exhibit antioxidant, antimicrobial, antiproliferative, and cytotoxic activities. The purpose of this study was to evaluate the anticancer activity of lecanoric acid, a secondary metabolite of the lichen Parmotrema tinctorum, and its derivatives, orsellinates, obtained by structural modification. A cytotoxicity assay was carried out in vitro with sulforhodamine B (SRB) using HEp-2 larynx carcinoma, MCF7 breast carcinoma, 786-0 kidney carcinoma, and B16-F10 murine melanoma cell lines, in addition to a normal (Vero) cell line in order to calculate the selectivity index of the compounds. n-Butyl orsellinate was the most active compound, with IC50 values (the concentration that inhibits 50% of growth) ranging from 7.2 to 14.0 microg/mL, against all the cell lines tested. The compound was more active (IC50 = 11.4 microg/mL) against B16-F10 cells than was cisplatin (12.5 microg/mL). Conversely, lecanoric acid and methyl orsellinate were less active against all cell lines, having an IC50 value higher than 50 microg/mL. Ethyl orsellinate was more active against HEp-2 than against MCF7, 786-0, or B16-F10 cells. The same pattern was observed for n-propyl and n-butyl orsellinates. n-Pentyl orsellinate was less active than n-propyl or n-butyl orsellinates against HEp-2 cells. The orsellinate activity increased with chain elongation (from methyl to n-butyl), a likely consequence of an increase in lipophilicity. The results revealed that the structural modification of lecanoric acid increases the cytotoxic activity of the derivatives tested.

  18. Antitumoral effect of vanadium compounds in malignant melanoma cell lines.

    PubMed

    Rozzo, Carla; Sanna, Daniele; Garribba, Eugenio; Serra, Maria; Cantara, Alessio; Palmieri, Giuseppe; Pisano, Marina

    2017-09-01

    In this study we evaluated the anticancer activity against malignant melanoma (MM) of four different vanadium species: the inorganic anion vanadate(V) (indicated with VN), and three oxidovanadium(IV) complexes, [V IV O(dhp) 2 ] where dhp - is the anion 1,2-dimethyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS2), [V IV O(mpp) 2 ] where mpp - is 1-methyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS3), and [V IV O(ppp) 2 ] where ppp - is 1-phenyl-2-methyl-3-hydroxy-4(1H)-pyridinonate (indicated with VS4). The antitumor effects of these compounds were studied against two different MM cell lines (A375 and CN-mel) and a fibroblast cell line (BJ) as normal control. All tested V compounds exert antiproliferative activity on MM cells in a dose dependent manner (IC 50 ranges from 2.4μM up to 14μM) being A375 the most sensitive cell line. VN and VS2 were the two most active compounds against A375 (IC 50 of 4.7 and 2.6μM, respectively), causing apoptosis and cell cycle block. The experimental data indicate that the cell cycle arrest occurs at different phases for the two V species analyzed (G2 checkpoint for VN and G0/G1 for VS2), showing the importance of the chemical form in determining their mechanism of action. These results add more insights into the landscape of vanadium versatility in biological systems and into its role as a potential cancer therapeutic agent. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Design, synthesis, crystallization and biological evaluation of new symmetrical biscationic compounds as selective inhibitors of human Choline Kinase α1 (ChoKα1)

    NASA Astrophysics Data System (ADS)

    Schiaffino-Ortega, Santiago; Baglioni, Eleonora; Mariotto, Elena; Bortolozzi, Roberta; Serrán-Aguilera, Lucía; Ríos-Marco, Pablo; Carrasco-Jimenez, M. Paz; Gallo, Miguel A.; Hurtado-Guerrero, Ramon; Marco, Carmen; Basso, Giuseppe; Viola, Giampietro; Entrena, Antonio; López-Cara, Luisa Carlota

    2016-03-01

    A novel family of compounds derivative of 1,1‧-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))-bispyridinium or -bisquinolinium bromide (10a-l) containing a pair of oxygen atoms in the spacer of the linker between the biscationic moieties, were synthesized and evaluated as inhibitors of choline kinase against a panel of cancer-cell lines. The most promising compounds in this series were 1,1‧-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))bis(4-(dimethylamino)pyridinium) bromide (10a) and 1,1‧-(((ethane-1,2-diylbis(oxy))bis(4,1-phenylene))bis(methylene))-bis(7-chloro-4-(pyrrolidin-1-yl)quinolinium) bromide (10l), which inhibit human choline kinase (ChoKα1) with IC50 of 1.0 and 0.92 μM, respectively, in a range similar to that of the previously reported biscationic compounds MN58b and RSM932A. Our compounds show greater antiproliferative activities than do the reference compounds, with unprecedented values of GI50 in the nanomolar range for several of the cancer-cell lines assayed, and more importantly they present low toxicity in non-tumoral cell lines, suggesting a cancer-cell-selective antiproliferative activity. Docking studies predict that the compounds interact with the choline-binding site in agreement with the binding mode of most previously reported biscationic compounds. Moreover, the crystal structure of ChoKα1 with compound 10a reveals that this compound binds to the choline-binding site and mimics HC-3 binding mode as never before.

  20. Lucidumol C, a new cytotoxic lanostanoid triterpene from Ganoderma lingzhi against human cancer cells.

    PubMed

    Amen, Yhiya M; Zhu, Qinchang; Tran, Hai-Bang; Afifi, Mohamed S; Halim, Ahmed F; Ashour, Ahmed; Mira, Amira; Shimizu, Kuniyoshi

    2016-07-01

    A new oxygenated lanostane-type triterpene, named lucidumol C, together with six known compounds, was isolated from the chloroform extract of the fruiting bodies of Ganoderma lingzhi. Structures were established based on extensive spectroscopic and chemical studies. Potential cytotoxic activities of the isolated compounds were evaluated against human colorectal carcinoma (HCT-116, Caco-2), human liver carcinoma (HepG2), and human cervical carcinoma (HeLa) cell lines using WST-1 reagent. Selectivity was evaluated using normal human fibroblast cells (TIG-1 and HF19). Among the compounds, lucidumol C showed potent selective cytotoxicity against HCT-116 cells with an IC50 value of 7.86 ± 4.56 µM and selectivity index (SI) >10 with remarkable cytotoxic activities against Caco-2, HepG2 and HeLa cell lines.

  1. Integrated QSAR study for inhibitors of hedgehog signal pathway against multiple cell lines:a collaborative filtering method

    PubMed Central

    2012-01-01

    Background The Hedgehog Signaling Pathway is one of signaling pathways that are very important to embryonic development. The participation of inhibitors in the Hedgehog Signal Pathway can control cell growth and death, and searching novel inhibitors to the functioning of the pathway are in a great demand. As the matter of fact, effective inhibitors could provide efficient therapies for a wide range of malignancies, and targeting such pathway in cells represents a promising new paradigm for cell growth and death control. Current research mainly focuses on the syntheses of the inhibitors of cyclopamine derivatives, which bind specifically to the Smo protein, and can be used for cancer therapy. While quantitatively structure-activity relationship (QSAR) studies have been performed for these compounds among different cell lines, none of them have achieved acceptable results in the prediction of activity values of new compounds. In this study, we proposed a novel collaborative QSAR model for inhibitors of the Hedgehog Signaling Pathway by integration the information from multiple cell lines. Such a model is expected to substantially improve the QSAR ability from single cell lines, and provide useful clues in developing clinically effective inhibitors and modifications of parent lead compounds for target on the Hedgehog Signaling Pathway. Results In this study, we have presented: (1) a collaborative QSAR model, which is used to integrate information among multiple cell lines to boost the QSAR results, rather than only a single cell line QSAR modeling. Our experiments have shown that the performance of our model is significantly better than single cell line QSAR methods; and (2) an efficient feature selection strategy under such collaborative environment, which can derive the commonly important features related to the entire given cell lines, while simultaneously showing their specific contributions to a specific cell-line. Based on feature selection results, we have proposed several possible chemical modifications to improve the inhibitor affinity towards multiple targets in the Hedgehog Signaling Pathway. Conclusions Our model with the feature selection strategy presented here is efficient, robust, and flexible, and can be easily extended to model large-scale multiple cell line/QSAR data. The data and scripts for collaborative QSAR modeling are available in the Additional file 1. PMID:22849868

  2. Integrated QSAR study for inhibitors of Hedgehog Signal Pathway against multiple cell lines:a collaborative filtering method.

    PubMed

    Gao, Jun; Che, Dongsheng; Zheng, Vincent W; Zhu, Ruixin; Liu, Qi

    2012-07-31

    The Hedgehog Signaling Pathway is one of signaling pathways that are very important to embryonic development. The participation of inhibitors in the Hedgehog Signal Pathway can control cell growth and death, and searching novel inhibitors to the functioning of the pathway are in a great demand. As the matter of fact, effective inhibitors could provide efficient therapies for a wide range of malignancies, and targeting such pathway in cells represents a promising new paradigm for cell growth and death control. Current research mainly focuses on the syntheses of the inhibitors of cyclopamine derivatives, which bind specifically to the Smo protein, and can be used for cancer therapy. While quantitatively structure-activity relationship (QSAR) studies have been performed for these compounds among different cell lines, none of them have achieved acceptable results in the prediction of activity values of new compounds. In this study, we proposed a novel collaborative QSAR model for inhibitors of the Hedgehog Signaling Pathway by integration the information from multiple cell lines. Such a model is expected to substantially improve the QSAR ability from single cell lines, and provide useful clues in developing clinically effective inhibitors and modifications of parent lead compounds for target on the Hedgehog Signaling Pathway. In this study, we have presented: (1) a collaborative QSAR model, which is used to integrate information among multiple cell lines to boost the QSAR results, rather than only a single cell line QSAR modeling. Our experiments have shown that the performance of our model is significantly better than single cell line QSAR methods; and (2) an efficient feature selection strategy under such collaborative environment, which can derive the commonly important features related to the entire given cell lines, while simultaneously showing their specific contributions to a specific cell-line. Based on feature selection results, we have proposed several possible chemical modifications to improve the inhibitor affinity towards multiple targets in the Hedgehog Signaling Pathway. Our model with the feature selection strategy presented here is efficient, robust, and flexible, and can be easily extended to model large-scale multiple cell line/QSAR data. The data and scripts for collaborative QSAR modeling are available in the Additional file 1.

  3. Indole-based hydrazide-hydrazones and 4-thiazolidinones: synthesis and evaluation as antitubercular and anticancer agents.

    PubMed

    Cihan-Üstündağ, Gökçe; Şatana, Dilek; Özhan, Gül; Çapan, Gültaze

    2016-01-01

    A new series of indolylhydrazones (6) and indole-based 4-thiazolidinones (7, 8) have been designed, synthesized and screened for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. 4-Thiazolidinone derivatives 7g-7j, 8g, 8h and 8j displayed notable antituberculosis (anti-TB) activity showing 99% inhibition at MIC values ranging from 6.25 to 25.0 µg/ml. Compounds 7g, 7h, 7i, 8h and 8j demonstrated anti-TB activity at concentrations 10-fold lower than those cytotoxic for the mammalian cell lines. The indolylhydrazone derivative 6b has also been evaluated for antiproliferative activity against human cancer cell lines at the National Cancer Institute (USA). Compound 6b showed an interesting anticancer profile against different human tumor-derived cell lines at sub-micromolar concentrations with obvious selectivity toward colon cancer cell line COLO 205.

  4. Guignardones P-S, New Meroterpenoids from the Endophytic Fungus Guignardia mangiferae A348 Derived from the Medicinal Plant Smilax glabra.

    PubMed

    Sun, Zhang-Hua; Liang, Fa-Liang; Wu, Wen; Chen, Yu-Chan; Pan, Qing-Ling; Li, Hao-Hua; Ye, Wei; Liu, Hong-Xin; Li, Sai-Ni; Tan, Guo-Hui; Zhang, Wei-Min

    2015-12-21

    Four new meroterpenoids, guignardones P-S (1-4), and three known analogues (5-7) were isolated from the endophytic fungal strain Guignardia mangiferae A348. Their structures were elucidated on the basis of spectroscopic analysis and single crystal X-ray diffraction. All the isolated compounds were evaluated for their inhibitory effects on SF-268, MCF-7, and NCI-H460 human cancer cell lines. Compounds 2 and 4 exhibited weak inhibitions of cell proliferation against MCF-7 cell line.

  5. Design and synthesis of dimethylaminomethyl-substituted curcumin derivatives/analogues: potent antitumor and antioxidant activity, improved stability and aqueous solubility compared with curcumin.

    PubMed

    Fang, Xubin; Fang, Lei; Gou, Shaohua; Cheng, Lin

    2013-03-01

    A series of dimethylaminomethyl-substituted curcumin derivatives/analogues were designed and synthesized. All compounds effectively inhibited HepG2, SGC-7901, A549 and HCT-116 tumor cell lines proliferation in MTT assay. Particularly, compounds 2a and 3d showed much better activity than curcumin against all of the four tumor cell lines. Antioxidant test revealed that these compounds had higher free radical scavenging activity than curcumin towards both DPPH and galvinoxyl radicals. Furthermore, the aqueous solubility and stability of the target compounds were also significantly improved compared with curcumin. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Cytotoxic lanostane-type triterpenoids from the fruiting bodies of Ganoderma lucidum and their structure-activity relationships.

    PubMed

    Chen, Shaodan; Li, Xiangmin; Yong, Tianqiao; Wang, Zhanggen; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen; Yang, Burton B

    2017-02-07

    We conducted a study of Ganoderma lucidum metabolites and isolated 35 lanostane-type triterpenoids, including 5 new ganoderols (1-5). By spectroscopy, we compared the structures of these compounds with known related compounds in this group. All of the isolated compounds were assayed for their effect against the human breast carcinoma cell line MDA-MB-231 and hepatocellular carcinoma cell line HepG2. Corresponding three-dimensional quantitative structure-activity relationship (3D-QSAR) models were built and analyzed using Discovery Studio. These results provide further evidence for anti-cancer constituents within Ganoderma lucidum, and may provide a theoretical foundation for designing novel therapeutic compounds.

  7. Cytotoxic lanostane-type triterpenoids from the fruiting bodies of Ganoderma lucidum and their structure–activity relationships

    PubMed Central

    Wang, Zhanggen; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen; Yang, Burton B.

    2017-01-01

    We conducted a study of Ganoderma lucidum metabolites and isolated 35 lanostane-type triterpenoids, including 5 new ganoderols (1-5). By spectroscopy, we compared the structures of these compounds with known related compounds in this group. All of the isolated compounds were assayed for their effect against the human breast carcinoma cell line MDA-MB-231 and hepatocellular carcinoma cell line HepG2. Corresponding three-dimensional quantitative structure–activity relationship (3D-QSAR) models were built and analyzed using Discovery Studio. These results provide further evidence for anti-cancer constituents within Ganoderma lucidum, and may provide a theoretical foundation for designing novel therapeutic compounds. PMID:28052025

  8. Pellitorine, a potential anti-cancer lead compound against HL6 and MCT-7 cell lines and microbial transformation of piperine from Piper Nigrum.

    PubMed

    Ee, Gwendoline Cheng Lian; Lim, Chyi Meei; Rahmani, Mawardi; Shaari, Khozirah; Bong, Choon Fah Joseph

    2010-04-05

    Pellitorine (1), which was isolated from the roots of Piper nigrum, showed strong cytotoxic activities against HL60 and MCT-7 cell lines. Microbial transformation of piperine (2) gave a new compound 5-[3,4-(methylenedioxy)phenyl]-pent-2-ene piperidine (3). Two other alkaloids were also found from Piper nigrum. They are (E)-1-[3',4'-(methylenedioxy)cinnamoyl]piperidine (4) and 2,4-tetradecadienoic acid isobutyl amide (5). These compounds were isolated using chromatographic methods and their structures were elucidated using MS, IR and NMR techniques.

  9. Synthesis and in vitro anti-proliferative effects of 3-(hetero)aryl substituted 3-[(prop-2-ynyloxy)(thiophen-2-yl)methyl]pyridine derivatives on various cancer cell lines.

    PubMed

    Reddy Chamakura, Upendar; Sailaja, E; Dulla, Balakrishna; Kalle, Arunasree M; Bhavani, S; Rambabu, D; Kapavarapu, Ravikumar; Rao, M V Basaveswara; Pal, Manojit

    2014-03-01

    A series of 3-(hetero)aryl substituted 3-[(prop-2-ynyloxy)(thiophen-2-yl)methyl]pyridine derivatives were designed as potential anticancer agents. These compounds were conveniently prepared by using Pd/C-Cu mediated Sonogashira type coupling as a key step. Many of these compounds were found to be promising when tested for their in vitro anti-proliferative properties against six cancer cell lines. All these compounds were found to be selective towards the growth inhibition of cancer cells with IC50 values in the range of 0.9-1.7 μM (against MDA-MB 231 and MCF7 cells), comparable to the known anticancer drug doxorubicin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Effects of compound K, an enteric microbiome metabolite of ginseng, in the treatment of inflammation associated colon cancer.

    PubMed

    Yao, Haiqiang; Wan, Jin-Yi; Zeng, Jinxiang; Huang, Wei-Hua; Sava-Segal, Clara; Li, Lingru; Niu, Xin; Wang, Qi; Wang, Chong-Zhi; Yuan, Chun-Su

    2018-06-01

    Ginsenoside Rb1, a major component of different ginseng species, can be bioconverted into compound K by gut microbiota, and the latter possess much stronger cancer chemopreventive potential. However, while the initiation and progression of colorectal cancer is closely associated with gut inflammation, to date, the effects of compound K on inflammation-linked cancer chemoprevention have not been reported. In the present study, liquid chromatography quadrupole time-of-flight mass spectrometry analysis was applied to evaluate the biotransformation of Rb1 in American ginseng by human enteric microflora. The in vitro inhibitory effects of Rb1 and compound K were compared using the HCT-116 and HT-19 human colorectal cancer cell lines by a MTS assay. Cell cycle and cell apoptosis were assayed using flow cytometry. Using ELISA, the anti-inflammatory effects of Rb1 and compound K were compared for their inhibition of interleukin-8 secretion in HT-29 cells, induced by lipopolysaccharide. The results revealed that compound K is the major intestinal microbiome metabolite of Rb1. When compared with Rb1, compound K had significantly stronger anti-proliferative effects in HCT-116 and HT-29 cell lines (P<0.01). Compound K significantly arrested HCT-116 and HT-29 cells in the G1 phase, and induced cell apoptosis (P<0.01). By contrast, Rb1 did not markedly influence the cell cycle or apoptosis. Furthermore, compound K exerted significant anti-inflammatory effects even at low concentrations (P<0.05), while Rb1 did not have any distinct effects. The data obtained from the present study demonstrated that compound K, an intestinal microbiome metabolite of Rb1, may have a potential clinical value in the prevention of inflammatory-associated colorectal cancer.

  11. Cyclometalated Iminophosphorane Gold(III) and Platinum(II) Complexes. A Highly Permeable Cationic Platinum(II) Compound with Promising Anticancer Properties

    PubMed Central

    2015-01-01

    New organometallic gold(III) and platinum(II) complexes containing iminophosphorane ligands are described. Most of them are more cytotoxic to a number of human cancer cell lines than cisplatin. Cationic Pt(II) derivatives 4 and 5, which differ only in the anion, Hg2Cl62– or PF6– respectively, display almost identical IC50 values in the sub-micromolar range (25–335-fold more active than cisplatin on these cell lines). The gold compounds induced mainly caspase-independent cell death, as previously reported for related cycloaurated compounds containing IM ligands. Cycloplatinated compounds 3, 4, and 5 can also activate alternative caspase-independent mechanisms of death. However, at short incubation times cell death seems to be mainly caspase dependent, suggesting that the main mechanism of cell death for these compounds is apoptosis. Mercury-free compound 5 does not interact with plasmid (pBR322) DNA or with calf thymus DNA. Permeability studies of 5 by two different assays, in vitro Caco-2 monolayers and a rat perfusion model, have revealed a high permeability profile for this compound (comparable to that of metoprolol or caffeine) and an estimated oral fraction absorbed of 100%, which potentially makes it a good candidate for oral administration. PMID:26147404

  12. Phenylquinolinones with antitumor activity from the Indian Ocean-derived fungus Aspergillus versicolor Y31-2

    NASA Astrophysics Data System (ADS)

    Li, Peihai; Fan, Yaqin; Chen, Hao; Chao, Yaxi; Du, Ning; Chen, Junhui

    2016-09-01

    Two phenylquinolinones, including one new compound ( 1) and a previously isolated compound ( 2), were isolated from the ethyl acetate extracts of the fungus Aspergillus versicolor Y31-2, which was obtained from seawater samples collected from the Indian Ocean. The structures of these compounds were established by spectroscopic analyses. 4-(3-Hydroxyphenyl)-3-methoxyquinolin-2(1H)-one ( 1) exhibited moderate cytotoxicity against MCF-7 (human breast carcinoma cell line) and SMMC-7721 (human liver cancer cell line) cells with IC50 values of 16.6 and 18.2 μmol/L, respectively. To the best of our knowledge, this study represents the first reported account of the isolation of compounds 1 and 2 as the secondary metabolites of the seawater derived fungus Aspergillus versicolor from the Indian Ocean.

  13. Rearranged diterpenoids from the biotransformation of ent-trachyloban-18-oic acid by Rhizopus arrhizus.

    PubMed

    Leverrier, Aurélie; Martin, Marie-Thérèse; Servy, Claudine; Ouazzani, Jamal; Retailleau, Pascal; Awang, Khalijah; Mukhtar, Mat Ropi; Guéritte, Françoise; Litaudon, Marc

    2010-06-25

    In our search for inhibitors of the antiapoptotic protein Bcl-xL, investigation of Xylopia caudata afforded a new diterpenoid, ent-trachyloban-4beta-ol (2), and five known ent-trachylobane or ent-atisane compounds. Only ent-trachyloban-18-oic acid (1) exhibited weak binding activity to Bcl-xL. These compounds exhibited cytotoxicity against KB and HCT-116 cell lines with IC(50) values between 10 and 30 microM. Bioconversion of compound 1 by Rhizopus arrhizus afforded new hydroxylated metabolites (3-7) of the ent-trachylobane and ent-kaurene type and compound 8, with a rearranged pentacyclic carbon framework that was named rhizopene. Compounds 3-8 were noncytotoxic to the two cancer cell lines, and compounds 3 and 5 exhibited only weak binding affinity for Bcl-xL.

  14. Cytotoxic and apoptosis-inducing activities against human lung cancer cell lines of cassaine diterpenoids from the bark of Erythrophleum fordii.

    PubMed

    Ha, Manh Tuan; Tran, Manh Hung; Phuong, Thien Thuong; Kim, Jeong Ah; Woo, Mi Hee; Choi, Jae Sue; Lee, Suhyun; Lee, Jeong Hyung; Lee, Hyeong Kyu; Min, Byung Sun

    2017-07-01

    A phytochemical investigation into the bark of Erythrophleum fordii yielded four new compounds, two new cassaine diterpenoids (erythrofordin T and U, 1 and 2) and two new cassaine diterpenoid amines (erythroformine A and B, 6 and 7), as well as nine known compounds. We report for the first time the isolation of erythrofordin V (3) from a natural source and that of the remaining eight known diterpenoids (4-5, 8-13) from E. fordii. All structures were elucidated using spectroscopic analysis. Cytotoxic activity of the isolated compounds (1-13) was examined in vitro against three non-small cell lung cancer cell lines (A549, NCI-H1975, and NCI-H1229) using the MTT assay. Cassaine diterpene amines (6-10, 12, 13) exhibited potent cytotoxic activity against all three cell lines with IC 50 values between 0.4μM and 5.9μM. Erythroformine B (7) significantly induced apoptosis in all three cancer cells in a concentration-dependent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Bi- and bisbibenzyls from the roots of Dichapetalum heudelotii and their antiproliferative activities.

    PubMed

    Osei-Safo, Dorcas; Dziwornu, Godwin Akpeko; Salgado, Antonio; Sunassee, Suthananda Naidu; Chama, Mary Anti

    2017-10-01

    Two new bisbibenzyls, heudelotol A (1) and B (2), along with the known bibenzyls, (E)-combretastatin A-1 (3) and combretastatin B-1 (4) have been isolated from the ethyl acetate extract of the roots of Dichapetalum heudelotii. Structure elucidation of all four isolated compounds was achieved using UV, IR, 1D and 2D NMR spectroscopy and HR-Mass Spectrometry. The compounds exhibited varying antiproliferative activity against six cancer cell lines using the CellTiter-Glo® Luminiscent Cell Viability Assay. Compound 3 was found to be the most active with sub-micromolar growth inhibition concentrations against all the cell lines (GI 50 0.03-0.72μM). However, it was about ten-fold less active than the positive control, taxol. The new bisbibenzyls heudelotol A and B exhibited good activity against human pancreatic adenocarcinoma (GI 50 9.04μM) and Burkitt's lymphoma (GI 50 4.67μM) respectively, and average activity against the other cancer cell lines. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. CRM1 inhibitory and antiproliferative activities of novel 4'-alkyl substituted klavuzon derivatives.

    PubMed

    Kanbur, Tuğçe; Kara, Murat; Kutluer, Meltem; Şen, Ayhan; Delman, Murat; Alkan, Aylin; Otaş, Hasan Ozan; Akçok, İsmail; Çağır, Ali

    2017-08-15

    Klavuzons are 6-(naphthalen-1-yl) substituted 5,6-dihydro-2H-pyran-2-one derivatives showing promising antiproliferative activities in variety of cancer cell lines. In this work, racemic syntheses of nine novel 4'-alkyl substituted klavuzon derivatives were completed in eight steps and anticancer properties of these compounds were evaluated. It is found that size of the substituent has dramatic effect over the potency and selectivity of the cytotoxic activity in cancerous and healthy pancreatic cell lines. The size of the substituent can also effect the CRM1 inhibitory properties of klavuzon derivatives. Strong cytotoxic activity and CRM1 inhibition can be observed only when a small substituent present at 4'-position of naphthalen-1-yl group. However, these substituents makes the molecule more cytotoxic in healthy pancreatic cells rather than cancerous pancreatic cells. Among the tested compounds 1,2,3,4-tetrahydrophenanthren-9-yl substituted lactone was the most cytotoxic compound and its antiproliferative activity was also tested in 3D spheroids generated from HuH-7 cell lines. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Release of volatile organic compounds (VOCs) from the lung cancer cell line CALU-1 in vitro.

    PubMed

    Filipiak, Wojciech; Sponring, Andreas; Mikoviny, Tomas; Ager, Clemens; Schubert, Jochen; Miekisch, Wolfram; Amann, Anton; Troppmair, Jakob

    2008-11-24

    The aim of this work was to confirm the existence of volatile organic compounds (VOCs) specifically released or consumed by lung cancer cells. 50 million cells of the human non-small cell lung cancer (NSCLC) cell line CALU-1 were incubated in a sealed fermenter for 4 h or over night (18 hours). Then air samples from the headspace of the culture vessel were collected and preconcentrated by adsorption on solid sorbents with subsequent thermodesorption and analysis by means of gas chromatography mass spectrometry (GC-MS). Identification of altogether 60 compounds in GCMS measurement was done not only by spectral library match, but also by determination of retention times established with calibration mixtures of the respective pure compounds. The results showed a significant increase in the concentrations of 2,3,3-trimethylpentane, 2,3,5-trimethylhexane, 2,4-dimethylheptane and 4-methyloctane in the headspace of CALU-1 cell culture as compared to medium controls after 18 h. Decreased concentrations after 18 h of incubation were found for acetaldehyde, 3-methylbutanal, butyl acetate, acetonitrile, acrolein, methacrolein, 2-methylpropanal, 2-butanone, 2-methoxy-2-methylpropane, 2-ethoxy-2-methylpropane, and hexanal. Our findings demonstrate that certain volatile compounds can be cancer-cell derived and thus indicative of the presence of a tumor, whereas other compounds are not released but seem to be consumed by CALU-1 cells.

  18. Cytotoxic and antibacterial angucycline- and prodigiosin-analogues from the deep-sea derived Streptomyces sp. SCSIO 11594.

    PubMed

    Song, Yongxiang; Liu, Guangfu; Li, Jie; Huang, Hongbo; Zhang, Xing; Zhang, Hua; Ju, Jianhua

    2015-03-16

    Two new C-glycoside angucyclines, marangucycline A (1) and marangucycline B (2), along with three known compounds, dehydroxyaquayamycin (3), undecylprodigiosin (4) and metacycloprodigiosin (5), have been identified as products of the deep-sea sediment strain Streptomyces sp. SCSIO 11594. New structures were elucidated on the basis of HRESIMS, 1D and 2D NMR analyses and comparisons to previously reported datasets. Compounds 2 and 4 displayed in vitro cytotoxicity against four cancer cell lines A594, CNE2, HepG2, MCF-7 superior to those obtained with cisplatin, the positive control. Notably, compound 2 bearing a keto-sugar displayed significant cytotoxicity against cancer cell lines with IC50 values ranging from 0.24 to 0.56 μM; An IC50 value of 3.67 μM was found when using non-cancerous hepatic cell line HL7702, demonstrating the cancer cell selectivity of 2. Compounds 1-3 were proved to have weak antibacterial activities against Enterococcus faecalis ATCC29212 with an MIC value of 64.0 μg/mL. Moreover, 3 displayed selective antibacterial activity against methicillin-resistant Staphylococcus epidermidis shhs-E1 with an MIC value of 16.0 μg/mL.

  19. Design, synthesis, antiproliferative activity and docking studies of quinazoline derivatives bearing 2,3-dihydro-indole or 1,2,3,4-tetrahydroquinoline as potential EGFR inhibitors.

    PubMed

    OuYang, Yiqiang; Zou, Wensheng; Peng, Liang; Yang, Zunhua; Tang, Qidong; Chen, Mengzi; Jia, Shuang; Zhang, Hong; Lan, Zhou; Zheng, Pengwu; Zhu, Wufu

    2018-05-09

    Eight series of quinazoline derivatives bearing 2,3-dihydro-indole or 1,2,3,4-tetrahydroquinoline were designed, synthesized and evaluated for the IC 50 values against three cancer cell lines (A549, MCF-7 and PC-3). Most of the forty nine target compounds showed excellent antiproliferative activity against one or several cancer cell lines. The compound 13a showed the best activity against A549, MCF-7 and PC-3 cancer cell lines, with the IC 50 values of 1.09 ± 0.04 μM, 1.34 ± 0.13 μM and 1.23 ± 0.09 μM, respectively. Eight selected compounds were further selected to evaluated for the inhibitory activity against EGFR kinase. Three of them showed equal activity against EGFR kinase to positive control afatinib. AnnexinV-FITC, propidium iodide (PI) double staining and acridine orange single staining results indicated that the compound 13a could induce apoptosis of human lung cancer A549 cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Steroids from the rhizome of Anemarrhena asphodeloides and their cytotoxic activities.

    PubMed

    Sun, Yu; Wu, Jie; Sun, Xue; Huang, Xiaoxiao; Li, Lingzhi; Liu, Qingbo; Song, ShaoJiang

    2016-07-01

    Cancer remains a major killer worldwide. To search for novel naturally occurring compounds that are cytotoxic to cancer cells to be used as lead structures for drug development, five new steroids (1-5) along with seven known ones (6-12) were isolated from the rhizome of Anemarrhena asphodeloides Bge. Their structures were established by detailed spectral studies, including 1D-NMR, 2D-NMR, HR-ESI-MS and by comparison with literature data. These compounds exhibited different levels of growth inhibition against A549, HepG2, Hep3B, Bcap37 and MCF7 cell lines in vitro. Compounds 9, 10 and 11 showed potent inhibitory against all the tested cell lines with IC50 values ranging from 0.35±0.15 to 25.53±0.31μM. The three compounds displayed stronger inhibitory activities against A549, HepG2 and Hep3B cell lines compared with the positive control 5-fluorouracil. The experimental data obtained permit us to identify the roles of the sugar moieties, hydroxyl group, double bond and F-ring with regard to their cytotoxic activities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Synthesis and antitumoral activity of novel 3-(2-substituted-1,3,4-oxadiazol-5-yl) and 3-(5-substituted-1,2,4-triazol-3-yl) beta-carboline derivatives.

    PubMed

    Formagio, Anelise S Nazari; Tonin, Lilian T Düsman; Foglio, Mary Ann; Madjarof, Christiana; de Carvalho, João Ernesto; da Costa, Willian Ferreira; Cardoso, Flávia P; Sarragiotto, Maria Helena

    2008-11-15

    Several novel 1-substituted-phenyl beta-carbolines bearing the 2-substituted-1,3,4-oxadiazol-5-yl and 5-substituted-1,2,4-triazol-3-yl groups at C-3 were synthesized and evaluated for their in vitro anticancer activity. The assay results pointed thirteen compounds with growth inhibition effect (GI(50)<100 microM) for all eight different types of human cancer cell lines tested. The beta-carbolines 7a and 7h, bearing the 3-(2-metylthio-1,3,4-oxadiazol-5-yl) group, displayed high selectivity and potent anticancer activity against ovarian cell line with GI(50) values lying in the nanomolar concentration range (GI(50)=10 nM for both compounds). The 1-(N,N-dimethylaminophenyl)-3-(5-thioxo-1,2,4-triazol-3-yl) beta-carboline (8g) was the most active compound, showing particular effectiveness on lung (GI(50)=0.06 microM), ovarian and renal cell lines. The potent anticancer activity presented for synthesized compounds 7a, 7h, and 8g, together with their easiness of synthesis, makes these compounds promising anticancer agents.

  2. Isoquinoline Alkaloids from Erythrinapoeppigiana (Leguminosae) and Cytotoxic Activity Against Breast Cancer Cells Line MCF-7 In Silico

    NASA Astrophysics Data System (ADS)

    Herlina, T.; Mardianingrum, R.; Gaffar, S.; Supratman, U.

    2017-02-01

    Erythrinapoeppigiana(Leguminosae) is a higher plant that has been used as a folk for the treatment of infection, fever, and inflammation. In the course of our continuing search for novel cytotoxic compounds from genus Erythrina, the methanol extract of E. poeppigiana showed a significant cytotoxic activity against breast cancer cells line MCF-7 in silico. The compounds in methanol extract of the E. poeppigiana was separated using a bioassay-guided fractionation. By using a cytotoxic activity to follow separation, the methylene chloride was separated by several column chromatography techniques on silica gel and ODS to yield three active compounds (1-3). The chemical structures of active compounds were determined on the basis of spectroscopic evidence and comparison with those identical compounds that previously reported and identified as a 10,11-dihydroxyerysodine (1) 6,7-dihydro-17-hydroxyerysotrine (2) 6,7-dihydro-11-methoxyerysotrine (3). Compounds (1-3) showed cytotoxic activity inhibits EGFR 2 against breast cancer cell line MCF-7 in silico molecular docking method with bond Gibbs free energy (ΔG) (kcal/mol) and inhibition constants (Ki) (nM) of value (-8.61121, 4.84×10-7) (-8.1145, 1.12×10-6) and (-7.3394, 4.14×10-6), respectively.

  3. Preliminary in vitro evaluation of the anti-proliferative activity of guanylhydrazone derivatives.

    PubMed

    França, Paulo H B; Da Silva-Júnior, Edeildo F; Aquino, Pedro G V; Santana, Antônio E G; Ferro, Jamylle N S; De Oliveira Barreto, Emiliano; Do Ó Pessoa, Cláudia; Meira, Assuero Silva; De Aquino, Thiago M; Alexandre-Moreira, Magna S; Schmitt, Martine; De Araújo-Júnior, João X

    2016-03-01

    Guanylhydrazones have shown promising antitumor activity in preclinical tumor models in several studies. In this study, we aimed at evaluating the cytotoxic effect of a series of synthetic guanylhydrazones. Different human tumor cell lines, by including HCT-8 (colon carcinoma), MDA-MB-435 (melanoma) and SF-295 (glioblastoma) were continuous exposed to guanylhydrazone derivatives for 72 hours and growth inhibition of tumor cell lines and macrophages J774 was measured using tetrazolium salt (MTT) assay. Compounds 7, 11, 16 and 17 showed strong cytotoxic activity with IC50 values lower than 10 μmol L(-1) against four tumor cell lines. Among them, 7 was less toxic to non-tumor cells. Finally, obtained data suggest that guanylhydrazones may be regarded as potential lead compounds for the design of novel anticancer agents.

  4. Integrating genomics and proteomics data to predict drug effects using binary linear programming.

    PubMed

    Ji, Zhiwei; Su, Jing; Liu, Chenglin; Wang, Hongyan; Huang, Deshuang; Zhou, Xiaobo

    2014-01-01

    The Library of Integrated Network-Based Cellular Signatures (LINCS) project aims to create a network-based understanding of biology by cataloging changes in gene expression and signal transduction that occur when cells are exposed to a variety of perturbations. It is helpful for understanding cell pathways and facilitating drug discovery. Here, we developed a novel approach to infer cell-specific pathways and identify a compound's effects using gene expression and phosphoproteomics data under treatments with different compounds. Gene expression data were employed to infer potential targets of compounds and create a generic pathway map. Binary linear programming (BLP) was then developed to optimize the generic pathway topology based on the mid-stage signaling response of phosphorylation. To demonstrate effectiveness of this approach, we built a generic pathway map for the MCF7 breast cancer cell line and inferred the cell-specific pathways by BLP. The first group of 11 compounds was utilized to optimize the generic pathways, and then 4 compounds were used to identify effects based on the inferred cell-specific pathways. Cross-validation indicated that the cell-specific pathways reliably predicted a compound's effects. Finally, we applied BLP to re-optimize the cell-specific pathways to predict the effects of 4 compounds (trichostatin A, MS-275, staurosporine, and digoxigenin) according to compound-induced topological alterations. Trichostatin A and MS-275 (both HDAC inhibitors) inhibited the downstream pathway of HDAC1 and caused cell growth arrest via activation of p53 and p21; the effects of digoxigenin were totally opposite. Staurosporine blocked the cell cycle via p53 and p21, but also promoted cell growth via activated HDAC1 and its downstream pathway. Our approach was also applied to the PC3 prostate cancer cell line, and the cross-validation analysis showed very good accuracy in predicting effects of 4 compounds. In summary, our computational model can be used to elucidate potential mechanisms of a compound's efficacy.

  5. Design, synthesis and anticancer activity of piperazine hydroxamates and their histone deacetylase (HDAC) inhibitory activity.

    PubMed

    Chetan, Bhadaliya; Bunha, Mahesh; Jagrat, Monika; Sinha, Barij Nayan; Saiko, Philipp; Graser, Geraldine; Szekeres, Thomas; Raman, Ganapathy; Rajendran, Praveen; Moorthy, Dhatchana; Basu, Arijit; Jayaprakash, Venkatesan

    2010-07-01

    Six compounds were synthesized with piperazine in linker region and hydroxamate as Zinc Binding Group (ZBG). They were screened against three cancer cell-lines (NCIH460; HCT116; U251). Compounds 5c and 5f with GI(50) value of 9.33+/-1.3 microM and 12.03+/-4 microM, respectively, were tested for their inhibitory potential on hHDAC8. Compound 5c had IC(50) of 33.67 microM. Compounds were also screened for their anticancer activity against HL60 human promyelocytic leukemia cell line due to the presence of pharmacophoric features of RR inhibitors in them. Compound 5c had IC(50) of 0.6 microM at 48h. 2010 Elsevier Ltd. All rights reserved.

  6. Polyketide Derivatives from Annona muricata Linn Leaves as Potencial Anticancer Material by Combination Treatment With Doxorubicin on Hela Cell Line

    NASA Astrophysics Data System (ADS)

    Artanti, A. N.; Astirin, O. P.; Prayito, A.; Widiyaningsih, R. F.; Prihapsara, F.

    2017-02-01

    One of the compounds found effication as an anticancer agent on cervical cancer is acetogenin, a polyketide compound that is abundant in Annona muricata L. leaves. This study has been done to examine polyketide derivatives was isolated from Annona muricata L. which has potency to induce apoptosis by p53 expression on hela cell line. An approach recently develop to overcome side effect of chemoterapeutic agent is used of combined chemoterapeutic agent, i.e doxorubicin. The determination of cytotoxic combination activity from polyketide derivative and doxorubicin was evaluated using MTT assay to obtain the value of CI (combination index). The expression of p53 profile was evaluated by immunohistochemistry on hela cell line. Data analysis showed that combination of polyketide derivative from Annona muricata L. (38,5 µg/ml) and doxorubicin with all of concentration performed synergistic effect on hela cell line with CI value from 0,33 - 0,65. The analysis on immucytochemistry showed that polyketide derivative from Annona muricata L. leaves could enhance p53 pathway significantly on hela cell line.

  7. Comprehensive List of Cancer-Related Genetic Variations of the NCI-60 Panel | Center for Cancer Research

    Cancer.gov

    The NCI-60 cell lines are the most frequently studied human tumor cell lines in cancer research. The panel of cell lines represents nine different types of cancer: breast, ovary, prostate, colon, lung, kidney, brain, leukemia, and melanoma. Originally developed to screen anticancer compounds by the NCI Developmental Therapeutics Program (DTP), the NCI-60 panel has generated

  8. Suvanine analogs from a Coscinoderma sp. marine sponge and their cytotoxicities against human cancer cell lines.

    PubMed

    Lee, Jeong-Woo; Lee, Hyi-Seung; Shin, Jongheon; Kang, Jong Soon; Yun, Jieun; Shin, Hee Jae; Lee, Jong Seok; Lee, Yeon-Ju

    2015-06-01

    Nine suvanine analogs including suvanine phenethylammonium salt and two new compounds were isolated from the marine sponge Coscinoderma sp., collected from Chuuk State, Federated States of Micronesia. The structures of the new compounds were elucidated by 2D NMR and HRMS analyses. Suvanine and a new analog exhibited weak but selective cytotoxicity against colon (HCT-15), lung (NCI-H23), stomach (NUGC-3), and prostate (PC-3) cancer cell lines.

  9. Endophytic Actinobacteria from the Brazilian Medicinal Plant Lychnophora ericoides Mart. and the Biological Potential of Their Secondary Metabolites.

    PubMed

    Conti, Raphael; Chagas, Fernanda Oliveira; Caraballo-Rodriguez, Andrés Mauricio; Melo, Weilan Gomes da Paixão; do Nascimento, Andréa Mendes; Cavalcanti, Bruno Coêlho; de Moraes, Manoel Odorico; Pessoa, Cláudia; Costa-Lotufo, Letícia Veras; Krogh, Renata; Andricopulo, Adriano Defini; Lopes, Norberto Peporine; Pupo, Mônica Tallarico

    2016-06-01

    Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides were isolated for the first time, and the biological potential of their secondary metabolites was evaluated. A phylogenic analysis of isolated actinobacteria was accomplished with 16S rRNA gene sequencing, and the predominance of the genus Streptomyces was observed. All strains were cultured on solid rice medium, and ethanol extracts were evaluated with antimicrobial and cytotoxic assays against cancer cell lines. As a result, 92% of the extracts showed a high or moderate activity against at least one pathogenic microbial strain or cancer cell line. Based on the biological and chemical analyses of crude extracts, three endophytic strains were selected for further investigation of their chemical profiles. Sixteen compounds were isolated, and 3-hydroxy-4-methoxybenzamide (9) and 2,3-dihydro-2,2-dimethyl-4(1H)-quinazolinone (15) are reported as natural products for the first time in this study. The biological activity of the pure compounds was also assessed. Compound 15 displayed potent cytotoxic activity against all four tested cancer cell lines. Nocardamine (2) was only moderately active against two cancer cell lines but showed strong activity against Trypanosoma cruzi. Our results show that endophytic actinobacteria from L. ericoides are a promising source of bioactive compounds. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.

  10. Cytotoxic Compounds from Aerial Organs of Xanthium strumarium.

    PubMed

    Ferrer, Janet Piloto; Zampini, Iris Catiana; Cuello, Ana Soledad; Francisco, Marbelis; Romero, Aylema; Valdivia, Dayana; Gonzalez, Maria; Carlos Salas; Lamar, Angel Sanchez; Isla, Maria Inés

    2016-03-01

    Xanthium strumarium L., the main species of the genus Xanthium, is ubiquitously distributed. The aim of this study was to determine the cytotoxic effect of aerial organs of X strumarium, grown in Cuba, against cancer cell lines and the isolation of compounds potentially responsible for this activity. Initially, an ethanol partitioning procedure yielded the XSE extract that was subsequently fractionated with chloroform resulting in a XSCF fraction. Both, XSE and XSCF fractions exhibited cytotoxic effects on MDA MB-23 1, MCF7, A549 and CT26 cell lines by using the MTT assay. Above all, the XSCF fraction was more active than XSE. For this reason, XSCF was subsequently fractionated by silica gel chromatography and the active fractions submitted to semi-preparative HPLC for isolation of bioactive compounds. Six sub-fractions (SF1 to SF6) were recovered. Sub-fractions 3 and 6 were the most active on each assayed cell line, while sub-fractions 4 and 5 were only active against A549 and CT26 cell lines. In each case, sub-fraction 6 showed the strongest inhibitory effect. The HPLC-DAD fingerprint of sub-fraction 6 showed a single peak that was identified by GC-MS as (-) spathulenol, a sesquiterpene with reported antitumor activity.

  11. Cyclopentenone derivatives and polyhydroxylated steroids from the soft coral Sinularia acuta.

    PubMed

    Zhang, Nai-Xia; Tang, Xu-Li; van Ofwegen, Leen; Xue, Lei; Song, Wen-Juan; Li, Ping-Lin; Li, Guo-Qiang

    2015-02-01

    Four new polyhydroxylated steroids, 1-4, and the racemic form of cyclopentenone 9, together with four known steroids, 5-8, one known cyclopentenone derivative, 10, and one known butenolide derivative, 11, were isolated from the soft coral Sinularia acuta collected from Weizhou Island of Guangxi Province, P. R. China. Their structures were elucidated on the basis of spectroscopic analyses and by comparison of the corresponding data with those previously reported. The cytotoxicities of the isolates 1-11 in vitro against the selected tumor cell lines HL-60, HeLa, and K562 were evaluated. Compounds 2 and 5 showed potent cytotoxicities against HL-60 cell lines with IC50 values of 7.3 and 9.9 μM, respectively. Compounds 5 and 6 showed moderate activities against K562 cell lines with IC50 values of 10.9 and 11.7 μM, respectively, while compounds 1, 2, and 6 showed weak activities against HeLa cell lines with respective IC50 values of 44.8, 27.1, and 18.2 μM. This is the first report on chemical and bioactivity research of S. acuta. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  12. Biologically active perspective synthesis of heteroannulated 8-nitroquinolines with green chemistry approach.

    PubMed

    Arasakumar, Thangaraj; Mathusalini, Sadasivam; Gopalan, Subashini; Shyamsivappan, Selvaraj; Ata, Athar; Mohan, Palathurai Subramaniam

    2017-04-01

    A new class of pyrazolo[4,3-c]quinoline (5a-i, 7a-b) and pyrano[3,2-c]quinoline (9a-i) derivatives were designed and synthesized in moderate to good yields by microwave conditions. To enhance the yield of pyrano[3,2-c]quinoline derivatives, multicomponent one-pot synthesis has been developed. The synthesized compounds were identified by spectral and elemental analyses. Compounds 9a and 9i showed good antibacterial activity against Gram-positive and Gram-negative bacterial strains. All of the new compounds exhibited weak to moderate antioxidant activity, compound 9d exerted significant antioxidant power. The cytotoxicity of these compounds were also evaluated against MCF-7 (breast) and A549 (Lung) cancer cell lines. Most of the compounds displayed moderate to good cytotoxic activity against these cell lines. Compound 9i was found to be significantly active in this assay and also induced cell death by apoptosis. Molecular docking studies were carried out using EGFR inhibitor in order to determine the molecular interactions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Extraction, profiling and bioactivity analysis of volatile glucosinolates present in oil extract of Brassica juncea var. raya.

    PubMed

    Bassan, Priyanka; Bhushan, Sakshi; Kaur, Tajinder; Arora, Rohit; Arora, Saroj; Vig, Adarsh Pal

    2018-05-01

    Cruciferous vegetables are rich source of glucosinolates (GSLs), which in presence of myrosinase enzyme cause hydrolytic cleavage and result in different hydrolytic products like isothiocyanates, thiocyanates, nitriles and epinitriles. The GSLs hydrolytic products are volatile compounds, which are known to exhibit bioactivities like antioxidant, fungicidal, bioherbicidal and anticancer. Among the Brassicaceae family, Brassica juncea is very well known for high content of GSLs. In the present study, the isolation of volatile oil of B. juncea var. raya was done by hydrodistillation method using clevenger apparatus and further there extraction was done by solvents ethyl acetate and dichloromethane. The volatile compounds present in the extract were analysed by gas chromatography/gas chromatography-mass spectrometry (GC/GC-MS). Fatty acid esters, sulphur and/or nitrogen compounds, carbonyl compounds and some other volatile compounds were also identified. Besides the analytical studies, the extracts were analysed for their bioactivities including radical scavenging activity by using DNA nicking assay and cytotoxic effect using different human cancer cell lines viz. breast (MCF-7 and MDA-MB-231), prostate (PC-3), lung (A-549), cervix (HeLa) and colon (HCT116) by MTT assay. The oil extracts were efficiently able to reduce the increase of cancer cells in a dose-dependent manner. Among all cell lines, the most effective anticancer activity was observed in case of breast (MCF-7) cancer cell line. So, MCF-7 cells were used for further mechanistic studies for analysing the mechanism of anticancer activity. Confocal microscopy was done for analysing morphological changes in the cells and the images confirmed the features typical of apoptosis. For evaluating the mode of cell death, spectrofluorometric determination of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP) was done. The volatile oil extract treated MCF-7 cells had a significant increase in number of ROS, also there was a rise in percentage of cells with increased disruption of MMP. So, the present study marks necessary indication that B. juncea (raya) oil extracts significantly induces apoptosis in all the above mentioned cancer cells lines through a ROS-mediated mitochondrial pathway and thus play a remarkable role in death of cancer cells.

  14. Synthesis, DNA/RNA affinity and antitumour activity of new aromatic diamidines linked by 3,4-ethylenedioxythiophene.

    PubMed

    Stolić, Ivana; Mišković, Katarina; Piantanida, Ivo; Lončar, Mirela Baus; Glavaš-Obrovac, Ljubica; Bajić, Miroslav

    2011-02-01

    A series of novel 2,5-bis(amidinophenyl)-3,4-ethylenedioxythiophenes (5-10 and 15) has been synthesized. Compounds 5-10 bind to the DNA minor groove as the dominant binding site and strongly stabilize the double helix of ct-DNA. Surprisingly, the same compounds also thermally stabilize ds-RNA, whereby most of them form stacked dimers along the RNA double helix. The only exception is compound 15 which, due to its structural features, showed no interaction with DNA or RNA. Compounds 5-10 have shown a moderate to strong cytotoxic effect (GI50=1.5-9.0 μM) on a panel of seven tumour cell lines. The diimidazoline derivative 9, due to its highest inhibitory potential on the growth of all tested tumour cell lines, was investigated in more detail by testing its ability to enter into cells and influence the cell cycle. Compound 9 (5 μM) was internalized successfully in cell cytoplasm during a 30-min incubation period, followed by nuclear localization upon 90-min incubation. Significant arrest in HeLa cells in the G2/M phase, shown by cell cycle analysis at an equitoxic (50 μM) concentration, suggests interaction of a studied compound with cellular DNA as the main mode of biological action. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  15. Screening for chemicals that affect hair cell death and survival in the zebrafish lateral line.

    PubMed

    Ou, Henry; Simon, Julian A; Rubel, Edwin W; Raible, David W

    2012-06-01

    The zebrafish lateral line is an efficient model system for the evaluation of chemicals that protect and damage hair cells. Located on the surface of the body, lateral line hair cells are accessible for manipulation and visualization. The zebrafish lateral line system allows rapid screens of large chemical libraries, as well as subsequent thorough evaluation of interesting compounds. In this review, we focus on the results of our previous screens and the evolving methodology of our screens for chemicals that protect hair cells, and chemicals that damage hair cells using the zebrafish lateral line. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Preclinical Antileukemia Activity of Tramesan: A Newly Identified Bioactive Fungal Metabolite.

    PubMed

    Ricciardi, M R; Licchetta, R; Mirabilii, S; Scarpari, M; Parroni, A; Fabbri, A A; Cescutti, P; Reverberi, M; Fanelli, C; Tafuri, A

    2017-01-01

    Despite improvements that occurred in the last decades in the acute myeloid leukemia (AML) treatment, clinical results are still unsatisfactory. More effective therapies are required, and innovative approaches are ongoing, including the discovery of novel antileukemia natural compounds. Several studies have described the activity of extracts from mushrooms which produce compounds that exhibited immunological and antitumor activities. The latter has been demonstrated to be promoted in vitro by mushroom polysaccharides via induction of apoptosis. However, the antileukemia activity of these compounds on primary cells is still not reported. In the present study, we examined the in vitro effects of Tramesan (TR), a bioactive compound extracted from Trametes versicolor , on leukemic cell lines and primary cells. Our results demonstrated that TR induced a marked growth inhibition of leukemic cell lines and primary cells from AML patients. The antiproliferative effects of TR were associated in primary AML cells with a significant increase of apoptosis. No significant cytotoxic effects were observed in normal peripheral blood mononuclear cells (MNC) from healthy donors. Our data demonstrated a cytotoxic activity of TR on leukemia cells prompting further translational applications. Ongoing studies are elucidating the molecular mechanisms underlying its antileukemic activity.

  17. Preclinical Antileukemia Activity of Tramesan: A Newly Identified Bioactive Fungal Metabolite

    PubMed Central

    Scarpari, M.; Parroni, A.; Fabbri, A. A.; Cescutti, P.; Reverberi, M.; Fanelli, C.

    2017-01-01

    Despite improvements that occurred in the last decades in the acute myeloid leukemia (AML) treatment, clinical results are still unsatisfactory. More effective therapies are required, and innovative approaches are ongoing, including the discovery of novel antileukemia natural compounds. Several studies have described the activity of extracts from mushrooms which produce compounds that exhibited immunological and antitumor activities. The latter has been demonstrated to be promoted in vitro by mushroom polysaccharides via induction of apoptosis. However, the antileukemia activity of these compounds on primary cells is still not reported. In the present study, we examined the in vitro effects of Tramesan (TR), a bioactive compound extracted from Trametes versicolor, on leukemic cell lines and primary cells. Our results demonstrated that TR induced a marked growth inhibition of leukemic cell lines and primary cells from AML patients. The antiproliferative effects of TR were associated in primary AML cells with a significant increase of apoptosis. No significant cytotoxic effects were observed in normal peripheral blood mononuclear cells (MNC) from healthy donors. Our data demonstrated a cytotoxic activity of TR on leukemia cells prompting further translational applications. Ongoing studies are elucidating the molecular mechanisms underlying its antileukemic activity. PMID:29270245

  18. Synthesis and Anti-cancer Activity of 3-substituted Benzoyl-4-substituted Phenyl-1H-pyrrole Derivatives.

    PubMed

    Zhan, Xiaoping; Qin, Weixi; Wang, Shuai; Zhao, Kai; Xin, Yuxuan; Wang, Yaolin; Qi, Qi; Mao, Zhenmin

    2017-01-01

    Cancer is considered a major public health problem worldwide. The aim of this paper is to design and synthesis of novel anticancer agents with potent anticancer activity and minimum side effects. A series of pyrrole derivatives were synthesized, their anti-cancer activity against nine cancer cell lines and two non-cancer cell lines were evaluated by MTT assay, and their cell cycle progression were determined by flow cytometry analysis. The study of the structure-activity relationships revealed that the introduction of the electron-donation groups at the 4th position of the pyrrole ring increased the anti-cancer activity. Among the synthesized compounds, specially the compounds bearing 3,4-dimethoxy phenyl at the 4th position of the pyrrole ring showed potent anti-cancer activity, cpd 19 was the most potent against MGC 80-3, HCT-116 and CHO cell lines (IC50s = 1.0-1.7 μM), cpd 21 was the most potent against HepG2, DU145 and CT-26 cell lines (IC50s = 0.5-0.9 μM), and cpd 15 was the most potent against A549 (IC50 = 3.6 μM). Moreover, these potent compounds showed weak cytotoxicity against HUVEC and NIH/3T3. Thus, the cpds 15, 19 and 21 show potential anti-cancer for further investigation. Furthermore, the flow cytometry analysis revealed that cpd 21 arrested the CT-26 cells at S phase, and induced the cell apoptosis. Thus, these compounds with the potent anticancer activity and low toxicity have potential for the development of new anticancer chemotherapy agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  19. A new pregnane glycoside from Rubus phoenicolasius and its antiproliferative activity.

    PubMed

    Liu, Chao; Liao, Zhi-Xin; Liu, Shi-Jun; Sun, Jin-Yue; Yao, Gui-Yang; Wang, Heng-Shan

    2014-01-01

    Chemical investigations of the whole plant ethanol extract of Rubus phoenicolasius led to the isolation and identification of a new pregnane glycoside, 3-O-β-glucopyranosyl-3β,15β-dihydroxypregn-5-en-20-one (1), along with other nine known compounds (2-10). All the isolates were reported from this plant for the first time. The structure of compound 1 was determined by detailed analysis of its spectral data including 1D and 2D NMR. In vitro anti-proliferative activities of compounds 1-3 on MCF-7 and NCI-H460 tumour cell lines were evaluated, and compound 1 was active against the two cell lines with IC50 values of 15.6 and 13.5 μM, respectively.

  20. Phenotypic high-throughput screening elucidates target pathway in breast cancer stem cell-like cells.

    PubMed

    Carmody, Leigh C; Germain, Andrew R; VerPlank, Lynn; Nag, Partha P; Muñoz, Benito; Perez, Jose R; Palmer, Michelle A J

    2012-10-01

    Cancer stem cells (CSCs) are resistant to standard cancer treatments and are likely responsible for cancer recurrence, but few therapies target this subpopulation. Due to the difficulty in propagating CSCs outside of the tumor environment, previous work identified CSC-like cells by inducing human breast epithelial cells into an epithelial-to-mesenchymal transdifferentiated state (HMLE_sh_ECad). A phenotypic screen was conducted against HMLE_sh_ECad with 300 718 compounds from the Molecular Libraries Small Molecule Repository to identify selective inhibitors of CSC growth. The screen yielded 2244 hits that were evaluated for toxicity and selectivity toward an isogenic control cell line. An acyl hydrazone scaffold emerged as a potent and selective scaffold targeting HMLE_sh_ECad. Fifty-three analogues were acquired and tested; compounds ranged in potency from 790 nM to inactive against HMLE_sh_ECad. Of the analogues, ML239 was best-in-class with an IC(50)= 1.18 µM against HMLE_sh_ECad, demonstrated a >23-fold selectivity over the control line, and was toxic to another CSC-like line, HMLE_shTwist, and a breast carcinoma cell line, MDA-MB-231. Gene expression studies conducted with ML239-treated cells showed altered gene expression in the NF-κB pathway in the HMLE_sh_ECad line but not in the isogenic control line. Future studies will be directed toward the identification of ML239 target(s).

  1. Effects of Compounded Stanford Modified Oral Rinse (MucoLox) on the Survival and Migration of Oral Keratinocytes and Fibroblasts: Implications for Wound Healing.

    PubMed

    Song, Guiyun; Banov, Daniel; Bassani, August S

    2018-01-01

    Several oral rinses are commercially available to alleviate the symptoms of oral mucositis. Prolonged retention of active pharmaceutical ingredients in the oral cavity is a major problem. In this study, we modified the Stanford oral rinse by including a proprietary mucoadhesive polymer called MucoLox, which we hypothesized would improve active pharmaceutical ingredient mucoadhesion. Characterization of this newly compounded oral rinse showed absence of cytotoxicity in human oral keratinocyte and fibroblast cell lines. The compounded formulation significantly stimulated the migration of these two cell lines in Oris Cell Migration Assay plates, better than the reference commercial product Magic mouthwash. Based on this in vitro study, the new Stanford modified oral rinse with MucoLox is safe and may promote healing of oral mucositis. Copyright© by International Journal of Pharmaceutical Compounding, Inc.

  2. Eudesmane and aromadendrane sesquiterpenoids from the Vietnamese soft coral Sinularia erecta.

    PubMed

    Huong, Nguyen Thi; Ngoc, Ninh Thi; Thanh, Nguyen Van; Dang, Nguyen Hai; Cuong, Nguyen Xuan; Nam, Nguyen Hoai; Thung, Do Cong; The, Ho Van; Tuan, Vo Sy; Kiem, Phan Van; Minh, Chau Van

    2017-11-16

    Using various chromatographic separations, eight sesquiterpenoids (1-8), including one new compound 3β,5α-dihydroxyeudesma-4(15),11-diene (1), were isolated from the MeOH extract of the Vietnamese soft coral Sinularia erecta. The structure elucidation was confirmed by spectroscopic experiments including 1D and 2D NMR and HR-ESI-MS. The cytotoxic activities against three human cancer cell lines (A-549, HeLa and PANC-1) of all isolated compounds were evaluated by MTT-based colorimetric assays. Compound 1 exhibited selective cytotoxicity against the A549 cell line with IC 50 of 14.79 ± 0.91 μM.

  3. Assessment of ToxCast Phase II for Mitochondrial Liabilities Using a High-Throughput Respirometric Assay

    PubMed Central

    Wills, Lauren P.; Beeson, Gyda C.; Hoover, Douglas B.; Schnellmann, Rick G.; Beeson, Craig C.

    2015-01-01

    Previous high-throughput screens to identify mitochondrial toxicants used immortalized cell lines and focused on changes in mitochondrial membrane potential, which may not be sufficient and do not identify different types of mitochondrial dysfunction. Primary cultures of renal proximal tubule cells (RPTC) were examined with the Seahorse Extracellular Flux Analyzer to screen 676 compounds (5 μM; 1 h) from the ToxCast Phase II library for mitochondrial toxicants. Of the 676 compounds, 19 were classified as cytotoxicants, 376 were electron transport chain (ETC) inhibitors, and 5 were uncouplers. The remaining 276 compounds were examined after a 5-h exposure to identify slower acting mitochondrial toxicants. This experiment identified 3 cytotoxicants, 110 ETC inhibitors, and 163 compounds with no effect. A subset of the ToxCast Phase II library was also examined in immortalized human renal cells (HK2) to determine differences in susceptibility to mitochondrial toxicity. Of the 131 RPTC ETC inhibitors tested, only 14 were ETC inhibitors in HK2 cells. Of the 5 RPTC uncouplers, 1 compound was an uncoupler in HK2 cells. These results demonstrate that 73% (491/676) of the compounds in the ToxCast Phase II library compounds exhibit RPTC mitochondrial toxicity, overwhelmingly ETC inhibition. In contrast, renal HK2 cells are markedly less sensitive and only identified 6% of the compounds as mitochondrial toxicants. We suggest caution is needed when studying mitochondrial toxicity in immortalized cell lines. This information will provide mechanisms and chemical-based criteria for assessing and predicting mitochondrial liabilities of new drugs, consumer products, and environmental agents. PMID:25926417

  4. A Genomics-Based Approach Identifies a Thioviridamide-Like Compound with Selective Anticancer Activity.

    PubMed

    Frattaruolo, Luca; Lacret, Rodney; Cappello, Anna Rita; Truman, Andrew W

    2017-11-17

    Thioviridamide is a structurally novel ribosomally synthesized and post-translational modified peptide (RiPP) produced by Streptomyces olivoviridis NA005001. It is characterized by a structure that features a series of thioamide groups and possesses potent antiproliferative activity in cancer cell lines. Its unusual structure allied to its promise as an anticancer compound led us to investigate the diversity of thioviridamide-like pathways across sequenced bacterial genomes. We have isolated and characterized three diverse members of this family of natural products. This characterization is supported by transformation-associated recombination cloning and heterologous expression of one of these compounds, thiostreptamide S4. Our work provides an insight into the diversity of this rare class of compound and indicates that the unusual N-terminus of thioviridamide is not introduced biosynthetically but is instead introduced during acetone extraction. A detailed analysis of the biological activity of one of the newly discovered compounds, thioalbamide, indicates that it is highly cytotoxic to cancer cells, while exhibiting significantly less activity toward a noncancerous epithelial cell line.

  5. Discovery of a Broad-Spectrum Antiviral Compound That Inhibits Pyrimidine Biosynthesis and Establishes a Type 1 Interferon-Independent Antiviral State

    PubMed Central

    Adcock, Robert S.; Schroeder, Chad E.; Chu, Yong-Kyu; Sotsky, Julie B.; Cramer, Daniel E.; Chilton, Paula M.; Song, Chisu; Anantpadma, Manu; Davey, Robert A.; Prodhan, Aminul I.; Yin, Xinmin; Zhang, Xiang

    2016-01-01

    Viral emergence and reemergence underscore the importance of developing efficacious, broad-spectrum antivirals. Here, we report the discovery of tetrahydrobenzothiazole-based compound 1, a novel, broad-spectrum antiviral lead that was optimized from a hit compound derived from a cytopathic effect (CPE)-based antiviral screen using Venezuelan equine encephalitis virus. Compound 1 showed antiviral activity against a broad range of RNA viruses, including alphaviruses, flaviviruses, influenza virus, and ebolavirus. Mechanism-of-action studies with metabolomics and molecular approaches revealed that the compound inhibits host pyrimidine synthesis and establishes an antiviral state by inducing a variety of interferon-stimulated genes (ISGs). Notably, the induction of the ISGs by compound 1 was independent of the production of type 1 interferons. The antiviral activity of compound 1 was cell type dependent with a robust effect observed in human cell lines and no observed antiviral effect in mouse cell lines. Herein, we disclose tetrahydrobenzothiazole compound 1 as a novel lead for the development of a broad-spectrum, antiviral therapeutic and as a molecular probe to study the mechanism of the induction of ISGs that are independent of type 1 interferons. PMID:27185801

  6. Characterization of anticancer agents by their growth inhibitory activity and relationships to mechanism of action and structure.

