Stably Fluorescent Cell Line of Human Ovarian Epithelial Cancer Cells SK-OV-3ip-red.
Konovalova, E V; Shulga, A A; Chumakov, S P; Khodarovich, Yu M; Woo, Eui-Jeon; Deev, S M
2017-11-01
Stable red fluorescing line of human ovarian epithelial cancer cells SK-OV-3ip-red was generated expressing gene coding for protein TurboFP635 (Katushka) fluorescing in the far-red spectrum region with excitation and emission peaks at 588 and 635 nm, respectively. Fluorescence of SK-OV-3ip-red line remained high during long-term cell culturing and after cryogenic freezing. The obtained cell line SK-OV-3ip-red can serve a basis for a model of a scattered tumor with numerous/extended metastases and used both for testing anticancer drugs inhibiting metastasis growth and for non-invasive monitoring of the growth dynamics with high precision.
Nocarova, Eva; Fischer, Lukas
2009-04-22
Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation. The majority ( approximately 90%) of suspension culture lines derived from calli that were obtained directly from transformation consisted of cells with various levels of GFP fluorescence. In contrast, nearly 50% of lines generated by cloning cells from the primary heterogeneous suspensions consisted of cells with homogenous GFP fluorescence. The rest of the lines exhibited "permanent heterogeneity" that could not be resolved by cloning. The extent of fluorescence heterogeneity often varied, even among genetically identical clones derived from the primary transformed lines. In contrast, the offspring of subsequent cloning of the cloned lines was uniform, showing GFP fluorescence intensity and heterogeneity that corresponded to the original clone. The results demonstrate that, besides genetic heterogeneity detected in some lines, the primary lines often contained a mixture of epigenetically different cells that could be separated by cloning. This indicates that a single integration event frequently results in various heritable expression patterns, which are probably accidental and become stabilized in the offspring of the primary transformed cells early after the integration event. Because heterogeneity in transgene expression has proven to be a serious problem, it is highly advisable to use transgenes tagged with a visual marker for BY-2 transformation. The cloning procedure can be used not only for efficient reduction of expression heterogeneity of such transgenes, but also as a useful tool for studies of transgene expression and other purposes.
Zheng, Yuan; Wang, Na; Xie, Ming-Shu; Sha, Zhen-Xia; Chen, Song-Lin
2012-12-01
A new cell line (TSHKC) derived from half-smooth tongue sole (Cynoglossus semilaevis) head kidney was developed. The cell line was subcultured for 40 passages over a period of 360 days. The cell line was optimally maintained in minimum essential medium supplemented with HEPES, antibiotics, fetal bovine serum, 2-Mercaptoethanol (2-Me), sodium pyruvate and basic fibroblast growth factor. The suitable growth temperature for TSHKC cells was 24 °C, and microscopically, TSHKC cells were composed of fibroblast-like cells. Chromosome analysis revealed that the TSHKC cell line had a normal diploid karyotype with 2n = 42, contained the heterogametic W chromosome. The TSHKC cell line was found to be susceptible to lymphocystis disease virus. The fluorescent signals were observed in TSHKC when the cells were transfected with green fluorescent protein and red fluorescent protein reporter plasmids.
Optimization of a cAMP response element signal pathway reporter system.
Shan, Qiang; Storm, Daniel R
2010-08-15
A sensitive cAMP response element (CRE) reporter system is essential for studying the cAMP/protein kinase A/cAMP response element binding protein signal pathway. Here we have tested a few CRE promoters and found one with high sensitivity to external stimuli. Using this optimal CRE promoter and the enhanced green fluorescent protein as the reporter, we have established a CRE reporter cell line. This cell line can be used to study the signal pathway by fluorescent microscope, fluorescence-activated cell analysis and luciferase assay. This cell line's sensitivity to forskolin, using the technique of fluorescence-activated cell sorting, was increased to approximately seven times that of its parental HEK 293 cell line, which is currently the most commonly used cell line in the field for the signal pathway study. Therefore, this newly created cell line is potentially useful for studying the signal pathway's modulators, which generally have weaker effect than its mediators. Our research has also established a general procedure for optimizing transcription-based reporter cell lines, which might be useful in performing the same task when studying many other transcription-based signal pathways. (c) 2010 Elsevier B.V. All rights reserved.
Vuong, Helen E.; de Sevilla Müller, Luis Pérez; Hardi, Claudia N.; McMahon, Douglas G.; Brecha, Nicholas C.
2015-01-01
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) line with three catecholamine-related Cre recombinase lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ~6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium somal diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines were generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing. PMID:26335381
Vuong, H E; Pérez de Sevilla Müller, L; Hardi, C N; McMahon, D G; Brecha, N C
2015-10-29
Transgenic mouse lines are essential tools for understanding the connectivity, physiology and function of neuronal circuits, including those in the retina. This report compares transgene expression in the retina of a tyrosine hydroxylase (TH)-red fluorescent protein (RFP) mouse line with three catecholamine-related Cre recombinase mouse lines [TH-bacterial artificial chromosome (BAC)-, TH-, and dopamine transporter (DAT)-Cre] that were crossed with a ROSA26-tdTomato reporter line. Retinas were evaluated and immunostained with commonly used antibodies including those directed to TH, GABA and glycine to characterize the RFP or tdTomato fluorescent-labeled amacrine cells, and an antibody directed to RNA-binding protein with multiple splicing to identify ganglion cells. In TH-RFP retinas, types 1 and 2 dopamine (DA) amacrine cells were identified by their characteristic cellular morphology and type 1 DA cells by their expression of TH immunoreactivity. In the TH-BAC-, TH-, and DAT-tdTomato retinas, less than 1%, ∼ 6%, and 0%, respectively, of the fluorescent cells were the expected type 1 DA amacrine cells. Instead, in the TH-BAC-tdTomato retinas, fluorescently labeled AII amacrine cells were predominant, with some medium diameter ganglion cells. In TH-tdTomato retinas, fluorescence was in multiple neurochemical amacrine cell types, including four types of polyaxonal amacrine cells. In DAT-tdTomato retinas, fluorescence was in GABA immunoreactive amacrine cells, including two types of bistratified and two types of monostratified amacrine cells. Although each of the Cre lines was generated with the intent to specifically label DA cells, our findings show a cellular diversity in Cre expression in the adult retina and indicate the importance of careful characterization of transgene labeling patterns. These mouse lines with their distinctive cellular labeling patterns will be useful tools for future studies of retinal function and visual processing. Published by Elsevier Ltd.
[The characters and specific features of new human embryonic stem cells lines].
Krylova, T A; Kol'tsova, A M; Zenin, V V; Gordeeva, O F; Musorina, A S; Goriachaia, T S; Shlykova, S A; Kamenetskaia, Iu K; Pinaev, G P; Polianskaia, G G
2009-01-01
Four continuous human embryonic stem cell lines (SC1, SC2, SC3 and SC4), derived from the blastocysts has been described. The cell lines were cultivated on mitotically inactivated human feeder cells. The cell lines SC1 and SC2 have passed through 150 population doublings and the cell lines SC3 and SC4 -- near 120 populations doublings, which exceeds Hayflick limit sufficiently. These cell lines maintain high activity of alkaline phosphatase, expression of transcription factor OCT-4 and cell surface antigens (SSEA-4, TRA-1-60 and TRA-1-81), confirming their ESC status and human specificity. Immunofluorescent detection of antigens, characteristic of ectoderm, endoderm and mesoderm confirms the ability of these cells to retain their pluripotency under in vitro condition. PCR analysis revealed expression of six genes specific for pluripotent cells (OCT-4, NANOG, DPPA3/STELLA, TDGF/CRIPTO and LEFTYA). Correlation between the level of proliferative activity and the character of DNA-bound fluorescent staining was found. Fluorescent dyes, Hoechst 33342 and PI, produced diffuse staining of the nuclei in slowly proliferating cells of the SC1 and SC2 lines. In contrast, in actively proliferating cells of the SC3 and SC4 lines, the clear staining of the nuclei was observed. Upon changing the cultivation condition, proliferative activity of SC3 and SC4 lines decreased and became similar to that of SC1 and SC2 lines. The character of the fluorescent staining of all these lines was also shown to be similar. These results show that quality of the fluorescent staining with Hoechst 33342 and PI reflects the level of proliferation. Possible causes and mechanisms of this feature of human ESC are discussed.
Generation and validation of homozygous fluorescent knock-in cells using CRISPR-Cas9 genome editing.
Koch, Birgit; Nijmeijer, Bianca; Kueblbeck, Moritz; Cai, Yin; Walther, Nike; Ellenberg, Jan
2018-06-01
Gene tagging with fluorescent proteins is essential for investigations of the dynamic properties of cellular proteins. CRISPR-Cas9 technology is a powerful tool for inserting fluorescent markers into all alleles of the gene of interest (GOI) and allows functionality and physiological expression of the fusion protein. It is essential to evaluate such genome-edited cell lines carefully in order to preclude off-target effects caused by (i) incorrect insertion of the fluorescent protein, (ii) perturbation of the fusion protein by the fluorescent proteins or (iii) nonspecific genomic DNA damage by CRISPR-Cas9. In this protocol, we provide a step-by-step description of our systematic pipeline to generate and validate homozygous fluorescent knock-in cell lines.We have used the paired Cas9D10A nickase approach to efficiently insert tags into specific genomic loci via homology-directed repair (HDR) with minimal off-target effects. It is time-consuming and costly to perform whole-genome sequencing of each cell clone to check for spontaneous genetic variations occurring in mammalian cell lines. Therefore, we have developed an efficient validation pipeline of the generated cell lines consisting of junction PCR, Southern blotting analysis, Sanger sequencing, microscopy, western blotting analysis and live-cell imaging for cell-cycle dynamics. This protocol takes between 6 and 9 weeks. With this protocol, up to 70% of the targeted genes can be tagged homozygously with fluorescent proteins, thus resulting in physiological levels and phenotypically functional expression of the fusion proteins.
He, Huaizhen; Zhan, Yingzhuan; Zhang, Yanmin; Zhang, Jie; He, Langchong
2012-01-01
Two novel taspine diphenyl derivatives (Ta-dD) were designed and synthesized by introducing different coumarin fluorescent groups into the basic structure of Ta-dD. The main advantage of these two compounds is that they can be used as fluorescence probes and inhibitors simultaneously. In the present study, the fluorescent properties of the probes were measured and their inhibition of four breast cancer cell lines was tested. Different concentrations of the fluorescence probe were added to MCF-7 breast cancer cells for fluorescence imaging analysis under normal conditions. The results suggested that both of the new compounds have not only fluorescence but also the ability to inhibit effects on different breast cancer cell lines, which indicates their possible further use as dual functional fluorescence probes in tracer analysis. Copyright © 2011 John Wiley & Sons, Ltd.
2001-08-01
Utilization of green fluorescent protein for the identification of metastasis in an in vivo breast cancer model system. In Preparation. REPRINTS OF ALL...phenotype. Utilizing the SUM-159PT cell line stably transfected with pEGFP-Ci (enhanced green fluorescent protein ) we have been able to successfully...accurately detected. To develop a model with enhanced resolution of micrometastases we created a stable cell line expressing green fluorescent protein
Genetically fluorescent melanoma bone and organ metastasis models.
Yang, M; Jiang, P; An, Z; Baranov, E; Li, L; Hasegawa, S; Al-Tuwaijri, M; Chishima, T; Shimada, H; Moossa, A R; Hoffman, R M
1999-11-01
We report here the establishment and metastatic properties of bright, highly stable, green fluorescent protein (GFP) expression transductants of the B16 mouse malignant melanoma cell line and the LOX human melanoma line. The highly fluorescent malignant melanoma cell lines allowed the visualization of skeletal and multiorgan metastases after i.v. injection of B16 cells in C57BL/6 mice and intradermal injection of LOX cells in nude mice. The melanoma cell lines were transduced with the pLEIN expression retroviral vector containing the GFP and neomycin resistance genes. Stable B16F0 and LOX clones expressing high levels of GFP were selected stepwise in vitro in levels of G418 of up to 800 microg/ml. Extensive bone and bone marrow metastases of B16F0 were visualized by GFP expression when the animals were sacrificed 3 weeks after cell implantation. Metastases for both cell lines were visualized in many organs, including the brain, lung, pleural membrane, liver, kidney, adrenal gland, lymph nodes, skeleton, muscle, and skin by GFP fluorescence. This is the first observation of experimental skeletal metastases of melanoma, which was made possible by GFP expression. These models should facilitate future studies of the mechanism and therapy of bone and multiorgan metastasis of melanoma.
Sun, Wu-Sheng; Chun, Ju-Lan; Do, Jeong-Tae; Kim, Dong-Hwan; Ahn, Jin-Seop; Kim, Min-Kyu; Hwang, In-Sul; Kwon, Dae-Jin; Hwang, Seong-Soo; Lee, Jeong-Woong
2016-01-01
Oct4 is a crucial germ line-specific transcription factor expressed in different pluripotent cells and downregulated in the process of differentiation. There are two conserved enhancers, called the distal enhancer (DE) and proximal enhancer (PE), in the 5' upstream regulatory sequences (URSs) of the mouse Oct4 gene, which were demonstrated to control Oct4 expression independently in embryonic stem cells (ESCs) and epiblast stem cells (EpiSCs). We analyzed the URSs of the pig Oct4 and identified two similar enhancers that were highly consistent with the mouse DE and PE. A dual-fluorescence reporter was later constructed by combining a DE-free- Oct4 -promoter-driven EGFP reporter cassette with a PE-free- Oct4 -promoter-driven mCherry reporter cassette. Then, it was tested in a mouse ESC-like cell line (F9) and a mouse EpiSC-like cell line (P19) before it is formally used for pig. As a result, a higher red fluorescence was observed in F9 cells, while green fluorescence was primarily detected in P19 cells. This fluorescence expression pattern in the two cell lines was consistent with that in the early naïve pluripotent state and late primed pluripotent state during differentiation of mouse ESCs. Hence, this reporter system will be a convenient tool for screening out ESC-like naïve pluripotent stem cells from other metastable state cells in a heterogenous population.
Homma, Kohei; Usui, Sumiko; Kaneda, Makoto
2017-03-01
Fluorescent reporter gene knock-in induced pluripotent stem cell (iPSC) lines have been used to evaluate the efficiency of differentiation into specific cell lineages. Here, we report a knock-in strategy for the generation of human iPSC reporter lines in which a 2A peptide sequence and a red fluorescent protein (E2-Crimson) gene were inserted at the termination codon of the cone-rod homeobox (Crx) gene, a photoreceptor-specific transcriptional factor gene. The knock-in iPSC lines were differentiated into fluorescence-expressing cells in 3D retinal differentiation culture, and the fluorescent cells also expressed Crx specifically in the nucleus. We found that the fluorescence intensity was positively correlated with the expression levels of Crx mRNA and that fluorescent cells expressed rod photoreceptor-specific genes in the later stage of differentiation. Finally, we treated the fluorescent cells with DAPT, a Notch inhibitor, and found that DAPT-enhanced retinal differentiation was associated with up-regulation of Crx, Otx2 and NeuroD1, and down-regulation of Hes5 and Ngn2. These suggest that this knock-in strategy at the 3'-end of the target gene, combined with the 2A peptide linked to fluorescent proteins, offers a useful tool for labeling specific cell lineages or monitoring expression of any marker genes without affecting the function of the target gene. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.
Spectral line discriminator for passive detection of fluorescence
NASA Technical Reports Server (NTRS)
Kebabian, Paul L. (Inventor)
1996-01-01
A method and apparatus for detecting fluorescence from sunlit plants is based on spectral line discrimination using the A-band and B-band absorption of atmospheric oxygen. Light from a plant including scattered sunlight and the fluorescence from chlorophyll is passed through a chopper into a cell containing low-pressure, high-purity oxygen. A-band or B-band wavelengths present in the light are absorbed by the oxygen in the cell. When the chopper is closed, the absorbed light is remitted as fluorescence into a detector. The intensity of the fluorescence from the oxygen is proportional to the intensity of fluorescence from the plant.
NASA Astrophysics Data System (ADS)
Nedosekin, D. A.; Sarimollaoglu, M.; Foster, S.; Galanzha, E. I.; Zharov, V. P.
2013-03-01
Fluorescence flow cytometry is a well-established analytical tool that provides quantification of multiple biological parameters of cells at molecular levels, including their functional states, morphology, composition, proliferation, and protein expression. However, only the fluorescence and scattering parameters of the cells or labels are available for detection. Cell pigmentation, presence of non-fluorescent dyes or nanoparticles cannot be reliably quantified. Herewith, we present a novel photoacoustic (PA) flow cytometry design for simple integration of absorbance measurements into schematics of conventional in vitro flow cytometers. The integrated system allow simultaneous measurements of light absorbance, scattering and of multicolor fluorescence from single cells in the flow at rates up to 2 m/s. We compared various combinations of excitation laser sources for multicolor detection, including simultaneous excitation of PA and fluorescence using a single 500 kHz pulsed nanosecond laser. Multichannel detection scheme allows simultaneous detection of up to 8 labels, including 4 fluorescent tags and 4 PA colors. In vitro PA-fluorescence flow cytometer was used for studies of nanoparticles uptake and for the analysis of cell line pigmentation, including genetically encoded melanin expression in breast cancer cell line. We demonstrate that this system can be used for direct nanotoxicity studies with simultaneous quantification of nanoparticles content and assessment of cell viability using a conventional fluorescent apoptosis assays.
In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters
NASA Astrophysics Data System (ADS)
Wang, Jianling; Zhang, Gen; Li, Qiwei; Jiang, Hui; Liu, Chongyang; Amatore, Christian; Wang, Xuemei
2013-01-01
Fluorescence imaging in vivo allows non-invasive tumor diagnostic thus permitting a direct monitoring of cancer therapies progresses. It is established herein that fluorescent gold nanoclusters are spontaneously biosynthesized by cancerous cell (i.e., HepG2, human hepatocarcinoma cell line; K562, leukemia cell line) incubated with micromolar chloroauric acid solutions, a biocompatible molecular Au(III) species. Gold nanoparticles form by Au(III) reduction inside cells cytoplasms and ultimately concentrate around their nucleoli, thus affording precise cell imaging. Importantly, this does not occur in non-cancerous cells, as evidenced with human embryo liver cells (L02) used as controls. This dichotomy is exploited for a new strategy for in vivo self-bio-imaging of tumors. Subcutaneous injections of millimolar chloroauric acid solution near xenograft tumors of the nude mouse model of hepatocellular carcinoma or chronic myeloid leukemia led to efficient biosynthesis of fluorescent gold nanoclusters without significant dissemination to the surrounding normal tissues, hence allowing specific fluorescent self-bio-marking of the tumors.
Lee, Jae Min; Hull, J. Joe; Kawai, Takeshi; Tsuneizumi, Kazuhide; Kurihara, Masaaki; Tanokura, Masaru; Nagata, Koji; Nagasawa, Hiromichi; Matsumoto, Shogo
2012-01-01
To facilitate further evaluation of pheromone biosynthesis activating neuropeptide receptor (PBANR) functionality and regulation, we generated cultured insect cell lines constitutively expressing green fluorescent protein chimeras of the recently identified Bombyx mori PBANR (BommoPBANR) and Pseudaletia separata PBANR (PsesePBANR) variants. Fluorescent chimeras included the BommoPBANR-A, -B, and -C variants and the PsesePBANR-B and -C variants. Cell lines expressing non-chimeric BommoPBANR-B and -C variants were also generated. Functional evaluation of these transformed cell lines using confocal laser microscopy revealed that a Rhodamine Red-labeled PBAN derivative (RR-C10PBANR2K) specifically co-localized with all of the respective PBANR variants at the plasma membrane. Near complete internalization of the fluorescent RR-C10PBANR2K ligand 30 min after binding was observed in all cell lines except those expressing the BommoPBANR-A variant, in which the ligand/receptor complex remained at the plasma membrane. Fluorescent Ca2+ imaging further showed that the BommoPBANR-A cell line exhibited drastically different Ca2+ mobilization kinetics at a number of RR-C10PBANR2K concentrations including 10 μM. These observations demonstrate a clear functional difference between the BommoPBANR-A variant and the BommoPBANR-B and -C variants in terms of receptor regulation and activation of downstream effector molecules. We also found that, contrary to previous reports, ligand-induced internalization of BommoPBANR-B and BommoPBANR-C in cell lines stably expressing these variants occurred in the absence of extracellular Ca2+. PMID:22654874
Cheng, T-C; Lai, Y-S; Lin, I-Y; Wu, C-P; Chang, S-L; Chen, T-I; Su, M-S
2010-02-01
Establishment and characterization of two cobia, Rachycentron canadum, cell lines derived from cobia brain (CB) and cobia fin (CF) are described. Caudal fin and brain from juvenile cobia were dissociated for 30 and 10 min, respectively, in phosphate-buffered saline containing 0.25% trypsin at 25 degrees C. The optimal culture condition for both dissociated cells (primary cell culture) was at 28 degrees C in Leibovitz-15 medium containing 10% foetal bovine serum. The cells have been sub-cultured at a ratio of 1:2 for more than 160 passages over a period of 3 years. Origin of the cultured cells was verified by comparison of their sequences of mitochondrial cytochrome oxidase subunit I genes (cox I) with the cox 1 sequence from cobia muscle tissue. The cell lines showed polyploidy. No mycoplasma contamination was detected. Susceptibility to grouper iridovirus was observed for the CB cell line but not the CF cell line. Both cell lines expressed green fluorescent protein after being transfected with green fluorescent reporter gene driven by the cytomegalovirus promoter.
Li, Yan-Jie; Cao, Jiang; Chen, Chong; Wang, Dong-Yang; Zeng, Ling-Yu; Pan, Xiu-Ying; Xu, Kai-Lin
2010-02-01
This study was purposed to construct a lentiviral vector encoding red fluorescent protein (DsRed) and transfect DsRed into EL4 cells for establishing mouse leukemia/lymphoma model expressing DsRed. The bicistronic SIN lentiviral transfer plasmid containing the genes encoding neo and internal ribosomal entry site-red fluorescent protein (IRES-DsRed) was constructed. Human embryonic kidney 293FT cells were co-transfected with the three plasmids by liposome method. The viral particles were collected and used to transfect EL4 cells, then the cells were selected by G418. The results showed that the plasmid pXZ208-neo-IRES-DsRed was constructed successfully, and the viral titer reached to 10(6) U/ml. EL4 cells were transfected by the viral solution efficiently. The transfected EL4 cells expressing DsRed survived in the final concentration 600 microg/ml of G418. The expression of DsRed in the transfected EL4 cells was demonstrated by fluorescence microscopy and flow cytometry. In conclusion, the EL4/DsRed cell line was established successfully.
Sheikh, Sumbla; Sturzu, Alexander; Kalbacher, Hubert; Nagele, Thomas; Weidenmaier, Christopher; Horger, Marius; Schwentner, Christian; Ernemann, Ulrike; Heckl, Stefan
2018-04-05
Curcumin, as the main ingredient of the curcuma spice has increasingly become the target of scientific research. The turmeric root which the spice is obtained from has been widely used in traditional medicine and scientific studies found anti-inflammatory, anti-cancer, anti-angiogenic effects as well as antibacterial properties for curcumin. Recently, curcumin has gathered interest as potential therapeutic agent in the research on Alzheimer's disease. A consistent problem in the investigative and therapeutic applications of curcumin is its poor solubility in aqueous solutions. In the present study we synthesized a conjugate of curcumin, the amino acid lysine and the fluorescent dye fluorescein. This conjugate was soluble in cell culture medium and facilitated the examination of curcumin with fluorescence imaging methods. We studied the cell growth impact of unmodified curcumin on seven different human cell lines and then analyzed the uptake and cellular localization of our curcumin conjugate with confocal laser scanning imaging and flow cytometry on the seven cell lines. We found that unbound curcumin inhibited cell growth in vitro and was not taken up into the cells. The curcumin conjugate was internalized into the cell cytoplasm in a dot-like pattern and cellular uptake correlated with cell membrane damage which was measured using propidium iodide. The CAL-72 osteosarcoma cell exhibited 3-4fold increased conjugate uptake and a strong uniform fluorescein staining in addition to the dot-like pattern observed in all cell lines. In conclusion we successfully synthesized a novel water-soluble fluorescent curcumin conjugate which showed a strong preference for CAL-72 osteosarcoma cells in vitro. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Fluorescent transgenic mice suitable for multi-color aggregation chimera studies.
Ohtsuka, Masato; Miura, Hiromi; Gurumurthy, Channabasavaiah B; Kimura, Minoru; Inoko, Hidetoshi; Yoshimura, Shinichi; Sato, Masahiro
2012-11-01
We recently reported a novel method of mouse transgenesis called Pronuclear Injection-based Targeted Transgenisis (PITT) using which a series of fluorescent transgenic (Tg) mice lines were generated. These lines, unlike those generated using conventional random integration methods, express the transgenes faithfully and reproducibly generation after generation. Because of this superior nature, these lines are ideal for the generation of multi-colored aggregation chimeras that can be used to study cell-cell interactions and lineage analyses in living embryos/organs, where the transgenes can be detected and the clonal origin of a given cell population easily traced by its distinct fluorescence. In this study, to verify if Tg fluorescent mice generated through PITT were suitable for such applications, we sought to generate chimeric blastocysts and chimeric-Tg mice by aggregating two- or three-colored 8-cell embryos. Our analyses using these models led to the following observations. First, we noticed that cell mixing was infrequent during the stages of morula to early blastocyst. Second, chimeric fetuses obtained after aggregation of the two-colored 8-cell embryos exhibited uniform cell mixing. And third, in the organs of adult chimeric mice, the mode of cell distribution could be either clonal or polyclonal, as previously pointed out by others. Implications of our novel and improved Tg-chimeric mice approach for clonal cell lineage and developmental studies are discussed.
Cisplatin-induced Casepase-3 activation in different tumor cells
NASA Astrophysics Data System (ADS)
Shi, Hua; Li, Xiao; Su, Ting; Zhang, Yu-Hai
2008-12-01
Apoptosis plays an essential role in normal organism development which is one of the main types of programmed cell death to help tissues maintain homeostasis. Defective apoptosis can result in cell accumulation and therefore effects on tumor pathogenesis, progression and therapy resistance. A family of proteins, known as caspases, is typically activated in the early stages of apoptosis. Therefore, studying the kinetics of activation of caspases induced by antitumor drugs can contribute to antitumor drug discovery and explanation of the molecular mechanisms. This paper detected the Caspase-3 activity induced by cisplatin in human adenoid cystic carcinoma cell line (ACC-M), human hepatocellular liver carcinoma cell line (HepG2) and human epithelial carcinoma cell line (Hela) with stably expressing ECFP-DEVDDsRed (CD3) probe, a fluorescent probe consisting of Enhanced Cyan Fluorescent Protein (ECFP), red fluorescent protein (DsRed) and a linker with a recognition site of Caspase-3, by using the capillary electrophoresis (CE) and fluorescence resonance energy transfer (FRET) imaging system. Under the same concentration of cisplatin, ACC-M cells responded the most rapidly, and then HepG2 cells and Hela cells, respectively, in the early 30 hours. Later, HepG2 cells represented acceleration in the Caspase-3 activation speed and reached full activation the earliest comparing to other two cell types. The results demonstrated that ACC-M cell is more sensitive than the other two cell types under the treatment of cisplatin.
Carbon "Quantum" Dots for Fluorescence Labeling of Cells.
Liu, Jia-Hui; Cao, Li; LeCroy, Gregory E; Wang, Ping; Meziani, Mohammed J; Dong, Yiyang; Liu, Yuanfang; Luo, Pengju G; Sun, Ya-Ping
2015-09-02
The specifically synthesized and selected carbon dots of relatively high fluorescence quantum yields were evaluated in their fluorescence labeling of cells. For the cancer cell lines, the cellular uptake of the carbon dots was generally efficient, resulting in the labeling of the cells with bright fluorescence emissions for both one- and two-photon excitations from predominantly the cell membrane and cytoplasm. In the exploration on labeling the live stem cells, the cellular uptake of the carbon dots was relatively less efficient, though fluorescence emissions could still be adequately detected in the labeled cells, with the emissions again predominantly from the cell membrane and cytoplasm. This combined with the observed more efficient internalization of the same carbon dots by the fixed stem cells might suggest some significant selectivity of the stem cells toward surface functionalities of the carbon dots. The needs and possible strategies for more systematic and comparative studies on the fluorescence labeling of different cells, including especially live stem cells, by carbon dots as a new class of brightly fluorescent probes are discussed.
Screening Fluorescent Voltage Indicators with Spontaneously Spiking HEK Cells
Venkatachalam, Veena; Kralj, Joel M.; Dib-Hajj, Sulayman D.; Waxman, Stephen G.; Cohen, Adam E.
2013-01-01
Development of improved fluorescent voltage indicators is a key challenge in neuroscience, but progress has been hampered by the low throughput of patch-clamp characterization. We introduce a line of non-fluorescent HEK cells that stably express NaV 1.3 and KIR 2.1 and generate spontaneous electrical action potentials. These cells enable rapid, electrode-free screening of speed and sensitivity of voltage sensitive dyes or fluorescent proteins on a standard fluorescence microscope. We screened a small library of mutants of archaerhodopsin 3 (Arch) in spiking HEK cells and identified two mutants with greater voltage-sensitivity than found in previously published Arch voltage indicators. PMID:24391999
Seiler, Christoph; Gebhart, Nichole; Zhang, Yong; Shinton, Susan A; Li, Yue-sheng; Ross, Nicola L; Liu, Xingjun; Li, Qin; Bilbee, Alison N; Varshney, Gaurav K; LaFave, Matthew C; Burgess, Shawn M; Balciuniene, Jorune; Balciunas, Darius; Hardy, Richard R; Kappes, Dietmar J; Wiest, David L; Rhodes, Jennifer
2015-01-01
Genetic screens are a powerful tool to discover genes that are important in immune cell development and function. The evolutionarily conserved development of lymphoid cells paired with the genetic tractability of zebrafish make this a powerful model system for this purpose. We used a Tol2-based gene-breaking transposon to induce mutations in the zebrafish (Danio rerio, AB strain) genome, which served the dual purpose of fluorescently tagging cells and tissues that express the disrupted gene and provided a means of identifying the disrupted gene. We identified 12 lines in which hematopoietic tissues expressed green fluorescent protein (GFP) during embryonic development, as detected by microscopy. Subsequent analysis of young adult fish, using a novel approach in which single cell suspensions of whole fish were analyzed by flow cytometry, revealed that 8 of these lines also exhibited GFP expression in young adult cells. An additional 15 lines that did not have embryonic GFP+ hematopoietic tissue by microscopy, nevertheless exhibited GFP+ cells in young adults. RT-PCR analysis of purified GFP+ populations for expression of T and B cell-specific markers identified 18 lines in which T and/or B cells were fluorescently tagged at 6 weeks of age. As transposon insertion is expected to cause gene disruption, these lines can be used to assess the requirement for the disrupted genes in immune cell development. Focusing on the lines with embryonic GFP+ hematopoietic tissue, we identified three lines in which homozygous mutants exhibited impaired T cell development at 6 days of age. In two of the lines we identified the disrupted genes, agtpbp1 and eps15L1. Morpholino-mediated knockdown of these genes mimicked the T cell defects in the corresponding mutant embryos, demonstrating the previously unrecognized, essential roles of agtpbp1 and eps15L1 in T cell development.
Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako
2014-01-01
Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps. PMID:25101946
Tsuji, Saori; Kawamura, Fumihiko; Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako
2014-01-01
Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohara-Imaizumi, Mica; Aoyagi, Kyota; Akimoto, Yoshihiro
To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic {beta} cells, the regulated biphasic exocytosis from two typesmore » of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.« less
Kopp, Mathis; Rotan, Olga; Papadopoulos, Chrisovalantis; Schulze, Nina; Meyer, Hemmo; Epple, Matthias
2017-01-01
Nanoparticles can be used as carriers to transport biomolecules like proteins and synthetic molecules across the cell membrane because many molecules are not able to cross the cell membrane on their own. The uptake of nanoparticles together with their cargo typically occurs via endocytosis, raising concerns about the possible degradation of the cargo in the endolysosomal system. As the tracking of a dye-labelled protein during cellular uptake and processing is not indicative of the presence of the protein itself but only for the fluorescent label, a label-free tracking was performed with the red-fluorescing model protein R-phycoerythrin (R-PE). Four different eukaryotic cell lines were investigated: HeLa, HEK293T, MG-63, and MC3T3. Alone, the protein was not taken up by any cell line; only with the help of calcium phosphate nanoparticles, an efficient uptake occurred. After the uptake into HeLa cells, the protein was found in early endosomes (shown by the marker EEA1) and lysosomes (shown by the marker Lamp1). There, it was still intact and functional (i.e. properly folded) as its red fluorescence was detected. However, a few hours after the uptake, proteolysis started as indicated by the decreasing red fluorescence intensity in the case of HeLa and MC3T3 cells. 12 h after the uptake, the protein was almost completely degraded in HeLa cells and MC3T3 cells. In HEK293T cells and MG-63 cells, no degradation of the protein was observed. In the presence of Bafilomycin A1, an inhibitor of acidification and protein degradation in lysosomes, the fluorescence of R-PE remained intact over the whole observation period in the four cell lines. These results indicate that despite an efficient nanoparticle-mediated uptake of proteins by cells, a rapid endolysosomal degradation may prevent the desired (e.g. therapeutic) effect of a protein inside a cell.
Tracking the Invasion of Small Numbers of Cells in Paper-Based Assays with Quantitative PCR.
Truong, Andrew S; Lochbaum, Christian A; Boyce, Matthew W; Lockett, Matthew R
2015-11-17
Paper-based scaffolds are an attractive material for culturing mammalian cells in a three-dimensional environment. There are a number of previously published studies, which utilize these scaffolds to generate models of aortic valves, cardiac ischemia and reperfusion, and solid tumors. These models have largely relied on fluorescence imaging and microscopy to quantify cells in the scaffolds. We present here a polymerase chain reaction (PCR)-based method, capable of quantifying multiple cell types in a single culture with the aid of DNA barcodes: unique sequences of DNA introduced to the genome of individual cells or cell types through lentiviral transduction. PCR-based methods are highly specific and are amenable to high-throughput and multiplexed analyses. To validate this method, we engineered two different breast cancer lines to constitutively express either a green or red fluorescent protein. These cells lines allowed us to directly compare the ability of fluorescence imaging (of the fluorescent proteins) and qPCR (of the unique DNA sequences of the fluorescent proteins) to quantify known numbers of cells in the paper based-scaffolds. We also used both methods to quantify the distribution of these breast cell lines in homotypic and heterotypic invasion assays. In the paper-based invasion assays, a single sheet of paper containing cells suspended in a hydrogel was sandwiched between sheets of paper containing only hydrogel. The stack was incubated, and the cells invaded the adjacent layers. The individual sheets of the invasion assay were then destacked and the number of cells in each layer quantified. Our results show both methods can accurately detect cell populations of greater than 500 cells. The qPCR method can repeatedly and accurately detect as few as 50 cells, allowing small populations of highly invasive cells to be detected and differentiated from other cell types.
SERS-fluorescence joint spectral encoded magnetic nanoprobes for multiplex cancer cell separation.
Wang, Zhuyuan; Zong, Shenfei; Chen, Hui; Wang, Chunlei; Xu, Shuhong; Cui, Yiping
2014-11-01
A new kind of cancer cell separation method is demonstrated, using surface-enhanced Raman scattering (SERS) and fluorescence dual-encoded magnetic nanoprobes. The designed nanoprobes can realize SERS-fluorescence joint spectral encoding (SFJSE) and greatly improve the multiplexing ability. The nanoprobes have four main components, that is, the magnetic core, SERS generator, fluorescent agent, and targeting antibody. These components are assembled with a multi-layered structure to form the nanoprobes. Specifically, silica-coated magnetic nanobeads (MBs) are used as the inner core. Au core-Ag shell nanorods (Au@Ag NRs) are employed as the SERS generators and attached on the silica-coated MBs. After burying these Au@Ag NRs with another silica layer, CdTe quantum dots (QDs), that is, the fluorescent agent, are anchored onto the silica layer. Finally, antibodies are covalently linked to CdTe QDs. SFJSE is fulfilled by using different Raman molecules and QDs with different emission wavelengths. By utilizing four human cancer cell lines and one normal cell line as the model cells, the nanoprobes can specifically and simultaneously separate target cancer cells from the normal ones. This SFJSE-based method greatly facilitates the multiplex, rapid, and accurate cancer cell separation, and has a prosperous potential in high-throughput analysis and cancer diagnosis. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Raman microscopy of bladder cancer cells expressing green fluorescent protein
NASA Astrophysics Data System (ADS)
Mandair, Gurjit S.; Han, Amy L.; Keller, Evan T.; Morris, Michael D.
2016-11-01
Gene engineering is a commonly used tool in cellular biology to determine changes in function or expression of downstream targets. However, the impact of genetic modulation on biochemical effects is less frequently evaluated. The aim of this study is to use Raman microscopy to assess the biochemical effects of gene silencing on T24 and UMUC-13 bladder cancer cell lines. Cellular biochemical information related to nucleic acid and lipogenic components was obtained from deconvolved Raman spectra. We show that the green fluorescence protein (GFP), the chromophore that served as a fluorescent reporter for gene silencing, could also be detected by Raman microscopy. Only the gene-silenced UMUC-13 cell lines exhibited low-to-moderate GFP fluorescence as determined by fluorescence imaging and Raman spectroscopic studies. Moreover, we show that gene silencing and cell phenotype had a greater effect on nucleic acid and lipogenic components with minimal interference from GFP expression. Gene silencing was also found to perturb cellular protein secondary structure in which the amount of disorderd protein increased at the expense of more ordered protein. Overall, our study identified the spectral signature for cellular GFP expression and elucidated the effects of gene silencing on cancer cell biochemistry and protein secondary structure.
Tumor cell differentiation by label-free microscopy
NASA Astrophysics Data System (ADS)
Schneckenburger, Herbert; Weber, Petra; Wagner, Michael
2013-05-01
Autofluorescence and Raman measurements of U251-MG glioblastoma cells prior and subsequent to activation of tumor suppressor genes are compared. While phase contrast images and fluorescence intensity patterns of the tumor (control) cells and the less malignant cells are similar, differences can be deduced from fluorescence spectra and nanosecond decay times. In particular, upon excitation around 375nm, the fluorescence ratio of the protein bound and the free coenzyme NADH depends on the state of malignancy and reflects different cytoplasmic (including lysosomal) and mitochondrial contributions. Slight differences are also observed in the Raman spectra of these cell lines, mainly originating from small granules (lysosomes) surrounding the cell nucleus. While larger numbers of fluorescence and Raman spectra are evaluated by multivariate statistical methods, additional information is obtained from spectral images and fluorescence lifetime images (FLIM).
Carbon nanoparticles for gene transfection in eukaryotic cell lines.
