DOE Office of Scientific and Technical Information (OSTI.GOV)
Gestl, Erin E., E-mail: egestl@wcupa.edu; Anne Boettger, S., E-mail: aboettger@wcupa.edu
2012-06-29
Highlights: Black-Right-Pointing-Pointer Eight human colorectal cell lines were evaluated for p53 and mortalin localization. Black-Right-Pointing-Pointer Six cell lines displayed cytoplasmic sequestration of the tumor suppressor p53. Black-Right-Pointing-Pointer Direct interaction between mortalin and p53 was shown in five cell lines. Black-Right-Pointing-Pointer Cell lines positive for p53 sequestration yielded elevated p53 expression levels. Black-Right-Pointing-Pointer This study yields the first evidence of cytoplasmic sequestration p53 by mortalin. -- Abstract: While it is known that cytoplasmic retention of p53 occurs in many solid tumors, the mechanisms responsible for this retention have not been positively identified. Since heatshock proteins like mortalin have been associated withmore » p53 inactivation in other tumors, the current study sought to characterize this potential interaction in never before examined colorectal adenocarcinoma cell lines. Six cell lines, one with 3 different fractions, were examined to determine expression of p53 and mortalin and characterize their cellular localization. Most of these cell lines displayed punctate p53 and mortalin localization in the cell cytoplasm with the exception of HCT-8 and HCT116 379.2 cells, where p53 was not detected. Nuclear p53 was only observed in HCT-116 40-16, LS123, and HT-29 cell lines. Mortalin was only localized in the cytoplasm in all cell lines. Co-immunoprecipitation and immunohistochemistry revealed that p53 and mortalin were bound and co-localized in the cytoplasmic fraction of four cell lines, HCT-116 (40-16 and 386; parental and heterozygous fractions respectively of the same cell line), HT-29, LS123 and LoVo, implying that p53 nuclear function is limited in those cell lines by being restricted to the cytoplasm. Mortalin gene expression levels were higher than gene expression levels of p53 in all cell lines. Cell lines with cytoplasmic sequestration of p53, however, also displayed elevated p53 gene expression levels compared to cell lines without p53 sequestration. Our data reveal the characteristic cytoplasmic sequestration of p53 by the heat shock protein mortalin in human colorectal adenocarcinoma cell lines, as is the case for other cancers, such as glioblastomas and hepatocellular carcinomas.« less
Wells, James W; Evans, Christopher H; Scott, Milcah C; Rütgen, Barbara C; O'Brien, Timothy D; Modiano, Jaime F; Cvetkovic, Goran; Tepic, Slobodan
2013-01-01
Rapidly growing tumor cells require a nutrient-rich environment in order to thrive, therefore, restricting access to certain key amino acids, such as arginine, often results in the death of malignant cells, which frequently display defective cell cycle check-point control. Healthy cells, by contrast, become quiescent and remain viable under arginine restriction, displaying full recovery upon return to arginine-rich conditions. The use of arginase therapy to restrict available arginine for selectively targeting malignant cells is currently under investigation in human clinical trials. However, the suitability of this approach for veterinary uses is unexplored. As a prelude to in vivo studies in canine malignancies, we examined the in vitro effects of arginine-deprivation on canine lymphoid and osteosarcoma cell lines. Two lymphoid and 2 osteosarcoma cell lines were unable to recover following 6 days of arginine deprivation, but all remaining cell lines displayed full recovery upon return to arginine-rich culture conditions. These remaining cell lines all proved susceptible to cell death following the addition of arginase to the cultures. The lymphoid lines were particularly sensitive to arginase, becoming unrecoverable after just 3 days of treatment. Two of the osteosarcoma lines were also susceptible over this time-frame; however the other 3 lines required 6-8 days of arginase treatment to prevent recovery. In contrast, adult progenitor cells from the bone marrow of a healthy dog were able to recover fully following 9 days of culture in arginase. Over 3 days in culture, arginase was more effective than asparaginase in inducing the death of lymphoid lines. These results strongly suggest that short-term arginase treatment warrants further investigation as a therapy for lymphoid malignancies and osteosarcomas in dogs.
Immortalization of chicken preadipocytes by retroviral transduction of chicken TERT and TR
Wang, Wei; Zhang, Tianmu; Wu, Chunyan; Wang, Shanshan; Wang, Yuxiang; Wang, Ning
2017-01-01
The chicken is an important agricultural animal and model for developmental biology, immunology and virology. Excess fat accumulation continues to be a serious problem for the chicken industry. However, chicken adipogenesis and obesity have not been well investigated, because no chicken preadipocyte cell lines have been generated thus far. Here, we successfully generated two immortalized chicken preadipocyte cell lines through transduction of either chicken telomerase reverse transcriptase (chTERT) alone or in combination with chicken telomerase RNA (chTR). Both of these cell lines have survived >100 population doublings in vitro, display high telomerase activity and have no sign of replicative senescence. Similar to primary chicken preadipocytes, these two cell lines display a fibroblast-like morphology, retain the capacity to differentiate into adipocytes, and do not display any signs of malignant transformation. Isoenzyme analysis and PCR-based analysis confirmed that these two cell lines are of chicken origin and are free from inter-species contamination. To our knowledge, this is the first report demonstrating the generation of immortal chicken cells by introduction of chTERT and chTR. Our established chicken preadipocyte cell lines show great promise as an in vitro model for the investigation of chicken adipogenesis, lipid metabolism, and obesity and its related diseases, and our results also provide clues for immortalizing other avian cell types. PMID:28486516
2010-01-01
Blocking oncogenic signaling induced by the BRAFV600E mutation is a promising approach for melanoma treatment. We tested the anti-tumor effects of a specific inhibitor of Raf protein kinases, PLX4032/RG7204, in melanoma cell lines. PLX4032 decreased signaling through the MAPK pathway only in cell lines with the BRAFV600E mutation. Seven out of 10 BRAFV600E mutant cell lines displayed sensitivity based on cell viability assays and three were resistant at concentrations up to 10 μM. Among the sensitive cell lines, four were highly sensitive with IC50 values below 1 μM, and three were moderately sensitive with IC50 values between 1 and 10 μM. There was evidence of MAPK pathway inhibition and cell cycle arrest in both sensitive and resistant cell lines. Genomic analysis by sequencing, genotyping of close to 400 oncogeninc mutations by mass spectrometry, and SNP arrays demonstrated no major differences in BRAF locus amplification or in other oncogenic events between sensitive and resistant cell lines. However, metabolic tracer uptake studies demonstrated that sensitive cell lines had a more profound inhibition of FDG uptake upon exposure to PLX4032 than resistant cell lines. In conclusion, BRAFV600E mutant melanoma cell lines displayed a range of sensitivities to PLX4032 and metabolic imaging using PET probes can be used to assess sensitivity. PMID:20406486
Qu, Jiagui; Rizak, Joshua D; Fan, Yaodong; Guo, Xiaoxuan; Li, Jiejing; Huma, Tanzeel; Ma, Yuanye
2014-07-01
This paper outlines the establishment of a new and stable cell line, designated GBM-HSF, from a malignant glioblastoma multiforme (GBM) removed from a 65-year-old Chinese woman. This cell line has been grown for 1 year without disruption and has been passaged over 50 times. The cells were adherently cultured in RPMI-1640 media with 10% fetal bovine serum supplementation. Cells displayed spindle and polygonal morphology, and displayed multi-layered growth without evidence of contact inhibition. The cell line had a high growth rate with a doubling time of 51 h. The cells were able to grow without adhering to the culture plates, and 4.5% of the total cells formed colonies in soft agar. The cell line has also been found to form tumors in nude mice and to be of a highly invasive nature. The cells were also partially characterized with RT-PCR. The RT-PCR revealed that Nestin, β-tubulin III, Map2, Klf4, Oct4, Sox2, Nanog, and CD26 were positively transcribed, whereas GFAP, Rex1, and CD133 were negatively transcribed in this cell line. These results suggest that the GBM-HSF cell line will provide a good model to study the properties of cancer stem cells and metastasis. It will also facilitate more detailed molecular and cellular studies of GBM cell division and pathology.
Sternberg, Hal; Kidd, Jennifer; Murai, James T; Jiang, Jianjie; Rinon, Ariel; Erickson, Isaac E; Funk, Walter D; Wang, Qian; Chapman, Karen B; Vangsness, C Thomas; West, Michael D
2013-03-01
The transcriptomes of seven diverse clonal human embryonic progenitor cell lines with chondrogenic potential were compared with that of bone marrow-derived mesenchymal stem cells (MSCs). The cell lines 4D20.8, 7PEND24, 7SMOO32, E15, MEL2, SK11 and SM30 were compared with MSCs using immunohistochemical methods, gene expression microarrays and quantitative real-time PCR. In the undifferentiated progenitor state, each line displayed unique combinations of site-specific markers, including AJAP1, ALDH1A2, BMP5, BARX1, HAND2, HOXB2, LHX1, LHX8, PITX1, TBX15 and ZIC2, but none of the lines expressed the MSC marker CD74. The lines showed diverse responses when differentiated in the presence of combinations of TGF-β3, BMP2, 4, 6 and 7 and GDF5, with the lines 4D20.8, SK11, SM30 and MEL2 showing osteogenic markers in some differentiation conditions. The line 7PEND24 showed evidence of regenerating articular cartilage and, in some conditions, markers of tendon differentiation. The scalability of site-specific clonal human embryonic stem cell-derived embryonic progenitor cell lines may provide novel models for the study of differentiation and methods for preparing purified and identified cells types for use in therapy.
Bignone, Paola A; Krupa, Rachel A; West, Michael D; Larocca, David
2016-01-01
The ability of human pluripotent stem cells (hPS) to both self-renew and differentiate into virtually any cell type makes them a promising source of cells for cell-based regenerative therapies. However, stem cell identity, purity, and scalability remain formidable challenges that need to be overcome for translation of pluripotent stem cell research into clinical applications. Directed differentiation from hPS cells is inefficient and residual contamination with pluripotent cells that have the potential to form tumors remains problematic. The derivation of scalable (self-renewing) embryonic progenitor stem cell lines offers a solution because they are well defined and clonally pure. Clonally pure progenitor stem cell lines also provide a means for identifying cell surface targeting reagents that are useful for identification, tracking, and repeated derivation of the corresponding progenitor stem cell types from additional hPS cell sources. Such stem cell targeting reagents can then be applied to the manufacture of genetically diverse banks of human embryonic progenitor cell lines for drug screening, disease modeling, and cell therapy. Here we present methods to identify human embryonic progenitor stem cell targeting peptides by selection of phage display libraries on clonal embryonic progenitor cell lines and demonstrate their use for targeting quantum dots (Qdots) for stem cell labeling.
Modeling TSC and LAM Using Patient Derived Induced Pluripotent Stem Cells
2016-10-01
lentiviral knockdown, and CRISPR /Cas9 genome editing in embryonic stem cells (ESCs). We have characterized the iPSCs extensively and found that they display...induced pluripotent stem cells (iPSCs) embryonic stem cells (ESCs) reprogramming CRISPR /Cas9 genome editing neural stem cells (NSCs) neural crest... CRISPR /cas9 in two additional human pluripotent stem cell lines (WA07 (H7) – female cell line registry #0061; and a control male iPSC lines generated
Marrow-Derived Antibody Library for Treatment of Neuroblastoma
2013-09-01
to capture the auto-immune response reaction in neuroblastoma patients using phage display and B cell hybridoma technologies. The scope of this...project is to use NB patient-derived materials to create NB cell lines, xenograft models, NB specific phage display libraries and to identify and...the auto-immune response reaction in neuroblastoma patients using phage display and B cell hybridoma technologies. The scope of this project is to
Wei, Shu-Chen; Lin, Young-Sun; Tsao, Po-Nien; Wu-Tsai, Jyy-Ji; Wu, C H Herbert; Wong, Jau-Min
2004-08-01
The adenomatous polyposis coli (APC) and mismatch repair (MMR) pathways are both involved in the tumorigenesis of hereditary colorectal cancers. Chemoprevention focuses on the APC pathway in the absence of information concerning MMR targets. This study compared the anticancer effects of sulindac, celecoxib, curcumin, and nifedipine in MMR-deficient cell lines, in order to determine the most appropriate chemopreventive agent for long-term use in patients with hereditary colorectal cancer. Five human colorectal cell lines (SW480, HCT116, LoVo, SW48, and HCT15) and an endometrial cancer cell line (HEC-1-A) were used for susceptibility testing. Tests included assays for growth inhibition, cell-cycle arrest, and apoptosis. Sulindac, celecoxib, curcumin, and nifedipine all displayed dose- and time-dependent anti-proliferation activities. Celecoxib was the most effective anti-proliferative agent, and increased the G0/G1 phase proportion in the cell cycle after treatment more significantly than the other agents in all cell lines. Curcumin displayed a more potent apoptosis-inducing activity than the other agents in treated cells. The tested drugs were effective against colorectal and endometrial cancer cell lines. Celecoxib is more potent with fewer side effects than sulindac. Nifedipine's observed chemopreventive efficacy may complement its known therapeutic application in patients with hypertension.
Jacob, A N; Kalapurakal, J; Davidson, W R; Kandpal, G; Dunson, N; Prashar, Y; Kandpal, R P
1999-01-01
We have used a modified differential display PCR protocol for isolating 3' restriction fragments of cDNAs specifically expressed or overexpressed in metastatic prostate carcinoma cell line DU145. Several cDNA fragments were identified that matched to milk fat globule protein, UFO/Axl, a receptor tyrosine kinase, human homologue of a Xenopus maternal transcript, laminin and laminin receptor, human carcinoma-associated antigen, and some expressed sequence tags. The transcript for milk fat globule protein, a marker protein shown to be overexpressed in breast tumors, was elevated in DU145 cells. The expression of UFO/Axl, a receptor tyrosine kinase, was considerably higher in DU145 cells as compared to normal prostate cells and prostatic carcinoma cell line PC-3. The overexpression of UFO oncogene in DU145 cells is discussed in the context of prostate cancer metastasis.
Sant’Anna-Silva, Ana Carolina B.; Santos, Gilson C.; Campos, Samir P. Costa; Oliveira Gomes, André Marco; Pérez-Valencia, Juan Alberto; Rumjanek, Franklin David
2018-01-01
Tumor cells are subjected to a broad range of selective pressures. As a result of the imposed stress, subpopulations of surviving cells exhibit individual biochemical phenotypes that reflect metabolic reprograming. The present work aimed at investigating metabolic parameters of cells displaying increasing degrees of metastatic potential. The metabolites present in cell extracts fraction of tongue fibroblasts and of cell lines derived from human tongue squamous cell carcinoma lineages displaying increasing metastatic potential (SCC9 ZsG, LN1 and LN2) were analyzed by 1H NMR (nuclear magnetic resonance) spectroscopy. Living, intact cells were also examined by the non-invasive method of fluorescence lifetime imaging microscopy (FLIM) based on the auto fluorescence of endogenous NADH. The cell lines reproducibly exhibited distinct metabolic profiles confirmed by Partial Least-Square Discriminant Analysis (PLS-DA) of the spectra. Measurement of endogenous free and bound NAD(P)H relative concentrations in the intact cell lines showed that ZsG and LN1 cells displayed high heterogeneity in the energy metabolism, indicating that the cells would oscillate between glycolysis and oxidative metabolism depending on the microenvironment’s composition. However, LN2 cells appeared to have more contributions to the oxidative status, displaying a lower NAD(P)H free/bound ratio. Functional experiments of energy metabolism, mitochondrial physiology, and proliferation assays revealed that all lineages exhibited similar energy features, although resorting to different bioenergetics strategies to face metabolic demands. These differentiated functions may also promote metastasis. We propose that lipid metabolism is related to the increased invasiveness as a result of the accumulation of malonate, methyl malonic acid, n-acetyl and unsaturated fatty acids (CH2)n in parallel with the metastatic potential progression, thus suggesting that the NAD(P)H reflected the lipid catabolic/anabolic pathways. PMID:29456966
Single Chain Antibodies as Estrogen Receptor Repressors in Breast Cancer
2000-06-01
differential display we identified proteinase inhibitor-9 as an mRNA upregulated by estrogen in a human hepatoblastoma cell line (HepG2) stably transfected...antiestrogen ICI 182,780 was a pure antag- human hepatoblastoma cell line (3), contained ER (4), this cell onist. Western blot analysis showed that
Characterization of immortalized human mammary epithelial cell line HMEC 2.6.
Joshi, Pooja S; Modur, Vishnu; Cheng, JiMing; Robinson, Kathy; Rao, Krishna
2017-10-01
Primary human mammary epithelial cells have a limited life span which makes it difficult to study them in vitro for most purposes. To overcome this problem, we have developed a cell line that was immortalized using defined genetic elements, and we have characterized this immortalized non-tumorigenic human mammary epithelial cell line to establish it as a potential model system. human mammary epithelial cells were obtained from a healthy individual undergoing reduction mammoplasty at SIU School of Medicine. The cells were transduced with CDK4R24C followed by transduction with human telomerase reverse transcriptase. Post all manipulation, the cells displayed a normal cell cycle phase distribution and were near diploid in nature, which was confirmed by flow cytometry and karyotyping. In vitro studies showed that the cells were anchorage dependent and were non-invasive in nature. The cell line expressed basal epithelial markers such as cytokeratin 7, CD10, and p63 and was negative for the expression of estrogen receptor and progesterone receptor. Upon G-band karyotyping, the cell line displayed the presence of a few cytogenic abnormalities, including trisomy 20 and trisomy 7, which are also commonly present in other immortalized mammary cell lines. Furthermore, the benign nature of these cells was confirmed by multiple in vitro and in vivo experiments. Therefore, we think that this cell line could serve as a good model to understand the molecular mechanisms involved in the development and progression of breast cancer and to also assess the effect of novel therapeutics on human mammary epithelial cells.
Liebertz, Daniel J; Lechner, Melissa G; Masood, Rizwan; Sinha, Uttam K; Han, Jing; Puri, Raj K; Correa, Adrian J; Epstein, Alan L
2010-02-22
Head and neck squamous cell carcinoma (HNSCC) is an aggressive and lethal malignancy. Publically available cell lines are mostly of lingual origin, or have not been carefully characterized. Detailed characterization of novel HNSCC cell lines is needed in order to provide researchers a concrete keystone on which to build their investigations. The USC-HN1 cell line was established from a primary maxillary HNSCC biopsy explant in tissue culture. The immortalized cells were then further characterized by heterotransplantation in Nude mice; immunohistochemical staining for relevant HNSCC biomarkers; flow cytometry for surface markers; cytogenetic karyotypic analysis; human papillomavirus and Epstein-Barr virus screening; qRT-PCR for oncogene and cytokine analysis; investigation of activated, cleaved Notch1 levels; and detailed 35,000 gene microarray analysis. Characterization experiments confirmed the human HNSCC origin of USC-HN1, including a phenotype similar to the original tumor. Viral screening revealed no HPV or EBV infection, while western blotting displayed significant upregulation of activated, cleaved Notch1. USC-HN1, a novel immortalized cell line has been derived from a maxillary HNSCC. Characterization studies have shown that the cell line is of HNSCC origin and displays many of the same markers previously reported in the literature. USC-HN1 is available for public research and will further the investigation of HNSCC and the development of new therapeutic modalities.
Somji, Seema; Zhou, Xu Dong; Mehus, Aaron; Sens, Mary Ann; Garrett, Scott H.; Lutz, Krista L.; Dunlevy, Jane R.; Zheng, Yun; Sens, Donald. A.
2009-01-01
This laboratory has shown that a human urothelial cell line (UROtsa) transformed by cadmium (Cd+2) produced subcutaneous tumor heterotransplants that resemble human transitional cell carcinoma (TCC). In the present study, additional Cd+2 transformed cell lines were isolated to determine if independent exposures of the cell line to Cd+2 would result in malignantly transformed cell lines possessing similar phenotypic properties. Seven independent isolates were isolated and assessed for their doubling times, morphology, ability to heterotransplant subcutaneously and in the peritoneal cavity of nude mice and for the expression keratin 7. The 7 cell lines all displayed an epithelial morphology with no evidence of squamous differentiation. Doubling times were variable among the isolates, being significantly reduced or similar to the parental cells. All 7 isolates were able to form subcutaneous tumor heterotransplants with a TCC morphology and all heterotransplants displayed areas of squamous differentiation of the transitional cells. The degree of squamous differentiation varied among the isolates. In contrast to subcutaneous tumor formation, only 1 isolate of the Cd+2 transformed cells (UTCd#1) was able to effectively colonize multiple sites within the peritoneal cavity. An analysis of keratin 7 expression showed no correlation with squamous differentiation for the subcutaneous heterotransplants generated from the 7 cell lines. Keratin 7 was expressed in 6 of the 7 cell lines and their subcutaneous tumor heterotransplants. Keratin 7 was not expressed in the cell line that was able to form tumors within the peritoneal cavity. These results show that individual isolates of Cd+2 transformed cells have both similarities and differences in their phenotype. PMID:19921857
Sumners, L H; Cox, C M; Kim, S; Salevsky, J E; Siegel, P B; Dalloul, R A
2012-03-01
Chickens genetically selected for low (LA) or high (HA) antibody response to SRBC displayed a correlated change in MHC, so that LA chickens were 96% B13 and HA chickens were 96% B21. The LA line appears to be less susceptible to invasion by extracellular pathogens, whereas HA chickens are more resistant to infection by intracellular organisms. Resistance to Clostridium perfringens is one instance in which the lines do not follow their established trend of pathogen susceptibility, where during a clinical outbreak of necrotic enteritis, B21B21 genotypes experienced significantly less mortality than B13B13 genotypes. A study was carried out to assess immunological differences between LA and HA lines during exposure to C. perfringens α-toxin. Peripheral blood mononuclear cells were isolated from each genetic line, cultured with or without lipopolysaccharide (4 h), and exposed to varying concentrations of α-toxin (1; 10; 100; and 1,000 U/L) for 2 and 4 h. Evaluation of cellular proliferation, percentage of cytotoxicity, and immunological gene expression was carried out in a series of experiments. Cells isolated from HA chickens had significantly increased proliferation than those from LA chickens at low toxin levels (1 and 10 U/L) and significantly decreased proliferation at high toxin levels (100 and 1,000 U/L). Following exposure to lipopolysaccharide, the percentage of cytotoxicity was higher for LA than HA cells. In both assays, HA cells displayed superior performance following lipopolysaccharide-stimulation. Gene expression analysis of immune transcripts by quantitative real-time PCR revealed significantly upregulated expression of interferon (IFN)-γ, interleukin (IL)-8, IL-13 (2 h), IL-15, and CXCLi1 (4 h) in HA than LA chickens. Cells isolated from the LA line displayed significantly elevated expression of IL-2, IL-10, IL-13 (4 h), IL-16, IL-18, inducible nitric oxide synthase (iNOS), CXCLi1 (2 h), and lipopolysaccharide-induced tumor necrosis factor-α factor (LITAF) compared with the HA line. Clearly, these 2 genetic lines display highly divergent immune responses in regards to C. perfringens toxin exposure.
Lee, Suk Kyoo; Lee, Gyun Min
2003-06-30
Apoptosis-resistant dihydrofolate reductase-deficient CHO cell line (dhfr(-) CHO-bcl2) was developed by introduction of the bcl-2 gene into the dhfr(-) CHO cell line (DUKX-B11, ATCC CRL-9096) and subsequent selection of clones stably overexpressing Bcl-2 in the absence of selection pressure. When the dhfr(-) CHO-bcl2 cell line was used as a host cell line for development of a recombinant CHO (rCHO) cell line expressing a humanized antibody, it displayed stable expression of the bcl-2 gene during rCHO cell line development and no detrimental effect of Bcl-2 overexpression on specific antibody productivity. Taken together, the results obtained demonstrate that the use of an apoptosis-resistant dhfr(-) CHO cell line as the host cell line saves the effort of establishing an apoptosis-resistant rCHO cell line and expedites the development process of apoptosis-resistant rCHO cells producing therapeutic proteins. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 82: 872-876, 2003.
NASA Astrophysics Data System (ADS)
Sinha, Rileen; Winer, Andrew G.; Chevinsky, Michael; Jakubowski, Christopher; Chen, Ying-Bei; Dong, Yiyu; Tickoo, Satish K.; Reuter, Victor E.; Russo, Paul; Coleman, Jonathan A.; Sander, Chris; Hsieh, James J.; Hakimi, A. Ari
2017-05-01
The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe (chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number alterations shows that most cell lines resemble ccRCC, a few (including some often used as models of ccRCC) resemble pRCC, and none resemble chRCC. Human ccRCC tumours clustering with cell lines display clinical and genomic features of more aggressive disease, suggesting that cell lines best represent aggressive tumours. We stratify mutations and copy number alterations for important kidney cancer genes by the consistency between databases, and classify cell lines into established gene expression-based indolent and aggressive subtypes. Our results could aid investigators in analysing appropriate renal cancer cell lines.
Yu, Channing; Mannan, Aristotle M.; Yvone, Griselda Metta; Ross, Kenneth N.; Zhang, Yan-Ling; Marton, Melissa A.; Taylor, Bradley R.; Crenshaw, Andrew; Gould, Joshua Z.; Tamayo, Pablo; Weir, Barbara A.; Tsherniak, Aviad; Wong, Bang; Garraway, Levi A.; Shamji, Alykhan F.; Palmer, Michelle A.; Foley, Michael A.; Winckler, Wendy; Schreiber, Stuart L.; Kung, Andrew L.; Golub, Todd R.
2016-01-01
Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control1-4. Here, we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes. PRISM displayed the expected patterns of cell killing seen in conventional (unpooled) assays. In a screen of 102 cell lines across 8,400 compounds, PRISM led to the identification of BRD-7880 as a potent and highly specific inhibitor of aurora kinases B and C. Cell line pools also efficiently formed tumors as xenografts, and PRISM recapitulated the expected pattern of erlotinib sensitivity in vivo. PMID:26928769
Cozar-Castellano, Irene; Harb, George; Selk, Karen; Takane, Karen; Vasavada, Rupangi; Sicari, Brian; Law, Brian; Zhang, Pili; Scott, Donald K.; Fiaschi-Taesch, Nathalie; Stewart, Andrew F.
2008-01-01
OBJECTIVE—Rodent insulinoma cell lines may serve as a model for designing continuously replicating human β-cell lines and provide clues as to the central cell cycle regulatory molecules in the β-cell. RESEARCH DESIGN AND METHODS—We performed a comprehensive G1/S proteome analysis on the four most widely studied rodent insulinoma cell lines and defined their flow cytometric profiles and growth characteristics. RESULTS—1) Despite their common T-antigen–derived origins, MIN6 and BTC3 cells display markedly different G1/S expression profiles; 2) despite their common radiation origins, RINm5F and INS1 cells display striking differences in cell cycle protein profiles; 3) phosphorylation of pRb is absent in INS1 and RINm5F cells; 4) cyclin D2 is absent in RINm5F and BTC3 cells and therefore apparently dispensable for their proliferation; 5) every cell cycle inhibitor is upregulated, presumably in a futile attempt to halt proliferation; 6) among the G1/S proteome members, seven are pro-proliferation molecules: cyclin-dependent kinase-1, -2, -4, and -6 and cyclins A, E, and D3; and 7) overexpression of the combination of these seven converts arrested proliferation rates in primary rat β-cells to those in insulinoma cells. Unfortunately, this therapeutic overexpression appears to mildly attenuate β-cell differentiation and function. CONCLUSIONS—These studies underscore the importance of characterizing the cell cycle at the protein level in rodent insulinoma cell lines. They also emphasize the hazards of interpreting data from rodent insulinoma cell lines as modeling normal cell cycle progression. Most importantly, they provide seven candidate targets for inducing proliferation in human β-cells. PMID:18650366
Urbanova, Linda; Hradilova, Nada; Moserova, Irena; Vosahlikova, Sarka; Sadilkova, Lenka; Hensler, Michal; Spisek, Radek; Adkins, Irena
2017-07-01
High hydrostatic pressure (HHP) can be used to generate dendritic cell (DC)-based active immunotherapy for prostate, lung and ovarian cancer. We showed here that HHP treatment of selected human cancer cell lines leads to a degradation of tumor antigens which depends on the magnitude of HHP applied and on the cancer cell line origin. Whereas prostate or ovarian cell lines displayed little protein antigen degradation with HHP treatment up to 300MPa after 2h, tumor antigens are hardly detected in lung cancer cell line after treatment with HHP 250MPa at the same time. On the other hand, quick reduction of tumor antigen-coding mRNA was observed at HHP 200MPa immediately after treatment in all cell lines tested. To optimize the DC-based active cellular therapy protocol for HHP-sensitive cell lines the immunogenicity of HHP-treated lung cancer cells at 150, 200 and 250MPa was compared. Lung cancer cells treated with HHP 150MPa display characteristics of immunogenic cell death, however cells are not efficiently phagocytosed by DC. Despite induction of the highest number of antigen-specific CD8 + T cells, 150 MPa-treated lung cancer cells survive in high numbers. This excludes their use in DC vaccine manufacturing. HHP of 200MPa treatment of lung cancer cells ensures the optimal ratio of efficient immunogenic killing and delivery of protein antigens in DC. These results represent an important pre-clinical data for generation of immunogenic killed lung cancer cells in ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa). Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
Kaufmann, William K.; Nevis, Kathleen R.; Qu, Pingping; Ibrahim, Joseph G.; Zhou, Tong; Zhou, Yingchun; Simpson, Dennis A.; Helms-Deaton, Jennifer; Cordeiro-Stone, Marila; Moore, Dominic T.; Thomas, Nancy E.; Hao, Honglin; Liu, Zhi; Shields, Janiel M.; Scott, Glynis A.; Sharpless, Norman E.
2009-01-01
Defects in DNA damage responses may underlie genetic instability and malignant progression in melanoma. Cultures of normal human melanocytes (NHMs) and melanoma lines were analyzed to determine whether global patterns of gene expression could predict the efficacy of DNA damage cell cycle checkpoints that arrest growth and suppress genetic instability. NHMs displayed effective G1 and G2 checkpoint responses to ionizing radiation-induced DNA damage. A majority of melanoma cell lines (11/16) displayed significant quantitative defects in one or both checkpoints. Melanomas with B-RAF mutations as a class displayed a significant defect in DNA damage G2 checkpoint function. In contrast the epithelial-like subtype of melanomas with wild-type N-RAS and B-RAF alleles displayed an effective G2 checkpoint but a significant defect in G1 checkpoint function. RNA expression profiling revealed that melanoma lines with defects in the DNA damage G1 checkpoint displayed reduced expression of p53 transcriptional targets, such as CDKN1A and DDB2, and enhanced expression of proliferation-associated genes, such as CDC7 and GEMININ. A Bayesian analysis tool was more accurate than significance analysis of microarrays for predicting checkpoint function using a leave-one-out method. The results suggest that defects in DNA damage checkpoints may be recognized in melanomas through analysis of gene expression. PMID:17597816
Display system employing acousto-optic tunable filter
NASA Technical Reports Server (NTRS)
Lambert, James L. (Inventor)
1995-01-01
An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.
Display system employing acousto-optic tunable filter
NASA Technical Reports Server (NTRS)
Lambert, James L. (Inventor)
1993-01-01
An acousto-optic tunable filter (AOTF) is employed to generate a display by driving the AOTF with a RF electrical signal comprising modulated red, green, and blue video scan line signals and scanning the AOTF with a linearly polarized, pulsed light beam, resulting in encoding of color video columns (scan lines) of an input video image into vertical columns of the AOTF output beam. The AOTF is illuminated periodically as each acoustically-encoded scan line fills the cell aperture of the AOTF. A polarizing beam splitter removes the unused first order beam component of the AOTF output and, if desired, overlays a real world scene on the output plane. Resolutions as high as 30,000 lines are possible, providing holographic display capability.
Mesenchymal change and drug resistance in neuroblastoma.
Naiditch, Jessica A; Jie, Chunfa; Lautz, Timothy B; Yu, Songtao; Clark, Sandra; Voronov, Dimitry; Chu, Fei; Madonna, Mary Beth
2015-01-01
Metastatic initiation has many phenotypic similarities to epithelial-to-mesenchymal transition, including loss of cell-cell adhesion, increased invasiveness, and increased cell mobility. We have previously demonstrated that drug resistance is associated with a metastatic phenotype in neuroblastoma (NB). The purpose of this project was to determine if the development of doxorubicin resistance is associated with characteristics of mesenchymal change in human NB cells. Total RNA was isolated from wild type (WT) and doxorubicin-resistant (DoxR) human NB cell lines (SK-N-SH and SK-N-BE(2)C) and analyzed using the Illumina Human HT-12 version 4 Expression BeadChip. Differentially expressed genes (DEGs) were identified. Volcano plots and heat maps were generated. Genes of interest with a fold change in expression >1.5 and an adjusted P < 0.1 were analyzed. Immunofluorescence (IF) and Western blot analysis confirmed microarray results of interest. Matrigel invasion assay and migration wounding assays were performed. Volcano plots and heat maps visually demonstrated a similar pattern of DEGs in the SK-N-SH and SK-N-BE(2)C DoxR cell lines relative to their parental WT lines. Venn diagramming revealed 1594 DEGs common to both DoxR cell lines relative to their parental cell lines. Network analysis pointed to several significantly upregulated epithelial-to-mesenchymal transition pathways, through TGF-beta pathways via RhoA, PI3K, and ILK and via SMADs, as well as via notch signaling pathways. DoxR cell lines displayed a more invasive phenotype than respective WT cell lines. Human SK-N-SH and SK-N-BE(2)C NB cells display characteristics of mesenchymal change via multiple pathways in the transition to a drug-resistant state. Copyright © 2015 Elsevier Inc. All rights reserved.
--------------------------------------------------------------------------------------------------*/ /* undo the min-height 100% trick used to fill the container's height */ .fc-time-grid { min-height: 0 !important; } /* don't display the side axis at all ("all-day" and time cells) */ .fc-agenda-view .fc-axis { display: none; } /* don't display the horizontal lines */ .fc-slats, .fc-time-grid hr
Song, Yongxiang; Liu, Guangfu; Li, Jie; Huang, Hongbo; Zhang, Xing; Zhang, Hua; Ju, Jianhua
2015-03-16
Two new C-glycoside angucyclines, marangucycline A (1) and marangucycline B (2), along with three known compounds, dehydroxyaquayamycin (3), undecylprodigiosin (4) and metacycloprodigiosin (5), have been identified as products of the deep-sea sediment strain Streptomyces sp. SCSIO 11594. New structures were elucidated on the basis of HRESIMS, 1D and 2D NMR analyses and comparisons to previously reported datasets. Compounds 2 and 4 displayed in vitro cytotoxicity against four cancer cell lines A594, CNE2, HepG2, MCF-7 superior to those obtained with cisplatin, the positive control. Notably, compound 2 bearing a keto-sugar displayed significant cytotoxicity against cancer cell lines with IC50 values ranging from 0.24 to 0.56 μM; An IC50 value of 3.67 μM was found when using non-cancerous hepatic cell line HL7702, demonstrating the cancer cell selectivity of 2. Compounds 1-3 were proved to have weak antibacterial activities against Enterococcus faecalis ATCC29212 with an MIC value of 64.0 μg/mL. Moreover, 3 displayed selective antibacterial activity against methicillin-resistant Staphylococcus epidermidis shhs-E1 with an MIC value of 16.0 μg/mL.
From Never Born Proteins to Minimal Living Cells: two projects in synthetic biology.
Luisi, Pier Luigi; Chiarabelli, Cristiano; Stano, Pasquale
2006-12-01
The Never Born Proteins (NBPs) and the Minimal Cell projects are two currently developed research lines belonging to the field of synthetic biology. The first deals with the investigation of structural and functional properties of de novo proteins with random sequences, selected and isolated using phage display methods. The minimal cell is the simplest cellular construct which displays living properties, such as self-maintenance, self-reproduction and evolvability. The semi-synthetic approach to minimal cells involves the use of extant genes and proteins in order to build a supramolecular construct based on lipid vesicles. Results and outlooks on these two research lines are shortly discussed, mainly focusing on their relevance to the origin of life studies.
Michaelis, M; Rothweiler, F; Agha, B; Barth, S; Voges, Y; Löschmann, N; von Deimling, A; Breitling, R; Wilhelm Doerr, H; Rödel, F; Speidel, D; Cinatl, J
2012-01-01
Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3, also disrupts the p53/Mdm2 interaction. All of the 11 UKF-NB-3 sub-lines adapted to RITA that we established retained functional wild-type p53 although RITA induced a substantial p53 response. Moreover, all RITA-adapted cell lines remained sensitive to nutlin-3, whereas only five out of 10 nutlin-3-adapted cell lines retained their sensitivity to RITA. In addition, repeated adaptation of the RITA-adapted sub-line UKF-NB-3rRITA10 μM to nutlin-3 resulted in p53 mutations. The RITA-adapted UKF-NB-3 sub-lines displayed no or less pronounced resistance to vincristine, cisplatin, and irradiation than nutlin-3-adapted UKF-NB-3 sub-lines. Furthermore, adaptation to RITA was associated with fewer changes at the expression level of antiapoptotic factors than observed with adaptation to nutlin-3. Transcriptomic analyses indicated the RITA-adapted sub-lines to be more similar at the gene expression level to the parental UKF-NB-3 cells than nutlin-3-adapted UKF-NB-3 sub-lines, which correlates with the observed chemotherapy and irradiation sensitivity phenotypes. In conclusion, RITA-adapted cells retain functional p53, remain sensitive to nutlin-3, and display a less pronounced resistance phenotype than nutlin-3-adapted cells. PMID:22476102
Michaelis, M; Rothweiler, F; Agha, B; Barth, S; Voges, Y; Löschmann, N; von Deimling, A; Breitling, R; Doerr, H Wilhelm; Rödel, F; Speidel, D; Cinatl, J
2012-04-05
Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3, also disrupts the p53/Mdm2 interaction. All of the 11 UKF-NB-3 sub-lines adapted to RITA that we established retained functional wild-type p53 although RITA induced a substantial p53 response. Moreover, all RITA-adapted cell lines remained sensitive to nutlin-3, whereas only five out of 10 nutlin-3-adapted cell lines retained their sensitivity to RITA. In addition, repeated adaptation of the RITA-adapted sub-line UKF-NB-3(r)RITA(10 μM) to nutlin-3 resulted in p53 mutations. The RITA-adapted UKF-NB-3 sub-lines displayed no or less pronounced resistance to vincristine, cisplatin, and irradiation than nutlin-3-adapted UKF-NB-3 sub-lines. Furthermore, adaptation to RITA was associated with fewer changes at the expression level of antiapoptotic factors than observed with adaptation to nutlin-3. Transcriptomic analyses indicated the RITA-adapted sub-lines to be more similar at the gene expression level to the parental UKF-NB-3 cells than nutlin-3-adapted UKF-NB-3 sub-lines, which correlates with the observed chemotherapy and irradiation sensitivity phenotypes. In conclusion, RITA-adapted cells retain functional p53, remain sensitive to nutlin-3, and display a less pronounced resistance phenotype than nutlin-3-adapted cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xin-xing; Wang, Jian, E-mail: dr_wangjian@yahoo.com.cn; Wang, Hao-lu
2012-03-23
Highlights: Black-Right-Pointing-Pointer We sorted SP cells from a human gallbladder carcinoma cell lines, SGC-996. Black-Right-Pointing-Pointer SP cells displayed higher proliferation and stronger clonal-generating capability. Black-Right-Pointing-Pointer SP cells showed more migratory and invasive abilities. Black-Right-Pointing-Pointer SP cells were more resistant and tumorigenic than non-SP counterparts. Black-Right-Pointing-Pointer ABCG2 might be a candidate as a marker for SP cells. -- Abstract: The cancer stem cell (CSC) hypothesis proposes that CSCs, which can renew themselves proliferate infinitely, and escape chemotherapy, become the root of recurrence and metastasis. Previous studies have verified that side population (SP) cells, characterized by their ability to efflux lipophilic substratemore » Hoechst 33342, to share many characteristics of CSCs in multiplying solid tumors. The purpose of this study was to sort SP cells from a human gallbladder carcinoma cell line, SGC-996 and to preliminarily identify the biological characteristics of SP cells from the cell line. Using flow cytometry we effectively sorted SP cells from the cell line SGC-996. SP cells not only displayed higher proliferative, stronger clonal-generating, more migratory and more invasive capacities, but showed stronger resistance. Furthermore, our experiments demonstrated that SP cells were more tumorigenic than non-SP counterparts in vivo. Real-time PCR analysis and immunocytochemistry showed that the expression of ATP-binding cassette subfamily G member 2 (ABCG2) was significantly higher in SP cells. Hence, these results collectively suggest that SP cells are progenitor/stem-like cells and ABCG2 might be a candidate marker for SP cells in human gallbladder cancer.« less
Phenylpropanoids from Phragmipedium calurum and their antiproliferative activity
Starks, Courtney M.; Williams, Russell B.; Norman, Vanessa L.; Lawrence, Julie A.; O’Neil-Johnson, Mark; Eldridge, Gary R.
2012-01-01
Two new and five known stilbenes and one new alkylresorcinol were isolated from the orchid Phragmipedium calurum during a screen for new anticancer compounds. The compounds were evaluated for antiproliferative activity against multiple human cancer cell lines. Two of the compounds (1 and 7) displayed moderate activity against several cell lines. PMID:22805176
Human embryonic stem cell lines derived from single blastomeres of two 4-cell stage embryos
Geens, Mieke; Mateizel, Ileana; Sermon, Karen; De Rycke, Martine; Spits, Claudia; Cauffman, Greet; Devroey, Paul; Tournaye, Herman; Liebaers, Inge; Van de Velde, Hilde
2009-01-01
BACKGROUND Recently, we demonstrated that single blastomeres of a 4-cell stage human embryo are able to develop into blastocysts with inner cell mass and trophectoderm. To further investigate potency at the 4-cell stage, we aimed to derive pluripotent human embryonic stem cells (hESC) from single blastomeres. METHODS Four 4-cell stage embryos were split on Day 2 of preimplantation development and the 16 blastomeres were individually cultured in sequential medium. On Day 3 or 4, the blastomere-derived embryos were plated on inactivated mouse embryonic fibroblasts (MEFs). RESULTS Ten out of sixteen blastomere-derived morulae attached to the MEFs, and two produced an outgrowth. They were mechanically passaged onto fresh MEFs as described for blastocyst ICM-derived hESC, and shown to express the typical stemness markers by immunocytochemistry and/or RT–PCR. In vivo pluripotency was confirmed by the presence of all three germ layers in the teratoma obtained after injection in immunodeficient mice. The first hESC line displays a mosaic normal/abnormal 46, XX, dup(7)(q33qter), del(18)(q23qter) karyotype. The second hESC line displays a normal 46, XY karyotype. CONCLUSION We report the successful derivation and characterization of two hESC lines from single blastomeres of four split 4-cell stage human embryos. These two hESC lines were derived from distinct embryos, proving that at least one of the 4-cell stage blastomeres is pluripotent. PMID:19633307
BenRedjem Romdhane, Yosr; Elbour, Monia; Carbone, Marianna; Ciavatta, Maria Letizia; Gavagnin, Margherita; Mathieu, Véronique; Lefranc, Florence; Ktari, Leila; Ben Mustapha, Karim; Boudabous, Abdellatif; Kiss, Robert
2016-01-01
Marine sponges of the Irciniidae family contain both bioactive furanosesterterpene tetronic acids (FTAs) and prenylated hydroquinones (PHQs). Both classes of compounds are known for their anti-inflammatory, antioxidant, and antimicrobial properties and known to display growth inhibitory effects against various human tumor cell lines. However, the different experimental conditions of the reported in vitro bioassays, carried out on different cancer cell lines within separate studies, prevent realistic actual discrimination between the two classes of compounds from being carried out in terms of growth inhibitory effects. In the present work, a chemical investigation of irciniid sponges from Tunisian coasts led to the purification of three known FTAs and three known PHQs. The in vitro growth inhibitory properties of the six purified compounds have been evaluated in the same experiment in a panel of five human and one murine cancer cell lines displaying various levels of sensitivity to proapoptotic stimuli. Surprisingly, FTAs and PHQs elicited distinct profiles of growth inhibitory-responses, differing by one to two orders of magnitude in favor of the PHQs in all cell lines. The obtained comparative results are discussed in the light of a better selection of drug candidates from natural sources. PMID:27597966
Lapointe, Jason F; Dunphy, Gary B; Giannoulis, Paschalis; Mandato, Craig A; Nardi, James B; Gharib, Osama H; Niven, Donald F
2011-11-01
The innate non-self response systems of the deciduous tree pest, the forest tent caterpillar, Malacosoma disstria has been documented by us in terms of in vitro and in vivo reactions towards the Gram-positive nonpathogenic bacterium, Bacillus subtilis and Gram-negative pathogenic microbe, Xenorhabdus nematophila and their respective surface antigens, lipopoteichoic acids (LTA) and lipopolysaccharides (LPS). These studies, often conducted in whole and diluted hemolymph, preclude examination of plasma-free cellular (hemocyte) responses. Plasma-free hemocytes as primary cultures are difficult to obtain. The floating cell line Md66 and attached cell line Md108 from M. disstria hemocytes were examined as a model for plasma-free M. disstria hemocyte non-self responses. Herein, it was established that although both lines differed from each other and from the primary hemocyte cultures of M. disstria in growth parameters, cell composition and sizes both cell lines displayed granular cell-like (GL) cells and plasmatocyte-like (PL) cells according to morphological criteria and to some extent antigenic similarities based on labeling with anti-Chrysodeixis includens hemocyte monoclonal antibodies. Hemocyte-specific neuroglian-like protein was detected on cells of both cell lines and in the primary hemocyte cultures albeit with staining patterns differing according to culture and cell types, confluency levels and cell-cell adhesion. Both cell lines bound B. subtilis and X. nematophila, the reaction extent varying with the cell line and its cell types. LPS damaged both cell types in the two cell lines whereas LTA enhanced the adhesion of Md66 GL cells to flask surfaces followed by PL cell adhesion. PL cells of both lines, like the primary cultures, phagocytosed FITC-labeled B. subtilis; only Md108 GL cells phagocytosed B. subtilis. In either case phagocytosis was always less in frequency and intensity than the primary cultures. Proteins released from the cell lines differed in pattern and magnitude but contained bacterial binding proteins that enhanced differential bacterial adhesion to both cell types in both cell lines: the GL cells both cultures, and those of granular cells in primary cultures, were more involved than the primary plasmatocytes and PL cells. Only Md66 cells possessed lysozyme and both cell types of both lines contained phenoloxidase. Neither enzyme type was released during early phase reaction with the bacteria. LPS inhibited phenoloxidase activity. The similarities and differences between the lines and primary cultures make Md66 and Md108 useful for the systematic examination of plasma-free cellular non-self reactions. Copyright © 2011 Elsevier Inc. All rights reserved.
Phenotypes and Karyotypes of Human Malignant Mesothelioma Cell Lines
Relan, Vandana; Morrison, Leanne; Parsonson, Kylie; Clarke, Belinda E.; Duhig, Edwina E.; Windsor, Morgan N.; Matar, Kevin S.; Naidoo, Rishendran; Passmore, Linda; McCaul, Elizabeth; Courtney, Deborah; Yang, Ian A.; Fong, Kwun M.; Bowman, Rayleen V.
2013-01-01
Background Malignant mesothelioma is an aggressive tumour of serosal surfaces most commonly pleura. Characterised cell lines represent a valuable tool to study the biology of mesothelioma. The aim of this study was to develop and biologically characterise six malignant mesothelioma cell lines to evaluate their potential as models of human malignant mesothelioma. Methods Five lines were initiated from pleural biopsies, and one from pleural effusion of patients with histologically proven malignant mesothelioma. Mesothelial origin was assessed by standard morphology, Transmission Electron Microscopy (TEM) and immunocytochemistry. Growth characteristics were assayed using population doubling times. Spectral karyotyping was performed to assess chromosomal abnormalities. Authentication of donor specific derivation was undertaken by DNA fingerprinting using a panel of SNPs. Results Most of cell lines exhibited spindle cell shape, with some retaining stellate shapes. At passage 2 to 6 all lines stained positively for calretinin and cytokeratin 19, and demonstrated capacity for anchorage-independent growth. At passage 4 to 16, doubling times ranged from 30–72 hours, and on spectral karyotyping all lines exhibited numerical chromosomal abnormalities ranging from 41 to 113. Monosomy of chromosomes 8, 14, 22 or 17 was observed in three lines. One line displayed four different karyotypes at passage 8, but only one karyotype at passage 42, and another displayed polyploidy at passage 40 which was not present at early passages. At passages 5–17, TEM showed characteristic features of mesothelioma ultrastructure in all lines including microvilli and tight intercellular junctions. Conclusion These six cell lines exhibit varying cell morphology, a range of doubling times, and show diverse passage-dependent structural chromosomal changes observed in malignant tumours. However they retain characteristic immunocytochemical protein expression profiles of mesothelioma during maintenance in artificial culture systems. These characteristics support their potential as in vitro model systems for studying cellular, molecular and genetic aspects of mesothelioma. PMID:23516439
OVCAR-3 Spheroid-Derived Cells Display Distinct Metabolic Profiles
Vermeersch, Kathleen A.; Wang, Lijuan; Mezencev, Roman; McDonald, John F.; Styczynski, Mark P.
2015-01-01
Introduction Recently, multicellular spheroids were isolated from a well-established epithelial ovarian cancer cell line, OVCAR-3, and were propagated in vitro. These spheroid-derived cells displayed numerous hallmarks of cancer stem cells, which are chemo- and radioresistant cells thought to be a significant cause of cancer recurrence and resultant mortality. Gene set enrichment analysis of expression data from the OVCAR-3 cells and the spheroid-derived putative cancer stem cells identified several metabolic pathways enriched in differentially expressed genes. Before this, there had been little previous knowledge or investigation of systems-scale metabolic differences between cancer cells and cancer stem cells, and no knowledge of such differences in ovarian cancer stem cells. Methods To determine if there were substantial metabolic changes corresponding with these transcriptional differences, we used two-dimensional gas chromatography coupled to mass spectrometry to measure the metabolite profiles of the two cell lines. Results These two cell lines exhibited significant metabolic differences in both intracellular and extracellular metabolite measurements. Principal components analysis, an unsupervised dimensional reduction technique, showed complete separation between the two cell types based on their metabolite profiles. Pathway analysis of intracellular metabolomics data revealed close overlap with metabolic pathways identified from gene expression data, with four out of six pathways found enriched in gene-level analysis also enriched in metabolite-level analysis. Some of those pathways contained multiple metabolites that were individually statistically significantly different between the two cell lines, with one of the most broadly and consistently different pathways, arginine and proline metabolism, suggesting an interesting hypothesis about cancerous and stem-like metabolic phenotypes in this pair of cell lines. Conclusions Overall, we demonstrate for the first time that metabolism in an ovarian cancer stem cell line is distinct from that of more differentiated isogenic cancer cells, supporting the potential importance of metabolism in the differences between cancer cells and cancer stem cells. PMID:25688563
Genetic analysis of mouse embryonic stem cells bearing Msh3 and Msh2 single and compound mutations.
Abuin, A; Zhang, H; Bradley, A
2000-01-01
We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells.
Genetic Analysis of Mouse Embryonic Stem Cells Bearing Msh3 and Msh2 Single and Compound Mutations
Abuin, Alejandro; Zhang, HeJu; Bradley, Allan
2000-01-01
We have previously described the use of homologous recombination and CRE-loxP-mediated marker recycling to generate mouse embryonic stem (ES) cell lines homozygous for mutations at the Msh3, Msh2, and both Msh3 and Msh2 loci (2). In this study, we describe the analysis of these ES cells with respect to processes known to be affected by DNA mismatch repair. ES cells homozygous for the Msh2 mutation displayed increased resistance to killing by the cytotoxic drug 6-thioguanine (6TG), indicating that the 6TG cytotoxic mechanism is mediated by Msh2. The mutation rate of the herpes simplex virus thymidine kinase 1 (HSV-tk1) gene was unchanged in Msh3-deficient ES cell lines but markedly elevated in Msh2-deficient and Msh3 Msh2 double-mutant cells. Notably, the HSV-tk1 mutation rate was 11-fold higher, on average, than that of the hypoxanthine-guanine phosphoribosyl transferase (Hprt) locus in Msh2-deficient cells. Sequence analysis of HSV-tk1 mutants from these cells indicated the presence of a frameshift hotspot within the HSV-tk1 coding region. Msh3-deficient cells displayed a modest (16-fold) elevation in the instability of a dinucleotide repeat, whereas Msh2-deficient and Msh2 Msh3 double-mutant cells displayed markedly increased levels of repeat instability. Targeting frequencies of nonisogenic vectors were elevated in Msh2-deficient ES cell lines, confirming the role of Msh2 in blocking recombination between diverged sequences (homeologous recombination) in mammalian cells. These results are consistent with accumulating data from other laboratories and support the current model of DNA mismatch repair in mammalian cells. PMID:10594017
Song, Yongxiang; Liu, Guangfu; Li, Jie; Huang, Hongbo; Zhang, Xing; Zhang, Hua; Ju, Jianhua
2015-01-01
Two new C-glycoside angucyclines, marangucycline A (1) and marangucycline B (2), along with three known compounds, dehydroxyaquayamycin (3), undecylprodigiosin (4) and metacycloprodigiosin (5), have been identified as products of the deep-sea sediment strain Streptomyces sp. SCSIO 11594. New structures were elucidated on the basis of HRESIMS, 1D and 2D NMR analyses and comparisons to previously reported datasets. Compounds 2 and 4 displayed in vitro cytotoxicity against four cancer cell lines A594, CNE2, HepG2, MCF-7 superior to those obtained with cisplatin, the positive control. Notably, compound 2 bearing a keto-sugar displayed significant cytotoxicity against cancer cell lines with IC50 values ranging from 0.24 to 0.56 μM; An IC50 value of 3.67 μM was found when using non-cancerous hepatic cell line HL7702, demonstrating the cancer cell selectivity of 2. Compounds 1–3 were proved to have weak antibacterial activities against Enterococcus faecalis ATCC29212 with an MIC value of 64.0 μg/mL. Moreover, 3 displayed selective antibacterial activity against methicillin-resistant Staphylococcus epidermidis shhs-E1 with an MIC value of 16.0 μg/mL. PMID:25786061
Deng, Yingjun; Li, Xin; Feng, Jinxin; Zhang, Xiangliang
2018-01-01
Chronic myeloid leukemia (CML) is a myeloproliferative disease which uniquely expresses a constitutively active tyrosine kinase, BCR/ABL. As a specific inhibitor of the BCR-ABL tyrosine kinase, imatinib becomes the first choice for the treatment of CML due to its high efficacy and low toxicity. However, the development of imatinib resistance limits the long-term treatment benefits of it in CML patients. In the present study, we aimed to investigate the roles of miR-202 in the regulation of imatinib sensitivity in CML cell lines and the possible mechanisms involved in this process. We found miR-202 was down-regulated in seven CML cell lines by quantitative reverse-transcription PCR (qRT-PCR) analysis. Overexpression of miR-202 significantly suppressed proliferation rates of CML cells. By establishing imatinib resistant cell lines originating from K562 and KU812 cells, we observed expressions of miR-202 were down-regulated by imatinib treatments and imatinib resistant CML cell lines exhibited lower level of miR-202. On the contrary, imatinib resistant CML cell lines displayed up-regulated glycolysis rate than sensitive cells with the evidence that glucose uptake, lactate production, and key glycolysis enzymes were elevated in imatinib resistant cells. Importantly, the imatinib resistant CML cell lines were more sensitive to glucose starvation and glycolysis inhibitors. In addition, we identified Hexokinase 2 (HK2) as a direct target of miR-202 in CML cell lines. Overexpression of miR-202 sensitized imatinib resistant CML through the miR-202-mediated glycolysis inhibition by targetting HK2. Finally, we provided the clinical relevance that miR-202 was down-regulated in CML patients and patients with lower miR-202 expression displayed higher HK2 expression. The present study will provide new aspects on the miRNA-modulated tyrosine kinase inhibitor (TKI) sensitivity in CML, contributing to the development of new therapeutic anticancer drugs. PMID:29559564
Santiago, Iara F; Alves, Tânia M A; Rabello, Ana; Sales Junior, Policarpo A; Romanha, Alvaro J; Zani, Carlos L; Rosa, Carlos A; Rosa, Luiz H
2012-01-01
A total of 564 isolates of endophytic fungi were recovered from the plants Deschampsia antarctica and Colobanthus quitensis collected from Antarctica. The isolates were screened against parasites Leishmania amazonensis and Trypanosoma cruzi and against the human tumour cell lines. Of the 313 fungal isolates obtained from D. antarctica and 251 from C. quitensis, 25 displayed biological activity. Nineteen extracts displayed leishmanicidal activity, and six inhibited the growth of at least one tumour cell line. These fungi belong to 19 taxa of the genera Alternaria, Antarctomyces, Cadophora, Davidiella, Helgardia, Herpotrichia, Microdochium, Oculimacula, Phaeosphaeria and one unidentified fungus. Extracts of 12 fungal isolates inhibited the proliferation of L. amazonesis at a low IC(50) of between 0.2 and 12.5 μg ml(-1). The fungus Phaeosphaeria herpotrichoides displayed only leishmanicidal activity with an IC(50) of 0.2 μg ml(-1), which is equivalent to the inhibitory value of amphotericin B. The extract of Microdochium phragmitis displayed specific cytotoxic activity against the UACC-62 cell line with an IC(50) value of 12.5 μg ml(-1). Our results indicate that the unique angiosperms living in Antarctica shelter an interesting bioactive fungal community that is able to produce antiprotozoal and antitumoral molecules. These molecules may be used to develop new leishmanicidal and anticancer drugs.
Zhao, Dan; Huang, Shanshan; Qu, Menghua; Wang, Changyuan; Liu, Zhihao; Li, Zhen; Peng, Jinyong; Liu, Kexin; Li, Yanxia; Ma, Xiaodong; Shu, Xiaohong
2017-01-27
A new series of diphenylpyrimidine derivatives (DPPYs) bearing various aniline side chains at the C-2 position of pyrimidine core were synthesized as potent BTK inhibitors. Most of these inhibitors displayed improved activity against B leukemia cell lines compared with lead compound spebrutinib. Subsequent studies showed that the peculiar inhibitor 7j, with IC 50 values of 10.5 μM against Ramos cells and 19.1 μM against Raji cells, also displayed slightly higher inhibitory ability than the novel agent ibrutinib. Moreover, compound 7j is not sensitive to normal cells PBMC, indicating low cell cytotoxicity. In addition, flow cytometry analysis indicated that 7j significantly induced the apoptosis of Ramos cells, and arrested the cell cycle at the G0/G1 phase. These explorations provided new clues to discover pyrimidine scaffold as more effective BTK inhibitors. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Characterization of ibrutinib-sensitive and -resistant mantle lymphoma cells.
Ma, Jiao; Lu, Pin; Guo, Ailin; Cheng, Shuhua; Zong, Hongliang; Martin, Peter; Coleman, Morton; Wang, Y Lynn
2014-09-01
Ibrutinib inhibits Bruton tyrosine kinase (BTK), a key component of early B-cell receptor (BCR) signalling pathways. A multicentre phase 2 trial of ibrutinib in patients with relapsed/refractory mantle cell lymphoma (MCL) demonstrated a remarkable response rate. However, approximately one-third of patients have primary resistance to the drug while other patients appear to lose response and develop secondary resistance. Understanding the molecular mechanisms underlying ibrutinib sensitivity is of paramount importance. In this study, we investigated cell lines and primary MCL cells that display differential sensitivity to ibrutinib. We found that the primary cells display a higher BTK activity than normal B cells and MCL cells show differential sensitivity to BTK inhibition. Genetic knockdown of BTK inhibits the growth, survival and proliferation of ibrutinib-sensitive but not resistant MCL cell lines, suggesting that ibrutinib acts through BTK to produce its anti-tumour activities. Interestingly, inhibition of ERK1/2 and AKT, but not BTK phosphorylation per se, correlates well with cellular response to BTK inhibition in cell lines as well as in primary tumours. Our study suggests that, to prevent primary resistance or to overcome secondary resistance to BTK inhibition, a combinatory strategy that targets multiple components or multiple pathways may represent the most effective approach. © 2014 John Wiley & Sons Ltd.
Qin, Xiao-Xiao; Zhang, Ming-Yue; Han, Ying-Yan; Hao, Jing-Hong; Liu, Chao-Jie; Fan, Shuang-Xi
2018-04-11
The present study aimed to compare polyphenols among red lettuce cultivars and identify suitable cultivars for the development and utilization of healthy vegetables. Polyphenols, mineral elements, and antioxidant activity were analyzed in the leaves of six red pigmented lettuce ( Lactuca sativa L.) cultivars; thereafter, we assessed the anti-tumor effects of cultivar B-2, which displayed the highest antioxidant activity. Quadrupole-Orbitrap mass spectrometry analysis revealed four classes of polyphenols in these cultivars. The composition and contents of these metabolites varied significantly among cultivars and primarily depended on leaf color. The B-2 cultivar had the highest antioxidant potential than others because it contained the highest levels of polyphenols, especially anthocyanin, flavone, and phenolic acid; furthermore, this cultivar displayed anti-tumor effects against the human lung adenocarcinoma cell line A549, human hepatoma cell line Bel7402, human cancer colorectal adenoma cell line HCT-8, and HT-29 human colon cancer cell line. Hence, the new red-leaf lettuce cultivar B-2 has a distinct metabolite profile, with high potential for development and utilization of natural phytochemical and mineral resources in lettuces and can be used as a nutrient-dense food product.
Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds.
Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F; Furling, Denis
2017-04-01
Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. © 2017. Published by The Company of Biologists Ltd.
Immortalized human myotonic dystrophy muscle cell lines to assess therapeutic compounds
Arandel, Ludovic; Polay Espinoza, Micaela; Matloka, Magdalena; Bazinet, Audrey; De Dea Diniz, Damily; Naouar, Naïra; Rau, Frédérique; Jollet, Arnaud; Edom-Vovard, Frédérique; Mamchaoui, Kamel; Tarnopolsky, Mark; Puymirat, Jack; Battail, Christophe; Boland, Anne; Deleuze, Jean-Francois; Mouly, Vincent; Klein, Arnaud F.
2017-01-01
ABSTRACT Myotonic dystrophy type 1 (DM1) and type 2 (DM2) are autosomal dominant neuromuscular diseases caused by microsatellite expansions and belong to the family of RNA-dominant disorders. Availability of cellular models in which the DM mutation is expressed within its natural context is essential to facilitate efforts to identify new therapeutic compounds. Here, we generated immortalized DM1 and DM2 human muscle cell lines that display nuclear RNA aggregates of expanded repeats, a hallmark of myotonic dystrophy. Selected clones of DM1 and DM2 immortalized myoblasts behave as parental primary myoblasts with a reduced fusion capacity of immortalized DM1 myoblasts when compared with control and DM2 cells. Alternative splicing defects were observed in differentiated DM1 muscle cell lines, but not in DM2 lines. Splicing alterations did not result from differentiation delay because similar changes were found in immortalized DM1 transdifferentiated fibroblasts in which myogenic differentiation has been forced by overexpression of MYOD1. As a proof-of-concept, we show that antisense approaches alleviate disease-associated defects, and an RNA-seq analysis confirmed that the vast majority of mis-spliced events in immortalized DM1 muscle cells were affected by antisense treatment, with half of them significantly rescued in treated DM1 cells. Immortalized DM1 muscle cell lines displaying characteristic disease-associated molecular features such as nuclear RNA aggregates and splicing defects can be used as robust readouts for the screening of therapeutic compounds. Therefore, immortalized DM1 and DM2 muscle cell lines represent new models and tools to investigate molecular pathophysiological mechanisms and evaluate the in vitro effects of compounds on RNA toxicity associated with myotonic dystrophy mutations. PMID:28188264
Muchima, Kaname; Todaka, Taro; Shinchi, Hiroyuki; Sato, Ayaka; Tazoe, Arisa; Aramaki, Rikiya; Kakitsubata, Yuhei; Yokoyama, Risa; Arima, Naomichi; Baba, Masanori; Wakao, Masahiro; Ito, Yuji; Suda, Yasuo
2018-04-01
Adult T-cell leukemia (ATL) is an intractable blood cancer caused by the infection of human T-cell leukemia virus type-1, and effective medical treatment is required. It is known that the structure and expression levels of cell surface sugar chains vary depending on cell states such as inflammation and cancer. Thus, it is expected that the antibody specific for ATL cell surface sugar chain would be an effective diagnostic tool and a strong candidate for the development of an anti-ATL drug. Here, we developed a stable sugar chain-binding single-chain variable fragment antibody (scFv) that can bind to ATL cells using a fibre-type Sugar Chip and phage display method. The fiber-type Sugar Chips were prepared using O-glycans released from ATL cell lines. The scFv-displaying phages derived from human B cells (diversity: 1.04 × 108) were then screened using the fiber-type Sugar Chips, and an O-glycan-binding scFv was obtained. The flow cytometry analysis revealed that the scFv predominantly bound to ATL cell lines. The sugar chain-binding properties of the scFv was evaluated by array-type Sugar Chip immobilized with a library of synthetic glycosaminoglycan disaccharide structures. Highly sulphated disaccharide structures were found to have high affinity to scFv.
Leuchs, Barbara; Frank-Stöhr, Monika; Schlehofer, Jörg R.; Rommelaere, Jean; Lacroix, Jeannine
2017-01-01
Osteosarcoma is the most frequent malignant disease of the bone. On the basis of early clinical experience in the 1960s with H-1 protoparvovirus (H-1PV) in osteosarcoma patients, this effective oncolytic virus was selected for systematic preclinical testing on various osteosarcoma cell cultures. A panel of five human osteosarcoma cell lines (CAL 72, H-OS, MG-63, SaOS-2, U-2OS) was tested. Virus oncoselectivity was confirmed by infecting non-malignant human neonatal fibroblasts and osteoblasts used as culture models of non-transformed mesenchymal cells. H-1PV was found to enter osteosarcoma cells and to induce viral DNA replication, transcription of viral genes, and translation to viral proteins. After H-1PV infection, release of infectious viral particles from osteosarcoma cells into the supernatant indicated successful viral assembly and egress. Crystal violet staining revealed progressive cytomorphological changes in all osteosarcoma cell lines. Infection of osteosarcoma cell lines with the standard H-1PV caused an arrest of the cell cycle in the G2 phase, and these lines had a limited capacity for standard H-1PV virus replication. The cytotoxicity of wild-type H-1PV virus towards osteosarcoma cells was compared in vitro with that of two variants, Del H-1PV and DM H-1PV, previously described as fitness variants displaying higher infectivity and spreading in human transformed cell lines of different origins. Surprisingly, wild-type H-1PV displayed the strongest cytostatic and cytotoxic effects in this analysis and thus seems the most promising for the next preclinical validation steps in vivo. PMID:29039746
Geiss, Carsten; Kis, Zoltán; Leuchs, Barbara; Frank-Stöhr, Monika; Schlehofer, Jörg R; Rommelaere, Jean; Dinsart, Christiane; Lacroix, Jeannine
2017-10-17
Osteosarcoma is the most frequent malignant disease of the bone. On the basis of early clinical experience in the 1960s with H-1 protoparvovirus (H-1PV) in osteosarcoma patients, this effective oncolytic virus was selected for systematic preclinical testing on various osteosarcoma cell cultures. A panel of five human osteosarcoma cell lines (CAL 72, H-OS, MG-63, SaOS-2, U-2OS) was tested. Virus oncoselectivity was confirmed by infecting non-malignant human neonatal fibroblasts and osteoblasts used as culture models of non-transformed mesenchymal cells. H-1PV was found to enter osteosarcoma cells and to induce viral DNA replication, transcription of viral genes, and translation to viral proteins. After H-1PV infection, release of infectious viral particles from osteosarcoma cells into the supernatant indicated successful viral assembly and egress. Crystal violet staining revealed progressive cytomorphological changes in all osteosarcoma cell lines. Infection of osteosarcoma cell lines with the standard H-1PV caused an arrest of the cell cycle in the G2 phase, and these lines had a limited capacity for standard H-1PV virus replication. The cytotoxicity of wild-type H-1PV virus towards osteosarcoma cells was compared in vitro with that of two variants, Del H-1PV and DM H-1PV, previously described as fitness variants displaying higher infectivity and spreading in human transformed cell lines of different origins. Surprisingly, wild-type H-1PV displayed the strongest cytostatic and cytotoxic effects in this analysis and thus seems the most promising for the next preclinical validation steps in vivo.
Löschmann, Nadine; Michaelis, Martin; Rothweiler, Florian; Zehner, Richard; Cinatl, Jaroslav; Voges, Yvonne; Sharifi, Mohsen; Riecken, Kristoffer; Meyer, Jochen; von Deimling, Andreas; Fichtner, Iduna; Ghafourian, Taravat; Westermann, Frank; Cinatl, Jindrich
2013-12-01
Novel treatment options are needed for the successful therapy of patients with high-risk neuroblastoma. Here, we investigated the cyclin-dependent kinase (CDK) inhibitor SNS-032 in a panel of 109 neuroblastoma cell lines consisting of 19 parental cell lines and 90 sublines with acquired resistance to 14 different anticancer drugs. Seventy-three percent of the investigated neuroblastoma cell lines and all four investigated primary tumor samples displayed concentrations that reduce cell viability by 50% in the range of the therapeutic plasma levels reported for SNS-032 (<754 nM). Sixty-two percent of the cell lines and two of the primary samples displayed concentrations that reduce cell viability by 90% in this concentration range. SNS-032 also impaired the growth of the multidrug-resistant cisplatin-adapted UKF-NB-3 subline UKF-NB-3(r)CDDP(1000) in mice. ABCB1 expression (but not ABCG2 expression) conferred resistance to SNS-032. The antineuroblastoma effects of SNS-032 did not depend on functional p53. The antineuroblastoma mechanism of SNS-032 included CDK7 and CDK9 inhibition-mediated suppression of RNA synthesis and subsequent depletion of antiapoptotic proteins with a fast turnover rate including X-linked inhibitor of apoptosis (XIAP), myeloid cell leukemia sequence 1 (Mcl-1), baculoviral IAP repeat containing 2 (BIRC2; cIAP-1), and survivin. In conclusion, CDK7 and CDK9 represent promising drug targets and SNS-032 represents a potential treatment option for neuroblastoma including therapy-refractory cases.
Löschmann, Nadine; Michaelis, Martin; Rothweiler, Florian; Zehner, Richard; Cinatl, Jaroslav; Voges, Yvonne; Sharifi, Mohsen; Riecken, Kristoffer; Meyer, Jochen; von Deimling, Andreas; Fichtner, Iduna; Ghafourian, Taravat; Westermann, Frank; Cinatl, Jindrich
2013-01-01
Novel treatment options are needed for the successful therapy of patients with high-risk neuroblastoma. Here, we investigated the cyclin-dependent kinase (CDK) inhibitor SNS-032 in a panel of 109 neuroblastoma cell lines consisting of 19 parental cell lines and 90 sublines with acquired resistance to 14 different anticancer drugs. Seventy-three percent of the investigated neuroblastoma cell lines and all four investigated primary tumor samples displayed concentrations that reduce cell viability by 50% in the range of the therapeutic plasma levels reported for SNS-032 (<754 nM). Sixty-two percent of the cell lines and two of the primary samples displayed concentrations that reduce cell viability by 90% in this concentration range. SNS-032 also impaired the growth of the multidrug-resistant cisplatin-adapted UKF-NB-3 subline UKF-NB-3rCDDP1000 in mice. ABCB1 expression (but not ABCG2 expression) conferred resistance to SNS-032. The antineuroblastoma effects of SNS-032 did not depend on functional p53. The antineuroblastoma mechanism of SNS-032 included CDK7 and CDK9 inhibition-mediated suppression of RNA synthesis and subsequent depletion of antiapoptotic proteins with a fast turnover rate including X-linked inhibitor of apoptosis (XIAP), myeloid cell leukemia sequence 1 (Mcl-1), baculoviral IAP repeat containing 2 (BIRC2; cIAP-1), and survivin. In conclusion, CDK7 and CDK9 represent promising drug targets and SNS-032 represents a potential treatment option for neuroblastoma including therapy-refractory cases. PMID:24466371
Teerasripreecha, Dungporn; Phuwapraisirisan, Preecha; Puthong, Songchan; Kimura, Kiyoshi; Okuyama, Masayuki; Mori, Haruhide; Kimura, Atsuo; Chanchao, Chanpen
2012-03-30
Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, Apis mellifera propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity. Propolis was sequentially extracted with methanol, dichloromethane and hexane and the cytotoxic activity of each crude extract was assayed for antiproliferative/cytotoxic activity in vitro against five human cell lines derived from duet carcinoma (BT474), undifferentiated lung (Chaco), liver hepatoblastoma (Hep-G(2)), gastric carcinoma (KATO-III) and colon adenocarcinoma (SW620) cancers. The human foreskin fibroblast cell line (Hs27) was used as a non-transformed control. Those crude extracts that displayed antiproliferative/cytotoxic activity were then further fractionated by column chromatography using TLC-pattern and MTT-cytotoxicity bioassay guided selection of the fractions. The chemical structure of each enriched bioactive compound was analyzed by nuclear magnetic resonance and mass spectroscopy. The crude hexane and dichloromethane extracts of propolis displayed antiproliferative/cytotoxic activities with IC(50) values across the five cancer cell lines ranging from 41.3 to 52.4 μg/ml and from 43.8 to 53.5 μg/ml, respectively. Two main bioactive components were isolated, one cardanol and one cardol, with broadly similar in vitro antiproliferation/cytotoxicity IC(50) values across the five cancer cell lines and the control Hs27 cell line, ranging from 10.8 to 29.3 μg/ml for the cardanol and < 3.13 to 5.97 μg/ml (6.82 - 13.0 μM) for the cardol. Moreover, both compounds induced cytotoxicity and cell death without DNA fragmentation in the cancer cells, but only an antiproliferation response in the control Hs27 cells However, these two compounds did not account for the net antiproliferation/cytotoxic activity of the crude extracts suggesting the existence of other potent compounds or synergistic interactions in the propolis extracts. This is the first report that Thai A. mellifera propolis contains at least two potentially new compounds (a cardanol and a cardol) with potential anti-cancer bioactivity. Both could be alternative antiproliferative agents for future development as anti-cancer drugs.
Marin-Valencia, Isaac; Yang, Chendong; Mashimo, Tomoyuki; Cho, Steve; Baek, Hyeonman; Yang, Xiao-Li; Rajagopalan, Kartik N.; Maddie, Melissa; Vemireddy, Vamsidhara; Zhao, Zhenze; Cai, Ling; Good, Levi; Tu, Benjamin P.; Hatanpaa, Kimmo J.; Mickey, Bruce E.; Matés, José M.; Pascual, Juan M.; Maher, Elizabeth A.; Malloy, Craig R.; DeBerardinis, Ralph J.; Bachoo, Robert M.
2012-01-01
SUMMARY Dysregulated metabolism is a hallmark of cancer cell lines, but little is known about the fate of glucose and other nutrients in tumors growing in their native microenvironment. To study tumor metabolism in vivo, we used an orthotopic mouse model of primary human glioblastoma (GBM). We infused 13C-labeled nutrients into mice bearing three independent GBM lines, each with a distinct set of mutations. All three lines displayed glycolysis, as expected for aggressive tumors. They also displayed unexpected metabolic complexity, oxidizing glucose via pyruvate dehydrogenase and the citric acid cycle, and using glucose to supply anaplerosis and other biosynthetic activities. Comparing the tumors to surrounding brain revealed obvious metabolic differences, notably the accumulation of a large glutamine pool within the tumors. Many of these same activities were conserved in cells cultured ex vivo from the tumors. Thus GBM cells utilize mitochondrial glucose oxidation during aggressive tumor growth in vivo. PMID:22682223
Dietlein, Felix; Thelen, Lisa; Jokic, Mladen; Jachimowicz, Ron D; Ivan, Laura; Knittel, Gero; Leeser, Uschi; van Oers, Johanna; Edelmann, Winfried; Heukamp, Lukas C; Reinhardt, H Christian
2014-05-01
Here, we use a large-scale cell line-based approach to identify cancer cell-specific mutations that are associated with DNA-dependent protein kinase catalytic subunit (DNA-PKcs) dependence. For this purpose, we profiled the mutational landscape across 1,319 cancer-associated genes of 67 distinct cell lines and identified numerous genes involved in homologous recombination-mediated DNA repair, including BRCA1, BRCA2, ATM, PAXIP, and RAD50, as being associated with non-oncogene addiction to DNA-PKcs. Mutations in the mismatch repair gene MSH3, which have been reported to occur recurrently in numerous human cancer entities, emerged as the most significant predictors of DNA-PKcs addiction. Concordantly, DNA-PKcs inhibition robustly induced apoptosis in MSH3-mutant cell lines in vitro and displayed remarkable single-agent efficacy against MSH3-mutant tumors in vivo. Thus, we here identify a therapeutically actionable synthetic lethal interaction between MSH3 and the non-homologous end joining kinase DNA-PKcs. Our observations recommend DNA-PKcs inhibition as a therapeutic concept for the treatment of human cancers displaying homologous recombination defects.
Pérez, Bianca C; Fernandes, Iva; Mateus, Nuno; Teixeira, Cátia; Gomes, Paula
2013-12-15
Cinnamic acids and quinolines are known as useful scaffolds in the discovery of antitumor agents. Therefore, N-cinnamoylated analogues of chloroquine, recently reported as potent dual-action antimalarials, were evaluated against three different cancer cell lines: MKN-28, Caco-2, and MCF-7. All compounds display anti-proliferative activity in the micromolar range against the three cell lines tested, and most of them were more active than their parent drug, chloroquine, against all cell lines tested. Hence, N-cinnamoyl-chloroquine analogues are a good start towards development of affordable antitumor leads. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ando, Shotaro; Kawada, Jun-Ichi; Watanabe, Takahiro; Suzuki, Michio; Sato, Yoshitaka; Torii, Yuka; Asai, Masato; Goshima, Fumi; Murata, Takayuki; Shimizu, Norio; Ito, Yoshinori; Kimura, Hiroshi
2016-11-22
Epstein-Barr virus (EBV) infects not only B cells, but also T cells and natural killer (NK) cells, and is associated with T or NK cell lymphoma. These lymphoid malignancies are refractory to conventional chemotherapy. We examined the activation of the JAK3/STAT5 pathway in EBV-positive and -negative B, T and NK cell lines and in cell samples from patients with EBV-associated T cell lymphoma. We then evaluated the antitumor effects of the selective JAK3 inhibitor, tofacitinib, against these cell lines in vitro and in a murine xenograft model. We found that all EBV-positive T and NK cell lines and patient samples tested displayed activation of the JAK3/STAT5 pathway. Treatment of these cell lines with tofacitinib reduced the levels of phospho-STAT5, suppressed proliferation, induced G1 cell-cycle arrest and decreased EBV LMP1 and EBNA1 expression. An EBV-negative NK cell line was also sensitive to tofacitinib, whereas an EBV-infected NK cell line was more sensitive to tofacitinib than its parental line. Tofacitinib significantly inhibited the growth of established tumors in NOG mice. These findings suggest that tofacitinib may represent a useful therapeutic agent for patients with EBV-associated T and NK cell lymphoma.
Ndour, Papa Alioune; Brocqueville, Guillaume; Ouk, Tan-Sothéa; Goormachtigh, Gautier; Morales, Olivier; Mougel, Alexandra; Bertout, Julie; Melnyk, Oleg; Fafeur, Véronique; Feuillard, Jean; Coll, Jean; Adriaenssens, Eric
2012-04-01
Epstein-Barr virus (EBV) is a common human herpesvirus. Infection with EBV is associated with several human malignancies in which the virus expresses a set of latent proteins, among which is latent membrane protein 1 (LMP1). LMP1 is able to transform numerous cell types and is considered the main oncogenic protein of EBV. The mechanism of action is based on mimicry of activated members of the tumor necrosis factor (TNF) receptor superfamily, through the ability of LMP1 to bind similar adapters and to activate signaling pathways. We previously generated two unique models: a monocytic cell line and a lymphocytic (NC5) cell line immortalized by EBV that expresses the type II latency program. Here we generated LMP1 dominant negative forms (DNs), based on fusion between green fluorescent protein (GFP) and transformation effector site 1 (TES1) or TES2 of LMP1. Then we generated cell lines conditionally expressing these DNs. These DNs inhibit NF-κB and Akt pathways, resulting in the impairment of survival processes and increased apoptosis in these cell lines. This proapoptotic effect is due to reduced interaction of LMP1 with specific adapters and the recruitment of these adapters to DNs, which enable the generation of an apoptotic complex involving TRADD, FADD, and caspase 8. Similar results were obtained with cell lines displaying a latency III program in which LMP1-DNs decrease cell viability. Finally, we prove that synthetic peptides display similar inhibitory effects in EBV-infected cells. DNs derived from LMP1 could be used to develop therapeutic approaches for malignant diseases associated with EBV.
Ndour, Papa Alioune; Brocqueville, Guillaume; Ouk, Tan-Sothéa; Goormachtigh, Gautier; Morales, Olivier; Mougel, Alexandra; Bertout, Julie; Melnyk, Oleg; Fafeur, Véronique; Feuillard, Jean; Coll, Jean
2012-01-01
Epstein-Barr virus (EBV) is a common human herpesvirus. Infection with EBV is associated with several human malignancies in which the virus expresses a set of latent proteins, among which is latent membrane protein 1 (LMP1). LMP1 is able to transform numerous cell types and is considered the main oncogenic protein of EBV. The mechanism of action is based on mimicry of activated members of the tumor necrosis factor (TNF) receptor superfamily, through the ability of LMP1 to bind similar adapters and to activate signaling pathways. We previously generated two unique models: a monocytic cell line and a lymphocytic (NC5) cell line immortalized by EBV that expresses the type II latency program. Here we generated LMP1 dominant negative forms (DNs), based on fusion between green fluorescent protein (GFP) and transformation effector site 1 (TES1) or TES2 of LMP1. Then we generated cell lines conditionally expressing these DNs. These DNs inhibit NF-κB and Akt pathways, resulting in the impairment of survival processes and increased apoptosis in these cell lines. This proapoptotic effect is due to reduced interaction of LMP1 with specific adapters and the recruitment of these adapters to DNs, which enable the generation of an apoptotic complex involving TRADD, FADD, and caspase 8. Similar results were obtained with cell lines displaying a latency III program in which LMP1-DNs decrease cell viability. Finally, we prove that synthetic peptides display similar inhibitory effects in EBV-infected cells. DNs derived from LMP1 could be used to develop therapeutic approaches for malignant diseases associated with EBV. PMID:22258264
Establishment and characterization of five immortalized human scalp dermal papilla cell lines.
Kwack, Mi Hee; Yang, Jung Min; Won, Gong Hee; Kim, Moon Kyu; Kim, Jung Chul; Sung, Young Kwan
2018-02-05
Dermal papilla (DP) regulates the growth and cycling of hair follicles. Cultured DP cells are useful for the study of their role in relation to hair growth and regeneration. However, cultivation of human DP cells is tedious and difficult. In addition, cultured DP cells possess a relatively short replicative life span, requiring immortalized human DP cell lines. We previously established an immortalized human DP cell line, SV40T-hTERT-DPC, by introducing human telomerase reverse transcriptase (hTERT) gene into the transformed cell line, SV40T-DPC. In this study, we co-transfected the simian virus 40 large T antigen (SV40T-Ag) and hTERT into DP cells from scalp hair follicles from a male with androgenetic alopecia and established five immortalized DP cell lines and named KNU-101, KNU-102, KNU-103, KNU-201 and KNU-202. We then evaluated tumorigenicity, expression of DP markers, responses to androgen, Wnt3a and BMP4, and expression of DP signature genes. These cell lines displayed early passage morphology and maintained responses to androgen, Wnt and BMP. Furthermore, these cell lines expressed DP markers and DP signature genes. KNU cell lines established in this study are potentially useful sources for hair research. Copyright © 2018 Elsevier Inc. All rights reserved.
Actin-Binding Protein Requirement for Cortical Stability and Efficient Locomotion
NASA Astrophysics Data System (ADS)
Cunningham, C. Casey; Gorlin, Jed B.; Kwiatkowski, David J.; Hartwig, John H.; Janmey, Paul A.; Randolph Byers, H.; Stossel, Thomas P.
1992-01-01
Three unrelated tumor cell lines derived from human malignant melanomas lack actin-binding protein (ABP), which cross-links actin filaments in vitro and connects these filaments to plasma membrane glycoproteins. The ABP-deficient cells have impaired locomotion and display circumferential blebbing of the plasma membrane. Expression of ABP in one of the lines after transfection restored translocational motility and reduced membrane blebbing. These findings establish that ABP functions to stabilize cortical actin in vivo and is required for efficient cell locomotion.
Guillaud-Bataille, M; Brison, O; Danglot, G; Lavialle, C; Raynal, B; Lazar, V; Dessen, P; Bernheim, A
2009-01-01
High-level amplifications observed in tumor cells are usually indicative of genes involved in oncogenesis. We report here a high resolution characterization of a new amplified region in the SW613-S carcinoma cell line. This cell line contains tumorigenic cells displaying high-level MYC amplification in the form of double minutes (DM(+) cells) and non tumorigenic cells exhibiting low-level MYC amplification in the form of homogeneously staining regions (DM(-) cells). Both cell types were studied at genomic and functional levels. The DM(+) cells display a second amplification, corresponding to the 14q24.1 region, in a distinct population of DMs. The 0.43-Mb amplified and overexpressed region contains the PLEK2, PIGH, ARG2, VTI1B, RDH11, and ZFYVE26 genes. Both amplicons were stably maintained upon in vitro and in vivo propagation. However, the 14q24.1 amplicon was not found in cells with high-level MYC amplification in the form of HSRs, either obtained after spontaneous integration of endogenous DM MYC copies or after transfection of DM(-) cells with a MYC gene expression vector. These HSR-bearing cells are highly tumorigenic. The 14q24.1 amplification may not play a role in malignancy per se but might contribute to maintaining the amplification in the form of DMs. Copyright 2009 S. Karger AG, Basel.
Schlaich, Fabian; Brons, Stephan; Haberer, Thomas; Debus, Jürgen; Combs, Stephanie E; Weber, Klaus-Josef
2013-11-06
Characterization of combination effects of chemotherapy drugs with carbon ions in comparison to photons in vitro. The human colon adenocarcinoma cell line WiDr was tested for combinations with camptothecin, cisplatin, gemcitabine and paclitaxel. In addition three other human tumour cell lines (A549: lung, LN-229: glioblastoma, PANC-1: pancreas) were tested for the combination with camptothecin. Cells were irradiated with photon doses of 2, 4, 6 and 8 Gy or carbon ion doses of 0.5, 1, 2 and 3 Gy. Cell survival was assessed using the clonogenic growth assay. Treatment dependent changes in cell cycle distribution (up to 12 hours post-treatment) were measured by FACS analysis after propidium-iodide staining. Apoptosis was monitored for up to 36 hours post-treatment by Nicoletti-assay (with qualitative verification using DAPI staining). All cell lines exhibited the well-known increase of killing efficacy per unit dose of carbon ion exposure, with relative biological efficiencies at 10% survival (RBE10) ranging from 2.3 to 3.7 for the different cell lines. In combination with chemotherapy additive toxicity was the prevailing effect. Only in combination with gemcitabine or cisplatin (WiDr) or camptothecin (all cell lines) the photon sensitivity was slightly enhanced, whereas purely independent toxicities were found with the carbon ion irradiation, in all cases. Radiation-induced cell cycle changes displayed the generally observed dose-dependent G2-arrest with little effect on S-phase fraction for all cell lines for photons and for carbon ions. Only paclitaxel showed a significant induction of apoptosis in WiDr cell line but independent of the used radiation quality. Combined effects of different chemotherapeutics with photons or with carbon ions do neither display qualitative nor substantial quantitative differences. Small radiosensitizing effects, when observed with photons are decreased with carbon ions. The data support the idea that a radiochemotherapy with common drugs and carbon ion irradiation might be as feasible as respective photon-based protocols. The present data serve as an important radiobiological basis for further combination experiments, as well as clinical studies on combination treatments.