    PubMed

    Keskin, O; Bahar, I; Jernigan, R L; Beutler, J A; Shoemaker, R H; Sausville, E A; Covell, D G

    2000-04-01

    An analysis of the growth inhibitory potency of 122 anticancer agents available from the National Cancer Institute anticancer drug screen is presented. Methods of singular value decomposition (SVD) were applied to determine the matrix of distances between all compounds. These SVD-derived dissimilarity distances were used to cluster compounds that exhibit similar tumor growth inhibitory activity patterns against 60 human cancer cell lines. Cluster analysis divides the 122 standard agents into 25 statistically distinct groups. The first eight groups include structurally diverse compounds with reactive functionalities that act as DNA-damaging agents while the remaining 17 groups include compounds that inhibit nucleic acid biosynthesis and mitosis. Examination of the average activity patterns across the 60 tumor cell lines reveals unique 'fingerprints' associated with each group. A diverse set of structural features are observed for compounds within these groups, with frequent occurrences of strong within-group structural similarities. Clustering of cell types by their response to the 122 anticancer agents divides the 60 cell types into 21 groups. The strongest within-panel groupings were found for the renal, leukemia and ovarian cell panels. These results contribute to the basis for comparisons between log(GI(50)) screening patterns of the 122 anticancer agents and additional tested compounds.

  7. Synthesis, characterization and anticancer studies of Ni(II), Pd(II) and Pt(II) complexes with Schiff base derived from N-methylhydrazinecarbothioamide and 2-hydroxy-5-methoxy-3-nitrobenzaldehyde

    NASA Astrophysics Data System (ADS)

    Arafath, Md. Azharul; Adam, Farook; Razali, Mohd. R.; Ahmed Hassan, Loiy E.; Ahamed, Mohamed B. Khadeer; Majid, Amin Malik S. A.

    2017-02-01

    A carbothioamide NSO tridentate Schiff base ligand (HL) and its square planar complexes Na[NiLOAc], Na[PdLOAc] and [PtLdmso] have been synthesized and characterized on the basis of melting point, elemental analysis, FT-IR, 1H NMR, 13C NMR, UV-Vis spectra. The structure of HL was elucidated with X-ray diffraction analysis. In the present study, the synthesized compounds were evaluated for their anticancer properties against three human cancer cell lines breast cancer (MCF-7), cervical (Hela), and colon (HCT-116). In addition, the cytotoxicity of the synthesized compounds was tested on a normal human cell line (human endothelial cell line EA.hy926). Among the tested compounds, the complex [NiLOAc] excelled in halting proliferation of the cervical and colon cancer cells with median inhibitory concentration (IC50) values of 28.33 and 34.4 μM, respectively. The complex, [PdLOAc] demonstrated selective cytotoxicity against breast cancer line MCF-7 with IC50 = 47.5 μM, while HL showed inhibitory effect against colon cancer cell line (HCT-116) with IC50 = 55.66 μM. The complex, [PtLdmso] showed mild activity against breast cancer (MCF-7) and cervical cancer (Hela) cells with IC50 = 64.44 and 68.3 μM, respectively, whereas, it displayed insignificant cytotoxicity against human endothelial cells (EA.hy926) with IC50 > 200 μM. Cancer cells treated with [NiLOAc] showed apoptotic features such as membrane blebbing and DNA condensation. Thus, the findings of the present study demonstrated that the series of metal complexes of HL could form the new lead for development of cancer chemotherapies to treat human cervical, breast and colon malignancies.

  8. Ectopic expression of protein kinase C-β sensitizes head and neck squamous cell carcinoma to diterpene esters.

    PubMed

    Adams, Ryan A; D'Souza, Marjorie M A; Pierce, Carly J; Korica, Natasa; Wallwork, Ben; Parsons, Peter G; Panizza, Benedict; Boyle, Glen M

    2015-03-01

    The objective of this study was to examine the effect of specific Protein kinase C (PKC) isoform re-expression in solid malignancies, particularly head and neck squamous cell carcinoma cell lines, and the impact this may have on treatment with known activators of PKC. The constitutive expression of PKC isoforms were determined in six head and neck squamous cell carcinoma (SCC) cell lines. Cytotoxicity of the prototypic phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA) and the novel diterpene ester PEP005 was established. Viral transduction to re-express PKCβ isoforms in two of these cell lines was performed, and its effect on the sensitivity to the compounds was quantified. Tongue and hypopharyngeal SCC cell lines were resistant to both TPA and PEP005, with the concentration required to inhibit growth by 50% (IC50) being >1,000 ng/ml. CAL-27 (tongue SCC) and FaDu (hypopharyngeal SCC) cell lines re-expressing PKCβI and -βII isoforms demonstrated IC50 of 1-5 ng/ml with TPA or PEP005. Re-expression of PKCβ in head and neck SCC cell lines leads to cells one thousand-times more sensitive to the cytotoxic effects of phorbol or diterpene esters in culture. This highlights the importance of the isoform in tumor progression and presents the potential benefit of these compounds in malignancies expressing the protein, and in combination therapy. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  9. Induction of apoptosis against cancer cell lines by four ascomycetes (endophytes) from Malaysian rainforest.

    PubMed

    Hazalin, Nurul Aqmar Mohamad Nor; Ramasamy, Kalavathy; Lim, Siong Meng; Cole, Anthony L J; Majeed, Abu Bakar Abdul

    2012-05-15

    Endophytic fungi have been shown to be a promising source of biologically active natural products. In the present study, extracts of four endophytic fungi isolated from plants of the National Park, Pahang were evaluated for their cytotoxic activity and the nature of their active compounds determined. Those extracts exhibiting activity with IC(50) values less than 17 μg/ml against HCT116, MCF-7 and K562 cell lines were shown to induce apoptosis in these cell lines. Molecular analysis, based on sequences of the rDNA internal transcribed spacers ITS1 and ITS4, revealed all four endophytic fungi to be ascomycetes: three sordariomycetes and a dothideomycete. Six known compounds, cytochalasin J, dechlorogriseofulvin, demethylharzianic-acid, griseofulvin, harzianic acid and 2-hexylidene-3-methyl-succinic acid were identified from a rapid dereplication technique for fungal metabolites using an in-house UV library. The results from the present study suggest the potential of endophytic fungi as cytotoxic agents, and there is an indication that the isolates contain bioactive compounds that mainly kill cancer cells by apoptosis. Copyright © 2012 Elsevier GmbH. All rights reserved.

  10. Mannich bases of 1,2,4-triazole-3-thione containing adamantane moiety: Synthesis, preliminary anticancer evaluation, and molecular modeling studies.

    PubMed

    Milošev, Milorad Z; Jakovljević, Katarina; Joksović, Milan D; Stanojković, Tatjana; Matić, Ivana Z; Perović, Milka; Tešić, Vesna; Kanazir, Selma; Mladenović, Milan; Rodić, Marko V; Leovac, Vukadin M; Trifunović, Snežana; Marković, Violeta

    2017-06-01

    A series of 18 novel N-Mannich bases derived from 5-adamantyl-1,2,4-triazole-3-thione was synthesized and characterized using NMR spectroscopy and X-ray diffraction technique. All derivatives were evaluated for their anticancer potential against four human cancer cell lines. Several tested compounds exerted good cytotoxic activities on K562 and HL-60 cell lines, along with pronounced selectivity, showing lower cytotoxicity against normal fibroblasts MRC-5 compared to cancer cells. The effects of compounds 5b, 5e, and 5j on the cell cycle were investigated by flow cytometric analysis. It was found that these compounds cause the accumulation of cells in the subG1 and G1 phases of the cell cycle and induce caspase-dependent apoptosis, while the anti-angiogenic effects of 5b, 5e, and 5j have been confirmed in EA.hy926 cells using a tube formation assay. Further, the interaction of Bax protein with compound 5b was investigated by means of molecular modeling, applying the combined molecular docking/molecular dynamics approach. © 2016 John Wiley & Sons A/S.

  11. Synthesis and Preliminary Cytotoxicity Studies of 1-[1-(4,5-Dihydrooxazol- 2-yl)-1H-indazol-3-yl]-3-phenylurea and 3-phenylthiourea Derivatives.

    PubMed

    Kornicka, Anita; Saczewski, Franciszek; Bednarski, Patrick J; Korcz, Martyna; Szumlas, Piotr; Romejko, Ewa; Sakowicz, Aneta; Sitek, Lukasz; Wojciechowska, Monika

    2017-01-01

    N-substituted 3-amino-1H-indazoles represent an interesting class of biologically active compounds. Among them, derivatives containing phenylurea moiety are of particular interest. Such compounds have been found to possess inhibitory activity against cancer cell growth. Additionally, various oxazoline-containing compounds have also been designed as potential anticancer agents. The aim of this work was to obtain a new class of N-substituted 3-amino-1H-indazole derivatives with cytotoxic activity towards cancer cells. Two series of 1-[1-(4,5-dihydrooxazol-2-yl)-1H-indazol-3-yl]-3-phenylurea and 3- phenylthiourea derivatives 7-17 and 18-22, respectively, were prepared and screened for their potential in vitro cytotoxic activities against lung carcinoma LCLC-103H cell line using a crystal violet microtiter plate assay. All the urea derivatives, except the compound 8, were inactive at a concentration of 20 μM attainable in cancer cells, while the thiourea derivatives showed a pronounced cancer cell growth inhibitory effects. The most potent 1-[1-(4,5-dihydrooxazol-2-yl)-1H-indazol-3-yl]-3-ptolylthiourea (19) exhibited cytotoxicity on the lung cancer LCLC-103H and cervical cancer SISO cell lines at a concentration of 10 µM. Moreover, compound 19 displayed cytostatic activity against pancreas cancer DAN-G cell line. The 1-[1-(4,5-dihydrooxazol-2-yl)-1H-indazol-3-yl]-3-phenylthiourea derivatives described herein may serve as a useful scaffold for the search for novel anticancer agents. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. New pyrazolopyridine analogs: Synthesis, antimicrobial, antiquorum-sensing and antitumor screening.

    PubMed

    El-Gohary, N S; Shaaban, M I

    2018-05-25

    New pyrazolopyridine analogs were prepared and tested for antimicrobial efficacy toward Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Aspergillus fumigatus and Aspergillus flavus. Results revealed that compound 6 has prominent and broad spectrum antimicrobial activity. Compound 8 showed good antibacterial efficacy over the four tested bacterial strains. In addition, compounds 2-4 displayed interesting efficacy over S. aureus, B. cereus and P. aeruginosa as well as moderate efficacy toward E. coli, C. albicans, A. fumigatus and A. flavus. Furthermore, compounds 9 and 10 exhibited interesting efficacy over P. aeruginosa. Antiquorum-sensing efficacy of the same analogs toward Chromobacterium violaceum was also examined, whereas compounds 3, 4 and 6 displayed acceptable activity. In vitro antitumor assay of the new pyrazolopyridines toward liver (HepG2), breast (MCF-7) and cervix (Hela) cancer cells illustrated that compounds 2 and 5 have the highest antitumor activity over the three cell lines. Moreover, compound 4 exhibited interesting efficacy on all tested cell lines, whereas compound 7 showed good activity on MCF-7 cells. The most active in vitro antitumor analogs, 2, 4, 5 and 7 were assessed for in vivo antitumor efficacy on Ehrlich ascites carcinoma (EAC) cells, whereas compound 5 displayed the highest efficacy. In addition, cytotoxicity testing toward W138 and WISH normal cells revealed that all tested analogs are less cytotoxic than doxorubicin. The new analogs were evaluated for DNA-binding affinity, whereas compounds 2, 4 and 5 displayed the highest affinity. In silico studies concluded that all the new pyrazolopyridines are foreseen to have excellent oral absorption. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Three new cytotoxic aryltetralin lignans from Sinopodophyllum emodi.

    PubMed

    Sun, Yan-Jun; Li, Zhan-Lin; Chen, Hong; Liu, Xiao-Qiu; Zhou, Wei; Hua, Hui-Ming

    2011-06-15

    Three new aryltetralin lignans, 4-acetyl-4-demethyl-podophyllotoxin (1) and sinolignans A, B (2-3), and two new natural products (4-5), were isolated from the roots and rhizomes of Sinopodophyllum emodi together with twelve known lignans (6-17). Their structures and stereochemistry were elucidated on the basis of spectroscopic evidence, and circular dichroism (CD) method. The cytotoxic activities of all isolated compounds were evaluated against HeLa and KB cell lines. Compared with etoposide, compounds 1, 6-9, and 13 showed more potent cytotoxicities against two tumor cell lines. On the basis of IC(50) values, deoxypodophyllotoxin (7) was about 579 and 1123 times more toxic than etoposide in HeLa and KB cell lines, respectively. The preliminary SAR study indicated that an oxygenated group at C-7' might decrease cytotoxicity against two cell lines, which was different from most previous studies. However, this needs to be systematically verified by extensive pharmacological experiments. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. An integrated bioinformatics analysis to dissect kinase dependency in triple negative breast cancer.

    PubMed

    Ryall, Karen A; Kim, Jihye; Klauck, Peter J; Shin, Jimin; Yoo, Minjae; Ionkina, Anastasia; Pitts, Todd M; Tentler, John J; Diamond, Jennifer R; Eckhardt, S Gail; Heasley, Lynn E; Kang, Jaewoo; Tan, Aik Choon

    2015-01-01

    Triple-Negative Breast Cancer (TNBC) is an aggressive disease with a poor prognosis. Clinically, TNBC patients have limited treatment options besides chemotherapy. The goal of this study was to determine the kinase dependency in TNBC cell lines and to predict compounds that could inhibit these kinases using integrative bioinformatics analysis. We integrated publicly available gene expression data, high-throughput pharmacological profiling data, and quantitative in vitro kinase binding data to determine the kinase dependency in 12 TNBC cell lines. We employed Kinase Addiction Ranker (KAR), a novel bioinformatics approach, which integrated these data sources to dissect kinase dependency in TNBC cell lines. We then used the kinase dependency predicted by KAR for each TNBC cell line to query K-Map for compounds targeting these kinases. We validated our predictions using published and new experimental data. In summary, we implemented an integrative bioinformatics analysis that determines kinase dependency in TNBC. Our analysis revealed candidate kinases as potential targets in TNBC for further pharmacological and biological studies.

  15. Brush border membrane vesicle and Caco-2 cell line: Two experimental models for evaluation of absorption enhancing effects of saponins, bile salts, and some synthetic surfactants

    PubMed Central

    Moghimipour, Eskandar; Tabassi, Sayyed Abolghassem Sajadi; Ramezani, Mohammad; Handali, Somayeh; Löbenberg, Raimar

    2016-01-01

    The aim of this study was to investigate the influence of absorption enhancers in the uptake of hydrophilic compounds. The permeation of the two hydrophilic drug models gentamicin and 5 (6)-carboxyfluorescein (CF) across the brush border membrane vesicles and Caco-2 cell lines were evaluated using total saponins of Acanthophyllum squarrosum, Quillaja saponaria, sodium lauryl sulfate, sodium glycocholate, sodium taurodeoxycholate, and Tween 20 as absorption enhancers. Transepithelial electrical resistance (TEER) measurement was utilized to assess the paracellular permeability of cell lines. Confocal laser scanning microscopy (CLSM) was performed to obtain images of the distribution of CF in Caco-2 cells. These compounds were able to loosen tight junctions, thus increasing paracellular permeability. CLSM confirmed the effect of these absorption enhancers on CF transport across Caco-2 lines and increased the Caco-2 permeability via transcellular route. It was also confirmed that the decrease in TEER was transient and reversible after removal of permeation enhancers. PMID:27429925

  16. Triterpenoid Acids as Important Antiproliferative Constituents of European Elderberry Fruits.

    PubMed

    Gleńsk, Michał; Czapińska, Elżbieta; Woźniak, Marta; Ceremuga, Ireneusz; Włodarczyk, Maciej; Terlecki, Grzegorz; Ziółkowski, Piotr; Seweryn, Ewa

    2017-01-01

    In Europe, both the fruits and flowers of Sambucus nigra L. have been used against cold, as well as laxative, diaphoretic, and diuretic remedies. There are also a number of commercially available food products that contain elderberry juice, puréed or dried elderberries. Recent comprehensive literature data on pharmacology and chemistry of Sambuci fructus have encouraged us to screen extracts with different polarities from this plant material against cancer cell lines. The cytotoxic activity of the ethyl acetate and aqueous acetone extracts from elderberries as well as detected triterpenoids on human colon adenocarcinoma cell line (LoVo) and human breast cancer cell line (MCF-7) was investigated by sulforhodamine B assay. Moreover, cell migration assay was conducted for triterpenoid fraction and pure compounds. Aqueous acetone extract possessed much lower IC 50 value in cancer cell lines compared to ethyl acetate extract. The latter manifested high cytotoxicity against studied cell lines, suggesting that nonpolar compounds are responsible for the cytotoxic activity. Indeed, the phytochemical analysis revealed that ursolic and oleanolic acids are the main triterpenoids in the mentioned extract of which ursolic acid showed the highest activity with IC 50 values of 10.7 µg/mL on MCF-7 and 7.7 µg/mL on LoVo cells.

  17. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents

    NASA Astrophysics Data System (ADS)

    Ghanbarimasir, Zahra; Bekhradnia, Ahmadreza; Morteza-Semnani, Katayoun; Rafiei, Alireza; Razzaghi-Asl, Nima; Kardan, Mostafa

    2018-04-01

    In a search for novel antiproliferative agents, a series of quinoxaline derivatives containing 2-aminoimidazole (8a-8x) were designed and synthesized. The structures of synthesized compounds were confirmed by IR, 1H NMR, 13C NMR, Mass Spectroscopy and analyzed using HSQC, COSY, ROESY, HMBC techniques. The anticancer activity of all derivatives were evaluated for colon cancer and breast cancer cell lines by the MTT assay and acridine orange/ethidium bromide double staining method. The anti-cancer effect in human colon cancer (HCT-116) and breast cancer (MCF-7) cell lines exhibited that compounds 8a, 8s, 8t, 8w, 8x appeared as potent antiproliferative agents and especially inhibited the human colon cancer cell proliferation with percentage of inhibition by over 50%. The most active compound was (E)-4-phenyl-1-((quinoxalin-2-ylmethylene)amino)-1H-imidazol-2-amine (8a) with the highest inhibition for MCF-7 (83.3%) and HCT-116 (70%) cell lines after 48 and 24 h, respectively. Molecular docking studies of these derivatives within c-kit active site as a validated target might be suggested them as appropriate candidates for further efforts toward more potent anticancer compounds.

  18. Cytotoxic and Antibacterial Angucycline- and Prodigiosin- Analogues from the Deep-Sea Derived Streptomyces sp. SCSIO 11594

    PubMed Central

    Song, Yongxiang; Liu, Guangfu; Li, Jie; Huang, Hongbo; Zhang, Xing; Zhang, Hua; Ju, Jianhua

    2015-01-01

    Two new C-glycoside angucyclines, marangucycline A (1) and marangucycline B (2), along with three known compounds, dehydroxyaquayamycin (3), undecylprodigiosin (4) and metacycloprodigiosin (5), have been identified as products of the deep-sea sediment strain Streptomyces sp. SCSIO 11594. New structures were elucidated on the basis of HRESIMS, 1D and 2D NMR analyses and comparisons to previously reported datasets. Compounds 2 and 4 displayed in vitro cytotoxicity against four cancer cell lines A594, CNE2, HepG2, MCF-7 superior to those obtained with cisplatin, the positive control. Notably, compound 2 bearing a keto-sugar displayed significant cytotoxicity against cancer cell lines with IC50 values ranging from 0.24 to 0.56 μM; An IC50 value of 3.67 μM was found when using non-cancerous hepatic cell line HL7702, demonstrating the cancer cell selectivity of 2. Compounds 1–3 were proved to have weak antibacterial activities against Enterococcus faecalis ATCC29212 with an MIC value of 64.0 μg/mL. Moreover, 3 displayed selective antibacterial activity against methicillin-resistant Staphylococcus epidermidis shhs-E1 with an MIC value of 16.0 μg/mL. PMID:25786061

  19. Water-soluble derivatives of 25-OCH3-PPD and their anti-proliferative activities.

    PubMed

    Zhou, Wu-Xi; Sun, Yuan-Yuan; Yuan, Wei-Hui; Zhao, Yu-Qing

    2017-05-01

    (20R)-25-Methoxyl-dammarane-3β,12β,20-triol (25-OCH 3 -PPD, AD-1) is a dammarane-type sapogenin showing anti-tumor potential. In the search for new anti-tumor agents with higher potency than our previously identified compound 25-OCH 3 -PPD, 11 novel sulfamic acid and diacid derivatives that could improve water solubility and contribute to good drug potency and pharmacokinetic profiles were designed and synthesized. Their in vitro anti-tumor activities in MCF-7, A-549, HCT-116, and BGC-823 cell lines and one normal cell line were tested by standard MTT assay. Results showed that compared with compound 25-OCH 3 -PPD, compounds 1, 4, and 5 exhibited higher cytotoxic activity on almost all cell lines, together with lower toxicity in the normal cell. In particular, compound 1 exhibited the best anti-tumor activity in the in vitro assays. The water solubility of 25-OCH 3 -PPD and its derivatives was tested and the results showed that the solubility of 25-OCH 3 -PPD sulfamic acid and diacid derivatives were better than that of 25-OCH 3 -PPD in water, which may provide valuable data for the research and development of new anti-tumor agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils.

    PubMed

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Fang, Chee-Mun; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-06-01

    Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115 T , Sinomonas humi MUSC 117 T and Monashia flava MUSC 78 T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115 T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78 T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115 T and M. flava MUSC 78 T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and neuroprotective agents.

  1. A new 5-alkylresorcinol glucoside derivative from Cybianthus magnus.

    PubMed

    Cabanillas, B; Vásquez-Ocmín, P; Zebiri, I; Rengifo, E; Sauvain, M; Le, H L; Vaisberg, A; Voutquenne-Nazabadioko, L; Haddad, M

    2016-01-01

    One new 5-alkylresorcinol glucoside (1) was isolated from leaves of Cybianthus magnus, along with 12 known compounds (2-13), isolated from four plants belonging to Myrsinaceae family. Their structures were determined on the basis of spectroscopic analysis and by comparison of their spectral data with those reported in the literature. Among the tested molecules, only compound 2 displayed a strong cytotoxic activity with IC50 values ranging between 22 and 100 μM for all cell lines tested. One new 5-alkylresorcinol glucoside (1) was isolated from leaves of Cybianthus magnus, along with 12 known compounds, isolated from four plants belonging to Myrsinaceae family (2, 3 isolated from C. magnus; 4-7, 10 and 11 isolated from Myrsine latifolia; 4, 8 and 9 isolated from Myrsine sessiflora; 6, 7, 10, 12 and 13 isolated from Myrsine congesta). Their structures were determined on the basis of spectroscopic analysis and by comparison of their spectral data with those reported in the literature. So far, only nine 5-alkylresorcinol glucosides were isolated from leaves of Grevillea robusta. Since resorcinols are known to exhibit strong cytotoxic activity, compounds 1 and 2 were tested against cell lines 3T3, H460, DU145 and MCF-7 for cytotoxicity in vitro and compounds 3-13 were tested for their antileishmanial activity. Compound 2 displayed a strong cytotoxic activity with IC50 values ranging between 22 and 100 μM for all tested cell lines. Compounds 3-13 were not active against Leishmania amazonensis amastigotes.

  2. The synthesis and toxicity of tripodal tricarbonyl rhenium complexes as radiopharmaceutical models

    PubMed Central

    Robenstine, Sarah; Barone, Natalie V.; Underwood, Adam C.; Milsted, Amy; Franklin, Brenton R.; Herrick, Richard S.; Ziegler, Christopher J.

    2012-01-01

    We report the synthesis and toxicity of a series of rhenium(I) tricarbonyl complexes incorporating the trisaminomethylethane (TAME) ligand. Compounds with the (TAME)Re(CO)3+ cation were synthesized via several routes, including by use of Re(CO)5X precursors as well as the aqueous cation Re(CO)3(H2O)3+. Salts of the formula [(TAME)Re(CO)3]X where X = Br−, Cl−, NO3−, PF6− and ClO4− were evaluated using two cell lines: the monoclonal S3 HeLa line and a vascular smooth muscle cell line harvested from mice. All compounds have isostructural cations and differ only in the identity of the non-coordinating anion. None of the complexes exhibited any appreciable toxicity in the HeLa line up to the solubility limit. In the vascular smooth muscle cell line, the bromide salt exhibited some cytotoxicity, but this observation most likely results from the presence of bromide anion, which has been shown to have limited toxicity. PMID:20362340

  3. A peptidomimetic with a chiral switch is an inhibitor of epidermal growth factor receptor heterodimerization

    PubMed Central

    Kanthala, Shanthi P.; Liu, Yong-Yu; Singh, Sitanshu; Sable, Rushikesh; Pallerla, Sandeep; Jois, Seetharama D.

    2017-01-01

    Among different types of EGFR dimers, EGFR-HER2 and HER2-HER3 are well known in different types of cancers. Targeting dimerization of EGFR will have a significant impact on cancer therapies. A symmetric peptidomimetic was designed to inhibit the protein-protein interaction of EGFR. The peptidomimetic (Cyclo(1,10)PpR (R) Anapa-FDDF-(R)-Anapa)R, compound 18) was shown to exhibit antiproliferative activity with an IC50 of 194 nM in HER2-expressing breast cancer cell lines and 18 nM in lung cancer cell lines. The peptidomimetic has a Pro-Pro sequence in the structure to stabilize the β-turn and a β-amino acid, amino napthyl propionic acid. To investigate the effect of the chirality of β-amino acid on the structure of the peptide and its antiproliferative activity, diastereoisomers of compound 18 were designed and synthesized. Structure-activity relationships of these compounds indicated that there is a chiral switch at β-amino acid in the designed compound. The peptidomimetic with R configuration at β-amino acid and with a L-Pro-D-Pro sequence was the most active compound (18). Using enzyme complement fragmentation assay and proximity ligation assay, we show that compound 18 inhibits HER2:HER3 and EGFR:HER2 dimerization. Surface plasmon resonance studies suggested that compound 18 binds to the HER2 extracellular domain and in particular to domain IV. The anticancer activity of compound 18 was evaluated using a xenograft model of breast cancer in mice; compound 18 suppressed the tumor growth in mice compared to control. Compound 18 was also shown to have a synergistic effect with erlotinib on EGFR mutated lung cancer cell lines. PMID:29088782

  4. Specific inhibitors of mammalian DNA polymerase species.

    PubMed

    Mizushina, Yoshiyuki

    2009-06-01

    In screening of selective inhibitors of eukaryotic DNA polymerases (pols) for 15 years, more than 100 inhibitors have been discovered from natural and chemical sources. Some compounds selectively inhibit the activities of mammalian pols, and in particular, dehydroaltenusin and curcumin derivatives, such as monoacetyl-curcumin, were found to be specific inhibitors of pol alpha and pol lambda, respectively. Dehydroaltenusin was isolated from a fungus (Alternaria tennuis), and this compound inhibited cell proliferation of human cancer cell lines by arresting the cells at the S-phase, and was effective in suppressing the growth on nude mice of solid tumors of human cervical cancer cell line HeLa. Curcumin derivatives had anti-12-O-tetradecanoylphorbol-13-acetate (TPA)-induced inflammatory activity with the same tendency as pol lambda inhibitory activity. These compounds might be useful not only as "molecular probes" for pol research, but also as biomedical and chemotherapeutic drugs for anti-cancer or anti-inflammation.

  5. Bioactive Lignans from Zanthoxylum alatum Roxb. stem bark with cytotoxic potential.

    PubMed

    Mukhija, Minky; Lal Dhar, Kanaya; Nath Kalia, Ajudhia

    2014-02-27

    Zanthoxylum alatum is used in traditional medicinal systems for number of disorders like cholera, diabetes, cough, diarrhea, fever, headache, microbial infections, toothache, inflammation and cancer. The aim of the present study was to evaluate Zanthoxylum alatum stem bark for its cytotoxic potential and to isolate the bioactive constituents. Cytotoxicity of the different extracts and isolated compounds was studied on lung carcinoma cell line (A549) and pancreatic carcinoma cell line (MIA-PaCa) using MTT assay. Isolation of compounds from most active extract (petroleum ether) was done on silica gel column. Structure elucidation was done by using various spectrophotometric techniques like UV, IR, (1)H NMR, (13)C NMR and mass spectroscopy. The type of cell death caused by most active compound C was explored by fluorescence microscopy using the acridine orange/ethidium bromide method. Petroleum ether extract of plant has shown significant cytotoxic potential. Three lignans sesamin (A), kobusin (B), and 4'O demethyl magnolin (C) has been isolated. All lignans showed cytotoxic activities in different ranges. Compound C was the novel bioactive compound from a plant source and found to be most active. In apoptosis study, treatment caused typical apoptotic morphological changes. It enhances the apoptosis at IC50 dose (21.72 µg/mL) however showing necrotic cell death at higher dose after 24h on MIA-PaCa cell lines. Petroleum ether extract (60-80 °C) of Zanthoxylum alatum has cytotoxic potential. The lignans isolated from the petroleum ether extract were responsible for the cytotoxic potential of the extract. 4'O demethyl magnolin was novel compound from Zanthoxylum alatum. Hence the Zanthoxylum alatum can be further explored for the development of anticancer drug. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Clonogenic assay: adherent cells.

    PubMed

    Rafehi, Haloom; Orlowski, Christian; Georgiadis, George T; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C

    2011-03-13

    The clonogenic (or colony forming) assay has been established for more than 50 years; the original paper describing the technique was published in 1956. Apart from documenting the method, the initial landmark study generated the first radiation-dose response curve for X-ray irradiated mammalian (HeLa) cells in culture. Basically, the clonogenic assay enables an assessment of the differences in reproductive viability (capacity of cells to produce progeny; i.e. a single cell to form a colony of 50 or more cells) between control untreated cells and cells that have undergone various treatments such as exposure to ionising radiation, various chemical compounds (e.g. cytotoxic agents) or in other cases genetic manipulation. The assay has become the most widely accepted technique in radiation biology and has been widely used for evaluating the radiation sensitivity of different cell lines. Further, the clonogenic assay is commonly used for monitoring the efficacy of radiation modifying compounds and for determining the effects of cytotoxic agents and other anti-cancer therapeutics on colony forming ability, in different cell lines. A typical clonogenic survival experiment using adherent cells lines involves three distinct components, 1) treatment of the cell monolayer in tissue culture flasks, 2) preparation of single cell suspensions and plating an appropriate number of cells in petri dishes and 3) fixing and staining colonies following a relevant incubation period, which could range from 1-3 weeks, depending on the cell line. Here we demonstrate the general procedure for performing the clonogenic assay with adherent cell lines with the use of an immortalized human keratinocyte cell line (FEP-1811). Also, our aims are to describe common features of clonogenic assays including calculation of the plating efficiency and survival fractions after exposure of cells to radiation, and to exemplify modification of radiation-response with the use of a natural antioxidant formulation.

  7. Cytotoxicity assays with fish cells as an alternative to the acute lethality test with fish.

    PubMed

    Segner, Helmut

    2004-10-01

    In ecotoxicology, in vitro assays with fish cells are currently applied for mechanistic studies, bioanalytical purposes and toxicity screening. This paper discusses the potential of cytotoxicity assays with fish cells to reduce, refine or replace acute lethality tests using fish. Basal cytotoxicity data obtained with fish cell lines or fish primary cell cultures show a reasonable to good correlation with lethality data from acute toxicity tests, with the exception of compounds that exert a specific mode of toxic action. Basal cytotoxicity data from fish cell lines also correlate well with cytotoxicity data from mammalian cell lines. However, both the piscine and mammalian in vitro assays are clearly less sensitive than the fish test. Therefore, in vivo LC50 values (concentrations of the test compounds that are lethal to 50% of the fish in the experiment within 96 hours) currently cannot be predicted from in vitro values. This in vitro-in vivo difference in sensitivity appears to be true for both fish cell lines and mammalian cell lines. Given the good in vitro-in vivo correlation in toxicity ranking, together with the clear-cut difference in sensitivity, the role of cytotoxicity assays in a tiered alternative testing strategy could be in priority setting in relation to toxic hazard and in the toxicity classification of chemicals and environmental samples.

  8. New isoindolinones from the fruiting bodies of Hericium erinaceum.

    PubMed

    Wang, Xu-Li; Xu, Kang-Ping; Long, Hong-Ping; Zou, Hui; Cao, Xiao-Zheng; Zhang, Kai; Hu, Jian-Zhong; He, Shu-Jin; Zhu, Gang-Zhi; He, Xiao-Ai; Xu, Ping-Sheng; Tan, Gui-Shan

    2016-06-01

    Hericium erinaceus is a well-known medicinal and edible mushroom, which is considered as a potential source to obtain antitumor candidates. In this work, five new isoindolinones, named erinaceolactams A-E (1-5), along with five known compounds (6-10), were isolated from 70% ethanol extract of the fruiting bodies of H. erinaceus. The structures of new compounds were validated by HRESIMS and 1D, 2D NMR. It's worth mentioning that there are two pairs of isomers included in the new compounds. Moreover, their cytotoxicity against metastatic human hepatocellular carcinoma cell lines SMMC-7221 and MHCC-97H were evaluated. The results showed that compounds 6 and 7 exhibited promising inhibitory potency against the growth of two cell lines. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Design and Synthesis of 2-Heterocyclyl-3-arylthio-1H-indoles as Potent Tubulin Polymerization and Cell Growth Inhibitors with Improved Metabolic Stability

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Rensen, Willeke; Coluccia, Antonio; Piscitelli, Francesco; Gatti, Valerio; Bolognesi, Alessio; Lavecchia, Antonio; Granata, Ilaria; Porta, Amalia; Maresca, Bruno; Soriani, Alessandra; Iannitto, Maria Luisa; Mariani, Marisa; Santoni, Angela; Brancale, Andrea; Ferlini, Cristiano; Dondio, Giulio; Varasi, Mario; Mercurio, Ciro; Hamel, Ernest; Lavia, Patrizia; Novellino, Ettore; Silvestri, Romano

    2011-01-01

    New arylthioindoles (ATIs) were obtained by replacing the 2-alkoxycarbonyl group with a bioisosteric 5-membered heterocycle nucleus. The new ATIs 5, 8, and 10 inhibited tubulin polymerization, reduced cell growth of a panel of human transformed cell lines, and showed higher metabolic stability than the reference ester 3. These compounds induced mitotic arrest and apoptosis at a similar level as combretastatin A-4 and vinblastine and triggered caspase-3 expression in a significant fraction of cells in both p53-proficient and p53-defective cell lines. Importantly, ATIs 5, 8, and 10 were more effective than vinorelbine, vinblastine, and paclitaxel as growth inhibitors of the P-glycoprotein-overexpressing cell line NCI/ADR-RES. Compound 5 was shown to have medium metabolic stability in both human and mouse liver microsomes, in contrast to the rapidly degraded reference ester 3, and a pharmacokinetic profile in the mouse characterized by a low systemic clearance and excellent oral bioavailability. PMID:22044164

  10. Cancer cell specific cytotoxic effect of Rhoeo discolor extracts and solvent fractions.

    PubMed

    García-Varela, Rebeca; Fajardo Ramírez, Oscar Raúl; Serna-Saldivar, Sergio O; Altamirano, Julio; Cardineau, Guy A

    2016-08-22

    Traditional or folk medicine has led to the discovery of important bioactive substances used in several health-related areas. Phytochemicals in Rhoeo discolor (R. discolor) extracts have proven to have important cancer cell specific cytotoxic activity. In the present research, we determined the cytotoxic effect of extracts of R. discolor, a plant commonly used in Mexico for both medicinal and ornamental purposes. We evaluated the cytotoxic effects against three representative human cancer cell lines: HT-29 colon cancer, Hep-G2 liver cancer and PC-3 prostate cancer cell lines, as well as a control fibroblast cell line NIH 3T3. Ten different crude extracts were tested along with fractions derived from the five most bioactive crude extracts. Analytical data, HPLC-MS-TOF, revealed a high content of phenolic compounds such as anthocyanins, ferulic, vanillic, chlorogenic and p-coumaric acid in the extracts. Phenolic compounds have previously been reported as health beneficial with antioxidant and potential cancer specific cytotoxic effects. Studies revealed that low concentrations of these crude bioactive extracts (10µg/ml) and their fractions (50µg/ml) were effective as cancer specific cytotoxic agents, since they caused a significant proliferation inhibition on cancer cell lines (up to 94.2% in HT-29, 92.9% in Hep-G2 and 61.8% in PC-3 of apoptosis induction) with little harm to the control cell line (no higher than 28.3% apoptosis induction), and, importantly, the most effective extracts were mainly water, methanol and ethanol based. These results suggest that a diet containing these compounds may function as a medical aid or chemoprotective. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Secondary Metabolites from an Actinomycete from Vietnam's East Sea.

    PubMed

    Thi, Quyen Vu; Tran, Van Hieu; Mai, Huong Doan Thi; Le, Cong Vinh; Hong, Min Le Thi; Murphy, Brian T; Chau, Van Minh; Pham, Van Cuong

    2016-03-01

    Analysis of an antimicrobial extract prepared from culture broth of the marine-derived actinomycete Nocardiopsis sp. (strain G057) led to the isolation of twelve compounds, 1-12. Compound 1 (2-[(2R-hydroxypropanoyl)amino]benzamide) was found to be a new enantiomeric isomer while compounds 2 (3-acetyl-4-hydroxycinnoline) and 3 (3,3'-bis-indole) were isolated from a natural source for the first time. The structures of 1-12 were determined by analyses of MS and 2D NMR data. All compounds were evaluated for their antimicrobial activity against a panel of clinically significant microorganisms. Compound 1 selectively inhibited Escherichia coli (MIC: 16 µg/mL). Compounds 2 and 3 exhibited antimicrobial activity against several strains of both Gram-positive and Gram-negative bacteria, and the yeast Candida albicans. Cytotoxic evaluation of compounds 1-3 against four cancer cell lines (KB, LU-1, HepG-2 and MCF-7) indicated that compound 3 produced a weak inhibition against KB and LU cell lines. Two remaining compounds, 1 and 2 were not cytotoxic, even at the concentration of 128 µg/mL.

  12. Cinnamic acid derivatives induce cell cycle arrest in carcinoma cell lines.

    PubMed

    Sova, Matej; Žižak, Željko; Stanković, Jelena A Antic; Prijatelj, Matevž; Turk, Samo; Juranić, Zorica D; Mlinarič-Raščan, Irena; Gobec, Stanislav

    2013-08-01

    Cinnamic acid derivatives can be found in plant material, and they possess a remarkable variety of biological effects. In the present study, we have investigated the cytotoxic effects of representative cinnamic acid esters and amides. The cytotoxicity was determined by MTT test on human cervix adenocarcinoma (HeLa), myelogenous leukemia (K562), malignant melanoma (Fem-x), and estrogen-receptor-positive breast cancer (MCF-7) cells, versus peripheral blood mononuclear cells (PBMCs) without or with the addition of the plant lectin phytohemaglutinin (PHA). The compounds tested showed significant cytotoxicity (IC50s between 42 and 166 µM) and furthermore selectivity of these cytotoxic effects on the malignant cell lines versus the PBMCs was also seen, especially when electron-withdrawing groups, such as a cyano group (compound 5), were present on the aromatic rings of the alcohol or amine parts of the cinnamic acid derivatives. The additional study on cell cycle phase distribution indicated that novel cinnamic acid derivatives inhibit cell growth by induction of cell death. Thus, cinnamic acids derivatives represent important lead compounds for further development of antineoplastic agents.

  13. Anti-lung cancer effects of novel ginsenoside 25-OCH(3)-PPD.

    PubMed

    Wang, Wei; Rayburn, Elizabeth R; Hang, Jie; Zhao, Yuqing; Wang, Hui; Zhang, Ruiwen

    2009-09-01

    20(S)-25-methoxyl-dammarane-3beta, 12beta, 20-triol (25-OCH(3)-PPD), a newly identified natural product from Panax notoginseng, exhibits activity against a variety of cancer cells. Herein, we report the effects of this compound on human A549, H358, and H838 lung cancer cells, and compare these effects with a control lung epithelial cell line, BEAS-2B. 25-OCH(3)-PPD decreased survival, inhibited proliferation, and induced apoptosis and G1 cell cycle arrest in the lung cancer cell lines. The P. notoginseng compound also decreased the levels of proteins associated with cell proliferation and cell survival. Moreover, 25-OCH(3)-PPD inhibited the growth of A549 lung cancer xenograft tumors. 25-OCH(3)-PPD demonstrated low toxicity to non-cancer cells, and no observable toxicity was seen when the compound was administered to animals. In conclusion, our preclinical data indicate that 25-OCH(3)-PPD is a potential therapeutic agent in vitro and in vivo, and further preclinical and clinical development of this agent for lung cancer is warranted.

  14. Design, synthesis and biological evaluation of novel HSP70 inhibitors: N, N'-disubstituted thiourea derivatives.

    PubMed

    Zeng, Yan-Qun; Cao, Rui-Yuan; Yang, Jian-Ling; Li, Xing-Zhou; Li, Song; Zhong, Wu

    2016-08-25

    As novel heat shock protein 70 (HSP70) inhibitors, N, N'-disubstituted thiourea derivatives were designed and synthesized based on the X-ray structure of the ATPase domain (nucleotide binding domain, NBD). An ATPase activity inhibition assay revealed that these compounds effectively inhibited HSP70 ATPase activity. The results revealed that the compounds 370/371/374/379/380//392/394/397/404/405 and 407 can inhibit the HSP70 ATPase turnover with high percentages of inhibition: 50.42, 38.46, 50.45, 44.12, 47.13, 50.50, 40.95, 65.36, 46.23, 35.78, and 58.37 in 200 μM, respectively. Significant synergies with lapatinib were observed for compound 379 and compound 405 in the BT474 breast cancer cell line. A structure-function analysis revealed that most of the thiourea derivatives exhibited cooperative action with lapatinib in the BT474 cancer cell line and the BT/Lap(R)1.0 lapatinib-resistant cell line. HSP70 inhibitors may be developed as synergetic drugs in drug-resistant cancer therapy. Copyright © 2016 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

  15. Three new sesquiterpenes from Pterocarpus santalinus.

    PubMed

    Li, Li; Tao, Run-Hong; Wu, Ji-Ming; Guo, Ya-Ping; Huang, Chao; Liang, Hong-Gang; Fan, Le-Zhi; Zhang, Hai-Yan; Sun, Ren-Kuan; Shang, Lei; Lu, Li-Na; Huang, Jian; Wang, Jin-Hui

    2018-04-01

    Three new sesquiterpenes of canusesnol K (1), canusesnol L (2) and 12, 15-dihydroxycurcumene (3), along with five known ones (4-8), were isolated from the heartwood extract of Pterocarpus santalinus. Their structures were established by extensive analyses of 1D and 2D NMR spectroscopy, including 1 H NMR, 13 C NMR, HSQC, HMBC and NOESY, and HRESI-MS. The absolute configurations of the new compounds were established with Modified Mosher's method. The cytotoxic activities of all these compounds against HepG2 (human liver cancer), MCF-7 (human breast cancer), MDA-MB-231 (human breast cancer), and Hela (human cervical carcinoma) cancer cell lines were evaluated. Compound 1 exhibited moderate cytotoxic activity toward MDA-MB-231 cell lines.

  16. Studies on novel 4beta-[(4-substituted)-1,2,3-triazol-1-yl] podophyllotoxins as potential anticancer agents.

    PubMed

    Bhat, Bilal A; Reddy, P Bhaskar; Agrawal, Satyam Kumar; Saxena, A K; Kumar, H M Sampath; Qazi, G N

    2008-10-01

    A series of 4beta-[(4-substituted)-1,2,3-triazol-1-yl] podophyllotoxin congeners have been designed and synthesized with significant regioselectivity by employing Cu(I) catalyzed 1,3-dipolar cycloaddition reaction of C4beta-azido podophyllotoxin and C4beta-azido-4'-O-demethyl podophyllotoxin with N-prop-2-yn-1-ylanilines. These compounds were evaluated for anticancer activity against a panel of seven human cancer cell lines. It was interesting to note that all the compounds exhibited promising activity especially against SF-295 (CNS), HCT-15 (colon) and 502713 (colon) cell lines. Compound 11e was found to be the most promising in this study.

  17. Structures and Activities of Tiahuramides A-C, Cyclic Depsipeptides from a Tahitian Collection of the Marine Cyanobacterium Lyngbya majuscula.

    PubMed

    Levert, Annabel; Alvariño, Rebeca; Bornancin, Louis; Abou Mansour, Eliane; Burja, Adam M; Genevière, Anne-Marie; Bonnard, Isabelle; Alonso, Eva; Botana, Luis; Banaigs, Bernard

    2018-05-24

    The structures of three new cyclic depsipeptides, tiahuramides A (1), B (2), and C (3), from a French Polynesian collection of the marine cyanobacterium Lyngbya majuscula are described. The planar structures of these compounds were established by a combination of mass spectrometry and 1D and 2D NMR experiments. Absolute configurations of natural and nonproteinogenic amino acids were determined through a combination of acid hydrolysis, derivitization with Marfey's reagent, and HPLC. The absolute configuration of hydroxy acids was confirmed by Mosher's method. The antibacterial activities of tiahuramides against three marine bacteria were evaluated. Compound 3 was the most active compound of the series, with an MIC of 6.7 μM on one of the three tested bacteria. The three peptides inhibit the first cell division of sea urchin fertilized eggs with IC 50 values in the range from 3.9 to 11 μM. Tiahuramide B (2), the most potent compound, causes cellular alteration characteristics of apoptotic cells, blebbing, DNA condensation, and fragmentation, already at the first egg cleavage. The cytotoxic activity of compounds 1-3 was tested in SH-SY5Y human neuroblastoma cells. Compounds 2 and 3 showed an IC 50 of 14 and 6.0 μM, respectively, whereas compound 1 displayed no toxicity in this cell line at 100 μM. To determine the type of cell death induced by tiahuramide C (3), SH-SY5Y cells were costained with annexin V-FITC and propidium iodide and analyzed by flow cytometry. The double staining indicated that the cytotoxicity of compound 3 in this cell line is produced by necrosis.

  18. Antioxidative and antiproliferative activities of novel pyrido[1,2-a]benzimidazoles.

    PubMed

    Tireli, Martina; Starčević, Kristina; Martinović, Tamara; Pavelić, Sandra Kraljević; Karminski-Zamola, Grace; Hranjec, Marijana

    2017-02-01

    A series of pyrido[1,2-a]benzimidazoles has been designed, and novel examples are synthesized and evaluated for their potential antiproliferative activity against four human tumour cell lines-cervical (HeLa), colorectal (SW620), breast (MCF-7) and hepatocellular carcinoma (HepG2). In addition, their antioxidative potency has been evaluated by in vitro spectrophotometric assays. Preliminary structure-activity relationships among the synthesized compounds are discussed. Evaluation of their antioxidative capacity has shown that two compounds (25 and 26) possess promising reducing characteristics and free radical scavenging activity. Selective antiproliferative effect in the single-digit micromolar range was observed for compound 25 on MCF-7 [Formula: see text] and HeLa [Formula: see text] cell lines, comparable to the standards 5-fluorouracil and cisplatin. The combination of the radical scavenging activity and antiproliferative activity of compound 25 positions this compound as a potential lead candidate for further optimization.

  19. Synthesis and evaluation of ethylnitrosoureas of substituted naphthalimides as anticancer compounds.

    PubMed

    Pain, Anindita; Samanta, Suva; Dutta, Sushanta; Saxena, Ajit K; Shanmugavel, Mutiah; Sharma, Madhunika; Qazi, Gulam N; Sanyal, Utpal

    2007-01-01

    Four new ethylnitrosourea derivatives of substituted naphthalimides 3a-d have been synthesized from the respective N-(2-ethylamino) naphthalimides. Their chemical alkylating activity compared with the clinical drug CCNU and an experimental compound Mitonafide indicated that they possess lower alkylating activity than CCNU and comparable activity with the latter. Their anti-tumor efficacies were assessed in vivo in two murine ascites tumors namely Sarcoma-180 (S-180) and Ehrlich ascites carcinoma (EAC) by measuring the increase in median survival times (MST) of drug treated (T) over untreated control (C) mice. CCNU and Mitonafide were used as positive controls for comparison. The representative compound 3a has displayed marginal anti-tumoral activity in these tumors. Three compounds were further screened in vitro in 4 different human tumor cell lines but no significant activity was observed in those lines. These compounds moderately inhibit the synthesis of DNA and RNA in S-180 tumor cells.

  20. Anti-cancer Effects of Polyphenolic Compounds in Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor-resistant Non-small Cell Lung Cancer

    PubMed Central

    Jeong, Hyungmin; Phan, Ai N. H.; Choi, Jong-Whan

    2017-01-01

    Background: Polyphenolic phytochemicals are natural compounds, easily found in fruits and vegetables. Importantly, polyphenols have been intensively studied as excellent antioxidant activity which contributes to anticancer function of the natural compounds. Lung cancer has been reported to mainly account for cancer-related deaths in the world. Moreover, epidermal growth factor receptor tyrosine kinase inhibitor (TKI) resistance is one of the biggest issues in cancer treatment, especially in nonsmall cell lung cancer (NSCLC). Even though several studies both in preclinical and clinical trials have showed promising therapeutic effects of polyphenolic compounds in anticancer therapy, the function of the natural compounds in TKI-resistant (TKIR) lung cancer remains poorly studied. Objective: The aim of this study is to screen polyphenolic compounds as potential anticancer adjuvants which suppress TKIR lung cancer. Materials and Methods: Colony formation and thiazolyl blue tetrazolium blue assay were performed in the pair-matched TKI-sensitive (TKIS) versus TKIR tumor cell lines to investigate the therapeutic effect of polyphenolic compounds in TKIR NSCLC. Results: Our data show that equol, kaempferol, resveratrol, and ellagic acid exhibit strong anticancer effect in HCC827 panel. Moreover, the inhibitory effect of most of tested polyphenolic compounds was highly selective for TKIR lung cancer cell line H1993 while sparing the TKIS one H2073. Conclusion: This study provides an important screening of potential polyphenolic compounds for drug development to overcome TKI resistance in advanced lung cancer. SUMMARY The study provides an important screening of potential polyphenolic compounds for drug development to overcome tyrosine kinase inhibitor (TKI) resistance in advance lung cancerEquol, kaempferol, resveratrol, and ellagic acid show strong anticancer effect in HCC827 panel, including TKI-sensitive (TKIS) and TKI-resistant clonesThe inhibitory effect of polyphenolic compounds such as equol, kaempferol, resveratrol, ellagic acid, gallic acid, p-Coumaric, and hesperidin is highly selective for TKI-resistant lung cancer cell line H1993 while sparing the TKIS one H2073. Abbreviations used: EGFR: Epidermal growth factor receptor, EMT: Epithelial-to-mesenchymal transition, GTP: Green tea polyphenols, IGF1R: Insulin-like growth factor 1 receptor, MET: Met proto-oncogene, MTT: Thiazolyl blue tetrazolium blue, NSCLC: Non-small cell lung cancer, ROS: Reactive oxygen species, RTK: Receptor tyrosine kinase, STAT3: Signal transducer and activator of transcription 3, TKIR: TKI-resistant, TKIs: Tyrosine kinase inhibitors, TKIS: TKI-sensitive. PMID:29200719

  1. Structure of kaurane-type diterpenes from Parinari sprucei and their potential anticancer activity.

    PubMed

    Braca, Alessandra; Armenise, Annahil; Morelli, Ivano; Mendez, Jeannette; Mi, Qiuwen; Chai, Hee-Byung; Swanson, Steven M; Kinghorn, A Douglas; De Tommasi, Nunziatina

    2004-06-01

    Twenty-three kaurane-type diterpenes 1 - 23, including twenty new natural products 1 - 20, have been isolated from the leaves of Parinari sprucei and their structures elucidated by spectroscopic and chemical analysis. The isolated compounds were tested for their cytotoxic activity towards a panel of cancer cell lines. Compounds 9 and 10 showed activity against all cell lines with ED (50) values in the range of 10 - 20 microg/mL. The previously known 13-hydroxy-15-oxozoapatlin 21 was evaluated in an in vivo hollow fiber test, and found to be active with KB and LNCaP cells at the concentrations used.

  2. Lupane-Type Triterpenes of Phoradendron vernicosum.

    PubMed

    Valencia-Chan, Lía S; García-Cámara, Isabel; Torres-Tapia, Luis W; Moo-Puc, Rosa E; Peraza-Sánchez, Sergio R

    2017-11-22

    Three new lupane-type triterpenes, 3α,24-dihydroxylup-20(29)-en-28-oic acid (1), 3α,23-dihydroxy-30-oxolup-20(29)-en-28-oic acid (2), and 3α,23-O-isopropylidenyl-3α,23-dihydroxylup-20(29)-en-28-oic acid (3), together with eight known compounds (4-11) were isolated from a methanol extract of Phoradendron vernicosum aerial parts. The chemical structures of 1-3 were determined on the basis of spectroscopic data interpretation. The isolated compounds were tested against seven human cancer cell lines and two normal cell lines.

  3. Anti-proliferative activity of 2,6-dichloro-9- or 7-(ethoxycarbonylmethyl)-9H- or 7H-purines against several human solid tumour cell lines.

    PubMed

    Morales, Fátima; Ramírez, Alberto; Conejo-García, Ana; Morata, Cynthia; Marchal, Juan A; Campos, Joaquín M

    2014-04-09

    As leads we took several benzo-fused seven- and six-membered scaffolds linked to the pyrimidine or purine moieties with notable anti-proliferative activity against human breast, colon and melanoma cancerous cell lines. We then decided to maintain the double-ringed nitrogenous bases and change the other components to the ethyl acetate moiety. This way six purine and two 5-fluorouracil derivatives were obtained and evaluated against the MCF-7, HCT-116, A-375 and G-361 cancer cell lines. Two QSARs are obtained between the anti-proliferative IC₅₀ values for compounds 26-33 and the clog P against the melanoma cell lines A-375 and G-361. Our results show that two of the analogues [ethyl 2-(2,6-dichloro-9H- or 7H-purine-9- or 7-yl)acetates (30 and 33, respectively)] are potent cytotoxic agents against all the tumour cell lines assayed, showing single-digit micromolar IC₅₀ values. This exemplifies the potential of our previously reported purine compounds to qualify as lead structures for medicinal chemistry campaigns, affording simplified analogues easy to synthesize and with a noteworthy bioactivity. The selective activity of 30 and 33 against the melanoma cell line A-375, via apoptosis, supposes a great advantage for a future therapeutic use. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  4. Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea

    PubMed Central

    Youn, Ui Joung; Miklossy, Gabriella; Chai, Xingyun; Wongwiwatthananukit, Supakit; Toyama, Onoomar; Songsak, Thanapat; Turkson, James; Chang, Leng Chee

    2014-01-01

    Four new sesquiterpene lactones, 8α-(2′Z-tigloyloxy)-hirsutinolide (1), 8α-(2′Z-tigloyloxy)-hirsutinolide-13-O-acetate (2), 8α-(4-hydroxytigloyloxy)-hirsutinolide (3), and 8α-hydroxy-13-O-tigloyl-hirsutinolide (4), along with seven known derivatives (5–11), three norisoprenoids (12–14), a flavonoid (15), and a linoleic acid derivative (16), were isolated from the chloroform partition of a methanol extract from the combined leaves and stems of Vernonia cinerea. Their structures were established by 1D and 2D NMR, UV, and MS analyses. Compounds 1–16 were evaluated for their inhibitory effects against the viability of U251MG glioblastoma and MDA-MB-231 breast cancer cells that harbour aberrantly-active STAT3, compared to normal NIH3T3 mouse fibroblasts that show no evidence of activated STAT3. Among the isolates, compounds 2 and 7 inhibited the aberrant STAT3 activity in glioblastoma or breast cancer cells. Further, compounds 7 and 8 inhibited viability of all three cell lines, compounds 2, 4, and 9 predominantly inhibited the viability of the U251MG glioblastoma cell line. PMID:24370662

  5. Bioactive sesquiterpene lactones and other compounds isolated from Vernonia cinerea.

    PubMed

    Youn, Ui Joung; Miklossy, Gabriella; Chai, Xingyun; Wongwiwatthananukit, Supakit; Toyama, Onoomar; Songsak, Thanapat; Turkson, James; Chang, Leng Chee

    2014-03-01

    Four new sesquiterpene lactones, 8α-(2'Z-tigloyloxy)-hirsutinolide (1), 8α-(2'Z-tigloyloxy)-hirsutinolide-13-O-acetate (2), 8α-(4-hydroxytigloyloxy)-hirsutinolide (3), and 8α-hydroxy-13-O-tigloyl-hirsutinolide (4), along with seven known derivatives (5-11), three norisoprenoids (12-14), a flavonoid (15), and a linoleic acid derivative (16), were isolated from the chloroform partition of a methanol extract from the combined leaves and stems of Vernonia cinerea. Their structures were established by 1D and 2D NMR, UV, and MS analyses. Compounds 1-16 were evaluated for their inhibitory effects against the viability of U251MG glioblastoma and MDA-MB-231 breast cancer cells that harbour aberrantly-active STAT3, compared to normal NIH3T3 mouse fibroblasts that show no evidence of activated STAT3. Among the isolates, compounds 2 and 7 inhibited the aberrant STAT3 activity in glioblastoma or breast cancer cells. Further, compounds 7 and 8 inhibited viability of all three cell lines, compounds 2, 4, and 9 predominantly inhibited the viability of the U251MG glioblastoma cell line. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Bioactive compounds from Peperomia pellucida.

    PubMed

    Xu, Su; Li, Na; Ning, Meng-Meng; Zhou, Cai-Hong; Yang, Qiao-Rong; Wang, Ming-Wei

    2006-02-01

    Five new compounds (1-5), including two secolignans, two tetrahydrofuran lignans, and one highly methoxylated dihydronaphthalenone, were isolated from the whole plant of Peperomia pellucida. These compounds were accompanied by the known peperomins A, B, C, and E, 7,8-trans-8,8'-trans-7',8'-cis-7,7'-bis(5-methoxy-3,4-methylenedioxyphenyl)-8-acetoxymethyl-8'-hydroxymethyltetrahydrofuran, 7,8-trans-8,8'-trans-7',8'-cis-7-(5-methoxy-3,4-methylenedioxyphenyl)-7'-(4-hydroxy-3,5-dimethoxyphenyl)-8,8'-diacetoxymethyltetrahydrofuran, sesamin, and isoswertisin. New structures were elucidated mainly by NMR and MS techniques, and anticancer activities evaluated in HL-60, MCF-7, and HeLa cell lines. Compound 1 and peperomin E show growth inhibitory effects on the three cancer cell lines with IC(50) values ranging between 1.4 and 9.1 and between 1.8 and 11.1 microM, respectively. Compound 2 has a weak suppressive activity on HL-60 cells (IC(50) = 10.8 microM), while 7,8-trans-8,8'-trans-7',8'-cis-7,7'-bis(5-methoxy-3,4-methylenedioxyphenyl)-8-acetoxymethyl-8'-hydroxymethyltetrahydrofuran exhibits estrogen-like properties (EC(50) = 3.1 microM) in CV-1 cells transfected with human estrogen receptor (ERalpha).

  7. The cytotoxic effect of spiroflavanone derivatives, their binding ability to human serum albumin (HSA) and a DFT study on the mechanism of their synthesis

    NASA Astrophysics Data System (ADS)

    Budzisz, Elzbieta; Paneth, Piotr; Geromino, Inacrist; Muzioł, Tadeusz; Rozalski, Marek; Krajewska, Urszula; Pipiak, Paulina; Ponczek, Michał B.; Małecka, Magdalena; Kupcewicz, Bogumiła

    2017-06-01

    This paper examines the cytotoxic effect of nine compounds with spiropyrazoline structures, and determines the reaction mechanism between diazomethane and selected benzylideneflavanones, their lipophilicity, and their binding ability to human serum albumin. The cytotoxic effect was determined on two human leukaemia cell lines (HL-60 and NALM-6) and melanoma WM-115 cells, as well as on normal human umbilical vein endothelial cells (HUVEC). The highest cytotoxicity was exhibited by compound B7: it was found to have an IC50 of less than 10 μM for all three cancer cell lines, with five to 12-fold lower sensitivity against normal cells (HUVEC). All the compounds exhibit comparable affinity energy in human serum albumin binding (from -8.1 to -8.6 kcal mol-1) but vary in their binding sites depending on the substituent. X-ray crystallography of two derivatives confirmed their synthetic pathway, and their structures were carefully examined.

  8. Hit to lead optimization of a series of N-[4-(1,3-benzothiazol-2-yl)phenyl]acetamides as monoacylglycerol lipase inhibitors with potential anticancer activity.

    PubMed

    Afzal, Obaid; Akhtar, Md Sayeed; Kumar, Suresh; Ali, Md Rahmat; Jaggi, Manu; Bawa, Sandhya

    2016-10-04

    A total of thirty five new N-[4-(1,3-benzothiazol-2-yl)phenyl]acetamide derivatives were synthesized and structures of all the compounds were confirmed on the basis of elemental analysis and collective use of IR, (1)H NMR, (13)C NMR and mass spectral data. Compounds were tested for their ability to inhibit human monoacylglycerol lipase (hMAGL) enzyme. Eight compounds 4, 19-21, 24-26, and 34 reduced the hMAGL activity less than 50% at 100 nM concentrations. The halogen substituted aniline derivatives 20, 21 and 24-26 were found to be most active among all the synthesized compounds having IC50 value in the range of 6.5-9 nM. Twenty five compounds were selected by NCI, USA for one dose anticancer screening. Compound 21 (NSC: 780167) and 24 (NSC: 780168) fulfilled prearranged doorstep growth inhibition criteria and further selected for NCI full panel five dose assay at 10-fold dilutions of five different concentrations (0.01, 0.1, 1, 10 and 100 μM). Both the compounds 21 and 24 were found to be most active against MCF7 and MDA-MB-468 breast cancer cell lines. The GI50 value of 32.5 nM (MCF7) and 23.8 nM (MDA-MB-468) was observed for compound 21. Compound 24 showed GI50 values of 37.1 nM against MCF7 breast cancer cell line and 25.1 nM against MDA-MB-468 breast cancer cell line. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. (-)-Kusunokinin and piperloguminine from Piper nigrum: An alternative option to treat breast cancer.

    PubMed

    Sriwiriyajan, Somchai; Sukpondma, Yaowapa; Srisawat, Theera; Madla, Siribhorn; Graidist, Potchanapond

    2017-08-01

    Several studies have reported that active compounds isolated from Piper nigrum possess anticancer properties. However, there are no data on anticancer activity of (-)-kusunokinin and piperlonguminine. The purposes of this study were to isolate active compounds from P. nigrum and identify the molecular mechanisms underlying growth and apoptosis pathway in breast cancer cells. Two bioactive compounds, (-)-kusunokinin and piperlonguminine, were isolated from P. nigrum. Cytotoxicity and the molecular mechanism were measured by methyl thiazolyl tetrazolium (MTT) assay, flow cytometry and Western blot analysis. We found that the active compounds, which effect cancer cell lines were (-)-kusunokinin and piperlonguminine. These compounds have potent cytotoxic effects on breast cancer cells (MCF-7 and MDA-MB-468) and colorectal cells (SW-620). (-)-Kusunokinin demonstrated a cytotoxic effect on MCF-7 and MDA-MB-468 with IC 50 values of 1.18 and 1.62μg/mL, respectively. Piperlonguminine had a cytotoxic effect on MCF-7 and MDA-MB-468 with IC 50 values of 1.63 and 2.19μg/mL, respectively. Both compounds demonstrated lower cytotoxicity against normal breast cell lines with IC 50 values higher than 11μg/mL. Cell cycle and apoptotic analysis using flow cytometry, showed that the (-)-kusunokinin and piperlonguminine induced cell undergoing apoptosis and drove cells towards the G2/M phase. Moreover, both compounds decreased topoisomerase II and bcl-2. The increasing of p53 levels further increased p21, bax, cytochrome c, caspase-8, -7 and -3 activities, except caspase-9. These results suggest that the (-)-kusunokinin and piperlonguminine have been shown to have potent anticancer activities through extrinsic pathway and G2/M phase arrest. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. JBIR-23 and -24, novel anticancer agents from Streptomyces sp. AK-AB27.

    PubMed

    Motohashi, Keiichiro; Hwang, Ji-Hwan; Sekido, Yoshitaka; Takagi, Motoki; Shin-ya, Kazuo

    2009-01-15

    The screening for active compounds against malignant pleural mesothelioma (MPM) cells produced by Streptomyces sp. AK-AB27 resulted in the isolation of two compounds with a dodecahydrodibenzo[b,d]furan skeleton named JBIR-23 (1) and -24 (2). Their structures were established on the basis of extensive NMR and MS analyses. Compounds 1 and 2 exhibited cytotoxic effects against several MPM cell lines.

  11. Synthesis of 2-aryl-1,2,4-oxadiazolo-benzimidazoles: Tubulin polymerization inhibitors and apoptosis inducing agents.

    PubMed

    Kamal, Ahmed; Reddy, T Srinivasa; Vishnuvardhan, M V P S; Nimbarte, Vijaykumar D; Subba Rao, A V; Srinivasulu, Vunnam; Shankaraiah, Nagula

    2015-08-01

    A new series of 2-aryl 1,2,4-oxadiazolo-benzimidazole conjugates have been synthesized and evaluated for their antiproliferative activity in the sixty cancer cell line panel of the National Cancer Institute (NCI). Compounds 5l (NSC: 761109/1) and 5x (NSC: 761814/1) exhibited remarkable cytotoxic activity against most of the cancer cell lines in the one dose assay and were further screened at five dose concentrations (0.01, 0.1, 1, 10 and 100 μM) which showed GI50 values in the range of 0.79-28.2 μM. Flow cytometric data of these compounds showed increased cells in G2/M phase, which is suggestive of G2/M cell cycle arrest. Further, compounds 5l and 5x showed inhibition of tubulin polymerization and disruption of the formation of microtubules. These compounds induce apoptosis by DNA fragmentation and chromatin condensation as well as by mitochondrial membrane depolarization. In addition, structure activity relationship studies within the series are also discussed. Molecular docking studies of compounds 5l and 5x into the colchicine-binding site of the tubulin, revealed the possible mode of interaction by these compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Synthesis and cytotoxicity of 2,5-dihydroxychalcones and related compounds.