Zanin, H; Hollanda, L M; Ceragioli, H J; Ferreira, M S; Machado, D; Lancellotti, M; Catharino, R R; Baranauskas, V; Lobo, A O
2014-06-01
For the first time, oxygen terminated cellulose carbon nanoparticles (CCN) was synthesised and applied in gene transfection of pIRES plasmid. The CCN was prepared from catalytic of polyaniline by chemical vapour deposition techniques. This plasmid contains one gene that encodes the green fluorescent protein (GFP) in eukaryotic cells, making them fluorescent. This new nanomaterial and pIRES plasmid formed π-stacking when dispersed in water by magnetic stirring. The frequencies shift in zeta potential confirmed the plasmid strongly connects to the nanomaterial. In vitro tests found that this conjugation was phagocytised by NG97, NIH-3T3 and A549 cell lines making them fluorescent, which was visualised by fluorescent microscopy. Before the transfection test, we studied CCN in cell viability. Both MTT and Neutral Red uptake tests were carried out using NG97, NIH-3T3 and A549 cell lines. Further, we use metabolomics to verify if small amounts of nanomaterial would be enough to cause some cellular damage in NG97 cells. We showed two mechanisms of action by CCN-DNA complex, producing an exogenous protein by the transfected cell and metabolomic changes that contributed by better understanding of glioblastoma, being the major finding of this work. Our results suggested that this nanomaterial has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity, good transfection efficiency, and low cell damage in small amounts of nanomaterials in metabolomic tests. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Stowe, R. P.; Cubbage, M. L.; Sams, C. F.; Pierson, D. L.; Barrett, A. D.
1998-01-01
A rapid and highly sensitive fluorescent in situ hybridization (FISH) assay was developed to detect Epstein Barr virus (EBV)-infected cells in peripheral blood. Multiple fluorescein-labeled antisense oligonucleotide probes were designed to hybridize to the EBER1 transcript, which is highly expressed in latently infected cells. After a rapid (30 min) hybridization, the cells were analyzed by flow cytometry. EBER1 was detected in several positive control cell lines that have variable numbers of EBV genome copies. No EBER1 was detected in two known EBV-negative cell lines. Northern blot analyses confirmed the presence and quantity of EBER1 transcripts in each cell line. This method was used to quantify the number of EBV-infected cells in peripheral blood from a patient with chronic mononucleosis. These results indicate that EBV-infected cells can be detected at the single cell level, and that this assay can be used to quantify the number of EBV-infected cells in clinical samples.
Application of recombinant fluorescent mammalian cells as a toxicity biosensor.
Kim, E J; Lee, Y; Lee, J E; Gu, M B
2002-01-01
With respect to developing a more sensitive biosensor, a recombinant fluorescent Chinese Hamster Ovary cell line was used for the monitoring of various toxicants. Both cell lines, EFC-500 and KFC-A10, were able to detect toxicants sensitively. They were characterized with mitomycin C and gamma-ray as genotoxicants and bisphenol A, nonylphenol, ziram and methyl bromide as possible and known EDCs. When compared to each other, the response of KFC-A10 was generally more informative and sensitive. Compared to typical bacterial biosensor systems, these cell lines offered a sensitivity of 2- to 50-fold greater for the tested chemicals. Based on these results, the use of mammalian cells offers a sensitive biosensor system that is not only fast, cheap and reproducible but also capable of monitoring the endocrine-like characteristics of environmental toxicants.
Blue two-photon fluorescence metal cluster probe precisely marking cell nuclei of two cell lines.
Wang, Yaling; Cui, Yanyan; Liu, Ru; Wei, Yueteng; Jiang, Xinglu; Zhu, Huarui; Gao, Liang; Zhao, Yuliang; Chai, Zhifang; Gao, Xueyun
2013-11-25
A bifunctional peptide was designed to in situ reduce Cu ions and anchor a Cu cluster. The peptide-Cu cluster probe, mainly composed of Cu14, emitted blue two-photon fluorescence under femtosecond laser excitation. Most important, the probe can specifically mark the nuclei of HeLa and A549 cells, respectively.
Establishment and characterization of CAG/EGFP transgenic rabbit line.
Takahashi, Ri-ichi; Kuramochi, Takashi; Aoyagi, Kazuki; Hashimoto, Shu; Miyoshi, Ichiro; Kasai, Noriyuki; Hakamata, Yoji; Kobayashi, Eiji; Ueda, Masatsugu
2007-02-01
Cell marking is a very important procedure for identifying donor cells after cell and/or organ transplantation in vivo. Transgenic animals expressing marker proteins such as enhanced green fluorescent protein (EGFP) in their tissues are a powerful tool for research in fields of tissue engineering and regenerative medicine. The purpose of this study was to establish transgenic rabbit lines that ubiquitously express EGFP under the control of the cytomegalovirus immediate early enhancer/beta-actin promoter (CAG) to provide a fluorescent transgenic animal as a bioresource. We microinjected the EGFP expression vector into 945 rabbit eggs and 4 independent transgenic candidate pups were obtained. Two of them died before sexual maturation and one was infertile. One transgenic male candidate founder rabbit was obtained and could be bred by artificial insemination. The rabbit transmitted the transgene in a Mendelian manner. Using fluorescence in situ hybridization analysis, we detected the transgene at 7q11 on chromosome 7 as a large centromeric region in two F1 offspring (one female and one male). Eventually, one transgenic line was established. Ubiquitous EGFP fluorescence was confirmed in all examined organs. There were no gender-related differences in fluorescence. The established CAG/EGFP transgenic rabbit will be an important bioresource and a useful tool for various studies in tissue engineering and regenerative medicine.
Post-mortem re-cloning of a transgenic red fluorescent protein dog.
Hong, So Gun; Koo, Ok Jae; Oh, Hyun Ju; Park, Jung Eun; Kim, Minjung; Kim, Geon-A; Park, Eun Jung; Jang, Goo; Lee, Byeong-Chun
2011-12-01
Recently, the world's first transgenic dogs were produced by somatic cell nuclear transfer. However, cellular senescence is a major limiting factor for producing more advanced transgenic dogs. To overcome this obstacle, we rejuvenated transgenic cells using a re-cloning technique. Fibroblasts from post-mortem red fluorescent protein (RFP) dog were reconstructed with in vivo matured oocytes and transferred into 10 surrogate dogs. One puppy was produced and confirmed as a re-cloned dog. Although the puppy was lost during birth, we successfully established a rejuvenated fibroblast cell line from this animal. The cell line was found to stably express RFP and is ready for additional genetic modification.
Wu, Lisa Y; Johnson, Jacqueline M; Simmons, Jessica K; Mendes, Desiree E; Geruntho, Jonathan J; Liu, Tiancheng; Dirksen, Wessel P; Rosol, Thomas J; Davis, William C; Berkman, Clifford E
2014-05-01
Prostate-specific membrane antigen (PSMA) remains an important target for diagnostic and therapeutic application for human prostate cancer. Model cell lines have been recently developed to study canine prostate cancer but their PSMA expression and enzymatic activity have not been elucidated. The present study was focused on determining PSMA expression in these model canine cell lines and the use of fluorescent small-molecule enzyme inhibitors to detect canine PSMA expression by flow cytometry. Western blot and RT-PCR were used to determine the transcriptional and translational expression of PSMA on the canine cell lines Leo and Ace-1. An endpoint HPLC-based assay was used to monitor the enzymatic activity of canine PSMA and the potency of enzyme inhibitors. Flow cytometry was used to detect the PSMA expressed on Leo and Ace-1 cells using a fluorescently tagged PSMA enzyme inhibitor. Canine PSMA expression on the Leo cell line was confirmed by Western blot and RT-PCR, the enzyme activity, and flow cytometry. Kinetic parameters Km and Vmax of PSMA enzymatic activity for the synthetic substrate (PABGγG) were determined to be 393 nM and 220 pmol min(-1) mg protein(-1) , respectively. The inhibitor core 1 and fluorescent inhibitor 2 were found to be potent reversible inhibitors (IC50 = 13.2 and 1.6 nM, respectively) of PSMA expressed on the Leo cell line. Fluorescent labeling of Leo cells demonstrated that the fluorescent PSMA inhibitor 2 can be used for the detection of PSMA-positive canine prostate tumor cells. Expression of PSMA on Ace-1 was low and not detectable by flow cytometry. The results described herein have demonstrated that PSMA is expressed on canine prostate tumor cells and exhibits similar enzymatic characteristics as human PSMA. The findings show that the small molecule enzyme inhibitors currently being studied for use in diagnosis and therapy of human prostate cancer can also be extended to include canine prostate cancer. Importantly, the findings demonstrate that the potential of the inhibitors for use in diagnosis and therapy can be evaluated in an immunocompetent animal model that naturally develops prostate cancer before use in humans. © 2014 Wiley Periodicals, Inc.
Segmentation and classification of cell cycle phases in fluorescence imaging.
Ersoy, Ilker; Bunyak, Filiz; Chagin, Vadim; Cardoso, M Christina; Palaniappan, Kannappan
2009-01-01
Current chemical biology methods for studying spatiotemporal correlation between biochemical networks and cell cycle phase progression in live-cells typically use fluorescence-based imaging of fusion proteins. Stable cell lines expressing fluorescently tagged protein GFP-PCNA produce rich, dynamically varying sub-cellular foci patterns characterizing the cell cycle phases, including the progress during the S-phase. Variable fluorescence patterns, drastic changes in SNR, shape and position changes and abundance of touching cells require sophisticated algorithms for reliable automatic segmentation and cell cycle classification. We extend the recently proposed graph partitioning active contours (GPAC) for fluorescence-based nucleus segmentation using regional density functions and dramatically improve its efficiency, making it scalable for high content microscopy imaging. We utilize surface shape properties of GFP-PCNA intensity field to obtain descriptors of foci patterns and perform automated cell cycle phase classification, and give quantitative performance by comparing our results to manually labeled data.
Time-Lapse Monitoring of DNA Damage Colocalized With Particle Tracks in Single Living Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFadden, Conor H.; Hallacy, Timothy M.; Department of Physics and Astronomy, Rice University, Houston, Texas
2016-09-01
Purpose: Understanding the DNA damage and repair induced by hadron therapy (HT) beams is crucial for developing novel strategies to maximize the use of HT beams to treat cancer patients. However, spatiotemporal studies of DNA damage and repair for beam energies relevant to HT have been challenging. We report a technique that enables spatiotemporal measurement of radiation-induced damage in live cells and colocalization of this damage with charged particle tracks over a broad range of clinically relevant beam energies. The technique uses novel fluorescence nuclear track detectors with fluorescence confocal laser scanning microscopy in the beam line to visualize particlemore » track traversals within the subcellular compartments of live cells within seconds after injury. Methods and Materials: We designed and built a portable fluorescence confocal laser scanning microscope for use in the beam path, coated fluorescence nuclear track detectors with fluorescent-tagged live cells (HT1080 expressing enhanced green fluorescent protein tagged to XRCC1, a single-strand break repair protein), placed the entire assembly into a proton therapy beam line, and irradiated the cells with a fluence of ∼1 × 10{sup 6} protons/cm{sup 2}. Results: We successfully obtained confocal images of proton tracks and foci of DNA single-strand breaks immediately after irradiation. Conclusions: This technique represents an innovative method for analyzing biological responses in any HT beam line at energies and dose rates relevant to therapy. It allows precise determination of the number of tracks traversing a subcellular compartment and monitoring the cellular damage therein, and has the potential to measure the linear energy transfer of each track from therapeutic beams.« less
Kato, Hiroyuki; Abe, Kota; Yokota, Shinpei; Matsuno, Rinta; Mikekado, Tsuyoshi; Yokoi, Hayato; Suzuki, Tohru
2015-01-01
The establishment of induced pluripotent stem (iPS) cell technology in fish could facilitate the establishment of novel cryopreservation techniques for storing selected aquaculture strains as frozen cells. In order to apply iPS cell technology to fish, we established a transgenic zebrafish line, Tg(Tru.oct4:EGFP), using green fluorescent protein (GFP) expression under the control of the oct4 gene promoter as a marker to evaluate multipotency in iPS cell preparations. We used the oct4 promoter from fugu (Takifugu rubripes) due to the compact nature of the fugu genome and to facilitate future applications of this technology in marine fishes. During embryogenesis, maternal GFP fluorescence was observed at the cleavage stage and zygotic GFP expression was observed from the start of the shield stage until approximately 24 h after fertilization. gfp messenger RNA (mRNA) was expressed by whole embryonic cells at the shield stage, and then restricted to the caudal neural tube in the latter stages of embryogenesis. These observations showed that GFP fluorescence and the regulation of gfp mRNA expression by the exogenous fugu oct4 promoter are well suited for monitoring endogenous oct4 mRNA expression in embryos. Bisulfite sequencing revealed that the rate of CpG methylation in the transgenic oct4 promoter was high in adult cells (98%) and low in embryonic cells (37%). These findings suggest that, as with the endogenous oct4 promoter, demethylation and methylation both take place normally in the transgenic oct4 promoter during embryogenesis. The embryonic cells harvested at the shield stage formed embryonic body-like cellular aggregates and maintained GFP fluorescence for 6 d when cultured on Transwell-COL Permeable Supports or a feeder layer of adult fin cells. Loss of GFP fluorescence by cultured cells was correlated with cellular differentiation. We consider that the Tg(Tru.oct4:EGFP) zebrafish line established here is well suited for monitoring multipotency in multipotent zebrafish cell cultures and for iPS cell preparation.
Hühner, Jens; Ingles-Prieto, Álvaro; Neusüß, Christian; Lämmerhofer, Michael; Janovjak, Harald
2015-02-01
Cultured mammalian cells essential are model systems in basic biology research, production platforms of proteins for medical use, and testbeds in synthetic biology. Flavin cofactors, in particular flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), are critical for cellular redox reactions and sense light in naturally occurring photoreceptors and optogenetic tools. Here, we quantified flavin contents of commonly used mammalian cell lines. We first compared three procedures for extraction of free and noncovalently protein-bound flavins and verified extraction using fluorescence spectroscopy. For separation, two CE methods with different BGEs were established, and detection was performed by LED-induced fluorescence with limit of detections (LODs 0.5-3.8 nM). We found that riboflavin (RF), FMN, and FAD contents varied significantly between cell lines. RF (3.1-14 amol/cell) and FAD (2.2-17.0 amol/cell) were the predominant flavins, while FMN (0.46-3.4 amol/cell) was found at markedly lower levels. Observed flavin contents agree with those previously extracted from mammalian tissues, yet reduced forms of RF were detected that were not described previously. Quantification of flavins in mammalian cell lines will allow a better understanding of cellular redox reactions and optogenetic tools. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yin, Xiaotao; Li, Fanglong; Jin, Yipeng; Yin, Zhaoyang; Qi, Siyong; Wu, Shuai; Wang, Zicheng; Wang, Lin; Yu, Jiyun; Gao, Jiangping
2017-03-01
Objective To establish a human bladder cancer cell line stably co-expressing human sprouty2 (hSPRY2) and luciferase (Luc) genes simultaneously, and develop its subcutaneous tumor xenograft model in nude mice. Methods The hSPRY2 and Luc gene segments were amplified by PCR, and were cloned into lentiviral vector pCDH and pLVX respectively to produce corresponding lentivirus particles. The J82 human bladder cancer cells were infected with these two kinds of lentivirus particles, and then further screened by puromycin and G418. The expressions of hSPRY2 and Luc genes were detected by bioluminescence, immunofluorescence and Western blot analysis. The screened J82-hSPRY2/Luc cells were injected subcutaneously into BALB/c nude mice, and the growth of tumor was monitored dynamically using in vivo fluorescence imaging system. Results J82-hSPRY2/Luc cell line stably expressing hSPRY2 and Luc genes was established successfully. Bioluminescence, immunofluorescence and Western blot analysis validated the expressions of hSPRY2 and Luc genes. The in vivo fluorescence imaging system showed obvious fluorescence in subcutaneous tumor xenograft in nude mice. Conclusion The J82-hSPRY2/Luc bladder cancer cell line and its subcutaneous tumor xenograft model in nude mice have been established successfully.
Fluorescence diffuse tomography for detection of RFP-expressed tumors in small animals
NASA Astrophysics Data System (ADS)
Turchin, Ilya V.; Savitsky, Alexander P.; Kamensky, Vladislav A.; Plehanov, Vladimir I.; Meerovich, Irina G.; Arslanbaeva, Lyaisan R.; Jerdeva, Viktoria V.; Orlova, Anna G.; Kleshnin, Mikhail S.; Shirmanova, Marina V.; Fiks, Ilya I.
2007-02-01
Conventional optical imaging is restricted with tumor size due to high tissue scattering. Labeling of tumors by fluorescent markers improves sensitivity of tumor detection thus increasing the value of optical imaging dramatically. Creation of tumor cell lines transfected with fluorescent proteins gives the possibility not only to detect tumor, but also to conduct the intravital monitoring studies. Cell lines of human melanomas Mel-P, Mel-Kor and human embryonic kidney HEK-293 Phoenix were transfected with DsRed-Express and TurboRFP genes. Emission of RFP in the long-wave optical range permits detection of the deeply located tumors, which is essential for whole-body imaging. Only special tools for turbid media imaging, such as fluorescent diffusion tomography (FDT), enable noninvasive investigation of the internal structure of biological tissue. FDT setup for monitoring of tumor growth in small animals has been created. An animal is scanned in the transilluminative configuration by low-frequency modulated light (1 kHz) from Nd:YAG laser with second harmonic generation at the 532 nm wavelength. In vivo experiments were conducted immediately after the subcutaneously injection of fluorescing cells into small animals. It was shown that FDT method allows to detect the presence of fluorescent cells in small animals and can be used for monitoring of tumor growth and anticancer drug responce.
Fluorescence diffuse tomography for detection of RFP-expressed tumors in small animals
NASA Astrophysics Data System (ADS)
Turchin, Ilya V.; Savitsky, Alexander P.; Kamensky, Vladislav A.; Plehanov, Vladimir I.; Orlova, Anna G.; Kleshnin, Mikhail S.; Shirmanova, Marina V.; Fix, Ilya I.; Popov, Vladimir O.
2007-07-01
Capabilities of tumor detection by different optical methods can be significantly improved by labeling of tumors with fluorescent markers. Creation of tumor cell lines transfected with fluorescent proteins provides the possibility not only to detect tumor, but also to conduct the intravital monitoring studies. Cell lines of human melanomas Mel-P, Mel-Kor and human embryonic kidney HEK-293 Phoenix were transfected with DsRed-Express and Turbo-RFP genes. Emission of RFP in the long-wave optical range permits detection of the deeply located tumors, which is essential for whole-body imaging. Only special tools for turbid media imaging, such as fluorescent diffusion tomography (FDT), enable noninvasive investigation of the internal structure of biological tissue. FDT setup for monitoring of tumor growth in small animals has been created. An animal is scanned in the transilluminative configuration by low-frequency modulated light (1 kHz) from Nd:YAG laser with second harmonic generation at the 532 nm wavelength. An optimizing algorithm for scanning of an experimantal animal is suggested. In vivo experiments were conducted immediately after the subcutaneously injection of fluorescing cells into small animals. It was shown that FDT method allows to detect the presence of fluorescent cells in small animals and can be used for monitoring of tumor growth and anticancer drug responce.
Establishment of an indicator cell line to quantify bovine foamy virus infection.
Ma, Zhe; Hao, Peng; Yao, Xue; Liu, Chang; Tan, Juan; Liu, Li; Yang, Rongge; Geng, Yunqi; Chen, Qimin; Qiao, Wentao
2008-08-01
A cell line derived from baby hamster kidney (BHK-21) cells was transfected with the enhanced green fluorescent protein gene driven by the bovine foamy virus (BFV) long terminal repeat (LTR) to establish a BFV indicator cell line (BICL). Among 48 clones, one clone was chosen for its little constitutive enhanced green fluorescent protein (EGFP) expression and high level of EGFP expression after activation by BFV infection. By detecting the EGFP expression of the BFV indicator cell line, the titers of BFV were quantified by the end point method. As a result, the titer determined by the EGFP based assay 5-6 days post infection (d.p.i.) was 100 fold higher than traditional assays measuring cytopathic effects 8-9 d.p.i.. Moreover, the EGFP based assay was also used to determine the titer of those cells infected by BFV without inducing cytopathic effects. Using this simple and rapid assay, we examined the in vitro host range of BFV. It was found that BFV can productively infect various cell lines derived from bovine, human, rat and monkey. (c) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul
2012-01-01
There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0–85 μm from the surface of a coverglass. PMID:23083712
Bazl, M Rajabi; Rasaee, M J; Foruzandeh, M; Rahimpour, A; Kiani, J; Rahbarizadeh, F; Alirezapour, B; Mohammadi, M
2007-02-01
There is an increasing interest in the application of nanobodies such as VHH in the field of therapy and imaging. In the present study a stable genetically engineered cell line of Chinese hamster ovary (CHO) origin transfected using two sets of expression vectors was constructed in order to permit the cytoplasmic and extracellular expression of single domain antibody along with green fluorescent protein (GFP) as reporter gene. The quality of the constructs were examined both by the restriction map as well as sequence analysis. The gene transfection and protein expression was further examined by reverse transcription-polymerase chain reaction (RT-PCR). The transfected cells were grown in 200 microg/mL hygromycin containing media and the stable cell line obtained showed fluorescent activity for more than a period of 180 days. The production of fusion protein was also detected by fluorescent microscopy, fluorescent spectroscopy as well as by enzyme-linked immunosorbent assay (ELISA) analysis. This strategy allows a rapid production of recombinant fluobodies involving VHH, which can be used in various experiments such as imaging and detection in which a primary labeled antibody is required.
A HeLa cell line stably expressing the Enhanced Green Fluorescence Protein (EGFP) gene, interrupted by the IVS2-654 intron, was studied without treatment and after treatment with a single standard dose of 15 ?M of N-methyl-N'-nitro-N-nitrosoguanidine (MNNG). This assay was done ...
NASA Astrophysics Data System (ADS)
Kobayashi, Hisataka; Hama, Yukihiro; Koyama, Yoshinori; Barrett, Tristan; Urano, Yasuteru; Choyke, Peter L.
2007-02-01
Target-specific contrast agents are being developed for the molecular imaging of cancer. Optically detectable target-specific agents are promising for clinical applications because of their high sensitivity and specificity. Pre clinical testing is needed, however, to validate the actual sensitivity and specificity of these agents in animal models, and involves both conventional histology and immunohistochemistry, which requires large numbers of animals and samples with costly handling. However, a superior validation tool takes advantage of genetic engineering technology whereby cell lines are transfected with genes that induce the target cell to produce fluorescent proteins with characteristic emission spectra thus, identifying them as cancer cells. Multicolor fluorescence imaging of these genetically engineered probes can provide rapid validation of newly developed exogenous probes that fluoresce at different wavelengths. For example, the plasmid containing the gene encoding red fluorescent protein (RFP) was transfected into cell lines previously developed to either express or not-express specific cell surface receptors. Various antibody-based or receptor ligand-based optical contrast agents with either green or near infrared fluorophores were developed to concurrently target and validate cancer cells and their positive and negative controls, such as β-D-galactose receptor, HER1 and HER2 in a single animal/organ. Spectrally resolved fluorescence multicolor imaging was used to detect separate fluorescent emission spectra from the exogenous agents and RFP. Therefore, using this in vivo imaging technique, we were able to demonstrate the sensitivity and specificity of the target-specific optical contrast agents, thus reducing the number of animals needed to conduct these experiments.
Dong, Jun; Dai, Xing-liang; Lu, Zhao-hui; Fei, Xi-feng; Chen, Hua; Zhang, Quan-bin; Zhao, Yao-dong; Wang, Zhi-min; Wang, Ai-dong; Lan, Qing; Huang, Qiang
2012-12-01
The primary reasons for local recurrence and therapeutic failure in the treatment of malignant gliomas are the invasion and interactions of tumor cells with surrounding normal brain cells. However, these tumor cells are hard to be visualized directly in histopathological preparations, or in experimental glioma models. Therefore, we developed an experimental human dual-color in vivo glioma model, which made tracking solitary invasive glioma cells possible, for the purpose of visualizing the interactions between red fluorescence labeled human glioma cells and host brain cells. This may offer references for further studying the roles of tumor microenvironment during glioma tissue remodeling. Transgenic female C57BL/6 mice expressing enhanced green fluorescent protein (EGFP) were crossed with male Balb/c nude mice. Then sib mating was allowed to occur continuously in order to establish an inbred nude mice strain with 50% of their offspring that are EGFP positive. Human glioma cell lines U87-MG and SU3 were transfected with red fluorescent protein (RFP) gene, and a rat C6 glioma cell line was stained directly with CM-DiI, to establish three glioma cell lines emitting red fluorescence (SU3-RFP, U87-RFP, and C6-CM-DiI). Red fluorescence tumor cells were inoculated via intra-cerebral injection into caudate nucleus of the EGFP nude mice. Tumor-bearing mice were sacrificed when their clinical symptoms appeared, and the whole brain was harvested and snap frozen for further analysis. Confocal laser scanning microscopy was performed to monitor the mutual interactions between tumor cells and host brain cells. Almost all the essential tissues of the established EGFP athymic Balb/c nude mice, except hair and erythrocytes, fluoresced green under excitation using a blue light-emitting flashlight with a central peak of 470 nm, approximately 50% of the offsprings were nu/nu EGFP+. SU3-RFP, U87-RFP, and C6-CM-DiI almost 100% expressed red fluorescence under the fluorescence microscope. Under fluorescence microscopic view, RFP+ cells were observed growing wherever they arrived at, locating in the brain parenchyma, ventricles, and para-vascular region. The interactions between the transplanted tumor cells and host adjacent cells could be classified into three types: (1) interweaving; (2) mergence; and (3) fusion. Interweaving was observed in the early stage of tumor remodeling, in which both transplantable tumor cells and host cells were observed scattered in the tumor invading and spreading area without organic connections. Mergence was defined as mutual interactions between tumor cells and host stroma during tumorigenesis. Direct cell fusion between transplantable tumor cells and host cells could be observed occasionally. This study showed that self-established EGFP athymic nude mice offered the possibility of visualizing tumorigenesis of human xenograft tumor, and the dual-color xenograft glioma model was of considerable utility in studying the process of tumor remodeling. Based on this platform, mutual interactions between glioma cells and host tissues could be observed directly to further elucidate the development of tumor microenvironment.
Fluorescent cellular assay for screening agents inhibiting Pseudomonas aeruginosa adherence.
Nosková, Libuše; Kubíčková, Božena; Vašková, Lucie; Bláhová, Barbora; Wimmerová, Michaela; Stiborová, Marie; Hodek, Petr
2015-01-16
Antibodies against Pseudomonas aeruginosa (PA) lectin, PAIIL, which is a virulence factor mediating the bacteria binding to epithelium cells, were prepared in chickens and purified from egg yolks. To examine these antibodies as a prophylactic agent preventing the adhesion of PA we developed a well plate assay based on fluorescently labeled bacteria and immortalized epithelium cell lines derived from normal and cystic fibrosis (CF) human lungs. The antibodies significantly inhibited bacteria adhesion (up to 50%) in both cell lines. In agreement with in vivo data, our plate assay showed higher susceptibility of CF cells towards the PA adhesion as compared to normal epithelium. This finding proved the reliability of the developed experimental system.
Post-mortem re-cloning of a transgenic red fluorescent protein dog
Hong, So Gun; Koo, Ok Jae; Oh, Hyun Ju; Park, Jung Eun; Kim, Minjung; Kim, Geon-A; Park, Eun Jung; Jang, Goo
2011-01-01
Recently, the world's first transgenic dogs were produced by somatic cell nuclear transfer. However, cellular senescence is a major limiting factor for producing more advanced transgenic dogs. To overcome this obstacle, we rejuvenated transgenic cells using a re-cloning technique. Fibroblasts from post-mortem red fluorescent protein (RFP) dog were reconstructed with in vivo matured oocytes and transferred into 10 surrogate dogs. One puppy was produced and confirmed as a re-cloned dog. Although the puppy was lost during birth, we successfully established a rejuvenated fibroblast cell line from this animal. The cell line was found to stably express RFP and is ready for additional genetic modification. PMID:22122908
In vivo imaging and quantitative monitoring of autophagic flux in tobacco BY-2 cells.
Hanamata, Shigeru; Kurusu, Takamitsu; Okada, Masaaki; Suda, Akiko; Kawamura, Koki; Tsukada, Emi; Kuchitsu, Kazuyuki
2013-01-01
Autophagy has been shown to play essential roles in the growth, development and survival of eukaryotic cells. However, simple methods for quantification and visualization of autophagic flux remain to be developed in living plant cells. Here, we analyzed the autophagic flux in transgenic tobacco BY-2 cell lines expressing fluorescence-tagged NtATG8a as a marker for autophagosome formation. Under sucrose-starved conditions, the number of punctate signals of YFP-NtATG8a increased, and the fluorescence intensity of the cytoplasm and nucleoplasm decreased. Conversely, these changes were not observed in BY-2 cells expressing a C-terminal glycine deletion mutant of the NtATG8a protein (NtATG8aΔG). To monitor the autophagic flux more easily, we generated a transgenic BY-2 cell line expressing NtATG8a fused to a pH-sensitive fluorescent tag, a tandem fusion of the acid-insensitive RFP and the acid-sensitive YFP. In sucrose-rich conditions, both fluorescent signals were detected in the cytoplasm and only weakly in the vacuole. In contrast, under sucrose-starved conditions, the fluorescence intensity of the cytoplasm decreased, and the RFP signal clearly increased in the vacuole, corresponding to the fusion of the autophagosome to the vacuole and translocation of ATG8 from the cytoplasm to the vacuole. Moreover, we introduce a novel simple easy way to monitor the autophagic flux non-invasively by only measuring the ratio of fluorescence of RFP and YFP in the cell suspension using a fluorescent image analyzer without microscopy. The present in vivo quantitative monitoring system for the autophagic flux offers a powerful tool for determining the physiological functions and molecular mechanisms of plant autophagy induced by environmental stimuli.
In vivo imaging and quantitative monitoring of autophagic flux in tobacco BY-2 cells
Hanamata, Shigeru; Kurusu, Takamitsu; Okada, Masaaki; Suda, Akiko; Kawamura, Koki; Tsukada, Emi; Kuchitsu, Kazuyuki
2013-01-01
Autophagy has been shown to play essential roles in the growth, development and survival of eukaryotic cells. However, simple methods for quantification and visualization of autophagic flux remain to be developed in living plant cells. Here, we analyzed the autophagic flux in transgenic tobacco BY-2 cell lines expressing fluorescence-tagged NtATG8a as a marker for autophagosome formation. Under sucrose-starved conditions, the number of punctate signals of YFP-NtATG8a increased, and the fluorescence intensity of the cytoplasm and nucleoplasm decreased. Conversely, these changes were not observed in BY-2 cells expressing a C-terminal glycine deletion mutant of the NtATG8a protein (NtATG8aΔG). To monitor the autophagic flux more easily, we generated a transgenic BY-2 cell line expressing NtATG8a fused to a pH-sensitive fluorescent tag, a tandem fusion of the acid-insensitive RFP and the acid-sensitive YFP. In sucrose-rich conditions, both fluorescent signals were detected in the cytoplasm and only weakly in the vacuole. In contrast, under sucrose-starved conditions, the fluorescence intensity of the cytoplasm decreased, and the RFP signal clearly increased in the vacuole, corresponding to the fusion of the autophagosome to the vacuole and translocation of ATG8 from the cytoplasm to the vacuole. Moreover, we introduce a novel simple easy way to monitor the autophagic flux non-invasively by only measuring the ratio of fluorescence of RFP and YFP in the cell suspension using a fluorescent image analyzer without microscopy. The present in vivo quantitative monitoring system for the autophagic flux offers a powerful tool for determining the physiological functions and molecular mechanisms of plant autophagy induced by environmental stimuli. PMID:23123450
Portable real-time fluorescence cytometry of microscale cell culture analog devices
NASA Astrophysics Data System (ADS)
Kim, Donghyun; Tatosian, Daniel A.; Shuler, Michael L.
2006-02-01
A portable fluorescence cytometric system that provides a modular platform for quantitative real-time image measurements has been used to explore the applicability to investigating cellular events on multiple time scales. For a short time scale, we investigated the real-time dynamics of uptake of daunorubicin, a chemotherapeutic agent, in cultured mouse L-cells in a micro cell culture analog compartment using the fluorescent cytometric system. The green fluorescent protein (GFP) expression to monitor induction of pre-specified genes, which occurs on a much longer time scale, has also been measured. Here GFP fluorescence from a doxycycline inducible promoter in a mouse L-cell line was determined. Additionally, a system based on inexpensive LEDs showed performance comparable to a broadband light source based system and reduced photobleaching compared to microscopic examination.
In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography
Genevois, Coralie; Loiseau, Hugues; Couillaud, Franck
2016-01-01
Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI) using the firefly luciferase (Fluc) as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP) to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI), fluorescence diffuse optical tomography (fDOT), and fluorescence molecular Imaging (FMT®). A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors. PMID:27809256
In Vivo Follow-up of Brain Tumor Growth via Bioluminescence Imaging and Fluorescence Tomography.
Genevois, Coralie; Loiseau, Hugues; Couillaud, Franck
2016-10-31
Reporter gene-based strategies are widely used in experimental oncology. Bioluminescence imaging (BLI) using the firefly luciferase (Fluc) as a reporter gene and d-luciferin as a substrate is currently the most widely employed technique. The present paper compares the performances of BLI imaging with fluorescence imaging using the near infrared fluorescent protein (iRFP) to monitor brain tumor growth in mice. Fluorescence imaging includes fluorescence reflectance imaging (FRI), fluorescence diffuse optical tomography (fDOT), and fluorescence molecular Imaging (FMT ® ). A U87 cell line was genetically modified for constitutive expression of both the encoding Fluc and iRFP reporter genes and assayed for cell, subcutaneous tumor and brain tumor imaging. On cultured cells, BLI was more sensitive than FRI; in vivo, tumors were first detected by BLI. Fluorescence of iRFP provided convenient tools such as flux cytometry, direct detection of the fluorescent protein on histological slices, and fluorescent tomography that allowed for 3D localization and absolute quantification of the fluorescent signal in brain tumors.
Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization
Roberts, Brock; Haupt, Amanda; Tucker, Andrew; Grancharova, Tanya; Arakaki, Joy; Fuqua, Margaret A.; Nelson, Angelique; Hookway, Caroline; Ludmann, Susan A.; Mueller, Irina A.; Yang, Ruian; Horwitz, Rick; Rafelski, Susanne M.; Gunawardane, Ruwanthi N.
2017-01-01
We present a CRISPR/Cas9 genome-editing strategy to systematically tag endogenous proteins with fluorescent tags in human induced pluripotent stem cells (hiPSC). To date, we have generated multiple hiPSC lines with monoallelic green fluorescent protein tags labeling 10 proteins representing major cellular structures. The tagged proteins include alpha tubulin, beta actin, desmoplakin, fibrillarin, nuclear lamin B1, nonmuscle myosin heavy chain IIB, paxillin, Sec61 beta, tight junction protein ZO1, and Tom20. Our genome-editing methodology using Cas9/crRNA ribonuclear protein and donor plasmid coelectroporation, followed by fluorescence-based enrichment of edited cells, typically resulted in <0.1–4% homology-directed repair (HDR). Twenty-five percent of clones generated from each edited population were precisely edited. Furthermore, 92% (36/39) of expanded clonal lines displayed robust morphology, genomic stability, expression and localization of the tagged protein to the appropriate subcellular structure, pluripotency-marker expression, and multilineage differentiation. It is our conclusion that, if cell lines are confirmed to harbor an appropriate gene edit, pluripotency, differentiation potential, and genomic stability are typically maintained during the clonal line–generation process. The data described here reveal general trends that emerged from this systematic gene-tagging approach. Final clonal lines corresponding to each of the 10 cellular structures are now available to the research community. PMID:28814507
NASA Astrophysics Data System (ADS)
Carstea, E.; Baker, A.; Johnson, R.; Reynolds, D. M.
2009-12-01
In-line fluorescence EEM monitoring has been performed over an eleven-day period for Bournbrook River, Birmingham, UK. River water was diverted to a portable laboratory via a continuous flow pump and filter system. Fluorescence excitation-emission matrices data was recorded every 3 minutes using a flow cell (1cm pathlength) coupled to a fiber optic probe. This real-time fluorescence EEM data (Excitation, 225-400 nm at 5 nm steps, emission, 280-500 nm at 2 nm steps) was collected 'in-line'and directly compared with the spectrophotometric properties and physical and chemical parameters of river water samples collected off-line at known time intervals. Over the monitoring period, minor pollution pulses from cross connections were detected and identified hourly along with a random diesel pollution event. This work addresses the practicalities of measuring and detecting fluorescence EEM in the field and discusses the potential of this technological approach for further understanding important hydrological and biogeochemical processes. Problems associated with fouling and system failure are also reported. Example of the data generated from the continuous fluorescence EEM monitoring.
Calcagno, Danielle Queiroz; Takeno, Sylvia Santomi; Gigek, Carolina Oliveira; Leal, Mariana Ferreira; Wisnieski, Fernanda; Chen, Elizabeth Suchi; Araújo, Taíssa Maíra Thomaz; Lima, Eleonidas Moura; Melaragno, Maria Isabel; Demachki, Samia; Assumpção, Paulo Pimentel; Burbano, Rommel Rodriguez; Smith, Marília Cardoso
2016-01-01
AIM To identify common copy number alterations on gastric cancer cell lines. METHODS Four gastric cancer cell lines (ACP02, ACP03, AGP01 and PG100) underwent chromosomal comparative genome hybridization and array comparative genome hybridization. We also confirmed the results by fluorescence in situ hybridization analysis using the bacterial artificial chromosome clone and quantitative real time PCR analysis. RESULTS The amplification of 9p13.3 was detected in all cell lines by both methodologies. An increase in the copy number of 9p13.3 was also confirmed by fluorescence in situ hybridization analysis. Moreover, the interleukin 11 receptor alpha (IL11RA) and maternal embryonic leucine zipper kinase (MELK) genes, which are present in the 9p13.3 amplicon, revealed gains of the MELK gene in all the cell lines studied. Additionally, a gain in the copy number of IL11RA and MELK was observed in 19.1% (13/68) and 55.9% (38/68) of primary gastric adenocarcinoma samples, respectively. CONCLUSION The characterization of a small gain region at 9p13.3 in gastric cancer cell lines and primary gastric adenocarcinoma samples has revealed MELK as a candidate target gene that is possibly related to the development of gastric cancer. PMID:27920471
Li, Duo; Qiao, Zhenzhen; Yu, Yanru; Tang, Jinlu; He, Xiaoxiao; Shi, Hui; Ye, Xiaosheng; Lei, Yanli; Wang, Kemin
2018-01-25
A facile, general and turn-on nucleus imaging strategy was first developed based on in situ fluorescence activation of C-rich dark silver nanoclusters by G-rich telomeres. After a simple incubation without washing, nanoclusters could selectively stain the nucleus with intense red luminescence, which was confirmed using fixed/living cells and several cell lines.