Ávila-González, Daniela; Vega-Hernández, Eva; Regalado-Hernández, Juan Carlos; De la Jara-Díaz, Julio Francisco; García-Castro, Irma Lydia; Molina-Hernández, Anayansi; Moreno-Verduzco, Elsa Romelia; Razo-Aguilera, Guadalupe; Flores-Herrera, Héctor; Portillo, Wendy; Díaz-Martínez, Néstor Emmanuel; García-López, Guadalupe; Díaz, Néstor Fabián
2015-09-01
Data from the literature suggest that human embryonic stem cell (hESC) lines used in research do not genetically represent all human populations. The derivation of hESC through conventional methods involve the destruction of viable human embryos, as well the use of mouse embryonic fibroblasts as a feeder layer, which has several drawbacks. We obtained the hESC line (Amicqui-1) from poor-quality (PQ) embryos derived and maintained on human amniotic epithelial cells (hAEC). This line displays a battery of markers of pluripotency and we demonstrated the capacity of these cells to produce derivates of the three germ layers. Copyright © 2015. Published by Elsevier B.V.
Holmes, Katie E.; Thompson, Victoria; Piskun, Caroline M.; Kohnken, Rebecca A.; Huelsmeyer, Michael K.; Fan, Timothy M.; Stein, Timothy J.
2013-01-01
Osteosarcoma is an aggressive malignancy and represents the most frequent primary bone malignancy of dogs and humans. Prognostic factors reported for osteosarcoma include tumor size, presence of metastatic disease, and serum alkaline phosphatase (ALP) concentration at the time of diagnosis. To date, there have been no studies to determine whether the behavior of osteosarcoma cells differ based on serum ALP concentration. Here we report on the generation of six canine osteosarcoma cell lines from osteosarcoma-bearing dogs with differences in serum ALP concentration. To determine whether in vitro behavior differs between primary osteosarcoma cell lines generated from patients with normal or increased serum ALP assays were performed to evaluate proliferation, migration, invasion, and chemosensitivity. There were no significant differences in cell proliferation, migration, invasion, or chemosensitivity between cell lines associated normal or increased serum ALP concentration. PMID:23489774
Holmes, K E; Thompson, V; Piskun, C M; Kohnken, R A; Huelsmeyer, M K; Fan, T M; Stein, T J
2015-09-01
Osteosarcoma is an aggressive malignancy and represents the most frequent primary bone malignancy of dogs and humans. Prognostic factors reported for osteosarcoma include tumour size, presence of metastatic disease and serum alkaline phosphatase (ALP) concentration at the time of diagnosis. To date, there have been no studies to determine whether the behaviour of osteosarcoma cells differ based on serum ALP concentration. Here, we report on the generation of six canine osteosarcoma cell lines from osteosarcoma-bearing dogs with differences in serum ALP concentration. To determine whether in vitro behaviour differs between primary osteosarcoma cell lines generated from patients with normal or increased serum ALP, assays were performed to evaluate proliferation, migration, invasion and chemosensitivity. There were no significant differences in cell proliferation, migration, invasion or chemosensitivity between cell lines associated with normal or increased serum ALP concentration. © 2013 Blackwell Publishing Ltd.
von Erichsen, J; Hecht, W; Löhberg-Gruene, C; Reinacher, M
2012-07-01
The purpose of the study was to evaluate clonality and presence of numerical chromosomal and centrosomal aberrations in 5 established feline fibrosarcoma cell lines and in a fetal dermal fibroblast cell line as a control. The clonality of all cell lines was examined using limited-dilution cloning. The number of chromosomes was counted in metaphase spreads. The immunocytochemical analysis of centrosome numbers was performed by indirect immunofluorescence using a monoclonal antibody that targets γ-tubulin, a well-characterized component of centrosomes. Monoclonal cell populations could be established from all cell lines. In all feline fibrosarcoma cell lines, the number of chromosomes deviated abnormally from the normal feline chromosome number of 2n = 38, ranging from 19 to 155 chromosomes per cell. Centrosome hyperamplification was observed in all 5 feline fibrosarcoma cell lines with a proportion of cells (5.7 to 15.2%) having more than 2 centrosomes. In the control cell line, only 0.6% of the cells had more than 2 centrosomes. In conclusion, the examinations revealed that centrosome hyperamplification occurs in feline fibrosarcoma cell lines. The feline fibrosarcoma cell lines possessed 10 to 25 times as many cells with centrosome hyperamplification as the control cell line. These observations suggest an association of numerical centrosome aberrations with karyotype instability by increasing the frequency of chromosome missegregation. The results of this study may be helpful for further characterization of feline fibrosarcomas and may contribute to the knowledge of cytogenetic factors that may be important for the pathogenesis of feline fibrosarcomas.
Sun, Raymond Wai-Yin; Zhang, Ming; Li, Dan; Li, Mian; Wong, Alice Sze-Tsai
2016-10-01
An anti-cancer active gold(III) pyrrolidinedithiocarbamato complex [(PDTC)Au III Cl 2 ] (1) has been synthesized and characterized by means of X-ray crystallography. Compared to the pyrrolidinedithiocarbamate ligand itself, this gold(III) complex displays an up to 33-fold higher anti-cancer potency towards a panel of cancer cell lines including the cisplatin-resistant ovarian carcinoma cell line (A2780cis). As demonstrated by a set of Transwell® assay-based cytotoxicity experiments, incorporating this gold(III) complex in a zinc-based biodegradable metal-organic framework (MOF) displays a significant enhancement in anti-cancer activity towards A2780cis than the gold(III) complex alone. Copyright © 2016 Elsevier Inc. All rights reserved.
Ando, Shotaro; Kawada, Jun-ichi; Watanabe, Takahiro; Suzuki, Michio; Sato, Yoshitaka; Torii, Yuka; Asai, Masato; Goshima, Fumi; Murata, Takayuki; Shimizu, Norio; Ito, Yoshinori; Kimura, Hiroshi
2016-01-01
Epstein-Barr virus (EBV) infects not only B cells, but also T cells and natural killer (NK) cells, and is associated with T or NK cell lymphoma. These lymphoid malignancies are refractory to conventional chemotherapy. We examined the activation of the JAK3/STAT5 pathway in EBV-positive and -negative B, T and NK cell lines and in cell samples from patients with EBV-associated T cell lymphoma. We then evaluated the antitumor effects of the selective JAK3 inhibitor, tofacitinib, against these cell lines in vitro and in a murine xenograft model. We found that all EBV-positive T and NK cell lines and patient samples tested displayed activation of the JAK3/STAT5 pathway. Treatment of these cell lines with tofacitinib reduced the levels of phospho-STAT5, suppressed proliferation, induced G1 cell-cycle arrest and decreased EBV LMP1 and EBNA1 expression. An EBV-negative NK cell line was also sensitive to tofacitinib, whereas an EBV-infected NK cell line was more sensitive to tofacitinib than its parental line. Tofacitinib significantly inhibited the growth of established tumors in NOG mice. These findings suggest that tofacitinib may represent a useful therapeutic agent for patients with EBV-associated T and NK cell lymphoma. PMID:27732937
Plectin-1 Targeted AAV Vector for the Molecular Imaging of Pancreatic Cancer
Konkalmatt, Prasad R.; Deng, Defeng; Thomas, Stephanie; Wu, Michael T.; Logsdon, Craig D.; French, Brent A.; Kelly, Kimberly A.
2013-01-01
Pancreatic ductal adenocarcinoma (PDAC) is highly malignant disease that is the fourth leading cause of cancer-related death in the US. Gene therapy using AAV vectors to selectively deliver genes to PDAC cells is an attractive treatment option for pancreatic cancer. However, most AAV serotypes display a broad spectrum of tissue tropism and none of the existing serotypes specifically target PDAC cells. This study tests the hypothesis that AAV2 can be genetically re-engineered to specifically target PDAC cells by modifying the capsid surface to display a peptide that has previously been shown to bind plectin-1. Toward this end, a Plectin-1 Targeting Peptide (PTP) was inserted into the loop IV region of the AAV2 capsid, and the resulting capsid (AAV-PTP) was used in a series of in vitro and in vivo experiments. In vitro, AAV-PTP was found to target all five human PDAC cell lines tested (PANC-1, MIA PaCa-2, HPAC, MPanc-96, and BxPC-3) preferentially over two non-neoplastic human pancreatic cell lines (human pancreatic ductal epithelial and human pancreatic stellate cells). In vivo, mice bearing subcutaneous tumor xenografts were generated using the PANC-1 cell line. Once tumors reached a size of ∼1–2 mm in diameter, the mice were injected intravenously with luciferase reporter vectors packaged in the either AAV-PTP or wild type AAV2 capsids. Luciferase expression was then monitored by bioluminescence imaging on days 3, 7, and 14 after vector injection. The results indicate that the AAV-PTP capsid displays a 37-fold preference for PANC-1 tumor xenographs over liver and other tissues; whereas the wild type AAV2 capsid displays a complementary preference for liver over tumors and other tissues. Together, these results establish proof-of-principle for the ability of PTP-modified AAV capsids to selectively target gene delivery to PDAC cells in vivo, which opens promising new avenues for the early detection, diagnosis, and treatment of pancreatic cancer. PMID:23616947
Protein Transduction Based Therapies for Breast Cancer
2006-07-01
we also have developed a method for screening for tissue-targeted transduction peptides using an M13 peptide phage display library. Using this...Instead the focus was on the ability to identify a tumor specific peptide. Task 4. An M13 peptide phage display library will be used for...cancespecific tumor lines by screening a peptide phage display library both in cell culture as well as in nude micebearing xenografts. Initial results in
2012-01-01
Background Propolis is a complex resinous honeybee product. It is reported to display diverse bioactivities, such as antimicrobial, anti-inflammatory and anti-tumor properties, which are mainly due to phenolic compounds, and especially flavonoids. The diversity of bioactive compounds depends on the geography and climate, since these factors affect the floral diversity. Here, Apis mellifera propolis from Nan province, Thailand, was evaluated for potential anti-cancer activity. Methods Propolis was sequentially extracted with methanol, dichloromethane and hexane and the cytotoxic activity of each crude extract was assayed for antiproliferative/cytotoxic activity in vitro against five human cell lines derived from duet carcinoma (BT474), undifferentiated lung (Chaco), liver hepatoblastoma (Hep-G2), gastric carcinoma (KATO-III) and colon adenocarcinoma (SW620) cancers. The human foreskin fibroblast cell line (Hs27) was used as a non-transformed control. Those crude extracts that displayed antiproliferative/cytotoxic activity were then further fractionated by column chromatography using TLC-pattern and MTT-cytotoxicity bioassay guided selection of the fractions. The chemical structure of each enriched bioactive compound was analyzed by nuclear magnetic resonance and mass spectroscopy. Results The crude hexane and dichloromethane extracts of propolis displayed antiproliferative/cytotoxic activities with IC50 values across the five cancer cell lines ranging from 41.3 to 52.4 μg/ml and from 43.8 to 53.5 μg/ml, respectively. Two main bioactive components were isolated, one cardanol and one cardol, with broadly similar in vitro antiproliferation/cytotoxicity IC50 values across the five cancer cell lines and the control Hs27 cell line, ranging from 10.8 to 29.3 μg/ml for the cardanol and < 3.13 to 5.97 μg/ml (6.82 - 13.0 μM) for the cardol. Moreover, both compounds induced cytotoxicity and cell death without DNA fragmentation in the cancer cells, but only an antiproliferation response in the control Hs27 cells However, these two compounds did not account for the net antiproliferation/cytotoxic activity of the crude extracts suggesting the existence of other potent compounds or synergistic interactions in the propolis extracts. Conclusion This is the first report that Thai A. mellifera propolis contains at least two potentially new compounds (a cardanol and a cardol) with potential anti-cancer bioactivity. Both could be alternative antiproliferative agents for future development as anti-cancer drugs. PMID:22458642
McDermott, Martina; Eustace, Alex J.; Busschots, Steven; Breen, Laura; Crown, John; Clynes, Martin; O’Donovan, Norma; Stordal, Britta
2014-01-01
The development of a drug-resistant cell line can take from 3 to 18 months. However, little is published on the methodology of this development process. This article will discuss key decisions to be made prior to starting resistant cell line development; the choice of parent cell line, dose of selecting agent, treatment interval, and optimizing the dose of drug for the parent cell line. Clinically relevant drug-resistant cell lines are developed by mimicking the conditions cancer patients experience during chemotherapy and cell lines display between two- and eight-fold resistance compared to their parental cell line. Doses of drug administered are low, and a pulsed treatment strategy is often used where the cells recover in drug-free media. High-level laboratory models are developed with the aim of understanding potential mechanisms of resistance to chemotherapy agents. Doses of drug are higher and escalated over time. It is common to have difficulty developing stable clinically relevant drug-resistant cell lines. A comparative selection strategy of multiple cell lines or multiple chemotherapeutic agents mitigates this risk and gives insight into which agents or type of cell line develops resistance easily. Successful selection strategies from our research are presented. Pulsed-selection produced platinum or taxane-resistant large cell lung cancer (H1299 and H460) and temozolomide-resistant melanoma (Malme-3M and HT144) cell lines. Continuous selection produced a lapatinib-resistant breast cancer cell line (HCC1954). Techniques for maintaining drug-resistant cell lines are outlined including; maintaining cells with chemotherapy, pulse treating with chemotherapy, or returning to master drug-resistant stocks. The heterogeneity of drug-resistant models produced from the same parent cell line with the same chemotherapy agent is explored with reference to P-glycoprotein. Heterogeneity in drug-resistant cell lines reflects the heterogeneity that can occur in clinical drug resistance. PMID:24639951
Mandrup, Ole A; Lykkemark, Simon; Kristensen, Peter
2017-02-10
One of the hallmarks of cancer is sustained angiogenesis. Here, normal endothelial cells are activated, and their formation of new blood vessels leads to continued tumour growth. An improved patient condition is often observed when angiogenesis is prevented or normalized through targeting of these genomically stable endothelial cells. However, intracellular targets constitute a challenge in therapy, as the agents modulating these targets have to be delivered and internalized specifically to the endothelial cells. Selection of antibodies binding specifically to certain cell types is well established. It is nonetheless a challenge to ensure that the binding of antibodies to the target cell will mediate internalization. Previously selection of such antibodies has been performed targeting cancer cell lines; most often using either monovalent display or polyvalent display. In this article, we describe selections that isolate internalizing antibodies by sequential combining monovalent and polyvalent display using two types of helper phages, one which increases display valence and one which reduces background. One of the selected antibodies was found to mediate internalization into human endothelial cells, although our results confirms that the single stranded nature of the DNA packaged into phage particles may limit applications aimed at targeting nucleic acids in mammalian cells.
Islam, M Q; Ringe, J; Reichmann, E; Migotti, R; Sittinger, M; da S Meirelles, L; Nardi, N B; Magnusson, P; Islam, K
2006-10-01
Bone marrow mesenchymal stem cells (MSC) integrate into various organs and contribute to the regeneration of diverse tissues. However, the mechanistic basis of the plasticity of MSC is not fully understood. The change of cell fate has been suggested to occur through cell fusion. We have generated hybrid cell lines by polyethylene-glycol-mediated cell fusion of primary porcine MSC with the immortal murine fibroblast cell line F7, a derivative of the GM05267 cell line. The hybrid cell lines display fibroblastic morphology and proliferate like immortal cells. They contain tetraploid to hexaploid porcine chromosomes accompanied by hypo-diploid murine chromosomes. Interestingly, many hybrid cell lines also express high levels of tissue-nonspecific alkaline phosphatase, which is considered to be a marker of undifferentiated embryonic stem cells. All tested hybrid cell lines retain osteogenic differentiation, a few of them also retain adipogenic potential, but none retain chondrogenic differentiation. Conditioned media from hybrid cells enhance the proliferation of both early-passage and late-passage porcine MSC, indicating that the hybrid cells secrete diffusible growth stimulatory factors. Murine F7 cells thus have the unique property of generating immortal cell hybrids containing unusually high numbers of chromosomes derived from normal cells. These hybrid cells can be employed in various studies to improve our understanding of regenerative biology. This is the first report, to our knowledge, describing the generation of experimentally induced cell hybrids by using normal primary MSC.
Ethanolic and aqueous extracts derived from Australian fungi inhibit cancer cell growth in vitro.
Beattie, Karren D; Ulrich, Rahel; Grice, I Darren; Uddin, Shaikh J; Blake, Tony B; Wood, Kyle A; Steele, Jules; Iu, Fontaine; May, Tom W; Tiralongo, Evelin
2011-01-01
Fifteen Australian macrofungi were investigated for cytotoxic activity. Ethanol, cold and hot water extracts of each species were screened for cytotoxic activity against normal mouse fibroblast cells (NIH/3T3), healthy human epithelial kidney cells (HEK-293), four cancer cell lines, gastric adenocarcinoma cells (AGS), two mammary gland adenocarcinoma cells (MDA-MB-231, MCF7) and colorectal adenocarcinoma cells (HT-29) with a validated MTT assay. Most extracts derived from Omphalotus nidiformis, Cordyceps cranstounii and Cordyceps gunnii demonstrated significant cytotoxic activity toward a variety of cancer cell lines. In contrast only some extracts from Coprinus comatus, Cordyceps hawkesii, Hypholoma fasciculare, Lepista nuda, Leratiomyces ceres and Ophiocordyceps robertsii displayed significant cytotoxic activity, which was usually selective for only one or two cancer cell lines tested. The least cytotoxic species evaluated in this study were Agaricus bitorquis, Coprinopsis atrametaria, Psathyrella asperospora, Russula clelandii, Tricholoma sp. AU2 and Xerula mundroola.
Carbone, Antonino; Cesarman, Ethel; Gloghini, Annunziata; Drexler, Hans G.
2013-01-01
Primary effusion lymphoma (PEL) is a very rare subgroup of B-cell lymphomas presenting as pleural, peritoneal and pericardial neoplastic effusions in the absence of a solid tumor mass or recognizable nodal involvement. There is strong evidence that Kaposi’s sarcoma associated herpesvirus (KSHV) is a causal agent of PEL. PEL tumor cells are latently infected by KSHV with consistent expression of several viral proteins and microRNAs that can affect cellular proliferation, differentiation and survival. The most relevant data on pathogenesis and biology of KSHV have been provided by studies on PEL derived cell lines. Fourteen continuous cell lines have been established from the malignant effusions of patients with AIDS-and non-AIDS-associated PEL. These KSHV+ EBV+/− cell lines are wellcharacterized, authenticated and mostly available from public biological ressource centers. The PEL cell lines display unique features and are clearly distinct from other lymphoma cell lines. PEL cell lines represent an indispensable tool for the understanding of KSHV biology and its impact on the clinical manifestation of PEL. Studies on PEL cell lines have shown that a number of viral genes, expressed during latency or lytic life cycle, have effects on cell binding, proliferation, angiogenesis and inflammation. Also PEL cell lines are important model systems for the study of the pathology of PEL including the lack of invasive or destructive growth patterns and the peculiar propensity of PEL to involve body cavity surfaces. PMID:20051807
A novel role of HLA class I in the pathology of medulloblastoma.
Smith, Courtney; Santi, Mariarita; Rajan, Bhargavi; Rushing, Elisabeth J; Choi, Mi Rim; Rood, Brian R; Cornelison, Robert; MacDonald, Tobey J; Vukmanovic, Stanislav
2009-07-12
MHC class I expression by cancer cells enables specific antigen recognition by the immune system and protection of the host. However, in some cancer types MHC class I expression is associated with an unfavorable outcome. We explored the basis of MHC class I association with unfavorable prognostic marker expression in the case of medulloblastoma. We investigated expression of four essential components of MHC class I (heavy chain, beta2m, TAP1 and TAP2) in 10 medulloblastoma mRNA samples, a tissue microarray containing 139 medulloblastoma tissues and 3 medulloblastoma cell lines. Further, in medulloblastoma cell lines we evaluated the effects of HLA class I engagement on activation of ERK1/2 and migration in vitro. The majority of specimens displayed undetectable or low levels of the heavy chains. Medulloblastomas expressing high levels of HLA class I displayed significantly higher levels of anaplasia and c-myc expression, markers of poor prognosis. Binding of beta2m or a specific antibody to open forms of HLA class I promoted phosphorylation of ERK1/2 in medulloblastoma cell line with high levels, but not in the cell line with low levels of HLA heavy chain. This treatment also promoted ERK1/2 activation dependent migration of medulloblastoma cells. MHC class I expression in medulloblastoma is associated with anaplasia and c-myc expression, markers of poor prognosis. Peptide- and/or beta2m-free forms of MHC class I may contribute to a more malignant phenotype of medulloblastoma by modulating activation of signaling molecules such as ERK1/2 that stimulates cell mobility.
A novel role of HLA class I in the pathology of medulloblastoma
Smith, Courtney; Santi, Mariarita; Rajan, Bhargavi; Rushing, Elisabeth J; Choi, Mi Rim; Rood, Brian R; Cornelison, Robert; MacDonald, Tobey J; Vukmanovic, Stanislav
2009-01-01
Background MHC class I expression by cancer cells enables specific antigen recognition by the immune system and protection of the host. However, in some cancer types MHC class I expression is associated with an unfavorable outcome. We explored the basis of MHC class I association with unfavorable prognostic marker expression in the case of medulloblastoma. Methods We investigated expression of four essential components of MHC class I (heavy chain, β2m, TAP1 and TAP2) in 10 medulloblastoma mRNA samples, a tissue microarray containing 139 medulloblastoma tissues and 3 medulloblastoma cell lines. Further, in medulloblastoma cell lines we evaluated the effects of HLA class I engagement on activation of ERK1/2 and migration in vitro. Results The majority of specimens displayed undetectable or low levels of the heavy chains. Medulloblastomas expressing high levels of HLA class I displayed significantly higher levels of anaplasia and c-myc expression, markers of poor prognosis. Binding of β2m or a specific antibody to open forms of HLA class I promoted phosphorylation of ERK1/2 in medulloblastoma cell line with high levels, but not in the cell line with low levels of HLA heavy chain. This treatment also promoted ERK1/2 activation dependent migration of medulloblastoma cells. Conclusion MHC class I expression in medulloblastoma is associated with anaplasia and c-myc expression, markers of poor prognosis. Peptide- and/or β2m-free forms of MHC class I may contribute to a more malignant phenotype of medulloblastoma by modulating activation of signaling molecules such as ERK1/2 that stimulates cell mobility. PMID:19594892
Cinnamides as selective small-molecule inhibitors of a cellular model of breast cancer stem cells.
Germain, Andrew R; Carmody, Leigh C; Nag, Partha P; Morgan, Barbara; Verplank, Lynn; Fernandez, Cristina; Donckele, Etienne; Feng, Yuxiong; Perez, Jose R; Dandapani, Sivaraman; Palmer, Michelle; Lander, Eric S; Gupta, Piyush B; Schreiber, Stuart L; Munoz, Benito
2013-03-15
A high-throughput screen (HTS) was conducted against stably propagated cancer stem cell (CSC)-enriched populations using a library of 300,718 compounds from the National Institutes of Health (NIH) Molecular Libraries Small Molecule Repository (MLSMR). A cinnamide analog displayed greater than 20-fold selective inhibition of the breast CSC-like cell line (HMLE_sh_Ecad) over the isogenic control cell line (HMLE_sh_eGFP). Herein, we report structure-activity relationships of this class of cinnamides for selective lethality towards CSC-enriched populations. Copyright © 2013. Published by Elsevier Ltd.
Kang, Hahk-Soo; Santarsiero, Bernard D; Kim, Hyunjung; Krunic, Aleksej; Shen, Qi; Swanson, Steven M; Chai, Heebyung; Kinghorn, A Douglas; Orjala, Jimmy
2012-07-01
The cell extract of a cultured terrestrial Nostoc sp. (UIC 10062), obtained from a sample collected at Grand Mere State Park in Michigan, displayed antiproliferative activity against the HT-29 human colon cancer cell line. Bioactivity-guided fractionation of the cell extract, combined with LC-MS analysis, led to the isolation of two cyclophanes, named merocyclophanes A and B (1 and 2). Their structures were determined by various spectroscopic techniques including HRESIMS, and 1D and 2D NMR analyses. The stereoconfiguration was assigned on the basis of X-ray crystallographic and CD analyses. The structures of merocyclophanes A and B (1 and 2) established a hitherto unknown [7.7]paracyclophane skeleton in nature, as characterized by α-branched methyls at C-1/14. Merocyclophanes A and B (1 and 2) displayed antiproliferative activity against the HT-29 human colon cancer cell line with IC₅₀ values of 3.3 and 1.7 μM, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kang, Hahk-Soo; Santarsiero, Bernard D.; Kim, Hyunjung; Krunic, Aleksej; Shen, Qi; Swanson, Steven M.; Chai, Heebyung; Kinghorn, A. Douglas; Orjala, Jimmy
2012-01-01
The cell extract of a cultured terrestrial Nostoc sp. (UIC 10062), obtained from a sample collected at Grand Mere State Park in Michigan, displayed antiproliferative activity against the HT-29 human colon cancer cell line. Bioactivity-guided fractionation of the cell extract, combined with LC-MS analysis, led to the isolation of two cyclophanes, named merocyclophanes A and B (1 and 2). Their structures were determined by various spectroscopic techniques including HRESIMS, and 1D and 2D NMR analyses. The stereoconfiguration was assigned on the basis of X-ray crystallographic and CD analyses. The structures of merocyclophanes A and B (1 and 2) established a hitherto unknown [7.7]paracyclophane skeleton in nature, as characterized by α-branched methyls at C-1/14. Merocyclophanes A and B (1 and 2) displayed antiproliferative activity against the HT-29 human colon cancer cell line with IC50 values of 3.3 and 1.7 µM, respectively. PMID:22571940
Hrušková, Kateřina; Potůčková, Eliška; Opálka, Lukáš; Hergeselová, Tereza; Hašková, Pavlína; Kovaříková, Petra; Šimůnek, Tomáš; Vávrová, Kateřina
2018-05-23
Aroylhydrazone iron chelators such as salicylaldehyde isonicotinoyl hydrazone (SIH) protect various cells against oxidative injury and display antineoplastic activities. Previous studies have shown that a nitro-substituted hydrazone, namely, NHAPI, displayed markedly improved plasma stability, selective antitumor activity, and moderate antioxidant properties. In this study, we prepared four series of novel NHAPI derivatives and explored their iron chelation activities, anti- or pro-oxidant effects, protection against model oxidative injury in the H9c2 cell line derived from rat embryonic cardiac myoblasts, cytotoxicities to the corresponding noncancerous H9c2 cells, and antiproliferative activities against the MCF-7 human breast adenocarcinoma and HL-60 human promyelocytic leukemia cell lines. Nitro substitution had both negative and positive effects on the examined properties, and we identified new structure-activity relationships. Naphthyl and biphenyl derivatives showed selective antiproliferative action, particularly in the breast adenocarcinoma MCF-7 cell line, where they exceeded the selectivity of the parent compound NHAPI. Of particular interest is a compound prepared from 2-hydroxy-5-methyl-3-nitroacetophenone and biphenyl-4-carbohydrazide, which protected cardiomyoblasts against oxidative injury at 1.8 ± 1.2 μM with 24-fold higher selectivity than SIH. These compounds will serve as leads for further structural optimization and mechanistic studies.
Variability of human pluripotent stem cell lines.
Ortmann, Daniel; Vallier, Ludovic
2017-10-01
Human pluripotent stem cells derived from embryos (human Embryonic Stem Cells or hESCs) or generated by direct reprogramming of somatic cells (human Induced Pluripotent Stem Cells or hiPSCs) can proliferate almost indefinitely in vitro while maintaining the capacity to differentiate into a broad diversity of cell types. These two properties (self-renewal and pluripotency) confers human pluripotent stem cells a unique interest for clinical applications since they could allow the production of infinite quantities of cells for disease modelling, drug screening and cell based therapy. However, recent studies have clearly established that human pluripotent stem cell lines can display variable capacity to differentiate into specific lineages. Consequently, the development of universal protocols of differentiation which could work efficiently with any human pluripotent cell line is complicated substantially. As a consequence, each protocol needs to be adapted to every cell line thereby limiting large scale applications and precluding personalised therapies. Here, we summarise our knowledge concerning the origin of this variability and describe potential solutions currently available to bypass this major challenge. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; Avci, Utku; Qian, Jin; Arter, Allison; Chen, Liwei; Hahn, Michael G; Ragauskas, Arthur J; Kieliszewski, Marcia J
2014-01-01
Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increased wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. These data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.
Sato, Ko; Watanabe, Oshi; Ohmiya, Suguru; Chiba, Fumiko; Hayashi, Masahiro; Suzuki, Tamio; Kawakami, Kazuyoshi; Nishimura, Hidekazu
2016-11-01
Isolation of human parainfluenza virus (HPIV) serotypes 1 and 3 from clinical specimens is not very efficient because of the lack of a cell culture system capable of inducing CPE. In this study, the utility of a melanoma cell line, MNT-1, that allows HPIV growth and displays CPE was demonstrated. In particularly, the efficiency of isolating HPIV1 and HPIV3 using MNT-1 was greater than for cell lines conventionally used for HPIV isolation. Our demonstrated efficacy of HPIV1 and HPIV3 isolation with apparent CPE using the MNT-1 cell culture system has the potential to improve virus isolation from clinical specimens. © 2016 The Societies and John Wiley & Sons Australia, Ltd.
2001-05-01
gallate ( EGCG ), which has been shown to inhibit the induction of NF-KB and growth of breast cancer cell lines in vitro. EGCG reduced NF-KB levels in the...demonstrated activation of NF-KB is induced upon over-expression of Her-2/neu. Thus, studies were initiated with green tea pholyphenol, epigallocatechin -3...NF639 cell line derived from an MMTV-Her-2/neu mouse tumor. NF639 clonal isolates resistant to EGCG appear to display elevated levels of NF-KB. Overall
Fucoidan Does Not Exert Anti-Tumorigenic Effects on Uveal Melanoma Cell Lines
Dithmer, Michaela; Kirsch, Anna-Maria; Richert, Elisabeth; Fuchs, Sabine; Wang, Fanlu; Schmidt, Harald; Coupland, Sarah E.; Roider, Johann; Klettner, Alexa
2017-01-01
Background. The polysaccharide fucoidan is widely investigated as an anti-cancer agent. Here, we tested the effect of fucoidan on uveal melanoma cell lines. Methods. The effect of 100 µM fucoidan was investigated on five cell lines (92.1, Mel270 OMM1, OMM2.3, OMM2.5) and of 1 µg/mL–1 mg/mL fucoidan in two cell lines (OMM1, OMM2.3). Cell proliferation and viability were investigated with a WST-1 assay, migration in a wound healing (scratch) assay. Vascular Endothelial Growth Factor (VEGF) was measured in ELISA. Angiogenesis was evaluated in co-cultures with endothelial cells. Cell toxicity was induced by hydrogen-peroxide. Protein expression (Akt, ERK1/2, Bcl-2, Bax) was investigated in Western blot. Results. Fucoidan increased proliferation in two and reduced it in one cell line. Migration was reduced in three cell lines. The effect of fucoidan on VEGF was cell type and concentration dependent. In endothelial co-culture with 92.1, fucoidan significantly increased tubular structures. Moreover, fucoidan significantly protected all tested uveal melanoma cell lines from hydrogen-peroxide induced cell death. Under oxidative stress, fucoidan did not alter the expression of Bcl-2, Bax or ERK1/2, while inducing Akt expression in 92.1 cells but not in any other cell line. Conclusion. Fucoidan did not show anti-tumorigenic effects but displayed protective and pro-angiogenic properties, rendering fucoidan unsuitable as a potential new drug for the treatment of uveal melanoma. PMID:28640204
NASA Astrophysics Data System (ADS)
Lau, Patrick; Hellweg, Christine E.; Kirchner, Simone; Baumstark-Khan, Christa
During longterm space missions, astronauts suffer from the loss of minerals especially from weightbearing bones due to prolonged sojourn under microgravity. In addition to weightlessness, exposure to cosmic ionization radiation is another space related factor endangering health and productivity of astronauts. In order to elucidate changes in bone cell metabolism induced by ionizing radiation, ground-based bone cell models have been developed. The differentiation level of the bone cells may influence their radiation sensitivity. Therefore, our cell model comprises a collection of immortalized murine pre-osteoblast, osteoblast and osteocyte cell lines representing discrete stages of differentiation: the subclones 4 and 24 of the osteoblast cell line MC3T3-E1, the osteoblast cell line OCT-1 and the osteocyte cell line MLO-Y4 display varying potential to produce mineralized bone matrix upon incubation with ascorbic acid and β-glycerophosphate (osteogenic medium). The MLO-Y4 cells showed the highest and subclone 24 the lowest proliferation rate. The most intense von Kossa reaction after culture in osteogenic medium was observed in subclone 4, indicating mineralized bone matrix. The bone cell markers alkaline phosphatase and osteocalcin were determined to further characterize the differentiation stage. All cell lines expressed osteocalcin, as determined by reverse transcriptase polymerase chain reaction. The activity of alkaline phosphatase was highest in the cell line OCT-1 and very low in MLO-Y4 and S4. The peculiarity of the markers suggests a characterization of OCT-1 and S24 as preosteoblast, S4 as (mature) osteoblast, and MLO-Y4 as osteocyte. Survival after exposure to X-rays was determined using the colony forming ability test. The resulting dose-effect relationships revealed normal radiation sensitivity (compared to human fibroblasts). Cell clone specific variations (subclones 4 and 24) in the radiation sensitivity may be due to the differentiation level. The survival curve of MLO-Y4 shows a broad shoulder, suggesting a high repair capacity or a high DNA damage or misrepair tolerance. The quantitative acquisition of DNA-strand breaks was performed by fluorescent analysis of DNA unwinding and revealed a high level of DNA damage immediately after X-irradiation, which increases dose dependently. In conclusion, the cell line with the highest differentiation level (MLO-Y4) displays lower radiation sensitivity, regarding the shoulder width of the dose-effect curve, compared to the less differentiated osteoblast cell lines.
Small lytic peptides escape the inhibitory effect of heparan sulfate on the surface of cancer cells
2011-01-01
Background Several naturally occurring cationic antimicrobial peptides (CAPs), including bovine lactoferricin (LfcinB), display promising anticancer activities. These peptides are unaffected by multidrug resistance mechanisms and have been shown to induce a protective immune response against solid tumors, thus making them interesting candidates for developing novel lead structures for anticancer treatment. Recently, we showed that the anticancer activity by LfcinB was inhibited by the presence of heparan sulfate (HS) on the surface of tumor cells. Based on extensive structure-activity relationship studies performed on LfcinB, shorter and more potent peptides have been constructed. In the present study, we have investigated the anticancer activity of three chemically modified 9-mer peptides and the influence of HS and chondroitin sulfate (CS) on their cytotoxic activity. Methods Various cell lines and red blood cells were used to investigate the anticancer activity and selectivity of the peptides. The cytotoxic effect of the peptides against the different cell lines was measured by use of a colorimetric MTT viability assay. The influence of HS and CS on their cytotoxic activity was evaluated by using HS/CS expressing and HS/CS deficient cell lines. The ability of soluble HS and CS to inhibit the cytotoxic activity of the peptides and the peptides' affinity for HS and CS were also investigated. Results The 9-mer peptides displayed selective anticancer activity. Cells expressing HS/CS were equally or more susceptible to the peptides than cells not expressing HS/CS. The peptides displayed a higher affinity for HS compared to CS, and exogenously added HS inhibited the cytotoxic effect of the peptides. Conclusions In contrast to the previously reported inhibitory effect of HS on LfcinB, the present study shows that the cytotoxic activity of small lytic peptides was increased or not affected by cell surface HS. PMID:21453492
Lei, Chon Lok; Wang, Ken; Clerx, Michael; Johnstone, Ross H; Hortigon-Vinagre, Maria P; Zamora, Victor; Allan, Andrew; Smith, Godfrey L; Gavaghan, David J; Mirams, Gary R; Polonchuk, Liudmila
2017-01-01
Human induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) have applications in disease modeling, cell therapy, drug screening and personalized medicine. Computational models can be used to interpret experimental findings in iPSC-CMs, provide mechanistic insights, and translate these findings to adult cardiomyocyte (CM) electrophysiology. However, different cell lines display different expression of ion channels, pumps and receptors, and show differences in electrophysiology. In this exploratory study, we use a mathematical model based on iPSC-CMs from Cellular Dynamic International (CDI, iCell), and compare its predictions to novel experimental recordings made with the Axiogenesis Cor.4U line. We show that tailoring this model to the specific cell line, even using limited data and a relatively simple approach, leads to improved predictions of baseline behavior and response to drugs. This demonstrates the need and the feasibility to tailor models to individual cell lines, although a more refined approach will be needed to characterize individual currents, address differences in ion current kinetics, and further improve these results.
Higaki, Shogo; Shimada, Manami; Koyama, Yoshie; Fujioka, Yasuhiro; Sakai, Noriyoshi; Takada, Tatsuyuki
2015-09-01
Establishing a cell line from endemic species facilitates the cell biological research of these species in the laboratory. In this study, an epithelium-like cell line RME1 was established from the blastula-stage embryos of the critically endangered cyprinid Honmoroko Gnathopogon caerulescens, which is endemic to ancient Lake Biwa in Japan. To the best of our knowledge, this is the first embryonic cell line from an endangered fish species. This cell line is well adapted to grow at 28°C in the culture medium, which was successfully used for establishing testicular and ovarian cell lines of G. caerulescens, and has displayed stable growth over 60 passages since its initiation in June 2011. Although RME1 did not express the genes detected in blastula-stage embryos, such as oct4, sox2, nanog, and klf4, it showed a high euploidy rate (2n = 50; 67.2%) with normal diploid karyotype morphology, suggesting that RME1 retains the genomic organization of G. caerulescens and can prove to be a useful tool to investigate the unique properties of endangered endemic fishes at cellular level.
New pyrazolopyridine analogs: Synthesis, antimicrobial, antiquorum-sensing and antitumor screening.
El-Gohary, N S; Shaaban, M I
2018-05-25
New pyrazolopyridine analogs were prepared and tested for antimicrobial efficacy toward Staphylococcus aureus, Bacillus cereus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Aspergillus fumigatus and Aspergillus flavus. Results revealed that compound 6 has prominent and broad spectrum antimicrobial activity. Compound 8 showed good antibacterial efficacy over the four tested bacterial strains. In addition, compounds 2-4 displayed interesting efficacy over S. aureus, B. cereus and P. aeruginosa as well as moderate efficacy toward E. coli, C. albicans, A. fumigatus and A. flavus. Furthermore, compounds 9 and 10 exhibited interesting efficacy over P. aeruginosa. Antiquorum-sensing efficacy of the same analogs toward Chromobacterium violaceum was also examined, whereas compounds 3, 4 and 6 displayed acceptable activity. In vitro antitumor assay of the new pyrazolopyridines toward liver (HepG2), breast (MCF-7) and cervix (Hela) cancer cells illustrated that compounds 2 and 5 have the highest antitumor activity over the three cell lines. Moreover, compound 4 exhibited interesting efficacy on all tested cell lines, whereas compound 7 showed good activity on MCF-7 cells. The most active in vitro antitumor analogs, 2, 4, 5 and 7 were assessed for in vivo antitumor efficacy on Ehrlich ascites carcinoma (EAC) cells, whereas compound 5 displayed the highest efficacy. In addition, cytotoxicity testing toward W138 and WISH normal cells revealed that all tested analogs are less cytotoxic than doxorubicin. The new analogs were evaluated for DNA-binding affinity, whereas compounds 2, 4 and 5 displayed the highest affinity. In silico studies concluded that all the new pyrazolopyridines are foreseen to have excellent oral absorption. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Chapela, Patricia J; Broaddus, Russell R; Hawkins, Shannon M; Lessey, Bruce A; Carson, Daniel D
2015-11-01
MUC4, a transmembrane glycoprotein, interferes with cell adhesion, and promotes EGFR signaling in cancer. Studies in rat models have demonstrated steroid hormonal regulation of endometrial MUC4 expression. In this study, qRT-PCR screening of mouse tissues determined that Muc4 mRNA also was robustly expressed in mouse uteri. Previous studies from our labs have demonstrated MUC4 mRNA was expressed at levels <1% of MUC1 mRNA in human endometrium and endometriotic tissue. Multiple human endometrial adenocarcinoma cell lines were assayed for MUC4 mRNA expression revealing extremely low basal expression in the Ishikawa, RL-95-2, AN3CA, and KLE lines. Moderate to high expression was observed in HEC50 and HEC-1A cells. MUC4 mRNA expression was not affected by progesterone and/or estrogen treatment, but was greatly stimulated at both mRNA and protein levels by proinflammatory cytokines (IFN-γ and TNF-α), particularly when used in combination. In endometrial tissue, MUC4 mRNA levels did not change significantly between normal or cancerous samples; although, a subset of patients with grade 1 and 2 tumors displayed substantially higher expression. Likewise, immunostaining of human endometrial adenocarcinoma tissues revealed little to no staining in many patients (low MUC4), but strong staining in some patients (high MUC4) independent of cancer grade. In cases where staining was observed, it was heterogeneous with some cells displaying robust MUC4 expression and others displaying little or no staining. Collectively, these observations demonstrate that while MUC4 is highly expressed in the mouse uterus, it is not a major mucin in normal human endometrium. Rather, MUC4 is a potential marker of endometrial adenocarcinoma in a subset of patients. © 2015 Wiley Periodicals, Inc.
Radiosensitivity and effect of hypoxia in HPV positive head and neck cancer cells.
Sørensen, Brita Singers; Busk, Morten; Olthof, Nadine; Speel, Ernst-Jan; Horsman, Michael R; Alsner, Jan; Overgaard, Jens
2013-09-01
HPV associated Head and Neck Squamous Cell Carcinoma (HNSCC) represents a distinct subgroup of HNSCC characterized by a favorable prognosis and a distinct molecular biology. Previous data from the randomized DAHANCA 5 trial indicated that HPV positive tumors did not benefit from hypoxic modifications by Nimorazole during radiotherapy, whereas a significant benefit was observed in the HPV negative tumors. However, more studies have demonstrated equal frequencies of hypoxic tumors among HPV-positive and HPV-negative tumors. The aim of the present study was to determine radiosensitivity, the impact of hypoxia and the effect of Nimorazole in HPV positive and HPV negative cell lines. The used cell lines were: UDSCC2, UMSCC47 and UPCISCC90 (HPV positive) and FaDuDD, UTSCC33 and UTSCC5 (HPV negative). Cells were cultured under normoxic or hypoxic conditions, and gene expression levels of previously established hypoxia induced genes were assessed by qPCR. Cells were irradiated with various doses under normoxia, hypoxia or hypoxia +1mM Nimorazole, and the clonogenic survival was determined. The HPV positive and HPV negative cell lines exhibited similar patterns of upregulation of hypoxia induced genes in response to hypoxia. The HPV positive cell lines were up to 2.4 times more radiation sensitive than HPV negative cell lines. However, all HPV positive cells displayed the same response to hypoxia in radiosensitivity, with an OER in the range 2.3-2.9, and a sensitizer effect of Nimorazole of 1.13-1.29, similar to HPV negative cells. Although HPV positive cells had a markedly higher radiosensitivity compared to HPV negative cells, they displayed the same relative radioresistance under hypoxia and the same relative sensitizer effect of Nimorazole. The clinical observation that HPV positive patients do not seem to benefit from Nimorazole treatment is not due to inherent differences in hypoxia sensitivity or response to Nimorazole, but can be accounted for by the overall higher radiosensitivity of HPV positive cells. Copyright © 2013. Published by Elsevier Ireland Ltd.
Ammer, Amanda Gatesman; Kelley, Laura C.; Hayes, Karen E.; Evans, Jason V.; Lopez-Skinner, Lesly Ann; Martin, Karen H.; Frederick, Barbara; Rothschild, Brian L.; Raben, David; Elvin, Paul; Green, Tim P.; Weed, Scott A.
2010-01-01
Elevated Src kinase activity is linked to the progression of solid tumors, including head and neck squamous cell carcinoma (HNSCC). Src regulates HNSCC proliferation and tumor invasion, with the Src-targeted small molecule inhibitor saracatinib displaying potent anti-invasive effects in preclinical studies. However, the pro-invasive cellular mechanism(s) perturbed by saracatinib are unclear. The anti-proliferative and anti-invasive effects of saracatinib on HNSCC cell lines were therefore investigated in pre-clinical cell and mouse model systems. Saracatinib treatment inhibited growth, cell cycle progression and transwell Matrigel invasion in HNSCC cell lines. Dose-dependent decreases in Src activation and phosphorylation of the invasion-associated substrates focal adhesion kinase, p130 CAS and cortactin were also observed. While saracatinib did not significantly impact HNSCC tumor growth in a mouse orthotopic model of tongue squamous cell carcinoma, impaired perineural invasion and cervical lymph node metastasis was observed. Accordingly, saracatinib treatment displayed a dose-dependent inhibitory effect on invadopodia formation, extracellular matrix degradation and matrix metalloprotease 9 activation. These results suggest that inhibition of Src kinase by saracatinib impairs the pro-invasive activity of HNSCC by inhibiting Src substrate phosphorylation important for invadopodia formation and associated matrix metalloprotease activity. PMID:20505783
Escherichia coli STb toxin induces apoptosis in intestinal epithelial cell lines.
Syed, H Claudia; Dubreuil, J Daniel
2012-09-01
A previous study conducted in our laboratory demonstrated that cells having internalized Escherichia coli STb toxin display apoptotic-like morphology. We therefore investigated if STb could induce programmed cell death in both a human and an animal intestinal epithelial cell lines. HRT-18 (Human Colon Tumor) and IEC-18 (Rat Ileum Epithelial Cells) cell lines were used. As STb is frequently tested in a rat model, the IEC-18 cell line was most relevant to our work. The cell lines were treated with various amounts of purified STb (nanomole range) for a period of 24 h after which cells were harvested and examined for apoptotic characteristics. Caspase-9, the initiator of mitochondrion-mediated apoptosis, and caspase-3, an effector of caspase-9, were both activated following STb intoxication of HRT-18 and IEC-18 cells whereas caspase-8, the initiator caspase of the extrinsic pathway, was not activated. For both cell lines, agarose gel electrophoresis of the cell DNA content reveals laddering of DNA, resulting from DNA fragmentation, a characteristic of apoptosis. Hoechst 33342-stained DNA of STb-treated cell lines, observed using fluorescence microscopy, revealed condensation and fragmentation of the nuclei. Apoptotic indexes calculated from fragmented nuclei of Hoechst 33342-stained DNA for HRT-18 and IEC-18 cells showed an STb dose-dependent response. Overall, these data indicate that STb toxin induces a mitochondrion-mediated caspase-dependent apoptotic pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cytotoxic activity of quassinoids from Eurycoma longifolia.
Miyake, Katsunori; Li, Feng; Tezuka, Yasuhiro; Awale, Suresh; Kadota, Shigetoshi
2010-07-01
Twenty-four quassinoids isolated from Eurycoma longifolia Jack were investigated for their cytotoxicity against a panel of four different cancer cell lines, which includes three murine cell lines [colon 26-L5 carcinoma (colon 26-L5), B16-BL6 melanoma (B16-BL6), Lewis lung carcinoma (LLC)] and a human lung A549 adenocarcinoma (A549) cell line. Among the tested compounds, eurycomalactone (9) displayed the most potent activity against all the tested cell lines; colon 26-L5 (IC50 = 0.70 microM), B16-BL6 (IC50 = 0.59 microM), LLC (IC50 = 0.78 microM), and A549 (IC50 = 0.73 microM). These activities were comparable to clinically used anticancer agent doxorubicin (colon 26-L5, IC50 = 0.76 microM; B16-BL6, IC50 = 0.86 microM; LLC, IC50 = 0.80 microM; A549, IC50 = 0.66 microM).
Cihan-Üstündağ, Gökçe; Şatana, Dilek; Özhan, Gül; Çapan, Gültaze
2016-01-01
A new series of indolylhydrazones (6) and indole-based 4-thiazolidinones (7, 8) have been designed, synthesized and screened for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv. 4-Thiazolidinone derivatives 7g-7j, 8g, 8h and 8j displayed notable antituberculosis (anti-TB) activity showing 99% inhibition at MIC values ranging from 6.25 to 25.0 µg/ml. Compounds 7g, 7h, 7i, 8h and 8j demonstrated anti-TB activity at concentrations 10-fold lower than those cytotoxic for the mammalian cell lines. The indolylhydrazone derivative 6b has also been evaluated for antiproliferative activity against human cancer cell lines at the National Cancer Institute (USA). Compound 6b showed an interesting anticancer profile against different human tumor-derived cell lines at sub-micromolar concentrations with obvious selectivity toward colon cancer cell line COLO 205.
Identification of various cell culture models for the study of Zika virus
Himmelsbach, Kiyoshi; Hildt, Eberhard
2018-01-01
AIM To identify cell culture models supportive for Zika virus (ZIKV) replication. METHODS Various human and non-human cell lines were infected with a defined amount of ZIKV Polynesia strain. Cells were analyzed 48 h post infection for the amount of intracellular and extracellular viral genomes and infectious viral particles by quantitative real-time PCR and virus titration assay. The extent of replication was monitored by immunofluorescence and western blot analysis by using Env and NS1 specific antibodies. Innate immunity was assayed by luciferase reporter assay and immunofluorescence analysis. RESULTS All investigated cell lines except CHO cells supported infection, replication and release of ZIKV. While in infected A549 and Vero cells a pronounced cytopathic effect was observed COS7, 293T and Huh7.5 cells were most resistant. Although the analyzed cell lines released comparable amounts of viral genomes to the supernatant significant differences were found for the number of infectious viral particles. The neuronal cell lines N29.1 and SH-SY5Y released 100 times less infectious viral particles than Vero-, A549- or 293T-cells. However there is no strict correlation between the amount of produced viral particles and the induction of an interferon response in the analyzed cell lines. CONCLUSION The investigated cell lines with their different tissue origins and diverging ZIKV susceptibility display a toolbox for ZIKV research. PMID:29468137
Weber, Maja; Knoefler, Ilka; Schleussner, Ekkehard; Markert, Udo R; Fitzgerald, Justine S
2013-01-01
JEG3 is a choriocarcinoma--and HTR8/SVneo a transformed extravillous trophoblast--cell line often used to model the physiologically invasive extravillous trophoblast. Past studies suggest that these cell lines possess some stem or progenitor cell characteristics. Aim was to study whether these cells fulfill minimum criteria used to identify stem-like (progenitor) cells. In summary, we found that the expression profile of HTR8/SVneo (CDX2+, NOTCH1+, SOX2+, NANOG+, and OCT-) is distinct from JEG3 (CDX2+ and NOTCH1+) as seen only in human-serum blocked immunocytochemistry. This correlates with HTR8/SVneo's self-renewal capacities, as made visible via spheroid formation and multi-passagability in hanging drops protocols paralleling those used to maintain embryoid bodies. JEG3 displayed only low propensity to form and reform spheroids. HTR8/SVneo spheroids migrated to cover and seemingly repopulate human chorionic villi during confrontation cultures with placental explants in hanging drops. We conclude that HTR8/SVneo spheroid cells possess progenitor cell traits that are probably attained through corruption of "stemness-" associated transcription factor networks. Furthermore, trophoblastic cells are highly prone to unspecific binding, which is resistant to conventional blocking methods, but which can be alleviated through blockage with human serum.
Kamal, Ahmed; Pogula, Praveen Kumar; Khan, Mohammed Naseer Ahmed; Seshadri, Bobburi Naga; Sreekanth, Kokkonda
2013-08-01
As a continuation of our efforts to develop the benzimidazole-PBD conjugates as potential anticancer agents, a series of heteroaryl substituted benzimidazole linked PBD conjugates has been synthesized and evaluated for their anticancer potential in 60 human cancer cell lines. Most of the compounds exhibited promising anticancer activity and interestingly, compounds 4c and 4d displayed significant activity in most of the cell lines tested. Whereas, compound 4e showed selectivity in renal cancer cells with GI50 values of <10 and 70 nM against RXF 393 and UO-31 cell lines, respectively. Further, these compounds also showed significant DNA-binding affinity by thermal denaturation study using duplex form of calf thymus (CT) DNA.
Silva, Patrícia Benites Gonçalves da; Rodini, Carolina Oliveira; Kaid, Carolini; Nakahata, Adriana Miti; Pereira, Márcia Cristina Leite; Matushita, Hamilton; Costa, Silvia Souza da; Okamoto, Oswaldo Keith
2016-08-01
Medulloblastoma is a highly aggressive brain tumor and one of the leading causes of morbidity and mortality related to childhood cancer. These tumors display differential ability to metastasize and respond to treatment, which reflects their high degree of heterogeneity at the genetic and molecular levels. Such heterogeneity of medulloblastoma brings an additional challenge to the understanding of its physiopathology and impacts the development of new therapeutic strategies. This translational effort has been the focus of most pre-clinical studies which invariably employ experimental models using human tumor cell lines. Nonetheless, compared to other cancers, relatively few cell lines of human medulloblastoma are available in central repositories, partly due to the rarity of these tumors and to the intrinsic difficulties in establishing continuous cell lines from pediatric brain tumors. Here, we report the establishment of a new human medulloblastoma cell line which, in comparison with the commonly used and well-established cell line Daoy, is characterized by enhanced proliferation and invasion capabilities, stem cell properties, increased chemoresistance, tumorigenicity in an orthotopic metastatic model, replication of original medulloblastoma behavior in vivo, strong chromosome structural instability and deregulation of genes involved in neural development. These features are advantageous for designing biologically relevant experimental models in clinically oriented studies, making this novel cell line, named USP-13-Med, instrumental for the study of medulloblastoma biology and treatment.
Risal, Prabodh; Cho, Baik Hwan; Sylvester, Karl G; Kim, Jae-Chun; Kim, Hyoung Tae; Jeong, Yeon Jun
2011-09-01
Hepatocytes are an important research tool used for numerous applications. However, a short life span and a limited capacity to replicate in vitro limit the usefulness of primary hepatocyte cultures. We have hypothesized that in vivo priming of hepatocyte could make them more susceptible to growth factors in the medium for continuous proliferation in vitro. Here, a novel approach used to establish hepatocyte cell lines that included hepatocyte priming in vivo prior to culture with a 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet was attempted. The cell line grew in a monolayer while maintaining a granular cytoplasm and a round nucleus. Electron microscopy displayed hepatocyte-like features including mitochondria, glycogen granules, and the presence of bile canaliculi. This cell line expressed many mature hepatocyte-specific genes including albumin, alpha1-antitrypsin, glucose 6-phosphatase, and tyrosine aminotransferase. Functional characteristic of hepatocytes like the ability to store glycogen, lipid, and synthesis of urea is well demonstrated by this cell line. These cells demonstrated anchorage dependent growth properties in soft agar and did not form tumors after transplantation into nude mice. This cell line can be sustained in culture for more than 100 passages (>1.5 years) without undergoing noticeable morphological changes or transformation. This novel method resulted in the establishment of an immortal, non-transformed hepatocyte cell line with functional characteristics that may aid research of cell metabolism, toxicology, and hepatocyte transplantation.
Morrison, Rachel; Lodge, Tiffany; Evidente, Antonio; Kiss, Robert; Townley, Helen
2017-03-01
Herein we have undertaken a systematic analysis of the effects of the fungal derivative ophiobolin A (OphA) on eight cancer cell lines from different tissue types. The LD50 for each cell line was determined and the change in cell size determined. Flow cytometric analysis and western blotting were used to assess the cell death markers for early apoptosis, late apoptosis and necrosis, and the involvement of the caspase signalling pathway. Alterations in calcium levels and reactive oxygen species were assessed due to their integral involvement in intracellular signalling. Subsequently, the endoplasmic reticulum (ER) and mitochondrial responses were investigated more closely. The extent of ER swelling, and the upregulation of proteins involved in the unfolded protein responses (UPR) were seen to vary according to cell line. The mitochondria were also shown to behave differently in response to the OphA in the different cell lines in terms of the change in membrane potential, the total area of mitochondria in the cell and the number of mitochondrial bifurcations. The data obtained in the present study indicate that the cancer cell lines tested are unable to successfully activate the ER stress/UPR responses, and that the mitochondria appear to be a central player in OphA-induced cancer cell death.
Åvall-Jääskeläinen, Silja; Lindholm, Agneta; Palva, Airi
2003-01-01
Lactobacillus brevis is a promising lactic acid bacterium for use as a probiotic dietary adjunct and a vaccine vector. The N-terminal region of the S-layer protein (SlpA) of L. brevis ATCC 8287 was recently shown to mediate adhesion to various human cell lines in vitro. In this study, a surface display cassette was constructed on the basis of this SlpA receptor-binding domain, a proteinase spacer, and an autolysin anchor. The cassette was expressed under control of the nisA promoter in Lactococcus lactis NZ9000. Western blot assay of lactococcal cell wall extracts with anti-SlpA antibodies confirmed that the SlpA adhesion domain of the fusion protein was expressed and located within the cell wall layer. Whole-cell enzyme-linked immunosorbent assay and immunofluorescence microscopy verified that the SlpA adhesion-mediating region was accessible on the lactococcal cell surface. In vitro adhesion assays with the human intestinal epithelial cell line Intestine 407 indicated that the recombinant lactococcal cells had gained an ability to adhere to Intestine 407 cells significantly greater than that of wild-type L. lactis NZ9000. Serum inhibition assay further confirmed that adhesion of recombinant lactococci to Intestine 407 cells was indeed mediated by the N terminus-encoding part of the slpA gene. The ability of the receptor-binding region of SlpA to adhere to fibronectin was also confirmed with this lactococcal surface display system. These results show that, with the aid of the receptor-binding region of the L. brevis SlpA protein, the ability to adhere to gut epithelial cells can indeed be transferred to another, nonadhesive, lactic acid bacterium. PMID:12676705
Avall-Jääskeläinen, Silja; Lindholm, Agneta; Palva, Airi
2003-04-01
Lactobacillus brevis is a promising lactic acid bacterium for use as a probiotic dietary adjunct and a vaccine vector. The N-terminal region of the S-layer protein (SlpA) of L. brevis ATCC 8287 was recently shown to mediate adhesion to various human cell lines in vitro. In this study, a surface display cassette was constructed on the basis of this SlpA receptor-binding domain, a proteinase spacer, and an autolysin anchor. The cassette was expressed under control of the nisA promoter in Lactococcus lactis NZ9000. Western blot assay of lactococcal cell wall extracts with anti-SlpA antibodies confirmed that the SlpA adhesion domain of the fusion protein was expressed and located within the cell wall layer. Whole-cell enzyme-linked immunosorbent assay and immunofluorescence microscopy verified that the SlpA adhesion-mediating region was accessible on the lactococcal cell surface. In vitro adhesion assays with the human intestinal epithelial cell line Intestine 407 indicated that the recombinant lactococcal cells had gained an ability to adhere to Intestine 407 cells significantly greater than that of wild-type L. lactis NZ9000. Serum inhibition assay further confirmed that adhesion of recombinant lactococci to Intestine 407 cells was indeed mediated by the N terminus-encoding part of the slpA gene. The ability of the receptor-binding region of SlpA to adhere to fibronectin was also confirmed with this lactococcal surface display system. These results show that, with the aid of the receptor-binding region of the L. brevis SlpA protein, the ability to adhere to gut epithelial cells can indeed be transferred to another, nonadhesive, lactic acid bacterium.
Kiss, Alexa; Horvath, Peter; Rothballer, Andrea; Kutay, Ulrike; Csucs, Gabor
2014-01-01
Nuclear migration is a general term for the movement of the nucleus towards a specific site in the cell. These movements are involved in a number of fundamental biological processes, such as fertilization, cell division, and embryonic development. Despite of its importance, the mechanism of nuclear migration is still poorly understood in mammalian cells. In order to shed light on the mechanical processes underlying nuclear movements, we adapted a micro-patterning based assay. C6 rat and U87 human glioma cells seeded on fibronectin patterns - thereby forced into a bipolar morphology - displayed oscillatory movements of the nucleus or the whole cell, respectively. We found that both the actomyosin system and microtubules are involved in the nuclear/cellular movements of both cell lines, but their contributions are cell-/migration-type specific. Dynein activity was necessary for nuclear migration of C6 cells but active myosin-II was dispensable. On the other hand, coupled nuclear and cellular movements of U87 cells were driven by actomyosin contraction. We explain these cell-line dependent effects by the intrinsic differences in the overall mechanical tension due to the various cytoskeletal elements inside the cell. Our observations showed that the movements of the nucleus and the centrosome are strongly correlated and display large variation, indicating a tight but flexible coupling between them. The data also indicate that the forces responsible for nuclear movements are not acting directly via the centrosome. Based on our observations, we propose a new model for nuclear oscillations in C6 cells in which dynein and microtubule dynamics are the main drivers of nuclear movements. This mechanism is similar to the meiotic nuclear oscillations of Schizosaccharomyces pombe and may be evolutionary conserved. PMID:24691067
Jostes, Sina; Nettersheim, Daniel; Fellermeyer, Martin; Schneider, Simon; Hafezi, François; Honecker, Friedemann; Schumacher, Valerie; Geyer, Matthias; Kristiansen, Glen; Schorle, Hubert
2017-07-01
Type II testicular germ cell cancers (TGCT) are the most frequently diagnosed tumours in young men (20-40 years) and are classified as seminoma or non-seminoma. TGCTs are commonly treated by orchiectomy and chemo- or radiotherapy. However, a subset of metastatic non-seminomas (embryonal carcinomas) displays only incomplete remission or relapse and requires novel treatment options. Recent studies have shown effective application of the small-molecule inhibitor JQ1 in tumour therapy, which interferes with the function of 'bromodomain and extraterminal (BET)' proteins. JQ1-treated TGCT cell lines display up-regulation of genes indicative for DNA damage and cellular stress response and induce cell cycle arrest. Embryonal carcinoma (EC) cell lines, which presented as JQ1 sensitive, display down-regulation of pluripotency factors and induction of mesodermal differentiation. In contrast, seminoma-like TCam-2 cells tolerated higher JQ1 concentrations and were resistant to differentiation. ECs xenografted in vivo showed a reduction in tumour size, proliferation rate and angiogenesis in response to JQ1. Finally, the combination of JQ1 and the histone deacetylase inhibitor romidepsin allowed for lower doses and less frequent application, compared with monotherapy. Thus, we propose that JQ1 in combination with romidepsin may serve as a novel therapeutic option for (mixed) TGCTs. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
The vitamin C:vitamin K3 system - enhancers and inhibitors of the anticancer effect.
Lamson, Davis W; Gu, Yu-Huan; Plaza, Steven M; Brignall, Matthew S; Brinton, Cathy A; Sadlon, Angela E
2010-12-01
The oxidizing anticancer system of vitamin C and vitamin K₃ (VC:VK₃, producing hydrogen peroxide via superoxide) was combined individually with melatonin, curcumin, quercetin, or cholecalciferol (VD₃) to determine interactions. Substrates were LNCaP and PC-3 prostate cancer cell lines. Three of the tested antioxidants displayed differences in cell line cytotoxicity. Melatonin combined with VC:VK₃ quenched the oxidizing effect, while VC:VK₃ applied 24 hours after melatonin showed no quenching. With increasing curcumin concentrations, an apparent combined effect of VC:VK₃ and curcumin occurred in LNCaP cells, but not PC-3 cells. Quercetin alone was cytotoxic on both cell lines, but demonstrated an additional 50-percent cytotoxicity on PC-3 cells when combined with VC:VK₃. VD₃ was effective against both cell lines, with more effect on PC-3. This effect was negated on LNCaP cells with the addition of VC:VK₃. In conclusion, a natural antioxidant can enhance or decrease the cytotoxicity of an oxidizing anticancer system in vitro, but generalizations about antioxidants cannot be made.
McGuire, Michael J; Samli, Kausar N; Chang, Ya-Ching; Brown, Kathlynn C
2006-04-01
Lymphoma and leukemia account for nearly 8% of cancer fatalities each year. Present treatments do not differentiate between normal and malignant cells. New reagents that distinguish malignant cells and enable the isolation of these cells from the normal background will enhance the molecular characterization of disease and specificity of treatment. Peptide ligands were selected from a phage-displayed peptide library by biopanning on the B-cell lymphoma line, A20. The isolated peptides were assessed as reagents for identification and isolation of lymphoma cells by flow cytometry and cell capture with magnetic beads. Two novel peptides and one obtained previously on cardiomyocytes were selected. A20 cells bind phage displaying these peptides 250- to 450-fold over control phage. These phage bind to other bone marrow-derived cancel lines including some macrophage and T cells but do not bind to normal splenocytes. Synthetic constructs of these peptides have binding affinities comparable to B-cell-specific antibodies. Similar to antibodies, these peptides can be used in flow cytometry and magnetic bead capture to distinguish lymphoma cells from normal splenocytes. Bone marrow-derived malignant cells express cell surface markers that can be used to distinguish them from normal cells. These results demonstrate the ability to use an unbiased screen to rapidly generate high-affinity peptide ligands for identification and isolation of lymphoma cells.
Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; ...
2014-12-23
Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increasedmore » wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. In conclusion, these data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.« less
Ko, Hyun-Ja; Kinkel, Sarah A; Hubert, François-Xavier; Nasa, Zeyad; Chan, James; Siatskas, Christopher; Hirubalan, Premila; Toh, Ban-Hock; Scott, Hamish S; Alderuccio, Frank
2010-12-01
The autoimmune regulator (AIRE) promotes "promiscuous" expression of tissue-restricted antigens (TRA) in thymic medullary epithelial cells to facilitate thymic deletion of autoreactive T-cells. Here, we show that AIRE-deficient mice showed an earlier development of myelin oligonucleotide glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). To determine the outcome of ectopic Aire expression, we used a retroviral transduction system to over-express Aire in vitro, in cell lines and in bone marrow (BM). In the cell lines that included those of thymic medullary and dendritic cell origin, ectopically expressed Aire variably promoted expression of TRA including Mog and Ins2 (proII) autoantigens associated, respectively, with the autoimmune diseases multiple sclerosis and type 1 diabetes. BM chimeras generated from BM transduced with a retrovirus encoding Aire displayed elevated levels of Mog and Ins2 expression in thymus and spleen. Following induction of EAE with MOG(35-55), transplanted mice displayed significant delay in the onset of EAE compared with control mice. To our knowledge, this is the first example showing that in vivo ectopic expression of AIRE can modulate TRA expression and alter autoimmune disease development. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mainpal, Rana; Nance, Jeremy; Yanowitz, Judith L
2015-10-15
Despite the central importance of germ cells for transmission of genetic material, our understanding of the molecular programs that control primordial germ cell (PGC) specification and differentiation are limited. Here, we present findings that X chromosome NonDisjunction factor-1 (XND-1), known for its role in regulating meiotic crossover formation, is an early determinant of germ cell fates in Caenorhabditis elegans. xnd-1 mutant embryos display a novel 'one PGC' phenotype as a result of G2 cell cycle arrest of the P4 blastomere. Larvae and adults display smaller germ lines and reduced brood size consistent with a role for XND-1 in germ cell proliferation. Maternal XND-1 proteins are found in the P4 lineage and are exclusively localized to the nucleus in PGCs, Z2 and Z3. Zygotic XND-1 turns on shortly thereafter, at the ∼300-cell stage, making XND-1 the earliest zygotically expressed gene in worm PGCs. Strikingly, a subset of xnd-1 mutants lack germ cells, a phenotype shared with nos-2, a member of the conserved Nanos family of germline determinants. We generated a nos-2 null allele and show that nos-2; xnd-1 double mutants display synthetic sterility. Further removal of nos-1 leads to almost complete sterility, with the vast majority of animals without germ cells. Sterility in xnd-1 mutants is correlated with an increase in transcriptional activation-associated histone modification and aberrant expression of somatic transgenes. Together, these data strongly suggest that xnd-1 defines a new branch for PGC development that functions redundantly with nos-2 and nos-1 to promote germline fates by maintaining transcriptional quiescence and regulating germ cell proliferation. © 2015. Published by The Company of Biologists Ltd.
A method to measure cellular adhesion utilizing a polymer micro-cantilever
NASA Astrophysics Data System (ADS)
Gaitas, Angelo; Malhotra, Ricky; Pienta, Kenneth
2013-09-01
In the present study we engineered a micro-machined polyimide cantilever with an embedded sensing element to investigate cellular adhesion, in terms of its relative ability to stick to a cross-linker, 3,3'-dithiobis[sulfosuccinimidylpropionate], coated on the cantilever surface. To achieve this objective, we investigated adhesive properties of three human prostate cancer cell lines, namely, a bone metastasis derived human prostate cancer cell line (PC3), a brain metastasis derived human prostate cancer cell line (DU145), and a subclone of PC3 (PC3-EMT14). We found that PC3-EMT14, which displays a mesenchymal phenotype, has the least adhesion compared to PC3 and DU145, which exhibit an epithelial phenotype.
Del Pino, Alberto; Ligero, Gertrudis; López, María B; Navarro, Héctor; Carrillo, Jose A; Pantoll, Siobhan C; Díaz de la Guardia, Rafael
2015-02-01
Primary cell line cultures from human skin biopsies, adipose tissue and tumor tissue are valuable samples for research and therapy. In this regard, their derivation, culture, storage, transport and thawing are important steps to be studied. Towards this end, we wanted to establish the derivation, and identify the culture characteristics and the loss of viability of three human primary cell line cultures (human adult dermal fibroblasts (hADFs), human adult mesenchymal stem cells (hMSCs), and primary culture of tumor cells from lung adenocarcinoma (PCTCLA)). Compared to fresh hADFs, hMSCs and PCTCLA, thawed cells stored in a cryogenic Dewar tanks with liquid nitrogen (LN2), displayed 98.20% ± 0.99, 95.40% ± 1.41 and 93.31% ± 3.83 of cell viability, respectively. Thawed cells stored in a Dry Vapor Shipper container with gas phase (GN2), for 20 days, in addition displayed 4.61% ± 2.78, 3.70% ± 4.09 and 9.13% ± 3.51 of average loss of cells viability, respectively, showing strong correlation between the loss of viability in hADFs and the number of post-freezing days in the Dry Vapor Shipper. No significant changes in morphological characteristics or in the expression of surface markers (being hADFs, hMSCs and PCTCLA characterized by positive markers CD73+; CD90+; CD105+; and negative markers CD14-; CD20-; CD34-; and CD45-; n=2) were found. Chromosome abnormalities in the karyotype were not found. In addition, under the right conditions hMSCs were differentiated into adipogenic, osteogenic and chondrogenic lineages in vitro. In this paper, we have shown the characteristics of three human primary cell line cultures when they are stored in LN2 and GN2. Copyright © 2014 Elsevier Inc. All rights reserved.
Roberts, I; Gordon, A; Wang, R; Pritchard-Jones, K; Shipley, J; Coleman, N
2001-01-01
Rhabdomyosarcoma in children is a "small round blue cell tumour" that displays skeletal muscle differentiation. Two main histological variants are recognised, alveolar (ARMS) and embryonal (ERMS) rhabdomyosarcoma. Whereas consistent chromosome translocations characteristic of ARMS have been reported, no such cytogenetic abnormality has yet been described in ERMS. We have used multiple colour chromosome painting to obtain composite karyotypes for five ERMS cell lines and one PAX-FOXO1A fusion gene negative ARMS. The cell lines were assessed by spectral karyotyping (SKY), tailored multi-fluorophore fluorescence in situ hybridisation (M-FISH) using series of seven colour paint sets generated to examine specific abnormalities, and comparative genomic hybridisation (CGH). This approach enabled us to obtain karyotypes of the cell lines in greater detail than previously possible. Several recurring cytogenetic abnormalities were demonstrated, including translocations involving chromosomes 1 and 15 and chromosomes 2 and 15, in 4/6 and 2/6 cell lines respectively. All six cell lines demonstrated abnormalities of chromosome 15. Translocations between chromosomes 1 and 15 have previously been recorded in two primary cases of ERMS by conventional cytogenetics. Analysis of the translocation breakpoints may suggest mechanisms of ERMS tumourigenesis and may enable the development of novel approaches to the clinical management of this tumour. Copyright 2002 S. Karger AG, Basel
Velz, Julia; Olschewski, Martin; Goetz, Barbara; Pietsch, Torsten; Dilloo, Dagmar
2017-01-01
Medulloblastoma is comprised of at least four molecular subgroups with distinct clinical outcome (WHO classification 2016). SHH-TP53-mutated as well as MYC-amplified Non-WNT/Non-SHH medulloblastoma show the worst prognosis. Here we present evidence that single application of the multi-kinase inhibitor Vandetanib displays anti-neoplastic efficacy against cell lines derived from high-risk SHH-TP53-mutated and MYC-amplified Non-WNT/Non-SHH medulloblastoma. The narrow target spectrum of Vandetanib along with a favourable toxicity profile renders this drug ideal for multimodal treatment approaches. In this context our investigation documents that Vandetanib in combination with the clinically available PI3K inhibitor GDC-0941 leads to enhanced cytotoxicity against MYC-amplified and SHH-TP53-mutated medulloblastoma. In line with these findings we show for MYC-amplified medulloblastoma a profound reduction in activity of the oncogenes STAT3 and AKT. Furthermore, we document that Vandetanib and the standard chemotherapeutic Etoposide display additive anti-neoplastic efficacy in the investigated medulloblastoma cell lines that could be further enhanced by PI3K inhibition. Of note, the combination of Vandetanib, GDC-0941 and Etoposide results in MYC-amplified and SHH-TP53-mutated cell lines in complete loss of cell viability. Our findings therefore provide a rational to further evaluate Vandetanib in combination with PI3K inhibitors as well as standard chemotherapeutics in vivo for the treatment of most aggressive medulloblastoma variants. PMID:28159923
Craveiro, Rogerio B; Ehrhardt, Michael; Velz, Julia; Olschewski, Martin; Goetz, Barbara; Pietsch, Torsten; Dilloo, Dagmar
2017-07-18
Medulloblastoma is comprised of at least four molecular subgroups with distinct clinical outcome (WHO classification 2016). SHH-TP53-mutated as well as MYC-amplified Non-WNT/Non-SHH medulloblastoma show the worst prognosis.Here we present evidence that single application of the multi-kinase inhibitor Vandetanib displays anti-neoplastic efficacy against cell lines derived from high-risk SHH-TP53-mutated and MYC-amplified Non-WNT/Non-SHH medulloblastoma. The narrow target spectrum of Vandetanib along with a favourable toxicity profile renders this drug ideal for multimodal treatment approaches. In this context our investigation documents that Vandetanib in combination with the clinically available PI3K inhibitor GDC-0941 leads to enhanced cytotoxicity against MYC-amplified and SHH-TP53-mutated medulloblastoma. In line with these findings we show for MYC-amplified medulloblastoma a profound reduction in activity of the oncogenes STAT3 and AKT. Furthermore, we document that Vandetanib and the standard chemotherapeutic Etoposide display additive anti-neoplastic efficacy in the investigated medulloblastoma cell lines that could be further enhanced by PI3K inhibition. Of note, the combination of Vandetanib, GDC-0941 and Etoposide results in MYC-amplified and SHH-TP53-mutated cell lines in complete loss of cell viability. Our findings therefore provide a rational to further evaluate Vandetanib in combination with PI3K inhibitors as well as standard chemotherapeutics in vivo for the treatment of most aggressive medulloblastoma variants.
Long interspersed nuclear element-1 expression and retrotransposition in prostate cancer cells.
Briggs, Erica M; Ha, Susan; Mita, Paolo; Brittingham, Gregory; Sciamanna, Ilaria; Spadafora, Corrado; Logan, Susan K
2018-01-01
Long Interspersed Nuclear Element-1 (LINE-1) is an autonomous retrotransposon that generates new genomic insertions through the retrotransposition of a RNA intermediate. Expression of LINE-1 is tightly repressed in most somatic tissues to prevent DNA damage and ensure genomic integrity. However, the reactivation of LINE-1 has been documented in cancer and the role of LINE-1 protein expression and retrotransposition has become of interest in the development, progression, and adaptation of many epithelial neoplasms, including prostate cancer. Here, we examined endogenous LINE-1 protein expression and localization in a panel of prostate cancer cells and observed a diverse range of LINE-1 expression patterns between cell lines. Subcellular localization of LINE-1 proteins, ORF1p and ORF2p, revealed distinct expression patterns. ORF1p, a nucleic acid chaperone that binds LINE-1 mRNA, was predominantly expressed in the cytoplasm, with minor localization in the nucleus. ORF2p, containing endonuclease and reverse transcriptase domains, exhibited punctate foci in the nucleus and also displayed co-localization with PCNA and γH2AX. Using a retrotransposition reporter assay, we found variations in LINE-1 retrotransposition between cell lines. Overall, our findings reveal new insight into the expression and retrotransposition of LINE-1 in prostate cancer. The prostate cancer cells we investigated provide a unique model for investigating endogenous LINE-1 activity and provide a functional model for studying LINE-1 mechanisms in prostate cancer.
Gene transfer of Hodgkin cell lines via multivalent anti-CD30 scFv displaying bacteriophage.
Chung, Yoon-Suk A; Sabel, Katja; Krönke, Martin; Klimka, Alexander
2008-04-16
The display of binding ligands, such as recombinant antibody fragments, on the surface of filamentous phage makes it possible to specifically attach these phage particles to target cells. After uptake of the phage, their internal single-stranded DNA is processed by the host cell, which allows transient expression of an encoded eukaryotic gene cassette. This opens the possibility to use bacteriophage as vectors for targeted gene therapy, although the transduction efficiency is very low. Here we demonstrate the display of an anti-CD30 single chain variable fragment fused to the major coat protein pVIII on the surface of bacteriophage. These phage particles showed an improved binding and transduction efficiency of CD30 positive Hodgkin-lymphoma cells, compared to bacteriophage with the anti-CD30 single chain variable fragment fused to the minor coat protein pIII. We can conclude from the results that the postulated multivalency of the anti-CD30-pVIII displaying bacteriophage combined with disseminated display of the anti-CD30 scFv on the whole particle surface is responsible for the improved gene transfer rate. These results mark an important step towards the use of phage particles as a cheap and safe gene transfer vehicle for the gene delivery of the desired target cells via their specific surface receptors.
Levitt, Jonathan M; Yamashita, Hideyuki; Jian, Weiguo; Lerner, Seth P; Sonpavde, Guru
2010-05-01
Dasatinib is an orally administered multitargeted kinase inhibitor that targets Src family tyrosine kinases, Abl, c-Kit, and PDGFR. A preclinical study was conducted to evaluate dasatinib alone or combined with cisplatin for human transitional cell carcinoma (TCC). Expression of Src in a human TCC tissue microarray was evaluated by immunohistochemistry. The activity of dasatinib and/or cisplatin was evaluated in six human TCC cell lines. Western blot was done to assess Src and phosphorylated-Src (p-Src) expression. The activity of dasatinib alone and in combination with cisplatin was determined in murine subcutaneous xenografts. Sixty-two percent to 75% of human TCC expressed Src. Dasatinib displayed significant antiproliferative activity at nanomolar concentrations against two human TCC cell lines (RT4 and Hu456) that exhibited high Src and p-Src expression and were cisplatin-resistant. RT4 cells were the most sensitive and displayed the highest level of Src pathway activation (p-Src/Src ratio). Dasatinib downregulated p-Src in either sensitive or resistant cells. TCC cells that were sensitive to cisplatin (5637 and TCC-SUP) were highly resistant to dasatinib and exhibited low Src expression. Dasatinib showed antitumor activity in RT4 murine xenografts, and the combination of dasatinib and cisplatin was significantly more active than placebo. Combination dasatinib plus cisplatin significantly inhibited proliferation and promoted apoptosis in vivo. In conclusion, dasatinib displayed significant preclinical antitumor activity against Src-overexpressing human TCC with active Src signaling and was highly active in combination with cisplatin in vivo. Further clinical development might be warranted in selected human subjects.
Yoshida, Kimiko; Goto, Naoko; Ohnami, Shumpei; Aoki, Kazunori
2012-01-01
The targeting of gene transfer at the cell-entry level is one of the most attractive challenges in vector development. However, attempts to redirect adenovirus vectors to alternative receptors by engineering the capsid-coding region have shown limited success, because the proper targeting ligands on the cells of interest are generally unknown. To overcome this limitation, we have constructed a random peptide library displayed on the adenoviral fiber knob, and have successfully selected targeted vectors by screening the library on cancer cell lines in vitro. The infection of targeted vectors was considered to be mediated by specific receptors on target cells. However, the expression levels and kinds of cell surface receptors may be substantially different between in vitro culture and in vivo tumor tissue. Here, we screened the peptide display-adenovirus library in the peritoneal dissemination model of AsPC-1 pancreatic cancer cells. The vector displaying a selected peptide (PFWSGAV) showed higher infectivity in the AsPC-1 peritoneal tumors but not in organs and other peritoneal tumors as compared with a non-targeted vector. Furthermore, the infectivity of the PFWSGAV-displaying vector for AsPC-1 peritoneal tumors was significantly higher than that of a vector displaying a peptide selected by in vitro screening, indicating the usefulness of in vivo screening in exploring the targeting vectors. This vector-screening system can facilitate the development of targeted adenovirus vectors for a variety of applications in medicine. PMID:23029088
The novel ependymin related gene UCC1 is highly expressed in colorectal tumor cells.
Nimmrich, I; Erdmann, S; Melchers, U; Chtarbova, S; Finke, U; Hentsch, S; Hoffmann, I; Oertel, M; Hoffmann, W; Müller, O
2001-04-10
Normal cells differ from malignant tumor cells in the transcription levels of many different genes. Two colorectal tumor cell lines were compared with a normal colorectal cell line by differential display reverse transcription PCR to screen for tumor cell specific differentially transcribed genes. By this strategy the upregulation of a novel gene was detected designated as 'upregulated in colorectal cancer gene-1' (UCC1). The UCC1 gene transcript level is increased in cultured tumor cells and in two out of three analyzed colorectal tumor tissue specimens compared to normal cultured cells and to corresponding normal tissue samples. Remarkably, the UCC1 protein shows significant sequence similarity to the highly divergent piscine glycoproteins termed ependymins which are synthesized by leptomeningeal fibroblasts and secreted into the cerebrospinal fluid.
Barr, Martin P.; Gray, Steven G.; Hoffmann, Andreas C.; Hilger, Ralf A.; Thomale, Juergen; O’Flaherty, John D.; Fennell, Dean A.; Richard, Derek; O’Leary, John J.; O’Byrne, Kenneth J.
2013-01-01
Introduction Inherent and acquired cisplatin resistance reduces the effectiveness of this agent in the management of non-small cell lung cancer (NSCLC). Understanding the molecular mechanisms underlying this process may result in the development of novel agents to enhance the sensitivity of cisplatin. Methods An isogenic model of cisplatin resistance was generated in a panel of NSCLC cell lines (A549, SKMES-1, MOR, H460). Over a period of twelve months, cisplatin resistant (CisR) cell lines were derived from original, age-matched parent cells (PT) and subsequently characterized. Proliferation (MTT) and clonogenic survival assays (crystal violet) were carried out between PT and CisR cells. Cellular response to cisplatin-induced apoptosis and cell cycle distribution were examined by FACS analysis. A panel of cancer stem cell and pluripotent markers was examined in addition to the EMT proteins, c-Met and β-catenin. Cisplatin-DNA adduct formation, DNA damage (γH2AX) and cellular platinum uptake (ICP-MS) was also assessed. Results Characterisation studies demonstrated a decreased proliferative capacity of lung tumour cells in response to cisplatin, increased resistance to cisplatin-induced cell death, accumulation of resistant cells in the G0/G1 phase of the cell cycle and enhanced clonogenic survival ability. Moreover, resistant cells displayed a putative stem-like signature with increased expression of CD133+/CD44+cells and increased ALDH activity relative to their corresponding parental cells. The stem cell markers, Nanog, Oct-4 and SOX-2, were significantly upregulated as were the EMT markers, c-Met and β-catenin. While resistant sublines demonstrated decreased uptake of cisplatin in response to treatment, reduced cisplatin-GpG DNA adduct formation and significantly decreased γH2AX foci were observed compared to parental cell lines. Conclusion Our results identified cisplatin resistant subpopulations of NSCLC cells with a putative stem-like signature, providing a further understanding of the cellular events associated with the cisplatin resistance phenotype in lung cancer. PMID:23349823
Olivier, Stéphane; Jacoby, Marine; Brillon, Cédric; Bouletreau, Sylvana; Mollet, Thomas; Nerriere, Olivier; Angel, Audrey; Danet, Sévérine; Souttou, Boussad; Guehenneux, Fabienne; Gauthier, Laurent; Berthomé, Mathilde; Vié, Henri; Beltraminelli, Nicola; Mehtali, Majid
2010-01-01
Monoclonal antibodies (mAbs) represent the fastest growing class of therapeutic proteins. The increasing demand for mAb manufacturing and the associated high production costs call for the pharmaceutical industry to improve its current production processes or develop more efficient alternative production platforms. The experimental control of IgG fucosylation to enhance antibody dependent cell cytotoxicity (ADCC) activity constitutes one of the promising strategies to improve the efficacy of monoclonal antibodies and to potentially reduce the therapeutic cost. We report here that the EB66 cell line derived from duck embryonic stem cells can be efficiently genetically engineered to produce mAbs at yields beyond a 1 g/L, as suspension cells grown in serum-free culture media. EB66 cells display additional attractive grown characteristics such as a very short population doubling time of 12 to 14 hours, a capacity to reach very high cell density (> 30 million cells/mL) and a unique metabolic profile resulting in low ammonium and lactate accumulation and low glutamine consumption, even at high cell densities. Furthermore, mAbs produced on EB66 cells display a naturally reduced fucose content resulting in strongly enhanced ADCC activity. The EB66 cells have therefore the potential to evolve as a novel cellular platform for the production of high potency therapeutic antibodies.
Sánchez-Céspedes, R; Maniscalco, L; Iussich, S; Martignani, E; Guil-Luna, S; De Maria, R; Martín de Las Mulas, J; Millán, Y
2013-08-01
Mammary gland tumours, the most common malignant neoplasm in bitches, often display myoepithelial (ME) cell proliferation. The aim of this study was to isolate, purify, culture and characterise ME cells from normal and neoplastic canine mammary glands. Monodispersed cells from three normal canine mammary glands and five canine mammary tumours were incubated with an anti-Thy1 antibody and isolated by magnetic-activated cell sorting (MACS). Cells isolated from two normal glands (cell lines CmME-N1 and CmME-N2) and four tumours (cell lines CmME-K1 from a complex carcinoma, CmME-K2 from a simple tubulopapillary carcinoma, and CmME-K3 and CmME-K4 from two carcinomas within benign tumours) were cultured in supplemented DMEM/F12 media for 40days. Cell purity was >90%. Tumour-derived ME cell lines exhibited heterogeneous morphology, growth patterns and immunocytochemical expression of cytokeratins, whereas cell lines from normal glands retained their morphology and levels of cytokeratin expression during culture. Cell lines from normal glands and carcinomas within benign tumours grew more slowly than those from simple and complex carcinomas. This methodology has the potential to be used for in vitro analysis of the role of ME cells in the growth and progression of canine mammary tumours. Copyright © 2013 Elsevier Ltd. All rights reserved.
Guiding plant virus particles to integrin-displaying cells
NASA Astrophysics Data System (ADS)
Hovlid, Marisa L.; Steinmetz, Nicole F.; Laufer, Burkhardt; Lau, Jolene L.; Kuzelka, Jane; Wang, Qian; Hyypiä, Timo; Nemerow, Glen R.; Kessler, Horst; Manchester, Marianne; Finn, M. G.
2012-05-01
Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors.Viral nanoparticles (VNPs) are structurally regular, highly stable, tunable nanomaterials that can be conveniently produced in high yields. Unmodified VNPs from plants and bacteria generally do not show tissue specificity or high selectivity in binding to or entry into mammalian cells. They are, however, malleable by both genetic and chemical means, making them useful scaffolds for the display of large numbers of cell- and tissue-targeting ligands, imaging moieties, and/or therapeutic agents in a well-defined manner. Capitalizing on this attribute, we modified the genetic sequence of the Cowpea mosaic virus (CPMV) coat protein to display an RGD oligopeptide sequence derived from human adenovirus type 2 (HAdV-2). Concurrently, wild-type CPMV was modified via NHS acylation and Cu(i)-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry to attach an integrin-binding cyclic RGD peptide. Both types of particles showed strong and selective affinity for several different cancer cell lines that express RGD-binding integrin receptors. Electronic supplementary information (ESI) available: Synthetic procedures and compound characterization data; assay procedures; additional confocal micrographs at different time points. See DOI: 10.1039/c2nr30571b
Effects of curcumin on stem-like cells in human esophageal squamous carcinoma cell lines.