    PubMed

    Nam, Nguyen-Hai; Hong, Dong-Ho; You, Young-Jae; Kim, Yong; Bang, Seong-Cheol; Kim, Hwan-Mook; Ahn, Byung-Zun

    2004-06-01

    A series of 2, 5-dihydroxychalcones and related compounds were synthesized, and their cytotoxicities against tumor cell lines and human umbilical venous endothelial cells (HUVEC) evaluated. It was found that chalcones, with electron-withdrawing substituents on an A ring, exhibited significant cytotoxicities. Among the synthesized compounds, 2'-chloro-2, 5-dihydroxychalcone (9) was most potent, with an IC50 value as low as 0.31 microg/mL. This compound also exhibited a significant cytotoxic selectivity toward HUVEC.

  13. Odorous Compounds from Poultry Manure Induce DNA Damage, Nuclear Changes, and Decrease Cell Membrane Integrity in Chicken Liver Hepatocellular Carcinoma Cells

    PubMed Central

    Matusiak, Katarzyna; Gałęcki, Remigiusz; Borowski, Sebastian; Gutarowska, Beata

    2017-01-01

    Animal breeding and management of organic wastes pose a serious problem to the health of livestock and workers, as well as the nearby residents. The aim of the present study was to determine the mechanisms of toxicity of selected common odorous compounds from poultry manure, including ammonia, dimethylamine (DMA), trimethylamine (TMA), butyric acid, phenol, and indole. We measured their genotoxic and cytotoxic activity in the model chicken cell line (LMH), in vitro, by comet assay and lactate dehydrogenase assay, respectively. We also made microscopic observations of any morphological changes in these cells by DAPI staining. Four compounds, namely ammonia, DMA, TMA, and butyric acid increased DNA damage in a dose-dependent manner (p < 0.05), reaching genotoxicity as high as 73.2 ± 1.9%. Phenol and indole induced extensive DNA damage independent of the concentration used. Ammonia, DMA, and TMA caused a dose-dependent release of lactate dehydrogenase (p < 0.05). The IC50 values were 0.02%, 0.05%, and 0.1% for DMA, ammonia and TMA, respectively. These compounds also induced nuclear morphological changes, such as chromatin condensation, shrinkage, nuclear fragmentation (apoptotic bodies), and chromatin lysis. Our study exhibited the damaging effects of odorous compounds in chick LMH cell line. PMID:28820500

  14. SAR study on N2,N4-disubstituted pyrimidine-2,4-diamines as effective CDK2/CDK9 inhibitors and antiproliferative agents† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8ra01440j

    PubMed Central

    Jing, Liandong; Tang, Yanbo; Goto, Masuo; Lee, Kuo-Hsiung

    2018-01-01

    Cyclin-dependent kinases (CDKs) are pivotal kinases in cell cycle transition and gene transcription. A series of N2,N4-diphenylpyrimidine-2,4-diamines were previously identified as potent CDK2/CDK9 inhibitors. To explore the SAR of this structural prototype, twenty-four novel N2,N4-disubstituted pyrimidine-2,4-diamines were designed and synthesized. Among them, twenty-one compounds exhibited potent inhibitory activities against both CDK2/cyclin A and CDK9/cyclin T1 systems, and the most potent CDK2 and CDK9 inhibitors, 3g and 3c, showed IC50 values of 83 nM and 65 nM respectively. Most of these compounds displayed significant inhibition against the tested tumor cell lines in the SRB assay, and in particular, remained active against the triple-negative breast cancer (TNBC) cell line MDA-MB-231. Flow cytometer analysis of compounds 2a, 2d and 3b in MDA-MB-231 cells indicated that these compounds induced cell cycle arrest in G2/M phase. Docking studies on compound 3g were performed, which provided conducive clues for further molecular optimization. PMID:29682280

  15. Induction of apoptosis by hydrolyzable tannins from Eugenia jambos L. on human leukemia cells.

    PubMed

    Yang, L L; Lee, C Y; Yen, K Y

    2000-08-31

    Eugenia jambos L. (Myrtaceae) is an antipyretic and anti-inflammatory herb of Asian folk medicine. A 70% acetone extract exerted the strongest cytotoxic effects on human leukemia cells (HL-60) from a preliminary screening of 15 plants. The cytotoxic principles were separated by bio-assay-guided fractionation to HL-60 cells; two hydrolyzable tannins (1-O-galloyl castalagin and casuarinin) were isolated from the 70% acetone extract. All significantly inhibited human promyelocytic leukemia cell line HL-60 and showed less cytotoxicity to human adenocarcinoma cell line SK-HEP-1 and normal cell lines of human lymphocytes and Chang liver cells. Thus, these compounds were exhibited the dose-dependent manner in HL-60 cells and the IC(50) were 10.8 and 12.5 microM, respectively. Flow cytometric analysis demonstrated the presence of apoptotic cells with low DNA content, a decrease of cell population at G(2)/M phase, and a concomitant increase of cell population at G(1) phase. The apoptosis induced by these two compounds was also demonstrated by DNA fragmentation assay and microscopic observation. These results suggest that the cytotoxic mechanism of both antitumor principle constituents might be the induction of apoptosis in HL-60 cells.

  16. Combination of Plant Metabolic Modules Yields Synthetic Synergies

    PubMed Central

    Rajabi, Fatemeh; Heene, Ernst; Maisch, Jan; Nick, Peter

    2017-01-01

    The great potential of pharmacologically active secondary plant metabolites is often limited by low yield and availability of the producing plant. Chemical synthesis of these complex compounds is often too expensive. Plant cell fermentation offers an alternative strategy to overcome these limitations. However, production in batch cell cultures remains often inefficient. One reason might be the fact that different cell types have to interact for metabolite maturation, which is poorly mimicked in suspension cell lines. Using alkaloid metabolism of tobacco, we explore an alternative strategy, where the metabolic interactions of different cell types in a plant tissue are technically mimicked based on different plant-cell based metabolic modules. In this study, we simulate the interaction found between the nicotine secreting cells of the root and the nicotine-converting cells of the senescent leaf, generating the target compound nornicotine in the model cell line tobacco BY-2. When the nicotine demethylase NtomCYP82E4 was overexpressed in tobacco BY-2 cells, nornicotine synthesis was triggered, but only to a minor extent. However, we show here that we can improve the production of nornicotine in this cell line by feeding the precursor, nicotine. Engineering of another cell line overexpressing the key enzyme NtabMPO1 allows to stimulate accumulation and secretion of this precursor. We show that the nornicotine production of NtomCYP82E4 cells can be significantly stimulated by feeding conditioned medium from NtabMPO1 overexpressors without any negative effect on the physiology of the cells. Co-cultivation of NtomCYP82E4 with NtabMPO1 stimulated nornicotine accumulation even further, demonstrating that the physical presence of cells was superior to just feeding the conditioned medium collected from the same cells. These results provide a proof of concept that combination of different metabolic modules can improve the productivity for target compounds in plant cell fermentation. PMID:28081182

  17. Targeting tubulin polymerization by novel 7-aryl-pyrroloquinolinones: Synthesis, biological activity and SARs.

    PubMed

    Bortolozzi, Roberta; Mattiuzzo, Elena; Dal Pra, Matteo; Sturlese, Mattia; Moro, Stefano; Hamel, Ernest; Carta, Davide; Viola, Giampietro; Ferlin, Maria Grazia

    2018-01-01

    Earlier studies had confirmed that the 7-phenylpyrroloquinolinone (7-PPyQ) nucleus was an important scaffold for new chemotherapeutic drugs targeting microtubules. For wide-ranging SARs, a series of derivatives were synthesized through a robust procedure. For comparison with the reference 3-ethyl-7-PPyQ 31, the angular geometry and substituents at the 3 and 7 positions were varied to explore interactions inside the colchicine site of tubulin. Of the new compounds synthesized, potent cytotoxicity (low and sub-nanomolar GI 50 values) was observed with 21 and 24, both more potent than 31, in both leukemic and solid tumor cell lines. Neither compound 21 nor 24 induced significant cell death in normal human lymphocytes, suggesting that the compounds may be selectively active against cancer cells. In particular, 24 was a potent inducer of apoptosis in the A549 and HeLa cell lines. With both compounds, induction of apoptosis was associated with dissipation of the mitochondrial transmembrane potential and production of reactive oxygen species, indicating that cells treated with the compounds followed the intrinsic pathway of apoptosis. Moreover, immunoblot analysis revealed that compound 24 even at 50 nM reduced the expression of anti-apoptotic proteins such as Bcl-2 and Mcl-1. Finally, molecular docking studies of the newly synthesized compounds demonstrate that active pyrroloquinolinone derivatives strongly bind in the colchicine site of β-tubulin. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  18. Synthesis, molecular structure, spectral analysis, and biological activity of new malonamide derivatives as α-glucosidase inhibitors

    NASA Astrophysics Data System (ADS)

    Barakat, Assem; Islam, Mohammad Shahidul; Al-Majid, Abdullah Mohammed; Soliman, Saied M.; Ghabbour, Hazem A.; Yousuf, Sammer; Choudhary, M. Iqbal; Ul-Haq, Zaheer

    2017-04-01

    Two new malonamide derivatives were synthesized via the Michael addition of N1,N3-di(pyridin-2-yl)malonamide to α,β-unsaturated ketones using a 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) catalyst at room temperature. All reactions efficiently furnished the desired malonamide derivatives, which differed only in their substitution on one phenyl group, with one derivative bearing a bromine substituent and the other bearing a methyl group. The structures of newly synthesized compounds were then elucidated by single-crystal X-ray diffraction, infrared spectroscopy, NMR spectroscopy, mass spectrometry, and elemental analysis. In addition, the synthesized compounds were evaluated for their in vitro cytotoxicity against cancer cell lines and for α-glucosidase inhibition. The target compounds exhibited enhanced α-glucosidase inhibition activity (i.e., IC50 = 12.8 ± 0.1 and 28.4 ± 0.2 μM) compared to the common drug acarbose (IC50 = 840 ± 1.73 μM). Both compounds were found to be non-cytotoxic against H460 (lung carcinoma) and T3T (normal fibroblast) cell lines. In addition, the bromo-substituted derivative exhibited weak cytotoxic against cervical cancer HeLa (IC50 = 13.8 ± 0.4 μM) and breast cancer MCF-7 (IC50 = 21.11 ± 0.88 μM) cell lines, while the methyl-substituted derivative showed weak cytotoxicity against the MCF-7 cell line (IC50 = 47.9 ± 0.7 μM). Density functional theory (DFT) B3LYP/6-311G(d,p) calculations were employed to examine the molecular structures and electronic properties of the prepared compounds. As expected, the bromo-derivative (2.2377 D) exhibited a higher polarity than the methyl-derivative (1.9160 D). Furthermore, the HOMO and LUMO diagrams were constructed and the electronic spectra of both compounds were assigned using time-dependent (TD)-DFT calculations. Finally, the calculated NMR chemical shifts correlated well with the experimental data.

  19. Targeting mitochondria: Esters of rhodamine B with triterpenoids are mitocanic triggers of apoptosis.

    PubMed

    Wolfram, Ratna Kancana; Heller, Lucie; Csuk, René

    2018-05-25

    Triterpenoic acids, ursolic acid (1), oleanolic acid (2), glycyrrhetinic acid (3) and betulinic acid (4) were converted into their corresponding methyl 5-8 and benzyl esters 9-12 or benzyl amides 21-24. These derivatives served as starting materials for the synthesis of pink colored rhodamine B derivatives 25-36 which were screened for cytotoxicity in colorimetric SRB assays. All of the compounds were cytotoxic for a variety of human tumor cell lines. The activity of the benzyl ester derivatives 29-32 was lower than the cytotoxicity of the methyl esters 25-28. The benzyl amides 33-36 were the most cytotoxic compounds of this series. The most potential compound was a glycyrrhetinic acid rhodamine B benzyl amide 35. This compound showed activity against the different cancer cell lines in a two-digit to low three-digit nano-molar range. Staining experiments combined with fluorescence microscopy showed that this compound triggered apoptosis in A2780 ovarian carcinoma cells and acted as a mitocan. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  20. Antifungal dimeric chalcone derivative kamalachalcone E from Mallotus philippinensis.

    PubMed

    Kulkarni, Roshan R; Tupe, Santosh G; Gample, Suwarna P; Chandgude, Macchindra G; Sarkar, Dhiman; Deshpande, Mukund V; Joshi, Swati P

    2014-01-01

    From the red coloured extract (Kamala) prepared through acetone extraction of the fresh whole uncrushed fruits of Mallotus philippinensis, one new dimeric chalcone (1) along with three known compounds 1-(5,7-dihydroxy-2,2,6-trimethyl-2H-1-benzopyran-8-yl)-3-phenyl-2-propen-1-one (2), rottlerin (3) and 4'-hydroxyrottlerin (4) were isolated. The structure of compound 1 was elucidated by 1D and 2D NMR analyses that included HSQC, HMBC, COSY and ROESY experiments along with the literature comparison. Compounds 1-4 were evaluated for antifungal activity against different human pathogenic yeasts and filamentous fungi. The antiproliferative activity of the compounds was evaluated against Thp-1 cell lines. Compounds 1 and 2 both exhibited IC50 of 8, 4 and 16 μg/mL against Cryptococcus neoformans PRL518, C. neoformans ATCC32045 and Aspergillus fumigatus, respectively. Compound 4, at 100 μg/mL, showed 54% growth inhibition of Thp-1 cell lines.

  1. Antimicrobial and Cytotoxic Activity of Extracts of Ferula heuffelii Griseb. ex Heuff. and Its Metabolites.

    PubMed

    Pavlović, Ivan; Petrović, Silvana; Milenković, Marina; Stanojković, Tatjana; Nikolić, Dejan; Krunić, Aleksej; Niketić, Marjan

    2015-10-01

    The antimicrobial and cytotoxic activities of isolates (CHCl3 and MeOH extracts and selected metabolites) obtained from the underground parts of the Balkan endemic plant Ferula heuffelii Griseb. ex Heuff. were assessed. The CHCl3 and MeOH extracts exhibited moderate antimicrobial activity, being more pronounced against Gram-positive than Gram-negative bacteria, especially against Staphylococcus aureus (MIC=12.5 μg/ml for both extracts) and Micrococcus luteus (MIC=50 and 12.5 μg/ml, resp.). Among the tested metabolites, (6E)-1-(2,4-dihydroxyphenyl)-3,7,11-trimethyl-3-vinyldodeca-6,10-dien-1-one (2) and (2S*,3R*)-2-[(3E)-4,8-dimethylnona-3,7-dien-1-yl]-2,3-dihydro-7-hydroxy-2,3-dimethylfuro[3,2-c]coumarin (4) demonstrated the best antimicrobial activity. Compounds 2 and 4 both strongly inhibited the growth of M. luteus (MIC=11.2 and 5.2 μM, resp.) and Staphylococcus epidermidis (MIC=22.5 and 10.5 μM, resp.) and compound 2 additionally also the growth of Bacillus subtilis (MIC=11.2 μM). The cytotoxic activity of the isolates was tested against three human cancer cell lines, viz., cervical adenocarcinoma (HeLa), chronic myelogenous leukemia (K562), and breast cancer (MCF-7) cells. The CHCl3 extract exhibited strong cytotoxic activity against all cell lines (IC50 <11.0 μg/ml). All compounds strongly inhibited the growth of the K562 and HeLa cell lines. Compound 4 exhibited also a strong activity against the MCF-7 cell line, comparable to that of cisplatin (IC50 =22.32±1.32 vs. 18.67±0.75μM). Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  2. Studies on the Red Sea Sponge Haliclona sp. for its Chemical and Cytotoxic Properties.

    PubMed

    Al-Massarani, Shaza Mohamed; El-Gamal, Ali Ali; Al-Said, Mansour Sulaiman; Abdel-Kader, Maged S; Ashour, Abdelkader E; Kumar, Ashok; Abdel-Mageed, Wael M; Al-Rehaily, Adnan Jathlan; Ghabbour, Hazem A; Fun, Hoong-Kun

    2016-01-01

    A great number of novel compounds with rich chemical diversity and significant bioactivity have been reported from Red Sea sponges. To isolate, identify, and evaluate the cytotoxic activity of the chemical constituents of a sponge belonging to genus Haliclona collected from the Eastern coast of the Red Sea. The total ethanolic extract of the titled sponge was subjected to intensive chromatographic fractionation and purification guided by cytotoxic bioassay toward various cancer cell lines. The structures of the isolated compounds were elucidated using spectroscopic techniques including one-dimension and two-dimension nuclear magnetic resonance, mass spectrometry, ultraviolet, and infrared data, as well as comparison with the reported spectral data for the known compounds. X-ray single-crystal structure determination was performed to determine the absolute configuration of compound 4. The screening of antiproliferative activity of the compounds was carried on three tumor cell lines, namely the human cervical cancer (HeLa), human hepatocellular carcinoma (HepG2), and human medulloblastoma (Daoy) cells using MTT assay. This investigation resulted in the isolation of a new indole alkaloid, 1-(1H-indol-3-yloxy) propan-2-ol (1), with the previously synthesized pyrrolidine alkaloid, (2R, 3S, 4R, 5R) pyrrolidine-(1-hydroxyethyl)-3,4-diol hydrochloride (4), isolated here from a natural source for the first time. In addition, six known compounds tetillapyrone (2), nortetillapyrone (3), 2-methyl maleimide-5-oxime (5), maleimide-5-oxime (6), 5-(hydroxymethyl) dihydrofuran-2 (3H)-one (7), and ergosta-5,24 (28)-dien-3-ol (8) were also identified. Most of the isolated compounds exhibited weak cytotoxic activity against HepG-2, Daoy, and HeLa cancer cell lines. This is the first report of the occurrence of the indole and pyrrolidine alkaloids, 1-(1H-indol-2-yloxy) propan-2-ol (1), and the - (1-hydroxyethyl)-3,4-diol hydrochloride (4), in the Red Sea Haliclona sp. From the Red Sea Haliclona sp. two alkaloids with indole and pyrrolidine nuclei, 1-(1H-indol-2-yloxy) propan-2-ol-(1) and pyrrolidine-(1-hydroxyethyl)-3,4-diol hydrochloride (4) were isolated and fully characterized; in addition to six known compounds (2, 3, 5-8)The absolute configuration and the three-dimension stereo-molecular structure of compound 4 were determined by X-ray crystallographyThe different extracts and isolated compounds showed weak cytotoxic activity against HepG-2, Daoy, and HeLa cancer cell lines.

  3. 6-shogaol induces apoptosis and enhances radiosensitivity in head and neck squamous cell carcinoma cell lines.

    PubMed

    Kotowski, Ulana; Kadletz, Lorenz; Schneider, Sven; Foki, Elisabeth; Schmid, Rainer; Seemann, Rudolf; Thurnher, Dietmar; Heiduschka, Gregor

    2018-02-01

    Ginger (Zingiber officinale Roscoe) is used for a wide array of conditions in traditional medicine in Asia, but little is known about the effect on head and neck cancer. In this study, the effect of two major pharmacologically active compounds of ginger, 6-gingerol and 6-shogaol, were studied on head and neck cancer cell lines. Furthermore, experiments in combination with established treatment methods for head and neck cancer were performed. Proliferation assays showed a dose-dependent reduction of cell viability. Flow cytometry analysis revealed the induction of apoptosis. Western blot analysis indicated that the antiapoptotic protein survivin was suppressed after treatment. Although a combination of 6-shogaol with cisplatin exhibited no synergistic effect, the combination with irradiation showed a synergistic reduction of clonogenic survival. In conclusion, ginger compounds have many noteworthy effects on head and neck cancer cell lines. In particular, the enhancement of radiosensitivity is remarkable. Copyright © 2017 John Wiley & Sons, Ltd.

  4. A "natural" approach: synthesis and cytoxicity of monodesmosidic glycyrrhetinic acid glycosides.

    PubMed

    Schwarz, Stefan; Siewert, Bianka; Xavier, Nuno M; Jesus, Ana R; Rauter, Amélia P; Csuk, René

    2014-01-24

    Several pentacyclic triterpenoic acids have shown noteworthy antitumor activity, among them betulinic acid as well as oleanolic acid and derivatives thereof. Glycyrrhetinic acid (GA) exhibits some cytotoxic activity albeit this compound is not as active as betulinic acid, but GA came in the focus of scientific interest since it triggers apoptosis in tumor cells. In addition, it can be extracted from the roots of liquorice in high yields. Previous studies revealed that the introduction of an extra hydrophilic moiety increases the cytotoxicity of these compounds. Thus, a series of GA glycosides was prepared utilizing hexoses as well as pentoses (in D- and L-configuration) by using glycosyl trichloroacetimidates and TMSOTf as catalyst. The compounds were screened for cytotoxic activity against seven human cancer cell lines and the not malignant murine cell line NIH 3T3using a photometric SRB assay. The compounds trigger apoptosis as shown from extra trypan blue and acridine orange/ethidium bromide staining. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  5. New arylated benzo[h]quinolines induce anti-cancer activity by oxidative stress-mediated DNA damage.

    PubMed

    Yadav, Dharmendra K; Rai, Reeta; Kumar, Naresh; Singh, Surjeet; Misra, Sanjeev; Sharma, Praveen; Shaw, Priyanka; Pérez-Sánchez, Horacio; Mancera, Ricardo L; Choi, Eun Ha; Kim, Mi-Hyun; Pratap, Ramendra

    2016-12-06

    The anti-cancer activity of the benzo[h]quinolines was evaluated on cultured human skin cancer (G361), lung cancer (H460), breast cancer (MCF7) and colon cancer (HCT116) cell lines. The inhibitory effect of these compounds on the cell growth was determined by the MTT assay. The compounds 3e, 3f, 3h and 3j showed potential cytotoxicity against these human cancer cell lines. Effect of active compounds on DNA oxidation and expression of apoptosis related gene was studied. We also developed a quantitative method to measure the activity of cyclin-dependent kinases-2 (CDK2) by western blotting in the presence of active compound. In addition, molecular docking revealed that benzo[h]quinolines can correctly dock into the hydrophobic pocket of the targets receptor protein aromatase and CDK2, while their bioavailability/drug-likeness was predicted to be acceptable but requires future optimization. These findings reveal that benzo[h]quinolines act as anti-cancer agents by inducing oxidative stress-mediated DNA damage.

  6. Design and synthesis of phosphoryl-substituted diphenylpyrimidines (Pho-DPPYs) as potent Bruton's tyrosine kinase (BTK) inhibitors: Targeted treatment of B lymphoblastic leukemia cell lines.

    PubMed

    Ge, Yang; Yang, Haijun; Wang, Changyuan; Meng, Qiang; Li, Lei; Sun, Huijun; Zhen, Yuhong; Liu, Kexin; Li, Yanxia; Ma, Xiaodong

    2017-01-15

    A family of phosphoryl-substituted diphenylpyrimidine derivatives (Pho-DPPYs) were synthesized and biologically evaluated as potent BTK inhibitors in this study. Compound 7b was found to markedly inhibit BTK activity at concentrations of 0.82nmol/L, as well as to suppress the proliferations of B-cell leukemia cell lines (Ramos and Raji) expressing high levels of BTK at concentrations of 3.17μM and 6.69μM. Moreover, flow cytometry analysis results further indicated that 7b promoted cell apoptosis to a substantial degree. In a word, compound 7b is a promising BTK inhibitor for the treatment of B-cell lymphoblastic leukemia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Neopetrosiquinones A and B, Sesquiterpene Benzoquinones Isolated from the Deep-water Sponge Neopetrosia cf. proxima

    PubMed Central

    Winder, Priscilla L.; Baker, Heather L.; Linley, Patricia; Guzmán, Esther; Pomponi, Shirley A.; Diaz, M. Cristina; Reed, John K.; Wright, Amy E.

    2011-01-01

    Two new marine-derived sesquiterpene benzoquinones which we designate as neopetrosiquinone A (1) and B (2), have been isolated from a deep-water sponge of the family Petrosiidae. The structures were elucidated on the basis of their spectroscopic data. Compounds 1 and 2 inhibit the in vitro proliferation of the DLD-1 human colorectal adenocarcinoma cell line with IC50 values of 3.7 and 9.8 μM, respectively, and the PANC-1 human pancreatic carcinoma cell line with IC50 values of 6.1 and 13.8 μM, respectively. Neopetrosiquinone A (1) also inhibited the in vitro proliferation of the AsPC-1 human pancreatic carcinoma cell line with an IC50 value of 6.1 μM. The compounds are structurally related to alisiaquinone A, cyclozonarone and xestoquinone. PMID:22014756

  8. New phenanthrene and 9, 10-dihydrophenanthrene derivatives from the stems of Dendrobium officinale with their cytotoxic activities.

    PubMed

    Zhao, Gui-Yun; Deng, Bo-Wen; Zhang, Chong-Yu; Cui, Yi-Da; Bi, Jia-Yi; Zhang, Guo-Gang

    2018-01-01

    Two new phenanthrene and 9, 10-dihydrophenanthrene derivatives (1-2) with six known congeners (3-8) were isolated from the extraction of stems of Dendrobium officinale. Compounds 1 and 2 were based on carbon skeleton in which phenanthrene and 9, 10-dihydrophenanthrene moiety were linked with a phenylpropane unit through a dioxane bridge, respectively. Their structures were determined by comprehensive NMR spectroscopic data, the absolute configuration of new compounds were determined by comparing their experimental and calculated ECD for the first time. All the compounds were investigated contains two cancer cell lines (HI-60, THP-1). All the isolates showed cytotoxicity, especially compound 4 showed markedly cytotoxic activities against HI-60 and THP-1 cell lines with IC 50 values of 11.96 and 8.92 μM.

  9. Design, synthesis, and biological evaluation of 6-methoxy-2-arylquinolines as potential P-glycoprotein inhibitors.

    PubMed

    Aboutorabzadeh, Sayyed Mohammad; Mosaffa, Fatemeh; Hadizadeh, Farzin; Ghodsi, Razieh

    2018-01-01

    In the present study, a new series of 6-methoxy-2-arylquinoline analogues was designed and synthesized as P-glycoprotein (P-gp) inhibitors using quinine and flavones as the lead compounds. The cytotoxic activity of the synthesized compounds was evaluated against two human cancer cell lines including EPG85-257RDB, multidrug-resistant gastric carcinoma cells (P-gp-positive gastric carcinoma cell line), and EPG85-257P, drug-sensitive gastric carcinoma cells. Compounds showing low to moderate toxicity in the MTT test were selected to investigate their P-gp inhibition activity. Moreover, trying to explain the results of biological experiments, docking studies of the selected compounds into the homology-modeled human P-gp, were carried out. The physicochemical and ADME properties of the compounds as drug candidate were also predicted. Most of our compounds exhibited negligible or much lower cytotoxic effect in both cancer cells. Among the series, 5a and 5b, alcoholic quinoline derivatives were found to inhibit the efflux of rhodamine 123 at the concentration of 10 μM significantly. Among the tested quinolines, 5a and 5b showed the most potent P-gp inhibitory activity in the series and were 1.3-fold and 2.1-fold stronger than verapamil, respectively. SAR data revealed that hydroxyl methyl in position 4 of quinolines has a key role in P-gp efflux inhibition of our compounds. ADME studies suggested that all of the compounds included in this study may have a good human intestinal absorption.

  10. Synthesis, in vitro anticancer and antimycobacterial evaluation of new 5-(2,5-dimethoxyphenyl)-1,3,4-thiadiazole-2-amino derivatives.

    PubMed

    Polkam, Naveen; Rayam, Parsharamulu; Anireddy, Jaya Shree; Yennam, Satyanarayana; Anantaraju, Hasitha Shilpa; Dharmarajan, Sriram; Perumal, Yogeeswari; Kotapalli, Sudha Sravanti; Ummanni, Ramesh; Balasubramanian, Sridhar

    2015-04-01

    A series of 2,5-disubstituted-1,3,4-thiadiazole derivatives 5a-5l, 7a-7e and 9 have been synthesised and screened for in vitro antimycobacterial activity against Mycobacterium smegmatis MC-155. In addition these compounds have also been screened for cytotoxic activity against cancer cell lines HT-29, MDA-MB-231 by MTT colorimetric assay. The compounds are well characterized by spectral analysis viz. (1)H NMR, (13)C NMR, FT-IR, mass and HRMS. Screening results indicate that compounds 5g, 7a possess good antitubercular activity with MIC value 65.74 and 40.86, respectively, compounds 5g, 7a, 7b, 7d, 7e and 9 displayed promising cytotoxic activity against the cell lines tested. 5g and 7a stand out to be potent antimycobacterial and anticancer agents among the tested series. Further the title compounds were also tested on human normal cells HEK293T and are found to be safer with lesser cytotoxicity. It is interesting to observe that compound 5g has come out to be safer, potent anticancer and antimycobacterial agent. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Synthesis and biological evaluation of N-(carbobenzyloxy)-l-phenylalanine and N-(carbobenzyloxy)-l-aspartic acid-β-benzyl ester derivatives as potent topoisomerase IIα inhibitors.

    PubMed

    Han, Xiaoyan; Zhong, Yifan; Zhou, Guan; Qi, Hui; Li, Shengbin; Ding, Qiang; Liu, Zhenming; Song, Yali; Qiao, Xiaoqiang

    2017-06-15

    A new series of thirteen N-(carbobenzyloxy)-l-phenylalanine and N-(carbobenzyloxy)-l-aspartic acid-β-benzyl ester compounds were synthesized and evaluated for antiproliferative activity against four different human cancer cell lines: cervical cancer (HeLa), lung cancer (A549), gastric cancer (MGC-803) and breast cancer (MCF-7) as well as topoisomerase I and IIα inhibitory activity. Compounds (5a, 5b, 5e, 8a, 8b) showed significant antiproliferative activity with low IC 50 values against the four cancer cell lines. Equally, compounds 5a, 5b, 5e, 5f, 8a, 8d, 8e and 8f showed topoisomerase IIα inhibitory activity at 100μM with 5b, 5e, 8f exhibiting potential topoisomerase IIα inhibitory activity compared to positive control at 100μM and 20μM, respectively. Conversely compounds 5e, 5f, 5g and 8a showed weaker topoisomerase I inhibitory activity compared to positive control at 100μM. Compound 5b exhibited the most potent topoisomerase IIα inhibitory activity at low concentration and better antiproliferative activity against the four human cancer cell lines. The molecular interactions between compounds 5a-5g, 8a-8f and the topoisomerase IIα (PDB ID: 1ZXM) were further investigated through molecular docking. The results indicated that these compounds could serve as promising leads for further optimization as novel antitumor agents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Synthesis and biological evaluation of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases.

    PubMed

    Vicini, Paola; Geronikaki, Athina; Incerti, Matteo; Busonera, Bernadetta; Poni, Graziella; Cabras, Carla Alba; La Colla, Paolo

    2003-11-03

    Three new series of benzo[d]isothiazole, benzothiazole and thiazole Schiff bases were synthesized and tested in vitro with the aim of identifying novel lead compounds active against emergent and re-emergent human and cattle infectious diseases (AIDS, hepatitis B and C, tuberculosis, bovine viral diarrhoea) or against drug-resistant cancers (leukaemia, carcinoma, melanoma, MDR tumors) for which no definitive cure or efficacious vaccine is available at present. In particular, these compounds were evaluated in vitro against representatives of different virus classes, such as a HIV-1 (Retrovirus), a HBV (Hepadnavirus) and the single-stranded RNA(+) viruses Yellow fever virus (YFV) and Bovine viral diarrhoea virus (BVDV), both belonging to Flaviviridae. Title compounds were also tested against representatives of Gram-positive and Gram-negative bacteria (Staphylococcus aureus, Salmonella spp.), various atypic mycobacterial strains (Mycobacterium fortuitum and Mycobacterium smegmatis), yeast (Candida albicans) and mould (Aspergillus fumigatus). None of the compounds showed antiviral or antimicrobial activity. The benzo[d]isothiazole compounds showed a marked cytotoxicity (CC(50)=4-9 microM) against the human CD4(+) lymphocytes (MT-4) that were used to support HIV-1 growth. For this reason, the most cytotoxic compounds of this series were evaluated for their antiproliferative activity against a panel of human cell lines derived from haematological and solid tumors. The results highlighted that all the benzo[d]isothiazole derivatives inhibited the growth of leukaemia cell lines, whereas only one of the above mentioned compounds (1e) showed antiproliferative activity against two solid tumor-derived cell lines.

  13. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood–brain barrier model for drug permeability studies

    PubMed Central

    2013-01-01

    Background Reliable human in vitro blood–brain barrier (BBB) models suitable for high-throughput screening are urgently needed in early drug discovery and development for assessing the ability of promising bioactive compounds to overcome the BBB. To establish an improved human in vitro BBB model, we compared four currently available and well characterized immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, with respect to barrier tightness and paracellular permeability. Co-culture systems using immortalized human astrocytes (SVG-A cell line) and immortalized human pericytes (HBPCT cell line) were designed with the aim of positively influencing barrier tightness. Methods Tight junction (TJ) formation was assessed by transendothelial electrical resistance (TEER) measurements using a conventional epithelial voltohmmeter (EVOM) and an automated CellZscope system which records TEER and cell layer capacitance (CCL) in real-time. Paracellular permeability was assessed using two fluorescent marker compounds with low BBB penetration (sodium fluorescein (Na-F) and lucifer yellow (LY)). Conditions were optimized for each endothelial cell line by screening a series of 24-well tissue culture inserts from different providers. For hBMEC cells, further optimization was carried out by varying coating material, coating procedure, cell seeding density, and growth media composition. Biochemical characterization of cell type-specific transmembrane adherens junction protein VE-cadherin and of TJ proteins ZO-1 and claudin-5 were carried out for each endothelial cell line. In addition, immunostaining for ZO-1 in hBMEC cell line was performed. Results The four cell lines all expressed the endothelial cell type-specific adherens junction protein VE-cadherin. The TJ protein ZO-1 was expressed in hCMEC/D3 and in hBMEC cells. ZO-1 expression could be confirmed in hBMEC cells by immunocytochemical staining. Claudin-5 expression was detected in hCMEC/D3, TY10, and at a very low level in hBMEC cells. Highest TEER values and lowest paracellular permeability for Na-F and LY were obtained with mono-cultures of hBMEC cell line when cultivated on 24-well tissue culture inserts from Greiner Bio-one® (transparent PET membrane, 3.0 μm pore size). In co-culture models with SVG-A and HBPCT cells, no increase of TEER could be observed, suggesting that none of the investigated endothelial cell lines responded positively to stimuli from immortalized astrocytic or pericytic cells. Conclusions Under the conditions examined in our experiments, hBMEC proved to be the most suitable human cell line for an in vitro BBB model concerning barrier tightness in a 24-well mono-culture system intended for higher throughput. This BBB model is being validated with several compounds (known to cross or not to cross the BBB), and will potentially be selected for the assessment of BBB permeation of bioactive natural products. PMID:24262108

  14. Comparative study of four immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, and optimization of culture conditions, for an in vitro blood-brain barrier model for drug permeability studies.

    PubMed

    Eigenmann, Daniela E; Xue, Gongda; Kim, Kwang S; Moses, Ashlee V; Hamburger, Matthias; Oufir, Mouhssin

    2013-11-22

    Reliable human in vitro blood-brain barrier (BBB) models suitable for high-throughput screening are urgently needed in early drug discovery and development for assessing the ability of promising bioactive compounds to overcome the BBB. To establish an improved human in vitro BBB model, we compared four currently available and well characterized immortalized human brain capillary endothelial cell lines, hCMEC/D3, hBMEC, TY10, and BB19, with respect to barrier tightness and paracellular permeability. Co-culture systems using immortalized human astrocytes (SVG-A cell line) and immortalized human pericytes (HBPCT cell line) were designed with the aim of positively influencing barrier tightness. Tight junction (TJ) formation was assessed by transendothelial electrical resistance (TEER) measurements using a conventional epithelial voltohmmeter (EVOM) and an automated CellZscope system which records TEER and cell layer capacitance (CCL) in real-time.Paracellular permeability was assessed using two fluorescent marker compounds with low BBB penetration (sodium fluorescein (Na-F) and lucifer yellow (LY)). Conditions were optimized for each endothelial cell line by screening a series of 24-well tissue culture inserts from different providers. For hBMEC cells, further optimization was carried out by varying coating material, coating procedure, cell seeding density, and growth media composition. Biochemical characterization of cell type-specific transmembrane adherens junction protein VE-cadherin and of TJ proteins ZO-1 and claudin-5 were carried out for each endothelial cell line. In addition, immunostaining for ZO-1 in hBMEC cell line was performed. The four cell lines all expressed the endothelial cell type-specific adherens junction protein VE-cadherin. The TJ protein ZO-1 was expressed in hCMEC/D3 and in hBMEC cells. ZO-1 expression could be confirmed in hBMEC cells by immunocytochemical staining. Claudin-5 expression was detected in hCMEC/D3, TY10, and at a very low level in hBMEC cells. Highest TEER values and lowest paracellular permeability for Na-F and LY were obtained with mono-cultures of hBMEC cell line when cultivated on 24-well tissue culture inserts from Greiner Bio-one® (transparent PET membrane, 3.0 μm pore size). In co-culture models with SVG-A and HBPCT cells, no increase of TEER could be observed, suggesting that none of the investigated endothelial cell lines responded positively to stimuli from immortalized astrocytic or pericytic cells. Under the conditions examined in our experiments, hBMEC proved to be the most suitable human cell line for an in vitro BBB model concerning barrier tightness in a 24-well mono-culture system intended for higher throughput. This BBB model is being validated with several compounds (known to cross or not to cross the BBB), and will potentially be selected for the assessment of BBB permeation of bioactive natural products.

  15. New iridoids from Verbascum nobile and their effect on lectin-induced T cell activation and proliferation.

    PubMed

    Dimitrova, Petya; Alipieva, Kalina; Grozdanova, Tsvetinka; Simova, Svetlana; Bankova, Vassya; Georgiev, Milen I; Popova, Milena P

    2018-01-01

    The Verbascum species are widely used traditional herb remedies against respiratory, inflammatory conditions and disorders. In the present study methanol extract of the aerial parts of the endemic Verbascum nobile Velen, was investigated and two novel iridoid glycosides 1 and 2, together with nine known constituents: iridoids, phenylethanoids, and saponins characteristic of Verbascum genus were identified. Further, the biological activity of the extract and selected isolated compounds on concanavalin (Con A)-induced T cell proliferation and activation of human Jurkat T cell line and splenic murine CD3 T cells was evaluated. T cell growth was studied by colorimetric-based WST proliferation assay while DNA content, cell cycling, dynamic of cell proliferation, expression of activation markers, intracellular expression of cytokine IFN-γ, and phosphorylation of ERK were analyzed by flow cytometry. Caspase-mediated apoptosis resulting in a poly (ADP-ribose) polymerase (PARP) cleavage was assessed by colorimetric in-cell kit. It was found that the extract, and all tested compounds (1, 2, 3 and 9) inhibited lectin-induced cell growth of Jurkat T cell line. The novel compounds decreased the frequencies of cells in S phase without causing a significant cell cycle arrest at G1 phase, caspases-mediated apoptosis and/or a profound change in the dynamic of splenic murine CD3 + T cell proliferation. Both compounds showed stronger inhibitory effect on Con A-induced ERK phosphorylation than the known bioactive compounds 3 and 9, and suppressed the expression of early activation marker CD69, the intracellular level of IFN-γ, and the generation of CD3 + IFN-γ + effectors. Our data suggest that the novel iridoid glycosides might have a potential to modulate T cell-related pathologies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Cytotoxicity of isolated compounds from the extracts of Struchium sparganophora (Linn) Ktze asteraceae.

    PubMed

    Kasim, Lateef Saka; Ferro, Valerie; Odukoya, Oluwakemi A; Ukpo, Grace Eigbibhalu; Seidel, Veronique; Gray, Alexander I; Waigh, Roger

    2011-10-01

    Chemical investigation of the leaves of Struchium sparganophora by the application of VLC, CL and PTLC resulted in isolation of three compounds. The cytotoxicity activity of these compounds on malignant human cultured cells was examined. Vernodalin showed a significant cytotoxic activity on the melanoma and ovarian cancer cell lines (P<0.05) while the conjugated 3 methyl, 2, 6 hexacosedienol and luteolin caused cell death after 48h reculture without them. These compounds portend an effective remedy if subjected to structural modification to enhance its' efficacy and the dietary importance of this plant as a culinary herb in west Africa countries is evidence by the presence of these antitumour compounds in this plant.

  17. Natural Bizbenzoquinoline Derivatives Protect Zebrafish Lateral Line Sensory Hair Cells from Aminoglycoside Toxicity.

    PubMed

    Kruger, Matthew; Boney, Robert; Ordoobadi, Alexander J; Sommers, Thomas F; Trapani, Josef G; Coffin, Allison B

    2016-01-01

    Moderate to severe hearing loss affects 360 million people worldwide and most often results from damage to sensory hair cells. Hair cell damage can result from aging, genetic mutations, excess noise exposure, and certain medications including aminoglycoside antibiotics. Aminoglycosides are effective at treating infections associated with cystic fibrosis and other life-threatening conditions such as sepsis, but cause hearing loss in 20-30% of patients. It is therefore imperative to develop new therapies to combat hearing loss and allow safe use of these potent antibiotics. We approach this drug discovery question using the larval zebrafish lateral line because zebrafish hair cells are structurally and functionally similar to mammalian inner ear hair cells and respond similarly to toxins. We screened a library of 502 natural compounds in order to identify novel hair cell protectants. Our screen identified four bisbenzylisoquinoline derivatives: berbamine, E6 berbamine, hernandezine, and isotetrandrine, each of which robustly protected hair cells from aminoglycoside-induced damage. Using fluorescence microscopy and electrophysiology, we demonstrated that the natural compounds confer protection by reducing antibiotic uptake into hair cells and showed that hair cells remain functional during and after incubation in E6 berbamine. We also determined that these natural compounds do not reduce antibiotic efficacy. Together, these natural compounds represent a novel source of possible otoprotective drugs that may offer therapeutic options for patients receiving aminoglycoside treatment.

  18. Natural Bizbenzoquinoline Derivatives Protect Zebrafish Lateral Line Sensory Hair Cells from Aminoglycoside Toxicity

    PubMed Central

    Kruger, Matthew; Boney, Robert; Ordoobadi, Alexander J.; Sommers, Thomas F.; Trapani, Josef G.; Coffin, Allison B.

    2016-01-01

    Moderate to severe hearing loss affects 360 million people worldwide and most often results from damage to sensory hair cells. Hair cell damage can result from aging, genetic mutations, excess noise exposure, and certain medications including aminoglycoside antibiotics. Aminoglycosides are effective at treating infections associated with cystic fibrosis and other life-threatening conditions such as sepsis, but cause hearing loss in 20–30% of patients. It is therefore imperative to develop new therapies to combat hearing loss and allow safe use of these potent antibiotics. We approach this drug discovery question using the larval zebrafish lateral line because zebrafish hair cells are structurally and functionally similar to mammalian inner ear hair cells and respond similarly to toxins. We screened a library of 502 natural compounds in order to identify novel hair cell protectants. Our screen identified four bisbenzylisoquinoline derivatives: berbamine, E6 berbamine, hernandezine, and isotetrandrine, each of which robustly protected hair cells from aminoglycoside-induced damage. Using fluorescence microscopy and electrophysiology, we demonstrated that the natural compounds confer protection by reducing antibiotic uptake into hair cells and showed that hair cells remain functional during and after incubation in E6 berbamine. We also determined that these natural compounds do not reduce antibiotic efficacy. Together, these natural compounds represent a novel source of possible otoprotective drugs that may offer therapeutic options for patients receiving aminoglycoside treatment. PMID:27065807

  19. Structure-Activity Relationships of Nitro-Substituted Aroylhydrazone Iron Chelators with Antioxidant and Antiproliferative Activities.

    PubMed

    Hrušková, Kateřina; Potůčková, Eliška; Opálka, Lukáš; Hergeselová, Tereza; Hašková, Pavlína; Kovaříková, Petra; Šimůnek, Tomáš; Vávrová, Kateřina

    2018-05-23

    Aroylhydrazone iron chelators such as salicylaldehyde isonicotinoyl hydrazone (SIH) protect various cells against oxidative injury and display antineoplastic activities. Previous studies have shown that a nitro-substituted hydrazone, namely, NHAPI, displayed markedly improved plasma stability, selective antitumor activity, and moderate antioxidant properties. In this study, we prepared four series of novel NHAPI derivatives and explored their iron chelation activities, anti- or pro-oxidant effects, protection against model oxidative injury in the H9c2 cell line derived from rat embryonic cardiac myoblasts, cytotoxicities to the corresponding noncancerous H9c2 cells, and antiproliferative activities against the MCF-7 human breast adenocarcinoma and HL-60 human promyelocytic leukemia cell lines. Nitro substitution had both negative and positive effects on the examined properties, and we identified new structure-activity relationships. Naphthyl and biphenyl derivatives showed selective antiproliferative action, particularly in the breast adenocarcinoma MCF-7 cell line, where they exceeded the selectivity of the parent compound NHAPI. Of particular interest is a compound prepared from 2-hydroxy-5-methyl-3-nitroacetophenone and biphenyl-4-carbohydrazide, which protected cardiomyoblasts against oxidative injury at 1.8 ± 1.2 μM with 24-fold higher selectivity than SIH. These compounds will serve as leads for further structural optimization and mechanistic studies.

  20. Glycophenotype of breast and prostate cancer stem cells treated with thieno[2,3-b]pyridine anticancer compound.

    PubMed

    Mastelić, Angela; Čikeš Čulić, Vedrana; Režić Mužinić, Nikolina; Vuica-Ross, Milena; Barker, David; Leung, Euphemia Y; Reynisson, Jóhannes; Markotić, Anita

    2017-01-01

    Tumor progression may be driven by a small subpopulation of cancer stem cells (CSCs characterized by CD44 + /CD24 - phenotype). We investigated the influence of a newly developed thienopyridine anticancer compound (3-amino-5-oxo- N -naphthyl-5,6,7, 8-tetrahydrothieno[2,3- b ]quinoline-2-carboxamide, 1 ) on the growth, survival and glycophenotype (CD15s and GM3 containing neuraminic acid substituted with acetyl residue, NeuAc) of breast and prostate cancer stem/progenitor-like cell population. MDA-MB-231 and Du-145 cells were incubated with compound 1 alone or in combination with paclitaxel. The cellular metabolic activity was determined by the 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. The type of cell death induced by 48-h treatment was assessed using a combination of Annexin-V-FITC and propidium iodide staining. Flow cytometric analysis was performed to detect the percentage of CD44 + /CD24 - cells, and GM3 and CD15s positive CSCs, as well as the expression of GM3 and CD15s per one CSC, in both cell lines. Compound 1 produces a dose- and time-dependent cytotoxicity, mediated mainly by apoptosis in breast cancer cells, and slightly (2.3%) but statistically significant lowering breast CSC subpopulation. GM3 expression per one breast CSC was increased, and the percentage of prostate GM3 + CSC subpopulation was decreased in cells treated with compound 1 compared with non-treated cells. The percentage of CD15s + CSCs was lower in both cell lines after treatment with compound 1 . Considering that triple-negative breast cancers are characterized by an increased percentage of breast CSCs and knowing their association with an increased risk of metastasis and mortality, compound 1 is a potentially effective drug for triple-negative breast cancer treatment.

  1. Cytotoxic Flavones from the Stem Bark of Bougainvillea spectabilis Willd.

    PubMed

    Do, Lien T M; Aree, Thammarat; Siripong, Pongpun; Vo, Nga T; Nguyen, Tuyet T A; Nguyen, Phung K P; Tip-Pyang, Santi

    2018-01-01

    Five new flavones possessing a fully substituted A-ring with C-6 and C-8 methyl groups, bougainvinones I - M (1: -5: ), along with three known congeners, 2'-hydroxydemethoxymatteucinol (6: ), 5,7,3',4'-tetrahydroxy-3-methoxy-6,8-dimethylflavone (7: ) and 5,7,4'-trihydroxy-3-methoxy-6,8-dimethylflavone (8: ), were isolated from the EtOAc extract of the stem bark of Bougainvillea spectabilis . Their structures were established by means of spectroscopic data (ultraviolet, infrared, high-resolution electrospray ionization mass spectrometry, and one-dimensional and two-dimensional nuclear magnetic resonance) and single-crystal X-ray crystallographic analysis. The in vitro cytotoxicity of all isolated compounds against five cancer cell lines (KB, HeLa S-3, MCF-7, HT-29, and HepG2) was evaluated. Compound 5: showed promising cytotoxic activity against the KB and HeLa S-3 cell lines, with IC 50 values of 7.44 and 6.68 µM. The other compounds exhibited moderate cytotoxicity against the KB cell line. Georg Thieme Verlag KG Stuttgart · New York.

  2. Specific mechanism-based glycosidase inhibitors as chemoprotectants against ricin toxicity. Final report, 1 June 1991-31 August 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stohs, S.J.

    1992-09-15

    Ricin is prototypical of many protein toxins, and is one of the most toxic compounds known to man. At the present time, no specific treatment is available for protein toxin exposure. Recent studies have shown that ricin exhibits a glycosidase activity which specifically removes an adenine base from rRNA, resulting in an inhibition of protein elongation and death of exposed animals. We have synthesized eight potential irreversible glycosidase inhibitors. The eight compounds were synthesized according to published methods, and the purities of the products were determined by melting point determination, elemental analysis, IR spectra, NMR spectra, and mass spectroscopy. Sufficientmore » quantities of each of the eight compounds were synthesized to test their chemoprotectant activity against ricin in two cell lines, namely, a macrophage J744A.1 cell line and a Chinese hamster ovary cell line. The release of lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) were assessed as parameters of cytotoxicity after treatment with ricin or potential chemoprotectants. Alamine aminotransferase (ALT) was shown not to be a useful assay of cytotoxicity.« less

  3. In vitro antiplasmodial and cytotoxic activities of sesquiterpene lactones from Vernonia fimbrillifera Less. (Asteraceae).

    PubMed

    Bordignon, Annélise; Frédérich, Michel; Ledoux, Allison; Campos, Pierre-Eric; Clerc, Patricia; Hermann, Thomas; Quetin-Leclercq, Joëlle; Cieckiewicz, Ewa

    2018-06-01

    Due to the in vitro antiplasmodial activity of leaf extracts from Vernonia fimbrillifera Less. (Asteraceae), a bioactivity-guided fractionation was carried out. Three sesquiterpene lactones were isolated, namely 8-(4'-hydroxymethacrylate)-dehydromelitensin (1), onopordopicrin (2) and 8α-[4'-hydroxymethacryloyloxy]-4-epi-sonchucarpolide (3). Their structures were elucidated by spectroscopic methods (1D and 2D NMR and MS analyses) and by comparison with published data. The isolated compounds exhibited antiplasmodial activity with IC 50 values ≤ 5 μg/mL. Cytotoxicity of the compounds against a human cancer cell line (HeLa) and a mouse lung epithelial cell line (MLE12) was assessed to determine selectivity. Compound 3 displayed promising selective antiplasmodial activity (SI > 10).

  4. Synthesis of novel ring-contracted artemisinin dimers with potent anticancer activities.

    PubMed

    Zhang, Ning; Yu, Zhimei; Yang, Xiaohong; Hu, Ping; He, Yun

    2018-04-25

    Artemisinin is a potential anticancer agent with an interesting trioxane sesquiterpene structure. In order to improve the biological activity and metabolic stability of artemisinin, a series of novel ring-contracted artemisinin dimers were synthesized. These dimers were evaluated by MTT assay against six cancer cell lines. Most of the dimmers exhibited improved antiproliferative activities over artemisinin. Especially, compound 8b showed the most pronounced anti-cancer activity for PC12 cancer cells with an IC 50 value of 1.56 μM. Thus, PC12 cancer cells were used to further investigate the mechanism of antiproliferation for this series of compounds. Compound 8b arrested cell cycle at G1 phase and induced cell apoptosis via up-regulation of Bad, Bax, caspase-3 and caspase-9 protein expressions while inhibiting the expression of Bcl-xL. The present studies are the first to synthesize the ring-contracted artemisinin as dimers and show that these dimers have potent anti-tumor activities against several cancer cell lines. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Subcellular localization patterns and their relationship to photodynamic activity of pyropheophorbide-a derivatives.

    PubMed

    MacDonald, I J; Morgan, J; Bellnier, D A; Paszkiewicz, G M; Whitaker, J E; Litchfield, D J; Dougherty, T J

    1999-11-01

    To determine if subcellular localization is important to photodynamic therapy (PDT) efficacy, an in vitro fluorescence microscopy study was conducted with a congeneric series of pyropheophorbide-a derivatives in human pharyngeal squamous cell carcinoma (FaDu) cells and murine radiation-induced fibrosarcoma (RIF) mutant cells. In the FaDu cells the octyl, decyl and dodecyl ether derivatives localized to the lysosomes at extracellular concentrations less than needed to produce a 50% cell kill (LD50). At extracellular concentrations equal or greater than the LD50 the compounds localized mainly to mitochondria. The propyl, pentyl, hexyl and heptyl ether derivatives localized mainly to the mitochondria at all concentrations studied. This suggested that mitochondria are a sensitive PDT target for these derivatives. Similar experiments were performed with two Photofrin-PDT resistant RIF cell lines, one of which was found to be resistant to hexyl ether derivative (C6) mediated-PDT and the other sensitive to C6-PDT relative to the parent line. At extracellular concentrations of C6 below the LD50 of each cell line, the mutants exhibited lysosomal localization. At concentrations above these values the patterns shifted to a mainly mitochondrial pattern. In these cell lines mitochondrial localization also correlated with PDT sensitivity. Localization to mitochondria or lysosomes appeared to be affected by the aggregation state of the congeners, all of which are highly aggregated in aqueous medium. Monomers apparently were the active fraction of these compounds because equalizing the extracellular monomer concentrations produced equivalent intracellular concentrations, photoxicity and localization patterns. Compounds that were mainly aggregates localized to the lysosomes where they were rendered less active. Mitochondria appear to be a sensitive target for pyropheophorbide-a-mediated photodamage, and the degree of aggregation seems to be a determinant of the localization site.

  6. Nitrophenols isolated from diesel exhaust particles promote the growth of MCF-7 breast adenocarcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuta, Chie; Laboratory of Veterinary Physiology, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509; Suzuki, Akira K.

    2008-08-01

    Diesel exhaust particles (DEPs) cause many adverse health problems, and reports indicate increased risk of breast cancer in men and women through exposure to gasoline and vehicle exhaust. However, DEPs include vast numbers of compounds, and the specific compound(s) responsible for these actions are not clear. We recently isolated two nitrophenols from DEPs-3-methyl-4-nitrophenol (4-nitro-m-cresol; PNMC) and 4-nitro-3-phenylphenol (PNMPP)-and showed that they had estrogenic and anti-androgenic activities. Here, we tried to clarify the involvement of these two nitrophenols in promoting the growth of the MCF-7 breast cancer cell line. First, comet assay was used to detect the genotoxicity of PNMC andmore » PNMPP in a CHO cell line. At all doses tested, PNMC and PNMPP showed negative genotoxicity, indicating that they had no tumor initiating activity. Next, the estrogen-responsive breast cancer cell line MCF-7 was used to assess cell proliferation. Proliferation of MCF-7 cells was stimulated by PNMC, PNMPP, and estradiol-17{beta} and the anti-estrogens 4-hydroxytamoxifen and ICI 182,780 inhibited the proliferation. To further investigate transcriptional activity through the estrogen receptor, MCF-7 cells were transfected with a receptor gene that allowed expression of luciferase enzyme under the control of the estrogen regulatory element. PNMC and PNMPP induced luciferase activity in a dose-dependent manner at submicromolar concentrations. ICI 182,780 inhibited the luciferase activity induced by PNMC and PNMPP. These results clearly indicate that PNMC and PNMPP do not show genotoxicity but act as tumor promoters in an estrogen receptor {alpha}-predominant breast cancer cell line.« less

  7. Characterization of the Apoptotic Response Induced by the Cyanine Dye D112: A Potentially Selective Anti-Cancer Compound

    PubMed Central

    Yang, Ning; Gilman, Paul; Mirzayans, Razmik; Sun, Xuejun; Touret, Nicolas; Weinfeld, Michael; Goping, Ing Swie

    2015-01-01

    Chemotherapeutic drugs that are used in anti-cancer treatments often cause the death of both cancerous and noncancerous cells. This non-selective toxicity is the root cause of untoward side effects that limits the effectiveness of therapy. In order to improve chemotherapeutic options for cancer patients, there is a need to identify novel compounds with higher discrimination for cancer cells. In the past, methine dyes that increase the sensitivity of photographic emulsions have been investigated for anti-cancer properties. In the 1970's, Kodak Laboratories initiated a screen of approximately 7000 dye structural variants for selective toxicity. Among these, D112 was identified as a promising compound with elevated toxicity against a colon cancer cell line in comparison to a non-transformed cell line. Despite these results changing industry priorities led to a halt in further studies on D112. We decided to revive investigations on D112 and have further characterized D112-induced cellular toxicity. We identified that in response to D112 treatment, the T-cell leukemia cell line Jurkat showed caspase activation, mitochondrial depolarization, and phosphatidylserine externalization, all of which are hallmarks of apoptosis. Chemical inhibition of caspase enzymatic activity and blockade of the mitochondrial pathway through Bcl-2 expression inhibited D112-induced apoptosis. At lower concentrations, D112 induced growth arrest. To gain insight into the molecular mechanism of D112 induced mitochondrial dysfunction, we analyzed the intracellular localization of D112, and found that D112 associated with mitochondria. Interestingly, in the cell lines that we tested, D112 showed increased toxicity toward transformed versus non-transformed cells. Results from this work identify D112 as a potentially interesting molecule warranting further investigation. PMID:25927702

  8. Mechanisms of acquired resistance to the quinazoline thymidylate synthase inhibitor ZD1694 (Tomudex) in one mouse and three human cell lines.

    PubMed Central

    Jackman, A. L.; Kelland, L. R.; Kimbell, R.; Brown, M.; Gibson, W.; Aherne, G. W.; Hardcastle, A.; Boyle, F. T.

    1995-01-01

    Four cell lines, the mouse L1210 leukaemia, the human W1L2 lymphoblastoid and two human ovarian (CH1 and 41M) cell lines, were made resistant to ZD1694 (Tomudex) by continual exposure to incremental doses of the drug. A 500-fold increase in thymidylate synthase (TS) activity is the primary mechanism of resistance to ZD1694 in the W1L2:RD1694 cell line, which is consequently highly cross-resistant to other folate-based TS inhibitors, including BW1843U89, LY231514 and AG337, but sensitive to antifolates with other enzyme targets. The CH1:RD1694 cell line is 14-fold resistant to ZD1694, largely accounted for by the 4.2-fold increase in TS activity. Cross-resistance was observed to other TS inhibitors, including 5-fluorodeoxyuridine (FdUrd). 41M:RD1694 cells, when exposed to 0.1 microM [3H]ZD1694, accumulated approximately 20-fold less 3H-labelled material over 24 h than the parental line. Data are consistent with this being the result of impaired transport of the drug via the reduced folate/methotrexate carrier. Resistance was therefore observed to methotrexate but not to CB3717, a compound known to use this transport mechanism poorly. The mouse L1210:RD1694 cell line does not accumulate ZD1694 or Methotrexate (MTX) polyglutamates. Folylpolyglutamate synthetase substrate activity (using ZD1694 as the substrate) was decreased to approximately 13% of that observed in the parental line. Cross-resistance was found to those compounds known to be active through polyglutamation. PMID:7537518

  9. Determination of psychostimulants and their metabolites by electrochemistry linked on-line to flowing atmospheric pressure afterglow mass spectrometry.

    PubMed

    Smoluch, Marek; Mielczarek, Przemyslaw; Reszke, Edward; Hieftje, Gary M; Silberring, Jerzy

    2014-09-07

    The flowing atmospheric pressure afterglow (FAPA) ion source operates in the ambient atmosphere and has been proven to be a promising tool for direct and rapid determination of numerous compounds. Here we linked a FAPA-MS system to an electrochemical flow cell for the identification of drug metabolites generated electrochemically in order to study simulated metabolic pathways. Psychostimulants and their metabolites produced by electrochemistry (EC) were detected on-line by FAPA-MS. The FAPA source has never been used before for an on-line connection with liquid flow, neither for identification of products generated in an electrochemical flow cell. The system was optimized to achieve the highest ionization efficiency by adjusting several parameters, including distances and angles between the ion source and the outlet of the EC system, the high voltage for plasma generation, flow-rates, and EC parameters. Simulated metabolites from tested compounds [methamphetamine (MAF), para-methoxy-N-methylamphetamine (PMMA), dextromethorphan (DXM), and benzydamine (BAM)] were formed in the EC cell at various pH levels. In all cases the main products were oxidized substrates and compounds after N-demethylation. Generation of such products and their thorough on-line identification confirm that the cytochrome P450 - driven metabolism of pharmaceuticals can be efficiently simulated in an electrochemical cell; this approach may serve as a step towards predictive pharmacology using a fast and robust design.

  10. Antiproliferative activity of Haematoxylum brasiletto H. Karst

    PubMed Central

    Bello-Martínez, J; Jiménez-Estrada, M; Rosas-Acevedo, JL; Avila-Caballero, LP; Vidal-Gutierrez, M; Patiño-Morales, C; Ortiz-Sánchez, E; Robles-Zepeda, RE

    2017-01-01

    Background: Haematoxylum brasiletto is a tree that grows in Central America, commonly known as “Palo de Brasil,” which is used in the traditional medicine for the treatment of cancer and gastric ulcers. Objective: The aim of this study was to isolate the compounds responsible for antiproliferative activity of H. brasiletto. Materials and Methods: A bioassay-guided fractionation of ethanol extract of H. brasiletto was performed using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide cell proliferation assay to measure the antiproliferative activity on six human cancer cell lines (A549, LS180, HeLa, SiHa, MDA-MB-231, and NCI-H1299) and one human noncancer cell line (ARPE-19). The ethanol extract was partitioned with hexane, dichloromethane, and ethyl acetate. The active dichloromethane fraction was fractioned by silica-column chromatography, and active subfractions were separated using preparative-thin layer chromatography. The chemical structure of an isolated compound was elucidated with different chemical and spectroscopic methods. Results: The flavonoid brazilin (1) was isolated from the heartwood of H. brasiletto. The measurement of antiproliferative activity showed that brazilin can inhibit the growth of SiHa, MDA-MB-231, A549, and NCI-H1299 cell lines by 50% at doses of 44.3, 48.7, 45.4, and 48.7 μM, respectively. Furthermore, the flavonoid showed a high antiproliferative activity on LS 180 and HeLa with IC50 values of 62.2 and 71.9 μM, respectively. Brazilin also exhibited a high antiproliferative activity on the human noncancer cell line ARPE-19 with an IC50 value of 37.9 μM. Conclusions: Brazilin: (6aS, 11bR)-7,11b-Dihidro-6H-indeno[2,1-c] cromeno-3,6a, 9,10-tetrol was isolated; this compound demonstrated antiproliferative activity against several human cancer cell lines. This work demonstrated that brazilin, a flavonoid isolated and characterized of H. brasiletto, has antiproliferative activity against cancer cell lines. SUMMARY The flavonoid brazilin was isolated from the heartwood of H. brasilettoBrazilin is able to inhibit the growth of SiHa, MDA-MB-231, A549 and NCI- H1299 cancerous cell linesBrazilin exhibited a moderate antiproliferative activity on the human non-cancer cell line ARPE-19Brazilin demonstrated to have antiproliferative activity against human cancer cell lines and could be a potential source of anticancer agents. Abbreviations used: MTT: [3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium]; FBS: Fetal bovine serum; TLC: Thin layer chromatography. PMID:28808394

  11. Cytotoxic effect of a family of peroxisome proliferator-activated receptor antagonists in colorectal and pancreatic cancer cell lines.

    PubMed

    Ammazzalorso, Alessandra; De Lellis, Laura; Florio, Rosalba; Bruno, Isabella; De Filippis, Barbara; Fantacuzzi, Marialuigia; Giampietro, Letizia; Maccallini, Cristina; Perconti, Silvia; Verginelli, Fabio; Cama, Alessandro; Amoroso, Rosa

    2017-11-01

    Recent studies report an interesting role of peroxisome proliferator-activated receptor (PPAR) antagonists in different tumor models, being these compounds able to perturb metabolism and viability in cancer cells. In this work, the identification of a novel PPAR antagonist, showing inhibitory activity on PPARα and a weaker antagonism on PPARγ, is described. The activity of this compound and of a series of chemical analogues was investigated in selected tumor cell lines, expressing both PPARα and PPARγ. Data obtained show a dose-dependent cytotoxic effect of the novel PPAR antagonist in colorectal and pancreatic cancer models. © 2017 John Wiley & Sons A/S.

  12. Neuroprotective Ganglioside Derivatives

    DTIC Science & Technology

    2006-09-01

    SH - SY5Y human neuroblastoma cell line . Derivatives determined to have therapeutic potential are tested in vitro for their...to be cytoprotective in in vitro models using the dopaminergic neurotoxin, 1-methyl-4-phenylpyridinium (MPP+) and the SH - SY5Y cell line . Derivatives...action of these two compounds remains unknown. The ability of GM1 (no preincubation) to protect RA- differentiated SH - SY5Y cells from MPP+

  13. [Study on secondary metabolites of marine fungus Penicillium sp. FS60 from the South China Sea].