The use of fluorescent intrabodies to detect endogenous gankyrin in living cancer cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rinaldi, Anne-Sophie; Freund, Guillaume; Desplancq, Dominique
2013-04-01
Expression of antibody fragments in mammalian cells (intrabodies) is used to probe the target protein or interfere with its biological function. We previously described the in vitro characterisation of a single-chain Fv (scFv) antibody fragment (F5) isolated from an intrabody library that binds to the oncoprotein gankyrin (GK) in solution. Here, we have isolated several other scFvs that interact with GK in the presence of F5 and tested whether they allow, when fused to fluorescent proteins, to detect by FRET endogenous GK in living cells. The binding of pairs of scFvs to GK was analysed by gel filtration and themore » ability of each scFv to mediate nuclear import/export of GK was determined. Binding between scFv-EGFP and RFP-labelled GK in living cells was detected by fluorescence lifetime imaging microscopy (FLIM). After co-transfection of two scFvs fused to EGFP and RFP, respectively, which form a tri-molecular complex with GK in vitro, FRET signal was measured. This system allowed us to observe that GK is monomeric and distributed throughout the cytoplasm and nucleus of several cancer cell lines. Our results show that pairs of fluorescently labelled intrabodies can be monitored by FLIM–FRET microscopy and that this technique allows the detection of lowly expressed endogenous proteins in single living cells. Highlights: ► Endogenous GK in living cells was targeted with pairs of fluorescently-tagged scFvs. ► Tri-molecular complexes containing two scFvs and one molecule GK were formed. ► GK was detected using fluorescence lifetime-based FRET imaging. ► GK is monomeric and homogeneously distributed in several cancer cell lines. ► This technique may have many applications in live-cell imaging of endogenous proteins.« less
Chen, Chi-Fang; Chu, Che-Yu; Chen, Te-Hao; Lee, Shyh-Jye; Shen, Chia-Ning; Hsiao, Chung-Der
2011-01-01
Background Zebrafish skin is composed of enveloping and basal layers which form a first-line defense system against pathogens. Zebrafish epidermis contains ionocytes and mucous cells that aid secretion of acid/ions or mucous through skin. Previous studies demonstrated that fish skin is extremely sensitive to external stimuli. However, little is known about the molecular mechanisms that modulate skin cell apoptosis in zebrafish. Methodology/Principal Findings This study aimed to create a platform to conduct conditional skin ablation and determine if it is possible to attenuate apoptotic stimuli by overexpressing potential apoptosis modulating genes in the skin of live animals. A transgenic zebrafish line of Tg(krt4:NTR-hKikGR)cy17 (killer line), which can conditionally trigger apoptosis in superficial skin cells, was first established. When the killer line was incubated with the prodrug metrodinazole, the superficial skin displayed extensive apoptosis as judged by detection of massive TUNEL- and active caspase 3-positive signals. Great reductions in NTR-hKikGR+ fluorescent signals accompanied epidermal cell apoptosis. This indicated that NTR-hKikGR+ signal fluorescence can be utilized to evaluate apoptotic events in vivo. After removal of metrodinazole, the skin integrity progressively recovered and NTR-hKikGR+ fluorescent signals gradually restored. In contrast, either crossing the killer line with testing lines or transiently injecting the killer line with testing vectors that expressed human constitutive active Akt1, mouse constitutive active Stat3, or HPV16 E6 element displayed apoptosis-resistant phenotypes to cytotoxic metrodinazole as judged by the loss of reduction in NTR-hKikGR+ fluorescent signaling. Conclusion/Significance The killer/testing line binary system established in the current study demonstrates a nitroreductase/metrodinazole system that can be utilized to conditionally perform skin ablation in a real-time manner, and provides a valuable tool to visualize and quantify the anti-apoptotic potential of interesting target genes in vivo. The current work identifies a potential use for transgenic zebrafish as a high-throughput platform to validate potential apoptosis modulators in vivo. PMID:21655190
Howe, Elizabeth S; Clemente, Thomas E; Bass, Hank W
2012-06-01
Cytological studies of fluorescent proteins are rapidly yielding insights into chromatin structure and dynamics. Here we describe the production and cytological characterization of new transgenic maize lines expressing a fluorescent histone fusion protein, H2B-mCherry. The transgene is expressed under the control of the maize ubiquitin1 promoter, including its first exon and intron. Polymerase chain reaction-based genotyping and root-tip microscopy showed that most of the lines carrying the transgene also expressed it, producing bright uniform staining of nuclei. Further, plants showing expression in root tips at the seedling stage also showed expression during meiosis, late in the life cycle. Detailed high-resolution three-dimensional imaging of cells and nuclei from various somatic and meiotic cell types showed that H2B-mCherry produced remarkably clear images of chromatin and chromosome fiber morphology, as seen in somatic, male meiotic prophase, and early microgametophyte cells. H2B-mCherry also yielded distinct nucleolus staining and was shown to be compatible with fluorescence in situ hybridization. We found several instances where H2B-mCherry was superior to DAPI as a generalized chromatin stain. Our study establishes these histone H2B-mCherry lines as new biological reagents for visualizing chromatin structure, chromosome morphology, and nuclear dynamics in fixed and living cells in a model plant genetic system.
2000-08-01
micrometastases in the nude mouse, we used the EGFP fluorescent marker gene, cloned from the bioluminescent jellyfish Aequorea Victoria (previously...Preparation. "* Flanagan L, Byrne I, Wang Y, Tenniswood M and Welsh JE. Utilization of green fluorescent protein for the identification of metastasis...phenotype. Utilizing the SUM-159PT cell line stably transfected with pEGFP-C1 (enhanced green fluorescent protein ) we have been able to successfully track
In vivo biodistribution and behavior of CdTe/ZnS quantum dots.
Zhao, Yan; Zhang, Yue; Qin, Gaofeng; Cheng, Jinjun; Zeng, Wenhao; Liu, Shuchen; Kong, Hui; Wang, Xueqian; Wang, Qingguo; Qu, Huihua
2017-01-01
The unique features of quantum dots (QDs) make them desirable fluorescent tags for cell and developmental biology applications that require long-term, multitarget, and highly sensitive imaging. In this work, we imaged fluorescent cadmium telluride/zinc sulfide (CdTe/ZnS) QDs in organs, tissues, and cells, and analyzed the mechanism of their lymphatic uptake and cellular distribution. We observed that the fluorescent CdTe/ZnS QDs were internalized by lymph nodes in four cell lines from different tissue sources. We obtained the fluorescence intensity-QD concentrations curve by quantitative analysis. Our results demonstrate that cells containing QDs can complete mitosis normally and that distribution of QDs was uniform across cell types and involved the vesicular transport system, including the endoplasmic reticulum. This capacity for CdTe/ZnS QD targeting provides insights into the applicability and limitations of fluorescent QDs for imaging biological specimens.
Smurthwaite, Cameron A; Hilton, Brett J; O'Hanlon, Ryan; Stolp, Zachary D; Hancock, Bryan M; Abbadessa, Darin; Stotland, Aleksandr; Sklar, Larry A; Wolkowicz, Roland
2014-01-01
The discovery of the green fluorescent protein from Aequorea victoria has revolutionized the field of cell and molecular biology. Since its discovery a growing panel of fluorescent proteins, fluorophores and fluorescent-coupled staining methodologies, have expanded the analytical capabilities of flow cytometry. Here, we exploit the power of genetic engineering to barcode individual cells with genes encoding fluorescent proteins. For genetic engineering, we utilize retroviral technology, which allows for the expression of ectopic genetic information in a stable manner in mammalian cells. We have genetically barcoded both adherent and nonadherent cells with different fluorescent proteins. Multiplexing power was increased by combining both the number of distinct fluorescent proteins, and the fluorescence intensity in each channel. Moreover, retroviral expression has proven to be stable for at least a 6-month period, which is critical for applications such as biological screens. We have shown the applicability of fluorescent barcoded multiplexing to cell-based assays that rely themselves on genetic barcoding, or on classical staining protocols. Fluorescent genetic barcoding gives the cell an inherited characteristic that distinguishes it from its counterpart. Once cell lines are developed, no further manipulation or staining is required, decreasing time, nonspecific background associated with staining protocols, and cost. The increasing number of discovered and/or engineered fluorescent proteins with unique absorbance/emission spectra, combined with the growing number of detection devices and lasers, increases multiplexing versatility, making fluorescent genetic barcoding a powerful tool for flow cytometry-based analysis. © 2013 International Society for Advancement of Cytometry.
NASA Astrophysics Data System (ADS)
Werter, Wiebke; Viereck, Volker; Keckstein, J.; Steiner, Rudolf W.; Rueck, Angelika C.
1994-05-01
As a new treatment model for endometriosis, photodynamic therapy (PDT) was applied to endometrium cultures. Endometriosis is a benign disease. Therefore primary cultures were used instead of cell lines. Endometrium is composed of epithelial and stromal cells which can also be found in primary culture. While stromal cells take a polygonal shape in culture, epithelial cells form cell colonies. PSIII (Photasan III), which is similar to hematorporphyrin derivate (HpD), meso-tetra (4-sulfonatophenyl) porphyrin (TPPS4), which posses a high fluorescence quantum yield and may be useful in fluorescence diagnosis of subtle endometriotic spots, and methylene blue (MB), a vital dye with phototoxic properties, were used as photosensitizers. Different sensitizer concentrations and incubation times were applied. The highest phototoxicity was observed for PSIII; TPPS4 and MB were less phototoxic. We compared our results with the sensitivity of cell lines described in the literature. The necessary irradiation to destroy stromal cells was relatively high but still in the same dimension as for cell lines. However they were even more sensitive than epithelial cells. This was true for all sensitizers used.
NASA Astrophysics Data System (ADS)
Herter, Wiebke; Viereck, Volker; Keckstein, J.; Steiner, Rudolf W.; Rueck, Angelika C.
1994-05-01
As a new treatment model for endometriosis, photodynamic therapy (PDT) was applied to endometrium cultures. Endometriosis is a benign disease. Therefore primary cultures were used instead of cell lines. Endometrium is composed of epithelial and stromal cells which can also be found in primary culture. While stromal cells take a polygonal shape in culture, epithelial cells form cell colonies. PSIII (Photasan III), which is similar to hematorporphyrin derivate (HpD), meso-tetra (4-sulfonatophenyl) porphyrin (TPPS4), which posses a high fluorescence quantum yield and may be useful in fluorescence diagnosis of subtle endometriotic spots, and methylene blue (MB), a vital dye with phototoxic properties, were used as photosensitizers. Different sensitizer concentrations and incubation times were applied. The highest phototoxicity was observed for PSIII; TPPS4 and MB were less phototoxic. We compared our results with the sensitivity of cell lines described in the literature. The necessary irradiation to destroy stromal cells was relatively high but still in the same dimension as for cell lines. However they were even more sensitive than epithelial cells. This was true for all sensitizers used.
Yu, Y; Wei, S; Wang, Z; Huang, X; Huang, Y; Cai, J; Li, C; Qin, Q
2016-06-01
A new marine-fish cell line, designated GPS, was established from the snout tissue of golden pompano Trachinotus ovatus. GPS cells multiplied well in Leibovitz's L-15 containing 10% foetal bovine serum (FBS) at 28° C and the cells have been subcultured for >60 passages. Polymerase chain reaction (PCR) amplification of 16S ribosomal (r)RNA confirmed the origin of this cell line from T. ovatus. Chromosome analysis showed that GPS cells exhibited chromosomal aneuploidy with a modal chromosome number of 54. Bright green fluorescence signal was observed in enhanced green fluorescent protein (EGFP)-N3 transfected cells, indicating that GPS cells could be used to investigate gene functions in vitro. The GPS cells were highly susceptible to Singapore grouper iridovirus (SGIV), which was demonstrated by the presence of severe cytopathic effect (CPE) and increased viral titres. Real-time quantitative PCR and Western blot analysis showed that the viral gene transcription and protein synthesis occurred during SGIV infection in GPS cells. Thus, this study described the characteristic of a new cell line from the snout tissue of T. ovatus that could be used as a tool for propagation of iridovirus and genetic manipulation to investigate host-pathogen interactions. © 2016 The Fisheries Society of the British Isles.
Genetic heterogeneity of RPMI-8402, a T-acute lymphoblastic leukemia cell line
STOCZYNSKA-FIDELUS, EWELINA; PIASKOWSKI, SYLWESTER; PAWLOWSKA, ROZA; SZYBKA, MALGORZATA; PECIAK, JOANNA; HULAS-BIGOSZEWSKA, KRYSTYNA; WINIECKA-KLIMEK, MARTA; RIESKE, PIOTR
2016-01-01
Thorough examination of genetic heterogeneity of cell lines is uncommon. In order to address this issue, the present study analyzed the genetic heterogeneity of RPMI-8402, a T-acute lymphoblastic leukemia (T-ALL) cell line. For this purpose, traditional techniques such as fluorescence in situ hybridization and immunocytochemistry were used, in addition to more advanced techniques, including cell sorting, Sanger sequencing and massive parallel sequencing. The results indicated that the RPMI-8402 cell line consists of several genetically different cell subpopulations. Furthermore, massive parallel sequencing of RPMI-8402 provided insight into the evolution of T-ALL carcinogenesis, since this cell line exhibited the genetic heterogeneity typical of T-ALL. Therefore, the use of cell lines for drug testing in future studies may aid the progress of anticancer drug research. PMID:26870252
Lee, Jinwoo; Miyanaga, Yukihiro; Ueda, Masahiro; Hohng, Sungchul
2012-10-17
There is no confocal microscope optimized for single-molecule imaging in live cells and superresolution fluorescence imaging. By combining the swiftness of the line-scanning method and the high sensitivity of wide-field detection, we have developed a, to our knowledge, novel confocal fluorescence microscope with a good optical-sectioning capability (1.0 μm), fast frame rates (<33 fps), and superior fluorescence detection efficiency. Full compatibility of the microscope with conventional cell-imaging techniques allowed us to do single-molecule imaging with a great ease at arbitrary depths of live cells. With the new microscope, we monitored diffusion motion of fluorescently labeled cAMP receptors of Dictyostelium discoideum at both the basal and apical surfaces and obtained superresolution fluorescence images of microtubules of COS-7 cells at depths in the range 0-85 μm from the surface of a coverglass. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Tetracycline rapidly reaches all the constituent cells of uropathogenic Escherichia coli biofilms
NASA Technical Reports Server (NTRS)
Stone, G.; Wood, P.; Dixon, L.; Keyhan, M.; Matin, A.; Demain, A. L. (Principal Investigator)
2002-01-01
We have developed a method for visualizing Escherichia coli cells that are exposed to tetracycline in a biofilm, based on a previous report that liposomes containing the E. coli TetR(B) protein fluoresce when exposed to this antibiotic. By our method, cells devoid of TetR(B) also exhibited tetracycline-dependent fluorescence. At 50 microg of tetracycline ml(-1), planktonic cells of a uropathogenic E. coli (UPEC) strain developed maximal fluorescence after 7.5 to 10 min of exposure. A similar behavior was exhibited by cells in a 24- or 48-h UPEC biofilm, as examined by confocal laser microscopy, regardless of whether they lined empty spaces or occupied densely packed regions. Further, a comparison of phase-contrast and fluorescent images of corresponding biofilm zones showed that all the cells fluoresced. Thus, all the biofilm cells were exposed to tetracycline and there were no pockets within the biofilm where the antibiotic failed to reach. It also appeared unlikely that niches of reduced exposure to the antibiotic existed within the biofilms.
Ma, Xiang-Dong; Ma, Xing; Sui, Yan-Fang; Wang, Wen-Liang
2002-01-01
AIM: To investigate the relationship between hepatocarcinogenesis and the expression of connexin32 (cx32), connexin43 (cx43) mRNAs and proteins in vitro. METHODS: Gap junction genes cx32 and cx43 mRNA in hepatocellular carcinoma cell lines HHCC, SMMC-7721 and normal liver cell line QZG were detected by in situ hybridization (ISH) with digoxin-labeled cx32, and cx43 cDNA probes. Expression of Cx32 and Cx43 proteins in the cell lines was revealed by indirect immuno-fluorescence and flow cytometry (FCM). RESULTS: Blue positive hybridization signals of cx32 and cx43 mRNAs detected by ISH with cx32 and cx43 cDNA probes respectively were located in cytoplasm of cells of HHCC, SMMC-7721 and QZG. No significant difference of either cx32 mRNA or cx43 mRNA was tested among HHCC, SMMC-7721 and QZG (P = 2.673, HHCC vs QZG; P = 1.375, SMMC-7721 vs QZG). FCM assay showed that the positive rates of Cx32 protein in HHCC, SMMC-7721 and QZG were 0.7%, 1.7% and 99.0%, and the positive rates of Cx43 protein in HHCC, SMMC-7721 and QZG were 7.3%, 26.5% and 99.1% respectively. Significant differences of both Cx32 and Cx43 protein expression existed between hepatocellular carcinoma cell lines and normal liver cell line (P = 0.0069, HHCC vs QZG; P = 0.0087, SMMC-7721 vs QZG). Moreover, the fluorescent intensities of Cx32 and Cx43 proteins in HHCC, SMMC-7721 were lower than that in QZG. CONCLUSION: Hepatocellular carcinoma cell lines HHCC and SMMC-7721 exhibited lower positive rates and fluorescent intensities of Cx32, Cx43 proteins compared with that of normal liver cell line QZG. It is suggested that lower expression of both Cx32 and Cx43 proteins in hepatocellular carcinoma cells could play pivotal roles in the hepatocarcinogenesis. Besides, genetic defects of cx32 and cx43 in post-translational processing should be considered. PMID:11833073
Fischer, Stephan; Loncar, Jovica; Zaja, Roko; Schnell, Sabine; Schirmer, Kristin; Smital, Tvrtko; Luckenbach, Till
2011-01-25
Permanent fish cell lines have become common model systems for determining ecotoxicological effects of pollutants. For these cell lines little is known on the cellular active transport mechanisms that control the amount of a compound entering the cell, such as the MXR (multixenobiotic resistance) system mediated by ATP binding cassette (ABC) transport proteins. Therefore, for toxic evaluation of chemicals with those cells information on MXR is important. We here present data on constitutive mRNA expression and protein activity levels of a series of ABC efflux transporters in seven permanent cell lines derived from liver (RTL-W1; R1) and liver hepatoma (RTH-149), gill (RTgill-W1), gonad (RTG-2), gut (RTgutGC) and brain (RTbrain) of rainbow trout (Oncorhynchus mykiss). In addition to known transporters abcb1 (designated here abcb1a), abcb11, abcc1-3, abcc5 and abcg2, we quantified expression levels of a newly identified abcb1 isoform (abcb1b) and abcc4, previously unknown in trout. Quantitative real time PCR (qPCR) indicated that mRNA of the examined ABC transporters was constitutively expressed in all cell lines. Transporter mRNA expression patterns were similar in all cell lines, with expression levels of abcc transporters being 80 to over 1000 fold higher than for abcg2, abcb1a/b and abcb11 (abcc1-5>abcg2>abcb1a/b, 11). Transporter activity in the cell lines was determined by measuring uptake of transporter type specific fluorescent substrates in the presence of activity inhibitors. The combination of the ABCB1 and ABCC transporter substrate calcein-AM with inhibitors cyclosporine A, PSC833 and MK571 resulted in a concentration-dependent fluorescence increase of up to 3-fold, whereas reversin 205 caused a slight, but not concentration-dependent fluorescence increase. Accumulation of the dyes Hoechst 33342 and 2',7'-dichlorodihydrofluorescein diacetate was basically unchanged in the presence of Ko134 and taurocholate, respectively, indicating low Abcg2 and Abcb11 activities, in accordance with low abcg2 and abcb11 transcript levels. Our data indicate that transporter expression and activity patterns in the different trout cell lines are irrespective of the tissue of origin, but are determined by factors of cell cultivation. 2010 Elsevier B.V. All rights reserved.
Bensalah, Karim; Tuncel, Altug; Hanson, Willard; Stern, Joshua; Han, Bumsoo; Cadeddu, Jeffrey
2010-12-01
The objective of this study was to demonstrate the feasibility of quantum dot (QD)-mediated fluorescence thermometry to monitor thermal dose in an in-vitro thermal ablation zone generated by laser-heated gold nanoshells (LGNS). Hyperthermic cell death of human prostate cancer cell line (PC-3) was determined after various heating settings and correlated to the thermal conditions using an Arrhenius model prior to LGNS ablation. PC-3 cells with gold nanoshells (GNS) and QDs were exposed to a near-infrared laser and QD excitation light. When the cells were heated by GNS, local temperature was measured using the temperature-dependent fluorescence intensity of QDs. Using the predetermined Arrhenius model, the thermal dose (i.e., cell death of PC-3 cells) by LGNS was estimated with local temperatures measured with QD-mediated thermometry. The estimated thermal dose was confirmed with calcein-acetoxy-methylester viability assay. For PC-3 cell line, the activation energy and frequency factor of the Arrhenius model were 86.78 kcal/mol and 6.35 × 10(55) Hz, respectively. During LGNS ablation of PC-3 cells, QD-mediated temperature measurement showed that the temperature of the laser spot increased rapidly to ∼58 °C ± 4 °C. The estimated thermal dose showed that cell death reached to ∼90% in 120 seconds. The death cell zone observed after staining corresponded to a peak area of the temperature profile generated after analysis of the QD fluorescence intensity. This study shows that the QD fluorescence thermometry can accurately monitor the PC-3 cell death by LGNS ablation. This approach holds promises for a better monitoring of thermal ablation procedures in clinical practice.
Systematic gene tagging using CRISPR/Cas9 in human stem cells to illuminate cell organization.
Roberts, Brock; Haupt, Amanda; Tucker, Andrew; Grancharova, Tanya; Arakaki, Joy; Fuqua, Margaret A; Nelson, Angelique; Hookway, Caroline; Ludmann, Susan A; Mueller, Irina A; Yang, Ruian; Horwitz, Rick; Rafelski, Susanne M; Gunawardane, Ruwanthi N
2017-10-15
We present a CRISPR/Cas9 genome-editing strategy to systematically tag endogenous proteins with fluorescent tags in human induced pluripotent stem cells (hiPSC). To date, we have generated multiple hiPSC lines with monoallelic green fluorescent protein tags labeling 10 proteins representing major cellular structures. The tagged proteins include alpha tubulin, beta actin, desmoplakin, fibrillarin, nuclear lamin B1, nonmuscle myosin heavy chain IIB, paxillin, Sec61 beta, tight junction protein ZO1, and Tom20. Our genome-editing methodology using Cas9/crRNA ribonuclear protein and donor plasmid coelectroporation, followed by fluorescence-based enrichment of edited cells, typically resulted in <0.1-4% homology-directed repair (HDR). Twenty-five percent of clones generated from each edited population were precisely edited. Furthermore, 92% (36/39) of expanded clonal lines displayed robust morphology, genomic stability, expression and localization of the tagged protein to the appropriate subcellular structure, pluripotency-marker expression, and multilineage differentiation. It is our conclusion that, if cell lines are confirmed to harbor an appropriate gene edit, pluripotency, differentiation potential, and genomic stability are typically maintained during the clonal line-generation process. The data described here reveal general trends that emerged from this systematic gene-tagging approach. Final clonal lines corresponding to each of the 10 cellular structures are now available to the research community. © 2017 Roberts, Haupt, et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
A pink mouse reports the switch from red to green fluorescence upon Cre-mediated recombination.
Hartwich, Heiner; Satheesh, Somisetty V; Nothwang, Hans Gerd
2012-06-14
Targeted genetic modification in the mouse becomes increasingly important in biomedical and basic science. This goal is most often achieved by use of the Cre/loxP system and numerous Cre-driver mouse lines are currently generated. Their initial characterization requires reporter mouse lines to study the in vivo spatiotemporal activity of Cre. Here, we report a dual fluorescence reporter mouse line, which switches expression from the red fluorescent protein mCherry to eGFP after Cre-mediated recombination. Both fluorescent proteins are expressed from the ubiquitously active and strong CAGGS promoter. Among the founders, we noticed a pink mouse line, expressing high levels of the red fluorescent protein mCherry throughout the entire body. Presence of mCherry in the living animal as well as in almost all organs was clearly visible without optical equipment. Upon Cre-activity, mCherry expression was switched to eGFP, demonstrating functionality of this reporter mouse line. The pink mouse presented here is an attractive novel reporter line for fluorescence-based monitoring of Cre-activity. The high expression of mCherry, which is visible to the naked eye, facilitates breeding and crossing, as no genotyping is required to identify mice carrying the reporter allele. The presence of two fluorescent proteins allows in vivo monitoring of recombined and non-recombined cells. Finally, the pink mouse is an eye-catching animal model to demonstrate the power of transgenic techniques in teaching courses.
Sleeping Beauty transposon-based system for rapid generation of HBV-replicating stable cell lines.
Wu, Yong; Zhang, Tian-Ying; Fang, Lin-Lin; Chen, Zi-Xuan; Song, Liu-Wei; Cao, Jia-Li; Yang, Lin; Yuan, Quan; Xia, Ning-Shao
2016-08-01
The stable HBV-replicating cell lines, which carry replication-competent HBV genome stably integrated into the genome of host cell, are widely used to evaluate the effects of antiviral agents. However, current methods to generate HBV-replicating cell lines, which are mostly dependent on random integration of foreign DNA via plasmid transfection, are less-efficient and time-consuming. To address this issue, we constructed an all-in-one Sleeping Beauty transposon system (denoted pTSMP-HBV vector) for robust generation of stable cell lines carrying replication-competent HBV genome of different genotype. This vector contains a Sleeping Beauty transposon containing HBV 1.3-copy genome with an expression cassette of the SV40 promoter driving red fluorescent protein (mCherry) and self-cleaving P2A peptide linked puromycin resistance gene (PuroR). In addition, a PGK promoter-driven SB100X hyperactive transposase cassette is placed in the outside of the transposon in the same plasmid.The HBV-replicating stable cells could be obtained from pTSMP-HBV transfected HepG2 cells by red fluorescence-activated cell sorting and puromycin resistant cell selection within 4-week. Using this system, we successfully constructed four cell lines carrying replication-competent HBV genome of genotypes A-D. The replication and viral protein expression profiles of these cells were systematically characterized. In conclusion, our study provides a high-efficiency strategy to generate HBV-replicating stable cell lines, which may facilitate HBV-related virological study. Copyright © 2016. Published by Elsevier B.V.
Intracellular distribution of Photofrin in malignant and normal endothelial cell lines.
Saczko, J; Mazurkiewicz, M; Chwiłkowska, A; Kulbacka, J; Kramer, G; Ługowski, M; Snietura, M; Banaś, T
2007-01-01
Compared to current treatments including surgery, radiation therapy, and chemotherapy, PDT offers the advantage of an effective and selective method of destroying diseased tissues without damaging surrounding healthy tissues. One of the aspects of antitumour effectiveness of PDT is related to the distribution of photosensitizing drugs. The localization of photosensitizers in cytoplasmic organelles during PDT plays a major role in the cell destruction; therefore, intracellular localization of Ph in malignant and normal cells was investigated. The cell lines used throughout the study were: human malignant A549, MCF-7, Me45 and normal endothelial cell line HUV-EC-C. After incubation with Ph cells were examined using fluorescence and confocal microscopy to visualize the photosensitizer accumulation. For cytoplasm and mitochondria identification, cells were stained with CellTracker Green and MitoTracker Green, respectively. Distribution of Ph was different in malignant and normal cells and dependent on the incubation time. The maximal concentration of Ph in two malignant cell lines (A549 and MCF-7) was observed after 4 hours of incubation, and the most intensive signal was observed around the nuclear envelope. Intracellular distribution of Ph in the Me45 cell line showed that the fluorescence emitted by Ph overlaid that from MitoTracker. This indicates preferential accumulation of the sensitizer in mitochondria. Our results based on the mitochondrial localization support the idea that PDT can contribute to elimination of malignant cells by inducing apoptosis, which is of physiological significance.
Mollet, Mike; Godoy-Silva, Ruben; Berdugo, Claudia; Chalmers, Jeffrey J
2008-06-01
Fluorescence activated cell sorting, FACS, is a widely used method to sort subpopulations of cells to high purities. To achieve relatively high sorting speeds, FACS instruments operate by forcing suspended cells to flow in a single file line through a laser(s) beam(s). Subsequently, this flow stream breaks up into individual drops which can be charged and deflected into multiple collection streams. Previous work by Ma et al. (2002) and Mollet et al. (2007; Biotechnol Bioeng 98:772-788) indicates that subjecting cells to hydrodynamic forces consisting of both high extensional and shear components in micro-channels results in significant cell damage. Using the fluid dynamics software FLUENT, computer simulations of typical fluid flow through the nozzle of a BD FACSVantage indicate that hydrodynamic forces, quantified using the scalar parameter energy dissipation rate, are similar in the FACS nozzle to levels reported to create significant cell damage in micro-channels. Experimental studies in the FACSVantage, operated under the same conditions as the simulations confirmed significant cell damage in two cell lines, Chinese Hamster Ovary cells (CHO) and THP1, a human acute monocytic leukemia cell line.
Generation of Transgenic Mouse Fluorescent Reporter Lines for Studying Hematopoietic Development
Vacaru, Andrei M.; Vitale, Joseph; Nieves, Johnathan; Baron, Margaret H.
2015-01-01
During the development of the hematopoietic system, at least 8 distinct lineages are generated in the mouse embryo. Transgenic mice expressing fluorescent proteins at various points in the hematopoietic hierarchy, from hematopoietic stem cell to multipotent progenitors to each of the final differentiated cell types, have provided valuable tools for tagging, tracking, and isolating these cells. In this chapter, we discuss general considerations in designing a transgene, survey available fluorescent probes, and methods for confirming and analyzing transgene expression in the hematopoietic systems of the embryo, fetus, and postnatal/adult animal. PMID:25064110
Application of fluorescence spectroscopy for on-line bioprocess monitoring and control
NASA Astrophysics Data System (ADS)
Boehl, Daniela; Solle, D.; Toussaint, Hans J.; Menge, M.; Renemann, G.; Lindemann, Carsten; Hitzmann, Bernd; Scheper, Thomas-Helmut
2001-02-01
12 Modern bioprocess control requires fast data acquisition and in-time evaluation of bioprocess variables. On-line fluorescence spectroscopy for data acquisition and the use of chemometric methods accomplish these requirements. The presented investigations were performed with fluorescence spectrometers with wide ranges of excitation and emission wavelength. By detection of several biogenic fluorophors (amino acids, coenzymes and vitamins) a large amount of information about the state of the bioprocess are obtained. For the evaluation of the process variables partial least squares regression is used. This technique was applied to several bioprocesses: the production of ergotamine by Claviceps purpurea, the production of t-PA (tissue plasminogen activator) by animal cells and brewing processes. The main point of monitoring the brewing processes was to determine the process variables cell count and extract concentration.
Application of magnetic carriers to two examples of quantitative cell analysis
NASA Astrophysics Data System (ADS)
Zhou, Chen; Qian, Zhixi; Choi, Young Suk; David, Allan E.; Todd, Paul; Hanley, Thomas R.
2017-04-01
The use of magnetophoretic mobility as a surrogate for fluorescence intensity in quantitative cell analysis was investigated. The objectives of quantitative fluorescence flow cytometry include establishing a level of labeling for the setting of parameters in fluorescence activated cell sorters (FACS) and the determination of levels of uptake of fluorescently labeled substrates by living cells. Likewise, the objectives of quantitative magnetic cytometry include establishing a level of labeling for the setting of parameters in flowing magnetic cell sorters and the determination of levels of uptake of magnetically labeled substrates by living cells. The magnetic counterpart to fluorescence intensity is magnetophoretic mobility, defined as the velocity imparted to a suspended cell per unit of magnetic ponderomotive force. A commercial velocimeter available for making this measurement was used to demonstrate both applications. Cultured Gallus lymphoma cells were immunolabeled with commercial magnetic beads and shown to have adequate magnetophoretic mobility to be separated by a novel flowing magnetic separator. Phagocytosis of starch nanoparticles having magnetic cores by cultured Chinese hamster ovary cells, a CHO line, was quantified on the basis of magnetophoretic mobility.
Agrawalla, Bikram Keshari; Chandran, Yogeswari; Phue, Wut-Hmone; Lee, Sung-Chan; Jeong, Yun-Mi; Wan, Si Yan Diana; Kang, Nam-Young; Chang, Young-Tae
2015-04-29
Two-photon (TP) microscopy has an advantage for live tissue imaging which allows a deeper tissue penetration up to 1 mm comparing to one-photon (OP) microscopy. While there are several OP fluorescence probes in use for pancreatic islet imaging, TP imaging of selective cells in live islet still remains a challenge. Herein, we report the discovery of first TP live pancreatic islet imaging probe; TP-α (Two Photon-alpha) which can selectively stain glucagon secreting alpha cells. Through fluorescent image based screening using three pancreatic cell lines, we discovered TP-α from a TP fluorescent dye library TPG (TP-Green). In vitro fluorescence test showed that TP-α have direct interaction and appear glucagon with a significant fluorescence increase, but not with insulin or other hormones/analytes. Finally, TP-α was successfully applied for 3D imaging of live islets by staining alpha cell directly. The newly developed TP-α can be a practical tool to evaluate and identify live alpha cells in terms of localization, distribution and availability in the intact islets.
Den Hartogh, Sabine C; Passier, Robert
2016-01-01
In the last decade, since the first report of induced pluripotent stem cells, the stem cell field has made remarkable progress in the differentiation to specialized cell-types of various tissues and organs, including the heart. Cardiac lineage- and tissue-specific human pluripotent stem cell (hPSC) reporter lines have been valuable for the identification, selection, and expansion of cardiac progenitor cells and their derivatives, and for our current understanding of the underlying molecular mechanisms. In order to further advance the use of hPSCs in the fields of regenerative medicine, disease modeling, and preclinical drug development in cardiovascular research, it is crucial to identify functionally distinct cardiac subtypes and to study their biological signaling events and functional aspects in healthy and diseased conditions. In this review, we discuss the various strategies that have been followed to generate and study fluorescent reporter lines in hPSCs and provide insights how these reporter lines contribute to a better understanding and improvement of cell-based therapies and preclinical drug and toxicity screenings in the cardiac field. © AlphaMed Press.
NASA Astrophysics Data System (ADS)
Grudzinski, Wojciech; Piet, Mateusz; Luchowski, Rafal; Reszczynska, Emilia; Welc, Renata; Paduch, Roman; Gruszecki, Wieslaw I.
2018-01-01
Two cell lines, human normal colon epithelial cells (CCD 841 CoTr) and human colon adenocarcinoma cells (HT-29) were cultured in the presence of exogenous carotenoids, either zeaxanthin or lutein. Both carotenoids demonstrated cytotoxicity with respect to cancer cells but not to normal cells. Cells from both the cell lines were analyzed with application of fluorescence lifetime imaging microscopy and Raman scattering microscopy. Both imaging techniques show effective incorporation of carotenoid molecules into growing cells. Comparison of the Raman scattering and fluorescence lifetime characteristics reveals different molecular organization of carotenoids in the carcinoma and normal cells. The main difference consists in a carotenoid aggregation level which is substantially lower in the carcinoma cells as compared to the normal cells. Different molecular organization of carotenoids was interpreted in terms of a different metabolism of normal and carcinoma cells and has been concluded to provide a possibility of cancer diagnosis based on spectroscopic analyses.
Gurskaya, N G; Staroverov, D B; Lukyanov, K A
2016-01-01
Alternative splicing is an important mechanism of regulation of gene expression and expansion of proteome complexity. Recently we developed a new fluorescence reporter for quantitative analysis of alternative splicing of a target cassette exon in live cells (Gurskaya et al., 2012). It consists of a specially designed minigene encoding red and green fluorescent proteins (Katushka and TagGFP2) and a fragment of the target gene between them. Skipping or inclusion of the alternative exon induces a frameshift; ie, alternative exon length must not be a multiple of 3. Finally, red and green fluorescence intensities of cells expressing this reporter are used to estimate the percentage of alternative (exon-skipped) and normal (exon-retained) transcripts. Here, we provide a detailed description of design and application of the fluorescence reporter of a target alternative exon splicing in mammalian cell lines. © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnston, Helinor J., E-mail: h.johnston@napier.ac.u; Semmler-Behnke, Manuela; Brown, David M.
2010-01-01
Nanoparticles (NPs) are being used within diverse applications such as medicines, clothing, cosmetics and food. In order to promote the safe development of such nanotechnologies it is essential to assess the potential adverse health consequences associated with human exposure. The liver is recognised as a target site for NP toxicity, due to NP accumulation within this organ subsequent to injection, inhalation or instillation. The uptake of fluorescent polystyrene carboxylated particles (20 nm or 200 nm diameter) by hepatocytes was determined using confocal microscopy; with cells imaged 'live' during particle exposure or after exposure within fixed cells. Comparisons between the uptakemore » of polystyrene particles by primary rat hepatocytes, and human hepatocyte cell lines (C3A and HepG2) were made. Uptake of particles by hepatocytes was size, time, and serum dependent. Specifically, the uptake of 200 nm particles was limited, but 20 nm NPs were internalised by all cell types from 10 min onwards. At 10 min, 20 nm NP fluorescence co-localised with the tubulin cytoskeleton staining; after 30 min NP fluorescence compartmentalised into structures located within and/or between cells. The fate of internalised NPs was considered and they were not contained within early endosomes or lysosomes, but within mitochondria of cell lines. NPs accumulated within bile canaliculi to a limited extent, which suggests that NPs can be eliminated within bile. This is in keeping with the finding that gold NPs were eliminated in bile following intravenous injection into rats. The findings were, in the main, comparable between primary rat hepatocytes and the different human hepatocyte cell lines.« less
Burger, R; Kurzbuch, D; Gorkin, R; Kijanka, G; Glynn, M; McDonagh, C; Ducrée, J
2015-01-21
In this work we present a centrifugal microfluidic system enabling highly efficient collective trapping and alignment of particles such as microbeads and cells, their multi-colour fluorescent detection and subsequent manipulation by optical tweezers. We demonstrate array-based capture and imaging followed by "cherry-picking" of individual particles, first for fluorescently labelled polystyrene (PS) beads and then for cells. Different cell lines are discriminated based on intracellular as well as surface-based markers.
2017-10-01
fluorescent marker mOrange into MIT’s Dr. Zhang’s pLenti- Crispr -v2, making transfection into mammalian cells easier and visible under fluorescent...microscope, it the same time, those cells under Crispr editing are also selectable with puromycin. We have successfully knocked-out RhoA expression in cell...15. SUBJECT TERMS RHOA, YAP1, mouse model, CRISPR -CAS9, plasmid, cell lines, diffuse gastric adenocarcinoma, mutations, gastric adenocarcinoma 16
NASA Astrophysics Data System (ADS)
Sankar, Renu; Rahman, Pattanathu K. S. M.; Varunkumar, Krishnamoorthy; Anusha, Chidambaram; Kalaiarasi, Arunachalam; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan
2017-02-01
Nanomaterials based fluorescent agents are rapidly becoming significant and promising transformative tools for improving medical diagnostics for extensive in vivo imaging modalities. Compared with conventional fluorescent agents, nano-fluorescence has capabilities to improve the in vivo detection and enriched targeting efficiencies. In our laboratory we synthesized fluorescent metal nanoparticles of silver, copper and iron using Curcuma longa tuber powder by simple reduction. The physicochemical properties of the synthesized metal nanoparticles were attained using UV-visible spectrophotometry, scanning electron microscopy with EDAX spectroscopy, dynamic light scattering, Fourier-transform infrared spectroscopy and X-ray diffraction. The Curcuma longa tuber powder has one of the bioactive compound Curcumin might act as a capping agent during the synthesis of nanoparticles. The synthesized metal nanoparticles fluorescence property was confirmed by spectrofluorometry. When compared with copper and iron nanoparticles the silver nanoparticles showed high fluorescence intensity under spectrofluorometry. Moreover, in vitro cell images of the silver nanoparticles in A549 cell lines also correlated with the results of spectrofluorometry. These silver nanoparticles show inspiring cell-imaging applications. They enter into cells without any further modifications, and the fluorescence property can be utilized for fluorescence-based cell imaging applications.
Passive diffusion of naltrexone into human and animal cells and upregulation of cell proliferation.