Almanaa, Taghreed N; Geusz, Michael E; Jamasbi, Roudabeh J
2012-10-24
Many cancers contain cell subpopulations that display characteristics of stem cells. Because these cancer stem cells (CSCs) appear to provide resistance to chemo-radiation therapy, development of therapeutic agents that target CSCs is essential. Curcumin is a phytochemical agent that is currently used in clinical trials to test its effectiveness against cancer. However, the effect of curcumin on CSCs is not well established. The current study evaluated curcumin-induced cell death in six cancer cell lines derived from human esophageal squamous cell carcinomas. Moreover, these cell lines and the ones established from cells that survived curcumin treatments were characterized. Cell loss was assayed after TE-1, TE-8, KY-5, KY-10, YES-1, and YES-2 cells were exposed to 20-80 μM curcumin for 30 hrs. Cell lines surviving 40 or 60 μM curcumin were established from these six original lines. The stem cell markers aldehyde dehydrogenase-1A1 (ALDH1A1) and CD44 as well as NF-κB were used to compare CSC-like subpopulations within and among the original lines as well as the curcumin-surviving lines. YES-2 was tested for tumorsphere-forming capabilities. Finally, the surviving lines were treated with 40 and 60 μM curcumin to determine whether their sensitivity was different from the original lines. The cell loss after curcumin treatment increased in a dose-dependent manner in all cell lines. The percentage of cells remaining after 60 μM curcumin treatment varied from 10.9% to 36.3% across the six lines. The cell lines were heterogeneous with respect to ALDH1A1, NF-κB and CD44 expression. KY-5 and YES-1 were the least sensitive and had the highest number of stem-like cells whereas TE-1 had the lowest. The curcumin-surviving lines showed a significant loss in the high staining ALDH1A1 and CD44 cell populations. Tumorspheres formed from YES-2 but were small and rare in the YES-2 surviving line. The curcumin-surviving lines showed a small but significant decrease in sensitivity to curcumin when compared with the original lines. Our results suggest that curcumin not only eliminates cancer cells but also targets CSCs. Therefore, curcumin may be an effective compound for treating esophageal and possibly other cancers in which CSCs can cause tumor recurrence.
Whitesell, L; Rosolen, A; Neckers, L M
1991-01-01
Neuroectodermal tumors of childhood provide a unique opportunity to examine the role of genes potentially regulating neuronal growth and differentiation because many cell lines derived from these tumors are composed of at least two distinct morphologic cell types. These types display variant phenotypic characteristics and spontaneously interconvert, or transdifferentiate, in vitro. The factors that regulate transdifferentiation are unknown. Application of antisense approaches to the transdifferentiation process has allowed us to explore the precise role that N-myc may play in regulating developing systems. We now report construction of an episomally replicating expression vector designed to generate RNA antisense to part of the human N-myc gene. Such a vector is able to specifically inhibit N-myc expression in cell lines carrying both normal and amplified N-myc alleles. Inhibition of N-myc expression blocks transdifferentiation in these lines, with accumulation of cells of an intermediate phenotype. A concomitant decrease in growth rate but not loss of tumorigenicity was observed in the N-myc nonamplified cell line CHP-100. Vector-generated antisense RNA should allow identification of genes specifically regulated by the proto-oncogene N-myc. Images PMID:1996098
Costa-Rodrigues, J; Teixeira, C A; Fernandes, M H
2011-08-01
Although in the past little attention has been paid to the influence of osteosarcoma cells in osteoclast function, recent studies suggest a close relationship between osteosarcoma aggressiveness and osteoclastic activity. The present study addresses the paracrine effects of MG63 cells, a human osteosarcoma-derived cell line, on the differentiation of peripheral blood osteoclast precursor cells (PBMC). PBMC were cultured for 21 days in the presence of conditioned media from MG63 cell cultures (CM) collected at 48 h (CM_MG1), 7 days (CM_MG2) and 14 days (CM_MG3). MG63 cell cultures displayed the expression of ALP and BMP-2 and, also, the osteoclastogenic genes M-CSF and RANKL, although with a low expression of RANKL. PBMC cultures supplemented with CM presented an evident osteoclastogenic behavior, which was dependent on the culture period of the MG63 cells. The inductive effect appeared to be more relevant for the differentiation and activation genes, c-myc and c-src, and lower for genes associated with osteoclast function. In addition, PBMC cultures displayed increased functional parameters, including calcium phosphate resorbing activity. Assessment of the PBMC cultures in the presence of U0126, PDTC, and indomethacin suggested that in addition to MEK and NFkB pathways, other signaling mechanisms, probably not involving RANKL/RANK interaction, might be activated in the presence of conditioned medium from MG63. In conclusion, MG63 cell line appears to induce a significant paracrine-mediated osteoclastogenic response. Understanding the mechanisms underlying the interaction of osteosarcoma cells and osteoclasts may contribute to the development of new potential approaches in the treatment of such bone metabolic diseases.
2011-01-01
Background Engineered nanomaterials display unique properties that may have impact on human health, and thus require a reliable evaluation of their potential toxicity. Here, we performed a standardized in vitro screening of 23 engineered nanomaterials. We thoroughly characterized the physicochemical properties of the nanomaterials and adapted three classical in vitro toxicity assays to eliminate nanomaterial interference. Nanomaterial toxicity was assessed in ten representative cell lines. Results Six nanomaterials induced oxidative cell stress while only a single nanomaterial reduced cellular metabolic activity and none of the particles affected cell viability. Results from heterogeneous and chemically identical particles suggested that surface chemistry, surface coating and chemical composition are likely determinants of nanomaterial toxicity. Individual cell lines differed significantly in their response, dependent on the particle type and the toxicity endpoint measured. Conclusion In vitro toxicity of the analyzed engineered nanomaterials cannot be attributed to a defined physicochemical property. Therefore, the accurate identification of nanomaterial cytotoxicity requires a matrix based on a set of sensitive cell lines and in vitro assays measuring different cytotoxicity endpoints. PMID:21345205
Morrison, Rachel; Lodge, Tiffany; Evidente, Antonio; Kiss, Robert; Townley, Helen
2017-01-01
Herein we have undertaken a systematic analysis of the effects of the fungal derivative ophiobolin A (OphA) on eight cancer cell lines from different tissue types. The LD50 for each cell line was determined and the change in cell size determined. Flow cytometric analysis and western blotting were used to assess the cell death markers for early apoptosis, late apoptosis and necrosis, and the involvement of the caspase signalling pathway. Alterations in calcium levels and reactive oxygen species were assessed due to their integral involvement in intracellular signalling. Subsequently, the endoplasmic reticulum (ER) and mitochondrial responses were investigated more closely. The extent of ER swelling, and the upregulation of proteins involved in the unfolded protein responses (UPR) were seen to vary according to cell line. The mitochondria were also shown to behave differently in response to the OphA in the different cell lines in terms of the change in membrane potential, the total area of mitochondria in the cell and the number of mitochondrial bifurcations. The data obtained in the present study indicate that the cancer cell lines tested are unable to successfully activate the ER stress/UPR responses, and that the mitochondria appear to be a central player in OphA-induced cancer cell death. PMID:28112374
Elevated oxidized glutathione in cystinotic proximal tubular epithelial cells.
Wilmer, Martijn J G; de Graaf-Hess, Adriana; Blom, Henk J; Dijkman, Henry B P M; Monnens, Leo A; van den Heuvel, Lambertus P; Levtchenko, Elena N
2005-11-18
Cystinosis, the most frequent cause of inborn Fanconi syndrome, is characterized by the lysosomal cystine accumulation, caused by mutations in the CTNS gene. To elucidate the pathogenesis of cystinosis, we cultured proximal tubular cells from urine of cystinotic patients (n = 9) and healthy controls (n = 9), followed by immortalization with human papilloma virus (HPV E6/E7). Obtained cell lines displayed basolateral polarization, alkaline phosphatase activity, and presence of aminopeptidase N (CD-13) and megalin, confirming their proximal tubular origin. Cystinotic cell lines exhibited elevated cystine levels (0.86 +/- 0.95 nmol/mg versus 0.09 +/- 0.01 nmol/mg protein in controls, p = 0.03). Oxidized glutathione was elevated in cystinotic cells (1.16 +/- 0.83 nmol/mg versus 0.29 +/- 0.18 nmol/mg protein, p = 0.04), while total glutathione, free cysteine, and ATP contents were normal in these cells. In conclusion, elevated oxidized glutathione in cystinotic proximal tubular epithelial cell lines suggests increased oxidative stress, which may contribute to tubular dysfunction in cystinosis.
Paulsen, J. E.; Capowski, E. E.; Strome, S.
1995-01-01
mes-3 is one of four maternal-effect sterile genes that encode maternal components required for normal postembryonic development of the germ line in Caenorhabditis elegans. mes-3 mutant mothers produce sterile progeny, which contain few germ cells and no gametes. This terminal phenotype reflects two problems: reduced proliferation of the germ line and germ cell death. Both the appearance of the dying germ cells and the results of genetic tests indicate that germ cells in mes-3 animals undergo a necrotic-like death, not programmed cell death. The few germ cells that appear healthy in mes-3 worms do not differentiate into gametes, even after elimination of the signaling pathway that normally maintains the undifferentiated population of germ cells. Thus, mes-3 encodes a maternally supplied product that is required both for proliferation of the germ line and for maintenance of viable germ cells that are competent to differentiate into gametes. Cloning and molecular characterization of mes-3 revealed that it is the upstream gene in an operon. The genes in the operon display parallel expression patterns; transcripts are present throughout development and are not restricted to germ-line tissue. Both mes-3 and the downstream gene in the operon encode novel proteins. PMID:8601481
Davies, Timothy J.
2012-01-01
The derivation of pluripotent embryonic stem cells (ESCs) from a variety of genetic backgrounds remains a desirable objective in the generation of mice functionally deficient in genes of interest and the modeling of human disease. Nevertheless, disparity in the ease with which different strains of mice yield ESC lines has long been acknowledged. Indeed, the generation of bona fide ESCs from the non obese diabetic (NOD) mouse, a well-characterized model of human type I diabetes, has historically proved especially difficult to achieve. Here, we report the development of protocols for the derivation of novel ESC lines from C57Bl/6 mice based on the combined use of high concentrations of leukemia inhibitory factor and serum-replacement, which is equally applicable to fresh and cryo-preserved embryos. Further, we demonstrate the success of this approach using Balb/K and CBA/Ca mice, widely considered to be refractory strains. CBA/Ca ESCs contributed to the somatic germ layers of chimeras and displayed a very high competence at germline transmission. Importantly, we were able to use the same protocol for the derivation of ESC lines from nonpermissive NOD mice. These ESCs displayed a normal karyotype that was robustly stable during long-term culture, were capable of forming teratomas in vivo and germline competent chimeras after injection into recipient blastocysts. Further, these novel ESC lines efficiently formed embryoid bodies in vitro and could be directed in their differentiation along the dendritic cell lineage, thus illustrating their potential application to the generation of cell types of relevance to the pathogenesis of type I diabetes. PMID:21933027
Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen.
Michaelis, Martin; Agha, Bishr; Rothweiler, Florian; Löschmann, Nadine; Voges, Yvonne; Mittelbronn, Michel; Starzetz, Tatjana; Harter, Patrick N; Abhari, Behnaz A; Fulda, Simone; Westermann, Frank; Riecken, Kristoffer; Spek, Silvia; Langer, Klaus; Wiese, Michael; Dirks, Wilhelm G; Zehner, Richard; Cinatl, Jaroslav; Wass, Mark N; Cinatl, Jindrich
2015-02-03
Flubendazole was shown to exert anti-leukaemia and anti-myeloma activity through inhibition of microtubule function. Here, flubendazole was tested for its effects on the viability of in total 461 cancer cell lines. Neuroblastoma was identified as highly flubendazole-sensitive cancer entity in a screen of 321 cell lines from 26 cancer entities. Flubendazole also reduced the viability of five primary neuroblastoma samples in nanomolar concentrations thought to be achievable in humans and inhibited vessel formation and neuroblastoma tumour growth in the chick chorioallantoic membrane assay. Resistance acquisition is a major problem in high-risk neuroblastoma. 119 cell lines from a panel of 140 neuroblastoma cell lines with acquired resistance to various anti-cancer drugs were sensitive to flubendazole in nanomolar concentrations. Tubulin-binding agent-resistant cell lines displayed the highest flubendazole IC50 and IC90 values but differences between drug classes did not reach statistical significance. Flubendazole induced p53-mediated apoptosis. The siRNA-mediated depletion of the p53 targets p21, BAX, or PUMA reduced the neuroblastoma cell sensitivity to flubendazole with PUMA depletion resulting in the most pronounced effects. The MDM2 inhibitor and p53 activator nutlin-3 increased flubendazole efficacy while RNAi-mediated p53-depletion reduced its activity. In conclusion, flubendazole represents a potential treatment option for neuroblastoma including therapy-refractory cells.
Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen
Michaelis, Martin; Agha, Bishr; Rothweiler, Florian; Löschmann, Nadine; Voges, Yvonne; Mittelbronn, Michel; Starzetz, Tatjana; Harter, Patrick N.; Abhari, Behnaz A.; Fulda, Simone; Westermann, Frank; Riecken, Kristoffer; Spek, Silvia; Langer, Klaus; Wiese, Michael; Dirks, Wilhelm G.; Zehner, Richard; Cinatl, Jaroslav; Wass, Mark N.; Cinatl, Jindrich
2015-01-01
Flubendazole was shown to exert anti-leukaemia and anti-myeloma activity through inhibition of microtubule function. Here, flubendazole was tested for its effects on the viability of in total 461 cancer cell lines. Neuroblastoma was identified as highly flubendazole-sensitive cancer entity in a screen of 321 cell lines from 26 cancer entities. Flubendazole also reduced the viability of five primary neuroblastoma samples in nanomolar concentrations thought to be achievable in humans and inhibited vessel formation and neuroblastoma tumour growth in the chick chorioallantoic membrane assay. Resistance acquisition is a major problem in high-risk neuroblastoma. 119 cell lines from a panel of 140 neuroblastoma cell lines with acquired resistance to various anti-cancer drugs were sensitive to flubendazole in nanomolar concentrations. Tubulin-binding agent-resistant cell lines displayed the highest flubendazole IC50 and IC90 values but differences between drug classes did not reach statistical significance. Flubendazole induced p53-mediated apoptosis. The siRNA-mediated depletion of the p53 targets p21, BAX, or PUMA reduced the neuroblastoma cell sensitivity to flubendazole with PUMA depletion resulting in the most pronounced effects. The MDM2 inhibitor and p53 activator nutlin-3 increased flubendazole efficacy while RNAi-mediated p53-depletion reduced its activity. In conclusion, flubendazole represents a potential treatment option for neuroblastoma including therapy-refractory cells. PMID:25644037
The neuroendocrine phenotype, genomic profile and therapeutic sensitivity of GEPNET cell lines
Hofving, Tobias; Arvidsson, Yvonne; Almobarak, Bilal; Inge, Linda; Pfragner, Roswitha; Persson, Marta; Stenman, Göran; Kristiansson, Erik; Johanson, Viktor; Nilsson, Ola
2018-01-01
Experimental models of neuroendocrine tumour disease are scarce, and no comprehensive characterisation of existing gastroenteropancreatic neuroendocrine tumour (GEPNET) cell lines has been reported. In this study, we aimed to define the molecular characteristics and therapeutic sensitivity of these cell lines. We therefore performed immunophenotyping, copy number profiling, whole-exome sequencing and a large-scale inhibitor screening of seven GEPNET cell lines. Four cell lines, GOT1, P-STS, BON-1 and QGP-1, displayed a neuroendocrine phenotype while three others, KRJ-I, L-STS and H-STS, did not. Instead, these three cell lines were identified as lymphoblastoid. Characterisation of remaining authentic GEPNET cell lines by copy number profiling showed that GOT1, among other chromosomal alterations, harboured losses on chromosome 18 encompassing the SMAD4 gene, while P-STS had a loss on 11q. BON-1 had a homozygous loss of CDKN2A and CDKN2B, and QGP-1 harboured amplifications of MDM2 and HMGA2. Whole-exome sequencing revealed both disease-characteristic mutations (e.g. ATRX mutation in QGP-1) and, for patient tumours, rare genetic events (e.g. TP53 mutation in P-STS, BON-1 and QGP-1). A large-scale inhibitor screening showed that cell lines from pancreatic NETs to a greater extent, when compared to small intestinal NETs, were sensitive to inhibitors of MEK. Similarly, neuroendocrine NET cells originating from the small intestine were considerably more sensitive to a group of HDAC inhibitors. Taken together, our results provide a comprehensive characterisation of GEPNET cell lines, demonstrate their relevance as neuroendocrine tumour models and explore their therapeutic sensitivity to a broad range of inhibitors. PMID:29444910
Regulation of Glutathione in a Rat Diploid Hepatic Epithelial Cell Line
1990-06-01
supporting the contention that they are not pre-neoplastic (60). Metabolic cooperation by gap- junctional intercellular communication has been demonstrated...counted. The resulting population statistics allowed calculation and display of cycle-specific cell characteristics and compartment transit times (see...was repeated in chinese hamster V79 cells to see if the effect is idiosyncratic. It is not - V79 cells respond to CYC in the same fashion as WB344(s) if
Identification of a selective small molecule inhibitor of breast cancer stem cells.
Germain, Andrew R; Carmody, Leigh C; Morgan, Barbara; Fernandez, Cristina; Forbeck, Erin; Lewis, Timothy A; Nag, Partha P; Ting, Amal; VerPlank, Lynn; Feng, Yuxiong; Perez, Jose R; Dandapani, Sivaraman; Palmer, Michelle; Lander, Eric S; Gupta, Piyush B; Schreiber, Stuart L; Munoz, Benito
2012-05-15
A high-throughput screen (HTS) with the National Institute of Health-Molecular Libraries Small Molecule Repository (NIH-MLSMR) compound collection identified a class of acyl hydrazones to be selectively lethal to breast cancer stem cell (CSC) enriched populations. Medicinal chemistry efforts were undertaken to optimize potency and selectivity of this class of compounds. The optimized compound was declared as a probe (ML239) with the NIH Molecular Libraries Program and displayed greater than 20-fold selective inhibition of the breast CSC-like cell line (HMLE_sh_Ecad) over the isogenic control line (HMLE_sh_GFP). Copyright © 2012 Elsevier Ltd. All rights reserved.
Metabolic rescue in pluripotent cells from patients with mtDNA disease.
Ma, Hong; Folmes, Clifford D L; Wu, Jun; Morey, Robert; Mora-Castilla, Sergio; Ocampo, Alejandro; Ma, Li; Poulton, Joanna; Wang, Xinjian; Ahmed, Riffat; Kang, Eunju; Lee, Yeonmi; Hayama, Tomonari; Li, Ying; Van Dyken, Crystal; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Koski, Amy; Mitalipov, Nargiz; Amato, Paula; Wolf, Don P; Huang, Taosheng; Terzic, Andre; Laurent, Louise C; Izpisua Belmonte, Juan Carlos; Mitalipov, Shoukhrat
2015-08-13
Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.
Javed, Shifa; Sharma, Bal Krishan; Sood, Swati; Sharma, Sanjeev; Bagga, Rashmi; Bhattacharyya, Shalmoli; Rayat, Charan Singh; Dhaliwal, Lakhbir; Srinivasan, Radhika
2018-04-02
Cervical cancer is a major cause of cancer-related mortality in women in the developing world. Cancer Stem cells (CSC) have been implicated in treatment resistance and metastases development; hence understanding their significance is important. Primary culture from tissue biopsies of invasive cervical cancer and serial passaging was performed for establishing cell lines. Variable Number Tandem Repeat (VNTR) assay was performed for comparison of cell lines with their parental tissue. Tumorsphere and Aldefluor assays enabled isolation of cancer stem cells (CSC); immunofluorescence and flow cytometry were performed for their surface phenotypic expression in cell lines and in 28 tissue samples. Quantitative real-time PCR for stemness and epithelial-mesenchymal transition (EMT) markers, MTT cytotoxicity assay, cell cycle analysis and cell kinetic studies were performed. Four low-passage novel cell lines designated RSBS-9, - 14 and - 23 from squamous cell carcinoma and RSBS-43 from adenocarcinoma of the uterine cervix were established. All were HPV16+. VNTR assay confirmed their uniqueness and derivation from respective parental tissue. CSC isolated from these cell lines showed CD133 + phenotype. In tissue samples of untreated invasive cervical cancer, CD133 + CSCs ranged from 1.3-23% of the total population which increased 2.8-fold in radiation-resistant cases. Comparison of CD133 + with CD133 - bulk population cells revealed increased tumorsphere formation and upregulation of stemness and epithelial-mesenchymal transition (EMT) markers with no significant difference in cisplatin sensitivity. Low-passage cell lines developed would serve as models for studying tumor biology. Cancer Stem Cells in cervical cancer display CD133 + phenotype and are increased in relapsed cases and hence should be targeted for achieving remission.
Wu, Fayin; Zhou, Hefeng; Fan, Zhiying; Zhu, Yawen; Li, Yongye; Yao, Yukun; Ran, Dan
2014-02-01
To observe the effect of garlic oil combined with 5-FU induced apoptosis of adenoid cystic carcinoma cell line ACC-M. Human salivary in adenoid cystic carcinoma cell line AC-M was cultured, divided into the experimental group (5-FU group, garlic oil group, garlic oil + 5-FU group) and the control group, to observe the growth activity of tumor cells by MTT methods; to analyse the changes of cell cycle and apoptosis rate by flow cytometry. MTT experiments showed that 5-FU, garlic oil, garlic oil and 5-FU on ACC-M cells have inhibition in different concentration, with the increase of concentration and action time of the rise; Cell cycle analysis showed significant changes in flow cytometry. With the increase of concentration and the acting time, the G0/G1, phase of the cell ratio increased, S had no significant change, but G2/M phase cells decreased. Apoptosis rate display showed garlic oil combined with 5-FU induced apoptosis of ACC-M cells was significantly stronger than single group. Garlic oil can effectively induce the apoptosis of adenoid cystic carcinoma cell line ACC-M. The effect of garlic oil combined with 5-FU on ACC-M cells was stronger than the garlic oil, 5-FU used alone.
Graphics simulation and training aids for advanced teleoperation
NASA Technical Reports Server (NTRS)
Kim, Won S.; Schenker, Paul S.; Bejczy, Antal K.
1993-01-01
Graphics displays can be of significant aid in accomplishing a teleoperation task throughout all three phases of off-line task analysis and planning, operator training, and online operation. In the first phase, graphics displays provide substantial aid to investigate work cell layout, motion planning with collision detection and with possible redundancy resolution, and planning for camera views. In the second phase, graphics displays can serve as very useful tools for introductory training of operators before training them on actual hardware. In the third phase, graphics displays can be used for previewing planned motions and monitoring actual motions in any desired viewing angle, or, when communication time delay prevails, for providing predictive graphics overlay on the actual camera view of the remote site to show the non-time-delayed consequences of commanded motions in real time. This paper addresses potential space applications of graphics displays in all three operational phases of advanced teleoperation. Possible applications are illustrated with techniques developed and demonstrated in the Advanced Teleoperation Laboratory at JPL. The examples described include task analysis and planning of a simulated Solar Maximum Satellite Repair task, a novel force-reflecting teleoperation simulator for operator training, and preview and predictive displays for on-line operations.
Chen, Chi-Fang; Chu, Che-Yu; Chen, Te-Hao; Lee, Shyh-Jye; Shen, Chia-Ning; Hsiao, Chung-Der
2011-01-01
Background Zebrafish skin is composed of enveloping and basal layers which form a first-line defense system against pathogens. Zebrafish epidermis contains ionocytes and mucous cells that aid secretion of acid/ions or mucous through skin. Previous studies demonstrated that fish skin is extremely sensitive to external stimuli. However, little is known about the molecular mechanisms that modulate skin cell apoptosis in zebrafish. Methodology/Principal Findings This study aimed to create a platform to conduct conditional skin ablation and determine if it is possible to attenuate apoptotic stimuli by overexpressing potential apoptosis modulating genes in the skin of live animals. A transgenic zebrafish line of Tg(krt4:NTR-hKikGR)cy17 (killer line), which can conditionally trigger apoptosis in superficial skin cells, was first established. When the killer line was incubated with the prodrug metrodinazole, the superficial skin displayed extensive apoptosis as judged by detection of massive TUNEL- and active caspase 3-positive signals. Great reductions in NTR-hKikGR+ fluorescent signals accompanied epidermal cell apoptosis. This indicated that NTR-hKikGR+ signal fluorescence can be utilized to evaluate apoptotic events in vivo. After removal of metrodinazole, the skin integrity progressively recovered and NTR-hKikGR+ fluorescent signals gradually restored. In contrast, either crossing the killer line with testing lines or transiently injecting the killer line with testing vectors that expressed human constitutive active Akt1, mouse constitutive active Stat3, or HPV16 E6 element displayed apoptosis-resistant phenotypes to cytotoxic metrodinazole as judged by the loss of reduction in NTR-hKikGR+ fluorescent signaling. Conclusion/Significance The killer/testing line binary system established in the current study demonstrates a nitroreductase/metrodinazole system that can be utilized to conditionally perform skin ablation in a real-time manner, and provides a valuable tool to visualize and quantify the anti-apoptotic potential of interesting target genes in vivo. The current work identifies a potential use for transgenic zebrafish as a high-throughput platform to validate potential apoptosis modulators in vivo. PMID:21655190
Fazekas, Judit; Grunt, Thomas W; Jensen-Jarolim, Erika; Singer, Josef
2017-05-23
Cancer cell lines are indispensible surrogate models in cancer research, as they can be used off-the-shelf, expanded to the desired extent, easily modified and exchanged between research groups for affirmation, reproduction or follow-up experiments.As malignant cells are prone to genomic instability, phenotypical changes may occur after certain passages in culture. Thus, cell lines have to be regularly authenticated to ensure data quality. In between experiments these cell lines are often stored in liquid nitrogen for extended time periods.Although freezing of cells is a necessary evil, little research is performed on how long-term storage affects cancer cell lines. Therefore, this study investigated the effects of a 28-year long liquid nitrogen storage period on BT474 cells with regard to phenotypical changes, differences in cell-surface receptor expression as well as cytokine and gene expressional variations. Two batches of BT474 cells, one frozen in 1986, the other directly purchased from ATCC were investigated by light microscopy, cell growth analysis, flow cytometry and cytokine as well as whole-transcriptome expression profiling. The cell lines were morphologically indifferent and showed similar growth rates and similar cell-surface receptor expression. Transcriptome analysis revealed significant differences in only 26 of 40,716 investigated RefSeq transcripts with 4 of them being up-regulated and 22 down-regulated. This study demonstrates that even after very long periods of storage in liquid nitrogen, cancer cell lines display only minimal changes in their gene expression profiles. However, also such minor changes should be carefully assessed before continuation of experiments, especially if phenotypic alterations can be additionally observed.
Mass spectrometry (LC-MS/MS) identified proteomic biosignatures of breast cancer in proximal fluid.
Whelan, Stephen A; He, Jianbo; Lu, Ming; Souda, Puneet; Saxton, Romaine E; Faull, Kym F; Whitelegge, Julian P; Chang, Helena R
2012-10-05
We have begun an early phase of biomarker discovery in three clinically important types of breast cancer using a panel of human cell lines: HER2 positive, hormone receptor positive and HER2 negative, and triple negative (HER2-, ER-, PR-). We identified and characterized the most abundant secreted, sloughed, or leaked proteins released into serum free media from these breast cancer cell lines using a combination of protein fractionation methods before LC-MS/MS mass spectrometry analysis. A total of 249 proteins were detected in the proximal fluid of 7 breast cancer cell lines. The expression of a selected group of high abundance and/or breast cancer-specific potential biomarkers including thromobospondin 1, galectin-3 binding protein, cathepsin D, vimentin, zinc-α2-glycoprotein, CD44, and EGFR from the breast cancer cell lines and in their culture media were further validated by Western blot analysis. Interestingly, mass spectrometry identified a cathepsin D protein single-nucleotide polymorphism (SNP) by alanine to valine replacement from the MCF-7 breast cancer cell line. Comparison of each cell line media proteome displayed unique and consistent biosignatures regardless of the individual group classifications, demonstrating the potential for stratification of breast cancer. On the basis of the cell line media proteome, predictive Tree software was able to categorize each cell line as HER2 positive, HER2 negative, and hormone receptor positive and triple negative based on only two proteins, muscle fructose 1,6-bisphosphate aldolase and keratin 19. In addition, the predictive Tree software clearly identified MCF-7 cell line overexpresing the HER2 receptor with the SNP cathepsin D biomarker.
Altered Redox Status Accompanies Progression to Metastatic Human Bladder Cancer
Hempel, Nadine; Ye, Hanqing; Abessia, Bryan; Mian, Badar; Melendez, J. Andres
2009-01-01
The role of reactive oxygen species (ROS) in bladder cancer progression remains an unexplored field. Expression levels of enzymes regulating ROS levels are often altered in cancer. Search of publicly available micro-array data reveals that expression of mitochondrial manganese superoxide dismutase (Sod2), responsible for the conversion of superoxide (O2-.) to hydrogen peroxide (H2O2), is consistently increased in high grade and advanced stage bladder tumors. Here we aim to identify the role of Sod2 expression and ROS in bladder cancer. Using an in vitro human bladder tumor model we monitored the redox state of both non-metastatic (253J) and highly metastatic (253J B-V) bladder tumor cell lines. 253J B-V cells displayed significantly higher Sod2 protein and activity levels compared to their parental 253J cell line. The increase in Sod2 expression was accompanied by a significant decrease in catalase activity, resulting in a net increase in H2O2 production in the 253J B-V line. Expression of pro-metastatic and –angiogenic factors, matrix metalloproteinase 9 (MMP-9) and vascular endothelial derived growth factor (VEGF), respectively, were similarly upregulated in the metastatic line. Expression of both MMP-9 and VEGF were shown to be H2O2-dependent, as removal of H2O2 by overexpression of catalase attenuated their expression. Similarly, expression of catalase effectively reduced the clonogenic activity of 253J B-V cells. These findings indicate that metastatic bladder cancer cells display an altered antioxidant expression profile, resulting in a net increase in ROS production, which leads to the induction of redox-sensitive pro-tumorigenic and pro-metastatic genes such as VEGF and MMP-9. PMID:18930813
NASA Astrophysics Data System (ADS)
McGuire, Michael J.; Gray, Bethany Powell; Li, Shunzi; Cupka, Dorothy; Byers, Lauren Averett; Wu, Lei; Rezaie, Shaghayegh; Liu, Ying-Horng; Pattisapu, Naveen; Issac, James; Oyama, Tsukasa; Diao, Lixia; Heymach, John V.; Xie, Xian-Jin; Minna, John D.; Brown, Kathlynn C.
2014-03-01
Tumor targeting ligands are emerging components in cancer therapies. Widespread use of targeted therapies and molecular imaging is dependent on increasing the number of high affinity, tumor-specific ligands. Towards this goal, we biopanned three phage-displayed peptide libraries on a series of well-defined human non-small cell lung cancer (NSCLC) cell lines, isolating 11 novel peptides. The peptides show distinct binding profiles across 40 NSCLC cell lines and do not bind normal bronchial epithelial cell lines. Binding of specific peptides correlates with onco-genotypes and activation of particular pathways, such as EGFR signaling, suggesting the peptides may serve as surrogate markers. Multimerization of the peptides results in cell binding affinities between 0.0071-40 nM. The peptides home to tumors in vivo and bind to patient tumor samples. This is the first comprehensive biopanning for isolation of high affinity peptidic ligands for a single cancer type and expands the diversity of NSCLC targeting ligands.
McGuire, Michael J.; Gray, Bethany Powell; Li, Shunzi; Cupka, Dorothy; Byers, Lauren Averett; Wu, Lei; Rezaie, Shaghayegh; Liu, Ying-Horng; Pattisapu, Naveen; Issac, James; Oyama, Tsukasa; Diao, Lixia; Heymach, John V.; Xie, Xian-Jin; Minna, John D.; Brown, Kathlynn C.
2014-01-01
Tumor targeting ligands are emerging components in cancer therapies. Widespread use of targeted therapies and molecular imaging is dependent on increasing the number of high affinity, tumor-specific ligands. Towards this goal, we biopanned three phage-displayed peptide libraries on a series of well-defined human non-small cell lung cancer (NSCLC) cell lines, isolating 11 novel peptides. The peptides show distinct binding profiles across 40 NSCLC cell lines and do not bind normal bronchial epithelial cell lines. Binding of specific peptides correlates with onco-genotypes and activation of particular pathways, such as EGFR signaling, suggesting the peptides may serve as surrogate markers. Multimerization of the peptides results in cell binding affinities between 0.0071–40 nM. The peptides home to tumors in vivo and bind to patient tumor samples. This is the first comprehensive biopanning for isolation of high affinity peptidic ligands for a single cancer type and expands the diversity of NSCLC targeting ligands. PMID:24670678
Characterisation of adriamycin- and amsacrine-resistant human leukaemic T cell lines.
Snow, K.; Judd, W.
1991-01-01
Cell lines resistant to adriamycin and amsacrine were derived from cloned sublines of the human T cell line Jurkat. Most of the lines resemble atypical MDR cells (Danks et al., 1987; Beck et al., 1987). Thus, resistant Jurkat sublines were cross resistant to several topoisomerase II inhibiting drugs but had low or no resistance to other classes of drugs, resistance was not reversed by verapamil, Pgp was not overexpressed, and drug accumulation was unaltered in resistant compared to parental (control) sublines. Other findings were that anthracycline metabolism differed between resistant and parental sublines, and that resistant sublines displayed altered expression of small polypeptides (less than 20K MW) and an 85K MW protein. Drug resistant cells showed resistance to the production of drug induced cytogenetic aberrations, DNA breaks, and protein-DNA complexes. Resistance was not mediated by altered binding of drugs to DNA or by increased repair of DNA damage. Indirect evidence suggests that the resistant cells had an altered drug-DNA-topoisomerase II association. The study highlights the complex relationships between DNA breaks, cytogenetic aberrations, protein-DNA complexes and drug cytotoxicity, and shows that the relationships differ for adriamycin and amsacrine, suggesting some differences in the modes of action and/or resistance for the drugs and cell lines. Images Figure 2 Figure 3 PMID:1989661
Rungsiwiwut, Ruttachuk; Pavarajarn, Wipawee; Numchaisrika, Pranee; Virutamasen, Pramuan; Pruksananonda, Kamthorn
2016-01-01
Transgene-free human HS5-SV.hiPS line was generated from human cesarean scar-derived fibroblasts using temperature-sensitive Sendai virus vectors carrying Oct4, Sox2, cMyc and Klf4 exogenous transcriptional factors. The viral constructs were eliminated from HS5-SV.hiPS line through heat treatment. Transgene-free HS5-SV.hiPS cells expressed pluripotent associated transcription factors Oct4, Nanog, Sox2, Rex1 and surface markers SSEA-4, TRA-1-60 and OCT4. HS5-SV.hiPS cells formed embryoid bodies and differentiated into three embryonic germ layers in vivo. HS5-SV.hiPS cells maintained their normal karyotype (46, XX) after culture for extended period. HS5-SV.hiPS displayed the similar pattern of DNA fingerprinting to the parenteral scar-derived fibroblasts. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.
de Semir, D.; Maurisse, R.; Du, F.; Xu, J.; Yang, X.; Illek, B.; Gruenert, D. C.
2013-01-01
The prospect of developing large animal models for the study of inherited diseases, such as cystic fibrosis (CF), through somatic cell nuclear transfer (SCNT) has opened up new opportunities for enhancing our understanding of disease pathology and for identifying new therapies. Thus, the development of species-specific in vitro cell systems that will provide broader insight into organ- and cell-type-specific functions relevant to the pathology of the disease is crucial. Studies have been undertaken to establish transformed rabbit airway epithelial cell lines that display differentiated features characteristic of the primary airway epithelium. This study describes the successful establishment and characterization of two SV40-transformed rabbit tracheal epithelial cell lines. These cell lines, 5RTEo- and 9RTEo-, express the CF transmembrane conductance regulator (CFTR) gene, retain epithelial-specific differentiated morphology and show CFTR-based cAMP-dependent Cl− ion transport across the apical membrane of a confluent monolayer. Immunocytochemical analysis indicates the presence of airway cytokeratins and tight-junction proteins in the 9RTEo- cell line after multiple generations. However, the tight junctions appear to diminish in their efficacy in both cell lines after at least 100 generations. Initial SCNT studies with the 9RTEo- cells have revealed that SV40-transformed rabbit airway epithelial donor cells can be used to generate blastocysts. These cell systems provide valuable models for studying the developmental and metabolic modulation of CFTR gene expression and rabbit airway epithelial cell biology. PMID:22234514
Krassikoff, N E; Cowan, J M; Parry, D M; Francke, U
1986-01-01
Different cell types from a female patient with Roberts/SC phocomelia syndrome were evaluated quantitatively for the presence of repulsion of heterochromatin and satellite regions of mitotic chromosomes. Whereas EBV-transformed lymphoblasts from an established cell line revealed these phenomena at frequencies equal to those in PHA-stimulated lymphocytes and cultured skin fibroblasts, aneuploid cells from a metastatic melanoma displayed them at 50% lower frequency. Cocultivation of the patient's fibroblasts with either an immortal Chinese hamster cell line or with a human male fibroblast strain carrying a t(4;6)(p14;q21) translocation showed that the phenomenon was not corrected or induced by a diffusible factor or by cell-to-cell contact. In each experiment, only the patient's metaphase spreads revealed chromatid repulsion. In fusion hybrids between the patient's fibroblasts and an established Chinese hamster cell line, the human chromosomes behaved perfectly normally, suggesting that the gene product which is missing or mutant in Roberts/SC phocomelia syndrome is supplied by the Chinese hamster genome. Images Fig. 1 Fig. 2 Fig. 3 PMID:3788975
Jones, M K; Hughes-Stamm, S R; East, R M; Cribb, T H
2000-12-01
Digenean parasites of vertebrates usually amplify the surface area of their gut by increasing the size of the absorptive caeca. Some members of the family Gyliauchenidae, however, have relatively small caeca but have a greatly expanded foregut. The morphology of the elongate gut of the digenean Gyliauchen nahaensis, an inhabitant of herbivorous fish of the family Siganidae, was examined by light and transmission electron microscopy. The extensive foregut, consisting of a mouth, pharynx, and esophagus, is lined with a syncytial tegument-like lining, which is connected to nucleated cell bodies sunken in the parenchyma. The apical cytoplasm in the mouth and anterior regions of the pharynx resembles that of the general body tegument, although some regional specialization is present. The lining of posterior regions of the pharynx is armed with large apical projections, which are thought to serve as filtration structures. The lining of the anterior and middle esophagus displays a peculiar form of surface amplification involving the formation of elongate flask-shaped invaginations of the apical cytoplasm. The cell bodies associated with these regions are rich in secretory vesicles and it is proposed that these regions of the esophagus are expanded to promote extracellular digestion. The posterior region of the esophagus lacks the invaginations of other esophageal regions, but displays instead large surface projections. The caeca consists of columnar cells lined by extensive apical microlamellae. The peculiar gut morphology of G. nahaensis, coupled with alterations in the arrangement of suckers, is interpreted to be an adaptation to the predominantly herbivorous diets of the definitive hosts.
Silva, Zélia; Veríssimo, Teresa; Videira, Paula A; Novo, Carlos
2015-08-01
Anti-cancer treatments usually elevate the content of unfolded or misfolded proteins in the endoplasmic reticulum (ER). Here we aimed to get insights into the relation between sensitivity of melanoma cell lines to the ER stress inducer thapsigargin (THG) and the genetic expression of protein disulfide isomerase family members (PDIs). The expression of PDIs was analysed by flow cytometry and real-time PCR. The results showed that SK-MEL-30, the less THG sensitive cell line, displays higher basal PDIs' expression levels and the sensitivity is increased by the PDIs inhibitor bacitracin. While SK-MEL-30 PDIs' expression is not THG dose-dependent, an increase in glucose related protein 78 (GRP78), PDIA5, PDIA6, and thioredoxin-related-transmembrane proteins' (TMX3 and TMX4) expression, in response to higher drug concentrations, was observed in MNT-1. The differences in PDIs' gene expression in MNT-1 suggest a different response to ER stress compared to the other cell lines and highlight the importance of understanding the diversity among cancer cells. Copyright © 2015 Elsevier B.V. All rights reserved.
de Sá Rodrigues, L. C.; Holmes, K. E.; Thompson, V.; Piskun, C. M.; Lana, S. E.; Newton, M. A.; Stein, T. J.
2016-01-01
Serum alkaline phosphatase (ALP) concentration is a prognostic factor for osteosarcoma in multiple studies, although its biological significance remains incompletely understood. To determine whether gene expression patterns differed in osteosarcoma from patients with differing serum ALP concentrations, microarray analysis was performed on 18 primary osteosarcoma samples and six osteosarcoma cell lines from dogs with normal and increased serum ALP concentration. No differences in gene expression patterns were noted between tumours or cell lines with differing serum ALP concentration using a gene-specific two-sample t-test. Using a more sensitive empirical Bayes procedure, defective in cullin neddylation 1 domain containing 1 (DCUN1D1) was increased in both the tissue and cell lines of the normal ALP group. Using quantitative PCR (qPCR), differences in DCUN1D1 expression between the two groups failed to reach significance. The homogeneity of gene expression patterns of osteosarcoma associated differing serum ALP concentrations are consistent with previous studies suggesting serum ALP concentration is not associated with intrinsic differences of osteosarcoma cells. PMID:25643733
Chang, Tien-Cheng; Liu, Ya-Guang; Eddy, Carlton A; Jacoby, Ethan S; Binkley, Peter A; Brzyski, Robert G; Schenken, Robert S
2011-06-01
The development of nonhuman primate (NHP) embryonic stem cell (ESC) models holds great promise for cell-mediated treatment of debilitating diseases and to address numerous unanswered questions regarding the therapeutic efficacy of ESCs while supplanting ethical considerations involved with human studies. Here we report successful establishment and characterization of 3 novel baboon (Papio cynocephalus) ESC lines from the inner cell mass of intracytoplasmic sperm injection-derived blastocysts. Embryos were cultured in an improved baboon embryo in vitro culture protocol. The inner cell mass of blastocyst was laser-dissected and plated on mouse embryonic fibroblast feeder cell monolayer in the NHP ESC culture medium. Three cell lines with characteristic ESC morphology have been cultured through an extended period (>14 months), with 2 male cell lines (UT-1 and -2) and 1 female cell line (UT-3) displaying normal baboon karyotypes. Reverse transcription-polymerase chain reaction analysis confirmed that all 3 lines express primate ESC pluripotency markers, including OCT-4, NANOG, SOX-2, TERT, TDGF, LEFTYA, and REX-1. All 3 lines demonstrated positive immunocytochemical staining for OCT-4, stage-specific embryonic antigen-3, stage-specific embryonic antigen-4, TRA-1-60, and TRA-1-81. Baboon ESCs injected into NOD/SCID mice formed teratomas with all 3 germ layers. In addition, embryoid body-like spherical structures were derived and initial outgrowth was observed when embedded into extracellular matrix Matrigel. The ESC lines established in this NHP model have the potential to extend our knowledge in the fields of developmental biology, regenerative medicine, and future applications, including preclinical safety assessment of in vivo stem cell therapy.
Hayashi, Masamichi; Bernert, Heike; Kagohara, Luciane Tsukamoto; Maldonado, Leonel; Brait, Mariana; Schoenberg, Mark; Bivalacqua, Trinity; Netto, George J; Koch, Wayne; Sidransky, David; Hoque, Mohammad O
2014-05-30
To identify new epigenetic markers and further characterize Urothelial Cell Carcinoma (UCC), we tested the promoter methylation (PM) status of 19 genes previously identified as cancer specific methylated genes in other solid tumors. We used bisulfite sequencing, methylation specific PCR and quantitative methylation specific PCR (QMSP) to test the PM status of 19 genes in urothelial cancer cell lines. Among the 19 genes tested, VGF was found to be completely methylated in several UCC cell lines. VGF QMSP analysis showed that methylation values of almost all the primary 19 UCC tissues were higher than the paired normal tissues (P=0.009). In another cohort, 12/35 (34.3%) of low grade UCC cases displayed VGF methylation. As a biomarker for non-invasive detection of UCC, VGF showed a significantly higher frequency of methylation in urine from UCC cases (8/20) compared to controls (1/20) (P=0.020). After treatment of cell lines with 5-Aza-2'-deoxycytidine, VGF was robustly re-expressed. Forced expression of VGF in bladder cancer cell lines inhibited cell growth. Selection of candidates from genome-wide screening approach in other solid tumors successfully identified UCC specific methylated genes.
NASA Astrophysics Data System (ADS)
Sanford, James L.; Schlig, Eugene S.; Prache, Olivier; Dove, Derek B.; Ali, Tariq A.; Howard, Webster E.
2002-02-01
The IBM Research Division and eMagin Corp. jointly have developed a low-power VGA direct view active matrix OLED display, fabricated on a crystalline silicon CMOS chip. The display is incorporated in IBM prototype wristwatch computers running the Linus operating system. IBM designed the silicon chip and eMagin developed the organic stack and performed the back-end-of line processing and packaging. Each pixel is driven by a constant current source controlled by a CMOS RAM cell, and the display receives its data from the processor memory bus. This paper describes the OLED technology and packaging, and outlines the design of the pixel and display electronics and the processor interface. Experimental results are presented.
Derivation of the King's College London human embryonic stem cell lines.
Stephenson, Emma L; Braude, Peter R
2010-04-01
Since the derivation of the first human embryonic stem cell (hESC) line in 1998, there has been substantial interest in the potential of these cells for regenerative medicine and cell therapy and in the use of hESCs carrying clinically relevant genetic mutations as models for disease research and therapeutic target identification. There is still a need to improve derivation efficiency and further the understanding of the basic biology of these cells and to develop clinical grade culture systems with the aim of producing cell lines suitable for subsequent manipulation for therapy. The derivation of initial hESC lines at King's College London is discussed here, with focus on derivation methodology. Each of the derivations was distinctive. Although the stage and morphology of each blastocyst were generally similar in each attempt, the behaviour of the colonies was unpredictable; colony morphology and development was different with each attempt. Days 5, 6 and 7 blastocysts were used successfully, and the number of days until appearance of stem-like cells varied from 4 to 14 d. Routine characterisation analyses were performed on three lines, all of which displayed appropriate marker expression and survived cryopreservation-thaw cycles. From the lines discussed, four are at various stages of the deposition process with the UKSCB, one is pending submission and two are unsuitable for banking. Continued open and transparent reporting of results and collaborations will maximise the efficiency of derivation and facilitate the development of standardised protocols for the derivation and early culture of hESC lines.
Siddiquey, Mohammed NA; Nakagawa, Hikaru; Iwata, Seiko; Kanazawa, Tetsuhiro; Suzuki, Michio; Imadome, Ken-Ichi; Fujiwara, Shigeyoshi; Goshima, Fumi; Murata, Takayuki; Kimura, Hiroshi
2014-01-01
The ubiquitous Epstein–Barr virus (EBV) infects not only B cells but also T cells and natural killer (NK) cells and is associated with various lymphoid malignancies. Recent studies have reported that histone deacetylase (HDAC) inhibitors exert anticancer effects against various tumor cells. In the present study, we have evaluated both the in vitro and in vivo effects of suberoylanilide hydroxamic acid (SAHA), an HDAC inhibitor, on EBV-positive and EBV-negative T and NK lymphoma cells. Several EBV-positive and EBV-negative T and NK cell lines were treated with various concentrations of SAHA. SAHA suppressed the proliferation of T and NK cell lines, although no significant difference was observed between EBV-positive and EBV-negative cell lines. SAHA induced apoptosis and/or cell cycle arrest in several T and NK cell lines. In addition, SAHA increased the expression of EBV-lytic genes and decreased the expression of EBV-latent genes. Next, EBV-positive NK cell lymphoma cells were subcutaneously inoculated into severely immunodeficient NOD/Shi-scid/IL-2Rγnull mice, and then SAHA was administered intraperitoneally. SAHA inhibited tumor progression and metastasis in the murine xenograft model. SAHA displayed a marked suppressive effect against EBV-associated T and NK cell lymphomas through either induction of apoptosis or cell cycle arrest, and may represent an alternative treatment option. PMID:24712440
Squamous cell carcinoma of the anal sac in five dogs.
Esplin, D G; Wilson, S R; Hullinger, G A
2003-05-01
Tumors of the perianal area of dogs are common and include multiple tumor types. Whereas perianal adenomas occur often, adenocarcinomas of the apocrine glands of the anal sac occur less frequently. A review of the literature revealed no reports of squamous cell carcinomas arising from the epithelial lining of the anal sac. Squamous cell carcinomas originating from the lining of the anal sac were diagnosed in five dogs. Microscopically, the tumors consisted of variably sized invasive nests and cords of epithelial cells displaying squamous differentiation. Four of the five dogs were euthanatized because of problems associated with local infiltration by the tumors. In the fifth dog, there was no evidence of tumor 7 months after surgical removal, but further follow up was not available.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Calve, Benjamin; Lallemand, Benjamin; Perrone, Carmen
2011-07-01
The in vitro anticancer activity and toxicity of phyllostictine A, a novel oxazatricycloalkenone recently isolated from a plant-pathogenic fungus (Phyllosticta cirsii) was characterized in six normal and five cancer cell lines. Phyllostictine A displays in vitro growth-inhibitory activity both in normal and cancer cells without actual bioselectivity, while proliferating cells appear significantly more sensitive to phyllostictine A than non-proliferating ones. The main mechanism of action by which phyllostictine displays cytotoxic effects in cancer cells does not seem to relate to a direct activation of apoptosis. In the same manner, phyllostictine A seems not to bind or bond with DNA asmore » part of its mechanism of action. In contrast, phyllostictine A strongly reacts with GSH, which is a bionucleophile. The experimental data from the present study are in favor of a bonding process between GSH and phyllostictine A to form a complex though Michael attack at C=C bond at the acrylamide-like system. Considering the data obtained, two new hemisynthesized phyllostictine A derivatives together with three other natural phyllostictines (B, C and D) were also tested in vitro in five cancer cell lines. Compared to phyllostictine A, the two derivatives displayed a higher, phyllostictines B and D a lower, and phyllostictine C an almost equal, growth-inhibitory activity, respectively. These results led us to propose preliminary conclusions in terms of the structure-activity relationship (SAR) analyses for the anticancer activity of phyllostictine A and its related compounds, at least in vitro.« less
Timm, Michael; Hansen, Erik W; Moesby, Lise; Christensen, Jens D
2006-02-01
In this paper we describe a new pyrogen assay using the human leukemia cell line HL-60. The cell line is differentiated using all-trans retinoic acid (ATRA) to generate a cell population that resembles mature granulocytes. The differentiated HL-60 cell is capable of generating reactive oxygen species (ROS) when challenged with pyrogenic substances. In a luminol enhanced chemilumimetric assay the responsiveness of differentiated HL-60 cells is tested towards Salmonella typhimurium, Bacillus subtilis, Saccharomyces cerevisiae, Candida albicans, lipopolysaccharide (LPS) and lipoteichoic acid (LTA). The results show a poor sensitivity to S. typhimurium but displays good sensitivity towards B. subtilis, LTA and LPS. Furthermore, the sensitivity towards the yeasts C. albicans and S. cerevisiae is considerably better than obtained in other in vitro cell systems. Overall these results indicate that the HL-60 cell assay possibly could be evolved to a supplementary assay for the known pyrogenic detection assays. Furthermore, the utilization of the assay for pyrogenic examination of recombinant drugs derived from yeast expression systems would be relevant to examine.
Wang, Meng-Yu; Nestvold, Janne; Rekdal, Øystein; Kvalheim, Gunnar; Fodstad, Øystein
2017-03-15
Increasing evidence suggests a possible relationship between mesenchymal stem cells (MSCs) and sarcoma. MSCs are hypothesized to be the cells initiating sarcomagenesis, and cancer stem cells (CSCs) sharing features of MSCs have been identified in sarcomas. Here, we report on the characteristics of a bone marrow-derived rat mesenchymal stem cell line that spontaneously transformed in long-term culture. The rat transformed mesenchymal stem cells (rTMSCs) produced soft-tissue fibrosarcomas in immunocompromised mice and immunocompetent rats. In vitro, the rTMSCs displayed increased proliferation capacity compared to the untransformed cell line. The transformed MSCs maintained the mesenchymal phenotype by expression of the stem cell marker CD 90 and the lack of hematopoietic and endothelial markers. Cytogenetic analysis detected trisomy 6 in the rTMSCs. Side population (SP) isolation and tumorsphere cultivation of the transformed cells confirmed the presence of CSCs among the rTMSCs. Importantly, the rTMSCs retained their differentiation capacity towards osteogenic and adipogenic lineages. This transformed MSC-based cell line may be valuable in examining the balance in a mixed cell population between cancer stem cell properties and the ability to differentiate to specific non-transformed cell populations. Moreover, it may also be a useful tool to evaluate the efficacy of novel targeted immunotherapies in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
Attenni, Barbara; Ontoria, Jesus M; Cruz, Jonathan C; Rowley, Michael; Schultz-Fademrecht, Carsten; Steinkühler, Christian; Jones, Philip
2009-06-01
Histone deacetylase (HDAC) inhibition causes hyperacetylation of histones leading to differentiation, growth arrest and apoptosis of malignant cells, representing a new strategy in cancer therapy. Many of the known HDAC inhibitors (HDACi) that are in clinical trials possess a hydroxamic acid, that is a strong Zn(2+) binding group, thereby inhibiting some of the class I and class II isoforms. Herein we describe the identification of a selective class I HDAC inhibitor bearing a primary carboxamide moiety as zinc binding group. This HDACi displays good antiproliferative activity against multiple cancer cell lines, and demonstrates efficacy in a xenograft model comparable to vorinostat.
Denicolaï, Emilie; Baeza-Kallee, Nathalie; Tchoghandjian, Aurélie; Carré, Manon; Colin, Carole; Jiglaire, Carine Jiguet; Mercurio, Sandy; Beclin, Christophe; Figarella-Branger, Dominique
2014-11-15
Glioblastoma is the most frequent primary brain tumor in adults. Because of molecular and cellular heterogeneity, high proliferation rate and significant invasive ability, prognosis of patients is poor. Recent therapeutic advances increased median overall survival but tumor recurrence remains inevitable. In this context, we used a high throughput screening approach to bring out novel compounds with anti-proliferative and anti-migratory properties for glioblastoma treatment. Screening of the Prestwick chemical library® of 1120 molecules identified proscillaridin A, a cardiac glycoside inhibitor of the Na(+)/K(+) ATPase pump, with most significant effects on glioblastoma cell lines. In vitro effects of proscillaridin A were evaluated on GBM6 and GBM9 stem-like cell lines and on U87-MG and U251-MG cell lines. We showed that proscillaridin A displayed cytotoxic properties, triggered cell death, induced G2/M phase blockade in all the glioblastoma cell lines and impaired GBM stem self-renewal capacity even at low concentrations. Heterotopic and orthotopic xenotransplantations were used to confirm in vivo anticancer effects of proscillaridin A that both controls xenograft growth and improves mice survival. Altogether, results suggest that proscillaridin A is a promising candidate as cancer therapies in glioblastoma. This sustains previous reports showing that cardiac glycosides act as anticancer drugs in other cancers.
A new PDAC mouse model originated from iPSCs-converted pancreatic cancer stem cells (CSCcm)
Calle, Anna Sanchez; Nair, Neha; Oo, Aung KoKo; Prieto-Vila, Marta; Koga, Megumi; Khayrani, Apriliana Cahya; Hussein, Maram; Hurley, Laura; Vaidyanath, Arun; Seno, Akimasa; Iwasaki, Yoshiaki; Calle, Malu; Kasai, Tomonari; Seno, Masaharu
2016-01-01
Pancreatic ductal adenocarcinoma (PDAC) is the most representative form of pancreatic cancers. PDAC solid tumours are constituted of heterogeneous populations of cells including cancer stem cells (CSCs), differentiated cancer cells, desmoplastic stroma and immune cells. The identification and consequent isolation of pancreatic CSCs facilitated the generation of genetically engineered murine models. Nonetheless, the current models may not be representative for the spontaneous tumour occurrence. In the present study, we show the generation of a novel pancreatic iPSC-converted cancer stem cell lines (CSCcm) as a cutting-edge model for the study of PDAC. The CSCcm lines were achieved only by the influence of pancreatic cancer cell lines conditioned medium and were not subjected to any genetic manipulation. The xenografts tumours from CSCcm lines displayed histopathological features of ADM, PanIN and PDAC lesions. Further molecular characterization from RNA-sequencing analysis highlighted primary culture cell lines (1st CSCcm) as potential candidates to represent the pancreatic CSCs and indicated the establishment of the pancreatic cancer molecular pattern in their subsequent progenies 2nd CSCcm and 3rd CSCcm. In addition, preliminary RNA-seq SNPs analysis showed that the distinct CSCcm lines did not harbour single point mutations for the oncogene Kras codon 12 or 13. Therefore, PDAC-CSCcm model may provide new insights about the actual occurrence of the pancreatic cancer leading to develop different approaches to target CSCs and abrogate the progression of this fatidic disease. PMID:28042501
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradbury, Andrew M.
The invention relates to a novel phagemid display system for packaging phagemid DNA into phagemid particles which completely avoids the use of helper phage. The system of the invention incorporates the use of bacterial packaging cell lines which have been transformed with helper plasmids containing all required phage proteins but not the packaging signals. The absence of packaging signals in these helper plasmids prevents their DNA from being packaged in the bacterial cell, which provides a number of significant advantages over the use of both standard and modified helper phage. Packaged phagemids expressing a protein or peptide of interest, inmore » fusion with a phage coat protein such as g3p, are generated simply by transfecting phagemid into the packaging cell line.« less
Identification of drug-resistant subpopulations in canine hemangiosarcoma
Khammanivong, A.; Gorden, B. H.; Frantz, A. M.; Graef, A. J.; Dickerson, E. B.
2017-01-01
Canine hemangiosarcoma is a rapidly progressive disease that is poorly responsive to conventional chemotherapy. Despite numerous attempts to advance treatment options and improve outcomes, drug resistance remains a hurdle to successful therapy. To address this problem, we used recently characterized progenitor cell populations derived from canine hemangiosarcoma cell lines and grown as non-adherent spheres to identify potential drug resistance mechanisms as well as drug-resistant cell populations. Cells from sphere-forming cultures displayed enhanced resistance to chemotherapy drugs, expansion of dye-excluding side populations and altered ATP-binding cassette (ABC) transporter expression. Invasion studies demonstrated variability between cell lines as well as between sphere and monolayer cell populations. Collectively, our results suggest that sphere cell populations contain distinct subpopulations of drug-resistant cells that utilize multiple mechanisms to evade cytotoxic drugs. Our approach represents a new tool for the study of drug resistance in hemangiosarcoma, which could alter approaches for treating this disease. PMID:25112808
Somatostatin displayed on filamentous phage as a receptor-specific agonist
Rousch, Mat; Lutgerink, Jan T; Coote, James; de Bruïne, Adriaan; Arends, Jan-Willem; Hoogenboom, Hennie R
1998-01-01
In search of methods to identify bio-active ligands specific for G protein-coupled receptors with seven transmembrane spanning regions, we have developed a filamentous phage-based selection and functional screening method. First, methods for panning peptide phage on cells were established, using the hormone somatostatin as a model. Somatostatin was displayed on the surface of filamentous phage by cloning into phage(mid) vectors and fusion to either pIII or pVIII viral coat proteins. Peptide displaying phage bound to a polyclonal anti-somatostatin serum, and, more importantly, to several somatostatin receptor subtypes (Sst) expressed on transfected CHO-K1 cells, in a pattern which was dependent on the used display method. Binding was competed with somatostatin, with an IC50 in the nanomolar range. The phage were specifically enriched by panning on cells, establishing conditions for cell selections of phage libraries. Binding of somatostatin displaying phage to sst2 on a reporter cell line, in which binding of natural ligand reduces secretion of alkaline phosphatase (via a cyclic AMP responsive element sensitive promoter), proved that the phage particles act as receptor-specific agonists. Less than 100 phage particles per cell were required for this activity, which is approximately 1000 fold less than soluble somatostatin, suggesting that phage binding interferes with normal receptor desensitization and/or recycling. The combination of biopanning of phage libraries on cells with functional screening of phage particles for receptor triggering activity, may be used to select novel, bio-active ligands from phage libraries of random peptides, antibody fragments, or libraries based on the natural receptor ligand. PMID:9776337
Vinoth, Kumar Jayaseelan; Manikandan, Jayapal; Sethu, Swaminathan; Balakrishnan, Lakshmidevi; Heng, Alexis; Lu, Kai; Hande, Manoor Prakash; Cao, Tong
2014-08-20
This study evaluated human embryonic stem cells (hESC) and their differentiated fibroblastic progenies as cellular models for genotoxicity screening. The DNA damage response of hESCs and their differentiated fibroblastic progenies were compared to a fibroblastic cell line (HEPM, CRL1486) and primary cultures of peripheral blood lymphocytes (PBL), upon exposure to Mitomycin C, gamma irradiation and H2O2. It was demonstrated that hESC-derived fibroblastic progenies (H1F) displayed significantly higher chromosomal aberrations, micronuclei formation and double strand break (DSB) formation, as compared to undifferentiated hESC upon exposure to genotoxic stress. Nevertheless, H1F cell types displayed comparable sensitivities to genotoxic challenge as HEPM and PBL, both of which are representative of somatic cell types commonly used for genotoxicity screening. Subsequently, transcriptomic and pathways analysis identified differential expression of critical genes involved in cell death and DNA damage response upon exposure to gamma irradiation. The results thus demonstrate that hESC-derived fibroblastic progenies are as sensitive as commonly-used somatic cell types for genotoxicity screening. Moreover, hESCs have additional advantages, such as their genetic normality compared to immortalized cell lines, as well as their amenability to scale-up for producing large, standardized quantities of cells for genotoxicity screening on an industrial scale, something which can never be achieved with primary cell cultures. Copyright © 2014. Published by Elsevier B.V.
Fickova, Maria; Macho, Ladislav; Brtko, Julius
2015-06-01
In recent years it was disclosed, that numerous organotin(IV) derivatives have remarkable cytotoxicity against several types of cancer cells. The property to inhibit cell growth makes these compounds promising for antitumor therapy, as the clinical effectiveness of cisplatin is limited by drug resistance and significant side effects. Tributyltin and triphenyltin are known as endocrine disruptors. Moreover, the compounds exert their toxicity in mammals predominantly through nuclear receptor signaling. Here we present the effects of tributyltin chloride (TBT-Cl) and triphenyltin chloride (TPT-Cl) on cell proliferation, expression of proapoptotic p53, Bax, and antiapoptotic Bcl-2 proteins in human breast cancer MCF-7 cell line. Dose and time dependent (24, 48 and 72 h) cell expositions have demonstrated TBT-Cl as more effective in inhibiting MCF-7 cell proliferation than TPT-Cl. Short time treatment with TBT-Cl displayed marked stimulation of p53 protein expression when compared to TPT-Cl. Both organotin compounds displayed similar mild enhancement of Bax protein expression. The 24h exposition of TPT-Cl induced substantial diminution of Bcl-2 protein expression in comparison with both, untreated cells and TBT-Cl treated cells. Our observations indicate that TBT-Cl and TPT-Cl have different antiproliferative potency and distinct impact on expression of apoptosis marker proteins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Identification of the promoter of the myelomonocytic leukocyte integrin CD11b.
Hickstein, D D; Baker, D M; Gollahon, K A; Back, A L
1992-01-01
The CD11b (or macrophage-1 antigen; MAC-1) subunit of the leukocyte integrin family forms a noncovalently associated heterodimeric structure with the CD18 (beta) subunit on the surface of human granulocytes and monocyte/macrophages, where it enables these myeloid cells to participate in a variety of adherence-related activities. Expression of the CD11b subunit is restricted to cells of the myelomonocytic lineage and depends upon the stage of differentiation with the most mature myeloid cells expressing the highest levels of CD11b. To study the regulation of CD11b expression, a genomic clone corresponding to the 5' region of the CD11b gene was isolated from a human chromosome 16 library. Primer extension and RNase protection assays identified two major transcriptional start sites, located 90 base pairs and 54 base pairs upstream from the initiation methionine. DNA sequence analysis of 1.7 kilobases of the 5' flanking sequence of the CD11b gene indicated the absence of a "CAAT" or "TATA" box; however, potential binding sites for the transcription activators Sp1, PU.1, ets, and AP-2 are present, as well as retinoic acid response elements. The 1.7-kilobase CD11b promoter sequence displayed functional activity in transient transfection assays in the monocytic cell line THP-1 and the myeloid cell line HL-60. In contrast, this 1.7-kilobase promoter sequence did not display functional activity in the Jurkat T-lymphoid cell line. Detailed characterization of the CD11b promoter sequence should provide insight into the molecular events regulating the tissue-specific and developmental stage-specific expression of the CD11b molecule in myelomonocytic cells. Images PMID:1347945
NASA Astrophysics Data System (ADS)
Arafath, Md. Azharul; Adam, Farook; Al-Suede, Fouad Saleih R.; Razali, Mohd R.; Ahamed, Mohamed B. Khadeer; Abdul Majid, Amin Malik Shah; Hassan, Mohd Zaheen; Osman, Hasnah; Abubakar, Saifullah
2017-12-01
Four heterocyclic embedded Schiff base derivatives (1-4) were synthesized and characterized by melting point, elemental analysis, FTIR, 1H, 13C NMR, UV-Visible spectral data. The structures of compounds 1, 2 and 4 were successfully established through single crystal X-ray diffraction analysis. In vitro cholinesterase inhibition assays showed that the cyclized derivative 1 displayed higher BuChE enzyme inhibitory activity with IC50 value of 1.45 ± 0.09 μM. The anti-proliferative efficacies of the compounds were also evaluated using human colorectal HCT 116 and breast MCF-7 adenocarcinoma cell lines. In addition, a human normal endothelial cell line (Ea.hy926) was also tested to assess the safety and selectivity of the compounds towards normal and cancer cells, respectively. Among the compounds tested, compound 2 displayed potent cytotoxic effect (IC50 = 34 μM) against HCT 116 cells with highest selectivity index of 3.1 with respect to the normal endothelial cells. Whereas, compound 4 exhibited significant anti-proliferative effect (IC50 = 21.1 μM) against MCF-7 cells with highest selectivity index of 3.3 with respect to the normal endothelial cells. The docking result of these compounds against hAChE showed potent activities with different binding modes. These compounds could be a promising pharmacological agent to treat cancer and Alzheimer's disease.
Potter, Michelle; Badder, Luned; Hoade, Yvette; Johnston, Iain G; Morten, Karl J
2016-01-01
The metabolic properties of cancer cells have been widely accepted as a hallmark of cancer for a number of years and have shown to be of critical importance in tumour development. It is generally accepted that tumour cells exhibit a more glycolytic phenotype than normal cells. In this study, we investigate the bioenergetic phenotype of two widely used cancer cell lines, RD and U87MG, by monitoring intracellular oxygen concentrations using phosphorescent Pt-porphyrin based intracellular probes. Our study demonstrates that cancer cell lines do not always exhibit an exclusively glycolytic phenotype. RD demonstrates a reliance on oxidative phosphorylation whilst U87MG display a more glycolytic phenotype. Using the intracellular oxygen sensing probe we generate an immediate readout of intracellular oxygen levels, with the glycolytic lines reflecting the oxygen concentration of the environment, and cells with an oxidative phenotype having significantly lower levels of intracellular oxygen. Inhibition of oxygen consumption in lines with high oxygen consumption increases intracellular oxygen levels towards environmental levels. We conclude that the use of intracellular oxygen probes provides a quantitative assessment of intracellular oxygen levels, allowing the manipulation of cellular bioenergetics to be studied in real time.
Kralova, Jarmila; Synytsya, Alla; Pouckova, Pavla; Koc, Michal; Dvorak, Michal; Kral, Vladimir
2006-01-01
In the present study we investigated the photosensitizing properties of two novel mono- and bis-cyclodextrin tetrakis (pentafluorophenyl) porphyrin derivatives in several tumor cell lines and in BALB/c mice bearing subcutaneously transplanted syngeneic mouse mammary carcinoma 4T1. Both studied sensitizers were localized mainly in lysosomes and were found to induce cell death by triggering apoptosis in human leukemic cells HL-60. In 4T1 and other cell lines both apoptotic and necrotic modes of cell death occurred depending on drug and light doses. Mono-cyclodextrin porphyrin derivative P(beta-CD)1 exhibited stronger in vitro phototoxic effect than bis-cyclodextrin derivative P(beta-CD)2. However, in vivo P(beta-CD)2 displayed faster tumor uptake with maximal accumulation 6 h after application, leading to complete and prolonged elimination of subcutaneous tumors within 3 days after irradiation (100 J cm(-2)). In contrast, P(beta-CD)1 uptake was slower (48 h) and the reduction of tumor mass was only transient, reaching the maximum at the 12 h interval when a favorable tumor-to-skin ratio appeared. Thus, P(beta-CD)2 represents a new photosensitizing drug displaying fast and selective tumor uptake, strong antitumor activity and fast elimination from the body.
Jutras, Stephanie; Bachvarova, Magdalena; Keita, Mamadou; Bascands, Jean-Loup; Mes-Masson, Anne-Marie; Stewart, John M; Gera, Lajos; Bachvarov, Dimcho
2010-12-01
The standard chemotherapy for epithelial ovarian cancer (EOC) patients is currently a combination of taxane and platinum. However, most EOC patients still suffer relapses, and there is an immediate need for the development of novel and more effective therapeutic modalities against this deadly disease. Recently, the nonpeptide bradykinin (BK) antagonist 2,3,4,5,6-pentafluorocinnamoyl-(o-2,6-dichlorobenzyl)-l-tyrosine-N-(4-amino-2,2,6,6-tetramethyl-piperidyl) amide (BKM-570) was shown to cause impressive growth inhibition of lung and prostate tumors, displaying superior in vivo inhibitory effects than convential chemotherapeutic drugs. Here, we investigated BKM-570 cytotoxic effects in two EOC cell lines, derived from different EOC histopathologies: a clear cell carcinoma (TOV-21), and an endometrioid carcinoma (TOV-112). We showed that BKM-570 effectively inhibited the growth of ovarian cancer cells, as its cytotoxic effects were comparable to those of cisplatin, and were independent of the functional status of BK receptors. Moreover, BKM-570 synergized with cisplatin in inhibiting EOC cell growth. To better understand the molecular mechanisms of the antiproliferative action of this BK antagonist in EOC cells, we performed gene expression profiling in TOV-21 and TOV-112 cells following treatment with 10 μM BKM-570 for 24 h. BKM-570 displayed similar cytotoxic effects in the two cell lines analyzed, as genes with previously shown involvement in apoptosis/antiapoptosis and cell adhesion were proportionally upregulated and downregulated in both cell lines, whereas genes involved in basic cellular mechanisms, including cell growth and maintenance, metabolism, cell cycle control, inflammatory and immune response, signal transduction, protein biosynthesis, transcription regulation, and transport, were predominantly downregulated upon treatment. Our data are indicative of the therapeutic potential of BKM-570 and related compounds in EOC management. © 2010 The Authors Journal compilation © 2010 FEBS.
Saarinen, Mark A; Murhammer, David W
2003-01-05
The effects of dissolved oxygen (DO) concentration on virally infected insect cells were investigated in 3-L bioreactor culture. Specifically, cultures of Spodoptera frugiperda Sf-9 (Sf-9) and Trichoplusia ni BTI-Tn-5B1-4 (Tn-5B1-4) were infected with Autographa californica multiple nucleopolyhedrovirus expressing secreted alkaline phosphatase (SEAP). Following infection at a DO concentration of 50% air saturation, the DO concentration was adjusted to a final value of either 190%, 50%, or 10% air saturation. Recombinant SEAP production, cell viability, protein carbonyl content, and thiobarbituric acid reactive substances (TBARS) content were monitored. The increases in protein carbonyl and TBARS contents are taken to be indicators of protein oxidation and lipid oxidation, respectively. DO concentration was found to have no noticeable effect on SEAP production or cell viability decline in the Sf-9 cell line. In the Tn-5B1-4 cell line, cells displayed an increased peak SEAP production rate for 190% air saturation and displayed an increased rate of viability decline at increased DO concentration. Protein carbonyl content showed no significant increase in the Sf-9 cell line by 72 h postinfection (pi) at any DO concentration but showed a twofold increase at 10% and 50% DO concentration and a threefold increase at 190% DO concentration by 72 h pi in Tn-5B1-4 cells. TBARS content was found to increase by approximately 50% in Sf-9 cells and by approximately twofold in Tn-5B1-4 cells by 72 h pi with no clear relationship to DO concentration. It is hypothesized that oxygen uptake changes due to the viral infection process may bear a relation to the observed increases in protein and lipid oxidation and that lipid oxidation may play an important role in the death of virally infected insect cells. Copyright 2002 Wiley Periodicals, Inc.
Mayr, Christian; Wagner, Andrej; Neureiter, Daniel; Pichler, Martin; Jakab, Martin; Illig, Romana; Berr, Frieder; Kiesslich, Tobias
2015-06-23
The green tea catechin epigallocatechin gallate (EGCG) was shown to effectively inhibit tumor growth in various types of cancer including biliary tract cancer (BTC). For most BTC patients only palliative therapy is possible, leading to a median survival of about one year. Chemoresistance is a major problem that contributes to the high mortality rates of BTC. The aim of this study was to investigate the cytotoxic effect of EGCG alone or in combination with cisplatin on eight BTC cell lines and to investigate the cellular anti-cancer mechanisms of EGCG. The effect of EGCG treatment alone or in combination with the standard chemotherapeutic cisplatin on cell viability was analyzed in eight BTC cell lines. Additionally, we analyzed the effects of EGCG on caspase activity, cell cycle distribution and gene expression in the BTC cell line TFK-1. EGCG significantly reduced cell viability in all eight BTC cell lines (p < 0.05 or p < 0.01, respectively, for most cell lines and EGCG concentrations > 5 μM). Combined EGCG and cisplatin treatment showed a synergistic cytotoxic effect in five cell lines and an antagonistic effect in two cell lines. Furthermore, EGCG reduced the mRNA levels of various cell cycle-related genes, while increasing the expression of the cell cycle inhibitor p21 and the apoptosis-related death receptor 5 (p < 0.05). This observation was accompanied by an increase in caspase activity and cells in the sub-G1 phase of the cell cycle, indicating induction of apoptosis. EGCG also induced a down-regulation of expression of stem cell-related genes and genes that are associated with an aggressive clinical character of the tumor, such as cd133 and abcg2. EGCG shows various anti-cancer effects in BTC cell lines and might therefore be a potential anticancer drug for future studies in BTC. Additionally, EGCG displays a synergistic cytotoxic effect with cisplatin in most tested BTC cell lines. Graphical abstract Summary illustration.
Nietzer, Sarah; Baur, Florentin; Sieber, Stefan; Hansmann, Jan; Schwarz, Thomas; Stoffer, Carolin; Häfner, Heide; Gasser, Martin; Waaga-Gasser, Ana Maria; Walles, Heike; Dandekar, Gudrun
2016-07-01
Tumor models based on cancer cell lines cultured two-dimensionally (2D) on plastic lack histological complexity and functionality compared to the native microenvironment. Xenogenic mouse tumor models display higher complexity but often do not predict human drug responses accurately due to species-specific differences. We present here a three-dimensional (3D) in vitro colon cancer model based on a biological scaffold derived from decellularized porcine jejunum (small intestine submucosa+mucosa, SISmuc). Two different cell lines were used in monoculture or in coculture with primary fibroblasts. After 14 days of culture, we demonstrated a close contact of human Caco2 colon cancer cells with the preserved basement membrane on an ultrastructural level as well as morphological characteristics of a well-differentiated epithelium. To generate a tissue-engineered tumor model, we chose human SW480 colon cancer cells, a reportedly malignant cell line. Malignant characteristics were confirmed in 2D cell culture: SW480 cells showed higher vimentin and lower E-cadherin expression than Caco2 cells. In contrast to Caco2, SW480 cells displayed cancerous characteristics such as delocalized E-cadherin and nuclear location of β-catenin in a subset of cells. One central drawback of 2D cultures-especially in consideration of drug testing-is their artificially high proliferation. In our 3D tissue-engineered tumor model, both cell lines showed decreased numbers of proliferating cells, thus correlating more precisely with observations of primary colon cancer in all stages (UICC I-IV). Moreover, vimentin decreased in SW480 colon cancer cells, indicating a mesenchymal to epithelial transition process, attributed to metastasis formation. Only SW480 cells cocultured with fibroblasts induced the formation of tumor-like aggregates surrounded by fibroblasts, whereas in Caco2 cocultures, a separate Caco2 cell layer was formed separated from the fibroblast compartment beneath. To foster tissue generation, a bioreactor was constructed for dynamic culture approaches. This induced a close tissue-like association of cultured tumor cells with fibroblasts reflecting tumor biopsies. Therapy with 5-fluorouracil (5-FU) was effective only in 3D coculture. In conclusion, our 3D tumor model reflects human tissue-related tumor characteristics, including lower tumor cell proliferation. It is now available for drug testing in metastatic context-especially for substances targeting tumor-stroma interactions.
Mahal, Katharina; Resch, Marcus; Ficner, Ralf; Schobert, Rainer; Biersack, Bernhard; Mueller, Thomas
2014-04-01
Two analogues of the discontinued tumor vascular-disrupting agent verubulin (Azixa®, MPC-6827, 1) featuring benzo-1,4-dioxan-6-yl (compound 5 a) and N-methylindol-5-yl (compound 10) residues instead of the para-anisyl group on the 4-(methylamino)-2-methylquinazoline pharmacophore, were prepared and found to exceed the antitumor efficacy of the lead compound. They were antiproliferative with single-digit nanomolar IC50 values against a panel of nine tumor cell lines, while not affecting nonmalignant fibroblasts. Indole 10 surpassed verubulin in seven tumor cell lines including colon, breast, ovarian, and germ cell cancer cell lines. In line with docking studies indicating that compound 10 may bind the colchicine binding site of tubulin more tightly (Ebind =-9.8 kcal mol(-1) ) than verubulin (Ebind =-8.3 kcal mol(-1) ), 10 suppressed the formation of vessel-like tubes in endothelial cells and destroyed the blood vessels in the chorioallantoic membrane of fertilized chicken eggs at nanomolar concentrations. When applied to nude mice bearing a highly vascularized 1411HP germ cell xenograft tumor, compound 10 displayed pronounced vascular-disrupting effects that led to hemorrhages and extensive central necrosis in the tumor. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Sternberg, Hal; Jiang, Jianjie; Sim, Pamela; Kidd, Jennifer; Janus, Jeffrey; Rinon, Ariel; Edgar, Ron; Shitrit, Alina; Larocca, David; Chapman, Karen B; Binette, Francois; West, Michael D
2014-01-01
The transcriptome and fate potential of three diverse human embryonic stem cell-derived clonal embryonic progenitor cell lines with markers of cephalic neural crest are compared when differentiated in the presence of combinations of TGFβ3, BMP4, SCF and HyStem-C matrices. The cell lines E69 and T42 were compared with MEL2, using gene expression microarrays, immunocytochemistry and ELISA. In the undifferentiated progenitor state, each line displayed unique markers of cranial neural crest including TFAP2A and CD24; however, none expressed distal HOX genes including HOXA2 or HOXB2, or the mesenchymal stem cell marker CD74. The lines also showed diverse responses when differentiated in the presence of exogenous BMP4, BMP4 and TGFβ3, SCF, and SCF and TGFβ3. The clones E69 and T42 showed a profound capacity for expression of endochondral ossification markers when differentiated in the presence of BMP4 and TGFβ3, choroid plexus markers in the presence of BMP4 alone, and leptomeningeal markers when differentiated in SCF without TGFβ3. The clones E69 and T42 may represent a scalable source of primitive cranial neural crest cells useful in the study of cranial embryology, and potentially cell-based therapy.
Ivanov, Sergey V.; Kuzmin, Igor; Wei, Ming-Hui; Pack, Svetlana; Geil, Laura; Johnson, Bruce E.; Stanbridge, Eric J.; Lerman, Michael I.
1998-01-01
To discover genes involved in von Hippel-Lindau (VHL)-mediated carcinogenesis, we used renal cell carcinoma cell lines stably transfected with wild-type VHL-expressing transgenes. Large-scale RNA differential display technology applied to these cell lines identified several differentially expressed genes, including an alpha carbonic anhydrase gene, termed CA12. The deduced protein sequence was classified as a one-pass transmembrane CA possessing an apparently intact catalytic domain in the extracellular CA module. Reintroduced wild-type VHL strongly inhibited the overexpression of the CA12 gene in the parental renal cell carcinoma cell lines. Similar results were obtained with CA9, encoding another transmembrane CA with an intact catalytic domain. Although both domains of the VHL protein contribute to regulation of CA12 expression, the elongin binding domain alone could effectively regulate CA9 expression. We mapped CA12 and CA9 loci to chromosome bands 15q22 and 17q21.2 respectively, regions prone to amplification in some human cancers. Additional experiments are needed to define the role of CA IX and CA XII enzymes in the regulation of pH in the extracellular microenvironment and its potential impact on cancer cell growth. PMID:9770531
Nelson, Jennifer; Francom, Lyndee L.; Anderson, Lynn; Damm, Kelly; Baker, Ryan; Chen, Joseph; Franklin, Sarah; Hamaker, Amy; Izidoro, Izadora; Moss, Eric; Orton, Mikayla; Stevens, Evan; Yeung, Celestine; Judd, Allan M.; Bell, John D.
2012-01-01
Summary Normal human lymphocytes resisted the hydrolytic action of secretory phospholipase A2 but became susceptible to the enzyme following treatment with a calcium ionophore, ionomycin. To test the hypothesis that this susceptibility requires exposure of the anionic lipid phosphatidylserine on the external face of the cell membrane, experiments were repeated with a human Burkitt’s lymphoma cell line (Raji cells). In contrast to normal lymphocytes or S49 mouse lymphoma cells, most of the Raji cells (83%) did not translocate phosphatidylserine to the cell surface upon treatment with ionomycin. Those few that did display exposed phosphatidylserine were hydrolyzed immediately upon addition of phospholipase A2. Interestingly, the remaining cells were also completely susceptible to the enzyme but were hydrolyzed at a slower rate and after a latency of about 100 s. In contradistinction to the defect in phosphatidylserine translocation, Raji cells did display other physical membrane changes upon ionomycin treatment that may be relevant to hydrolysis by phospholipase A2. These changes were detected by merocyanine 540 and trimethylammonium diphenylhexatriene fluorescence and were common among normal lymphocytes, S49 cells, and Raji cells. The levels of these latter effects corresponded well with the relative rates of hydrolysis among the three cell lines. These results suggested that while phosphatidylserine enhances the rate of cell membrane hydrolysis by secretory phospholipase A2, it is not an absolute requirement. Other physical properties such as membrane order contribute to the level of membrane susceptibility to the enzyme independent of phosphatidylserine. PMID:22266334
Leong, Ooi Kheng; Muhammad, Tengku Sifzizul Tengku; Sulaiman, Shaida Fariza
2011-01-01
Physalis minima L. is reputed for having anticancer property. In this study, the chloroform extract of this plant exhibited remarkable cytotoxic activities on NCI-H23 (human lung adenocarcinoma) cell line at dose- and time-dependent manners (after 24, 48 and 72 h of incubation). Analysis of cell-death mechanism demonstrated that the extract exerted apoptotic programed cell death in NCI-H23 cells with typical DNA fragmentation, which is a biochemical hallmark of apoptosis. Morphological observation using transmission electron microscope (TEM) also displayed apoptotic characteristics in the treated cells, including clumping and margination of chromatins, followed by convolution of the nuclear and budding of the cells to produce membrane-bound apoptotic bodies. Different stages of apoptotic programed cell death as well as phosphatidylserine externalization were confirmed using annexin V and propidium iodide staining. Furthermore, acute exposure to the extract produced a significant regulation of c-myc, caspase-3 and p53 mRNA expression in this cell line. Due to its apoptotic effect on NCI-H23 cells, it is strongly suggested that the extract could be further developed as an anticancer drug. PMID:19541726
Katoch, Meenu; Singh, Gurpreet; Sharma, Sadhna; Gupta, Nidhi; Sangwan, Payare Lal; Saxena, Ajit Kumar
2014-02-11
Endophytes, which reside in plant tissues, have the potential to produce novel metabolites with immense benefits for health industry. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell were investigated. Endophytic fungi were isolated from the Bacopa monnieri. Extracts from liquid cultures were tested for cytotoxicity against a number of cancer cell lines using the MTT assay. Antimicrobial activity was determined using the micro dilution method. 22% of the examined extracts showed potent (IC50 of <20 μg/ml) cytotoxic activity against HCT-116 cell line. 5.5%, 11%, 11% of the extracts were found to be cytotoxic for MCF-7, PC-3, and A-549 cell lines respectively. 33% extracts displayed antimicrobial activity against at least one test organism with MIC value 10-100 μg/ml. The isolate B9_Pink showed the most potent cytotoxic activity for all the cell lines examined and maximum antimicrobial activity against the four pathogens examined which was followed by B19. Results indicated the potential for production of bioactive agents from endophytes of Bacopa monnieri.
Analysis of Induced Pluripotent Stem Cells from a BRCA1 Mutant Family
Soyombo, Abigail A.; Wu, Yipin; Kolski, Lauren; Rios, Jonathan J.; Rakheja, Dinesh; Chen, Alice; Kehler, James; Hampel, Heather; Coughran, Alanna; Ross, Theodora S.
2013-01-01
Summary Understanding BRCA1 mutant cancers is hampered by difficulties in obtaining primary cells from patients. We therefore generated and characterized 24 induced pluripotent stem cell (iPSC) lines from fibroblasts of eight individuals from a BRCA1 5382insC mutant family. All BRCA1 5382insC heterozygous fibroblasts, iPSCs, and teratomas maintained equivalent expression of both wild-type and mutant BRCA1 transcripts. Although no difference in differentiation capacity was observed between BRCA1 wild-type and mutant iPSCs, there was elevated protein kinase C-theta (PKC-theta) in BRCA1 mutant iPSCs. Cancer cell lines with BRCA1 mutations and hormone-receptor-negative breast cancers also displayed elevated PKC-theta. Genome sequencing of the 24 iPSC lines showed a similar frequency of reprogramming-associated de novo mutations in BRCA1 mutant and wild-type iPSCs. These data indicate that iPSC lines can be derived from BRCA1 mutant fibroblasts to study the effects of the mutation on gene expression and genome stability. PMID:24319668
Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume
2017-01-01
Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (p<2.26 10−7), -24.1 (p<5.6 10−9) and -17.7 (p<1.2 10−7). CCNE1, AURKA, IGF2, MYCN and ERBB2 were more moderately down-regulated by both molecules. Glioma markers E2F1, DAPK1 and CCND1 were down-regulated. Citalopram displayed more powerful action with broader and distinct spectrum of action than escitalopram. PMID:28467792
Sakka, Laurent; Delétage, Nathalie; Chalus, Maryse; Aissouni, Youssef; Sylvain-Vidal, Valérie; Gobron, Stéphane; Coll, Guillaume
2017-06-27
Selective serotonin reuptake inhibitors (SSRI) are common antidepressants which cytotoxicity has been assessed in cancers notably colorectal carcinomas and glioma cell lines. We assessed and compared the cytotoxicity of 2 SSRI, citalopram and escitalopram, on neuroblastoma cell lines. The study was performed on 2 non-MYCN amplified cell lines (rat B104 and human SH-SY5Y) and 2 human MYCN amplified cell lines (IMR32 and Kelly). Citalopram and escitalopram showed concentration-dependent cytotoxicity on all cell lines. Citalopram was more cytotoxic than escitalopram. IMR32 was the most sensitive cell line. The absence of toxicity on human primary Schwann cells demonstrated the safety of both molecules for myelin. The mechanisms of cytotoxicity were explored using gene-expression profiles and quantitative real-time PCR (qPCR). Citalopram modulated 1 502 genes and escitalopram 1 164 genes with a fold change ≥ 2. 1 021 genes were modulated by both citalopram and escitalopram; 481 genes were regulated only by citalopram while 143 genes were regulated only by escitalopram. Citalopram modulated 69 pathways (KEGG) and escitalopram 42. Ten pathways were differently modulated by citalopram and escitalopram. Citalopram drastically decreased the expression of MYBL2, BIRC5 and BARD1 poor prognosis factors of neuroblastoma with fold-changes of -107 (p<2.26 10-7), -24.1 (p<5.6 10-9) and -17.7 (p<1.2 10-7). CCNE1, AURKA, IGF2, MYCN and ERBB2 were more moderately down-regulated by both molecules. Glioma markers E2F1, DAPK1 and CCND1 were down-regulated. Citalopram displayed more powerful action with broader and distinct spectrum of action than escitalopram.