    PubMed

    Zhang, Ling; Li, Dong-Li; Chen, Yu-Chan; Tao, Mei-Hua; Zhang, Wei-Min

    2012-07-01

    To study the secondary metabolites of the marine fungus Penicillium sp. FS60 from the South China Sea and their cytotoxicities. The compounds were isolated from the culture of strain FS60 by various chromatographic methods (silica gel, reverse silica gel, Sephadex-LH20, preparative TLC, HPLC and PTLC) and recrystallization. Their structures were identified by extensive analysis of their spectroscopic data. Compounds were tested for their cytotoxicities against SF-268, MCF-7, and NCI-H460 cell lines by SRB method. While, Compounds were tested for their antibacterial activities against S. aureus, E. coli and P. aeruginosa. Seven compounds were isolated from the culture and identified as methyl 2,4-dihydroxy-3,5,6-trimethylbenzoate (1), 4-hydroxyacetophenone (2), 5-hydroxymethyl-furoic acid (3), isochromophilones VIII (4), ergosterol (5), ergosterol peroxide (6), and cerevisterol (7). Compound 1 is isolated from the genus Penicillium for the first time. Compound 3 is demonstrated to have significant inhibition against S. aureus and P. aeruginosa. Compound 4 is demonstrated to have significant inhibition against the three cell lines.

  14. Synthesis, characterization, cytotoxicity, cell cycle analysis of 3-(4-methoxyphenyl)-1-(pyridin-2-ylmethyl)thiourea and quantum chemical analyses

    NASA Astrophysics Data System (ADS)

    Mushtaque, Md.; Avecilla, Fernando; Khan, Md. Shahzad; Hafeez, Zubair Bin; Rezvi, M. Moshahid A.; Srivastava, Anurag

    2017-08-01

    Thiourea derivative,3-(4-methoxyphenyl)-1-(pyridin-2-ylmethyl)thiourea, was synthesized. The structure of the synthesized compound (3) was elucidated by IR, UV-visible, 1H NMR, mass Spectrometry, and X-ray single crystal structure. The computational quantum chemical studies like, IR, UV, NBO analysis were performed by DFT with Becke-3-Lee-Yang- Parr (B3LYP) exchange-correlation functional in combination with 6-311++G(d,p) basis sets. It was observed experimentally and theoretically that compound (3) exhibited syn-anti-conformation around sulphur atom. The DNA-binding constant Kb was found 3.3 × 106 Lmol-1. The docking energy of compound (3) with 1BNA was found -6.2 kcal/mol. MTT-assay against HepG2 (IC50 = 140.39) and Siha (IC50 = 119.87 μM) cell lines revealed that compound (3) wasnon-toxic up to140.39 μM against HepG2 and 119.87 μM against Siha cells respectively. It was also found that compound (3) is non-toxic against normal human cell line HEK-293(IC50 = 148.67 μM). Cell cycle analyses displayed that treated HepG2 cells at 40 μM and 80 μM showed 65% and 70% arrest in G0/G1with respect to untreated controls (60%) and Siha cells at the same concentration displayed 59% and 65% arrest with respect to G0/G1 as compared to untreated control (45%).

  15. INHIBITION OF GAP JUNCTIONAL INTERCELLULAR COMMUNICATION BY PERFLUORINATED COMPOUNDS IN RAT LIVER AND DOLPHIN KIDNEY EPITHELIAL CELL LINES IN VITRO AND SPRAGUE-DAWLEY RATS IN VIVO

    EPA Science Inventory

    Abstract

    Gap Junctional Intercellular Communication (GJIC) is the major pathway of intercellular signal transduction, and is, thus, important for normal cell growth and function. Recent studies have revealed a global distribution of some perfluorinated organic compounds e...

  16. Synthesis and cytotoxic evaluation of some new 4(3H)-quinazolinones on HeLa cell line

    PubMed Central

    Khodarahmi, G.A.; Shamshiri, M.; Hassanzadeh, F.

    2012-01-01

    Quinazolinone backbone is present in a large number of bioactive substances. Since remarkable cytotoxic activity is associated with some 4(3H)-quinazolinones, in this study some 4(3H)-quinazolinone were synthesized and screened against HeLa cells. The synthesis was performed via reaction of anthranilic acid with dicarboxylic anhydrides to produce carboxylic acids derivatives. The products were heated in acetic anhydride to produce benzoxazinones. Finally, 4(3H)-quinazolinones were synthesized by reaction between benzoxazinones and primary amines. The assessment of the structure of the synthesized compounds was based on spectral data (FT-IR, Mass and 1HNMR). Subsequently, cytotoxic activity of compounds 3, 6, 9 and 13 (individually and in combination with doxorubicin) was evaluated on HeLa cell line using MTT assay. The results indicated that the tested compounds did not show significant cytotoxicity alone and in combination with doxorubicin (1 and 20 μM). PMID:23181089

  17. Synthesis and biological evaluation of novel alkyl diamine linked bivalent β-carbolines as angiogenesis inhibitors.

    PubMed

    Chen, Wei; Zhang, Guoxian; Guo, Liang; Fan, Wenxi; Ma, Qin; Zhang, Xiaodong; Du, Runlei; Cao, Rihui

    2016-11-29

    We have synthesized and evaluated a series of novel alkyl diamine linked bivalent β-carbolines as potent angiogenesis inhibitors. The results demonstrated that most bivalent β-carbolines exhibited significant antiproliferative effects against human umbilical vein cell lines EA.HY926. Compound 4m was found to be the most potent antiproliferative agent with IC 50 value of 2.16 μM against EA.HY926 cell lines. Mechanism investigations revealed that compound 4m could significantly inhibit EA.HY926 cells migration and tube formation in a dose-dependent manner. Moreover, compound 4m also showed obvious angiogenesis inhibitory effects in CAM assay, and the antiangiogenetic potency was more potent than the reference drug Endostar. The bivalent β-carbolines might be served as candidates for the development of vascular targeting antitumor drugs. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Antiproliferative and anti-inflammatory furostanol saponins from the rhizomes of Tupistra chinensis.

    PubMed

    Xiang, Limin; Wang, Yihai; Yi, Xiaomin; He, Xiangjiu

    2016-12-01

    Phytochemical investigations of the rhizome of Tupistra chinensis led to the isolation of ten new furostanol saponins along with fourteen known spirostanols. Their chemical structures were elucidated on the basis of spectroscopic and chemical methods, including IR, NMR, MS, and GC analyses. The antiproliferative effects against FaDu and Detroit 562 cell lines and inhibitory activities on nitric oxide (NO) production induced by lipopolysaccharide (LPS) in a macrophage cell line RAW 264.7 were assayed for all the isolated compounds. Compound 14 exhibited significant antiproliferative effects against FaDu and Detroit 562 cells with IC 50 values of 1.1±0.1 and 1.2±0.1μM, respectively. Compounds 1, 2, 6, 13, 16, 19 and 24 exhibited inhibitory effects on NO production with IC 50 values ranging from 15.7 to 46.2μM. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. [Screening of anti-lung cancer bioactive compounds from Curcuma longa by target cell extraction and UHPLC/LTQ Orbitrap MS].

    PubMed

    Zhou, Jian-Liang; Wu, Ye-Qing; Tan, Chun-Mei; Zhu, Ming; Ma, Lin-Ke

    2016-10-01

    A target cell extraction-chemical profiling method based on human alveolar adenocarcinoma cell line (A549 cells) and UHPLC/LTQ Orbitrap MS for screening the anti-lung cancer bioactive compounds from Curcuma longa has been developed in this paper. According to the hypothesis that when cells are incubated together with the extract of Curcuma longa, the potential bioactive compounds in the extract should selectively combine with the cells, then the cell-binding compounds could be separated and analyzed by LC-MS. The bioactive compounds in C. longa are lipophilic components. They intend to be absorbed on the inner wall of cell culture flask when they were incubated with A549 cells, which will produce interference in the blank solution. In this paper, by using cells digestion and multi-step centrifugation and transfer strategy, the interference problem has been solved. Finally, using the developed method, three cell-binding compounds were screened out and were identified as bisdemethoxycurcumin, demethoxycurcumin, and curcumin. These compounds are the main bioactive compounds with anti-lung cancer bioactivity in C. longa. The improved method developed in this paper could avoid the false positive results due to the absorption of lipophilic compounds on the inner wall of cell culture flask, which will to be an effective complementary method for current target cell extraction-chemical profiling technology. Copyright© by the Chinese Pharmaceutical Association.

  20. Protective Role of Selenium Compounds on the Proliferation, Apoptosis, and Angiogenesis of a Canine Breast Cancer Cell Line.

    PubMed

    Liu, Yuzhi; Li, Wenyu; Guo, Mengyao; Li, Chengye; Qiu, Changwei

    2016-01-01

    We herein examined the effects of different doses, forms, and compatibilities of selenium on a canine mammary gland tumor cell line, CTM1211, and explored the related mechanisms. Three selenium compounds, sodium selenite (SSE), methylseleninic acid (MSA), and methylselenocysteine (MSC), were selected for these experiments, and cyclophosphamide (CTX) served as a positive control. In the cell viability assay, the cell viability of each group at 48/72 h decreased significantly compared with the control group (p < 0.05), and the cell viability of the CTX + MSA group was lower than that of CTX and MSA groups (p < 0.05). Moreover, the inhibitory effect of selenium on cell proliferation was time-dependent but not concentration-dependent. In the cell apoptosis assay, the apoptosis values of each group increased significantly compared with the control group, and the apoptosis values of the CTX + MSA group increased the most significantly (p < 0.01). The protein and mRNA expression levels of vascular endothelial growth factor-alpha (VEGF-alpha), angiopoietin-2 (Ang-2), and hypoxia inducible factor-1 alpha (HIF-1 alpha) were downregulated in each group, while that of phosphatase and tensin homolog (PTEN) were upregulated (p < 0.05). In conclusion, these three selenium compounds, especially MSA, could significantly inhibit the viability and growth of the CTM1211 cell line, which is partly due to the induction of apoptosis and regulation of tumor angiogenesis.

  1. Antitumor Agents. 272. Structure–Activity Relationships and In Vivo Selective Anti-Breast Cancer Activity of Novel Neo-tanshinlactone Analogs

    PubMed Central

    Dong, Yizhou; Shi, Qian; Pai, Huei-Chen; Peng, Chieh-Yu; Pan, Shiow-Lin; Teng, Che-Ming; Nakagawa-Goto, Kyoko; Yu, Donglei; Liu, Yi-Nan; Wu, Pei-Chi; Bastow, Kenneth F.; Morris-Natschke, Susan L.; Brossi, Arnold; Lang, Jing-Yu; Hsu, Jennifer L.; Hung, Mien-Chie; Lee, Eva Y.-H. P.; Lee, Kuo-Hsiung

    2010-01-01

    Neo-tanshinlactone (1) and its previously reported analogs, such as 2, are potent and selective in vitro anti-breast cancer agents. The synthetic pathway to 2 was optimized from seven to five steps, with a better overall yield. Structure–activity relationships studies on these compounds revealed some key molecular determinants for this family of anti-breast agents. Several derivatives (19-21 and 24) exerted potent and selective anti-breast cancer activity with IC50 values of 0.3, 0.2, 0.1 and 0.1 μg/mL, respectively, against the ZR-75-1 cell lines. Compound 24 was two- to three-fold more potent than 1 against SK-BR-3 and ZR-75-1. Importantly, 21 exhibited high selectivity; it was 23 times more active against ZR-75-1 than MCF-7. Compound 20 had an approximately 12-fold ratio of SK-BR-3/MCF-7 selectivity. In addition, analog 2 showed potent activity against a ZR-75-1 xenograft model, but not PC-3 and MDA-MB-231 xenografts, as well as high selectivity against breast cancer cell line compared with normal breast tissue-derived cell lines. Further development of lead compounds 19-21 and 24 as clinical trial candidates is warranted. PMID:20148565

  2. Identification of pyrrolo[2,3-d]pyrimidines as potent HCK and FLT3-ITD dual inhibitors.

    PubMed

    Koda, Yasuko; Kikuzato, Ko; Mikuni, Junko; Tanaka, Akiko; Yuki, Hitomi; Honma, Teruki; Tomabechi, Yuri; Kukimoto-Niino, Mutsuko; Shirouzu, Mikako; Shirai, Fumiyuki; Koyama, Hiroo

    2017-11-15

    A series of novel pyrrolo[2,3-d]pyrimidines were synthesized by introducing 15 different amino acids to 7-cyclohexyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidine-4-amine. Compounds with potent activities against HCK and FLT3-ITD were evaluated in viability studies with acute myeloid leukemia cell line MV4-11. Our structure activity relationship analyses lead to the identification of compound 31, which exhibited potent HCK and FLT3-ITD inhibition and activity against the MV4-11 cell line. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Cytotoxic Steroids from the Vietnamese Soft Coral Sinularia conferta.

    PubMed

    Ngoc, Ninh Thi; Huong, Pham Thi Mai; Thanh, Nguyen Van; Chi, Nguyen Thi Phuong; Dang, Nguyen Hai; Cuong, Nguyen Xuan; Nam, Nguyen Hoai; Thung, Do Cong; Kiem, Phan Van; Minh, Chau Van

    2017-03-01

    Twelve steroids, including five new compounds 1-5, were isolated and structurally elucidated from a methanol extract of the Vietnamese soft coral Sinularia conferta. Their cytotoxic effects against three human cancer cell lines, lung carcinoma (A-549), cervical adenocarcinoma (HeLa), and pancreatic epithelioid carcinoma (PANC-1), were evaluated using 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assays. Among isolated compounds, 10 exhibited potent cytotoxic effects on all three tested cell lines with IC 50 values of 3.64±0.18, 19.34±0.42, and 1.78±0.69 µM, respectively.

  4. Constituents of the Rhizomes of Boesenbergia pandurata and Their Antiausterity Activities against the PANC-1 Human Pancreatic Cancer Line.

    PubMed

    Nguyen, Nhan Trung; Nguyen, Mai Thanh Thi; Nguyen, Hai Xuan; Dang, Phu Hoang; Dibwe, Dya Fita; Esumi, Hiroyasu; Awale, Suresh

    2017-01-27

    Human pancreatic cancer cell lines have a remarkable tolerance to nutrition starvation, which enables them to survive under a tumor microenvironment. The search for agents that preferentially inhibit the survival of cancer cells under low nutrient conditions represents a novel antiausterity strategy in anticancer drug discovery. In this investigation, a methanol extract of the rhizomes of Boesenbergia pandurata showed potent preferential cytotoxicity against PANC-1 human pancreatic cancer cells under nutrient-deprived conditions, with a PC 50 value of 6.6 μg/mL. Phytochemical investigation of this extract led to the isolation of 15 compounds, including eight new cyclohexene chalcones (1-8). The structures of the new compounds were elucidated by NMR spectroscopic data analysis. Among the isolated compounds obtained, isopanduratin A1 (14) and nicolaioidesin C (15) exhibited potent preferential cytotoxicity against PANC-1 human pancreatic cancer cells under nutrition-deprived conditions, with PC 50 values of 1.0 and 0.84 μM, respectively.

  5. Nanoliposomes for encapsulation and delivery of the potential antitumoral methyl 6-methoxy-3-(4-methoxyphenyl)-1 H-indole-2-carboxylate

    NASA Astrophysics Data System (ADS)

    Abreu, Ana S.; Castanheira, Elisabete Ms; Queiroz, Maria-João Rp; Ferreira, Paula Mt; Vale-Silva, Luís A.; Pinto, Eugénia

    2011-08-01

    A potential antitumoral fluorescent indole derivative, methyl 6-methoxy-3-(4-methoxyphenyl)-1 H-indole-2-carboxylate, was evaluated for the in vitro cell growth inhibition on three human tumor cell lines, MCF-7 (breast adenocarcinoma), A375-C5 (melanoma), and NCI-H460 (non-small cell lung cancer), after a continuous exposure of 48 h, exhibiting very low GI50 values for all the cell lines tested (0.25 to 0.33 μM). This compound was encapsulated in different nanosized liposome formulations, containing egg lecithin (Egg-PC), dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylglycerol (DPPG), DSPC, cholesterol, dihexadecyl phosphate, and DSPE-PEG. Dynamic light scattering measurements showed that nanoliposomes with the encapsulated compound are generally monodisperse and with hydrodynamic diameters lower than 120 nm, good stability and zeta potential values lower than -18 mV. Dialysis experiments allowed to monitor compound diffusion through the lipid membrane, from DPPC/DPPG donor liposomes to NBD-labelled lipid/DPPC/DPPG acceptor liposomes.

  6. Crispoic acid, a new compound from Laelia marginata (Orchidaceae), and biological evaluations against parasites, human cancer cell lines and Zika virus.

    PubMed

    Belloto, Andrezza C; Souza, Gredson K; Perin, Paula C; Schuquel, Ivania T A; Santin, Silvana M O; Chiavelli, Lucas U R; Garcia, Francielle P; Kaplum, Vanessa; Rodrigues, Jean H S; Scariot, Débora B; Delvecchio, Rodrigo; Machado-Ferreira, Erik; Santana Aguiar, Renato; Soares, Carlos A G; Nakamura, Celso V; Pomini, Armando M

    2017-11-08

    The phytochemical study of Laelia marginata (Lindl.) L. O. Williams (Orchidaceae) led to the isolation of a new natural product named crispoic acid (1), together with six other known compounds (2-7). The new natural product was identified as a dimer of eucomic acid and was structurally characterised based upon 1D and 2D NMR and HRMS data. Biological assays with plant crude extract, fractions and isolated compounds were performed against two human cancer cell lines (Hela and Siha), and the tropical parasites Trypanosoma cruzi and Leishmania (Leishmania) amazonensis. The phenantrenoid 9,10-dihydro-4-methoxyphenanthren-2,7-diol 2 was active against Hela and Siha cells (CC 50 5.86 ± 0.19 and 20.78 ± 2.72 μg/mL, respectively). Sub-lethal concentrations of the flavone rhamnazin 4 were not able to rescue the viability of the Vero cells infected by Zika virus.

  7. Development of nutraceutical formulations based on the mycelium of Pleurotus ostreatus and Agaricus bisporus.

    PubMed

    Cardoso, Rossana V C; Fernandes, Ângela; Oliveira, M Beatriz P P; Calhelha, Ricardo C; Barros, Lillian; Martins, Anabela; Ferreira, Isabel C F R

    2017-06-21

    The present work is aimed at developing nutraceutical formulations based on the mycelium of Agaricus bisporus and Pleurotus ostreatus, highlighting the potential of in vitro culture as a tool to improve the production of bioactive compounds, namely phenolic acids and ergosterol. The mycelia of both species were cultured in different solid and liquid media in order to compare the growth rate and yielded biomass. Fruiting bodies, mycelia and culture media were compared regarding the antioxidant activity, anti-inflammatory effects in RAW264.7 cells and cytotoxicity in human tumor cell lines and non-tumor porcine liver cells. P. ostreatus mycelia showed higher contents of ergosterol and phenolic compounds, and stronger antioxidant activity than the corresponding fruiting body. P. ostreatus and A. bisporus did not show anti-inflammatory activity, and P. ostreatus was the only one showing cytotoxicity in tumor cell lines. The results show that these mushrooms provide compounds with antioxidant and cytotoxic capacities, with variations among species.

  8. Effects of chemical and physical agents on recombination events in cells of the germ line of male and female Drosophila melanogaster.

    PubMed

    Würgler, F E

    1991-01-01

    Genotoxic agents can induce mutations as well as recombination in the genetic material. The fruit fly Drosophila melanogaster was one of the first assay systems to test physical and chemical agents for recombinogenic effects. Such effects can be observed in cells of the germ line as well as in somatic cells. At present information is available on 54 agents, among them 48 chemicals that have been tested in cells of the germ line of males and/or females. Effects on meiotic recombination in female germ cells cannot simply be classified as positive or negative since for a number of agents, depending on the chromosome region studied, recombination frequencies may be increased, unaffected or decreased. The male germ line of D. melanogaster represents a unique situation because meiotic recombination does not occur. Among 25 agents tested in male germ cells 24 did induce male recombination, among them alkylating, intercalating and cross-linking agents, direct-acting ones as well as compounds needing metabolic activation. With several compounds the frequency of induced recombination is highest in the heterochromatic regions near the centromeres. In brood pattern analyses, e.g., after exposure of adult males to ionizing radiation, the first appearance of crossover progeny is indicative of the sampling of exposed spermatocytes. In premeiotic cells of the male and the female germ line mitotic recombination can occur. Upon clonal expansion of the recombinant cells, clusters of identical crossovers can be observed.

  9. Genetic and Pharmacological Inhibition of PDK1 in Cancer Cells: Characterization of a Selective Allosteric Kinase Inhibitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nagashima, Kumiko; Shumway, Stuart D.; Sathyanarayanan, Sriram

    2013-11-20

    Phosphoinositide-dependent kinase 1 (PDK1) is a critical activator of multiple prosurvival and oncogenic protein kinases and has garnered considerable interest as an oncology drug target. Despite progress characterizing PDK1 as a therapeutic target, pharmacological support is lacking due to the prevalence of nonspecific inhibitors. Here, we benchmark literature and newly developed inhibitors and conduct parallel genetic and pharmacological queries into PDK1 function in cancer cells. Through kinase selectivity profiling and x-ray crystallographic studies, we identify an exquisitely selective PDK1 inhibitor (compound 7) that uniquely binds to the inactive kinase conformation (DFG-out). In contrast to compounds 1-5, which are classical ATP-competitivemore » kinase inhibitors (DFG-in), compound 7 specifically inhibits cellular PDK1 T-loop phosphorylation (Ser-241), supporting its unique binding mode. Interfering with PDK1 activity has minimal antiproliferative effect on cells growing as plastic-attached monolayer cultures (i.e. standard tissue culture conditions) despite reduced phosphorylation of AKT, RSK, and S6RP. However, selective PDK1 inhibition impairs anchorage-independent growth, invasion, and cancer cell migration. Compound 7 inhibits colony formation in a subset of cancer cell lines (four of 10) and primary xenograft tumor lines (nine of 57). RNAi-mediated knockdown corroborates the PDK1 dependence in cell lines and identifies candidate biomarkers of drug response. In summary, our profiling studies define a uniquely selective and cell-potent PDK1 inhibitor, and the convergence of genetic and pharmacological phenotypes supports a role of PDK1 in tumorigenesis in the context of three-dimensional in vitro culture systems.« less

  10. Klymollins T-X, bioactive eunicellin-based diterpenoids from the soft coral Klyxum molle.

    PubMed

    Chang, Fang-Yu; Hsu, Fang-Jung; Tai, Chi-Jen; Wei, Wen-Chi; Yang, Ning-Sun; Sheu, Jyh-Horng

    2014-05-22

    Five new eunicellin-based diterpenoids, klymollins T-X (1-5), along with two known compounds (6 and 7) have been isolated from the soft coral Klyxum molle. The structures of these new metabolites were elucidated by extensive spectroscopic analysis and by comparison with related known compounds. Compound 5 was found to exert significant in vitro anti-inflammatory activity against LPS-stimulated RAW264.7 macrophage cells. Furthermore, compounds 4 and 7 were shown to exhibit cytotoxicity against a limited panel of human cancer cell lines.

  11. Transportan 10 improves the anticancer activity of cisplatin.

    PubMed

    Izabela, Rusiecka; Jarosław, Ruczyński; Magdalena, Alenowicz; Piotr, Rekowski; Ivan, Kocić

    2016-05-01

    The aim of this paper was to examine whether cell-penetrating peptides (CPPs) such as transportan 10 (TP10) or protein transduction domain (PTD4) may improve the anticancer activity of cisplatin (cPt). The complexes of TP10 or PTD4 with cPt were used in the experiments. They were carried out on two non-cancer (HEK293 (human embryonic kidney) and HEL299 (human embryo lung)) and two cancer (HeLa (human cervical cancer) and OS143B (human osteosarcoma 143B)) cell lines. Both complexes were tested (MTT assay) with respect to their anticancer or cytotoxic actions. TAMRA (fluorescent dye)-stained preparations were visualized in a fluorescence microscope. The long-term effect of TP10 + cPt and its components on non-cancer and cancer cell lines was observed in inverted phase contrast microscopy. In the MTT test (cell viability assay), the complex of TP10 + cPt produced a more potent effect on the cancer cell lines (HeLa, OS143B) in comparison to that observed after separate treatment with TP10 or cPt. At the same time, the action of the complex and its components was rather small on non-cancer cell lines. On the other hand, a complex of another CPP with cPt, i.e., PTD4 + cPt, was without a significant effect on the cancer cell line (OS143B). The images of the fluorescent microscopy showed TAMRA-TP10 or TAMRA-TP10 + cPt in the interior of the HeLa cells. In the case of TAMRA-PTD4 or TAMRA-PTD4 + cPt, only the first compound was found inside the cancer cell line. In contrast, none of the tested compounds gained access to the interior of the non-cancer cells (HEK293, HEL299). Long-term incubation with the TP10 + cPt (estimated by inverted phase contrast microscopy) lead to an enhanced action of the complex on cell viability (decrease in the number of cells and change in their morphology) as compared with that produced by each single agent. With regard to the tested CPPs, only TP10 improved the anticancer activity of cisplatin if both compounds were used in the form of a complex. Additionally, the complex was relatively safe for non-cancer cells. What is more, TP10 also produced an anticancer effect on HeLa and OS143B cell lines.

  12. Neopetrosiquinones A and B, sesquiterpene benzoquinones isolated from the deep-water sponge Neopetrosia cf. proxima.

    PubMed

    Winder, Priscilla L; Baker, Heather L; Linley, Patricia; Guzmán, Esther A; Pomponi, Shirley A; Diaz, M Cristina; Reed, John K; Wright, Amy E

    2011-11-15

    Two new marine-derived sesquiterpene benzoquinones which we designate as neopetrosiquinones A (1) and B (2), have been isolated from a deep-water sponge of the family Petrosiidae. The structures were elucidated on the basis of their spectroscopic data. Compounds 1 and 2 inhibit the in vitro proliferation of the DLD-1 human colorectal adenocarcinoma cell line with IC(50) values of 3.7 and 9.8 μM, respectively, and the PANC-1 human pancreatic carcinoma cell line with IC(50) values of 6.1 and 13.8 μM, respectively. Neopetrosiquinone A (1) also inhibited the in vitro proliferation of the AsPC-1 human pancreatic carcinoma cell line with an IC(50) value of 6.1 μM. The compounds are structurally related to alisiaquinone A, cyclozonarone, and xestoquinone. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. In vitro cytotoxicity and differential cellular sensitivity of derivatives of diamino acids. II. N1-methyl, N1-allyl, N1-(2-chloroethyl) and N1-propargyl nitrosoureas.

    PubMed

    Dulude, H; Salvador, R; Gallant, G

    1995-01-01

    The in vitro cytotoxicity and differential cellular sensitivity of a series of new N1-methyl, N1-allyl, N1-2-chloroethyl and N1-propargyl nitrosourea derivatives of diamino acids were determined in the National Cancer Institute's primary antitumor drug screen. The compounds tested showed an in vitro anticancer activity similar to commercialized nitrosoureas such as CCNU, BCNU, MeCCNU, chlorozotocin, streptozotocin and PCNU. The alkylating moiety of the nitrosoureas seems to play a role in the general selectivity of our compounds. The N1-methyl and N1-2-chloroethyl nitrosourea derivatives are more selective for central nervous system cell lines, the N1-allyl nitrosourea derivatives are more selective for lung cancer cell lines and the N1-propargyl nitrosoureas are more selective for leukemia cell lines.

  14. Ganoboninketals A-C, Antiplasmodial 3,4-seco-27-Norlanostane Triterpenes from Ganoderma boninense Pat.

    PubMed

    Ma, Ke; Ren, Jinwei; Han, Junjie; Bao, Li; Li, Li; Yao, Yijian; Sun, Chen; Zhou, Bing; Liu, Hongwei

    2014-08-22

    Three new nortriterpenes, ganoboninketals A-C (1-3), featuring rearranged 3,4-seco-27-norlanostane skeletons and highly complex polycyclic systems were isolated from the medicinal mushroom Ganoderma boninense. The structures of the new metabolites were established by spectroscopic methods. The absolute configurations in 1-3 were assigned by electronic circular dichroism (ECD) calculations. Compounds 1-3 showed antiplasmodial activity against Plasmodium falciparum with IC50 values of 4.0, 7.9, and 1.7 μM, respectively. Compounds 1 and 3 also displayed weak cytotoxicity against A549 cell line with IC50 values of 47.6 and 35.8 μM, respectively. Compound 2 showed weak cytotoxicity toward HeLa cell line with an IC50 value of 65.5 μM. Compounds 1-3 also presented NO inhibitory activity in the LPS-induced macrophages with IC50 values of 98.3, 24.3, and 60.9 μM, respectively.

  15. New derivatives of 11-methyl-6-[2-(dimethylamino)ethyl]-6H-indolo[2,3-b]quinoline as cytotoxic DNA topoisomerase II inhibitors.

    PubMed

    Luniewski, Wojciech; Wietrzyk, Joanna; Godlewska, Joanna; Switalska, Marta; Piskozub, Malgorzata; Peczynska-Czoch, Wanda; Kaczmarek, Lukasz

    2012-10-01

    Novel indolo[2,3-b]quinoline derivatives substituted at N-6 and C-2 or C-9 positions with (dimethylamino)ethyl chains linked to heteroaromatic core by ether, amide or amine bonds, were manufactured and evaluated in vitro for their cytotoxic activity against several cell lines of different origin including multidrug resistant sublines and tested for their ability to influence the cell cycle and inhibit topoisomerase II activity. It was found, that all compounds show cytotoxic activity against cell lines tested, including multidrug resistant LoVo/DX, MES-SA/DX5 and HL-60 sublines. The tested compounds induce the G(2)M phase cell cycle arrest in Jurkat cells, and inhibit topoisomerase II activity. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Clonogenic Assay: Adherent Cells

    PubMed Central

    Rafehi, Haloom; Orlowski, Christian; Georgiadis, George T.; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C.

    2011-01-01

    The clonogenic (or colony forming) assay has been established for more than 50 years; the original paper describing the technique was published in 19561. Apart from documenting the method, the initial landmark study generated the first radiation-dose response curve for X-ray irradiated mammalian (HeLa) cells in culture1. Basically, the clonogenic assay enables an assessment of the differences in reproductive viability (capacity of cells to produce progeny; i.e. a single cell to form a colony of 50 or more cells) between control untreated cells and cells that have undergone various treatments such as exposure to ionising radiation, various chemical compounds (e.g. cytotoxic agents) or in other cases genetic manipulation. The assay has become the most widely accepted technique in radiation biology and has been widely used for evaluating the radiation sensitivity of different cell lines. Further, the clonogenic assay is commonly used for monitoring the efficacy of radiation modifying compounds and for determining the effects of cytotoxic agents and other anti-cancer therapeutics on colony forming ability, in different cell lines. A typical clonogenic survival experiment using adherent cells lines involves three distinct components, 1) treatment of the cell monolayer in tissue culture flasks, 2) preparation of single cell suspensions and plating an appropriate number of cells in petri dishes and 3) fixing and staining colonies following a relevant incubation period, which could range from 1-3 weeks, depending on the cell line. Here we demonstrate the general procedure for performing the clonogenic assay with adherent cell lines with the use of an immortalized human keratinocyte cell line (FEP-1811)2. Also, our aims are to describe common features of clonogenic assays including calculation of the plating efficiency and survival fractions after exposure of cells to radiation, and to exemplify modification of radiation-response with the use of a natural antioxidant formulation. PMID:21445039

  17. Cytotoxicity of compounds from Xylopia aethiopica towards multi-factorial drug-resistant cancer cells.

    PubMed

    Kuete, Victor; Sandjo, Louis P; Mbaveng, Armelle T; Zeino, Maen; Efferth, Thomas

    2015-12-15

    Multidrug resistance (MDR) in cancer represent a major hurdle in chemotherapy. Previously, the methanol extract of the medicinal spice Xylopia aethiopica displayed considerable cytotoxicity against multidrug resistant (MDR) cancer cell lines. The present study was designed to assess the cytotoxicity of compounds, 16α-hydroxy-ent-kauran-19-oic acid (2), 3,4',5-trihydroxy-6″,6″-dimethylpyrano[2,3-g]flavone (3), isotetrandrine (5) and trans-tiliroside (6) derived from the methanol crude extract of Xylopia aethiopica against 9 drug-sensitive and -resistant cancer cell lines. The resazurin reduction assay was used to evaluate the cytotoxicity of these compounds, whilst caspase-Glo assay was used to detect caspase activation. Cell cycle, mitochondrial membrane potential (MMP) and levels of reactive oxygen species (ROS) were all analyzed via flow cytometry. Flavonoid 3 and alkaloid 5 also displayed IC50 values ranging from 2.61 µM (towards leukemia CCRF-CEM cells) to 18.60 µM (towards gliobastoma multiforme U87MG.ΔEGFR cells) and from 1.45 µM (towards HepG2 cells) to 7.28 µM (towards MDA-MB-231-pcDNA cells), respectively. IC50 values ranged from 0.20 µM (against CCRF-CEM cells) to 195.12 µM (against CEM/ADR5000 cells) for doxorubicin. Compound 3 induced apoptosis in leukemia CCRF-CEM cells mediated by the disruption of the MMP, whilst 5 induced apoptosis mediated by ROS production. Compounds 2 and 5 represent potential cytotoxic phytochemicals that deserve more investigations to develop novel antineoplastic drugs against multifactorial drug-resistant cancers. Copyright © 2015 Elsevier GmbH. All rights reserved.

  18. Identification of two immortalized cell lines, ECV304 and bEnd3, for in vitro permeability studies of blood-brain barrier

    PubMed Central

    Mei, Shenghui; Jin, Hong; Zhu, Bin; Tian, Yue; Huo, Jiping; Cui, Xu; Guo, Anchen; Zhao, Zhigang

    2017-01-01

    To identify suitable cell lines for a mimetic system of in vivo blood-brain barrier (BBB) for drug permeability assessment, we characterized two immortalized cell lines, ECV304 and bEnd3 in the respect of the tightness, tight junction proteins, P-glycoprotein (P-gp) function and discriminative brain penetration. The ECV304 monoculture achieved higher transendothelial electrical resistance (TEER) and lower permeability to Lucifer yellow than bEnd3. However, co-culture with rat glioma C6 cells impaired the integrity of ECV304 and bEnd3 cell layers perhaps due to the heterogeneity among C6 cells in inducing BBB characteristics. The immunostaining of ZO-1 delivered distinct bands along cell borders on both cell lines while those of occludin and claudin-5 were diffused and weak. P-gp functionality was only proved in bEnd3 by Rhodamine 123 (R123) uptake assay. A permeability test of reference compounds displayed a similar rank order (digoxin < R123 < quinidine, verapamil < propranolol) in ECV304 and bEnd3 cells. In comparison with bEnd3, ECV304 developed tighter barrier for the passage of reference compounds and higher discrimination between transcellular and paracellular transport. However, the monoculture models of ECV304 and bEnd3 fail to achieve the sufficient tightness of in vitro BBB permeability models with high TEER and evident immunostaining of tight junction proteins. Further strategies to enhance the paracellular tightness of both cell lines to mimic in vivo BBB tight barrier deserve to be conducted. PMID:29059256

  19. Identification of two immortalized cell lines, ECV304 and bEnd3, for in vitro permeability studies of blood-brain barrier.

    PubMed

    Yang, Shu; Mei, Shenghui; Jin, Hong; Zhu, Bin; Tian, Yue; Huo, Jiping; Cui, Xu; Guo, Anchen; Zhao, Zhigang

    2017-01-01

    To identify suitable cell lines for a mimetic system of in vivo blood-brain barrier (BBB) for drug permeability assessment, we characterized two immortalized cell lines, ECV304 and bEnd3 in the respect of the tightness, tight junction proteins, P-glycoprotein (P-gp) function and discriminative brain penetration. The ECV304 monoculture achieved higher transendothelial electrical resistance (TEER) and lower permeability to Lucifer yellow than bEnd3. However, co-culture with rat glioma C6 cells impaired the integrity of ECV304 and bEnd3 cell layers perhaps due to the heterogeneity among C6 cells in inducing BBB characteristics. The immunostaining of ZO-1 delivered distinct bands along cell borders on both cell lines while those of occludin and claudin-5 were diffused and weak. P-gp functionality was only proved in bEnd3 by Rhodamine 123 (R123) uptake assay. A permeability test of reference compounds displayed a similar rank order (digoxin < R123 < quinidine, verapamil < propranolol) in ECV304 and bEnd3 cells. In comparison with bEnd3, ECV304 developed tighter barrier for the passage of reference compounds and higher discrimination between transcellular and paracellular transport. However, the monoculture models of ECV304 and bEnd3 fail to achieve the sufficient tightness of in vitro BBB permeability models with high TEER and evident immunostaining of tight junction proteins. Further strategies to enhance the paracellular tightness of both cell lines to mimic in vivo BBB tight barrier deserve to be conducted.

  20. Cytotoxic constituents from the mangrove endophytic Pestalotiopsis sp. induce G0/G1 cell cycle arrest and apoptosis in human cancer cells.

    PubMed

    Zhou, Jing; Li, Gang; Deng, Qin; Zheng, Dongyao; Yang, Xiaobo; Xu, Jing

    2017-10-31

    Chemical examination of Chinese mangrove Rhizophora mucronata endophytic Pestalotiopsis sp., yielded  11 known metabolites with various structure types, including demethylincisterol A 3 (1), dankasterone B (2), (22E, 24R)-ergosta-7,9(11), 22-triene-3β, 5α, 6α-triol (3), ergosta-5,7,22-trien-3-ol (4), 5, 8-epidioxy-5, 8-ergosta-6, 22E-dien-3-ol (5), stigmastan-3-one (6), stigmast-4-en-3-one (7), stigmast-4-en-6 -ol-3-one (8), flufuran (9), (2-cis, 4-trans)-abscisic acid (10), similanpyrone B (11). Their structures were unambiguously elucidated on the basis of extensive NMR spectroscopic and mass spectrometric analyses. Compounds 1, 4, 6-9 showed significant in vitro cytotoxicity against the human cancer cell lines Hela, A549 and HepG, of which compound 1 was the most potential with IC 50 values reaching nM degree ranging from 0.17 to 14.16 nM. Flow cytometric investigation demonstrated that compound 1 mainly inhibited cell cycle at G 0 /G 1 phase in a dose-dependent manner with a significant induction of apoptosis on the three tested cell lines. The involvement of the mitochondria in compound 1 induced apoptosis was investigated using MMP. We suggested that R. mucronata endophytic Pestalotiopsis sp. contained a potential anticancer compound demethylincisterol A 3 .

  1. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosa Borges, Andrew; Wieczorek, Lindsay; Johnson, Benitra

    2010-12-05

    Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3'-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC{sub 50}s ranging from 0.1 to 7.4 {mu}g/ml. Inhibition of Env-mediated membrane fusion by MVC wasmore » also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. -- Research Highlights: {yields}Multivalent carbohydrates (MVCs) inhibited infection of PBMCs by HIV-1. {yields}MVCs inhibited infection by T cell line-adapted viruses. {yields}MVCs inhibited infection by primary isolates of HIV-1. {yields}MVCs inhibited Env-mediated membrane fusion.« less

  2. Extraction, fractionation and re-fractionation of Artemisia nilagirica for anticancer activity and HPLC-ESI-QTOF-MS/MS determination.

    PubMed

    Sahu, Neha; Meena, Sanjeev; Shukla, Vijaya; Chaturvedi, Priyank; Kumar, Brijesh; Datta, Dipak; Arya, K R

    2018-03-01

    Medicinal plants used in traditional medicines are affordable, easily accessible, safer, less toxic and considered as a rich or efficient source of bioactive molecules for modern therapeutics. Artemisia nilagirica (AR) has a long history of use in Indian traditional medicine to combat a wide variety of diseases including cancer. Considering the vast potential of traditional healing plants to deliver safer, less toxic and efficient chemotherapeutics, we have examined anticancer activity of ethanolic extract, bioactive fractions and sub-fractions of AR against different human cancer cell lines along with their phytochemical analysis to understand the insights of novel anticancer activities for further preclinical studies. Fresh plant material of AR was procured from the wild, dried and ground. The grinded materials was extracted in ethanol (AR-01) and fractionated into butanol (AR-02), ethyl acetate (AR-03), hexane (AR-04) and water (AR-05). The cytotoxicity was evaluated against three different human cancer cell lines, i.e. colon (DLD-1), lung (A-549), and breast (MCF-7) using Sulforhodamine B (SRB) assay along with non-cancerous VERO cells as control and doxorubicin (DOX) as positive control. As we observed strong cytotoxicity of AR-03 and AR-04 fractions against tested cells and marked cytotoxic effects particularly in colon cancer cell lines, we further re-fractionated, AR-03 into (AR-03A, AR-03B, AR-03C, AR-03D, AR-03E) and AR-04 into (AR-04A, AR-04B, AR-04C) sub-fractions by column chromatography and investigated against the same panel of cell lines in addition to one more colon cancer cell line (HT-29). Phytochemical analysis was performed through HPLC-ESI-QTOF-MS/MS fragmentation. Ethyl acetate (AR-03) and hexane (AR-04) fractions were found to be the most cytotoxic against all the tested cell lines. Further, AR-03E and AR-04A sub-fractions were found more specific cytotoxic selectively against DLD-1 cancer cell lines at 100µg/ml concentration. HPLC-ESI-QTOF-MS/MS determination revealed the presence of 17 compounds in AR-01. Among them, 4 compounds were reported for the first time in this species. However, 3 identified compounds (artemorin, β-santonin and caryophyllene oxide) in AR-03E sub-fraction were commonly present in each bioactive fraction and may be considered as potential and safest cytotoxic agents for anticancer activity. Experimental evidences reported in this paper for anticancer activity validate the traditional wisdom of Artemisia nilagirica as an anticancer herbal drug. To our knowledge, this is our first novel observation of cytotoxicity and selectivity of ethyl acetate and hexane sub-fraction of AR-01 i.e. AR-03E and AR-04A respectively against DLD-1 human cancer cell lines. HPLC-ESI-QTOF-MS/MS determination attributes the identification of cytotoxic compounds which may be used for further preclinical studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Elaeodendron orientale as a source of cytotoxic cardenolides.

    PubMed

    Osorio, Alex A; López, Manuel R; Jiménez, Ignacio A; Moujir, Laila M; Rodríguez, Matías L; Bazzocchi, Isabel L

    2014-09-01

    In the present study, we report six cardiac glycosides (1-6) along with four known ones (7-10) isolated from the leaves and fruits of Elaeodendron orientale. Their stereostructures were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR, and the absolute configuration of 1 was determined by X-ray diffraction analysis. The compounds were evaluated for growth inhibitory activity against a panel of human cancer cell lines, HeLa, A-549, MCF-7 and HL-60, and normal Vero cells. Four compounds from this series (5 and 7-9, IC50 values ranging from 0.01 to 0.07μM) exhibited cytotoxicity against three of the cancer cell lines assayed that was similar to or higher than the well-known therapies digoxin and digitoxigenin. Taking into account the narrow safety range of cardiac glycosides used in clinic, this series shows a selectivity index higher than 3 for three of the cancer cell lines assayed, increasing their interest for further study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. A new dimeric diarylheptanoid from the rhizomes of Alpinia officinarum.

    PubMed

    Liu, Dan; Qu, Wei; Zhao, Ling; Guan, Fu-Qin; Liang, Jing-Yu

    2014-02-01

    To study the chemical constituents of the rhizomes of Alpinia officinarum Hance. Compounds were isolated by repeated column chromatography, and their structures were elucidated on the basis of spectral analysis. The cytotoxic activities of these compounds were evaluated with the T98G and B16F10 cell lines by the MTT assay. A dimeric diarylheptanoid, named alpinin B (1), along with three known diarylheptanoids were obtained, and their structures were identified as alpinin B (1), 1, 7-diphenyl-3,5-heptanedione (2), (4E)-1, 7-diphenylhept-4-en-3-one (3) and (4E)-7- (4-hydroxyphenyl)-1-phenylhept-4-en-3-one (4). Compound 1 is a new dimeric diarylheptanoid. The biosynthetic pathway of 1 was speculated to originate from a Michael reaction between compounds 2 and 3. Compound 3 showed cytotoxicity against the human glioblastoma T98G cell line with IC50 of 27 μmol·L(-1). Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  5. Analogues of the Potent Antitumor Compound Leiodermatolide from a Deep-Water Sponge of the Genus Leiodermatium.

    PubMed

    Wright, Amy E; Roberts, Jill C; Guzmán, Esther A; Pitts, Tara P; Pomponi, Shirley A; Reed, John K

    2017-03-24

    Two new analogues of the potent antitumor compound leiodermatolide, which we call leiodermatolides B and C, have been isolated from specimens of a deep-water sponge of the genus Leiodermatium collected off Florida. The compounds were purified using standard chromatographic methods, and the structures defined through interpretation of the HRMS and 1D and 2D NMR data. Leiodermatolide B (2) lacks the C-21 hydroxy group found in leiodermatolide and has equal potency as the parent compound, providing a simpler analogue for possible clinical development. It inhibits the proliferation of the AsPC-1 human pancreatic adenocarcinoma cell line with an IC 50 of 43 nM. Leiodermatolide C (3) has a modified macrolide ring and is over 85-fold less potent with an IC 50 of 3.7 μM against the same cell line. These compounds add to the knowledge of the pharmacophore of this class of potent antitumor agents.

  6. Developing an Activity and Absorption-based Quality Control Platform for Chinese Traditional Medicine: Application to Zeng-Sheng-Ping

    PubMed Central

    Yin, Taijun; Yang, Guanyi; Ma, Yong; Xu, Beibei; Hu, Ming; You, Ming; Gao, Song

    2015-01-01

    Ethnopharmacological relevance Zeng-Sheng-Ping (ZSP) is a marketed Chinese traditional medicine used for cancer prevention. Aim of the study Currently, for the quality control of Chinese traditional medicines, marker compounds are not selected based on bioactivities and pharmaceutical behaviors in most of the cases. Therefore, even if the “quality” of the medicine is controlled, the pharmacological effect could still be inconsistent. The aim of this study is to establish an activity and absorption-based platform to select marker compound(s) for the quality control of Chinese traditional medicines. Materials and methods We used ZSP as a reference Chinese traditional medicine to establish the platform. Activity guided fractionation approach was used to purify the major components from ZSP. NMR and MS spectra were used to elucidate the structure of the isolated compounds. MTT assay against oral carcinoma cell line (SCC2095) was performed to evaluate the activities. UPLC-MS/MS was used to quantify the pure compounds in ZSP and the active fraction. The permeabilities of the identified compounds were evaluated in the Caco-2 cell culture model. The intracellular accumulation of the isolated compounds was evaluated in the SCC2095 cells. Results The major compounds were identified from ZSP. The contents, anti-proliferation activities, permeabilities, and intracellular accumulations of these compounds were also evaluated. The structure of these purified compounds were identified by comparing the NMR and MS data with those of references as rutaevine (1), limonin (2) , evodol (3), obacunone (4), fraxinellone (5), dictamnine (6), maackiain (7), trifolirhizin (8), and matrine (9). The IC50 of compounds 5, 6, and 7 against SCC2095 cells were significantly lower than that of ZSP. The uptake permeability of compounds 5, 6, and 7 were 2.58 ± 0. 3 × 10−5, 4.33 ± 0.5 × 10−5, and 4.27 ± 0.8 × 10−5 respectively in the Caco-2 cell culture model. The intracellular concentrations of these compounds showed that compounds 5, 6, and 7 were significantly accumulated inside the cells. Conclusion Based on the activity against oral carcinoma cell line as well as the absorption permeability, compound 5, 6, and 7 are selected as quality control markers for ZSP. A activity and absorption-based platform was established and successfully used for the quality control of ZSP. PMID:26099633

  7. Cytotoxic, Cytostatic and HIV-1 PR Inhibitory Activities of the Soft Coral Litophyton arboreum

    PubMed Central

    Ellithey, Mona S.; Lall, Namrita; Hussein, Ahmed A.; Meyer, Debra

    2013-01-01

    Bioassay-guided fractionation using different chromatographic and spectroscopic techniques in the analysis of the Red Sea soft coral Litophyton arboreum led to the isolation of nine compounds; sarcophytol M (1), alismol (2), 24-methylcholesta-5,24(28)-diene-3β-ol (3), 10-O-methyl alismoxide (4), alismoxide (5), (S)-chimyl alcohol (6), 7β-acetoxy-24-methylcholesta-5-24(28)-diene-3,19-diol (7), erythro-N-dodecanoyl-docosasphinga-(4E,8E)-dienine (8), and 24-methylcholesta-5,24(28)-diene-3β,7β,19-triol (9). Some of the isolated compounds demonstrated potent cytotoxic- and/or cytostatic activity against HeLa and U937 cancer cell lines and inhibitory activity against HIV-1 protease (PR). Compound 7 was strongly cytotoxic against HeLa cells (CC50 4.3 ± 0.75 µM), with selectivity index of SI 8.1, which was confirmed by real time cell electronic sensing (RT-CES). Compounds 2, 7, and 8 showed strong inhibitory activity against HIV-1 PR at IC50s of 7.20 ± 0.7, 4.85 ± 0.18, and 4.80 ± 0.92 µM respectively. In silico docking of most compounds presented comparable scores to that of acetyl pepstatin, a known HIV-1 PR inhibitor. Interestingly, compound 8 showed potent HIV-1 PR inhibitory activity in the absence of cytotoxicity against the cell lines used. In addition, compounds 2 and 5 demonstrated cytostatic action in HeLa cells, revealing potential use in virostatic cocktails. Taken together, data presented here suggest Litophyton arboreum to contain promising compounds for further investigation against the diseases mentioned. PMID:24336129

  8. High-throughput Screening Identifies Aclacinomycin as a Radiosensitizer of EGFR-Mutant Non-Small Cell Lung Cancer1

    PubMed Central

    Bennett, Daniel C; Charest, Jonathan; Sebolt, Katrina; Lehrman, Mark; Rehemtulla, Alnawaz; Contessa, Joseph N

    2013-01-01

    The endoplasmic reticulum (ER) provides a specialized environment for the folding and modification of trans-membrane proteins, including receptor tyrosine kinases (RTKs), which are vital for the growth and survival of malignancies. To identify compounds which disrupt the function of the ER and thus could potentially impair cancer cell survival signaling, we adapted a set of glycosylation-sensitive luciferase reporters for the development and optimization of a cell-based high-throughput screen (HTS). Secondary screens for false-positive luciferase activation and tertiary lectin-based and biochemical analyses were also devised for compound triage. Through a pilot screen of 2802 compounds from the National Cancer Institute (NCI) chemical libraries, we identified aclacinomycin (Acm) as a compound that preferentially affects ER function. We report that Acm reduces plasma membrane expression of glycoproteins including epidermal growth factor receptor (EGFR) and Met but does not inhibit N-linked glycosylation or generalized protein translation. Fluorescence microscopy co-localization experiments were also performed and demonstrated Acm accumulation in the ER in further support of the overall HTS design. The consequences of Acm treatment on cell survival were analyzed through clonogenic survival analysis. Consistent with the reduction of EGFR levels, pretreatment with Acm sensitizes the EGFR-mutant non-small cell lung cancer (NSCLC) cell lines HCC827 and HCC2935 to ionizing radiation and did not affect the sensitivity of the RTK-independent and KRAS-mutant A549 NSCLC cell line. Thus, Acm and similar compounds targeting the ER may represent a novel approach for radiosensitizing tumor cells dependent on RTK function. PMID:23730419

  9. Identification of novel drugs to target dormant micrometastases.

    PubMed

    Hurst, Robert E; Hauser, Paul J; You, Youngjae; Bailey-Downs, Lora C; Bastian, Anja; Matthews, Stephen M; Thorpe, Jessica; Earle, Christine; Bourguignon, Lilly Y W; Ihnat, Michael A

    2015-05-14

    Cancer-specific survival has changed remarkably little over the past half century, mainly because metastases that are occult at diagnosis and generally resistant to chemotherapy subsequently develop months, years or even decades following definitive therapy. Targeting the dormant micrometastases responsible for these delayed or occult metastases would represent a major new tool in cancer patient management. Our hypothesis is that these metastases develop from micrometastatic cells that are suppressed by normal extracellular matrix (ECM). A new screening method was developed that compared the effect of drugs on the proliferation of cells grown on a normal ECM gel (small intestine submucosa, SISgel) to cells grown on plastic cell culture plates. The desired endpoint was that cells on SISgel were more sensitive than the same cells grown as monolayers. Known cancer chemotherapeutic agents show the opposite pattern. Screening 13,000 compounds identified two leads with low toxicity in mice and EC50 values in the range of 3-30 μM, depending on the cell line, and another two leads that were too toxic to mice to be useful. In a novel flank xenograft method of suppressed/dormant cells co-injected with SISgel into the flank, the lead compounds significantly eliminated the suppressed cells, whereas conventional chemotherapeutics were ineffective. Using a 4T1 triple negative breast cancer model, modified for physiological metastatic progression, as predicted, both lead compounds reduced the number of large micrometastases/macrometastases in the lung. One of the compounds also targeted cancer stem cells (CSC) isolated from the parental line. The CSC also retained their stemness on SISgel. Mechanistic studies showed a mild, late apoptotic response and depending on the compound, a mild arrest either at S or G2/M in the cell cycle. In summary we describe a novel, first in class set of compounds that target micrometastatic cells and prevent their reactivation to form recurrent tumors/macrometastases.

  10. Apoptotic effect of chalcone derivatives of 2-acetylthiophene in human breast cancer cells.

    PubMed

    Fogaça, Tatiana B; Martins, Rosiane M; Begnini, Karine R; Carapina, Caroline; Ritter, Marina; de Pereira, Claudio M P; Seixas, Fabiana K; Collares, Tiago

    2017-02-01

    A variety of chalcones have demonstrated cytotoxic activity toward several cancer cell lines. This study aimed to investigate the cytotoxicity of four chalcones derivatives of 2-acetylthiophene in human breast cancer cell lines. MCF-7 and MDA-MB-231 cells were treated with synthesized chalcones and the cytotoxicity was evaluated by tetrazolium dye (MTT), live/dead, and DAPI assays. Chalcones significantly decreased MCF-7 and MDA-MB-231 cells viability in vitro in a dose dependent manner. After 48h treatment, the IC 50 values ranging from 5.52 to 34.23μM. Chalcone 3c displayed the highest cytotoxic activity from all the tested compounds. Cytotoxic effects of compounds were confirmed in the live/dead assay. In addition, DAPI staining revealed that these compounds induce death by apoptosis. The data speculate that chalcone derivatives of 2-acetylthiophene may represent a source of therapeutic agents for human breast cancer. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  11. Comprehensive List of Cancer-Related Genetic Variations of the NCI-60 Panel | Center for Cancer Research

    Cancer.gov

    The NCI-60 cell lines are the most frequently studied human tumor cell lines in cancer research. The panel of cell lines represents nine different types of cancer: breast, ovary, prostate, colon, lung, kidney, brain, leukemia, and melanoma. Originally developed to screen anticancer compounds by the NCI Developmental Therapeutics Program (DTP), the NCI-60 panel has generated the most extensive cancer pharmacology database worldwide. The 60 cell lines have also been extensively analyzed for their gene and microRNA expression levels, DNA mutation status, and DNA copy number variations. These findings have provided the groundwork for research centered on increasing our understanding of tumor biology and drug activity.

  12. Polyoxometalates as antitumor agents: Bioactivity of a new polyoxometalate with copper on a human osteosarcoma model.

    PubMed

    León, I E; Porro, V; Astrada, S; Egusquiza, M G; Cabello, C I; Bollati-Fogolin, M; Etcheverry, S B

    2014-10-05

    Polyoxometalates (POMs) are early transition metal oxygen anion clusters. They display interesting biological effects mainly related to their antiviral and antitumor properties. On the other hand, copper compounds also show different biological and pharmacological effects in cell culture and in animal models. We report herein for the first time, a detailed study of the mechanisms of action of a copper(II) compound of the group of HPOMs with the formula K7Na3[Cu4(H2O)2(PW9034)2]20H2O (PW9Cu), in a model of human osteosarcoma derived cell line, MG-63. The compound inhibited selectively the viability of the osteosarcoma cells in the range of 25-100μM (p<0.01). Besides, we have clearly shown a more deleterious action of PW9Cu on tumor osteoblasts than in normal cells. Cytotoxicity studies also showed deleterious effects for PW9Cu. The increment of reactive oxygen species (ROS) and the decrease of the GSH/GSSG ratio were involved in the antiproliferative effects of PW9Cu. Moreover, the compound caused cell cycle arrest in G2 phase, triggering apoptosis as determined by flow cytometry. As a whole, these results showed the main mechanisms of the deleterious effects of PW9Cu in the osteosarcoma cell line MG-63, demonstrating that this compound is a promissory agent for cancer treatments. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Design, synthesis and apoptosis inducing effect of novel (Z)-3-(3'-methoxy-4'-(2-amino-2-oxoethoxy)-benzylidene)indolin-2-ones as potential antitumour agents.

    PubMed

    Senwar, Kishna Ram; Reddy, T Srinivasa; Thummuri, Dinesh; Sharma, Pankaj; Naidu, V G M; Srinivasulu, Gannoju; Shankaraiah, Nagula

    2016-08-08

    A series of new (Z)-3-(3'-methoxy-4'-(2-amino-2-oxoethoxy)benzylidene)indolin-2-one derivatives has been synthesized and evaluated for their cytotoxic activity against selected human cancer cell lines of prostate (PC-3 and DU-145), breast (BT-549 and MDA-MB-231) and non-tumorigenic prostate epithelial cells (RWPE-1). Among the tested, one of the compounds 4p exhibited potent cytotoxicity selectively on prostate cancer cell lines (PC-3 and DU-145; IC50: 1.89 ± 0.6 and 1.94 ± 0.2 μM, respectively). Further experiments were conducted with 4p on PC-3 cancer cells to study the mechanisms of growth inhibition and apoptosis inducing effect. Treatment of PC-3 cells with test compound 4p resulted in inhibition of cell migration through disorganization of F-actin protein. The flow-cytometry analysis results showed that the compound arrested PC-3 cancer cells in the G2/M phase of cell cycle in a dose dependent manner. Hoechst staining and annexin-V binding assay revealed that the compound 4p inhibited tumor cell proliferation through induction of apoptosis. Western blot studies demonstrated that the compound 4p treatment led to activation of caspase-3, increased expression of pro-apoptotic Bax and significantly decreased expression of anti-apoptotic Bcl-2 in human prostate cancer PC-3 cells. In addition, the mitochondrial membrane potential (ΔΨm) was also affected and the levels of intracellular Ca(2+) were raised. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  14. The antitumor activity screening of chemical constituents from Camellia nitidissima Chi

    PubMed Central

    Yang, Rui; Qi, Jing; Huang, Yue; Feng, Shuyun; Wu, Yao; Lin, Sensen; Liu, Zhixin; Jia, Ai-Qun; Yuan, Shengtao; Sun, Li

    2018-01-01

    Chemotherapy is the preferred and most common treatment for cancer in clinical practice. An increasing number of researchers all over the world are focusing on natural medicines to find new antitumor drugs, and several reports have shown that Camellia nitidissima (C. nitidis-sima) Chi could reduce blood-lipid, decrease blood pressure, resist oxidation, prevent carcinogenesis and inhibit tumors. Therefore, the pharmacodynamics of the chemical constituents in C. nitidissima need to be investigated further. In the present study, 16 chemical constituents were isolated from the leaves of C. nitidissima, of which 6 compounds are reported to be found in this plant for the first time. Furthermore, all these phytochemicals were screened for antitumor activity on 4 common cancer cell lines, while compound 3, one oleanane-type triterpene, exhibited the most potential antitumor effects. Interestingly, to our knowledge, this was the first report that compound 3 inhibits cancer cells. Compound 3 inhibited EGFR-mutant lung cancer cell line, NCI-H1975 via apoptosis effect, with an IC50 of 13.37±2.05 µM at 48 h. Based on the data, compound 3 showed potential for antitumor drug development, suggesting the scientific basis for the antitumor activity of C. nitidissima. PMID:29484370

  15. Design, Synthesis and Biological Evaluation of (E)-N-Aryl-2-arylethene-sulfonamide Analogues as Potent and Orally Bioavailable Microtubule-targeted Anticancer Agents

    PubMed Central

    Ramana Reddy, M. V.; Mallireddigari, Muralidhar R.; Pallela, Venkat R.; Cosenza, Stephen C.; Billa, Vinay K.; Akula, Balaiah; Venkata Subbaiah, D. R. C.; Bharathi, E. Vijaya; Padgaonkar, Amol; Lv, Hua; Gallo, James M.; Reddy, E. Premkumar

    2013-01-01

    A series of novel (E)-N-aryl-2-arylethenesulfonamides (6) were synthesized and evaluated for their anticancer activity. Some of the compounds in this series showed potent cytotoxicity against a wide spectrum of cancer cell-lines (IC50 values ranging from 5 to 10 nM) including all drug resistant cell-lines. Nude mice xenograft assays with compound (E)-N-(3-Amino-4-methoxyphenyl)-2-(2′,4′,6′-trimethoxyphenyl)ethenesulfonamide (6t) showed dramatic reduction in tumor size indicating their in vivo potential as anticancer agents. A preliminary drug development study with compound 6t is predicted to have increased blood-brain barrier permeability relative to many clinically used anti-mitotic agents. Mechanistic studies indicate that 6t and some other analogs disrupted microtubule formation, formation of mitotic spindles and arrest of cells in mitotic phase. Compound 6t inhibited purified tubulin polymerization in vitro and in vivo and circumvented drug resistance mediated by P-glycoprotein. Compound 6t specifically competed with colchicine binding to tubulin and with similar avidity as podophylltoxin indicating its binding site on tubulin. PMID:23750455

  16. Lipid peroxidation, cyclooxygenase enzyme and tumor cell proliferation inhibitory compounds in Cornus kousa fruits.

    PubMed

    Vareed, Shaiju K; Schutzki, Robert E; Nair, Muraleedharan G

    2007-10-01

    The genus Cornus is well known for its medicinal properties. Bioassay-guided isolation and characterization of C. kousa fruits afforded kaempferol 3-O-rhamnoside (1), myricetin 3-O-rhamnoside (2), kaempferol 3-O-glucoside (3), cornin (4) and stenophyllin (5) in addition to ursolic acid and beta-sitosterol. These compounds are isolated for the first time from C. kousa. Compounds 1-5 inhibited Fe(2+) catalyzed lipid peroxidation by 63%, 57%, 61%, 53%, and 51%, at 23, 22, 23, 129, and 108 microM, respectively. Similarly, they inhibited COX-1 and -2 enzymes activities by 24% and 47%, 40% and 37%, 20% and 37%, 52% and 63%, and 48% and 55% respectively, at 231, 215, 226, 258, and 217 microM, respectively. At 129 microM, compound 4 displayed growth inhibition of HCT-116 (colon), MCF-7 (breast), NCI-H460 (lung), SF-268 (central nervous system CNS), and AGS (stomach) human tumor cell lines by 31%, 29%, 40%, 9%, and 28%, respectively. Similarly, compound 5 inhibited the growth of colon, breast, lung, CNS, and stomach tumor cell lines by 0%, 27%, 35%, 16%, and 27%, respectively, at 108 microM.

  17. (+)-rumphiin and polyalthurea, new compounds from the stems of Polyalthia rumphii.

    PubMed

    Wang, Tian-Shan; Luo, You-Ping; Wang, Jing; He, Meng-Xiong; Zhong, Ming-Guo; Li, Ying; Song, Xiao-Ping

    2013-10-01

    Two new compounds, (+)-rumphiin (3) and polyalthurea (7), together with seven known ones, 3,4,5-trimethoxy benzoic acid (1), (-)-seselinone (2), cannabisin D (4), allantoin (5), oxostephanine (6) and a mixture of beta-sitosterol (8) and stigmasterol (9) were isolated from the stems of Polyalthia rumphii. The chemical structures of 3 and 7 were elucidated by the combination of spectroscopic data, and the absolute configuration of 3 at C-2 was determined by the matrix method to be R. All compounds were evaluated for their cytotoxicity on four human cancer cell lines, which demonstrated that 3 was a moderate bioactive lignan, and 6 showed significant anticancer activity against SPC-A-1 and BEL-7402 cell lines with IC50 values of 1.47 and 1.73 microg/mL, respectively.

  18. Facile synthesis and biological evaluation of novel symmetrical biphenyls as antitumor agents.

    PubMed

    Zhang, Jie; Zhang, Yanmin; Pan, Xiaoyan; Wang, Chen; Hu, Zhigang; Wang, Sicen; He, Langchong

    2012-03-01

    As a continuation to our previous work in developing anticancer agents, eighteen symmetrical biphenyl derivatives structurally related to taspine were synthesized and evaluated in vitro and in vivo. All the compounds were prepared with varied substitutions in the phenyl ring of aniline moiety. The cytotoxicity and anticancer activity of biphenyls was evaluated against various human tumor and normal cell line. Antiproliferative assays indicated that some of them exhibited potent anticancer activity. The potent antiproliferative activity of these compounds against ECV304 suggested that these biphenyls could be served as antiangiogenic agents. The highly active compound (2) also exhibited potent growth inhibition against cancer cell lines in vivo. Our findings demonstrated that these symmetrical biphenyl derivatives would be a promising candidate as novel anticancer agents.

  19. Novel gold(I) complexes with 5-phenyl-1,3,4-oxadiazole-2-thione and phosphine as potential anticancer and antileishmanial agents.