Cheng, Fan; McLaughlin, Patricia J; Banks, William A; Zagon, Ian S
2009-09-01
Naltrexone (NTX) is a potent opioid antagonist that promotes cell proliferation by upregulating DNA synthesis through displacement of the tonically active inhibitory peptide, opioid growth factor (OGF) from its receptor (OGFr). To investigate how NTX enters cells, NTX was fluorescently labeled [1-(N)-fluoresceinyl NTX thiosemicarbazone; FNTX] to study its uptake by living cultured cells. When human head and neck squamous cell carcinoma cell line (SCC-1) was incubated with FNTX for as little as 1 min, cells displayed nuclear and cytoplasmic staining of FNTX as determined by fluorescent deconvolution microscopy, with enrichment of fluorescent signal in the nucleus and nucleolus. The same temporal-spatial distribution of FNTX was detected in a human pancreatic cancer cell line (MIA PaCa-2), African green monkey kidney cell line (COS-7), and human mesenchymal stem cells (hMSCs). FNTX remained in cells for as long as 48 h. FNTX was internalized in SCC-1 cells when incubation occurred at 4 degrees C, with the signal being comparable to that recorded at 37 degrees C. A 100-fold excess of NTX or a variety of other opioid ligands did not alter the temporal-spatial distribution of FNTX. Neither fluorescein-labeled dextran nor fluorescein alone entered the cells. To study the effect of FNTX on DNA synthesis, cells incubated with FNTX at concentrations ranging from 10(-5) to 10(-8) M had a 5-bromo-2'-deoxyuridine index that was 39-82% greater than for vehicle-treated cells and was comparable to that of unlabeled NTX (37-70%). Taken together, these results suggested that NTX enters cells by passive diffusion in a nonsaturable manner.
NASA Astrophysics Data System (ADS)
Zhang, Yun-Peng; Sun, Peng; Zhang, Xu-Rui; Yang, Wu-Li; Si, Cheng-Shuai
2013-06-01
The purpose of this experiment was to investigate the visible imaging of gastric adenocarcinoma cells in vitro by targeting tumor-associated glycoprotein 72 (TAG-72) with near-infrared quantum dots (QDs). QDs with an emission wavelength of about 550 to 780 nm were conjugated to CC49 monoclonal antibodies against TAG-72, resulting in a probe named as CC49-QDs. A gastric adenocarcinoma cell line (MGC80-3) expressing high levels of TAG-72 was cultured for fluorescence imaging, and a gastric epithelial cell line (GES-1) was used for the negative control group. Transmission electron microscopy indicated that the average diameter of CC49-QDs was 0.2 nm higher compared with that of the primary QDs. Also, fluorescence spectrum analysis indicated that the CC49-QDs did not have different optical properties compared to the primary QDs. Immunohistochemical examination and in vitro fluorescence imaging of the tumors showed that the CC49-QDs probe could bind TAG-72 expressed on MGC80-3 cells.
Abney, Kristopher K; Ramos-Hunter, Susan J; Romaine, Ian M; Godwin, J Shawn; Sulikowski, Gary A; Weaver, Charles David
2018-04-21
This study reports the synthesis and testing of a family of rhodamine pro-fluorophores and an enzyme capable of converting pro-fluorophores to Rhodamine 110. We prepared a library of simple N,N'-diacyl rhodamines and investigated Porcine Liver Esterase (PLE) as an enzyme to activate rhodamine-based pro-fluorophores. A PLE-expressing cell line generated an increase in fluorescence rapidly upon pro-fluorophore addition demonstrating the rhodamine pro-fluorophores are readily taken up and fluorescent upon PLE-mediated release. Rhodamine pro-fluorophore amides trifluoroacetamide (TFAm) and proponamide (PAm) appeared to be the best substrates using a cell-based assay using PLE expressing HEK293. Our pro-fluorophore series showed diffusion into live cells and resisted endogenous hydrolysis. The use of our engineered cell line containing the exogenous enzyme PLE demonstrated the rigorousness of amide masking when compared to cells not containing PLE. This simple and selective pro-fluorophore rhodamine pair with PLE offers the potential to be used in vitro and in vivo fluorescence based assays. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gaddam, Rohit Ranganathan; Mukherjee, Sudip; Punugupati, Neelambaram; Vasudevan, D; Patra, Chitta Ranjan; Narayan, Ramanuj; Vsn Kothapalli, Raju
2017-04-01
Synthesis of carbon dots (Cdots) via chemical route involves disintegration of carbon materials into nano-domains, wherein, after extraction of Cdots, the remaining carbon material is discarded. The present work focuses on studying even the leftover carbon residue namely, carbon nanobeads (CNBs) as an equally important material for applications on par with that of carbon dot. It employs oxidative treatment of carbonised gum olibanum resin (GOR) to produce the carbons namely Cdots and CNBs (as the residue). The Cdots (~5-10nm) exhibit blue-green fluorescence with an optical absorption at ~300nm unlike the CNBs (40-50nm) which fail to exhibit fluorescence. The fluorescence behaviour exhibited by Cdots were utilized for heavy metal ion sensing of Pb 2+ , Hg 2+ and Cd 2+ ions in aqueous media. Interestingly, both Cdots and CNBs are biocompatible to normal cell lines but cytotoxic to cancer cell lines, observed during several in vitro experiments (cell viability assay, cell cycle assay, apoptosis assay, ROS determination assay, caspase-9 activity assay). Additionally, Cdots exhibit bright green fluorescence in B16F10 cells. The Cdots and CNB's demonstrate multifunctional activities (sensor, cellular imaging and cancer therapy) in biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.
Han, Xiang-ping; Shi, Gui-lan; Wang, Cheng-feng; Li, Jie; Zhang, Jian-wei; Zhang, Yu; Zhang, Shu-ren; Liu, Bin-lei
2012-12-01
To develop a novel rapid protocol for the detection of occult disseminated tumor cells by a recombinant herpes simplex virus expressing GFP (HSV(GFP)). Tumor cells of seven cell lines were exposed to HSV(GFP) and then examined for GFP expression by fluorescence microscopy. Various numbers of tumor cells (10, 100, 1000, 10 000) were mixed into 2 ml human whole blood, separated with lymphocytes separation medium, exposed to HSV(GFP), incubated at 37°C for 6 - 24 h and then counted for the number of green cells under the fluorescence microscope. Some clinical samples including peripheral blood, pleural effusion, ascites, spinal fluid from tumor-bearing patients were screened using this protocol in parallel with routine cytological examination. HSV(GFP) was able to infect all 7 tumor cell lines indicating that the HSV(GFP) can be used to detect different types of tumor cells. The detection sensitivity was 10 cancer cells in 2 ml whole blood. In the clinical samples, there were 4/15 positive by routine cytological examination but 11/15 positive by HSV(GFP), indicating a higher sensitivity of this new protocol. Recombinant herpes simplex virus-mediated green fluorescence is a simple and sensitive technique for the identification of occult disseminated cancer cells including circulating tumor cells (CTCs).
Reducing background noise in near-infrared medical imaging: Routes to activated fluorescing
NASA Astrophysics Data System (ADS)
Burdette, Mary K.; Bandera, Yuriy; Powell, Rhonda R.; Bruce, Terri F.; Foulger, Stephen H.
2016-03-01
Activated fluorescence was achieved for nanoparticle based systems. One particulate system consisting of a poly(propargyl acrylate) (PA) core with covalently attached derivatized fluorescein and modified bovine serum albumin covalently conjugated to a cyanine 3 derivative was initially nonfluorescent. Upon trypsin addition and subsequent proteolytic digestion, Förster resonance energy transfer (FRET) was induced. The other particulate system consisted of a PA core with covalently attached azide modified BSA, which was covalently attached to a silicon phthalocyanine derivative (PA/BSA/akSiPc600). Both systems were biocompatible. To investigate activated fluorescence with the PA/BSA/akSiPc600 system in cancer cells, human non-small cell lung cancer cells (A549 cell line) were used as a model system. The PA/BSA/akSiPc600 system was incubated with the cells at varying time points in an effort to see a fluorescence increase over time as the cells uptake the particles and as they digest the BSA, most probably, via endocytosis. It was seen, through live cell scanning confocal microscopy, that the fluorescence was activated in the cell.
Long Term Non-Invasive Imaging of Embryonic Stem Cells Using Reporter Genes
Sun, Ning; Lee, Andrew; Wu, Joseph C.
2013-01-01
Development of non-invasive and accurate methods to track cell fate following delivery will greatly expedite transition of embryonic stem (ES) cell therapy to the clinic. Here we describe a protocol for the in vivo monitoring of stem cell survival, proliferation, and migration using reporter genes. We established stable ES cell lines constitutively expressing double fusion (DF; enhanced green fluorescent protein and firefly luciferase) or triple fusion (TF; monomeric red fluorescent protein, firefly luciferase, and herpes simplex virus thymidine kinase) reporter genes using lentiviral transduction. We used fluorescence activated cell sorting to purify these populations in vitro, bioluminescence imaging and positron emission tomography imaging to track them in vivo, and fluorescence immunostaining to confirm the results ex vivo. Unlike other methods of cell tracking such as iron particle and radionuclide labeling, reporter genes are inherited genetically and can be used to monitor cell proliferation and survival for the lifetime of transplanted cells and their progeny. PMID:19617890
NASA Technical Reports Server (NTRS)
Clark, P. E.; Andre, C. G.; Adler, I.; Weidner, J.; Podwysocki, M.
1976-01-01
The positive correlation between Al/Si X-ray fluorescence intensity ratios determined during the Apollo 15 lunar mission and a broad-spectrum visible albedo of the moon is quantitatively established. Linear regression analysis performed on 246 1 degree geographic cells of X-ray fluorescence intensity and visible albedo data points produced a statistically significant correlation coefficient of .78. Three distinct distributions of data were identified as (1) within one standard deviation of the regression line, (2) greater than one standard deviation below the line, and (3) greater than one standard deviation above the line. The latter two distributions of data were found to occupy distinct geographic areas in the Palus Somni region.
Wilke, Sonja; Krausze, Joern; Gossen, Manfred; Groebe, Lothar; Jäger, Volker; Gherardi, Ermanno; van den Heuvel, Joop; Büssow, Konrad
2010-06-01
Stable mammalian cell lines are excellent tools for the expression of secreted and membrane glycoproteins. However, structural analysis of these molecules is generally hampered by the complexity of N-linked carbohydrate side chains. Cell lines with mutations are available that result in shorter and more homogenous carbohydrate chains. Here, we use preparative fluorescence-activated cell sorting (FACS) and site-specific gene excision to establish high-yield glycoprotein expression for structural studies with stable clones derived from the well-established Lec3.2.8.1 glycosylation mutant of the Chinese hamster ovary (CHO) cell line. We exemplify the strategy by describing novel clones expressing single-chain hepatocyte growth factor/scatter factor (HGF/SF, a secreted glycoprotein) and a domain of lysosome-associated membrane protein 3 (LAMP3d). In both cases, stable GFP-expressing cell lines were established by transfection with a genetic construct including a GFP marker and two rounds of cell sorting after 1 and 2 weeks. The GFP marker was subsequently removed by heterologous expression of Flp recombinase. Production of HGF/SF and LAMP3d was stable over several months. 1.2 mg HGF/SF and 0.9 mg LAMP3d were purified per litre of culture, respectively. Homogenous glycoprotein preparations were amenable to enzymatic deglycosylation under native conditions. Purified and deglycosylated LAMP3d protein was readily crystallized. The combination of FACS and gene excision described here constitutes a robust and fast procedure for maximizing the yield of glycoproteins for structural analysis from glycosylation mutant cell lines.
High-throughput microfluidic line scan imaging for cytological characterization
NASA Astrophysics Data System (ADS)
Hutcheson, Joshua A.; Powless, Amy J.; Majid, Aneeka A.; Claycomb, Adair; Fritsch, Ingrid; Balachandran, Kartik; Muldoon, Timothy J.
2015-03-01
Imaging cells in a microfluidic chamber with an area scan camera is difficult due to motion blur and data loss during frame readout causing discontinuity of data acquisition as cells move at relatively high speeds through the chamber. We have developed a method to continuously acquire high-resolution images of cells in motion through a microfluidics chamber using a high-speed line scan camera. The sensor acquires images in a line-by-line fashion in order to continuously image moving objects without motion blur. The optical setup comprises an epi-illuminated microscope with a 40X oil immersion, 1.4 NA objective and a 150 mm tube lens focused on a microfluidic channel. Samples containing suspended cells fluorescently stained with 0.01% (w/v) proflavine in saline are introduced into the microfluidics chamber via a syringe pump; illumination is provided by a blue LED (455 nm). Images were taken of samples at the focal plane using an ELiiXA+ 8k/4k monochrome line-scan camera at a line rate of up to 40 kHz. The system's line rate and fluid velocity are tightly controlled to reduce image distortion and are validated using fluorescent microspheres. Image acquisition was controlled via MATLAB's Image Acquisition toolbox. Data sets comprise discrete images of every detectable cell which may be subsequently mined for morphological statistics and definable features by a custom texture analysis algorithm. This high-throughput screening method, comparable to cell counting by flow cytometry, provided efficient examination including counting, classification, and differentiation of saliva, blood, and cultured human cancer cells.
ETS Gene Fusions as Predictive Biomarkers of Resistance to Radiation Therapy for Prostate Cancer
2013-08-01
confocal microscopy to characterize the timing, location, and order of recruitment of the ERG-DNAPK interaction in relation to radiation delivery. In the...DNAPK linked to different fluorescent proteins, and Subtask #5B was to overexpress these constructs in the VCaP cell line and perform real-time...first half of year 3, we generated fusion constructs of ERG to various fluorescent proteins [green fluorescent protein (GFP), yellow fluorescent
Gokhin, David S.; Fowler, Velia M.
2016-01-01
The periodically arranged thin filaments within the striated myofibrils of skeletal and cardiac muscle have precisely regulated lengths, which can change in response to developmental adaptations, pathophysiological states, and genetic perturbations. We have developed a user-friendly, open-source ImageJ plugin that provides a graphical user interface (GUI) for super-resolution measurement of thin filament lengths by applying Distributed Deconvolution (DDecon) analysis to periodic line scans collected from fluorescence images. In the workflow presented here, we demonstrate thin filament length measurement using a phalloidin-stained cryosection of mouse skeletal muscle. The DDecon plugin is also capable of measuring distances of any periodically localized fluorescent signal from the Z- or M-line, as well as distances between successive Z- or M-lines, providing a broadly applicable tool for quantitative analysis of muscle cytoarchitecture. These functionalities can also be used to analyze periodic fluorescence signals in nonmuscle cells. PMID:27644080
Lewkowski, Jarosław; Rodriguez Moya, Maria; Wrona-Piotrowicz, Anna; Zakrzewski, Janusz; Kontek, Renata; Gajek, Gabriela
2016-01-01
A large series of variously substituted amino(pyren-1-yl)methylphosphonic acid derivatives was synthesized using a modified aza-Pudovik reaction in 20-97% yields. The fluorescence properties of the obtained compounds were investigated revealing that N-alkylamino(pyren-1-yl)methylphosphonic derivatives are stronger emissive compounds than the corresponding N-aryl derivatives. N-Benzylamino(pyren-1-yl)methylphosphonic acid displayed strong fluorescence (ΦF = 0.68) in phosphate-buffered saline (PBS). The influence of a series of derivatives on two colon cancer cell lines HT29 and HCT116 was also investigated. The most promising results were obtained for N-(4-methoxyphenyl)amino(pyren-1-yl)methylphosphonate, which was found to be cytotoxic for the HCT116 cancer cell line (IC50 = 20.8 μM), simultaneously showing weak toxicity towards normal lymphocytes (IC50 = 230.8 µM).
Targeting Quiescence in Prostate Cancer
actively dividing cancer cells causing primary tumor shrinkage, but leave behind quiescent cancer cells which may seed new, more aggressive and chemo...resistant cancers at a later date . During this first year of funding, we have successfully developed prostate cancer cell lines carrying fluorescent cell
A novel model for development, organization, and function of gonadotropes in fish pituitary.
Golan, Matan; Biran, Jakob; Levavi-Sivan, Berta
2014-01-01
The gonadotropins follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are key regulators of the reproductive axis in vertebrates. Despite the high popularity of zebrafish as a model organism for studying reproductive functions, to date no transgenic zebrafish with labeled gonadotropes have been introduced. Using gonadotropin regulatory elements from tilapia, we generated two transgenic zebrafish lines with labeled gonadotropes. The tilapia and zebrafish regulatory sequences were highly divergent but several conserved elements allowed the tilapia promoters to correctly drive the transgenes in zebrafish pituitaries. FSH cells reacted to stimulation with gonadotropin releasing hormone by proliferating and showing increased transgene fluorescence, whereas estrogen exposure caused a decrease in cell number and transgene fluorescence. Transgene fluorescence reflected the expression pattern of the endogenous fshb gene. Ontogenetic expression of the transgenes followed typical patterns, with FSH cells appearing early in development, and LH cells appearing later and increasing dramatically in number with the onset of puberty. Our transgenic lines provide a powerful tool for investigating the development, anatomy, and function of the reproductive axis in lower vertebrates.
Transportan 10 improves the anticancer activity of cisplatin.
Izabela, Rusiecka; Jarosław, Ruczyński; Magdalena, Alenowicz; Piotr, Rekowski; Ivan, Kocić
2016-05-01
The aim of this paper was to examine whether cell-penetrating peptides (CPPs) such as transportan 10 (TP10) or protein transduction domain (PTD4) may improve the anticancer activity of cisplatin (cPt). The complexes of TP10 or PTD4 with cPt were used in the experiments. They were carried out on two non-cancer (HEK293 (human embryonic kidney) and HEL299 (human embryo lung)) and two cancer (HeLa (human cervical cancer) and OS143B (human osteosarcoma 143B)) cell lines. Both complexes were tested (MTT assay) with respect to their anticancer or cytotoxic actions. TAMRA (fluorescent dye)-stained preparations were visualized in a fluorescence microscope. The long-term effect of TP10 + cPt and its components on non-cancer and cancer cell lines was observed in inverted phase contrast microscopy. In the MTT test (cell viability assay), the complex of TP10 + cPt produced a more potent effect on the cancer cell lines (HeLa, OS143B) in comparison to that observed after separate treatment with TP10 or cPt. At the same time, the action of the complex and its components was rather small on non-cancer cell lines. On the other hand, a complex of another CPP with cPt, i.e., PTD4 + cPt, was without a significant effect on the cancer cell line (OS143B). The images of the fluorescent microscopy showed TAMRA-TP10 or TAMRA-TP10 + cPt in the interior of the HeLa cells. In the case of TAMRA-PTD4 or TAMRA-PTD4 + cPt, only the first compound was found inside the cancer cell line. In contrast, none of the tested compounds gained access to the interior of the non-cancer cells (HEK293, HEL299). Long-term incubation with the TP10 + cPt (estimated by inverted phase contrast microscopy) lead to an enhanced action of the complex on cell viability (decrease in the number of cells and change in their morphology) as compared with that produced by each single agent. With regard to the tested CPPs, only TP10 improved the anticancer activity of cisplatin if both compounds were used in the form of a complex. Additionally, the complex was relatively safe for non-cancer cells. What is more, TP10 also produced an anticancer effect on HeLa and OS143B cell lines.
Autofluorescence of human cells in vitro as a biomarker of their metabolic activity
NASA Astrophysics Data System (ADS)
Dobrzyńska, Monika; Stepińska, Małgorzata; Lewandowski, Rafał; Gietka, Andrzej; Łapiński, Mariusz P.; Trafny, ElŻbieta A.
2016-12-01
Autofluorescence (AF) is the natural emission of light by intrinsic fluorophores. Oxidized mitochondrial flavins, lipofuscin and reduced nicotinamideadenine dinucleotide phosphate (NAD(P)H) are the main sources of the autofluorescence in cells upon excitation with visible light. The aim of the study was to investigate changes in the metabolism of four cell lines by monitoring their autofluorescence with a microplate reader. Autofluorescence intensities of cells were collected at two wavelengths for the excitation and fluorescence emission: for endogenous NAD(P)H at 366/450 nm, for the oxidized flavoproteins and lipofuscin at 460/540 nm. Human mesenchymal stem cells (hMSC), epithelial cells from mammary gland (MCF 10A), breast ductal carcinoma (T-47D) prostate carcinoma (DU-145) were observed daily for 16 days. The level of NAD(P)H autofluorescence did not differ among the cell lines investigated. The significant increase in oxidized flavoproteins fluorescence intensity was recorded for hMSC and ranged from 140 to 175% of control. During 28 days differentiation process, the NAD(P)H, FAD and lipofuscin fluorescence intensities were recorded every day, and the redox ratio was then calculated. The redox ratio gradually decreased during the last eight days of osteogenesis and adipogenesis. Therefore, in our opinion the NAD(P)H, FAD, and lipofuscin fluorescence emission at the wavelengths selected are the optimal parameters to be collected during the differentiation process in order to monitor the metabolism of hMSC undergoing structural and morphological changes.
Li, Hongjun; Yang, Tianhua; Huang, Yanping; Liu, Mingzhu; Qin, Zhongqiang; Chu, Fei; Li, Zhenghong; Li, Yonghai
2017-11-01
Objective To establish a hepatocellular carcinoma xenograft model in nude mice which could stably express gene and be monitored dynamically. Methods We first constructed the lentiviral particles containing luciferase (Luc) and near-infrared fluorescent protein (iRFP) and puromycin resistance gene, and then transduced them into the HepG2 hepatoma cells. The cell line stably expressing Luc and iRFP genes were screened and inoculated into nude mice to establish xenograft tumor model. Tumor growth was monitored using in vivo imaging system. HE staining and immunohistochemistry were used to evaluate the pathological features and tumorigenic ability. Results HepG2 cells stably expressing iRFP and Luc were obtained; with the engineered cell line, xenograft model was successfully established with the features of proper tumor developing time and high rate of tumor formation as well as typical pathological features as showed by HE staining and immunohistochemistry. Conclusion Hepatocellular carcinoma model in nude mice with the features of stable gene expression and dynamical monitoring has been established successfully with the HepG2-iRFP-Luc cell line.
In Situ Live-Cell Nucleus Fluorescence Labeling with Bioinspired Fluorescent Probes.
Ding, Pan; Wang, Houyu; Song, Bin; Ji, Xiaoyuan; Su, Yuanyuan; He, Yao
2017-08-01
Fluorescent imaging techniques for visualization of nuclear structure and function in live cells are fundamentally important for exploring major cellular events. The ideal cellular labeling method is capable of realizing label-free, in situ, real-time, and long-term nucleus labeling in live cells, which can fully obtain the nucleus-relative information and effectively alleviate negative effects of alien probes on cellular metabolism. However, current established fluorescent probes-based strategies (e.g., fluorescent proteins-, organic dyes-, fluorescent organic/inorganic nanoparticles-based imaging techniques) are unable to simultaneously realize label-free, in situ, long-term, and real-time nucleus labeling, resulting in inevitable difficulties in fully visualizing nuclear structure and function in live cells. To this end, we present a type of bioinspired fluorescent probes, which are highly efficacious for in situ and label-free tracking of nucleus in long-term and real-time manners. Typically, the bioinspired polydopamine (PDA) nanoparticles, served as fluorescent probes, can be readily synthesized in situ within live cell nucleus without any further modifications under physiological conditions (37 °C, pH ∼7.4). Compared with other conventional nuclear dyes (e.g., propidium iodide (PI), Hoechst), superior spectroscopic properties (e.g., quantum yield of ∼35.8% and high photostability) and low cytotoxicity of PDA-based probes enable long-term (e.g., 3 h) fluorescence tracking of nucleus. We also demonstrate the generality of this type of bioinspired fluorescent probes in different cell lines and complex biological samples.
Yu, J Q; Liu, X F; Chin, L K; Liu, A Q; Luo, K Q
2013-07-21
To better understand how hyperglycemia induces endothelial cell dysfunction under the diabetic conditions, a hemodynamic microfluidic chip system was developed. The system combines a caspase-3-based fluorescence resonance energy transfer (FRET) biosensor cell line which can detect endothelial cell apoptosis in real-time, post-treatment effect and with a limited cell sample, by using a microfluidic chip which can mimic the physiological pulsatile flow profile in the blood vessel. The caspase-3-based FRET biosensor endothelial cell line (HUVEC-C3) can produce a FRET-based sensor protein capable of probing caspase-3 activation. When the endothelial cells undergo apoptosis, the color of the sensor cells changes from green to blue, thus sensing apoptosis. A double-labeling fluorescent technique (yo pro-1 and propidium iodide) was used to validate the findings revealed by the FRET-based caspase sensor. The results show high rates of apoptosis and necrosis of endothelial cells when high glucose concentration was applied in our hemodynamic microfluidic chip combined with an exhaustive pulsatile flow profile. The two apoptosis detection techniques (fluorescent method and FRET biosensor) are comparable; but FRET biosensor offers more advantages such as real-time observation and a convenient operating process to generate more accurate and reliable data. Furthermore, the activation of the FRET biosensor also confirms the endothelial cell apoptosis induced by the abnormal pulsatile shear stress and high glucose concentration is through caspase-3 pathway. A 12% apoptotic rate (nearly a 4-fold increase compared to the static condition) was observed when the endothelial cells were exposed to a high glucose concentration of 20 mM under 2 h exhaustive pulsatile shear stress of 30 dyne cm(-2) and followed with another 10 h normal pulsatile shear stress of 15 dyne cm(-2). Therefore, the most important finding of this study is to develop a novel endothelial cell apoptosis detection method, which combines the microfluidic chip system and FRET biosensor. This finding may provide new insight into how glucose causes endothelial cell dysfunction, which is the major cause of diabetes-derived complications.
Atanasova, Severina; Nikolova, Biliana; Murayama, Shuhei; Stoyanova, Elena; Tsoneva, Iana; Zhelev, Zhivko; Aoki, Ichio; Bakalova, Rumiana
2016-09-01
Nano-scale drug delivery systems (nano-DDS) are under intense investigation. Nano-platforms are developed for specific administration of small molecules, drugs, genes, contrast agents [quantum dots (QDs)] both in vivo and in vitro. Electroporation is a biophysical phenomenon which consists of the application of external electrical pulses across the cell membrane. The aim of this study was to research electro-assisted Colon 26 cell line internalization of QDs and QD-loaded nano-hydrogels (polymersomes) visualized by confocal microscopy and their influence on cell viability. The experiments were performed on the Colon 26 cancer cell line, using a confocal fluorescent imaging system and cell viability test. Electroporation facilitated the delivery of nanoparticles in vivo. We demonstrated increased voltage-dependent delivery of nanoparticles into cells after electrotreatment, without significant cell viability reduction. The delivery and retention of the polymersomes in vitro is a promising tool for future cancer treatment strategies and nanomedcine. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
Brunetti, Dario; Perota, Andrea; Lagutina, Irina; Colleoni, Silvia; Duchi, Roberto; Calabrese, Fiorella; Seveso, Michela; Cozzi, Emanuele; Lazzari, Giovanna; Lucchini, Franco; Galli, Cesare
2008-12-01
The pig represents the xenogeneic donor of choice for future organ transplantation in humans for anatomical and physiological reasons. However, to bypass several immunological barriers, strong and stable human genes expression must occur in the pig's organs. In this study we created transgenic pigs using in vitro transfection of cultured cells combined with somatic cell nuclear transfer (SCNT) to evaluate the ubiquitous transgene expression driven by pCAGGS vector in presence of different selectors. pCAGGS confirmed to be a very effective vector for ubiquitous transgene expression, irrespective of the selector that was used. Green fluorescent protein (GFP) expression observed in transfected fibroblasts was also maintained after nuclear transfer, through pre- and postimplantation development, at birth and during adulthood. Germ line transmission without silencing of the transgene was demonstrated. The ubiquitous expression of GFP was clearly confirmed in several tissues including endothelial cells, thus making it a suitable vector for the expression of multiple genes relevant to xenotransplantation where tissue specificity is not required. Finally cotransfection of green and red fluorescence protein transgenes was performed in fibroblasts and after nuclear transfer blastocysts expressing both fluorescent proteins were obtained.
Chen, Yue-yue; Peng, Zhi-lan; Liu, Shan-ling; He, Bing; Hu, Min
2007-06-01
To establish a method of using real-time fluorescence quantitative PCR and RT-PCR to detect the E6 and E7 genes of human papillomavirus type 16 (HPV-16). Plasmids containing HPV-16 E6 or E7 were used to generate absolute standard curves. Three cervical carcinoma cell lines CaSki, SiHa and HeLa were tested by real-time fluorescence quantitative PCR and RT-PCR analyses for the expressions of HPV-16 E6 and E7. The correlation coefficients of standard curves were larger than 0. 99, and the PCR efficiency was more than 90%. The relative levels of HPV-16 E6 and E7 DNA and RNA were CaSki>SiHa>HeLa cell. HPV-16 E6 and E7 quantum by real-time fluorescence quantitative PCR and RT-PCR analyses may serve as a reliable and sensitive tool. This study provides the possibility of further researches on the relationship between HPV-16 E6 or E7 copy number and cervical carcinoma.
Bian, Shumin; Navaratnam, Dhasakumar; Santos-Sacchi, Joseph
2013-01-01
Prestin (SLC26a5) is the outer hair cell integral membrane motor protein that drives cochlear amplification, and has been described as an obligate tetramer. We studied in real time the delivery of YFP-prestin to the plasma membrane of cells from a tetracycline-inducible cell line. Following the release of temperature block to reinstate trans Golgi network delivery of the integral membrane protein, we measured nonlinear capacitance (NLC) and membrane fluorescence during voltage clamp. Prestin was delivered exponentially to the plasma membrane with a time constant of less than 10 minutes, with both electrical and fluorescence methods showing high temporal correlation. However, based on disparity between estimates of prestin density derived from either fluorescence or NLC, we conclude that sub-tetrameric forms of prestin contribute to our electrical and fluorescence measures. Thus, in agreement with previous observations we find that functional prestin is not an obligate tetramer. PMID:23762468
Plasmodium yoelii yoelii 17XNL constitutively expressing GFP throughout the life cycle.
Ono, Takeshi; Tadakuma, Takushi; Rodriguez, Ana
2007-03-01
Plasmodium yoelii is a rodent parasite commonly used as a model to study malaria infection. It is the preferred model parasite for liver-stage immunological studies and is also widely used to study hepatocyte, erythrocyte and mosquito infection. We have generated a P. yoelii yoelii 17XNL line that is stably transfected with the green fluorescent protein (gfp) gene. This parasite line constitutively expresses high levels of GFP during the complete parasite life cycle including liver, blood and mosquito stages. These fluorescent parasites can be used in combination with fluorescence activated cell sorting or live microscopy for a wide range of experimental applications.
Wu, Jianglai; Tang, Anson H. L.; Mok, Aaron T. Y.; Yan, Wenwei; Chan, Godfrey C. F.; Wong, Kenneth K. Y.; Tsia, Kevin K.
2017-01-01
Apart from the spatial resolution enhancement, scaling of temporal resolution, equivalently the imaging throughput, of fluorescence microscopy is of equal importance in advancing cell biology and clinical diagnostics. Yet, this attribute has mostly been overlooked because of the inherent speed limitation of existing imaging strategies. To address the challenge, we employ an all-optical laser-scanning mechanism, enabled by an array of reconfigurable spatiotemporally-encoded virtual sources, to demonstrate ultrafast fluorescence microscopy at line-scan rate as high as 8 MHz. We show that this technique enables high-throughput single-cell microfluidic fluorescence imaging at 75,000 cells/second and high-speed cellular 2D dynamical imaging at 3,000 frames per second, outperforming the state-of-the-art high-speed cameras and the gold-standard laser scanning strategies. Together with its wide compatibility to the existing imaging modalities, this technology could empower new forms of high-throughput and high-speed biological fluorescence microscopy that was once challenged. PMID:28966855
Dual Nuclear/Fluorescence Imaging Potantial of Zinc(II) Phthalocyanine in MIA PaCa-2 Cell Line.
Lambrecht, Fatma Yurt; Ince, Mine; Er, Ozge; Ocakoglu, Kasim; Sarı, Fatma Aslıhan; Kayabasi, Cagla; Gunduz, Cumhur
2016-01-01
Pancreatic cancer is very common and difficult to diagnose in early stage. Imaging systems for diagnosing cancer have many disadvantages. However, combining different imaging modalities offers synergistic advantages. Optical imaging is the most multidirectional and widely used imaging modality in both clinical practice and research. In present study, Zinc(II) phthalocyanine [Zn(II)Pc] was synthesized, labeled with iodine- 131 and in vitro study was carried out. The intracellular uptake studies of radiolabeled Zn(II)Pc were performed in WI-38 [ATCC CCL-75™, tissue: human fibroblast lung] and MIA PaCa-2 [ATCC CRL-1420™, tissue: human epithelial pancreas carcinoma] cell lines. The intracellular uptake efficiency of radiolabeled Zn(II)Pc in MIA PaCa-2 cells was determined two times higher than WI-38 cells. Also, fluorescence imaging (FI) efficiency of synthesized Zn(II)Pc was investigated in MIA PaCa-2 cells and significant uptake was observed. Zn(II)Pc might be used as a new agent for dual fluorescence/nuclear imaging for pancreatic cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Plasma membrane microorganization of LR73 multidrug-resistant cells revealed by FCS
NASA Astrophysics Data System (ADS)
Winckler, Pascale; Jaffiol, Rodolphe; Cailler, Aurélie; Morjani, Hamid; Jeannesson, Pierre; Deturche, Régis
2011-03-01
Tumoral cells could present a multidrug resistance (MDR) to chemotherapeutic treatments. This drug resistance would be associated to biomechanisms occurring at the plasma membrane level, involving modification of membrane fluidity, drug permeability, presence of microdomains (rafts, caveolae...), and membrane proteins overexpression such as Pglycoprotein. Fluorescence correlation spectroscopy (FCS) is the relevant method to investigate locally the fluidity of biological membranes through the lateral diffusion of a fluorescent membrane probe. Thus, we use FCS to monitor the plasma membrane local organization of LR73 carcinoma cells and three derived multidrug-resistant cancer cells lines. Measurements were conducted at the single cell level, which enabled us to get a detailed overview of the plasma membrane microviscosity distribution of each cell line studied. Moreover, we propose 2D diffusion simulation based on a Monte Carlo model to investigate the membrane organisation in terms of microdomains. This simulation allows us to relate the differences in the fluidity distributions with microorganization changes in plasma membrane of MDR cells.
Rodriguez Moya, Maria; Wrona-Piotrowicz, Anna; Gajek, Gabriela
2016-01-01
Summary A large series of variously substituted amino(pyren-1-yl)methylphosphonic acid derivatives was synthesized using a modified aza-Pudovik reaction in 20–97% yields. The fluorescence properties of the obtained compounds were investigated revealing that N-alkylamino(pyren-1-yl)methylphosphonic derivatives are stronger emissive compounds than the corresponding N-aryl derivatives. N-Benzylamino(pyren-1-yl)methylphosphonic acid displayed strong fluorescence (ΦF = 0.68) in phosphate-buffered saline (PBS). The influence of a series of derivatives on two colon cancer cell lines HT29 and HCT116 was also investigated. The most promising results were obtained for N-(4-methoxyphenyl)amino(pyren-1-yl)methylphosphonate, which was found to be cytotoxic for the HCT116 cancer cell line (IC50 = 20.8 μM), simultaneously showing weak toxicity towards normal lymphocytes (IC50 = 230.8 µM). PMID:27559373
Delvigne, Frank; Pêcheux, Hélène; Tarayre, Cédric
2015-01-01
The use of genetically encoded fluorescent reporters allows speeding up the initial optimization steps of microbial bioprocesses. These reporters can be used for determining the expression level of a particular promoter, not only the synthesis of a specific protein but also the content of intracellular metabolites. The level of protein/metabolite is thus proportional to a fluorescence signal. By this way, mean expression profiles of protein/metabolites can be determined non-invasively at a high-throughput rate, allowing the rapid identification of the best producers. Actually, different kinds of reporter systems are available, as well as specific cultivation devices allowing the on-line recording of the fluorescent signal. Cell-to-cell variability is another important phenomenon that can be integrated into the screening procedures for the selection of more efficient microbial cell factories. PMID:26442261
A passive two-band sensor of sunlight-excited plant fluorescence
NASA Astrophysics Data System (ADS)
Kebabian, Paul L.; Theisen, Arnold F.; Kallelis, Spiros; Freedman, Andrew
1999-11-01
We have designed and built a passive remote sensor of sunlight-excited chlorophyll fluorescence (U.S. Patent No. 5,567,947, Oct. 22, 1996) which provides for the real-time, in situ sensing of photosynthetic activity in plants. This sensor, which operates as a Fraunhofer line discriminator, detects light at the cores of the lines comprising the atmospheric oxygen A and B bands, centered at 762 and 688 nm, respectively. These bands also correspond to wavelengths in the far-red and red chlorophyll fluorescence bands. The sensor is based on an induced fluorescence approach; as light collected from fluorescing plants is passed through a low-pressure cell containing oxygen, the oxygen absorbs the energy and subsequently reemits photons which are then detected by a photomultiplier tube. Since the oxygen in the cell absorbs light at the same wavelengths that have been strongly absorbed by the oxygen in the atmosphere, the response to incident sunlight is minimal. This mode of measurement is limited to target plants sufficiently close in range that the plants' fluorescence is not itself appreciably absorbed by atmospheric oxygen (˜200 m). In vivo measurements of fluorescence in the 760 and 690 nm bands of vegetation in full sunlight are also presented. Measurements of plant fluorescence at the single-plant canopy level were obtained from greenhouse-grown bean plants subjected to a range of nitrogen treatments. The ratio of the fluorescence obtained from the two measurement bands showed statistically significant variation with respect to nitrogen treatments.
Moxifloxacin: Clinically compatible contrast agent for multiphoton imaging
NASA Astrophysics Data System (ADS)
Wang, Taejun; Jang, Won Hyuk; Lee, Seunghun; Yoon, Calvin J.; Lee, Jun Ho; Kim, Bumju; Hwang, Sekyu; Hong, Chun-Pyo; Yoon, Yeoreum; Lee, Gilgu; Le, Viet-Hoan; Bok, Seoyeon; Ahn, G.-One; Lee, Jaewook; Gho, Yong Song; Chung, Euiheon; Kim, Sungjee; Jang, Myoung Ho; Myung, Seung-Jae; Kim, Myoung Joon; So, Peter T. C.; Kim, Ki Hean
2016-06-01
Multiphoton microscopy (MPM) is a nonlinear fluorescence microscopic technique widely used for cellular imaging of thick tissues and live animals in biological studies. However, MPM application to human tissues is limited by weak endogenous fluorescence in tissue and cytotoxicity of exogenous probes. Herein, we describe the applications of moxifloxacin, an FDA-approved antibiotic, as a cell-labeling agent for MPM. Moxifloxacin has bright intrinsic multiphoton fluorescence, good tissue penetration and high intracellular concentration. MPM with moxifloxacin was demonstrated in various cell lines, and animal tissues of cornea, skin, small intestine and bladder. Clinical application is promising since imaging based on moxifloxacin labeling could be 10 times faster than imaging based on endogenous fluorescence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirvonen, Liisa M.; Le Marois, Alix; Suhling, Klaus, E-mail: klaus.suhling@kcl.ac.uk
We perform wide-field time-correlated single photon counting-based fluorescence lifetime imaging (FLIM) with a crossed delay line anode image intensifier, where the pulse propagation time yields the photon position. This microchannel plate-based detector was read out with conventional fast timing electronics and mounted on a fluorescence microscope with total internal reflection (TIR) illumination. The picosecond time resolution of this detection system combines low illumination intensity of microwatts with wide-field data collection. This is ideal for fluorescence lifetime imaging of cell membranes using TIR. We show that fluorescence lifetime images of living HeLa cells stained with membrane dye di-4-ANEPPDHQ exhibit a reducedmore » lifetime near the coverslip in TIR compared to epifluorescence FLIM.« less
Xue, Haipeng; Wu, Sen; Papadeas, Sophia T; Spusta, Steve; Swistowska, Anna Maria; MacArthur, Chad C; Mattson, Mark P; Maragakis, Nicholas J; Capecchi, Mario R; Rao, Mahendra S; Zeng, Xianmin; Liu, Ying
2009-08-01
In this study, we targeted Olig2, a basic helix-loop-helix transcription factor that plays an important role in motoneuron and oligodendrocyte development, in human embryonic stem cell (hESC) line BG01 by homologous recombination. One allele of Olig2 locus was replaced by a green fluorescent protein (GFP) cassette with a targeting efficiency of 5.7%. Targeted clone R-Olig2 (like the other clones) retained pluripotency, typical hESC morphology, and a normal parental karyotype 46,XY. Most importantly, GFP expression recapitulated endogenous Olig2 expression when R-Olig2 was induced by sonic hedgehog and retinoic acid, and GFP-positive cells could be purified by fluorescence-activated cell sorting. Consistent with previous reports on rodents, early GFP-expressing cells appeared biased to a neuronal fate, whereas late GFP-expressing cells appeared biased to an oligodendrocytic fate. This was corroborated by myoblast coculture, transplantation into the rat spinal cords, and whole genome expression profiling. The present work reports an hESC reporter line generated by homologous recombination targeting a neural lineage-specific gene, which can be differentiated and sorted to obtain pure neural progenitor populations.