Lukesh, John C; Carney, Daniel W; Dong, Huijun; Cross, R Matthew; Shukla, Vyom; Duncan, Katharine K; Yang, Shouliang; Brody, Daniel M; Brütsch, Manuela M; Radakovic, Aleksandar; Boger, Dale L
2017-09-14
A series of 180 vinblastine 20' amides were prepared in three steps from commercially available starting materials, systematically exploring a typically inaccessible site in the molecule enlisting a powerful functionalization strategy. Clear structure-activity relationships and a structural model were developed in the studies which provided many such 20' amides that exhibit substantial and some even remarkable enhancements in potency, many that exhibit further improvements in activity against a Pgp overexpressing resistant cancer cell line, and an important subset of the vinblastine analogues that display little or no differential in activity against a matched pair of vinblastine sensitive and resistant (Pgp overexpressing) cell lines. The improvements in potency directly correlated with target tubulin binding affinity, and the reduction in differential functional activity against the sensitive and Pgp overexpressing resistant cell lines was found to correlate directly with an impact on Pgp-derived efflux.
NASA Technical Reports Server (NTRS)
Schatten, H.; Lewis, M. L.; Chakrabarti, A.
2001-01-01
The cytoskeleton is a complex network of fibers that is sensitive to environmental factors including microgravity and altered gravitational forces. Cellular functions such as transport of cell organelles depend on cytoskeletal integrity; regulation of cytoskeletal activity plays a role in cell maintenance, cell division, and apoptosis. Here we report cytoskeletal and mitochondria alterations in cultured human lymphocyte (Jurkat) cells after exposure to spaceflight and in insect cells of Drosophila melanogaster (Schneider S-1) after exposure to conditions created by clinostat rotation. Jurkat cells were flown on the space shuttle in Biorack cassettes while Schneider S-1 cells were exposed to altered gravity forces as produced by clinostat rotation. The effects of both treatments were similar in the different cell types. Fifty percent of cells displayed effects on the microtubule network in both cell lines. Under these experimental conditions mitochondria clustering and morphological alterations of mitochondrial cristae was observed to various degrees after 4 and 48 hours of culture. Jurkat cells underwent cell divisions during exposure to spaceflight but a large number of apoptotic cells was also observed. Similar results were obtained in Schneider S-1 cells cultured under clinostat rotation. Both cell lines displayed mitochondria abnormalities and mitochondria clustering toward one side of the cells which is interpreted to be the result of microtubule disruption and failure of mitochondria transport along microtubules. The number of mitochondria was increased in cells exposed to altered gravity while cristae morphology was severely affected indicating altered mitochondria function. These results show that spaceflight as well as altered gravity produced by clinostat rotation affects microtubule and mitochondria organization and results in increases in apoptosis. Grant numbers: NAG 10-0224, NAG2-985. c 2001. Elsevier Science Ltd. All rights reserved.
Novel menadione hybrids: Synthesis, anticancer activity, and cell-based studies.
Prasad, Chakka Vara; Nayak, Vadithe Lakshma; Ramakrishna, Sistla; Mallavadhani, Uppuluri Venkata
2018-01-01
A series of novel menadione-based triazole hybrids were designed and synthesized by employing copper-catalyzed azide-alkyne cycloaddition (CuAAC). All the synthesized hybrids were characterized by their spectral data ( 1 H NMR, 13 C NMR, IR, and HRMS). The synthesized compounds were evaluated for their anticancer activity against five selected cancer cell lines including lung (A549), prostate (DU-145), cervical (Hela), breast (MCF-7), and mouse melanoma (B-16) using MTT assay. The screening results showed that majority of the synthesized compounds displayed significant anticancer activity. Among the tested compounds, the triazoles 5 and 6 exhibited potent activity against all cell lines. In particular, compound 6 showed higher potency than the standard tamoxifen and parent menadione against MCF-7 cell line. Flow cytometric analysis revealed that compound 6 arrested cell cycle at G0/G1 phase and induced apoptotic cell death which was further confirmed by Hoechst staining, measurement of mitochondrial membrane potential (ΔΨm) and Annexin-V-FITC assay. Thus, compound 6 can be considered as lead molecule for further development as potent anticancer therapeutic agent. © 2017 John Wiley & Sons A/S.
Kagohara, Luciane Tsukamoto; Maldonado, Leonel; Brait, Mariana; Schoenberg, Mark; Bivalacqua, Trinity; Netto, George J; Koch, Wayne; Sidransky, David; Hoque, Mohammad O.
2014-01-01
Background: To identify new epigenetic markers and further characterize Urothelial Cell Carcinoma (UCC), we tested the promoter methylation (PM) status of 19 genes previously identified as cancer specific methylated genes in other solid tumors. Methods: We used bisulfite sequencing, methylation specific PCR and quantitative methylation specific PCR (QMSP) to test the PM status of 19 genes in urothelial cancer cell lines. Results: Among the 19 genes tested, VGF was found to be completely methylated in several UCC cell lines. VGF QMSP analysis showed that methylation values of almost all the primary 19 UCC tissues were higher than the paired normal tissues (P=0.009). In another cohort, 12/35 (34.3%) of low grade UCC cases displayed VGF methylation. As a biomarker for non-invasive detection of UCC, VGF showed a significantly higher frequency of methylation in urine from UCC cases (8/20) compared to controls (1/20) (P=0.020). After treatment of cell lines with 5-Aza-2'-deoxycytidine, VGF was robustly re-expressed. Forced expression of VGF in bladder cancer cell lines inhibited cell growth. Conclusion: Selection of candidates from genome-wide screening approach in other solid tumors successfully identified UCC specific methylated genes. PMID:24830820
Naumer, Matthias; Ying, Ying; Michelfelder, Stefan; Reuter, Antje; Trepel, Martin; Müller, Oliver J; Kleinschmidt, Jürgen A
2012-05-01
Libraries based on the insertion of random peptide ligands into the capsid of adeno-associated virus type 2 (AAV2) have been widely used to improve the efficiency and selectivity of the AAV vector system. However, so far only libraries of 7-mer peptide ligands have been inserted at one well-characterized capsid position. Here, we expanded the combinatorial AAV2 display system to a panel of novel AAV libraries, displaying peptides of 5, 7, 12, 19, or 26 amino acids in length at capsid position 588 or displaying 7-mer peptides at position 453, the most prominently exposed region of the viral capsid. Library selections on two unrelated cell types-human coronary artery endothelial cells and rat cardiomyoblasts-revealed the isolation of cell type-characteristic peptides of different lengths mediating strongly improved target-cell transduction, except for the 26-mer peptide ligands. Characterization of vector selectivity by transduction of nontarget cells and comparative gene-transduction analysis using a panel of 44 human tumor cell lines revealed that insertion of different-length peptides allows targeting of distinct cellular receptors for cell entry with similar efficiency, but with different selectivity. The application of such novel AAV2 libraries broadens the spectrum of targetable receptors by capsid-modified AAV vectors and provides the opportunity to choose the best suited targeting ligand for a certain application from a number of different candidates.
Rezaei, Maryam; Cao, Jiahui; Friedrich, Katrin; Kemper, Björn; Brendel, Oliver; Grosser, Marianne; Adrian, Manuela; Baretton, Gustavo; Breier, Georg; Schnittler, Hans-Joachim
2018-01-01
The cadherin switch has profound consequences on cancer invasion and metastasis. The endothelial-specific vascular endothelial cadherin (VE-cadherin) has been demonstrated in diverse cancer types including breast cancer and is supposed to modulate tumor progression and metastasis, but underlying mechanisms need to be better understood. First, we evaluated VE-cadherin expression by tissue microarray in 392 cases of breast cancer tumors and found a diverse expression and distribution of VE-cadherin. Experimental expression of fluorescence-tagged VE-cadherin (VE-EGFP) in undifferentiated, fibroblastoid and E-cadherin-negative MDA-231 (MDA-VE-EGFP) as well as in differentiated E-cadherin-positive MCF-7 human breast cancer cell lines (MCF-VE-EGFP), respectively, displayed differentiation-dependent functional differences. VE-EGFP expression reversed the fibroblastoid MDA-231 cells to an epithelial-like phenotype accompanied by increased β-catenin expression, actin and vimentin remodeling, increased cell spreading and barrier function and a reduced migration ability due to formation of VE-cadherin-mediated cell junctions. The effects were largely absent in both MDA-VE-EGFP and in control MCF-EGFP cell lines. However, MCF-7 cells displayed a VE-cadherin-independent planar cell polarity and directed cell migration that both developed in MDA-231 only after VE-EGFP expression. Furthermore, VE-cadherin expression had no effect on tumor cell proliferation in monocultures while co-culturing with endothelial cells enhanced tumor cell proliferation due to integration of the tumor cells into monolayer where they form VE-cadherin-mediated cell contacts with the endothelium. We propose an interactive VE-cadherin-based crosstalk that might activate proliferation-promoting signals. Together, our study shows a VE-cadherin-mediated cell dynamics and an endothelial-dependent proliferation in a differentiation-dependent manner.
The sodium pump α1 sub-unit: a disease progression–related target for metastatic melanoma treatment
Mathieu, Véronique; Pirker, Christine; Martin de Lassalle, Elisabeth; Vernier, Mathieu; Mijatovic, Tatjana; DeNeve, Nancy; Gaussin, Jean-François; Dehoux, Mischael; Lefranc, Florence; Berger, Walter; Kiss, Robert
2009-01-01
Melanomas remain associated with dismal prognosis because they are naturally resistant to apoptosis and they markedly metastasize. Up-regulated expression of sodium pump α sub-units has previously been demonstrated when comparing metastatic to non-metastatic melanomas. Our previous data revealed that impairing sodium pump α1 activity by means of selective ligands, that are cardiotonic steroids, markedly impairs cell migration and kills apoptosis-resistant cancer cells. The objective of this study was to determine the expression levels of sodium pump α sub-units in melanoma clinical samples and cell lines and also to characterize the role of α1 sub-units in melanoma cell biology. Quantitative RT-PCR, Western blotting and immunohistochemistry were used to determine the expression levels of sodium pump α sub-units. In vitro cytotoxicity of various cardenolides and of an anti-α1 siRNA was evaluated by means of MTT assay, quantitative videomicroscopy and through apoptosis assays. The in vivo activity of a novel cardenolide UNBS1450 was evaluated in a melanoma brain metastasis model. Our data show that all investigated human melanoma cell lines expressed high levels of the α1 sub-unit, and 33% of human melanomas displayed significant α1 sub-unit expression in correlation with the Breslow index. Furthermore, cardenolides (notably UNBS1450; currently in Phase I clinical trials) displayed marked anti-tumour effects against melanomas in vitro. This activity was closely paralleled by decreases in cMyc expression and by increases in apoptotic features. UNBS1450 also displayed marked anti-tumour activity in the aggressive human metastatic brain melanoma model in vivo. The α1 sodium pump sub-unit could represent a potential novel target for combating melanoma. PMID:19243476
Lorig-Roach, Nicholas; Hamkins-Indik, Frances; Johnson, Tyler A; Tenney, Karen; Valeriote, Frederick A; Crews, Phillip
2018-01-11
Our quest to isolate and characterize natural products with in vitro solid tumor selectivity is driven by access to repositories of Indo-Pacific sponge extracts. In this project an extract of a species of Haplosclerida sponge obtained from the US NCI Natural Products Repository displayed, by in vitro disk diffusion assay (DDA) and IC 50 determinations, selective cytotoxicity with modest potency to a human pancreatic cancer cell line (PANC-1) relative to the human lymphoblast leukemia cell line (CCRF-CEM). Two brominated indoles, the known 6-bromo conicamin ( 1 ) and the new derivative, 6-Br-8-keto-conicamin A ( 2 ), were identified and 2 (IC 50 1.5 μM for the natural product vs 4.1 μM for the synthetic material) was determined to be responsible for the cytotoxic activity of the extract against the PANC-1 tumor cell line. The new natural product and ten additional analogs were prepared for further SAR testing.
Expression of Recombinant Antibodies
Frenzel, André; Hust, Michael; Schirrmann, Thomas
2013-01-01
Recombinant antibodies are highly specific detection probes in research, diagnostics, and have emerged over the last two decades as the fastest growing class of therapeutic proteins. Antibody generation has been dramatically accelerated by in vitro selection systems, particularly phage display. An increasing variety of recombinant production systems have been developed, ranging from Gram-negative and positive bacteria, yeasts and filamentous fungi, insect cell lines, mammalian cells to transgenic plants and animals. Currently, almost all therapeutic antibodies are still produced in mammalian cell lines in order to reduce the risk of immunogenicity due to altered, non-human glycosylation patterns. However, recent developments of glycosylation-engineered yeast, insect cell lines, and transgenic plants are promising to obtain antibodies with “human-like” post-translational modifications. Furthermore, smaller antibody fragments including bispecific antibodies without any glycosylation are successfully produced in bacteria and have advanced to clinical testing. The first therapeutic antibody products from a non-mammalian source can be expected in coming next years. In this review, we focus on current antibody production systems including their usability for different applications. PMID:23908655
Desforges, Jean-Pierre; Jasperse, Lindsay; Jensen, Trine Hammer; Grøndahl, Carsten; Bertelsen, Mads F; Guise, Sylvain De; Sonne, Christian; Dietz, Rune; Levin, Milton
2018-01-01
Natural killer (NK) cells are a vital part of the rapid and non-specific immune defense against invading pathogens and tumor cells. This study evaluated NK cell-like activity by flow cytometry for the first time in three ecologically and culturally important Arctic mammal species: polar bear (Ursus maritimus), muskox (Ovibos moschatus) and reindeer (Rangifer tarandus). NK cell-like activity for all three species was most effective against the mouse lymphoma cell line YAC-1, compared to the human leukemia cell line K562; NK cell response displayed the characteristic increase in cytotoxic activity when the effector:target cell ratio increased. Comparing NK activity between fresh and cryopreserved mouse lymphocytes revealed little to no difference in function, highlighting the applicability of cryopreserving cells in field studies. The evaluation of this important innate immune function in Arctic mammals can contribute to future population health assessments, especially as pollution-induced suppression of immune function may increase infectious disease susceptibility. Copyright © 2017 Elsevier B.V. All rights reserved.
The effects of acoustic vibration on fibroblast cell migration.
Mohammed, Taybia; Murphy, Mark F; Lilley, Francis; Burton, David R; Bezombes, Frederic
2016-12-01
Cells are known to interact and respond to external mechanical cues and recent work has shown that application of mechanical stimulation, delivered via acoustic vibration, can be used to control complex cell behaviours. Fibroblast cells are known to respond to physical cues generated in the extracellular matrix and it is thought that such cues are important regulators of the wound healing process. Many conditions are associated with poor wound healing, so there is need for treatments/interventions, which can help accelerate the wound healing process. The primary aim of this research was to investigate the effects of mechanical stimulation upon the migratory and morphological properties of two different fibroblast cells namely; human lung fibroblast cells (LL24) and subcutaneous areolar/adipose mouse fibroblast cells (L929). Using a speaker-based system, the effects of mechanical stimulation (0-1600Hz for 5min) on the mean cell migration distance (μm) and actin organisation was investigated. The results show that 100Hz acoustic vibration enhanced cell migration for both cell lines whereas acoustic vibration above 100Hz was found to decrease cell migration in a frequency dependent manner. Mechanical stimulation was also found to promote changes to the morphology of both cell lines, particularly the formation of lamellipodia and filopodia. Overall lamellipodia was the most prominent actin structure displayed by the lung cell (LL24), whereas filopodia was the most prominent actin feature displayed by the fibroblast derived from subcutaneous areolar/adipose tissue. Mechanical stimulation at all the frequencies used here was found not to affect cell viability. These results suggest that low-frequency acoustic vibration may be used as a tool to manipulate the mechanosensitivity of cells to promote cell migration. Copyright © 2016 Elsevier B.V. All rights reserved.
Pro-neurotensin/neuromedin N expression and processing in human colon cancer cell lines.
Rovère, C; Barbero, P; Maoret, J J; Laburthe, M; Kitabgi, P
1998-05-08
The regulatory peptide neurotensin NT has been proposed to exert an autocrine trophic effect on human colon cancers. In the present study, pro-neurotensin/neuromedin N (proNT/NN) expression and processing were investigated in 13 human colon cancer cell lines using a combination of radioimmunoassay and HPLC techniques. All 13 cell lines displayed low to moderate levels of proNT/NN ranging from 10 to 250 fmol/mg protein. However, only 6 (HCT8, LoVo, HT29, C119A, LS174T, and coloDM320) processed the precursor. Three of the latter (HCT8, LS174T, and coloDM320) were analysed in detail with regard to proNT/NN processing pattern and were found to produce NT and large precursor fragments ending with the NT or NN sequence. They had no detectable level of NN. Such a processing pattern resembles that generated by the prohormone convertase PC5. Northern and Western blot analysis of prohormone convertase expression in the 3 cell lines revealed that they were devoid of PC1 and PC2, whereas they all expressed PC5. These data indicate that proNT/NN is a good marker of human colon cancer cell lines while NT is found in only about half of the cell lines. They also suggest that, in addition to NT, several proNT/NN-derived products, possibly generated by PC5, might exert an autocrine positive effect on human colon cancer growth.
Ju, Jin Young; Park, Chun Young; Gupta, Mukesh Kumar; Uhm, Sang Jun; Paik, Eun Chan; Ryoo, Zae Young; Cho, Youl Hee; Chung, Kil Saeng; Lee, Hoon Taek
2008-05-01
To establish embryonic stem cell lines from nuclear transfer of somatic cell nuclei isolated from the same oocyte donor and from parthenogenetic activation. The study also evaluated the effect of the micromanipulation procedure on the outcome of somatic cell nuclear transfer in mice. Randomized, prospective study. Hospital-based assisted reproductive technology laboratory. F(1) (C57BL/6 x 129P3/J) mice. Metaphase II-stage oocytes were either parthenogenetically activated or nuclear transferred with cumulus cell nuclei or parthenogenetically activated after a sham-manipulation procedure. Embryogenesis and embryonic stem cell establishment. The development rate to morula/blastocyst of nuclear transferred oocytes (27.9% +/- 5.9%) was significantly lower than that of the sham-manipulated (84.1% +/- 5.6%) or parthenogenetic (98.6% +/- 1.4%) groups. A sharp decrease in cleavage potential was obvious in the two- to four-cell transition for the nuclear transferred embryos (79.0% +/- 4.6% and 43.3% +/- 5.0%), implying incomplete nuclear reprogramming in arrested oocytes. However, the cleavage, as well as the development rate, of parthenogenetic and sham-manipulated groups did not differ significantly. The embryonic stem cell line establishment rate was higher from parthenogenetically activated oocytes (15.7%) than nuclear transferred (4.3%) or sham-manipulated oocytes (12.5%). Cell colonies from all groups displayed typical morphology of mice embryonic stem cells and could be maintained successfully with undifferentiated morphology after continuous proliferation for more than 120 passages still maintaining normal karyotype. All these cells were positive for mice embryonic stem cell markers such as Oct-4 and SSEA-1 based on immunocytochemistry and reverse transcriptase-polymerase chain reaction. The clonal origin of the ntES cell line and the parthenogenetic embryonic stem cell lines were confirmed by polymerase chain reaction analysis of the polymorphic markers. Blastocyst injection experiments demonstrated that these lines contributed to resulting chimeras and are germ-line competent. We report the establishment of ntES cell lines from somatic cells isolated from same individual. Our data also suggest that embryo micromanipulation procedure during the nuclear transfer procedure influences the developmental ability and embryonic stem cell establishment rate of nuclear transferred embryos.
Avato, Pinarosa; Migoni, Danilo; Argentieri, Mariapia; Fanizzi, Francesco P; Tava, Aldo
2017-11-24
Saponins from Medicago species display several biological activities, among them apoptotic effects against plant cells have been evidenced. In contrast, their cytotoxic and antitumor activity against animal cells have not been studied in great details. To explore the cytotoxic properties of saponin from Medicago species against animal cells and their effect in combination with the antitumoral drug cisplatin. Cytotoxic activity of saponin mixtures from M. arabica (tops and roots), M. arborea (tops) and M. sativa (tops, roots and seeds) and related prosapogenins from M. arborea and M. sativa (tops) against HeLa and MCF-7 cell lines is described. In addition, cytotoxicity of soyasaponin I and purified saponins (1-8) of hederagenin, medicagenic and zanhic acid is also presented. Combination experiments with cisplatin have been also conducted. Saponins from M. arabica tops and roots (mainly monodesmosides of hederagenin and bayogenin) were the most effective to reduce proliferation of HeLa and MCF-7 cell lines. Among the purified saponins, the most cytotoxic was saponin 1, 3-O-ß-D-glucopyranosyl(1→2)-α-L-arabinopyranosyl hederagenin. When saponins, derived prosapogenins and pure saponins were used in combination with cisplatin, they all, to different extent, were able to potentiate cisplatin activity against HeLa cells but not against MCF-7 cell lines. Moreover uptake of cisplatin in these cell lines was significantly reduced. Overall results showed that specific molecular types of saponins (hederagenin glycosides) have potential as anti-cancer agents or as leads for anti-cancer agents. Moreover saponins from Medicago species have evidenced interesting properties to mediate cisplatin effects in tumor cell lines. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Mushtaque, Md.; Avecilla, Fernando; Hafeez, Zubair Bin; Jahan, Meriyam; Khan, Md. Shahzad; Rizvi, M. Moshahid A.; Khan, Mohd. Shahid; Srivastava, Anurag; Mallik, Anwesha; Verma, Saurabh
2017-01-01
A new compound (3) bisthaizolidinone derivative was synthesized by Knoevenagel condensation reaction. The structure of synthesized compound was elucidated by different spectral techniques and X-ray diffraction studies. The stereochemistry of the compound (3) was determined by 1Hsbnd 1H NOESY, 1Hsbnd 1H NMR COSY and single crystal X-ray diffraction studies as (Z, Z)-configuration. The computational quantum chemical studies of compound(3) like, IR, UV, NBO analysis were performed by DFT with Becke-3-Lee-Yang-Parr (B3LYP) exchange-correlation functional in combination with 6-311++G(d,p) basis sets. The DNA-binding of compound (3) exhibited a moderate binding constant (Kb = 1 × 105 Lmol-1) with hypochromic shift. The molecular docking displayed good binding affinity -7.18 kcal/mol. The MTT assay of compound (3) was screened against different cancerous cell lines, HepG2, Siha, Hela and MCF-7. Studies against these cell lines depicted that the screened compound (3) showed potent inhibitory activity against HepG2 cell (IC50 = 7.5 μM) followed by MCF-7 (IC50 = 52.0 μM), Siha (IC50 = 66.98 μM), Hela (IC50 = 74.83 μM) cell lines, and non-toxic effect against non-cancerous HEK-293 cells (IC50 = 287.89 μM) at the concentration range (0-300) μM. Furthermore, cell cycle perturbation was performed on HepG2 & Siha cell lines and observed that cells were arrested in G2/M in HepG2, and G0/G1 in Siha cell lines with respect to untreated control. Hence, compound (3) possesses potent anti-cancerous activity against HepG2 cell line.
Deng, Jun-peng; Jiang, Ling-zhi; Xiong, Ping; Yang, Bin-jie; Liu, Shan-shan
2015-01-01
A series of novel anthracene L-rhamnopyranosides compounds were designed and synthesized and their anti-proliferative activities on cancer cell lines were investigated. We found that one derivative S-8 (EM-d-Rha) strongly inhibited cell proliferation of a panel of different human cancer cell lines including A549, HepG2, OVCAR-3, HeLa and K562 and SGC-790 cell lines, and displayed IC50 values in low micro-molar ranges, which are ten folds more effective than emodin. In addition, we found EM-d-Rha (3-(2”,3”-Di-O-acetyl-α-L-rhamnopyranosyl-(1→4)-2’,3’-di-O-acetyl-α-L-rhamnopyranosyl)-emodin) substantially induced cellular apoptosis of HepG2 and OVCAR-3 cells in the early growth stage. Furthermore, EM-d-Rha led to the decrease of mitochondrial transmembrane potential, and up-regulated the express of cells apoptosis factors in a concentration- and time-dependent manner. The results indicated the EM-d-Rha may inhibit the growth and proliferation of HepG2 cells through the pathway of apoptosis induction, and the possible molecular mechanism may due to the activation of intrinsic apoptotic signal pathway. PMID:26682731
Laskar, Sujay; Sánchez-Sánchez, Luis; López-Ortiz, Manuel; López-Muñoz, Hugo; Escobar-Sánchez, María L; Sánchez, Arturo T; Regla, Ignacio
2017-12-01
Identification of a new class of antitumor agent capable to induce apoptosis without triggering necrotic cell death event is challenging. The present communication describes the multicomponent synthesis of seven new (1S,4S)-2,5-diazabicyclo[2.2.1]heptane-dithiocarbamates and their in vitro antiproliferative activity on cervical cancer cell line (CaSki), breast cancer cell line (MDA-MB231), lung cancer cell line (SK-Lu-1) and human lymphocytes. Among the synthesized dithiocarbamates, compound 9e displayed significant antiproliferative activity without inducing any necrotic cell death (both on tumour cells and lymphocytes) and induced apoptosis in tumor cells by the caspase dependent apoptotic pathway. The compound 9e also exhibited greater tumor selectivity than human lymphocytes. In silico ADME predictions revealed that compound 9e has the potential to be developed as a drug candidate. Rapid chemical modifications of this lead are thus highly necessary for further investigation as a drug like safer antitumor candidate and also to achieve compounds with better activity profile.
Lan, Lan; Qin, Weixi; Zhan, Xiaoping; Liu, Zenglu; Mao, Zhenmin
2014-01-01
A novel series of 3-substituted-4-(4-methylthio phenyl)-1H-pyrrole derivatives were synthesized via Van Leusen pyrrole synthesis. The in vitro anticancer activity against a panel of 16 cancer cell lines and 2 normal cell lines was investigated by MTT assay. It was found that some of the pyrrole compounds showed similar antiproliferative activity against cancer cells compared with Paclitaxel, but little impact on normal cell lines, which indicated that the novel pyrrole derivatives could be used as potential anticancer candidates for possessing both selectivity and good therapeutic efficacy. Structure-activity relationship analysis found that 3-phenylacetyl-4- (4-methylthio phenyl)-1H-pyrrole derivatives displayed the most strong anticancer activity, among which [4-(4-methylthio phenyl)-1H-pyrrol- 3-yl] (4-methoxy phenyl) methanone (3j) was employed to investigate the effect of these pyrrole analogues on cell cycle by propidium iodide (PI) staining on cell flow cytometry. Cell necrotic effect of 10.0 µM 3j against MGC80-3 cells were also observed under fluorescence microscope and transmission electron microscope by ultrathin sections observation.
B cell markers in Ph1-positive acute lymphoblastic leukemia.
Alimena, G; De Rossi, G; Gastaldi, R; Guglielmi, C; Mandelli, F
1980-01-01
A case of acute lymphoblastic leukemia (ALL) where the blast cells had B cell markers and displayed the presence of a typical Ph1 chromosome, originated by a standard t (9;22) translocation, is reported. Cytological and clinical aspects during the entire course of the disease were consistent with the diagnosis of ALL. Evidence of differentiation along a well-defined lymphoid cell line in a Ph1-positive cell confirms the presence of the Ph1 chromosome in conditions other than chronic granulocytic leukemia and shows that it possibly does not occur in an exclusively undifferentiated totipotent stem cell.
Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank
2016-01-01
Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. PMID:26628518
Anticancer activity of polysaccharide from Glehnia littoralis on human lung cancer cell line A549.
Wu, Jun; Gao, Weiping; Song, Zhuoyue; Xiong, Qingping; Xu, Yingtao; Han, Yun; Yuan, Jun; Zhang, Rong; Cheng, Yunbo; Fang, Jiansong; Li, Weirong; Wang, Qi
2018-01-01
The purpose of this study was to investigate the anticancer activity of polysaccharide (PGL) from Glehnia littoralis on human lung cancer cell line A549. Based on MTT assay, the results suggested that PGL could significantly reduce A549 cells proliferation in a time- and dose-dependent manner. In addition, PGL displayed an inhibitory activity for the A549 cells migration in Transwell migration assay. The results from both flow cytometry analysis and Hochst 3342 staining of apoptotic cells indicated that PGL could promote apoptosis, and induce cycle arrest of A549 cells. Moreover, immunofluorescence assay elucidated PGL could also down-regulate expression of proliferating cell nuclear antigen (PCNA). Overall, these results showed that PGL exerts a strong anticancer action through inhibiting the A549 cells migration, proliferation and inducing cell apoptosis. It could be a new source of natural anticancer agent against lung cancer with potential value in supplements and medicine. Copyright © 2017 Elsevier B.V. All rights reserved.
PCFT/SLC46A1 promoter methylation and restoration of gene expression in human leukemia cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gonen, Nitzan; Bram, Eran E.; Assaraf, Yehuda G.
2008-11-28
The proton-coupled folate transporter (PCFT/SLC46A1) displays optimal and prominent folate and antifolate transport activity at acidic pH in human carcinoma cells but poor activity in leukemia cells. Consistently herein, human leukemia cell lines expressed poor PCFT transcript levels, whereas various carcinoma cell lines showed substantial PCFT gene expression. We identified a CpG island with high density at nucleotides -200 through +100 and explored its role in PCFT promoter silencing. Leukemia cells with barely detectable PCFT transcripts consistently harbored 85-100% methylation of this CpG island, whereas no methylation was found in carcinoma cells. Treatment with 5-Aza-2'-deoxycytidine which induced demethylation but notmore » with the histone deacetylase inhibitor trichostatin A, restored 50-fold PCFT expression only in leukemia cells. These findings constitute the first demonstration of the dominant epigenetic silencing of the PCFT gene in leukemia cells. The potential translational implications of the restoration of PCFT expression in chemotherapy of leukemia are discussed.« less
Bianchi, A; Evans, J L; Nordlund, A C; Watts, T D; Witters, L A
1992-01-01
Reuber hepatoma cells are useful cultured lines for the study of insulin action, lipid and lipoprotein metabolism, and the regulation of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid biosynthesis. During investigations in different clonal lines of these cells, we have uncovered marked intercellular variability in the activity, enzyme content, and insulin regulation of ACC paralleled by differences in cellular neutral lipid (triglyceride) content. Two contrasting clonal lines, Fao and H356A-1, have been studied in detail. Several features distinguish these two lines, including differences in ACC activity and enzyme kinetics, the content of the two major hepatic ACC isozymes (Mr 280,000 and 265,000 Da) and their heteroisozymic complex, the extent of ACC phosphorylation, and the ability of ACC to be activated on stimulation by insulin and insulinomimetic agonists. As studied by Nile Red staining and fluorescence-activated cell sorting, these two lines also display marked differences in neutral lipid content, which correlates with both basal levels of ACC activity and inhibition of ACC by the fatty acid analog, 5-(tetradecyloxy)-2-furoic acid (TOFA). These results emphasize the importance of characterization of any particular clonal line of Reuber cells for studies of enzyme regulation, substrate metabolism, and hormone action. With respect to ACC, studies in contrasting clonal lines of Reuber cells could provide valuable clues to understanding both the complex mechanisms of intracellular ACC regulation in the absence and presence of hormones and its regulatory role(s) in overall hepatic lipid metabolism.
Engineering the Substrate Specificity of the DhbE Adenylation Domain by Yeast Cell Surface Display
Zhang, Keya; Nelson, Kathryn M.; Bhuripanyo, Karan; Grimes, Kimberly D.; Zhao, Bo; Aldrich, Courtney C.; Yin, Jun
2013-01-01
SUMMARY The adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) activate aryl acids or amino acids to launch their transfer through the NRPS assembly line for the biosynthesis of many medicinally important natural products. In order to expand the substrate pool of NRPSs, we developed a method based on yeast cell surface display to engineer the substrate specificities of the A-domains. We acquired A-domain mutants of DhbE that have 11- and 6-fold increases in kcat/Km with nonnative substrates 3-hydroxybenzoic acid and 2-aminobenzoic acid, respectively and corresponding 3- and 33-fold decreases in kcat/Km values with the native substrate 2,3-dihydroxybenzoic acid, resulting in a dramatic switch in substrate specificity of up to 200-fold. Our study demonstrates that yeast display can be used as a high throughput selection platform to reprogram the “nonribosomal code” of A-domains. PMID:23352143
Medrano, Jose V.; Martínez-Arroyo, Ana M.; Míguez, Jose M.; Moreno, Inmaculada; Martínez, Sebastián; Quiñonero, Alicia; Díaz-Gimeno, Patricia; Marqués-Marí, Ana I.; Pellicer, Antonio; Remohí, Jose; Simón, Carlos
2016-01-01
The in vitro derivation of human germ cells has attracted interest in the last years, but their direct conversion from human somatic cells has not yet been reported. Here we tested the ability of human male somatic cells to directly convert into a meiotic germ cell-like phenotype by inducing them with a combination of selected key germ cell developmental factors. We started with a pool of 12 candidates that were reduced to 6, demonstrating that ectopic expression of the germ line-related genes PRDM1, PRDM14, LIN28A, DAZL, VASA and SYCP3 induced direct conversion of somatic cells (hFSK (46, XY), and hMSC (46, XY)) into a germ cell-like phenotype in vitro. Induced germ cell-like cells showed a marked switch in their transcriptomic profile and expressed several post-meiotic germ line related markers, showed meiotic progression, evidence of epigenetic reprogramming, and approximately 1% were able to complete meiosis as demonstrated by their haploid status and the expression of several post-meiotic markers. Furthermore, xenotransplantation assays demonstrated that a subset of induced cells properly colonize the spermatogonial niche. Knowledge obtained from this work can be used to create in vitro models to study gamete-related diseases in humans. PMID:27112843
NASA Astrophysics Data System (ADS)
Mushtaque, Md.; Avecilla, Fernando; Khan, Md. Shahzad; Hafeez, Zubair Bin; Rezvi, M. Moshahid A.; Srivastava, Anurag
2017-08-01
Thiourea derivative,3-(4-methoxyphenyl)-1-(pyridin-2-ylmethyl)thiourea, was synthesized. The structure of the synthesized compound (3) was elucidated by IR, UV-visible, 1H NMR, mass Spectrometry, and X-ray single crystal structure. The computational quantum chemical studies like, IR, UV, NBO analysis were performed by DFT with Becke-3-Lee-Yang- Parr (B3LYP) exchange-correlation functional in combination with 6-311++G(d,p) basis sets. It was observed experimentally and theoretically that compound (3) exhibited syn-anti-conformation around sulphur atom. The DNA-binding constant Kb was found 3.3 × 106 Lmol-1. The docking energy of compound (3) with 1BNA was found -6.2 kcal/mol. MTT-assay against HepG2 (IC50 = 140.39) and Siha (IC50 = 119.87 μM) cell lines revealed that compound (3) wasnon-toxic up to140.39 μM against HepG2 and 119.87 μM against Siha cells respectively. It was also found that compound (3) is non-toxic against normal human cell line HEK-293(IC50 = 148.67 μM). Cell cycle analyses displayed that treated HepG2 cells at 40 μM and 80 μM showed 65% and 70% arrest in G0/G1with respect to untreated controls (60%) and Siha cells at the same concentration displayed 59% and 65% arrest with respect to G0/G1 as compared to untreated control (45%).
Mei, Shenghui; Jin, Hong; Zhu, Bin; Tian, Yue; Huo, Jiping; Cui, Xu; Guo, Anchen; Zhao, Zhigang
2017-01-01
To identify suitable cell lines for a mimetic system of in vivo blood-brain barrier (BBB) for drug permeability assessment, we characterized two immortalized cell lines, ECV304 and bEnd3 in the respect of the tightness, tight junction proteins, P-glycoprotein (P-gp) function and discriminative brain penetration. The ECV304 monoculture achieved higher transendothelial electrical resistance (TEER) and lower permeability to Lucifer yellow than bEnd3. However, co-culture with rat glioma C6 cells impaired the integrity of ECV304 and bEnd3 cell layers perhaps due to the heterogeneity among C6 cells in inducing BBB characteristics. The immunostaining of ZO-1 delivered distinct bands along cell borders on both cell lines while those of occludin and claudin-5 were diffused and weak. P-gp functionality was only proved in bEnd3 by Rhodamine 123 (R123) uptake assay. A permeability test of reference compounds displayed a similar rank order (digoxin < R123 < quinidine, verapamil < propranolol) in ECV304 and bEnd3 cells. In comparison with bEnd3, ECV304 developed tighter barrier for the passage of reference compounds and higher discrimination between transcellular and paracellular transport. However, the monoculture models of ECV304 and bEnd3 fail to achieve the sufficient tightness of in vitro BBB permeability models with high TEER and evident immunostaining of tight junction proteins. Further strategies to enhance the paracellular tightness of both cell lines to mimic in vivo BBB tight barrier deserve to be conducted. PMID:29059256
Yang, Shu; Mei, Shenghui; Jin, Hong; Zhu, Bin; Tian, Yue; Huo, Jiping; Cui, Xu; Guo, Anchen; Zhao, Zhigang
2017-01-01
To identify suitable cell lines for a mimetic system of in vivo blood-brain barrier (BBB) for drug permeability assessment, we characterized two immortalized cell lines, ECV304 and bEnd3 in the respect of the tightness, tight junction proteins, P-glycoprotein (P-gp) function and discriminative brain penetration. The ECV304 monoculture achieved higher transendothelial electrical resistance (TEER) and lower permeability to Lucifer yellow than bEnd3. However, co-culture with rat glioma C6 cells impaired the integrity of ECV304 and bEnd3 cell layers perhaps due to the heterogeneity among C6 cells in inducing BBB characteristics. The immunostaining of ZO-1 delivered distinct bands along cell borders on both cell lines while those of occludin and claudin-5 were diffused and weak. P-gp functionality was only proved in bEnd3 by Rhodamine 123 (R123) uptake assay. A permeability test of reference compounds displayed a similar rank order (digoxin < R123 < quinidine, verapamil < propranolol) in ECV304 and bEnd3 cells. In comparison with bEnd3, ECV304 developed tighter barrier for the passage of reference compounds and higher discrimination between transcellular and paracellular transport. However, the monoculture models of ECV304 and bEnd3 fail to achieve the sufficient tightness of in vitro BBB permeability models with high TEER and evident immunostaining of tight junction proteins. Further strategies to enhance the paracellular tightness of both cell lines to mimic in vivo BBB tight barrier deserve to be conducted.
In vivo biomarker expression patterns are preserved in 3D cultures of Prostate Cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Windus, Louisa C.E.; Kiss, Debra L.; Glover, Tristan
2012-11-15
Here we report that Prostate Cancer (PCa) cell-lines DU145, PC3, LNCaP and RWPE-1 grown in 3D matrices in contrast to conventional 2D monolayers, display distinct differences in cell morphology, proliferation and expression of important biomarker proteins associated with cancer progression. Consistent with in vivo growth rates, in 3D cultures, all PCa cell-lines were found to proliferate at significantly lower rates in comparison to their 2D counterparts. Moreover, when grown in a 3D matrix, metastatic PC3 cell-lines were found to mimic more precisely protein expression patterns of metastatic tumour formation as found in vivo. In comparison to the prostate epithelial cell-linemore » RWPE-1, metastatic PC3 cell-lines exhibited a down-regulation of E-cadherin and {alpha}6 integrin expression and an up-regulation of N-cadherin, Vimentin and {beta}1 integrin expression and re-expressed non-transcriptionally active AR. In comparison to the non-invasive LNCaP cell-lines, PC3 cells were found to have an up-regulation of chemokine receptor CXCR4, consistent with a metastatic phenotype. In 2D cultures, there was little distinction in protein expression between metastatic, non-invasive and epithelial cells. These results suggest that 3D cultures are more representative of in vivo morphology and may serve as a more biologically relevant model in the drug discovery pipeline. -- Highlights: Black-Right-Pointing-Pointer We developed and optimised 3D culturing techniques for Prostate Cancer cell-lines. Black-Right-Pointing-Pointer We investigated biomarker expression in 2D versus 3D culture techniques. Black-Right-Pointing-Pointer Metastatic PC3 cells re-expressed non-transcriptionally active androgen receptor. Black-Right-Pointing-Pointer Metastatic PCa cell lines retain in vivo-like antigenic profiles in 3D cultures.« less
NASA Astrophysics Data System (ADS)
Gobin, Bruno; Rüppell, Olav; Hartmann, Annegret; Jungnickel, Harald; Morgan, David; Billen, Johan
2001-08-01
Workers of the ant Cylindromyrmex whymperi display mass trail recruitment. Bioassays show that the trail pheromone originates from a unique gland between abdominal sternites 6 and 7. The gland has a hitherto unknown structural organization. Upon leaving the secretory cell, the duct cell widens to form a sclerotized pear-shaped reservoir chamber, lined with multiple duct cells. Each duct thus forms a miniature reservoir for the secretions of each single secretory cell, a novel structural arrangement in exocrine glands of social Hymenoptera.
NASA Astrophysics Data System (ADS)
Sands, Sandra S.; Meek, William D.; Hayashi, Jun; Ketchum, Robert J.
2005-08-01
Isolation and culture of thymic epithelial cells (TECs) using conventional primary tissue culture techniques under conditions employing supplemented low calcium medium yielded an immortalized cell line derived from the LDA rat (Lewis [Rt1l] cross DA [Rt1a]) that could be manipulated in vitro. Thymi were harvested from 4 5-day-old neonates, enzymically digested using collagenase (1 mg/ml, 37°C, 1 h) and cultured in low calcium WAJC404A medium containing cholera toxin (20 ng/ml), dexamethasone (10 nM), epidermal growth factor (10 ng/ml), insulin (10 [mu]g/ml), transferrin (10 [mu]g/ml), 2% calf serum, 2.5% Dulbecco's Modified Eagle's Medium (DMEM), and 1% antibiotic/antimycotic. TECs cultured in low calcium displayed round to spindle-shaped morphology, distinct intercellular spaces (even at confluence), and dense reticular-like keratin patterns. In high calcium (0.188 mM), TECs formed cobblestone-like confluent monolayers that were resistant to trypsinization (0.05%) and displayed keratin intermediate filaments concentrated at desmosomal junctions between contiguous cells. Changes in cultured TEC morphology were quantified by an analysis of desmosome/membrane relationships in high and low calcium media. Desmosomes were significantly increased in the high calcium medium. These studies may have value when considering the growth conditions of cultured primary cell lines like TECs.
NASA Astrophysics Data System (ADS)
Chi, Zixiang; Zhu, Linli; Lu, Xiaoming
2011-08-01
Two binuclear vanadium-catecholate complexes [Et 3NH] 2[V VO 2(μ-cat)] 2( 1) and [Et 3NH] 2[V VO 2(μ-N-2,3-D)] 2( 2) (cat = catechol, N-2,3-D = naphthalene-2,3-diol) have been synthesized and characterized by X-ray diffraction, IR, UV-vis spectroscopy and cyclic voltammetry (CV). X-ray analysis reveals that the structures of complexes 1 and 2 are both in the anion form of V. Et 3N works as counter-ions and connects the main frame by hydrogen bonding. The electrochemical behavior of the two complexes is studied in comparison to that of the free ligands and the two complexes display different redox potentials. Pharmaceutical screenings of complexes 1 and 2 have been made against two representative cancer cell-lines A-549 (lung cancer) and Bel-7402 (liver cancer) by MTT assay. The inhibition of cell proliferation was determined 72 h after cells were exposed to the tested compounds at a concentration of 5 μg/mL. Complex 1 exhibits well inhibition ratio against both two cell-lines (76.28% and 75.94%), while 2 displays positive and negative effect (65.36% and -68.82%) respectively. In association with X-ray and electrochemistry, a preliminary analysis about the possible inhibitory mechanism is provided.
Genomic Instability and Telomere Fusion of Canine Osteosarcoma Cells
Maeda, Junko; Yurkon, Charles R.; Fujisawa, Hiroshi; Kaneko, Masami; Genet, Stefan C.; Roybal, Erica J.; Rota, Garrett W.; Saffer, Ethan R.; Rose, Barbara J.; Hanneman, William H.; Thamm, Douglas H.; Kato, Takamitsu A.
2012-01-01
Canine osteosarcoma (OSA) is known to present with highly variable and chaotic karyotypes, including hypodiploidy, hyperdiploidy, and increased numbers of metacentric chromosomes. The spectrum of genomic instabilities in canine OSA has significantly augmented the difficulty in clearly defining the biological and clinical significance of the observed cytogenetic abnormalities. In this study, eight canine OSA cell lines were used to investigate telomere fusions by fluorescence in situ hybridization (FISH) using a peptide nucleotide acid probe. We characterized each cell line by classical cytogenetic studies and cellular phenotypes including telomere associated factors and then evaluated correlations from this data. All eight canine OSA cell lines displayed increased abnormal metacentric chromosomes and exhibited numerous telomere fusions and interstitial telomeric signals. Also, as evidence of unstable telomeres, colocalization of γ-H2AX and telomere signals in interphase cells was observed. Each cell line was characterized by a combination of data representing cellular doubling time, DNA content, chromosome number, metacentric chromosome frequency, telomere signal level, cellular radiosensitivity, and DNA-PKcs protein expression level. We have also studied primary cultures from 10 spontaneous canine OSAs. Based on the observation of telomere aberrations in those primary cell cultures, we are reasonably certain that our observations in cell lines are not an artifact of prolonged culture. A correlation between telomere fusions and the other characteristics analyzed in our study could not be identified. However, it is important to note that all of the canine OSA samples exhibiting telomere fusion utilized in our study were telomerase positive. Pending further research regarding telomerase negative canine OSA cell lines, our findings may suggest telomere fusions can potentially serve as a novel marker for canine OSA. PMID:22916246
Nelson, Jennifer; Francom, Lyndee L; Anderson, Lynn; Damm, Kelly; Baker, Ryan; Chen, Joseph; Franklin, Sarah; Hamaker, Amy; Izidoro, Izadora; Moss, Eric; Orton, Mikayla; Stevens, Evan; Yeung, Celestine; Judd, Allan M; Bell, John D
2012-05-01
Normal human lymphocytes resisted the hydrolytic action of secretory phospholipase A(2) but became susceptible to the enzyme following treatment with a calcium ionophore, ionomycin. To test the hypothesis that this susceptibility requires exposure of the anionic lipid phosphatidylserine on the external face of the cell membrane, experiments were repeated with a human Burkitt's lymphoma cell line (Raji cells). In contrast to normal lymphocytes or S49 mouse lymphoma cells, most of the Raji cells (83%) did not translocate phosphatidylserine to the cell surface upon treatment with ionomycin. Those few that did display exposed phosphatidylserine were hydrolyzed immediately upon addition of phospholipase A(2). Interestingly, the remaining cells were also completely susceptible to the enzyme but were hydrolyzed at a slower rate and after a latency of about 100s. In contradistinction to the defect in phosphatidylserine translocation, Raji cells did display other physical membrane changes upon ionomycin treatment that may be relevant to hydrolysis by phospholipase A(2). These changes were detected by merocyanine 540 and trimethylammonium diphenylhexatriene fluorescence and were common among normal lymphocytes, S49 cells, and Raji cells. The levels of these latter effects corresponded well with the relative rates of hydrolysis among the three cell lines. These results suggested that while phosphatidylserine enhances the rate of cell membrane hydrolysis by secretory phospholipase A(2), it is not an absolute requirement. Other physical properties such as membrane order contribute to the level of membrane susceptibility to the enzyme independent of phosphatidylserine. Copyright © 2012 Elsevier B.V. All rights reserved.
Pathak, Prateek; Shukla, Parjanya Kumar; Kumar, Vikas; Kumar, Ankit; Verma, Amita
2018-04-16
A series of quinazoline clubbed 1,3,5-triazine derivatives (QCT) were synthesized and evaluated for their in vitro anticancer activity against HeLa (human cervical cancer), MCF-7 (human breast cancer cell), HL-60 (human promyelocytic leukemia cell), HepG2 (human Hepatocellular carcinoma cell), and one normal cell line HFF (human foreskin fibroblasts). In vitro assay result encouraged to further move towards in ovo anticancer evaluation using chick embryo. The series of QCT derivatives showed higher anticancer and antiangiogenic activity against HeLa and MCF-7 cell lines. In the series, synthetic molecule 8d, 8l, and 8m displayed significant activity. Further, these results substantiated by docking study on VGFR2. SAR study concluded that the potency of drugs depends on the nature of aliphatic substitution and the heterocyclic ring system.
Polyprenylated polycyclic acylphloroglucinol: Angiogenesis inhibitor from Garcinia multiflora.
Cheng, Lin-Yang; Chen, Chun-Lin; Kuo, Yueh-Hsiung; Chang, Tsung-Hsien; Lin, I-Wei; Wang, Shih-Wei; Chung, Mei-Ing; Chen, Jih-Jung
2018-06-01
A new polyprenylated polycyclic acylphloroglucinol, garcimultiflorone K (1), has been isolated from the stems of Garcinia multiflora, together with two known compounds, garcimultiflorone A (2) and garcimultiflorone B (3). The structure of new compound 1 was determined through spectroscopic methods including 1D and 2D NMR and MS analyses. The anti-angiogenic and anti-cancer effects of compounds 1-3 were evaluated in human endothelial progenitor cells (EPCs) and cancer cells. Of these, garcimultiflorone K (1) displayed the most potent anti-angiogenic property by suppressing cell growth and tube formation of EPCs. Compound 1 also exhibited growth-inhibitory activities against human hepatocellular carcinoma cell line SK-Hep-1 and hormone refractory prostate cancer cell line PC-3 with GI 50 values of 4.3 ± 1.6 and 6.6 ± 0.4 μM, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Generation and characterization of Lhx9 – GFPCreERT2 knock-in mouse line
Xie, Xiaoling; Deng, Min; Gan, Lin
2014-01-01
Summary LHX9 is a LIM-homeodomain transcription factor essential for the development of gonads, spinal cord interneurons, and thalamic neurons to name a few. We recently reported the expression of LHX9 in retinal amacrine cells during development. In this study, we generated an Lhx9 - GFPCreERT2 (GCE) knock-in mouse line by knocking-in a GCE cassette at the Lhx9 locus, thus inactivating endogenous Lhx9. Lhx9GCE/+ mice were viable, fertile, and displayed no overt phenotypical characteristics. Lhx9GCE/GCE mice were all phenotypically female, smaller in size, viable, but infertile. The specificity and efficacy of the Lhx9-GCE mouse line was verified by crossing it to a Rosa26 - tdTomato reporter mouse line, which reveals the Cre recombinase activities in retinal amacrine cells, developing limbs, testis, hippocampal neurons, thalamic neurons, and cerebellar neurons. Taken together, the Lhx9-GCE mouse line could serve as a beneficial tool for lineage tracing and gene manipulation experiments. PMID:25112520
Identification of drug-resistant subpopulations in canine hemangiosarcoma.
Khammanivong, A; Gorden, B H; Frantz, A M; Graef, A J; Dickerson, E B
2016-09-01
Canine hemangiosarcoma is a rapidly progressive disease that is poorly responsive to conventional chemotherapy. Despite numerous attempts to advance treatment options and improve outcomes, drug resistance remains a hurdle to successful therapy. To address this problem, we used recently characterized progenitor cell populations derived from canine hemangiosarcoma cell lines and grown as non-adherent spheres to identify potential drug resistance mechanisms as well as drug-resistant cell populations. Cells from sphere-forming cultures displayed enhanced resistance to chemotherapy drugs, expansion of dye-excluding side populations and altered ATP-binding cassette (ABC) transporter expression. Invasion studies demonstrated variability between cell lines as well as between sphere and monolayer cell populations. Collectively, our results suggest that sphere cell populations contain distinct subpopulations of drug-resistant cells that utilize multiple mechanisms to evade cytotoxic drugs. Our approach represents a new tool for the study of drug resistance in hemangiosarcoma, which could alter approaches for treating this disease. © 2014 John Wiley & Sons Ltd.
Xue, Fei; Ma, Yinghong; Chen, Y Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang; Xu, Jie
2012-08-01
The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs.
Tataranni, Tiziana; Agriesti, Francesca; Ruggieri, Vitalba; Mazzoccoli, Carmela; Simeon, Vittorio; Laurenzana, Ilaria; Scrima, Rosella; Pazienza, Valerio; Capitanio, Nazzareno; Piccoli, Claudia
2017-01-01
An increasing body of evidence suggests that targeting cellular metabolism represents a promising effective approach to treat pancreatic cancer, overcome chemoresistance and ameliorate patient's prognosis and survival. In this study, following whole-genome expression analysis, we selected two pancreatic cancer cell lines, PANC-1 and BXPC-3, hallmarked by distinct metabolic profiles with specific concern to carbohydrate metabolism. Functional comparative analysis showed that BXPC-3 displayed a marked deficit of the mitochondrial respiratory and oxidative phosphorylation activity and a higher production of reactive oxygen species and a reduced NAD+/NADH ratio, indicating their bioenergetic reliance on glycolysis and a different redox homeostasis as compared to PANC-1. Both cell lines were challenged to rewire their metabolism by substituting glucose with galactose as carbon source, a condition inhibiting the glycolytic flux and fostering full oxidation of the sugar carbons. The obtained data strikingly show that the mitochondrial respiration-impaired-BXPC-3 cell line was unable to sustain the metabolic adaptation required by glucose deprivation/substitution, thereby resulting in a G2\\M cell cycle shift, unbalance of the redox homeostasis, apoptosis induction. Conversely, the mitochondrial respiration-competent-PANC-1 cell line did not show clear evidence of cell sufferance. Our findings provide a strong rationale to candidate metabolism as a promising target for cancer therapy. Defining the metabolic features at time of pancreatic cancer diagnosis and likely of other tumors, appears to be crucial to predict the responsiveness to therapeutic approaches or coadjuvant interventions affecting metabolism. PMID:28476035
Heitner, Tara; Satozawa, Noboru; McLean, Kirk; Vogel, David; Cobb, Ronald R; Liu, Bing; Mahmoudi, Mithra; Finster, Silke; Larsen, Brent; Zhu, Ying; Zhou, Hongxing; Müller-Tiemann, Beate; Monteclaro, Felipe; Zhao, Xiao-Yan; Light, David R
2006-12-01
A therapeutic antibody candidate (AT-19) isolated using multivalent phage display binds native tomoregulin (TR) as a mul-timer not as a monomer. This report raises the importance of screening and selecting phage antibodies on native antigen and reemphasizes the possibility that potentially valuable antibodies are discarded when a monomeric phage display system is used for screening. A detailed live cell panning selection and screening method to isolate multivalently active antibodies is described. AT-19 is a fully human antibody recognizing the cell surface protein TR, a proposed prostate cancer target for therapeutic antibody internalization. AT-19 was isolated from a multivalent single-chain variable fragment (scFv) antibody library rescued with hyperphage. The required multivalency for isolation of AT-19 is supported by fluorescence activated cell sorting data demonstrating binding of the multivalent AT-19 phage particles at high phage concentrations and failure of monovalent particles to bind. Pure monomeric scFv AT-19 does not bind native receptor on cells, whereas dimeric scFv or immunoglobulin G binds with nanomolar affinity. The isolation of AT-19 antibody with obligate bivalent binding activity to native TR is attributed to the use of a multivalent display of scFv on phage and the method for selecting and screening by alternate use of 2 recombinant cell lines.
Tanih, Nicoline Fri; Ndip, Roland Ndip
2013-01-01
Interesting antimicrobial data from the stem bark of Sclerocarya birrea, which support its use in traditional medicine for the treatment of many diseases, have been delineated. The current study was aimed to further study some pharmacological and toxicological properties of the plant to scientifically justify its use. Anticancer activity of water and acetone extracts of S. birrea was evaluated on three different cell lines, HT-29, HeLa, and MCF-7 using the cell titre blue viability assay in 96-well plates. Apoptosis was evaluated using the acridine orange and propidium iodide staining method, while morphological structure of treated cells was examined using SEM. The acetone extract exhibited remarkable antiproliferative activities on MCF-7 cell lines at dose- and time-dependent manners (24 h and 48 h of incubation). The extract also exerted apoptotic programmed cell death in MCF-7 cells with significant effect on the DNA. Morphological examination also displayed apoptotic characteristics in the treated cells, including clumping, condensation, and culminating to budding of the cells to produce membrane-bound fragmentation, as well as formation of apoptotic bodies. The acetone extract of S. birrea possesses antiproliferative and apoptotic potential against MCF-7-treated cells and could be further exploited as a potential lead in anticancer therapy. PMID:23576913
Sugiyama, Kazuo; Ebinuma, Hirotoshi; Nakamoto, Nobuhiro; Sakasegawa, Noriko; Murakami, Yuko; Chu, Po-sung; Usui, Shingo; Ishibashi, Yuka; Wakayama, Yuko; Taniki, Nobuhito; Murata, Hiroko; Saito, Yoshimasa; Fukasawa, Masayoshi; Saito, Kyoko; Yamagishi, Yoshiyuki; Wakita, Takaji; Takaku, Hiroshi; Hibi, Toshifumi; Saito, Hidetsugu; Kanai, Takanori
2014-01-01
Most of experiments for HCV infection have been done using lytic infection systems, in which HCV-infected cells inevitably die. Here, to elucidate metabolic alteration in HCV-infected cells in a more stable condition, we established an HCV-persistently-infected cell line, designated as HPI cells. This cell line has displayed prominent steatosis and supported HCV infection for more than 2 years, which is the longest ever reported. It enabled us to analyze metabolism in the HCV-infected cells integrally combining metabolomics and expression arrays. It revealed that rate-limiting enzymes for biosynthesis of cholesterol and fatty acids were up-regulated with actual increase in cholesterol, desmosterol (cholesterol precursor) and pool of fatty acids. Notably, the pentose phosphate pathway was facilitated with marked up-regulation of glucose-6-phosphate dehydrogenase, a rete-limiting enzyme, with actual increase in NADPH. In its downstream, enzymes for purine synthesis were also up-regulated resulting in increase of purine. Contrary to common cancers, the TCA cycle was preferentially facilitated comparing to glycolysis pathway with a marked increase of most of amino acids. Interestingly, some genes controlled by nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a master regulator of antioxidation and metabolism, were constitutively up-regulated in HPI cells. Knockdown of Nrf2 markedly reduced steatosis and HCV infection, indicating that Nrf2 and its target genes play important roles in metabolic alteration and HCV infection. In conclusion, HPI cell is a bona fide HCV-persistently-infected cell line supporting HCV infection for years. This cell line sustained prominent steatosis in a hypermetabolic status producing various metabolites. Therefore, HPI cell is a potent research tool not only for persistent HCV infection but also for liver metabolism, overcoming drawbacks of the lytic infection systems. PMID:24718268
Zhang, Lei; Sato, Eiji; Amagasaki, Kenichi; Nakao, Atsuhito; Naganuma, Hirofumi
2006-07-01
Malignant glioma cells secrete and activate transforming growth factor-beta (TGFbeta) and are resistant to growth inhibition by that factor. Nevertheless, the mechanism underlying this effect remains poorly understood. In this study, the mechanism of the resistance to growth inhibition induced by TGFbeta was investigated. The authors examined the expression of downstream components of the TGFbeta receptor, including Smad2, Smad3, Smad4, and Smad7, and the effect of TGFbeta1 treatment on the phosphorylation of Smad2 and the nuclear translocation of Smad2 and Smad3 by using 10 glioma cell lines and the A549 cell line, which is sensitive to TGFbeta-mediated growth inhibition. The expression of two transcriptional corepressor proteins, SnoN and Ski, and the effect of TGFbeta1 treatment on the expression of the SnoN protein and the cell cycle regulators p21, p15, cyclin-dependent kinase-4 (CDK4), and cyclin D1 were also examined. Expression of the Smad2 and Smad3 proteins was lower in the glioma cell lines than in the A549 cell line and in normal astrocytes. In particular, Smad3 expression was low or very low in nine of the 10 malignant glioma cell lines. Expression of Smad4 was low in four glioma cell lines, and expression of the Smad7 protein was similar when compared with protein expression in the A549 cell line and in normal astrocytes. The levels of Smad2 phosphorylation after TGFbeta1 treatment were lower in glioma cell lines than in the A549 cell line, except for one glioma cell line. Seven of the 10 glioma cell lines exhibited lower levels of nuclear translocation of Smad2 and Smad3, and two cell lines that expressed very low levels of Smad3 protein showed no nuclear translocation. All glioma cell lines expressed the SnoN protein and its expression was unaltered by treatment with TGFbeta1. Three glioma cell lines expressed high levels of the Ski protein. The expression of the p21(cip1), p15(INK4B), CDK4, and cyclin D1 proteins was not altered by TGFbeta1, treatment, except in one cell line that displayed a slight increase in p21 protein. Overall, the expression of the Smad2 and Smad3 proteins was low in the glioma cell lines, the phosphorylation and nuclear translocation of Smad2 and Smad3 were impaired, and the TGFbeta receptor signal did not affect the expression of the SnoN, p21, p15, cyclin D1, and CDK4 proteins. These results suggest that the ability to resist TGFbeta-mediated growth inhibition in malignant glioma cells is due to abnormalities in the TGFbeta signaling pathway.
2014-01-01
Background Endophytes, which reside in plant tissues, have the potential to produce novel metabolites with immense benefits for health industry. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell were investigated. Methods Endophytic fungi were isolated from the Bacopa monnieri. Extracts from liquid cultures were tested for cytotoxicity against a number of cancer cell lines using the MTT assay. Antimicrobial activity was determined using the micro dilution method. Results 22% of the examined extracts showed potent (IC50 of <20 μg/ml) cytotoxic activity against HCT-116 cell line. 5.5%, 11%, 11% of the extracts were found to be cytotoxic for MCF-7, PC-3, and A-549 cell lines respectively. 33% extracts displayed antimicrobial activity against at least one test organism with MIC value 10–100 μg/ml. The isolate B9_Pink showed the most potent cytotoxic activity for all the cell lines examined and maximum antimicrobial activity against the four pathogens examined which was followed by B19. Conclusions Results indicated the potential for production of bioactive agents from endophytes of Bacopa monnieri. PMID:24512530
Yoshikawa, Yoko; Takano, Osamu; Kato, Ichiro; Takahashi, Yoshihisa; Shima, Fumi; Kataoka, Tohru
2017-12-01
Metastasis stands as the major obstacle for the survival from cancers. Nonetheless most existing anti-cancer drugs inhibit only cell proliferation, and discovery of agents having both anti-proliferative and anti-metastatic properties would be more beneficial. We previously reported the discovery of small-molecule Ras inhibitors, represented by Kobe0065, that displayed anti-proliferative activity on xenografts of human colorectal cancer (CRC) cell line SW480 carrying the K-ras G12V gene. Here we show that treatment of cancer cells carrying the activated ras genes with Kobe0065 or a siRNA targeting Ras downregulates the expression of lysyl oxidase (LOX), which has been implicated in metastasis. LOX expression is enhanced by co-expression of Ras G12V through activation of phosphatidylinositol 3-kinase (PI3K)/Akt and concomitant accumulation of hypoxia-inducible factor (HIF)-1α. Furthermore, Kobe0065 effectively inhibits not only migration and invasion of cancer cells carrying the activated ras genes but also lung metastasis of human CRC cell line SW620 carrying the K-ras G12V gene. Collectively, these results indicate that Kobe0065 prevents metastasis through inhibition of the Ras-PI3K-Akt-HIF-1α-LOX signaling and suggest that Ras inhibitors in general might exhibit both anti-proliferative and anti-metastatic properties toward cancer cells carrying the activated ras genes. Copyright © 2017 Elsevier B.V. All rights reserved.
Martell, R. L.; Slapak, C. A.; Levy, S. B.
1997-01-01
The relationship between mammalian facilitative glucose transport proteins (GLUT) and multidrug resistance was examined in two vincristine (VCR)-selected murine erythroleukaemia (MEL) PC4 cell lines. GLUT proteins, GLUT1 and GLUT3, were constitutively coexpressed in the parental cell line and also in the VCR-selected cell lines. Increased expression of the GLUT1 isoform was noted both in the PC-V40 (a non-P-glycoprotein, mrp-overexpressing subline) and in the more resistant PC-V160 (overexpressing mrp and mdr3) cell lines. Overexpression of GLUT3 was detected only in the PC-V160 subline. An increased rate of facilitative glucose transport (Vmax) and level of plasma membrane GLUT protein expression paralleled increased VCR resistance, active VCR efflux and decreased VCR steady-state accumulation in these cell lines. Glucose transport inhibitors (GTIs), cytochalasin B (CB) and phloretin blocked the active efflux and decreased steady-state accumulation of VCR in the PC-V40 subline. GTIs did not significantly affect VCR accumulation in the parental or PC-V160 cells. A comparison of protein sequences among GLUT1, GLUT3 and MRP revealed a putative cytochalasin B binding site in MRP, which displayed 44% sequence similarity/12% identity with that previously identified in GLUT1 and GLUT3; these regions also exhibited a similar hydropathy plot pattern. The findings suggested that CB bound to MRP and directly or indirectly lowered VCR efflux and/or CB bound to one or both GLUT proteins, which acted to lower the VCR efflux mediated by MRP. This is the first report of a non-neuronal murine cell line that expressed GLUT3. Images Figure 3 PMID:9010020
NASA Astrophysics Data System (ADS)
Eriksson, S.; Cassak, P. A.; Retinò, A.; Mozer, F. S.
2016-04-01
The Polar satellite recorded two reconnection exhausts within 6 min on 1 April 2001 across a subsolar magnetopause that displayed a symmetric plasma density, but different out-of-plane magnetic field signatures for similar solar wind conditions. The first magnetopause crossing displayed a bipolar guide field variation in a weak external guide field consistent with a symmetric Hall field from a single X line. The subsequent crossing represents the first observation of a tripolar guide field perturbation at Earth's magnetopause in a strong guide field. This perturbation consists of a significant guide field enhancement between two narrow guide field depressions. A particle-in-cell simulation for the prevailing conditions across this second event resulted in a magnetic island between two simulated X lines across which a tripolar guide field developed consistent with the observation. The simulated island supports a scenario whereby Polar encountered the asymmetric quadrupole Hall magnetic fields between two X lines for symmetric conditions across the magnetopause.
Sub-solar Magnetopause Observation and Simulation of a Tripolar Guide-Magnetic Field Perturbation
NASA Astrophysics Data System (ADS)
Eriksson, S.; Cassak, P.; Retino, A.; Mozer, F.
2015-12-01
The Polar satellite recorded two reconnection exhausts within 6 min on 1 April 2001 at a rather symmetric sub-solar magnetopause that displayed different out-of-plane signatures for similar solar wind conditions. The first case was reported by Mozer et al. [2002] and displayed a bipolar guide field supporting a quadrupole Hall field consistent with a single X-line. The second case, however, shows the first known example of a tripolar guide-field perturbation at Earth's magnetopause reminiscent of the types of solar wind exhausts that Eriksson et al. [2014; 2015] have reported to be in agreement with multiple X-lines. A dedicated particle-in-cell simulation is performed for the prevailing conditions across the magnetopause. We propose an explanation in terms of asymmetric Hall magnetic fields due to a presence of a magnetic island between two X-lines, and discuss how higher resolution MMS observations can be used to further study this problem at the magnetopause.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Meng-Yu; Nestvold, Janne, E-mail: j.m.nestvold@medisin.uio.no; Rekdal, Øystein
Increasing evidence suggests a possible relationship between mesenchymal stem cells (MSCs) and sarcoma. MSCs are hypothesized to be the cells initiating sarcomagenesis, and cancer stem cells (CSCs) sharing features of MSCs have been identified in sarcomas. Here, we report on the characteristics of a bone marrow-derived rat mesenchymal stem cell line that spontaneously transformed in long-term culture. The rat transformed mesenchymal stem cells (rTMSCs) produced soft-tissue fibrosarcomas in immunocompromised mice and immunocompetent rats. In vitro, the rTMSCs displayed increased proliferation capacity compared to the untransformed cell line. The transformed MSCs maintained the mesenchymal phenotype by expression of the stem cellmore » marker CD 90 and the lack of hematopoietic and endothelial markers. Cytogenetic analysis detected trisomy 6 in the rTMSCs. Side population (SP) isolation and tumorsphere cultivation of the transformed cells confirmed the presence of CSCs among the rTMSCs. Importantly, the rTMSCs retained their differentiation capacity towards osteogenic and adipogenic lineages. This transformed MSC-based cell line may be valuable in examining the balance in a mixed cell population between cancer stem cell properties and the ability to differentiate to specific non-transformed cell populations. Moreover, it may also be a useful tool to evaluate the efficacy of novel targeted immunotherapies in vivo. - Highlights: • Spontaneously transformed rat MSCs (rTMSCs) share characteristics with normal MSCs. • rTMSCs possess a side population, enriched with tumorigenic cells. • rTMSCs model fibrosarcoma in vivo.« less
Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro.
Cong, Shan; Cao, Guifang; Liu, Dongjun
2014-12-01
To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1-5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.
Kuete, Victor; Sandjo, Louis P; Mbaveng, Armelle T; Zeino, Maen; Efferth, Thomas
2015-12-15
Multidrug resistance (MDR) in cancer represent a major hurdle in chemotherapy. Previously, the methanol extract of the medicinal spice Xylopia aethiopica displayed considerable cytotoxicity against multidrug resistant (MDR) cancer cell lines. The present study was designed to assess the cytotoxicity of compounds, 16α-hydroxy-ent-kauran-19-oic acid (2), 3,4',5-trihydroxy-6″,6″-dimethylpyrano[2,3-g]flavone (3), isotetrandrine (5) and trans-tiliroside (6) derived from the methanol crude extract of Xylopia aethiopica against 9 drug-sensitive and -resistant cancer cell lines. The resazurin reduction assay was used to evaluate the cytotoxicity of these compounds, whilst caspase-Glo assay was used to detect caspase activation. Cell cycle, mitochondrial membrane potential (MMP) and levels of reactive oxygen species (ROS) were all analyzed via flow cytometry. Flavonoid 3 and alkaloid 5 also displayed IC50 values ranging from 2.61 µM (towards leukemia CCRF-CEM cells) to 18.60 µM (towards gliobastoma multiforme U87MG.ΔEGFR cells) and from 1.45 µM (towards HepG2 cells) to 7.28 µM (towards MDA-MB-231-pcDNA cells), respectively. IC50 values ranged from 0.20 µM (against CCRF-CEM cells) to 195.12 µM (against CEM/ADR5000 cells) for doxorubicin. Compound 3 induced apoptosis in leukemia CCRF-CEM cells mediated by the disruption of the MMP, whilst 5 induced apoptosis mediated by ROS production. Compounds 2 and 5 represent potential cytotoxic phytochemicals that deserve more investigations to develop novel antineoplastic drugs against multifactorial drug-resistant cancers. Copyright © 2015 Elsevier GmbH. All rights reserved.
Klose, Johannes; Kattner, Sarah; Borgström, Björn; Volz, Claudia; Schmidt, Thomas; Schneider, Martin; Oredsson, Stina; Strand, Daniel; Ulrich, Alexis
2018-01-01
Salinomycin, a polyether antibiotic, is a well-known inhibitor of human cancer stem cells. Chemical modification of the allylic C20 hydroxyl of salinomycin has enabled access to synthetic analogs that display increased cytotoxic activity compared to the native structure. The aim of this study was to investigate the activity of a cohort of C20-O-acyl analogs of salinomycin on human colorectal cancer cell lines in vitro. Two human colorectal cancer cell lines (SW480 and SW620) were exposed to three C20-O-acylated analogs and salinomycin. The impact of salinomycin and its analogs on tumor cell number, migration, cell death, and cancer stem cell specifity was analyzed. Exposure of human colorectal cancer cells to the C20-O-acylated analogs of salinomycin resulted in reduced tumor cell number and impaired tumor cell migration at lower concentrations than salinomycin. When used at higher (micromolar) concentrations, these effects were accompanied by induction of apoptotic cell death. Salinomycin analogs further expose improved activity against cancer stem cells compared to salinomycin. Copyright © 2017 Elsevier Inc. All rights reserved.
Cabello, Christopher M.; Bair, Warner B.; Ley, Stephanie; Lamore, Sarah D.; Azimian, Sara; Wondrak, Georg T.
2008-01-01
Cytokinins and cytokinin nucleosides are purine derivatives with potential anticancer activity. N6-furfuryladenosine (FAdo, kinetin-riboside) displays antiproliferative and apoptogenic activity against various human cancer cell lines, and FAdo has recently been shown to suppress tumor growth in murine xenograft models of human leukemia and melanoma. In this study, FAdo-induced genotoxicity, stress response gene expression, and cellular ATP depletion were examined as early molecular consequences of FAdo-exposure in MiaPaCa-2 pancreas carcinoma, A375 melanoma, and other human cancer cell lines. FAdo, but not adenosine or N6-furfuryladenine, displayed potent antiproliferative activity that was also observed in human primary fibroblasts and keratinocytes. Remarkably, massive ATP depletion and induction of genotoxic stress as assessed by the alkaline comet assay occurred within 60 to 180 minutes of exposure to low micromolar concentrations of FAdo. This was followed by rapid upregulation of CDKN1A and other DNA damage/stress response genes (HMOX1, DDIT3, GADD45A) as revealed by expression array and Western analysis. Pharmacological and siRNA-based genetic inhibition of adenosine kinase suppressed FAdo cytotoxicity and also prevented ATP-depletion and p21-upregulation suggesting the importance of bioconversion of FAdo into the nucleotide form required for drug action. Taken together our data suggest that early induction of genotoxicity and energy crisis are important causative factors involved in FAdo cytotoxicity. PMID:19186174
A new 5-alkylresorcinol glucoside derivative from Cybianthus magnus.
Cabanillas, B; Vásquez-Ocmín, P; Zebiri, I; Rengifo, E; Sauvain, M; Le, H L; Vaisberg, A; Voutquenne-Nazabadioko, L; Haddad, M
2016-01-01
One new 5-alkylresorcinol glucoside (1) was isolated from leaves of Cybianthus magnus, along with 12 known compounds (2-13), isolated from four plants belonging to Myrsinaceae family. Their structures were determined on the basis of spectroscopic analysis and by comparison of their spectral data with those reported in the literature. Among the tested molecules, only compound 2 displayed a strong cytotoxic activity with IC50 values ranging between 22 and 100 μM for all cell lines tested. One new 5-alkylresorcinol glucoside (1) was isolated from leaves of Cybianthus magnus, along with 12 known compounds, isolated from four plants belonging to Myrsinaceae family (2, 3 isolated from C. magnus; 4-7, 10 and 11 isolated from Myrsine latifolia; 4, 8 and 9 isolated from Myrsine sessiflora; 6, 7, 10, 12 and 13 isolated from Myrsine congesta). Their structures were determined on the basis of spectroscopic analysis and by comparison of their spectral data with those reported in the literature. So far, only nine 5-alkylresorcinol glucosides were isolated from leaves of Grevillea robusta. Since resorcinols are known to exhibit strong cytotoxic activity, compounds 1 and 2 were tested against cell lines 3T3, H460, DU145 and MCF-7 for cytotoxicity in vitro and compounds 3-13 were tested for their antileishmanial activity. Compound 2 displayed a strong cytotoxic activity with IC50 values ranging between 22 and 100 μM for all tested cell lines. Compounds 3-13 were not active against Leishmania amazonensis amastigotes.
Selective Targeting of Cancer Stem Cells by 2-Aminodihydroquinoline Analogs.
Park, Heejoo; Yu, Yeongji; Kim, Hyejin; Lee, Eun; Lee, Hani; Jeon, Raok; Kim, Woo-Young
2017-04-01
Many aminodihydroquinoline compounds have been studied to determine their cytotoxicity to cancer cells. However, anti-cancer stem cells (CSCs) activity of aminodihydroquinoline has not been tested in spite that CSC is believed to do an important roles in chemotherapy resistance and recurrence. The CSC selective targeting activities of 10 recently synthesized 2-aminodihydroquinoline analogs were examined on CSCs and bulk culture of a glioblastoma cell line. A diethylaminopropyl substituted aminodihydroquinoline, 5h, showed a strong anti-CSC effect and general cytotoxicity. However, a benzyl substituted aminodihydroquinoline, 5i, displayed the most effective anti-CSC effect, with no or small significant cytotoxic effect in bulk culture conditions. While 5h temporarily enhanced CSC marker-positive cells and eventually suppressed the CSC population, which is similar to other cytotoxic anticancer reagents reported, 5i selectively eliminated CSC marker-positive cells based on fluorescence activated cell sorter (FACS) analysis. 5h also temporarily activated some genes associated with signaling required for CSC, while 5i selectively suppressed these genes supporting that the differential effects are resulted from different molecular responses. In addition, the selective CSC effect is also found against a colon cancer cell line. Collectively, we suggest that these two novel aminodihydroquinoline compounds possess novel anti-CSC effects in colon and brain tumor derived cell lines probably through independent pathways.
Anti-tumor and anti-angiogenic ergosterols from Ganoderma lucidum
NASA Astrophysics Data System (ADS)
Chen, Shaodan; Yong, Tianqiao; Zhang, Yifang; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen
2017-10-01
This study was carried out to isolate chemical constituents from the lipid enriched fraction of Ganoderma lucidum extract and to evaluate their anti-proliferative effect on cancer cell lines and human umbilical vein endothelial cells. Ergosterol derivatives (1-14) were isolated from the lipid enriched fraction of G. lucidum. Their structures were established on the basis of spectroscopic analyses or by comparison of mass and NMR spectral data with those reported previously. Amongst, compound 1 was isolated and identified as a new compound. All the compounds were evaluated for their inhibitory effect on tumor cells and human umbilical vein endothelial cells in vitro. Compounds 9-13 displayed inhibitory activity against two tumor cell lines and human umbilical vein endothelial cells, which indicated that these four compounds had both anti-tumor and anti-angiogenesis activities. Compound 2 had significant selective inhibition against two tumor cell lines, while 3 exhibited selective inhibition against human umbilical vein endothelial cells. The structure–activity relationships for inhibiting human HepG2 cells were revealed by 3D-QASR. Ergosterol content in different parts of the raw material and products of G. lucidum was quantified. This study provides a basis for further development and utilization of ergosterol derivatives as natural nutraceuticals and functional food ingredients, or as source of new potential antitumor or anti-angiogenesis chemotherapy agent.
Kuchtey, J; Fewtrell, C
1996-03-01
Ca2+ imaging experiments have revealed that for a wide variety of cell types, including RBL-2H3 mucosal mast cells, there are considerable cell-to-cell differences of the Ca2+ responses of individual cells. This heterogeneity is evident in both the shape and latency of the responses. Mast cells within a single microscopic field of view, which have experienced identical culture conditions and experimental preparation, display a wide variety of responses upon antigen stimulation. We have subcloned the RBL-2H3 mucosal mast cell line to test the hypothesis that genetic heterogeneity within the population is the cause of the Ca2+ response heterogeneity. We found that cell-to-cell variability was significantly reduced in four of five clonal lines. The response heterogeneity remaining within the clones was not an experimental artifact caused by differences in the amount of fura-2 loaded by individual cells. Factors other than genetic heterogeneity must partly account for Ca2+ response heterogeneity. It is possible that the complex shapes and variability of the Ca2+ responses are reflections of the fact that there are multiple factors underlying the Ca2-response to antigen stimulation. Small differences from cell to cell in one or more of these factors could be a cause of the remaining Ca2+ response heterogeneity.
Daniel, Vincent C.; Marchionni, Luigi; Hierman, Jared S.; Rhodes, Jonathan T.; Devereux, Wendy L.; Rudin, Charles M.; Yung, Rex; Parmigani, Giovanni; Dorsch, Marion; Peacock, Craig D.; Watkins, D. Neil
2009-01-01
Traditional approaches to the preclinical investigation of cancer therapies rely on the use of established cell lines maintained in serum-based growth media. This is particularly true of small cell lung cancer (SCLC), where surgically resected tissue is rarely available. Recent attention has focused on the need for better models that preserve the integrity of cancer stem cell populations, as well as three-dimensional tumor-stromal interactions. Here we describe a primary xenograft model of SCLC in which endobronchial tumor specimens obtained from chemo-naive patients are serially propagated in vivo in immunodeficient mice. In parallel, cell lines grown in conventional tissue culture conditions were derived from each xenograft line, passaged for 6 months, and then re-implanted to generate secondary xenografts. Using the Affymetrix platform, we analyzed gene expression in primary xenograft, xenograft-derived cell line, and secondary xenograft, and compared these data to similar analyses of unrelated primary SCLC samples and laboratory models. When compared to normal lung, primary tumors, xenografts and cell lines displayed a gene expression signature specific for SCLC. Comparison of gene expression within the xenograft model identified a group of tumor-specific genes expressed in primary SCLC and xenografts that was lost during the transition to tissue culture, and that was not regained when the tumors were re-established as secondary xenografts. Such changes in gene expression may be a common feature of many cancer cell culture systems, with functional implications for the use of such models for preclinical drug development. PMID:19351829
Kwon, Yun; Kim, Seong-Hwan; Shin, Yoonho; Bae, Munhyung; Kim, Byung-Yong; Lee, Sang Kook; Oh, Ki-Bong; Shin, Jongheon; Oh, Dong-Chan
2014-01-01
Three new secondary metabolites, amycofuran (1), amycocyclopiazonic acid (2), and amycolactam (3), were isolated from the sponge-associated rare actinomycete Amycolatopsis sp. Based on combined spectroscopic analyses, the structures of 1–3 were determined to be a new benzofuran glycoside and new indole alkaloids related to cyclopiazonic acids, a class that has previously only been reported in fungi. The absolute configurations of 1 and 3 were deduced by ECD calculations, whereas that of 2 was determined using the modified Mosher method. Amycolactam (3) displayed significant cytotoxicity against the gastric cancer cell line SNU638 and the colon cancer cell line HCT116. PMID:24759001
Derivation and characterisation of the human embryonic stem cell lines, NOTT1 and NOTT2.
Priddle, Helen; Allegrucci, Cinzia; Burridge, Paul; Munoz, Maria; Smith, Nigel M; Devlin, Lyndsey; Sjoblom, Cecilia; Chamberlain, Sarah; Watson, Sue; Young, Lorraine E; Denning, Chris
2010-04-01
The ability to maintain human embryonic stem cells (hESCs) during long-term culture and yet induce differentiation to multiple lineages potentially provides a novel approach to address various biomedical problems. Here, we describe derivation of hESC lines, NOTT1 and NOTT2, from human blastocysts graded as 3BC and 3CB, respectively. Both lines were successfully maintained as colonies by mechanical passaging on mouse embryonic feeder cells or as monolayers by trypsin-passaging in feeder-free conditions on Matrigel. Undifferentiated cells retained expression of pluripotency markers (OCT4, NANOG, SSEA-4, TRA-1-60 and TRA-1-81), a stable karyotype during long-term culture and could be transfected efficiently with plasmid DNA and short interfering RNA. Differentiation via formation of embryoid bodies resulted in expression of genes associated with early germ layers and terminal lineage specification. The electrophysiology of spontaneously beating NOTT1-derived cardiomyocytes was recorded and these cells were shown to be pharmacologically responsive. Histological examination of teratomas formed by in vivo differentiation of both lines in severe immunocompromised mice showed complex structures including cartilage or smooth muscle (mesoderm), luminal epithelium (endoderm) and neuroectoderm (ectoderm). These observations show that NOTT1 and NOTT2 display the accepted characteristics of hESC pluripotency.
Novel miRNA-31 and miRNA-200a-Mediated Regulation of Retinoblastoma Proliferation.
Montoya, Vanessa; Fan, Hanli; Bryar, Paul J; Weinstein, Joanna L; Mets, Marilyn B; Feng, Gang; Martin, Joshua; Martin, Alissa; Jiang, Hongmei; Laurie, Nikia A
2015-01-01
Retinoblastoma is the most common intraocular tumor in children. Current management includes broad-based treatments such as chemotherapy, enucleation, laser therapy, or cryotherapy. However, therapies that target specific pathways important for retinoblastoma progression could provide valuable alternatives for treatment. MicroRNAs are short, noncoding RNA transcripts that can regulate the expression of target genes, and their aberrant expression often facilitates disease. The identification of post-transcriptional events that occur after the initiating genetic lesions could further define the rapidly aggressive growth displayed by retinoblastoma tumors. In this study, we used two phenotypically different retinoblastoma cell lines to elucidate the roles of miRNA-31 and miRNA-200a in tumor proliferation. Our approach confirmed that miRNAs-31 and -200a expression is significantly reduced in human retinoblastomas. Moreover, overexpression of these two miRNAs restricts the expansion of a highly proliferative cell line (Y79), but does not restrict the growth rate of a less aggressive cell line (Weri1). Gene expression profiling of miRNA-31 and/or miRNA-200a-overexpressing cells identified differentially expressed mRNAs associated with the divergent response of the two cell lines. This work has the potential to enhance the development of targeted therapeutic approaches for retinoblastoma and improve the efficacy of treatment.
Cytotoxic and hemolytic effects of Tritrichomonas foetus on mammalian cells.
Burgess, D E; Knoblock, K F; Daugherty, T; Robertson, N P
1990-01-01
Geographically distinct lines of Tritrichomonas foetus were assayed for their ability to cause cytotoxicity in nucleated mammalian cells and lysis of bovine erythrocytes. T. foetus was highly cytotoxic toward a human cervical cell line (HeLa) and early bovine lymphosarcoma (BL-3) but displayed low levels of cytotoxicity against African green monkey kidney (Vero) cells. In addition to variation in the extent of cytotoxicity toward different targets, differences in the levels of cytotoxicity in the same nucleated target occurred with different parasite lines. Whole T. foetus, unfractionated whole-cell extracts, and parasite-conditioned medium (RPMI 1640 without serum) all caused lysis of bovine erythrocytes. Lytic activity in the conditioned medium was substantially reduced by repeated freezing and thawing or heating to 90 degrees C for 30 min. Damage of mammalian target cells by live T. foetus could be reduced by the presence of protease inhibitors; however, such inhibitors did not diminish the lytic effects of conditioned medium. These results suggested that proteolytic enzymes were necessary for the lytic mechanism of the live parasites but were not required once lytic factors were released into the parasite-conditioned medium. They further suggested that the lytic molecules were either proteins or had proteinaceous components. Images PMID:2228233
Portella, G; Vitagliano, D; Li, Z; Sferratore, F; Santoro, M; Vecchio, G; Fusco, A
1998-01-01
The PC Cl 3 cell line is a well-characterized epithelial cell line of rat thyroid origin. This cell line retains in vitro the typical markers of thyroid differentiation: thyroglobulin (TG) synthesis and secretion, iodide uptake, thyroperoxidase (TPO) expression, and dependency on TSH for growth. Although the differentiated phenotype of thyroid cells has been relatively well described, the molecular mechanisms that regulate both differentiation and neoplastic transformation of thyroid cells still need to be investigated in detail. Protein kinase C (PKC), the target of tetradecanoylphorbol acetate (TPA), regulates growth and differentiation of several cell types. Here we show that treatment of PC Cl 3 cells with TPA induces an acute block of thyroid differentiation. TPA-treated PC Cl 3 cells are unable to trap iodide and the expression levels of thyroglobulin, TSH receptor, and TPO genes are drastically reduced by TPA treatment. This differentiation block is not caused by a reduced expression of one of the master genes of thyroid differentiation, the thyroid transcription factor 1 (TTF-1). TPA-treated PC Cl 3 cells display an increased growth rate indicating that, in addition to the differentiation block, TPA also significantly affects the growth regulation of thyroid cells. Finally, TPA treatment dramatically increases the number of transformation foci induced in PC Cl 3 cells by retroviruses carrying v-Ki-ras, v-Ha-ras, and v-mos oncogenes. These findings support the notion that the PKC pathway can influence proliferation, differentiation, and neoplastic transformation of thyroid cells in culture.
Adult Mouse Cortical Cell Taxonomy by Single Cell Transcriptomics
Tasic, Bosiljka; Menon, Vilas; Nguyen, Thuc Nghi; Kim, Tae Kyung; Jarsky, Tim; Yao, Zizhen; Levi, Boaz; Gray, Lucas T.; Sorensen, Staci A.; Dolbeare, Tim; Bertagnolli, Darren; Goldy, Jeff; Shapovalova, Nadiya; Parry, Sheana; Lee, Changkyu; Smith, Kimberly; Bernard, Amy; Madisen, Linda; Sunkin, Susan M.; Hawrylycz, Michael; Koch, Christof; Zeng, Hongkui
2016-01-01
Nervous systems are composed of various cell types, but the extent of cell type diversity is poorly understood. Here, we construct a cellular taxonomy of one cortical region, primary visual cortex, in adult mice based on single cell RNA-sequencing. We identify 49 transcriptomic cell types including 23 GABAergic, 19 glutamatergic and seven non-neuronal types. We also analyze cell-type specific mRNA processing and characterize genetic access to these transcriptomic types by many transgenic Cre lines. Finally, we show that some of our transcriptomic cell types display specific and differential electrophysiological and axon projection properties, thereby confirming that the single cell transcriptomic signatures can be associated with specific cellular properties. PMID:26727548
DOE Office of Scientific and Technical Information (OSTI.GOV)
El-Awady, Raafat A., E-mail: relawady@sharjah.ac.ae; Department of Pharmacology and Pharmaceutics, College of Pharmacy, University of Sharjah, University City road, 27272 Sharjah; Saleh, Ekram M.