    PubMed

    Chaves, Joana Darc S; Tunes, Luiza Guimarães; de J Franco, Chris Hebert; Francisco, Thiago Martins; Corrêa, Charlane Cimini; Murta, Silvane M F; Monte-Neto, Rubens Lima; Silva, Heveline; Fontes, Ana Paula S; de Almeida, Mauro V

    2017-02-15

    The current anticancer and antileishmanial drug arsenal presents several limitations concerning their specificity, efficacy, costs and the emergence of drug-resistant cells lines, which encourages the urgent need to search for new alternatives. Inspired by the fact that gold(I)-based compounds are promising antitumoral and antileishmanial drug candidates, we synthesized novel gold(I) complexes containing phosphine and 5-phenyl-1,3,4-oxadiazole-2-thione and evaluated their anticancer and antileishmanial activities. Synthesis was performed by reacting 5-phenyl-1,3,4-oxadiazole-2-thione derivatives with chloro(triphenylphosphine)gold(I) and chloro(triethylphosphine)gold(I). The novel compounds were characterized by infrared, Raman, 1 H, 13 C nuclear magnetic resonance, high-resolution mass spectra, and x-ray crystallography. The coordination of the ligands to gold(I) occurred through the exocyclic sulfur atom. All gold(I) complexes were active at low micromolar or nanomolar range with IC 50 values ranging from <0.10 to 1.66 μM against cancer cell lines and from 0.9 to 4.2 μM for Leishmania infantum intracellular amastigotes. Compound (6-A) was very selective against murine melanoma B16F10, colon cancer CT26.WT cell lines and L. infantum intracellular amastigotes. Compound (7-B) presented the highest anticancer activity against both cancer cell lines while the promising antileishmanial lead was compound (6-A). Tiethylphosphine gold(I) complexes were more active than the conterparts triphenylphosphine derivatives for both anticancer and antileishmanial activities. Triethylphosphine gold(I) derivatives presented antimony cross-resistance in L. guyanensis demonstrating their potential to be used as chemical tools to better understand mechanisms of drug resistance and action. These findings revealed the anticancer and antileishmanial potential of gold(I) oxadiazole phosphine derivatives. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  20. A new phenolic glycoside from the stem of Dendrobium nobile.

    PubMed

    Zhou, Xue-Ming; Zheng, Cai-Juan; Wu, Jia-Ting; Chen, Guang-Ying; Zhang, Bin; Sun, Chong-Ge

    2017-05-01

    A new phenolic glycoside dendroside (1), together with seven known compounds (2-8) were isolated from the stems of Dendrobium nobile. The structures of these compounds were elucidated using comprehensive spectroscopic methods. The inhibitory activities of all compounds against three cancer cell lines HeLa, MCF-7 and A549 were evaluated.

  1. α-Pyrone derivatives with cytotoxic activities, from the endophytic fungus Phoma sp. YN02-P-3.

    PubMed

    Sang, Xia-Nan; Chen, Shao-Fei; Tang, Ming-Xu; Wang, Hai-Feng; An, Xiao; Lu, Xiao-Jie; Zhao, Dan; Wang, Yu-Bo; Bai, Jiao; Hua, Hui-Ming; Chen, Gang; Pei, Yue-Hu

    2017-08-15

    Four new α-pyrone derivatives phomones C-F (1-4) together with four known compounds (5-8) were isolated from the endophytic fungus Phoma sp. YN02-P-3. Compound 1 is the first example of 6-α,β-unsaturated ester-2-pyrone dimers via intermolecular symmetrical [2+2] cycloaddition. The chemical structures of these compounds were determined from spectroscopic data (1D/2D NMR, MS and IR). The acetylated product (9) of 1 along with compounds 1-8 were then tested for their cytotoxicity against HL-60, PC-3 and HCT-116 cell lines. Compounds 2, 3, 5 and 9 with acetyl groups showed significant inhibitory activities against the three cell lines with IC 50 values in the range 0.52-9.85μM. while compounds 1, 4 and 6-8 that possess no acetyl group showed no inhibitory activity (IC 50 >50μM), indicating that the acetyl group at 10- or 12- are essential for their cytotoxic activities. The structure-activity relationships of these phomones were also reported. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Polyphenolic Profile and Targeted Bioactivity of Methanolic Extracts from Mediterranean Ethnomedicinal Plants on Human Cancer Cell Lines.

    PubMed

    Pollio, Antonino; Zarrelli, Armando; Romanucci, Valeria; Di Mauro, Alfredo; Barra, Federica; Pinto, Gabriele; Crescenzi, Elvira; Roscetto, Emanuela; Palumbo, Giuseppe

    2016-03-23

    The methanol extracts of the aerial part of four ethnomedicinal plants of Mediterranean region, two non-seed vascular plants, Equisetum hyemale L. and Phyllitis scolopendrium (L.) Newman, and two Spermatophyta, Juniperus communis L. (J. communis) and Cotinus coggygria Scop. (C. coggygria), were screened against four human cells lines (A549, MCF7, TK6 and U937). Only the extracts of J. communis and C. coggygria showed marked cytotoxic effects, affecting both cell morphology and growth. A dose-dependent effect of these two extracts was also observed on the cell cycle distribution. Incubation of all the cell lines in a medium containing J. communis extract determined a remarkable accumulation of cells in the G2/M phase, whereas the C. coggygria extract induced a significant increase in the percentage of G1 cells. The novelty of our findings stands on the observation that the two extracts, consistently, elicited coherent effects on the cell cycle in four cell lines, independently from their phenotype, as two of them have epithelial origin and grow adherent and two are lymphoblastoid and grow in suspension. Even the expression profiles of several proteins regulating cell cycle progression and cell death were affected by both extracts. LC-MS investigation of methanol extract of C. coggygria led to the identification of twelve flavonoids (compounds 1-11, 19) and eight polyphenols derivatives (12-18, 20), while in J. communis extract, eight flavonoids (21-28), a α-ionone glycoside (29) and a lignin (30) were found. Although many of these compounds have interesting individual biological activities, their natural blends seem to exert specific effects on the proliferation of cell lines either growing adherent or in suspension, suggesting potential use in fighting cancer.

  3. Azilsartan and its Zn(II) complex. Synthesis, anticancer mechanisms of action and binding to bovine serum albumin.

    PubMed

    Martínez, Valeria R; Aguirre, María V; Todaro, Juan S; Piro, Oscar E; Echeverría, Gustavo A; Ferrer, Evelina G; Williams, Patricia A M

    2018-04-01

    Azilsartan is the eighth approved member of angiotensin II receptor blockers for hypertension treatment. Considering that some drugs have additional effects when administered, we studied its effects and mechanisms of action on a human lung cancer cell line A549. We have also modified the structure of the drug by complexation with Zn(II) cation and assayed the anticancer effect. The crystal structure of the new binuclear Zn(II) complex, for short [Zn 2 (azil) 2 (H 2 O) 4 ]·2H 2 O (ZnAzil), was determined by X-ray diffraction methods. The zinc ions are bridged by azilsartan ligands through their carboxylate oxygen and oxadiazol nitrogen atoms. The compounds were examined for their cytotoxic effects against human lung fibroblast (MRC5) and human lung cancer (A549) cell lines. Azilsartan displayed low cytotoxic effects at 150 μM concentrations in A549 human lung cancer cells but the higher effect measured for the Zn complex suggested that this compound may act as an anticancer agent. An apoptotic oxidative stress mechanism of action via the mitochondrial-dependent intrinsic pathway has been determined. Besides, the compounds exerted weak cytotoxic effects in the normal lung related cell line MRC5. Binding constants of the complex formed between each compound and bovine serum albumin (BSA) are in the intermediate range, hence suggesting that azilsartan and ZnAzil could be bonded and transported by BSA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Lipoic acid inhibits cell proliferation of tumor cells in vitro and in vivo

    PubMed Central

    Feuerecker, Benedikt; Pirsig, Sabine; Seidl, Christof; Aichler, Michaela; Feuchtinger, Annette; Bruchelt, Gernot; Senekowitsch-Schmidtke, Reingard

    2012-01-01

    Cancer cells convert glucose preferentially to lactate even in the presence of oxygen (aerobic glycolysis–Warburg effect). New concepts in cancer treatment aim at inhibition of aerobic glycolysis. Pyruvate dehydrogenase converts pyruvate to acetylCoA thus preventing lactate formation. Therefore, the aim of this study was to evaluate compounds that could activate pyruvate dehydrogenase in cancer cells. We investigated the effects of (R)-(+)-α-lipoic acid (LPA) and dichloroacetate (DCA), possible activators of pyruvate dehydrogenase, on suppression of aerobic glycolysis and induction of cell death. The neuroblastoma cell lines Kelly, SK-N-SH, Neuro-2a and the breast cancer cell line SkBr3 were incubated with different concentrations (0.1–30 mM) of LPA and DCA. The effects of both compounds on cell viability/proliferation (WST-1 assay), [18F]-FDG uptake, lactate production and induction of apoptosis (flow cytometric detection of caspase-3) were evaluated. Furthermore, NMRI nu/nu mice that had been inoculated s.c. with SkBr3 cells were treated daily for four weeks with LPA (i.p, 18.5 mg/kg) starting at day 7 p.i.. Tumor development was measured with a sliding calliper and monitored via [18F]-FDG-PET. Residual tumors after therapy were examined histopathologically. These data suggests that LPA can reduce (1) cell viability/proliferation, (2) uptake of [18F]-FDG and (3) lactate production and increase apoptosis in all investigated cell lines. In contrast, DCA was almost ineffective. In the mouse xenograft model with s.c. SkBr3 cells, daily treatment with LPA retarded tumor progression. Therefore, LPA seems to be a promising compound for cancer treatment. PMID:22954700

  5. Chemical composition, in vitro antitumor and pro-oxidant activities of Glandora rosmarinifolia (Boraginaceae) essential oil.

    PubMed

    Poma, Paola; Labbozzetta, Manuela; Notarbartolo, Monica; Bruno, Maurizio; Maggio, Antonella; Rosselli, Sergio; Sajeva, Maurizio; Zito, Pietro

    2018-01-01

    The biological properties of essential oils have been demonstrated in the treatment of several diseases and to enhance the bioavailability of other drugs. In natural habitats the essential oils compounds may play important roles in the protection of the plants as antibacterials, antivirals, antifungals, insecticides and also against herbivores by reducing their appetite for such plants or by repelling undesirable others. We analyzed by gas-chromatography mass spectrometry the chemical composition of the essential oil of aerial parts of Glandora rosmarinifolia (Ten.) D.C. Thomas obtained by hydrodistillation and verified some biological activities on a panel of hepatocellular carcinoma cell lines (HA22T/VGH, HepG2, Hep3B) and triple negative breast cancer cell lines (SUM 149, MDA-MB-231). In the essential oil we detected 35 compounds. The results of the biological assays indicate that essential oil of G. rosmarinifolia induces cell growth inhibition at concentration-dependent way in all cell line models. This oil does not seem to possess antioxidant activity, while the cytotoxicity of G. rosmarinifolia essential oil appeared to involve, at least in part, a pro-oxidant mechanism. Our results show for the first time the antitumoral and pro-oxidant activities of G. rosmarinifolia essential oil and suggest that it may represent a resource of pharmacologically active compounds.

  6. Chemical Characterization and Cytotoxic Activity of Blueberry Extracts (cv. Misty) Cultivated in Brazil.

    PubMed

    Massarotto, Giovana; Barcellos, Thiago; Garcia, Charlene Silvestrin Celi; Brandalize, Ana Paula Carneiro; Moura, Sidnei; Schwambach, Joséli; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana

    2016-08-01

    Vaccinium corymbosum (L.) varieties cultivation is relatively recent in Brazil, but its production has been intensified given its good adaptability to the Southern Brazil climate. Blueberries are a rich source of phenolic compounds and contain significant levels of anthocyanins, flavonols, chlorogenic acids, and procyanidins, which lead to different biological activities. Chemical identification of skin and whole hydroalcoholic blueberry extracts (ExtSB and ExtWB) revealed the presence of anthocyanins concentrated in the skin and others chemicals compounds as quercetin glycosides, proanthocyanins dimers, citric, and chlorogenic acid in the pulp. Selectivity for tumor cell lines (Hep-2, HeLa, HT-29) using ExtSB and ExtWB extracts was observed through MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay after 24 h of treatment when compared to nontumor cells (MRC-5). Morphological changes and late stages of apoptotic and necrosis process were seen in HT-29 cell line after ExtWB treatment, compared to nontumor cell line MRC-5. These results are in agreement with other studies that indicate the activity of compounds such as anthocyanins and other molecules found in Southern Highbush blueberry variety, attributed to promote beneficial effects on health that may respond as cytotoxic natural agent and contribute to cancer treatment. © 2016 Institute of Food Technologists®

  7. Synthesis, anti-proliferative activity, SAR study, and preliminary in vivo toxicity study of substituted N,N'-bis(arylmethyl)benzimidazolium salts against a panel of non-small cell lung cancer cell lines.

    PubMed

    Shelton, Kerri L; DeBord, Michael A; Wagers, Patrick O; Southerland, Marie R; Williams, Travis M; Robishaw, Nikki K; Shriver, Leah P; Tessier, Claire A; Panzner, Matthew J; Youngs, Wiley J

    2017-01-01

    A series of N,N'-bis(arylmethyl)benzimidazolium salts have been synthesized and evaluated for their in vitro anti-cancer activity against select non-small cell lung cancer cell lines to create a structure activity relationship profile. The results indicate that hydrophobic substituents on the salts increase the overall anti-proliferative activity. Our data confirms that naphthylmethyl substituents at the nitrogen atoms (N 1 (N 3 )) and highly lipophilic substituents at the carbon atoms (C 2 and C 5 (C 6 )) can generate benzimidazolium salts with anti-proliferative activity that is comparable to that of cisplatin. The National Cancer Institute's Developmental Therapeutics Program tested 1, 3-5, 10, 11, 13-18, 20-25, and 28-30 in their 60 human tumor cell line screen. Results were supportive of data observed in our lab. Compounds with hydrophobic substituents have higher anti-cancer activity than compounds with hydrophilic substituents. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Biflorin: an o-naphthoquinone of clinical significance.

    PubMed

    Wisintainer, Gabrielle G N S; Simões, Evelyne R B; Lemos, Telma L G; Moura, Sidnei; Souza, Luciana G S; Fonseca, Aluisio M; Moraes, Manoel Odorico; Pessoa, Claudia; Roesch-Ely, Mariana; Henriques, João A P

    2014-12-01

    Biflorin is an o-naphthoquinone with proven cytotoxic effects on tumor cells showing antimicrobial, antitumor and antimutagenic activities. Biflorin is an isolated compound taken from the roots of the plant Capraria biflora L. (Schrophulariaceae), indigenous of the West Indies and South America, which is located in temperate or tropical areas. This compound has shown to be strongly active against grampositive and alcohol-acid-resistant bacteria. It has been efficient in inhibiting the proliferation tumor cell lines CEM, HL-60, B16, HCT-8 and MCF-7. Recently, SK-Br3 cell line was treated with biflorin showing important cytotoxic effects. In this article, information related to the first structural characterization studies are presented, as well as the latest reports concerning the biological activity of this molecule.

  9. Biflorin: an o-naphthoquinone of clinical significance.

    PubMed

    Wisintainer, Gabrielle G N S; Simões, Evelyne R B; Lemos, Telma L G; Moura, Sidnei; Souza, Luciana G S; Fonseca, Aluisio M; Moraes, Manoel Odorico; Pessoa, Claudia; Roesch-Ely, Mariana; Henriques, João A P

    2014-10-14

    Biflorin is an o-naphthoquinone with proven cytotoxic effects on tumor cells showing antimicrobial, antitumor and antimutagenic activities. Biflorin is an isolated compound taken from the roots of the plant Capraria biflora L. (Schrophulariaceae), indigenous of the West Indies and South America, which is located in temperate or tropical areas. This compound has shown to be strongly active against grampositive and alcohol-acid-resistant bacteria. It has been efficient in inhibiting the proliferation tumor cell lines CEM, HL-60, B16, HCT-8 and MCF-7. Recently, SK-Br3 cell line was treated with biflorin showing important cytotoxic effects. In this article, information related to the first structural characterization studies are presented, as well as the latest reports concerning the biological activity of this molecule.

  10. Evaluation of in vitro anticancer activity of Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris.

    PubMed

    Behbahani, Mandana

    2014-01-01

    The present investigation was carried out to study the relationship between presence of cytotoxic compounds in Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris. The cytotoxic activity of the pure compounds was performed by MTT assay against breast cancer cell lines (MCF-7 and MDA-MB-231) and normal breast cell line (MCF 10A). The induction of apoptosis was measured by the expression levels of p53, bcl-2, bax and caspase-3 genes using quantitative Real Time PCR. Three active fractions were detected by nuclear magnetic resonance as lutein, lupeol and eugenol, respectively, in C. officinalis, A. maurorum and O. basilicum. These compounds and their epoxidized forms were also detected in their parasite C. campestris. The cytotoxic activity of lutein epoxide, lupeol epoxide and eugenol epoxide was significantly more than lutein, lupeol and eugenol. The mRNA expression level of p53, caspase-3 and bax genes were increased in both cancer cells treated with all pure compounds. However, bcl-2 gene expression decreased in treated breast cancer cells. In conclusion, all the data indicated that the epoxide forms of lupeol, lutein and eugenol are potential drug candidates for inducing apoptosis in human breast cancer cells.

  11. Evaluation of In Vitro Anticancer Activity of Ocimum Basilicum, Alhagi Maurorum, Calendula Officinalis and Their Parasite Cuscuta Campestris

    PubMed Central

    Behbahani, Mandana

    2014-01-01

    The present investigation was carried out to study the relationship between presence of cytotoxic compounds in Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris. The cytotoxic activity of the pure compounds was performed by MTT assay against breast cancer cell lines (MCF-7 and MDA-MB-231) and normal breast cell line (MCF 10A). The induction of apoptosis was measured by the expression levels of p53, bcl-2, bax and caspase-3 genes using quantitative Real Time PCR. Three active fractions were detected by nuclear magnetic resonance as lutein, lupeol and eugenol, respectively, in C. officinalis, A. maurorum and O. basilicum. These compounds and their epoxidized forms were also detected in their parasite C. campestris. The cytotoxic activity of lutein epoxide, lupeol epoxide and eugenol epoxide was significantly more than lutein, lupeol and eugenol. The mRNA expression level of p53, caspase-3 and bax genes were increased in both cancer cells treated with all pure compounds. However, bcl-2 gene expression decreased in treated breast cancer cells. In conclusion, all the data indicated that the epoxide forms of lupeol, lutein and eugenol are potential drug candidates for inducing apoptosis in human breast cancer cells. PMID:25548920

  12. Metabolites of the endophytic fungus Penicillium sp. FJ-1 of Acanthus ilicifolius.

    PubMed

    Liu, Jian-Fang; Chen, Wei-Jie; Xin, Ben-Ru; Lu, Jie

    2014-06-01

    Two new compounds, named as (2R,3S)-pinobanksin-3-cinnamate (1), and 15alpha-hydroxy-(22E,24R)-ergosta-3,5,8(14),22-tetraen-7-one (2), were isolated from the endophytic fungus Penicillium sp. FJ-1 of Acanthus ilicifolius Linn. Their structures were elucidated on the basis of spectroscopic analysis. Additionally, compound 1 exhibited potent neuroprotective effects on corticosterone-damaged PC12 cells, and compound 2 showed potent cytotoxicity on glioma cell lines.

  13. Benzoin Schiff Bases: Design, Synthesis, and Biological Evaluation as Potential Antitumor Agents.

    PubMed

    Sabbah, Dima A; Al-Tarawneh, Fatima; Talib, Wamidh H; Sweidan, Kamal; Bardaweel, Sanaa K; Al-Shalabi, Eveen; Zhong, Haizhen A; Abu Sheikha, Ghassan; Abu Khalaf, Reema; Mubarak, Mohammad S

    2018-04-12

    Phosphoinositide 3-kinase α (PI3Kα) is an attractive target for anticancer drug design. Target compounds were designed to probe the significance of alcohol and imine moieties tailored on a benzoin scaffold to better understand the structure activity relation (SAR) and improve their biological activity as anticancer compounds. Chemical synthesis of the targeted compounds, biological evaluation tests against human colon adenocarcinoma (HCT-116), breast adenocarcinoma (MCF-7), and breast carcinoma (T47D) cell lines, as well as Glide docking studies were employed in this investigation. A new series of 1,2-diphenylimino ethanol was successfully synthesized and characterized by means of FT-IR, HRMS, NMR, and by elemental analysis. Biological screening revealed that the newly synthesized compounds inhibit PI3Kα activity in human colon adenocarcinoma (HCT-116), breast adenocarcinoma (MCF-7), and breast carcinoma (T47D) cell lines. Results additionally showed that these compounds exhibit selective antiproliferative activity, induce apoptosis, and suppress the VEGF production. Compounds 2b, 2d, and 2g displayed promising inhibitory activity in HCT-116 suggesting that hydrophobic and/or hydrogen bond-acceptor mediate(s) ligand-receptor interaction on o- and m-positions. Furthermore, compounds 2g, 2i, 2j, and 2h, bearing hydrophobic moiety on m- and p-position, exerted high antiproliferative activity in T47D and MCF-7 cells, whereas compound 2e showed selectivity against T47D and MCF-7. Molecular docking studies against PI3Kα and caspase-3 demonstrated a strong correlation between the predicted binding affinity (ΔGobsd) and IC50 values of prepared compounds for the caspase-3 model, implying that the cellulous inhibitory activity was caspase-3-dependent. Moreover, Glide docking against PI3Kα identified Ser774, Lys802, E849, V851, and Asp933 as key binding residues. The series exerted a potential PI3Kα inhibitory activity in human carcinoma cell lines expressing PI3Kα. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Antiproliferative activity of synthetic fatty acid amides from renewable resources.

    PubMed

    dos Santos, Daiane S; Piovesan, Luciana A; D'Oca, Caroline R Montes; Hack, Carolina R Lopes; Treptow, Tamara G M; Rodrigues, Marieli O; Vendramini-Costa, Débora B; Ruiz, Ana Lucia T G; de Carvalho, João Ernesto; D'Oca, Marcelo G Montes

    2015-01-15

    In the work, the in vitro antiproliferative activity of a series of synthetic fatty acid amides were investigated in seven cancer cell lines. The study revealed that most of the compounds showed antiproliferative activity against tested tumor cell lines, mainly on human glioma cells (U251) and human ovarian cancer cells with a multiple drug-resistant phenotype (NCI-ADR/RES). In addition, the fatty methyl benzylamide derived from ricinoleic acid (with the fatty acid obtained from castor oil, a renewable resource) showed a high selectivity with potent growth inhibition and cell death for the glioma cell line-the most aggressive CNS cancer. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Assessment of the potential activity of major dietary compounds as selective estrogen receptor modulators in two distinct cell models for proliferation and differentiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lecomte, Sylvain; Lelong, Marie; Bourgine, Gaëlle

    Estrogen receptors (ERs) α and β are distributed in most tissues of women and men. ERs are bound by estradiol (E2), a natural hormone, and mediate the pleiotropic and tissue-specific effects of E2, such as proliferation of breast epithelial cells or protection and differentiation of neuronal cells. Numerous environmental molecules, called endocrine disrupting compounds, also interact with ERs. Phytoestrogens belong to this large family and are considered potent therapeutic molecules that act through their selective estrogen receptor modulator (SERM) activity. Using breast cancer cell lines as a model of estrogen-dependent proliferation and a stably ER-expressing PC12 cell line as amore » model of neuronal differentiating cells, we studied the SERM activity of major dietary compounds, such as apigenin, liquiritigenin, daidzein, genistein, coumestrol, resveratrol and zearalenone. The ability of these compounds to induce ER-transactivation and breast cancer cell proliferation and enhance Nerve Growth Factor (NGF) -induced neuritogenesis was assessed. Surprisingly, although all compounds were able to activate the ER through an estrogen responsive element reporter gene, they showed differential activity toward proliferation or differentiation. Apigenin and resveratrol showed a partial or no proliferative effect on breast cancer cells but fully contributed to the neuritogenesis effect of NGF. However, daidzein and zearalenone showed full effects on cellular proliferation but did not induce cellular differentiation. In summary, our results suggest that the therapeutic potential of phytoestrogens can diverge depending on the molecule and the phenotype considered. Hence, apigenin and resveratrol might be used in the development of therapeutics for breast cancer and brain diseases. - Highlights: • SERM activity of dietary compounds on proliferation and differentiation is studied. • All the dietary compounds tested transactivate estrogen receptors. • Apigenin and resveratrol could be good candidates for future therapeutics. • Daidzein and zearalenone are to be avoided to maintain human health.« less

  16. Discovery of specific ligands for oral squamous carcinoma to develop anti-cancer drug loaded precise targeting nanotherapeutics.

    PubMed

    Yang, Fan; Liu, Ruiwu; Kramer, Randall; Xiao, Wenwu; Jordan, Richard; Lam, Kit S

    2012-12-01

    Oral squamous cell carcinoma has a low five-year survival rate, which may be due to late detection and a lack of effective tumor-specific therapies. Using a high throughput drug discovery strategy termed one-bead one-compound combinatorial library, the authors identified six compounds with high binding affinity to different human oral squamous cell carcinoma cell lines but not to normal cells. Current work is under way to develop these ligands to oral squamous cell carcinoma specific imaging probes or therapeutic agents.

  17. Apparatus and method for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1991-01-01

    Improved electrolytic cells and methods for producing metals by electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells and methods, a protective surface layer is formed upon at least one electrode in the electrolytic reduction cell and, optionally, upon the lining of the cell. This protective surface layer comprises a material that, at the operating conditions of the cell: (a) is not substantially reduced by the metal product; (b) is not substantially reactive with the cell electrolyte to form materials that are reactive with the metal product; and, (c) has an electrochemical potential that is more electronegative than that of the compound undergoing electrolysis to produce the metal product of the cell. The protective surface layer can be formed upon an electrode metal layer comprising a material, the oxide of which also satisfies the protective layer selection criteria. The protective layer material can also be used on the surface of a cell lining.

  18. Structural optimization of diphenylpyrimidine derivatives (DPPYs) as potent Bruton's tyrosine kinase (BTK) inhibitors with improved activity toward B leukemia cell lines.

    PubMed

    Zhao, Dan; Huang, Shanshan; Qu, Menghua; Wang, Changyuan; Liu, Zhihao; Li, Zhen; Peng, Jinyong; Liu, Kexin; Li, Yanxia; Ma, Xiaodong; Shu, Xiaohong

    2017-01-27

    A new series of diphenylpyrimidine derivatives (DPPYs) bearing various aniline side chains at the C-2 position of pyrimidine core were synthesized as potent BTK inhibitors. Most of these inhibitors displayed improved activity against B leukemia cell lines compared with lead compound spebrutinib. Subsequent studies showed that the peculiar inhibitor 7j, with IC 50 values of 10.5 μM against Ramos cells and 19.1 μM against Raji cells, also displayed slightly higher inhibitory ability than the novel agent ibrutinib. Moreover, compound 7j is not sensitive to normal cells PBMC, indicating low cell cytotoxicity. In addition, flow cytometry analysis indicated that 7j significantly induced the apoptosis of Ramos cells, and arrested the cell cycle at the G0/G1 phase. These explorations provided new clues to discover pyrimidine scaffold as more effective BTK inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  19. A novel synthetic compound exerts effective anti-tumour activity in vivo via the inhibition of tubulin polymerisation in A549 cells.

    PubMed

    Yan, Jun; Pang, Yanqing; Sheng, Jianfeng; Wang, Yali; Chen, Jie; Hu, Jinhui; Huang, Ling; Li, Xingshu

    2015-09-01

    Microtubules are critical elements that are involved in a wide range of cellular processes, and thus, they have become an attractive target for many anticancer drugs. A novel synthesised compound, 12P, was identified as new microtubule inhibitor. This compound inhibits tubulin polymerisation through binding to the colchicine-binding site of tubulin. 12P exhibits excellent anti-proliferative activities against a panel of human cancer cell lines, with IC₅₀ values range from 9 to 55nM. Interestingly, compound 12P also displayed equally potent cytotoxicity against several drug-resistant cell lines, and it showed high selectivity for active human umbilical vein endothelial cells (HUVECs). Further flow cytometric analysis showed that 12P induces G₂/M phase arrest and apoptosis in A549 cells. Cellular studies have revealed that the induction of apoptosis by 12P was associated with a collapse of mitochondrial membrane potential (MMP), accumulation of reactive oxygen species (ROS), alterations in the expression of some cell cycle-related proteins (e.g. Cyclin B1, Cdc25c, Cdc2) and some apoptosis-related proteins (e.g. Bax, Bad, Bcl-2, Bcl-xl). Importantly, 12P significantly reduced the growth of xenograft tumours of A549 cells in vivo (tumour inhibitory rate of 12P: 84.2%), without any loss of body weight. Taken together, these in vitro and in vivo results suggested that 12P may become a promising lead compound for the development of new anticancer drugs. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. The effect of novel rhenium compounds on lymphosarcoma, PC-3 prostate and myeloid leukemia cancer cell lines and an investigation on the DNA binding properties of one of these compounds through electronic spectroscopy

    PubMed Central

    Parson, Carl; Smith, Valerie; Krauss, Christopher; Banerjee, Hirendra N.; Reilly, Christopher; Krause, Jeanette A.; Wachira, James M.; Giri, Dipak; Winstead, Angela; Mandal, Santosh K.

    2014-01-01

    Despite the tremendous success of cisplatin and other platinum-based anticancer drugs, severe toxicity and resistance to tumors limit their applications. It is believed that the coordination (formation of covalent bond) of the metal (platinum) to the nitrogen bases of DNA cause the ruptures of the cancer as well as normal cells. A search for anticancer drugs with different modes of action resulted in the synthesis of variety of novel compounds. Many of them are in clinical trials now. Recently we synthesized a series of novel rhenium pentylcarbonato compounds (PC1–PC6). The rhenium atom in each compound is coordinated (bonded) to a planar polypyridyl aromatic ligand, thereby forcing each compound to intercalate between the DNA bases. We have investigated the DNA binding properties of one of the PC-series of compounds (PC6) using electronic spectroscopy. The UV absorption titration of PC6 with DNA shows hypochromic effect with concomitant bathochromic shift of the charge transfer band at 290 nm. These results suggest that the compound PC6 binds to DNA through intercalation. It is therefore likely that the other PC-series of compounds will behave in a similar manner. Thus it is expected that these compounds will exhibit negligible or no side effect. We have observed that the PC-series of compounds are strong cytotoxic agents against lymphosarcoma (average GI50 ≈ 2±2.6 µM), PC-3 prostate (average GI50 ≈ 3±2.8 µM) and myeloid leukemia (average GI50 ≈ 3±2.8 µM) cancer cell lines. The average GI50 values of the PC-series of compounds are 2–3 less than the corresponding GI50 values of cisplatin. Also each of the PC-series of compounds exhibits less toxicity than cisplatin in the glomerular mesangial cells. PMID:25221731

  1. Comparative analysis of different cell systems for Zika virus (ZIKV) propagation and evaluation of anti-ZIKV compounds in vitro.

    PubMed

    Vicenti, Ilaria; Boccuto, Adele; Giannini, Alessia; Dragoni, Filippo; Saladini, Francesco; Zazzi, Maurizio

    2018-01-15

    A strong correlation between Zika virus (ZIKV) infection and severe neurological disease in newborns and occasionally adults has emerged in the Brazilian outbreak. Efficient human cell-based assays are required to test candidate inhibitors of ZIKV replication. The aim of this work was to investigate ZIKV propagation and quantification in different cell lines. The human (U87, A549, Huh7), mosquito (C6/36) and monkey (VERO E6) cell lines tested were all permissive to ZIKV infection. When assessed by plaque forming units (PFU) in three different target cell lines, the maximal production of ZIKV was achieved in Huh7 at day 3 post-infection (6.38±0.44 log 10 PFU/ml). The C6/36 cell line showed a low and slow production of virus when compared with other cell lines. A549 readout cells generated a larger number of plaques compared to Huh7 but not to VERO E6 cells. ZIKV PFU and RNA titers showed the highest correlation when Huh7 and A549 were used as the producer and readout cells, respectively. Also, U87 cells produced ZIKV RNA titers which were highly correlated with PFU independently from the readout cell line. Using the best virus-cell system, sofosbuvir and ribavirin EC 50 were 1.2μM and 1.1μM when measured through plaque assay, and 4.2μM and 5.2μM when measured by quantitative real time PCR (qRT-PCR), respectively. In summary, ZIKV can efficiently infect different human cell lines and rapidly reach peak viral titers. Overall, A549 cells appear to be as efficient as the VERO E6 gold standard for plaque assay allowing the use of human, rather than simian, cells for evaluating candidate anti-ZIKV compounds by the reference assay. The possibility to replace the labor-intensive plaque assay with the more rapid and easy-to-perform qRT-PCR is appealing and warrants further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Human stem cells and drug screening: opportunities and challenges.

    PubMed

    Ebert, Allison D; Svendsen, Clive N

    2010-05-01

    High-throughput screening technologies are widely used in the early stages of drug discovery to rapidly evaluate the properties of thousands of compounds. However, they generally rely on testing compound libraries on highly proliferative immortalized or cancerous cell lines, which do not necessarily provide an accurate indication of the effects of compounds in normal human cells or the specific cell type under study. Recent advances in stem cell technology have the potential to allow production of a virtually limitless supply of normal human cells that can be differentiated into any specific cell type. Moreover, using induced pluripotent stem cell technology, they can also be generated from patients with specific disease traits, enabling more relevant modelling and drug screens. This article discusses the opportunities and challenges for the use of stem cells in drug screening with a focus on induced pluripotent stem cells.

  3. RWEN: Response-Weighted Elastic Net For Prediction of Chemosensitivity of Cancer Cell Lines. | Office of Cancer Genomics

    Cancer.gov

    Motivation: In recent years there have been several efforts to generate sensitivity profiles of collections of genomically characterized cell lines to panels of candidate therapeutic compounds. These data provide the basis for the development of in silico models of sensitivity based on cellular, genetic, or expression biomarkers of cancer cells. However, a remaining challenge is an efficient way to identify accurate sets of biomarkers to validate.

  4. Hydrolyzable tannins, the active constituents of three Greek Cytinus taxa against several tumor cell lines.

    PubMed

    Magiatis, P; Pratsinis, H; Kalpoutzakis, E; Konstantinidou, A; Davaris, P; Skaltsounis, A L

    2001-06-01

    Hydrolyzable tannins were found to be the active cytotoxic constituents of three Greek Cytinus taxa: Cytinus ruber, Cytinus hypocistis subsp. hypocistis and Cytinus hypocistis subsp. orientalis. The cytotoxic activity was evaluated against a broad spectrum of cancer cell lines. The structure of the active compounds was investigated with NMR and electrospray-MS/MS techniques.

  5. Inhibitory effect of six green tea catechins and caffeine on the growth of four selected human tumor cell lines.

    PubMed

    Valcic, S; Timmermann, B N; Alberts, D S; Wächter, G A; Krutzsch, M; Wymer, J; Guillén, J M

    1996-06-01

    Green tea is an aqueous infusion of dried unfermented leaves of Camellia sinensis (family Theaceae) from which numerous biological activities have been reported including antimutagenic, antibacterial, hypocholesterolemic, antioxidant, antitumor and cancer preventive activities. From the aqueous-alcoholic extract of green tea leaves, six compounds (+)-gallocatechin (GC), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin gallate (EGCG) and caffeine, were isolated and purified. Together with (+)-catechin, these compounds were tested against each of four human tumor cells lines (MCF-7 breast carcinoma, HT-29 colon carcinoma, A-427 lung carcinoma and UACC-375 melanoma). The three most potent green tea components against all four tumor cell lines were EGCG, GC and EGC. EGCG was the most potent of the seven green tea components against three out of the four cell lines (i.e. MCF-7 breast cancer, HT-29 colon cancer and UACC-375 melanoma). On the basis of these extensive in vitro studies, it would be of considerable interest to evaluate all three of these components in comparative preclinical in vivo animal tumor model systems before final decisions are made concerning which of these potential chemopreventive drugs should be taken into broad clinical trials.

  6. Secondary metabolites from the mangrove endophytic fungus Penicillium sp. (SBE-8).

    PubMed

    Guo, Zhiyong; Cheng, Fan; Zou, Kun; Wang, Junzhi; She, Zhigang; Lin, Yongcheng

    2009-11-01

    A new metabolite, 7-hydroxyjanthinone (1), was isolated from the mangrove endophytic fungus Penicillium sp. (SBE-8), together with two known compounds, janthinone (2) and citrinin (3). The structures of these compounds were identified by spectroscopic methods. Compounds 1 and 2 showed no cytotoxicity against KB and KBv cell lines when tested by the MTT method, but compound 3 was weakly active.

  7. Bioactive spirans and other constituents from the leaves of Cannabis sativa f. sativa.

    PubMed

    Guo, Tian-Tian; Zhang, Jian-Chun; Zhang, Hai; Liu, Qing-Chao; Zhao, Yong; Hou, Yu-Fei; Bai, Lu; Zhang, Li; Liu, Xue-Qiang; Liu, Xue-Ying; Zhang, Sheng-Yong; Bai, Nai-Sheng

    2017-08-01

    In this paper, 17 compounds (1-17) were isolated from the leaves of Hemp (Cannabis sativa f. sativa). Among the isolates, two were determined to be new spirans: cannabispirketal (1), and α-cannabispiranol 4'-O-β-D-glucopyranose (2) by 1D and 2D NMR spectroscopy, LC-MS, and HRESIMS. The known compounds 7, 8, 10, 13, 15, and 16 were isolated from Hemp (C. sativa f. sativa) for the first time. Furthermore, compounds 8 and 13 were isolated from the nature for the first time. All isolated compounds were evaluated for cytotoxicity on different tissue-derived passage cancer cell lines through cell viability and apoptosis assay. Among these compounds, compounds 5, 9 and 16 exhibited a broad-spectrum antitumor effect via inhibiting cell proliferation and promoting apoptosis. These results obtained have provided valuable clues to the understanding of the cytotoxic profile for these isolated compounds from Hemp (C. sativa f. sativa).

  8. Synthesis and evaluation of new benzodioxole-based dithiocarbamate derivatives as potential anticancer agents and hCA-I and hCA-II inhibitors.

    PubMed

    Altıntop, Mehlika Dilek; Sever, Belgin; Akalın Çiftçi, Gülşen; Kucukoglu, Kaan; Özdemir, Ahmet; Soleimani, Seyedeh Sara; Nadaroglu, Hayrunnisa; Kaplancıklı, Zafer Asım

    2017-01-05

    In the current work, new benzodioxole-based dithiocarbamate derivatives were synthesized via the reaction of N-(1,3-benzodioxol-5-ylmethyl)-2-chloroacetamide with appropriate sodium salts of N,N-disubstituted dithiocarbamic acids. These derivatives were evaluated for their cytotoxic effects on A549 human lung adenocarcinoma and C6 rat glioma cell lines. N-(1,3-Benzodioxol-5-ylmethyl)-2-[4-(4-nitrophenyl)-1-piperazinylthiocarbamoylthio]acetamide (10) can be identified as the most promising anticancer agent against C6 cell line due to its notable inhibitory effect on C6 cells with an IC 50 value of 23.33 ± 7.63 μg/mL when compared with cisplatin (IC 50  = 19.00 ± 5.29 μg/mL). On the other hand, compound 10 did not show any significant cytotoxic activity against A549 cell line. The compounds were also tested for their in vitro inhibitory effects on hCA-I and hCA-II. Generally, the tested compounds were more effective on CAs than acetazolamide, the reference agent. Among these compounds, N-(1,3-benzodioxol-5-ylmethyl)-2-[(morpholinyl)thiocarbamoylthio]acetamide (3) and N-(1,3-benzodioxol-5-ylmethyl)-2-[(thiomorpholinyl)thiocarbamoylthio]acetamide (4) were found to be the most effective compounds on hCA-I with IC 50 values of 0.346 nM and 0.288 nM, and hCA-II with IC 50 values of 0.287 nM and 0.338 nM, respectively. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Tributyltin or triphenyltin inhibits aromatase activity in the human granulosa-like tumor cell line KGN.

    PubMed

    Saitoh, M; Yanase, T; Morinaga, H; Tanabe, M; Mu, Y M; Nishi, Y; Nomura, M; Okabe, T; Goto, K; Takayanagi, R; Nawata, H

    2001-11-23

    The superimposition of male sex organs (penis and vas deferens) in a female gastropod, called imposex, is widely attributed to the exposure to tributyltin (TBT) compounds, used world-wide in antifouling paints for ships. It has been hypothesized that the TBT-induced imposex is mediated by an increasing androgen level relative to the estrogen level, namely a decreased conversion of androgens to estrogens (i.e., aromatization). In the present study, we tested this hypothesis by examining the effects of TBT or triphenyltin (TPT) on the aromatase activity in a cultured human granulosa-like tumor cell line, KGN, which was recently established by our group. Treatment with more than 1000 ng/ml TBT compounds was very toxic to the cells and caused immediate cell death within 24 h, while 200 ng/ml was found to cause apoptosis of the cells. Treatment of the KGN cells for more than 48 h with 20 ng/ml TBT or TPT, which is a concentration level reported to cause imposex in marine species, did not affect cell proliferation but significantly suppressed the aromatase activity determined by a [(3)H]H(2)O release assay. Treatment with 20 ng/ml TBT compounds for 7 days also resulted in a reduction of the E2 production from Delta 4-androstenedione stimulated by db-cAMP. The changes in the aromatase activity by TBT compounds were associated with comparable changes in P450arom mRNA assessed by RT-PCR. The luciferase activity of the P450arom promoter II (1 kb) decreased after the addition of 20 ng/ml TBT compounds in transfected KGN cells either in a basic state or in states stimulated by db-cAMP. The Ad4BP-dependent increase in the luciferase activity of P450arom promoter II was also downregulated by such treatments. These results indicate that TBT compounds inhibited the aromatase activity and also decreased the P450arom mRNA level at the transcriptional level in KGN cells. The direct inhibitory effect of TBT compounds on the aromatase activity may therefore partly explain the induction of imposex by these compounds in female species. Copyright 2001 Academic Press.

  10. Bioactive Eunicellin-Based Diterpenoids from the Soft Coral Cladiella krempfi

    PubMed Central

    Tai, Chi-Jen; Su, Jui-Hsin; Huang, Ming-Shyan; Wen, Zhi-Hong; Dai, Chang-Feng; Sheu, Jyh-Horng

    2011-01-01

    Four new eunicellin-based diterpenoids, krempfielins A–D (1–4), along with two known compounds (5 and 6) have been isolated from a soft coral Cladiella krempfi. The structures of the new metabolites were elucidated by extensive spectroscopic analysis and by comparison with spectroscopic data of related known compounds. Compounds 5 and 6 were shown to exhibit cytotoxicity against a limited panel of cancer cell lines. Furthermore, compounds 2, 3, 5 and 6 were shown to exert significant in vitro anti-inflammatory activity against LPS-stimulated RAW264.7 macrophage cells. PMID:22073008

  11. Antibacterial, antifungal and cytotoxic evaluation of some new quinazolinone derivatives

    PubMed Central

    Hassanzadeh, F.; Jafari, E.; Hakimelahi, G.H.; Khajouei, M. Rahmani; Jalali, M.; Khodarahmi, G.A.

    2012-01-01

    Quinazolinone ring system is renown because of its wide spectrum of pharmacological activities due to various substitutions on this ring system. In this study, the minimum inhibitory concentration of the synthesized compounds in our laboratory was determined by micro dilution Alamar Blue® Assay against six strains of bacteria (three Gram-positive and three Gram-negative) and three strains of fungi. Following a broth micro dilution minimum inhibitory concentration (MIC) test, Minimum Bactericidal Concentration (MBC) and Minimum Fungicidal Concentration (MFC) tests were performed. Cytotoxic effects of the compounds were measured using the MTT colorimetric assay on HeLa cell line. Results of antimicrobial screening showed that compounds had better bacteriostatic activity against Gram-negative bacteria. Results from MBC revealed that these compounds had more significant bacteriostatic than bactericidal activities. Nearly all screened compounds showed good activity against C. albicans and A. niger. Results from MFC indicated that these compounds had better fungistatic rather than fungicidal activities. The synthesized target molecules were found to exhibit different cytotoxicity in the range of 10 to 100 μM on HeLa cell line. Compounds 6 and 7 exhibited acceptable cytotoxicity approximately 50% at 10 μM concentration. PMID:23181085

  12. Synthesis and cytotoxic activity evaluation of some novel 1-(3-(aryl-4,5-dihydroisoxazol-5-yl)methyl)-4-trihalomethyl-1H-pyrimidin-2-ones in human cancer cells.

    PubMed

    Lobo, Marcio M; Viau, Cassiana M; Dos Santos, Josiane M; Bonacorso, Helio G; Martins, Marcos A P; Amaral, Simone S; Saffi, Jenifer; Zanatta, Nilo

    2015-08-28

    The synthesis of a series of 14 new 1-(3-(aryl-4,5-dihydroisoxazol-5-yl)methyl)-4-trihalomethyl-1H-pyrimidin-2-ones from the 1,3-dipolar cycloaddition reaction of 1-allyl-4-(trihalomethyl)pyrimidin-2(1H)-ones with aryl nitrile oxides is described. Also, the antiproliferative activity of the title compounds was tested against five human tumoral cell lines: MCF-7 breast cancer cell line, ER+ (estrogen receptor positive); HepG-2 (hepatoma); T-24 (bladder cancer); HCT-116 cell (colorectal carcinoma); and CACO-2. The preliminary results are promising, since three compounds presented IC50 values below 2 μM, as well as moderate to high selectivity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  13. Synthesis of sulfadimethoxine based surfactants and their evaluation as antitumor agents.

    PubMed

    Khowdiary, Manal Mohmed; Mostafa, Nashwa S

    2016-01-01

    Synthesized CO (II) and Pt (II) of sulfadimethoxine. These compounds were tested for potential antitumor activity against two of human tumor cell lines, colon carcinoma cell line [Hct116], and breast carcinoma cell line MCF7. The structures of the resulting compounds have been investigated by elemental, FT-IR and H 1 NMR analyzes to insure the purity and confirmed the structures of them. The surface properties studies and octanol/water partition coefficients, Po/w were measured. The synthesized compounds exhibit biological activities with the lowest log Po/w and critical micelle concentration (CMC) values. In addition, in this article we provide an insight into this subject in order to increase the drug bioavailability. Inhibitory activity against colon carcinoma cells was detected for Pt and cobalt ion complex with IC50 = 4.5, 2.2 µg and against breast carcinoma cells IC50 = 18.2, 5.7 µg, respectively. The main goal of cancer therapy is to attain the maximum therapeutic damage of tumor cells in combination with a minimum concentration of the drug. This can be achieved in principle via selective antitumor preparations, the cytostatic effects of which would be restricted within tumor tissue. While 100% selectivity may be impractical, the achievement of reasonably high selectivity seems to be a feasible aim. Platinum and cobalt complex surfactants in our research affect tumor tissue at a very low concentration at values lower than their CMC values; this indicate that the sulfadimethoxine complexes merit further investigation as potential antitumor drugs.

  14. Withaferin A modulates the Spindle assembly checkpoint by degradation of Mad2-Cdc20 complex in colorectal cancer cell lines.

    PubMed

    Das, Tania; Roy, Kumar Singha; Chakrabarti, Tulika; Mukhopadhyay, Sibabrata; Roychoudhury, Susanta

    2014-09-01

    Withania somnifera L. Dunal (Ashwagandha) is used over centuries in the ayurvedic medicines in India. Withaferin A, a withanolide, is the major compound present in leaf extract of the plant which shows anticancer activity against leukemia, breast cancer and colorectal cancer. It arrests the ovarian cancer cells in the G2/M phase in dose dependent manner. In the current study we show the effect of Withaferin A on cell cycle regulation of colorectal cancer cell lines HCT116 and SW480 and its effect on cell fate. Treatment of these cells with this compound leads to apoptosis in a dose dependent manner. It causes the G2/M arrest in both the cell lines. We show that Withaferin A (WA) causes mitotic delay by blocking Spindle assembly checkpoint (SAC) function. Apoptosis induced by Withaferin A is associated with proteasomal degradation of Mad2 and Cdc20, an important constituent of the Spindle Checkpoint Complex. Further overexpression of Mad2 partially rescues the deleterious effect of WA by restoring proper anaphase initiation and keeping more number of cells viable. We hypothesize that Withaferin A kills cancer cells by delaying the mitotic exit followed by inducing chromosome instability. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Selective Targeting of Cancer Stem Cells by 2-Aminodihydroquinoline Analogs.

    PubMed

    Park, Heejoo; Yu, Yeongji; Kim, Hyejin; Lee, Eun; Lee, Hani; Jeon, Raok; Kim, Woo-Young

    2017-04-01

    Many aminodihydroquinoline compounds have been studied to determine their cytotoxicity to cancer cells. However, anti-cancer stem cells (CSCs) activity of aminodihydroquinoline has not been tested in spite that CSC is believed to do an important roles in chemotherapy resistance and recurrence. The CSC selective targeting activities of 10 recently synthesized 2-aminodihydroquinoline analogs were examined on CSCs and bulk culture of a glioblastoma cell line. A diethylaminopropyl substituted aminodihydroquinoline, 5h, showed a strong anti-CSC effect and general cytotoxicity. However, a benzyl substituted aminodihydroquinoline, 5i, displayed the most effective anti-CSC effect, with no or small significant cytotoxic effect in bulk culture conditions. While 5h temporarily enhanced CSC marker-positive cells and eventually suppressed the CSC population, which is similar to other cytotoxic anticancer reagents reported, 5i selectively eliminated CSC marker-positive cells based on fluorescence activated cell sorter (FACS) analysis. 5h also temporarily activated some genes associated with signaling required for CSC, while 5i selectively suppressed these genes supporting that the differential effects are resulted from different molecular responses. In addition, the selective CSC effect is also found against a colon cancer cell line. Collectively, we suggest that these two novel aminodihydroquinoline compounds possess novel anti-CSC effects in colon and brain tumor derived cell lines probably through independent pathways.

  16. Discovery of diethyl 2,5-diaminothiophene-3,4-dicarboxylate derivatives as potent anticancer and antimicrobial agents and screening of anti-diabetic activity: synthesis and in vitro biological evaluation. Part 1.

    PubMed

    Bozorov, Khurshed; Ma, Hai-Rong; Zhao, Jiang-Yu; Zhao, Hai-Qing; Chen, Hua; Bobakulov, Khayrulla; Xin, Xue-Lei; Elmuradov, Burkhon; Shakhidoyatov, Khusnutdin; Aisa, Haji A

    2014-09-12

    Series of diethyl 2,5-diaminothiophene-3,4-dicarboxylate (DDTD) derivatives: azomethines of DDTD (2a-l) have been synthesized and screened for their anticancer, antimicrobial and anti-diabetic activities. The novel synthesized compounds were characterized by (1)H, (13)C NMR, MS and FT-IR analyses. All compounds were evaluated for their antiproliferative activity against three types of cancer cell line such as T47D and MCF-7 (human breast cancer), Hela (human cervical cancer) and Ishikawa (human endometrial cancer) lines. The results showed that most compounds exhibited significant antiproliferative activity against breast cancer cells. The majority of azomethines DDTD influenced strongly against breast cancer cells T47D and MCF-7, among them compounds 2b (2.3 μM), 2c (12.1 μM), 2e (13.2 μM), 2i (14.9 μM), 2j (16.0 μM), 2k (7.1 μM), 2l (8.6 μM) manifest potent anticancer activity against cancer cell T47D than Doxorubicin (DOX, 15.5 μM). Compound 2j has shown potent activity on all three types of cancer cells concurrently and IC50 values were considerably low in comparison with positive control DOX. In addition, all compounds were tested for antimicrobial activity against Staphylococcus aureus ATCC 6538 (Gram positive bacteria), Escherichia coli ATCC 11229 (Gram negative bacteria) and Candida albicans ATCC 10231 (Fungi) strains and 2j which contains in the ring nitrofurfural fragment, showed the highest effect on the three species of microbial pathogens simultaneously. Some compounds induced enzymatic inhibition in a concentration-dependent manner on PTP-1B inhibitor. Copyright © 2014. Published by Elsevier Masson SAS.

  17. Preclinical investigation of tolerance and antitumour activity of new fluorodeoxyglucose-coupled chlorambucil alkylating agents.

    PubMed

    Miot-Noirault, Elisabeth; Reux, Bastien; Debiton, Eric; Madelmont, Jean-Claude; Chezal, Jean-Michel; Coudert, Pascal; Weber, Valérie

    2011-06-01

    Our strategy is to increase drug accumulation in target tumour cells using specific "vectors" tailored to neoplastic tissue characteristics, which ideally are not found in healthy tissues. The aim of this work was to use 2-fluoro-2-deoxyglucose (FDG) as a drug carrier, in view of its well-known accumulation by most primary and disseminated human tumours. We had previously selected two FDG-cytotoxic conjugates of chlorambucil (CLB), i.e. compounds 21a and 40a, on the basis of their in vitro profiles. Here we investigated the antitumour profile and tolerance of these compounds in vitro and in vivo in two murine cell lines of solid tumours. In vitro, we found that micromolar concentrations of compounds 21a and 40a inhibited proliferation of B16F0 and CT-26 cell lines. Interestingly, compounds 21a and 40a were found to act at different levels in the cell cycle: S and subG1 accumulation for 21a and G2 accumulation for 40a. In vivo, a single-dose-finding study to select the Maximum Tolerated Dose (MTD) by the intraperitoneal route (IP) showed that the two peracetylated glucoconjugates of CLB were less toxic than CLB itself. When given to tumour-bearing mice (melanoma and colon carcinoma models), according to a "q4d × 3" schedule (i.e., three doses at 4-day intervals) both compounds demonstrated a promising antitumour activity, with Log Cell Kill (LCK) values higher than 1.3 in both B16F0 and CT-26 models. Hence compounds 21a and 40a are good candidates for further works to develop new highly active antineoplastic compounds.

  18. Cytotoxic effects of new synthesis heterocyclic derivatives of Amoxicillin on some cancer cell lines

    NASA Astrophysics Data System (ADS)

    Al-Rawi, M. S.; Hussei, D. F.; Al-Taie, A. F.; Al-Halbosiy, M. M.; Hameed, B. A.

    2018-05-01

    A new Schiff base [I] was prepared by refluxing Amoxicillin trihydrate and 4-Hydroxy- 3,5-dimethoxybenzaldehyde in aqueous methanol solution using glacial acetic acid as a catalyst. The new 1,3-oxazepine derivative [II] was obtained by Diels- Alder reaction of Schiff base [I] with phthalic anhydride in dry benzene. The reaction of Schiff base [I] with thioglycolic acid in dry benzene led to the formation of thiazolidin-4-one derivative [III]. While the imidazolidin-4-one [IV] derivative was produced by reacting the mentioned Schiff base [I] with glycine and triethylamine in ethanol for 9 hrs. Tetrazole derivative [V] was synthesized by refluxing Schiff base [I] with sodium azide in dimethylformamid DMF. The structure of synthesized compounds[I-V] was characterized by their melting points, elemental analysis CHN-S and by their spectral data; FTIR and 1H NMR spectroscopy. Two cancer cell lines include: (RD) human pelvic rhabdomyosarcoma and (L20B) the mice intestines carcinoma cell line (which expresses the genes for human cellular receptor for Polio viruses) were used in this study. The cytotoxic effect of different concentrations of all the synthesized compounds for 48 hrs was examined. All compounds except [IV] and [V] showed less than 50% inhibition for (L20B), while these compounds exhibit inhibition more than 50% inhibition for (RD).

  19. Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer

    PubMed Central

    Samal, Sabindra K.; Routray, Samapika; Veeramachaneni, Ganesh Kumar; Dash, Rupesh; Botlagunta, Mahendran

    2015-01-01

    DDX3 belongs to DEAD box RNA helicase family and is involved in the progression of several types of cancer. In this work, we employed a High Throughput Virtual screening approach to identify bioactive compounds against DDX3 from ZINC natural database. Ketorolac salt was selected based on its binding free energy less than or equals to −5 Kcal/mol with reference to existing synthetic DDX3 inhibitors and strong hydrogen bond interactions as similar to crystallized DDX3 protein (2I4I). The anti-cancer activity of Ketorolac salt against DDX3 was tested using oral squamous cell carcinoma (OSCC) cell lines. This compound significantly down regulated the expression of DDX3 in human OSCC line (H357) and the half maximal growth inhibitory concentration (IC50) of Ketorolac salt in H357 cell line is 2.6 µM. Ketorolac salt also inhibited the ATP hydrolysis by directly interacting with DDX3. More importantly, we observed decreased number of neoplastic tongue lesions and reduced lesion severity in Ketorolac salt treated groups in a carcinogen induced tongue tumor mouse model. Taken together, our result demonstrates that Ketorolac salt is a newly discovered bioactive compound against DDX3 and this compound can be used as an ideal drug candidate to treat DDX3 associated oral cancer. PMID:25918862

  20. Ketorolac salt is a newly discovered DDX3 inhibitor to treat oral cancer.

    PubMed

    Samal, Sabindra K; Routray, Samapika; Veeramachaneni, Ganesh Kumar; Dash, Rupesh; Botlagunta, Mahendran

    2015-04-28

    DDX3 belongs to DEAD box RNA helicase family and is involved in the progression of several types of cancer. In this work, we employed a High Throughput Virtual screening approach to identify bioactive compounds against DDX3 from ZINC natural database. Ketorolac salt was selected based on its binding free energy less than or equals to -5 Kcal/mol with reference to existing synthetic DDX3 inhibitors and strong hydrogen bond interactions as similar to crystallized DDX3 protein (2I4I). The anti-cancer activity of Ketorolac salt against DDX3 was tested using oral squamous cell carcinoma (OSCC) cell lines. This compound significantly down regulated the expression of DDX3 in human OSCC line (H357) and the half maximal growth inhibitory concentration (IC50) of Ketorolac salt in H357 cell line is 2.6 µM. Ketorolac salt also inhibited the ATP hydrolysis by directly interacting with DDX3. More importantly, we observed decreased number of neoplastic tongue lesions and reduced lesion severity in Ketorolac salt treated groups in a carcinogen induced tongue tumor mouse model. Taken together, our result demonstrates that Ketorolac salt is a newly discovered bioactive compound against DDX3 and this compound can be used as an ideal drug candidate to treat DDX3 associated oral cancer.

  1. Synthesis and biological activity of acetyl-protected hydroxybenzyl diethyl phosphates (EHBP) as potential chemotherapeutic agents.

    PubMed

    Kodela, Ravinder; Chattopadhyay, Mitali; Nath, Niharika; Cieciura, Lucyna Z; Pospishill, Liliya; Boring, Daniel; Crowell, James A; Kashfi, Khosrow

    2011-12-01

    Several acetyl-protected hydroxybenzyl diethyl phosphates (EHBPs) that are capable of forming quinone methide intermediates were synthesized and their cell growth inhibitory properties were evaluated in four different human cancer cell lines. Compounds 1, 1a, and 1b, corresponding to (4-acetyloxybenzyl diethylphosphate), (3-methyl-4-acetyloxybenzyl diethylphosphate), and (3-chloro-4-acetyloxybenzyl diethylphosphate), were significantly more potent than compounds 2 and 3, (2-acetyloxybenzyl diethylphosphate) and (3-acetyloxybenzyl diethylphosphate), respectively. Using HT-29 human colon cancer cells, compounds 1 and 3 increased apoptosis, inhibited proliferation, and caused a G(2)/M block in the cell cycle. Our data suggest that these compounds merit further investigation as potential anti-cancer agents. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Gold(III) bis(thiosemicarbazonate) compounds in breast cancer cells: Cytotoxicity and thioredoxin reductase targeting.

    PubMed

    Rodríguez-Fanjul, Vanessa; López-Torres, Elena; Mendiola, M Antonia; Pizarro, Ana María

    2018-03-25

    Gold(III) compounds have received increasing attention in cancer research. Three gold complexes of general formula [Au III L]Cl, where L is benzil bis(thiosemicarbazonate), compound 1, benzil bis(4-methyl-3-thiosemicarbazonate), compound 2, or benzil bis(4-cyclohexyl-3-thiosemicarbazonate), compound 3, have been synthesized and fully characterized, including the X-ray crystal structure of compound 3, confirming square-planar geometry around the gold(III) centre. Compound 1 showed moderate cytotoxicity and accumulation in MCF7 breast cancer cells but did not inhibit thioredoxin reductase (TrxR) activity and did not induce reactive oxygen species (ROS) production. Compound 2, the least cytotoxic, was found to be capable of modestly inhibiting TrxR activity and produced low levels of ROS in the MCF7 cell line. The most cytotoxic compound, 3, had the highest cellular accumulation and its distribution pattern showed a clear preference for the cytosol and mitochondria of MCF7 cells. It readily hampered intracellular TrxR activity leading to a dramatic alteration of the cellular redox state and to the induction of cell death. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  3. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles.

    PubMed

    Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M

    2015-01-01

    Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet-visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties.

  4. New inhibitor targeting human transcription factor HSF1: effects on the heat shock response and tumor cell survival

    PubMed Central

    Vilaboa, Nuria; Boré, Alba; Martin-Saavedra, Francisco; Bayford, Melanie; Winfield, Natalie; Firth-Clark, Stuart; Kirton, Stewart B.

    2017-01-01

    Abstract Comparative modeling of the DNA-binding domain of human HSF1 facilitated the prediction of possible binding pockets for small molecules and definition of corresponding pharmacophores. In silico screening of a large library of lead-like compounds identified a set of compounds that satisfied the pharmacophoric criteria, a selection of which compounds was purchased to populate a biased sublibrary. A discriminating cell-based screening assay identified compound 001, which was subjected to systematic analysis of structure–activity relationships, resulting in the development of compound 115 (IHSF115). IHSF115 bound to an isolated HSF1 DNA-binding domain fragment. The compound did not affect heat-induced oligomerization, nuclear localization and specific DNA binding but inhibited the transcriptional activity of human HSF1, interfering with the assembly of ATF1-containing transcription complexes. IHSF115 was employed to probe the human heat shock response at the transcriptome level. In contrast to earlier studies of differential regulation in HSF1-naïve and -depleted cells, our results suggest that a large majority of heat-induced genes is positively regulated by HSF1. That IHSF115 effectively countermanded repression in a significant fraction of heat-repressed genes suggests that repression of these genes is mediated by transcriptionally active HSF1. IHSF115 is cytotoxic for a variety of human cancer cell lines, multiple myeloma lines consistently exhibiting high sensitivity. PMID:28369544

  5. Induction of apoptosis by Fe(salen)Cl through caspase-dependent pathway specifically in tumor cells.

    PubMed

    Pradhan, Nitika; Pratheek, B M; Garai, Antara; Kumar, Ashutosh; Meena, Vikram S; Ghosh, Shyamasree; Singh, Sujay; Kumari, Shikha; Chandrashekar, T K; Goswami, Chandan; Chattopadhyay, Subhasis; Kar, Sanjib; Maiti, Prasanta K

    2014-10-01

    Iron-based compounds possess the capability of inducing cell death due to their reactivity with oxidant molecules, but their specificity towards cancer cells and the mechanism of action are hitherto less investigated. A Fe(salen)Cl derivative has been synthesized that remains active in monomer form. The efficacy of this compound as an anti-tumor agent has been investigated in mouse and human leukemia cell lines. Fe(salen)Cl induces cell death specifically in tumor cells and not in primary cells. Mouse and human T-cell leukemia cell lines, EL4 and Jurkat cells are found to be susceptible to Fe(salen)Cl and undergo apoptosis, but normal mouse spleen cells and human peripheral blood mononuclear cells (PBMC) remain largely unaffected by Fe(salen)Cl. Fe(salen)Cl treated tumor cells show significantly higher expression level of cytochrome c that might have triggered the cascade of reactions leading to apoptosis in cancer cells. A significant loss of mitochondrial membrane potential upon Fe(salen)Cl treatment suggests that Fe(salen)Cl induces apoptosis by disrupting mitochondrial membrane potential and homeostasis, leading to cytotoxity. We also established that apoptosis in the Fe(salen)Cl-treated tumor cells is mediated through caspase-dependent pathway. This is the first report demonstrating that Fe(salen)Cl can specifically target the tumor cells, leaving the primary cells least affected, indicating an excellent potential for this compound to emerge as a next-generation anti-tumor drug. © 2014 International Federation for Cell Biology.

  6. Evaluation of genotoxic potential of avarol, avarone, and its methoxy and methylamino derivatives in prokaryotic and eukaryotic test models.

    PubMed

    Kolarević, Stoimir; Milovanović, Dragana; Kračun-Kolarević, Margareta; Kostić, Jovana; Sunjog, Karolina; Martinović, Rajko; Đorđević, Jelena; Novaković, Irena; Sladić, Dušan; Vuković-Gačić, Branka

    2018-01-04

    In this study, mutagenic and genotoxic potential of anti-tumor compounds avarol, avarone, and its derivatives 3'-methoxyavarone, 4'-(methylamino)avarone and 3'-(methylamino)avarone was evaluated and compared to cytostatics commonly used in chemotherapy (5-fluorouracil, etoposid, and cisplatin). Mutagenic potential of selected hydroquinone and quinones was assessed in prokaryotic model by the SOS/umuC assay in Salmonella typhimurium TA1535/pSK1002. Genotoxic potential was also assessed in eukaryotic models using comet assay in human fetal lung cell line (MRC-5), human adenocarcinoma epithelial cell line (A549), and in human peripheral blood cells (HPBC). The results indicated that avarol and avarone do not exert mutagenic/genotoxic potential. Among the studied avarone derivatives, mutagenic potential was detected by SOS/umuC test for 3'-(methylamino)avarone, but only after metabolic activation. The results of comet assay indicated that 3'-methoxyavarone and 3'-(methylamino)avarone have a significant impact on the level of DNA damage in the MRC-5 cell line. Genotoxic potential was not observed in A549 cells or HPBC probably due to a different uptake rate for the compounds and lower in metabolism rate within these cells.