The fluorescent photobleaching properties of GFP expressed in human lung cancer cells
NASA Astrophysics Data System (ADS)
Jin, Ying; Xing, Da
2003-12-01
The characteristic properties of GFP make this protein a good candidate for use as a molecular reporter to monitor patterns of protein localization, gene expression, and intracellular protein trafficking in living cells. In this study, the dicistronic expression vector (pEGFP-C1) was used to transfected into human lung cancer cell line (ASTC-a-1) and a positive clone which stably expressed GFP in high level was obtained. After more than three months' passengers, the cells were also remained the strong fluorescence under fluorescent microscope. The results showed that the green fluorescent protein expressed in tumor cells was also photobleached under intense irradiation (approximately 488 nm) and the degree of photobleaching varied with the difference of the intensity of the excitation. Using different interdiction parcel (None, ND4, ND8, ND16), there were significant differences in photobleaching among the different excitation. The photobleaching was also affected by the time length of excitation, and the intensity of fluorescence was obviously decreased along with the increasing of excitation time, especially to stronger excitation.
Zhu, Cuige; Zuo, Yinglin; Wang, Ruimin; Liang, Baoxia; Yue, Xin; Wen, Gesi; Shang, Nana; Huang, Lei; Chen, Yu; Du, Jun; Bu, Xianzhang
2014-08-14
A series of new ortho-aryl chalcones have been designed and synthesized. Many of these compounds were found to exhibit significant antiproliferation activity toward a panel of cancer cell lines. Selected compounds show potent cytotoxicity against several drug resistant cell lines including paclitaxel (Taxol) resistant human ovarian carcinoma cells, vincristine resistant human ileocecum carcinoma cells, and doxorubicin resistant human breast carcinoma cells. Further investigation revealed that active analogues could inhibit the microtubule polymerization by binding to colchicine site and thus induce multipolar mitosis, G2/M phase arrest, and apoptosis of cancer cells. Furthermore, affinity-based fluorescence enhancement was observed during the binding of active compounds with tubulin, which greatly facilitated the determination of tubulin binding site of the compounds. Finally, selected compound 26 was found to exhibit obvious in vivo antitumor activity in A549 tumor xenografts model. Our systematic studies implied a new scaffold targeting tubulin and mitosis for novel antitumor drug discovery.
Olave, M C; Vargas-Zambrano, J C; Celis, A M; Castañeda, E; González, J M
2017-07-01
Pathogenesis of cryptococcosis in the central nervous system (CNS) is a topic of ongoing research, including the mechanisms by which this fungus invades and infects the brain. Astrocytes, the most common CNS cells, play a fundamental role in the local immune response. Astrocytes might participate in cryptococcosis either as a host or by responding to fungal antigens. To determine the infectivity of Cryptococcus neoformans var. grubii and Cryptococcus gattii in a human astrocytoma cell line and the induction of major histocompatibility complex (MHC) molecules. A glioblastoma cell line was infected with C. neoformans var. grubii and C. gattii blastoconidia labelled with FUN-1 fluorescent stain. The percentage of infection and expression of HLA class I and II molecules were determined by flow cytometry. The interactions between the fungi and cells were observed by fluorescence microscopy. There was no difference between C. neoformans var. grubii and C. gattii in the percentage infection, but C. neoformans var. grubii induced higher expression of HLA class II than C. gattii. More blastoconidia were recovered from C. neoformans-infected cells than from C. gattii infected cells. Cryptococcus neoformans var. grubii may have different virulence mechanisms that allow its survival in human glia-derived cells. © 2017 Blackwell Verlag GmbH.
Conjugates of a Photoactivated Rhodamine with Biopolymers for Cell Staining
Zaitsev, Sergei Yu.; Shaposhnikov, Mikhail N.; Solovyeva, Daria O.; Solovyeva, Valeria V.; Rizvanov, Albert A.
2014-01-01
Conjugates of the photoactivated rhodamine dyes with biopolymers (proteins, polysaccharides, and nucleic acids) are important tools for microscopic investigation of biological tissue. In this study, a precursor of the photoactivated fluorescent dye (PFD) has been successfully used for staining of numerous mammalian cells lines and for conjugate formation with chitosan (“Chitosan-PFD”) and histone H1 (“Histone H1.3-PFD”). The intensive fluorescence has been observed after photoactivation of these conjugates inside cells (A431, HaCaT, HEK239, HBL-100, and MDCK). Developed procedures and obtained data are important for further application of novel precursors of fluorescent dyes (“caged” dyes) for microscopic probing of biological objects. Thus, the synthesized “Chitosan-PFD” and “Histone H1-PFD” have been successfully applied in this study for intracellular transport visualization by fluorescent microscopy. PMID:25383365
Towards the elaboration of new gold-based optical theranostics.
Doulain, Pierre-Emmanuel; Decréau, Richard; Racoeur, Cindy; Goncalves, Victor; Dubrez, Laurence; Bettaieb, Ali; Le Gendre, Pierre; Denat, Franck; Paul, Catherine; Goze, Christine; Bodio, Ewen
2015-03-21
Four new red BODIPY-gold(I) theranostic compounds were synthesized. Some of them were vectorized by tethering a biovector (glucose or bombesin derivatives) to the metallic center. Their photophysical properties were studied. Additionally, their cytotoxicity was examined on different cancer cell lines and on a normal cell line, they were tracked in vitro by fluorescence detection, and their uptake was evaluated by ICP-MS measurements.
NASA Astrophysics Data System (ADS)
Swami, Rajan; Singh, Indu; Kulhari, Hitesh; Jeengar, Manish Kumar; Khan, Wahid; Sistla, Ramakrishna
2017-11-01
In the published manuscript https://doi.org/10.1007/s11051-015-3063-9, a qualitative cellular uptake image in UT87MG cell line in Fig. 4c is incorrectly provided. The provided fluorescent images in Fig. 4 correspond to our other concurrent project on same cell line.
NASA Astrophysics Data System (ADS)
Azam, Mohammad; Khan, Azmat Ali; Al-Resayes, Saud I.; Islam, Mohammad Shahidul; Saxena, Ajit Kumar; Dwivedi, Sourabh; Musarrat, Javed; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal
2015-05-01
In this work, we report a series of benzimidazole derivatives synthesized from benzene-1,2-diamine and aryl-aldehydes at room temperature. The synthesized compounds have been characterized on the basis of elemental analysis and various spectroscopic studies viz., IR, 1H- and 13C-NMR, ESI-MS as well by X-ray single X-ray crystallographic study. Interaction of these compounds with CT-DNA has been examined with fluorescence experiments and showed significant binding ability. All the synthesized compounds have been screened for their antitumor activities against various human cancer cell lines viz., Human breast adenocarcinoma cell line (MCF-7), Human leukemia cell line (THP-1), Human prostate cancer cell lines (PC-3) and adenocarcinomic human alveolar basal epithelial cell lines (A-549). Interestingly, all the compounds showed significant anticancer activity.
O’Meally, Denis; Quinn, Alexander E.; Sarre, Stephen D.; Georges, Arthur; Marshall Graves, Jennifer A.
2009-01-01
Primary cell lines were established from cultures of tail and toe clips of five species of Australian dragon lizards: Tympanocryptis pinguicolla, Tympanocryptis sp., Ctenophorus fordi, Amphibolurus norrisi and Pogona vitticeps. The start of exponential cell growth ranged from 1 to 5 weeks. Cultures from all specimens had fibroblastic morphology. Cell lines were propagated continuously up to ten passages, cryopreserved and recovered successfully. We found no reduction in cell viability after short term (<6 months) storage at −80 °C. Mitotic metaphase chromosomes were harvested from these cell lines and used in differential staining, banding and fluorescent in situ hybridisation. Cell lines maintained normal diploidy in all species. This study reports a simple non-invasive method for establishing primary cell lines from Australian dragon lizards without sacrifice. The method is likely to be applicable to a range of species. Such cell lines provide a virtually unlimited source of material for cytogenetic, evolutionary and genomic studies. PMID:19199067
Jochums, André; Friehs, Elsa; Sambale, Franziska; Lavrentieva, Antonina; Bahnemann, Detlef; Scheper, Thomas
2017-01-01
The uptake of nanomaterials into different cell types is a central pharmacological issue for the determination of nanotoxicity as well as for the development of drug delivery strategies. Most responses of the cells depend on their intracellular interactions with nanoparticles (NPs). Uptake behavior can be precisely investigated in vitro, with sensitive high throughput methods such as flow cytometry. In this study, we investigated two different standard cell lines, human lung carcinoma (A549) and mouse fibroblast (NIH/3T3) cells, regarding their uptake behavior of titanium dioxide NPs. Cells were incubated with different concentrations of TiO2 NPs and samples were taken at certain time points to compare the uptake kinetics of both cell lines. Samples were analyzed with the help of flow cytometry by studying changes in the side and forward scattering signal. To additionally enable a detection via fluorescence, NPs were labeled with the fluorescent dye fluorescein isothiocyanate (FITC) and propidium iodide (PI). We found that NIH/3T3 cells take up the studied NPs more efficiently than A549 cells. These findings were supported by time-lapse microscopic imaging of the cells incubated with TiO2 NPs. Our results confirm that the uptake behavior of individual cell types has to be considered before interpreting any results of nanomaterial studies. PMID:29051447
A new human lung adenocarcinoma cell line harboring the EML4-ALK fusion gene.
Isozaki, Hideko; Yasugi, Masayuki; Takigawa, Nagio; Hotta, Katsuyuki; Ichihara, Eiki; Taniguchi, Akihiko; Toyooka, Shinichi; Hashida, Shinsuke; Sendo, Toshiaki; Tanimoto, Mitsune; Kiura, Katsuyuki
2014-10-01
The echinoderm microtubule associated protein-like 4 (EML4)-anaplastic lymphoma kinase (ALK) fusion gene was identified in patients with non-small cell lung cancer. To the best of our knowledge, there are only three cell lines harboring the EML4-ALK fusion gene, which have contributed to the development of therapeutic strategies. Therefore, we tried to establish a new lung cancer cell line harboring EML4-ALK. A 61-year-old Japanese female presented with chest discomfort. She was diagnosed with left lung adenocarcinoma with T4N3M1 Stage IV. Although she was treated with chemotherapy, her disease progressed with massive pleural effusion. Because the EML4-ALK rearrangement was found in a biopsied specimen using fluorescence in situ hybridization, she was treated with crizotinib. She did well for 3 months. Tumor cells were obtained from the malignant pleural effusion before treatment with crizotinib. Cells continued to proliferate substantially for several weeks. The cell line was designated ABC-11. The EML4-ALK fusion protein and genes were identified in ABC-11 cells using fluorescence in situ hybridization and immunohistochemistry, respectively. ABC-11 cells were sensitive to crizotinib and next-generation ALK inhibitors (ceritinib and AP26113), as determined by a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Phosphorylated ALK protein and its downstream signaling were suppressed by treatment with crizotinib in western blotting. Furthermore, we could transplant ABC-11 cells subcutaneously into BALB/c nu/nu mice. We successfully established a new lung adenocarcinoma cell line harboring the EML4-ALK fusion gene. This cell line could contribute to future research of EML4-ALK-positive lung cancer both in vivo and in vitro. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
A multifunctional magneto-fluorescent nanocomposite for visual recognition of targeted cancer cells
NASA Astrophysics Data System (ADS)
Acharya, Amitabha; Rawat, Kiran; Bhat, Kaisar Ahmad; Patial, Vikram; Padwad, Yogendra S.
2015-11-01
A multifunctional hybrid nanocomposite material of iron oxide nanoparticles and CdS quantum dots was synthesized by a direct amide coupling reaction. The prepared nanoparticles were characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), dynamic light scattering (DLS) and zeta potential studies. The TEM studies suggested that the sizes of the particles were in the range of 13.5 ± 1 nm. The energy dispersive x-ray (EDX) analysis confirmed the presence of Fe, Cd and S in the nanocomposites. To check the utility of this nanocomposite as a molecular imaging probe, these nanoparticles were further conjugated with folic acid. The folic acid conjugated nanocomposites were treated with rat glioma cells (C6, folic acid receptor over-expressing cell lines), human lung adenocarcinoma epithelial cells (A549, folic acid receptor negative cell lines) and normal mouse splenocytes for cell uptake and cytotoxicity studies. The nanoparticle internalization to C6 cells was confirmed by green fluorescence emission from these cells. Prussian blue staining studies suggested the intracellular presence of iron oxide. Further it was found that folic acid conjugated nanocomposites were significantly toxic to C6 cells only after 48 h but not to A549 cells or splenocytes. These studies indicated that the prepared nanocomposites have the potential to be used as delivery agent for magnetic and fluorescent materials towards folic acid receptor over-expressing cells and thus can find their application in the field of in vitro imaging diagnosis.
Fritzsche, Marco; Fernandes, Ricardo A; Colin-York, Huw; Santos, Ana M; Lee, Steven F; Lagerholm, B Christoffer; Davis, Simon J; Eggeling, Christian
2015-11-13
Detecting intracellular calcium signaling with fluorescent calcium indicator dyes is often coupled with microscopy techniques to follow the activation state of non-excitable cells, including lymphocytes. However, the analysis of global intracellular calcium responses both at the single-cell level and in large ensembles simultaneously has yet to be automated. Here, we present a new software package, CalQuo (Calcium Quantification), which allows the automated analysis and simultaneous monitoring of global fluorescent calcium reporter-based signaling responses in up to 1000 single cells per experiment, at temporal resolutions of sub-seconds to seconds. CalQuo quantifies the number and fraction of responding cells, the temporal dependence of calcium signaling and provides global and individual calcium-reporter fluorescence intensity profiles. We demonstrate the utility of the new method by comparing the calcium-based signaling responses of genetically manipulated human lymphocytic cell lines.
NASA Astrophysics Data System (ADS)
Chishti, Arif A.; Hellweg, Christine E.; Berger, Thomas; Baumstark-Khan, Christa; Feles, Sebastian; Kätzel, Thorben; Reitz, Günther
2015-01-01
The radiation risk assessment for long-term space missions requires knowledge on the biological effectiveness of different space radiation components, e.g. heavy ions, on the interaction of radiation and other space environmental factors such as microgravity, and on the physical and biological dose distribution in the human body. Space experiments and ground-based experiments at heavy ion accelerators require fast and reliable test systems with an easy readout for different endpoints. In order to determine the effect of different radiation qualities on cellular proliferation and the biological depth dose distribution after heavy ion exposure, a stable human cell line expressing a novel fluorescent protein was established and characterized. tdTomato, a red fluorescent protein of the new generation with fast maturation and high fluorescence intensity, was selected as reporter of cell proliferation. Human embryonic kidney (HEK/293) cells were stably transfected with a plasmid encoding tdTomato under the control of the constitutively active cytomegalovirus (CMV) promoter (ptdTomato-N1). The stably transfected cell line was named HEK-ptdTomato-N1 8. This cytotoxicity biosensor was tested by ionizing radiation (X-rays and accelerated heavy ions) exposure. As biological endpoints, the proliferation kinetics and the cell density reached 100 h after irradiation reflected by constitutive expression of the tdTomato were investigated. Both were reduced dose-dependently after radiation exposure. Finally, the cell line was used for biological weighting of heavy ions of different linear energy transfer (LET) as space-relevant radiation quality. The relative biological effectiveness of accelerated heavy ions in reducing cellular proliferation peaked at an LET of 91 keV/μm. The results of this study demonstrate that the HEK-ptdTomato-N1 reporter cell line can be used as a fast and reliable biosensor system for detection of cytotoxic damage caused by ionizing radiation.
Spatio-temporal imaging of EGF-induced activation of protein kinase A by FRET in living cells
NASA Astrophysics Data System (ADS)
Wang, Jin Jun; Chen, Xiao-Chuan; Xing, Da
2004-07-01
Intracellular molecular interaction is important for the study of cell physiology, yet current relevant methods require fixation or microinjection and lack temporal or spatial resolution. We introduced a new method -- fluorescence resonance energy transfer (FRET) to detect molecular interaction in living cells. On the basis of FRET principle, A-kinase activity reporter (AKAR) protein was designed to consist of the fusions of cyan fluorescent protein (CFP), a phosphoamino acid binding domain, a consensus substrate for protein kinase-A (PKA), and yellow fluorescent protein (YFP). In this study, the designed pAKAR plasmid was used to transfect a human lung cancer cell line (ASTC-a-1). When the AKAR-transfected cells were treated by forskolin (Fsk), we were able to observe the efficient transfer of energy from excited CFP to YFP within the AKAR molecule by fluorescence microcopy, whereas no FRET was detected in the transfected cells without the treatment of Fsk. When the cells were treated by Epidermal growth factor (EGF), the change of FRET was observed at different subcellular locations, reflecting PKA activation inside the cells upon EGF stimulation. The successful design of a fluorescence reporter of PKA activation and its application demonstrated the superiority of this technology in the research of intracellular protein-protein interaction.
Mapping Diffusion in a Living Cell via the Phasor Approach
Ranjit, Suman; Lanzano, Luca; Gratton, Enrico
2014-01-01
Diffusion of a fluorescent protein within a cell has been measured using either fluctuation-based techniques (fluorescence correlation spectroscopy (FCS) or raster-scan image correlation spectroscopy) or particle tracking. However, none of these methods enables us to measure the diffusion of the fluorescent particle at each pixel of the image. Measurement using conventional single-point FCS at every individual pixel results in continuous long exposure of the cell to the laser and eventual bleaching of the sample. To overcome this limitation, we have developed what we believe to be a new method of scanning with simultaneous construction of a fluorescent image of the cell. In this believed new method of modified raster scanning, as it acquires the image, the laser scans each individual line multiple times before moving to the next line. This continues until the entire area is scanned. This is different from the original raster-scan image correlation spectroscopy approach, where data are acquired by scanning each frame once and then scanning the image multiple times. The total time of data acquisition needed for this method is much shorter than the time required for traditional FCS analysis at each pixel. However, at a single pixel, the acquired intensity time sequence is short; requiring nonconventional analysis of the correlation function to extract information about the diffusion. These correlation data have been analyzed using the phasor approach, a fit-free method that was originally developed for analysis of FLIM images. Analysis using this method results in an estimation of the average diffusion coefficient of the fluorescent species at each pixel of an image, and thus, a detailed diffusion map of the cell can be created. PMID:25517145
Kalinina, Marina A; Skvortsov, Dmitry A; Rubtsova, Maria P; Komarova, Ekaterina S; Dontsova, Olga A
2018-06-01
High- and medium-throughput assays are now routine methods for drug screening and toxicology investigations on mammalian cells. However, a simple and cost-effective analysis of cytotoxicity that can be carried out with commonly used laboratory equipment is still required. The developed cytotoxicity assays are based on human cell lines stably expressing eGFP, tdTomato, mCherry, or Katushka2S fluorescent proteins. Red fluorescent proteins exhibit a higher signal-to-noise ratio, due to less interference by medium autofluorescence, in comparison to green fluorescent protein. Measurements have been performed on a fluorescence scanner, a plate fluorimeter, and a camera photodocumentation system. For a 96-well plate assay, the sensitivity per well and the measurement duration were 250 cells and 15 min for the scanner, 500 cells and 2 min for the plate fluorimeter, and 1000 cells and less than 1 min for the camera detection. These sensitivities are similar to commonly used MTT (tetrazolium dye) assays. The used scanner and the camera had not been previously applied for cytotoxicity evaluation. An image processing scheme for the high-resolution scanner is proposed that significantly diminishes the number of control wells, even for a library containing fluorescent substances. The suggested cytotoxicity assay has been verified by measurements of the cytotoxicity of several well-known cytotoxic drugs and further applied to test a set of novel bacteriotoxic compounds in a medium-throughput format. The fluorescent signal of living cells is detected without disturbing them and adding any reagents, thus allowing to investigate time-dependent cytotoxicity effects on the same sample of cells. A fast, simple and cost-effective assay is suggested for cytotoxicity evaluation based on mammalian cells expressing fluorescent proteins and commonly used laboratory equipment.
Real-time quantitative fluorescence measurement of microscale cell culture analog systems
NASA Astrophysics Data System (ADS)
Oh, Taek-il; Kim, Donghyun; Tatosian, Daniel; Sung, Jong Hwan; Shuler, Michael
2007-02-01
A microscale cell culture analog (μCCA) is a cell-based lab-on-a-chip assay that, as an animal surrogate, is applied to pharmacological studies for toxicology tests. A μCCA typically comprises multiple chambers and microfluidics that connect the chambers, which represent animal organs and blood flow to mimic animal metabolism more realistically. A μCCA is expected to provide a tool for high-throughput drug discovery. Previously, a portable fluorescence detection system was investigated for a single μCCA device in real-time. In this study, we present a fluorescence-based imaging system that provides quantitative real-time data of the metabolic interactions in μCCAs with an emphasis on measuring multiple μCCA samples simultaneously for high-throughput screening. The detection system is based on discrete optics components, with a high-power LED and a charge-coupled device (CCD) camera as a light source and a detector, for monitoring cellular status on the chambers of each μCCA sample. Multiple samples are characterized mechanically on a motorized linear stage, which is fully-automated. Each μCCA sample has four chambers, where cell lines MES-SA/DX- 5, and MES-SA (tumor cells of human uterus) have been cultured. All cell-lines have been transfected to express the fusion protein H2B-GFP, which is a human histone protein fused at the amino terminus to EGFP. As a model cytotoxic drug, 10 μM doxorubicin (DOX) was used. Real-time quantitative data of the intensity loss of enhanced green fluorescent protein (EGFP) during cell death of target cells have been collected over several minutes to 40 hours. Design issues and improvements are also discussed.
Fluorescent Probes of the Apoptolidins and their Utility in Cellular Localization Studies
DeGuire, Sean M.; Earl, David C.; Du, Yu; Crews, Brenda A.; Jacobs, Aaron T.; Ustione, Alessandro; Daniel, Cristina; Chong, Katherine; Marnett, Lawrence J.; Piston, David W.; Bachmann, Brian O.; Sulikowski, Gary A.
2014-01-01
Apoptolidin A has been described as among the top 0.1% most cell selective cytotoxic agents to be evaluated in the NCI 60 cell line panel. The molecular structure of apoptolidin A consists of a 20-membered macrolide with mono- and disaccharide moieties located at C9 and C27, respectively. In contrast to apoptolidin A, the aglycone (apoptolidinone) shows no cytotoxicity (>10 μM) when evaluated against several tumor cell lines. Apoptolidin H, the C27 deglycosylated analog of apoptolidin A, was produced by targeted glycosyl transferase gene deletion and displayed sub-micromolar activity against H292 lung carcinoma cells. Selective esterification of the C2′ hydroxyl group of apoptolidins A and H with 5-azidopentanoic acid afforded azido functionalized derivatives of potency equal to their parent macrolide. Azido apoptolidins readily underwent strain-promoted alkyne azido cycloaddition (SPAAC) reactions to provide access to fluorescent and biotin functionalized probes. Microscopy studies demonstrate apoptolidins A and H localize in the mitochondria of H292 human lung carcinoma cells. PMID:25430909
Craig, Sandra
2011-01-01
Carbohydrates in various forms play a vital role in numerous critical biological processes. The detection of such saccharides can give insight into the progression of such diseases such as cancer. Boronic acids react with 1,2 and 1,3 diols of saccharides in non-aqueous or basic aqueous media. Herein, we describe the design, synthesis and evaluation of three bisboronic acid fluorescent probes, each having about ten linear steps in its synthesis. Among these compounds that were evaluated, 9b was shown to selectively label HepG2, liver carcinoma cell line within a concentration range of 0.5–10 μM in comparison to COS-7, a normal fibroblast cell line. PMID:22177855
CRISPR/Cas9-Mediated Fluorescent Tagging of Endogenous Proteins in Human Pluripotent Stem Cells.
Sharma, Arun; Toepfer, Christopher N; Ward, Tarsha; Wasson, Lauren; Agarwal, Radhika; Conner, David A; Hu, Johnny H; Seidman, Christine E
2018-01-24
Human induced pluripotent stem cells (hiPSCs) can be used to mass produce surrogates of human tissues, enabling new advances in drug screening, disease modeling, and cell therapy. Recent developments in clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 genome editing technology use homology-directed repair (HDR) to efficiently generate custom hiPSC lines harboring a variety of genomic insertions and deletions. Thus, hiPSCs that encode an endogenous protein fused to a fluorescent reporter protein can be rapidly created by employing CRISPR/Cas9 genome editing, enhancing HDR efficiency and optimizing homology arm length. These fluorescently tagged hiPSCs can be used to visualize protein function and dynamics in real time as cells proliferate and differentiate. Given that nearly any intracellular protein can be fluorescently tagged, this system serves as a powerful tool to facilitate new discoveries across many biological disciplines. In this unit, we present protocols for the design, generation, and monoclonal expansion of genetically customized hiPSCs encoding fluorescently tagged endogenous proteins. © 2018 by John Wiley & Sons, Inc. Copyright © 2018 John Wiley & Sons, Inc.
The Role of IQGAP1 in Breast Carcinoma
2011-10-01
study! of! the! pathogenesis! of! breast! cancer.! These! include! analysis ! of! intracellular! signaling!by!Western!blotting,! determination!of! cell...proliferation!by! sulforhodamine!B! staining,! fluorescence: activated!cell!sorting!(FACS)! analysis ,!stable!cell!line!generation,!production!of!and...transduction!using!retroviral! and!lentiviral!supernatants,! immunocytochemistry!and!confocal! laser!microscopy,! immunohistochemistry,!and! analysis
NASA Astrophysics Data System (ADS)
Chen, Tongsheng; Xing, Da
2005-01-01
Activation of caspase-3 is a central event in apoptosis. A fluorescence techniques, fluorescence resonance energy transfer (FRET), was used to study the dynamic of caspase-3 activation during apoptosis induced by tumor necrosis factor TNF-α in living cells. The FRET probe consists a CFP (cyan fluorescent protein) and a Venus (YFP mutant, yellow fluorescent protein) with a specialized linker containing the caspase-3 cleavage sequence: DEVD (Luo et al., 2001). Human lung adenocarcinoma cell line (ASTC-a-1) were stably expressed with the FRET probe and then were treated by TNF-α, respectively. Experimental results showed that FRET could monitor more insensitively the dynamic of caspase-3 activation in real-time in vivo, and this technique will be highly useful for correlating the caspase-3 activation with other apoptotic events and for rapid-screening of potential drugs that may target the apoptotic process.
Monitoring thioredoxin redox with a genetically encoded red fluorescent biosensor.
Fan, Yichong; Makar, Merna; Wang, Michael X; Ai, Hui-Wang
2017-09-01
Thioredoxin (Trx) is one of the two major thiol antioxidants, playing essential roles in redox homeostasis and signaling. Despite its importance, there is a lack of methods for monitoring Trx redox dynamics in live cells, hindering a better understanding of physiological and pathological roles of the Trx redox system. In this work, we developed the first genetically encoded fluorescent biosensor for Trx redox by engineering a redox relay between the active-site cysteines of human Trx1 and rxRFP1, a redox-sensitive red fluorescent protein. We used the resultant biosensor-TrxRFP1-to selectively monitor perturbations of Trx redox in various mammalian cell lines. We subcellularly localized TrxRFP1 to image compartmentalized Trx redox changes. We further combined TrxRFP1 with a green fluorescent Grx1-roGFP2 biosensor to simultaneously monitor Trx and glutathione redox dynamics in live cells in response to chemical and physiologically relevant stimuli.
Computational efficient segmentation of cell nuclei in 2D and 3D fluorescent micrographs
NASA Astrophysics Data System (ADS)
De Vylder, Jonas; Philips, Wilfried
2011-02-01
This paper proposes a new segmentation technique developed for the segmentation of cell nuclei in both 2D and 3D fluorescent micrographs. The proposed method can deal with both blurred edges as with touching nuclei. Using a dual scan line algorithm its both memory as computational efficient, making it interesting for the analysis of images coming from high throughput systems or the analysis of 3D microscopic images. Experiments show good results, i.e. recall of over 0.98.
Yin, Jiqing; Liu, Wenqiang; Liu, Chao; Zhao, Guimin; Zhang, Yihua; Liu, Weishuai; Hua, Jinlian; Dou, Zhongying; Lei, Anmin
2010-12-01
The integrity and transparency of cornea plays a key role in vision. Limbal Stem Cells (LSCs) are precursors of cornea, which are responsible for self-renewal and replenishing corneal epithelium. Though it is successful to cell replacement therapy for impairing ocular surface by Limbal Stem Cell Transplantation (LSCT), the mechanism of renew is unclear after LSCT. To real time follow-up the migration and differentiation of corneal transplanted epithelial cells after transplanting, we transfected venus (a fluorescent protein gene) into goat LSCs, selected with G418 and established a stable transfected cell line, named GLSC-V. These cells showed green fluorescence, and which could maintain for at least 3 months. GLSC-V also were positive for anti-P63 and anti-Integrinbeta1 antibody by immunofluorescent staining. We founded neither GLSC-V nor GLSCs expressed keratin3 (k3) and keratinl2 (k12). However, GLSC-V had higher levels in expression of p63, pcna and venus compared with GLSCs. Further, we cultivated the cells on denude amniotic membrane to construct tissue engineered fluorescent corneal epithelial sheets. Histology and HE staining showed that the constructed fluorescent corneal epithelial sheets consisted of 5-6 layers of epithelium. Only the lowest basal cells of fluorescent corneal epithelial sheets expressed P63 analyzed by immunofluorescence, but not superficial epithelial cells. These results showed that our constructed fluorescent corneal epithelial sheets were similar to the normal corneal epithelium in structure and morphology. This demonstrated that they could be transplanted for patents with corneal impair, also may provide a foundation for the study on the mechanisms of corneal epithelial cell regeneration after LSCT.
NASA Astrophysics Data System (ADS)
Lazar, Daniel C.; Cho, Edward H.; Luttgen, Madelyn S.; Metzner, Thomas J.; Loressa Uson, Maria; Torrey, Melissa; Gross, Mitchell E.; Kuhn, Peter
2012-02-01
Many important experiments in cancer research are initiated with cell line data analysis due to the ease of accessibility and utilization. Recently, the ability to capture and characterize circulating tumor cells (CTCs) has become more prevalent in the research setting. This ability to detect, isolate and analyze CTCs allows us to directly compare specific protein expression levels found in patient CTCs to cell lines. In this study, we use immunocytochemistry to compare the protein expression levels of total cytokeratin (CK) and androgen receptor (AR) in CTCs and cell lines from patients with prostate cancer to determine what translational insights might be gained through the use of cell line data. A non-enrichment CTC detection assay enables us to compare cytometric features and relative expression levels of CK and AR by indirect immunofluorescence from prostate cancer patients against the prostate cancer cell line LNCaP. We measured physical characteristics of these two groups and observed significant differences in cell size, fluorescence intensity and nuclear to cytoplasmic ratio. We hope that these experiments will initiate a foundation to allow cell line data to be compared against characteristics of primary cells from patients.
Fluorescence lifetime imaging of lipids during 3T3-L1 cell differentiation
NASA Astrophysics Data System (ADS)
Song, Young Sik; Won, Young Jae; Lee, Sang-Hak; Kim, Dug Young
2014-03-01
Obesity is becoming a big health problem in these days. Since increased body weight is due to increased number and size of the triglyceride-storing adipocytes, many researchers are working on differentiation conditions and processes of adipocytes. Adipocytes also work as regulators of whole-body energy homeostasis by secreting several proteins that regulate processes as diverse as haemostasis, blood pressure, immune function, angiogenesis and energy balance. 3T3-L1 cells are widely used cell line for studying adipogenesis because it can differentiate into an adipocyte-like phenotype under appropriate conditions. In this paper, we propose an effective fluorescence lifetime imaging technique which can easily distinguish lipids in membrane and those in lipid droplets. Nile red dyes are attached to lipids in 3T3-L1 cells. Fluorescence lifetime images were taken for 2 week during differentiation procedure of 3T3-L1 cells into adipocytes. We used 488 nm pulsed laser with 5MHz repetition rate and emission wavelength is 520 nm of Nile Red fluorescent dye. Results clearly show that the lifetime of Nile red in lipid droplets are smaller than those in cell membrane. Our results suggest that fluorescence lifetime imaging can be a very powerful tool to monitor lipid droplet formation in adipocytes from 3T3-L1 cells.
Azam, Mohammad; Khan, Azmat Ali; Al-Resayes, Saud I; Islam, Mohammad Shahidul; Saxena, Ajit Kumar; Dwivedi, Sourabh; Musarrat, Javed; Trzesowska-Kruszynska, Agata; Kruszynski, Rafal
2015-05-05
In this work, we report a series of benzimidazole derivatives synthesized from benzene-1,2-diamine and aryl-aldehydes at room temperature. The synthesized compounds have been characterized on the basis of elemental analysis and various spectroscopic studies viz., IR, (1)H- and (13)C-NMR, ESI-MS as well by X-ray single X-ray crystallographic study. Interaction of these compounds with CT-DNA has been examined with fluorescence experiments and showed significant binding ability. All the synthesized compounds have been screened for their antitumor activities against various human cancer cell lines viz., Human breast adenocarcinoma cell line (MCF-7), Human leukemia cell line (THP-1), Human prostate cancer cell lines (PC-3) and adenocarcinomic human alveolar basal epithelial cell lines (A-549). Interestingly, all the compounds showed significant anticancer activity. Copyright © 2015 Elsevier B.V. All rights reserved.
Injection Seeded Laser for Formaldehyde Differential Fluorescence Lidar
NASA Technical Reports Server (NTRS)
Schwemmer, G.; Yakshin, M.; Prasad, C.; Hanisco, T.; Mylapore, A. R.; Hwang, I. H.; Lee, S.
2016-01-01
We describe the design and development of an injection seeded Nd:YVO4 laser for use in a differential fluorescence lidar for measuring atmospheric formaldehyde profiles. A high repetition rate Q-switched laser is modified to accept injection seed input to spectrally narrow and tune the output. The third harmonic output is used to excite formaldehyde (HCHO) fluorescence when tuned to a HCHO absorption line. Spectral confirmation is made with the use of a photoacoustic cell and grating spectrometer.
Lyon, E; Millson, A; Lowery, M C; Woods, R; Wittwer, C T
2001-05-01
Molecular detection methods for HER2/neu gene amplification include fluorescence in situ hybridization (FISH) and competitive PCR. We designed a quantitative PCR system utilizing fluorescent hybridization probes and a competitor that differed from the HER2/neu sequence by a single base change. Increasing twofold concentrations of competitor were coamplified with DNA from cell lines with various HER2/neu copy numbers at the HER2/neu locus. Competitor DNA was distinguished from the HER2/neu sequence by a fluorescent hybridization probe and melting curve analysis on a fluorescence-monitoring thermal cycler. The percentages of competitor to target peak areas on derivative fluorescence vs temperature curves were used to calculate copy number. Real-time monitoring of the PCR reaction showed comparable relative areas throughout the log phase and during the PCR plateau, indicating that only end-point detection is necessary. The dynamic range was over two logs (2000-250 000 competitor copies) with CVs < 20%. Three cell lines (MRC-5, T-47D, and SK-BR-3) were determined to have gene doses of 1, 3, and 11, respectively. Gene amplification was detected in 3 of 13 tumor samples and was correlated with conventional real-time PCR and FISH analysis. Use of relative peak areas allows gene copy numbers to be quantified against an internal competitive control in < 1 h.
Dirks, Wilhelm Gerhard; Faehnrich, Silke; Estella, Isabelle Annick Janine; Drexler, Hans Guenter
2005-01-01
Cell lines have wide applications as model systems in the medical and pharmaceutical industry. Much drug and chemical testing is now first carried out exhaustively on in vitro systems, reducing the need for complicated and invasive animal experiments. The basis for any research, development or production program involving cell lines is the choice of an authentic cell line. Microsatellites in the human genome that harbour short tandem repeat (STR) DNA markers allow individualisation of established cell lines at the DNA level. Fluorescence polymerase chain reaction amplification of eight highly polymorphic microsatellite STR loci plus gender determination was found to be the best tool to screen the uniqueness of DNA profiles in a fingerprint database. Our results demonstrate that cross-contamination and misidentification remain chronic problems in the use of human continuous cell lines. The combination of rapidly generated DNA types based on single-locus STR and their authentication or individualisation by screening the fingerprint database constitutes a highly reliable and robust method for the identification and verification of cell lines.
Characterization of Cytokinetic Mutants Using Small Fluorescent Probes.
Smertenko, Andrei; Moschou, Panagiotis; Zhang, Laining; Fahy, Deirdre; Bozhkov, Peter
2016-01-01
Cytokinesis is a powerful paradigm for addressing fundamental questions of plant biology including molecular mechanisms of development, cell division, cell signaling, membrane trafficking, cell wall synthesis, and cytoskeletal dynamics. Genetics was instrumental in identification of proteins regulating cytokinesis. Characterization of mutant lines generated using forward or reverse genetics includes microscopic analysis for defects in cell division. Typically, failure of cytokinesis results in appearance of multinucleate cells, formation of cell wall stubs, and isotropic cell expansion in the root elongation zone. Small fluorescent probes served as a very effective tool for the detection of cytokinetic defects. Such probes stain living or formaldehyde-fixed specimens avoiding complex preparatory steps. Although resolution of the fluorescence probes is inferior to electron microscopy, the procedure is fast, easy, and does not require expensive materials or equipment. This chapter describes techniques for staining DNA with the probes DAPI and SYTO82, for staining membranes with FM4-64, and for staining cell wall with propidium iodide.
Simultaneous Correlative Scanning Electron and High-NA Fluorescence Microscopy
Liv, Nalan; Zonnevylle, A. Christiaan; Narvaez, Angela C.; Effting, Andries P. J.; Voorneveld, Philip W.; Lucas, Miriam S.; Hardwick, James C.; Wepf, Roger A.; Kruit, Pieter; Hoogenboom, Jacob P.