Celecoxib, an inhibitor of cyclooxygenase-2, is being investigated for enhancement of chemotherapy efficacy in cancer clinical trials. This study investigates the ability of cyclooxygenase-2 inhibitors to sensitize cells from different origins to several chemotherapeutic agents. The effect of the drug's mechanism of action and sequence of administration are also investigated. The sensitivity, cell cycle, apoptosis and DNA damage of five different cancer cell lines (HeLa, HCT116, HepG2, MCF7 and U251) to 5-FU, cisplatin, doxorubicin and etoposide {+-} celecoxib following different incubation schedules were analyzed. We found antagonism between celecoxib and the four drugs in the breast cancer cells MCF7 followingmore » all incubation schedules and between celecoxib and doxorubicin in all cell lines except for two combinations in HCT116 cells. Celecoxib with the other three drugs in the remaining four cell lines resulted in variable interactions. Mechanistic investigations revealed that celecoxib exerts different molecular effects in different cells. In some lines, it abrogates the drug-induced G2/M arrest enhancing pre-mature entry into mitosis with damaged DNA thus increasing apoptosis and resulting in synergism. In other cells, it enhances drug-induced G2/M arrest allowing time to repair drug-induced DNA damage before entry into mitosis and decreasing cell death resulting in antagonism. In some synergistic combinations, celecoxib-induced abrogation of G2/M arrest was not associated with apoptosis but permanent arrest in G1 phase. These results, if confirmed in-vivo, indicate that celecoxib is not a suitable chemosensitizer for breast cancer or with doxorubicin for other cancers. Moreover, combination of celecoxib with other drugs should be tailored to the tumor type, drug and administration schedule. - Graphical abstract: Display Omitted Highlights: > Celecoxib may enhance effects of anticancer drugs. > Its combination with four drugs was tested in five cancer cell lines. > It antagonized the effects of the four drugs in the breast cancer cell line MCF7. > Doxorubicin's cytotoxic effects were antagonized by celecoxib in four cell lines. > Cell cycle, apoptosis and DNA damage explain the different interactive effects.« less
Xie, Jinhan; Mølck, Christina; Paquet-Fifield, Sophie; Butler, Lisa; Sloan, Erica; Ventura, Sabatino; Hollande, Frédéric
2016-07-12
Progression of castration-resistant tumors is frequent in prostate cancer. Current systemic treatments for castration-resistant prostate cancer only produce modest increases in survival time and self-renewing Tumor-Initiating Cells (TICs) are suspected to play an important role in resistance to these treatments. However it remains unclear whether the same TICs display both chemo-resistance and self-renewing abilities throughout progression from early stage lesions to late, castration resistant tumors. Here, we found that treatment of mice bearing LNCaP-derived xenograft tumors with cytotoxic (docetaxel) and anti-androgen (flutamide) compounds enriched for cells that express TROP2, a putative TIC marker. Consistent with a tumor-initiating role, TROP2high cells from androgen-sensitive prostate cancer cell lines displayed an enhanced ability to re-grow in culture following treatment with taxane-based chemotherapy with or without androgen blockade. TROP2 down-regulation in these cells reduced their ability to recur after treatment with docetaxel, in the presence or absence of flutamide. Accordingly, in silico analysis of published clinical data revealed that prostate cancer patients with poor prognosis exhibit significantly elevated TROP2 expression level compared to low-risk patients, particularly in the case of patients diagnosed with early stage tumors. In contrast, in androgen-independent prostate cancer cell lines, TROP2high cells did not exhibit a differential treatment response but were characterized by their high self-renewal ability. Based on these findings we propose that high TROP2 expression identifies distinct cell sub-populations in androgen-sensitive and androgen-independent prostate tumors and that it may be a predictive biomarker for prostate cancer treatment response in androgen-sensitive tumors.
Sharma, K; Pachauri, S D; Khandelwal, K; Ahmad, H; Arya, A; Biala, P; Agrawal, S; Pandey, R R; Srivastava, A; Srivastav, A; Saxena, J K; Dwivedi, A K
2016-03-01
Morinda citrifolia L. (NONI) fruits have been used for thousands of years for the treatment of many health problems including cancer, cold, diabetes, flu, hypertension, and pain. Plant extracts have reported several therapeutic benefits, but extraction of individual compound from the extract often exhibits limited clinical utility as the synergistic effect of various natural ingredients gets lost. They generally constitute polyphenols and flavonoids. Studies have suggested that these phytochemicals, especially polyphenols, display high antioxidant properties, which help to reduce the risk of degenerative diseases, such as cancer and cardiovascular diseases. Several in-vitro and in-vivo studies have shown that Noni fruits have antioxidant, anti-inflammatory, anti-dementia, liver-protective, anticancer, analgesic, and immunomodulatory effects. Till date about 7 in vitro cancer studies have been done, but a detailed in vitro study including cell cycle and caspase activation assay on breast cancer cell line has not been done. In the present study different Noni fruit fractions have tested on cancer cell lines MCF-7, MDA-MB-231 (breast adenocarcinoma) and one non-cancer cell line HEK-293 (Human embryonic kidney). Out of which ethylacetate extract showed a higher order of in vitro anticancer activity profile. The ethylacetate extract strongly inhibited the proliferation of MCF-7, MDA-MB-231 and HEK-293 cell lines with IC50 values of 25, 35, 60 µg/ml respectively. The extract showed increase in apoptotic cells in MCF-7 and MDA-MB-231 cells and arrested the cell cycle in the G1/S phase in MCF-7 and G0/G1 phase in MDA-MB-231 cells. Noni extract also decreases the intracellular ROS generation and mitochondrial membrane potential. © Georg Thieme Verlag KG Stuttgart · New York.
Ferrari, Daniela; Zalfa, Cristina; Nodari, Laura Rota; Gelati, Maurizio; Carlessi, Luigi; Delia, Domenico; Vescovi, Angelo Luigi; De Filippis, Lidia
2012-04-01
Cell therapy is reaching the stage of phase I clinical trials for post-traumatic, post-ischemic, or neurodegenerative disorders, and the selection of the appropriate cell source is essential. In order to assess the capacity of different human neural stem cell lines (hNSC) to contribute to neural tissue regeneration and to reduce the local inflammation after an acute injury, we transplanted GMP-grade non-immortalized hNSCs and v-myc (v-IhNSC), c-myc T58A (T-IhNSC) immortalized cells into the corpus callosum of adult rats after 5 days from focal demyelination induced by lysophosphatidylcholine. At 15 days from transplantation, hNSC and T-IhNSC migrated to the lesioned area where they promoted endogenous remyelination and differentiated into mature oligodendrocytes, while the all three cell lines were able to integrate in the SVZ. Moreover, where demyelination was accompanied by an inflammatory reaction, a significant reduction of microglial cells' activation was observed. This effect correlated with a differential migratory pattern of transplanted hNSC and IhNSC, significantly enhanced in the former, thus suggesting a specific NSC-mediated immunomodulatory effect on the local inflammation. We provide evidence that, in the subacute phase of a demyelination injury, different human immortalized and non-immortalized NSC lines, all sharing homing to the stem niche, display a differential pathotropism, both through cell-autonomous and non-cell autonomous effects. Overall, these findings promote IhNSC as an inexhaustible cell source for large-scale preclinical studies and non-immortalized GMP grade hNSC lines as an efficacious, safe, and reliable therapeutic tool for future clinical applications.
LEHMANN, CHRISTIAN; JOBS, GABRIELE; THOMAS, MARKUS; BURTSCHER, HELMUT; KUBBIES, MANFRED
2012-01-01
The tumor-initiating capacity of primary human breast cancer cells is maintained in vitro by culturing these cells as spheres/aggregates. Inoculation of small cell numbers derived from these non-adherent cultures leads to rapid xenograft tumor formation in mice. Accordingly, injection of more differentiated monolayer cells derived from spheres results in significantly decelerated tumor growth. For our study, two breast cancer cell lines were generated from primary tumors and cultured as mammospheres or as their adherent counterparts. We examined the in vivo tumorigenicity of these cells by injecting serial dilutions into immunodeficient mice. Inoculation of 106 cells per mouse led to rapid tumor formation, irrespective of cell line or culture conditions. However, after injection of only 103 cells, solely sphere cells were highly tumorigenic. In vitro, we investigated differentiation markers, established breast CSC markers and conducted mRNA profiling. Cytokeratin 5 and 18 were increased in both monolayer cell types, indicating a more differentiated phenotype. All cell lines were CD24−/CD44+ and did not express CD133, CD326 or E-cadherin. ALDH1 activity was not detectable in any cell line. A verapamil-sensitive Hoechst side population was present in sphere cells, but there was no correlation with tumorigenicity in vivo. mRNA profiling did not reveal upregulation of relevant transcription factors. In vitro cell cycle kinetics and in vivo tumor doubling times displayed no difference between sphere and monolayer cultures. Our data indicate that intrinsic genetic and functional markers investigated are not indicative of the in vivo tumori-genicity of putative breast tumor-initiating cells. PMID:23042145
Moran, Sean P; Cho, Hyekyung P; Maksymetz, James; Remke, Daniel H; Hanson, Ryan M; Niswender, Colleen M; Lindsley, Craig W; Rook, Jerri M; Conn, P Jeffrey
2018-04-25
Positive allosteric modulators (PAMs) of the M 1 subtype of muscarinic acetylcholine receptor have attracted intense interest as an exciting new approach for improving the cognitive deficits in schizophrenia and Alzheimer's disease. Recent evidence suggests that the presence of intrinsic agonist activity of some M 1 PAMs may reduce efficacy and contribute to adverse effect liability. However, the M 1 PAM PF-06827443 was reported to have only weak agonist activity at human M 1 receptors but produced M 1 -dependent adverse effects. We now report that PF-06827443 is an allosteric agonist in cell lines expressing rat, dog, and human M 1 and use of inducible cell lines shows that agonist activity of PF-06827443 is dependent on receptor reserve. Furthermore, PF-06827443 is an agonist in native tissue preparations and induces behavioral convulsions in mice similar to other ago-PAMs. These findings suggest that PF-06827443 is a robust ago-PAM, independent of species, in cell lines and native systems.
Joint morphogenetic cells in the adult mammalian synovium
Roelofs, Anke J.; Zupan, Janja; Riemen, Anna H. K.; Kania, Karolina; Ansboro, Sharon; White, Nathan; Clark, Susan M.; De Bari, Cosimo
2017-01-01
The stem cells that safeguard synovial joints in adulthood are undefined. Studies on mesenchymal stromal/stem cells (MSCs) have mainly focused on bone marrow. Here we show that lineage tracing of Gdf5-expressing joint interzone cells identifies in adult mouse synovium an MSC population largely negative for the skeletal stem cell markers Nestin-GFP, Leptin receptor and Gremlin1. Following cartilage injury, Gdf5-lineage cells underpin synovial hyperplasia through proliferation, are recruited to a Nestin-GFPhigh perivascular population, and contribute to cartilage repair. The transcriptional co-factor Yap is upregulated after injury, and its conditional ablation in Gdf5-lineage cells prevents synovial lining hyperplasia and decreases contribution of Gdf5-lineage cells to cartilage repair. Cultured Gdf5-lineage cells exhibit progenitor activity for stable chondrocytes and are able to self-organize three-dimensionally to form a synovial lining-like layer. Finally, human synovial MSCs transduced with Bmp7 display morphogenetic properties by patterning a joint-like organ in vivo. Our findings further the understanding of the skeletal stem/progenitor cells in adult life. PMID:28508891
DOE Office of Scientific and Technical Information (OSTI.GOV)
Booth, Brian W., E-mail: brbooth@clemson.edu; Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC 29634; Boulanger, Corinne A.
2010-02-01
Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D {beta}-geo (CD{beta}geo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CD{beta}geo cells and that the mitogen activated protein kinase signalingmore » pathway is involved in AREG-mediated mammosphere formation. Addition of exogenous AREG promotes mammosphere formation in cells where AREG expression is knocked down by siRNA and mammosphere formation by AREG{sup -/-} mammary epithelial cells. AREG knockdown inhibits mammosphere formation by duct-limited mammary progenitor cells but not lobule-limited mammary progenitor cells. These data demonstrate AREG mediates the function of a subset of mammary progenitor cells in vitro.« less
Booth, Brian W; Boulanger, Corinne A; Anderson, Lisa H; Jimenez-Rojo, Lucia; Brisken, Cathrin; Smith, Gilbert H
2010-02-01
Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D beta-geo (CDbetageo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CDbetageo cells and that the mitogen activated protein kinase signaling pathway is involved in AREG-mediated mammosphere formation. Addition of exogenous AREG promotes mammosphere formation in cells where AREG expression is knocked down by siRNA and mammosphere formation by AREG(-/-) mammary epithelial cells. AREG knockdown inhibits mammosphere formation by duct-limited mammary progenitor cells but not lobule-limited mammary progenitor cells. These data demonstrate AREG mediates the function of a subset of mammary progenitor cells in vitro. Copyright 2009 Elsevier Inc. All rights reserved.
The sigma-2 receptor as a therapeutic target for drug delivery in triple negative breast cancer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makvandi, Mehran; Tilahun, Estifanos D.; Lieberman, Brian P.
Background: Triple-negative breast cancer (TNBC) is associated with high relapse rates and increased mortality when compared with other breast cancer subtypes. In contrast to receptor positive breast cancers, there are no approved targeted therapies for TNBC. Identifying biomarkers for TNBC is of high importance for the advancement of patient care. The sigma-2 receptor has been shown to be overexpressed in triple negative breast cancer in vivo and has been characterized as a marker of proliferation. The aim of the present study was to define the sigma-2 receptor as a target for therapeutic drug delivery and biomarker in TNBC. Methods: Three TNBCmore » cell lines were evaluated: MDA-MB-231, HCC1937 and HCC1806. Sigma-2 compounds were tested for pharmacological properties specific to the sigma-2 receptor through competitive inhibition assays. Sigma-2 receptor expression was measured through radioligand receptor saturation studies. Drug sensitivity for taxol was compared to a sigma-2 targeting compound conjugated to a cytotoxic payload, SW IV-134. Cell viability was assessed after treatments for 2 or 48 h. Sigma-2 blockade was assessed to define sigma-2 mediated cytotoxicity of SW IV-134. Caspase 3/7 activation induced by SW IV-134 was measured at corresponding treatment time points. Results: SW IV-134 was the most potent compound tested in two of the three cell lines and was similarly effective in all three. MDA-MB-231 displayed a statistically significant higher sigma-2 receptor expression and also was the most sensitive cell line evaluated to SW IV-134. Conclusion: Targeting the sigma-2 receptor with a cytotoxic payload was effective in all the three cell lines evaluated and provides the proof of concept for future development of a therapeutic platform for the treatment of TNBC. - Highlights: • TNBC cells are sensitive to sigma-2 receptor targeted drug conjugate SW IV-134. • MDA-MB-231 displayed the highest amount of sigma-2 receptors and corresponded well with sensitivity. • The sigma-2 receptor is a potential biomarker in TNBC for prognosis and therapy.« less
Grecco, Simone dos S; Martins, Euder Glendes A; Girola, Natália; de Figueiredo, Carlos R; Matsuo, Alisson L; Soares, Marisi G; Bertoldo, Bruno de C; Sartorelli, Patricia; Lago, João Henrique G
2015-01-01
Nectandra (Lauraceae) species have been used in folk medicine as an antidiarrheal, analgesic, antifungal, etc., and have many pharmacological proprieties. Investigation of the chemical composition and cytotoxicity of essential oil from Nectandra leucantha Nees & Mart. leaves. This is the first study involving N. leucantha reported in the literature. The essential oil of N. leucantha leaves was obtained by hydrodistillation. Its chemical composition was determined using a combination of GC/FID, GC/MS, and determination of Kovats index (KI). In vitro cytotoxic activity was evaluated against six cancer cell lines - murine melanoma (B16F10-Nex2), human glioblastome (U-87), human cervical carcinoma (HeLa), human colon carcinoma (HCT), human breast adenocarcinoma (MCF7), and human cervical tumor (Siha) as well as against one non-tumorigenic cell line - human foreskin fibroblast (HFF). Thirty-three compounds were identified primarily sesquiterpenes (81.41%), the main compounds being bicyclogermacrene (28.44%), germacrene A (7.34%), spathulenol (5.82%), and globulol (5.25%). Furthermore, monoterpenes were also found in the analyzed oil (12.84%), predominantly α- and β-pinenes (6.59 and 4.57%, respectively). The crude essential oil displayed significant cytotoxic activity against B16F10-Nex2 (IC50 33 ± 1 μg/mL) and U87 (IC50 75.95 ± 0.03 μg/mL) and HeLa (IC50 60 ± 12 μg/mL) cell lines. The main identified compound, bicyclogermacrene, displayed IC50 ranging from 3.1 ± 0.2 to 21 ± 6 μg/mL. The results indicate that the crude oils from leaves of N. leucantha displayed cytotoxic activity being bicyclogermacrene, the main compound identified in the crude oil responsible, at least in part, for this potential.
Wang, Lei; Huang, Xing; Zheng, Xinmin; Wang, Xinghuan; Li, Shiwen; Zhang, Lin; Yang, Zhonghua; Xia, Zhiping
2013-01-01
The discovery of rare subpopulations of cancer stem cells (CSCs) has created a new focus in cancer research. As CSCs demonstrate resistance to chemoradiation therapy relative to other cancer cells, this allows the enrichment of CSC populations by killing apoptosis-susceptible cancer cells. In this study, three commonly used human prostate cancer (PCa) cell lines (DU145, PC-3 and LNCaP) were examined for their expression of the putative stem cell markers CD133 and CD44 via flow cytometric analysis. Under normal culture conditions, CD133(+)/CD44(+) cells were only present in the DU145 cell line, and comprised only a minor percentage (0.1% ± 0.01%) of the total population. However, the proportion of these CD133(+)/CD44(+) prostate CSCs could be increased in these cell lines via culture in serum-free medium (SFM), or through chemotherapy or radiotherapy. Indeed, after culture in SFM, the proportion of CD133(+)/CD44(+) cells in DU145 and PC-3 had increased to 10.3% and 3.0%, respectively. Moreover, the proportion had increased to 9.8% enriched by chemotherapy and 3.5% by radiotherapy in DU145. Colony-formation tests, cell invasion assays, and tumor xenografts in BALB/c nude mice were used to evaluate the stem cell properties of CD133(+)/CD44(+) PCa cells that were isolated via fluorescence-activated cell sorting (FACS). CD133(+)/CD44(+) cells had an enhanced colony-formation capability and invasive ability in vitro, and displayed greater tumorigenic properties in vivo. These results demonstrate the presence of CD133(+)/CD44(+) prostate CSCs in established PCa cell lines and that populations of these cells can be enriched by culture in SFM or chemoradiotherapy. Finding novel therapies to override chemoradiation resistance in the prostate CSCs is the key to improve long-term results in PCa management.
Abd Aziz, Maheran; Stanslas, Johnson; Abdul Kadir, Mihdzar
2013-01-01
The present paper focused on antioxidant and cytotoxicity assessment of crude and total saponin fraction of Chlorophytum borivilianum as an important medicinal plant. In this study, three different antioxidant activities (2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), ferrous ion chelating (FIC), and β-carotene bleaching (BCB) activity) of crude extract and total saponin fraction of C. borivilianum tubers were performed. Crude extract was found to possess higher free radical scavenging activity (ascorbic acid equivalents 2578 ± 111 mg AA/100 g) and bleaching activity (IC50 = 0.7 mg mL−1), while total saponin fraction displayed higher ferrous ion chelating (EC50 = 1 mg mL−1). Cytotoxicity evaluation of crude extract and total saponin fraction against MCF-7, PC3, and HCT-116 cancer cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) cell viability assay indicated a higher cytotoxicity activity of the crude extract than the total saponin fraction on all cell lines, being most effective and selective on MCF-7 human breast cancer cell line. PMID:24223502
Hehnly, Heidi; Canton, David; Bucko, Paula; Langeberg, Lorene K; Ogier, Leah; Gelman, Irwin; Santana, L Fernando; Wordeman, Linda; Scott, John D
2015-01-01
Correct orientation of the mitotic spindle in stem cells underlies organogenesis. Spindle abnormalities correlate with cancer progression in germ line-derived tumors. We discover a macromolecular complex between the scaffolding protein Gravin/AKAP12 and the mitotic kinases, Aurora A and Plk1, that is down regulated in human seminoma. Depletion of Gravin correlates with an increased mitotic index and disorganization of seminiferous tubules. Biochemical, super-resolution imaging, and enzymology approaches establish that this Gravin scaffold accumulates at the mother spindle pole during metaphase. Manipulating elements of the Gravin-Aurora A-Plk1 axis prompts mitotic delay and prevents appropriate assembly of astral microtubules to promote spindle misorientation. These pathological responses are conserved in seminiferous tubules from Gravin−/− mice where an overabundance of Oct3/4 positive germ line stem cells displays randomized orientation of mitotic spindles. Thus, we propose that Gravin-mediated recruitment of Aurora A and Plk1 to the mother (oldest) spindle pole contributes to the fidelity of symmetric cell division. DOI: http://dx.doi.org/10.7554/eLife.09384.001 PMID:26406118
Synthesis and mechanistic studies of curcumin analog-based oximes as potential anticancer agents.
Qin, Hua-Li; Leng, Jing; Youssif, Bahaa G M; Amjad, Muhammad Wahab; Raja, Maria Abdul Ghafoor; Hussain, Muhammad Ajaz; Hussain, Zahid; Kazmi, Syeda Naveed; Bukhari, Syed Nasir Abbas
2017-09-01
The incidence of cancer can be decreased by chemoprevention using either natural or synthetic agents. Apart from synthetic compounds, numerous natural products have exhibited promising potential to inhibit carcinogenesis in vivo. In this study, α, β-unsaturated carbonyl-based anticancer compounds were used as starting materials to synthesize new oxime analogs. The findings from the antiproliferative assay using seven different human cancer cell lines provided a clear picture of structure-activity relationship. The oxime analogs namely 7a and 8a showed strong antiproliferative activity against the cell lines. The mechanistic effects of compounds on EGFR-TK kinases and tubulin polymerization and BRAF V 600E were investigated. In addition, the efficacy of compounds in reversing the efflux-mediated resistance developed by cancer cells was also studied. The compounds 5a and 6a displayed potent activity on various targets such as BRAF V 600E and EGFR-TK kinases and also exhibited strong antiproliferative activity against different cell lines hence showing potential of multifunctional anticancer agents. © 2017 John Wiley & Sons A/S.
Burger, Trevor; Mokoka, Tsholofelo; Fouché, Gerda; Steenkamp, Paul; Steenkamp, Vanessa; Cordier, Werner
2018-05-02
Solanum aculeastrum fruits are used by some cancer sufferers as a form of alternative treatment. Scientific literature is scarce concerning its anticancer activity, and thus the aim of the study was to assess the in vitro anticancer and P-glycoprotein inhibitory potential of extracts of S. aculeastrum fruits. Furthermore, assessment of the combinational effect with doxorubicin was also done. The crude extract was prepared by ultrasonic maceration. Liquid-liquid extraction yielded one aqueous and two organic fractions. Bioactive constituents were isolated from the aqueous fraction by means of column chromatography, solid phase extraction and preparative thin-layer chromatography. Confirmation of bioactive constituent identity was done by nuclear magnetic resonance and ultra-performance liquid chromatography mass spectrometry. The crude extract and fractions were assessed for cytotoxicity and P-glycoprotein inhibition in both cancerous and non-cancerous cell lines using the sulforhodamine B and rhodamine-123 assays, respectively. Both the crude extract and aqueous fraction was cytotoxic to all cell lines, with the SH-SY5Y neuroblastoma cell line being most susceptible to exposure (IC 50 = 10.72 μg/mL [crude], 17.21 μg/mL [aqueous]). Dose-dependent P-glycoprotein inhibition was observed for the crude extract (5.9 to 18.9-fold at 100 μg/mL) and aqueous fraction (2.9 to 21.2 at 100 μg/mL). The steroidal alkaloids solamargine and solanine were identified. While solanine was not bioactive, solamargine displayed an IC 50 of 15.62 μg/mL, and 9.1-fold P-glycoprotein inhibition at 100 μg/mL against the SH-SY5Y cell line. Additive effects were noted for combinations of doxorubicin against the SH-SY5Y cell line. The crude extract and aqueous fraction displayed potent non-selective cytotoxicity and noteworthy P-glycoprotein inhibition. These effects were attributed to solamargine. P-glycoprotein inhibitory activity was only present at concentrations higher than those inducing cytotoxicity, and thus does not appear to be the likely mechanism for the enhancement of doxorubicin's cytotoxicity. Preliminary results suggest that non-selective cytotoxicity may hinder drug development, however, further assessment of the mode of cell death is necessary to determine the route forward.
Cytotoxic arylnaphthalene lignans from a Vietnamese acanthaceae, Justicia patentiflora.
Susplugas, Sophie; Hung, Nguyen Van; Bignon, Jérôme; Thoison, Odile; Kruczynski, Anna; Sévenet, Thierry; Guéritte, Françoise
2005-05-01
One new norlignan (1) and five new lignans (2-6) were isolated from the leaves and stems of Justicia patentiflora by a bioassay-guided purification. Five known compounds, carinatone, diphyllin, justicidin A, taiwanin E, and tuberculatin, were also found in J. patentiflora. Most of the new compounds display significant activity in in vitro cytotoxic assays against KB, HCT116, and MCF-7 cancer cell lines and arrest the cell cycle in the G0/G1 phase.
Navari, Mohsen; Zare, Mehrak; Javanmardi, Masoud; Asadi-Ghalehni, Majid; Modjtahedi, Helmout; Rasaee, Mohammad Javed
2014-10-01
One of the proposed approaches in cancer therapy is to induce and direct the patient's own immune system against cancer cells. In this study, we determined the epitope mapping of the rat anti-human epidermal growth factor receptor (EGFR) monoclonal antibody ICR-62 using a phage display of random peptide library and identified a 12 amino acids peptide, which was recognized as a mimotope. The peptide was synthesized and conjugated to bovine serum albumin (BSA) as carrier protein (P-BSA). We have shown that ICR-62 can react specifically with P-BSA as well as native EGFR. Two rabbits were immunized either by BSA or P-BSA and the rabbits IgGs were purified and examined for binding to the antigens, mimotope and the EGFR protein purified from the EGFR overexpressing A431 cell line. We showed that the rabbit IgG generated against the mimotope is capable of inhibiting the growth of A431 cells by 15%, but does not have any effect on the growth of EGFR-negative MDA-MB-453 cell line in vitro. Our results support the need for further investigations on the potential of vaccination with either mimotope of the EGFR or epitope displayed on the surface of phage particles for use in active immunotherapy of cancer.
Tai, Huanhuan; Lu, Xin; Opitz, Nina; Marcon, Caroline; Paschold, Anja; Lithio, Andrew; Nettleton, Dan; Hochholdinger, Frank
2016-02-01
Maize develops a complex root system composed of embryonic and post-embryonic roots. Spatio-temporal differences in the formation of these root types imply specific functions during maize development. A comparative transcriptomic study of embryonic primary and seminal, and post-embryonic crown roots of the maize inbred line B73 by RNA sequencing along with anatomical studies were conducted early in development. Seminal roots displayed unique anatomical features, whereas the organization of primary and crown roots was similar. For instance, seminal roots displayed fewer cortical cell files and their stele contained more meta-xylem vessels. Global expression profiling revealed diverse patterns of gene activity across all root types and highlighted the unique transcriptome of seminal roots. While functions in cell remodeling and cell wall formation were prominent in primary and crown roots, stress-related genes and transcriptional regulators were over-represented in seminal roots, suggesting functional specialization of the different root types. Dynamic expression of lignin biosynthesis genes and histochemical staining suggested diversification of cell wall lignification among the three root types. Our findings highlight a cost-efficient anatomical structure and a unique expression profile of seminal roots of the maize inbred line B73 different from primary and crown roots. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
2012-01-01
Background Enhancement of tumor cell sensitivity may help facilitate a reduction in drug dosage using conventional chemotherapies. Consequently, it is worthwhile to search for adjuvants with the potential of increasing chemotherapeutic drug effectiveness and improving patient quality of life. Natural products are a very good source of such adjuvants. Methods The biological activity of a fraction enriched in hydrolysable polyphenols (P2Et) obtained from Caesalpinia spinosa was evaluated using the hematopoietic cell line K562. This fraction was tested alone or in combination with the conventional chemotherapeutic drugs doxorubicin, vincristine, etoposide, camptothecin and taxol. The parameters evaluated were mitochondrial depolarization, caspase 3 activation, chromatin condensation and clonogenic activity. Results We found that the P2Et fraction induced mitochondrial depolarization, activated caspase 3, induced chromatin condensation and decreased the clonogenic capacity of the K562 cell line. When the P2Et fraction was used in combination with chemotherapeutic drugs at sub-lethal concentrations, a fourfold reduction in doxorubicin inhibitory concentration 50 (IC50) was seen in the K562 cell line. This finding suggested that P2Et fraction activity is specific for the molecular target of doxorubicin. Conclusions Our results suggest that a natural fraction extracted from Caesalpinia spinosa in combination with conventional chemotherapy in combination with natural products on leukemia cells may increase therapeutic effectiveness in relation to leukemia. PMID:22490328
Cytotoxicity of lapachol metabolites produced by probiotics.
Oliveira Silva, E; Cruz de Carvalho, T; Parshikov, I A; Alves dos Santos, R; Silva Emery, F; Jacometti Cardoso Furtado, N A
2014-07-01
Probiotics are currently added to a variety of functional foods to provide health benefits to the host and are commonly used by patients with gastrointestinal complaints or diseases. The therapeutic effects of lapachol continue to inspire studies to obtain derivatives with improved bioactivity and lower unwanted effects. Therefore, the general goal of this study was to show that probiotics are able to convert lapachol and are important to assess the effects of bacterial metabolism on drug performance and toxicity. The microbial transformations of lapachol were carried out by Bifidobacterium sp. and Lactobacillus acidophilus and different metabolites were produced in mixed and isolated cultures. The cytotoxic activities against breast cancer and normal fibroblast cell lines of the isolated metabolites (4α-hydroxy-2,2-dimethyl-5-oxo-2,3,4,4α,5,9β-hexahydroindeno[1,2-β]pyran-9β-carboxilic acid, a new metabolite produced by mixed culture and dehydro-α-lapachone produced by isolated cultures) were assessed and compared with those of lapachol. The new metabolite displayed a lower activity against a breast cancer cell line (IC50 = 532.7 μmol l(-1) ) than lapachol (IC50 = 72.3 μmol l(-1) ), while dehydro-α-lapachone (IC50 = 10.4 μmol l(-1) ) displayed a higher activity than lapachol. The present study is the first to demonstrate that probiotics are capable of converting lapachol into the most effective cytotoxic compound against a breast cancer cell line. Probiotics have been used in dairy products to promote human health and have the ability to metabolize drugs and other xenobiotics. Naphthoquinones, such as lapachol, are considered privileged scaffolds due to their high propensity to interact with biological targets. The present study is the first to demonstrate that probiotics are capable of converting lapachol into the most effective cytotoxic compound against a breast cancer cell line. The developed approach highlights the importance of probiotics to assess the effects of bacterial metabolism on drug performance and toxicity. © 2014 The Society for Applied Microbiology.
Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets
Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland
2014-01-01
Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms. PMID:24903657
Dynamic equilibrium of heterogeneous and interconvertible multipotent hematopoietic cell subsets.
Weston, Wendy; Zayas, Jennifer; Perez, Ruben; George, John; Jurecic, Roland
2014-06-06
Populations of hematopoietic stem cells and progenitors are quite heterogeneous and consist of multiple cell subsets with distinct phenotypic and functional characteristics. Some of these subsets also appear to be interconvertible and oscillate between functionally distinct states. The multipotent hematopoietic cell line EML has emerged as a unique model to study the heterogeneity and interconvertibility of multipotent hematopoietic cells. Here we describe extensive phenotypic and functional heterogeneity of EML cells which stems from the coexistence of multiple cell subsets. Each of these subsets is phenotypically and functionally heterogeneous, and displays distinct multilineage differentiation potential, cell cycle profile, proliferation kinetics, and expression pattern of HSC markers and some of the key lineage-associated transcription factors. Analysis of their maintenance revealed that on a population level all EML cell subsets exhibit cell-autonomous interconvertible properties, with the capacity to generate all other subsets and re-establish complete parental EML cell population. Moreover, all EML cell subsets generated during multiple cell generations maintain their distinct phenotypic and functional signatures and interconvertible properties. The model of EML cell line suggests that interconvertible multipotent hematopoietic cell subsets coexist in a homeostatically maintained dynamic equilibrium which is regulated by currently unknown cell-intrinsic mechanisms.
Cytotoxicity of bacterial-derived toxins to immortal lung epithelial and macrophage cells.
Peterson, Dianne E; Collier, Jayne M; Katterman, Matthew E; Turner, Rachael A; Riley, Mark R
2010-03-01
Health risks associated with inhalation and deposition of biological materials have been a topic of great concern due to highly publicized cases of inhalation anthrax, of new regulations on the release of particulate matter, and to increased concerns on the hazards of indoor air pollution. Here, we present an evaluation of the sensitivity of two immortal cell lines (A549, human lung carcinoma epithelia) and NR8383 (rat alveolar macrophages) to a variety of bacterial-derived inhalation hazards and simulants including etoposide, gliotoxin, streptolysin O, and warfarin. The cell response is evaluated through quantification of changes in mitochondrial succinate dehydrogenase activity, release of lactate dehydrogenase, initiation of apoptosis, and through changes in morphology as determined by visible light microscopy and scanning electron microscopy. These cells display dose-response relations to each toxin, except for triton which has a step change response. The first observable responses of the epithelial cells to these compounds are changes in metabolism for one toxin (warfarin) and alterations in membrane permeability for another (gliotoxin). The other four toxins display a similar time course in response as gauged by changes in metabolism and loss of membrane integrity. Macrophages are more sensitive to most toxins; however, they display a lower level of stability. This information can be used in the design of cell-based sensors responding to these and similar hazards.
Cellular uptake and anticancer activity of carboxylated gallium corroles.
Pribisko, Melanie; Palmer, Joshua; Grubbs, Robert H; Gray, Harry B; Termini, John; Lim, Punnajit
2016-04-19
We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50values (<20 µM) relative to previous analogs against all four cancer cell lines, displayed high efficacy (Emax= 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 > 3 > 2 > 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging.
Cellular uptake and anticancer activity of carboxylated gallium corroles
Pribisko, Melanie; Palmer, Joshua; Grubbs, Robert H.; Gray, Harry B.; Termini, John; Lim, Punnajit
2016-01-01
We report derivatives of gallium(III) tris(pentafluorophenyl)corrole, 1 [Ga(tpfc)], with either sulfonic (2) or carboxylic acids (3, 4) as macrocyclic ring substituents: the aminocaproate derivative, 3 [Ga(ACtpfc)], demonstrated high cytotoxic activity against all NCI60 cell lines derived from nine tumor types and confirmed very high toxicity against melanoma cells, specifically the LOX IMVI and SK-MEL-28 cell lines. The toxicities of 1, 2, 3, and 4 [Ga(3-ctpfc)] toward prostate (DU-145), melanoma (SK-MEL-28), breast (MDA-MB-231), and ovarian (OVCAR-3) cancer cells revealed a dependence on the ring substituent: IC50 values ranged from 4.8 to >200 µM; and they correlated with the rates of uptake, extent of intracellular accumulation, and lipophilicity. Carboxylated corroles 3 and 4, which exhibited about 10-fold lower IC50 values (<20 µM) relative to previous analogs against all four cancer cell lines, displayed high efficacy (Emax = 0). Confocal fluorescence imaging revealed facile uptake of functionalized gallium corroles by all human cancer cells that followed the order: 4 >> 3 > 2 >> 1 (intracellular accumulation of gallium corroles was fastest in melanoma cells). We conclude that carboxylated gallium corroles are promising chemotherapeutics with the advantage that they also can be used for tumor imaging. PMID:27044076
Human CD4 T cell epitopes selective for Vaccinia versus Variola virus.
Probst, Alicia; Besse, Aurore; Favry, Emmanuel; Imbert, Gilles; Tanchou, Valérie; Castelli, Florence Anne; Maillere, Bernard
2013-04-01
Due to the high degree of sequence identity between Orthopoxvirus species, the specific B and T cell responses raised against these viruses are largely cross-reactive and poorly selective. We therefore searched for CD4 T cell epitopes present in the conserved parts of the Vaccinia genome (VACV) but absent from Variola viruses (VARV), with a view to identifying immunogenic sequences selective for VACV. We identified three long peptide fragments from the B7R, B10R and E7R proteins by in silico comparisons of the poxvirus genomes, and evaluated the recognition of these fragments by VACV-specific T cell lines derived from healthy donors. For the 12 CD4 T cell epitopes identified, we assessed their binding to common HLA-DR allotypes and their capacity to induce peptide-specific CD4 T-cell lines. Four peptides from B7R and B10R displayed a broad binding specificity for HLA-DR molecules and induced multiple T cell lines from healthy donors. Besides their absence from VARV, the two B10R peptide sequences were mutated in the Cowpox virus and completely absent from the Monkeypox genome. This work contributes to the development of differential diagnosis of poxvirus infections. Copyright © 2012 Elsevier Ltd. All rights reserved.
Kumar, Bhupinder; Sharma, Praveen; Gupta, Vivek Prakash; Khullar, Madhu; Singh, Sandeep; Dogra, Nilambra; Kumar, Vinod
2018-08-01
A number of pyrimidine bridged combretastatin derivatives were designed, synthesized and evaluated for anticancer activities against breast cancer (MCF-7) and lung cancer (A549) cell lines using MTT assays. Most of the synthesized compounds displayed good anticancer activity with IC 50 values in low micro-molar range. Compounds 4a and 4p were found most potent in the series with IC 50 values of 4.67 µM & 3.38 µM and 4.63 µM & 3.71 µM against MCF7 and A549 cancer cell lines, respectively. Biological evaluation of these compounds showed that selective cancer cell toxicity (in vitro using human lung and breast cancer cell lines) might be due to the inhibition of antioxidant enzymes instigating elevated ROS levels which triggers intrinsic apoptotic pathways. These compounds were found nontoxic to the normal human primary cells. Compound 4a, was found to be competitive inhibitor of colchicine and in the tubulin binding assay it showed tubulin polymerization inhibition potential comparable to colchicine. The molecular modeling studies also showed that the synthesized compounds fit well in the colchicine-binding pocket. Copyright © 2018 Elsevier Inc. All rights reserved.
Highly Efficient Genome Editing via CRISPR/Cas9 to Create Clock Gene Knockout Cells.
Korge, Sandra; Grudziecki, Astrid; Kramer, Achim
2015-10-01
Targeted genome editing using CRISPR/Cas9 is a relatively new, revolutionary technology allowing for efficient and directed alterations of the genome. It has been widely used for loss-of-function studies in animals and cell lines but has not yet been used to study circadian rhythms. Here, we describe the application of CRISPR/Cas9 genome editing for the generation of an F-box and leucine-rich repeat protein 3 (Fbxl3) knockout in a human cell line. Genomic alterations at the Fbxl3 locus occurred with very high efficiency (70%-100%) and specificity at both alleles, resulting in insertions and deletions that led to premature stop codons and hence FBXL3 knockout. Fbxl3 knockout cells displayed low amplitude and long period oscillations of Bmal1-luciferase reporter activity as well as increased CRY1 protein stability in line with previously published phenotypes for Fbxl3 knockout in mice. Thus, CRISPR/Cas9 genome editing should be highly valuable for studying circadian rhythms not only in human cells but also in classic model systems as well as nonmodel organisms. © 2015 The Author(s).
Bcl-2/Bax protein ratio predicts 5-fluorouracil sensitivity independently of p53 status
Mirjolet, J-F; Barberi-Heyob, M; Didelot, C; Peyrat, J-P; Abecassis, J; Millon, R; Merlin, J-L
2000-01-01
p53 tumour-suppressor gene is involved in cell growth control, arrest and apoptosis. Nevertheless cell cycle arrest and apoptosis induction can be observed in p53-defective cells after exposure to DNA-damaging agents such as 5-fluorouracil (5-FU) suggesting the importance of alternative pathways via p53-independent mechanisms. In order to establish relationship between p53 status, cell cycle arrest, Bcl-2/Bax regulation and 5-FU sensitivity, we examined p53 mRNA and protein expression and p53 protein functionality in wild-type (wt) and mutant (mt) p53 cell lines. p53 mRNA and p53 protein expression were determined before and after exposure to equitoxic 5-FU concentration in six human carcinoma cell lines differing in p53 status and displaying marked differences in 5-FU sensitivity, with IC 50 values ranging from 0.2–22.6 mM. 5-FU induced a rise in p53 mRNA expression in mt p53 cell lines and in human papilloma virus positive wt p53 cell line, whereas significant decrease in p53 mRNA expression was found in wt p53 cell line. Whatever p53 status, 5-FU altered p53 transcriptional and translational regulation leading to up-regulation of p53 protein. In relation with p53 functionality, but independently of p53 mutational status, after exposure to 5-FU equitoxic concentration, all cell lines were able to arrest in G1. No relationship was evidenced between G1 accumulation ability and 5-FU sensitivity. Moreover, after 5-FU exposure, Bax and Bcl-2 proteins regulation was under p53 protein control and a statistically significant relationship (r= 0.880,P= 0.0097) was observed between Bcl-2/Bax ratio and 5-FU sensitivity. In conclusion, whatever p53 status, Bcl-2 or Bax induction and Bcl-2/Bax protein ratio were correlated to 5-FU sensitivity. © 2000 Cancer Research Campaign PMID:11044365
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaffer, L.G.; Kennedy, G.M.; Spikes, A.S.
1997-03-31
Charcot-Marie-Tooth (CMT) disease type 1A is an inherited peripheral neuropathy characterized by slowly progressive distal muscle wasting and weakness, decreased nerve conduction velocities, and genetic linkage to 17p12. Most (>98%) CMT1A cases are caused by a DNA duplication of a 1.5-Mb region in 17p12 containing the PMP22 gene. The reciprocal product of the CMT1A duplication is a 1.5-Mb deletion which causes hereditary neuropathy with liability to pressure palsies (HNPP). The most informative current diagnostic testing requires pulsed-field gel electrophoresis to detect DNA rearrangement-specific junction fragments. We investigated the use of interphase FISH for the detection of duplications and deletions formore » these disorders in the clinical molecular cytogenetics laboratory. Established cell lines or blood specimens from 23 individuals with known molecular diagnoses and 10 controls were obtained and scored using a two-color FISH assay. At least 70%, of CMT1A cells displayed three signals consistent with duplications. Using this minimum expected percentile to make a CMT1A duplication diagnosis, all patients with CMT1A showed a range of 71-92% of cells displaying at least three signals. Of the HNPP cases, 88% of cells displayed only one hybridization signal, consistent with deletions. The PMP22 locus from normal control individuals displayed a duplication pattern in {approximately}9% of cells, interpreted as replication of this locus. The percentage of cells showing replication was significantly lower than in those cells displaying true duplications. We conclude that FISH can be reliably used to diagnose CMT1A and HNPP in the clinical cytogenetics laboratory and to readily distinguish the DNA rearrangements associated with these disorders from individuals without duplication or deletion of the PMP22 locus. 43 refs., 4 figs., 2 tabs.« less
Genomic localization of the Z/EG transgene in the mouse genome.
Colombo, Sophie; Kumasaka, Mayuko; Lobe, Corrinne; Larue, Lionel
2010-02-01
The Z/EG transgenic mouse line, produced by Novak et al., displays tissue-specific EGFP expression after Cre-mediated recombination. The autofluorescence of EGFP allows the visualization of cells of interest displaying Cre recombination. The initial construct was designed such that cells without Cre recombination express the beta-galactosidase marker, facilitating counterselection. We used inverse PCR to identify the site of integration of the Z/EG transgene, to improve the efficiency of homozygous Z/EG mouse production. Recombined cells produced large amounts of EGFP protein, resulting in higher levels of fluorescence and therefore greater contrast with nonrecombined cells. We mapped the transgene to the G1 region of chromosome 5. This random insertion was found to have occurred 230-bp upstream from the start codon of the Rasa4 gene. The insertion of the Z/EG transgene in the C57BL/6 genetic background had no effect on Rasa4 expression. Homozygous Z/EG mice therefore had no obvious phenotype. (c) 2009 Wiley-Liss, Inc.
Xu, Qi-Bing; Chen, Xiang-Fan; Feng, Jiao; Miao, Jie-Fei; Liu, Ji; Liu, Feng-Tao; Niu, Bi-Xi; Cai, Jin-Yang; Huang, Chao; Zhang, Yanan; Ling, Yong
2016-01-01
A novel series of hybrids (7a-l, 8a-l) from β-carboline and salicylic acid (SA) were designed and synthesized, and their in vitro biological activities were evaluated. Most of the hybrids displayed potent antiproliferative activity against five cancer cell lines in vitro, showing potencies superior to 5-FU and harmine. In particular, compound 8h selectively inhibited proliferation of liver cancer SMMC-7721 cells but not normal liver LO2 cells, and displayed greater inhibitory selectivity than intermediate 5h and SA. 8h also induced cancer cell apoptosis in an Annexin V-FITC/propidium iodide flow cytometry assay, and triggered the mitochondrial/caspase apoptosis by decreasing mitochondrial membrane potential which was associated with up-regulation of Bax, down-regulation of Bcl-2 and activation levels of the caspase cascade in a concentration-dependent manner. Our findings suggest that the β-carboline/SA hybrids may hold greater promise as therapeutic agents for the intervention of human cancers. PMID:27824091
Guo, Zhi-Yong; Li, Ping; Huang, Wen; Wang, Jian-Jun; Liu, Yu-Jing; Liu, Bo; Wang, Ye-Ling; Wu, Shi-Biao; Kennelly, Edward J; Long, Chun-Lin
2014-10-01
Eight compounds including four caffeoyl phenylpropanoid glycosides, jasnervosides A-D (1-4), one monoterpenoid glycoside, jasnervoside E (5), and three secoiridoid glycosides, jasnervosides F-H (10-12), were isolated from the stems of Jasminum nervosum Lour. (Oleaceae), along with four known compounds, poliumoside (6), verbascoside (7), α-l-rhamnopyranosyl-(1→3)-O-(α-l-rhamnopyranosyl(1→6)-1-O-E-caffeoyl-β-d-glucopyranoside (8), and jaspolyanthoside (9). Their structures were elucidated on the basis of their physicochemical and spectroscopic properties. Compounds 1, 2, 4 and 11 displayed potent antioxidant activities in the DPPH assay, while 2 and 3 displayed good activities against LPS-induced TNF-α and IL-1β production in BV2 cells. Compounds 1-5 and 10-12 were evaluated for their cytotoxic activities against three human cancer cell lines (A-549, Bel-7402, and HCT-8), but none displayed significant activity. Copyright © 2014 Elsevier Ltd. All rights reserved.
Engineering the substrate specificity of the DhbE adenylation domain by yeast cell surface display.
Zhang, Keya; Nelson, Kathryn M; Bhuripanyo, Karan; Grimes, Kimberly D; Zhao, Bo; Aldrich, Courtney C; Yin, Jun
2013-01-24
The adenylation (A) domains of nonribosomal peptide synthetases (NRPSs) activate aryl acids or amino acids to launch their transfer through the NRPS assembly line for the biosynthesis of many medicinally important natural products. In order to expand the substrate pool of NRPSs, we developed a method based on yeast cell surface display to engineer the substrate specificities of the A-domains. We acquired A-domain mutants of DhbE that have 11- and 6-fold increases in k(cat)/K(m) with nonnative substrates 3-hydroxybenzoic acid and 2-aminobenzoic acid, respectively and corresponding 3- and 33-fold decreases in k(cat)/K(m) values with the native substrate 2,3-dihydroxybenzoic acid, resulting in a dramatic switch in substrate specificity of up to 200-fold. Our study demonstrates that yeast display can be used as a high throughput selection platform to reprogram the "nonribosomal code" of A-domains. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bale, Shridhar; Martiné, Alexandra; Wilson, Richard; Behrens, Anna-Janina; Le Fourn, Valérie; de Val, Natalia; Sharma, Shailendra K.; Tran, Karen; Torres, Jonathan L.; Girod, Pierre-Alain; Ward, Andrew B.; Crispin, Max; Wyatt, Richard T.
2018-01-01
Native flexibly linked (NFL) HIV-1 envelope glycoprotein (Env) trimers are cleavage-independent and display a native-like, well-folded conformation that preferentially displays broadly neutralizing determinants. The NFL platform simplifies large-scale production of Env by eliminating the need to co-transfect the precursor-cleaving protease, furin that is required by the cleavage-dependent SOSIP trimers. Here, we report the development of a CHO-M cell line that expressed BG505 NFL trimers at a high level of homogeneity and yields of ~1.8 g/l. BG505 NFL trimers purified by single-step lectin-affinity chromatography displayed a native-like closed structure, efficient recognition by trimer-preferring bNAbs, no recognition by non-neutralizing CD4 binding site-directed and V3-directed antibodies, long-term stability, and proper N-glycan processing. Following negative-selection, formulation in ISCOMATRIX adjuvant and inoculation into rabbits, the trimers rapidly elicited potent autologous tier 2 neutralizing antibodies. These antibodies targeted the N-glycan “hole” naturally present on the BG505 Env proximal to residues at positions 230, 241, and 289. The BG505 NFL trimers that did not expose V3 in vitro, elicited low-to-no tier 1 virus neutralization in vivo, indicating that they remained intact during the immunization process, not exposing V3. In addition, BG505 NFL and BG505 SOSIP trimers expressed from 293F cells, when formulated in Adjuplex adjuvant, elicited equivalent BG505 tier 2 autologous neutralizing titers. These titers were lower in potency when compared to the titers elicited by CHO-M cell derived trimers. In addition, increased neutralization of tier 1 viruses was detected. Taken together, these data indicate that both adjuvant and cell-type expression can affect the elicitation of tier 2 and tier 1 neutralizing responses in vivo.
NASA Astrophysics Data System (ADS)
Arafath, Md. Azharul; Adam, Farook; Razali, Mohd. R.; Ahmed Hassan, Loiy E.; Ahamed, Mohamed B. Khadeer; Majid, Amin Malik S. A.
2017-02-01
A carbothioamide NSO tridentate Schiff base ligand (HL) and its square planar complexes Na[NiLOAc], Na[PdLOAc] and [PtLdmso] have been synthesized and characterized on the basis of melting point, elemental analysis, FT-IR, 1H NMR, 13C NMR, UV-Vis spectra. The structure of HL was elucidated with X-ray diffraction analysis. In the present study, the synthesized compounds were evaluated for their anticancer properties against three human cancer cell lines breast cancer (MCF-7), cervical (Hela), and colon (HCT-116). In addition, the cytotoxicity of the synthesized compounds was tested on a normal human cell line (human endothelial cell line EA.hy926). Among the tested compounds, the complex [NiLOAc] excelled in halting proliferation of the cervical and colon cancer cells with median inhibitory concentration (IC50) values of 28.33 and 34.4 μM, respectively. The complex, [PdLOAc] demonstrated selective cytotoxicity against breast cancer line MCF-7 with IC50 = 47.5 μM, while HL showed inhibitory effect against colon cancer cell line (HCT-116) with IC50 = 55.66 μM. The complex, [PtLdmso] showed mild activity against breast cancer (MCF-7) and cervical cancer (Hela) cells with IC50 = 64.44 and 68.3 μM, respectively, whereas, it displayed insignificant cytotoxicity against human endothelial cells (EA.hy926) with IC50 > 200 μM. Cancer cells treated with [NiLOAc] showed apoptotic features such as membrane blebbing and DNA condensation. Thus, the findings of the present study demonstrated that the series of metal complexes of HL could form the new lead for development of cancer chemotherapies to treat human cervical, breast and colon malignancies.
Chauhan, Vinita; Mariampillai, Anusiyanthan; Gajda, Greg B; Thansandote, Artnarong; McNamee, James P
2006-05-01
Several studies have reported that radiofrequency (RF) fields, as emitted by mobile phones, may cause changes in gene expression in cultured human cell-lines. The current study was undertaken to evaluate this possibility in two human-derived immune cell-lines. HL-60 and Mono-Mac-6 (MM6) cells were individually exposed to intermittent (5 min on, 10 min off) 1.9 GHz pulse-modulated RF fields at a average specific absorption rate (SAR) of 1 and 10 W/kg at 37 +/- 0.5 degrees C for 6 h. Concurrent negative and positive (heat-shock for 1 h at 43 degrees C) controls were conducted with each experiment. Immediately following RF field exposure (T = 6 h) and 18 h post-exposure (T = 24 h), cell pellets were collected from each of the culture dishes and analyzed for transcript levels of proto-oncogenes (c-jun, c-myc and c-fos) and the stress-related genes (heat shock proteins (HSP) HSP27 and HSP70B) by quantitative reverse transcriptase polymerase chain reaction (RT-PCR). No significant effects were observed in mRNA expression of HSP27, HSP70, c-jun, c-myc or c-fos between the sham and RF-exposed groups, in either of the two cell-lines. However, the positive (heat-shock) control group displayed a significant elevation in the expression of HSP27, HSP70, c-fos and c-jun in both cell-lines at T = 6 and 24 h, relative to the sham and negative control groups. This study found no evidence that exposure of cells to non-thermalizing levels of 1.9 GHz pulse-modulated RF fields can cause any detectable change in stress-related gene expression.
Bordignon, Annélise; Frédérich, Michel; Ledoux, Allison; Campos, Pierre-Eric; Clerc, Patricia; Hermann, Thomas; Quetin-Leclercq, Joëlle; Cieckiewicz, Ewa
2018-06-01
Due to the in vitro antiplasmodial activity of leaf extracts from Vernonia fimbrillifera Less. (Asteraceae), a bioactivity-guided fractionation was carried out. Three sesquiterpene lactones were isolated, namely 8-(4'-hydroxymethacrylate)-dehydromelitensin (1), onopordopicrin (2) and 8α-[4'-hydroxymethacryloyloxy]-4-epi-sonchucarpolide (3). Their structures were elucidated by spectroscopic methods (1D and 2D NMR and MS analyses) and by comparison with published data. The isolated compounds exhibited antiplasmodial activity with IC 50 values ≤ 5 μg/mL. Cytotoxicity of the compounds against a human cancer cell line (HeLa) and a mouse lung epithelial cell line (MLE12) was assessed to determine selectivity. Compound 3 displayed promising selective antiplasmodial activity (SI > 10).
Xue, Fei; Ma, Yinghong; Chen, Y. Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang
2012-01-01
Abstract The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs. PMID:22775411
Fluorescent Probes of the Apoptolidins and their Utility in Cellular Localization Studies
DeGuire, Sean M.; Earl, David C.; Du, Yu; Crews, Brenda A.; Jacobs, Aaron T.; Ustione, Alessandro; Daniel, Cristina; Chong, Katherine; Marnett, Lawrence J.; Piston, David W.; Bachmann, Brian O.; Sulikowski, Gary A.
2014-01-01
Apoptolidin A has been described as among the top 0.1% most cell selective cytotoxic agents to be evaluated in the NCI 60 cell line panel. The molecular structure of apoptolidin A consists of a 20-membered macrolide with mono- and disaccharide moieties located at C9 and C27, respectively. In contrast to apoptolidin A, the aglycone (apoptolidinone) shows no cytotoxicity (>10 μM) when evaluated against several tumor cell lines. Apoptolidin H, the C27 deglycosylated analog of apoptolidin A, was produced by targeted glycosyl transferase gene deletion and displayed sub-micromolar activity against H292 lung carcinoma cells. Selective esterification of the C2′ hydroxyl group of apoptolidins A and H with 5-azidopentanoic acid afforded azido functionalized derivatives of potency equal to their parent macrolide. Azido apoptolidins readily underwent strain-promoted alkyne azido cycloaddition (SPAAC) reactions to provide access to fluorescent and biotin functionalized probes. Microscopy studies demonstrate apoptolidins A and H localize in the mitochondria of H292 human lung carcinoma cells. PMID:25430909
RITA displays anti-tumor activity in medulloblastomas independent of TP53 status.
Gottlieb, Aline; Althoff, Kristina; Grunewald, Laura; Thor, Theresa; Odersky, Andrea; Schulte, Marc; Deubzer, Hedwig E; Heukamp, Lukas; Eggert, Angelika; Schramm, Alexander; Schulte, Johannes H; Künkele, Annette
2017-04-25
Current therapy of medulloblastoma, the most common malignant brain tumor of childhood, achieves 40-70% survival. Secondary chemotherapy resistance contributes to treatment failure, where TP53 pathway dysfunction plays a key role. MDM2 interaction with TP53 leads to its degradation. Reactivating TP53 functionality using small-molecule inhibitors, such as RITA, to disrupt TP53-MDM2 binding may have therapeutic potential. We show here that RITA decreased viability of all 4 analyzed medulloblastoma cell lines, regardless of TP53 functional status. The decrease in cell viability was accompanied in 3 of the 4 medulloblastoma cell lines by accumulation of TP53 protein in the cells and increased CDKN1A expression. RITA treatment in mouse models inhibited medulloblastoma xenograft tumor growth. These data demonstrate that RITA treatment reduces medulloblastoma cell viability in both in vitro and in vivo models, and acts independently of cellular TP53 status, identifying RITA as a potential therapeutic agent to treat medulloblastoma.
RITA displays anti-tumor activity in medulloblastomas independent of TP53 status
Gottlieb, Aline; Althoff, Kristina; Grunewald, Laura; Thor, Theresa; Odersky, Andrea; Schulte, Marc; Deubzer, Hedwig E.; Heukamp, Lukas; Eggert, Angelika; Schramm, Alexander; Schulte, Johannes H.; Künkele, Annette
2017-01-01
Current therapy of medulloblastoma, the most common malignant brain tumor of childhood, achieves 40–70% survival. Secondary chemotherapy resistance contributes to treatment failure, where TP53 pathway dysfunction plays a key role. MDM2 interaction with TP53 leads to its degradation. Reactivating TP53 functionality using small-molecule inhibitors, such as RITA, to disrupt TP53-MDM2 binding may have therapeutic potential. We show here that RITA decreased viability of all 4 analyzed medulloblastoma cell lines, regardless of TP53 functional status. The decrease in cell viability was accompanied in 3 of the 4 medulloblastoma cell lines by accumulation of TP53 protein in the cells and increased CDKN1A expression. RITA treatment in mouse models inhibited medulloblastoma xenograft tumor growth. These data demonstrate that RITA treatment reduces medulloblastoma cell viability in both in vitro and in vivo models, and acts independently of cellular TP53 status, identifying RITA as a potential therapeutic agent to treat medulloblastoma. PMID:28427187
Secondary metabolites from marine-derived Streptomyces antibioticus strain H74-21.
Fu, Shuna; Wang, Fan; Li, Hongyu; Bao, Yixuan; Yang, Yu; Shen, Huifang; Lin, Birun; Zhou, Guangxiong
2016-11-01
A new secondary metabolite, (2S,3R)-l-threonine, N-[3-(formylamino)-2-hydroxybenzoyl]-ethyl ester (streptomyceamide C, 1), together with four known compounds 1, 4-dimethyl-3-isopropyl-2,5-piperidinedione (2), cyclo-((S)-Pro-8- hydroxy-(R)-Ile (3), cyclo-((S)-Pro-(R)-Leu (4), and seco-((S)-Pro-(R)-Val) (5), were isolated from the EtOH extract of the fermented mycelium of the marine-derived streptomycete strain H74-21, which was isolated from sea sediment in a mangrove site. The structure of the new compound was established on the basis of its spectroscopic data, including 1D and 2D NMR, HR-TOF-MS. Their antifungal activities against Candida albicans and cytotoxicities against human breast adenocarcinoma cell line MCF-7, human glioblastoma cell line SF-268 and human lung cancer cell line NCI-H460 were tested. Compounds 1 only displayed cytotoxicity against human breast adenocarcinoma cell line MCF-7 with the IC50 value of 27.0 μg/mL. However, compounds 1-5 do not show antifungal activities at the test concentration of 1 mg/mL, and 2-5 have no cytotoxicities at the test concentration of 50 μg/mL.
Oncolytic Activity of Avian Influenza Virus in Human Pancreatic Ductal Adenocarcinoma Cell Lines
Pizzuto, Matteo S.; Silic-Benussi, Micol; Pavone, Silvia; Ciminale, Vincenzo; Capua, Ilaria
2014-01-01
ABSTRACT Pancreatic ductal adenocarcinoma (PDA) is the most lethal form of human cancer, with dismal survival rates due to late-stage diagnoses and a lack of efficacious therapies. Building on the observation that avian influenza A viruses (IAVs) have a tropism for the pancreas in vivo, the present study was aimed at testing the efficacy of IAVs as oncolytic agents for killing human PDA cell lines. Receptor characterization confirmed that human PDA cell lines express the alpha-2,3- and the alpha-2,6-linked glycan receptor for avian and human IAVs, respectively. PDA cell lines were sensitive to infection by human and avian IAV isolates, which is consistent with this finding. Growth kinetic experiments showed preferential virus replication in PDA cells over that in a nontransformed pancreatic ductal cell line. Finally, at early time points posttreatment, infection with IAVs caused higher levels of apoptosis in PDA cells than gemcitabine and cisplatin, which are the cornerstone of current therapies for PDA. In the BxPC-3 PDA cell line, apoptosis resulted from the engagement of the intrinsic mitochondrial pathway. Importantly, IAVs did not induce apoptosis in nontransformed pancreatic ductal HPDE6 cells. Using a model based on the growth of a PDA cell line as a xenograft in SCID mice, we also show that a slightly pathogenic avian IAV significantly inhibited tumor growth following intratumoral injection. Taken together, these results are the first to suggest that IAVs may hold promise as future agents of oncolytic virotherapy against pancreatic ductal adenocarcinomas. IMPORTANCE Despite intensive studies aimed at designing new therapeutic approaches, PDA still retains the most dismal prognosis among human cancers. In the present study, we provide the first evidence indicating that avian IAVs of low pathogenicity display a tropism for human PDA cells, resulting in viral RNA replication and a potent induction of apoptosis in vitro and antitumor effects in vivo. These results suggest that slightly pathogenic IAVs may prove to be effective for oncolytic virotherapy of PDA and provide grounds for further studies to develop specific and targeted viruses, with the aim of testing their efficacy in clinical contexts. PMID:24899201
Ayers, Sloan; Graf, Tyler N; Adcock, Audrey F; Kroll, David J; Shen, Qi; Swanson, Steven M; Wani, Mansukh C; Darveaux, Blaise A; Pearce, Cedric J; Oberlies, Nicholas H
2011-10-05
A fungal extract (MSX 63619), from the Mycosynthetix library of over 50,000 fungi, displayed promising cytotoxicity against a human tumor cell panel. Bioactivity-directed fractionation led to the isolation of an o-pyranonaphthoquinone decaketide, which we termed obionin B (1). The structure of 1 was deduced via spectroscopic and spectrometric techniques. The IC(50) value of 1 was moderate, ranging from 3 to 13 μM, depending on the cell line tested.
Novel cell-based odorant sensor elements based on insect odorant receptors.
Mitsuno, Hidefumi; Sakurai, Takeshi; Namiki, Shigehiro; Mitsuhashi, Hiroyuki; Kanzaki, Ryohei
2015-03-15
Development of cell-based odorant sensor elements combined not only high degree of sensitivity and selectivity but also long-term stability is crucial for their practical applications. Here we report the development of a novel cell-based odorant sensor element that sensitively and selectively detects odorants and displays increased fluorescent intensities over a long period of time. Our odorant sensor elements, based on Sf21 cell lines expressing insect odorant receptors, are sensitive to the level of several tens of parts per billion in solution, can selectively distinguish between different types of odorants based on the odorant selectivity intrinsic to the expressed receptors, and have response times of approximately 13s. Specifically, with the use of Sf21 cells and insect odorant receptors, we demonstrated that the established cell lines stably expressing insect odorant receptors are able to detect odorants with consistent responsiveness for at least 2 months, thus exceeding the short life-span normally associated with cell-based sensors. We also demonstrated the development of a compact odorant sensor chip by integrating the established insect cell lines into a microfluidic chip. The methodology we established in this study, in conjunction with the large repertoire of insect odorant receptors, will aid in the development of practical cell-based odorant sensors for various applications, including food administration and health management. Copyright © 2014 Elsevier B.V. All rights reserved.
Isozaki, Hideko; Ichihara, Eiki; Takigawa, Nagio; Ohashi, Kadoaki; Ochi, Nobuaki; Yasugi, Masayuki; Ninomiya, Takashi; Yamane, Hiromichi; Hotta, Katsuyuki; Sakai, Katsuya; Matsumoto, Kunio; Hosokawa, Shinobu; Bessho, Akihiro; Sendo, Toshiaki; Tanimoto, Mitsune; Kiura, Katsuyuki
2016-03-15
Crizotinib is the standard of care for advanced non-small cell lung cancer (NSCLC) patients harboring the anaplastic lymphoma kinase (ALK) fusion gene, but resistance invariably develops. Unlike crizotinib, alectinib is a selective ALK tyrosine kinase inhibitor (TKI) with more potent antitumor effects and a favorable toxicity profile, even in crizotinib-resistant cases. However, acquired resistance to alectinib, as for other TKIs, remains a limitation of its efficacy. Therefore, we investigated the mechanisms by which human NSCLC cells acquire resistance to alectinib. We established two alectinib-resistant cell lines that did not harbor the secondary ALK mutations frequently occurring in crizotinib-resistant cells. One cell line lost the EML4-ALK fusion gene, but exhibited increased activation of insulin-like growth factor-1 receptor (IGF1R) and human epidermal growth factor receptor 3 (HER3), and overexpressed the HER3 ligand neuregulin 1. Accordingly, pharmacologic inhibition of IGF1R and HER3 signaling overcame resistance to alectinib in this cell line. The second alectinib-resistant cell line displayed stimulated HGF autocrine signaling that promoted MET activation and remained sensitive to crizotinib treatment. Taken together, our findings reveal two novel mechanisms underlying alectinib resistance that are caused by the activation of alternative tyrosine kinase receptors rather than by secondary ALK mutations. These studies may guide the development of comprehensive treatment strategies that take into consideration the various approaches ALK-positive lung tumors use to withstand therapeutic insult. ©2015 American Association for Cancer Research.
Singh, Hina; Du, Juan; Yi, Tae-Hoo
2017-11-01
This study highlights the facile, reliable, cost effective, and ecofriendly synthesis of silver nanoparticles (AgNPs) using Borago officinalis leaves extract efficiently. The biosynthesis of AgNPs was verified by UV-Vis spectrum which showed the surface plasmon resonance (SPR) band at 422 nm. Transmission electron microscope (TEM) analysis revealed that the particles were spherical, hexagonal, and irregular in shape and had size ranging from 30 to 80 nm. The energy dispersive X-ray spectroscopy (EDX) and elemental mapping have displayed the purity and maximum distribution of silver in the AgNPs. The crystalline nature of AgNPs had been identified using X-ray diffraction (XRD) and selected area diffraction pattern (SAED). The particle size analysis revealed that the Z-average diameter of the AgNPs was 50.86 nm with polydispersity index (PDI) 0.136. Zeta potential analysis displayed the colloidal stability of AgNPs. This work also showed the efficacy of AgNPs against lung cancer cell lines (A549) and cervical cancer cell line (HeLa), in vitro. The AgNPs showed cytotoxicity to the A549 and HeLa cancer cell line at the concentrations 5 and 2 μg/ml. The AgNPs were also explored for the antibacterial activity including biofilm inhibition against pathogenic bacteria. The B. officinalis leaves extract can be used efficiently for green synthesis AgNPs. The biosynthesized AgNPs demonstrated potentials as anticancer and antibacterial agents. This work provides helpful insight into the development of new anticancer and antimicrobial agents.
Lao, Kejing; Sun, Jie; Wang, Chong; Wang, Ying; You, Qidong; Xiao, Hong; Xiang, Hua
2017-09-01
Prostate cancer (PCa) is the second leading cause of death in men. Recently, some researches have showed that 5α-reductase inhibitors were beneficial in PCa treatment as well. In this study, a series of novel 3-oxo-4-oxa-5α-androst-17β-amide derivatives have been designed and synthesized in a more simple and convenient method. Most of the synthesized compounds displayed good 5α-reductase inhibitory activities and androgen receptor binding affinities. Their anti-proliferation activities in PC-3 and LNCaP cell lines were also evaluated and the results indicated that most of the synthesized compounds exhibited potent anti-proliferative activities. It is obvious that the androgen-dependent cell line LNCaP was much more sensitive than the androgen-independent cell line PC-3. Among all the synthesized compounds, 11d and 11k displayed the best inhibition activity with 4-fold more sensitive toward LNCaP than PC-3, which was consistent with their high affinities observed in AR binding assay. Molecular modeling studies suggested that 11k could bind to AR in a manner similar to the binding of dihydrotestosterone to AR. Compared to the finasteride, 11k showed a longer plasma half-life (4h) and a better bioavailability. Overall, based on biological activities data, compound 11d and 11k can be identified as potential dual 5α-reductase inhibitors and AR antagonists which might be of therapeutic importance for prostate cancer treatment. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Seo, Jeong Hyun; Jeong, Heui Seob; Lee, Joo Yul; Yoon, Cha Keun; Kim, Joong Kyun; Whang, Ki-Woong
2000-08-01
We measured the time integrated vacuum ultraviolet (VUV) emission spectra of He-Ne-Xe gas mixture from a surface type alternating current (ac) plasma display panel cell. The measured emission lines are the resonance line (147 nm) from Xe*(1s4), the first continuum (150 nm) and the second continuum (173 nm) from Xe dimer excited states. The relative intensities of VUV spectral lines from Xe* and Xe2* are dependent on the He/Ne mixing ratio as well as the Xe partial and total pressure. The intensity of 147 nm VUV increases with the Ne content increase and Xe2* molecular emission increases with the He content increase. Infrared (IR) spectra and the time variation of VUV were measured to explain the reaction pathway and the effect of the mixing ratio of He/Ne on the spectral intensity. A detailed study for the decay time shows that the decay time of 147 nm has two time constants and the radiation of 150 and 173 nm results mainly from Xe*(1s5). The IR spectra shows that the contribution from Xe**(>6 s) to Xe*(1s5) and Xe*(1s4) in He-Xe is different from that of Ne-Xe. The change of IR intensity explains the spectral intensity variations of He-Xe and Ne-Xe discharge.
The underestimated N-glycomes of lepidopteran species
Stanton, Rhiannon; Hykollari, Alba; Eckmair, Barbara; Malzl, Daniel; Dragosits, Martin; Palmberger, Dieter; Wang, Ping; Wilson, Iain B. H.; Paschinger, Katharina
2017-01-01
Background Insects are significant to the environment, agriculture, health and biotechnology. Many of these aspects display some relationship to glycosylation, e.g., in case of pathogen binding or production of humanised antibodies; for a long time, it has been considered that insect N-glycosylation potentials are rather similar and simple, but as more species are glycomically analysed in depth, it is becoming obvious that there is indeed a large structural diversity and interspecies variability. Methods Using an off-line LC-MALDI-TOF MS approach, we have analysed the N-glycomes of two lepidopteran species (the cabbage looper Trichoplusia ni and the gypsy moth Lymantria dispar) as well as of the commonly-used T. ni High Five cell line. Results We detected not only sulphated, glucuronylated, core difucosylated and Lewis-like antennal fucosylated structures, but also the zwitterion phosphorylcholine on antennal GlcNAc residues, a modification otherwise familiar from nematodes; in L. dispar, N-glycans with glycolipid-like antennae containing α-linked N-acetylgalactosamine were also revealed. Conclusion The lepidopteran glycomes analysed not only display core α1,3-fucosylation, which is foreign to mammals, but also up to 5% anionic and/or zwitterionic glycans previously not found in these species. Significance The occurrence of anionic and zwitterionic glycans in the Lepidoptera data is not only of glycoanalytical and evolutionary interest, but is of biotechnological relevance as lepidopteran cell lines are potential factories for recombinant glycoprotein production. PMID:28077298
Drolez, Aurore; Vandenhaute, Elodie; Julien, Sylvain; Gosselet, Fabien; Burchell, Joy; Cecchelli, Roméo; Delannoy, Philippe; Dehouck, Marie-Pierre; Mysiorek, Caroline
2016-01-01
Around 7-17% of metastatic breast cancer patients will develop brain metastases, associated with a poor prognosis. To reach the brain parenchyma, cancer cells need to cross the highly restrictive endothelium of the Blood-Brain Barrier (BBB). As treatments for brain metastases are mostly inefficient, preventing cancer cells to reach the brain could provide a relevant and important strategy. For that purpose an in vitro approach is required to identify cellular and molecular interaction mechanisms between breast cancer cells and BBB endothelium, notably at the early steps of the interaction. However, while numerous studies are performed with in vitro models, the heterogeneity and the quality of BBB models used is a limitation to the extrapolation of the obtained results to in vivo context, showing that the choice of a model that fulfills the biological BBB characteristics is essential. Therefore, we compared pre-established and currently used in vitro models from different origins (bovine, mice, human) in order to define the most appropriate tool to study interactions between breast cancer cells and the BBB. On each model, the BBB properties and the adhesion capacities of breast cancer cell lines were evaluated. As endothelial cells represent the physical restriction site of the BBB, all the models consisted of endothelial cells from animal or human origins. Among these models, only the in vitro BBB model derived from human stem cells both displayed BBB properties and allowed measurement of meaningful different interaction capacities of the cancer cell lines. Importantly, the measured adhesion and transmigration were found to be in accordance with the cancer cell lines molecular subtypes. In addition, at a molecular level, the inhibition of ganglioside biosynthesis highlights the potential role of glycosylation in breast cancer cells adhesion capacities.
Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization
Roberts, Brock; Haupt, Amanda; Tucker, Andrew; Grancharova, Tanya; Arakaki, Joy; Fuqua, Margaret A.; Nelson, Angelique; Hookway, Caroline; Ludmann, Susan A.; Mueller, Irina A.; Yang, Ruian; Horwitz, Rick; Rafelski, Susanne M.; Gunawardane, Ruwanthi N.
2017-01-01
We present a CRISPR/Cas9 genome-editing strategy to systematically tag endogenous proteins with fluorescent tags in human induced pluripotent stem cells (hiPSC). To date, we have generated multiple hiPSC lines with monoallelic green fluorescent protein tags labeling 10 proteins representing major cellular structures. The tagged proteins include alpha tubulin, beta actin, desmoplakin, fibrillarin, nuclear lamin B1, nonmuscle myosin heavy chain IIB, paxillin, Sec61 beta, tight junction protein ZO1, and Tom20. Our genome-editing methodology using Cas9/crRNA ribonuclear protein and donor plasmid coelectroporation, followed by fluorescence-based enrichment of edited cells, typically resulted in <0.1–4% homology-directed repair (HDR). Twenty-five percent of clones generated from each edited population were precisely edited. Furthermore, 92% (36/39) of expanded clonal lines displayed robust morphology, genomic stability, expression and localization of the tagged protein to the appropriate subcellular structure, pluripotency-marker expression, and multilineage differentiation. It is our conclusion that, if cell lines are confirmed to harbor an appropriate gene edit, pluripotency, differentiation potential, and genomic stability are typically maintained during the clonal line–generation process. The data described here reveal general trends that emerged from this systematic gene-tagging approach. Final clonal lines corresponding to each of the 10 cellular structures are now available to the research community. PMID:28814507
Ślesak, Ireneusz; Szechyńska-Hebda, Magdalena; Fedak, Halina; Sidoruk, Natalia; Dąbrowska-Bronk, Joanna; Witoń, Damian; Rusaczonek, Anna; Antczak, Andrzej; Drożdżek, Michał; Karpińska, Barbara; Karpiński, Stanisław
2015-07-01
The phytoalexin deficient 4 (PAD4) gene in Arabidopsis thaliana (AtPAD4) is involved in the regulation of plant--pathogen interactions. The role of PAD4 in woody plants is not known; therefore, we characterized its function in hybrid aspen and its role in reactive oxygen species (ROS)-dependent signalling and wood development. Three independent transgenic lines with different suppression levels of poplar PAD expression were generated. All these lines displayed deregulated ROS metabolism, which was manifested by an increased H2O2 level in the leaves and shoots, and higher activities of manganese superoxide dismutase (MnSOD) and catalase (CAT) in the leaves in comparison to the wild-type plants. However, no changes in non-photochemical quenching (NPQ) between the transgenic lines and wild type were observed in the leaves. Moreover, changes in the ROS metabolism in the pad4 transgenic lines positively correlated with wood formation. A higher rate of cell division, decreased tracheid average size and numbers, and increased cell wall thickness were observed. The results presented here suggest that the Populus tremula × tremuloides PAD gene might be involved in the regulation of cellular ROS homeostasis and in the cell division--cell death balance that is associated with wood development. © 2014 John Wiley & Sons Ltd.
2014-01-01
Background The edible fruits of Phaleria macrocarpa (Scheff.) Boerl are widely used in traditional medicine in Indonesia. It is used to treat a variety of medical conditions such as - cancer, diabetes mellitus, allergies, liver and heart diseases, kidney failure, blood diseases, high blood pressure, stroke, various skin diseases, itching, aches, and flu. Therefore, it is of great interest to determine the biochemical and cytotoxic properties of the fruit extracts. Methods The methanol, hexane, chloroform, ethyl acetate, and water extracts of P. macrocarpa fruits were examined for phytochemicals, physicochemicals, flavonols, flavonoids and phenol content. Its nutritional value (A.O.A.C method), antioxidant properties (DPPH assay) and cytotoxicity (MTT cell proliferation assay) were also determined. Results A preliminary phyotochemical screening of the different crude extracts from the fruits of P. macrocarpa showed the presence secondary metabolites such as of flavonoids, phenols, saponin glycosides and tannins. The ethyl acetate and methanol extracts displayed high antioxidant acitivity (IC50 value of 8.15±0.02 ug/mL) in the DPPH assay comparable to that of the standard gallic acid (IC50 value of 10.8±0.02 ug/mL). Evaluation of cytotoxic activity showed that the crude methanol extract possessed excellent anti-proliferative activity against SKOV-3 (IC50 7.75±2.56 μg/mL) after 72 hours of treatment whilst the hexane and ethyl acetate extracts displayed good cytotoxic effect against both SKOV-3 and MDA-MB231 cell lines. The chloroform extract however, showed selective inhibitory activity in the breast cancer cell line MDA-MB231 (IC50 7.80±1.57 μg/mL) after 48 hours of treatment. There was no cytotoxic effect observed in the Ca Ski cell line and the two normal cell lines (MRC-5 and WRL-68). Conclusion The methanol extract and the ethyl acetate fraction of P. macrocarpa fruits exhibited good nutritional values, good antioxidant and cytotoxic activities, and merits further investigation to identify the specific compound(s) responsible for these activities. PMID:24885709
Keratinocyte Motility Is Affected by UVA Radiation-A Comparison between Normal and Dysplastic Cells.
Niculiţe, Cristina M; Nechifor, Marina T; Urs, Andreea O; Olariu, Laura; Ceafalan, Laura C; Leabu, Mircea
2018-06-07
UVA radiation induces multiple and complex changes in the skin, affecting epidermal cell behavior. This study reports the effects of UVA exposure on normal (HaCaT) and dysplastic (DOK) keratinocytes. The adherence, spreading and proliferation were investigated by time-lapse measurement of cell layer impedance on different matrix proteins. Prior to UVA exposure, the time required for adherence and spreading did not differ significantly for HaCaT and DOK cells, while spreading areas were larger for HaCaT cells. Under UVA exposure, HaCaT and DOK cells behavior differed in terms of movement and proliferation. The cells' ability to cover the denuded surface and individual cell trajectories were recorded by time-lapse videomicroscopy, during wound healing experiments. Dysplastic keratinocytes showed more sensitivity to UVA, exhibiting transient deficiencies in directionality of movement and a delay in re-coating the denuded area. The actin cytoskeleton displayed a cortical organization immediately after irradiation, in both cell lines, similar to mock-irradiated cells. Post-irradiation, DOK cells displayed a better organization of stress fibers, persistent filopodia, and new, stronger focal contacts. In conclusion, after UVA exposure HaCaT and DOK cells showed a different behavior in terms of adherence, spreading, motility, proliferation, and actin cytoskeleton dynamics, with the dyplastic keratinocytes being more sensitive.
Pan, Hong; Hanada, Sayaka; Zhao, Jun; Mao, Li; Ma, Mark Zhi-Qing
2012-01-01
Pregnancy-associated plasma protein-A (PAPPA) has been reported to regulate the activity of insulin-like growth factor (IGF) signal pathway through proteolytic degradation of IGF binding proteins (IGFBPs) thereby increasing the local concentration of free IGFs available to receptors. In this study we found that PAPPA is secreted from two out of seven lung cancer cell lines examined. None of immortalized normal bronchial epithelial cells (HBE) tested secrets PAPPA. There is no correlation between expression level and secretion of PAPPA in these cells. A cell line over-expressing PAPPA accompanied with secretion shows no notable changes in proliferation under cell culture conditions in vitro, but displays significantly augmentation of tumor growth in vivo in a xenograft model. In contrast, a cell line over-expressing PAPPA without secretion exhibits reduction of tumor growth both in vitro and in vivo. Down-regulation of PAPPA expression and secretion by RNAi knockdown decreases tumor growth after implanted in vivo. The tumor promoting activity of PAPPA appears to be mediated mainly through augmentation of the IGF signaling pathway as indicated by notable increases in downstream Akt kinase phosphorylation in tumor samples. Our results indicate that PAPPA secretion may play an important role in lung cancer growth and progression. PMID:23152806
Establishment and characterization of a lactating dairy goat mammary gland epithelial cell line.
Tong, Hui-Li; Li, Qing-Zhang; Gao, Xue-Jun; Yin, De-Yun
2012-03-01
To study milk synthesis in dairy goat mammary gland, we had established an in vitro lactating dairy goat mammary epithelial cell (DGMEC) line. Mammary tissues of Guan Zhong dairy goats at 35 d of lactation were dispersed and cultured in a medium containing epithelial growth factor, insulin-like growth factor-1, insulin transferrin serum, and fetal bovine serum. Epithelial cells were enriched by digesting with 0.25% trypsin repeatedly to remove fibroblast cells and were identified as epithelial origin by staining with antibody against cytokeratine 18. The DGMECs displayed monolayer, cobble-stone, epithelial-like morphology, and formed alveoli-like structures and island monolayer aggregates which were the typical characteristics of mammary epithelial cells. A one-half logarithmically growth curve and cytoplasmic lipid droplets in these cells were observed. In this paper, we also studied the lactating function of DGMECs. Results showed that DGMECs could secrete lactose and β-casein. Lactating function of the cells had no obvious change after 48 h treated by insulin, while prolactin could obviously raise the secretion of milk proteins and lactose.
Muthamilselvan, Thangarasu; Lee, Chin-Wei; Cho, Yu-Hsin; Wu, Feng-Chao; Hu, Chung-Chi; Liang, Yu-Chuan; Lin, Na-Sheng; Hsu, Yau-Heiu
2016-01-01
We describe a novel strategy to produce vaccine antigens using a plant cell-suspension culture system in lieu of the conventional bacterial or animal cell-culture systems. We generated transgenic cell-suspension cultures from Nicotiana benthamiana leaves carrying wild-type or chimeric Bamboo mosaic virus (BaMV) expression constructs encoding the viral protein 1 (VP1) epitope of foot-and-mouth disease virus (FMDV). Antigens accumulated to high levels in BdT38 and BdT19 transgenic cell lines co-expressing silencing suppressor protein P38 or P19. BaMV chimeric virus particles (CVPs) were subsequently purified from the respective cell lines (1.5 and 2.1 mg CVPs/20 g fresh weight of suspended biomass, respectively), and the resulting CVPs displayed VP1 epitope on the surfaces. Guinea pigs vaccinated with purified CVPs produced humoral antibodies. This study represents an important advance in the large-scale production of immunopeptide vaccines in a cost-effective manner using a plant cell-suspension culture system. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Islas, María S; Martínez Medina, Juan J; López Tévez, Libertad L; Rojo, Teófilo; Lezama, Luis; Griera Merino, Mercedes; Calleros, Laura; Cortes, María A; Rodriguez Puyol, Manuel; Echeverría, Gustavo A; Piro, Oscar E; Ferrer, Evelina G; Williams, Patricia A M
2014-06-02
A new Cu(II) complex with the antihypertensive drug telmisartan, [Cu8Tlm16]·24H2O (CuTlm), was synthesized and characterized by elemental analysis and electronic, FTIR, Raman and electron paramagnetic resonance spectroscopy. The crystal structure (at 120 K) was solved by X-ray diffraction methods. The octanuclear complex is a hydrate of but otherwise isostructural to the previously reported [Cu8Tlm16] complex. [Cu8Tlm16]·24H2O crystallizes in the tetragonal P4/ncc space group with a = b = 47.335(1), c = 30.894(3) Å, Z = 4 molecules per unit cell giving a macrocyclic ring with a double helical structure. The Cu(II) ions are in a distorted bipyramidal environment with a somewhat twisted square basis, cis-coordinated at their core N2O2 basis to two carboxylate oxygen and two terminal benzimidazole nitrogen atoms. Cu8Tlm16 has a toroidal-like shape with a hydrophobic nanometer hole, and their crystal packing defines nanochannels that extend along the crystal c-axis. Several biological activities of the complex and the parent ligand were examined in vitro. The antioxidant measurements indicate that the complex behaves as a superoxide dismutase mimic with improved superoxide scavenger power as compared with native sartan. The capacity of telmisartan and its copper complex to expand human mesangial cells (previously contracted by angiotensin II treatment) is similar to each other. The antihypertensive effect of the compounds is attributed to the strongest binding affinity to angiotensin II type 1 receptor and not to the antioxidant effects. The cytotoxic activity of the complex and that of its components was determined against lung cancer cell line A549 and three prostate cancer cell lines (LNCaP, PC-3, and DU 145). The complex displays some inhibitory effect on the A549 line and a high viability decrease on the LNCaP (androgen-sensitive) line. From flow cytometric analysis, an apoptotic mechanism was established for the latter cell line. Telmisartan and CuTlm show antibacterial and antifungal activities in various strains, and CuTlm displays improved activity against the Staphylococcus aureus strain as compared with unbounded copper(II).
Interaction of Bacterial Phenazines with Colistimethate in Bronchial Epithelial Cells.
Mossine, Valeri V; Chance, Deborah L; Waters, James K; Mawhinney, Thomas P
2018-05-21
Multidrug-resistant bacterial infections are being increasingly treated in clinics with polymyxins, a class of antibiotics associated with adverse effects in the kidney, nervous system, or airways of a significant proportion of human and animal patients. Although many of the resistant pathogens display enhanced virulence, a hazard of cytotoxic interactions between polymyxin antibiotics and bacterial virulence factors (VFs) has not been assessed, to date. We report here on testing paired combinations of four Pseudomonas aeruginosa VF phenazine toxins, pyocyanin (PYO), 1-hydroxyphenazine (1-HP), phenazine-1-carboxylic acid (PCA), phenazine-1-carboxamide (PCN), and two commonly prescribed polymyxin drugs, colistimethate (CMS)/colistin and polymyxin B, in three human airway cell lines, BEAS-2B, HBE-1, and CFT-1. Cytotoxicities of individual antibiotics, toxins, and their combinations were evaluated by simultaneous measurement of mitochondrial metabolic, total transcriptional/translational, and the Nrf2 stress response regulator activities in treated cells. Two phenazines, PYO and 1-HP, were cytotoxic at clinically relevant concentrations (100-150 μM) and prompted a significant increase in the oxidative stress-induced transcriptional activity in surviving cells. The polymyxin antibiotics arrested the cell proliferation at clinically achievable (< 1 mM) concentrations, as well, with CMS displaying a surprisingly high cytotoxicity (ED 50 = 180 μM) in BEAS-2B. The dose-response curves were probed by the median-effect analysis which established a synergistically enhanced cytotoxicity of the PYO/CMS combination in all three airway cell lines; a particularly strong effect was observed in the BEAS-2B cells, with the combination index (CI) = 0.27 at ED 50 PCA, PCN, and 1-HP potentiated CMS cytotoxicity to a smaller extent. The cytotoxicity of CMS could be reduced with 10 mM N -acetyl-cysteine. Iron chelators, while ineffective against the polymyxins, could rescue all three bronchial epithelial cell lines treated with lethal PYO or CMS/PYO doses. These findings suggest further evaluations of CMS safety are needed, along with a search for means to moderate the potentially cytotoxic interactions. Copyright © 2018 Mossine et al.