  7. Multivalent dendrimeric compounds containing carbohydrates expressed on immune cells inhibit infection by primary isolates of HIV-1

    PubMed Central

    Borges, Andrew Rosa; Wieczorek, Lindsay; Johnson, Benitra; Benesi, Alan J.; Brown, Bruce K.; Kensinger, Richard D.; Krebs, Fred C.; Wigdahl, Brian; Blumenthal, Robert; Puri, Anu; McCutchan, Francine E.; Birx, Deborah L.; Polonis, Victoria R.; Schengrund, Cara-Lynne

    2010-01-01

    Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3’-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC50s ranging from 0.1 – 7.4 µg/ml. Inhibition of Env-mediated membrane fusion by MVC was also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. PMID:20880566

  8. Synthesis and Anticancer Mechanism Investigation of Dual Hsp27 and Tubulin Inhibitors

    PubMed Central

    Zhong, Bo; Chennamaneni, Snigdha; Lama, Rati; Yi, Xin; Geldenhuys, Werner J.; Pink, John J.; Dowlati, Afshin; Xu, Yan; Zhou, Aimin; Su, Bin

    2013-01-01

    Heat shock protein 27 (Hsp27) is a chaperone protein, and its expression is increased in response to various stress stimuli including anticancer chemotherapy, which allows the cells to survive and causes drug resistance. We previously identified lead compounds that bound to Hsp27 and tubulin via proteomic approaches. Systematic ligand based optimization in the current study significantly increased the cell growth inhibition and apoptosis inducing activities of the compounds. Compared to the lead compounds, one of the new derivatives exhibited much better potency to inhibit tubulin polymerization but a decreased activity to inhibit Hsp27 chaperone function, suggesting that the structural modification dissected the dual targeting effects of the compound. The most potent compounds 20 and 22 exhibited strong cell proliferation inhibitory activities at subnanomolar concentration against 60 human cancer cell lines conducted by Developmental Therapeutic Program at the National Cancer Institute and represented promising candidates for anticancer drug development. PMID:23767669

  9. Cytotoxicity and genotoxicity of coronaridine from Tabernaemontana catharinensis A.DC in a human laryngeal epithelial carcinoma cell line (Hep-2)

    PubMed Central

    Rizo, Walace Fraga; Ferreira, Luis Eduardo; Colnaghi, Vanessa; Martins, Juliana Simões; Franchi, Leonardo Pereira; Takahashi, Catarina Satie; Beleboni, Rene Oliveira; Marins, Mozart; Pereira, Paulo Sérgio; Fachin, Ana Lúcia

    2013-01-01

    Cancer has become a major public health problem worldwide and the number of deaths due to this disease is increasing almost exponentially. In the constant search for new treatments, natural products of plant origin have provided a variety of new compounds to be explored as antitumor agents. Tabernaemontana catharinensis is a medicinal plant that produces alkaloids with expressive antitumor activity, such as heyneanine, coronaridine and voacangine. The aim of present study was firstly to screen the cytotoxic activity of the indole alkaloids heyneanine, coronaridine and voacangine against HeLa (human cervix tumor), 3T3 (normal mouse embryo fibroblasts), Hep-2 (human laryngeal epithelial carcinoma) and B-16 (murine skin) cell lines by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide); and secondly to analyze the apoptotic activity, cell membrane damage and genotoxicity of the compound that showed the best cytotoxic activity against the tumor cell lines tested. Coronaridine was the one that exhibited greater cytotoxic activity in the laryngeal carcinoma cell line Hep-2 (IC50 = 54.47 μg/mL) than the other alkaloids tested (voacangine IC50 = 159.33 g/mL, and heyneanine IC50 = 689.45 μg/mL). Coronaridine induced apoptosis in cell lines 3T3 and Hep-2, even at high concentrations. The evaluation of genotoxicity by comet assay showed further that coronaridine caused minimal DNA damage in the Hep-2 tumor cell line, and the LDH test showed that it did not affect the plasma membrane. These results suggest that further investigation of coronaridine as an antitumor agent has merit. PMID:23569415

  10. Novel pyrrolopyrimidines as Mps1/TTK kinase inhibitors for breast cancer.

    PubMed

    Sugimoto, Yasuro; Sawant, Dwitiya B; Fisk, Harold A; Mao, Liguang; Li, Chenglong; Chettiar, Somsundaram; Li, Pui-Kai; Darby, Michael V; Brueggemeier, Robert W

    2017-04-01

    New targeted therapy approaches for certain subtypes of breast cancer, such as triple-negative breast cancers and other aggressive phenotypes, are desired. High levels of the mitotic checkpoint kinase Mps1/TTK have correlated with high histologic grade in breast cancer, suggesting a potential new therapeutic target for aggressive breast cancers (BC). Novel small molecules targeting Mps1 were designed by computer assisted docking analyses, and several candidate compounds were synthesized. These compounds were evaluated in anti-proliferative assays of a panel of 15 breast cancer cell lines and further examined for their ability to inhibit a variety of Mps1-dependent biological functions. The results indicate that the lead compounds have strong anti-proliferative potential through Mps1/TTK inhibition in both basal and luminal BC cell lines, exhibiting IC 50 values ranging from 0.05 to 1.0μM. In addition, the lead compounds 1 and 13 inhibit Mps1 kinase enzymatic activity with IC 50 values from 0.356μM to 0.809μM, and inhibited Mps1-associated cellular functions such as centrosome duplication and the spindle checkpoint in triple negative breast cancer cells. The most promising analog, compound 13, significantly decreased tumor growth in nude mice containing Cal-51 triple negative breast cancer cell xenografts. Using drug discovery technologies, computational modeling, medicinal chemistry, cell culture and in vivo assays, novel small molecule Mps1/TTK inhibitors have been identified as potential targeted therapies for breast cancers. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Isolation and Characterization of “Terrein” an Antimicrobial and Antitumor Compound from Endophytic Fungus Aspergillus terreus (JAS-2) Associated from Achyranthus aspera Varanasi, India

    PubMed Central

    Goutam, Jyoti; Sharma, Gunjan; Tiwari, Vinod K.; Mishra, Amrita; Kharwar, Ravindra N.; Ramaraj, Vijayakumar; Koch, Biplob

    2017-01-01

    The present study aimed at characterizing biological potentials of endophyte Aspergillus terreus JAS-2 isolated from Achyranthus aspera. Crude extracted from endophytic fungus JAS-2 was purified and chemically characterized by chromatographic and spectroscopic studies respectively. Spectral assignment of NMR (nuclear magnetic resonance) data, 1H proton and 13C carbon analysis along with FTIR data elucidated the structure of compound as 4,5-Dihydroxy-3-(1-propenyl)-2-cyclopenten-1-one. After purification and identification a set of experiment was conducted to explore efficacy of compound. Results revealed that on accessing the antifungal activity of compound, growth diameter of tested phytopathogenic fungi was reduced to 50% at higher concentration taken (10 μgμl−1). Compound exhibited in-vitro bacterial cell inhibition at 20 μgml−1 concentration along with moderate antioxidant behavior. Evaluation of anticancer activity against human lung cancer cell line (A-549) exhibited its IC50 value to be 121.9 ± 4.821 μgml−1. Further cell cycle phase distribution were analyzed on the basis of DNA content and evaluated by FACS (Fluorescence Activated Cell Sorting) and it was revealed that at 150 μgml−1 of compound maximum cells were found in sub G1 phase which represents apoptotic dead cells. Terrein (4, 5-Dihydroxy-3-(1-propenyl)-2-cyclopenten-1-one) a multi-potential was isolated from endophytic fungus JAS-2, from well recognized medicinal herb A. aspera. To best of our knowledge, this is the first report of “Terrein” from endophytic derived fungus. This compound had also exhibited anticancer and antifungal activity against human lung cancer cell line A-549 and Bipolaris sorokiniana respectively which is causal organism of many plants disease. Hence endophytes are serving as alternative sources of drug molecules. PMID:28790982

  12. Inhibitory effect of turmeric curcuminoids on FLT3 expression and cell cycle arrest in the FLT3-overexpressing EoL-1 leukemic cell line.

    PubMed

    Tima, Singkome; Ichikawa, Hideki; Ampasavate, Chadarat; Okonogi, Siriporn; Anuchapreeda, Songyot

    2014-04-25

    Leukemia is a hematologic malignancy with a frequent incidence and high mortality rate. Previous studies have shown that the FLT3 gene is overexpressed in leukemic blast cells, especially in acute myeloid leukemia. In this study, a commercially available curcuminoid mixture (1), pure curcumin (2), pure demethoxycurcumin (3), and pure bisdemethoxycurcumin (4) were investigated for their inhibitory effects on cell growth, FLT3 expression, and cell cycle progression in an FLT3-overexpressing EoL-1 leukemic cell line using an MTT assay, Western blotting, and flow cytometry, respectively. The mixture (1) and compounds 2-4 demonstrated cytotoxic effects with IC50 values ranging from 6.5 to 22.5 μM. A significant decrease in FLT3 protein levels was found after curcuminoid treatment with IC20 doses, especially with mixture 1 and compound 2. In addition, mixture 1 and curcumin (2) showed activity on cell cycle arrest at the G0/G1 phase and decreased the FLT3 and STAT5A protein levels in a dose-dependent manner. Compound 2 demonstrated the greatest potential for inhibiting cell growth, cell cycle progression, and FLT3 expression in EoL-1 cells. This investigation has provided new findings regarding the effect of turmeric curcuminoids on FLT3 expression in leukemic cells.

  13. In vitro functional screening as a means to identify new plasticizers devoid of reproductive toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boisvert, Annie; Jones, Steven; Issop, Leeyah

    Plasticizers are indispensable additives providing flexibility and malleability to plastics. Among them, several phthalates, including di (2-ethylhexyl) phthalate (DEHP), have emerged as endocrine disruptors, leading to their restriction in consumer products and creating a need for new, safer plasticizers. The goal of this project was to use in vitro functional screening tools to select novel non-toxic plasticizers suitable for further in vivo evaluation. A panel of novel compounds with satisfactory plasticizer properties and biodegradability were tested, along with several commercial plasticizers, such as diisononyl-cyclohexane-1,2-dicarboxylate (DINCH®). MEHP, the monoester metabolite of DEHP was also included as reference compound. Because phthalates targetmore » mainly testicular function, including androgen production and spermatogenesis, we used the mouse MA-10 Leydig and C18-4 spermatogonial cell lines as surrogates to examine cell survival, proliferation, steroidogenesis and mitochondrial integrity. The most promising compounds were further assessed on organ cultures of rat fetal and neonatal testes, corresponding to sensitive developmental windows. Dose-response studies revealed the toxicity of most maleates and fumarates, while identifying several dibenzoate and succinate plasticizers as innocuous on Leydig and germ cells. Interestingly, DINCH®, a plasticizer marketed as a safe alternative to phthalates, exerted a biphasic effect on steroid production in MA-10 and fetal Leydig cells. MEHP was the only plasticizer inducing the formation of multinucleated germ cells (MNG) in organ culture. Overall, organ cultures corroborated the cell line data, identifying one dibenzoate and one succinate as the most promising candidates. The adoption of such collaborative approaches for developing new chemicals should help prevent the development of compounds potentially harmful to human health. - Highlights: • Phthalate plasticizers exert toxic effects on male reproduction. • Reproductive toxicity of new plasticizers was assessed by functional assays. • Mouse Leydig and germ cell lines, and rat perinatal testis cultures were used. • Survival, proliferation, steroidogenesis, abnormal germ cell formation were examined. • Reproductive toxic and innocuous plasticizer candidates were identified.« less

  14. Effects of drugs in subtoxic concentrations on the metabolic fluxes in human hepatoma cell line Hep G2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niklas, Jens; Noor, Fozia, E-mail: fozia.noor@mx.uni-saarland.d; Heinzle, Elmar

    2009-11-01

    Commonly used cytotoxicity assays assess the toxicity of a compound by measuring certain parameters which directly or indirectly correlate to the viability of the cells. However, the effects of a given compound at concentrations considerably below EC{sub 50} values are usually not evaluated. These subtoxic effects are difficult to identify but may eventually cause severe and costly long term problems such as idiosyncratic hepatotoxicity. We determined the toxicity of three hepatotoxic compounds, namely amiodarone, diclofenac and tacrine on the human hepatoma cell line Hep G2 using an online kinetic respiration assay and analysed the effects of subtoxic concentrations of thesemore » drugs on the cellular metabolism by using metabolic flux analysis. Several changes in the metabolism could be detected upon exposure to subtoxic concentrations of the test compounds. Upon exposure to diclofenac and tacrine an increase in the TCA-cycle activity was observed which could be a signature of an uncoupling of the oxidative phosphorylation. The results indicate that metabolic flux analysis could serve as an invaluable novel tool for the investigation of the effects of drugs. The described methodology enables tracking the toxicity of compounds dynamically using the respiration assay in a range of concentrations and the metabolic flux analysis permits interesting insights into the changes in the central metabolism of the cell upon exposure to drugs.« less

  15. Umbelliprenin is cytotoxic against QU-DB large cell lung cancer cell line but anti-proliferative against A549 adenocarcinoma cells

    PubMed Central

    2012-01-01

    Background Umbelliprenin is a natural compound, belonging to the class of sesquiterpene coumarins. Recently, umbelliprenin has attracted the researchers' attention for its antitumor activities against skin tumors. Its effect on lung cancer is largely unknown. The aim of our study was to investigate the effects of this natural compound, which is expected to have low adverse effects, on lung cancer. Methods The QU-DB large cell and A549 adenocarcinoma lung cancer cell lines were treated with umbelliprenin. IC50 values were estimated using methyl thiazolely diphenyl-tetrazolium bromide (MTT) assay, in which a decrease in MTT reduction can occur as a result of cell death or cell proliferation inhibition. To quantify the rate of cell death at IC50 values, flow cytometry using Annexin V-FITC (for apoptotic cells), and propidium iodide (for necrotic cells) dyes were employed. Results Data from three independent MTT experiments in triplicate revealed that IC50 values for QU-DB and A549 were 47 ± 5.3 μM and 52 ± 1.97 μM, respectively. Annexin V/PI staining demonstrated that umbelliprenin treatment at IC50 induced 50% cell death in QU-DB cells, but produced no significant death in A549 cells until increasing the umbelliprenin concentration to IC80. The pattern of cell death was predominantly apoptosis in both cell lines. When peripheral blood mononuclear cells were treated with 50 μM and less concentrations of umbelliprenin, no suppressive effect was observed. Conclusions We found cytotoxic/anti-proliferative effects of umbelliprenin against two different types of lung cancer cell lines. PMID:23351548

  16. Heterometallic titanium–gold complexes inhibit renal cancer cells in vitro and in vivo † †This paper is dedicated to Prof. Roberto Sánchez-Delgado, great mentor and excellent friend, on the occasion of his 65th birthday. ‡ ‡Electronic supplementary information (ESI) available: Stability studies of the new compounds by NMR, UV-vis spectroscopy and MS spectrometry, crystallographic data for compound 6, DFT calculations for compounds 4–7, IC50 values in human renal cells at both 24 and 72 h, details on migration studies, TrxR inhibition studies for 3, 5 and AF at different times, inhibition studies of compound 5 against a panel of 35 protein kinases, effects of AF on MAPKAPK-3 in Caki-1 cells, effects of compound 3 in Caki-1 mouse xenografts. CCDC 1400886. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c5sc01753j Click here for additional data file. Click here for additional data file.

    PubMed Central

    Fernández-Gallardo, Jacob; Elie, Benelita T.; Sadhukha, Tanmoy; Prabha, Swayam; Sanaú, Mercedes; Rotenberg, Susan A.

    2015-01-01

    Following recent work on heterometallic titanocene–gold complexes as potential chemotherapeutics for renal cancer, we report here on the synthesis, characterization and stability studies of new titanocene complexes containing a methyl group and a carboxylate ligand (mba = S–C6H4–COO–) bound to gold(i)-phosphane fragments through a thiolate group [(η-C5H5)2TiMe(μ-mba)Au(PR3)]. The compounds are more stable in physiological media than those previously reported and are highly cytotoxic against human cancer renal cell lines. We describe here preliminary mechanistic data involving studies on the interaction of selected compounds with plasmid (pBR322) DNA used as a model nucleic acid, and with selected protein kinases from a panel of 35 protein kinases having oncological interest. Preliminary mechanistic studies in Caki-1 renal cells indicate that the cytotoxic and anti-migration effects of the most active compound 5 [(η-C5H5)2TiMe(μ-mba)Au(PPh3)] involve inhibition of thioredoxin reductase and loss of expression of protein kinases that drive cell migration (AKT, p90-RSK, and MAPKAPK3). The co-localization of both titanium and gold metals (1 : 1 ratio) in Caki-1 renal cells was demonstrated for 5 indicating the robustness of the heterometallic compound in vitro. Two compounds were selected for further in vivo studies on mice based on their selectivity in vitro against renal cancer cell lines when compared to non-tumorigenic human kidney cell lines (HEK-293T and RPTC) and the favourable preliminary toxicity profile in C57BL/6 mice. Evaluation of Caki-1 xenografts in NOD.CB17-Prkdc SCID/J mice showed an impressive tumor reduction (67%) after treatment for 28 days (3 mg per kg per every other day) with heterometallic compound 5 as compared with the previously described [(η-C5H5)2Ti{OC(O)-4-C6H4-P(Ph2)AuCl}2] 3 which was non-inhibitory. These findings indicate that structural modifications on the ligand scaffold affect the in vivo efficacy of this class of compounds. PMID:27213034

  17. Design, synthesis and molecular modeling studies of novel thiazolidine-2,4-dione derivatives as potential anti-cancer agents

    NASA Astrophysics Data System (ADS)

    Asati, Vivek; Bharti, Sanjay Kumar

    2018-02-01

    A series of novel thiazolidine-2,4-dione derivatives 4a-x have been designed, synthesized and evaluated for potential anti-cancer activity. The anti-cancer activity of synthesized compounds 4a-x were evaluated against selected human cancer cell line of breast (MCF-7) using sulforhodamine B (SRB) method. Among the synthesized compounds, 4x having 2-cyano phenyl group showed significant cytotoxic activity which is comparable to that of adriamycin as standard anti-cancer drug. The SAR study revealed that the substituted phenyl group on oxadiazole ring attached to thiazolidine-2,4-dione moiety showed significant growth inhibitory activity against MCF-7 cell line. The result of molecular modeling studies showed that compounds 4f, 4o and 4x having similar structural alignment as crystal ligand of protein.

  18. Identification of novel indole based heterocycles as selective estrogen receptor modulator.

    PubMed

    Singla, Ramit; Prakash, Kunal; Bihari Gupta, Kunj; Upadhyay, Shishir; Dhiman, Monisha; Jaitak, Vikas

    2018-04-24

    In the present study, we have designed and synthesized indole derivatives by coalescing the indole nucleus with chromene carbonitrile and dihydropyridine nucleus. Two compounds 5c and 6d were selected from series I and II after sequential combinatorial library generation, docking, absorption, distribution, metabolism and excretion (ADME) filtering, anti-proliferative activity, cytotoxicity, and ER-α competitor assay kit by utilizing estrogen receptor-α (ER-α) dominant T47D BC cells line and PBMCs (Peripheral Blood Mononuclear Cells). Cell imaging experiment suggested that both the compounds successfully cross cellular biomembrane and accumulate in nuclear, cytoplasmic and plasma membrane region. Semiquantitative RT-PCR and Western blotting experiments further supported that both compounds reduced the expression of mRNA and receptor protein of ER-α, thereby preventing downstream transactivation and signaling pathway in T47D cells line. Current findings imply that 5c and 6d represent novel ER-α antagonists and may be used in the development of chemotherapy for the management of BC. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Effects of Two Fullerene Derivatives on Monocytes and Macrophages

    PubMed Central

    Pacor, Sabrina; Grillo, Alberto; Đorđević, Luka; Zorzet, Sonia; Da Ros, Tatiana; Prato, Maurizio

    2015-01-01

    Two fullerene derivatives (fullerenes 1 and 2), bearing a hydrophilic chain on the pyrrolidinic nitrogen, were developed with the aim to deliver anticancer agents to solid tumors. These two compounds showed a significantly different behaviour on human neoplastic cell lines in vitro in respect to healthy leukocytes. In particular, the pyrrolidinium ring on the fullerene carbon cage brings to a more active compound. In the present work, we describe the effects of these fullerenes on primary cultures of human monocytes and macrophages, two kinds of immune cells representing the first line of defence in the immune response to foreign materials. These compounds are not recognized by circulating monocytes while they get into macrophages. The evaluation of the pronecrotic or proapoptotic effects, analysed by means of analysis of the purinergic receptor P2X7 activation and of ROS scavenging activity, has allowed us to show that fullerene 2, but not its analogue fullerene 1, displays toxicity, even though at concentrations higher than those shown to be active on neoplastic cells. PMID:26090460

  20. New halogenated constituents from Mangifera zeylanica Hook.f. and their potential anti-cancer effects in breast and ovarian cancer cells.

    PubMed

    Ediriweera, Meran Keshawa; Tennekoon, Kamani Hemamala; Adhikari, Achyut; Samarakoon, Sameera Ranganath; Thabrew, Ira; de Silva, E Dilip

    2016-08-02

    Mangifera zeylanica Hook.f. (Anacardiaceae) is a plant endemic to Sri Lanka. Its bark has been used in traditional and Ayurvedic medicine for the treatment of various diseases including some cancers. This study was planned to isolate and identify potentially cytotoxic compounds from the bark of M. zeylanica, which may have contributed to its ethno pharmacological use in the treatment of cancer. The chloroform extract of M. zeylanica bark which is cytotoxic to breast and ovarian cancer cells was fractionated using column chromatography and preparative reversed phase high performance liquid chromatography to isolate four compounds. Structures of the isolated compounds were elucidated by means of (1)H- and (13)C NMR spectroscopy, and mass spectrometric techniques. Cytotoxic potential of the isolated compounds was tested in MDA-MB-231 (triple negative breast cancer), MCF-7 (estrogen receptor positive breast cancer), SKOV-3 (ovarian epithelial cancer) and MCF-10A (normal mammary epithelial) cells by SRB assay. Human cancer drug target real-time PCR array was carried out to analyze regulation of possible cancer drug target genes in compound 2 treated triple negative breast cancer cells. DPPH radical scavenging and caspase 3 and 7 induction in response to isolated compounds were also studied. Two new halogenated compounds, bromomangiferic acid (1), and chloromangiferamide (2) along with two known compounds quercetin (3), and catechin (4), were isolated from the bark of Mangifera zeylanica for the first time. Interestingly, chloromangiferamide showed cytotoxicity only to triple negative breast cancer cells [IC50:73.19±0.87µM (24h), 56.29±0.86µM (48h)] with no cytotoxicity to other two cancer cell lines or to normal mammary epithelial cells. Quercetin and catechin were cytotoxic to all three cancer cell lines while bromomangiferic acid had no effect. Chloromangiferamide significantly regulated expression of genes associated with apoptosis, drug metabolism, cell cycle, receptor tyrosine kinase signaling, protein kinases, histone deacetylases, growth factors and receptors, topoisomerases, PI-3 kinases and phosphatases in triple negative breast cancer cells. Selective cytotoxic activity in triple negative breast cancer cells and regulation of some cancer drug target genes by chloromangiferamide indicate that it can be used to develop a potential chemotherapeutic agent for triple negative breast cancer cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  1. New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo.

    PubMed

    Soares, Roberta Reis; da Silva, José Marcio Fernandes; Carlos, Bianca Cecheto; da Fonseca, Camila Campos; de Souza, Laila Salomé Araújo; Lopes, Fernanda Valério; de Paula Dias, Rafael Mafra; Moreira, Paulo Otávio Lourenço; Abramo, Clarice; Viana, Gustavo Henrique Ribeiro; de Pila Varotti, Fernando; da Silva, Adilson David; Scopel, Kézia Katiani Gorza

    2015-06-01

    Malaria continues to be an important public health problem in the world. Nowadays, the widespread parasite resistance to many drugs used in antimalarial therapy has made the effective treatment of cases and control of the disease a constant challenge. Therefore, the discovery of new molecules with good antimalarial activity and tolerance to human use can be really important in the further treatment of the disease. In this study we have investigated the antiplasmodial activity of 10 synthetic compounds derived from quinoline, five of them combined to sulfonamide and five to the hydrazine or hydrazide group. The compounds were evaluated according to their cytotoxicity against HepG2 and HeLa cell lines, their antimalarial activity against CQ-sensitive and CQ-resistant Plasmodium falciparum strains and, finally, their schizonticide blood action in mice infected with Plasmodium berghei NK65. The compounds exhibited no cytotoxic action in HepG2 and HeLa cell lines when tested up to a concentration of 100 μg/mL. In addition, the hydrazine or hydrazide derivative compounds were less cytotoxic against cell lines and more active against CQ-sensitive and CQ-resistant P. falciparum strains, showing high SI (>1000 when SI was calculated using the CC50 from the 3D7 strain as reference). When tested in vivo, the hydrazine derivative 1f compound showed activity against the development of blood parasites similar to that observed with CQ, the reference drug. Interestingly, the 1f compound demonstrated the best LipE value (4.84) among all those tested in vivo. Considering the in vitro and in vivo activities of the compounds studied here and the LipE values, we believe the 1f compound to be the most promising molecule for further studies in antimalarial chemotherapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Recycling antimalarial leads for cancer: Antiproliferative properties of N-cinnamoyl chloroquine analogues.

    PubMed

    Pérez, Bianca C; Fernandes, Iva; Mateus, Nuno; Teixeira, Cátia; Gomes, Paula

    2013-12-15

    Cinnamic acids and quinolines are known as useful scaffolds in the discovery of antitumor agents. Therefore, N-cinnamoylated analogues of chloroquine, recently reported as potent dual-action antimalarials, were evaluated against three different cancer cell lines: MKN-28, Caco-2, and MCF-7. All compounds display anti-proliferative activity in the micromolar range against the three cell lines tested, and most of them were more active than their parent drug, chloroquine, against all cell lines tested. Hence, N-cinnamoyl-chloroquine analogues are a good start towards development of affordable antitumor leads. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Discovery of tumor-specific irreversible inhibitors of stearoyl CoA desaturase | Office of Cancer Genomics

    Cancer.gov

    A hallmark of targeted cancer therapies is selective toxicity among cancer cell lines. We evaluated results from a viability screen of over 200,000 small molecules to identify two chemical series, oxalamides and benzothiazoles, that were selectively toxic at low nanomolar concentrations to the same 4 of 12 human lung cancer cell lines. Sensitive cell lines expressed cytochrome P450 (CYP) 4F11, which metabolized the compounds into irreversible inhibitors of stearoyl CoA desaturase (SCD). SCD is recognized as a promising biological target in cancer and metabolic disease.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shi-Wei; Wu, Chun-Ying; Wang, Yen-Ting

    Compound C, a well-known inhibitor of the intracellular energy sensor AMP-activated protein kinase (AMPK), has been reported to cause apoptotic cell death in myeloma, breast cancer cells and glioma cells. In this study, we have demonstrated that compound C not only induced autophagy in all tested skin cancer cell lines but also caused more apoptosis in p53 wildtype skin cancer cells than in p53-mutant skin cancer cells. Compound C can induce upregulation, phosphorylation and nuclear translocalization of the p53 protein and upregulate expression of p53 target genes in wildtype p53-expressing skin basal cell carcinoma (BCC) cells. The changes of p53more » status were dependent on DNA damage which was caused by compound C induced reactive oxygen species (ROS) generation and associated with activated ataxia-telangiectasia mutated (ATM) protein. Using the wildtype p53-expressing BCC cells versus stable p53-knockdown BCC sublines, we present evidence that p53-knockdown cancer cells were much less sensitive to compound C treatment with significant G2/M cell cycle arrest and attenuated the compound C-induced apoptosis but not autophagy. The compound C induced G2/M arrest in p53-knockdown BCC cells was associated with the sustained inactive Tyr15 phosphor-Cdc2 expression. Overall, our results established that compound C-induced apoptosis in skin cancer cells was dependent on the cell's p53 status. - Highlights: ► Compound C caused more apoptosis in p53 wildtype than p53-mutant skin cancer cells. ► Compound C can upregulate p53 expression and induce p53 activation. ► Compound C induced p53 effects were dependent on ROS induced DNA damage pathway. ► p53-knockdown attenuated compound C-induced apoptosis but not autophagy. ► Compound C-induced apoptosis in skin cancer cells was dependent on p53 status.« less

  5. Cell line-dependent differences in uptake and retention of the hypoxia-selective nuclear imaging agent Cu-ATSM.

    PubMed

    Burgman, Paul; O'Donoghue, Joseph A; Lewis, Jason S; Welch, Michael J; Humm, John L; Ling, C Clifton

    2005-08-01

    Cu-diacetyl-bis(N(4)-methylthiosemicarbazone) [Cu-ATSM] is a potential marker for tumor hypoxia that has been under evaluation for clinical use. In this study, we examined the mechanisms underlying the uptake of (64)Cu in cells incubated with (64)Cu-ATSM. The in vitro uptake of (64)Cu was determined as a function of oxygenation conditions and incubation time with (64)Cu-ATSM using four and two tumor cell lines of human origin and rodent origin, respectively. Additionally, the rate of (64)Cu efflux and Cu-ATSM metabolism was determined. (64)Cu accumulation is rapid during the first 0.5-1 h of incubation. It is highest in anoxic cells but is also significant in normoxic cells. After this initial period, the level of intracellular (64)Cu varies depending on the cell line and the oxygenation conditions and, in some circumstances, may decrease. During the first 0.5-1 h, the ratio of (64)Cu levels between anoxic and normoxic cells is approximately 2:10 and that between hypoxic (0.5% O(2)) and normoxic cells is approximately 1:2.5, depending on the cell line. These ratios generally decrease at longer times. The (64)Cu-ATSM compound was found to be metabolized during incubation in a manner dependent on oxygenation conditions. Within 2 h under anoxic conditions, (64)Cu-ATSM could no longer be detected, although 60-90% of the amount of (64)Cu added as (64)Cu-ATSM was present in the medium. Non-ATSM (64)Cu was taken up by the cells, albeit at a much slower rate. Efflux rates of (64)Cu were found to be cell line dependent and appeared to be inversely correlated with the final (64)Cu uptake levels under anoxic conditions. The uptake and retention of (64)Cu and their relation to oxygenation conditions were found to be cell line dependent. Given the complexities in the oxygen dependence and cell line-dependent kinetics of uptake and retention of Cu following exposure to Cu-ATSM, the clinical utility of this compound may be disease site specific.

  6. Sulfamic acid promoted one-pot synthesis of phenanthrene fused-dihydrodibenzo-quinolinones: Anticancer activity, tubulin polymerization inhibition and apoptosis inducing studies.

    PubMed

    Kumar, Niggula Praveen; Thatikonda, Sowjanya; Tokala, Ramya; Kumari, S Sujana; Lakshmi, Uppu Jaya; Godugu, Chandraiah; Shankaraiah, Nagula; Kamal, Ahmed

    2018-05-01

    A facile one-pot method for the synthesis of new phenanthrene fused-dihydrodibenzo-quinolinone derivatives has been successfully accomplished by employing sulfamic acid as catalyst. These new compounds were evaluated for their in vitro cytotoxic potential against human lung (A549), prostate (PC-3 and DU145), breast (MCF-7) and colon (HT-29 and HCT-116) cancer cell lines. Among all the tested compounds, one of the derivatives 8p showed good anti-proliferative activity against A549 lung cancer cell line with an IC 50 of 3.17 ± 0.52 µM. Flow cytometric analyses revealed that compound 8p arrested both Sub G1 and G2/M phases of cell cycle in a dose dependent manner. The compound 8p also displayed significant inhibition of tubulin polymerization and disruption of microtubule network (IC 50 of 5.15 ± 0.15 µM). Molecular docking studies revealed that compound 8p efficiently interacted with critical amino acid Cys241 of the α/β-tubulin by a hydrogen bond (SH…O = 2.4 Å). Further, the effect of 8p on cell viability was also studied by AO/EB, DCFDA and DAPI staining. The apoptotic characteristic features revealed that 8p inhibited cell proliferation effectively through apoptosis by inducing the ROS generation. Analysis of mitochondrial membrane potential through JC-1 staining and annexin V binding assay indicated the extent of apoptosis in A549 cancer cells. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Antitumor evaluation and 3D-QSAR studies of a new series of the spiropyrroloquinoline isoindolinone/aza-isoindolinone derivatives by comparative molecular field analysis (CoMFA).

    PubMed

    Sadeghzadeh, Masoud; Salahinejad, Maryam; Zarezadeh, Nahid; Ghandi, Mehdi; Baghery, Maryam Keshavarz

    2017-11-01

    In current study, antitumor activity of two series of the newly synthesized spiropyrroloquinoline isoindolinone and spiropyrroloquinoline aza-isoindolinone scaffolds was evaluated against three human breast normal and cancer cell lines (MCF-10A, MCF-7 and SK-BR-3) and compared with cytotoxicity values of doxorubicin and colchicine as the standard drugs. It was found that several compounds were endowed with cytotoxicity in the low micromolar range. Among these two series, compounds 6i, 6j, 6k and 7l, 7m, 7n, 7o containing 3-ethyl-1H-indole moiety were found to be highly effective against both cancer cell lines ranging from [Formula: see text] to [Formula: see text] in comparison with the corresponding analogs. Compared with human cancer cells, the most potent compounds did not show high cytotoxicity against human breast normal MCF-10A cells. Generally, most of the evaluated compounds 6a-l and 7a-o series showed more antitumor activity against SK-BR-3 than MCF-7 cells. Moreover, comparative molecular field analysis (CoMFA) as a popular tools of three-dimensional quantitative structure-activity relationship (3D-QSAR) studies was carried out on 27 spiropyrroloquinolineisoindolinone and spiropyrroloquinolineaza-isoindolinone derivatives with antitumor activity against on SK-BR-3 cells. The obtained CoMFA models showed statistically excellent performance, which also possessed good predictive ability for an external test set. The results confirm the important effect of molecular steric and electrostatic interactions of these compounds on in vitro cytotoxicity against SK-BR-3.

  8. Mitochondrial functions of THP-1 monocytes following the exposure to selected natural compounds.

    PubMed

    Schultze, Nadin; Wanka, Heike; Zwicker, Paula; Lindequist, Ulrike; Haertel, Beate

    2017-02-15

    The immune system is an important target of various xenobiotics, which may lead to severe adverse effects including immunosuppression or inappropriate immunostimulation. Mitochondrial toxicity is one possibility by which xenobiotics exert their toxic effects in cells or organs. In this study, we investigated the impact of three natural compounds, cyclosporine A (CsA), deoxynivalenol (DON) and cannabidiol (CBD) on mitochondrial functions in the THP-1 monocytic cell line. The cells were exposed for 24h to two different concentrations (IC 10 and IC 50 determined by MTT) of each compound. The cells showed concentration-dependent elevated intracellular reactive oxygen species (iROS) and induction of apoptosis (except DON) in response to the three test compounds. Mitochondrial functions were characterized by using bioenergetics profiling experiments. In THP-1 monocytes, the IC 50 of CsA decreased basal and maximal respiration as well as ATP production with an impact on spare capacity indicating a mitochondrial dysfunction. Similar reaction patterns were observed following CBD exposure. The basal respiration level and ATP-production decreased in the THP-1 cells exposed to the IC 50 of DON with no major impact on mitochondrial function. In conclusion, impaired mitochondrial function was accompanied by elevated iROS and apoptosis level in a monocytic cell line exposed to CsA and CBD. Mitochondrial dysfunction may be one explanation for the cytotoxicity of CBD and CsA also in other in immune cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Synthesis and Cytotoxic Activities of Difluoro-Dimethoxy Chalcones.

    PubMed

    Yamali, Cem; Gul, Halise Inci; Ozgun, Dilan Ozmen; Sakagam, Hiroshi; Umemura, Naoki; Kazaz, Cavit; Gul, Mustafa

    2017-01-01

    Although anticancer chemotherapeutics are available in markets, side effects related to the drugs in clinical use lead to researchers to investigate new drug candidates which are more safe, potent and selective than others. Chalcones are popular with their anticancer activities with the several reported mechanisms including inhibition of angiogenesis, inhibition of tubulin polymerization, and induction of apoptosis etc. This study was focused on to synthesize of 1-(2,4/2,6-difluorophenyl)-3-(2,3/2,4/2,5/3,4- dimethoxyphenyl)-2-propen-1-ones (1-8) and investigate their cytotoxic properties with possible mechanism of action. The compounds were synthesized by Claisen-Schmidt condensation. The chemical structures were confirmed by 1H NMR, 13C NMR, DEPT, COSY, HMQC, HMBC, 19F NMR and HRMS. In vitro cytotoxic effects of the compounds against human tumour cell lines [gingival carcinoma (Ca9-22), oral squamous cell carcinoma (HSC-2)] and human normal oral cells [gingival fibroblasts (HGF), periodontal ligament fibroblasts (HPLF)] were evaluated via MTT test. All compounds had higher cytotoxicity than reference compound 5-Fluorouracil (5-FU). The compounds 3-7 had higher potency selectivity expression values (PSE) than 5-FU and PSE values of the compounds were over 100. All chalcone derivatives seem good candidates for further studies according to very remarkable and high PSE values. It was clearly demonstrated that compound 7 can induce early apoptosis at a concentration of 10 µM and dose-dependent late apoptosis starting at 10 µM. Compound 7 induced cleavage of the apoptosis marker PARP. The results indicate that new chalcones reported here can promote apoptosis in human tumour cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Regulation of Growth and Metastases in an Estrogen Independent Breast Cancer Cell by Vitamin D Compounds

    DTIC Science & Technology

    2001-08-01

    Utilization of green fluorescent protein for the identification of metastasis in an in vivo breast cancer model system. In Preparation. REPRINTS OF ALL...phenotype. Utilizing the SUM-159PT cell line stably transfected with pEGFP-Ci (enhanced green fluorescent protein ) we have been able to successfully...accurately detected. To develop a model with enhanced resolution of micrometastases we created a stable cell line expressing green fluorescent protein

  11. Biosynthesis of N,N-dimethyltryptamine (DMT) in a melanoma cell line and its metabolization by peroxidases.

    PubMed

    Gomes, Melissa M; Coimbra, Janine B; Clara, Renan O; Dörr, Felipe A; Moreno, Ana Carolina R; Chagas, Jair R; Tufik, Sérgio; Pinto, Ernani; Catalani, Luiz H; Campa, Ana

    2014-04-01

    Tryptophan (TRP) is essential for many physiological processes, and its metabolism changes in some diseases such as infection and cancer. The most studied aspects of TRP metabolism are the kynurenine and serotonin pathways. A minor metabolic route, tryptamine and N,N-dimethyltryptamine (DMT) biosynthesis, has received far less attention, probably because of the very low amounts of these compounds detected only in some tissues, which has led them to be collectively considered as trace amines. In a previous study, we showed a metabolic interrelationship for TRP in melanoma cell lines. Here, we identified DMT and N,N-dimethyl-N-formyl-kynuramine (DMFK) in the supernatant of cultured SK-Mel-147 cells. Furthermore, when we added DMT to the cell culture, we found hydroxy-DMT (OH-DMT) and indole acetic acid (IAA) in the cell supernatant at 24 h. We found that SK-Mel-147 cells expressed mRNA for myeloperoxidase (MPO) and also had peroxidase activity. We further found that DMT oxidation was catalyzed by peroxidases. DMT oxidation by horseradish peroxidase, H2O2 and MPO from PMA-activated neutrophils produced DMFK, N,N-dimethyl-kynuramine (DMK) and OH-DMT. Oxidation of DMT by peroxidases apparently uses the common peroxidase cycle involving the native enzyme, compound I and compound II. In conclusion, this study describes a possible alternative metabolic pathway for DMT involving peroxidases that has not previously been described in humans and identifies DMT and metabolites in a melanoma cell line. The extension of these findings to other cell types and the biological effects of DMT and its metabolites on cell proliferation and function are key questions for future studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Novel 1,5-diphenyl-6-substituted 1H-pyrazolo[3,4-d]pyrimidin-4(5H)-ones induced apoptosis in RKO colon cancer cells.

    PubMed

    Malki, Ahmed; Ashour, Hayam M A; Elbayaa, Rasha Y; Issa, Doaa A E; Aziz, Hassan A; Chen, Xiaozhuo

    2016-12-01

    Novel 1,5-diphenyl-6-substituted-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-ones were synthesized and characterized. All compounds were screened for their anti-proliferative activities in five different cancer cell lines. The results showed that compounds 7a and 7b comprising aminoguanidino or guanidino moiety at position 6 inhibited proliferation of RKO colon cancer cells with IC50 of 8 and 4 μM, respectively. Compounds 7a and 7b induced apoptosis in RKO cells, which was confirmed by TUNEL and annexin V-FITC assays. Flow cytometric analysis indicated that compounds 7a and 7b arrested RKO cells in the G1 phase and the most active compound 7b increased levels of p53, p21, Bax, ERK1/2 and reduced levels of Bcl2 and Akt. Compound 7b also activates release of cytochrome c, which is consistent with activation of caspase-9. Additionally, compound 7b increased caspase-3 activity and cleaved PARP-1 in RKO cells. Collectively, these findings could establish a molecular basis for the development of new anti-cancer agents.

  13. Towards the elaboration of new gold-based optical theranostics.

    PubMed

    Doulain, Pierre-Emmanuel; Decréau, Richard; Racoeur, Cindy; Goncalves, Victor; Dubrez, Laurence; Bettaieb, Ali; Le Gendre, Pierre; Denat, Franck; Paul, Catherine; Goze, Christine; Bodio, Ewen

    2015-03-21

    Four new red BODIPY-gold(I) theranostic compounds were synthesized. Some of them were vectorized by tethering a biovector (glucose or bombesin derivatives) to the metallic center. Their photophysical properties were studied. Additionally, their cytotoxicity was examined on different cancer cell lines and on a normal cell line, they were tracked in vitro by fluorescence detection, and their uptake was evaluated by ICP-MS measurements.

  14. Antimelanoma and Antityrosinase from Alpinia galangal Constituents

    PubMed Central

    Liu, Po-Len; Lin, Li-Ching; Chen, Yen-Ting; Hseu, You-Cheng; Wen, Zhi-Hong

    2013-01-01

    Two compounds, 1,7-bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one (BHPHTO) and bisdemethoxycurcumin (BDMC) they have been isolated from the rhizomes of Alpinia galangal, and the structures of both pure constituents were determined using spectroscopic analyses. The study examined the bioeffectivenesses of the two compounds on the human melanoma A2058 and showed that significantly inhibited the proliferation of melanoma cells in the cell viability assay. This research was also taken on the tests to B16-F10 cell line and showed minor inhibitory consequences of cellular tyrosinase activities and melanin contents. Our results revealed the anticancer effects of A. galangal compounds, and therefore, the target compounds could be potentially applied in the therapeutic application and the food industry. PMID:24027439

  15. Comparison of Cultivars and Seasonal Variation in Blueberry (Vaccinium Species) Leaf Extract on Adult T-Cell Leukemia Cell Line Growth Suppression.

    PubMed

    Kai, Hisahiro; Fuse, Takuichi; Kunitake, Hisato; Morishita, Kazuhiro; Matsuno, Koji

    2014-06-30

    The inhibitory effects of blueberry leaves on the proliferation of adult T-cell leukemia (ATL) cell lines have previously been reported. A comparison of blueberry leaf extracts from different cultivars and seasonal variation were investigated regarding their effects on ATL cell line proliferation. The inhibitory effects of 80% ethanol leaf extracts from different blueberry cultivars collected from April to December in 2006 or 2008 were evaluated using two ATL cell lines. The bioactivities of leaf extracts of rabbit-eye blueberry ( Vaccinium virgatum Aiton; RB species), southern highbush blueberry ( V. spp.; SB species), northern highbush blueberry ( V. corymbosum L.; NB species), and wild blueberry ( V. bracteatum Thunb.; WB species) were compared. Of these, leaves of the RB species collected in December showed a significantly stronger inhibitory effect in both cell lines than the SB, NB, or WB species. These results suggest elevated biosynthesis of ATL-preventative bioactive compounds in the leaves of the RB species before the defoliation season.

  16. Comparison of Cultivars and Seasonal Variation in Blueberry (Vaccinium Species) Leaf Extract on Adult T-Cell Leukemia Cell Line Growth Suppression

    PubMed Central

    Kai, Hisahiro; Fuse, Takuichi; Kunitake, Hisato; Morishita, Kazuhiro; Matsuno, Koji

    2014-01-01

    The inhibitory effects of blueberry leaves on the proliferation of adult T-cell leukemia (ATL) cell lines have previously been reported. A comparison of blueberry leaf extracts from different cultivars and seasonal variation were investigated regarding their effects on ATL cell line proliferation. The inhibitory effects of 80% ethanol leaf extracts from different blueberry cultivars collected from April to December in 2006 or 2008 were evaluated using two ATL cell lines. The bioactivities of leaf extracts of rabbit-eye blueberry (Vaccinium virgatum Aiton; RB species), southern highbush blueberry (V. spp.; SB species), northern highbush blueberry (V. corymbosum L.; NB species), and wild blueberry (V. bracteatum Thunb.; WB species) were compared. Of these, leaves of the RB species collected in December showed a significantly stronger inhibitory effect in both cell lines than the SB, NB, or WB species. These results suggest elevated biosynthesis of ATL-preventative bioactive compounds in the leaves of the RB species before the defoliation season. PMID:28933373

  17. Six cytotoxic annonaceous acetogenins from Annona squamosa seeds.

    PubMed

    Chen, Yong; Chen, Jian-Wei; Wang, Yu; Xu, Sha-Sha; Li, Xiang

    2012-12-01

    Custard apple (Annona squamosa L.) is an edible tropical fruit, and its seeds had been used in south China as a folk medicine to treat "malignant sore" (cancer) and as an insecticide. Phytochemical investigation of the ethanol fraction of custard apple seeds led to the isolation of six new annonaceous acetogenins: annosquacins A-D (1-4), annosquatin A (5) and annosquatin B (6). Their structures were elucidated by spectroscopic analysis. Compounds 1-4 are adjacent bistetrahydrofuran annonaceous acetogenins. Compounds 5 and 6 are non-adjacent bistetrahydrofuran annonaceous acetogenins and the first examples in which the tetrahydrofuran ring system is located between C-9 and C-20. The absolute configurations of 1-6 were defined by the application of the Mosher method. Compounds 1-6 exhibited potent cytotoxic activity in vitro against five human tumour cell lines. Compounds 5 and 6 showed a high selectivity toward the MCF-7 and A-549 cell line respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Optimization of 1H-indazol-3-amine derivatives as potent fibroblast growth factor receptor inhibitors.

    PubMed

    Cui, Jing; Peng, Xia; Gao, Dingding; Dai, Yang; Ai, Jing; Li, Yingxia

    2017-08-15

    Fibroblast growth factor receptor (FGFR) is a potential target for cancer therapy because of its critical role in promoting cancer formation and progression. In a continuing effort to improve the cellular activity of hit compound 7r bearing an indazole scaffold, which was previously discovered by our group, several compounds harnessing fluorine substituents were designed, synthesized and biological evaluated. Besides, the region extended out to the ATP binding pocket toward solvent was also explored. Among them, compound 2a containing 2,6-difluoro-3-methoxyphenyl residue exhibited the most potent activities (FGFR1: less than 4.1nM, FGFR2: 2.0±0.8nM). More importantly, compound 2a showed an improved antiproliferative effect against KG1 cell lines and SNU16 cell lines with IC 50 values of 25.3±4.6nM and 77.4±6.2nM respectively. Copyright © 2017. Published by Elsevier Ltd.

  19. A novel piperazine linked β-amino alcohols bearing a benzosuberone scaffolds as anti-proliferative agents.

    PubMed

    Vanguru, Sowmya; Jilla, Lavanya; Sajja, Yasodakrishna; Bantu, Rajashaker; Nagarapu, Lingaiah; Nanubolu, Jagadeesh Babu; Bhaskar, Bala; Jain, Nishant; Sivan, Sreekanth; Manga, Vijjulatha

    2017-02-15

    A new series of 1-((9-chloro-2,3-dimethyl-6,7-dihydro-5H-benzo[7]annulen-8-yl)methoxy)-3-(4-phenylpiperzin-1-yl) propan-2-ols (6a-k) have been designed, synthesized and their structures were established by spectroscopic data (FT-IR, 1 H NMR, 13 C NMR, HRMS) and further confirmed by X-ray analysis. The newly synthesized compounds 6a-k were evaluated for their in vitro anti-proliferative activity against four cancer cell lines such as HeLa (cervical), MDA-MB-231 (breast), A549 (lung) and MIAPACA (pancreatic). Among the compounds tested, the compound 6e displayed most potent activity against four cancer cell lines with GI 50 values ranging from 0.010 to 0.097μM. The structure and anti-proliferative activity relationship was further supported by in silico molecular docking study of the active compounds against Colchicine binding site of β-tubulin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Trisubstituted purine inhibitors of PDGFRα and their antileukemic activity in the human eosinophilic cell line EOL-1.

    PubMed

    Malínková, Veronika; Řezníčková, Eva; Jorda, Radek; Gucký, Tomáš; Kryštof, Vladimír

    2017-12-15

    Inhibition of protein kinases is a validated concept for pharmacological intervention in cancers. Many kinase inhibitors have been approved for clinical use, but their practical application is often limited. Here, we describe a collection of 23 novel 2,6,9-trisubstituted purine derivatives with nanomolar inhibitory activities against PDGFRα, a receptor tyrosine kinase often found constitutively activated in various tumours. The compounds demonstrated strong and selective cytotoxicity in the human eosinophilic leukemia cell line EOL-1, whereas several other cell lines were substantially less sensitive. The cytotoxicity in EOL-1, which is known to express the FIP1L1-PDGFRA fusion gene encoding an oncogenic kinase, correlated significantly with PDGFRα inhibition. EOL-1 cells treated with the compounds also exhibited dose-dependent inhibition of PDGFRα autophosphorylation and suppression of its downstream signaling pathways with concomitant G 1 phase arrest, confirming the proposed mechanism of action. Our results show that substituted purines can be used as platforms for preparing tyrosine kinase inhibitors with specific activity towards eosinophilic leukemia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Microbial transformation of pseudoprotodioscin by Gibberella fujikuroi.

    PubMed

    Hu, Hong-Xiu; Gao, Ran-Ran; Gao, Zhao-Hui; Qiao, Yue; Dong, Xin-Ran; Ding, Gang; Sun, Di-An

    2018-05-07

    Three new (6, 9, and 12) and nine known steroidal saponins were obtained from the fermentation broth of pseudoprotodioscin (PPD) incubated with a fungus Gibberella fujikuroi CGMCC 3.4663. Structures of the metabolites were elucidated by 1-D ( 1 H, 13 C), 2-D (HMBC, HSQC, NOESY) NMR, and HR-MS analyses. The biotransformation pathway of pseudoprotodioscin by Gibberella fujikuroi CGMCC 3.4663 was proposed. Compounds 1-11 were tested in vitro for their cytotoxic activities against two human cancer cell lines (HepG2 and Hela). Compounds 1, 6, 9, and 10 exhibited cytotoxic activity against HepG2 cells. Compound 10 exhibited cytotoxicity to Hela cells.

  2. Three new cyathane diterpenes with neurotrophic activity from the liquid cultures of Hericium erinaceus.

    PubMed

    Zhang, Yuting; Liu, Li; Bao, Li; Yang, Yanlong; Ma, Ke; Liu, Hongwei

    2018-05-21

    Three new cyathane diterpenes erinacines T-V (1-3), and two known cyathane diterpenes erinacine A (4) and erinacine P (5) were isolated from the liquid cultures of Hericium erinaceus. The structures of 1-3 were determined by extensive spectroscopic analysis. All isolated compounds were evaluated for the cytotoxicity, and neurite-promoting activities using PC12 cell line. Compounds 1-3, and 5 exhibited pronounced neurite outgrowth-promoting effects on PC12 cells in the range of 2.5-10 μM. Compound 4 showed weak cytotoxicity against PC12 cells with IC 50 of 73.7 μM.

  3. Design, Synthesis, and Biological Evaluation of 4-Phenoxyquinoline Derivatives Containing Benzo[d]thiazole-2-yl Urea as c-Met Kinase Inhibitors.

    PubMed

    Lei, Hongrui; Hu, Gang; Wang, Yu; Han, Pei; Liu, Zijian; Zhao, Yanfang; Gong, Ping

    2016-08-01

    A series of novel 4-phenoxyquinoline derivatives containing the benzo[d]thiazole-2-yl urea moiety were synthesized and evaluated for their cytotoxicity against the HT-29, MKN-45, and H460 cell lines. The structures of the target compounds were confirmed by (1) H NMR and MS spectra. Most of them showed moderate to excellent potency against the three tested cell lines. Especially, compound 23 was identified a promising agent (c-Met IC50  = 17.6 nM), showing the most potent anticancer activities with IC50 values of 0.18, 0.06, and 0.01 µM against the HT-29, MKN-45, and H460 cell lines, respectively. The docking results of 23 with the c-Met kinase model 3LQ8 showed a specific binding mode between the ligand and the target protein. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. New hydrazonoindolin-2-ones: Synthesis, exploration of the possible anti-proliferative mechanism of action and encapsulation into PLGA microspheres.

    PubMed

    Attia, Mohamed I; Eldehna, Wagdy M; Afifi, Samar A; Keeton, Adam B; Piazza, Gary A; Abdel-Aziz, Hatem A

    2017-01-01

    The synthesis and molecular characterization of new isatin-based hydrazonoindolin-2-ones 4a-o and 7a-e are reported. The in vitro anti-proliferative potential of the synthesized compounds 4a-o and 7a-e was examined against HT-29 (colon), ZR-75 (breast) and A549 (lung) human cancer cell lines. Compounds 7b, 7d and 7e were the most active congeners against the tested human cancer cell lines with average IC50 values of 4.77, 3.39 and 2.37 μM, respectively, as compared with the reference isatin-based drug, sunitinib, which exhibited an average IC50 value of 8.11 μM. Compound 7e was selected for further pharmacological evaluation in order to gain insight into its possible mechanism of action. It increased caspase 3/7 activity by 2.4- and 1.85-fold between 4 and 8 h of treatment, respectively, at 10 μM and it caused a decrease in the percentage of cells in the G1 phase of the cell cycle with a corresponding increase in the S-phase. In addition, compound 7e increased phosphorylated tyrosine (p-Tyr) levels nearly two-fold with an apparent IC50 value of 3.8 μM. The 7e-loaded PLGA microspheres were prepared using a modified emulsion-solvent diffusion method. The average encapsulation efficiency of the 7e-loaded PLGA microspheres was 85% ± 1.3. While, the in vitro release profile of the 7e-loaded microspheres was characterized by slow and continuous release of compound 7e during 21 days and the release curve was fitted to zero order kinetics. Incorporation of 7e into PLGA microspheres improved its in vitro anti-proliferative activity toward the human cancer cell line A549 after 120 h incubation period with an IC50 value less than 0.8 μM.

  5. Design of Bcl-2 and Bcl-xL Inhibitors with Subnanomolar Binding Affinities Based upon a New Scaffold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Haibin; Chen, Jianfang; Meagher, Jennifer L.

    Employing a structure-based strategy, we have designed a new class of potent small-molecule inhibitors of the anti-apoptotic proteins Bcl-2 and Bcl-xL. An initial lead compound with a new scaffold was designed based upon the crystal structure of Bcl-xL and U.S. Food and Drug Administration (FDA) approved drugs and was found to have an affinity of 100 {micro}M for both Bcl-2 and Bcl-xL. Linking this weak lead to another weak-affinity fragment derived from Abbott's ABT-737 led to an improvement of the binding affinity by a factor of >10,000. Further optimization ultimately yielded compounds with subnanomolar binding affinities for both Bcl-2 andmore » Bcl-xL and potent cellular activity. The best compound (21) binds to Bcl-xL and Bcl-2 with K{sub i} < 1 nM, inhibits cell growth in the H146 and H1417 small-cell lung cancer cell lines with IC{sub 50} values of 60-90 nM, and induces robust cell death in the H146 cancer cell line at 30-100 nM.« less

  6. Toward Highly Potent Cancer Agents by Modulating the C-2 Group of the Arylthioindole Class of Tubulin Polymerization Inhibitors

    PubMed Central

    La Regina, Giuseppe; Bai, Ruoli; Rensen, Whilelmina Maria; Di Cesare, Erica; Coluccia, Antonio; Piscitelli, Francesco; Famiglini, Valeria; Reggio, Alessia; Nalli, Marianna; Pelliccia, Sveva; Pozzo, Eleonora Da; Costa, Barbara; Granata, Ilaria; Porta, Amalia; Maresca, Bruno; Soriani, Alessandra; Iannitto, Maria Luisa; Santoni, Angela; Li, Junjie; Cona, Marlein Miranda; Chen, Feng; Ni, Yicheng; Brancale, Andrea; Dondio, Giulio; Vultaggio, Stefania; Varasi, Mario; Mercurio, Ciro; Martini, Claudia; Hamel, Ernest; Lavia, Patrizia; Novellino, Ettore; Silvestri, Romano

    2013-01-01

    New arylthioindole derivatives having different cyclic substituents at position 2 of the indole were synthesized as anticancer agents. Several compounds inhibited tubulin polymerization at submicromolar concentration and inhibited cell growth at low nanomolar concentrations. Compounds 18 and 57 were superior to the previously synthesized 5. Compound 18 was exceptionally potent as an inhibitor of cell growth: it showed IC50 = 1.0 nM in MCF-7 cells, and it was uniformly active in the whole panel of cancer cells and superior to colchicine and combretastatin A-4. Compounds 18, 20, 55, and 57 were notably more potent than vinorelbine, vinblastine, and paclitaxel in the NCI/ADR-RES and Messa/Dx5 cell lines, which overexpress P-glycoprotein. Compounds 18 and 57 showed initial vascular disrupting effects in a tumor model of liver rhabdomyosarcomas at 15 mg/kg intravenous dosage. Derivative 18 showed water solubility and higher metabolic stability than 5 in human liver microsomes. PMID:23214452

  7. Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound.

    PubMed

    Abdul Latip, Ahmad Faiz; Hussein, Mohd Zobir; Stanslas, Johnson; Wong, Charng Choon; Adnan, Rohana

    2013-01-01

    Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems.

  8. Synthesis and anticancer evaluation of 1,3,4-oxadiazoles, 1,3,4-thiadiazoles, 1,2,4-triazoles and Mannich bases.

    PubMed

    Megally Abdo, Nadia Youssef; Kamel, Mona Monir

    2015-01-01

    A series of 5-(pyridin-4-yl)-N-substituted-1,3,4-oxadiazol-2-amines (3a-d), 5-(pyridin-4-yl)-N-substituted-1,3,4-thiadiazol-2-amines (4a-d) and 5-(pyridin-4-yl)-4-substituted-1,2,4-triazole-3-thiones (5a-d) were obtained by the cyclization of hydrazinecarbothioamide derivatives 2a-d derived from isonicotinic acid hydrazide. Aminoalkylation of compounds 5a-d with formaldehyde and various secondary amines furnished the Mannich bases 6a-p. The structures of the newly synthesized compounds were confirmed on the basis of their spectral data and elemental analyses. All the compounds were screened for their in vitro anticancer activity against six human cancer cell lines and normal fibroblast cells. Sixteen of the tested compounds exhibited significant cytotoxicity against most cell lines. Among these derivatives, the Mannich bases 6j, 6m and 6p were found to exhibit the most potent activity. The Mannich base 6m showed more potent cytotoxic activity against gastric cancer NUGC (IC50=0.021 µM) than the standard CHS 828 (IC50=0.025 µM). Normal fibroblast cells WI38 were affected to a much lesser extent (IC50>10 µM).

  9. Sesquiterpene-derived metabolites from the deep water marine sponge Poecillastra sollasi.

    PubMed

    Killday, K B; Longley, R; McCarthy, P J; Pomponi, S A; Wright, A E; Neale, R F; Sills, M A

    1993-04-01

    Six sesquiterpene-derived compounds, 1-6, which we call sollasins a-f, have been isolated from a deep water specimen of the sponge Poecillastra sollasi. The structures were elucidated by comparison of spectral data to related metabolites and confirmed using spectroscopic methods. The compounds inhibit the growth of the pathogenic fungi Candida albicans and Cryptococcus neoformans and the P-388 and A-549 tumor cell lines. Compounds 3 and 4 show weak inhibition of binding of [125I] angiotensin II to rat aorta smooth muscle cell membranes.

  10. Dual function of active constituents from bark of Ficus racemosa L in wound healing.

    PubMed

    Bopage, Nisansala Swarnamali; Kamal Bandara Gunaherath, G M; Jayawardena, Kithsiri Hector; Wijeyaratne, Sushila Chandrani; Abeysekera, Ajita Mahendra; Somaratne, Seneviratne

    2018-01-25

    Different parts including the latex of Ficus racemosa L. has been used as a medicine for wound healing in the Ayurveda and in the indigenous system of medicine in Sri Lanka. This plant has been evaluated for its wound healing potential using animal models. The aim of this study was to obtain an insight into the wound healing process and identify the potential wound healing active substance/s present in F. racemosa L. bark using scratch wound assay (SWA) as the in-vitro assay method. Stem bark extracts of F. racemosa were evaluated using scratch wound assay (SWA) on Baby Hamster Kidney (BHK 21) and Madin-Darby Canine Kidney (MDCK) cell lines and Kirby Bauer disc diffusion assay on common bacteria and fungi for cell migration enhancing ability and antimicrobial activity respectively. Dichloromethane and hexanes extracts which showed cell migration enhancement activity on SWA were subjected to bioactivity directed fractionation using column chromatography followed by preparative thin layer chromatography to identify the compounds responsible for the cell migration enhancement activity. Dichloromethane and hexanes extracts showed cell migration enhancement activity on both cell lines, while EtOAc and MeOH extracts showed antibacterial activity against Staphylococcus and Bacillus species and antifungal activity against Saccharomyces spp. and Candida albicans. Lupeol (1) and β-sitosterol (2) were isolated as the potential wound healing active compounds which exhibited significant cell migration enhancement activity on BHK 21 and MDCK cell lines (> 80%) in par with the positive control, asiaticoside at a concentration of 25 μM. The optimum concentration of each compound required for the maximum wound healing has been determined as 30 μM and 35 μM for 1 and 2 respectively on both cell lines. It is also established that lupeol acetate (3) isolated from the hexanes extract act as a pro-drug by undergoing hydrolysis into lupeol in the vicinity of cells. Different chemical constituents present in stem bark of Ficus racemosa L show enhancement of cell migration (which corresponds to the cell proliferation) as well as antimicrobial activity. This dual action of F. racemosa stem bark provides scientific support for its traditional use in wound healing.

  11. Screen of FDA-approved drug library reveals compounds that protect hair cells from aminoglycosides and cisplatin

    PubMed Central

    Vlasits, Anna L.; Simon, Julian A.; Raible, David W.; Rubel, Edwin W; Owens, Kelly N.

    2012-01-01

    Loss of mechanosensory hair cells in the inner ear accounts for many hearing loss and balance disorders. Several beneficial pharmaceutical drugs cause hair cell death as a side effect. These include aminoglycoside antibiotics, such as neomycin, kanamycin and gentamicin, and several cancer chemotherapy drugs, such as cisplatin. Discovering new compounds that protect mammalian hair cells from toxic insults is experimentally difficult because of the inaccessibility of the inner ear. We used the zebrafish lateral line sensory system as an in vivo screening platform to survey a library of FDA-approved pharmaceuticals for compounds that protect hair cells from neomycin, gentamicin, kanamycin and cisplatin. Ten compounds were identified that provide protection from at least two of the four toxins. The resulting compounds fall into several drug classes, including serotonin and dopamine-modulating drugs, adrenergic receptor ligands, and estrogen receptor modulators. The protective compounds show different effects against the different toxins, supporting the idea that each toxin causes hair cell death by distinct, but partially overlapping, mechanisms. Furthermore, some compounds from the same drug classes had different protective properties, suggesting that they might not prevent hair cell death by their known target mechanisms. Some protective compounds blocked gentamicin uptake into hair cells, suggesting that they may block mechanotransduction or other routes of entry. The protective compounds identified in our screen will provide a starting point for studies in mammals as well as further research discovering the cellular signaling pathways that trigger hair cell death. PMID:22967486

  12. Apogossypol Derivatives as Pan-active Inhibitors of Anti-apoptotic B-cell lymphoma/leukemia-2 (Bcl-2) Family Proteins

    PubMed Central

    Wei, Jun; Kitada, Shinichi; Rega, Michele F.; Stebbins, John L.; Zhai, Dayong; Cellitti, Jason; Yuan, Hongbin; Emdadi, Aras; Dahl, Russell; Zhang, Ziming; Yang, Li; Reed, John C.; Pellecchia, Maurizio

    2009-01-01

    Guided by nuclear magnetic resonance (NMR) binding assays and computational docking studies, a series of 5, 5′ substituted Apogossypol derivatives was synthesized that resulted in potent pan-active inhibitors of anti-apoptotic Bcl-2 family proteins. Compound 8r inhibits the binding of BH3 peptides to Bcl-XL, Bcl-2, Mcl-1 and Bfl-1 with IC50 values of 0.76, 0.32, 0.28 and 0.73 μM, respectively. The compound also potently inhibits cell growth of human lung cancer and BP3 human B-cell lymphoma cell lines with EC50 values of 0.33 and 0.66 μM, respectively. Compound 8r shows little cytotoxicity against bax−/−bak−/− cells, indicating that it kills cancers cells via the intented mechanism. The compound also displays in vivo efficacy in transgenic mice in which Bcl-2 is overexpressed in splenic B-cells. Together with its improved chemical, plasma and microsomal stability relative to compound 2 (Apogossypol), compound 8r represents a promising drug lead for the development of novel apoptosis-based therapies for cancer. PMID:19555126

  13. Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death

    PubMed Central

    Kenyon, Emma J.; Kirkwood, Nerissa K.; Kitcher, Siân R.; O’Reilly, Molly; Cantillon, Daire M.; Goodyear, Richard J.; Secker, Abigail; Baxendale, Sarah; Bull, James C.; Waddell, Simon J.; Whitfield, Tanya T.; Ward, Simon E.; Kros, Corné J.; Richardson, Guy P.

    2017-01-01

    Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red–conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem. PMID:29263311

  14. Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death.