2013-01-01
Correlative light and electron microscopy (CLEM) is a unique method for investigating biological structure-function relations. With CLEM protein distributions visualized in fluorescence can be mapped onto the cellular ultrastructure measured with electron microscopy. Widespread application of correlative microscopy is hampered by elaborate experimental procedures related foremost to retrieving regions of interest in both modalities and/or compromises in integrated approaches. We present a novel approach to correlative microscopy, in which a high numerical aperture epi-fluorescence microscope and a scanning electron microscope illuminate the same area of a sample at the same time. This removes the need for retrieval of regions of interest leading to a drastic reduction of inspection times and the possibility for quantitative investigations of large areas and datasets with correlative microscopy. We demonstrate Simultaneous CLEM (SCLEM) analyzing cell-cell connections and membrane protrusions in whole uncoated colon adenocarcinoma cell line cells stained for actin and cortactin with AlexaFluor488. SCLEM imaging of coverglass-mounted tissue sections with both electron-dense and fluorescence staining is also shown. PMID:23409024
Tammina, Sai Kumar; Mandal, Badal Kumar; Ranjan, Shivendu; Dasgupta, Nandita
2017-01-01
Different sized tetragonal tin oxide nanoparticles (SnO 2 NPs) were synthesized using Piper nigrum seed extract at three different calcination temperatures (300, 500, 900°C) and these nanoparticles (NPs) were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), dynamic light scattering (DLS) and Fourier transform infrared spectrophotometry (FT-IR). The optical properties were studied using UV-Vis and photoluminescence (PL) spectrophotometers. The generation of reactive oxygen species (ROS) was monitored by using a fluorescence spectrophotometer and fluorescence microscope. The cytotoxicity of the synthesized SnO 2 NPs was checked against the colorectal (HCT116) and lung (A549) cancer cell lines and the study results show that SnO 2 NPs were toxic against cancer cell lines depending on their size and dose. IC 50 values of SnO 2 NPs having average particle sizes of 8.85±3.5, 12.76±3.9 and 29.29±10.9nm are 165, 174 and 208μgL -1 against HCT116, while these values are 135, 157 and 187μgL -1 against A549 carcinoma cell lines, respectively. The generated ROS were responsible for the cytotoxicity of SnO 2 NPs to the studied cancer cells and smaller size NPs generated more ROS and hence showed higher cytotoxicity over larger size NPs. The results of this study suggest that the synthesized stable nanoparticles could be a potent therapeutic agent towards cancerous cell lines. Copyright © 2016 Elsevier B.V. All rights reserved.
Genetic address book for retinal cell types.
Siegert, Sandra; Scherf, Brigitte Gross; Del Punta, Karina; Didkovsky, Nick; Heintz, Nathaniel; Roska, Botond
2009-09-01
The mammalian brain is assembled from thousands of neuronal cell types that are organized in distinct circuits to perform behaviorally relevant computations. Transgenic mouse lines with selectively marked cell types would facilitate our ability to dissect functional components of complex circuits. We carried out a screen for cell type-specific green fluorescent protein expression in the retina using BAC transgenic mice from the GENSAT project. Among others, we identified mouse lines in which the inhibitory cell types of the night vision and directional selective circuit were selectively labeled. We quantified the stratification patterns to predict potential synaptic connectivity between marked cells of different lines and found that some of the lines enabled targeted recordings and imaging of cell types from developing or mature retinal circuits. Our results suggest the potential use of a stratification-based screening approach for characterizing neuronal circuitry in other layered brain structures, such as the neocortex.
Jung, Kwang Bo; Lee, Hana; Son, Ye Seul; Lee, Ji Hye; Cho, Hyun-Soo; Lee, Mi-Ok; Oh, Jung-Hwa; Lee, Jaemin; Kim, Seokho; Jung, Cho-Rok; Kim, Janghwan; Son, Mi-Young
2018-01-01
Human intestinal organoids (hIOs) derived from human pluripotent stem cells (hPSCs) have immense potential as a source of intestines. Therefore, an efficient system is needed for visualizing the stage of intestinal differentiation and further identifying hIOs derived from hPSCs. Here, 2 fluorescent biosensors were developed based on human induced pluripotent stem cell (hiPSC) lines that stably expressed fluorescent reporters driven by intestine-specific gene promoters Krüppel-like factor 5 monomeric Cherry (KLF5 mCherry ) and intestine-specific homeobox enhanced green fluorescence protein (ISX eGFP ). Then hIOs were efficiently induced from those transgenic hiPSC lines in which mCherry- or eGFP-expressing cells, which appeared during differentiation, could be identified in intact living cells in real time. Reporter gene expression had no adverse effects on differentiation into hIOs and proliferation. Using our reporter system to screen for hIO differentiation factors, we identified DMH1 as an efficient substitute for Noggin. Transplanted hIOs under the kidney capsule were tracked with fluorescence imaging (FLI) and confirmed histologically. After orthotopic transplantation, the localization of the hIOs in the small intestine could be accurately visualized using FLI. Our study establishes a selective system for monitoring the in vitro differentiation and for tracking the in vivo localization of hIOs and contributes to further improvement of cell-based therapies and preclinical screenings in the intestinal field.-Jung, K. B., Lee, H., Son, Y. S., Lee, J. H., Cho, H.-S., Lee, M.-O., Oh, J.-H., Lee, J., Kim, S., Jung, C.-R., Kim, J., Son, M.-Y. In vitro and in vivo imaging and tracking of intestinal organoids from human induced pluripotent stem cells. © FASEB.
Izumi, Shota; Yamamura, Shohei; Hayashi, Naoko; Toma, Mana; Tawa, Keiko
2017-12-19
Surface plasmon field-enhanced fluorescence microscopic observation of a live breast cancer cell was performed with a plasmonic chip. Two cell lines, MDA-MB-231 and Michigan Cancer Foundation-7 (MCF-7), were selected as breast cancer cells, with two kinds of membrane protein, epithelial cell adhesion molecule (EpCAM) and epidermal growth factor receptor (EGFR), observed in both cells. The membrane proteins are surface markers used to differentiate and classify breast cancer cells. EGFR and EpCAM were detected with Alexa Fluor ® 488-labeled anti-EGFR antibody (488-EGFR) and allophycocyanin (APC)-labeled anti-EpCAM antibody (APC-EpCAM), respectively. In MDA-MB231 cells, three-fold plus or minus one and seven-fold plus or minus two brighter fluorescence of 488-EGFR were observed on the 480-nm pitch and the 400-nm pitch compared with that on a glass slide. Results show the 400-nm pitch is useful. Dual-color fluorescence of 488-EGFR and APC-EpCAM in MDA-MB231 was clearly observed with seven-fold plus or minus two and nine-fold plus or minus three, respectively, on the 400-nm pitch pattern of a plasmonic chip. Therefore, the 400-nm pitch contributed to the dual-color fluorescence enhancement for these wavelengths. An optimal grating pitch of a plasmonic chip improved a fluorescence image of membrane proteins with the help of the surface plasmon-enhanced field.
Ito, Hideaki; Oga, Atsunori; Furuya, Tomoko; Ikemoto, Kenzo; Amakawa, Genta; Chochi, Yasuyo; Kawauchi, Shigeto; Sasaki, Kohsuke
2013-06-01
Proliferation of tetraploid cells (TCs) emerging from diploid cells is considered to be a critical event toward tumourigenesis, or cancer progression. Recently, several studies have reported that binuclear TCs emerging from normal cells are capable of mitosis, however, it has not been confirmed directly whether mononuclear TCs emerging from normal cells could proliferate, even cancer cells. The aim of this study is to detect mononuclear TCs in vitro, spontaneously emerging from diploid cells and to elucidate their proliferative capability directly. For this purpose, we have developed a novel method. In this study, two completely disomic cell lines were used, TIG-7, a fibroblast cell line and CAL-51, a breast cancer cell line. Cells were cultured on microscope slides and their DNA content was determined using an image cytometer. On the same slides, chromosome numbers were scored using centromere fluorescence in situ hybridization (FISH). For evaluating proliferative capability of TCs, bromodeoxyuridine (BrdUrd) incorporation and colony-forming ability were examined. Using our method, spontaneous emergence of mononuclear TCs was detected in both TIG-7 and CAL-51. Colonies of TIG-7 TCs were not observed, but were observed of CAL-51 TCs. Our method enables detection of mononuclear TCs and elucidation of their proliferative capability, directly; this evidence reveals that mononuclear TIG-7 TCs do not proliferate but that mononuclear CAL-51 TCs are able to. © 2013 Blackwell Publishing Ltd.
Identification of a functional nuclear export signal in the green fluorescent protein asFP499
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mustafa, Huseyin; Strasser, Bernd; Rauth, Sabine
2006-04-21
The green fluorescent protein (GFP) asFP499 from Anemonia sulcata is a distant homologue of the GFP from Aequorea victoria. We cloned the asFP499 gene into a mammalian expression vector and showed that this protein was expressed in the human lymphoblast cell line Ramos RA1 and in the embryonic kidney 293T cell line (HEK 293T). In HEK 293T cells, asFP499 was localized mainly in the cytoplasm, suggesting that the protein was excluded from the nucleus. We identified {sub 194}LRMEKLNI{sub 201} as a candidate nuclear export signal in asFP499 and mutated the isoleucine at position 201 to an alanine. Unlike the wildtypemore » form, the mutant protein was distributed throughout the cytoplasm and nucleus. This is First report of a GFP that contains a functional NES.« less
Synthesis and biological evaluation of nandrolone-bodipy conjugates.
Jurášek, Michal; Rimpelová, Silvie; Pavlíčková, Vladimíra; Ruml, Tomáš; Lapčík, Oldřich; Drašar, Pavel B
2015-05-01
Here, we report synthesis and biological evaluation of fluorescent nandrolone-3-carboxymethyloxime derivatives conjugated with green-emitting bodipy dye via PEG linkers. All the newly-synthesized compounds were evaluated for their effect on cell proliferation in vitro in MCF-7, LNCaP, PC-3 and HEK 293T model cell lines using WST-1 assay. By means of live-cell fluorescence microscopy, the intracellular localization of nandrolone-bodipy conjugates was revealed in endoplasmic reticulum. Moreover, we performed competitive localization study with nonfluorescent nandrolone, metandrolone, boldenone, trenbolone, and testosterone. Copyright © 2014 Elsevier Inc. All rights reserved.
Optically trapped atomic resonant devices for narrow linewidth spectral imaging
NASA Astrophysics Data System (ADS)
Qian, Lipeng
This thesis focuses on the development of atomic resonant devices for spectroscopic applications. The primary emphasis is on the imaging properties of optically thick atomic resonant fluorescent filters and their applications. In addition, this thesis presents a new concept for producing very narrow linewidth light as from an atomic vapor lamp pumped by a nanosecond pulse system. This research was motivated by application for missile warning system, and presents an innovative approach to a wide angle, ultra narrow linewidth imaging filter using a potassium vapor cell. The approach is to image onto and collect the fluorescent photons emitted from the surface of an optically thick potassium vapor cell, generating a 2 GHz pass-band imaging filter. This linewidth is narrow enough to fall within a Fraunhefer dark zone in the solar spectrum, thus make the detection solar blind. Experiments are conducted to measure the absorption line shape of the potassium resonant filter, the quantum efficiency of the fluorescent behavior, and the resolution of the fluorescent image. Fluorescent images with different spatial frequency components are analyzed by using a discrete Fourier transform, and the imaging capability of the fluorescent filter is described by its Modulation Transfer Function. For the detection of radiation that is spectrally broader than the linewidth of the potassium imaging filter, the fluorescent image is seen to be blurred by diffuse fluorescence from the slightly off resonant photons. To correct this, an ultra-thin potassium imaging filter is developed and characterized. The imaging property of the ultra-thin potassium imaging cell is tested with a potassium seeded flame, yielding a resolution image of ˜ 20 lines per mm. The physics behind the atomic resonant fluorescent filter is radiation trapping. The diffusion process of the resonant photons trapped in the atomic vapor is theoretically described in this thesis. A Monte Carlo method is used to simulate the absorption and fluorescence. The optimum resolution of the fluorescent image is predicted by simulation. Radiation trapping is also shown to be useful for the generation of ultra-narrow linewidth light from an atomic vapor flash lamp. A 2 nanosecond, high voltage pulse is used to excite low pressure mercury vapor mixed with noble gases, producing high intensity emission at the mercury resonant line at 253.7 nm. With a nanosecond pumping time and high electrical current, the radiation intensity of the mercury discharge is increased significantly compared to a normal glow discharge lamp, while simultaneously suppressing the formation of an arc discharge. By avoiding the arc discharge, discrete spectral lines of mercury were kept at narrow bandwidth. Due to radiation trapping, the emission linewidth from the nanosecond mercury lamp decreases with time and produces ultra-narrow linewidth emission 100 ns after of the excitation, this linewidth is verified by absorption measurements through low pressure mercury absorption filter. The lamp is used along with mercury absorption filters for spectroscopic applications, including Filtered Rayleigh Scattering with different CO2 pressures and Raman scattering from methanol.
CHARACTERIZATION OF AN EQUINE MACROPHAGE CELL LINE: APPLICATION TO STUDIES OF EIAV INFECTION
Fidalgo-Carvalho, Isabel; Craigo, Jodi K.; Barnes, Shannon; Costa-Ramos, Carolina; Montelaro, Ronald C.
2009-01-01
EIAV is a monocyte/macrophage tropic virus. To date, even though EIAV has been under investigation for numerous years, very few details have been elucidated about EIAV/macrophage interactions. This is largely due to the absence of an equine macrophage cell line that would support viral replication. Herein we describe the spontaneous immortalization and generation of a clonal equine macrophage-like (EML) cell line with the functional and immunophenotype characteristics of differentiated equine monocyte derived macrophage(s) (eMDM(s)). These cells possess strong non-specific esterase (NSE) activity, are able to phagocytose fluorescent bioparticles, and produce nitrites in response to LPS. The EML-3C cell line expresses the EIAV receptor for cellular entry (ELR1) and supports replication of the virulent EIAVPV biological clone. Thus, EML-3C cells provide a useful cell line possessing equine macrophage related properties for the growth and study of EIAV infection as well as of other equine macrophage tropic viruses. PMID:19038510
Lin, Sung-Yao; Sun, Xing-Han; Hsiao, Yu-Hsuan; Chang, Shao-En; Li, Guan-Syun; Hu, Nien-Jen
2016-01-01
Membrane proteins play key roles in many fundamental functions in cells including ATP synthesis, ion and molecule transporter, cell signalling and enzymatic reactions, accounting for ~30% genes of whole genomes. However, the hydrophobic nature of membrane proteins frequently hampers the progress of structure determination. Detergent screening is the critical step in obtaining stable detergent-solubilized membrane proteins and well-diffracting protein crystals. Fluorescence Detection Size Exclusion Chromatography (FSEC) has been developed to monitor the extraction efficiency and monodispersity of membrane proteins in detergent micelles. By tracing the FSEC profiles of GFP-fused membrane proteins, this method significantly enhances the throughput of detergent screening. However, current methods to acquire FSEC profiles require either an in-line fluorescence detector with the SEC equipment or an off-line spectrofluorometer microplate reader. Here, we introduce an alternative method detecting the absorption of GFP (FA-SEC) at 485 nm, thus making this methodology possible on conventional SEC equipment through the in-line absorbance spectrometer. The results demonstrate that absorption is in great correlation with fluorescence of GFP. The comparably weaker absorption signal can be improved by using a longer path-length flow cell. The FA-SEC profiles were congruent with the ones plotted by FSEC, suggesting FA-SEC could be a comparable and economical setup for detergent screening of membrane proteins.
Adusumilli, Prasad S.; Eisenberg, David P.; Chun, Yun Shin; Ryu, Keun-Won; Ben-Porat, Leah; Hendershott, Karen; Chan, Mei-Ki; Huq, Rumana; Riedl, Christopher; Fong, Yuman
2005-01-01
Background Completeness of cytoreduction is an independent prognostic factor following cure-intended surgery for peritoneal carcinomatosis (PC). Intraoperative detection of the minimal residual disease may aid in achieving complete cytoreduction. NV1066, a genetically-engineered herpes simplex virus carrying the transgene for green fluorescent protein (GFP), selectively infects cancer cells. NV1066-infected cancer cells express GFP that can be detected by fluorescence laparoscopy. We sought to determine the feasibility of Virally-directed Fluorescent Imaging (VFI) in the intraoperative detection of minimal residual disease following cytoreductive surgery. Methods Human cancer cell lines OCUM-2MD3 (gastric) and JMN (malignant Mesothelioma) were infected with NV1066 at MOIs (multiplicity of infection; ratio of viral particles to cancer cells) of 0.01, 0.1 and 1.0. Viral infectivity was determined by flow cytometry for GFP and cytotoxicity was determined by a colorimetric assay. PC was established in mice by injection of OCUM cells into the peritoneal cavity. Forty-eight hours following intraperitoneal injection of NV1066, two experienced surgeons resected all visible disease and identified mice free of disease. Five independent observers examined these mice by bright-field and fluorescent laparoscopy and documented residual disease as per the peritoneal cancer index. Selective expression of GFP in tumor tissue was evaluated by histology and PCR for the viral gene ICP0. Results In vitro, NV1066 infected, expressed GFP, and killed both cell lines at all MOIs. GFP signal was detected as early as 4-6 hours following infection. GFP signal intensity of infected cells was significantly higher than the autofluorescence of normal cells (230 – 670 -logs). In vivo, macroscopically undetectable tumor nodules by gross examination and conventional bright-field laparoscopy were identified by GFP fluorescence. Following resection, 8 of 13 mice thought to be free of disease were found to have residual disease as identified by green fluorescence (mean number of observations: 5 range: 1-9). Residual disease was most frequently observed in the retroperitoneum, pelvis, peritoneal surface, and liver (inter-observer agreement 99%). Specificity of NV1066 infection to tumor nodules was confirmed by immunohistochemistry and by PCR for viral gene. Conclusion We have demonstrated that virally-directed fluorescent imaging (VFI), a novel molecular imaging technology, can be used for real-time visualization of minimal residual disease following cytoreductive surgery and can improve the completeness of cure-intended resection. PMID:16269385
Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish.
Moore, Finola E; Garcia, Elaine G; Lobbardi, Riadh; Jain, Esha; Tang, Qin; Moore, John C; Cortes, Mauricio; Molodtsov, Aleksey; Kasheta, Melissa; Luo, Christina C; Garcia, Amaris J; Mylvaganam, Ravi; Yoder, Jeffrey A; Blackburn, Jessica S; Sadreyev, Ruslan I; Ceol, Craig J; North, Trista E; Langenau, David M
2016-05-30
Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4(+) cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2(E450fs) mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4(+) cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2(E450fs) mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4(+)/CD8(+) cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia. © 2016 Moore et al.
Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish
Garcia, Elaine G.; Lobbardi, Riadh; Jain, Esha; Tang, Qin; Moore, John C.; Cortes, Mauricio; Molodtsov, Aleksey; Kasheta, Melissa; Luo, Christina C.; Garcia, Amaris J.; Mylvaganam, Ravi; Yoder, Jeffrey A.; Blackburn, Jessica S.; Sadreyev, Ruslan I.; Ceol, Craig J.; North, Trista E.
2016-01-01
Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4+ cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2E450fs mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4+ cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2E450fs mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4+/CD8+ cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb. In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia. PMID:27139488
As-prepared MoS2 quantum dot as a facile fluorescent probe for long-term tracing of live cells
NASA Astrophysics Data System (ADS)
Zhou, Kai; Zhang, Yue; Xia, Zhining; Wei, Weili
2016-07-01
Recently, the newly emerged two-dimensional nanomaterials, layered transition metal dichalcogenide (e.g. MoS2) nanosheets, have drawn tremendous attentions due to their extraordinary electronic and optical properties, and MoS2 quantum dots (MoS2 QDs) with lateral sizes less than 10 nm have been found to be highly luminescent. In the present study, a facile approach for large-scale preparation of MoS2 QDs by Na intercalation reaction without using any toxic organic reagents is proposed. MoS2 QDs were carefully characterized by various techniques including transmission electron microscopy, atomic force microscopy, dynamic light scattering, spectroscopy, in vitro cytotoxicology, and capillary electrophoresis. The as-prepared MoS2 QDs were strongly fluorescent, highly photo-stable, low in cytotoxicity, and readily reactive to thiols. These inherent properties of MoS2 QDs make them excellent fluorescent probes for long-term live cell tracing. The results of live cells imaging indicated that MoS2 QD stained cells remained highly fluorescent after long-term culture, and could be easily traced from other co-cultured cell lines.
Sugiyama, Takashi; Suzuki, Hirobumi; Takahashi, Takeo
2014-01-01
Molecular imaging is a powerful tool for investigating intracellular signalling, but it is difficult to acquire conventional fluorescence imaging from photoreceptive cells. Here we demonstrated that human opsin5 (OPN5) photoreceptor mediates light-induced Ca2+ response in human embryonic kidney (HEK293) and mouse neuroblastoma (Neuro2a) cell lines using a luminescence imaging system with a fluorescent indicator and a newly synthesized bioluminescent indicator. Weak light fluorescence and bioluminescence imaging revealed rapid and transient light-stimulated Ca2+ release from thapsigargin-sensitive Ca2+ stores, whereas long-lasting Ca2+ elevation was observed using a conventional fluorescence imaging system. Bioluminescence imaging also demonstrated that OPN5 activation in HEK293 cells induced a decrease in pertussis toxin–sensitive cAMP, confirming previous reports. In addition, ultraviolet radiation induced the phosphorylation of mitogen-activated protein kinases when OPN5 was stimulated in Neuro2a cells. These findings suggest that the combination of these imaging approaches may provide a new means to investigate the physiological characteristics of photoreceptors. PMID:24941910
Flow cytometric detection of micronuclei by combined staining of DNA and membranes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wessels, J.M.; Nuesse, M.
1995-03-01
A new staining method is presented for flow cytometric measurement of micronuclei (MN) in cell cultures and human lymphocytes using membrane-specific fluorescent dyes in addition to DNA staining. Several combinations of fluorescent membrane and DNA dyes were studied for a better discrimination of MN from debris in a suspension of nuclei and micronuclei. For staining of membranes, the lipophilic dyes 2-hydroxyethyl-7,12,17-tris(methoxyethyl)porphycene (HEPn) and 1,6-diphenyl-1,3,5-hexatriene (DPH) were used in combination with ethidium bromide (EB), proflavine (PF), and Hoechst 33258 (HO). Due to their spectral properties, HO or EB combined with HEPn were not as suitable for the discrimination of MN frommore » debris as was HEPn in combination with PF. With HEPn in combination with PF, however, additional noise was found at low fluorescence intensities, probably due to free fluorescent dye molecules in the solution. The optimal simultaneous staining of membranes and DNA was obtained using a combination of DPH and EB. The induction of MN in Chinese hamster and mouse NIH-3T3 cells by UV-B illumination was studied with this new staining technique. UV-B illumination (280-360 nm) induced MN in both cell lines. Chinese hamster cells were found to be more sensitive to these wavelengths. Illumination with wavelengths above 360 nm did not induce MN in either cell line. The results obtained from human lymphocytes using the combination of EB or DPH were comparable to the results obtained with the combination of EB and HO. 23 refs., 7 figs.« less
MEK inhibitor U0126 interferes with immunofluorescence analysis of apoptotic cell death.
Blank, Norbert; Burger, Renate; Duerr, Birgit; Bakker, Frank; Wohlfarth, Anika; Dumitriu, Ingrid; Kalden, Joachim R; Herrmann, Martin
2002-08-01
Binding of extracellular growth factors to cell surface receptors often results in activation of the mitogen-activated protein kinase (MAPK). MAPK is regulated by MAPK kinase, also called MEK. Deprivation of growth factors during cell culture or intracellular MEK inhibition leads to inhibition of proliferation and apoptotic cell death. Besides other techniques, apoptotic cells can be identified by phosphatidylserine (PS) exposure and exclusion of membrane-impermeant propidium iodide (PI). We investigated the limitations of detection of apoptotic cell death and cytofluorometry in cells cultured in the presence of the MEK inhibitor U0126. Apoptotic cell death was induced in the plasmacytoma cell line INA-6, in peripheral blood mononuclear cells (PBMC), and in cultured T lymphoblasts by deprivation of interleukin-6 (IL-6) or by incubation with the MEK inhibitor U0126. Apoptotic cell death was quantified by flow cytometry using annexin V/propidium iodide (AxV/PI) double staining. U0126-treated cells dramatically changed their fluorescence pattern during cell culture. If AxV/PI staining is employed to detect apoptotic cell death, the background fluorescence mimicks PS exposure on viable cells. The compound itself has no intrinsic fluorescence in vitro but develops an intensive fluorescence during cell culture which can be observed in all fluorescence channels with a predominance in the FL1 channel (525 nm). We further demonstrate that at least some of the U0126-induced background fluorescence is dependent on cellular uptake and intracellular modifications or cellular responses. These results demonstrate that appropriate controls for every single time point are necessary if fluorescence analyses are performed in the presence of chemical enzyme inhibitors. In the case of MEK inhibitors, either the use of PD098059 or PD184352 as an alternative for U0126 or nonfluorometric methods for detection of apoptosis should be considered. Copyright 2002 Wiley-Liss, Inc.
Bolenz, Christian; Trojan, Lutz; Gabriel, Ute; Honeck, Patrick; Wendt-Nordahl, Gunnar; Schaaf, Axel; Alken, Peter; Michel, Maurice Stephan
2008-10-01
To evaluate cellular uptake and urothelial penetration of oligodeoxynucleotides (ODNs) in transitional cell carcinoma (TCC) cell lines and in a porcine ex vivo model, respectively. A panel of human TCC cell lines (RT 112, HT 1197 and UM-UC3) were exposed tofluorescein-labeled ODNs. Transfection rates were assessed byfluorescence microscopy and fluorescence-activated cell sorting (FACS). Intravesical treatment with ODNs was performed in a porcine ex vivo model. Urothelial penetration was evaluated using fluorescence microscopy of cryosections. Treatment with ODNs provided transfection rates of at least 96.8% of TCC cells, irrespective of use of a transfection agent. Effective urothelial penetration by ODNs was detected when compared with controls (p = 0.0325). The addition of a liposomal transfection agent significantly increased the penetration depth, allowing affection of deep urothelial cell layers (p = 0.0082). High transfection rates of ODNs can be achieved in TCC cells. Urothelial penetration of ODNs was observed down to the deepest cell layers when a transfection agent is added, suggesting a high potential for complementing the chemoresection effects on residual tumor areas during intravesical therapy of non-muscle-invasive TCC.
Thomas, Andrew J; Hailey, Dale W; Stawicki, Tamara M; Wu, Patricia; Coffin, Allison B; Rubel, Edwin W; Raible, David W; Simon, Julian A; Ou, Henry C
2013-03-06
Cisplatin, one of the most commonly used anticancer drugs, is known to cause inner ear hair cell damage and hearing loss. Despite much investigation into mechanisms of cisplatin-induced hair cell death, little is known about the mechanism whereby cisplatin is selectively toxic to hair cells. Using hair cells of the zebrafish lateral line, we found that chemical inhibition of mechanotransduction with quinine and EGTA protected against cisplatin-induced hair cell death. Furthermore, we found that the zebrafish mutants mariner (myo7aa) and sputnik (cad23) that lack functional mechanotransduction were resistant to cisplatin-induced hair cell death. Using a fluorescent analog of cisplatin, we found that chemical or genetic inhibition of mechanotransduction prevented its uptake. These findings demonstrate that cisplatin-induced hair cell death is dependent on functional mechanotransduction in the zebrafish lateral line.
Non-Viral Transfection Methods Optimized for Gene Delivery to a Lung Cancer Cell Line
Salimzadeh, Loghman; Jaberipour, Mansooreh; Hosseini, Ahmad; Ghaderi, Abbas
2013-01-01
Background Mehr-80 is a newly established adherent human large cell lung cancer cell line that has not been transfected until now. This study aims to define the optimal transfection conditions and effects of some critical elements for enhancing gene delivery to this cell line by utilizing different non-viral transfection Procedures. Methods In the current study, calcium phosphate (CaP), DEAE-dextran, superfect, electroporation and lipofection transfection methods were used to optimize delivery of a plasmid construct that expressed Green Fluorescent Protein (GFP). Transgene expression was detected by fluorescent microscopy and flowcytometry. Toxicities of the methods were estimated by trypan blue staining. In order to evaluate the density of the transfected gene, we used a plasmid construct that expressed the Stromal cell-Derived Factor-1 (SDF-1) gene and measured its expression by real-time PCR. Results Mean levels of GFP-expressing cells 48 hr after transfection were 8.4% (CaP), 8.2% (DEAE-dextran), 4.9% (superfect), 34.1% (electroporation), and 40.1% (lipofection). Lipofection had the highest intense SDF-1 expression of the analyzed methods. Conclusion This study has shown that the lipofection and electroporation methods were more efficient at gene delivery to Mehr-80 cells. The quantity of DNA per transfection, reagent concentration, and incubation time were identified as essential factors for successful transfection in all of the studied methods. PMID:23799175
Guelluy, Pierre-Henri; Fontaine-Aupart, Marie-Pierre; Grammenos, Angeliki; Lécart, Sandrine; Piette, Jacques; Hoebeke, Maryse
2010-09-24
Photodynamic therapy (PDT), induced by a photosensitizer (PS) encapsulated in a nanostructure, has emerged as an appropriate treatment to cure a multitude of oncological and non-oncological diseases. Pyropheophorbide-a methyl ester (PPME) is a second-generation PS tested in PDT, and is a potential candidate for future clinical applications. The present study, carried out in a human colon carcinoma cell line (HCT-116), evaluates the improvement resulting from a liposomal formulation of PPME versus free-PPME. Absorption and fluorescence spectroscopies, fluorescence lifetime measurements, subcellular imaging and co-localization analysis have been performed in order to analyze the properties of PPME for each delivery mode. The benefit of drug encapsulation in DMPC-liposomes is clear from our experiments, with a 5-fold higher intracellular drug delivery than that observed with free-PPME at similar concentrations. The reactive oxygen species (ROSs) produced after PPME-mediated photosensitization have been identified and quantified by using electron spin resonance spectroscopy. Our results demonstrate that PPME-PDT-mediated ROSs are composed of singlet oxygen and a hydroxyl radical. The small amounts of PPME inside mitochondria, as revealed by fluorescence co-localization analysis, could maybe explain the very low apoptotic cell death measured in HCT-116 cells.
Parameswaran, V; Ishaq Ahmed, V P; Shukla, Ravi; Bhonde, R R; Sahul Hameed, A S
2007-01-01
Two new cell lines, SIMH and SIGE, were derived from the heart of milkfish (Chanos chanos), a euryhaline teleost, and from the eye of grouper (Epinephelus coioides), respectively. These cell lines were maintained in Leibovitz's L-15 supplemented with 20% fetal bovine serum (FBS). The SIMH cell line was subcultured more than 50 times over a period of 210 days and SIGE cell line has been subcultured 100 times over a period of 1 1/2 years. The SIMH cell line consists predominantly of fibroblastic-like cells. The SIGE cell line consists predominantly of epithelial cells. Both the cell lines were able to grow at temperatures between 25 and 32 degrees C with an optimum temperature of 28 degrees C. The growth rate of these cells increased as the proportion of FBS increased from 2% to 20% at 28 degrees C with optimum growth at the concentrations of 15% or 20% FBS. Seven marine fish viruses were tested to determine the susceptibility of these cell lines. The SIGE cell line was found to be susceptible to nodavirus, MABV NC-1 and Y6, and the infection was confirmed by cytopathic effect (CPE) and reverse transcriptase-polymerase chain reaction. When these cells were transfected with pEGFP-N1 vector DNA, significant fluorescent signals were observed, suggesting that these cell lines can be a useful tool for transgenic and genetic manipulation studies. Further, these cell lines are characterized by immunocytochemistry using confocal laser scanning microscopy (CFLSM).
Shiozawa, Seiji; Kawai, Kenji; Okada, Yohei; Tomioka, Ikuo; Maeda, Takuji; Kanda, Akifumi; Shinohara, Haruka; Suemizu, Hiroshi; James Okano, Hirotaka; Sotomaru, Yusuke; Sasaki, Erika; Okano, Hideyuki
2011-09-01
Nonhuman primate embryonic stem (ES) cells have vast promise for preclinical studies. Genetic modification in nonhuman primate ES cells is an essential technique for maximizing the potential of these cells. The common marmoset (Callithrix jacchus), a nonhuman primate, is expected to be a useful transgenic model for preclinical studies. However, genetic modification in common marmoset ES (cmES) cells has not yet been adequately developed. To establish efficient and stable genetic modifications in cmES cells, we inserted the enhanced green fluorescent protein (EGFP) gene with heterotypic lox sites into the β-actin (ACTB) locus of the cmES cells using gene targeting. The resulting knock-in ES cells expressed EGFP ubiquitously under the control of the endogenous ACTB promoter. Using inserted heterotypic lox sites, we demonstrated Cre recombinase-mediated cassette exchange (RMCE) and successfully established a monomeric red fluorescent protein (mRFP) knock-in cmES cell line. Further, a herpes simplex virus-thymidine kinase (HSV-tk) knock-in cmES cell line was established using RMCE. The growth of tumor cells originating from the cell line was significantly suppressed by the administration of ganciclovir. Therefore, the HSV-tk/ganciclovir system is promising as a safeguard for stem cell therapy. The stable and ubiquitous expression of EGFP before RMCE enables cell fate to be tracked when the cells are transplanted into an animal. Moreover, the creation of a transgene acceptor locus for site-specific transgenesis will be a powerful tool, similar to the ROSA26 locus in mice.
Fluorescent Cell Barcoding for Multiplex Flow Cytometry
Krutzik, Peter O.; Clutter, Matthew R.; Trejo, Angelica; Nolan, Garry P.
2011-01-01
Fluorescent Cell Barcoding (FCB) enables high throughput, i.e. high content flow cytometry by multiplexing samples prior to staining and acquisition on the cytometer. Individual cell samples are barcoded, or labeled, with unique signatures of fluorescent dyes so that they can be mixed together, stained, and analyzed as a single sample. By mixing samples prior to staining, antibody consumption is typically reduced 10 to 100-fold. In addition, data robustness is increased through the combination of control and treated samples, which minimizes pipetting error, staining variation, and the need for normalization. Finally, speed of acquisition is enhanced, enabling large profiling experiments to be run with standard cytometer hardware. In this unit, we outline the steps necessary to apply the FCB method to cell lines as well as primary peripheral blood samples. Important technical considerations such as choice of barcoding dyes, concentrations, labeling buffers, compensation, and software analysis are discussed. PMID:21207359
Herbert, Sarah M; Leung, Tommy L F; Bishop, Phillip J
2011-09-09
The dissemination of the virulent pathogen Batrachochytrium dendrobatidis (Bd) has contributed to the decline and extinction of many amphibian species worldwide. Several different strains have been identified, some of which are sympatric. Interactions between co-infecting strains of a pathogen can have significant influences on disease epidemiology and evolution; therefore the dynamics of multi-strain infections is an important area of research. We stained Bd cells with 2 fluorescent BODIPY fatty acid probes to determine whether these can potentially be used to distinguish and track Bd cell lines in multi-strain experiments. Bd cells in broth culture were stained with 5 concentrations of green-fluorescent BODIPY FL and red-fluorescent BODIPY 558/568 and visualised under an epifluorescent microscope for up to 16 d post-dye. Dyed strains were also assessed for growth inhibition. The most effective concentration for both dyes was 10 pM. This concentration of dye produced strong fluorescence for 12 to 16 d in Bd cultures held at 23 degrees C (3 to 4 generations), and did not inhibit Bd growth. Cells dyed with BODIPY FL and BODIPY 558/568 can be distinguished from each other on the basis of their fluorescence characteristics. Therefore, it is likely that this technique will be useful for research into multi-strain dynamics of Bd infections.
Facile synthesis, cytotoxicity and bioimaging of Fe(3+) selective fluorescent chemosensor.
Saleem, Muhammad; Abdullah, Razack; Ali, Anser; Park, Bong Joo; Choi, Eun Ha; Hong, In Seok; Lee, Ki Hwan
2014-04-01
The designing and development of fluorescent chemosensors have recently been intensively explored for sensitive and specific detection of environmentally and biologically relevant metal ions in aqueous solution and living cells. Herein, we report the photophysical results of alanine substituted rhodamine B derivative 3 having specific binding affinity toward Fe(3+) with micro molar concentration level. Through fluorescence titration at 599nm, we were confirmed that ligand 3 exhibited ratiometric fluorescence response with remarkable enhancement in emission intensity by complexation between 3 and Fe(3+) while it appeared no emission in case of the competitive ions (Sc(3+), Yb(3+), In(3+), Ce(3+), Sm(3+), Cr(3+), Sn(2+), Pb(2+), Ni(2+), Co(2+), Cu(2+), Ba(2+), Ca(2+), Mg(2+), Ag(+), Cs(+), Cu(+), K(+)) in aqueous/methanol (60:40, v/v) at neutral pH. However, the fluorescence as well as colorimetric response of ligand-iron complex solution was quenched by addition of KCN which snatches the Fe(3+) from complex and turn off the sensor confirming the recognition process was reversible. Furthermore, bioimaging studies against L-929 cells (mouse fibroblast cells) and BHK-21 (hamster kidney fibroblast), through confocal fluorescence microscopic experiment indicated that ligand showed good permeability and minimum toxicity against the tested cell lines. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ping, Juan; Shen, Zhi-Hui; Wang, Bao-Quan; Zhao, Na; Li, Rui; Li, Mian; Pang, Xiao-Bin; Chen, Chuan-Bo
2015-04-01
To explore the effects of aptamer-siRNA nucleic acid compound on growth and apoptosis in myeloid leukemia cell line K562. the changes of cellular morphology and structure were observed by using fluorescence microscope, laser confocal microscope, JEM-4000EX transmission electron microscopy; MTT assay were performed to evaluate the sensibility of K562 cells to aptamer-siRNA compound, the apoptosis was detected by DNA gel electro-phoresis. The remarkably changes of morphology and structure of K562 cells treated with 200 µmol/L aptamer-siRNA were observed under fluorescence microscopy and electromicroscopy. As compared with control, the aptamer-siRNA compound showed more inhibitory effect on K562 cells and there was significant difference (P<0.05). The MTT assay showed that the IC50 value of aptamer-siRNA compound for K562 cells was 150 µmol/L. According to agarose gel electrophoresis observation, when the aptamer-siRNA compound showed effect on K562 cells, the typical DNA lader could be observed. The aptamer-siRNA compound can significantly induce K562 cell apoptosis, and provide reference for gene therapy of patients with chronic myelocytic lenkemia.
Transgenic-cloned pigs systemically expressing red fluorescent protein, Kusabira-Orange.
Matsunari, Hitomi; Onodera, Masafumi; Tada, Norihiro; Mochizuki, Hideki; Karasawa, Satoshi; Haruyama, Erika; Nakayama, Naoki; Saito, Hitoshi; Ueno, Satoshi; Kurome, Mayuko; Miyawaki, Atsushi; Nagashima, Hiroshi
2008-09-01
Genetically engineered pigs with cell markers such as fluorescent proteins are highly useful in lines of research that include the tracking of transplanted cells or tissues. In this study, we produced transgenic-cloned pigs carrying a gene for the newly developed red fluorescent protein, humanized Kusabira-Orange (huKO), which was cloned from the coral stone Fungia concinna. The nuclear transfer embryos, reconstructed with fetal fibroblast cells that had been transduced with huKO cDNA using retroviral vector D Delta Nsap, developed efficiently in vitro into blastocysts (28.0%, 37/132). Nearly all (94.6%, 35/37) of the cloned blastocysts derived from the transduced cells exhibited clear huKO gene expression. A total of 429 nuclear transfer embryos were transferred to four recipients, all of which became pregnant and gave birth to 18 transgenic-cloned offspring in total. All of the pigs highly expressed huKO fluorescence in all of the 23 organs and tissues analyzed, including the brain, eyes, intestinal and reproductive organs, skeletal muscle, bone, skin, and hoof. Furthermore, such expression was also confirmed by histological analyses of various tissues such as pancreatic islets, renal corpuscles, neuronal and glial cells, the retina, chondrocytes, and hematopoietic cells. These data demonstrate that transgenic-cloned pigs exhibiting systemic red fluorescence expression can be efficiently produced by nuclear transfer of somatic cells retrovirally transduced with huKO gene.