Cheniclet, Catherine; Rong, Wen Ying; Causse, Mathilde; Frangne, Nathalie; Bolling, Laurence; Carde, Jean-Pierre; Renaudin, Jean-Pierre
2005-01-01
Postanthesis growth of tomato (Solanum lycopersicon) as of many types of fruit relies on cell division and cell expansion, so that some of the largest cells to be found in plants occur in fleshy fruit. Endoreduplication is known to occur in such materials, which suggests its involvement in cell expansion, although no data have demonstrated this hypothesis as yet. We have analyzed pattern formation, cell size, and ploidy in tomato fruit pericarp. A first set of data was collected in one cherry tomato line throughout fruit development. A second set of data was obtained from 20 tomato lines displaying a large weight range in fruit, which were compared as ovaries at anthesis and as fully grown fruit at breaker stage. A remarkable conservation of pericarp pattern, including cell layer number and cell size, is observed in all of the 20 tomato lines at anthesis, whereas large variations of growth occur afterward. A strong, positive correlation, combining development and genetic diversity, is demonstrated between mean cell size and ploidy, which holds for mean cell diameters from 10 to 350 μm (i.e. a 32,000-times volume variation) and for mean ploidy levels from 3 to 80 C. Fruit weight appears also significantly correlated with cell size and ploidy. These data provide a framework of pericarp patterning and growth. They strongly suggest the quantitative importance of polyploidy-associated cell expansion as a determinant of fruit weight in tomato. PMID:16306145
Sundqvist, Martina; Christenson, Karin; Björnsdottir, Halla; Osla, Veronica; Karlsson, Anna; Dahlgren, Claes; Speert, David P.; Fasth, Anders; Brown, Kelly L.; Bylund, Johan
2017-01-01
Chronic granulomatous disease (CGD) is caused by mutations in genes that encode the NADPH-oxidase and result in a failure of phagocytic cells to produce reactive oxygen species (ROS) via this enzyme system. Patients with CGD are highly susceptible to infections and often suffer from inflammatory disorders; the latter occurs in the absence of infection and correlates with the spontaneous production of inflammatory cytokines. This clinical feature suggests that NADPH-oxidase-derived ROS are not required for, or may even suppress, inflammatory processes. Experimental evidence, however, implies that ROS are in fact required for inflammatory cytokine production. By using a myeloid cell line devoid of a functional NADPH-oxidase and primary CGD cells, we analyzed intracellular oxidants, signs of oxidative stress, and inflammatory cytokine production. Herein, we demonstrate that phagocytes lacking a functional NADPH-oxidase, namely primary CGD phagocytes and a gp91phox-deficient cell line, display elevated levels of ROS derived from mitochondria. Accordingly, these cells, despite lacking the major source of cellular ROS, display clear signs of oxidative stress, including an induced expression of antioxidants and altered oxidation of cell surface thiols. These observed changes in redox state were not due to abnormalities in mitochondrial mass or membrane integrity. Finally, we demonstrate that increased mitochondrial ROS enhanced phosphorylation of ERK1/2, and induced production of IL8, findings that correlate with previous observations of increased MAPK activation and inflammatory cytokine production in CGD cells. Our data show that elevated baseline levels of mitochondria-derived oxidants lead to the counter-intuitive observation that CGD phagocytes are under oxidative stress and have enhanced MAPK signaling, which may contribute to the elevated basal production of inflammatory cytokines and the sterile inflammatory manifestations in CGD. PMID:29375548
Possible involvement of loss of imprinting in immortalization of human fibroblasts.
Okamura, Kotaro; Ohno, Maki; Tsutsui, Takeki
2011-04-01
Disruption of the normal pattern of parental origin-specific gene expression is referred to as loss of imprinting (LOI), which is common in various cancers. To investigate a possible role of LOI in the early stage of human cell transformation, we studied LOI in 18 human fibroblast cell lines immortalized spontaneously, by viral oncogenes, by chemical or physical carcinogens, or by infection with a retrovirus vector encoding the human telomerase catalytic subunit, hTERT cDNA. LOI was observed in all the 18 immortal cell lines. The gene most commonly exhibiting LOI was NDN which displayed LOI in 15 of the 18 cell lines (83%). The other genes exhibiting LOI at high frequencies were PEG3 (50%), MAGE-L2 (61%) and ZNF 127 (50%). Expression of NDN that was lost in the immortal cell lines was restored by treatment with 5-aza-2'-deoxycytidine. The ratio of histone H3 lysine 9 methylation to histone H3 lysine 4 methylation of the chromatin containing the NDN promoter in the immortal WI-38VA13 cells was greater than that in the parental cells, suggesting chromatin structure-mediated regulation of NDN expression. We previously demonstrated that inactivation of the p16INK4a/pRb pathway is necessary for immortalization of human cells. Human fibroblasts in the pre-crisis phase and cells with an extended lifespan that eventually senesce, both of which have the normal p16INK4a/pRb pathway, did not show LOI at any imprinted gene examined. Although it is not clear if LOI plays a causal role in immortalization of human cells or is merely coincidental, these findings indicate a possible involvement of LOI in immortalization of human cells or a common mechanism involved in both processes.
De Filippis, Lidia; Lamorte, Giuseppe; Snyder, Evan Y; Malgaroli, Antonio; Vescovi, Angelo L
2007-09-01
The discovery and study of neural stem cells have revolutionized our understanding of the neurogenetic process, and their inherent ability to adopt expansive growth behavior in vitro is of paramount importance for the development of novel therapeutics based on neural cell replacement. Recent advances in high-throughput assays for drug development and gene discovery dictate the need for rapid, reproducible, long-term expansion of human neural stem cells (hNSCs). In this view, the complement of wild-type cell lines currently available is insufficient. Here we report the establishment of a stable human neural stem cell line (immortalized human NSCs [IhNSCs]) by v-myc-mediated immortalization of previously derived wild-type hNSCs. These cells demonstrate three- to fourfold faster proliferation than wild-type cells in response to growth factors but retain rather similar properties, including multipotentiality. By molecular biology, biochemistry, immunocytochemistry, fluorescence microscopy, and electrophysiology, we show that upon growth factor removal, IhNSCs completely downregulate v-myc expression, cease proliferation, and differentiate terminally into three major neural lineages: astrocytes, oligodendrocytes, and neurons. The latter are functional, mature cells displaying clear-cut morphological and physiological features of terminally differentiated neurons, encompassing mostly the GABAergic, glutamatergic, and cholinergic phenotypes. Finally, IhNSCs produce bona fide oligodendrocytes in fractions up to 20% of total cell number. This is in contrast to the negligible propensity of hNSCs to generate oligodendroglia reported so far. Thus, we describe an immortalized hNSC line endowed with the properties of normal hNSCs and suitable for developing the novel, reliable assays and reproducible high-throughput gene and drug screening that are essential in both diagnostics and cell therapy studies.
Granja, Sara; Marchiq, Ibtissam; Le Floch, Renaud; Moura, Conceição Souto; Baltazar, Fátima; Pouysségur, Jacques
2015-03-30
Most cancers rely on aerobic glycolysis to generate energy and metabolic intermediates. To maintain a high glycolytic rate, cells must efficiently export lactic acid through the proton-coupled monocarboxylate transporters (MCT1/4). These transporters require a chaperone, CD147/BASIGIN (BSG) for trafficking to the plasma membrane and function.To validate the key role of these transporters in lung cancer, we first analysed the expression of MCT1/4 and BSG in 50 non-small lung cancer (NSCLC) cases. These proteins were specifically upregulated in tumour tissues. We then disrupted BSG in three NSCLC cell lines (A549, H1975 and H292) via 'Zinc-Finger Nucleases'. The three homozygous BSG-/- cell lines displayed a low MCT activity (10- to 5-fold reduction, for MCT1 and MCT4, respectively) compared to wild-type cells. Consequently, the rate of glycolysis, compared to the wild-type counterpart, was reduced by 2.0- to 3.5-fold, whereas the rate of respiration was stimulated in BSG-/- cell lines. Both wild-type and BSG-null cells were extremely sensitive to the mitochondria inhibitor metformin/phenformin in normoxia. However, only BSG-null cells, independently of their LKB1 status, remained sensitive to biguanides in hypoxia in vitro and tumour growth in nude mice. Our results demonstrate that inhibiting glycolysis by targeting lactic acid export sensitizes NSCLC to phenformin.
Effective delivery of a nematode-repellent peptide using a root-cap-specific promoter.
Lilley, Catherine J; Wang, Dong; Atkinson, Howard J; Urwin, Peter E
2011-02-01
The potential of the MDK4-20 promoter of Arabidopsis thaliana to direct effective transgenic expression of a secreted nematode-repellent peptide was investigated. Its expression pattern was studied in both transgenic Arabidopsis and Solanum tuberosum (potato) plants. It directed root-specific β-glucuronidase expression in both species that was chiefly localized to cells of the root cap. Use of the fluorescent timer protein dsRED-E5 established that the MDK4-20 promoter remains active for longer than the commonly used constitutive promoter CaMV35S in separated potato root border cells. Transgenic Arabidopsis lines that expressed the nematode-repellent peptide under the control of either AtMDK4-20 or CaMV35S reduced the establishment of the beet cyst nematode Heterodera schachtii. The best line using the AtMDK4-20 promoter displayed a level of resistance >80%, comparable to that of lines using the CaMV35S promoter. In transgenic potato plants, 94.9 ± 0.8% resistance to the potato cyst nematode Globodera pallida was achieved using the AtMDK4-20 promoter, compared with 34.4 ± 8.4% resistance displayed by a line expressing the repellent peptide from the CaMV35S promoter. These results establish the potential of the AtMDK4-20 promoter to limit expression of a repellent peptide whilst maintaining or even improving the efficacy of the cyst-nematode defence. © 2010 The Authors. Plant Biotechnology Journal © 2010 Society for Experimental Biology, Association of Applied Biologists and Blackwell Publishing Ltd.
Thiol-Reactive Star Polymers Display Enhanced Association with Distinct Human Blood Components.
Glass, Joshua J; Li, Yang; De Rose, Robert; Johnston, Angus P R; Czuba, Ewa I; Khor, Song Yang; Quinn, John F; Whittaker, Michael R; Davis, Thomas P; Kent, Stephen J
2017-04-12
Directing nanoparticles to specific cell types using nonantibody-based methods is of increasing interest. Thiol-reactive nanoparticles can enhance the efficiency of cargo delivery into specific cells through interactions with cell-surface proteins. However, studies to date using this technique have been largely limited to immortalized cell lines or rodents, and the utility of this technology on primary human cells is unknown. Herein, we used RAFT polymerization to prepare pyridyl disulfide (PDS)-functionalized star polymers with a methoxy-poly(ethylene glycol) brush corona and a fluorescently labeled cross-linked core using an arm-first method. PDS star polymers were examined for their interaction with primary human blood components: six separate white blood cell subsets, as well as red blood cells and platelets. Compared with control star polymers, thiol-reactive nanoparticles displayed enhanced association with white blood cells at 37 °C, particularly the phagocytic monocyte, granulocyte, and dendritic cell subsets. Platelets associated with more PDS than control nanoparticles at both 37 °C and on ice, but they were not activated in the duration examined. Association with red blood cells was minor but still enhanced with PDS nanoparticles. Thiol-reactive nanoparticles represent a useful strategy to target primary human immune cell subsets for improved nanoparticle delivery.
Rinaldi, Gabriel; Yan, Hongbin; Nacif-Pimenta, Rafael; Matchimakul, Pitchaya; Bridger, Joanna; Mann, Victoria H; Smout, Michael J; Brindley, Paul J; Knight, Matty
2015-07-01
The invertebrate cell line, Bge, from embryos of the snail Biomphalaria glabrata, remains to date the only established cell line from any species of the Phylum Mollusca. Since its establishment in 1976 by Eder Hansen, few studies have focused on profiling its cytometrics, growth characteristics or sensitivity to xenobiotics. Bge cells are reputed to be challenging to propagate and maintain. Therefore, even though this cell line is a noteworthy resource, it has not been studied widely. With growing interest in functional genomics, including genetic transformation, to elucidate molecular aspects of the snail intermediate hosts responsible for transmission of schistosomiasis, and aiming to enhance the convenience of maintenance of this molluscan cell line, we deployed the xCELLigene real time approach to study Bge cells. Doubling times for three isolates of Bge, termed CB, SL and UK, were longer than for mammalian cell lines - longer than 40 h in complete Bge medium supplemented with 7% fetal bovine serum at 25°C, ranging from ∼42 h to ∼157 h when 40,000 cells were seeded. To assess the potential of the cells for genetic transformation, antibiotic selection was explored. Bge cells were sensitive to the aminonucleoside antibiotic puromycin (from Streptomyces alboniger) from 5 μg/ml to 200 ng/ml, displaying a half maximal inhibitory concentration (IC50) of ∼1.91 μg/ml. Sensitivity to puromycin, and a relatively quick kill time (<48 h in 5 μg/ml) facilitated use of this antibiotic, together with the cognate resistance gene (puromycin N-acetyl-transferase) for selection of Bge cells transformed with the PAC gene (puroR). Bge cells transfected with a plasmid encoding puroR were partially rescued when cultured in the presence of 5 μg/ml of puromycin. These findings pave the way for the development of functional genomic tools applied to the host-parasite interaction during schistosomiasis and neglected tropical trematodiases at large. Copyright © 2015 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Leung, Carol S; Haigh, Tracey A; Mackay, Laura K; Rickinson, Alan B; Taylor, Graham S
2010-02-02
Whereas exogenously acquired proteins are the major source of antigens feeding the MHC class II pathway in antigen-presenting cells, some endogenously expressed antigens also access that pathway but the rules governing such access are poorly understood. Here we address this using Epstein-Barr virus (EBV)-coded nuclear antigen EBNA1, a protein naturally expressed in EBV-infected B lymphoblastoid cell lines (LCLs) and a source of multiple CD4(+) T cell epitopes. Using CD4(+) T cell clones against three indicator epitopes, we find that two epitopes are weakly displayed on the LCL surface whereas the third is undetectable, a pattern of limited epitope presentation that is maintained even when nuclear expression of EBNA1 is induced to high supraphysiological levels. Inhibitor and siRNA studies show that, of the two epitopes weakly presented under these conditions, one involves macroautophagy, and the second involves antigen delivery to the MHC II pathway by another endogenous route. In contrast, when EBNA1 is expressed as a cytoplasmic protein, all three CD4 epitopes are processed and presented much more efficiently, and all involve macroautophagy. We conclude that EBNA1's nuclear location limits its accessibility to the macroautophagy pathway and, in consequence, limits the level and range of EBNA1 CD4 epitopes naturally displayed on the infected cell surface.
Ji, Xiaonan; Shen, Yanli; Sun, Hao; Gao, Xiangdong
2016-08-01
Human hepatocellular carcinoma (HCC) has a high rate of tumor recurrence and metastasis, resulting in shortened survival time. The function of alpha-fetoprotein (AFP) as a regulatory factor in the growth of HCC cells has been well defined. The aim of this study was to investigate the use of a novel AFP-specific single-chain variable fragment that blocked AFP and inhibited HCC cell growth. The results indicated that the anti-AFP single-chain variable fragment (scFv) induced growth inhibition of AFP-expressing HCC cell lines in vitro through induction of G1 cell cycle arrest and apoptosis. The mechanism of apoptosis probably involved with blocking AFP internalization and regulation of the PTEN/PI3K/Akt signaling network. Moreover, the anti-AFP-scFv also effectively sensitized the HepG2 cells to paclitaxel (PTX) at a lower concentration. The combination effect of PTX and anti-AFP-scFv displayed a synergistic effect on HepG2 cells both in vitro and in vivo. Our results demonstrated that targeting AFP by specific antibodies has potential immunotherapeutic efficacy in human HCC.
Lehmann, Brian D.; Bauer, Joshua A.; Chen, Xi; Sanders, Melinda E.; Chakravarthy, A. Bapsi; Shyr, Yu; Pietenpol, Jennifer A.
2011-01-01
Triple-negative breast cancer (TNBC) is a highly diverse group of cancers, and subtyping is necessary to better identify molecular-based therapies. In this study, we analyzed gene expression (GE) profiles from 21 breast cancer data sets and identified 587 TNBC cases. Cluster analysis identified 6 TNBC subtypes displaying unique GE and ontologies, including 2 basal-like (BL1 and BL2), an immunomodulatory (IM), a mesenchymal (M), a mesenchymal stem–like (MSL), and a luminal androgen receptor (LAR) subtype. Further, GE analysis allowed us to identify TNBC cell line models representative of these subtypes. Predicted “driver” signaling pathways were pharmacologically targeted in these cell line models as proof of concept that analysis of distinct GE signatures can inform therapy selection. BL1 and BL2 subtypes had higher expression of cell cycle and DNA damage response genes, and representative cell lines preferentially responded to cisplatin. M and MSL subtypes were enriched in GE for epithelial-mesenchymal transition, and growth factor pathways and cell models responded to NVP-BEZ235 (a PI3K/mTOR inhibitor) and dasatinib (an abl/src inhibitor). The LAR subtype includes patients with decreased relapse-free survival and was characterized by androgen receptor (AR) signaling. LAR cell lines were uniquely sensitive to bicalutamide (an AR antagonist). These data may be useful in biomarker selection, drug discovery, and clinical trial design that will enable alignment of TNBC patients to appropriate targeted therapies. PMID:21633166
Complementation of a Fanconi anemia group A cell line by UbA{sup 52}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moses, R.E.; Heina, J.A.; Jakobs, P.M.
1994-09-01
Cells from patients with Fanconi anemia (FA) display chromosomal instability and increased sensitivity to mitomycin C (MMC) and diepoxybutane (DEB) relative to normal cells. Several genes act in this pathway of DNA damage processing based upon four known complementation groups in FA. We have made a cDNA expression library in a vector with a G418 selectable marker to identify FA genes other than the FA-C group. Approximately 1 x 10{sup 6} independent cDNA clones were isolated with an average cDNA size of 1.5 kb. Five cell lines resistant to MMC and DEB were isolated from 6 x 10{sup 6} G418-resistantmore » transfectants from 65 individual transfections of the FA-A fibroblast line GM6914. The isolated cell lines also showed normal chromosome stability. The same cDNA (600 bp) was recovered from three independent cell lines by PCR using flanking sequence primers. The gene has sequence identity with a known gene, the ubiquitin fusion gene, UbA{sub 52}. Interestingly, each of the cDNAs were inserted in antisense orientation relative to the cytomegalovirus (CMV) promoter as determined by sequencing and PCR using UbA{sub 52}-specific internal primers. Southern blot analysis indicated the cell lines had distinct chromosomal insertion sites. Mutation analysis by chemical cleavage showed no reading frame mutations, indicating that UbA{sub 52} is not the FA-A gene. Re-transfection with the UbA{sub 52} gene in antisense gave complementation for MMC, DEB and chromosome stability to varying degrees. Re-transfection of the antisense construct with the CMV promotor removed or with a sense construct did not alter the MMC sensitivity. We conclude that the antisense UbA{sub 52} gene has a non-specific effect, perhaps acting by altering the cell cycle or susceptibility to apoptosis.« less
Yen, Y; Grill, S P; Dutschman, G E; Chang, C N; Zhou, B S; Cheng, Y C
1994-07-15
Hydroxyurea (HU) is currently used in the clinic for the treatment of chronic myelogenous leukemia, head and neck carcinoma, and sarcoma. One of its drawbacks, however, is the development of HU resistance. To study this problem, we developed a HU-resistant human KB cell line which exhibits a 15-fold resistance to HU. The characterization of this HU-resistant phenotype revealed a gene amplification of the M2 subunit of ribonucleotide reductase (RR), increased levels of M2 mRNA and protein, and a 3-fold increase of RR activity. This HU-resistant cell line also expressed a "collateral sensitivity" to 6-thioguanine (6-TG), with a 10-fold decrease in the dose inhibiting cell growth by 50% as compared to the KB parental line. The mechanism responsible for this supersensitivity to 6-TG is believed to be related to an increasingly efficient conversion of 6-TG to its triphosphate form, which is subsequently incorporated into DNA. After passage of the resistant cells in the absence of HU, the cell line reverts. The revertant cells lose their resistance to HU and concomitantly their sensitivity to 6-TG. This phenomenon is due to the return of RR to levels comparable to that of the KB parental cell line. These observations and their relevance to cancer chemotherapy will be discussed in this paper. Our results suggest that a clinical protocol could be designed which would allow for a lower dose of 6-TG to be used by taking advantage of the increased RR activity in HU-refractory cancer patients. Two drugs which display collateral sensitivity are known as a "Ying-Yang" pair. Alternate treatment with two different Ying-Yang pairs is the rationale for the "Ying-Yang Ping-Pong" theory in cancer treatment. This rationale allows for effective cancer chemotherapy with reduced toxicity.
This study shows the changes in gene expression in response to SW044248, a compound that displays selective toxicity for some NSCLC cell lines. This data led to the discovery that SW044248 is an inhibitor of topoisomerase 1 (Top1) different from other Top1 inhibitors such as camptothecin1. Read the abstract
Unregulated smooth-muscle myosin in human intestinal neoplasia.
Alhopuro, Pia; Phichith, Denis; Tuupanen, Sari; Sammalkorpi, Heli; Nybondas, Miranda; Saharinen, Juha; Robinson, James P; Yang, Zhaohui; Chen, Li-Qiong; Orntoft, Torben; Mecklin, Jukka-Pekka; Järvinen, Heikki; Eng, Charis; Moeslein, Gabriela; Shibata, Darryl; Houlston, Richard S; Lucassen, Anneke; Tomlinson, Ian P M; Launonen, Virpi; Ristimäki, Ari; Arango, Diego; Karhu, Auli; Sweeney, H Lee; Aaltonen, Lauri A
2008-04-08
A recent study described a recessive ATPase activating germ-line mutation in smooth-muscle myosin (smmhc/myh11) underlying the zebrafish meltdown (mlt) phenotype. The mlt zebrafish develops intestinal abnormalities reminiscent of human Peutz-Jeghers syndrome (PJS) and juvenile polyposis (JP). To examine the role of MYH11 in human intestinal neoplasia, we searched for MYH11 mutations in patients with colorectal cancer (CRC), PJS and JP. We found somatic protein-elongating frameshift mutations in 55% of CRCs displaying microsatellite instability and in the germ-line of one individual with PJS. Additionally, two somatic missense mutations were found in one microsatellite stable CRC. These two missense mutations, R501L and K1044N, and the frameshift mutations were functionally evaluated. All mutations resulted in unregulated molecules displaying constitutive motor activity, similar to the mutant myosin underlying mlt. Thus, MYH11 mutations appear to contribute also to human intestinal neoplasia. Unregulated MYH11 may affect the cellular energy balance or disturb cell lineage decisions in tumor progenitor cells. These data challenge our view on MYH11 as a passive differentiation marker functioning in muscle contraction and add to our understanding of intestinal neoplasia.
Antiproliferative Activity of Fucan Nanogel
Dantas-Santos, Nednaldo; Almeida-Lima, Jailma; Vidal, Arthur Anthunes Jacome; Gomes, Dayanne Lopes; Oliveira, Ruth Medeiros; Santos Pedrosa, Silvia; Pereira, Paula; Gama, Francisco Miguel; Oliveira Rocha, Hugo Alexandre
2012-01-01
Sulfated fucans comprise families of polydisperse natural polysaccharides based on sulfated L-fucose. Our aim was to investigate whether fucan nanogel induces cell-specific responses. To that end, a non toxic fucan extracted from Spatoglossum schröederi was chemically modified by grafting hexadecylamine to the polymer hydrophilic backbone. The resulting modified material (SNFuc) formed nanosized particles. The degree of substitution with hydrophobic chains was close to 100%, as estimated by elemental analysis. SNFfuc in aqueous media had a mean diameter of 123 nm and zeta potential of −38.3 ± 0.74 mV, as measured by dynamic light scattering. Nanoparticles conserved their size for up to 70 days. SNFuc cytotoxicity was determined using the MTT assay after culturing different cell lines for 24 h. Tumor-cell (HepG2, 786, H-S5) proliferation was inhibited by 2.0%–43.7% at nanogel concentrations of 0.05–0.5 mg/mL and rabbit aorta endothelial cells (RAEC) non-tumor cell line proliferation displayed inhibition of 8.0%–22.0%. On the other hand, nanogel improved Chinese hamster ovary (CHO) and monocyte macrophage cell (RAW) non-tumor cell line proliferation in the same concentration range. The antiproliferative effect against tumor cells was also confirmed using the BrdU test. Flow cytometric analysis revealed that the fucan nanogel inhibited 786 cell proliferation through caspase and caspase-independent mechanisms. In addition, SNFuc blocks 786 cell passages in the S and G2-M phases of the cell cycle. PMID:23118717
Sviderskaya, Elena V.; Easty, David J.; Lawrence, Mark A.; Sánchez, Daniel P.; Negulyaev, Yuri A.; Patel, Ricken H.; Anand, Praveen; Korchev, Yuri E.; Bennett, Dorothy C.
2009-01-01
Stem cells, that is, cells that can both reproduce themselves and differentiate into functional cell types, attract much interest as potential aids to healing and disease therapy. Embryonic neural crest is pluripotent and generates the peripheral nervous system, melanocytes, and some connective tissues. Neural-crest-related stem cells have been reported previously in postnatal skin: committed melanocytic stem cells in the hair follicle, and pluripotent cell types from the hair follicle and papilla that can produce various sets of lineages. Here we describe novel pluripotent neural crest-like stem cells from neonatal mouse epidermis, with different potencies, isolated as 3 independent immortal lines. Using alternative regulatory factors, they could be converted to large numbers of either Schwann precursor cells, pigmented melanocytes, chondrocytes, or functional sensory neurons showing voltage-gated sodium channels. Some of the neurons displayed abundant active TRPV1 and TRPA1 receptors. Such functional neurons have previously been obtained in culture only with difficulty, by explantation. The system was also used to generate comparative gene expression data for the stem cells, melanocytes, and melanoblasts that sufficiently explain the lack of pigment in melanoblasts and provide a rationale for some genes expressed apparently ectopically in melanomas, such as ephrin receptors.—Sviderskaya, E. V., Easty, D. J., Lawrence, M. A., Sánchez, D. P., Negulyaev, Y. A., Patel, R. H., Anand, P., Korchev, Y. E., Bennett, D. C. Functional neurons and melanocytes induced from immortal lines of postnatal neural crest-like stem cells. PMID:19447881
Diverse amide analogs of sulindac for cancer treatment and prevention.
Mathew, Bini; Hobrath, Judith V; Connelly, Michele C; Kiplin Guy, R; Reynolds, Robert C
2017-10-15
Sulindac is a non-steroidal anti-inflammatory drug (NSAID) that has shown significant anticancer activity. Sulindac sulfide amide (1) possessing greatly reduced COX-related inhibition relative to sulindac displayed in vivo antitumor activity that was comparable to sulindac in a human colon tumor xenograft model. Inspired by these observations, a panel of diverse sulindac amide derivatives have been synthesized and their activity probed against three cancer cell lines (prostate, colon and breast). A neutral analog, compound 79 was identified with comparable potency relative to lead 1 and activity against a panel of lymphoblastic leukemia cell lines. Several new series also show good activity relative to the parent (1), including five analogs that also possess nanomolar inhibitory potencies against acute lymphoblastic leukemia cells. Several new analogs identified may serve as anticancer lead candidates for further development. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Zahid, Maliha; Phillips, Brett E; Albers, Sean M; Giannoukakis, Nick; Watkins, Simon C; Robbins, Paul D
2010-08-17
A peptide able to transduce cardiac tissue specifically, delivering cargoes to the heart, would be of significant therapeutic potential for delivery of small molecules, proteins and nucleic acids. In order to identify peptide(s) able to transduce heart tissue, biopanning was performed in cell culture and in vivo with a M13 phage peptide display library. A cardiomyoblast cell line, H9C2, was incubated with a M13 phage 12 amino acid peptide display library. Internalized phage was recovered, amplified and then subjected to a total of three rounds of in vivo biopanning where infectious phage was isolated from cardiac tissue following intravenous injection. After the third round, 60% of sequenced plaques carried the peptide sequence APWHLSSQYSRT, termed cardiac targeting peptide (CTP). We demonstrate that CTP was able to transduce cardiomyocytes functionally in culture in a concentration and cell-type dependent manner. Mice injected with CTP showed significant transduction of heart tissue with minimal uptake by lung and kidney capillaries, and no uptake in liver, skeletal muscle, spleen or brain. The level of heart transduction by CTP also was greater than with a cationic transduction domain. Biopanning using a peptide phage display library identified a peptide able to transduce heart tissue in vivo efficiently and specifically. CTP could be used to deliver therapeutic peptides, proteins and nucleic acid specifically to the heart.
Klimka, A; Barth, S; Matthey, B; Roovers, R C; Lemke, H; Hansen, H; Arends, J-W; Diehl, V; Hoogenboom, H R; Engert, A
1999-01-01
The human CD30 receptor is highly overexpressed on the surface of Hodgkin Reed-Sternberg cells and has been shown to be an excellent target for selective immunotherapy using monoclonal antibody-based agents such as immunotoxins. To construct a new recombinant immunotoxin for possible clinical use in patients with Hodgkin's lymphoma, we have chosen the murine anti-CD30 hybridoma Ki-4 to generate a high-affinity Ki-4 single-chain variable fragment (scFv). Hybridoma V-genes were polymerase chain reaction-amplified, assembled, cloned and expressed as a mini-library for display on filamentous phage. Functional Ki-4 scFv were obtained by selection of binding phage on the Hodgkin lymphoma-derived, CD30-expressing cell line L540Cy. The selected recombinant Ki-4 scFv was shown to specifically bind to an overlapping epitope on the CD30 antigen with binding kinetics similar to those of the original antibody. The Ki-4 scFv was subsequently fused to a deletion mutant of Pseudomonas exotoxin A (ETÁ). The resulting immunotoxin Ki-4(scFv)-ETÁ specifically binds to CD30+ L540Cy cells and inhibits the protein synthesis by 50% at a concentration (IC50) of 43 pM. This recombinant immunotoxin is a promising candidate for further clinical evaluation in patients with Hodgkin's lymphoma or other CD30+ malignancies. © 1999 Cancer Research Campaign PMID:10376974
Hsieh, Paul A.; Winston, Richard B.
2002-01-01
Model Viewer is a computer program that displays the results of three-dimensional groundwater models. Scalar data (such as hydraulic head or solute concentration) may be displayed as a solid or a set of isosurfaces, using a red-to-blue color spectrum to represent a range of scalar values. Vector data (such as velocity or specific discharge) are represented by lines oriented to the vector direction and scaled to the vector magnitude. Model Viewer can also display pathlines, cells or nodes that represent model features such as streams and wells, and auxiliary graphic objects such as grid lines and coordinate axes. Users may crop the model grid in different orientations to examine the interior structure of the data. For transient simulations, Model Viewer can animate the time evolution of the simulated quantities. The current version (1.0) of Model Viewer runs on Microsoft Windows 95, 98, NT and 2000 operating systems, and supports the following models: MODFLOW-2000, MODFLOW-2000 with the Ground-Water Transport Process, MODFLOW-96, MOC3D (Version 3.5), MODPATH, MT3DMS, and SUTRA (Version 2D3D.1). Model Viewer is designed to directly read input and output files from these models, thus minimizing the need for additional postprocessing. This report provides an overview of Model Viewer. Complete instructions on how to use the software are provided in the on-line help pages.
Human a-L-fucosidase-1 attenuates the invasive properties of thyroid cancer.
Vecchio, Giancarlo; Parascandolo, Alessia; Allocca, Chiara; Ugolini, Clara; Basolo, Fulvio; Moracci, Marco; Strazzulli, Andrea; Cobucci-Ponzano, Beatrice; Laukkanen, Mikko O; Castellone, Maria Domenica; Tsuchida, Nobuo
2017-04-18
Glycans containing α-L-fucose participate in diverse interactions between cells and extracellular matrix. High glycan expression on cell surface is often associated with neoplastic progression. The lysosomal exoenzyme, α-L-fucosidase-1 (FUCA-1) removes fucose residues from glycans. The FUCA-1 gene is down-regulated in highly aggressive and metastatic human tumors. However, the role of FUCA-1 in tumor progression remains unclear. It is speculated that its inactivation perturbs glycosylation of proteins involved in cell adhesion and promotes cancer. FUCA-1 expression of various thyroid normal and cancer tissues assayed by immunohistochemical (IHC) staining was high in normal thyroids and papillary thyroid carcinomas (PTC), whereas it progressively decreased in poorly differentiated, metastatic and anaplastic thyroid carcinomas (ATC). FUCA-1 mRNA expression from tissue samples and cell lines and protein expression levels and enzyme activity in thyroid cancer cell lines paralleled those of IHC staining. Furthermore, ATC-derived 8505C cells adhesion to human E-selectin and HUVEC cells was inhibited by bovine α-L-fucosidase or Lewis antigens, thus pointing to an essential role of fucose residues in the adhesive phenotype of this cancer cell line. Finally, 8505C cells transfected with a FUCA-1 containing plasmid displayed a less invasive phenotype versus the parental 8505C. These results demonstrate that FUCA-1 is down-regulated in ATC compared to PTC and normal thyroid tissues and cell lines. As shown for other human cancers, the down-regulation of FUCA-1 correlates with increased aggressiveness of the cancer type. This is the first report indicating that the down-regulation of FUCA-1 is related to the increased aggressiveness of thyroid cancer.
Synthesis of novel amides based on acridone scaffold with interesting antineoplastic activity.
Mahajan, Anand A; Rane, Rajesh A; Amritkar, Anish A; Naphade, Shital S; Miniyar, Pankaj B; Bangalore, Pavan Kumar; Karpoormath, Rajshekhar
2015-01-01
In search of novel cytotoxic agents based on acridone scaffold, twenty five derivatives of acridone-2- carboxamide were synthesized and evaluated against a panel of eleven cancer cell lines by using MTT assay. Amides, A5 and A8 (IC50 = 0.3 µM) exhibited good cytotoxicity against MCF7. Compound A22 (IC50 = 4.3 µM) was found to be selectively cytotoxic against cancer cell line MCF7 and KB403. Particularly, promising cytotoxic activities were shown by amides A6 (IC50 = 0.7 µM), A16 (IC50 = 6.3 µM), A8 (IC50 = 0.9 µM ), A21 (IC50 = 1.3 µM), A5 (IC50 = 2.9 µM), A8 (IC50 = 2.8 µM), A14 (IC50 = 0.8 µM), A9 (IC50 = 0.8 µM) and A8 (IC50 = 0.4 µM) against cell lines; PA1, WRL68, CaCO2, TK-10, K-562, PC-3, HOP-92, ECV-304 and UACC-257, respectively. The favorable cytotoxic profile and non-toxicity towards normal human cells displayed by the derivative revealed their potential for further anticancer drug developments.
Steroids from the rhizome of Anemarrhena asphodeloides and their cytotoxic activities.
Sun, Yu; Wu, Jie; Sun, Xue; Huang, Xiaoxiao; Li, Lingzhi; Liu, Qingbo; Song, ShaoJiang
2016-07-01
Cancer remains a major killer worldwide. To search for novel naturally occurring compounds that are cytotoxic to cancer cells to be used as lead structures for drug development, five new steroids (1-5) along with seven known ones (6-12) were isolated from the rhizome of Anemarrhena asphodeloides Bge. Their structures were established by detailed spectral studies, including 1D-NMR, 2D-NMR, HR-ESI-MS and by comparison with literature data. These compounds exhibited different levels of growth inhibition against A549, HepG2, Hep3B, Bcap37 and MCF7 cell lines in vitro. Compounds 9, 10 and 11 showed potent inhibitory against all the tested cell lines with IC50 values ranging from 0.35±0.15 to 25.53±0.31μM. The three compounds displayed stronger inhibitory activities against A549, HepG2 and Hep3B cell lines compared with the positive control 5-fluorouracil. The experimental data obtained permit us to identify the roles of the sugar moieties, hydroxyl group, double bond and F-ring with regard to their cytotoxic activities. Copyright © 2016 Elsevier Ltd. All rights reserved.
Assessment of antiproliferative and antiplasmodial activities of five selected Apocynaceae species
2011-01-01
Background Studies have shown that the barks and roots of some Apocynaceae species have anticancer and antimalarial properties. In this study, leaf extracts of five selected species of Apocynaceae used in traditional medicine (Alstonia angustiloba, Calotropis gigantea, Dyera costulata, Kopsia fruticosa and Vallaris glabra) were assessed for antiproliferative (APF) and antiplasmodial (APM) activities, and analysed for total alkaloid content (TAC), total phenolic content (TPC) and radical-scavenging activity (RSA). As V. glabra leaf extracts showed wide spectrum APF and APM activities, they were further screened for saponins, tannins, cardenolides and terpenoids. Methods APF and APM activities were assessed using the sulphorhodamine B and lactate dehydrogenase assays, respectively. TAC, TPC and RSA were analysed using Dragendorff precipitation, Folin-Ciocalteu and DPPH assays, respectively. Screening for saponins, tannins, cardenolides and terpenoids were conducted using the frothing, ferric chloride, Kedde and vanillin-H2SO4 tests, respectively. Results Leaf extracts of A. angustiloba, C. gigantea and V. glabra displayed positive APF activity. Dichloromethane (DCM) extract of C. gigantea, and DCM and DCM:MeOH extracts of V. glabra showed strong APF activity against all six human cancer cell lines tested. DCM extract of A. angustiloba was effective against three cancer cell lines. Against MCF-7 and MDA-MB-231 cell lines, DCM extract of C. gigantea was stronger than standard drugs of xanthorrhizol, curcumin and tamoxifen. All five species were effective against K1 strain of Plasmodium falciparum and three species (C. gigantea, D. costulata and K. fruticosa) were effective against 3D7 strain. Against K1 strain, all four extracts of V. glabra displayed effective APM activity. Extracts of D. costulata were effective against 3D7 strain. Selectivity index values of extracts of A. angustiloba, C. gigantea and V. glabra suggested that they are potentially safe for use to treat malaria. Extracts of K. fruticosa had the highest TAC while D. costulata had the highest TPC and RSA. Phytochemical screening of extracts of V. glabra also showed the presence of terpenoids, tannins and saponins. Conclusions Leaf extracts of C. gigantea and V. glabra showed great promise as potential candidates for anticancer drugs as they inhibited the growth of all six cancer cell lines. Against K1 strain of P. falciparum, all four extracts of V. glabra displayed effective APM activity. The wide spectrum APF and APM activities of V. glabra are reported for the first time and this warrants further investigation into its bioactive compounds. PMID:21232161
Cass, Cynthia L.; Lavell, Anastasiya A.; Santoro, Nicholas; ...
2016-05-26
Brachypodium distachyon ( Brachypodium) has emerged as a useful model system for studying traits unique to graminaceous species including bioenergy crop grasses owing to its amenability to laboratory experimentation and the availability of extensive genetic and germplasm resources. Considerable natural variation has been uncovered for a variety of traits including flowering time, vernalization responsiveness, and above-ground growth characteristics. However, cell wall composition differences remain underexplored. Therefore, we assessed cell wall-related traits relevant to biomass conversion to biofuels in seven Brachypodium inbred lines that were chosen based on their high level of genotypic diversity as well as available genome sequences andmore » recombinant inbred line (RIL) populations. Senesced stems plus leaf sheaths from these lines exhibited significant differences in acetyl bromide soluble lignin (ABSL), cell wall polysaccharide-derived sugars, hydroxycinnamates content, and syringyl:guaiacyl:p-hydroxyphenyl (S:G:H) lignin ratios. Free glucose, sucrose, and starch content also differed significantly in senesced stems, as did the amounts of sugars released from cell wall polysaccharides (digestibility) upon exposure to a panel of thermochemical pretreatments followed by hydrolytic enzymatic digestion. Correlations were identified between inbred line lignin compositions and plant growth characteristics such as biomass accumulation and heading date (HD), and between amounts of cell wall polysaccharides and biomass digestibility. Finally, stem cell wall p-coumarate and ferulate contents and free-sugars content changed significantly with increased duration of vernalization for some inbred lines. Taken together, these results show that Brachypodium displays substantial phenotypic variation with respect to cell wall composition and biomass digestibility, with some compositional differences correlating with growth characteristics. Moreover, besides influencing HD and biomass accumulation, vernalization was found to affect cell wall composition and free sugars accumulation in some Brachypodium inbred lines, suggesting genetic differences in how vernalization affects carbon flux to polysaccharides. Lastly, the availability of related RIL populations will allow for the genetic and molecular dissection of this natural variation, the knowledge of which may inform ways to genetically improve bioenergy crop grasses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cass, Cynthia L.; Lavell, Anastasiya A.; Santoro, Nicholas
Brachypodium distachyon ( Brachypodium) has emerged as a useful model system for studying traits unique to graminaceous species including bioenergy crop grasses owing to its amenability to laboratory experimentation and the availability of extensive genetic and germplasm resources. Considerable natural variation has been uncovered for a variety of traits including flowering time, vernalization responsiveness, and above-ground growth characteristics. However, cell wall composition differences remain underexplored. Therefore, we assessed cell wall-related traits relevant to biomass conversion to biofuels in seven Brachypodium inbred lines that were chosen based on their high level of genotypic diversity as well as available genome sequences andmore » recombinant inbred line (RIL) populations. Senesced stems plus leaf sheaths from these lines exhibited significant differences in acetyl bromide soluble lignin (ABSL), cell wall polysaccharide-derived sugars, hydroxycinnamates content, and syringyl:guaiacyl:p-hydroxyphenyl (S:G:H) lignin ratios. Free glucose, sucrose, and starch content also differed significantly in senesced stems, as did the amounts of sugars released from cell wall polysaccharides (digestibility) upon exposure to a panel of thermochemical pretreatments followed by hydrolytic enzymatic digestion. Correlations were identified between inbred line lignin compositions and plant growth characteristics such as biomass accumulation and heading date (HD), and between amounts of cell wall polysaccharides and biomass digestibility. Finally, stem cell wall p-coumarate and ferulate contents and free-sugars content changed significantly with increased duration of vernalization for some inbred lines. Taken together, these results show that Brachypodium displays substantial phenotypic variation with respect to cell wall composition and biomass digestibility, with some compositional differences correlating with growth characteristics. Moreover, besides influencing HD and biomass accumulation, vernalization was found to affect cell wall composition and free sugars accumulation in some Brachypodium inbred lines, suggesting genetic differences in how vernalization affects carbon flux to polysaccharides. Lastly, the availability of related RIL populations will allow for the genetic and molecular dissection of this natural variation, the knowledge of which may inform ways to genetically improve bioenergy crop grasses.« less
Rivera, Gildardo; Ahmad Shah, Syed Shoaib; Arrieta-Baez, Daniel; Palos, Isidro; Mongue, Antonio; Sánchez-Torres, Luvia Enid
2017-01-01
Quinoxalines display diverse and interesting pharmacological activities as antibacterial, antiviral, antiparasitic and anticancer agents. Particularly, their 1ˏ4-di-N-oxide derivatives have proved to be cytotoxic agents that are active under hypoxic conditions as that of solid tumours. A new series of quinoxaline 1ˏ4-di-N-oxide substitutes at 7-position with esters group were synthetized and characterized by infrared (IR), proton nuclear magnetic resonance (1H-NMR), spectroscopy, and elemental analysis. Seventeen derivatives (M1-M3, E1-E8, P1-P3 and DR1-DR3) were selected and evaluated for antitumor activities using the NCI-60 human tumor cell lines screen. Results showed that E7, P3 and E6 were the most active compounds against the cell lines tested. Substitutions at 7-position with esters group not necessarily affect the biological activity, but the nature of the esters group could exert an influence on the selectivity. Additionally, substitutions at 2-position influenced the cytotoxic activity of the compounds. PMID:29201086
Rivera, Gildardo; Ahmad Shah, Syed Shoaib; Arrieta-Baez, Daniel; Palos, Isidro; Mongue, Antonio; Sánchez-Torres, Luvia Enid
2017-01-01
Quinoxalines display diverse and interesting pharmacological activities as antibacterial, antiviral, antiparasitic and anticancer agents. Particularly, their 1`4-di- N -oxide derivatives have proved to be cytotoxic agents that are active under hypoxic conditions as that of solid tumours. A new series of quinoxaline 1`4-di- N -oxide substitutes at 7-position with esters group were synthetized and characterized by infrared (IR), proton nuclear magnetic resonance ( 1 H-NMR), spectroscopy, and elemental analysis. Seventeen derivatives (M1-M3, E1-E8, P1-P3 and DR1-DR3) were selected and evaluated for antitumor activities using the NCI-60 human tumor cell lines screen. Results showed that E7, P3 and E6 were the most active compounds against the cell lines tested. Substitutions at 7-position with esters group not necessarily affect the biological activity, but the nature of the esters group could exert an influence on the selectivity. Additionally, substitutions at 2-position influenced the cytotoxic activity of the compounds.
Xiao, Chaowen; Barnes, William J; Zamil, M Shafayet; Yi, Hojae; Puri, Virendra M; Anderson, Charles T
2017-03-01
Pectin is the most abundant component of primary cell walls in eudicot plants. The modification and degradation of pectin affects multiple processes during plant development, including cell expansion, organ initiation, and cell separation. However, the extent to which pectin degradation by polygalacturonases affects stem development and secondary wall formation remains unclear. Using an activation tag screen, we identified a transgenic Arabidopsis thaliana line with longer etiolated hypocotyls, which overexpresses a gene encoding a polygalacturonase. We designated this gene as POLYGALACTURONASE INVOLVED IN EXPANSION2 (PGX2), and the corresponding activation tagged line as PGX2 AT . PGX2 is widely expressed in young seedlings and in roots, stems, leaves, flowers, and siliques of adult plants. PGX2-GFP localizes to the cell wall, and PGX2 AT plants show higher total polygalacturonase activity and smaller pectin molecular masses than wild-type controls, supporting a function for this protein in apoplastic pectin degradation. A heterologously expressed, truncated version of PGX2 also displays polygalacturonase activity in vitro. Like previously identified PGX1 AT plants, PGX2 AT plants have longer hypocotyls and larger rosette leaves, but they also uniquely display early flowering, earlier stem lignification, and lodging stems with enhanced mechanical stiffness that is possibly due to decreased stem thickness. Together, these results indicate that PGX2 both functions in cell expansion and influences secondary wall formation, providing a possible link between these two developmental processes. © 2016 The Authors The Plant Journal © 2016 John Wiley & Sons Ltd.
Popowycz, Florence; Fournet, Guy; Schneider, Cédric; Bettayeb, Karima; Ferandin, Yoan; Lamigeon, Cyrile; Tirado, Oscar M; Mateo-Lozano, Silvia; Notario, Vicente; Colas, Pierre; Bernard, Philippe; Meijer, Laurent; Joseph, Benoît
2009-02-12
Pharmacological inhibitors of cyclin-dependent kinases (CDKs) have a wide therapeutic potential. Among the CDK inhibitors currently under clinical trials, the 2,6,9-trisubstituted purine (R)-roscovitine displays rather high selectivity, low toxicity, and promising antitumor activity. In an effort to improve this structure, we synthesized several bioisosteres of roscovitine. Surprisingly, one of them, pyrazolo[1,5-a]-1,3,5-triazine 7a (N-&-N1, GP0210), displayed significantly higher potency, compared to (R)-roscovitine and imidazo[2,1-f]-1,2,4-triazine 13 (N-&-N2, GP0212), at inhibiting various CDKs and at inducing cell death in a wide variety of human tumor cell lines. This approach may thus provide second generation analogues with enhanced biomedical potential.
Ollion, Jean; Loll, François; Cochennec, Julien; Boudier, Thomas; Escudé, Christophe
2015-01-01
The cell nucleus is a highly organized structure and plays an important role in gene regulation. Understanding the mechanisms that sustain this organization is therefore essential for understanding genome function. Centromeric regions (CRs) of chromosomes have been known for years to adopt specific nuclear positioning patterns, but the significance of this observation is not yet completely understood. Here, using a combination of fluorescence in situ hybridization and immunochemistry on fixed human cells and high-throughput imaging, we directly and quantitatively investigated the nuclear positioning of specific human CRs. We observe differential attraction of individual CRs toward both the nuclear border and the nucleoli, the former being enhanced in nonproliferating cells and the latter being enhanced in proliferating cells. Similar positioning patterns are observed in two different lymphoblastoid cell lines. Moreover, the positioning of CRs differs from that of noncentromeric regions, and CRs display specific orientations within chromosome territories. These results suggest the existence of not-yet-characterized mechanisms that drive the nuclear positioning of CRs and therefore pave the way toward a better understanding of how CRs affect nuclear organization. PMID:25947134
Li, Ning; Feng, Lin; Han, Hui-Qiong; Yuan, Jing; Qi, Xue-Kang; Lian, Yi-Fan; Kuang, Bo-Hua; Zhang, Yu-Chen; Deng, Cheng-Cheng; Zhang, Hao-Jiong; Yao, You-Yuan; Xu, Miao; He, Gui-Ping; Zhao, Bing-Chun; Gao, Ling; Feng, Qi-Sheng; Chen, Li-Zhen; Yang, Lu; Yang, Dajun; Zeng, Yi-Xin
2016-10-10
Despite advances in the development of radiation against nasopharyngeal carcinoma (NPC), the management of advanced NPC remains a challenge. Smac mimetics are designed to neutralize inhibitor of apoptosis (IAP) proteins, thus reactivating the apoptotic program in cancer cells. In this study, we investigated the effect of a novel bivalent Smac mimetic APG-1387 in NPC. In vitro, APG-1387 in combination with TNF-α potently decreased NPC cell viability by inducing apoptosis in majority of NPC cell lines. The in vitro antitumor effect was RIPK1-dependent, whereas it was independent on IAPs, USP11, or EBV. Of note, the inhibition of NF-κB or AKT pathway rendered resistant NPC cells responsive to the treatment of APG-1387/TNF-α. In vivo, APG-1387 displayed antitumor activity as a single agent at well-tolerated doses, even in an in vitro resistant cell line. In summary, our results demonstrate that APG-1387 exerts a potent antitumor effect on NPC. These findings support clinical evaluation of APG-1387 as a potential treatment for advanced NPC. Copyright © 2016. Published by Elsevier Ireland Ltd.
Human Corneal Limbal-Epithelial Cell Response to Varying Silk Film Geometric Topography In Vitro
Lawrence, Brian D.; Pan, Zhi; Liu, Aihong; Kaplan, David L.; Rosenblatt, Mark I.
2012-01-01
Silk fibroin films are a promising class of biomaterials that have a number of advantages for use in ophthalmic applications due to their transparent nature, mechanical properties and minimal inflammatory response upon implantation. Freestanding silk films with parallel line and concentric ring topographies were generated for in vitro characterization of human corneal limbal-epithelial (HCLE) cell response upon differing geometric patterned surfaces. Results indicated that silk film topography significantly affected initial HCLE culture substrate attachment, cellular alignment, cell-to-cell contact formation, actin cytoskeleton alignment, and focal adhesion (FA) localization. Most notably, parallel line patterned surfaces displayed a 36%–54% increase on average in initial cell attachment, which corresponded to an over 2-fold increase in FA localization when compared to other silk film surfaces and controls. In addition, distinct localization of FA formation was observed along the edges for all patterned silk film topographies. In conclusion, silk film feature topography appears to help direct corneal epithelial cell response and cytoskeleton development, especially in regards to FA distribution, in vitro. PMID:22705042
Garba, Abubakar; Desmarets, Lowiese M. B.; Acar, Delphine D.; Devriendt, Bert; Nauwynck, Hans J.
2017-01-01
Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes. PMID:29036224
Garba, Abubakar; Desmarets, Lowiese M B; Acar, Delphine D; Devriendt, Bert; Nauwynck, Hans J
2017-01-01
Mesenchymal stromal cells have been isolated from different sources. They are multipotent cells capable of differentiating into many different cell types, including osteocytes, chondrocytes and adipocytes. They possess a therapeutic potential in the management of immune disorders and the repair of damaged tissues. Previous work in our laboratory showed an increase of the percentages of CD172a+, CD14+, CD163+, Siglec-1+, CD4+ and CD8+ hematopoietic cells, when co-cultured with immortalized mesenchymal cells derived from bone marrow. The present work aimed to demonstrate the stemness properties of SV40-immortalized mesenchymal cells derived from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow and their immunomodulatory effect on blood monocytes. Mesenchymal cells from nasal mucosa, lungs, spleen, lymph nodes and red bone marrow were isolated and successfully immortalized using simian virus 40 large T antigen (SV40LT) and later, co-cultured with blood monocytes, in order to examine their differentiation stage (expression of Siglec-1). Flow cytometric analysis revealed that the five mesenchymal cell lines were positive for mesenchymal cell markers CD105, CD44, CD90 and CD29, but lacked the expression of myeloid cell markers CD16 and CD11b. Growth analysis of the cells demonstrated that bone marrow derived-mesenchymal cells proliferated faster compared with those derived from the other tissues. All five mesenchymal cell lines co-cultured with blood monocytes for 1, 2 and 7 days triggered the expression of siglec-1 in the monocytes. In contrast, no siglec-1+ cells were observed in monocyte cultures without mesenchymal cell lines. Mesenchymal cells isolated from nasal mucosa, lungs, spleen, lymph nodes and bone marrow were successfully immortalized and these cell lines retained their stemness properties and displayed immunomodulatory effects on blood monocytes.
Vinculin contributes to Cell Invasion by Regulating Contractile Activation
NASA Astrophysics Data System (ADS)
Mierke, Claudia Tanja
2008-07-01
Vinculin is a component of the focal adhesion complex and is described as a mechano-coupling protein connecting the integrin receptor and the actin cytoskeleton. Vinculin knock-out (k.o.) cells (vin-/-) displayed increased migration on a 2-D collagen- or fibronectin-coated substrate compared to wildtype cells, but the role of vinculin in cell migration through a 3-D connective tissue is unknown. We determined the invasiveness of established tumor cell lines using a 3-D collagen invasion assay. Gene expression analysis of 4 invasive and 4 non-invasive tumor cell lines revealed that vinculin expression was significantly increased in invasive tumor cell lines. To analyze the mechanisms by which vinculin increased cell invasion in a 3-D gel, we studied mouse embryonic fibroblasts wildtype and vin-/- cells. Wildtype cells were 3-fold more invasive compared vin-/- cells. We hypothesized that the ability to generate sufficient traction forces is a prerequisite for tumor cell migration in a 3-D connective tissue matrix. Using traction microscopy, we found that wildtype exerted 3-fold higher tractions on fibronectin-coated polyacrylamide gels compared to vin-/- cells. These results show that vinculin controls two fundamental functions that lead to opposite effects on cell migration in a 2-D vs. a 3-D environment: On the one hand, vinculin stabilizes the focal adhesions (mechano-coupling function) and thereby reduces motility in 2-D. On the other hand, vinculin is also a potent activator of traction generation (mechano-regulating function) that is important for cell invasion in a 3-D environment.
Flavopiridol sensitivity of cancer cells isolated from ascites and pleural fluids.
Richard, Christina; Matthews, Donald; Duivenvoorden, Wilhelmina; Yau, Jonathan; Wright, Paul S; Th'ng, John P H
2005-05-01
We examined the efficacy of flavopiridol, a cyclin-dependent kinase inhibitor that is undergoing clinical trials, on primary cancer cells isolated from the ascites or pleural fluids of patients with metastatic cancers. Metastasized cancer cells were isolated from the pleural fluids (n = 20) or ascites (n = 15) of patients, most of whom were refractory to chemotherapy. These primary cancer cells were used within 2 weeks of isolation without selecting for proliferative capacities. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability assay was used to characterize the response of these cancer cells to commonly used chemotherapeutic agents, and their response to flavopiridol was compared with rapidly dividing cultured cell lines. The primary cancer cells displayed phenotypes that were different from established cell lines; they had very low replication rates, dividing every 1 to 2 weeks, and underwent replicative senescence within five passages. These primary tumor cells retained their resistance to chemotherapeutic drugs exhibited by the respective patients but did not show cross-resistance to other agents. However, these cancer cells showed sensitivity to flavopiridol with an average LD50 of 50 nmol/L (range, 21.5-69 nmol/L), similar to the LD50 in established cell lines. Because senescent cells also showed similar sensitivity to flavopiridol, it suggests that the mechanism of action is not dependent on the activity of cyclin-dependent kinases that regulate the progression of the cell cycle. Using cancer cells isolated from the ascites or pleural fluids, this study shows the potential of flavopiridol against cancer cells that have developed resistance to conventional chemotherapeutic agents.
Starbuck, Kristen; Al-Alem, Linah; Eavarone, David A; Hernandez, Silvia Fatima; Bellio, Chiara; Prendergast, Jillian M; Stein, Jenna; Dransfield, Daniel T; Zarrella, Bianca; Growdon, Whitfield B; Behrens, Jeff; Foster, Rosemary; Rueda, Bo R
2018-05-01
Recurrent ovarian cancer (OvCa) is thought to result in part from the inability to eliminate rare quiescent cancer stem cells (CSCs) that survive cytotoxic chemotherapy and drive tumor resurgence. The Sialyl-Thomsen-nouveau antigen (STn) is a carbohydrate moiety present on protein markers of CSCs in pancreatic, colon, and gastric malignancies. We have demonstrated that human OvCa cell lines contain varying levels of cells that independently express either STn or the ovarian CSC marker CD133. Here we determine co-expression of STn and CD133 in a subset of human OvCa cell lines. Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn + cells display some CSC features. The effect of the anti-STn antibody-drug conjugates (ADCs) S3F-CL-MMAE and 2G12-2B2-CL-MMAE on OvCa cell viability in vitro and in vivo was also assessed. Treatment with S3F-CL-MMAE reduced the viability of two of three OvCa cell lines in vitro and exposure to either S3F-CL-MMAE or 2G12-2B2-CL-MMAE reduced OVCAR3-derived xenograft volume in vivo , depleting STn + tumor cells. In summary, STn + cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn + CSC and STn + non-CSC populations.
Khamehchian, Sedigheh; Nikkhah, Maryam; Madani, Rasool; Hosseinkhani, Saman
2016-11-01
Functionalization of gold nanoparticles (GNPs) is suitable for many applications such as biomedical imaging, clinical diagnosis, and targeted delivery by conjugating cell-penetrating peptides (CPPs). Here, we investigated intracellular uptake of GNP conjugated to MCaUF1-9(Ala) , a CPP derived from maurocalcine (MCa) animal toxin, and compared it with TAT functionalized GNP. Peptide conjugated GNP was characterized using UV-Visible spectroscopy, dynamic light scattering, zeta potential, and transmission electron microscopy. Uptake of MCaUF1-9(Ala) and TAT functionalized GNPs was evaluated in three cell lines, HeLa, MDA-MB-231, and A431, using dark field imaging and atomic absorption spectroscopy. According to peptide sequences and type of cells different cell penetrating activity was observed. Peptide functionalized GNP had little effect on cell viability and respect to net charge difference between peptide, showed interesting selectivity against three cell types. Peptide conjugated to GNPs displayed higher uptake than bare GNPs in the all cell lines except HeLa cell with lowest internalization. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2693-2700, 2016. © 2016 Wiley Periodicals, Inc.
Thyroid Hormone Differentially Modulates Warburg Phenotype in Breast Cancer Cells
Suhane, Sonal; Ramanujan, V Krishnan
2011-01-01
Sustenance of cancer cells in vivo critically depends on a variety of genetic and metabolic adaptations. Aerobic glycolysis or Warburg effect has been a defining biochemical hallmark of transformed cells for more than five decades although a clear molecular basis of this observation is emerging only in recent years. In this study, we present our findings that thyroid hormone exerts its non-genomic and genomic actions in two model human breast cancer cell lines differentially. By laying a clear foundation for experimentally monitoring the Warburg phenotype in living cancer cells, we demonstrate that thyroid hormone-induced modulation of bioenergetic profiles in these two model cell lines depends on the degree of Warburg phenotype that they display. Further we also show that thyroid hormone can sensitize mitochondria in aggressive, triple-negative breast cancer cells favorably to increase the chemotherapeutic efficacy in these cells. Even though the role of thyroid hormone in modulating mitochondrial metabolism has been known, the current study accentuates the critical role it plays in modulating Warburg phenotype in breast cancer cells. The clinical significance of this finding is the possibility to devise strategies for metabolically modulating aggressive triple-negative tumors so as to enhance their chemosensitivity in vivo. PMID:21945435
Color moiré simulations in contact-type 3-D displays.
Lee, B-R; Son, J-Y; Chernyshov, O O; Lee, H; Jeong, I-K
2015-06-01
A new method of color moiré fringe simulation in the contact-type 3-D displays is introduced. The method allows simulating color moirés appearing in the displays, which cannot be approximated by conventional cosine approximation of a line grating. The color moirés are mainly introduced by the line width of the boundary lines between the elemental optics in and plate thickness of viewing zone forming optics. This is because the lines are hiding some parts of pixels under the viewing zone forming optics, and the plate thickness induces a virtual contraction of the pixels. The simulated color moiré fringes are closely matched with those appearing at the displays.
The in-vitro and in-vivo inhibitory activity of biflorin in melanoma.
Vasconcellos, Marne C; Bezerra, Daniel P; Fonseca, Aluísio M; Araújo, Ana Jérsia; Pessoa, Cláudia; Lemos, Telma L G; Costa-Lotufo, Letícia V; de Moraes, Manoel Odorico; Montenegro, Raquel C
2011-04-01
Biflorin, an ortho-naphthoquinone, is an active compound found in the roots of Capraria biflora L. It has been reported that biflorin presents anticancer activity, inhibiting both tumor cell line growth in culture and tumor development in mice. The aim of this study was to examine the effectiveness of biflorin treatment using both in-vitro and in-vivo melanoma models. Biflorin displayed considerable cytotoxicity against all tested cell lines, with half maximal inhibitory concentration values ranging from 0.58 μg/ml in NCI H23 (human lung adenocarcinoma) to 14.61 μg/ml in MDA-MB-231 (human breast cancer) cell lines. In a second set of experiments using B16 melanoma cells as a model, biflorin reduced cell viability but did not cause significant increase in the number of nonviable cells. In addition, the DNA synthesis was significantly inhibited. Flow cytometry analysis showed that biflorin may lead to an apoptotic death in melanoma cells, inducing DNA fragmentation and mitochondria depolarization, without affecting membrane integrity. In B16 melanoma-bearing mice, administration of biflorin (25mg/day) for 10 days inhibited tumor growth, and also increased the mean survival rate from 33.3±0.9 days (control) to 44.5±3.4 days (treated). Our findings suggest that biflorin may be considered as a promising lead compound for designing new drugs to be used in the treatment of melanoma.
Morphologic differentiation of colon carcinoma cell lines HT-29 and HT-29KM in rotating-wall vessels
NASA Technical Reports Server (NTRS)
Goodwin, T. J.; Jessup, J. M.; Wolf, D. A.
1992-01-01
A new low shear stress microcarrier culture system has been developed at NASA's Johnson Space Center that permits three-dimensional tissue culture. Two established human colon adenocarcinoma cell lines, HT-29, an undifferentiated, and HT-29KM, a stable, moderately differentiated subline of HT-29, were grown in new tissue culture bioreactors called Rotating-Wall Vessels (RWVs). RWVs are used in conjunction with multicellular cocultivation to develop a unique in vitro tissue modeling system. Cells were cultivated on Cytodex-3 microcarrier beads, with and without mixed normal human colonic fibroblasts, which served as the mesenchymal layer. Culture of the tumor lines in the absence of fibroblasts produced spheroidlike growth and minimal differentiation. In contrast, when tumor lines were co-cultivated with normal colonic fibroblasts, initial growth was confined to the fibroblast population until the microcarriers were covered. The tumor cells then commenced proliferation at an accelerated rate, organizing themselves into three-dimensional tissue masses that achieved 1.0- to 1.5-cm diameters. The masses displayed glandular structures, apical and internal glandular microvilli, tight intercellular junctions, desmosomes, cellular polarity, sinusoid development, internalized mucin, and structural organization akin to normal colon crypt development. Differentiated samples were subjected to transmission and scanning electron microscopy and histologic analysis, revealing embryoniclike mesenchymal cells lining the areas around the growth matrices. Necrosis was minimal throughout the tissue masses. These data suggest that the RWV affords a new model for investigation and isolation of growth, regulatory, and structural processes within neoplastic and normal tissue.
Gays, F; Unnikrishnan, M; Shrestha, S; Fraser, K P; Brown, A R; Tristram, C M; Chrzanowska-Lightowlers, Z M; Brooks, C G
2000-05-15
As a potential means for facilitating studies of NK cell-related molecules, we examined the expression of these molecules on a range of mouse tumor cell lines. Of the lines we initially examined, only EL4 and RMA expressed such molecules, both lines expressing several members of the Ly49 and NKRP1 families. Unexpectedly, several of the NK-related molecules, together with certain other molecules including CD2, CD3, CD4, CD32, and CD44, were often expressed in a mosaic manner, even on freshly derived clones, indicating frequent switching in expression. In each case examined, switching was controlled at the mRNA level, with expression of CD3zeta determining expression of the entire CD3-TCR complex. Each of the variable molecules was expressed independently, with the exception that CD3 was restricted to cells that also expressed CD2. Treatment with drugs that affect DNA methylation and histone acetylation could augment the expression of at least some of the variable molecules. The striking phenotypic similarity between EL4 and RMA led us to examine the state of their TCRbeta genes. Both lines had identical rearrangements on both chromosomes, indicating that RMA is in fact a subline of EL4. Overall, these findings suggest that EL4 is an NK-T cell tumor that may have retained a genetic mechanism that permits the variable expression of a restricted group of molecules involved in recognition and signaling.
Belotte, Jimmy; Fletcher, Nicole M; Awonuga, Awoniyi O; Alexis, Mitchell; Abu-Soud, Husam M; Saed, Mohammed G; Diamond, Michael P; Saed, Ghassan M
2014-04-01
To investigate the role of oxidative stress in the development of cisplatin resistance in epithelial ovarian cancer (EOC). Two parent EOC cell lines (MDAH-2774 and SKOV-3) and their chemoresistant counterparts (cisplatin, 50 µmol/L) were used. Total RNA was extracted and subjected to real-time reverse transcriptase polymerase chain reaction to evaluate the expression of glutathione reductase (GSR) and inducible nitric oxide synthase (iNOS), as well as nitrate/nitrite levels. Analysis of variance was used for main effects and Tukey for post hoc analysis at P < .05 for statistical significance. Both cisplatin resistant cell lines displayed a significant decrease in GSR messenger RNA (mRNA) levels and activity (P < .01). As compared to sensitive controls, nitrate/nitrite levels were significantly higher in SKOV-3 cisplatin resistant cells while iNOS mRNA levels were significantly higher in MDAH-2774 cisplatin resistant cells (P < .05). Our data suggest that the development of cisplatin resistance tilts the balance toward a pro-oxidant state in EOC.
Wang, Gang; Lim, Siew Pheng; Chen, Yen-Liang; Hunziker, Jürg; Rao, Ranga; Gu, Feng; Seh, Cheah Chen; Ghafar, Nahdiyah Abdul; Xu, Haoying; Chan, Katherine; Lin, Xiaodong; Saunders, Oliver L; Fenaux, Martijn; Zhong, Weidong; Shi, Pei-Yong; Yokokawa, Fumiaki
2018-05-03
To identify a potent and selective nucleoside inhibitor of dengue virus RNA-dependent RNA polymerase, a series of 2'- and/or 4'-ribose sugar modified uridine nucleoside phosphoramidate prodrugs and their corresponding triphosphates were synthesized and evaluated. Replacement of 2'-OH with 2'-F led to be a poor substrate for both dengue virus and human mitochondrial RNA polymerases. Instead of 2'-fluorination, the introduction of fluorine at the ribose 4'-position was found not to affect the inhibition of the dengue virus polymerase with a reduction in uptake by mitochondrial RNA polymerase. 2'-C-ethynyl-4'-F-uridine phosphoramidate prodrug displayed potent anti-dengue virus activity in the primary human peripheral blood mononuclear cell-based assay with no significant cytotoxicity in human hepatocellular liver carcinoma cell lines and no mitochondrial toxicity in the cell-based assay using human prostate cancer cell lines. Copyright © 2018 Elsevier Ltd. All rights reserved.
Reid, Paul; Wilson, Puthenparampil; Li, Yanrui; Marcu, Loredana G; Staudacher, Alexander H; Brown, Michael P; Bezak, Eva
2017-01-01
Some head and neck squamous cell carcinomas (HNSCC) have a distinct aetiology, which depends on the presence of oncogenic human papilloma virus (HPV). Also, HNSCC contains cancer stem cells (CSCs) that have greater radioresistance and capacity to change replication dynamics in response to irradiation compared to non-clonogenic cells. Since there is limited data on CSCs in HNSCC as a function of HPV status, better understanding of their radiobiology may enable improved treatment outcome. Baseline and post-irradiation changes in CSC proportions were investigated by flow cytometry in a HPV-negative (UM-SCC-1) and a HPV-positive (UM-SCC-47) HNSCC cell line, using fluorescent staining with CD44/ALDH markers. CSC proportions in both irradiated and unirradiated cultures were compared for the two cell lines at various times post-irradiation. To assess repopulation of CSCs, untreated cultures were depleted of CD44+/ALDH+ cells and re-cultured for 3 weeks before flow cytometry analysis. CSC proportions in untreated cell lines were 0.57% (UM-SCC-1) and 2.87% (UM-SCC-47). Untreated cell lines depleted of CD44+/ALDH+ repopulated this phenotype to a mean of 0.15% (UM-SCC-1) and 6.76% (UM-SCC-47). All UM-SCC-47 generations showed elevated CSC proportions after irradiation, with the most significant increase at 2 days post-irradiation. The highest elevation in UM-SCC-1 CSCs was observed at 1 day post-irradiation in the 2nd generation and at 3 days after irradiation in the 3rd generation. When measured after 10 days, only the 3rd generation of UM-SCC-1 showed elevated CSCs. CSC proportions in both cell lines were elevated after exposure and varied with time post irradiation. UM-SCC-47 displayed significant plasticity in repopulating the CSC phenotype in depleted cultures, which was not seen in UM-SCC-1.
Lee, Hyun A; Castro-Aceituno, Veronica; Abbai, Ragavendran; Moon, Seong Soo; Kim, Yeon-Ju; Simu, Shakina Yesmin; Yang, Deok Chun
2018-03-29
The water extract of Anemarrhena asphodeloides, the traditional oriental medicinal plant, mediated the eco-friendly synthesis of silver nanoparticles (Aa-AgNPs) and gold nanoparticles (Aa-AuNPs). First, its therapeutic rhizome was powdered prior to water extraction and then silver, gold nanoparticles were synthesized. Aa-AgNPs and Aa-AuNPs were found to be spherical, face-centred cubic nanocrystals with a Z-average hydrodynamic diameter of 190 and 258 nm, respectively. In addition, proteins and aromatic biomolecules were the plausible players associated with the production and stabilization of Aa-AgNPs; instead, phenolic compounds were responsible for the synthesis and stability of Aa-AuNPs. In vitro cytotoxic analysis revealed that up to 50 μg.mL -1 concentration Aa-AuNPs did not exhibit any toxicity on 3T3-L1, HT29 and MCF7 cell lines, while being specifically cytotoxic to A549 cell line. On the contrary, Aa-AgNPs displayed a significantly higher toxicity in comparison to Aa-AuNPs in all cell lines specially MCF7 cell line. Since cancer cells were more sensitive to Aa-Au/AgNPs treatments, further evaluation was done in order to determine their anticancer potential. Reactive oxygen species (ROS) generation was not affected by Aa-AuNPs, on the other hand, Aa-AgNPs treatment exhibited a higher potential to induce oxidative stress in A549 cells than HT29 and MCF7 cells. In addition, Aa-Ag/AuNPs reduced cell migration in A549 cells at 10 and 50 μg.mL -1 , respectively. So far, this is the only report uncovering the ability of A. asphodeloides to synthesize silver and gold nanoparticles with anticancer potential and also indirectly enabling its large-scale utilization with value addition.
Hacker, Ulrich T; Schildhauer, Ines; Barroso, Margarita Céspedes; Kofler, David M; Gerner, Franz M; Mysliwietz, Josef; Buening, Hildegard; Hallek, Michael; King, Susan B S
2006-05-01
The modulated expression of MHC class I on tumour tissue is well documented. Although the effect of MHC class I expression on the tumorigenicity and immunogenicity of MHC class I negative tumour cell lines has been rigorously studied, less is known about the validity of gene transfer and selection in cell lines with a mixed MHC class I phenotype. To address this issue we identified a C26 cell subline that consists of distinct populations of MHC class I (H-2D/K) positive and negative cells. Transient transfection experiments using liposome-based transfer showed a lower transgene expression in MHC class I negative cells. In addition, MHC class I negative cells were more sensitive to antibiotic selection. This led to the generation of fully MHC class I positive cell lines. In contrast to C26 cells, all transfectants were rejected in vivo and induced protection against the parental tumour cells in rechallenge experiments. Tumour cell specificity of the immune response was demonstrated in in vitro cytokine secretion and cytotoxicity assays. Transfectants expressing CD40 ligand and hygromycin phosphotransferase were not more immunogenic than cells expressing hygromycin resistance alone. We suggest that the MHC class I positive phenotype of the C26 transfectants had a bearing on their immunogenicity, because selected MHC class I positive cells were more immunogenic than parental C26 cells and could induce specific anti-tumour immune responses. These data demonstrate that the generation of tumour cell transfectants can lead to the selection of subpopulations that show an altered phenotype compared to the parental cell line and display altered immunogenicity independent of selection marker genes or other immune modulatory genes. Our results show the importance of monitoring gene transfer in the whole tumour cell population, especially for the evaluation of in vivo therapies targeted to heterogeneous tumour cell populations.
Wit, Niek; Buoninfante, Olimpia Alessandra; van den Berk, Paul C.M.; Jansen, Jacob G.; Hogenbirk, Marc A.; de Wind, Niels; Jacobs, Heinz
2015-01-01
Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (PcnaK164R) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage. PMID:25505145
Sak, Katrin; Kasemaa, Kristi; Everaus, Hele
2016-09-14
Despite numerous studies chronic lymphocytic leukemia (CLL) still remains an incurable disease. Therefore, all new compounds and novel strategies which are able to eradicate CLL cells should be considered as valuable clues for a potential future remedy against this malignancy. In the present study, the cytotoxic profiles of natural flavonoids were described in two human CLL cell lines, HG-3 and EHEB, indicating the flavone luteolin as the most potent flavonoid with half-maximal inhibitory constants (IC50) of 37 μM and 26 μM, respectively. Luteolin significantly increased the apoptotic cell population in both cell lines by increasing the activities of caspases-3 and -9 and triggering the intrinsic apoptotic pathway. Two flavonols, fisetin and quercetin, were somewhat less efficient in suppressing cellular viability, whereas baicalein, chrysin, (+)-catechin and hesperetin exerted only a small or no response at doses as high as 100 μM. Both fisetin and quercetin were able to augment the cytotoxic activity of luteolin in both cell lines by reducing the IC50 values up to four fold. As a result of this, luteolin displayed cytotoxicity activity already at low micromolar concentrations that could potentially be physiologically achievable through oral ingestion. No other tested flavonoids were capable of sensitizing CLL cells to luteolin pointing to a specific binding of fisetin and quercetin to the cellular targets which interfere with the signaling pathways induced by luteolin. Although further molecular studies to unravel this potentiating mechanism are certainly needed, this phenomenon could contribute to future remedies for prevention and treatment of chronic lymphocytic leukemia.
Antiradical and cytotoxic activity of different Helichrysum plicatum flower extracts.
Bigović, Dubravka; Savikin, Katarina; Janković, Teodora; Menković, Nebojsa; Zdunić, Gordana; Stanojković, Tatjana; Djurić, Zorica
2011-06-01
Flowers of Helichrysum plicatum were extracted under different experimental conditions, and their antioxidant activity was determined by DPPH radical scavenging assay. Extracts obtained with higher concentration of ethyl acetate (90% or 100%) were found to contain the greatest amount of total phenolics (> 250 mg gallic acid equivalents/g of dried extract), and high correlation between total phenolic content and antiradical activity was observed (r = -0.79). Based on the total phenolic content and antiradical activity, some extracts were selected for investigation of cytotoxic activity toward PC3, HeLa and K562 human cancer cell lines in vitro. All tested extracts exhibited moderate activity against HeLa cells (41.9-42.1 microg/mL), whereas the extract obtained with 100% ethyl acetate was the most active against K562 and PC3 cell lines (25.9 and 39.2 microg/mL, respectively). Statistical analysis revealed significant correlation between total phenolic content and cytotoxic activity against PC3 and K562 cells. HPLC identification of phenolic compounds from the extracts indicated the presence of apigenin, naringenin and kaempferol as free aglycones, and glycosides of apigenin, naringenin, quercetin and kaempferol. Among aglycones, kaempferol displayed moderate cytostatic activity against all cell lines (24.8-64.7 microM).
Infectivity of five different types of macrophages by Leishmania infantum.
Maia, C; Rolão, N; Nunes, M; Gonçalves, L; Campino, L
2007-08-01
Leishmania are intracellular parasites that multiply as the amastigote form in the macrophages of their vertebrate hosts. Since vaccines against leishmaniases are still under development, the control of these diseases relies on prompt diagnosis and chemotherapy in infected humans as well as in dogs, which are the main reservoir of Leishmania infantum, in Mediterranean countries. To establish the macrophage type to be used as an in vitro model for antileishmanial chemotherapeutic studies, we analysed the susceptibility of human peripheral blood derived macrophages, macrophages derived from mouse bone marrow, mouse peritoneal macrophages and macrophages differentiated from cell lines U-937 and DH82 to infection by two L. infantum strains, one obtained from a human leishmanial infection and other from a canine infection. Both strains displayed comparable behaviour in their capacity of infecting the different macrophage types. Human peripheral blood macrophages and DH82 cells were less infectable by both strains. U-937, mouse peritoneal macrophages and mouse bone marrow derived macrophages are the most active cells to phagocytose the parasites. However, U-937 cell line appears to be the most useful as Leishmania infection model providing an unlimited source of homogeneous host cells with reproducibility of the results, is less time consuming, less expensive and tolerate high doses of first line drugs for human and canine visceral leishmaniasis treatment.
The role of telomeres in Etoposide induced tumor cell death.
Jeyapalan, Jessie; Leake, Alan; Ahmed, Shaheda; Saretzki, Gabriele; Tilby, Michael; von Zglinicki, Thomas
2004-09-01
Etoposide, a topoisomerase II poison is used in the treatment of a number of solid tumors. Contradictory data exist on the role of the telomere/telomerase complex in etoposide induced apoptosis. Therefore we examined the effects of etoposide treatment in the neuroblastoma cell line SHSY5Y, with very short telomeres and the acute lymphoblastic T cell line 1301, which displays extremely long telomeres. Both short-term and continuous exposure to the drug were examined. Etoposide induced widespread DNA damage followed by DNA damage foci formation and ultimately growth arrest and apoptosis in a concentration-dependent manner. However, length of telomeres and of single stranded telomeric G rich overhangs did not change significantly under the treatments in any cell line. There was no significant induction of single-strand breaks in the G-rich strand of telomeres. Telomerase activity was transiently upregulated under low concentrations of etoposide, while high concentrations resulted in decreased telomerase activity only after onset of apoptosis. Telomerase overexpression protected against etoposide induced apoptosis in fibroblasts. The data suggest that telomeres are not major signal transducers towards growth arrest or apoptosis after etoposide treatment. However, upregulation of telomerase might be part of an attempted adaptative response, which protects cells by a mechanism that might be independent of telomere length maintenance.
Middlemiss, Shiloh M.C.; Wen, Victoria W.; Clifton, Molly; Kwek, Alan; Liu, Bing; Mayoh, Chelsea; Bongers, Angelika; Karsa, Mawar; Pan, Sukey; Cruikshank, Sarah; Scandlyn, Marissa; Hoang, Wendi; Imamura, Toshihiko; Kees, Ursula R.; Gudkov, Andrei V.; Chernova, Olga B.
2016-01-01
There is an urgent need for the development of less toxic, more selective and targeted therapies for infants with leukemia characterized by translocation of the mixed lineage leukemia (MLL) gene. In this study, we performed a cell-based small molecule library screen on an infant MLL-rearranged (MLL-r) cell line, PER-485, in order to identify selective inhibitors for MLL-r leukemia. After screening initial hits for a cytotoxic effect against a panel of 30 cell lines including MLL-r and MLL wild-type (MLL-wt) leukemia, solid tumours and control cells, small molecule CCI-007 was identified as a compound that selectively and significantly decreased the viability of a subset of MLL-r and related leukemia cell lines with CALM-AF10 and SET-NUP214 translocation. CCI-007 induced a rapid caspase-dependent apoptosis with mitochondrial depolarization within twenty-four hours of treatment. CCI-007 altered the characteristic MLL-r gene expression signature in sensitive cells with downregulation of the expression of HOXA9, MEIS1, CMYC and BCL2, important drivers in MLL-r leukemia, within a few hours of treatment. MLL-r leukemia cells that were resistant to the compound were characterised by significantly higher baseline gene expression levels of MEIS1 and BCL2 in comparison to CCI-007 sensitive MLL-r leukemia cells. In conclusion, we have identified CCI-007 as a novel small molecule that displays rapid toxicity towards a subset of MLL-r, CALM-AF10 and SET-NUP214 leukemia cell lines. Our findings suggest an important new avenue in the development of targeted therapies for these deadly diseases and indicate that different therapeutic strategies might be needed for different subtypes of MLL-r leukemia. PMID:27317766
Rodor, Julie; FitzPatrick, David R; Eyras, Eduardo; Cáceres, Javier F
2017-01-02
Mutations in the RNA-binding protein, RBM10, result in a human syndromic form of cleft palate, termed TARP syndrome. A role for RBM10 in alternative splicing regulation has been previously demonstrated in human cell lines. To uncover the cellular functions of RBM10 in a cell line that is relevant to the phenotype observed in TARP syndrome, we used iCLIP to identify its endogenous RNA targets in a mouse embryonic mandibular cell line. We observed that RBM10 binds to pre-mRNAs with significant enrichment in intronic regions, in agreement with a role for this protein in pre-mRNA splicing. In addition to protein-coding transcripts, RBM10 also binds to a variety of cellular RNAs, including non-coding RNAs, such as spliceosomal small nuclear RNAs, U2 and U12. RNA-seq was used to investigate changes in gene expression and alternative splicing in RBM10 KO mouse mandibular cells and also in mouse ES cells. We uncovered a role for RBM10 in the regulation of alternative splicing of common transcripts in both cell lines but also identified cell-type specific events. Importantly, those pre-mRNAs that display changes in alternative splicing also contain RBM10 iCLIP tags, suggesting a direct role of RBM10 in these events. Finally, we show that depletion of RBM10 in mouse ES cells leads to proliferation defects and to gross alterations in their differentiation potential. These results demonstrate a role for RBM10 in the regulation of alternative splicing in two cell models of mouse early development and suggests that mutations in RBM10 could lead to splicing changes that affect normal palate development and cause human disease.
Zhang, Fanglin; Lin, Hechun; Gu, Aiqin; Li, Jing; Liu, Lei; Yu, Tao; Cui, Yongqi; Deng, Wei; Yan, Mingxia; Li, Jinjun; Yao, Ming
2014-05-06
To identify cancer-related proteins, we used isobaric tags in a relative and absolute quantitation (iTRAQ) proteomic approach and SWATH™ quantification approach to analyze the secretome of an isogenic pair of highly metastatic and low metastatic non-small-cell lung cancer (NSCLC) cell lines. In addition, we compared two groups of pooled serum samples (12 early-stage and 12 late-stage patients) to mine data for candidates screened by iTRAQ-labeled proteomic analysis. A total of 110 proteins and 71 proteins were observed to be significantly differentially expressed in the cell line secretome and NSCLC sera, respectively. Among these proteins, CD109 was found to be highly expressed in both the highly metastatic cell line secretome and the group of late-stage patients. A sandwich ELISA assay also demonstrated an elevation of serum CD109 levels in individual NSCLC patients (n=30) compared with healthy subjects (n=19). Furthermore, CD109 displayed higher expression in lung cancer tissues compared with their matched noncancerous lung tissues (n=72). In addition, the knockdown of CD109 influenced several NSCLC cell bio-functions, for instance, depressing cell growth, affecting cell cycle phases. These phenomena suggest that CD109 plays a critical role in NSCLC progression. We simultaneously applied two quantitative proteomic approaches-iTRAQ-labeling and SWATH™-to analyze the secretome of metastatic cell lines, in order to explore the cancer-associated proteins in conditioned media. In this study, our results indicate that CD109 plays a critical role in non-small-cell lung cancer (NSCLC) progression, and is overexpressed in advanced NSCLC. Copyright © 2014 Elsevier B.V. All rights reserved.
Yagita, M; Huang, C L; Umehara, H; Matsuo, Y; Tabata, R; Miyake, M; Konaka, Y; Takatsuki, K
2000-05-01
We present the establishment of a natural killer (NK) leukemia cell line, designated KHYG-1, from the blood of a patient with aggressive NK leukemia, which both possessed the same p53 point mutation. The immunophenotype of the primary leukemia cells was CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16+, CD56+, CD57+ and HLA-DR+. A new cell line (KHYG-1) was established by culturing peripheral leukemia cells with 100 units of recombinant interleukin (IL)-2. The KHYG-1 cells showed LGL morphology with a large nucleus, coarse chromatin, conspicuous nucleoli, and abundant basophilic cytoplasm with many azurophilic granules. The immunophenotype of KHYG-1 cells was CD1-, CD2+, surface CD3-, cytoplasmic CD3epsilon+, CD7+, CD8alphaalpha+, CD16-, CD25-, CD33+, CD34-, CD56+, CD57-, CD122+, CD132+, and TdT-. Southern blot analysis of these cells revealed a normal germline configuration for the beta, delta, and gamma chains of the T cell receptor and the immunoglobulin heavy-chain genes. Moreover, the KHYG-1 cells displayed NK cell activity and IL-2-dependent proliferation in vitro, suggesting that they are of NK cell origin. Epstein-Barr virus (EBV) DNA was not detected in KHYG-1 cells by Southern blot analysis with a terminal repeat probe from an EBV genome. A point mutation in exon 7 of the p53 gene was detected in the KHYG-1 cells by PCR/SSCP analysis, and direct sequencing revealed the conversion of C to T at nucleotide 877 in codon 248. The primary leukemia cells also carried the same point mutation. Although the precise role of the p53 point mutation in leukemogenesis remains to be clarified, the establishment of an NK leukemia cell line with a p53 point mutation could be valuable in the study of leukemogenesis.
Desantis, Salvatore; Accogli, Gianluca; Zizza, Sara; Arrighi, Silvana
2013-09-01
The glycoprotein pattern was investigated by lectin histochemistry in the urothelium lining the urinary bladder of the donkey Equus asinus. Tissue sections were stained with a panel of twelve lectins, in combination with saponification and sialidase digestion (K-s). The urinary bladder urothelium has three distinct layers from the basal zone to the lumen consisting of basal, intermediate and superficial cells (umbrella cells). Cytoplasm of basal cells reacted with SNA, PNA, K-s-PNA, GSA I-B4 and Con A showing glycans ending with Neu5Acα2,6Gal/GalNAc, Neu5AcGalβ1,3GalNAc, αGal and with terminal/internal αMan. The cytoplasm of umbrella cells displayed an increase of Neu5AcGalβ1,3GalNAc and the appearance of Neu5AcGalβ1,3GalNAc, Neu5acα2,3Galβ1,4GlcNAc and Neu5AcGalNAc residues (MAL II, K-s-SBA and K-s-HPA staining). Scattered umbrella cells were characterized by glycans terminating with GalNAc binding DBA, SBA and HPA. The mucosa forms folds with a crypt-like appearance where the urothelium shows a different pattern of glycans. The bladder luminal surface stained with K-s-PNA, K-s-DBA, KOH-s-SBA, and K-s-HPA displaying a coating of sialoglycoproteins belonging to O-linked glycans (typical secretory moieties). These findings show that different glycosylation patterns exist along the donkey bladder urothelium, and different sub-populations of umbrella cells are present secreting the sialoglycans which constitute the protective gel layer lining the bladder. Copyright © 2013 Elsevier GmbH. All rights reserved.