    PubMed

    Kenyon, Emma J; Kirkwood, Nerissa K; Kitcher, Siân R; O'Reilly, Molly; Derudas, Marco; Cantillon, Daire M; Goodyear, Richard J; Secker, Abigail; Baxendale, Sarah; Bull, James C; Waddell, Simon J; Whitfield, Tanya T; Ward, Simon E; Kros, Corné J; Richardson, Guy P

    2017-12-21

    Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red-conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem.

  15. Cytotoxic constituents of Pachyrhizus tuberosus from Peruvian amazon.

    PubMed

    Leuner, Olga; Havlik, Jaroslav; Budesinsky, Milos; Vrkoslav, Vladimir; Chu, Jessica; Bradshaw, Tracey D; Hummelova, Jana; Miksatkova, Petra; Lapcik, Oldrich; Valterova, Irena; Kokoska, Ladislav

    2013-10-01

    Investigations into the chemical constituents of the seeds of the neglected tuber crop Pachyrhizus tuberosus (Leguminosae) resulted in the isolation of seven components: five rotenoids [12a-hydroxyerosone (1), 12a-hydroxydolineone (2), erosone (3), 12a-hydroxyrotenone (4) and rotenone (6)], a phenylfuranocoumarin [pachyrrhizine (5)] and an isoflavanone [neotenone (7)]. The compounds were isolated using several chromatography techniques and characterized and verified by NMR and HPLC/MS. The MTT assay was used to examine the selective cytotoxic effects of the methanolic P. tuberosus extract and isolated compounds in two human cancer cell lines [breast (MCF-7) and colorectal (HCT-116)] and in non-transformed human fibroblasts (MRC-5); IC50 values were calculated. The methanolic P. tuberosus extract displayed respectable cytotoxic effects against HCT-116 and MCF-7 cells with IC50 values of 7.3 and 6.3 microg/mL, respectively. Of the compounds, 6 exacted greatest cytotoxicity and selectivity towards the cancer cell lines tested, yielding IC50 values of 0.3 microg/mL against both MCF-7 and HCT-116 cells, and a 6-fold reduced activity against MRC-5 fibroblasts. Compound 4 also demonstrated cytotoxicity against MCF-7 and HCT-116 (1.1 and 1.8 microg/mL, respectively), and reduced cytotoxicity towards MRC-5 cells (7.5 mirog/mL). The results revealed from the in vitro cytotoxic MTT assay are worthy of further antitumor investigation.

  16. Catechol-O-methyltransferase as a target for melanoma destruction?

    PubMed

    Smit, N P; Latter, A J; Naish-Byfield, S; Westerhof, W; Pavel, S; Riley, P A

    1994-08-17

    Catechols may interfere in melanogenesis by causing increased levels of toxic quinones. Several catechols and known inhibitors of the enzyme catechol-O-methyltransferase (COMT) were therefore tested for their toxicity towards a pigmented melanoma cell line, UCLA-SO-(M14). The inhibition of thymidine incorporation as a result of exposure to the compounds was measured. All agents were compared to 4-hydroxyanisole (4HA), a depigmenting agent extensively studied as an antimelanoma drug. The compounds were also tested on the epithelial cell line, CNCM-I-(221) in the presence and absence of tyrosinase. All the compounds were more effective than 4HA towards the M14-cells at either 10(-4) M or 10(-5) M. The toxicity of 4HA towards the 221-cells was shown to be completely dependent on the presence of tyrosinase. Effects of the test agents on the 221-cells were also observed in the absence of tyrosinase. Although some of them were shown to be good substrates for tyrosinase only small changes in toxicity were observed as a result of the presence of the enzyme in comparison with 4HA. No direct correlation of the toxicity of the agents and COMT inhibition was observed. The possible mode of action of the compounds through inhibition of COMT and interference in melanogenesis is discussed together with other possibilities and factors involved.

  17. Investigation of fruit peel extracts as sources for compounds with antioxidant and antiproliferative activities against human cell lines.

    PubMed

    Khonkarn, Ruttiros; Okonogi, Siriporn; Ampasavate, Chadarat; Anuchapreeda, Songyot

    2010-01-01

    The aim of this study was to evaluate antioxidant activity and cytotoxicity against human cell lines of fruit peel extracts from rambutan, mangosteen and coconut. The highest antioxidant activity was found from rambutan peel crude extract where the highest radical scavenging capacity via ABTS assay was from its ethyl acetate fraction with a TEAC value of 23.0mM/mg and the highest ferric ion reduction activity via FRAP assay was from its methanol fraction with an EC value of 20.2mM/mg. Importantly, using both assays, these fractions had a higher antioxidant activity than butylated hydroxyl toluene and vitamin E. It was shown that the ethyl acetate fraction of rambutan peel had the highest polyphenolic content with a gallic acid equivalent of 2.3mg/mL. The results indicate that the polyphenolic compounds are responsible for the observed antioxidant activity of the extracts. Interestingly, the hexane fraction of coconut peel showed a potent cytotoxic effect on KB cell line by MTT assay (IC(50)=7.7 microg/mL), and no detectable cytotoxicity toward normal cells. We concluded that the ethyl acetate fraction of rambutan peel is a promising resource for potential novel antioxidant agents whereas the hexane fraction of coconut peel may contain novel anticancer compounds. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  18. Synergistic anticancer activity of curcumin and catechin: an in vitro study using human cancer cell lines.

    PubMed

    Manikandan, R; Beulaja, M; Arulvasu, C; Sellamuthu, S; Dinesh, D; Prabhu, D; Babu, G; Vaseeharan, B; Prabhu, N M

    2012-02-01

    The most practical approach to reduce morbidity and mortality of cancer is to delay the process of carcinogenesis by usage of anticancer agents. This necessitates that safer compounds are to be critically examined for anticancer activity especially, those derived from natural sources. A spice commonly found in India and the surrounding regions, is turmeric, derived from the rhizome of Curcuma longa and the major active component is a phytochemical termed curcumin. Green tea is one of the most popular beverages used worldwide, produced from the leaves of evergreen plant Camellia sinensis and the major active ingredients are polyphenolic compounds known as catechins. In this study, synergistic anticancer activity of curcumin and catechin was evaluated in human colon adenocarcinoma HCT 15, HCT 116, and human larynx carcinoma Hep G-2 cell lines. Although, both curcumin or catechin inhibited the growth of above cell lines, interestingly, in combination of both these compounds highest level of growth control was observed. The anticancer activity shown is due to cytotoxicity, nuclear fragmentation as well as condensation, and DNA fragmentation associated with the appearance of apoptosis. These results suggest that curcumin and catechin in combination can inhibit the proliferation of HCT 15, HCT 116, as well as Hep G-2 cells efficiently through induction of apoptosis. Copyright © 2011 Wiley Periodicals, Inc.

  19. Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line

    PubMed Central

    Senevirathne, Mahinda; Kim, Soo-Hyun

    2010-01-01

    Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against H2O2-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher cell viability and ROS scavenging activities, and hence, selected for further antioxidant assays. Both AMG and Alcalase hydrolysates also showed higher protective effects against lipid peroxidation, DNA damage and apoptotic body formation in a dose-dependent fashion. Thus, the results indicated that water soluble compounds obtained by enzymatic hydrolysis of blueberry possess good antioxidant activity against H2O2-induced cell damage in vitro. PMID:20607062

  20. Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line.

    PubMed

    Senevirathne, Mahinda; Kim, Soo-Hyun; Jeon, You-Jin

    2010-06-01

    Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against H(2)O(2)-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher cell viability and ROS scavenging activities, and hence, selected for further antioxidant assays. Both AMG and Alcalase hydrolysates also showed higher protective effects against lipid peroxidation, DNA damage and apoptotic body formation in a dose-dependent fashion. Thus, the results indicated that water soluble compounds obtained by enzymatic hydrolysis of blueberry possess good antioxidant activity against H(2)O(2)-induced cell damage in vitro.

  1. Synthesis of novel taspine diphenyl derivatives as fluorescence probes and inhibitors of breast cancer cell proliferation.

    PubMed

    He, Huaizhen; Zhan, Yingzhuan; Zhang, Yanmin; Zhang, Jie; He, Langchong

    2012-01-01

    Two novel taspine diphenyl derivatives (Ta-dD) were designed and synthesized by introducing different coumarin fluorescent groups into the basic structure of Ta-dD. The main advantage of these two compounds is that they can be used as fluorescence probes and inhibitors simultaneously. In the present study, the fluorescent properties of the probes were measured and their inhibition of four breast cancer cell lines was tested. Different concentrations of the fluorescence probe were added to MCF-7 breast cancer cells for fluorescence imaging analysis under normal conditions. The results suggested that both of the new compounds have not only fluorescence but also the ability to inhibit effects on different breast cancer cell lines, which indicates their possible further use as dual functional fluorescence probes in tracer analysis. Copyright © 2011 John Wiley & Sons, Ltd.

  2. Antiproliferative and antibacterial activity of some glutarimide derivatives.

    PubMed

    Popović-Djordjević, Jelena B; Klaus, Anita S; Žižak, Željko S; Matić, Ivana Z; Drakulić, Branko J

    2016-12-01

    Antiproliferative and antibacterial activities of nine glutarimide derivatives (1-9) were reported. Cytotoxicity of compounds was tested toward three human cancer cell lines, HeLa, K562 and MDA-MB-453 by MTT assay. Compound 7 (2-benzyl-2-azaspiro[5.11]heptadecane-1,3,7-trione), containing 12-membered ketone ring, was found to be the most potent toward all tested cell lines (IC50 = 9-27 μM). Preliminary screening of antibacterial activity by a disk diffusion method showed that Gram-positive bacteria were more susceptible to the tested compounds than Gram-negative bacteria. Minimum inhibitory concentration (MIC) determined by a broth microdilution method confirmed that compounds 1, 2, 4, 6-8 and 9 inhibited the growth of all tested Gram-positive and some of the Gram-negative bacteria. The best antibacterial potential was achieved with compound 9 (ethyl 4-(1-benzyl-2,6-dioxopiperidin-3-yl)butanoate) against Bacillus cereus (MIC 0.625 mg/mL; 1.97 × 10(-3 )mol/L). Distinction between more and less active/inactive compounds was assessed from the pharmacophoric patterns obtained by molecular interaction fields.

  3. 1,2,3-Triazole Tagged 3H-Pyrano[2,3-d]pyrimidine-6-carboxylate Derivatives: Synthesis, in Vitro Cytotoxicity, Molecular Docking and DNA Interaction Studies.

    PubMed

    Boda, Sathish Kumar; Pishka, Vasantha; Lakshmi, P V Anantha; Chinde, Srinivas; Grover, Paramjit

    2018-06-01

    A series of novel ethyl 2,7-dimethyl-4-oxo-3-[(1-phenyl-1H-1,2,3-triazol-4-yl)methyl]-4,5-dihydro-3H-pyrano[2,3-d]pyrimidine-6-carboxylate derivatives 7a - 7m were efficiently synthesized employing click chemistry approach and evaluated for in vitro cytotoxic activity against four tumor cell lines: A549 (human lung adenocarcinoma cell line), HepG2 (human hematoma), MCF-7 (human breast adenocarcinoma), and SKOV3 (human ovarian carcinoma cell line). Among the compounds tested, the compounds 7a, 7b, 7f, 7l, and 7m have shown potential and selective activity against human lung adenocarcinoma cell line (A549) with IC 50 ranging from 0.69 to 6.74 μm. Molecular docking studies revealed that the compounds 7a, 7b, 7f, 7l, and 7m are potent inhibitors of human DNA topoisomerase-II and also showed compliance with stranded parameters of drug likeness. The calculated binding constants, k b , from UV/VIS absorptional binding studies of 7a and 7l with CT-DNA were 10.77 × 10 4 , 6.48 × 10 4 , respectively. Viscosity measurements revealed that the binding could be surface binding mainly due to groove binding. DNA cleavage study showed that 7a and 7l have the potential to cleave pBR322 plasmid DNA without any external agents. © 2018 Wiley-VHCA AG, Zurich, Switzerland.

  4. Cytotoxic garcimultiflorones K-Q, lavandulyl benzophenones from Garcinia multiflora branches.

    PubMed

    Wang, Zhao-Quan; Li, Xing-Yu; Hu, Dong-Bao; Long, Chun-Lin

    2018-08-01

    Seven undescribed lavandulyl benzophenones garcimultiflorones K-Q, and fourteen known compounds were isolated from the CHCl 3 soluble fraction of 95% EtOH extract of Garcinia multiflora branches. Their structures and absolute configurations were determined by spectroscopic techniques including NMR spectroscopy, MS analysis, and ECD calculations. Seven isolated compounds expect for garcimultiflorone L and garcimultiflorone O exhibited cytotoxic activities in vitro against five cancer cell lines (HL-60, A549, SMMC-7721, MCF-7, and SW480). It is worth mentioning that garcimultiflorone Q exhibited most significant cytotoxicities against five cancer cell lines with IC 50 values ranging from 3.07-12.56 μM. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The molecular basis of cytotoxicity of α-spinasterol from Ganoderma resinaceum: Induction of apoptosis and overexpression of p53 in breast and ovarian cancer cell lines.

    PubMed

    Sedky, Nada K; El Gammal, Zaynab H; Wahba, Amir E; Mosad, Eman; Waly, Zahraa Y; El-Fallal, Amira Ali; Arafa, Reem K; El-Badri, Nagwa

    2018-05-01

    Despite advances in therapy of breast and ovarian cancers, they still remain among the most imperative causes of cancer death in women. The first can be considered one of the most widespread diseases among females, while the latter is more lethal and needs prompt treatment. Thus, the research field can still benefit from discovery of new compounds that can be of potential use in management of these grave illnesses. We hereby aimed to assess the antitumor activity of the phytosterol α-spinasterol isolated from Ganoderma resinaceum mushroom on human breast cancer cell lines (MCF-7, MDA-MB-231), as well as, on human ovarian cancer cell line (SKOV-3). The anti-tumor activity of α-spinasterol, isolated from the mycelial extract of the Egyptian G. resinaceum, on human breast and ovarian cancer cell lines was evaluated by MTT cell viability assay and AnnexinV/propidium iodide apoptosis assay. The molecular mechanism underlying this effect was assessed by the relative expression of the following markers; tumor suppressor (p53, BRCA1, BRCA2), apoptotic marker (Bax) and cell cycle progression markers (cyclin dependent kinases cdk4/6) using real-time PCR. Cell cycle analysis was performed for the three investigated cancer cell lines to explore the effect on cell cycle progression. Our findings showed that α-spinasterol exhibited a higher antitumor activity on MCF-7 cells relative to SKOV-3 cells, while its lowest antitumor activity was against MDA-MB-231 cells. A significant increase in the expression of p53 and Bax was observed in cells treated with α-spinasterol, while cdk4/6 were significantly down-regulated upon exposure to α-spinasterol. Cell cycle analysis of α-spinasterol treated cells showed a G 0 -G 1 arrest. In conclusion, α-spinasterol isolated from G. resinaceum mushroom exerts a potent inhibitory activity on breast and ovarian cancer cell lines in a time- and dose-dependent manner. This can be reasonified in lights of the compound's ability to increase p53 and Bax expressions, and to lower the expression of cdk4/6. © 2017 Wiley Periodicals, Inc.

  6. Cytotoxic and Antimicrobial Activity of Dehydrozingerone based Cyclopropyl Derivatives.

    PubMed

    Burmudžija, Adrijana Z; Muškinja, Jovana M; Kosanić, Marijana M; Ranković, Branislav R; Novaković, Slađana B; Đorđević, Snežana B; Stanojković, Tatjana P; Baskić, Dejan D; Ratković, Zoran R

    2017-08-01

    A small series of 1-acetyl-2-(4-alkoxy-3-methoxyphenyl)cyclopropanes was prepared, starting from dehydrozingerone (4-(4-hydroxy-3-methoxyphenyl)-3-buten-2-one) and its O-alkyl derivatives. Their microbiological activities toward some strains of bacteria and fungi were tested, as well as their in vitro cytotoxic activity against some cancer cell lines (HeLa, LS174 and A549). All synthesized compounds showed significant antimicrobial activity and expressed cytotoxic activity against tested carcinoma cell lines, but they showed no significant influence on normal cell line (MRC5). Butyl derivative is the most active on HeLa cells (IC 50 = 8.63 μm), while benzyl one is active against LS174 and A549 cell lines (IC 50 = 10.17 and 12.15 μm, respectively). © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  7. Synthesis, molecular properties prediction and cytotoxic screening of 3-(2-aryl-2-oxoethyl)isobenzofuran-1(3H)-ones.

    PubMed

    da Silva Maia, Angélica Faleiros; Siqueira, Raoni Pais; de Oliveira, Fabrício Marques; Ferreira, Joana Gasperazzo; da Silva, Silma Francielle; Caiuby, Clarice Alves Dale; de Oliveira, Leandro Licursi; de Paula, Sérgio Oliveira; Souza, Rafael Aparecido Carvalho; Guilardi, Silvana; Bressan, Gustavo Costa; Teixeira, Róbson Ricardo

    2016-06-15

    In the present investigation, a collection of nineteen 3-(2-aryl-2-oxoethyl)isobenzofuran-1(3H)-ones was synthesized and screened for their cytotoxic activity against a panel of three leukemia cancer cell lines. The compounds were prepared via ZrOCl2·8H2O catalyzed condensation reactions between phthalaldehydic acid and different acetophenones. The reactions were carried out free of solvent and the isobenzofuran-1(3H)-ones were obtained in good yields (80-92%). The identities of the synthesized compounds were confirmed upon IR and NMR ((1)H and (13)C) spectroscopy as well as high resolution mass spectrometry analyses. Structures of compounds 1, 4 and 16 were also investigated by X-ray analysis. The synthesized compounds were submitted to in vitro bioassays against HL-60, K562 and NALM6 cancer cell lines using MTT cytotoxicity assay. After 48h of treatment, twelve derivatives were able to reduce cell viability and presented IC50 values equal to or below 20μmolL(-1) against at least one of the evaluated lineages. The most active compound corresponded to 3-(3-methylphenyl-2-oxoethyl)isobenzofuran-1(3H)-one (18) (IC50 values obtained for HL-60, K562 and NALM6 were, respectively, 13.5μmolL(-1), 8.83μmolL(-1), and 5.24μmolL(-1)). In addition, compound 18 was capable of triggering apoptosis on NALM6 cells. All isobenzofuranones herein evaluated did not present cytotoxicity on peripheral blood mononuclear cells (PBMC), suggesting selective cytotoxic effect on leukemic cells. A computational study allowed prediction of pharmacokinetics and drug-likeness properties of the synthesized compounds. DFT calculations were performed to obtain the energy values of HOMO, LUMO, and dipole moments of isobenzofuranones. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. 3-Acetyl-8-methoxy-2[H]-chromen-2-one derived Schiff bases as potent antiproliferative agents: Insight into the influence of 4(N)-substituents on the in vitro biological activity

    NASA Astrophysics Data System (ADS)

    Kalaiarasi, G.; Rex Jeya Rajkumar, S.; Aswini, G.; Dharani, S.; Fronczek, Frank R.; Prabhakaran, R.

    2018-07-01

    A series of 3-acetyl-8-methoxycoumarin appended thiosemicarbazones (1-4) was prepared from the reaction of 3-acetyl-8-methoxycoumarin with 4(N)-substituted thiosemicarbazides in a view of ascertaining their biological properties with the change of N-terminal substitution in the thiosemicarbazide moiety. Comprehensive characterization was brought about by various spectral and analytical methods. The molecular structures of all the compounds were determined by single crystal X-ray diffraction analysis. Binding studies with Calf thymus DNA (CT-DNA) and proteins such as Bovine Serum Albumin (BSA) and Human Serum Albumin (HSA) indicated an intercalative mode of binding with DNA and static quenching mechanism with proteins. The compounds cleaved plasmid DNA (pBR322) and acted well as free radical scavengers. A good spectrum of antimicrobial activity was observed against four bacterial and five fungal pathogens. The compounds exhibited profound antiproliferative activity on MCF-7 (human breast cancer) and A549 (human lung carcinoma) cell lines. Assay on human normal keratinocyte cell line HaCaT showed that the compounds were non-toxic to normal cells.

  9. Generation of SNCA Cell Models Using Zinc Finger Nuclease (ZFN) Technology for Efficient High-Throughput Drug Screening.

    PubMed

    Dansithong, Warunee; Paul, Sharan; Scoles, Daniel R; Pulst, Stefan M; Huynh, Duong P

    2015-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by loss of dopaminergic neurons of the substantia nigra. The hallmark of PD is the appearance of neuronal protein aggregations known as Lewy bodies and Lewy neurites, of which α-synuclein forms a major component. Familial PD is rare and is associated with missense mutations of the SNCA gene or increases in gene copy number resulting in SNCA overexpression. This suggests that lowering SNCA expression could be therapeutic for PD. Supporting this hypothesis, SNCA reduction was neuroprotective in cell line and rodent PD models. We developed novel cell lines expressing SNCA fused to the reporter genes luciferase (luc) or GFP with the objective to enable high-throughput compound screening (HTS) for small molecules that can lower SNCA expression. Because SNCA expression is likely regulated by far-upstream elements (including the NACP-REP1 located at 8852 bp upstream of the transcription site), we employed zinc finger nuclease (ZFN) genome editing to insert reporter genes in-frame downstream of the SNCA gene in order to retain native SNCA expression control. This ensured full retention of known and unknown up- and downstream genetic elements controlling SNCA expression. Treatment of cells with the histone deacetylase inhibitor valproic acid (VPA) resulted in significantly increased SNCA-luc and SNCA-GFP expression supporting the use of our cell lines for identifying small molecules altering complex modes of expression control. Cells expressing SNCA-luc treated with a luciferase inhibitor or SNCA siRNA resulted in Z'-scores ≥ 0.75, suggesting the suitability of these cell lines for use in HTS. This study presents a novel use of genome editing for the creation of cell lines expressing α-synuclein fusion constructs entirely under native expression control. These cell lines are well suited for HTS for compounds that lower SNCA expression directly or by acting at long-range sites to the SNCA promoter and 5'-UTR.

  10. Anti-Cancer Activity of Resveratrol and Derivatives Produced by Grapevine Cell Suspensions in a 14 L Stirred Bioreactor.

    PubMed

    Nivelle, Laetitia; Hubert, Jane; Courot, Eric; Jeandet, Philippe; Aziz, Aziz; Nuzillard, Jean-Marc; Renault, Jean-Hugues; Clément, Christophe; Martiny, Laurent; Delmas, Dominique; Tarpin, Michel

    2017-03-16

    In the present study, resveratrol and various oligomeric derivatives were obtained from a 14 L bioreactor culture of elicited grapevine cell suspensions (Vitis labrusca L.). The crude ethyl acetate stilbene extract obtained from the culture medium was fractionated by centrifugal partition chromatography (CPC) using a gradient elution method and the major stilbenes contained in the fractions were subsequently identified by using a 13 C-NMR-based dereplication procedure and further 2D NMR analyses including HSQC, HMBC, and COSY. Beside δ-viniferin (2), leachianol F (4) and G (4'), four stilbenes (resveratrol (1), ε-viniferin (5), pallidol (3) and a newly characterized dimer (6)) were recovered as pure compounds in sufficient amounts to allow assessment of their biological activity on the cell growth of three different cell lines, including two human skin malignant melanoma cancer cell lines (HT-144 and SKMEL-28) and a healthy human dermal fibroblast HDF line. Among the dimers obtained in this study, the newly characterized resveratrol dimer (6) has never been described in nature and its biological potential was evaluated here for the first time. ε-viniferin as well as dimer (6) showed IC 50 values on the three tested cell lines lower than the ones exerted by resveratrol and pallidol. However, activities of the first two compounds were significantly decreased in the presence of fetal bovine serum although that of resveratrol and pallidol was not. The differential tumor activity exerted by resveratrol on healthy and cancer lines was also discussed.

  11. A study on volatile organic compounds emitted by in-vitro lung cancer cultured cells using gas sensor array and SPME-GCMS.

    PubMed

    Thriumani, Reena; Zakaria, Ammar; Hashim, Yumi Zuhanis Has-Yun; Jeffree, Amanina Iymia; Helmy, Khaled Mohamed; Kamarudin, Latifah Munirah; Omar, Mohammad Iqbal; Shakaff, Ali Yeon Md; Adom, Abdul Hamid; Persaud, Krishna C

    2018-04-02

    Volatile organic compounds (VOCs) emitted from exhaled breath from human bodies have been proven to be a useful source of information for early lung cancer diagnosis. To date, there are still arguable information on the production and origin of significant VOCs of cancer cells. Thus, this study aims to conduct in-vitro experiments involving related cell lines to verify the capability of VOCs in providing information of the cells. The performances of e-nose technology with different statistical methods to determine the best classifier were conducted and discussed. The gas sensor study has been complemented using solid phase micro-extraction-gas chromatography mass spectrometry. For this purpose, the lung cancer cells (A549 and Calu-3) and control cell lines, breast cancer cell (MCF7) and non-cancerous lung cell (WI38VA13) were cultured in growth medium. This study successfully provided a list of possible volatile organic compounds that can be specific biomarkers for lung cancer, even at the 24th hour of cell growth. Also, the Linear Discriminant Analysis-based One versus All-Support Vector Machine classifier, is able to produce high performance in distinguishing lung cancer from breast cancer cells and normal lung cells. The findings in this work conclude that the specific VOC released from the cancer cells can act as the odour signature and potentially to be used as non-invasive screening of lung cancer using gas array sensor devices.

  12. Isolation and characterization of 2-pyridone alkaloids and alloxazines from Beauveria bassiana.

    PubMed

    Andrioli, W J; Lopes, A A; Cavalcanti, B C; Pessoa, C; Nanayakkara, N P D; Bastos, J K

    2017-08-01

    Two novel compounds bearing heterocyclic nitrogen, 2-pyridone alkaloid (1) and alloxazine derivative (2), along with the known pretenellin B (3), pyridovericin (4) and lumichrome (5) were isolated from a culture of the entomopathogenic fungal strain Beauveria bassiana. The chemical structures of 2-pyridone alkaloid and alloxazine derivative were established on the basis of the interpretation of spectroscopic data. The isolated compounds were evaluated in a panel of five cancer cell lines and pyridovericin exhibited cytotoxicity (IC 50 , μM) against cancer cell lines: HL-60 (25.9 ± 0.3), HCT8 (34.6 ± 3.6), MDA-MB435 (34.8 ± 3.8) and SF295 (31.1 ± 0.6). Considering that other pyridone compounds display good cytotoxic activity, it would be suggested to obtain new semi synthetic derivatives of pyridovericin, for the development of new cytotoxic chemical entities.

  13. Steroids from the leaves of Chinese Melia azedarach and their cytotoxic effects on human cancer cell lines.

    PubMed

    Wu, Shi-Biao; Ji, Yan-Ping; Zhu, Jing-Jing; Zhao, Yun; Xia, Gang; Hu, Ying-He; Hu, Jin-Feng

    2009-09-01

    Three new (1-3) and several known (4-6) steroids were isolated from the leaves of Chinese Melia azedarach. The structures of the new compounds were elucidated by means of spectroscopic methods including 2D NMR techniques and mass spectrometry to be (20S)-5,24(28)-ergostadiene-3beta,7alpha,16beta,20-tetrol (1), (20S)-5-ergostene-3beta,7alpha,16beta,20-tetrol (2), and 2alpha,3beta-dihydro-5-pregnen-16-one (3). The cytotoxicities of the isolated compounds against three human cancer cell lines (A549, H460, U251) were evaluated; only compounds 1, 2, and (20S)-5-stigmastene-3beta,7alpha,20-triol (4) were found to show significant cyctotoxic effects with IC(50)s from 12.0 to 30.1 microg/mL.

  14. Synthesis and biological evaluation of novel quinazoline-sulfonamides as anti-cancer agents.

    PubMed

    Poudapally, Suresh; Battu, Shankar; Velatooru, Loka Reddy; Bethu, Murali Satyanarayana; Janapala, Venkateswara Rao; Sharma, Somesh; Sen, Subhabrata; Pottabathini, Narender; Iska, Vijaya Bhaskara Reddy; Katangoor, Vidya

    2017-05-01

    A robust economic approach to N-(quinazoline-4-yl)sulfonamides was developed and synthesized different aryl, hetero aryl, alkyl and cyclopropyl sulfonamides in excellent yields. All the compounds were evaluated for cytotoxic affinity to SKOV3, DU145, THP1, U937, and COLO205 cell lines. Interesting to find that the bulkiness of substituent at C-2 position of quinazoline forces the molecule to flip around in order to bind in the active site, when compared to the binding preference of previously known quinazoline compounds. Among the 21 compounds synthesized 2b, 2d, 2e, 2h, 2i, 3c, 3d, 3f, 3g and 3h found to be active on all the cell lines tested with IC 50 values <10µg/mL. Performed docking simulations to understand the binding preference of various C-2 substituted quinazoline sulfonamides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Cytotoxicity evaluation of a new set of 2-aminobenzo[de]iso-quinoline-1,3-diones.

    PubMed

    Al-Salahi, Rashad; Alswaidan, Ibrahim; Marzouk, Mohamed

    2014-12-04

    A new series of 2-amino-benzo[de]isoquinoline-1,3-diones was synthesized and fully characterized in our previous paper. Here, their cytotoxic effects have been evaluated in vitro in relation to colon HCT-116, hepatocellular Hep-G2 and breast MCF-7 cancer cell lines, using a crystal violet viability assay. The IC50-values of the target compounds are reported in µg/mL, using doxorubicin as a reference drug. The findings revealed that compounds 14, 15, 16, 21 and 22 had significant cytotoxic effects against HCT-116, MCF-7 and Hep-G2 cell lines. Their IC50 values ranged between 1.3 and 8.3 μg/mL in relation to doxorubicin (IC50 ≈ 0.45-0.89 μg/mL). Therefore, these compounds could be used as templates for furthering the development and design of more potent antitumor agents through structural modification.

  16. Effect of constituents from samaras of Austroplenckia populnea (Celastraceae) on human cancer cells.

    PubMed

    Caneschi, Carolina Milagres; Muniyappa, Mohan K; Duarte, Lucienir P; Silva, Grácia D F; Dos Santos, Orlando David Henrique; Spillane, Charles; Filho, Sidney Augusto Vieira

    2015-01-01

    Aiming the continuity of the studies of Austroplenckia populnea, Brazilian species of the Celastraceae family, in the present study, it was investigated the effect of crude extracts obtained with ethanol, ethyl acetate and chloroform and two purified constituents, proanthocyanidin A and 4'-O-methylepigallocatechin, both isolated from its samaras, on cancer cell proliferation assays. The human cancer cells lines MCF-7 (ductal breast carcinoma), A549 (lung cancer), HS578T (ductal breast carcinoma) and non-cancer HEK293 (embryonic kidney cells) were treated with different concentrations of extracts and constituents and the effect was observed through the acid phosphatase method. The chemical structures of the purified compounds were identified by the respective IR and (1)H and (13)C nuclear magnetic resonance spectral data. While crude extracts from samaras of the folk medicine A. populnea can trigger cell proliferative effects in human cell lines, the purified compounds (proanthocyanidin A and 4'-O-methyl-epigallocatechin) isolated from the same extracts can have an opposite (anti-proliferative) effect. Based on the results, it was possible to suggest that extracts from samaras of A. populnea should be further investigated for possible cancer-promoting activities; and the active extracts can also represent a source of compounds that have anti-cancer properties.

  17. Effect of constituents from samaras of Austroplenckia populnea (Celastraceae) on human cancer cells

    PubMed Central

    Caneschi, Carolina Milagres; Muniyappa, Mohan K.; Duarte, Lucienir P.; Silva, Grácia D. F.; dos Santos, Orlando David Henrique; Spillane, Charles; Filho, Sidney Augusto Vieira

    2015-01-01

    Background: Aiming the continuity of the studies of Austroplenckia populnea, Brazilian species of the Celastraceae family, in the present study, it was investigated the effect of crude extracts obtained with ethanol, ethyl acetate and chloroform and two purified constituents, proanthocyanidin A and 4’-O-methylepigallocatechin, both isolated from its samaras, on cancer cell proliferation assays. Materials and Methods: The human cancer cells lines MCF-7 (ductal breast carcinoma), A549 (lung cancer), HS578T (ductal breast carcinoma) and non-cancer HEK293 (embryonic kidney cells) were treated with different concentrations of extracts and constituents and the effect was observed through the acid phosphatase method. The chemical structures of the purified compounds were identified by the respective IR and 1H and 13C nuclear magnetic resonance spectral data. Results: While crude extracts from samaras of the folk medicine A. populnea can trigger cell proliferative effects in human cell lines, the purified compounds (proanthocyanidin A and 4’-O-methyl-epigallocatechin) isolated from the same extracts can have an opposite (anti-proliferative) effect. Conclusion: Based on the results, it was possible to suggest that extracts from samaras of A. populnea should be further investigated for possible cancer-promoting activities; and the active extracts can also represent a source of compounds that have anti-cancer properties. PMID:26401377

  18. Synthesis and proapoptotic activity of oleanolic acid derived amides.

    PubMed

    Heller, Lucie; Knorrscheidt, Anja; Flemming, Franziska; Wiemann, Jana; Sommerwerk, Sven; Pavel, Ioana Z; Al-Harrasi, Ahmed; Csuk, René

    2016-10-01

    Thirty-one different 3-O-acetyl-OA derived amides have been prepared and screened for their cytotoxic activity. In the SRB assays nearly all the carboxamides displayed good cytotoxicity in the low μM range for several human tumor cell lines. Low EC50 values were obtained especially for the picolinylamides 14-16, for a N-[2-(dimethylamino)-ethyl] derivative 27 and a N-[2-(pyrrolinyl)-ethyl] carboxamide 28. These compounds were submitted to an extensive biological testing and proved compound 15 to act mainly by an arrest of the tumor cells in the S phase of the cell cycle. Cell death occurred by autophagy while compounds 27 and 28 triggered apoptosis. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. A cytotoxic hydroperoxy sterol from the brown alga, Nizamuddinia zanardinii

    PubMed Central

    2013-01-01

    Background The marine environment is a unique source of bioactive natural products, of which Nizamuddinia zanardinii is an important brown algae distributed in Oman Sea. Literature revealed that there is no report on phytochemistry and pharmacology of this valuable algae. Methods Bioguided fractionation of the methanolic extract of Nizamuddinia zanardinii, collected from Oman Sea, led to the isolation of a hydroperoxy sterol. Its structure was determined by analysis of the spectroscopic data as 24-hydroperoxy-24-vinyl cholesterol (HVC). In vitro cytotoxic activity of this compound was evaluated against HT29, MCF7, A549, HepG2 and MDBK cell lines. Results Although 24(R)-hydroproxy-24-vinylcholesterol has been previously reported from Sargassum and Padina species, it is the first report on the presence of this compound from N. zanardinii. This compound exhibited cytotoxicity in all cell lines (IC50, 3.62, 9.09, 17.96, 32.31 and 37.31 μg/mL respectively). HVC was also evaluated for apoptotic activity and demonstrated positive results in terminal deoxynucleotidyl transferase dUTP Nick End labeling (TUNEL) assay suggesting it a candidate for further apoptotic studies. Conclusions Nizamuddinia zanardinii, a remarkable brown algae of Oman Sea, is a good source of hydroproxy sterols with promising cytotoxic on various cell lines particularly human colon adenocarcinoma. PMID:23497504

  20. Synthesis of Apoptotic New Quinazolinone-Based Compound and Identification of its Underlying Mitochondrial Signalling Pathway in Breast Cancer Cells.

    PubMed

    Zahedifard, Maryam; Faraj, Fadhil Lafta; Paydar, Mohammadjavad; Looi, Chung Yeng; Hasandarvish, Pouya; Hajrezaie, Maryam; Kamalidehghan, Behnam; Majid, Nazia Abdul; Khalifa, Shaden A M; Ali, Hapipah Mohd; Abdulla, Mahmood Ameen; El-Seedi, Hesham R

    2015-01-01

    The anti-carcinogenic effect of the new quinazolinone compound, named MMD, was tested on MCF-7 human breast cancer cell line. The synthesis of quinazolinone-based compounds attracted strong attention over the past few decades as an alternative mean to produce analogues of natural products. Quinazolinone compounds sharing the main principal core structures are currently introduced in the clinical trials and pharmaceutical markets as anti-cancer agents. Thus, it is of high clinical interest to identify a new drug that could be used to control the growth and expansion of cancer cells. Quinazolinone is a metabolite derivative resulting from the conjugation of 2-aminobenzoyhydrazide and 5-methoxy-2- hydroxybenzaldehyde based on condensation reactions. In the present study, we analysed the influence of MMD on breast cancer adenoma cell morphology, cell cycle arrest, DNA fragmentation, cytochrome c release and caspases activity. MCF-7 is a type of cell line representing the breast cancer adenoma cells that can be expanded and differentiated in culture. Using different in vitro strategies and specific antibodies, we demonstrate a novel role for MMD in the inhibition of cell proliferation and initiation of the programmed cell death. MMD was found to increase cytochrome c release from the mitochondria to the cytosol and this effect was enhanced over time with effective IC50 value of 5.85 ± 0.71 μg/mL detected in a 72-hours treatment. Additionally, MMD induced cell cycle arrest at G0/G1 phase and caused DNA fragmentation with obvious activation of caspase-9 and caspases-3/7. Our results demonstrate a novel role of MMD as an anti-proliferative agent and imply the involvement of mitochondrial intrinsic pathway in the observed apoptosis.

  1. Increased chemopreventive effect by combining arctigenin, green tea polyphenol and curcumin in prostate and breast cancer cells

    PubMed Central

    Wang, Piwen; Wang, Bin; Chung, Seyung; Wu, Yanyuan; Henning, Susanne M.; Vadgama, Jaydutt V.

    2014-01-01

    The low bioavailability of most flavonoids limits their application as anti-carcinogenic agents in humans. A novel approach of treatment with a mixture of bioactive compounds that share molecular anti-carcinogenic targets may enhance the effect on these targets at low concentrations of individual compound, thereby overcoming the limitations of reduced bioavailability. We therefore investigated whether a combination of three natural products arctigenin (Arc), a novel anti-inflammatory lignan from the seeds of Arctium lappa, green tea polyphenol (−)-epigallocatechin gallate (EGCG) and curcumin (Cur) increases the chemopreventive potency of individual compounds. LNCaP prostate cancer and MCF-7 breast cancer cells were treated with 2–4 mg/L (about 5–10μM) Cur, 1μM Arc and 40μM EGCG alone or in combination for 48h. In both cell lines treatment with the mixture of Cur, Arc and EGCG synergistically increased the antiproliferative effect. In LNCaP cells both Arc and EGCG increased the pro-apoptotic effect of Cur. Whereas in MCF-7 cells Arc increased the cell apoptosis of Cur while EGCG enhanced cell cycle arrest of Cur at G0/G1 phase. The strongest effects on cell cycle arrest and apoptosis were achieved by combining all three compounds in both cell lines. The combination treatment significantly increased the ratio of Bax to Bcl-2 proteins, decreased the activation of NFκB, PI3K/Akt and Stat3 pathways and cell migration compared to individual treatment. These results warrant in vivo studies to confirm the efficacy of this novel regimen by combining Arc and EGCG with Cur to enhance chemoprevention in both prostate and breast cancer. PMID:25243063

  2. Intestinal P-glycoprotein inhibitors, benzoxanthone analogues.

    PubMed

    Chae, Song Wha; Lee, Jaeok; Park, Jung Hyun; Kwon, Youngjoo; Na, Younghwa; Lee, Hwa Jeong

    2018-02-01

    The inhibitors of P-glycoprotein (P-gp) which limits an access of exogenous compounds in the luminal membrane of the intestine have been studied to enhance the intestinal P-gp-mediated absorption of anticancer drugs. Inhibition of the efflux pump by synthesized benzoxanthone derivatives was investigated in vitro and in vivo. MCF-7/ADR cell line was used for cytotoxicity assay and [ 3 H]-daunomycin (DNM) accumulation/efflux study. Eight benzoxanthone analogues were tested for their effects on DNM cytotoxicity. Among them, three analogues were selected for the accumulation/efflux and P-gp ATPase studies. Paclitaxel (PTX), a P-gp substrate anticancer drug, was orally administered to rats with/without compound 1 (8,10-bis(thiiran-2-ylmethoxy)-7H-benzo[c]xanthen-7-one). The pharmacokinetic parameters of PTX in the presence/absence of compound 1 were evaluated from the plasma concentration-time profiles. Compound 1 increased the DNA accumulation to 6.5-fold and decreased the DNM efflux to approximately 1/2 in the overexpressing P-gp cell line. Relative bioavailability (RB) of PTX in rats was significantly increased up to 3.2-fold by compound 1 (0.5 or 2 mg/kg). Benzoxanthone analogue, compound 1 is strongly suggested to be a promising inhibitor of P-gp to improve an oral absorption of compounds for cancer therapy. © 2017 Royal Pharmaceutical Society.

  3. In vitro evaluation of a specific radiochemical compound based on 99mTc-labeled DARPinG3 for radionuclide imaging of tumors overexpressing Her-2/neu

    NASA Astrophysics Data System (ADS)

    Bragina, O.; Larkina, M.; Stasyuk, E.; Chernov, V.; Zelchan, R.; Medvedeva, A.; Sinilkin, I.; Yusubov, M.; Skuridin, V.; Deyev, S.; Buldakov, M.

    2017-09-01

    It is still necessary to search for new informative diagnostic methods to detect malignant tumors with overexpression of Her-2/neu, which are characterized by the aggressive course of the disease, rapid rate of tumor growth and low rates of relapse-free and overall survival. In recent years, the radioisotope techniques for detection of specific tumor targets have been developing actively. Purpose: to develop a chemically stable radiochemical compound for the targeted imaging of cells overexpressing Her-2/neu. Material and methods: The study was performed using 2 cell lines. The human breast adenocarcinoma HER2-overexpressing cell line BT-474 was chosen to detect specific binding. As a control, HER2-negative human breast adenocarcinoma MCF-7 was used. The human breast adenocarcinoma BT-474 and MCF-7 cell lines were seeded in chamber-slides at the density of 35,000 cells/ml in trypsin-EDTA (PanEco) medium and grown overnight at 37°C. After that both cell lines were washed with Phosphate buffered saline (PBS) and distributed into test tubes to 1 ml (5 millions cells in each). After adding 100 µl (70 MBq) studied complex of 99mTc-DPAH- DARPinG3 was incubated for 40 min at +4°C. Washing was performed three times with buffer PBS and 5% Bovine Serum Albumin (BSA). The characteristics of the binding specificity of the test set with the HER-2/neu receptor were determined by direct radiometric and planar scintigraphy. Nonparametric Mann-Whitney test was used to assess the differences in the quantitative characteristics between groups. Results: The output of the labeled complex was more than 91%, with a radiochemical purity of more than 94%. When carrying out a visual scintigraphic assessment much greater intensity accumulation of radiotracer was observed in the studied cell culture surface receptor overexpressing Her-2/neu. The results of direct radiometric also showed higher accumulation of the radiopharmaceutical in the adenocarcinoma cell line BT-474 human breast cancer overexpressing Her-2/neu compared to the control group. Conclusion: The preclinical studies demonstrated a high in vitro stability of the study compound, as well as its accumulation in the cell group overexpressing Her-2/neu.

  4. Oleanane-type triterpene saponins from Calendula stellata.

    PubMed

    Lehbili, Meryem; Alabdul Magid, Abdulmagid; Kabouche, Ahmed; Voutquenne-Nazabadioko, Laurence; Abedini, Amin; Morjani, Hamid; Sarazin, Thomas; Gangloff, Sophie C; Kabouche, Zahia

    2017-12-01

    Five previously undescribed bisdesmosidic triterpenoid saponins named calendustellatosides A-E, along with fifteen known compounds were isolated from the 70% ethanol whole plant extract of Calendula stellata Cav. (Asteraceae). Their structures were determined by 1D- and 2D-NMR spectroscopy as well as high resolution mass spectrometry and acid hydrolysis. The saponins comprised oleanolic acid, echinocystic acid, morolic acid or mesembryanthemoidigenic acid as the aglycones and saccharide moieties at C-3 and C-28. Like most Calendula saponins, the sugar moiety linked at C-3 was either β-d-glucose or β-d-glucuronic acid which could be substituted at C-3 by a β-d-galactose and/or C-2 by a supplementary β-d-galactose or a β-d-glucose. The sugar moiety linked to C-28 was determined as β-d-glucose. The antibacterial evaluation of compounds 1-20 by bioautography on Staphylococcus aureus followed by the determination of MIC values of active compounds by serial dilution technique against 5 bacteria revealed that; calendustellatoside D was the most active against Enterococcus faecalis with an antibacterial effect comparable to antibiotics. The cytotoxic activities of isolated compounds were evaluated against fibrosarcoma cell line (HT1080) and human lung cancer cell line (A549). Calendustellatosides B and D exhibited a low cytotoxic activity against HT1080 cell line with IC 50 values of 47 ± 0.6 and 39 ± 0.5 μM, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Longitudinal trends and subgroup analysis in publication patterns for preclinical data of newly approved drugs.

    PubMed

    Köster, Ursula; Nolte, Ingo; Michel, Martin C

    2016-02-01

    Having observed a large variation in the number and type of original preclinical publications for newly registered drugs, we have explored whether longitudinal trends and/or factors specific for certain drugs or their manufacturers may explain such variation. Our analysis is based on 1954 articles related to 170 newly approved drugs. The number of preclinical publications per compound declined from a median of 10.5 in 1991 to 3 in 2011. A similar trend was observed for the number of in vivo studies in general, but not in the subset of in vivo studies in animal models of disease. The percentage of compounds with studies using isolated human cells or cell lines almost doubled over time from 37 to 72%. Number of publications did not exhibit major differences between compounds intended for human versus veterinary use, therapeutic areas, small molecules versus biologicals, or innovator versus follow-up compounds; however, some companies may publish fewer studies per compound than others. However, there were qualitative differences in the types of models being used depending on the therapeutic area; specifically, compounds for use in oncology very often used isolated cells and cell lines, often from human origin. We conclude that the large variation in number and type of reported preclinical data is not easily explained. We propose that pharmaceutical companies should consistently provide a comprehensive documentation of the preclinical data they generate as part of their development programs in the public domain to enable a better understanding of the drugs they intend to market.

  6. Potential anticancer properties of bioactive compounds of Gymnema sylvestre and its biofunctionalized silver nanoparticles

    PubMed Central

    Arunachalam, Kantha Deivi; Arun, Lilly Baptista; Annamalai, Sathesh Kumar; Arunachalam, Aarrthy M

    2015-01-01

    Background Gymnema sylvestre is an ethno-pharmacologically important medicinal plant used in many polyherbal formulations for its potential health benefits. Silver nanoparticles (SNPs) were biofunctionalized using aqueous leaf extracts of G. sylvestre. The anticancer properties of the bioactive compounds and the biofunctionalized SNPs were compared using the HT29 human adenoma colon cancer cell line. Methods The preliminary phytochemical screening for bioactive compounds from aqueous extracts revealed the presence of alkaloids, triterpenes, flavonoids, steroids, and saponins. Biofunctionalized SNPs were synthesized using silver nitrate and characterized by ultraviolet–visible spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, Fourier transform infrared spectroscopy, and X-ray diffraction for size and shape. The characterized biofunctionalized G. sylvestre were tested for its in vitro anticancer activity against HT29 human colon adenocarcinoma cells. Results The biofunctionlized G. sylvestre SNPs showed the surface plasmon resonance band at 430 nm. The scanning electron microscopy images showed the presence of spherical nanoparticles of various sizes, which were further determined using the Scherrer equation. In vitro cytotoxic activity of the biofunctionalized green-synthesized SNPs (GSNPs) indicated that the sensitivity of HT29 human colon adenocarcinoma cells for cytotoxic drugs is higher than that of Vero cell line for the same cytotoxic agents and also higher than the bioactive compound of the aqueous extract. Conclusion Our results show that the anticancer properties of the bioactive compounds of G. sylvestre can be enhanced through biofunctionalizing the SNPs using the bioactive compounds present in the plant extract without compromising their medicinal properties. PMID:25565802

  7. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica papaya Leaf Extracts.

    PubMed

    Nguyen, Thao T; Parat, Marie-Odile; Hodson, Mark P; Pan, Jenny; Shaw, Paul N; Hewavitharana, Amitha K

    2015-12-24

    In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer.

  8. Chemical Characterization and in Vitro Cytotoxicity on Squamous Cell Carcinoma Cells of Carica Papaya Leaf Extracts

    PubMed Central

    Nguyen, Thao T.; Parat, Marie-Odile; Hodson, Mark P.; Pan, Jenny; Shaw, Paul N.; Hewavitharana, Amitha K.

    2015-01-01

    In traditional medicine, Carica papaya leaf has been used for a wide range of therapeutic applications including skin diseases and cancer. In this study, we investigated the in vitro cytotoxicity of aqueous and ethanolic extracts of Carica papaya leaves on the human oral squamous cell carcinoma SCC25 cell line in parallel with non-cancerous human keratinocyte HaCaT cells. Two out of four extracts showed a significantly selective effect towards the cancer cells and were found to contain high levels of phenolic and flavonoid compounds. The chromatographic and mass spectrometric profiles of the extracts obtained with Ultra High Performance Liquid Chromatography-Quadrupole Time of Flight-Mass Spectrometry were used to tentatively identify the bioactive compounds using comparative analysis. The principal compounds identified were flavonoids or flavonoid glycosides, particularly compounds from the kaempferol and quercetin families, of which several have previously been reported to possess anticancer activities. These results confirm that papaya leaf is a potential source of anticancer compounds and warrant further scientific investigation to validate the traditional use of papaya leaf to treat cancer. PMID:26712788

  9. Discovery of a Series of Acridinones as Mechanism-Based Tubulin Assembly Inhibitors with Anticancer Activity

    PubMed Central

    Magalhaes, Luma G.; Marques, Fernando B.; da Fonseca, Marina B.; Rogério, Kamilla R.; Graebin, Cedric S.; Andricopulo, Adriano D.

    2016-01-01

    Microtubules play critical roles in vital cell processes, including cell growth, division, and migration. Microtubule-targeting small molecules are chemotherapeutic agents that are widely used in the treatment of cancer. Many of these compounds are structurally complex natural products (e.g., paclitaxel, vinblastine, and vincristine) with multiple stereogenic centers. Because of the scarcity of their natural sources and the difficulty of their partial or total synthesis, as well as problems related to their bioavailability, toxicity, and resistance, there is an urgent need for novel microtubule binding agents that are effective for treating cancer but do not have these disadvantages. In the present work, our lead discovery effort toward less structurally complex synthetic compounds led to the discovery of a series of acridinones inspired by the structure of podophyllotoxin, a natural product with important microtubule assembly inhibitory activity, as novel mechanism-based tubulin assembly inhibitors with potent anticancer properties and low toxicity. The compounds were evaluated in vitro by wound healing assays employing the metastatic and triple negative breast cancer cell line MDA-MB-231. Four compounds with IC50 values between 0.294 and 1.7 μM were identified. These compounds showed selective cytotoxicity against MDA-MB-231 and DU-145 cancer cell lines and promoted cell cycle arrest in G2/M phase and apoptosis. Consistent with molecular modeling results, the acridinones inhibited tubulin assembly in in vitro polymerization assays with IC50 values between 0.9 and 13 μM. Their binding to the colchicine-binding site of tubulin was confirmed through competitive assays. PMID:27508497

  10. Roles of p38 and JNK protein kinase pathways activated by compound cantharidin capsules containing serum on proliferation inhibition and apoptosis of human gastric cancer cell line

    PubMed Central

    Sun, Yonghao; Zhang, Dejuan; Mao, Mao; Lu, Yangping; Jiao, Ning

    2017-01-01

    The aim of the present study was to investigate the inhibitory effect of compound cantharides capsules (CCCs) on the viability and apoptosis of human gastric cancer cell lines, BGC-823 and SGC-7901, and to detect its regulation of gene expression levels, as well as its inhibition mechanisms. Each cell line was grouped into a control group, CCC serum group, 5-fluorouracil (5-FU) group, combination therapy group (CCC serum + 5-FU) and serum control group. Growth curves were measured and flow cytometry was used to detect cell apoptosis and cell viability. The mRNA expression level of proliferation-related C-MYC and p53 genes were assayed by reverse transcription-quantitative polymerase chain reaction. Protein phosphorylation levels of proliferating cell nuclear antigen, p38 mitogen-activated protein kinase, extracellular signal-related kinase 1/2, c-Jun N-terminal kinase (JNK) and IκB were assayed by western blotting. The combined CCC serum and 5-FU group exhibited a higher inhibition rate in both cell lines and CCC serum therapy demonstrated a similar effect to 5-FU treatment, as demonstrated in the MTT and cell growth assay. Combined therapy significantly decreased the C-MYC mRNA expression levels and increased p53 mRNA expression levels (P<0.05). Combined therapy of 5-FU and CCC was more significant compared with CCC serum or 5-FU only (P<0.05). P38 and JNK-related protein phosphorylation are involved in apoptosis initiated by CCC combined 5-FU therapy. Combined therapy was able to significantly inhibit human gastric cancer cell growth (P<0.05), and advance cell apoptosis compared with CCC serum only. CCC serum resulted in downregulation of the c-Myc gene and upregulation of the p53 gene. p38 and JNK-related protein phosphorylation is involved in the inhibition of cell viability and apoptosis of human gastric cancer cell lines. PMID:28810654

  11. Roles of p38 and JNK protein kinase pathways activated by compound cantharidin capsules containing serum on proliferation inhibition and apoptosis of human gastric cancer cell line.

    PubMed

    Sun, Yonghao; Zhang, Dejuan; Mao, Mao; Lu, Yangping; Jiao, Ning

    2017-08-01

    The aim of the present study was to investigate the inhibitory effect of compound cantharides capsules (CCCs) on the viability and apoptosis of human gastric cancer cell lines, BGC-823 and SGC-7901, and to detect its regulation of gene expression levels, as well as its inhibition mechanisms. Each cell line was grouped into a control group, CCC serum group, 5-fluorouracil (5-FU) group, combination therapy group (CCC serum + 5-FU) and serum control group. Growth curves were measured and flow cytometry was used to detect cell apoptosis and cell viability. The mRNA expression level of proliferation-related C-MYC and p53 genes were assayed by reverse transcription-quantitative polymerase chain reaction. Protein phosphorylation levels of proliferating cell nuclear antigen, p38 mitogen-activated protein kinase, extracellular signal-related kinase 1/2, c-Jun N-terminal kinase (JNK) and IκB were assayed by western blotting. The combined CCC serum and 5-FU group exhibited a higher inhibition rate in both cell lines and CCC serum therapy demonstrated a similar effect to 5-FU treatment, as demonstrated in the MTT and cell growth assay. Combined therapy significantly decreased the C-MYC mRNA expression levels and increased p53 mRNA expression levels (P<0.05). Combined therapy of 5-FU and CCC was more significant compared with CCC serum or 5-FU only (P<0.05). P38 and JNK-related protein phosphorylation are involved in apoptosis initiated by CCC combined 5-FU therapy. Combined therapy was able to significantly inhibit human gastric cancer cell growth (P<0.05), and advance cell apoptosis compared with CCC serum only. CCC serum resulted in downregulation of the c-Myc gene and upregulation of the p53 gene. p38 and JNK-related protein phosphorylation is involved in the inhibition of cell viability and apoptosis of human gastric cancer cell lines.

  12. Anticancer potential of new steroidal thiazolidin-4-one derivatives. Mechanisms of cytotoxic action and effects on angiogenesis in vitro.

    PubMed

    Živković, Marijana B; Matić, Ivana Z; Rodić, Marko V; Novaković, Irena T; Krivokuća, Ana M; Sladić, Dušan M; Krstić, Natalija M

    2017-11-01

    The synthesis and cytotoxic activities determination of new steroidal mono- and bis(thiazolidin-4-ones) 4a-f and 5a-f have been performed. Their anticancer action was also evaluated in comparison to previously synthesized and reported corresponding steroidal thiosemicarbazones. All compounds were obtained as stereoisomeric mixtures with different configuration (E or Z) in the hydrazone moiety at the C-3 position. After several consecutive crystallizations diastereomerically pure major (E)-isomers of mono-thiazolidin-4-ones were isolated. The structure and stereochemistry of 2,4-thiazolidinedione,2-[(17-oxoandrost-4-en-3-ylidene)hydrazone] were confirmed by X-ray analysis. A pathway for the formation of thiazolidin-4-one ring was proposed. The steroid thiazolidinone derivatives examined in this study exerted selective concentration-dependent cytotoxic activities on six tested malignant cell lines. Ten out of twelve examined compounds exhibited strong cytotoxic effects on K562 cells (IC 50 values from 8.5μM to 14.9μM), eight on HeLa cells (IC 50 values ranging from 8.9μM to 15.1μM) while against MDA-MB-361 cells six compouds exerted similar or even higher cytotoxic action (IC 50 values from 12.7μM to 25.6μM) than cisplatin (21.5μM) which served as a positive control. Eight of these ten compounds showed high selectivity in the cytotoxic action against HeLa and K562 cancer cell lines when compared with normal human fibroblasts MRC-5 and normal human PBMC. The study of mechanisms of the anticancer activity of the two selected compounds, mono- and bis(thiazolidin-4-one) derivatives of 19-norandrost-4-ene-3,17-dione 4a and 5a, revealed that both of these compounds induced apoptosis in HeLa cells through extrinsic and intrinsic signalling pathways. Treatment of EA.hy926 cells with sub-toxic concentrations of these compounds led to the inhibition of cell connecting and sprouting, and tube formation. The synthesized compounds exhibited poor antioxidant activity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Differential effects of a complex organochlorine mixture on the proliferation of breast cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aube, Michel, E-mail: 4aubem@videotron.ca; Larochelle, Christian, E-mail: christian.larochelle@inspq.qc.ca; Ayotte, Pierre, E-mail: pierre.ayotte@inspq.qc.ca

    2011-04-15

    Organochlorine compounds (OCs) are a group of persistent chemicals that accumulate in fatty tissues with age. Although OCs has been tested individually for their capacity to induce breast cancer cell proliferation, few studies examined the effect of complex mixtures that comprise compounds frequently detected in the serum of women. We constituted such an OC mixture containing 15 different components in environmentally relevant proportions and assessed its proliferative effects in four breast cancer cell lines (MCF-7, T47D, CAMA-1, MDAMB231) and in non-cancerous CV-1 cells. We also determined the capacity of the mixture to modulate cell cycle stage of breast cancer cellsmore » and to induce estrogenic and antiandrogenic effects using gene reporter assays. We observed that low concentrations of the mixture (100x10{sup 3} and 50x10{sup 3} dilutions) stimulated the proliferation of MCF-7 cells while higher concentrations (10x10{sup 3} and 5x10{sup 3} dilutions) had the opposite effect. In contrast, the mixture inhibited the proliferation of non-hormone-dependent cell lines. The mixture significantly increased the number of MCF-7 cells entering the S phase, an effect that was blocked by the antiestrogen ICI 182,780. Low concentrations of the mixture also caused an increase in CAMA-1 cell proliferation but only in the presence estradiol and dihydrotestosterone (p<0.05 at the 50x10{sup 3} dilution). DDT analogs and polychlorinated biphenyls all had the capacity to stimulate the proliferation of CAMA-1 cells in the presence of sex steroids. Reporter gene assays further revealed that the mixture and several of its constituents (DDT analogs, aldrin, dieldrin, {beta}-hexachlorocyclohexane, toxaphene) induced estrogenic effects, whereas the mixture and several components (DDT analogs, aldrin, dieldrin and PCBs) inhibited the androgen signaling pathway. Our results indicate that the complex OC mixture increases the proliferation of MCF-7 cells due to its estrogenic potential. The proliferative effect of the mixture on CAMA-1 cells in the presence of sex steroids appears mostly due to the antiandrogenic properties of p,p'-DDE, a major constituent of the mixture. Other mixtures of contaminants that include emerging compounds of interest such as brominated flame retardants and perfluoroalkyl compounds should be tested for their capacity to induce breast cancer cell proliferation. - Research highlights: {yields} We studied effects of a complex organochlorine mixture on breast cancer cell growth. {yields} Weak xenoestrogens in the mixture stimulated the proliferation of MCF-7 cells. {yields} Antiandrogens increased the proliferation CAMA-1 cells grown with sex steroids. {yields} High concentrations of the mixture decreased the proliferation of all cell lines.« less

  14. NMR-driven identification of anti-amyloidogenic compounds in green and roasted coffee extracts.

    PubMed

    Ciaramelli, Carlotta; Palmioli, Alessandro; De Luigi, Ada; Colombo, Laura; Sala, Gessica; Riva, Chiara; Zoia, Chiara Paola; Salmona, Mario; Airoldi, Cristina

    2018-06-30

    To identify food and beverages that provide the regular intake of natural compounds capable of interfering with toxic amyloidogenic aggregates, we developed an experimental protocol that combines NMR spectroscopy and atomic force microscopy, in vitro biochemical and cell assays to detect anti-Aβ molecules in natural edible matrices. We applied this approach to investigate the potential anti-amyloidogenic properties of coffee and its molecular constituents. Our data showed that green and roasted coffee extracts and their main components, 5-O-caffeoylquinic acid and melanoidins, can hinder Aβ on-pathway aggregation and toxicity in a human neuroblastoma SH-SY5Y cell line. Coffee extracts and melanoidins also counteract hydrogen peroxide- and rotenone-induced cytotoxicity and modulate some autophagic pathways in the same cell line. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Synthesis and anticancer activity of N-substituted 2-arylquinazolinones bearing trans-stilbene scaffold.

    PubMed

    Mahdavi, Mohammad; Pedrood, Keyvan; Safavi, Maliheh; Saeedi, Mina; Pordeli, Mahboobeh; Ardestani, Sussan Kabudanian; Emami, Saeed; Adib, Mehdi; Foroumadi, Alireza; Shafiee, Abbas

    2015-05-05

    A novel series of 2-arylquinazolinones 7a-o bearing trans-stilbene moiety were designed, synthesized, and evaluated against human breast cancer cell lines including human breast adenocarcinoma (MCF-7 and MDA-MB-231) and human ductal breast epithelial tumor (T-47D). Among the tested compounds, the sec-butyl derivative 7h showed the best profile of activity (IC50 < 5 μM) against all cell lines, being 2-fold more potent than standard drug, etoposide. Our investigation revealed that the cytotoxic activity was significantly affected by N3-alkyl substituents. Furthermore, the morphological analysis by acridine orange/ethidium bromide double staining test and flow cytometry analysis indicated that the prototype compound 7h can induce apoptosis in MCF-7 and MDA-MB-231 cells. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  16. A Small-Molecule Inhibitor of BCL6 Kills DLBCL Cells In Vitro and In Vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cerchietti, L.C.; Ghetu, A.F.; Zhu, X.

    2010-09-22

    The BCL6 transcriptional repressor is the most frequently involved oncogene in diffuse large B cell lymphoma (DLBCL). We combined computer-aided drug design with functional assays to identify low-molecular-weight compounds that bind to the corepressor binding groove of the BCL6 BTB domain. One such compound disrupted BCL6/corepressor complexes in vitro and in vivo, and was observed by X-ray crystallography and NMR to bind the critical site within the BTB groove. This compound could induce expression of BCL6 target genes and kill BCL6-positive DLBCL cell lines. In xenotransplantation experiments, the compound was nontoxic and potently suppressed DLBCL tumors in vivo. The compoundmore » also killed primary DLBCLs from human patients.« less

  17. Isolation, Purification, and Characterization of Five Active Diketopiperazine Derivatives from Endophytic Streptomyces SUK 25 with Antimicrobial and Cytotoxic Activities.

    PubMed

    Alshaibani, Muhanna; Zin, Noraziah; Jalil, Juriyati; Sidik, Nik; Ahmad, Siti Junaidah; Kamal, Nurkhalida; Edrada-Ebel, Ruangelie

    2017-07-28

    In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as cyclo -( L -Val- L -Pro), cyclo -( L -Leu- L -Pro), cyclo -( L -Phe- L -Pro), cyclo -( L -Val- L -Phe), and N -(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus , with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.

  18. Quinonoid compounds via reactions of lawsone and 2-aminonaphthoquinone with α-bromonitroalkenes and nitroallylic acetates: Structural diversity by C-ring modification and cytotoxic evaluation against cancer cells.

    PubMed

    Baiju, Thekke V; Almeida, Renata G; Sivanandan, Sudheesh T; de Simone, Carlos A; Brito, Lucas M; Cavalcanti, Bruno C; Pessoa, Claudia; Namboothiri, Irishi N N; da Silva Júnior, Eufrânio N

    2018-05-10

    Morita-Baylis-Hillman acetates and α-bromonitroalkenes have been employed in cascade reactions with lawsone and 2-aminonaphthoquinone for the one-pot synthesis of heterocycle fused quinonoid compounds. The reactions reported here utilized the 1,3-binucleophilic potential of hydroxy- and aminonaphthoquinones and the 1,2/1,3-bielectrophilic potential of bromonitroalkenes and Morita-Baylis-Hillman acetates for the synthesis of pyrrole and furan fused naphthoquinones. The synthesized compounds were evaluated against HCT-116 (human colon carcinoma cells), PC3 (human prostate cancer cells), HL-60 (human promyelocytic leukemia cells), SF295 (human glioblastoma cells) and NCI-H460 (human lung cancer cells) and exhibited antitumor activity with IC 50 values as low as < 2 μM. Selected compounds were also evaluated against OVCAR-8 (ovary), MX-1 (breast) and JURKAT (leukemia) cell lines. The cytotoxic potential of the quinones evaluated was also assayed using non-tumor cells, exemplified by peripheral blood mononuclear (PBMC) and L929 cells. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Functional Consequences of Intracellular Proline Levels Manipulation Affecting PRODH/POX-Dependent Pro-Apoptotic Pathways in a Novel in Vitro Cell Culture Model.