Marjanovič, Igor; Kandušer, Maša; Miklavčič, Damijan; Keber, Mateja Manček; Pavlin, Mojca
2014-12-01
In this study, we compared three different methods used for quantification of gene electrotransfer efficiency: fluorescence microscopy, flow cytometry and spectrofluorometry. We used CHO and B16 cells in a suspension and plasmid coding for GFP. The aim of this study was to compare and analyse the results obtained by fluorescence microscopy, flow cytometry and spectrofluorometry and in addition to analyse the applicability of spectrofluorometry for quantifying gene electrotransfer on cells in a suspension. Our results show that all the three methods detected similar critical electric field strength, around 0.55 kV/cm for both cell lines. Moreover, results obtained on CHO cells showed that the total fluorescence intensity and percentage of transfection exhibit similar increase in response to increase electric field strength for all the three methods. For B16 cells, there was a good correlation at low electric field strengths, but at high field strengths, flow cytometer results deviated from results obtained by fluorescence microscope and spectrofluorometer. Our study showed that all the three methods detected similar critical electric field strengths and high correlations of results were obtained except for B16 cells at high electric field strengths. The results also demonstrated that flow cytometry measures higher values of percentage transfection compared to microscopy. Furthermore, we have demonstrated that spectrofluorometry can be used as a simple and consistent method to determine gene electrotransfer efficiency on cells in a suspension.
Ectopic transgene expression in the retina of four transgenic mouse lines
Gábriel, Robert; Erdélyi, Ferenc; Szabó, Gábor; Lawrence, J. Josh
2017-01-01
Retinal expression of transgenes was examined in four mouse lines. Two constructs were driven by the choline acetyltransferase (ChAT) promoter: green fluorescent protein conjugated to tau protein (tau-GFP) or cytosolic yellow fluorescent protein (YFP) generated through CRE recombinase-induced expression of Rosa26 (ChAT-CRE/ Rosa26YFP). Two other constructs targeted inhibitory interneurons: GABAergic horizontal and amacrine cells identified by glutamic acid decarboxylase (GAD65-GFP) or parvalbumin (PV) cells (PV-CRE/Rosa26YFP). Animals were transcardially perfused and retinal sections prepared. Antibodies against PV, calretinin (CALR), calbindin (CALB), and tyrosine hydroxylase (TH) were used to counterstain transgene-expressing cells. In PVxRosa and ChAT-tauGFP constructs, staining appeared in vertically oriented row of processes resembling Müller cells. In the ChATxRosa construct, populations of amacrine cells and neurons in the ganglion cell layer were labeled. Some cones also exhibited GFP fluorescence. CALR, PV and TH were found in none of these cells. Occasionally, we found GFP/ CALR and GFP/PV double-stained cells in the ganglion cell layer (GCL). In the GAD65-GFP construct, all layers of the neuroretina were labeled, except photoreceptors. Not all horizontal cells expressed GFP. We did not find GFP/TH double-labeled cells and GFP was rarely present in CALR-and CALB-containing cells. Many PV-positive neurons were also labeled for GFP, including small diameter amacrines. In the GCL, single labeling for GFP and PV was ascertained, as well as several CALR/PV double-stained neurons. In the GCL, cells triple labeled with GFP/CALR/ CALB were sparse. In conclusion, only one of the four transgenic constructs exhibited an expression pattern consistent with endogenous retinal protein expression, while the others strongly suggested ectopic gene expression. PMID:26563404
Laperchia, Claudia; Allegra Mascaro, Anna L.; Sacconi, Leonardo; Andrioli, Anna; Mattè, Alessandro; De Franceschi, Lucia; Grassi-Zucconi, Gigliola; Bentivoglio, Marina; Buffelli, Mario; Pavone, Francesco S.
2013-01-01
Transgenic mice expressing fluorescent proteins in specific cell populations are widely used for in vivo brain studies with two-photon fluorescence (TPF) microscopy. Mice of the thy1GFP-M line have been engineered for selective expression of green fluorescent protein (GFP) in neuronal populations. Here, we report that TPF microscopy reveals, at the brain surface of these mice, also motile non-neuronal GFP+ cells. We have analyzed the behavior of these cells in vivo and characterized in brain sections their immunophenotype. With TPF imaging, motile GFP+ cells were found in the meninges, subarachnoid space and upper cortical layers. The striking feature of these cells was their ability to move across the brain parenchyma, exhibiting evident shape changes during their scanning-like motion. In brain sections, GFP+ cells were immunonegative to antigens recognizing motile cells such as migratory neuroblasts, neuronal and glial precursors, mast cells, and fibroblasts. GFP+ non-neuronal cells exhibited instead the characteristic features and immunophenotype (CD11c and major histocompatibility complex molecule class II immunopositivity) of dendritic cells (DCs), and were immunonegative to the microglial marker Iba-1. GFP+ cells were also identified in lymph nodes and blood of thy1GFP-M mice, supporting their identity as DCs. Thus, TPF microscopy has here allowed the visualization for the first time of the motile behavior of brain DCs in situ. The results indicate that the thy1GFP-M mouse line provides a novel animal model for the study of subsets of these professional antigen-presenting cells in the brain. Information on brain DCs is still very limited and imaging in thy1GFP-M mice has a great potential for analyses of DC-neuron interaction in normal and pathological conditions. PMID:23409142
Infection and persistence of rhesus monkey rhadinovirus in immortalized B-cell lines.
Bilello, John P; Lang, Sabine M; Wang, Fred; Aster, Jon C; Desrosiers, Ronald C
2006-04-01
Similar to its close relative human herpesvirus 8, rhesus monkey rhadinovirus (RRV) persists predominantly in B cells of its natural host. Rhesus monkey B-cell lines immortalized by the Epstein-Barr-related virus from rhesus monkeys (rhEBV) were used as targets for infection by RRV. These cultured B cells were susceptible to infection by RRV and continued to produce low titers of RRV for months of continuous culture. Infection by RRV did not detectably alter the growth rates of these B-cell lines when it was measured at standard or reduced serum concentrations. Depending on the cell line, 5 to 40% of the B cells stained positive for the RRV genome by fluorescence in situ hybridization (FISH). Most RRV-positive cells showed a fine punctate nuclear staining pattern consistent with latent infection, while a small minority of cells (0.2 to 1%) contained large, intensely staining nuclear foci consistent with productive, replicative infection. Greater than 90% of the cells were rhEBV genome positive in a pattern consistent with latent infection, and again only a small minority of cells showed a productive, replicative staining pattern. Dual, two-color FISH staining revealed coinfection of numerous cells with both RRV and rhEBV, but productive replication of RRV and rhEBV was always observed in separate cells, never in the same cell. Thus, productive replication of RRV is unlinked to that of rhEBV; factors that influence activation to productive replication act separately on RRV and rhEBV, even within the same cell. The percentage of B cells expressing green fluorescent protein (GFP) early after infection with a recombinant RRV containing a GFP reporter gene was dose dependent and at a low multiplicity of infection increased progressively over time until 14 to 17 days after infection. These results establish a naturalistic cell culture system for the study of infection and persistence by RRV in rhesus monkey B cells.
Kusakisako, Kodai; Hernandez, Emmanuel Pacia; Talactac, Melbourne Rio; Yoshii, Kentaro; Umemiya-Shirafuji, Rika; Fujisaki, Kozo; Tanaka, Tetsuya
2018-03-17
Ticks are obligate hematophagous ectoparasites, as they need to feed blood from vertebrate hosts for development. Host blood contains high levels of iron. Host-derived iron may lead to high levels of reactive oxygen species (ROS), including hydrogen peroxide (H 2 O 2 ). Since a high concentration of H 2 O 2 causes serious damage to organisms, this molecule is known to be a harmful chemical compound for aerobic organisms. On the other hand, the transparent method is compatible with chemical fluorescent probes. Therefore, we tried to establish the visualizing method for H 2 O 2 in unfed tick tissues. The combination method of a chemical fluorescent probe (BES-H 2 O 2 -Ac) with the transparent method, Scale, demonstrated in unfed tick tissues that H 2 O 2 and paraquat could induce oxidative stress in the tissues, such as the midgut and ovary. In addition, an H 2 O 2 detection method using BES-H 2 O 2 -Ac was established in Ixodes scapularis embryo-derived cell line (ISE6) in vitro to evaluate the antioxidant activity of peroxiredoxins (PRXs), H 2 O 2 scavenging enzymes, against H 2 O 2 in the cells. The effects of paraquat in ISE6 cells were also observed in the PRXs gene-silenced ISE6 cells. A high intensity of H 2 O 2 fluorescence induced by paraquat was observed in the PRX gene-knockdowned cells. These results suggest that H 2 O 2 and paraquat act as an H 2 O 2 inducer, and PRX genes are important for the regulation of the H 2 O 2 concentration in unfed ticks and ISE6 cells. Therefore, this study contributes to the search for H 2 O 2 visualization in ticks and tick cell line and furthers understanding of the tick's oxidative stress induced by H 2 O 2 . Copyright © 2018 Elsevier GmbH. All rights reserved.
Mallett, Christiane L; McFadden, Catherine; Chen, Yuhua; Foster, Paula J
2012-07-01
A novel cell line of cytotoxic natural killer (NK) cells, KHYG-1, was examined in vivo for immunotherapy against prostate cancer. The feasibility of using magnetic resonance imaging (MRI) tracking to monitor the fate of injected NK cells following intravenous (i.v.), intraperitoneal (i.p.) and subcutaneous (s.c.) administration was assessed. PC-3M human prostate cancer cells were injected s.c. into the flank of nude mice (day 0). KHYG-1 NK cells were labeled with an iron oxide contrast agent and injected s.c., i.v. or i.p. on day 8. Mice were imaged by MRI on days 7, 9 and 12. Tumor sections were examined with fluorescence microscopy and immunohistologic staining for NK cells. NK cells were detected in the tumors by histology after all three administration routes. NK cells and fluorescence from the iron label were co-localized. Signal loss was seen in the areas around the tumors and between the tumor lobes in the s.c. group. We are the first to label this cell line of NK cells with an iron oxide contrast agent. Accumulation of NK cells was visualized by MRI after s.c. injection but not after i.v. and i.p. injection.
Green fluorescent protein as a reporter of gene expression and protein localization.
Kain, S R; Adams, M; Kondepudi, A; Yang, T T; Ward, W W; Kitts, P
1995-10-01
The green fluorescent protein (GFP) from the jellyfish Aequorea victoria is rapidly becoming an important reporter molecule for monitoring gene expression and protein localization in vivo, in situ and in real time. GFP emits bright green light (lambda max = 509 nm) when excited with UV or blue light (lambda max = 395 nm, minor peak at 470 nm). The fluorescence excitation and emission spectra of GFP are similar to those of fluorescein, and the conditions used to visualize this fluorophore are also suitable for GFP. Unlike other bioluminescent reporters, the chromophore in GFP is intrinsic to the primary structure of the protein, and GFP fluorescence does not require a substrate or cofactor. GFP fluorescence is stable, species-independent and can be monitored non-invasively in living cells and, in the case of transparent organisms, whole animals. Here we demonstrate GFP fluorescence in bacterial and mammalian cells and introduce our Living Colors line of GFP reporter vectors, GFP protein and anti-GFP antiserum. The reporter vectors for GFP include a promoterless GFP vector for monitoring the expression of cloned promoters/enhancers in mammalian cells and a series of six vectors for creating fusion protein to either the N or C terminus of GFP.
Huang, Wen; Deng, Yun; Dong, Wei; Yuan, Wuzhou; Wan, Yongqi; Mo, Xiaoyan; Li, Yongqing; Wang, Zequn; Wang, Yuequn; Ocorr, Karen; Zhang, Bo; Lin, Shuo; Wu, Xiushan
2011-02-01
In order to study the impalpable effect of GFP in homozygous heart-specific GFP-positive zebrafish during the early stage, the researchers analyzed the heart function of morphology and physiology at the first 3 days after fertilization. This zebrafish line was produced by a large-scale Tol2 transposon mediated enhancer trap screen that generated a transgenic zebrafish with a heart-specific expression of green fluorescent protein (GFP)-tagged under control of the nppa enhancer. In situ hybridization experiments showed that the nppa:GFP line faithfully recapitulated both the spatial and temporal expressions of the endogenous nppa. Green fluorescence was intensively and specifically expressed in the myocardial cells located both in the heart chambers and in the atrioventricular canal. The embryonic heart of nppa:GFP line developed normally compared with those in the wild type. There was no difference between the nappa:GFP and wild type lines with respect to heart rate, overall size, ejection volume, and fractional shortening. Thus the excess expression of GFP in this transgenic line seemed to exert no detrimental effects on zebrafish hearts during the early stages.
Ahn, Hyo-Yang; Yao, Sheng; Wang, Xuhua; Belfield, Kevin D.
2012-01-01
Designed to achieve high two-photon absorptivity, new near infrared (NIR) emitting squaraine dyes, (E)-2-(1-(2-(2-methoxyethoxy)ethyl)-5-(3,4,5-trimethoxystyryl)-1H-pyrrol-2-yl)-4-(1-(2-(2-methoxyethoxy)ethyl)-5-(3,4,5-trimethoxystyryl)-2H-pyrrolium-2-ylidene)-3-oxocyclobut-1-enolate (1) and (Z)-2-(4-(dibutylamino)-2-hydroxyphenyl)-4-(4-(dibutyliminio)-2-hydroxycyclohexa-2,5-dienylidene)-3-oxocyclobut-1-enolate (2) were synthesized and characterized. Their linear photophysical properties were investigated via UV-visible absorption spectroscopy and fluorescence spectroscopy in various solvents, while their nonlinear photophysical properties were investigated using a combination of two-photon induced fluorescence and open aperture z-scan methods. Squaraine 1 exhibited a high two-photon absorption (2PA) cross section (δ2PA), ~ 20,000 GM at 800 nm, and high photostability with the photochemical decomposition quantum yield one order of magnitude lower than Cy 5, a commercially available pentamethine cyanine NIR dye. The cytotoxicity of the squaraine dyes were evaluated in HCT 116 and COS 7 cell lines to assess the potential of these probes for biomedical imaging. The viability of both cell lines was maintained above 80% at dye concentrations up to 30 μM, indicating good biocompatibility of the probes. Finally, one-photon fluorescence microscopy (1PFM) and two-photon fluorescence microscopy (2PFM) imaging was accomplished after incubation of micelle-encapsulated squaraine probes with HCT 116 and COS 7 cells, demonstrating their potential in 2PFM bioimaging. PMID:22591003
Development and characterization of a cell line TTCF from endangered mahseer Tor tor (Ham.).
Yadav, K; Lakra, W S; Sharma, J; Goswami, M; Singh, Akhilesh
2012-08-01
Tor tor is an important game and food fish of India with a distribution throughout Asia from the trans-Himalayan region to the Mekong River basin to Malaysia, Pakistan, Bangladesh and Indonesia. A new cell line named TTCF was developed from the caudal fin of T. tor for the first time. The cell line was optimally maintained at 28°C in Leibovitz-15 (L-15) medium supplemented with 20% fetal bovine serum (FBS). The propagation of TTCF cells showed a high plating efficiency of 63.00%. The cytogenetic analysis revealed a diploid count of 100 chromosomes at passage 15, 30, 45 and 60 passages. The viability of the TTCF cell line was found to be 72% after 6 months of cryopreservation in liquid nitrogen (-196°C). The origin of the cell lines was confirmed by the amplification of 578- and 655-bp sequences of 16S rRNA and cytochrome oxidase subunit I (COI) genes of mitochondrial DNA (mtDNA) respectively. TTCF cells were successfully transfected with green fluorescent protein (GFP) reporter plasmids. Further, immunocytochemistry studies confirm its fibroblastic morphology of cells. Genotoxicity assessment of H₂O₂ in TTCF cell line revealed the utility of TTCF cell line as in vitro model for aquatic toxicological studies.
NASA Astrophysics Data System (ADS)
Borghei, Yasaman-Sadat; Hosseini, Morteza; Ganjali, Mohammad Reza
2018-01-01
Here we describe a label-free detection strategy for large deletion mutation in breast cancer (BC) related gene BRCA1 based on a DNA-silver nanocluster (NC) fluorescence upon recognition-induced hybridization. The specific hybridization of DNA templated silver NCs fluorescent probe to target DNAs can act as effective templates for enhancement of AgNCs fluorescence, which can be used to distinguish the deletion of BRCA1 due to different fluorescence intensities. Under the optimal conditions, the fluorescence intensity of the DNA-AgNCs at emission peaks around 440 nm (upon excitation at 350 nm) increased with the increasing deletion type within a dynamic range from 1.0 × 10-10 to 2.4 × 10-6 M with a detection limit (LOD) of 6.4 × 10-11 M. In this sensing system, the normal type shows no significant fluorescence; on the other hand, the deletion type emits higher fluorescence than normal type. Using this nanobiosensor, we successfully determined mutation using the non-amplified genomic DNAs that were isolated from the BC cell line.
Sóñora, Cecilia; Arbildi, Paula; Miraballes-Martínez, Iris; Hernández, Ana
2018-01-01
Phagocytosis is a fundamental process for removal of pathogens and for clearance of apoptotic cells. The objective of this work was the preparation of fluorescent microspheres by a simple method and the evaluation of its applicability in phagocytosis assays by using different human derived cells, differentiated THP-1 cell line and blood monocytes, with flow cytometry measurements for functionality assays. Our results show that microparticles are efficiently internalised in a non-opsonised form and in dose-dependent manner by both cellular types. Concerning mechanism we determined that tTG-β3 integrin signaling could be involved in the uptake of these particles.
Asymmetric rhenium tricarbonyl complexes show superior luminescence properties in live cell imaging.
Raszeja, Lukasz J; Siegmund, Daniel; Cordes, Anna L; Güldenhaupt, Jörn; Gerwert, Klaus; Hahn, Stephan; Metzler-Nolte, Nils
2017-01-16
The synthesis and photophysical properties of a novel series of rhenium tricarbonyl complexes based on tridentate phenanthridinyl-containing ligands are described. Photophysical data reveal beneficial luminescence behaviour especially for compounds with an asymmetric ligand set. These advantageous properties are not limited to organic solvents, but indeed also improved in aqueous solutions. The suitability of our new rhenium complexes as potent imaging agents has been confirmed by fluorescence microscopy on living cancer cells, which also confirms superior long-time stability under fluorescence microscopy conditions. Colocalisation studies with commercial organelle stains reveal an accumulation of the complexes in the endoplasmic reticulum for all tested cell lines.
The zebrafish lysozyme C promoter drives myeloid-specific expression in transgenic fish
Hall, Chris; Flores, Maria Vega; Storm, Thilo; Crosier, Kathy; Crosier, Phil
2007-01-01
Background How different immune cell compartments contribute to a successful immune response is central to fully understanding the mechanisms behind normal processes such as tissue repair and the pathology of inflammatory diseases. However, the ability to observe and characterize such interactions, in real-time, within a living vertebrate has proved elusive. Recently, the zebrafish has been exploited to model aspects of human disease and to study specific immune cell compartments using fluorescent reporter transgenic lines. A number of blood-specific lines have provided a means to exploit the exquisite optical clarity that this vertebrate system offers and provide a level of insight into dynamic inflammatory processes previously unavailable. Results We used regulatory regions of the zebrafish lysozyme C (lysC) gene to drive enhanced green fluorescent protein (EGFP) and DsRED2 expression in a manner that completely recapitulated the endogenous expression profile of lysC. Labeled cells were shown by co-expression studies and FACS analysis to represent a subset of macrophages and likely also granulocytes. Functional assays within transgenic larvae proved that these marked cells possess hallmark traits of myelomonocytic cells, including the ability to migrate to inflammatory sources and phagocytose bacteria. Conclusion These reporter lines will have utility in dissecting the genetic determinants of commitment to the myeloid lineage and in further defining how lysozyme-expressing cells participate during inflammation. PMID:17477879
Acuna-Mendoza, Soledad; Martin, Sabrina; Kuchler-Bopp, Sabine; Ribes, Sandy; Thalgott, Jérémy; Chaussain, Catherine; Creuzet, Sophie; Lesot, Hervé; Lebrin, Franck; Poliard, Anne
2017-12-01
Neural crest (NC) cells are a migratory, multipotent population giving rise to numerous lineages in the embryo. Their plasticity renders attractive their use in tissue engineering-based therapies, but further knowledge on their in vivo behavior is required before clinical transfer may be envisioned. We here describe the isolation and characterization of a new mouse embryonic stem (ES) line derived from Wnt1-CRE-R26 Rosa TomatoTdv blastocyst and show that it displays the characteristics of typical ES cells. Further, these cells can be efficiently directed toward an NC stem cell-like phenotype as attested by concomitant expression of NC marker genes and Tomato fluorescence. As native NC progenitors, they are capable of differentiating toward typical derivative phenotypes and interacting with embryonic tissues to participate in the formation of neo-structures. Their specific fluorescence allows purification and tracking in vivo. This cellular tool should facilitate a better understanding of the mechanisms driving NC fate specification and help identify the key interactions developed within a tissue after in vivo implantation. Altogether, this novel model may provide important knowledge to optimize NC stem cell graft conditions, which are required for efficient tissue repair.
Seynhaeve, Ann L B; Oostinga, Douwe; van Haperen, Rien; Eilken, Hanna M; Adams, Susanne; Adams, Ralf H; Ten Hagen, Timo L M
2018-06-25
Endothelial cells and pericytes are integral cellular components of the vasculature with distinct interactive functionalities. To study dynamic interactions between these two cells we created two transgenic animal lines. A truncated eNOS (endothelial nitric oxide synthase) construct was used as a GFP tag for endothelial cell evaluation and an inducible Cre-lox recombination, under control of the Pdgfrb (platelet derived growth factor receptor beta) promoter, was created for pericyte assessment. Also, eNOStag-GFP animals were crossed with the already established Cspg4-DsRed mice expressing DsRed fluorescent protein in pericytes. For intravital imaging we used tumors implanted in the dorsal skinfold of these transgenic animals. This setup allowed us to study time and space dependent complexities, such as distribution, morphology, motility, and association between both vascular cell types in all angiogenetic stages, without the need for additional labeling. Moreover, as fluorescence was still clearly detectable after fixation, it is possible to perform comparative histology following intravital evaluation. These transgenic mouse lines form an excellent model to capture collective and individual cellular and subcellular endothelial cell - pericyte dynamics and will help answer key questions on the cellular and molecular relationship between these two cells.
Speed genome editing by transient CRISPR/Cas9 targeting and large DNA fragment deletion.
Luo, Jing; Lu, Liaoxun; Gu, Yanrong; Huang, Rong; Gui, Lin; Li, Saichao; Qi, Xinhui; Zheng, Wenping; Chao, Tianzhu; Zheng, Qianqian; Liang, Yinming; Zhang, Lichen
2018-06-07
Genetic engineering of cell lines and model organisms has been facilitated enormously by the CRISPR/Cas9 system. However, in cell lines it remains labor intensive and time consuming to obtain desirable mutant clones due to the difficulties in isolating the mutated clones and sophisticated genotyping. In this study, we have validated fluorescent protein reporter aided cell sorting which enables the isolation of maximal diversity in mutant cells. We further applied two spectrally distinct fluorescent proteins DsRed2 and ECFP as reporters for independent CRISPR/Cas9 mediated targeting, which allows for one-cell-one-well sorting of the mutant cells. Because of ultra-high efficiency of the CRISPR/Cas9 system with dual reporters and large DNA fragment deletion resulting from independent loci cleavage, monoclonal mutant cells could be easily identified by conventional PCR. In the speed genome editing method presented here, sophisticated genotyping methods are not necessary to identify loss of function mutations after CRISPR/Cas9 genome editing, and desirable loss of function mutant clones could be obtained in less than one month following transfection. Copyright © 2018 Elsevier B.V. All rights reserved.
Kariya, Ryusho; Matsuda, Kouki; Gotoh, Kumiko; Vaeteewoottacharn, Kulthida; Hattori, Shinichiro; Okada, Seiji
2014-01-01
Nude mice are used in human xenograft research; however, only 25-35% of human tumors have been successfully transplanted into nude mice and their application is limited due to high natural killer (NK) cell activity. More severely immunodeficient mice with loss of NK activity are needed to overcome this limitation. Balb/c nude Rag-2(-/-)Jak3(-/-) (Nude-RJ) mice were established by crossing Rag-2(-/-)Jak3(-/-) mice and nude mice. The K562 cell line was implanted subcutaneously to compare tumorigenicity between Nude-RJ mice and Nude mice. The cholangiocarcinoma mCherry expressing cell line (KKU-M213) was implanted subcutaneously, and fluorescence intensity and tumor weight were measured. Nude R/J mice showed complete loss of lymphocytes and NK cells. Xeno-transplantation of K562 cells showed higher proliferation in Nude R/J mice than nude mice. Subcutaneously-transplanted mCherry-transduced KKU-M213 cells were successfully detected with a fluorescence imager. Nude-R/J mice are valuable tools for in vivo imaging studies in biomedical research. Copyright © 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
In Vivo Fluorescence Correlation and Cross-Correlation Spectroscopy
NASA Astrophysics Data System (ADS)
Mütze, Jörg; Ohrt, Thomas; Petrášek, Zdeněk; Schwille, Petra
In this manuscript, we describe the application of Fluorescence Correlation Spectroscopy (FCS), Fluorescence Cross-Correlation Spectroscopy (FCCS), and scanning FCS (sFCS) to two in vivo systems. In the first part, we describe the application of two-photon standard and scanning FCS in Caenorhabditis elegans embryos. The differentiation of a single fertilized egg into a complex organism in C. elegans is regulated by a number of protein-dependent processes. The oocyte divides asymmetrically into two daughter cells of different developmental fate. Two of the involved proteins, PAR-2 and NMY-2, are studied. The second investigated system is the mechanism of RNA interference in human cells. An EGFP based cell line that allows to study the dynamics and localization of the RNA-induced silencing complex (RISC) with FCS in vivo is created, which has so far been inaccessible with other experimental methods. Furthermore, Fluorescence Cross-Correlation Spectroscopy is employed to highlight the asymmetric incorporation of labeled siRNAs into RISC.
Combustion-derived ultrafine particles transport organic toxicants to target respiratory cells.
Penn, Arthur; Murphy, Gleeson; Barker, Steven; Henk, William; Penn, Lynn
2005-08-01
Epidemiologic evidence supports associations between inhalation of fine and ultrafine ambient particulate matter [aerodynamic diameter < or = 2.5 microm (PM2.5)] and increases in cardiovascular/respiratory morbidity and mortality. Less attention has been paid to how the physical and chemical characteristics of these particles may influence their interactions with target cells. Butadiene soot (BDS), produced during combustion of the high-volume petrochemical 1,3-butadiene, is rich in polynuclear aromatic hydrocarbons (PAHs), including known carcinogens. We conducted experiments to characterize BDS with respect to particle size distribution, assembly, PAH composition, elemental content, and interaction with respiratory epithelial cells. Freshly generated, intact BDS is primarily (> 90%) PAH-rich, metals-poor (nickel, chromium, and vanadium concentrations all < 1 ppm) PM2.5, composed of uniformly sized, solid spheres (30-50 nm) in aggregated form. Cells of a human bronchial epithelial cell line (BEAS-2B) exhibit sequential fluorescent responses--a relatively rapid (approximately 30 min), bright but diffuse fluorescence followed by the slower (2-4 hr) appearance of punctate cytoplasmic fluorescence--after BDS is added to medium overlying the cells. The fluorescence is associated with PAH localization in the cells. The ultrafine BDS particles move down through the medium to the cell membrane. Fluorescent PAHs are transferred from the particle surface to the cell membrane, cross the membrane into the cytosol, and appear to accumulate in lipid vesicles. There is no evidence that BDS particles pass into the cells. The results demonstrate that uptake of airborne ultrafine particles by target cells is not necessary for transfer of toxicants from the particles to the cells.
Thomas, Andrew J.; Hailey, Dale W.; Stawicki, Tamara M.; Wu, Patricia; Coffin, Allison B.; Rubel, Edwin W.; Raible, David W.; Simon, Julian A.; Ou, Henry C.
2013-01-01
Cisplatin, one of the most commonly used anti-cancer drugs, is known to cause inner ear hair cell damage and hearing loss. Despite much investigation into mechanisms of cisplatin-induced hair cell death, little is known about the mechanism whereby cisplatin is selectively toxic to hair cells. Using hair cells of the zebrafish lateral line, we found that chemical inhibition of mechanotransduction with quinine and EGTA protected against cisplatin-induced hair cell death. Furthermore, we found that the zebrafish mutants mariner (myo7aa) and sputnik (cad23) that lack functional mechanotransduction were resistant to cisplatin-induced hair cell death. Using a fluorescent analogue of cisplatin, we found that chemical or genetic inhibition of mechanotransduction prevented its uptake. These findings demonstrate that cisplatin-induced hair cell death is dependent on functional mechanotransduction in the zebrafish lateral line. PMID:23467357
Hofmann, Ute; Priem, Melanie; Bartzsch, Christine; Winckler, Thomas; Feller, Karl-Heinz
2014-01-01
In the progress of allergic and irritant contact dermatitis, chemicals that cause the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells) expressing green fluorescent protein (GFP) under the control of the stress-inducible HSP70B' promoter were constructed. Exposure of HaCaT sensor cells to 25 μM cadmium, a model substance for oxidative stress induction, provoked a 1.7-fold increase in total glutathione and a ∼300-fold induction of transcript level of the gene coding for heat shock protein HSP70B'. An extract of Arnica montana flowers resulted in a strong induction of the HSP70B' gene and a pronounced decrease of total glutathione in keratinocytes. The HSP70B' promoter-based sensor cells conveniently detected cadmium-induced stress using GFP fluorescence as read-out with a limit of detection of 6 μM cadmium. In addition the sensor cells responded to exposure of cells to A. montana extract with induction of GFP fluorescence. Thus, the HaCaT sensor cells provide a means for the automated detection of the compromised redox status of keratinocytes as an early indicator of the development of human skin disorders and could be applied for the prediction of skin irritation in more complex in vitro 3D human skin models and in the development of micro-total analysis systems (μTAS) that may be utilized in dermatology, toxicology, pharmacology and drug screenings. PMID:24967604
Aequorea green fluorescent protein analysis by flow cytometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ropp, J.D.; Cuthbertson, R.A.; Donahue, C.J.
The isolation and expression of the cDNA for the green fluorescent protein (GFP) from the bioluminescent jellyfish Aequorea victoria has highlighted its potential use as a marker for gene expression in a variety of cell types. The longer wavelength peak (470 nm) of GFP`s bimodal absorption spectrum better matches standard fluorescein filter sets; however, it has a considerably lower amplitude than the major absorption peak at 395. In an effort to increase the sensitivity of GFP with routinely available instrumentation, Heim et al. have generated a GFP mutant (serine-65 to threonine; S65T-GFP) which possesses a single absorption peak centered atmore » 490 nm. We have constructed this mutant in order to determine whether it or wild-type GFP (wt-GFP) afforded greater sensitivity when excited near their respective absorption maxima. Using the conventionally available 488 nm and ultraviolet (UV) laser lines from the argon ion laser as well as the 407 nm line from a krypton ion laser with enhanced violet emission, we were able to closely match the absorption maxima of both the S65T and wild-type forms of Aequorea GFP and analyze differences in fluorescence intensity of transiently transfected 293 cells with flow cytometry. The highest fluorescence signal was observed with 488 nm excitation of S65T-GFP relative to all other laser line/GFP pairs. The wt-GFP fluorescence intensity, in contrast, was significantly higher at 407 nm relative to either 488 nm or UV. These results were consistent with parallel spectrofluorometric analysis of the emission spectrum for wt-GFP and S65T- GFP. The relative contribution of cellular autofluorescence at each wavelength was also investigated and shown to be significantly reduced at 407 nm relative to either UV or 488 nm. 29 refs., 5 figs.« less
IDH1 R132H decreases proliferation of glioma cell lines in vitro and in vivo.
Bralten, Linda B C; Kloosterhof, Nanne K; Balvers, Rutger; Sacchetti, Andrea; Lapre, Lariesa; Lamfers, Martine; Leenstra, Sieger; de Jonge, Hugo; Kros, Johan M; Jansen, Erwin E W; Struys, Eduard A; Jakobs, Cornelis; Salomons, Gajja S; Diks, Sander H; Peppelenbosch, Maikel; Kremer, Andreas; Hoogenraad, Casper C; Smitt, Peter A E Sillevis; French, Pim J
2011-03-01
A high percentage of grade II and III gliomas have mutations in the gene encoding isocitrate dehydrogenase (IDH1). This mutation is always a heterozygous point mutation that affects the amino acid arginine at position 132 and results in loss of its native enzymatic activity and gain of alternative enzymatic activity (producing D-2-hydroxyglutarate). The objective of this study was to investigate the cellular effects of R132H mutations in IDH1. Functional consequences of IDH1(R132H) mutations were examined among others using fluorescence-activated cell sorting, kinome and expression arrays, biochemical assays, and intracranial injections on 3 different (glioma) cell lines with stable overexpression of IDH1(R132H) . IDH1(R132H) overexpression in established glioma cell lines in vitro resulted in a marked decrease in proliferation, decreased Akt phosphorylation, altered morphology, and a more contact-dependent cell migration. The reduced proliferation is related to accumulation of D-2-hydroxyglutarate that is produced by IDH1(R132H) . Mice injected with IDH1(R132H) U87 cells have prolonged survival compared to mice injected with IDH1(wt) or green fluorescent protein-expressing U87 cells. Our results demonstrate that IDH1(R132H) dominantly reduces aggressiveness of established glioma cell lines in vitro and in vivo. In addition, the IDH1(R132H) -IDH1(wt) heterodimer has higher enzymatic activity than the IDH1(R132H) -IDH1(R132H) homodimer. Our observations in model systems of glioma might lead to a better understanding of the biology of IDH1 mutant gliomas, which are typically low grade and often slow growing. Copyright © 2011 American Neurological Association.
Specialized mouse embryonic stem cells for studying vascular development.
Glaser, Drew E; Burns, Andrew B; Hatano, Rachel; Medrzycki, Magdalena; Fan, Yuhong; McCloskey, Kara E
2014-01-01
Vascular progenitor cells are desirable in a variety of therapeutic strategies; however, the lineage commitment of endothelial and smooth muscle cell from a common progenitor is not well-understood. Here, we report the generation of the first dual reporter mouse embryonic stem cell (mESC) lines designed to facilitate the study of vascular endothelial and smooth muscle development in vitro. These mESC lines express green fluorescent protein (GFP) under the endothelial promoter, Tie-2, and Discomsoma sp. red fluorescent protein (RFP) under the promoter for alpha-smooth muscle actin (α-SMA). The lines were then characterized for morphology, marker expression, and pluripotency. The mESC colonies were found to exhibit dome-shaped morphology, alkaline phosphotase activity, as well as expression of Oct 3/4 and stage-specific embryonic antigen-1. The mESC colonies were also found to display normal karyotypes and are able to generate cells from all three germ layers, verifying pluripotency. Tissue staining confirmed the coexpression of VE (vascular endothelial)-cadherin with the Tie-2 GFP+ expression on endothelial structures and smooth muscle myosin heavy chain with the α-SMA RFP+ smooth muscle cells. Lastly, it was verified that the developing mESC do express Tie-2 GFP+ and α-SMA RFP+ cells during differentiation and that the GFP+ cells colocalize with the vascular-like structures surrounded by α-SMA-RFP cells. These dual reporter vascular-specific mESC permit visualization and cell tracking of individual endothelial and smooth muscle cells over time and in multiple dimensions, a powerful new tool for studying vascular development in real time.
Lanemo Myhrinder, Anna; Hellqvist, Eva; Bergh, Ann-Charlotte; Jansson, Mattias; Nilsson, Kenneth; Hultman, Per; Jonasson, Jon; Buhl, Anne Mette; Bredo Pedersen, Lone; Jurlander, Jesper; Klein, Eva; Weit, Nicole; Herling, Marco; Rosenquist, Richard; Rosén, Anders
2013-08-01
Chronic lymphocytic leukemia (CLL) B-cells resemble self-renewing CD5 + B-cells carrying auto/xeno-antigen-reactive B-cell receptors (BCRs) and multiple innate pattern-recognition receptors, such as Toll-like receptors and scavenger receptors. Integration of signals from BCRs with multiple surface membrane receptors determines whether the cells will be proliferating, anergic or apoptotic. To better understand the role of antigen in leukemogenesis, CLL cell lines producing monoclonal antibodies (mAbs) will facilitate structural analysis of antigens and supply DNA for genetic studies. We present here a comprehensive genotypic and phenotypic characterization of available CLL and normal B-cell-derived lymphoblastoid cell lines (LCLs) from the same individuals (n = 17). Authenticity and verification studies of CLL-patient origin were done by IGHV sequencing, fluorescence in situ hybridization (FISH) and DNA/short tandem repeat (STR) fingerprinting. Innate B-cell features, i.e. natural Ab production and CD5 receptors, were present in most CLL cell lines, but in none of the normal LCLs. This panel of immortalized CLL-derived cell lines is a valuable reference representing a renewable source of authentic Abs and DNA.
Development and characterization of a new marine fish cell line from turbot (Scophthalmus maximus).
Wang, N; Wang, X L; Sha, Z X; Tian, Y S; Chen, S L
2010-12-01
A new marine fish cell line, TK, derived from turbot (Scophthalmus maximus) kidney, was established by the method of trypsin digestion and subcultured for more than 50 passages over a period of 300 days. The TK cells were maintained in Minimum Essential Medium Eagle (MEM) supplemented with HEPES, antibiotics, fetal bovine serum (FBS), 2-Mercaptoethanol (2-Me), and basic fibroblast growth factor (bFGF). The suitable growth temperature for TK cells was 24°C, and microscopically, TK cells were composed of fibroblast-like cells. Chromosome analysis revealed that the TK cell line has a normal diploid karyotype with 2n=44. Two fish viruses LCDV-C (lymphocystis disease virus from China) and TRBIV (turbot reddish body iridovirus) were used to determine the virus susceptibility of TK cell line. The TK cell line was found to be susceptible to TRBIV, and the infection was confirmed by cytopathic effect (CPE) and transmission electron microscopy, which detected the viral particles in the cytoplasm of virus-infected cells. Finally, significant green fluorescent signals were observed when the TK cells were transfected with pEGFP-N3 vector, indicating its potential utility for fish virus study and genetic manipulation.
Control of intracellular ionic concentrations by mid-infrared laser irradiation
NASA Astrophysics Data System (ADS)
Takebe, G.; Yamauchi, T.; Shimizu, Y.; Dougakiuchi, T.