Yu, Bing; Ni, Ming; Li, Wen-Han; Lei, Ping; Xing, Wei; Xiao, Dai-Wen; Huang, Yu; Tang, Zhen-Jie; Zhu, Hui-Fen; Shen, Guan-Xin
2005-07-14
To identify the scFv antibody fragments specific for hepatocellular carcinoma by biopanning from a large human naive scFv phage display library. A large human naive scFv phage library was used to search for the specific targets by biopanning with the hepatocellular carcinoma cell line HepG2 for the positive-selecting and the normal liver cell line L02 for the counter-selecting. After three rounds of biopanning, individual scFv phages binding selectively to HepG2 cells were picked out. PCR was carried out for identification of the clones containing scFv gene sequence. The specific scFv phages were selected by ELISA and flow cytometry. DNA sequences of positive clones were analyzed by using Applied Biosystem Automated DNA sequencers 3 730. The expression proteins of the specific scFv antibody fragments in E.coli HB2151 were purified by the affinity chromatography and detected by SDS-PAGE, Western blot and ELISA. The biological effect of the soluble antibody fragments on the HepG2 cells was investigated by observing the cell proliferation. Two different positive clones were obtained and the functional variable sequences were identified. Their DNA sequences of the scFv antibody fragments were submitted to GenBank (accession nos: AY686498 and AY686499). The soluble scFv antibody fragments were successfully expressed in E.coli HB2151. The relative molecular mass of the expression products was about 36 ku, according to its predicted M(r) value. The two soluble scFv antibody fragments also had specific binding activity and obvious growth inhibition properties to HepG2 cells. The phage library biopanning permits identification of specific antibody fragments for hepatocellular carcinoma and affords experiment evidence for its immunotherapy study.
Self-assembled Nanomaterials for Chemotherapeutic Applications
NASA Astrophysics Data System (ADS)
Shieh, Aileen
The self-assembly of short designed peptides into functional nanostructures is becoming a growing interest in a wide range of fields from optoelectronic devices to nanobiotechnology. In the medical field, self-assembled peptides have especially attracted attention with several of its attractive features for applications in drug delivery, tissue regeneration, biological engineering as well as cosmetic industry and also the antibiotics field. We here describe the self-assembly of peptide conjugated with organic chromophore to successfully deliver sequence independent micro RNAs into human non-small cell lung cancer cell lines. The nanofiber used as the delivery vehicle is completely non-toxic and biodegradable, and exhibit enhanced permeability effect for targeting malignant tumors. The transfection efficiency with nanofiber as the delivery vehicle is comparable to that of the commercially available RNAiMAX lipofectamine while the toxicity is significantly lower. We also conjugated the peptide sequence with camptothecin (CPT) and observed the self-assembly of nanotubes for chemotherapeutic applications. The peptide scaffold is non-toxic and biodegradable, and drug loading of CPT is high, which minimizes the issue of systemic toxicity caused by extensive burden from the elimination of drug carriers. In addition, the peptide assembly drastically increases the solubility and stability of CPT under physiological conditions in vitro, while active CPT is gradually released from the peptide chain under the slight acidic tumor cell environment. Cytotoxicity results on human colorectal cancer cells and non-small cell lung cancer cell lines display promising anti-cancer properties compared to the parental CPT drug, which cannot be used clinically due to its poor solubility and lack of stability in physiological conditions. Moreover, the peptide sequence conjugated with 5-fluorouracil formed a hydrogel with promising topical chemotherapeutic applications that also display increased stability and controlled release of the active drug in vitro.
Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization.
Roberts, Brock; Haupt, Amanda; Tucker, Andrew; Grancharova, Tanya; Arakaki, Joy; Fuqua, Margaret A; Nelson, Angelique; Hookway, Caroline; Ludmann, Susan A; Mueller, Irina A; Yang, Ruian; Horwitz, Rick; Rafelski, Susanne M; Gunawardane, Ruwanthi N
2017-10-15
We present a CRISPR/Cas9 genome-editing strategy to systematically tag endogenous proteins with fluorescent tags in human induced pluripotent stem cells (hiPSC). To date, we have generated multiple hiPSC lines with monoallelic green fluorescent protein tags labeling 10 proteins representing major cellular structures. The tagged proteins include alpha tubulin, beta actin, desmoplakin, fibrillarin, nuclear lamin B1, nonmuscle myosin heavy chain IIB, paxillin, Sec61 beta, tight junction protein ZO1, and Tom20. Our genome-editing methodology using Cas9/crRNA ribonuclear protein and donor plasmid coelectroporation, followed by fluorescence-based enrichment of edited cells, typically resulted in <0.1-4% homology-directed repair (HDR). Twenty-five percent of clones generated from each edited population were precisely edited. Furthermore, 92% (36/39) of expanded clonal lines displayed robust morphology, genomic stability, expression and localization of the tagged protein to the appropriate subcellular structure, pluripotency-marker expression, and multilineage differentiation. It is our conclusion that, if cell lines are confirmed to harbor an appropriate gene edit, pluripotency, differentiation potential, and genomic stability are typically maintained during the clonal line-generation process. The data described here reveal general trends that emerged from this systematic gene-tagging approach. Final clonal lines corresponding to each of the 10 cellular structures are now available to the research community. © 2017 Roberts, Haupt, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Preparation and characterization of monoclonal antibody against digoxin.
Kashanian, S; Rasaee, M J; Paknejad, M; Omidfar, K; Pour-Amir, M; Rajabi, Bazl M
2002-10-01
Mouse-mouse hybridoma cell lines producing stable, highly specific and with good affinity monoclonal antibody (MAb) against the cardiac glycoside digoxin were established. Balb/c mice were immunized via injection of digoxin-3'-bovine serum albumin (BSA). The spleens of which were fused with myeloma cells of SP2/0 origin. Three clones designated as BBA, MBE, and BMG producing good antibodies displayed different patterns of fine specificity for digoxin and low cross-reaction with several digoxin analogues as elucidated by inhibition enzyme-linked immunosorbant assay (ELISA). All three MAbs were of the same class and subclass (IgG(1)). Affinity purification was performed for the selected clone BBA displaying the highest affinity and nearly no cross-reactivity with any of the structurally related molecules. Ultrafiltered concentrated hybrid cell supernatant was also purified by polyethylene glycol (PEG) 6000 precipitation for large-scale preparation and coated onto the wells of microtiter plates. The standard curve was constructed with a sensitivity of 10 pg/well covering up to 10 ng/well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nijjar, Tarlochan; Bassett, Ekaterina; Garbe, James
2004-12-23
We have used cultured human mammary epithelial cells (HMEC) and breast tumor-derived lines to gain information on defects that occur during breast cancer progression. HMEC immortalized by a variety of agents (the chemical carcinogen benzo(a)pyrene, oncogenes c-myc and ZNF217, and/or dominant negative p53 genetic suppressor element GSE22) displayed marked up regulation (10-15 fold) of the telomere binding protein, TRF2. Up-regulation of TRF2 protein was apparently due to differences in post-transcriptional regulation, as mRNA levels remained comparable in finite life span and immortal HMEC. TRF2 protein was not up-regulated by the oncogenic agents alone in the absence of immortalization, nor bymore » expression of exogenously introduced hTERT genes. We found TRF2 levels to be at least 2-fold higher than in control cells in 11/15 breast tumor cell lines, suggesting that elevated TRF2 levels are a frequent occurrence during the transformation of breast tumor cells in vivo. The dispersed distribution of TRF2 throughout the nuclei in some immortalized and tumor-derived cells indicated that not all the TRF2 was associated with telomeres in these cells. The process responsible for accumulation of TRF2 in immortalized HMEC and breast tumor-derived cell lines may promote tumorigenesis by contributing to the cells ability to maintain an indefinite life span.« less
Weber, J M; Sircar, S; Horvath, J; Dion, P
1989-11-01
Three independent variants (G2, G4, G5), resistant to methylglyoxal bis(guanylhydrazone), an anticancer drug, have been isolated by single step selection from an adenovirus-transformed rat brain cell line (1). These variants display selective cross-resistance to several natural product drugs of dissimilar structure and action. Multidrug resistance has recently been shown to be caused by overexpression of the membrane-associated p-glycoprotein, most often caused by amplification of the mdr gene. Several types of experiments were conducted to determine whether the observed drug resistance in our cell lines could be due to changes at the mdr locus. The following results were obtained: (a) the mdr locus was not amplified; (b) transcription of the mdr gene and p-glycoprotein synthesis were not increased; (c) multidrug resistance cell lines, which carry an amplified mdr locus, were not cross-resistant to methylglyoxal bis(guanylhydrazone); (d) verapamil did not reverse the resistance of G cells or mdr cells to methylglyoxal bis(guanylhydrazone), nor that of G cells to vincristine; and (e) methylglyoxal bis(guanylhydrazone) resistance was recessive and depended on a block to drug uptake, as opposed to mdr cells which are dominant and express increased drug efflux. The results obtained suggest that the drug resistance in the G2, G4, and G5 cells was atypical and may be due to a mechanism distinct from that mediated by the mdr locus.
Ionizing Radiation Deregulates the MicroRNA Expression Profile in Differentiated Thyroid Cells.
Penha, Ricardo Cortez Cardoso; Pellecchia, Simona; Pacelli, Roberto; Pinto, Luis Felipe Ribeiro; Fusco, Alfredo
2018-03-01
Ionizing radiation (IR) is a well-known risk factor for papillary thyroid cancer, and it has been reported to deregulate microRNA expression, which is important to thyroid carcinogenesis. Therefore, this study investigated the impact of IR on microRNA expression profile of the normal thyroid cell line (FRTL-5 CL2), as well as its effect on radiosensitivity of thyroid cancer cell lines, especially the human anaplastic thyroid carcinoma cell line (8505c). The global microRNA expression profile of irradiated FRTL-5 CL2 cells (5 Gy X-ray) was characterized, and data were confirmed by quantitative real-time polymerase chain reaction evaluating the expression of rno-miR-10b-5p, rno-miR-33-5p, rno-miR-128-1-5p, rno-miR-199a-3p, rno-miR-296-5p, rno-miR-328a-3p, and rno-miR-541-5p in irradiated cells. The miR-199a-3p and miR-10b-5p targets were validated by quantitative real-time polymerase chain reaction, Western blot, and luciferase target assays. The effects of miR-199a-3p and miR-10b-5p on DNA repair were determined by evaluating the activation of the protein kinases ataxia-telangiectasia mutated, ataxia telangiectasia, and Rad3-related and the serine 39 phosphorylation of variant histone H2AX as an indirect measure of double-strand DNA breaks in irradiated FRTL-5 CL2 cells. The impact of miR-10b-5p on radiosensitivity was analyzed by cell counting and MTT assays in FRTL-5 CL2, Kras-transformed FRTL-5 CL2 (FRTL KiKi), and 8505c cell lines. The results reveal that miR-10b-5p and miR-199a-3p display the most pronounced alterations in expression in irradiated FRTL-5 CL2 cells. Dicer1 and Lin28b were validated as targets of miR-10b-5p and miR-199a-3p, respectively. Functional studies demonstrate that miR-10b-5p increases the growth rate of FRTL-5 CL2 cells, while miR-199a-3p inhibits their proliferation. Moreover, both of these microRNAs negatively affect homologous recombination repair, reducing activated ataxia-telangiectasia mutated and Rad3-related protein levels, consequently leading to an accumulation of the serine 39 phosphorylation of variant histone H2AX. Interestingly, the overexpression of miR-10b-5p decreases the viability of the irradiated FRTL5-CL2 and 8505c cell lines. Consistent with this observation, its inhibition in FRTL KiKi cells, which display high basal expression levels of miR-10b-5p, leads to the opposite effect. These results demonstrate that IR deregulates microRNA expression, affecting the double-strand DNA breaks repair efficiency of irradiated thyroid cells, and suggest that miR-10b-5p overexpression may be an innovative approach for anaplastic thyroid cancer therapy by increasing cancer cell radiosensitivity.
da Silva, Edinaldo N.; da Silva, Paulo A. B.; Graminha, Angélica E.; de Oliveira, Pollyanna F.; Damasceno, Jaqueline L.; Tavares, Denise C.; Batista, Alzir A.
2017-01-01
The complexes cis-[Ru(quin)(dppm)2]PF6 and cis-[Ru(kynu)(dppm)2]PF6 (quin = quinaldate; kynu = kynurenate; dppm = bis(diphenylphosphino)methane) were prepared and characterized by elemental analysis, electronic, FTIR, 1H, and 31P{1H} NMR spectroscopies. Characterization data were consistent with a cis arrangement for the dppm ligands and a bidentate coordination through carboxylate oxygens of the quin and kynu anions. These complexes were not able to intercalate CT-DNA as shown by circular dichroism spectroscopy. On the other hand, bovine serum albumin (BSA) binding constants and thermodynamic parameters suggest spontaneous interactions with this protein by hydrogen bonds and van der Waals forces. Cytotoxicity assays were carried out on a panel of human cancer cell lines including HepG2, MCF-7, and MO59J and one normal cell line GM07492A. In general, the new ruthenium(II) complexes displayed a moderate to high cytotoxicity in all the assayed cell lines with IC50 ranging from 10.1 to 36 µM and were more cytotoxic than the precursor cis-[RuCl2(dppm)2]. The cis-[Ru(quin)(dppm)2]PF6 were two to three times more active than the reference metallodrug cisplatin in the MCF-7 and MO59J cell lines. PMID:28814948
Conti, Raphael; Chagas, Fernanda Oliveira; Caraballo-Rodriguez, Andrés Mauricio; Melo, Weilan Gomes da Paixão; do Nascimento, Andréa Mendes; Cavalcanti, Bruno Coêlho; de Moraes, Manoel Odorico; Pessoa, Cláudia; Costa-Lotufo, Letícia Veras; Krogh, Renata; Andricopulo, Adriano Defini; Lopes, Norberto Peporine; Pupo, Mônica Tallarico
2016-06-01
Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides were isolated for the first time, and the biological potential of their secondary metabolites was evaluated. A phylogenic analysis of isolated actinobacteria was accomplished with 16S rRNA gene sequencing, and the predominance of the genus Streptomyces was observed. All strains were cultured on solid rice medium, and ethanol extracts were evaluated with antimicrobial and cytotoxic assays against cancer cell lines. As a result, 92% of the extracts showed a high or moderate activity against at least one pathogenic microbial strain or cancer cell line. Based on the biological and chemical analyses of crude extracts, three endophytic strains were selected for further investigation of their chemical profiles. Sixteen compounds were isolated, and 3-hydroxy-4-methoxybenzamide (9) and 2,3-dihydro-2,2-dimethyl-4(1H)-quinazolinone (15) are reported as natural products for the first time in this study. The biological activity of the pure compounds was also assessed. Compound 15 displayed potent cytotoxic activity against all four tested cancer cell lines. Nocardamine (2) was only moderately active against two cancer cell lines but showed strong activity against Trypanosoma cruzi. Our results show that endophytic actinobacteria from L. ericoides are a promising source of bioactive compounds. © 2016 Verlag Helvetica Chimica Acta AG, Zürich.
This study shows the changes in gene expression in response to SW044248, a compound that displays selective toxicity for some NSCLC cell lines. This data led to the discovery that SW044248 is an inhibitor of topoisomerase 1 (Top1) different from other Top1 inhibitors such as camptothecin1. Read the abstract
Asymmetric triplex metallohelices with high and selective activity against cancer cells
NASA Astrophysics Data System (ADS)
Faulkner, Alan D.; Kaner, Rebecca A.; Abdallah, Qasem M. A.; Clarkson, Guy; Fox, David J.; Gurnani, Pratik; Howson, Suzanne E.; Phillips, Roger M.; Roper, David I.; Simpson, Daniel H.; Scott, Peter
2014-09-01
Small cationic amphiphilic α-helical peptides are emerging as agents for the treatment of cancer and infection, but they are costly and display unfavourable pharmacokinetics. Helical coordination complexes may offer a three-dimensional scaffold for the synthesis of mimetic architectures. However, the high symmetry and modest functionality of current systems offer little scope to tailor the structure to interact with specific biomolecular targets, or to create libraries for phenotypic screens. Here, we report the highly stereoselective asymmetric self-assembly of very stable, functionalized metallohelices. Their anti-parallel head-to-head-to-tail ‘triplex’ strand arrangement creates an amphipathic functional topology akin to that of the active sub-units of, for example, host-defence peptides and p53. The metallohelices display high, structure-dependent toxicity to the human colon carcinoma cell-line HCT116 p53++, causing dramatic changes in the cell cycle without DNA damage. They have lower toxicity to human breast adenocarcinoma cells (MDA-MB-468) and, most remarkably, they show no significant toxicity to the bacteria methicillin-resistant Staphylococcus aureus and Escherichia coli.
Cohen, A J; Bunn, P A; Franklin, W; Magill-Solc, C; Hartmann, C; Helfrich, B; Gilman, L; Folkvord, J; Helm, K; Miller, Y E
1996-02-15
Neutral endopeptidase (NEP; CALLA, CD10, EC 3.4.24.11) is a cell surface endopeptidase that hydrolyses bioactive peptides, including the bombesin-like peptides, as well as other neuropeptides. Bombesin-like peptides and other neuropeptides are autocrine growth factors for both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Low expression of NEP has been reported in SCLC and NSCLC cell lines. NEP inhibition has been shown to increase proliferation in one cell line. To date, NEP expression has not been quantitatively evaluated in normal adult lung, SCLC or NSCLC tumors, paired uninvolved lung from the same patient, or in other pulmonary neoplasms such as mesotheliomas and carcinoids. We examined the expression of NEP in these tissues and human cell lines using immunohistochemistry, flow cytometry, enzyme activity, ELISA, Western blot, and reverse transcription (RT)-PCR. Uninvolved lung tissue from different individuals displayed considerable variation in NEP activity and protein. By immunohistochemistry, NEP expression was detectable in alveolar and airway epithelium, fibroblasts of normal lung, and in mesotheliomas, whereas it was undetectable in most SCLC, adenocarcinoma, squamous cell carcinoma, and carcinoid tumors of the lung. NEP activity and protein levels were lower in all SCLC and adenocarcinoma tumors when compared to adjacent uninvolved lung, often at levels consistent with expression derived from contaminating stroma. NEP expression and activity were reduced or undetectable in most SCLC and lung adenocarcinoma cell lines. NEP mRNA by RT-PCR was not expressed or was in low abundance in the majority of lung cancer cell lines. The majority of lung tumors did not express NEP by RT-PCR as compared with normal adjacent lung. In addition, recombinant NEP abolished, whereas an NEP inhibitor potentiated, the calcium flux generated by neuropeptides in some lung cancer cell lines, demonstrating potential physiological significance for low NEP expression. NEP, therefore, is a signal transduction and possibly a growth modulator for both SCLC and NSCLC, emphasizing the role of neuropeptides in the pathogenesis of the major histological forms of lung cancer.
DOT National Transportation Integrated Search
2009-04-28
A study was conducted to explore the utility and recognition of lines and linear patterns on electronic displays depicting aeronautical charting information, such as electronic charts and moving map displays. The goal of this research is to support t...
Buc Calderon, Pedro; Sennesael, Anne-Laure; Glorieux, Christophe
2018-05-28
Grp94 plays an essential role in protein assembly. We previously suggested that Grp94 overexpression is involved in tumor aggressiveness. However, the underlying mechanisms remain unknown. Since many tumors display high Grp94 levels, we investigated the effects of tumor microenvironment on the regulation of this chaperone expression. First, we found out that hypoxia did not change Grp94 expression in the human tumor cell lines MCF-7 (breast cancer) and HepG2 (liver cancer). Second, glucose deprivation significantly increased Grp94 protein levels. Subsequently, we focused in the putative role of Grp94 in the acquisition of an aggressive phenotype by cancer cells. Using a more aggressive cancer cell model (MDA-MB-231 breast tumor cells), we found out that Grp94 knockdown using siRNA decreased the invasive capacity of cancer cells. Moreover, cells with decreased Grp94 levels displayed an enhanced sensitivity of tumor cells to doxorubicin, a standard drug in the treatment of breast cancer. Taken together, our results suggest that the expression of Grp94 is linked to tumor aggressiveness. Therefore, targeting Grp94 could be an effective way to inhibit tumor growth improving chemotherapy outcome. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
FGFR4 Role in Epithelial-Mesenchymal Transition and Its Therapeutic Value in Colorectal Cancer
Torres, Sofía; Hernández-Varas, Pablo; Teixidó, Joaquín; Bonilla, Félix; de Herreros, Antonio Garcia; Casal, J. Ignacio
2013-01-01
Fibroblast growth factor receptor 4 (FGFR4) is vital in early development and tissue repair. FGFR4 expression levels are very restricted in adult tissues, except in several solid tumors including colorectal cancer, which showed overexpression of FGFR4. Here, FGFR4 mutation analysis discarded the presence of activating mutations, other than Arg388, in different colorectal cancer cell lines and tumoral samples. Stable shRNA FGFR4-silencing in SW480 and SW48 cell lines resulted in a significant decrease in cell proliferation, adhesion, cell migration and invasion. This decrease in the tumorigenic and invasive capabilities of colorectal cancer cells was accompanied by a decrease of Snail, Twist and TGFβ gene expression levels and an increase of E-cadherin, causing a reversion to a more epithelial phenotype, in three different cell lines. In addition, FGFR4-signaling activated the oncogenic SRC, ERK1/2 and AKT pathways in colon cancer cells and promoted an increase in cell survival. The relevance of FGFR4 in tumor growth was supported by two different strategies. Kinase inhibitors abrogated FGFR4-related cell growth and signaling pathways at the same extent than FGFR4-silenced cells. Specific FGFR4-targeting using antibodies provoked a similar reduction in cell growth. Moreover, FGFR4 knock-down cells displayed a reduced capacity for in vivo tumor formation and angiogenesis in nude mice. Collectively, our data support a crucial role for FGFR4 in tumorigenesis, invasion and survival in colorectal cancer. In addition, FGFR4 targeting demonstrated its applicability for colorectal cancer therapy. PMID:23696849
Jin, Wei; Jia, Kuntong; Yang, Lili; Chen, Jialin; Wu, Yuping; Yi, Meisheng
2013-06-01
The marine mammalian Indo-Pacific humpback dolphin, once widely lived in waters of the Indian to western Pacific oceans, has become an endangered species. The individual number of this dolphin has significantly declined in recent decades, which raises the concern of extinction. Direct concentration on laboratorial conservation of the genetic and cell resources should be paid to this marine species. Here, we report the successful derivation of cell lines form the skin of Indo-Pacific humpback dolphin. The cell cultures displayed the characteristics of fibroblast in morphology and grew rapidly at early passages, but showed obvious growth arrest at higher passages. The karyotype of the cells consisted of 42 autosomes and sex chromosomes X and Y. The immortalized cell lines obtained by forced expression of the SV40 large T-antigen were capable of proliferation at high rate in long-term culture. Immortalization and long-term culture did not cause cytogenetically observable abnormality in the karyotype. The cell type of the primary cultures and immortalized cell lines were further characterized as fibroblasts by the specific expression of vimentin. Gene transfer experiments showed that exogenetic genes could be efficiently delivered into the cells by both plasmid transfection and lentivirus infection. The cells derived from the skin of the Indo-Pacific humpback dolphin may serve as a useful in vitro system for studies on the effects of environmental pollutants and pathogens in habitats on the dolphin animals. More importantly, because of their high proliferation rate and susceptibility to lentivirus, these cells are potential ideal materials for generation of induced pluripotent stem cells.
Mathias, Jonathan R.; Zhang, Zhanying; Saxena, Meera T.
2014-01-01
Abstract Transgenic expression of bacterial nitroreductase (NTR) facilitates chemically-inducible targeted cell ablation. In zebrafish, the NTR system enables studies of cell function and cellular regeneration. Metronidazole (MTZ) has become the most commonly used prodrug substrate for eliciting cell loss in NTR-expressing transgenic zebrafish due to the cell-specific nature of its cytotoxic derivatives. Unfortunately, MTZ treatments required for effective cell ablation border toxic effects, and, thus, likely incur undesirable nonspecific effects. Here, we tested whether a triple mutant variant of NTR, previously shown to display improved activity in bacterial assays, can solve this issue by promoting cell ablation in zebrafish using reduced prodrug treatment regimens. We generated several complementary transgenic zebrafish lines expressing either wild-type or mutant NTR (mutNTR) in specific neural cell types, and assayed prodrug-induced cell ablation kinetics using confocal time series imaging and plate reader-based quantification of fluorescent reporters expressed in targeted cell types. The results show that cell ablation can be achieved in mutNTR expressing transgenic lines with markedly shortened prodrug exposure times and/or at lower prodrug concentrations. The mutNTR variant characterized here can circumvent problematic nonspecific/toxic effects arising from low prodrug conversion efficiency, thus increasing the effectiveness and versatility of this selective cell ablation methodology. PMID:24428354
Mathias, Jonathan R; Zhang, Zhanying; Saxena, Meera T; Mumm, Jeff S
2014-04-01
Transgenic expression of bacterial nitroreductase (NTR) facilitates chemically-inducible targeted cell ablation. In zebrafish, the NTR system enables studies of cell function and cellular regeneration. Metronidazole (MTZ) has become the most commonly used prodrug substrate for eliciting cell loss in NTR-expressing transgenic zebrafish due to the cell-specific nature of its cytotoxic derivatives. Unfortunately, MTZ treatments required for effective cell ablation border toxic effects, and, thus, likely incur undesirable nonspecific effects. Here, we tested whether a triple mutant variant of NTR, previously shown to display improved activity in bacterial assays, can solve this issue by promoting cell ablation in zebrafish using reduced prodrug treatment regimens. We generated several complementary transgenic zebrafish lines expressing either wild-type or mutant NTR (mutNTR) in specific neural cell types, and assayed prodrug-induced cell ablation kinetics using confocal time series imaging and plate reader-based quantification of fluorescent reporters expressed in targeted cell types. The results show that cell ablation can be achieved in mutNTR expressing transgenic lines with markedly shortened prodrug exposure times and/or at lower prodrug concentrations. The mutNTR variant characterized here can circumvent problematic nonspecific/toxic effects arising from low prodrug conversion efficiency, thus increasing the effectiveness and versatility of this selective cell ablation methodology.
Diversity of Human and Macaque Airway Immune Cells at Baseline and during Tuberculosis Infection
Myers, Amy J.; Jarvela, Jessica; Flynn, JoAnne; Rutledge, Tara; Bonfield, Tracey
2016-01-01
Immune cells of the distal airways serve as “first responders” of host immunity to the airborne pathogen Mycobacterium tuberculosis (Mtb). Mtb infection of cynomolgus macaques recapitulates the range of human outcomes from clinically silent latent tuberculosis infection (LTBI) to active tuberculosis of various degrees of severity. To further advance the application of this model to human studies, we compared profiles of bronchoalveolar lavage (BAL) cells of humans and cynomolgus macaques before and after Mtb infection. A simple gating strategy effectively defined BAL T-cell and phagocyte populations in both species. BAL from Mtb-naive humans and macaques showed similar differential cell counts. BAL T cells of macaques were composed of fewer CD4+cells but more CD8+ and CD4+CD8+ double-positive cells than were BAL T cells of humans. The most common mononuclear phagocyte population in BAL of both species displayed coexpression of HLA-DR, CD206, CD11b, and CD11c; however, multiple phagocyte subsets displaying only some of these markers were observed as well. Macaques with LTBI displayed a marked BAL lymphocytosis that was not observed in humans with LTBI. In macaques, the prevalence of specific mononuclear phagocyte subsets in baseline BAL correlated with ultimate outcomes of Mtb infection (i.e., LTBI versus active disease). Overall, these findings demonstrate the comparability of studies of pulmonary immunity to Mtb in humans and macaques. They also indicate a previously undescribed complexity of airway mononuclear phagocyte populations that suggests further lines of investigation relevant to understanding the mechanisms of both protection from and susceptibility to the development of active tuberculosis within the lung. PMID:27509488
Koenigsberger, C; Chiappa, S; Brimijoin, S
1997-10-01
Previous observations from several groups suggest that acetylcholinesterase (AChE) may have a role in neural morphogenesis, but not solely by virtue of its ability to hydrolyze acetylcholine. We tested the possibility that AChE influences neurite outgrowth in nonenzymatic ways. With this aim, antisense oligonucleotides were used to decrease AChE levels transiently, and N1E.115 cell lines were engineered for permanently altered AChE protein expression. Cells stably transfected with a sense AChE cDNA construct increased their AChE expression 2.5-fold over the wild type and displayed significantly increased neurite outgrowth. Levels of the differentiation marker, tau, also rose. In contrast, AChE expression in cell lines containing an antisense construct was half of that observed in the wild type. Significant reductions in neurite outgrowth and tau protein accompanied this effect. Overall, these measures correlated statistically with the AChE level (p < 0.01). Furthermore, treatment of AChE-overexpressing cells with a polyclonal antibody against AChE decreased neurite outgrowth by 43%. We conclude that AChE may have a novel, noncholinergic role in neuronal differentiation.
Apoptotic effect of chalcone derivatives of 2-acetylthiophene in human breast cancer cells.
Fogaça, Tatiana B; Martins, Rosiane M; Begnini, Karine R; Carapina, Caroline; Ritter, Marina; de Pereira, Claudio M P; Seixas, Fabiana K; Collares, Tiago
2017-02-01
A variety of chalcones have demonstrated cytotoxic activity toward several cancer cell lines. This study aimed to investigate the cytotoxicity of four chalcones derivatives of 2-acetylthiophene in human breast cancer cell lines. MCF-7 and MDA-MB-231 cells were treated with synthesized chalcones and the cytotoxicity was evaluated by tetrazolium dye (MTT), live/dead, and DAPI assays. Chalcones significantly decreased MCF-7 and MDA-MB-231 cells viability in vitro in a dose dependent manner. After 48h treatment, the IC 50 values ranging from 5.52 to 34.23μM. Chalcone 3c displayed the highest cytotoxic activity from all the tested compounds. Cytotoxic effects of compounds were confirmed in the live/dead assay. In addition, DAPI staining revealed that these compounds induce death by apoptosis. The data speculate that chalcone derivatives of 2-acetylthiophene may represent a source of therapeutic agents for human breast cancer. Copyright © 2016 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Passive diffusion of naltrexone into human and animal cells and upregulation of cell proliferation.
Cheng, Fan; McLaughlin, Patricia J; Banks, William A; Zagon, Ian S
2009-09-01
Naltrexone (NTX) is a potent opioid antagonist that promotes cell proliferation by upregulating DNA synthesis through displacement of the tonically active inhibitory peptide, opioid growth factor (OGF) from its receptor (OGFr). To investigate how NTX enters cells, NTX was fluorescently labeled [1-(N)-fluoresceinyl NTX thiosemicarbazone; FNTX] to study its uptake by living cultured cells. When human head and neck squamous cell carcinoma cell line (SCC-1) was incubated with FNTX for as little as 1 min, cells displayed nuclear and cytoplasmic staining of FNTX as determined by fluorescent deconvolution microscopy, with enrichment of fluorescent signal in the nucleus and nucleolus. The same temporal-spatial distribution of FNTX was detected in a human pancreatic cancer cell line (MIA PaCa-2), African green monkey kidney cell line (COS-7), and human mesenchymal stem cells (hMSCs). FNTX remained in cells for as long as 48 h. FNTX was internalized in SCC-1 cells when incubation occurred at 4 degrees C, with the signal being comparable to that recorded at 37 degrees C. A 100-fold excess of NTX or a variety of other opioid ligands did not alter the temporal-spatial distribution of FNTX. Neither fluorescein-labeled dextran nor fluorescein alone entered the cells. To study the effect of FNTX on DNA synthesis, cells incubated with FNTX at concentrations ranging from 10(-5) to 10(-8) M had a 5-bromo-2'-deoxyuridine index that was 39-82% greater than for vehicle-treated cells and was comparable to that of unlabeled NTX (37-70%). Taken together, these results suggested that NTX enters cells by passive diffusion in a nonsaturable manner.
Floch, Renaud Le; Moura, Conceição Souto
2015-01-01
Most cancers rely on aerobic glycolysis to generate energy and metabolic intermediates. To maintain a high glycolytic rate, cells must efficiently export lactic acid through the proton-coupled monocarboxylate transporters (MCT1/4). These transporters require a chaperone, CD147/BASIGIN (BSG) for trafficking to the plasma membrane and function. To validate the key role of these transporters in lung cancer, we first analysed the expression of MCT1/4 and BSG in 50 non-small lung cancer (NSCLC) cases. These proteins were specifically upregulated in tumour tissues. We then disrupted BSG in three NSCLC cell lines (A549, H1975 and H292) via ‘Zinc-Finger Nucleases’. The three homozygous BSG−/− cell lines displayed a low MCT activity (10- to 5-fold reduction, for MCT1 and MCT4, respectively) compared to wild-type cells. Consequently, the rate of glycolysis, compared to the wild-type counterpart, was reduced by 2.0- to 3.5-fold, whereas the rate of respiration was stimulated in BSG−/− cell lines. Both wild-type and BSG-null cells were extremely sensitive to the mitochondria inhibitor metformin/phenformin in normoxia. However, only BSG-null cells, independently of their LKB1 status, remained sensitive to biguanides in hypoxia in vitro and tumour growth in nude mice. Our results demonstrate that inhibiting glycolysis by targeting lactic acid export sensitizes NSCLC to phenformin. PMID:25894929
Ravenelle, Rebecca; Berman, Ariel K; La, Jeffrey; Mason, Briana; Asumadu, Evans; Yelleswarapu, Chandra; Donaldson, S Tiffany
2018-04-01
In humans and animal models, sex differences are reported for anxiety-like behavior and response to anxiogenic stimuli. In the current work, we studied anxiety-like behavior and response to the prototypical anti-anxiety drug, diazepam. We used 6th generation outbred lines of adult Long Evans rats with high and low anxiety-like behavior phenotypes to investigate the impact of proestrus on the baseline and diazepam-induced behavior. At three doses of diazepam (0, 0.1, and 1.0 mg/kg, i.p.), we measured anxiogenic responses on the elevated plus maze of adult male and female rats. We assessed parvalbumin and brain-derived neurotrophin protein levels in forebrain and limbic structures implicated in anxiety/stress using immunohistochemistry. At baseline, we saw significant differences between anxiety lines, with high anxiety lines displaying less time on the open arms of the elevated plus maze, and less open arm entries, regardless of sex. During proestrus, high anxiety females showed less anxiety-like behavior at 0.1 mg/kg, while low anxiety females displayed less anxiety-like behavior at 0.1 and 1.0 doses, relative to males. Brain-derived neurotrophin protein was elevated in females in the medial prefrontal cortex and central amygdala, while parvalbumin-immunoreactive cells were greater in males in the medial prefrontal cortex. Parvalbumin-positive cells in high anxiety females were higher in CA2 and dentate gyrus relative to males from the same line. In sum, when tested in proestrus, females showed greater anxiolytic effects of diazepam relative to males, and this correlated with increases in neurotrophin and parvalbumin neuron density in corticolimbic structures. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Wang, Ying; Liu, Jiali; Smith, Elizabeth; Zhou, Kang; Liao, Jie; Yang, Guang-Yu; Tan, Ming; Zhan, Xi
2007-03-01
Missing in metastasis (MIM) gene encodes a putative metastasis suppressor. However, the role of MIM in tumorigenesis and metastasis has not yet been established. Western blot analysis using a MIM specific antibody demonstrated that MIM protein is present at varying levels in a variety of normal cells as well as tumor cell lines. Immunohistochemical staining of adult mouse tissues revealed abundant MIM immunoreactivity in uroepithelial cells in the bladder, neuron Purkinje cells in the cerebellum, and megakaryocytes in the bone marrow and spleen in addition. MIM immunoreactivity also was found in human normal bladder transitional epithelial cells. However, the reactivity was not seen in 69 percent of human primary transitional cell carcinoma specimens. Over 51 percent of the tumors at low grade display MIM staining similarly to the normal cells, whereas only 16.7 percent of the tumors at high-grade with poor differentiation show faint or mild staining. Furthermore, full-length MIM protein is highly expressed in SV-HUC-L an immortalized normal transitional epithelial cell line, moderately expressed in T24 and poorly expressed in J82 and TCCSUP transitional cell carcinoma cells. This finding indicates that downegulation of MIM expression may correlate with the transition of tumor cells from distinct epithelium-like morphology to less differentiated carcinomas.
Specialized mouse embryonic stem cells for studying vascular development.
Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E
2014-01-01
Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.
Clevers, H; Lonberg, N; Dunlap, S; Lacy, E; Terhorst, C
1989-01-01
The gene encoding the CD3-epsilon chain of the T cell receptor (TCR/CD3) complex is uniquely transcribed in all T lymphocyte lineage cells. The human CD3-epsilon gene, when introduced into the mouse germ line, was expressed in correct tissue-specific fashion. The gene was then screened for T lymphocyte-specific cis-acting elements in transient chloramphenicol transferase assays. The promoter (-228 to +100) functioned irrespective of cell type. A 1225 bp enhancer with strict T cell-specificity was found in a DNase I hypersensitive site downstream of the last exon, 12 kb from the promoter. This site was present in T cells only. The CD3-epsilon enhancer did not display sequence similarity with the T cell-specific enhancer of CD3-delta, a related gene co-regulated with CD3-epsilon during intrathymic differentiation. The CD3-epsilon enhancer was unusual in that it constituted a CpG island, and was hypomethylated independent of tissue type. Two HTLV I-transformed T cell lines were identified in which the CD3-epsilon gene was not expressed, and in which the enhancer was inactive. Images PMID:2583122
Acuna-Mendoza, Soledad; Martin, Sabrina; Kuchler-Bopp, Sabine; Ribes, Sandy; Thalgott, Jérémy; Chaussain, Catherine; Creuzet, Sophie; Lesot, Hervé; Lebrin, Franck; Poliard, Anne
2017-12-01
Neural crest (NC) cells are a migratory, multipotent population giving rise to numerous lineages in the embryo. Their plasticity renders attractive their use in tissue engineering-based therapies, but further knowledge on their in vivo behavior is required before clinical transfer may be envisioned. We here describe the isolation and characterization of a new mouse embryonic stem (ES) line derived from Wnt1-CRE-R26 Rosa TomatoTdv blastocyst and show that it displays the characteristics of typical ES cells. Further, these cells can be efficiently directed toward an NC stem cell-like phenotype as attested by concomitant expression of NC marker genes and Tomato fluorescence. As native NC progenitors, they are capable of differentiating toward typical derivative phenotypes and interacting with embryonic tissues to participate in the formation of neo-structures. Their specific fluorescence allows purification and tracking in vivo. This cellular tool should facilitate a better understanding of the mechanisms driving NC fate specification and help identify the key interactions developed within a tissue after in vivo implantation. Altogether, this novel model may provide important knowledge to optimize NC stem cell graft conditions, which are required for efficient tissue repair.
CDKL2 promotes epithelial-mesenchymal transition and breast cancer progression
Li, Linna; Liu, Chunping; Amato, Robert J.; Chang, Jeffrey T.; Du, Guangwei; Li, Wenliang
2014-01-01
The epithelial–mesenchymal transition (EMT) confers mesenchymal properties on epithelial cells and has been closely associated with the acquisition of aggressive traits by epithelial cancer cells. To identify novel regulators of EMT, we carried out cDNA screens that covered 500 human kinases. Subsequent characterization of candidate kinases led us to uncover cyclin-dependent kinase-like 2 (CDKL2) as a novel potent promoter for EMT and breast cancer progression. CDKL2-expressing human mammary gland epithelial cells displayed enhanced mesenchymal traits and stem cell-like phenotypes, which was acquired through activating a ZEB1/E-cadherin/β-catenin positive feedback loop and regulating CD44 mRNA alternative splicing to promote conversion of CD24high cells to CD44high cells. Furthermore, CDKL2 enhanced primary tumor formation and metastasis in a breast cancer xenograft model. Notably, CDKL2 is expressed significantly higher in mesenchymal human breast cancer cell lines than in epithelial lines, and its over-expression/amplification in human breast cancers is associated with shorter disease-free survival. Taken together, our study uncovered a major role for CDKL2 in promoting EMT and breast cancer progression. PMID:25333262
Liberio, Michelle S.; Sadowski, Martin C.; Soekmadji, Carolina; Davis, Rohan A.; Nelson, Colleen C.
2014-01-01
Weak cell-surface adhesion of cell lines to tissue culture surfaces is a common problem and presents technical limitations to the design of experiments. To overcome this problem, various surface coating protocols have been developed. However, a comparative and precise real-time measurement of their impact on cell behavior has not been conducted. The prostate cancer cell line LNCaP, derived from a patient lymph node metastasis, is a commonly used model system in prostate cancer research. However, the cells’ characteristically weak attachment to the surface of tissue culture vessels and cover slips has impeded their manipulation and analysis and use in high throughput screening. To improve the adherence of LNCaP cells to the culture surface, we compared different coating reagents (poly-l-lysine, poly-l-ornithine, collagen type IV, fibronectin, and laminin) and culturing conditions and analyzed their impact on cell proliferation, adhesion, morphology, mobility and gene expression using real-time technologies. The results showed that fibronectin, poly-l-lysine and poly-l-ornithine improved LNCaP cells adherence and provoked cell morphology alterations, such as increase of nuclear and cellular area. These coating reagents also induced a higher expression of F-actin and reduced cell mobility. In contrast, laminin and collagen type IV did not improve adherence but promoted cell aggregation and affected cell morphology. Cells cultured in the presence of laminin displayed higher mobility than control cells. All the coating conditions significantly affected cell viability; however, they did not affect the expression of androgen receptor-regulated genes. Our comparative findings provide important insight for the selection of the ideal coating reagent and culture conditions for the cancer cell lines with respect to their effect on proliferation rate, attachment, morphology, migration, transcriptional response and cellular cytoskeleton arrangement. PMID:25375165
NASA Astrophysics Data System (ADS)
Lingenfelser, Gretchen Scott
This thesis explores the problem of uniformly aligning Ferroelectric Liquid Crystals (FLCs) over large areas whilst retaining bistability. A novel high tilt alignment (HTA) is presented and its electro-optic performance is compared to the traditional surface stabilised (SS) alignment using three different devices; test cells, displays and all-fibre optic devices. Evidence is presented to show that the SS alignment has a small surface pretilt of the director which reduces the number of zig-zag defects in parallel aligned cells. This is related to the layer structure and a review of the latest proposed structures of SS devices is presented. The HTA device is shown to have many advantages over the SS device; no zig-zag defects, excellent bistability in up to 6 mum thick cells, good mechanical stability and excellent viewing characteristics when multiplexed. These properties are explored and culminate in the production of two FLC displays, one HTA and one SS aligned. The properties of these displays are compared. In order to improve the appearance and frame time of the displays, multiplexing schemes were investigated, including a novel two slot scheme that was successfully used to drive both displays. It was found that the SS display could be driven in a reverse contrast mode by taking advantage of the relaxation process. This decreased the line address time and produced a higher contrast display. A nematic LC all-fibre optic polariser was produced with excellent extinction ratio (45 dB) and low loss (0.2 dB) using evanescent field coupling. A nematic LC modulator was then demonstrated using a novel electrode arrangement. A modulation depth of 28 dB was achieved using low voltages ( 10V) but with 10 kHz but the modulation depth was poor (8.2 dB) because of the unsuitable refractive indices. The potential and uses of LC all-fibre optic devices are discussed.
Application of industrial robots in automatic disassembly line of waste LCD displays
NASA Astrophysics Data System (ADS)
Wang, Sujuan
2017-11-01
In the automatic disassembly line of waste LCD displays, LCD displays are disassembled into plastic shells, metal shields, circuit boards, and LCD panels. Two industrial robots are used to cut metal shields and remove circuit boards in this automatic disassembly line. The functions of these two industrial robots, and the solutions to the critical issues of model selection, the interfaces with PLCs and the workflows were described in detail in this paper.
Mesenchymal-Epithelial Transition and Circulating Tumor Cells in Small Cell Lung Cancer.
Hamilton, Gerhard; Rath, Barbara
2017-01-01
Cancer patients die of metastatic disease but knowledge regarding individual steps of this complex process of intravasation, spread and extravasation leading to secondary lesions is incomplete. Subpopulations of tumor cells are supposed to undergo an epithelial-mesenchymal transition (EMT), to enter the bloodstream and eventually establish metastases in a reverse process termed mesenchymal-epithelial transition (MET). Small cell lung cancer (SCLC) represents a unique model to study metastatic spread due to early dissemination and relapse, as well as availability of a panel of circulating cancer cell (CTC) lines recently. Additionally, chemosensitive SCLC tumor cells switch to a completely resistant phenotype during cancer recurrence. In advanced disease, SCLC patients display extremely high blood counts of CTCs in contrast to other tumors, like breast, prostate and colon cancer. Local inflammatory conditions at the primary tumor site and recruitment of macrophages seem to increase the shedding of tumor cells into the circulation in processes which may proceed independently of EMT. Since millions of cells are released by tumors into the circulation per day, analysis of a limited number of CTCs at specific time points are difficult to be related to the development of metastatic lesions which may occur approximately one year later. We have obtained a panel of SCLC CTC cell line from patients with relapsing disease, which share characteristic markers of this malignancy and a primarily epithelial phenotype with unique formation of large tumorospheres, containing quiescent and hypoxic cells. Although smoking and inflammation promote EMT, partial expression of vimentin indicates a transitional state with partial EMT in these cell lines at most. The CTC lines exhibit high expression of EpCAM , absent phosphorylation of β-catenin and background levels of Snail. Provided that these tumor cells had ever undergone EMT, here in advanced disease MET seem to have occurred already in the peripheral circulation. Alternative explanations for the expression of mesenchymal markers of the CTC lines are the heterogeneity of SCLC cells, cooperative migration or altered gene expression in response to the inflammatory tumor microenvironment allowing for tumor spread without EMT/MET.
Utispan, Kusumawadee; Chitkul, Bordin; Koontongkaew, Sittichai
2017-04-01
Background: Propolis, a resinous substance produced by the honeybee, has a wide spectrum of potent biological activities. However, anti-cancer activity of propolis obtained from Trigona sirindhornae, a new species of stingless bee, has not yet been reported. This study concerned cytotoxicity of propolis extracts from T. sirindhornae against two head and neck squamous cell carcinoma (HNSCC) cell lines. Materials and Methods: A dichloromethane extract of propolis (DMEP) was prepared generating 3 fractions: DMEP-A, DMEP-B, and DMEP-C. Genetically-matched HNSCC cell lines derived from primary (HN30) and metastatic sites (HN31) in the same patient were used to study cytotoxic effects of the DMEPs by MTT assays. The active compounds in the DMEPs were analyzed by reversephase high performance liquid chromatography. Results: DMEP-A exhibited cytotoxic activity on HN30 cells with significantly decreased viability at 200 μg/ml compared with the control (p<0.05). However, no significant cytotoxic effect was evident in HN31 cells. DMEP-B and DMEP-C significantly decreased the viability of both cell lines from 100–200 μg/ml and 50–200 μg/ml, respectively (p<0.05). Interestingly, HN31 cells were more toxically sensitive compared with the HN30 cells when treated with DMEP-B and DMEP-C. IC50 values for DMEP-B with HN30 and HN31 cells were more than 200 μg/ml and 199.8±1.05 μg/ml, respectively. The IC50 of DMEP-C to HN30 and HN31 cells was found to be 114.3±1.29 and 76.33±1.24 μg/ml, respectively. Notably, apigenin, pinocembrin, p-coumaric acid, and caffeic acid were not detected in our propolis extracts. Conclusion: T. sirindhornae produced propolis displays cytotoxic effects against HNSCC cells s. Moreover, DMEP-B and DMEP-C differentially inhibited the proliferation of a metastatic HNSCC cell line. Creative Commons Attribution License
Gajski, Goran; Čimbora-Zovko, Tamara; Rak, Sanjica; Rožman, Marko; Osmak, Maja; Garaj-Vrhovac, Vera
2014-12-01
In the present study, we investigated the possible combined anticancer ability of bee venom (BV) and cisplatin towards two pairs of tumour cell lines: parental cervical carcinoma HeLa cells and their cisplatin-resistant HeLa CK subline,as well as laryngeal carcinoma HEp-2 cells and their cisplatin-resistant CK2 subline. Additionally, we identified several peptides of BV in the BV sample used in the course of the study and determined the exact concentration of MEL. BV applied alone in concentrations of 30 to 60 μg ml(–1) displayed dose-dependent cytotoxicity against all cell lines tested. Cisplatin-resistant cervical carcinoma cells were more sensitive to BV than their parental cell lines (IC(50) values were 52.50 μg ml(–1) for HeLa vs.47.64 μg ml(–1) for HeLa CK cells), whereas opposite results were obtained for cisplatin-resistant laryngeal carcinoma cells (IC(50) values were 51.98 μg ml(–1) for HEp-2 vs. > 60.00 μg ml(–1) for CK2 cells). Treatment with BV alone induced a necrotic type of cell death, as shown by characteristic morphological features, fast staining with ethidium-bromide and a lack of cleavage of apoptotic marker poly (ADP-ribose) polymerase (PARP) on Western blot. Combined treatment of BV and cisplatin induced an additive and/or weak synergistic effect towards tested cell lines, suggesting that BV could enhance the killing effect of selected cells when combined with cisplatin. Therefore, a greater anticancer effect could be triggered if BV was used in the course of chemotherapy. Our results suggest that combined treatment with BV could be useful from the point of minimizing the cisplatin concentration during chemotherapy, consequently reducing and/or postponing the development of cisplatin resistance.
Zhao, Zhenzhen; Liu, Wen; Liu, Jincheng; Wang, Jiayi; Luo, Bing
2017-10-01
Epstein-Barr virus (EBV) is an important DNA tumor virus that is associated with approximately 10% of gastric carcinomas and 99% of nasopharyngeal cancers (NPC). DNA methylation and microRNAs (miRNAs) are the most studied epigenetic mechanisms that can prompt disease susceptibility. This study aimed to detect the effect of EBV on Wnt inhibitory factor 1 (WIF1), Nemo-like kinase (NLK), and adenomatous polyposis coli (APC) gene methylation, and expression in gastric carcinoma and NPC. The WIF1, NLK, and APC gene mRNA expression levels were measured by real-time quantitative RT-PCR in four EBV-positive cell lines and four EBV-negative cell lines. Bisulfite genomic sequencing or methylation-specific PCR was used to detect the methylation status of the WIF1, NLK, and APC promoters. All cell lines were treated with 5-azacytidine (5-aza-dC), miR-BART19-3p mimics or an inhibitor, and analyzed by flow cytometry and MTT cell proliferation assays. The WIF1, NLK, and APC promoters were hypermethylated in all eight cell lines. 5-Aza-dC displayed a growth inhibitory effect on cells . After transfection with miR-BART19-3p mimics, the expression of WIF1, and APC decreased, and the cellular proliferation rate increased. After transfection with the miR-BART19-3p inhibitor, the expression levels were higher, and the cell growth was inhibited. In the NPC and GC cell lines, the promoters of WIF1, NLK, and APC are highly methylated, and the expression of these three genes is regulated by miR-BART19-3p. The activity of the Wnt pathway in EBV-associated tumors may be enhanced by miR-BART19-3p. © 2017 Wiley Periodicals, Inc.
Loi, Monica; Di Paolo, Daniela; Soster, Marco; Brignole, Chiara; Bartolini, Alice; Emionite, Laura; Sun, Jessica; Becherini, Pamela; Curnis, Flavio; Petretto, Andrea; Sani, Monica; Gori, Alessandro; Milanese, Marco; Gambini, Claudio; Longhi, Renato; Cilli, Michele; Allen, Theresa M; Bussolino, Federico; Arap, Wadih; Pasqualini, Renata; Corti, Angelo; Ponzoni, Mirco; Marchiò, Serena; Pastorino, Fabio
2013-09-10
Molecular targeting of drug delivery nanocarriers is expected to improve their therapeutic index while decreasing their toxicity. Here we report the identification and characterization of novel peptide ligands specific for cells present in high-risk neuroblastoma (NB), a childhood tumor mostly refractory to current therapies. To isolate such targeting moieties, we performed combined in vitro/ex-vivo phage display screenings on NB cell lines and on tumors derived from orthotopic mouse models of human NB. By designing proper subtractive protocols, we identified phage clones specific either for the primary tumor, its metastases, or for their respective stromal components. Globally, we isolated 121 phage-displayed NB-binding peptides: 26 bound the primary tumor, 15 the metastatic mass, 57 and 23 their respective microenvironments. Of these, five phage clones were further validated for their specific binding ex-vivo to biopsies from stage IV NB patients and to NB tumors derived from mice. All five clones also targeted tumor cells and vasculature in vivo when injected into NB-bearing mice. Coupling of the corresponding targeting peptides with doxorubicin-loaded liposomes led to a significant inhibition in tumor volume and enhanced survival in preclinical NB models, thereby paving the way to their clinical development. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
Construction of Rabbit Immune Antibody Libraries.
Nguyen, Thi Thu Ha; Lee, Jong Seo; Shim, Hyunbo
2018-01-01
Rabbits have distinct advantages over mice as a source of target-specific antibodies. They produce higher affinity antibodies than mice, and may elicit strong immune response against antigens or epitopes that are poorly immunogenic or tolerated in mice. However, a great majority of currently available monoclonal antibodies are of murine origin because of the wider availability of murine fusion partner cell lines and well-established tools and protocols for fusion and cloning of mouse hybridoma. Phage-display selection of antibody libraries is an alternative method to hybridoma technology for the generation of target-specific monoclonal antibodies. High-affinity monoclonal antibodies from nonmurine species can readily be obtained by constructing immune antibody libraries from B cells of the immunized animal and screening the library by phage display. In this article, we describe the construction of a rabbit immune Fab library for the facile isolation of rabbit monoclonal antibodies. After immunization, B-cell cDNA is obtained from the spleen of the animal, from which antibody variable domain repertoires are amplified and assembled into a Fab repertoire by PCR. The Fab genes are then cloned into a phagemid vector and transformed to E. coli, from which a phage-displayed immune Fab library is rescued. Such a library can be biopanned against the immunization antigen for rapid identification of high-affinity, target-specific rabbit monoclonal antibodies.
Rojas, Gertrudis; Carmenate, Tania; Leon, Kalet
2015-04-01
A mutein with stronger antitumor activity and lower toxicity than wild-type human interleukin-2 (IL-2) has been recently described. The rationale behind its design was to reinforce the immunostimulatory potential through the introduction of four mutations that would selectively disrupt the interaction with the IL-2 receptor alpha chain (thought to be critical for both IL-2-driven expansion of T regulatory cells and IL-2-mediated toxic effects). Despite the successful results of the mutein in several tumor models, characterization of its interactions was still to be performed. The current work, based on phage display of IL-2-derived variants, showed the individual contribution of each mutation to the impairment of alpha chain binding. A more sensitive assay, based on the ability of phage-displayed IL-2 variants to induce proliferation of the IL-2-dependent CTLL-2 cell line, revealed differences between the mutated variants. The results validated the mutein design, highlighting the importance of the combined effects of the four mutations. The developed phage display-based platform is robust and sensitive, allows a fast comparative evaluation of multiple variants, and could be broadly used to engineer IL-2 and related cytokines, accelerating the development of cytokine-derived therapeutics. Copyright © 2015 John Wiley & Sons, Ltd.
Cao, Kaiyue; Pan, Yunzhi; Yu, Long; Shu, Xiong; Yang, Jing; Sun, Linxin; Sun, Lichao; Yang, Zhihua; Ran, Yuliang
2017-02-01
Cancer stem cells (CSCs) are a rare subset of cancer cells that play a significant role in cancer initiation, spreading, and recurrence. In this study, a subpopulation of lung cancer stem-like cells (LCSLCs) was identified from non-small cell lung carcinoma cell lines, SPCA-1 and A549, using serum-free suspension sphere-forming culture method. A monoclonal antibody library was constructed using immunized BLAB/c mice with the multipotent CSC cell line T3A-A3. Flow cytometry analysis showed that 33 mAbs targeted antigens can be enriched in sphere cells compared with the parental cells of SPCA-1 and A549 cell lines. Then, we performed functional antibody screening including sphere-forming inhibiting and invasion inhibiting assay. The results showed that two antibodies, 12C7 and 9B8, notably suppressed the self-renewal and invasion of LCSLCs. Fluorescence-activated cell sorting (FACs) found that the positive cells recognized by mAbs, 12C7 or 9B8, displayed features of LCSLCs. Interestingly, we found that these two antibodies recognized different subsets of cells and their combination effect was superior to the individual effect both in vitro and in vivo. Tissue microarrays were applied to detect the expression of the antigens targeted by these two antibodies. The positive expression of 12C7 and 9B8 targeted antigen was 84.4 and 82.5%, respectively, which was significantly higher than that in the non-tumor lung tissues. In conclusion, we screened two potential therapeutic antibodies that target different subsets of LCSLCs.
de Laurentiis, A; Hiscott, J; Alcalay, M
2015-12-03
The t(12;21) translocation is the most common genetic rearrangement in childhood acute lymphoblastic leukemia (ALL) and gives rise to the TEL-AML1 fusion gene. Many studies on TEL-AML1 describe specific properties of the fusion protein, but a thorough understanding of its function is lacking. We exploited a pluripotent hematopoietic stem/progenitor cell line, EML1, and generated a cell line (EML-TA) stably expressing the TEL-AML1 fusion protein. EML1 cells differentiate to mature B-cells following treatment with IL7; whereas EML-TA display an impaired differentiation capacity and remain blocked at an early stage of maturation. Global gene expression profiling of EML1 cells at different stages of B-lymphoid differentiation, compared with EML-TA, identified the interferon (IFN)α/β pathway as a primary target of repression by TEL-AML1. In particular, expression and phosphorylation of interferon-regulatory factor 3 (IRF3) was decreased in EML-TA cells; strikingly, stable expression of IRF3 restored the capacity of EML-TA cells to differentiate into mature B-cells. Similarly, IRF3 silencing in EML1 cells by siRNA was sufficient to block B-lymphoid differentiation. The ability of TEL-AML1 to block B-cell differentiation and downregulate the IRF3-IFNα/β pathway was confirmed in mouse and human primary hematopoietic precursor cells (Lin- and CD34+ cells, respectively), and in a patient-derived cell line expressing TEL-AML1 (REH). Furthermore, treatment of TEL-AML1 expressing cells with IFNα/β was sufficient to overcome the maturation block. Our data provide new insight on TEL-AML1 function and may offer a new therapeutic opportunity for B-ALL.
Williams, Vonetta M.; Kokoza, Anatolii; Bashkirova, Svetlana; Duerksen-Hughes, Penelope
2014-01-01
Treatment of advanced and relapsed cervical cancer is frequently ineffective, due in large part to chemoresistance. To examine the pathways responsible, we employed the cervical carcinoma-derived SiHa and CaSki cells as cellular models of resistance and sensitivity, respectively, to treatment with chemotherapeutic agents, doxorubicin, and cisplatin. We compared the proteomic profiles of SiHa and CaSki cells and identified pathways with the potential to contribute to the differential response. We then extended these findings by comparing the expression level of genes involved in reactive oxygen species (ROS) metabolism through the use of a RT-PCR array. The analyses demonstrated that the resistant SiHa cells expressed higher levels of antioxidant enzymes. Decreasing or increasing oxidative stress led to protection or sensitization, respectively, in both cell lines, supporting the idea that cellular levels of oxidative stress affect responsiveness to treatment. Interestingly, doxorubicin and cisplatin induced different profiles of ROS, and these differences appear to contribute to the sensitivity to treatment displayed by cervical cancer cells. Overall, our findings demonstrate that cervical cancer cells display variable profiles with respect to their redox-generating and -adaptive systems, and that these different profiles have the potential to contribute to their responses to treatments with chemotherapy. PMID:25478571
Wagner, Paula M; Sosa Alderete, Lucas G; Gorné, Lucas D; Gaveglio, Virginia; Salvador, Gabriela; Pasquaré, Susana; Guido, Mario E
2018-06-07
Even in immortalized cell lines, circadian clocks regulate physiological processes in a time-dependent manner, driving transcriptional and metabolic rhythms, the latter being able to persist without transcription. Circadian rhythm disruptions in modern life (shiftwork, jetlag, etc.) may lead to higher cancer risk. Here, we investigated whether the human glioblastoma T98G cells maintained quiescent or under proliferation keep a functional clock and whether cells display differential time responses to bortezomib chemotherapy. In arrested cultures, mRNAs for clock (Per1, Rev-erbα) and glycerophospholipid (GPL)-synthesizing enzyme genes, 32 P-GPL labeling, and enzyme activities exhibited circadian rhythmicity; oscillations were also found in the redox state/peroxiredoxin oxidation. In proliferating cells, rhythms of gene expression were lost or their periodicity shortened whereas the redox and GPL metabolisms continued to fluctuate with a similar periodicity as under arrest. Cell viability significantly changed over time after bortezomib treatment; however, this rhythmicity and the redox cycles were altered after Bmal1 knock-down, indicating cross-talk between the transcriptional and the metabolic oscillators. An intrinsic metabolic clock continues to function in proliferating cells, controlling diverse metabolisms and highlighting differential states of tumor suitability for more efficient, time-dependent chemotherapy when the redox state is high and GPL metabolism low.
Arai, Kazuya; Sakamoto, Ruriko; Kubota, Daisuke; Kondo, Tadashi
2013-08-01
Chemoresistance is one of the most critical prognostic factors in osteosarcoma, and elucidation of the molecular backgrounds of chemoresistance may lead to better clinical outcomes. Spheroid cells resemble in vivo cells and are considered an in vitro model for the drug discovery. We found that spheroid cells displayed more chemoresistance than conventional monolayer cells across 11 osteosarcoma cell lines. To investigate the molecular mechanisms underlying the resistance to chemotherapy, we examined the proteomic differences between the monolayer and spheroid cells by 2D-DIGE. Of the 4762 protein species observed, we further investigated 435 species with annotated mass spectra in the public proteome database, Genome Medicine Database of Japan Proteomics. Among the 435 protein species, we found that 17 species exhibited expression level differences when the cells formed spheroids in more than five cell lines and four species out of these 17 were associated with spheroid-formation associated resistance to doxorubicin. We confirmed the upregulation of cathepsin D in spheroid cells by western blotting. Cathepsin D has been implicated in chemoresistance of various malignancies but has not previously been implemented in osteosarcoma. Our study suggested that the spheroid system may be a useful tool to reveal the molecular backgrounds of chemoresistance in osteosarcoma. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Utter, Matthew; Chakraborty, Sohag; Goren, Limor; Feuser, Lucas; Zhu, Yuan-Shan; Foster, David A
2018-06-01
Prostate cells are hormonally driven to grow and divide. Typical treatments for prostate cancer involve blocking activation of the androgen receptor by androgens. Androgen deprivation therapy can lead to the selection of cancer cells that grow and divide independently of androgen receptor activation. Prostate cancer cells that are insensitive to androgens commonly display metastatic phenotypes and reduced long-term survival of patients. In this study we provide evidence that androgen-insensitive prostate cancer cells have elevated PLD activity relative to the androgen-sensitive prostate cancer cells. PLD activity has been linked with promoting survival in many human cancer cell lines; and consistent with the previous studies, suppression of PLD activity in the prostate cancer cells resulted in apoptotic cell death. Of significance, suppressing the elevated PLD activity in androgen resistant prostate cancer lines also blocked the ability of these cells to migrate and invade Matrigel™. Since survival signals are generally an early event in tumorigenesis, the apparent coupling of survival and metastatic phenotypes implies that metastasis is an earlier event in malignant prostate cancer than generally thought. This finding has implications for screening strategies designed to identify prostate cancers before dissemination. Copyright © 2018 Elsevier B.V. All rights reserved.
Maser, Tyler; Rich, Maria; Hayes, David; Zhao, Ping; Nagulapally, Abhinav B; Bond, Jeffrey; Saulnier Sholler, Giselle
2017-06-01
Catechol-O-methyltransferase (COMT) is an enzyme that inactivates dopamine and other catecholamines by O-methylation. Tolcapone, a drug commonly used in the treatment of Parkinson's disease, is a potent inhibitor of COMT and previous studies indicate that Tolcapone increases the bioavailability of dopamine in cells. In this study, we demonstrate that Tolcapone kills neuroblastoma (NB) cells in preclinical models by inhibition of COMT. Treating four established NB cells lines (SMS-KCNR, SH-SY5Y, BE(2)-C, CHLA-90) and two primary NB cell lines with Tolcapone for 48 h decreased cell viability in a dose-dependent manner, with IncuCyte imaging and Western blotting indicating that cell death was due to caspase-3-mediated apoptosis. Tolcapone also increased ROS while simultaneously decreasing ATP-per-cell in NB cells. Additionally, COMT was inhibited by siRNA in NB cells and showed similar increases in apoptotic markers compared to Tolcapone. In vivo xenograft models displayed inhibition of tumor growth and a significant decrease in time-to-event in mice treated with Tolcapone compared to untreated mice. These results indicate that Tolcapone is cytotoxic to neuroblastoma cells and invite further studies into Tolcapone as a promising novel therapy for the treatment of neuroblastoma. © 2017 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
López-Alemany, Roser; Longstaff, Colin; Hawley, Stephen; Mirshahi, Massoud; Fábregas, Pere; Jardí, Merce; Merton, Elizabeth; Miles, Lindsey A; Félez, Jordi
2003-04-01
Localization of plasmin activity on leukocyte surfaces plays a critical role in fibrinolysis as well as in pathological and physiological processes in which cells must degrade the extracellular matrix in order to migrate. The binding of plasminogen to leukocytic cell lines induces a 30- to 80-fold increase in the rate of plasminogen activation by tissue-type (tPA) and urokinase-type (uPA) plasminogen activators. In the present study we have examined the role of alpha-enolase in plasminogen activation on the cell surface. We produced and characterized a monoclonal antibody (MAb) 11G1 against purified alpha-enolase, which abrogated about 90% of cell-dependent plasminogen activation by either uPA or tPA on leukocytoid cell lines of different lineages: B-lymphocytic, T-lymphocytic, granulocytic, and monocytic cells. In addition, MAb 11G1 also blocked enhancement of plasmin formation by peripheral blood neutrophils and monocytes. In contrast, MAb 11G1 did not affect plasmin generation in the presence of fibrin, indicating that this antibody did not interact with fibrinolytic components in the absence of cells. These data suggest that, although leukocytic cells display several molecules that bind plasminogen, alpha-enolase is responsible for the majority of the promotion of plasminogen activation on the surfaces of leukocytic cells. Copyright 2003 Wiley-Liss, Inc.
2010-01-01
To overcome loss of stem-like properties and spontaneous differentiation those hinder the expansion and application of human mesenchymal stem cells (hMSCs), we have clonally isolated permanent and stable human MSC lines by ectopic overexpression of primary cell cultures of hMSCs with HPV 16 E6E7 and human telomerase reverse transcriptase (hTERT) genes. These cells were found to have a differentiation potential far beyond the ordinary hMSCs. They expressed trophoectoderm and germline specific markers upon differentiation with BMP4 and retinoic acid, respectively. Furthermore, they displayed higher osteogenic and neural differentiation efficiency than primary hMSCs or hMSCs expressed HPV16 E6E7 alone with a decrease in methylation level as proven by a global CpG island methylation profile analysis. Notably, the demethylated CpG islands were highly associated with development and differentiation associated genes. Principal component analysis further pointed out the expression profile of the cells converged toward embryonic stem cells. These data demonstrate these cells not only are a useful tool for the studies of cell differentiation both for the mesenchymal and neurogenic lineages, but also provide a valuable source of cells for cell therapy studies in animal models of skeletal and neurological disorders. PMID:20670406
Vavilis, Theofanis; Delivanoglou, Nikoleta; Aggelidou, Eleni; Stamoula, Eleni; Mellidis, Kyriakos; Kaidoglou, Aikaterini; Cheva, Angeliki; Pourzitaki, Chryssa; Chatzimeletiou, Katerina; Lazou, Antigone; Albani, Maria; Kritis, Aristeidis
2016-07-01
Hypoxia is the lack of sufficient oxygenation of tissue, imposing severe stress upon cells. It is a major feature of many pathological conditions such as stroke, traumatic brain injury, cerebral hemorrhage, perinatal asphyxia and can lead to cell death due to energy depletion and increased free radical generation. The present study investigates the effect of hypoxia on the unfolded protein response of the cell (UPR), utilizing a 16-h oxygen-glucose deprivation protocol (OGD) in a PC12 cell line model. Expression of glucose-regulated protein 78 (GRP78) and glucose-regulated protein 94 (GRP94), key players of the UPR, was studied along with the expression of glucose-regulated protein 75 (GRP75), heat shock cognate 70 (HSC70), and glyceraldehyde 3-phosphate dehydrogenase, all with respect to the cell death mechanism(s). Cells subjected to OGD displayed upregulation of GRP78 and GRP94 and concurrent downregulation of GRP75. These findings were accompanied with minimal apoptotic cell death and induction of autophagy. The above observation warrants further investigation to elucidate whether autophagy acts as a pro-survival mechanism that upon severe and prolonged hypoxia acts as a concerted cell response leading to cell death. In our OGD model, hypoxia modulates UPR and induces autophagy.
Sviderskaya, Elena V; Easty, David J; Lawrence, Mark A; Sánchez, Daniel P; Negulyaev, Yuri A; Patel, Ricken H; Anand, Praveen; Korchev, Yuri E; Bennett, Dorothy C
2009-09-01
Stem cells, that is, cells that can both reproduce themselves and differentiate into functional cell types, attract much interest as potential aids to healing and disease therapy. Embryonic neural crest is pluripotent and generates the peripheral nervous system, melanocytes, and some connective tissues. Neural-crest-related stem cells have been reported previously in postnatal skin: committed melanocytic stem cells in the hair follicle, and pluripotent cell types from the hair follicle and papilla that can produce various sets of lineages. Here we describe novel pluripotent neural crest-like stem cells from neonatal mouse epidermis, with different potencies, isolated as 3 independent immortal lines. Using alternative regulatory factors, they could be converted to large numbers of either Schwann precursor cells, pigmented melanocytes, chondrocytes, or functional sensory neurons showing voltage-gated sodium channels. Some of the neurons displayed abundant active TRPV1 and TRPA1 receptors. Such functional neurons have previously been obtained in culture only with difficulty, by explantation. The system was also used to generate comparative gene expression data for the stem cells, melanocytes, and melanoblasts that sufficiently explain the lack of pigment in melanoblasts and provide a rationale for some genes expressed apparently ectopically in melanomas, such as ephrin receptors.
Rak, Sanjica; Cimbora-Zovko, Tamara; Gajski, Goran; Dubravčić, Klara; Domijan, Ana-Marija; Delaš, Ivančica; Garaj-Vrhovac, Verica; Batinić, Drago; Sorić, Jasna; Osmak, Maja
2013-03-01
Curcumin is a natural compound that exhibits a wide range of beneficial effects, among them the anti-tumor activity. Recently it was shown that curcumin may be efficient against drug resistant tumor cells. The goal of our investigation was to examine if human laryngeal carcinoma cells resistant to carboplatin display sensitivity to curcumin, as compared to parental cells, and if this sensitivity is altered, to determine the molecular mechanisms that are responsible for it. We found that carboplatin resistant 7T cells were also cross resistant to curcumin. After the treatment with equimolar concentration of curcumin, 7T cells exhibited lower intracellular accumulation of curcumin which coincided with reduced formation of reactive oxygen species (ROS), diminished lipid and DNA damage followed by reduced induction of apoptosis and expression of heat shock protein 70 (Hsp70), as compared to parental HEp-2 cells. However, after the treatment with equitoxic concentration of curcumin, intracellular accumulation and all the explored downstream effects were similar in both cell lines suggesting that resistance of 7T cells to curcumin was based on its reduced intracellular accumulation. Since curcumin accumulates mostly in the membranes, we explored the fatty acid composition of both cell lines, but we did not find any difference between them. Copyright © 2012 Elsevier Ltd. All rights reserved.
Cai, De; Qiu, Zhiqing; Yao, Weimin; Liu, Yuyu; Huang, Haixiang; Liao, Sihai; Luo, Qun; Xie, Liming; Lin, Zhixiu
2016-06-01
Microtubules play a central role in various fundamental cell functions and thus become an attractive target for cancer therapy. A novel compound YSL-12 is a combretastatin A-4 (CA-4) analogue with more stability. We investigated its anti-tumor activity and mechanisms in vitro and in vivo for the first time. Cytotoxicity was evaluated by MTT method. In vitro microtubule polymerization assay was performed using a fluorescence-based method by multifunction fluorescence microplate reader. Intracellular microtubule network was detected by immunofluorescence method. Cell cycle analysis and apoptosis were measured by flow cytometry. Metabolic stability was recorded by liquid chromatography-ultraviolet detection and liquid chromatography-mass spectrometry. In vivo anti-tumor activity was assessed using HT-29 colon carcinoma xenografts established in BALB/c nude mice. YSL-12 displayed nanomolar-level cytotoxicity against various human cancer cell lines. A high selectivity toward normal cells and potent activity toward drug-resistant cells were also observed. YSL-12 was identified as tubulin polymerization inhibitor evidenced by effectively inhibits tubulin polymerization and heavily disrupted microtubule networks in living HT-29 cells. YSL-12 displayed potent disruption effect of pre-established tumor vasculature in vitro. In addition, YSL-12 treatment also caused cell cycle arrest in the G2/M phase and induced cell apoptosis in a dose-dependent manner. In vitro metabolic stability study revealed YSL-12 displayed considerable better stability than CA-4 in liver microsomes. In vivo, YSL-12 delayed tumor growth with 69.4 % growth inhibition. YSL-12 is a promising microtubule inhibitor that has great potential for the treatment of colon carcinoma in vitro and in vivo and worth being a candidate for further development of cancer therapy.
Deng, Wei; Yan, Fang; Liu, Minchun; Wang, Xinyu; Li, Zhengguo
2012-08-01
The Aux/IAA family genes encode short-lived nuclear proteins that function as transcriptional regulators in auxin signal transduction. Aux/IAA genes have been reported to control many processes of plant development. Our recent study showed that down-regulation of SlIAA15 in tomato reduced apical dominance, altered pattern of axillary shoot development, increased lateral root formation and leaves thickness. The SlIAA15 suppressed lines display strong reduction of trichome density, suggesting that SlIAA15 is involved in trichome formation. Here, we reported that SlIAA15-suppressed transgenic lines display increased number of xylem cells compared to wild-type plants. Moreover, the monoterpene content in trichome exudates are significantly reduced in SlIAA15 down-regulated leaves. The results provide the roles of SlIAA15 in production of volatile compounds in leaf exudates and xylem development, clearly indicating that members of the Aux/IAA gene family can play distinct and specific functions.
Lewkowski, Jarosław; Rodriguez Moya, Maria; Wrona-Piotrowicz, Anna; Zakrzewski, Janusz; Kontek, Renata; Gajek, Gabriela
2016-01-01
A large series of variously substituted amino(pyren-1-yl)methylphosphonic acid derivatives was synthesized using a modified aza-Pudovik reaction in 20-97% yields. The fluorescence properties of the obtained compounds were investigated revealing that N-alkylamino(pyren-1-yl)methylphosphonic derivatives are stronger emissive compounds than the corresponding N-aryl derivatives. N-Benzylamino(pyren-1-yl)methylphosphonic acid displayed strong fluorescence (ΦF = 0.68) in phosphate-buffered saline (PBS). The influence of a series of derivatives on two colon cancer cell lines HT29 and HCT116 was also investigated. The most promising results were obtained for N-(4-methoxyphenyl)amino(pyren-1-yl)methylphosphonate, which was found to be cytotoxic for the HCT116 cancer cell line (IC50 = 20.8 μM), simultaneously showing weak toxicity towards normal lymphocytes (IC50 = 230.8 µM).
Moon, Chang Hoon; Lee, Seung Ju; Lee, Ho Yong; Lee, Jong Cheol; Cha, Heejeong; Cho, Wha Ja; Park, Jeong Woo; Park, Hyun Jin; Seo, Jin; Lee, Young Han; Song, Ho-Taek; Min, Young Joo
2013-01-01
KML001 is sodium metaarsenite, and has shown cytotoxic activity in human tumor cell lines. The anti-cancer mechanism of KML001 involves cancer cell destruction due to DNA damage at the telomeres of cancer cell chromosomes. In this study, we assessed the vascular disrupting properties of KML001 and investigated whether KML001 as VDA is able to increase anti-tumor activity in irinotecan combined treatment. We used a murine model of the CT26 colon carcinoma cell line. CT26 isograft mice treated intraperitoneally with 10 mg/kg KML001 displayed extensive central necrosis of tumor by 24 h. The vascular disrupting effects of KML001 were assessed by dynamic contrast enhanced magnetic resonance imaging. Gadopentetic acid-diethylene triaminepentaacetic acid contrast enhancement was markedly decreased in KML001-treated mice one day after treatment, whereas persistently high signal enhancement was observed in mice injected with saline. Rate constant K(ep) value representing capillary permeability was significantly decreased (p<0.05) in mice treated with KML001. Cytoskeletal changes of human umbilical vein endothelial cells (HUVECs) treated with 10 uM KML001 were assessed by immune blotting and confocal imaging. KML001 degraded tubulin protein in HUVECs, which may be related to vascular disrupting properties of KML001. Finally, in the mouse CT26 isograft model, KML001 combined with irinotecan significantly delayed tumor growth as compared to control and irinotecan alone. These results suggest that KML001 is a novel vascular disrupting agent, which exhibits significant vascular shut-down activity and enhances anti-tumor activity in combination with chemotherapy. These data further suggest an avenue for effective combination therapy in treating solid tumors.
Moon, Chang Hoon; Lee, Seung Ju; Lee, Ho Yong; Lee, Jong Cheol; Cha, HeeJeong; Cho, Wha Ja; Park, Jeong Woo; Park, Hyun Jin; Seo, Jin; Lee, Young Han; Song, Ho-Taek; Min, Young Joo
2013-01-01
KML001 is sodium metaarsenite, and has shown cytotoxic activity in human tumor cell lines. The anti-cancer mechanism of KML001 involves cancer cell destruction due to DNA damage at the telomeres of cancer cell chromosomes. In this study, we assessed the vascular disrupting properties of KML001 and investigated whether KML001 as VDA is able to increase anti-tumor activity in irinotecan combined treatment. We used a murine model of the CT26 colon carcinoma cell line. CT26 isograft mice treated intraperitoneally with 10 mg/kg KML001 displayed extensive central necrosis of tumor by 24 h. The vascular disrupting effects of KML001 were assessed by dynamic contrast enhanced magnetic resonance imaging. Gadopentetic acid-diethylene triaminepentaacetic acid contrast enhancement was markedly decreased in KML001-treated mice one day after treatment, whereas persistently high signal enhancement was observed in mice injected with saline. Rate constant Kep value representing capillary permeability was significantly decreased (p<0.05) in mice treated with KML001. Cytoskeletal changes of human umbilical vein endothelial cells (HUVECs) treated with 10 uM KML001 were assessed by immune blotting and confocal imaging. KML001 degraded tubulin protein in HUVECs, which may be related to vascular disrupting properties of KML001. Finally, in the mouse CT26 isograft model, KML001 combined with irinotecan significantly delayed tumor growth as compared to control and irinotecan alone. These results suggest that KML001 is a novel vascular disrupting agent, which exhibits significant vascular shut-down activity and enhances anti-tumor activity in combination with chemotherapy. These data further suggest an avenue for effective combination therapy in treating solid tumors. PMID:23326531
ABCB1 as predominant resistance mechanism in cells with acquired SNS-032 resistance
Rothweiler, Florian; Voges, Yvonne; Balónová, Barbora; Blight, Barry A.; Cinatl, Jindrich
2016-01-01
The CDK inhibitor SNS-032 had previously exerted promising anti-neuroblastoma activity via CDK7 and 9 inhibition. ABCB1 expression was identified as major determinant of SNS-032 resistance. Here, we investigated the role of ABCB1 in acquired SNS-032 resistance. In contrast to ABCB1-expressing UKF-NB-3 sub-lines resistant to other ABCB1 substrates, SNS-032-adapted UKF-NB-3 (UKF-NB-3rSNS- 032300nM) cells remained sensitive to the non-ABCB1 substrate cisplatin and were completely re-sensitized to cytotoxic ABCB1 substrates by ABCB1 inhibition. Moreover, UKF-NB-3rSNS-032300nM cells remained similarly sensitive to CDK7 and 9 inhibition as UKF-NB-3 cells. In contrast, SHEPrSNS-0322000nM, the SNS-032-resistant sub-line of the neuroblastoma cell line SHEP, displayed low level SNS-032 resistance also when ABCB1 was inhibited. This discrepancy may be explained by the higher SNS-032 concentrations that were used to establish SHEPrSNS-0322000nM cells, since SHEP cells intrinsically express ABCB1 and are less sensitive to SNS-032 (IC50 912 nM) than UKF-NB-3 cells (IC50 153 nM). In conclusion, we show that ABCB1 expression represents the primary (sometimes exclusive) resistance mechanism in neuroblastoma cells with acquired resistance to SNS-032. Thus, ABCB1 inhibitors may increase the SNS-032 efficacy in ABCB1-expressing cells and prolong or avoid resistance formation. PMID:27517323
Starbuck, Kristen; Al-Alem, Linah; Eavarone, David A.; Hernandez, Silvia Fatima; Bellio, Chiara; Prendergast, Jillian M.; Stein, Jenna; Dransfield, Daniel T.; Zarrella, Bianca; Growdon, Whitfield B.; Behrens, Jeff; Foster, Rosemary; Rueda, Bo R.
2018-01-01
Recurrent ovarian cancer (OvCa) is thought to result in part from the inability to eliminate rare quiescent cancer stem cells (CSCs) that survive cytotoxic chemotherapy and drive tumor resurgence. The Sialyl-Thomsen-nouveau antigen (STn) is a carbohydrate moiety present on protein markers of CSCs in pancreatic, colon, and gastric malignancies. We have demonstrated that human OvCa cell lines contain varying levels of cells that independently express either STn or the ovarian CSC marker CD133. Here we determine co-expression of STn and CD133 in a subset of human OvCa cell lines. Analyses of colony and sphere forming capacity and of response to standard-of-care cytotoxic therapy suggest a subset of OvCa STn+ cells display some CSC features. The effect of the anti-STn antibody-drug conjugates (ADCs) S3F-CL-MMAE and 2G12-2B2-CL-MMAE on OvCa cell viability in vitro and in vivo was also assessed. Treatment with S3F-CL-MMAE reduced the viability of two of three OvCa cell lines in vitro and exposure to either S3F-CL-MMAE or 2G12-2B2-CL-MMAE reduced OVCAR3-derived xenograft volume in vivo, depleting STn+ tumor cells. In summary, STn+ cells demonstrate some stem-like properties and specific therapeutic targeting of STn in ovarian tumors may be an effective clinical strategy to eliminate both STn+ CSC and STn+ non-CSC populations. PMID:29796189
Rotondi, Mario; Coperchini, Francesca; Awwad, Oriana; Di Buduo, Christian A.; Abbonante, Vittorio; Magri, Flavia; Balduini, Alessandra
2016-01-01
CXCL8 displays several tumor-promoting effects. Targeting and/or lowering CXCL8 concentrations within the tumor microenvironment would produce a therapeutic benefit. Aim of this study was to test the effect of IFNγ on the basal and TNFα-stimulated secretion of CXCL8 in TCP-1 and BCPAP thyroid cancer cell lines (harboring RET/PTC rearrangement and BRAF V600e mutation, resp.). Cells were incubated with IFNγ (1, 10, 100, and 1000 U/mL) alone or in combination with TNF-α (10 ng/mL) for 24 hours. CXCL8 and CXCL10 concentrations were measured in the cell supernatants. IFNγ inhibited in a dose-dependent and significant manner both the basal (ANOVA F: 22.759; p < 0.00001) and the TNFα-stimulated (ANOVA F: 15.309; p < 0.00001) CXCL8 secretions in BCPAP but not in TPC-1 cells (NS). On the other hand, IFNγ and IFNγ + TNF-α induced a significant secretion of CXCL10 in both BCPAP (p < 0.05) and TPC-1 (p < 0.05) cells. Transwell migration assay showed that (i) CXCL8 increased cell migration in both TPC-1 and BCPAP cells; (ii) IFNγ significantly reduced the migration only of BCPAP cells; and (iii) CXCL8 reverted the effect of IFNγ. These results constitute the first demonstration that IFNγ inhibits CXCL8 secretion and in turn the migration of a BRAF V600e mutated thyroid cell line. PMID:27555670
Rotondi, Mario; Coperchini, Francesca; Awwad, Oriana; Pignatti, Patrizia; Di Buduo, Christian A; Abbonante, Vittorio; Magri, Flavia; Balduini, Alessandra; Chiovato, Luca
2016-01-01
CXCL8 displays several tumor-promoting effects. Targeting and/or lowering CXCL8 concentrations within the tumor microenvironment would produce a therapeutic benefit. Aim of this study was to test the effect of IFNγ on the basal and TNFα-stimulated secretion of CXCL8 in TCP-1 and BCPAP thyroid cancer cell lines (harboring RET/PTC rearrangement and BRAF V600e mutation, resp.). Cells were incubated with IFNγ (1, 10, 100, and 1000 U/mL) alone or in combination with TNF-α (10 ng/mL) for 24 hours. CXCL8 and CXCL10 concentrations were measured in the cell supernatants. IFNγ inhibited in a dose-dependent and significant manner both the basal (ANOVA F: 22.759; p < 0.00001) and the TNFα-stimulated (ANOVA F: 15.309; p < 0.00001) CXCL8 secretions in BCPAP but not in TPC-1 cells (NS). On the other hand, IFNγ and IFNγ + TNF-α induced a significant secretion of CXCL10 in both BCPAP (p < 0.05) and TPC-1 (p < 0.05) cells. Transwell migration assay showed that (i) CXCL8 increased cell migration in both TPC-1 and BCPAP cells; (ii) IFNγ significantly reduced the migration only of BCPAP cells; and (iii) CXCL8 reverted the effect of IFNγ. These results constitute the first demonstration that IFNγ inhibits CXCL8 secretion and in turn the migration of a BRAF V600e mutated thyroid cell line.
Rockenstein, Edward; Overk, Cassia R; Ubhi, Kiren; Mante, Michael; Patrick, Christina; Adame, Anthony; Bisquert, Alejandro; Trejo-Morales, Margarita; Spencer, Brian; Masliah, Eliezer
2015-01-01
Tauopathies are a group of disorders leading to cognitive and behavioral impairment in the aging population. While four-repeat (4R) Tau is more abundant in corticobasal degeneration, progressive supranuclear palsy, and Alzheimer's disease, three-repeat (3R) Tau is the most abundant splice, in Pick's disease. A number of transgenic models expressing wild-type and mutant forms of the 4R Tau have been developed. However, few models of three-repeat Tau are available. A transgenic mouse model expressing three-repeat Tau was developed bearing the mutations associated with familial forms of Pick's disease (L266V and G272V mutations). Two lines expressing high (Line 13) and low (Line 2) levels of the three-repeat mutant Tau were analyzed. By Western blot, using antibodies specific to three-repeat Tau, Line 13 expressed 5-times more Tau than Line 2. The Tau expressed by these mice was most abundant in the frontal-temporal cortex and limbic system and was phosphorylated at residues detected by the PHF-1, AT8, CP9 and CP13 antibodies. The higher-expressing mice displayed hyperactivity, memory deficits in the water maze and alterations in the round beam. The behavioral deficits started at 6-8 months of age and were associated with a progressive increase in the accumulation of 3R Tau. By immunocytochemistry, mice from Line 13 displayed extensive accumulation of 3R Tau in neuronal cells bodies in the pyramidal neurons of the neocortex, CA1-3 regions, and dentate gyrus of the hippocampus. Aggregates in the granular cells had a globus appearance and mimic Pick's-like inclusions. There were abundant dystrophic neurites, astrogliosis and synapto-dendritic damage in the neocortex and hippocampus of the higher expresser line. The hippocampal lesions were moderately argyrophilic and Thioflavin-S negative. By electron microscopy, discrete straight filament aggregates were detected in some neurons in the hippocampus. This model holds promise for better understanding the natural history and progression of 3R tauopathies and their relationship with mitochondrial alterations and might be suitable for therapeutical testing.