    PubMed

    Zareba, Ilona; Surazynski, Arkadiusz; Chrusciel, Marcin; Miltyk, Wojciech; Doroszko, Milena; Rahman, Nafis; Palka, Jerzy

    2017-01-01

    The effect of impaired intracellular proline availability for proline dehydrogenase/proline oxidase (PRODH/POX)-dependent apoptosis was studied. We generated a constitutively knocked-down PRODH/POX MCF-7 breast cancer cell line (MCF-7shPRODH/POX) as a model to analyze the functional consequences of impaired intracellular proline levels. We have used inhibitor of proline utilization in collagen biosynthesis, 2-metoxyestradiol (MOE), inhibitor of prolidase that generate proline, rapamycin (Rap) and glycyl-proline (GlyPro), substrate for prolidase. Collagen and DNA biosynthesis were evaluated by radiometric assays. Cell viability was determined using Nucleo-Counter NC-3000. The activity of prolidase was determined by colorimetric assay. Expression of proteins was assessed by Western blot and immunofluorescence bioimaging. Concentration of proline was analyzed by liquid chromatography with mass spectrometry. PRODH/POX knockdown decreased DNA and collagen biosynthesis, whereas increased prolidase activity and intracellular proline level in MCF-7shPRODH/POX cells. All studied compounds decreased cell viability in MCF-7 and MCF-7shPRODH/POX cells. DNA biosynthesis was similarly inhibited by Rap and MOE in both cell lines, but GlyPro inhibited the process only in MCF-7shPRODH/POX and MOE+GlyPro only in MCF-7 cells. All the compounds inhibited collagen biosynthesis, increased prolidase activity and cytoplasmic proline level in MCF-7shPRODH/POX cells and contributed to the induction of pro-survival mode only in MCF-7shPRODH/POX cells. In contrast, all studied compounds upregulated expression of pro-apoptotic protein only in MCF-7 cells. PRODH/POX was confirmed as a driver of apoptosis and proved the eligibility of MCF-7shPRODH/POX cell line as a highly effective model to elucidate the different mechanisms underlying proline utilization or generation in PRODH/POX-dependent pro-apoptotic pathways. © 2017 The Author(s). Published by S. Karger AG, Basel.

  20. A novel flavonoid isolated from Sophora flavescens exhibited anti-angiogenesis activity, decreased VEGF expression and caused G0/G1 cell cycle arrest in vitro.

    PubMed

    Zhang, Xiu-Li; Cao, Mei-Ai; Pu, Li-Ping; Huang, Shuang-Sheng; Gao, Qing-Xiang; Yuan, Cheng-Shan; Wang, Chun-Ming

    2013-05-01

    Kushen, the dried root of Sophora flavescens Ait, is a traditional Chinese herbal medicine. Kushen alkaloids have been developed in China as anticancer drugs, and more potent antitumor activities have been identified in kushen flavonoids than in kushen alkaloids. In this study, the anti-angiogenic properties of (2S)-7,2',4'-triihydroxy-5-methoxy-8-dimethylallyl flavanone (Compound 1, a novel flavonoid isolated from Kushen), were examined using the human umbilical vein endothelial cell line (ECV304) in vitro. The results indicated that compound 1 shows anti-angiogenesis activity via inhibitory effects on cell proliferation, cell migration, cell adhesion, and tube formation. Further studies indicated that compound 1 blocks cell cycles in the G0/G1 phase without inducing apoptosis, and down regulates vascular endothelial growth factor (VEGF) expression. The free radical scavenging activity of compound 1 was found through 2',7'-dichlorofluorescin diacetate (DCFH-DA) incubation assay in cells. The anti-angiogenic properties of compound 1 and its antiproliferative effect on endothelial cells without causing apoptosis make it a good candidate for development as a agent against development of tumors.

  1. 19-nor vitamin-D analogs: a new class of potent inhibitors of proliferation and inducers of differentiation of human myeloid leukemia cell lines.

    PubMed

    Asou, H; Koike, M; Elstner, E; Cambell, M; Le, J; Uskokovic, M R; Kamada, N; Koeffler, H P

    1998-10-01

    We have studied the in vitro biological activities and mechanisms of action of 1,25-dihydroxyvitamin D3 (1,25D3) and nine potent 1,25D3 analogs on proliferation and differentiation of myeloid leukemia cell lines (HL-60, retinoic acid-resistant HL-60 [RA-res HL-60], NB4 and Kasumi-1). The common novel structural motiff for almost all the analogs included removal of C-19 (19-nor); each also had unsaturation of the side chain. All the compounds were potent; for example, the concentration of analogs producing a 50% clonal inhibition (ED50) ranged between 1 x 10(-9) to 4 x 10(-11) mol/L when using the HL-60 cell line. The most active compound [1, 25(OH)2-16,23E-diene-26-trifluoro-19-nor-cholecalciferol (Ro 25-9716)] had an ED50 of 4 x 10(-11) mol/L; in contrast, the 1,25D3 produced an ED50 of 10(-9) mol/L with the HL-60 target cells. Ro 25-9716 (10(-9) mol/L, 3 days) was a strong inducer of myeloid differentiation because it caused 92% of the HL-60 cells to express CD11b and 75% of these cells to reduce nitroblue tetrazolium (NBT). This compound (10(-8) mol/L, 4 days) also caused HL-60 cells to arrest in the G1 phase of the cell cycle (88% cells in G1 v 48% of the untreated control cells). The p27(kip-1), a cyclin-dependent kinase inhibitor which is important in blocking the cell cycle, was induced more quickly and potently by Ro 25-9716 (10(-7) mol/L, 0 to 5 days) than by 1,25D3, suggesting a possible mechanism by which these analogs inhibit proliferation of leukemic growth. The NB4 promyelocytic leukemia cells cultured with the Ro 25-9716 were also inhibited in their clonal proliferation (ED50, 5 x 10(-11) mol/L) and their expression of CD11b was enhanced (80% positive [10(-9) mol/L, 4 days] v 27% untreated NB4 cells). Moreover, the combination of Ro 25-9716 (10(-9) mol/L) and all-trans retinoic acid (ATRA, 10(-7) mol/L) induced 92% of the NB4 cells to reduce NBT, whereas only 26% of the cells became NBT positive after a similar exposure to the combination of 1,25D3 and ATRA. Surprisingly, Ro 25-9716 also inhibited the clonal growth of poorly differentiated leukemia cell lines (RA-res HL-60 [ED50, 4 x 10(-9) mol/L] and Kasumi-1 [ED50, 5 x 10(-10) mol/L]). For HL-60 cells, Ro 25-9716 markedly decreased the percent of the cells in S phase of the cell cycle and increased the expression of the cyclin-dependent kinase inhibitor, p27(kip-1). In summary, 19-nor vitamin D3 compounds strongly induced differentiation and inhibited clonal proliferation of various myeloid leukemia cell lines, suggesting a therapeutic niche for their use in myeloid leukemia.

  2. Chemical species of sulfur in prostate cancer cells studied by XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Czapla, Joanna; Kwiatek, Wojciech M.; Lekki, Janusz; Dulińska-Litewka, Joanna; Steininger, Ralph; Göttlicher, Jörg

    2013-12-01

    The role of sulfur in prostate cancer progression may be significant for understanding the process of carcinogenesis. This work, based on X-ray Absorption Near Edge Structure (XANES) spectroscopy, is focused on determination of sulfur chemical species occurring in prostate cancer cell lines. The experimental material consisted of four commercially available cell lines: three from metastasized prostate cancer (PC3, LNCaP, and DU145) and one, used as a control, from the non-tumourigenic peripheral zone of the prostate (PZ-HPV-7). The experiment was performed at the SUL-X beamline of the synchrotron radiation source ANKA, Karlsruhe (Germany). The K-edge XANES spectra of sulfur were analyzed by deconvolution in order to establish sulfur species that occur in prostate cancer cells and to find out whether there are any differences in their content between various cell lines. Experimental spectra were fitted in two ways: with two Gaussian peaks and one arctangent step function, and additionally by a Linear Combination Fit with spectra of reference compounds in order to obtain quantitative chemical information. All fitting procedures were performed with the Athena code (Ravel and Newville, 2005) and the results of deconvolution were used to determine the fraction of each sulfur form. The results of data analysis showed that cell lines from different metastasis had different ratio of reduced to oxidized sulfur species. The LCF analysis demonstrated that the highest content of GSH, one of the most important sulfur-bearing compounds in cells, was observed in DU145 cells. These findings may confirm the hypothesis of changes in redox balance in case of cancer initiation and progression.

  3. Safe and targeted anticancer therapy for ovarian cancer using a novel class of curcumin analogs

    PubMed Central

    2013-01-01

    A diagnosis of advanced ovarian cancer is the beginning of a long and arduous journey for a patient. Worldwide, approximately half of the individuals undergoing therapy for advanced cancer will succumb to the disease, or consequences of treatment. Well-known and widely-used chemotherapeutic agents such as cisplatin, paclitaxel, 5-fluorouracil, and doxorubicin are toxic to both cancer and non-cancerous cells, and have debilitating side effects Therefore, development of new targeted anticancer therapies that can selectively kill cancer cells while sparing the surrounding healthy tissues is essential to develop more effective therapies. We have developed a new class of synthetic curcumin analogs, diarylidenyl-piperidones (DAPs), which have higher anticancer activity and enhanced bio-absorption than curcumin. The DAP backbone structure exhibits cytotoxic (anticancer) activity, whereas the N-hydroxypyrroline (-NOH) moiety found on some variants functions as a cellular- or tissue-specific modulator (antioxidant) of cytotoxicity. The anticancer activity of the DAPs has been evaluated using a number of ovarian cancer cell lines, and the safety has been evaluated in a number of non-cancerous cell lines. Both variations of the DAP compounds showed similar levels of cell death in ovarian cancer cells, however the compounds with the -NOH modification were less toxic to non-cancerous cells. The selective cytotoxicity of the DAP–NOH compounds suggests that they will be useful as safe and effective anticancer agents. This article reviews some of the key findings of our work with the DAP compounds, and compares this to some of the targeted therapies currently used in ovarian cancer therapy. PMID:23663277

  4. Novel ciprofloxacin hybrids using biology oriented drug synthesis (BIODS) approach: Anticancer activity, effects on cell cycle profile, caspase-3 mediated apoptosis, topoisomerase II inhibition, and antibacterial activity.

    PubMed

    Kassab, Asmaa E; Gedawy, Ehab M

    2018-04-25

    As we are interested in synthetizing biologically active leads with dual anticancer and antibacterial activity, we adopted biology oriented drug synthesis (BIODS) strategy to synthesize a series of novel ciprofloxacin (CP) hybrids. The National Cancer Institute (USA) selected seventeen newly synthesized compounds for anticancer evaluation against 59 different human tumor cell lines. Five compounds 3e, 3f, 3h, 3o and 3p were further studied through determination of IC 50 values against the most sensitive cancer cell lines. In vitro results showed that the five compounds exhibited potent anticancer activity against test cell lines in nanomolar to micromolar range, with IC 50 values between 0.72 and 4.92 μM, which was 9 to1.5 folds more potent than doxorubicin. In this study, two promising potent anticancer CP hybrids, 3f and 3o, were identified. The anti-proliferative activity of these compounds appears to correlate well with their ability to inhibit Topo II (IC 50  = 0.58 and 0.86 μM). It is worth mentioning that compound 3f was 6 folds more potent than doxorubicin, 5 folds more potent than amsacrine and 1.5 folds more potent than etoposide. At the same time, compound 3o showed 4 folds more inhibitory activity against Topo II than doxorubicin, 3 folds more potent than amsacrine and almost equipotent activity to etoposide. Activation of damage response pathway of the DNA leads to cell cycle arrest at G2/M phase, accumulation of cells in pre-G1 phase and annexin-V and propidium iodide staining, indicating that cell death proceeds through an apoptotic mechanism. Moreover, compounds 3f and 3o showed potent pro-apoptotic effect through induction of the intrinsic mitochondrial pathway of apoptosis. This mechanistic pathway was confirmed by a significant increase in the level of active caspase-3 compared to control. This observation may indicate that both CP hybrids can chelate with zinc, a powerful inhibitor of procaspase-3 enzymatic activity, so procaspase-3 may process itself to the active form. The synthesized CP derivatives were tested for their in vitro antibacterial activity against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa strains. The results proved that all of the test compounds have shown good to excellent antibacterial activity, as compared to its parent molecule ciprofloxacin. Compounds 2, 3b, 3k, 3l, 3m, 3p, 5a, 5b, 5d and 5e exhibited equipotent or comparable activity to ciprofloxacin against the test strains. Compounds 3p and 5a were more potent than ciprofloxacin against Pseudomonas aeruginosa, a common organism causing infections in granulocytopenic cancer patients. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  5. Synthesis, Characterization, Anticancer and Antibacterial Activity of Some Novel Pyrano[2,3-d]pyrimidinone Carbonitrile Derivatives.

    PubMed

    Aremu, Oluwole S; Gopaul, Kaalin; Kadam, Pramod; Singh, Moganavelli; Mocktar, Chunderika; Singh, Parvesh; Koorbanally, Neil A

    2017-01-01

    Pyrimidines have widespread activity and have shown potent antibacterial and anticancer activity. To synthesise a range of pyrimidine diones and test them for their antibacterial and anticancer activity. The pyranopyrimidin-2,4-dione derivatives (1-7) were synthesized in a one-pot reaction by reacting malononitrile and barbituric acid with several aromatic aldehydes in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) in aqueous medium. The compounds were tested for their antibacterial activity using the broth microdilution method and for their cytotoxicity against three cell lines, HeLa (cervical cancer), Caco-2 (human colon adenocarcinoma) and HEK 293 (human embryonic kidney cells) using the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide) assay. Compounds 1-7 were successfully synthesized in yields of >90%. The 3,4-dihydroxyaryl (3) and the 2,5- dimethoxyaryl (7) derivatives were novel. Compounds 3, 5 (4'-methoxy derivative) and 6 (2',3'-dimethoxy derivative) showed antibacterial activity comparable to or better than the standard ampicillin. All the test compounds 1-7 showed good anticancer activity. The IC50 values ranged from 3.46 to 37.13 μM (HeLa); 136.78 to 297.05 μM (Caco-2) and 137.84 to 333.81 μM (HEK293). The best activity was seen in the HeLa cell line when compared to the standard 5FU (5-Fluorouracil IC50 of 41.85 μM), with 1, 2, 5 and 7 having IC50 values of 10.64, 3.46, 4.36 and 4.44 μM respectively. Additionally, two representative compounds (1 and 7) found to be potent against the two cell lines (HeLa and HEK 293) were docked into the binding site of human kinesin Eg5 with the aim of predicting their binding propensities and to establish their mechanism of action. The Lipinski parameters of these compounds were also computed and analysed for their drug-likeness. Compound 6 is an excellent candidate for a broad spectrum antibiotic with MBCs of 45.6-365.2 μM, while both 3 and 6 have the potential to be developed into an antibiotic against MRSA, with MBCs of 183-199 μM. Since all synthesized compounds showed IC50 values of 10 μM or less especially against the HeLa cells, they can be considered good lead compounds for anticancer agents. Additionally, the docking simulations suggested a good binding affinity of the compounds with Eg5 and indicated their anti-cancer action, at least partially, through its inhibition. The predicted Lipinski descriptors also indicated the potential of these compounds as an orally active drug. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Molecular association of 2-(n-alkylamino)-1,4-naphthoquinone derivatives: Electrochemical, DFT studies and antiproliferative activity against leukemia cell lines

    NASA Astrophysics Data System (ADS)

    Patil, Rishikesh; Bhand, Sujit; Konkimalla, V. Badireenath; Banerjee, Priyabrata; Ugale, Bharat; Chadar, Dattatray; Saha, Sourav Kr.; Praharaj, Prakash Priyadarshi; Nagaraja, C. M.; Chakrovarty, Debamitra; Salunke-Gawali, Sunita

    2016-12-01

    Molecular structures and their molecular association of 2-(n-alkylamino)-1,4-naphthoquinone, viz., LH-3; propyl, LH-4; butyl and LH-8; octyl derivatives were studied by single crystal X-ray diffraction studies. Synthesis and characterization of 2-octylamino-1,4-naphthoquinone; LH-8 was discussed. The molecule of LH-3 crystallizes in orthorhombic space group P21/c, while the LH-4 and LH-8 molecule crystallizes in triclinic space group P-1. LH-3, LH-4 and LH-8 showed intermolecular N-H⋯O and C-H⋯O interactions, LH-3 showed unique C(3)-H(3)⋯O(1) interaction. Interchain π-π stacking, slipped π-π stacking and C⋯O close contacts was respectively observed in LH-3, LH-4 and LH-8. Electrochemical studies were performed on first eight members of homologous series of 2-(n-alkylamino)-1,4-naphthoquinone (LH-1 to LH-8) by cyclic voltammetry. Naphthoquinone to naphthosemiquinone reversible redox couple was observed in all compounds ∼ E1/2 = -0.657 ± 0.05 V. HOMO-LUMO band gap was determined for the neutral form as well as the monoanionic radical form viz. naphthosemiquinone form of selected derivatives by DFT studies. It has been observed that the electron density is delocalized in the naphthoquinone ring in both neutral as well as one electron reduced form of compounds. Antiproliferative activity of LH-1 to LH-8 was evaluated against two cancer cell lines, THP1(acute monocytic leukemia) and K562(human immortalized myelogenous leukemia cell line) cells. It was observed that, in THP1 cells, compounds LH-2 and LH-3 are very active while LH-1, LH-4 and LH-6 were moderately active and LH-5, LH-7 and LH-8 were totally inactive. Contrastingly, in K562 cells all of the compounds were moderately active.

  7. Effect of Berry Extracts and Bioactive Compounds on Fulvestrant (ICI 182,780) Sensitive and Resistant Cell Lines.

    PubMed

    Woode, Denzel R; Aiyer, Harini S; Sie, Nicole; Zwart, Alan L; Li, Liya; Seeram, Navindra P; Clarke, Robert

    2012-01-01

    Fulvestrant (ICI 182,780; ICI) is approved for the treatment of advanced metastatic breast cancer that is unresponsive to other endocrine therapies. Berries are frequently consumed for their antioxidant, anti-inflammatory, and anticancer potential. In this study, we tested the efficacy of two berry extracts (Jamun-EJAE and red raspberry-RRE) and their bioactive compounds (Delphinidin-Del and Ellagic acid-EA) to inhibit cell proliferation with or without a sublethal dose of ICI in various breast cancer cell lines. ICI-sensitive (LCC1, ZR75-1, and BT474) and -resistant (LCC9, ZR75-1R) cells were subjected to treatment with berry extracts alone (0.1-100 μg/mL) or with a sub-lethal dose of ICI ( 1). EA, in doses tested, did not have any significant effects on any of the cell lines. Finally, we found that the extracts were more effective at lower, physiologically relevant concentrations than at higher experimental doses.

  8. Effect of Berry Extracts and Bioactive Compounds on Fulvestrant (ICI 182,780) Sensitive and Resistant Cell Lines

    PubMed Central

    Woode, Denzel R.; Aiyer, Harini S.; Sie, Nicole; Zwart, Alan L.; Li, Liya; Seeram, Navindra P.; Clarke, Robert

    2012-01-01

    Fulvestrant (ICI 182,780; ICI) is approved for the treatment of advanced metastatic breast cancer that is unresponsive to other endocrine therapies. Berries are frequently consumed for their antioxidant, anti-inflammatory, and anticancer potential. In this study, we tested the efficacy of two berry extracts (Jamun-EJAE and red raspberry-RRE) and their bioactive compounds (Delphinidin-Del and Ellagic acid-EA) to inhibit cell proliferation with or without a sublethal dose of ICI in various breast cancer cell lines. ICI-sensitive (LCC1, ZR75-1, and BT474) and -resistant (LCC9, ZR75-1R) cells were subjected to treatment with berry extracts alone (0.1–100 μg/mL) or with a sub-lethal dose of ICI ( 1). EA, in doses tested, did not have any significant effects on any of the cell lines. Finally, we found that the extracts were more effective at lower, physiologically relevant concentrations than at higher experimental doses. PMID:23346406

  9. The isolation and characterization of a telomerase immortalized goat trophoblast cell line.

    PubMed

    Dong, F; Huang, Y; Li, W; Zhao, X; Zhang, W; Du, Q; Zhang, H; Song, X; Tong, D

    2013-12-01

    Trophoblast cells play vital roles in the processes of embryonic implantation and placentation. Many toxicological compounds can induce the malfunction of trophoblast cells, resulting in implantation failure or early embryonic loss. The finite lifespan of primary trophoblast cells limits investigation of the long-term effects of some toxicological compounds on trophoblast cells in vitro. In this study, primary goat trophoblast cells were purified by density gradient centrifugation and specific immuno-affinity purification. Then, the purified cells were immortalized through transfection of a plasmid containing the human telomerase reverse transcriptase (hTERT) gene. hTERT-transfected goat trophoblast cells (hTERT-GTCs) could steadily express hTERT gene and exhibit higher telomerase activity, and persistently proliferate without any signs of senescence up to 50 passages. The immortalized goat trophoblast cells still possessed the basic and key properties of normal primary goat trophoblast cells to express the specific intracellular marker cytokeratin 7 (CK-7) and secrete chorionic gonadotrophin β-subunit (CG-β) and placental lactogen (PL). Further studies showed that the immortalized goat trophoblast cells expressed vimentin and non-classical MHC class I antigen and exhibited invasive phenotype, suggesting that the immortalized goat trophoblasts resembled human extravillous trophoblasts. In addition, this cell line did not show neoplastic transformation either in vivo or in vitro. We concluded the immortalized goat trophoblast cells by hTERT transfection retained the basic and key characteristics of primary trophoblast cells and may provide a useful model to study the effects of some toxicological compounds on trophoblast cells. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Cytotoxic Effect on Human Myeloma Cells and Leukemic Cells by the Agaricus blazei Murill Based Mushroom Extract, Andosan™

    PubMed Central

    Holien, Toril; Mirlashari, Mohammad Reza; Misund, Kristine

    2017-01-01

    Agaricus blazei Murill is an edible mushroom of the Basidiomycetes family, which has been found to contain a number of compounds with antitumor properties, such as proteoglycans and ergosterol. In the present investigation, we show that the commercial mushroom product Andosan, which contains 82.4% Agaricus blazei Murill, together with medicinal mushrooms Hericium erinaceus (14.7%) and Grifola frondosa (2.9%), has a cytotoxic effect on primary myeloma cells, other myeloma cell lines, and leukemia cell lines in vitro. Although the exact content and hence the mechanisms of action of the Andosan extract are unknown, we have found in this investigation indications of cell cycle arrest when myeloma cell lines are cultivated with Andosan. This may be one of the possible explanations for the cytotoxic effects of Andosan. PMID:29238712

  11. Cytotoxic Effect on Human Myeloma Cells and Leukemic Cells by the Agaricus blazei Murill Based Mushroom Extract, Andosan™.

    PubMed

    Tangen, Jon-Magnus; Holien, Toril; Mirlashari, Mohammad Reza; Misund, Kristine; Hetland, Geir

    2017-01-01

    Agaricus blazei Murill is an edible mushroom of the Basidiomycetes family, which has been found to contain a number of compounds with antitumor properties, such as proteoglycans and ergosterol. In the present investigation, we show that the commercial mushroom product Andosan, which contains 82.4% Agaricus blazei Murill, together with medicinal mushrooms Hericium erinaceus (14.7%) and Grifola frondosa (2.9%), has a cytotoxic effect on primary myeloma cells, other myeloma cell lines, and leukemia cell lines in vitro. Although the exact content and hence the mechanisms of action of the Andosan extract are unknown, we have found in this investigation indications of cell cycle arrest when myeloma cell lines are cultivated with Andosan. This may be one of the possible explanations for the cytotoxic effects of Andosan.

  12. Anti-mitotic potential of 7-diethylamino-3(2 Prime -benzoxazolyl)-coumarin in 5-fluorouracil-resistant human gastric cancer cell line SNU620/5-FU

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Nam Hyun; Kim, Su-Nam; Oh, Joa Sub

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer DBC exerts antiproliferative potential against 5FU-resistant human gastric cancer cells. Black-Right-Pointing-Pointer This effect is mediated by destabilization of microtubules and subsequent mitotic arrest. Black-Right-Pointing-Pointer DBC enhances apoptosis via caspase activation and downregulation of antiapoptotic genes. -- Abstract: In this study, we investigate an anti-mitotic potential of the novel synthetic coumarin-based compound, 7-diethylamino-3(2 Prime -benzoxazolyl)-coumarin, in 5-fluorouracil-resistant human gastric cancer cell line SNU-620-5FU and its parental cell SNU-620. It exerts the anti-proliferative effects with similar potencies against both cancer cells, which is mediated by destabilization of microtubules and subsequent mitotic arrest. Furthermore, this compound enhances caspase-dependent apoptotic cell deathmore » via decreased expression of anti-apoptotic genes. Taken together, our data strongly support anti-mitotic potential of 7-diethylamino-3(2 Prime -benzoxazolyl)-coumarin against drug-resistant cancer cells which will prompt us to further develop as a novel microtubule inhibitor for drug-resistant cancer chemotherapy.« less

  13. Cytotoxic withanolides from Physalis angulata.

    PubMed

    Gao, Caiyun; Li, Ruijun; Zhou, Miaomiao; Yang, Yanwei; Kong, Lingyi; Luo, Jun

    2018-03-01

    A new withanolide (1), physagulide P, together with five known withanolides (2-6), was isolated from the aerial parts of Physalis angulata L. The structure of new compound was elucidated on the basis of extensive spectroscopic techniques, including 1D, 2D NMR and HRESIMS. The activity screening indicated that compound 1 showed significant cytotoxicities against the human osteosarcoma cell line MG-63, HepG-2 hepatoma cells and breast cancer cells MDA-MB-231 with the IC 50 value of 3.50, 4.22 and 15.74 μM.

  14. A comparison of the effects of tributyltin chloride and triphenyltin chloride on cell proliferation, proapoptotic p53, Bax, and antiapoptotic Bcl-2 protein levels in human breast cancer MCF-7 cell line.

    PubMed

    Fickova, Maria; Macho, Ladislav; Brtko, Julius

    2015-06-01

    In recent years it was disclosed, that numerous organotin(IV) derivatives have remarkable cytotoxicity against several types of cancer cells. The property to inhibit cell growth makes these compounds promising for antitumor therapy, as the clinical effectiveness of cisplatin is limited by drug resistance and significant side effects. Tributyltin and triphenyltin are known as endocrine disruptors. Moreover, the compounds exert their toxicity in mammals predominantly through nuclear receptor signaling. Here we present the effects of tributyltin chloride (TBT-Cl) and triphenyltin chloride (TPT-Cl) on cell proliferation, expression of proapoptotic p53, Bax, and antiapoptotic Bcl-2 proteins in human breast cancer MCF-7 cell line. Dose and time dependent (24, 48 and 72 h) cell expositions have demonstrated TBT-Cl as more effective in inhibiting MCF-7 cell proliferation than TPT-Cl. Short time treatment with TBT-Cl displayed marked stimulation of p53 protein expression when compared to TPT-Cl. Both organotin compounds displayed similar mild enhancement of Bax protein expression. The 24h exposition of TPT-Cl induced substantial diminution of Bcl-2 protein expression in comparison with both, untreated cells and TBT-Cl treated cells. Our observations indicate that TBT-Cl and TPT-Cl have different antiproliferative potency and distinct impact on expression of apoptosis marker proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Development, characterization and application of a new epithelial cell line from caudal fin of Pangasianodon hypophthalmus (Sauvage 1878).

    PubMed

    Soni, Pankaj; Pradhan, Pravata K; Swaminathan, T R; Sood, Neeraj

    2018-06-01

    A cell line, designated as PHF, has been established from caudal fin of Pangasianodon hypophthalmus. The cell line was developed using explant method and PHF cells have been subcultured for more than 72 passages over a period of 14 months. The cells were able to grow at temperatures between 24 and 32° C, with an optimum temperature of 28° C. The growth rate of PHF cells was directly proportional to FBS concentration, with optimum growth observed at 20% FBS concentration. On the basis of immunophenotyping assay, PHF cells were confirmed to be of epithelial type. Karyotyping of PHF cells revealed diploid number of chromosomes (2n = 60) at 39th and 65th passage, which indicated that the developed cell line is chromosomally stable. The origin of the cell line was confirmed by amplification and sequencing of cytochrome oxidase c subunit I and 16S rRNA genes. The cell line was tested for Mycoplasma contamination and found to be negative. The cells were successfully transfected with GFP reporter gene suggesting that the developed cell line could be utilized for gene expression studies in future. The cell line could be successfully employed for evaluating the cytotoxicity of heavy metals, namely mercuric chloride and sodium arsenite suggesting that PHF cell line can be potential surrogate for whole fish for studying the cytotoxicity of water soluble compounds. The result of virus susceptibility to tilapia lake virus (TiLV) revealed that PHF cells were refractory to TiLV virus. The newly established cell line would be a useful tool for investigating disease outbreaks particularly of viral etiology, transgenic as well as cytotoxicity studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Myelomonocytic THP-1 cells for in vitro testing of immunomodulatory properties of nanoparticles.

    PubMed

    Schroecksnadel, Sebastian; Jenny, Marcel; Fuchs, Dietmar

    2011-02-01

    The use of nanoparticles for new therapeutic and diagnostics options represents a new risk for individuals exposed to such compounds. The myelomonocytic cell line THP-1 could be a useful alternative to human peripheral blood mononuclear cells (PBMC) to test for effects of drugs and compounds. Stimulation degree of cells can be monitored by measurement of neopterin and/or the kynurenine to tryptophan ratio. The method is robust and reproducible in the range of 0.1-1.0 microg/ml of LPS. However, compared to the PBMC assay it will not reveal any effect on the T-cell interaction.

  17. Design, synthesis, and biological evaluation of (2E)-(2-oxo-1, 2-dihydro-3H-indol-3-ylidene)acetate derivatives as anti-proliferative agents through ROS-induced cell apoptosis.

    PubMed

    Song, Zhuang; Chen, Cai-Ping; Liu, Jun; Wen, Xiaoan; Sun, Hongbin; Yuan, Haoliang

    2016-11-29

    A novel class of (2E)-(2-oxo-1, 2-dihydro-3H-indol-3-ylidene)acetate derivatives were designed and synthesized as potent anti-proliferative agents. Most of these compounds showed potent anti-proliferative activity against some tumor cell lines, including SK-BR-3, MDA-MB-231, HCT-116, SW480, Ovcar-3, HL-60, Saos-2 and HepG2. Compounds 8c and 11h were identified as the most potent ones, while HL-60, HCT116 and MDA-MB-231 were the most sensitive cell lines. Mechanistic study revealed that compound 8c enhanced reactive oxygen species level by inhibiting TrxR and then induced apoptosis by activating apoptosis proteins, bax and cleaved-caspase 3 in HCT116 cells. Preliminary SAR analysis indicated that modifications of the double bond and ester group made great effects on the anti-proliferative activity. Our findings suggested that it was worth further studies on the antitumor potency of (2E)-(2-oxo-1, 2-dihydro-3H-indol-3-ylidene)acetates. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  18. Diaryltriazine non-nucleoside reverse transcriptase inhibitors are potent candidates for pre-exposure prophylaxis in the prevention of sexual HIV transmission.

    PubMed

    Ariën, Kevin K; Venkatraj, Muthusamy; Michiels, Johan; Joossens, Jurgen; Vereecken, Katleen; Van der Veken, Pieter; Abdellati, Saïd; Cuylaerts, Vicky; Crucitti, Tania; Heyndrickx, Leo; Heeres, Jan; Augustyns, Koen; Lewi, Paul J; Vanham, Guido

    2013-09-01

    Pre-exposure prophylaxis and topical microbicides are important strategies in the prevention of sexual HIV transmission, especially since partial protection has been shown in proof-of-concept studies. In search of new candidate drugs with an improved toxicity profile and with activity against common non-nucleoside reverse transcriptase inhibitor (NNRTI)-resistant HIV, we have synthesized and investigated a library of 60 new diaryltriazine analogues. From this library, 15 compounds were evaluated in depth using a broad armamentarium of in vitro assays that are part of a preclinical testing algorithm for microbicide development. Antiviral activity was assessed in a cell line, and in primary human cells, against both subtype B and subtype C HIV-1 and against viruses resistant to therapeutic NNRTIs and the candidate NNRTI microbicide dapivirine. Toxicity towards primary blood-derived cells, cell lines originating from the female reproductive tract and female genital microflora was also studied. We identified several compounds with highly potent antiviral activity and toxicity profiles that are superior to that of dapivirine. In particular, compound UAMC01398 is an interesting new candidate that warrants further investigation because of its superior toxicity profile and potent activity against dapivirine-resistant viruses.

  19. Synthesis and evaluation of curcumin-related compounds for anticancer activity.

    PubMed

    Wei, Xingchuan; Du, Zhi-Yun; Zheng, Xi; Cui, Xiao-Xing; Conney, Allan H; Zhang, Kun

    2012-07-01

    Sixty-one curcumin-related compounds were synthesized and evaluated for their anticancer activity toward cultured prostate cancer PC-3 cells, pancreas cancer Panc-1 cells and colon cancer HT-29 cells. Inhibitory effects of these compounds on the growth of PC-3, Panc-1 and HT-29 cells were determined by the MTT assay. Compounds E10, F10, FN1 and FN2 exhibited exceptionally potent inhibitory effects on the growth of cultured PC-3, Panc-1 and HT-29 cells. The IC(50) for these compounds was lower than 1 μM in all three cell lines. E10 was 72-, 46- and 117-fold more active than curcumin for inhibiting the growth of PC-3, Panc-1 and HT-29 cells, respectively. F10 was 69-, 34- and 72-fold more active than curcumin for inhibiting the growth of PC-3, Panc-1 and HT-29 cells, respectively. FN1 and FN2 had about the same inhibitory effect as E10 and F10 toward Panc-1 cells but were less active than E10 and F10 toward PC-3 and HT-29 cells. The active compounds were potent stimulators of apoptosis. The present study indicates that E10, F10, FN1 and FN2 may have useful anticancer activity. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Liquid Chromatography Mass Spectrometry Analysis and Cytotoxicity of Asparagus adscendens Roots against Human Cancer Cell Lines.

    PubMed

    Khan, Kashif Maqbool; Nahar, Lutfun; Mannan, Abdul; Arfan, Muhammad; Khan, Ghazanfar Ali; Al-Groshi, Afaf; Evans, Andrew; Dempster, Nicola M; Ismail, Fyaz M D; Sarker, Satyajit D

    2018-01-01

    Asparagus adscendens Roxb. (Asparagaceae), is native to the Himalayas. This plant has been used in the prevention and effective treatment of various forms of cancers. This paper reports, for the first time, on the cytotoxicity of the methanol (MeOH) extract of the roots of A. adscendens and its solid-phase extraction (SPE) fractions against four human carcinoma cell lines and LC-ESI-QTOF-MS analysis of the SPE fractions. Finely powdered roots of A. adscendens were macerated in methanol and extracted through SPE using gradient solvent system (water: methanol) proceeded for analysis on LC-ESI-QTOF-MS and cytotoxicity against four human carcinoma cell lines: breast (MCF7), liver (HEPG2), lung (A549), and urinary bladder (EJ138), using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay. The MeOH extract and four SPE fractions exhibited cytotoxicity against all cell lines with the IC 50 values ranging from 6 to 79 μg/mL. As observed in other Asparagus species, the presence of saponins and sapogenins in the SPE fractions was evident in the liquid chromatography-mass spectrometry data. It is reasonable to assume that the cytotoxicity of the MeOH extract of the roots of A. adscendens and its SPE fractions, at least partly, due to the presence of saponins and their aglycones. This suggests that A. adscendens could be exploited as a potential source of cytotoxic compounds with putative anticancer potential. The MeOH extract and all solid-phase extraction (SPE) fractions exhibited various levels of cytotoxicity against all cell lines with the IC 50 values ranging from 6 to 79 μg/mLThe presence of saponins and sapogenins in the SPE fractions was evident in the Liquid chromatography-mass spectrometry dataDue to the presence of saponins and their aglycones, suggest that A. adscendens could be exploited as a potential source of cytotoxic compounds with putative anticancer potential. Abbreviation used: SPE: Solid-phase extraction, MCF7: Breast cancer cell line, HEPG2: Liver cancer cell line, A549: Lung liver cancer cell line, EJ138: Urinary bladder cancer cell line, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide, LC-MS: Liquid chromatography-mass spectrometry.

  1. Synthesis and SAR studies of marine natural products ma'edamines A, B and their analogues.

    PubMed

    Saha, Sanjay; Reddy, Ch Venkata Ramana; Xu, Shili; Sankar, Saranya; Neamati, Nouri; Patro, Balaram

    2013-09-15

    The synthesis of several analogues of ma'edamines A and B are reported. The synthesized compounds were tested on hormone receptor positive and HER2 positive breast cancer cell lines, by MTT assay. MED-114, 115, 117, 119, 120, 124, 128 and 131 were found to be equally active as Lapatinib on HER2 +ve cell line SKBR3. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Oxaliplatin Analogues with Carboxy Derivatives of Boldine with Enhanced Antioxidant Activity

    PubMed Central

    Mellado, Marco; Jara, Carlos; Astudillo, David; Villena, Joan; Reveco, Patricio G.; Thomet, Franz A.

    2015-01-01

    A new oxaliplatin analog [Pt(dach)(L5)] (1) was synthesized and characterized as a continuation of a study of the previously reported [Pt(dach)(L6)] (2), where dach = (1R,2R)-diaminocyclohexane, L5 = 3-carboxyboldine, and L6 = 3-carboxypredicentrine. Compounds 1 and 2 exhibited a substantially enhanced antioxidant activity compared to oxaliplatin (130 and 30 times for 1 and 13 and 4 times for 2 using the DPPH and FRAP assays, resp.). In addition, 1 and 2 exhibited cytotoxic activity in the same range as oxaliplatin toward the two human tumor cell lines (MCF-7 and HT-29) studied and two to four times lower activity in the human colon nontumor cell line (CCD-841). Preadministration of L5 or L6 to the colon tumor (HT-29) and the colon nontumor (CCD-841) cell lines prior to oxaliplatin addition increased the viability of the nontumor cell line to a greater extent than that of the tumor cell line. PMID:25814916

  3. Novel Anthra[1,2-c][1,2,5]Thiadiazole-6,11-Diones as Promising Anticancer Lead Compounds: Biological Evaluation, Characterization & Molecular Targets Determination.

    PubMed

    Ali, Ahmed Atef Ahmed; Lee, Yu-Ru; Chen, Tsung-Chih; Chen, Chun-Liang; Lee, Chia-Chung; Shiau, Chia-Yang; Chiang, Chiao-Hsi; Huang, Hsu-Shan

    2016-01-01

    The novel compounds NSC745885 and NSC757963 developed at our laboratory were tested against a panel of 60 cancer cell lines at the National Cancer Institute, USA, and a panel of 39 cancer cell lines at the Japanese Foundation of Cancer Research. Both compounds demonstrated selective unique multi-log differential patterns of activity, with GI50 values in the sub-micro molar range against cancer cells rather than normal cardiac cells. NSC757963 showed high selectivity towards the leukemia subpanel. Activities of both compounds strongly correlated to expression of NFKB1 and CSNK2B genes, implying that they may inhibit the NF-κB pathway. Immunocytochemical microscopy of OVCAR-3 cells showed clear cytosolic accumulation of the NF-κB p65 subunit following treatment. Western blotting showed dose dependent inhibition of the nuclear expression of the NF-κB p65 subunit with subsequent accumulation in the cytosol following treatment. Docking experiments showed binding of both compounds to the NF-κB activator IKKβ subunit preventing its translocation to the nucleus. Collectively, these results confirm the ability of our compounds to inhibit the constitutively active NF-κB pathway of OVCAR-3 cells. Furthermore, COMPARE analysis indicated that the activity of NSC757963 is similar to the antituberculosis agent rifamycin SV, this was confirmed by testing the antimycobacterial activity of NSC757963 against Mycobacterium tuberculosis, results revealed potent activity suitable for use in clinical practice. Molecular properties and Lipinski's parameters predicted acceptable bioavailability properties with no indication of mutagenicity, tumorigenicity, irritability and reproductive effects. Oral absorption experiments using the human Caco-2 model showed high intestinal absorption of NSC745885 by passive transport mechanism with no intestinal efflux or active transport mechanisms. The unique molecular characterization as well as the illustrated anticancer spectra of activity and bioavailability properties warrant further development of our compounds and present a foundation brick in the pre-clinical investigations to implement such compounds in clinical practice.

  4. Synthesis and evaluation of novel N-substituted-6-methoxynaphthalene-2-carboxamides as potential chemosensitizing agents for cancer.

    PubMed

    Lokhande, Tushar Narendra; Viswanathan, Chelakara Lakshmann; Juvekar, Aarti Shashikant

    2008-07-01

    A novel class of molecules with structure N-[3-(heteroaryl)propyl]-6-methoxynaphthalene-2-carboxamides 8-13 were synthesized by condensing 6-methoxy-2-naphthoyl chloride 1 with 3-(heteroaryl)propyl amines 2-7. Compounds 8-12 were evaluated in vitro, in P388 murine lymphocytic leukemia cell line (P388) using SRB assay for cytotoxicity and in adriamycin resistant P388 murine lymphocytic leukemia cell line (P388/ADR) using MTT assay for resistant reversal activity. Compounds 8-12 were non-toxic at lower dose of 20 microg/ml, and effectively reversed adriamycin resistance. However, at higher doses (40, 80 microg/ml) they showed significant cytotxicity and hence reversal potency was not determined at these concentrations.

  5. Synthesis of novel heterocyclic ring-fused 18β-glycyrrhetinic acid derivatives with antitumor and antimetastatic activity.

    PubMed

    Gao, Cheng; Dai, Fu-Jun; Cui, Hai-Wei; Peng, Shi-Hong; He, Yuan; Wang, Xue; Yi, Zheng-Fang; Qiu, Wen-Wei

    2014-08-01

    Glycyrrhetinic acid (GA) is one of the most important triterpenoic acids shows many pharmacological effects, especially antitumor activity. GA triggers apoptosis in various tumor cell lines. However, the antitumor activity of GA is weak, thus the synthesis of new synthetic analogs with enhanced potency is needed. By introducing various five-member fused heterocyclic rings at C-2 and C-3 positions, 18 novel GA derivatives were obtained. These compounds were evaluated for their inhibitory activity against the growth of eight different tumor cell lines using a SRB assay. The most active compound 37 showed IC50 between 5.19 and 11.72 μm, which was about 11-fold more potent than the lead compound GA. An apoptotic effect of GA and 37 was determined using flow cytometry and trypan blue exclusion assays. We also demonstrated here for the first time that GA and the synthetic derivatives exhibited inhibitory effect on migration of the tested tumor cells, especially 37 which was about 20-fold more potent than GA on antimetastatic activity. © 2014 John Wiley & Sons A/S.

  6. Flavonolignans and other constituents from Lepidium meyenii with activities in anti-inflammation and human cancer cell lines.

    PubMed

    Bai, Naisheng; He, Kan; Roller, Marc; Lai, Ching-Shu; Bai, Lu; Pan, Min-Hsiung

    2015-03-11

    From the roots of Lepidium meyenii Walpers (Brassicaceae) have been isolated and identified 2 flavonolignans, tricin 4'-O-[threo-β-guaiacyl-(7″-O-methyl)-glyceryl] ether (1) and tricin 4'-O-(erythro-β-guaiacyl-glyceryl) ether (2), along with 11 other known compounds, tricin (3), pinoresinol (4), 4-hydroxycinnamic acid (5), guanosine (6), glucotropaeolin (7), desulfoglucotropaeolin (8), 3-hydroxybenzylisothiocyanate (9), malic acid benzoate (10), 5-(hydroxymethyl)-2-furfural (11), d-phenylalanine (12), and vanillic acid 4-O-β-d-glucoside (13). Structures were elucidated on the basis of NMR and MS data. Some isolates and previously isolated lepidiline B (14) were tested for cytotoxicity in a small panel of human cancer cell lines (Hep G2, COLO 205, and HL-60) and for anti-inflammatory activities in LPS-treated RAW 264.7 macrophage. Among them, compounds 1 and 14 were modestly active for inhibiting nitrite production in macrophage. Compounds 1, 14, and 3 were demonstrated to be selectively active against HL-60 cells with IC50 values of 40.4, 52.0, and 52.1 μM, respectively.

  7. Jeffamine derivatized TentaGel beads and poly(dimethylsiloxane) microbead cassettes for ultrahigh-throughput in situ releasable solution-phase cell-based screening of one-bead-one-compound combinatorial small molecule libraries.

    PubMed

    Townsend, Jared B; Shaheen, Farzana; Liu, Ruiwu; Lam, Kit S

    2010-09-13

    A method to efficiently immobilize and partition large quantities of microbeads in an array format in microfabricated poly(dimethylsiloxane) (PDMS) cassette for ultrahigh-throughput in situ releasable solution-phase cell-based screening of one-bead-one-compound (OBOC) combinatorial libraries is described. Commercially available Jeffamine triamine T-403 (∼440 Da) was derivatized such that two of its amino groups were protected by Fmoc and the remaining amino group capped with succinic anhydride to generate a carboxyl group. This resulting trifunctional hydrophilic polymer was then sequentially coupled two times to the outer layer of topologically segregated bilayer TentaGel (TG) beads with solid phase peptide synthesis chemistry resulting in beads with increased loading capacity, hydrophilicity, and porosity at the outer layer. We have found that such bead configuration can facilitate ultrahigh-throughput in situ releasable solution-phase screening of OBOC libraries. An encoded releasable OBOC small molecule library was constructed on Jeffamine derivatized TG beads with library compounds tethered to the outer layer via a disulfide linker and coding tags in the interior of the beads. Compound-beads could be efficiently loaded (5-10 min) into a 5 cm diameter Petri dish containing a 10,000-well PDMS microbead cassette, such that over 90% of the microwells were each filled with only one compound-bead. Jurkat T-lymphoid cancer cells suspended in Matrigel were then layered over the microbead cassette to immobilize the compound-beads. After 24 h of incubation at 37 °C, dithiothreitol was added to trigger the release of library compounds. Forty-eight hours later, MTT reporter assay was used to identify regions of reduced cell viability surrounding each positive bead. From a total of about 20,000 beads screened, 3 positive beads were detected and physically isolated for decoding. A strong consensus motif was identified for these three positive compounds. These compounds were resynthesized and found to be cytotoxic (IC(50) 50-150 μM) against two T-lymphoma cell lines and less so against the MDA-MB 231 breast cancer cell line. This novel ultrahigh-throughput OBOC releasable method can potentially be adapted to many existing 96- or 384-well solution-phase cell-based or biochemical assays.

  8. Lignans from the root of Wikstroemia indica and their cytotoxic activity against PANC-1 human pancreatic cancer cells.

    PubMed

    Chang, Hang; Wang, Yuwei; Gao, Xue; Song, Zehai; Awale, Suresh; Han, Na; Liu, Zhihui; Yin, Jun

    2017-09-01

    Six new compounds, wikstronin A (1), wikstronin B (2), wikstresinol (3), acetylwikstresinol (4), bis-5',5'-(+)-matairesinol (5), bis-5,5'-(+)-matairesinol (6), together with 20 known compounds (7-26) were isolated from the CH 2 Cl 2 extract of roots of Wikstroemia indica. Structures of compounds 1-6 were determined by extensive NMR and CD spectroscopic analysis. In vitro preferential cytotoxicity of all the isolates was evaluated against a PANC-1 human pancreatic cell line. Compounds 8 and 12 displayed mild preferential cytotoxicity in the nutrient-deprived medium (NDM) and without causing toxicity in normal nutrient-rich conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Synthesis and anti-proliferative activity of fluoro-substituted chalcones.

    PubMed

    Burmaoglu, Serdar; Algul, Oztekin; Anıl, Derya Aktas; Gobek, Arzu; Duran, Gulay Gulbol; Ersan, Ronak Haj; Duran, Nizami

    2016-07-01

    A series of novel fluoro-substituted chalcone derivatives have been synthesized. All synthesized compounds were characterized by (1)H nuclear magnetic resonance (NMR), (13)C NMR, and elemental analysis. Their anti-proliferative activities were evaluated against five cancer cells lines, namely, A549, A498, HeLa, A375, and HepG2 using the MTT method. Most of the compounds showed moderate to high activity with IC50 values in the range of 0.029-0.729μM. Of all the synthesized compounds, 10 and 19 exhibited the most potent anti-proliferative activities against cancer cells, and 10 was identified as the most promising compound. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Characterization of Compounds with Tumor-Cell Proliferation Inhibition Activity from Mushroom (Phellinus baumii) Mycelia Produced by Solid-State Fermentation.

    PubMed

    Zhang, Henan; Shao, Qian; Wang, Wenhan; Zhang, Jingsong; Zhang, Zhong; Liu, Yanfang; Yang, Yan

    2017-04-27

    The inhibition of tumor-cell proliferationbyan organicsolvent extract from the solid-state fermentation of Phellinus baumii mycelia inoculated in rice medium was investigated in vitro. The active compounds inhibiting tumor-cell proliferation were characterized. Results revealed that all (petroleum ether, chloroform, ethyl acetate, and butanol) fractions inhibited tumor-cell proliferation in a dose-dependent fashion. The ethyl acetate extract had the highest inhibitory effecton tumor-cell proliferation, and the butanol fraction had the lowest. Six compounds were isolated and purified from the ethyl acetate extract of P. baumii mycelia by the tandem application of silica-gel column chromatography (SGCC), high-speed countercurrent chromatography (HSCCC), and preparative HPLC. These compounds were identified by NMR and electrospray ionization-mass spectrometry (ESI-MS) spectroscopic methods as ergosterol (RF1), ergosta-7,22-dien-3β-yl pentadecanoate (RF3), 3,4-dihydroxy benzaldehyde(RF6), inoscavinA (RF7), baicalein(RF10), and 24-ethylcholesta-5,22-dien-3β-ol (RF13). To further clarify the activity of these compounds, the cell-proliferation-inhibition tests of these compounds on various tumor cells were carried out and evaluatedin vitro. Results suggested that compounds RF6, RF7, and RF10 had potent inhibition effects on the proliferation of a series of tumor cell lines, including K562, L1210, SW620, HepG2, LNCaP, and MCF-7cells. These findings indicated that P. baumii mycelia produced by solid-state fermentation in rice canbe used to obtain active compounds with the ability to inhibittumor-cell proliferation.

  11. Eco-friendly synthesis, in vitro anti-proliferative evaluation, and 3D-QSAR analysis of a novel series of monocationic 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazole mesylates.

    PubMed

    Racané, Livio; Ptiček, Lucija; Sedić, Mirela; Grbčić, Petra; Kraljević Pavelić, Sandra; Bertoša, Branimir; Sović, Irena; Karminski-Zamola, Grace

    2018-04-17

    Herein, we describe the synthesis of twenty-one novel water-soluble monocationic 2-aryl/heteroaryl-substituted 6-(2-imidazolinyl)benzothiazole mesylates 3a-3u and present the results of their anti-proliferative assays. Efficient syntheses were achieved by three complementary simple two-step synthetic protocols based on the condensation reaction of aryl/heteroaryl carbaldehydes or carboxylic acid. We developed an eco-friendly synthetic protocol using glycerol as green solvent, particularly appropriate for the condensation of thermally and acid-sensitive heterocycles such as furan, benzofuran, pyrrole, and indole. Screening of anti-proliferative activity was performed on four human tumour cell lines in vitro including pancreatic cancer (CFPAC-1), metastatic colon cancer (SW620), hepatocellular carcinoma (HepG2), and cervical cancer (HeLa), as well as in normal human fibroblast cell lines. All tested compounds showed strong to moderate anti-proliferative activity on tested cell lines depending on the structure containing aryl/heteroaryl moiety coupled to 6-(2-imidazolinyl)benzothiazole moiety. The most potent cytostatic effects on all tested cell lines with [Formula: see text] values ranging from 0.1 to 3.70 [Formula: see text] were observed for benzothiazoles substituted with naphthalene-2-yl 3c, benzofuran-2-yl 3e, indole-3-yl 3j, indole-2-yl 3k, quinoline-2-yl 3s, and quinoline-3-yl 3t and derivatives substituted with phenyl 3a, naphthalene-1-yl 3b, benzothiazole-2-yl 3g, benzothiazole-6-yl 3h, N-methylindole-3-yl 3l, benzimidazole-2-yl 3n, benzimidazole-5(6)-yl 3o, and quinolone-4-yl 3u with [Formula: see text] values ranging from 1.1 to 29.1 [Formula: see text]. Based on obtained anti-proliferative activities, 3D-QSAR models for five cell lines were derived. Molecular volume, molecular surface, the sum of hydrophobic surface areas, molecular mass, and possibility of making dispersion forces were identified by QSAR analyses as molecular properties that are positively correlated with anti-proliferative activity, while compound's capability to accept H-bond was identified as a negatively correlated property. Comparison of molecular properties identified for different cell lines enabled assumptions about similarity of mode of action through which anti-proliferative activities against different cell lines are accomplished. Novel compounds that are predicted to have enhanced activities in comparison with herein presented ones were designed using 3D-QSAR analysis as guideline.

  12. Discovery of Potent Antiproliferative Agents Targeting EGFR Tyrosine Kinase Based on the Pyrido[3',2':4,5]thieno[3,2-d]pyrimidin-4-amine Scaffold.

    PubMed

    Aziz, Yasmine Mohamed Abdel; Said, Mohamed Mokhtar; El Shihawy, Hosam Ahmed; Tolba, Mai Fathy; Abouzid, Khaled Abouzid Mohamed

    2015-01-01

    A series of pyridothieno[3,2-d]pyrimidin-4-amines was designed and synthesized as congeners to the classical 4-anilinoquinazolines as ATP-competitive epidermal growth factor receptor (EGFR) inhibitors. Compound 5a exhibited the most potent and selective inhibitory activity against EGFR with an IC50 value of 36.7 nM. Moreover, compounds 4b and 5a showed remarkable cell growth inhibition against leukemia, central nervous system cancer, and non-small cell lung cancer cell lines that overexpress EGFR, with growth inhibition of 50% (GI50) values of around 10 nM in the full U.S. National Cancer Institute 60 cell panel assay. Cell cycle studies indicated that compounds 4b and 5a induced significant cell cycle arrest in the S-phase and G0/G1, respectively, in addition to boosting P27(kip) expression. Compound 5a did not alter the viability of placental trophoblasts, which reflects its safety for normal cells. The standard COMPARE analyses demonstrated considerable correlation levels between compounds 4b and 5a and erlotinib, with pyridinium chlorochromate (PCC) values of 0.707 and 0.727, respectively.

  13. A natural product-like JAK2/STAT3 inhibitor induces apoptosis of malignant melanoma cells

    PubMed Central

    Zhong, Hai-Jing; Dong, Zhen-Zhen; Vellaisamy, Kasipandi; Lu, Jin-Jian; Chen, Xiu-Ping; Chiu, Pauline; Kwong, Daniel W. J.; Han, Quan-Bin; Ma, Dik-Lung

    2017-01-01

    The JAK2/STAT3 signaling pathway plays a critical role in tumorigenesis, and has been suggested as a potential molecular target for anti-melanoma therapeutics. However, few JAK2 inhibitors were being tested for melanoma therapy. In this study, eight amentoflavone analogues were evaluated for their activity against human malignant melanoma cells. The most potent analogue, compound 1, inhibited the phosphorylation of JAK2 and STAT3 in human melanoma cells, but had no discernible effect on total JAK2 and STAT3 levels. A cellular thermal shift assay was performed to identify that JAK2 is engaged by 1 in cell lysates. Moreover, compound 1 showed higher antiproliferative activity against human melanoma A375 cells compared to a panel of cancer and normal cell lines. Compound 1 also activated caspase-3 and cleaved PARP, which are markers of apoptosis, and suppressed the anti-apoptotic Bcl-2 level. Finally, compound 1 induced apoptosis in 80% of treated melanoma cells. To our knowledge, compound 1 is the first amentoflavone-based JAK2 inhibitor to be investigated for use as an anti-melanoma agent. PMID:28570563

  14. Penicimenolides A-F, Resorcylic Acid Lactones from Penicillium sp., isolated from the Rhizosphere Soil of Panax notoginseng.

    PubMed

    An, Ya-Nan; Zhang, Xue; Zhang, Tian-Yuan; Zhang, Meng-Yue; Qian-Zhang; Deng, Xiao-Yu; Zhao, Feng; Zhu, Ling-Juan; Wang, Guan; Zhang, Jie; Zhang, Yi-Xuan; Liu, Bo; Yao, Xin-Sheng

    2016-06-08

    Five new 12-membered resorcylic acid lactone derivatives, penicimenolides A-E (1-5), one new ring-opened resorcylic acid lactone derivative penicimenolide F (6), and six known biogenetically related derivatives (7-12) were isolated from the culture broth of a strain of Penicillium sp. (NO. SYP-F-7919), a fungus obtained from the rhizosphere soil of Panax notoginseng collected from the Yunnan province of China. Their structures were elucidated by extensive NMR analyses, a modified Mosher's method, chemical derivatization and single crystal X-ray diffraction analysis. Compounds 2-4 exhibited potent cytotoxicity against the U937 and MCF-7 tumour cell lines and showed moderate cytotoxic activity against the SH-SY5Y and SW480 tumour cell lines. The substitution of an acetyloxy or 2-hydroxypropionyloxy group at C-7 significantly increased the cytotoxic activity of the resorcylic acid lactone derivatives. Subsequently, the possible mechanism of compound 2 against MCF-7 cells was preliminarily investigated by in silico analysis and experimental validation, indicating compound 2 may act as a potential MEK/ERK inhibitor. Moreover, proteomics analysis was performed to explore compound 2-regulated concrete mechanism underlying MEK/ERK pathway, which is still need further study in the future. In addition, compounds 2-4 and 7 exhibited a significant inhibitory effect on NO production induced by LPS.

  15. Cytotoxic and Antifungal Constituents Isolated from the Metabolites of Endophytic Fungus DO14 from Dendrobium officinale.

    PubMed

    Wu, Ling-Shang; Jia, Min; Chen, Ling; Zhu, Bo; Dong, Hong-Xiu; Si, Jin-Ping; Peng, Wei; Han, Ting

    2015-12-22

    Two novel cytotoxic and antifungal constituents, (4S,6S)-6-[(1S,2R)-1, 2-dihydroxybutyl]-4-hydroxy-4-methoxytetrahydro-2H-pyran-2-one (1), (6S,2E)-6-hydroxy-3-methoxy-5-oxodec-2-enoic acid (2), together with three known compounds, LL-P880γ (3), LL-P880α (4), and Ergosta-5,7,22-trien-3b-ol (5) were isolated from the metabolites of endophytic fungi from Dendrobium officinale. The chemical structures were determined based on spectroscopic methods. All the isolated compounds 1-5 were evaluated by cytotoxicity and antifungal effects. Our present results indicated that compounds 1-4 showed notable anti-fungal activities (minimal inhibitory concentration (MIC) ≤ 50 μg/mL) for all the tested pathogens including Candida albicans, Cryptococcus neoformans, Trichophyton rubrum, Aspergillus fumigatus. In addition, compounds 1-4 possessed notable cytotoxcities against human cancer cell lines of HL-60 cells with the IC50 values of below 100 μM. Besides, compounds 1, 2, 4 and 5 showed strong cytotoxities on the LOVO cell line with the IC50 values were lower than 100 μM. In conclusion, our study suggested that endophytic fungi of D. officinale are great potential resources to discover novel agents for preventing or treating pathogens and tumors.

  16. Release behavior and toxicity profiles towards A549 cell lines of ciprofloxacin from its layered zinc hydroxide intercalation compound

    PubMed Central

    2013-01-01

    Background Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Results Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Conclusions Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems. PMID:23849189

  17. Cytotoxic arylnaphthalene lignans from a Vietnamese acanthaceae, Justicia patentiflora.

    PubMed

    Susplugas, Sophie; Hung, Nguyen Van; Bignon, Jérôme; Thoison, Odile; Kruczynski, Anna; Sévenet, Thierry; Guéritte, Françoise

    2005-05-01

    One new norlignan (1) and five new lignans (2-6) were isolated from the leaves and stems of Justicia patentiflora by a bioassay-guided purification. Five known compounds, carinatone, diphyllin, justicidin A, taiwanin E, and tuberculatin, were also found in J. patentiflora. Most of the new compounds display significant activity in in vitro cytotoxic assays against KB, HCT116, and MCF-7 cancer cell lines and arrest the cell cycle in the G0/G1 phase.

  18. Different toxic effects of YTX in tumor K-562 and lymphoblastoid cell lines

    PubMed Central

    Fernández-Araujo, Andrea; Sánchez, Jon A.; Alfonso, Amparo; Vieytes, Mercedes R.; Botana, Luis M.

    2015-01-01

    Yessotoxin (YTX) modulates cellular phosphodiesterases (PDEs). In this regard, opposite effects had been described in the tumor model K-562 cell line and fresh human lymphocytes in terms of cell viability, cyclic adenosine 3',5'-cyclic monophosphate (cAMP) production and protein expression after YTX treatment. Studies in depth of the pathways activated by YTX in K-562 cell line, have demonstrated the activation of two different cell death types, apoptosis, and autophagy after 24 and 48 h of treatment, respectively. Furthermore, the key role of type 4A PDE (PDE4A) in both pathways activated by YTX was demonstrated. Therefore, taking into account the differences between cellular lines and fresh cells, a study of cell death pathways activated by YTX in a non-tumor cell line with mitotic activity, was performed. The cellular model used was the lymphoblastoid cell line that represents a non-tumor model with normal apoptotic and mitotic machinery. In this context, cell viability and cell proliferation, expression of proteins involved in cell death activated by YTX and mitochondrial mass, were studied after the incubation with the toxin. Opposite to the tumor model, no cell death activation was observed in lymphoblastoid cell line in the presence of YTX. In this sense, variations in apoptosis hallmarks were not detected in the lymphoblastoid cell line after YTX incubation, whereas this type I of programmed cell death was observed in K-562 cells. On the other hand, autophagy cell death was triggered in this cellular line, while other autophagic process is suggested in lymphoblastoid cells. These YTX effects are related to PDE4A in both cellular lines. In addition, while cell death is triggered in K-562 cells after YTX treatment, in lymphoblastoid cells the toxin stops cellular proliferation. These results point to YTX as a specific toxic compound of tumor cells, since in the non-tumor lymphoblastoid cell line, no cell death hallmarks are observed. PMID:26136685

  19. Synthesis of hetero annulated isoxazolo-, pyrido- and pyrimido carbazoles: Screened for in vitro antitumor activity and structure activity relationships, a novel 2-amino-4-(3'-bromo-4'-methoxyphenyl)-8-chloro-11H-pyrimido[4,5-a]carbazole as an antitumor agent.

    PubMed

    Murali, Karunanidhi; Sparkes, Hazel A; Rajendra Prasad, Karnam Jayarampillai

    2017-03-10

    Claisen-Schmidt condensation of 2,3,4,9-tetrahydro-1H-carbazol-1-one with 3-bromo-4-methoxy benzaldehyde afforded the 2-(3'-bromo-4'-methoxybenzylidene)-2,3,4,9-tetrahydro-1H-carbazol-1-one 3. Compound 3 was allowed to react with different organic reactants, hydroxylamine hydrochloride, malononitrile and guanidine nitrate through condensation cum cycloaddition reactions to afford a series of the respective novel hetero annulated carbazoles such as isoxazolo-, pyrido- and pyrimido carbazoles. The structures of the compounds were established by FT-IR, 1 H NMR, 13 C NMR, X-ray diffraction and elemental analysis. The compounds have been screened for in vitro anti-tumor activity by MTT assay and displayed enviable selective growth inhibition on MCF-7 cell line compared to A-549 cell line. Apoptotic morphological changes in MCF-7 and A-549 cells were visualized using fluorescent microscopic technique. The preliminary structure activity relationships were also carried out. Data pointed out that among pyrimido carbazole compounds, 2-amino-4-(3'-bromo-4'-methoxyphenyl)-8-chloro-11H-pyrimido [4,5-a]carbazole could be exploited as an excellent therapeutic drug against cancer cell proliferation. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Comparative study of the photodynamic effect in tumor and nontumor animal cell lines

    NASA Astrophysics Data System (ADS)

    Stoykova, Elena V.; Alexandrova, R.; Shurulinkov, Stanislav; Sabotinov, O.; Minchev, Georgi

    2004-09-01

    In this study we evaluate the cytotoxicity of two photosensitisers with absorption peaks in the green and red part of the spectrum on animal cell lines. The cytotoxicity assessment was performed for a tumor cell line LSCC-SF-Mc29, obtained from a transplantable chicken hepatoma induced by the myelocytomatosis virus Mc29, a tumor line LSR-SF-SR, obtained from a transplantable sarcoma in rat induced by Rous sarcoma virus strain Schmidt-Ruppin and for normal mouse and bovine cell lines. Up to now the effect of the photodynamic therapy on virus-induced cancers has not been clarified. The cells were treated with 5,10,15,20 - tetra (4-sulfophenyl) porphyrin with main absorption peak at 519 nm and a dye activated with a red light. The cells were seeded in 96-well plates at 2 x 104 cells/well. The cells were exposed to irradiation from a pulsed CuBr vapor laser at 510.6 nm and 578.2 nm and exposure rate 50 mW/cm2, from an Ar-ion laser at 514 nm and 1 mW/cm2 and to 655 nm-irradiation from a semiconductor laser at 10 mW/cm2. The biological activity of the tested compounds was measured by the neutral red uptake cytotoxicity test. The light dose-response curves and light exposures that ensure 50% drop in the treated cells viability in comparison with the cells grown in non-modified medium were obtained for each cell line. The cytotoxic effect of both photosensitisers is most distinguished for the tumor line LSCC-SF-Mc29. The 2-4 times higher viability of the normal cell lines in comparison with the tumor lines is established. The bovine cell lines are more vulnerable than the mouse lines.

Top