Protein and Genetic Composition of Four Chromatin Types in Drosophila melanogaster Cell Lines.
Boldyreva, Lidiya V; Goncharov, Fyodor P; Demakova, Olga V; Zykova, Tatyana Yu; Levitsky, Victor G; Kolesnikov, Nikolay N; Pindyurin, Alexey V; Semeshin, Valeriy F; Zhimulev, Igor F
2017-04-01
Recently, we analyzed genome-wide protein binding data for the Drosophila cell lines S2, Kc, BG3 and Cl.8 (modENCODE Consortium) and identified a set of 12 proteins enriched in the regions corresponding to interbands of salivary gland polytene chromosomes. Using these data, we developed a bioinformatic pipeline that partitioned the Drosophila genome into four chromatin types that we hereby refer to as aquamarine, lazurite, malachite and ruby. Here, we describe the properties of these chromatin types across different cell lines. We show that aquamarine chromatin tends to harbor transcription start sites (TSSs) and 5' untranslated regions (5'UTRs) of the genes, is enriched in diverse "open" chromatin proteins, histone modifications, nucleosome remodeling complexes and transcription factors. It encompasses most of the tRNA genes and shows enrichment for non-coding RNAs and miRNA genes. Lazurite chromatin typically encompasses gene bodies. It is rich in proteins involved in transcription elongation. Frequency of both point mutations and natural deletion breakpoints is elevated within lazurite chromatin. Malachite chromatin shows higher frequency of insertions of natural transposons. Finally, ruby chromatin is enriched for proteins and histone modifications typical for the "closed" chromatin. Ruby chromatin has a relatively low frequency of point mutations and is essentially devoid of miRNA and tRNA genes. Aquamarine and ruby chromatin types are highly stable across cell lines and have contrasting properties. Lazurite and malachite chromatin types also display characteristic protein composition, as well as enrichment for specific genomic features. We found that two types of chromatin, aquamarine and ruby, retain their complementary protein patterns in four Drosophila cell lines.
Nadal-Serrano, Mercedes; Pons, Daniel Gabriel; Sastre-Serra, Jorge; Blanquer-Rosselló, M del Mar; Roca, Pilar; Oliver, Jordi
2013-09-01
Genistein is a biologically active isoflavone with estrogenic activity and can be found in a variety of soy products. This natural compound displays a wide array of biological activities, but it is best known for its ability to inhibit cancer progression, especially for hormone-related ones such as breast cancer. Genistein has been shown to bind both the estrogen receptor alpha (ERα) and the estrogen receptor beta (ERβ), although it has a higher affinity for the ERβ. The ERα/ERβ ratio is a prognostic marker for breast tumors, and ERβ expression could indicate the presence of tumors more benign in state, whereas ERα indicates malignant tumors. The objective of the present study was to investigate the effects of genistein on oxidative stress and mitochondrial functionality through its interaction with the estrogen receptor in breast cancer cell lines with different ERα/ERβ ratios. The lower ERα/ERβ ratio T47D cell line showed lower oxidative stress and greater mitochondrial functionality, along with an up-regulation of uncoupling protein 2 and sirtuins. On the other hand, genistein-treated MCF-7 cell line, with the highest ERα/ERβ ratio, reported no changes for the control situation. On the whole, our results show different genistein effects depending on ERα/ERβ ratio for oxidative stress regulation, mitochondrial functionality, and modulation of UCPs, antioxidant enzymes and sirtuins in breast cancer cell lines. Effects of genistein on oxidative stress and mitochondria could be due at least in part, to a higher ERβ presence, but could also be due to up-regulation of ERβ caused by the genistein treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.
Jovčevska, Ivana; Zupanec, Neja; Kočevar, Nina; Cesselli, Daniela; Podergajs, Neža; Stokin, Clara Limbaeck; Myers, Michael P.; Muyldermans, Serge; Ghassabeh, Gholamreza Hassanzadeh; Motaln, Helena; Ruaro, Maria Elisabetta; Bourkoula, Evgenia; Turnšek, Tamara Lah; Komel, Radovan
2014-01-01
Malignant gliomas are among the rarest brain tumours, and they have the worst prognosis. Grade IV astrocytoma, known as glioblastoma multiforme (GBM), is a highly lethal disease where the standard therapies of surgery, followed by radiation and chemotherapy, cannot significantly prolong the life expectancy of the patients. Tumour recurrence shows more aggressive form compared to the primary tumour, and results in patient survival from 12 to 15 months only. Although still controversial, the cancer stem cell hypothesis postulates that cancer stem cells are responsible for early relapse of the disease after surgical intervention due to their high resistance to therapy. Alternative strategies for GBM therapy are thus urgently needed. Nanobodies are single-domain antigen-binding fragments of heavy-chain antibodies, and together with classical antibodies, they are part of the camelid immune system. Nanobodies are small and stable, and they share a high degree of sequence identity to the human heavy chain variable domain, and these characteristics offer them advantages over classical antibodies or antibody fragments. We first immunised an alpaca with a human GBM stem-like cell line prepared from primary GBM cultures. Next, a nanobody library was constructed in a phage-display vector. Using nanobody phage-display technology, we selected specific GBM stem-like cell binders through a number of affinity selections, using whole cell protein extracts and membrane protein-enriched extracts from eight different GBM patients, and membrane protein-enriched extracts from two established GBM stem-like cell lines (NCH644 and NCH421K cells). After the enrichment, periplasmic extract ELISA was used to screen for specific clones. These nanobody clones were recloned into the pHEN6 vector, expressed in Escherichia coli WK6, and purified using immobilised metal affinity chromatography and size-exclusion chromatography. Specific nanobody:antigen pairs were obtained and mass spectrometry analysis revealed two proteins, TRIM28 and β-actin, that were up-regulated in the GBM stem-like cells compared to the controls. PMID:25419715
Chitambar, Christopher R; Al-Gizawiy, Mona M; Alhajala, Hisham S; Pechman, Kimberly R; Wereley, Janine P; Wujek, Robert; Clark, Paul A; Kuo, John S; Antholine, William E; Schmainda, Kathleen M
2018-06-01
Gallium, a metal with antineoplastic activity, binds transferrin (Tf) and enters tumor cells via Tf receptor1 (TfR1); it disrupts iron homeostasis leading to cell death. We hypothesized that TfR1 on brain microvascular endothelial cells (BMEC) would facilitate Tf-Ga transport into the brain enabling it to target TfR-bearing glioblastoma. We show that U-87 MG and D54 glioblastoma cell lines and multiple glioblastoma stem cell (GSC) lines express TfRs, and that their growth is inhibited by gallium maltolate (GaM) in vitro After 24 hours of incubation with GaM, cells displayed a loss of mitochondrial reserve capacity followed by a dose-dependent decrease in oxygen consumption and a decrease in the activity of the iron-dependent M2 subunit of ribonucleotide reductase (RRM2). IHC staining of rat and human tumor-bearing brains showed that glioblastoma, but not normal glial cells, expressed TfR1 and RRM2, and that glioblastoma expressed greater levels of H- and L-ferritin than normal brain. In an orthotopic U-87 MG glioblastoma xenograft rat model, GaM retarded the growth of brain tumors relative to untreated control ( P = 0.0159) and reduced tumor mitotic figures ( P = 0.045). Tumors in GaM-treated animals displayed an upregulation of TfR1 expression relative to control animals, thus indicating that gallium produced tumor iron deprivation. GaM also inhibited iron uptake and upregulated TfR1 expression in U-87 MG and D54 cells in vitro We conclude that GaM enters the brain via TfR1 on BMECs and targets iron metabolism in glioblastoma in vivo, thus inhibiting tumor growth. Further development of novel gallium compounds for brain tumor treatment is warranted. Mol Cancer Ther; 17(6); 1240-50. ©2018 AACR . ©2018 American Association for Cancer Research.
Slaninová, Jiřina; Mlsová, Veronika; Kroupová, Hilda; Alán, Lukáš; Tůmová, Tereza; Monincová, Lenka; Borovičková, Lenka; Fučík, Vladimír; Ceřovský, Václav
2012-01-01
Recently, we have isolated and characterized remarkable antimicrobial peptides (AMPs) from the venom reservoirs of wild bees. These peptides (melectin, lasioglossins, halictines and macropin) and their analogs display high antimicrobial activity against Gram-positive and -negative bacteria, antifungal activity and low or moderate hemolytic activity. Here we describe cytotoxicity of the above-mentioned AMPs and some of their analogs toward two normal cell lines (human umbilical vein endothelial cells, HUVEC, and rat intestinal epithelial cells, IEC) and three cancer cell lines (HeLa S3, CRC SW 480 and CCRF-CEM T). HeLa S3 cells were the most sensitive ones (concentration causing 50% cell death in the case of the most toxic analogs was 2.5-10 μM) followed by CEM cells. For the other cell lines to be killed, the concentrations had to be four to twenty times higher. These results bring promising outlooks of finding medically applicable drugs on the basis of AMPs. Experiments using fluorescently labeled lasioglossin III (Fl-VNWKKILGKIIKVVK-NH(2)) as a tracer confirmed that the peptides entered the mammalian cells in higher quantities only after they reached the toxic concentration. After entering the cells, their concentration was the highest in the vicinity of the nucleus, in the nucleolus and in granules which were situated at very similar places as mitochondria. Experiments performed using cells with tetramethylrhodamine labeled mitochondria showed that mitochondria were fragmented and lost their membrane potential in parallel with the entrance of the peptides into the cell and the disturbance of the cell membrane. Copyright © 2011 Elsevier Inc. All rights reserved.
Chen, Luxi; Long, Chao; Youn, Jonghae; Lee, Jiyong
2018-06-11
We describe a "phenotypic cell-binding screen" by which therapeutic candidate targeting cancer cells of a particular phenotype can be isolated without knowledge of drug targets. Chemical library beads are incubated with cancer cells of the phenotype of interest in the presence of cancer cells lacking the phenotype of interest, and then the beads bound to only cancer cells of the phenotype of interest are selected as hits. We have applied this screening strategy in discovering a novel compound (LC129-8) targeting triple-negative breast cancer (TNBC). LC129-8 displayed highly specific binding to TNBC in cancer cell lines and patient-derived tumor tissues. LC129-8 exerted anti-TNBC activity by inducing apoptosis, inhibiting proliferation, reversing epithelial-mesenchymal transition, downregulating cancer stem cell activity and blocking in vivo tumor growth.
Generation and characterization of Atoh1-Cre knock-in mouse line
Yang, Hua; Xie, Xiaoling; Deng, Min; Chen, Xiaowei; Gan, Lin
2010-01-01
Summary Atoh1 encodes a basic helix-loop-helix (bHLH) transcription factor required for the development of the inner ear sensory epithelia, the dorsal spinal cord, brainstem, cerebellum, and intestinal secretory cells. In this study to create a genetic tool for the research on gene function in the ear sensory organs, we generated an Atoh1-Cre knock-in mouse line by replacing the entire Atoh1 coding sequences with the Cre coding sequences. Atoh1Cre/+mice were viable, fertile, and displayed no visible defects whereas the Atoh1Cre/Cremice died perinatally. The spatiotemporal activities of Cre recombinase were examined by crossing Atoh1-Cre mice with the R26R-lacZ conditional reporter mice. Atoh1-Cre activities were detected in the developing inner ear, the hindbrain, the spinal cord, and the intestine. In the inner ear, Atoh1-Cre activities were confined to the sensory organs in which lacZ expression is detected in nearly all of the hair cells and in many supporting cells. Thus, Atoh1-Cre mouse line serves as a useful tool for the functional study of genes in the inner ear. In addition, our results demonstrate that Atoh1 is expressed in the common progenitors destined for both hair and supporting cells. PMID:20533400
Pendleton, Morgan H.; Torrenegra, Ruben D.; Rodriguez, Oscar E.; Harirforoosh, Sam; Ballester, Maria; Lightner, Janet; Krishnan, Koyamangalath; Ramsauer, Victoria P.
2012-01-01
Over 4000 flavonoids have been identified so far and among these, many are known to have antitumor activities. The basis of the relationships between chemical structures, type and position of substituent groups and the effects these compounds exert specifically on cancer cells are not completely elucidated. Here we report the differential cytotoxic effects of two flavone isomers on human cancer cells from breast (MCF7, SK-BR-3), colon (Caco-2, HCT116), pancreas (MIA PaCa, Panc 28), and prostate (PC3, LNCaP) that vary in differentiation status and tumorigenic potential. These flavones are derived from plants of the family Asteraceae, genera Gnaphalium and Achyrocline reputed to have anti-cancer properties. Our studies indicate that 5,7-dihydroxy-3,6,8-trimethoxy-2-phenyl-4H-chromen-4-one (5,7-dihydroxy-3,6,8-trimethoxy flavone) displays potent activity against more differentiated carcinomas of the colon (Caco-2), and pancreas (Panc28), whereas 3,5-dihydroxy-6,7,8-trimethoxy-2-phenyl-4H-chromen-4-one (3,5-dihydroxy-6,7,8-trimethoxy flavone) cytototoxic action is observed on poorly differentiated carcinomas of the colon (HCT116), pancreas (Mia PaCa), and breast (SK-BR3). Both flavones induced cell death (>50%) as proven by MTT cell viability assay in these cancer cell lines, all of which are regarded as highly tumorigenic. At the concentrations studied (5–80 µM), neither flavone demonstrated activity against the less tumorigenic cell lines, breast cancer MCF-7 cells, androgen-responsive LNCaP human prostate cancer line, and androgen-unresponsive PC3 prostate cancer cells. 5,7-dihydroxy-3,6,8-trimethoxy-2-phenyl-4H-chromen-4-one (5,7-dihydroxy-3,6,8-trimethoxy flavone) displays activity against more differentiated carcinomas of the colon and pancreas, but minimal cytotoxicity on poorly differentiated carcinomas of these organs. On the contrary, 3,5-dihydroxy-6,7,8-trimethoxy-2-phenyl-4H-chromen-4-one (3,5-dihydroxy-6,7,8-trimethoxy flavone) is highly cytotoxic to poorly differentiated carcinomas of the colon, pancreas, and breast with minimal activity against more differentiated carcinomas of the same organs. These differential effects suggest activation of distinct apoptotic pathways. In conclusion, the specific chemical properties of these two flavone isomers dictate mechanistic properties which may be relevant when evaluating biological responses to flavones. PMID:22768128
Increased mitochondrial-encoded gene transcription in immortal DF-1 cells.
Kim, H; You, S; Kim, I J; Farris, J; Foster, L K; Foster, D N
2001-05-01
We have established, in continuous cell culture, a spontaneously immortalized chicken embryo fibroblast (CEF) cell line (DF-1) as well as several other immortal CEF cell lines. The immortal DF-1 cells divided more rapidly than primary and other immortal CEF cells. To identify the genes involved in rapidly dividing DF-1 cells, we have used differential display RT-PCR. Of the numerous genes analyzed, three mitochondrial-encoded genes (ATPase 8/6, 16S rRNA, and cytochrome b) were shown to express at higher levels in DF-1 cells compared to primary and other immortal CEF cells. The inhibition of mitochondrial translation by treatment with chloramphenicol markedly decreased ATP production and cell proliferation in DF-1 cells, while not affecting growth in either primary or other immortal CEF cells. This result suggests a correlation between rapid cell proliferation and the increased mitochondrial respiratory functions. We also determined that the increased transcription of mitochondrial-encoded genes in DF-1 cells is due to increased de novo transcript synthesis as shown by mitochondrial run-on assays, and not the result of either increased mitochondrial biogenesis or mitochondrial transcript half-lives. Together, the present studies suggest that the transcriptional activation of mitochondrial-encoded genes and the elevated respiratory function should be one of the characteristics of rapidly dividing immortal cells. Copyright 2001 Academic Press.
Adolphe, M; Thenet, S
1990-01-01
The concept of cellular immortality, which arose from the historical studies of A. Carrel, is getting a new start with the progress of virology. However, the definition of cell immortalization is still ambiguous. Although scientists agree that cells regarded as immortal have acquired an infinite growth capacity, the relationship of this change with the first stages of transformation is difficult to clearly define. Immortalized cell lines have already been obtained from numerous cell types by using viral infection or transfection with viral and cellular genes. Immortalization of cells is interesting for three main reasons: it permits study of the steps in progression to transformation, allows establishment of cell lines for producing biological products, and permits various cell types to maintain a part of their differentiated functions. For example, hypothalamic neurosecretory cells, macrophages, astrocytes and intestinal epithelial cells have been immortalized and these lines can be used for understanding the balance between division and differentiation, and also for pharmacotoxicological studies. In our laboratory, we immortalized rabbit articular chondrocytes by transfection with SV40 large T and little t encoding genes. At the 9th subculture, when the control culture was senescent, clones of polygonal cells appeared in the transfected cell cultures. Three clones have been selected and have been maintained in culture for two years. Growth curves of normal and SV40-transfected chondrocytes were compared and displayed similar doubling times (approximately 20 hours). The exponential phase of growth was longer for immortalized cells resulting in a 2-fold higher saturation density. These cells appear to be not fully transformed and maintain some properties of differentiated chondrocytes.(ABSTRACT TRUNCATED AT 250 WORDS)
Isham, Crescent R.; Tibodeau, Jennifer D.; Jin, Wendy; Xu, Ruifang; Timm, Michael M.
2007-01-01
Chaetocin, a thiodioxopiperazine natural product previously unreported to have anticancer effects, was found to have potent antimyeloma activity in IL-6–dependent and –independent myeloma cell lines in freshly collected sorted and unsorted patient CD138+ myeloma cells and in vivo. Chaetocin largely spares matched normal CD138− patient bone marrow leukocytes, normal B cells, and neoplastic B-CLL (chronic lymphocytic leukemia) cells, indicating a high degree of selectivity even in closely lineage-related B cells. Furthermore, chaetocin displays superior ex vivo antimyeloma activity and selectivity than doxorubicin and dexamethasone, and dexamethasone- or doxorubicin-resistant myeloma cell lines are largely non–cross-resistant to chaetocin. Mechanistically, chaetocin is dramatically accumulated in cancer cells via a process inhibited by glutathione and requiring intact/unreduced disulfides for uptake. Once inside the cell, its anticancer activity appears mediated primarily through the imposition of oxidative stress and consequent apoptosis induction. Moreover, the selective antimyeloma effects of chaetocin appear not to reflect differential intracellular accumulation of chaetocin but, instead, heightened sensitivity of myeloma cells to the cytotoxic effects of imposed oxidative stress. Considered collectively, chaetocin appears to represent a promising agent for further study as a potential antimyeloma therapeutic. PMID:17090648
Hatae, Noriyuki; Nakamura, Jun; Okujima, Tetsuo; Ishikura, Minoru; Abe, Takumi; Hibino, Satoshi; Choshi, Tominari; Okada, Chiaki; Yamada, Hiroko; Uno, Hidemitsu; Toyota, Eiko
2013-08-15
9,10-Phenanthrenequinone (9,10-PQ) is one of the most abundant quinones among diesel exhaust particulates. Recent data have suggested that quinones induce apoptosis in immune, epithelial and tumor cells, leading to respirator illness; however, the mechanisms by which quinones induce apoptosis and the structure required for this remain unknown. We studied the antitumor activity of 9,10-PQ analogs against two human tumor cell lines, HCT-116 colon tumor cells and HL-60 promyelocytic leukemia cells. The loss of the cis-orthoquinone unit in 9,10-PQ abrogated its ability to induce apoptosis in the two tumor cell lines, and the LC50 values of these analogs were indicated over 10 μM. An analog of 9,10-PQ in which the biaryl unit had been deleted displayed a reduced ability to induce tumor cell apoptosis, while the analogs 1,10-phenanthroline-5,6-dione (9) and pyrene-4,5-dione (10), which also had modified biaryl units, exhibited increased tumor cell apoptotic activity. The cis-orthoquinone unit in 9,10-PQ was identified as essential for its ability to induce apoptosis in tumor cells, and its biaryl unit is also considered to influence orthoquinone-mediated apoptotic activity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Le Nail, Louis-Romée; Brennan, Meadhbh; Rosset, Philippe; Piloquet, Philippe; Pichon, Olivier; Le Caignec, Cédric; Crenn, Vincent; Layrolle, Pierre; Hérault, Olivier; De Pinieux, Gonzague
2018-01-01
Osteosarcoma (OS) is suspected to originate from dysfunctional mesenchymal stromal/stem cells (MSC). We sought to identify OS-derived cells (OSDC) with potential cancer stem cell (CSC) properties by comparing OSDC to MSC derived from bone marrow of patients. This study included in vitro characterization with sphere forming assays, differentiation assays, cytogenetic analysis, and in vivo investigations of their tumorigenicity and tumor supportive capacities. Primary cell lines were isolated from nine high-grade OS samples. All primary cell lines demonstrated stromal cell characteristics. Compared to MSC, OSDC presented a higher ability to form sphere clones, indicating a potential CSC phenotype, and were more efficient at differentiation towards osteoblasts. None of the OSDC displayed the complex chromosome rearrangements typical of high grade OS and none of them induced tumors in immunodeficient mice. However, two OSDC demonstrated focused genomic abnormalities. Three out of seven, and six out of seven OSDC showed a supportive role on local tumor development, and on metastatic progression to the lungs, respectively, when co-injected with OS cells in nude mice. The observation of OS-associated stromal cells with rare genetic abnormalities and with the capacity to sustain tumor progression may have implications for future tumor treatments. PMID:29494553
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brachvogel, Bent; Pausch, Friederike; Farlie, Peter
2007-07-15
Pericytes are closely associated with endothelial cells, contribute to vascular stability and represent a potential source of mesenchymal progenitor cells. Using the specifically expressed annexin A5-LacZ fusion gene (Anxa5-LacZ), it became possible to isolate perivascular cells (PVC) from mouse tissues. These cells proliferate and can be cultured without undergoing senescence for multiple passages. PVC display phenotypic characteristics of pericytes, as they express pericyte-specific markers (NG2-proteoglycan, desmin, {alpha}SMA, PDGFR-{beta}). They also express stem cell marker Sca-1, whereas endothelial (PECAM), hematopoietic (CD45) or myeloid (F4/80, CD11b) lineage markers are not detectable. These characteristics are in common with the pericyte-like cell line 10T1/2.more » PVC also display a phagocytoic activity higher than 10T1/2 cells. During coculture with endothelial cells both cell types stimulate angiogenic processes indicated by an increased expression of PECAM in endothelial cells and specific deposition of basement membrane proteins. PVC show a significantly increased induction of endothelial specific PECAM expression compared to 10T1/2 cells. Accordingly, in vivo grafts of PVC aggregates onto chorioallantoic membranes of quail embryos recruit endothelial cells, get highly vascularized and deposit basement membrane components. These data demonstrate that isolated Anxa5-LacZ{sup +} PVC from mouse meninges retain their capacity for differentiation to pericyte-like cells and contribute to angiogenic processes.« less
Steichen, Clara; Maluenda, Jérôme; Tosca, Lucie; Luce, Eléanor; Pineau, Dominique; Dianat, Noushin; Hannoun, Zara; Tachdjian, Gérard; Melki, Judith
2015-01-01
Human induced pluripotent stem cells (hiPSCs) hold great promise for cell therapy through their use as vital tools for regenerative and personalized medicine. However, the genomic integrity of hiPSCs still raises some concern and is one of the barriers limiting their use in clinical applications. Numerous articles have reported the occurrence of aneuploidies, copy number variations, or single point mutations in hiPSCs, and nonintegrative reprogramming strategies have been developed to minimize the impact of the reprogramming process on the hiPSC genome. Here, we report the characterization of an hiPSC line generated by daily transfections of modified messenger RNAs, displaying several genomic abnormalities. Karyotype analysis showed a complex genomic rearrangement, which remained stable during long-term culture. Fluorescent in situ hybridization analyses were performed on the hiPSC line showing that this karyotype is balanced. Interestingly, single-nucleotide polymorphism analysis revealed the presence of a large 1q region of uniparental disomy (UPD), demonstrating for the first time that UPD can occur in a noncompensatory context during nonintegrative reprogramming of normal fibroblasts. PMID:25650439
Formagio, Anelise S Nazari; Tonin, Lilian T Düsman; Foglio, Mary Ann; Madjarof, Christiana; de Carvalho, João Ernesto; da Costa, Willian Ferreira; Cardoso, Flávia P; Sarragiotto, Maria Helena
2008-11-15
Several novel 1-substituted-phenyl beta-carbolines bearing the 2-substituted-1,3,4-oxadiazol-5-yl and 5-substituted-1,2,4-triazol-3-yl groups at C-3 were synthesized and evaluated for their in vitro anticancer activity. The assay results pointed thirteen compounds with growth inhibition effect (GI(50)<100 microM) for all eight different types of human cancer cell lines tested. The beta-carbolines 7a and 7h, bearing the 3-(2-metylthio-1,3,4-oxadiazol-5-yl) group, displayed high selectivity and potent anticancer activity against ovarian cell line with GI(50) values lying in the nanomolar concentration range (GI(50)=10 nM for both compounds). The 1-(N,N-dimethylaminophenyl)-3-(5-thioxo-1,2,4-triazol-3-yl) beta-carboline (8g) was the most active compound, showing particular effectiveness on lung (GI(50)=0.06 microM), ovarian and renal cell lines. The potent anticancer activity presented for synthesized compounds 7a, 7h, and 8g, together with their easiness of synthesis, makes these compounds promising anticancer agents.
Sox-2 in taste bud and lateral line system of zebrafish during development.
Germanà, A; Montalbano, G; Guerrera, M C; Laura, R; Levanti, M; Abbate, F; de Carlos, F; Vega, J A; Ciriaco, E
2009-12-18
The Sox-2 is a transcription factor involved in adult neurogenesis in different vertebrate species, including fishes. Sox-2 also participates in growth and renewal on sensory cells in neuromasts of the fish lateral line system, and it is essential for development of taste buds in mammals. Using immunohistochemistry and Western blot we have investigated the occurrence and localization of Sox-2 taste buds and neuromast of zebrafish from 10 days post-fertilization to adult stage (1 year). The antibody used identifies two protein bands with estimated molecular weights of 34 and 37kDa which are consistent with those predicted for Sox-2. Sensory cells in taste buds displayed Sox-2 immunoreactivity at all the ages sampled, whereas in the neuromasts Sox-2 expression was restricted to the basal non-sensory cells. Interestingly Sox-2 immunoreactivity was observed in epithelial cells associated with both taste buds and neuromasts. Present results demonstrate that Sox-2 expressed in taste buds and neuromasts of zebrafish during the whole lifespan. Nevertheless, whereas the role of Sox-2 in taste buds of zebrafish remains to be established, the results in neuromast suggest that Sox-2 could participate in cell renewal of the mechanosensory cells.
HLS7, a hemopoietic lineage switch gene homologous to the leukemia-inducing gene MLF1.
Williams, J H; Daly, L N; Ingley, E; Beaumont, J G; Tilbrook, P A; Lalonde, J P; Stillitano, J P; Klinken, S P
1999-01-01
Hemopoietic lineage switching occurs when leukemic cells, apparently committed to one lineage, change and display the phenotype of another pathway. cDNA representational difference analysis was used to identify myeloid-specific genes that may be associated with an erythroid to myeloid lineage switch involving the murine J2E erythroleukemic cell line. One of the genes isolated (HLS7) is homologous to the novel human oncogene myeloid leukemia factor 1 (MLF1) involved in the t(3;5)(q25.1;q34) translocation associated with acute myeloid leukemia. Enforced expression of HLS7 in J2E cells induced a monoblastoid phenotype, thereby recapitulating the spontaneous erythroid to myeloid lineage switch. HLS7 also inhibited erythropoietin- or chemically-induced differentiation of erythroleukemic cell lines and suppressed development of erythropoietin-responsive colonies in semi-solid culture. However, intracellular signaling activated by erythropoietin was not impeded by ectopic expression of HLS7. In contrast, HLS7 promoted maturation of M1 monoblastoid cells and increased myeloid colony formation in vitro. These data show that HLS7 can influence erythroid/myeloid lineage switching and the development of normal hemopoietic cells. PMID:10523300
HLS7, a hemopoietic lineage switch gene homologous to the leukemia-inducing gene MLF1.
Williams, J H; Daly, L N; Ingley, E; Beaumont, J G; Tilbrook, P A; Lalonde, J P; Stillitano, J P; Klinken, S P
1999-10-15
Hemopoietic lineage switching occurs when leukemic cells, apparently committed to one lineage, change and display the phenotype of another pathway. cDNA representational difference analysis was used to identify myeloid-specific genes that may be associated with an erythroid to myeloid lineage switch involving the murine J2E erythroleukemic cell line. One of the genes isolated (HLS7) is homologous to the novel human oncogene myeloid leukemia factor 1 (MLF1) involved in the t(3;5)(q25.1;q34) translocation associated with acute myeloid leukemia. Enforced expression of HLS7 in J2E cells induced a monoblastoid phenotype, thereby recapitulating the spontaneous erythroid to myeloid lineage switch. HLS7 also inhibited erythropoietin- or chemically-induced differentiation of erythroleukemic cell lines and suppressed development of erythropoietin-responsive colonies in semi-solid culture. However, intracellular signaling activated by erythropoietin was not impeded by ectopic expression of HLS7. In contrast, HLS7 promoted maturation of M1 monoblastoid cells and increased myeloid colony formation in vitro. These data show that HLS7 can influence erythroid/myeloid lineage switching and the development of normal hemopoietic cells.
Kukula-Koch, Wirginia; Grabarska, Aneta; Łuszczki, Jarogniew; Czernicka, Lidia; Nowosadzka, Ewa; Gumbarewicz, Ewelina; Jarząb, Agata; Audo, Gregoire; Upadhyay, Shakti; Głowniak, Kazimierz; Stepulak, Andrzej
2018-05-01
Three curcuminoids: bisdemethoxycurcumin, demethoxycurcumin, and curcumin from turmeric were successfully separated by a high capacity solvent system composed of heptane: chloroform: methanol: water mixture (5: 6: 3: 2 v/v/v/v) tailored for centrifugal partition chromatographs at K-values of 0.504, 1.057, 1.644, respectively. These three ferulic acid derivatives obtained at a purity rate exceeding 95% were analysed by an HPLC-MS spectrometer. Turmeric extract inhibited the proliferation/viability of A549 human lung cancer, HT29 colon cancer, and T98G glioblastoma cell lines in (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay (MTT). Single curcuminoids significantly decreased the viability/proliferation of lung cancer cells in a dose-dependent manner. However, total extract displayed the superior anticancer activity in the investigated cell lines. Crude extract in combination with cisplatin augmented the decrease in the viability of cancer cells compared with single compound treatment in A549 lung cancer cells. Total extract of Curcuma longa could be regarded as being more effective against lung cancer cells in vitro than its separated compounds. Copyright © 2018 John Wiley & Sons, Ltd.
Demonstration of Land and Hold Short Technology at the Dallas-Fort Worth International Airport
NASA Technical Reports Server (NTRS)
Hyer, Paul V.; Jones, Denise R. (Technical Monitor)
2002-01-01
A guidance system for assisting in Land and Hold Short operations was developed and then tested at the Dallas-Fort Worth International Airport. This system displays deceleration advisory information on a head-up display (HUD) in front of the airline pilot during landing. The display includes runway edges, a trend vector, deceleration advisory, locations of the hold line and of the selected exit, and alphanumeric information about the progress of the aircraft. Deceleration guidance is provided to the hold short line or to a pilot selected exit prior to this line. Logic is provided to switch the display automatically to the next available exit. The report includes descriptions of the algorithms utilized in the displays, and a report on the techniques of HUD alignment, and results.
Michel, Anastasija; Schüler, Andrea; Friedrich, Pamela; Döner, Fatma; Bopp, Tobias; Radsak, Markus; Hoffmann, Markus; Relle, Manfred; Distler, Ute; Kuharev, Jörg; Tenzer, Stefan; Feyerabend, Thorsten B; Rodewald, Hans-Reimer; Schild, Hansjörg; Schmitt, Edgar; Becker, Marc; Stassen, Michael
2013-06-01
Mast cell-deficient Kit(W-sh) "sash" mice are widely used to investigate mast cell functions. However, mutations of c-Kit also affect additional cells of hematopoietic and nonimmune origin. In this study, we demonstrate that Kit(W-sh) causes aberrant extramedullary myelopoiesis characterized by the expansion of immature lineage-negative cells, common myeloid progenitors, and granulocyte/macrophage progenitors in the spleen. A consistent feature shared by these cell types is the reduced expression of c-Kit. Populations expressing intermediate and high levels of Ly6G, a component of the myeloid differentiation Ag Gr-1, are also highly expanded in the spleen of sash mice. These cells are able to suppress T cell responses in vitro and phenotypically and functionally resemble myeloid-derived suppressor cells (MDSC). MDSC typically accumulate in tumor-bearing hosts and are able to dampen immune responses. Consequently, transfer of MDSC from naive sash mice into line 1 alveolar cell carcinoma tumor-bearing wild-type littermates leads to enhanced tumor progression. However, although it can also be observed in sash mice, accelerated growth of transplanted line 1 alveolar cell carcinoma tumors is a mast cell-independent phenomenon. Thus, the Kit(W-sh) mutation broadly affects key steps in myelopoiesis that may have an impact on mast cell research.
Mao, Chengjian; Livezey, Mara; Kim, Ji Eun; Shapiro, David J.
2016-01-01
Outgrowth of metastases expressing ERα mutations Y537S and D538G is common after endocrine therapy for estrogen receptor α (ERα) positive breast cancer. The effect of replacing wild type ERα in breast cancer cells with these mutations was unclear. We used the CRISPR-Cas9 genome editing system and homology directed repair to isolate and characterize 14 T47D cell lines in which ERαY537S or ERαD538G replace one or both wild-type ERα genes. In 2-dimensional, and in quantitative anchorage-independent 3-dimensional cell culture, ERαY537S and ERαD538G cells exhibited estrogen-independent growth. A progestin further increased their already substantial proliferation in micromolar 4-hydroxytamoxifen and fulvestrant/ICI 182,780 (ICI). Our recently described ERα biomodulator, BHPI, which hyperactivates the unfolded protein response (UPR), completely blocked proliferation. In ERαY537S and ERαD538G cells, estrogen-ERα target genes were constitutively active and partially antiestrogen resistant. The UPR marker sp-XBP1 was constitutively activated in ERαY537S cells and further induced by progesterone in both cell lines. UPR-regulated genes associated with tamoxifen resistance, including the oncogenic chaperone BiP/GRP78, were upregulated. ICI displayed a greater than 2 fold reduction in its ability to induce ERαY537S and ERαD538G degradation. Progestins, UPR activation and perhaps reduced ICI-stimulated ERα degradation likely contribute to antiestrogen resistance seen in ERαY537S and ERαD538G cells. PMID:27713477
Podolski-Renić, Ana; Bősze, Szilvia; Dinić, Jelena; Kocsis, László; Hudecz, Ferenc; Csámpai, Antal; Pešić, Milica
2017-08-16
Recently, we demonstrated that ferrocene-containing compounds with a cinchona moiety displayed marked anticancer activity. Here we report on the effects of the most promising isomers encompassing quinine- (compounds 4 and 5) and quinidine-epimers (compounds 6 and 7) - synthesized using improved methods providing controlled diastereoselectivity - in three different human multidrug resistant (MDR) cancer cell lines and their sensitive counterparts (non-small cell lung carcinoma NCI-H460/R/NCI-H460, colorectal carcinoma DLD1-TxR/DLD1 and glioblastoma U87-TxR/U87). We observed that the presence of the MDR phenotype did not diminish the activity of the compounds suggesting that ferrocene quinine- and quinidine-epimers are not substrates for P-glycoprotein, which has been indicated as a major mechanism of MDR in the cell lines used. Considering that metal-based anticancer agents mainly act by increasing ROS production, we investigated the potential of ferrocene-quinidine epimers to generate ROS. We found that 6 and 7 more readily increased ROS production and induced mitochondrial damage in MDR cancer cells. According to cell death analysis, 6 and 7 were more active against MDR cancer cells showing collateral sensitivity. In addition, our data suggest that these compounds could act as inhibitors of autophagy. Importantly, simultaneous treatments of 6 and 7 with paclitaxel (PTX) increased the sensitivity of MDR cancer cells to PTX. In conclusion, the ferrocene-quinidine epimers, besides being selective towards MDR cancer cells, could also possess potential to overcome PTX resistance.
Wit, Niek; Buoninfante, Olimpia Alessandra; van den Berk, Paul C M; Jansen, Jacob G; Hogenbirk, Marc A; de Wind, Niels; Jacobs, Heinz
2015-01-01
Translesion synthesis (TLS) provides a highly conserved mechanism that enables DNA synthesis on a damaged template. TLS is performed by specialized DNA polymerases of which polymerase (Pol) κ is important for the cellular response to DNA damage induced by benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide (BPDE), ultraviolet (UV) light and the alkylating agent methyl methanesulfonate (MMS). As TLS polymerases are intrinsically error-prone, tight regulation of their activity is required. One level of control is provided by ubiquitination of the homotrimeric DNA clamp PCNA at lysine residue 164 (PCNA-Ub). We here show that Polκ can function independently of PCNA modification and that Polη can function as a backup during TLS of MMS-induced lesions. Compared to cell lines deficient for PCNA modification (Pcna(K164R)) or Polκ, double mutant cell lines display hypersensitivity to MMS but not to BPDE or UV-C. Double mutant cells also displayed delayed post-replicative TLS, accumulate higher levels of replication stress and delayed S-phase progression. Furthermore, we show that Polη and Polκ are redundant in the DNA damage bypass of MMS-induced DNA damage. Taken together, we provide evidence for PCNA-Ub-independent activation of Polκ and establish Polη as an important backup polymerase in the absence of Polκ in response to MMS-induced DNA damage. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.
Gruver, Aaron M; Liu, Ling; Vaillancourt, Peter; Yan, Sau-Chi B; Cook, Joel D; Roseberry Baker, Jessica A; Felke, Erin M; Lacy, Megan E; Marchal, Christophe C; Szpurka, Hadrian; Holzer, Timothy R; Rhoads, Emily K; Zeng, Wei; Wortinger, Mark A; Lu, Jirong; Chow, Chi-kin; Denning, Irene J; Beuerlein, Gregory; Davies, Julian; Hanson, Jeff C; Credille, Kelly M; Wijayawardana, Sameera R; Schade, Andrew E
2014-12-01
Development of novel targeted therapies directed against hepatocyte growth factor (HGF) or its receptor (MET) necessitates the availability of quality diagnostics to facilitate their safe and effective use. Limitations of some commercially available anti-MET antibodies have prompted development of the highly sensitive and specific clone A2H2-3. Here we report its analytical properties when applied by an automated immunohistochemistry method. Excellent antibody specificity was demonstrated by immunoblot, ELISA, and IHC evaluation of characterised cell lines including NIH3T3 overexpressing the related kinase MST1R (RON). Sensitivity was confirmed by measurements of MET in cell lines or characterised tissues. IHC correlated well with FISH and quantitative RT-PCR assessments of MET (P < 0.001). Good total agreement (89%) was observed with the anti-MET antibody clone SP44 using whole-tissue sections, but poor positive agreement (21-47%) was seen in tissue microarray cores. Multiple lots displayed appropriate reproducibility (R(2) > 0.9). Prevalence of MET positivity by IHC was higher in non-squamous cell NSCLC, MET or EGFR amplified cases, and in tumours harbouring abnormalities in EGFR exon 19 or 21. The anti-MET antibody clone A2H2-3 displays excellent specificity and sensitivity. These properties make it suitable for clinical trial investigations and development as a potential companion diagnostic. © 2014 The Authors. Histopathology Published by John Wiley & Sons Ltd.
Tooth display and lip position during spontaneous and posed smiling in adults.
Van Der Geld, Pieter; Oosterveld, Paul; Berge, Stefaan J; Kuijpers-Jagtman, Anne M
2008-08-01
To analyze differences in tooth display, lip-line height, and smile width between the posed smiling record, traditionally produced for orthodontic diagnosis, and the spontaneous (Duchenne) smile of joy. The faces of 122 male participants were each filmed during spontaneous and posed smiling. Spontaneous smiles were elicited through the participants watching a comical movie. Maxillary and mandibular lip-line heights, tooth display, and smile width were measured using a digital videographic method for smile analysis. Paired sample t-tests were used to compare measurements of posed and spontaneous smiling. Maxillary lip-line heights during spontaneous smiling were significantly higher than during posed smiling. Compared to spontaneous smiling, tooth display in the (pre)molar area during posed smiling decreased by up to 30%, along with a significant reduction of smile width. During posed smiling, also mandibular lip-line heights changed and the teeth were more covered by the lower lip than during spontaneous smiling. Reduced lip-line heights, tooth display, and smile width on a posed smiling record can have implications for the diagnostics of lip-line height, smile arc, buccal corridors, and plane of occlusion. Spontaneous smiling records next to posed smiling records are therefore recommended for diagnostic purposes. Because of the dynamic nature of spontaneous smiling, it is proposed to switch to dynamic video recording of the smile.
METHOD AND MEANS FOR RECOGNIZING COMPLEX PATTERNS
Hough, P.V.C.
1962-12-18
This patent relates to a method and means for recognizing a complex pattern in a picture. The picture is divided into framelets, each framelet being sized so that any segment of the complex pattern therewithin is essentially a straight line. Each framelet is scanned to produce an electrical pulse for each point scanned on the segment therewithin. Each of the electrical pulses of each segment is then transformed into a separate strnight line to form a plane transform in a pictorial display. Each line in the plane transform of a segment is positioned laterally so that a point on the line midway between the top and the bottom of the pictorial display occurs at a distance from the left edge of the pictorial display equal to the distance of the generating point in the segment from the left edge of the framelet. Each line in the plane transform of a segment is inclined in the pictorial display at an angle to the vertical whose tangent is proportional to the vertical displacement of the generating point in the segment from the center of the framelet. The coordinate position of the point of intersection of the lines in the pictorial display for each segment is determined and recorded. The sum total of said recorded coordinate positions being representative of the complex pattern. (AEC)
BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models
Bilgin, Cemal Cagatay; Fontenay, Gerald; Cheng, Qingsu; Chang, Hang; Han, Ju; Parvin, Bahram
2016-01-01
BioSig3D is a computational platform for high-content screening of three-dimensional (3D) cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i) morphogenesis of a panel of human mammary epithelial cell lines (HMEC), and (ii) heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation. PMID:26978075
Kurata, Morito; Rathe, Susan K; Bailey, Natashay J; Aumann, Natalie K; Jones, Justine M; Veldhuijzen, G Willemijn; Moriarity, Branden S; Largaespada, David A
2016-11-03
Acute myeloid leukemia (AML) can display de novo or acquired resistance to cytosine arabinoside (Ara-C), a primary component of induction chemotherapy. To identify genes capable of independently imposing Ara-C resistance, we applied a genome-wide CRISPR library to human U937 cells and exposed to them to Ara-C. Interestingly, all drug resistant clones contained guide RNAs for DCK. To avoid DCK gene modification, gRNA resistant DCK cDNA was created by the introduction of silent mutations. The CRISPR screening was repeated using the gRNA resistant DCK, and loss of SLC29A was identified as also being capable of conveying Ara-C drug resistance. To determine if loss of Dck results in increased sensitivity to other drugs, we conducted a screen of 446 FDA approved drugs using two Dck-defective BXH-2 derived murine AML cell lines and their Ara-C sensitive parental lines. Both cell lines showed an increase in sensitivity to prednisolone. Guide RNA resistant cDNA rescue was a legitimate strategy and multiple DCK or SLC29A deficient human cell clones were established with one clone becoming prednisolone sensitive. Dck-defective leukemic cells may become prednisolone sensitive indicating prednisolone may be an effective adjuvant therapy in some cases of DCK-negative AML.
Tao, Yong; Ou, Yunsheng; Yin, Hang; Chen, Yanyang; Zhong, Shenxi; Gao, Yongjian; Zhao, Zenghui; He, Bin; Huang, Qiu; Deng, Qianxing
2017-11-01
The present study was performed to establish and characterize new human osteosarcoma cell lines resistant to pyropheophorbide-α methyl ester‑mediated photodynamic therapy (MPPa-PDT). MPPa-PDT-resistant cells are isolated from the human osteosarcoma MG63 and HOS cell lines and two resistant populations were finally acquired, including MG63/PDT and HOS/PDT. Cell Counting Kit-8 (CCK-8) assay was used to determine the MPPa-PDT, cisplatin (CDDP) resistance and proliferation of MG63, MG63/PDT, HOS and HOS/PDT cells. The intracellular ROS were analyzed using DCFH-DA staining. The colony formation, invasion and migration of parental and resistant cells were compared. FCM was employed to examine the cell cycle distribution, the apoptosis rate and the proportion of CD133+ cells. The fluorescence intensity of intracellular MPPa was observed by fluorescence microscopy and quantified using microplate reader. The protein levels were assessed by western blotting (WB). Compared with two parental cells, MG63/PDT and HOS/PDT were 1.67- and 1.61-fold resistant to MPPa-PDT, respectively, and also exhibited the resistance to CDDP. FCM assays confirmed that both MG63/PDT and HOS/PDT cells treated with MPPa-PDT displayed a significantly lower apoptosis rate in comparison with their corresponding parental cells. The expression of apoptosis-related proteins (i.e. cleaved-caspase 3 and cleaved‑PARP), intracellular ROS and the antioxidant proteins (HO-1 and SOD1) in MG63/PDT and HOS/PDT cells was also lower than that in parental cells. Both MG63/PDT and HOS/PDT cells exhibited changes in proliferation, photosensitizer absorption, colony formation, invasion, migration and the cell cycle distribution as compared to MG63 and HOS cells, respectively. Compared to MG63 and HOS cells, both resistant cell lines had a higher expression of CD133, survivin, Bcl-xL, Bcl-2, MRP1, MDR1 and ABCG2, but a lower expression of Bax. The present study successfully established two resistant human osteosarcoma cell lines which are valuable to explore the resistance-related mechanisms and the approaches to overcome resistance.
Tao, Yong; Ou, Yunsheng; Yin, Hang; Chen, Yanyang; Zhong, Shenxi; Gao, Yongjian; Zhao, Zenghui; He, Bin; Huang, Qiu; Deng, Qianxing
2017-01-01
The present study was performed to establish and characterize new human osteosarcoma cell lines resistant to pyropheophorbide-α methyl ester-mediated photodynamic therapy (MPPa-PDT). MPPa-PDT-resistant cells are isolated from the human osteosarcoma MG63 and HOS cell lines and two resistant populations were finally acquired, including MG63/PDT and HOS/PDT. Cell Counting Kit-8 (CCK-8) assay was used to determine the MPPa-PDT, cisplatin (CDDP) resistance and proliferation of MG63, MG63/PDT, HOS and HOS/PDT cells. The intracellular ROS were analyzed using DCFH-DA staining. The colony formation, invasion and migration of parental and resistant cells were compared. FCM was employed to examine the cell cycle distribution, the apoptosis rate and the proportion of CD133+ cells. The fluorescence intensity of intracellular MPPa was observed by fluorescence microscopy and quantified using microplate reader. The protein levels were assessed by western blotting (WB). Compared with two parental cells, MG63/PDT and HOS/PDT were 1.67- and 1.61-fold resistant to MPPa-PDT, respectively, and also exhibited the resistance to CDDP. FCM assays confirmed that both MG63/PDT and HOS/PDT cells treated with MPPa-PDT displayed a significantly lower apoptosis rate in comparison with their corresponding parental cells. The expression of apoptosis-related proteins (i.e. cleaved-caspase 3 and cleaved-PARP), intracellular ROS and the antioxidant proteins (HO-1 and SOD1) in MG63/PDT and HOS/PDT cells was also lower than that in parental cells. Both MG63/PDT and HOS/PDT cells exhibited changes in proliferation, photosensitizer absorption, colony formation, invasion, migration and the cell cycle distribution as compared to MG63 and HOS cells, respectively. Compared to MG63 and HOS cells, both resistant cell lines had a higher expression of CD133, survivin, Bcl-xL, Bcl-2, MRP1, MDR1 and ABCG2, but a lower expression of Bax. The present study successfully established two resistant human osteosarcoma cell lines which are valuable to explore the resistance-related mechanisms and the approaches to overcome resistance. PMID:29048645
Effects of Two Fullerene Derivatives on Monocytes and Macrophages
Pacor, Sabrina; Grillo, Alberto; Đorđević, Luka; Zorzet, Sonia; Da Ros, Tatiana; Prato, Maurizio
2015-01-01
Two fullerene derivatives (fullerenes 1 and 2), bearing a hydrophilic chain on the pyrrolidinic nitrogen, were developed with the aim to deliver anticancer agents to solid tumors. These two compounds showed a significantly different behaviour on human neoplastic cell lines in vitro in respect to healthy leukocytes. In particular, the pyrrolidinium ring on the fullerene carbon cage brings to a more active compound. In the present work, we describe the effects of these fullerenes on primary cultures of human monocytes and macrophages, two kinds of immune cells representing the first line of defence in the immune response to foreign materials. These compounds are not recognized by circulating monocytes while they get into macrophages. The evaluation of the pronecrotic or proapoptotic effects, analysed by means of analysis of the purinergic receptor P2X7 activation and of ROS scavenging activity, has allowed us to show that fullerene 2, but not its analogue fullerene 1, displays toxicity, even though at concentrations higher than those shown to be active on neoplastic cells. PMID:26090460
CDK2 inhibitors as candidate therapeutics for cisplatin- and noise-induced hearing loss.
Teitz, Tal; Fang, Jie; Goktug, Asli N; Bonga, Justine D; Diao, Shiyong; Hazlitt, Robert A; Iconaru, Luigi; Morfouace, Marie; Currier, Duane; Zhou, Yinmei; Umans, Robyn A; Taylor, Michael R; Cheng, Cheng; Min, Jaeki; Freeman, Burgess; Peng, Junmin; Roussel, Martine F; Kriwacki, Richard; Guy, R Kiplin; Chen, Taosheng; Zuo, Jian
2018-04-02
Hearing loss caused by aging, noise, cisplatin toxicity, or other insults affects 360 million people worldwide, but there are no Food and Drug Administration-approved drugs to prevent or treat it. We screened 4,385 small molecules in a cochlear cell line and identified 10 compounds that protected against cisplatin toxicity in mouse cochlear explants. Among them, kenpaullone, an inhibitor of multiple kinases, including cyclin-dependent kinase 2 (CDK2), protected zebrafish lateral-line neuromasts from cisplatin toxicity and, when delivered locally, protected adult mice and rats against cisplatin- and noise-induced hearing loss. CDK2-deficient mice displayed enhanced resistance to cisplatin toxicity in cochlear explants and to cisplatin- and noise-induced hearing loss in vivo. Mechanistically, we showed that kenpaullone directly inhibits CDK2 kinase activity and reduces cisplatin-induced mitochondrial production of reactive oxygen species, thereby enhancing cell survival. Our experiments have revealed the proapoptotic function of CDK2 in postmitotic cochlear cells and have identified promising therapeutics for preventing hearing loss. © 2018 Teitz et al.
CDK2 inhibitors as candidate therapeutics for cisplatin- and noise-induced hearing loss
Teitz, Tal; Fang, Jie; Goktug, Asli N.; Bonga, Justine D.; Diao, Shiyong; Iconaru, Luigi; Morfouace, Marie; Currier, Duane; Zhou, Yinmei; Umans, Robyn A.; Taylor, Michael R.; Cheng, Cheng; Peng, Junmin; Roussel, Martine F.; Kriwacki, Richard; Guy, R. Kiplin; Chen, Taosheng
2018-01-01
Hearing loss caused by aging, noise, cisplatin toxicity, or other insults affects 360 million people worldwide, but there are no Food and Drug Administration–approved drugs to prevent or treat it. We screened 4,385 small molecules in a cochlear cell line and identified 10 compounds that protected against cisplatin toxicity in mouse cochlear explants. Among them, kenpaullone, an inhibitor of multiple kinases, including cyclin-dependent kinase 2 (CDK2), protected zebrafish lateral-line neuromasts from cisplatin toxicity and, when delivered locally, protected adult mice and rats against cisplatin- and noise-induced hearing loss. CDK2-deficient mice displayed enhanced resistance to cisplatin toxicity in cochlear explants and to cisplatin- and noise-induced hearing loss in vivo. Mechanistically, we showed that kenpaullone directly inhibits CDK2 kinase activity and reduces cisplatin-induced mitochondrial production of reactive oxygen species, thereby enhancing cell survival. Our experiments have revealed the proapoptotic function of CDK2 in postmitotic cochlear cells and have identified promising therapeutics for preventing hearing loss. PMID:29514916
Chamba, Anita; Holder, Michelle J; Jarrett, Ruth F; Shield, Lesley; Toellner, Kai M; Drayson, Mark T; Barnes, Nicholas M; Gordon, John
2010-08-01
B-cell lines of diverse neoplastic origin express the serotonin transporter (SERT/SLC6A4) and growth arrest in response to SERT-ligands, including the antidepressants chlomipramine and fluoxetine. Here we detail SLC6A4 transcript (Q-PCR) and protein (FACS) expression in primary cells from patients with: chronic lymphocytic leukaemia; mantle cell lymphoma; follicular lymphoma; Burkitt's lymphoma; and diffuse large B-cell lymphoma. The ability of the SERT-binding antidepressants to impact the growth of these cells when sustained on CD154-transfected fibroblasts was also determined. The results reveal a broad spectrum of primary B-cell malignancies expressing SLC6A4 with a proportion additionally displaying growth arrest on SERT-ligand exposure. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
Slusser, Andrea; Bathula, Chandra S.; Sens, Donald A.; Somji, Seema; Sens, Mary Ann; Zhou, Xu Dong; Garrett, Scott H.
2015-01-01
Background Cultures of human proximal tubule cells have been widely utilized to study the role of EMT in renal disease. The goal of this study was to define the role of growth media composition on classic EMT responses, define the expression of E- and N-cadherin, and define the functional epitope of MT-3 that mediates MET in HK-2 cells. Methods Immunohistochemistry, microdissection, real-time PCR, western blotting, and ELISA were used to define the expression of E- and N-cadherin mRNA and protein in HK-2 and HPT cell cultures. Site-directed mutagenesis, stable transfection, measurement of transepithelial resistance and dome formation were used to define the unique amino acid sequence of MT-3 associated with MET in HK-2 cells. Results It was shown that both E- and N-cadherin mRNA and protein are expressed in the human renal proximal tubule. It was shown, based on the pattern of cadherin expression, connexin expression, vectorial active transport, and transepithelial resistance, that the HK-2 cell line has already undergone many of the early features associated with EMT. It was shown that the unique, six amino acid, C-terminal sequence of MT-3 is required for MT-3 to induce MET in HK-2 cells. Conclusions The results show that the HK-2 cell line can be an effective model to study later stages in the conversion of the renal epithelial cell to a mesenchymal cell. The HK-2 cell line, transfected with MT-3, may be an effective model to study the process of MET. The study implicates the unique C-terminal sequence of MT-3 in the conversion of HK-2 cells to display an enhanced epithelial phenotype. PMID:25803827
14-3-3 σ Expression Effects G2/M Response to Oxygen and Correlates with Ovarian Cancer Metastasis
Ravi, Dashnamoorthy; Chen, Yidong; Karia, Bijal; Brown, Adam; Gu, Ting Ting; Li, Jie; Carey, Mark S.; Hennessy, Bryan T.; Bishop, Alexander J. R.
2011-01-01
Background In vitro cell culture experiments with primary cells have reported that cell proliferation is retarded in the presence of ambient compared to physiological O2 levels. Cancer is primarily a disease of aberrant cell proliferation, therefore, studying cancer cells grown under ambient O2 may be undesirable. To understand better the impact of O2 on the propagation of cancer cells in vitro, we compared the growth potential of a panel of ovarian cancer cell lines under ambient (21%) or physiological (3%) O2. Principal Findings Our observations demonstrate that similar to primary cells, many cancer cells maintain an inherent sensitivity to O2, but some display insensitivity to changes in O2 concentration. Further analysis revealed an association between defective G2/M cell cycle transition regulation and O2 insensitivity resultant from overexpression of 14-3-3 σ. Targeting 14-3-3 σ overexpression with RNAi restored O2 sensitivity in these cell lines. Additionally, we found that metastatic ovarian tumors frequently overexpress 14-3-3 σ, which in conjunction with phosphorylated RB, results in poor prognosis. Conclusions Cancer cells show differential proliferative sensitivity to changes in O2 concentration. Although a direct link between O2 insensitivity and metastasis was not determined, this investigation showed that an O2 insensitive phenotype in cancer cells to correlate with metastatic tumor progression. PMID:21249227
Ruiz, Sophie; Beauvillain, Céline; Mévélec, Marie-Noëlle; Roingeard, Philippe; Breton, Pascal; Bout, Daniel; Dimier-Poisson, Isabelle
2005-11-01
Dendritic cells (DCs) play an essential role in the induction of immune responses to pathogen infections. Native DCs are difficult to obtain in large numbers and consequently the vast majority of DCs employed in all experiments are derived from bone marrow progenitors. In an attempt to solve this problem, we have established a novel CD8alpha(+) DC line (H-2(k)) from spleen, which we have named SRDC line, and which is easy to culture in vitro. These cells display similar morphology, phenotype and activity to CD4(-)CD8alpha(+)CD205(+)CD11b(-) DCs purified ex vivo. Toxoplasma gondii antigen was shown to be taken up by these cells and to increase class I and class II major histocompatibility complex (MHC), CD40, CD80 and CD86 surface expression. We report that vaccination with T. gondii antigen-pulsed SRDCs, which synthesize large amounts of interleukin-12, induced protective immune responses against this intracellular pathogen in syngeneic CBA/J mice. This protection was associated with strong cellular and humoral immune responses at systemic and intestinal levels. Spleen and mesenteric lymph node cell proliferations were correlated with a Th1/Th2-type response and a specific SRDC homing to spleen and intestine was observed. The SRDC or CD4(-)CD8alpha(+)CD205(+)CD11b(-) DC line can be expected to be a very useful tool for immunobiology studies of DC.
Kratochvilova, Monika; Raudenska, Martina; Heger, Zbynek; Richtera, Lukas; Cernei, Natalia; Adam, Vojtech; Babula, Petr; Novakova, Marie; Masarik, Michal; Gumulec, Jaromir
2017-05-01
Failure in intracellular zinc accumulation is a key process in prostate carcinogenesis. Nevertheless, epidemiological studies of zinc administration have provided contradicting results. In order to examine the impact of the artificial intracellular increase of zinc(II) ions on prostate cancer metabolism, PNT1A, 22Rv1, and PC-3 prostatic cell lines-depicting different stages of cancer progression-and their zinc-resistant counterparts were used. To determine "benign" and "malignant" metabolic profiles, amino acid patterns, gene expression, and antioxidant capacity of these cell lines were assessed. Amino acid profiles were examined using an ion-exchange liquid chromatography. Intracellular zinc content was measured by atomic absorption spectrometry. Metallothionein was quantified using differential pulse voltammetry. The content of reduced glutathione was determined using high performance liquid chromatography coupled with an electrochemical detector. Cellular antioxidant capacity was determined by the ABTS test and gene expression analysis was performed by qRT-PCR. Long-term zinc treatment was shown to reroute cell metabolism from benign to more malignant type. Long-term application of high concentration of zinc(II) significantly enhanced cisplatin resistance, invasiveness, cellular antioxidant capacity, synthesis of glutathione, and expression of treatment resistance- and stemness-associated genes (SOX2, POU5F1, BIRC5). Tumorous cell lines universally displayed high accumulation of aspartate and sarcosine and depletion of essential amino acids. Increased aspartate/threonine, aspartate/methionine, and sarcosine/serine ratios were associated with cancer phenotype with high levels of sensitivity and specificity. Prostate 77: 604-616, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Mutations in CIC and IDH1 cooperatively regulate 2-hydroxyglutarate levels and cell clonogenicity
Chittaranjan, Suganthi; Chan, Susanna; Yang, Cindy; Yang, Kevin C.; Chen, Vincent; Moradian, Annie; Firme, Marlo; Song, Jungeun; Go, Nancy E.; Blough, Michael D.; Chan, Jennifer A.; Cairncross, J. Gregory; Gorski, Sharon M.; Morin, Gregg B.; Yip, Stephen; Marra, Marco A.
2014-01-01
The majority of oligodendrogliomas (ODGs) exhibit combined losses of chromosomes 1p and 19q and mutations of isocitrate dehydrogenase (IDH1-R132H or IDH2-R172K). Approximately 70% of ODGs with 1p19q co-deletions harbor somatic mutations in the Capicua Transcriptional Repressor (CIC) gene on chromosome 19q13.2. Here we show that endogenous long (CIC-L) and short (CIC-S) CIC proteins are predominantly localized to the nucleus or cytoplasm, respectively. Cytoplasmic CIC-S is found in close proximity to the mitochondria. To study wild type and mutant CIC function and motivated by the paucity of 1p19q co-deleted ODG lines, we created HEK293 and HOG stable cell lines ectopically co-expressing CIC and IDH1. Non-mutant lines displayed increased clonogenicity, but cells co-expressing the mutant IDH1-R132H with either CIC-S-R201W or -R1515H showed reduced clonogenicity in an additive manner, demonstrating cooperative effects in our assays. Expression of mutant CIC-R1515H increased cellular 2-Hydroxyglutarate (2HG) levels compared to wild type CIC in IDH1-R132H background. Levels of phosphorylated ATP-citrate Lyase (ACLY) were lower in cell lines expressing mutant CIC-S proteins compared to cells expressing wild type CIC-S, supporting a cytosolic citrate metabolism-related mechanism of reduced clonogenicity in our in vitro model systems. ACLY or phospho-ACLY were similarly reduced in CIC-mutant 1p19q co-deleted oligodendroglioma patient samples. PMID:25277207
Synthesis and proapoptotic activity of oleanolic acid derived amides.
Heller, Lucie; Knorrscheidt, Anja; Flemming, Franziska; Wiemann, Jana; Sommerwerk, Sven; Pavel, Ioana Z; Al-Harrasi, Ahmed; Csuk, René
2016-10-01
Thirty-one different 3-O-acetyl-OA derived amides have been prepared and screened for their cytotoxic activity. In the SRB assays nearly all the carboxamides displayed good cytotoxicity in the low μM range for several human tumor cell lines. Low EC50 values were obtained especially for the picolinylamides 14-16, for a N-[2-(dimethylamino)-ethyl] derivative 27 and a N-[2-(pyrrolinyl)-ethyl] carboxamide 28. These compounds were submitted to an extensive biological testing and proved compound 15 to act mainly by an arrest of the tumor cells in the S phase of the cell cycle. Cell death occurred by autophagy while compounds 27 and 28 triggered apoptosis. Copyright © 2016 Elsevier Inc. All rights reserved.
Synthesis and Biological Evaluation of Neopeltolide and Analogs
Cui, Yubo; Balachandran, Raghavan
2012-01-01
The synthesis of neopeltolide analogs that contain variations in the oxazole-containing side chain and in the macrolide core are reported along with the GI50 values for these compounds against MCF7, HCT-116, and p53 knockout HCT-116 cell lines. Although biological activity is sensitive to changes in the macrocycle and the side chain, several analogs displayed GI50 values of <25 nM. Neopeltolide and several of the more potent analogs were significantly less potent against p53 knockout cells, suggesting that p53 plays an auxiliary role in the activity of these compounds. PMID:22329423
Bahreini, Amir; Li, Zheqi; Wang, Peilu; Levine, Kevin M; Tasdemir, Nilgun; Cao, Lan; Weir, Hazel M; Puhalla, Shannon L; Davidson, Nancy E; Stern, Andrew M; Chu, David; Park, Ben Ho; Lee, Adrian V; Oesterreich, Steffi
2017-05-23
Mutations in the estrogen receptor alpha (ERα) 1 gene (ESR1) are frequently detected in ER+ metastatic breast cancer, and there is increasing evidence that these mutations confer endocrine resistance in breast cancer patients with advanced disease. However, their functional role is not well-understood, at least in part due to a lack of ESR1 mutant models. Here, we describe the generation and characterization of genome-edited T47D and MCF7 breast cancer cell lines with the two most common ESR1 mutations, Y537S and D538G. Genome editing was performed using CRISPR and adeno-associated virus (AAV) technologies to knock-in ESR1 mutations into T47D and MCF7 cell lines, respectively. Various techniques were utilized to assess the activity of mutant ER, including transactivation, growth and chromatin-immunoprecipitation (ChIP) assays. The level of endocrine resistance was tested in mutant cells using a number of selective estrogen receptor modulators (SERMs) and degraders (SERDs). RNA sequencing (RNA-seq) was employed to study gene targets of mutant ER. Cells with ESR1 mutations displayed ligand-independent ER activity, and were resistant to several SERMs and SERDs, with cell line and mutation-specific differences with respect to magnitude of effect. The SERD AZ9496 showed increased efficacy compared to other drugs tested. Wild-type and mutant cell co-cultures demonstrated a unique evolution of mutant cells under estrogen deprivation and tamoxifen treatment. Transcriptome analysis confirmed ligand-independent regulation of ERα target genes by mutant ERα, but also identified novel target genes, some of which are involved in metastasis-associated phenotypes. Despite significant overlap in the ligand-independent genes between Y537S and D538G, the number of mutant ERα-target genes shared between the two cell lines was limited, suggesting context-dependent activity of the mutant receptor. Some genes and phenotypes were unique to one mutation within a given cell line, suggesting a mutation-specific effect. Taken together, ESR1 mutations in genome-edited breast cancer cell lines confer ligand-independent growth and endocrine resistance. These biologically relevant models can be used for further mechanistic and translational studies, including context-specific and mutation site-specific analysis of the ESR1 mutations.
Chakraborty, Poulami; Dastidar, Parthasarathi
2018-05-18
A series of primary ammonium monocarboxylate (PAM) salts derived from β-alanine derivatives of pyrene and naphthalene acetic acid, along with the parent acids, were explored to probe the plausible role of orthogonal hydrogen bonding resulting from amide⋅⋅⋅amide and PAM synthons on gelation. Single-crystal X-ray diffraction (SXRD) studies were performed on two parent acids and five PAM salts in the series. The data revealed that orthogonal hydrogen bonding played an important role in gelation. Structure-property correlation based on SXRD and powder X-ray diffraction data also supported the working hypothesis upon which these gelators were designed. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and cell migration assay on a highly aggressive human breast cancer cell line, MDA-MB-231, revealed that one of the PAM salts in the series, namely, PAA.B2, displayed anticancer properties, and internalization of the gelator salt in the same cell line was confirmed by cell imaging. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Filippou, Panagiota S; Ren, Annie H; Soosaipillai, Antoninus; Papaioannou, Michail-Dimitrios; Korbakis, Dimitrios; Safar, Roaa; Diamandis, Eleftherios P; Conner, James
2018-06-26
Human tissue kallikrein 15 (KLK15) is the latest member of the kallikrein-related peptidase family. Little is known about the pathophysiological roles of KLK15. Previous studies implied a role of KLK15 in prostate cancer. In the present study, we examined KLK15 protein expression using a new immunoassay (ELISA) and immunohistochemistry (IHC). Highest KLK15 levels were detected in the testis and seminal fluid, whereas lower levels were observed in prostate and other tissues. Immunohistochemical analysis of testis suggests that KLK15 is strongly expressed in mature spermatids, but not in immature germ cells. KLK15 displayed predominantly nuclear localization in the basal cell layer of the prostatic epithelium. We also measured KLK15 in supernatants of various cell lines. Highest KLK15 levels were primarily detected in prostate cancer cell lines and KLK15 expression was hormone-independent, in contrast to KLK3. Collectively, our data provide insights into the localization and possible role of KLK15 in human physiology. Copyright © 2018. Published by Elsevier Inc.
Hall, Arnaldur; Meyle, Kathrine Damm; Lange, Marina Krarup; Klima, Martin; Sanderhoff, May; Dahl, Christina; Abildgaard, Cecilie; Thorup, Katrine; Moghimi, Seyed Moein; Jensen, Per Bo; Bartek, Jiri; Guldberg, Per; Christensen, Claus
2013-04-01
Oncogene addiction describes how cancer cells exhibit dependence on single oncogenes to escape apoptosis and senescence. While oncogene addiction constitutes the basis for new cancer treatment strategies targeting individual kinases and pathways activated by oncogenic mutations, the biochemical basis for this addiction is largely unknown. Here we provide evidence for a metabolic rationale behind the addiction to (V600E)BRAF in two malignant melanoma cell lines. Both cell lines display a striking addiction to glycolysis due to underlying dysfunction of oxidative phosphorylation (OXPHOS). Notably, even minor reductions in glycolytic activity lead to increased OXPHOS activity (reversed Warburg effect), however the mitochondria are unable to sustain ATP production. We show that (V600E)BRAF upholds the activity of glycolysis and therefore the addiction to glycolysis de facto becomes an addiction to (V600E)BRAF. Finally, the senescence response associated with inhibition of (V600E)BRAF is rescued by overexpression of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), providing direct evidence that oncogene addiction rests on a metabolic foundation.
Zhang, Mengjiao; Chen, Xianchun; Pu, Ximing; Liao, Xiaoming; Huang, Zhongbing; Yin, Guangfu
2014-04-01
The effects in vitro of a novel multiphase glass-ceramic (with nominal composition of 43.19% CaO, 7.68% MgO, and 49.13% SiO2 in weight percent) on cell adhesion, proliferation, differentiation and ultrastructure of human osteosarcoma cell line MG63, mouse fibroblasts L929, and human lung adenocarcinoma epithelial cell line A549 were investigated in this research. Scanning electron microscopy (SEM) micrographs revealed that the surface morphology of this glass-ceramic was beneficial to cell adhesion. The glass-ceramic extracts at certain concentrations could stimulate the proliferation and differentiation of MG63 and L929 cells, whereas inhibit A549 proliferation, which might be resulted from the released Si ions. In addition, when cultured with 0.1mg/mL glass-ceramic powder suspension, the cell ultrastructure of MG63 showed abundant organelles and L929 displayed the phenomena of cellular stress response. While more interestingly, A549 exhibited chromatin condensation, mitochondria swell and RER expansion, which was presumed to be early signs of apoptosis. These results suggest that this novel CaO-MgO-SiO2-based multiphase glass-ceramic has potential for bone regeneration and tissue engineering applications. Copyright © 2013 Elsevier B.V. All rights reserved.
TAp73 is essential for germ cell adhesion and maturation in testis
Holembowski, Lena; Kramer, Daniela; Riedel, Dietmar; Sordella, Raffaella; Nemajerova, Alice; Dobbelstein, Matthias
2014-01-01
A core evolutionary function of the p53 family is to protect the genomic integrity of gametes. However, the role of p73 in the male germ line is unknown. Here, we reveal that TAp73 unexpectedly functions as an adhesion and maturation factor of the seminiferous epithelium orchestrating spermiogenesis. TAp73 knockout (TAp73KO) and p73KO mice, but not ΔNp73KO mice, display a “near-empty seminiferous tubule” phenotype due to massive premature loss of immature germ cells. The cellular basis of this phenotype is defective cell–cell adhesions of developing germ cells to Sertoli nurse cells, with likely secondary degeneration of Sertoli cells, including the blood–testis barrier, which leads to disruption of the adhesive integrity and maturation of the germ epithelium. At the molecular level, TAp73, which is produced in germ cells, controls a coordinated transcriptional program of adhesion- and migration-related proteins including peptidase inhibitors, proteases, receptors, and integrins required for germ–Sertoli cell adhesion and dynamic junctional restructuring. Thus, we propose the testis as a unique organ with strict division of labor among all family members: p63 and p53 safeguard germ line fidelity, whereas TAp73 ensures fertility by enabling sperm maturation. PMID:24662569
Felt, Sébastien A.; Droby, Gaith N.
2017-01-01
ABSTRACT Vesicular stomatitis virus (VSV) is a promising oncolytic virus (OV). Although VSV is effective against a majority of pancreatic ductal adenocarcinoma cell (PDAC) cell lines, some PDAC cell lines are highly resistant to VSV, and the mechanisms of resistance are still unclear. JAK1/2 inhibitors (such as ruxolitinib and JAK inhibitor I) strongly stimulate VSV replication and oncolysis in all resistant cell lines but only partially improve the susceptibility of resistant PDACs to VSV. VSV tumor tropism is generally dependent on the permissiveness of malignant cells to viral replication rather than on receptor specificity, with several ubiquitously expressed cell surface molecules playing a role in VSV attachment to host cells. However, as VSV attachment to PDAC cells has never been tested before, here we examined if it was possibly inhibited in resistant PDAC cells. Our data show a dramatically weaker attachment of VSV to HPAF-II cells, the most resistant human PDAC cell line. Although sequence analysis of low-density lipoprotein (LDL) receptor (LDLR) mRNA did not reveal any amino acid substitutions in this cell line, HPAF-II cells displayed the lowest level of LDLR expression and dramatically lower LDL uptake. Treatment of cells with various statins strongly increased LDLR expression levels but did not improve VSV attachment or LDL uptake in HPAF-II cells. However, LDLR-independent attachment of VSV to HPAF-II cells was dramatically improved by treating cells with Polybrene or DEAE-dextran. Moreover, combining VSV with ruxolitinib and Polybrene or DEAE-dextran successfully broke the resistance of HPAF-II cells to VSV by simultaneously improving VSV attachment and replication. IMPORTANCE Oncolytic virus (OV) therapy is an anticancer approach that uses viruses that selectively infect and kill cancer cells. This study focuses on oncolytic vesicular stomatitis virus (VSV) against pancreatic ductal adenocarcinoma (PDAC) cells. Although VSV is effective against most PDAC cells, some are highly resistant to VSV, and the mechanisms are still unclear. Here we examined if VSV attachment to cells was inhibited in resistant PDAC cells. Our data show very inefficient attachment of VSV to the most resistant human PDAC cell line, HPAF-II. However, VSV attachment to HPAF-II cells was dramatically improved by treating cells with polycations. Moreover, combining VSV with polycations and ruxolitinib (which inhibits antiviral signaling) successfully broke the resistance of HPAF-II cells to VSV by simultaneously improving VSV attachment and replication. We envision that this novel triple-combination approach could be used in the future to treat PDAC tumors that are highly resistant to OV therapy. PMID:28566376
Gemcitabine: Selective cytotoxicity, induction of inflammation and effects on urothelial function
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farr, Stefanie E; Chess-Williams, Russ; McDermott,
Intravesical gemcitabine has recently been introduced for the treatment of superficial bladder cancer and has a favourable efficacy and toxicity profile in comparison to mitomycin c (MMC), the most commonly used chemotherapeutic agent. The aim of this study was to assess the cytotoxic potency of gemcitabine in comparison to MMC in urothelial cell lines derived from non-malignant (UROtsa) and malignant (RT4 and T24) tissues to assess selectivity. Cells were treated with gemcitabine or mitomycin C at concentrations up to the clinical doses for 1 or 2 h respectively (clinical duration). Treatment combined with hyperthermia was also examined. Cell viability, ROSmore » formation, urothelial function (ATP, acetylcholine and PGE2 release) and secretion of inflammatory cytokines were assessed. Gemcitabine displayed a high cytotoxic selectivity for the two malignant cell lines (RT4, T24) compared to the non-malignant urothelial cells (UROtsa, proliferative and non-proliferative). In contrast, the cytotoxic effects of MMC were non-selective with equivalent potency in each of the cell lines. The cytotoxic effect of gemcitabine in the malignant cell lines was associated with an elevation in free radical formation and was significantly decreased in the presence of an equilibrative nucleoside transporter inhibitor. Transient changes in urothelial ATP and PGE{sub 2} release were observed, with significant increase in release of interleukin-6, interleukin-8 and interleukin-1β from urothelial cells treated with gemcitabine. The selectivity of gemcitabine for malignant urothelial cells may account for the less frequent adverse urological effects with comparison to other commonly used chemotherapeutic agents. - Highlights: • Intravesical gemcitabine has recently been introduced to treat bladder cancer. • Gemcitabine is selectively toxic for malignant urothelial cells. • Urothelial ATP, PGE{sub 2} and inflammatory cytokines were altered by gemcitabine. • Selectivity of gemcitabine may account for less frequent urological side effects.« less
CD68 acts as a major gateway for malaria sporozoite liver infection
Cha, Sung-Jae; Park, Kiwon; Srinivasan, Prakash; Schindler, Christian W.; van Rooijen, Nico; Stins, Monique
2015-01-01
After being delivered by the bite from an infected mosquito, Plasmodium sporozoites enter the blood circulation and infect the liver. Previous evidence suggests that Kupffer cells, a macrophage-like component of the liver blood vessel lining, are traversed by sporozoites to initiate liver invasion. However, the molecular determinants of sporozoite–Kupffer cell interactions are unknown. Understanding the molecular basis for this specific recognition may lead to novel therapeutic strategies to control malaria. Using a phage display library screen, we identified a peptide, P39, that strongly binds to the Kupffer cell surface and, importantly, inhibits sporozoite Kupffer cell entry. Furthermore, we determined that P39 binds to CD68, a putative receptor for sporozoite invasion of Kupffer cells that acts as a gateway for malaria infection of the liver. PMID:26216124
NASA Technical Reports Server (NTRS)
Comstock, J. Raymond, Jr.; Jones, Leslie C.; Pope, Alan T.
2003-01-01
Spatial disorientation (SD) is a constant contributing factor to the rate of fatal aviation accidents. SD occurs as a result of perceptual errors that can be attributed in part to the inefficient presentation of synthetic orientation cues via the attitude indicator when external visual conditions are poor. Improvements in the design of the attitude indicator may help to eliminate instrumentation as a factor in the onset of SD. The goal of the present study was to explore several display concepts that may contribute to an improved attitude display. Specifically, the effectiveness of various display sizes, some that are used in current and some that are anticipated in future attitude displays that may incorporate Synthetic Vision Systems (SVS) concepts, was assessed. In addition, a concept known as an extended horizon line or Malcolm Horizon (MH) was applied and evaluated. Paired with the MH, the novel concept of a fixed reference line representing the central horizontal plane of the aircraft was also tested. Subjects performance on an attitude control task and secondary math workload task was measured across the various display sizes and conditions. The results, with regard to display size, confirmed the bigger is better concept, yielding better performance with the larger display sizes. A clear and significant improvement in attitude task performance was found with the addition of the extended horizon line. The extended or MH seemed to equalize attitude performance across display sizes, even for a central or foveal display as small as three inches in width.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Srivastava, Vikas Kumar; Gara, Rishi Kumar; Bhatt, M.L.B.
Research highlights: {yields} Centchroman (CC) inhibits cellular proliferation in HNSCC cells through the dual inhibition of PI3/mTOR pathway. {yields} CC treatment also inhibits STAT3 activation and alters expression of proteins involved in cell cycle regulation and DNA repair response in HNSCC cells. {yields} CC exhibits anti-proliferative activity in a variety of non-HNSCC cancer cell lines and is devoid of cytotoxicity to normal cell types of diverse origins. -- Abstract: Centchroman (CC; 67/20; INN: Ormeloxifene) is a non-steroidal antiestrogen extensively used as a female contraceptive in India. In the present study, we report the anti-proliferative effect of CC in head andmore » neck squamous cell carcinoma (HNSCC) cells. CC inhibited cell proliferation in a dose dependent manner at 24 h of treatment. Further studies showed that CC treatment induced apoptosis, inhibited Akt/mTOR and signal transducers and activators of transcription protein 3 (STAT3) signaling, altered proteins associated with cell cycle regulation and DNA damage and inhibited colony forming efficiency of HNSCC cells. In addition, CC displayed anti-proliferative activity against a variety of non-HNSCC cell lines of diverse origin. The ability of CC to serve as a dual-inhibitor of Akt/mTOR and STAT3 signaling warrants further studies into its role as a therapeutic strategy against HNSCC.« less
Kolbinger, Fiona R; Koeneke, Emily; Ridinger, Johannes; Heimburg, Tino; Müller, Michael; Bayer, Theresa; Sippl, Wolfgang; Jung, Manfred; Gunkel, Nikolas; Miller, Aubry K; Westermann, Frank; Witt, Olaf; Oehme, Ina
2018-06-09
High histone deacetylase (HDAC) 8 and HDAC10 expression levels have been identified as predictors of exceptionally poor outcomes in neuroblastoma, the most common extracranial solid tumor in childhood. HDAC8 inhibition synergizes with retinoic acid treatment to induce neuroblast maturation in vitro and to inhibit neuroblastoma xenograft growth in vivo. HDAC10 inhibition increases intracellular accumulation of chemotherapeutics through interference with lysosomal homeostasis, ultimately leading to cell death in cultured neuroblastoma cells. So far, no HDAC inhibitor covering HDAC8 and HDAC10 at micromolar concentrations without inhibiting HDACs 1, 2 and 3 has been described. Here, we introduce TH34 (3-(N-benzylamino)-4-methylbenzhydroxamic acid), a novel HDAC6/8/10 inhibitor for neuroblastoma therapy. TH34 is well-tolerated by non-transformed human skin fibroblasts at concentrations up to 25 µM and modestly impairs colony growth in medulloblastoma cell lines, but specifically induces caspase-dependent programmed cell death in a concentration-dependent manner in several human neuroblastoma cell lines. In addition to the induction of DNA double-strand breaks, HDAC6/8/10 inhibition also leads to mitotic aberrations and cell-cycle arrest. Neuroblastoma cells display elevated levels of neuronal differentiation markers, mirrored by formation of neurite-like outgrowths under maintained TH34 treatment. Eventually, after long-term treatment, all neuroblastoma cells undergo cell death. The combination of TH34 with plasma-achievable concentrations of retinoic acid, a drug applied in neuroblastoma therapy, synergistically inhibits colony growth (combination index (CI) < 0.1 for 10 µM of each). In summary, our study supports using selective HDAC inhibitors as targeted antineoplastic agents and underlines the therapeutic potential of selective HDAC6/8/10 inhibition in high-grade neuroblastoma.
An immortalized microglial cell line (Mocha) derived from rat cochlea.
Seigel, G M; Manohar, S; Bai, Y Y; Ding, D; Salvi, R
2017-12-01
Microglia are glial-immune cells that are essential for the function and survival of the central nervous system. Microglia not only protect neural tissues from immunological insults, but also play a critical role in neural development and repair. However, little is known about the biology of microglia in the cochlea, the auditory portion of the inner ear. In this study, we detected TMEM119+, CD11b+, CD45+ and Iba1+ populations of cells in the rat cochlea, particularly in Rosenthal's canal, inner sulcus and stria vascularis. Next, we isolated and enriched the population of CD11b+ cells from the cochlea and immortalized these cells with the 12S E1A gene of adenovirus in a replication-incompetent retroviral vector to derive a novel microglial cell line, designated Mocha (microglia of the cochlea). The resulting Mocha cells express a number of markers consistent with microglia and respond to lipopolysaccharide (LPS) stimulation by upregulation of genes (Cox2, ICAM-1, Il6r, Ccl2, Il13Ra and Il15Ra) as well as releasing cytokines (IL-1beta, IL-12, IL-13 and RANTES). As evidence of microglial function, Mocha cells phagocytose fluorescent beads at 37°C, but not at 4°C. The expression pattern of microglial markers in Mocha cells suggests that immortalization leads to a more primitive phenotype, a common phenomenon in immortalized cell lines. In summary, Mocha cells display key characteristics of microglia and are now available as a useful model system for the study of cochlear microglial behavior, both in vitro and in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.
Fahrer, Jörg; Schweitzer, Brigitte; Fiedler, Katja; Langer, Torben; Gierschik, Peter; Barth, Holger
2013-04-17
We have previously generated a recombinant C2-streptavidin fusion protein for the delivery of biotin-labeled molecules of low molecular weight into the cytosol of mammalian cells. A nontoxic moiety of Clostridium botulinum C2 toxin mediates the cellular uptake, whereas the streptavidin unit serves as a binding platform for biotin-labeled cargo molecules. In the present study, we used the C2-streptavidin transporter to introduce biotin-conjugated p53 protein into various mammalian cell lines. The p53 tumor suppressor protein is inactivated in many human cancers by multiple mechanisms and therefore the restoration of its activity in tumor cells is of great therapeutic interest. Recombinant p53 was expressed in insect cells and biotin-labeled. Biotin-p53 retained its specific high-affinity DNA-binding as revealed by gel-shift analysis. Successful conjugation of biotin-p53 to the C2-streptavidin transporter was monitored by an overlay blot technique and confirmed by real-time surface plasmon resonance, providing a KD-value in the low nM range. C2-streptavidin significantly enhanced the uptake of biotin-p53 into African Green Monkey (Vero) epithelial cells as shown by flow cytometry. Using cell fractionation, the cytosolic translocation of biotin-p53 was detected in Vero cells as well as in HeLa cervix carcinoma cells. In line with this finding, confocal microscopy displayed cytoplasmic staining of biotin-p53 in HeLa and HL60 leukemia cells. Internalized biotin-p53 partially colocalized with early endosomes, as confirmed by confocal microscopy. In conclusion, our results demonstrate the successful conjugation of biotin-p53 to C2-streptavidin and its subsequent receptor-mediated endocytosis into different human tumor cell lines.
Xenobiotic metabolizing enzyme activities in cells used for testing skin sensitization in vitro.
Fabian, E; Vogel, D; Blatz, V; Ramirez, T; Kolle, S; Eltze, T; van Ravenzwaay, B; Oesch, F; Landsiedel, R
2013-09-01
For ethical and regulatory reasons, in vitro tests for scoring potential toxicities of cosmetics are essential. A test strategy for investigating potential skin sensitization using two human keratinocytic and two human dendritic cell lines has been developed (Mehling et al. Arch Toxicol 86:1273–1295, 2012). Since prohaptens may be metabolically activated in the skin, information on xenobiotic metabolizing enzyme (XME) activities in these cell lines is of high interest. In this study, XME activity assays, monitoring metabolite or cofactor, showed the following: all three passages of keratinocytic (KeratinoSens® and LuSens) and dendritic (U937 und THP-1) cells displayed N-acetyltransferase 1 (NAT1) activities (about 6–60 nmol/min/mg S9-protein for acetylation of para-aminobenzoic acid). This is relevant since reactive species of many cosmetics are metabolically controlled by cutaneous NAT1. Esterase activities of about 1–4 nmol fluorescein diacetate/min/mg S9-protein were observed in all passages of investigated keratinocytic and about 1 nmol fluorescein diacetate/min/mg S9-protein in dendritic cell lines. This is also of practical relevance since many esters and amides are detoxified and others activated by cutaneous esterases. In both keratinocytic cell lines, activities of aldehyde dehydrogenase (ALDH) were observed (5–17 nmol product/min/mg cytosolic protein). ALDH is relevant for the detoxication of reactive aldehydes. Activities of several other XME were below detection, namely the investigated cytochrome P450-dependent alkylresorufin O-dealkylases 7-ethylresorufin O-deethylase, 7-benzylresorufin O-debenzylase and 7-pentylresorufin O-depentylase (while NADPH cytochrome c reductase activities were much above the limit of quantification), the flavin-containing monooxygenase, the alcohol dehydrogenase as well as the UDP glucuronosyl transferase activities.
Alonezi, Sanad; Tusiimire, Jonans; Wallace, Jennifer; Dufton, Mark J.; Parkinson, John A.; Young, Louise C.; Clements, Carol J.; Park, Jin-Kyu; Jeon, Jong-Woon; Ferro, Valerie A.; Watson, David G.
2017-01-01
Melittin, the main peptide present in bee venom, has been proposed as having potential for anticancer therapy; the addition of melittin to cisplatin, a first line treatment for ovarian cancer, may increase the therapeutic response in cancer treatment via synergy, resulting in improved tolerability, reduced relapse, and decreased drug resistance. Thus, this study was designed to compare the metabolomic effects of melittin in combination with cisplatin in cisplatin-sensitive (A2780) and resistant (A2780CR) ovarian cancer cells. Liquid chromatography (LC) coupled with mass spectrometry (MS) was applied to identify metabolic changes in A2780 (combination treatment 5 μg/mL melittin + 2 μg/mL cisplatin) and A2780CR (combination treatment 2 μg/mL melittin + 10 μg/mL cisplatin) cells. Principal components analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) multivariate data analysis models were produced using SIMCA-P software. All models displayed good separation between experimental groups and high-quality goodness of fit (R2) and goodness of prediction (Q2), respectively. The combination treatment induced significant changes in both cell lines involving reduction in the levels of metabolites in the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, purine and pyrimidine metabolism, and the arginine/proline pathway. The combination of melittin with cisplatin that targets these pathways had a synergistic effect. The melittin-cisplatin combination had a stronger effect on the A2780 cell line in comparison with the A2780CR cell line. The metabolic effects of melittin and cisplatin in combination were very different from those of each agent alone. PMID:28420117