2018-02-01
We successfully induced intracellular ion concentration changes in live culture cells using mid-infrared laser irradiation. The laser used for irradiation was a quantum cascade laser with a wavelength of 6.1 micrometers. We tuned the power of the laser to be between 30 to 60 mW at the sample. Cell lines, namely HeLa and Chinese hamster ovary cell lines, were used. They were cultured on specially fabricated silicon-bottom dishes. Live cells were stained using ion-sensitive dyes such as Calcium Green-1. The mid-infrared light was incident on the cell samples from the bottom of the dish through the silicon plate, and fluorescence imaging of the ion concentrations was performed using an upright fluorescence microscope placed on top of the sample stage. The mid-infrared lasers were operated in the continuous wave mode and light irradiations onto the cells were temporally controlled using a mechanical shutter in a periodical on-and-off pattern in the second timescale. The cells showed oscillations in their ionic concentration, which was synchronized with the periodical mid-infrared irradiation, and the threshold power needed for evoking the ion concentration change was dependent on the cell types and ion species. These results demonstrated that mid-infrared light directly changed the ionic response within cells and had the ability to change cell functions.
Establishment and characterization of the NCC-SS1-C1 synovial sarcoma cell line.
Kito, Fusako; Oyama, Rieko; Takai, Yoko; Sakumoto, Marimu; Shiozawa, Kumiko; Qiao, Zhiwei; Uehara, Takenori; Yoshida, Akihiko; Kawai, Akira; Kondo, Tadashi
2018-04-01
Synovial sarcoma is an aggressive mesenchymal malignancy characterized by unique gene fusions. Tissue culture cells are essential tools for further understanding tumorigenesis and anti-cancer drug development; however, only a limited number of well-characterized synovial sarcoma cell lines exist. Thus, the objective of this study was to establish a patient-derived synovial sarcoma cell line. We established a synovial sarcoma cell line from tumor tissue isolated from a 72-year-old female patient. Prepared cells were analyzed for the presence of gene fusions by fluorescence in situ hybridization, RT-PCR, and karyotyping. In addition, the resulting cell line was characterized by viability, short tandem repeat, colony and spheroid formation, and invasion analyses. Differences in gene enrichment between the primary tumor and cell line were examined by mass spectrometric protein expression profiling and KEGG pathway analysis. Our analyses revealed that the primary tumor and NCC-SS1-C1 cell line harbored the SS18-SSX1 fusion gene typical of synovial sarcoma and similar proteomics profiles. In vitro analyses also confirmed that the established cell line harbored invasive, colony-forming, and spheroid-forming potentials. Moreover, drug screening with chemotherapeutic agents and tyrosine kinase inhibitors revealed that doxorubicin, a subset of tyrosine kinase inhibitors, and several molecular targeting drugs markedly decreased NCC-SS1-C1 cell viability. Results from the present study support that the NCC-SS1-C1 cell line will be an effective tool for sarcoma research.
Madhusudana, Shampur Narayan; Sundaramoorthy, Subha; Ullas, Padinjaremattatthil Thankappan
2010-12-01
A confirmatory rabies diagnosis can be achieved by rapid virus isolation in cell culture using brain tissue from the suspect animal. Several cell lines have been used for this purpose and the murine neuroblastoma cell line Neuro-2a has been found to be the most sensitive. The human embryonic kidney cell line HEK-293 is known to express several neuronal proteins and is believed to be of neuronal origin. We hypothesized that this cell line could be susceptible to rabies virus, which is highly neurotropic. First we tested the sensitivity of HEK-293 cells to the laboratory strain, challenge virus standard (CVS). We then tested 120 brain samples from different animals and humans suspected to have died of rabies by fluorescent antibody test (FAT). Both FAT-positive and FAT-negative brains were tested for virus isolation using Neuro-2a, BHK-21, and HEK-293 cell lines and also by mouse inoculation. There was 100% correlation between FAT, virus isolation in Neuro-2a and HEK-293 cells, and mouse inoculation. However, the rate of virus isolation in the BHK-21 cell line was only 28% when compared to the other cell lines. The sensitivity of HEK-293 to CVS strain of virus was similar to that of Neuro-2a. We conclude that the HEK-293 cell line is as sensitive as the Neuro-2a cell line for the rapid isolation of rabies virus and may serve as an alternative cell line for rabies diagnosis and future research. Copyright © 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Two-photon excited fluorescence spectroscopy and imaging of melanin in vitro and in vivo
NASA Astrophysics Data System (ADS)
Krasieva, Tatiana B.; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L.; Tromberg, Bruce J.
2012-03-01
The ability to detect early melanoma non-invasively would improve clinical outcome and reduce mortality. Recent advances in two-photon excited fluorescence (TPEF) in vivo microscopy offer a powerful tool in early malignant melanoma diagnostics. The goal of this work was to develop a TPEF optical index for measuring relative concentrations of eumelanin and pheomelanin since ex vivo studies show that changes in this ratio have been associated with malignant transformation. We acquired TPEF emission spectra (λex=1000 nm) of melanin from several specimens, including human hair, malignant melanoma cell lines, and normal melanocytes and keratinocytes in different skin layers (epidermis, papillary dermis) in five healthy volunteers in vivo. We found that the pheomelanin emission peaks at around 620 nm and is blue-shifted from the eumelanin with broad maximum at 640-680nm. We defined "optical melanin index" (OMI) as a ratio of fluorescence signal intensities measured at 645 nm and 615nm. The measured OMI for a melanoma cell line MNT-1 was 1.6+/-0.2. The MNT-46 and MNT-62 lines (Mc1R gene knockdown) showed an anticipated change in melanins production ratio and had OMI of 0.55+/-0.05 and 0.17+/-0.02, respectively, which strongly correlated with HPLC data obtained for these lines. Average OMI measured for basal cells layers (melanocytes and keratinocytes) in normal human skin type I, II-III (not tanned and tanned) in vivo was 0.5, 1.05 and 1.16 respectively. We could not dependably detect the presence of pheomelanin in highly pigmented skin type V-VI. These data suggest that a non-invasive TPEF index could potentially be used for rapid melanin ratio characterization both in vitro and in vivo, including pigmented lesions.
Sant’Anna-Silva, Ana Carolina B.; Santos, Gilson C.; Campos, Samir P. Costa; Oliveira Gomes, André Marco; Pérez-Valencia, Juan Alberto; Rumjanek, Franklin David
2018-01-01
Tumor cells are subjected to a broad range of selective pressures. As a result of the imposed stress, subpopulations of surviving cells exhibit individual biochemical phenotypes that reflect metabolic reprograming. The present work aimed at investigating metabolic parameters of cells displaying increasing degrees of metastatic potential. The metabolites present in cell extracts fraction of tongue fibroblasts and of cell lines derived from human tongue squamous cell carcinoma lineages displaying increasing metastatic potential (SCC9 ZsG, LN1 and LN2) were analyzed by 1H NMR (nuclear magnetic resonance) spectroscopy. Living, intact cells were also examined by the non-invasive method of fluorescence lifetime imaging microscopy (FLIM) based on the auto fluorescence of endogenous NADH. The cell lines reproducibly exhibited distinct metabolic profiles confirmed by Partial Least-Square Discriminant Analysis (PLS-DA) of the spectra. Measurement of endogenous free and bound NAD(P)H relative concentrations in the intact cell lines showed that ZsG and LN1 cells displayed high heterogeneity in the energy metabolism, indicating that the cells would oscillate between glycolysis and oxidative metabolism depending on the microenvironment’s composition. However, LN2 cells appeared to have more contributions to the oxidative status, displaying a lower NAD(P)H free/bound ratio. Functional experiments of energy metabolism, mitochondrial physiology, and proliferation assays revealed that all lineages exhibited similar energy features, although resorting to different bioenergetics strategies to face metabolic demands. These differentiated functions may also promote metastasis. We propose that lipid metabolism is related to the increased invasiveness as a result of the accumulation of malonate, methyl malonic acid, n-acetyl and unsaturated fatty acids (CH2)n in parallel with the metastatic potential progression, thus suggesting that the NAD(P)H reflected the lipid catabolic/anabolic pathways. PMID:29456966
Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549
Liu, Furong; Gao, Song; Yang, Yuxuan; Zhao, Xiaodan; Fan, Yameng; Ma, Wenxia; Yang, Danrong; Yang, Aimin; Yu, Yan
2017-01-01
To investigate the anticancer effects of curcumin-induced autophagy and its effects on the human lung adenocarcinoma A549 cell line, inverted phase contrast microscopy was used to observe alterations to the cytomorphology of cells. An MTT assay was used to measure cell viability. Autophagy was detected using acridine orange (AO) staining and 3-methyladenine (3-MA) was used as an autophagy-specific inhibitor. Dose- and time-dependent A549 cell viability inhibition was observed following curcumin treatment. A dose-dependent increase in the red fluorescent structures in A549 cells was identified following curcumin treatment for 48 h through AO staining. In addition, the activation of autophagy was determined through changes in the number of autophagic vesicles (AVs; fluorescent particles) infected with monodansylcadaverine (MDC). The fluorescence intensity and density of AVs in the curcumin-treated groups were higher at 48 h compared with the control group. Finally, the MTT assay demonstrated that the survival rates of the curcumin-treated cells were increased when pretreated with 3-MA for 3 h, indicating that the inhibitory effect of curcumin on A549 cells is reduced following the inhibition of autophagy. Furthermore, AO and MDC staining confirmed that 3-MA does inhibit the induction of autophagy. Thus, it was hypothesized that the induction of autophagy is partially involved in the reduction of cell viability observed following curcumin treatment. The anticancer effects of curcumin on A549 cells can be reduced using autophagy inhibitors. This suggests a possible cancer therapeutic application of curcumin through the activation of autophagy. These findings have improved the understanding of the mechanism underlying the anticancer property of curcumin. PMID:28928819
Curcumin induced autophagy anticancer effects on human lung adenocarcinoma cell line A549.
Liu, Furong; Gao, Song; Yang, Yuxuan; Zhao, Xiaodan; Fan, Yameng; Ma, Wenxia; Yang, Danrong; Yang, Aimin; Yu, Yan
2017-09-01
To investigate the anticancer effects of curcumin-induced autophagy and its effects on the human lung adenocarcinoma A549 cell line, inverted phase contrast microscopy was used to observe alterations to the cytomorphology of cells. An MTT assay was used to measure cell viability. Autophagy was detected using acridine orange (AO) staining and 3-methyladenine (3-MA) was used as an autophagy-specific inhibitor. Dose- and time-dependent A549 cell viability inhibition was observed following curcumin treatment. A dose-dependent increase in the red fluorescent structures in A549 cells was identified following curcumin treatment for 48 h through AO staining. In addition, the activation of autophagy was determined through changes in the number of autophagic vesicles (AVs; fluorescent particles) infected with monodansylcadaverine (MDC). The fluorescence intensity and density of AVs in the curcumin-treated groups were higher at 48 h compared with the control group. Finally, the MTT assay demonstrated that the survival rates of the curcumin-treated cells were increased when pretreated with 3-MA for 3 h, indicating that the inhibitory effect of curcumin on A549 cells is reduced following the inhibition of autophagy. Furthermore, AO and MDC staining confirmed that 3-MA does inhibit the induction of autophagy. Thus, it was hypothesized that the induction of autophagy is partially involved in the reduction of cell viability observed following curcumin treatment. The anticancer effects of curcumin on A549 cells can be reduced using autophagy inhibitors. This suggests a possible cancer therapeutic application of curcumin through the activation of autophagy. These findings have improved the understanding of the mechanism underlying the anticancer property of curcumin.
NASA Astrophysics Data System (ADS)
Hou, Jue; Wright, Heather J.; Chan, Nicole; Tran, Richard; Razorenova, Olga V.; Potma, Eric O.; Tromberg, Bruce J.
2016-06-01
Two-photon excited fluorescence (TPEF) imaging of the cellular cofactors nicotinamide adenine dinucleotide and oxidized flavin adenine dinucleotide is widely used to measure cellular metabolism, both in normal and pathological cells and tissues. When dual-wavelength excitation is used, ratiometric TPEF imaging of the intrinsic cofactor fluorescence provides a metabolic index of cells-the "optical redox ratio" (ORR). With increased interest in understanding and controlling cellular metabolism in cancer, there is a need to evaluate the performance of ORR in malignant cells. We compare TPEF metabolic imaging with seahorse flux analysis of cellular oxygen consumption in two different breast cancer cell lines (MCF-7 and MDA-MB-231). We monitor metabolic index in living cells under both normal culture conditions and, for MCF-7, in response to cell respiration inhibitors and uncouplers. We observe a significant correlation between the TPEF-derived ORR and the flux analyzer measurements (R=0.7901, p<0.001). Our results confirm that the ORR is a valid dynamic index of cell metabolism under a range of oxygen consumption conditions relevant for cancer imaging.
Schaaf, Marcel J M; Koopmans, Wiepke J A; Meckel, Tobias; van Noort, John; Snaar-Jagalska, B Ewa; Schmidt, Thomas S; Spaink, Herman P
2009-08-19
It has been possible for several years to study the dynamics of fluorescently labeled proteins by single-molecule microscopy, but until now this technology has been applied only to individual cells in culture. In this study, it was extended to stem cells and living vertebrate organisms. As a molecule of interest we used yellow fluorescent protein fused to the human H-Ras membrane anchor, which has been shown to serve as a model for proteins anchored in the plasma membrane. We used a wide-field fluorescence microscopy setup to visualize individual molecules in a zebrafish cell line (ZF4) and in primary embryonic stem cells. A total-internal-reflection microscopy setup was used for imaging in living organisms, in particular in epidermal cells in the skin of 2-day-old zebrafish embryos. Our results demonstrate the occurrence of membrane microdomains in which the diffusion of membrane proteins in a living organism is confined. This membrane organization differed significantly from that observed in cultured cells, illustrating the relevance of performing single-molecule microscopy in living organisms.
Bioactivity-guided isolation of anticancer agents from Bauhinia kockiana Korth.
Chew, Yik Ling; Lim, Yau Yan; Stanslas, Johnson; Ee, Gwendoline Cheng Lian; Goh, Joo Kheng
2014-01-01
Flowers of Bauhinia kockiana were investigated for their anticancer properties. Gallic acid (1), and methyl gallate (2), were isolated via bioassay-directed isolation, and they exhibited anticancer properties towards several cancer cell lines, examined using MTT cell viability assay. Pyrogallol (3) was examined against the same cancer cell lines to deduce the bioactive functional group of the phenolic compounds. The results showed that the phenolic compounds could exhibit moderate to weak cytotoxicity towards certain cell lines (GI50 30 - 86 µM), but were inactive towards DU145 prostate cancer cell (GI50 > 100 µM). It was observed that pyrogallol moiety was one of the essential functional structures of the phenolic compounds in exhibiting anticancer activity. Also, the carboxyl group of compound 1 was also important in anticancer activity. Examination of the PC-3 cells treated with compound 1 using fluorescence microscopy showed that PC-3 cells were killed by apoptosis.
Wang, Lin; Fei, Chang; Huang, Zheng-Lan; Li, Hui; Liu, Zhang-Lin; Feng, Wen-Li
2015-08-01
To investigate the effect of SH2-Caspase 8 fusion protein expressed by recombinant adenovirus AdE-SH2-Caspase8-HA-GFP (SC) on the apoptosis of K562/G01 cell line, which is a BCR/ABL positive chronic myeloid leukemia cell line and resistant to imatinib. The K562/G01 cell line was infected with AdE-SH2-Caspase 8-HA-GFP adenovirus (SC), then the cells were divided into 3 groups: AdE-SH2m-Caspase 8-HA-GFP (SmC) group, AdE-GFP (CMV) group and PBS group as control. The infection efficiency was observed under fluorescent microscopy and by flow cytometry. The expression of fusion protein SH2-Caspase 8-HA was measured by Western blot. The morphology of the cells detected by Wright's staining. The apoptosis of the cells were detected by flow cytometry and DNA ladder. The expression of Caspase 3 and PARP were detected by Western blot. The infection efficiency of SC on K562/G01 cells was high which was confirmed by fluorescent microscopy and FCM. SH2-Caspase 8-HA fusion protein were expressed correctly in K562/G01 cells. After treatment with SC the apoptosis of K562/G01 cells could be observed by microscopy. The result of FCM showed that early apoptosis of K562/G01 cells increased significantly as compared with control groups (P < 0.05). DNA ladder showed that the classic DNA ladders appeared in K562/G01 cells after treatment with SC. The wester blot detection showed that the expression level of apoptosis-related protein Caspase 3 and PARP increased. The recombinant adenovirus SC expressing SH2-Caspase 8 fusion protein can induces the apoptosis of K562/G01 cells.
Inducible fluorescent speckle microscopy
Aguiar, Paulo; Belsley, Michael; Maiato, Helder
2016-01-01
The understanding of cytoskeleton dynamics has benefited from the capacity to generate fluorescent fiducial marks on cytoskeleton components. Here we show that light-induced imprinting of three-dimensional (3D) fluorescent speckles significantly improves speckle signal and contrast relative to classic (random) fluorescent speckle microscopy. We predict theoretically that speckle imprinting using photobleaching is optimal when the laser energy and fluorophore responsivity are related by the golden ratio. This relation, which we confirm experimentally, translates into a 40% remaining signal after speckle imprinting and provides a rule of thumb in selecting the laser power required to optimally prepare the sample for imaging. This inducible speckle imaging (ISI) technique allows 3D speckle microscopy to be performed in readily available libraries of cell lines or primary tissues expressing fluorescent proteins and does not preclude conventional imaging before speckle imaging. As a proof of concept, we use ISI to measure metaphase spindle microtubule poleward flux in primary cells and explore a scaling relation connecting microtubule flux to metaphase duration. PMID:26783303
Inducible fluorescent speckle microscopy.
Pereira, António J; Aguiar, Paulo; Belsley, Michael; Maiato, Helder
2016-01-18
The understanding of cytoskeleton dynamics has benefited from the capacity to generate fluorescent fiducial marks on cytoskeleton components. Here we show that light-induced imprinting of three-dimensional (3D) fluorescent speckles significantly improves speckle signal and contrast relative to classic (random) fluorescent speckle microscopy. We predict theoretically that speckle imprinting using photobleaching is optimal when the laser energy and fluorophore responsivity are related by the golden ratio. This relation, which we confirm experimentally, translates into a 40% remaining signal after speckle imprinting and provides a rule of thumb in selecting the laser power required to optimally prepare the sample for imaging. This inducible speckle imaging (ISI) technique allows 3D speckle microscopy to be performed in readily available libraries of cell lines or primary tissues expressing fluorescent proteins and does not preclude conventional imaging before speckle imaging. As a proof of concept, we use ISI to measure metaphase spindle microtubule poleward flux in primary cells and explore a scaling relation connecting microtubule flux to metaphase duration. © 2016 Pereira et al.
Veciana, Jaume; Ardizzone, Antonio; Blasi, Davide; Grimaldi, Natascia; Sala, Santi; Ratera, Imma; Vona, Danilo; Rosspeintner, Arnulf; Punzi, Angela; Altamura, Emiliano; Vauthey, Eric; Farinola, Gianluca M; Ventosa, Nora
2018-06-05
Diketopyrrolopyrroles (DPPs) have recently attracted large interest as highly bright and photostable red-emitting molecules. However, their tendency to form non-fluorescent aggregates in water via the so-called Aggregation Caused Quenching (ACQ) effect is a major issue that limits their application under the microscope. In this work, two DPP molecules have been incorporated in the membrane of highly stable and water-soluble Quatsomes (QS, nanovesicles made by surfactants and sterols), allowing their nanostructuration in water limiting at the same time the ACQ effect. The obtained fluorescent organic nanoparticles (FONs) showed superior structural homogeneity along with long-time colloidal and optical stability. A thorough one- (1P) and two-photon (2P) fluorescence characterization revealed the promising photophysical features of these fluorescent nanovesicles, which showed a high 1P and 2P brightness. Finally, the fluorescent QSs were used for the in vitro bioimaging of Saos-2 osteosarcoma cell lines, demonstrating their potential as nanomaterials for bioimaging applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kumar, Amit; Singh, Neha; Goswami, Mukunda; Srivastava, J K; Mishra, Akhilesh K; Lakra, W S
2016-01-01
A new continuous fibroblast cell line was established from the muscle tissue of healthy juvenile Danio rerio (Zebrafish) through explant method. Fish cell lines serve as useful tool for investigating basic fish biology, as a model for bioassay of environmental toxicant, toxicity ranking, and for developing molecular biomarkers. The cell line was continuously subcultured for a period of 12 months (61 passages) and maintained at 28 °C in L-15 medium supplemented with 10% FBS and 10 ng/mL of basic fibroblastic growth factor (bFGF) without use of antibiotics. Its growth rate was proportional to the FBS concentration, with optimum growth at 15% FBS. DNA barcoding (16SrRNA and COX1) was used to authenticate the cell line. Cells were incubated with propidium iodide and sorted via flow cytometry to calculate the DNA content to confirm the genetic stability. Significant green fluorescent protein (GFP) signals confirmed the utility of cell line in transgenic and genetic manipulation studies. In vitro assay was performed with MTT to examine the growth potential of the cell line. The muscle cell line would provide a novel invaluable in vitro model to identify important genes to understand regulatory mechanisms that govern the molecular regulation of myogenesis and should be useful in biomedical research.
Calzada, Victoria; Moreno, María; Newton, Jessica; González, Joel; Fernández, Marcelo; Gambini, Juan Pablo; Ibarra, Manuel; Chabalgoity, Alejandro; Deutscher, Susan; Quinn, Thomas; Cabral, Pablo; Cerecetto, Hugo
2017-02-01
Aptamers are single-stranded oligonucleotides that recognize molecular targets with high affinity and specificity. Aptamer that selectively bind to the protein tyrosine kinase-7 (PTK7) receptor, overexpressed on many cancers, has been labelled as probes for molecular imaging of cancer. Two new PTK7-targeting aptamer probes were developed by coupling frameworks from the fluorescent dye AlexaFluor647 or the 6-hydrazinonicotinamide (HYNIC) chelator-labelled to 99m Tc. The derivatizations via a 5'-aminohexyl terminal linker were done at room temperature and under mild buffer conditions. Physicochemical and biological controls for both imaging agents were performed verifying the integrity of the aptamer-conjugates by HPLC. Recognition of melanoma (B16F1) and lymphoma (A20) mouse cell lines by the aptamer was studied using cell binding, flow cytometry and confocal microscopy. Finally, in vivo imaging studies in tumour-bearing mice were performed. The new probes were able to bind to melanoma and lymphoma cell lines in vitro, the in vivo imaging in tumour-bearing mice showed different uptake behaviours showing for the fluorescent conjugate good uptake by B cell lymphoma while the radiolabelled conjugate did not display tumour uptake due to its high extravascular distribution, and both showed rapid clearance properties in tumour-bearing mice. Copyright © 2016 Elsevier Ltd. All rights reserved.
The use of fluorescent indoline dyes for side population analysis.
Kohara, Hiroshi; Watanabe, Kohei; Shintou, Taichi; Nomoto, Tsuyoshi; Okano, Mie; Shirai, Tomoaki; Miyazaki, Takeshi; Tabata, Yasuhiko
2013-01-01
Dye efflux assay evaluated by flow cytometry is useful for stem cell studies. The side population (SP) cells, characterized by the capacity to efflux Hoechst 33342 dye, have been shown to be enriched for hematopoietic stem cells (HSCs) in bone marrow. In addition, SP cells are isolated from various tissues and cell lines, and are also potential candidates for cancer stem cells. However, ultra violet (UV) light, which is not common for every flow cytometer, is required to excite Hoechst 33342. Here we showed that a fluorescent indoline dye ZMB793 can be excited by 488-nm laser, equipped in almost all the modern flow cytometers, and ZMB793-excluding cells showed SP phenotype. HSCs were exclusively enriched in the ZMB793-excluding cells, while ZMB793 was localized in cytosol of bone marrow lineage cells. The efflux of ZMB793 dye was mediated by ATP binding cassette (ABC) transporter Abcg2. Moreover, staining properties were affected by the side-chain structure of the dyes. These data indicate that the fluorescent dye ZMB793 could be used for the SP cell analysis. Copyright © 2012 Elsevier Ltd. All rights reserved.
A cell-based fluorescent assay to detect the activity of AB toxins that inhibit protein synthesis
USDA-ARS?s Scientific Manuscript database
AB-type protein toxins, produced by numerous bacterial pathogens and some plants, elicit a cytotoxic effect involving the inhibition of protein synthesis. To develop an improved method to detect the inhibition of protein synthesis by AB-type toxins, the present study characterized a Vero cell line t...
Zucker, R M; Daniel, K M; Massaro, E J; Karafas, S J; Degn, L L; Boyes, W K
2013-10-01
The cellular uptake of different sized silver nanoparticles (AgNP) (10, 50, and 75 nm) coated with polyvinylpyrrolidone (PVP) or citrate on a human derived retinal pigment epithelial cell line (ARPE-19) was detected by flow cytometry following 24-h incubation of the cells with AgNP. A dose dependent increase of side scatter and far red fluorescence was observed with both PVP and citrate-coated 50 nm or 75 nm silver particles. Using five different flow cytometers, a far red fluorescence signal in the 700-800 nm range increased as much as 100 times background as a ratio comparing the intensity measurements of treated sample and controls. The citrate-coated silver nanoparticles (AgNP) revealed slightly more side scatter and far red fluorescence than did the PVP coated silver nanoparticles. This increased far red fluorescence signal was observed with 50 and 75 nm particles, but not with 10 nm particles. Morphological evaluation by dark field microscopy showed silver particles (50 and 75 nm) clumped and concentrated around the nucleus. One possible hypothesis to explain the emission of far red fluorescence from cells incubated with silver nanoparticles is that the silver nanoparticles inside cells agglomerate into small nano clusters that form surface plasmon resonance which interacts with laser light to emit a strong far red fluorescence signal. The results demonstrate that two different parameters (side scatter and far red fluorescence) on standard flow cytometers can be used to detect and observe metallic nanoparticles inside cells. The strength of the far red fluorescence suggests that it may be particularly useful for applications that require high sensitivity. © Published 2013 Wiley-Periodicals, Inc. Published 2013 Wiley‐Periodicals, Inc. This article is a US government work and, as such, is in the public domain in the United States of America.
Serafino, J; Conde, S; Zabal, O; Samartino, L
2007-01-01
Brucella abortus is a bacterium which causes abortions and infertility in cattle and undulant fever in humans. It multiplies intracellularly, evading the mechanisms of cellular death. Nitric oxide (NO) is important in the regulation of the immune response. In the present work, we studied the ability of three B. abortus strains to survive intracellularly in two macrophage cell lines. The bacterial multiplication in both cell lines was determined at two different times in UFC/ ml units. Moreover the inoculated cells were also observed under light-field and fluorescence microscopy stained with Giemsa and acridine orange, respectively. The stain of both cellular lines showed similar results with respect to the UFC/ml determination. The presence of B. abortus was confirmed by electronic microscopy. In both macrophage cell lines inoculated with the rough strain RB51, the multiplication diminished and the level of NO was higher, compared with cells inoculated with smooth strains (S19 and 2308). These results suggest that the absence of O-chain of LPS probably affects the intracellular growth of B. abortus.
Kaul, G; Kaur, J; Rafeeqi, T A
2010-12-01
Spermatogonial stem cells transplantation provides a unique approach for studying spermatogenesis. Initially developed in mice, this technique has now been extended in farm animals and provides an alternative means to preserve valuable male germ line and to produce transgenic animals. The aim of this study was to enrich type A spermatogonial cells amongst the isolated cells from goat testis, to cryopreserve these enriched populations of cells and their subsequent transplantation in unrelated recipient goats under ultrasound guidance. The cells were isolated enzymatically and enriched by differential plating and separation on discontinuous percoll gradient. Ultrasound guided injection of trypan blue dye into rete testis resulted in 20-30% filling of the seminiferous tubules. Prior to transplantation, the cells were labelled with a fluorescent dye to trace donor cells in recipient seminiferous tubules after transplantation. The fluorescent-labelled cells were observed up to 12 weeks after transplantation. © 2009 Blackwell Verlag GmbH.
Tang, Ze; He, Gan; Xu, Jie; Zhongfu, Li
2017-05-01
Cbp/P300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a pleiotropic protein associated with numerous cell functions, including transcription and differentiation. The role of CITED2 has been investigated in a number of malignancies; however, the roles of this protein in gastric cancers remain unclear. Therefore, we determined the role of CITED2 in gastric cancers. Gastric cancer cell lines (MKN74, MKN28, 7901, and AGS) were used to assess CITED2 transcript levels. Messenger RNA levels were determined using quantitative polymerase chain reaction. Lentiviral vectors containing CITED2 small interfering RNA were used to knockdown CITED2 expression. Cell proliferation was assessed with fluorescent imaging and 3-(4,5-dimethylthiazol-2-yl)-2,5- diphenyltetrazolium bromide assays. Apoptosis and cell cycle stages were assessed through flow cytometry, and formation of colonies was determined using a fluorescent microscope. All cell lines tested in this study expressed CITED2. The cell line expressing the highest levels of CITED2 (MKN74) showed significant knockdown of endogenous CITED2 expression on lentiviral infection. Cell proliferation was shown to be lower in CITED2 knockdown MKN74 cells. G1/S-phase cell cycle arrest was observed on silencing of CITED2 in MKN74 cells. A significant increase in apoptosis was observed on CITED2 knock down in MKN74 cells, while colony forming ability was significantly inhibited after knock down of CITED2. CITED2 supports gastric cancer cell colony formation and proliferation while inhibiting apoptosis making it a potential gene therapy target for gastric cancer. Copyright © 2016 Elsevier Inc. All rights reserved.
Fiscus, R R; Leung, C P; Yuen, J P; Chan, H C
2001-01-01
Apoptotic cell death of uterine epithelial cells is thought to play an important role in the onset of menstruation and the successful implantation of an embryo during early pregnancy. Abnormal apoptosis in these cells can result in dysmenorrhoea and infertility. In addition, decreased rate of epithelial apoptosis likely contributes to endometriosis. A key step in the onset of apoptosis in these cells is cleavage of the genomic DNA between nucleosomes, resulting in polynucleosomal-sized fragments of DNA. The conventional technique for assessing apoptotic DNA fragmentation uses agarose (slab) gel electrophoresis (i.e. DNA laddering). However, recent technological advances in the use of capillary electrophoresis (CE), particularly the introduction of the laser-induced fluorescence detector (LIF), has made it possible to perform DNA laddering with improved automation and much greater sensitivity. In the present study, we have further developed the CE-LIF technique by using a DNA standard curve to quantify accurately the amount of DNA in the apoptotic DNA fragments and have applied this new quantitative technique to study apoptosis in a transformed uterine epithelial cell line, the HRE-H9 cells. Apoptosis was induced in the HRE-H9 cells by serum deprivation for 5, 7 and 24 h, resulting in increased DNA fragmentation of 2.2-, 3.1- and 6.2-fold, respectively, above the 0 h or plus-serum controls. This ultrasensitive CE-LIF technique provides a novel method for accurately measuring the actions of pro- or anti-apoptotic agents or conditions on uterine epithelial cell lines. Copyright 2001 Academic Press.
The study of hydrogen peroxide level under cisplatin action using genetically encoded sensor hyper
NASA Astrophysics Data System (ADS)
Belova, A. S.; Orlova, A. G.; Maslennikova, A. V.; Brilkina, A. A.; Balalaeva, I. V.; Antonova, N. O.; Mishina, N. M.; Shakhova, N. M.; Belousov, V. V.
2014-03-01
The aim of the work was to study the participation of hydrogen peroxide in reaction of cervical cancer cell line HeLa Kyoto on cisplatin action. Determination of hydrogen peroxide level was performed using genetically encoded fluorescent sensor HyPer2. The dependence of cell viability on cisplatin concentration was determined using MTT assay. Mechanisms of cell death as well as HyPer2 reaction was revealed by flow cytometry after 6-hours of incubation with cisplatin in different concentrations. Cisplatin used in low concentrations had no effect on hydrogen peroxide level in HeLa Kyoto cells. Increase of HyPer2 fluorescence was detected only after exposure with cisplatin in high concentration. The reaction was not the consequence of cell death.
Zhang, Jinfeng; Chen, Wencheng; Kalytchuk, Sergii; Li, King Fai; Chen, Rui; Adachi, Chihaya; Chen, Zhan; Rogach, Andrey L; Zhu, Guangyu; Yu, Peter K N; Zhang, Wenjun; Cheah, Kok Wai; Zhang, Xiaohong; Lee, Chun-Sing
2016-05-11
In this study, we report fluorescent organic nanoprobes with intense blue, green, and orange-red emissions prepared by self-assembling three carbazole derivatives into nanorods/nanoparticles. The three compounds consist of two or four electron-donating carbazole groups linked to a central dicyanobenzene electron acceptor. Steric hindrance from the carbazole groups leads to noncoplanar 3D molecular structures favorable to fluorescence in the solid state, while the donor-acceptor structures endow the molecules with good two-photon excited emission properties. The fluorescent organic nanoprobes exhibit good water dispersibility, low cytotoxicity, superior resistance against photodegradation and photobleaching. Both one- and two-photon fluorescent imaging were shown in the A549 cell line. Two-photon fluorescence imaging with the fluorescent probes was demonstrated to be more effective in visualizing and distinguishing cellular details compared to conventional one-photon fluorescence imaging.
Montijn, M B; ten Hoopen, R; Fransz, P F; Oud, J L; Nanninga, N
1998-05-01
The cell cycle-dependent spatial position, morphology and activity of the four nucleolar organising regions (NORs) of the Petunia hybrida cultivar Mitchell and the inbred line V26 have been analysed. Application of the silver staining technique and fluorescence in situ hybridisation on fixed root-tip material revealed that these interspecific hybrids possess four NORs of which only those of chromosome 2 are active during interphase, which implies that the NOR activity is not of parental origin. However, at the end of mitosis, activity of all NOR regions could be detected, suggesting that the high demand for ribosomes at this stage of the cell cycle requires temporal activity of all NORs. Using actin DNA probes as markers in fluorescence in situ hybridisation experiments enabled the identification of the individual petunia chromosomes.
Fluorescence image-guided photodynamic therapy of cancer cells using a scanning fiber endoscope
NASA Astrophysics Data System (ADS)
Woldetensae, Mikias H.; Kirshenbaum, Mark R.; Kramer, Greg M.; Zhang, Liang; Seibel, Eric J.
2013-03-01
A scanning fiber endoscope (SFE) and the cancer biomarker 5-aminolevulinic acid (5-ALA) were used to fluorescently detect and destroy superficial cancerous lesions, while experimenting with different dosimetry levels for concurrent or sequential imaging and laser therapy. The 1.6-mm diameter SFE was used to fluorescently image a confluent monolayer of A549 human lung cancer cells from culture, previously administered with 5 mM solution of 5-ALA for 4 hours. Twenty hours after therapy, cell cultures were stained to distinguish between living and dead cells using a laser scanning confocal microscope. To determine relative dosimetry for photodynamic therapy (PDT), 405-nm laser illumination was varied from 1 to 5 minutes with power varying from 5 to 18 mW, chosen to compare equal amounts of energy delivered to the cell culture. The SFE produced 500-line images of fluorescence at 15 Hz using the red detection channel centered at 635 nm. The results show that PDT of A549 cancer cell monolayers using 405nm light for imaging and 5-ALAinduced PpIX therapy was possible using the same SFE system. Increased duration and power of laser illumination produced an increased area of cell death upon live/dead staining. The ultrathin and flexible SFE was able to direct PDT using wide-field fluorescence imaging of a monolayer of cultured cancer cells after uptaking 5-ALA. The correlation between light intensity and duration of PDT was measured. Increased length of exposure and decreased light intensity yields larger areas of cell death than decreased length of exposure with increased light intensity.
Dörlich, René M; Chen, Qing; Niklas Hedde, Per; Schuster, Vittoria; Hippler, Marc; Wesslowski, Janine; Davidson, Gary; Nienhaus, G Ulrich
2015-05-07
Cellular communication in multi-cellular organisms is mediated to a large extent by a multitude of cell-surface receptors that bind specific ligands. An in-depth understanding of cell signaling networks requires quantitative information on ligand-receptor interactions within living systems. In principle, fluorescence correlation spectroscopy (FCS) based methods can provide such data, but live-cell applications have proven extremely challenging. Here, we have developed an integrated dual-color dual-focus line-scanning fluorescence correlation spectroscopy (2c2f lsFCS) technique that greatly facilitates live-cell and tissue experiments. Absolute ligand and receptor concentrations and their diffusion coefficients within the cell membrane can be quantified without the need to perform additional calibration experiments. We also determine the concentration of ligands diffusing in the medium outside the cell within the same experiment by using a raster image correlation spectroscopy (RICS) based analysis. We have applied this robust technique to study the interactions of two Wnt antagonists, Dickkopf1 and Dickkopf2 (Dkk1/2), to their cognate receptor, low-density-lipoprotein-receptor related protein 6 (LRP6), in the plasma membrane of living HEK293T cells. We obtained significantly lower affinities than previously reported using in vitro studies, underscoring the need to measure such data on living cells or tissues.
NASA Astrophysics Data System (ADS)
Tyagi, Prateek; Tyagi, Monika; Agrawal, Swati; Chandra, Sulekh; Ojha, Himanshu; Pathak, Mallika
2017-01-01
Two novel Schiff base ligands H2L1 and H2L2 have been synthesized by condensation reaction of amine derivative of 1,2,4-triazole moiety with 2-hydroxy-4-methoxybenzaldehyde. Co(II), Ni(II), Cu(II) and Zn(II) of the synthesized Schiff bases were prepared by using a molar ratio of ligand:metal as 1:1. The structure of the Schiff bases and synthesized metal complexes were established by 1H NMR, UV-Vis, IR, Mass spectrometry and molar conductivity. The thermal stability of the complexes was study by TGA. Fluorescence quenching mechanism of metal complexes 1-4 show that Zn(II) and Cu(II) complex binds more strongly to BSA. In DFT studies the geometries of Schiff bases and metal complexes were fully optimized with respect to the energy using the 6-31 + g(d,p) basis set. The spectral data shows that the ligands behaves as binegative tridentate. On the basis of the spectral studies, TGA and DFT data an octahedral geometry has been assigned for Co(II), Ni(II), square planar for Cu(II) and tetrahedral for Zn(II) complexes. The anticancer activity were screened against human breast cancer cell line (MCF-7) and human hepatocellular liver carcinoma cell line (Hep-G2). Result indicates that metal complexes shows increase cytotoxicity in proliferation to cell lines as compared to free ligand.
Tan, Guanghui; Li, Wenting; Cheng, Jianjun; Wang, Zhiqiang; Wei, Shuquan; Jin, Yingxue; Guo, Changhong; Qu, Fengyu
2016-11-30
Magnetic iron oxide modified pyropheophorbide-a fluorescence nanoparticles, Fe 3 O 4 @SiO 2 @APTES@PPa (FSAP), were designed as magnetically targeted photodynamic antineoplastic agents and prepared through continuous covalent chemical modification on the surface of Fe 3 O 4 nanoparticles. The properties of the intermediates and the final product were comprehensively characterized by transmission electron microscopy, powder X-ray diffraction analysis, Fourier transform infrared spectroscopy, vibrating sample magnetometry, zeta potential measurement, ultraviolet-visible absorption spectroscopy, fluorescence emission spectroscopy, and thermogravimetric analysis. In this work, we demonstrated the in vitro photodynamic therapy (PDT) of FSAP against ovarian cancer (SKOV-3) cells, which indicated that FSAP could be taken up successfully and showed low dark toxicity without irradiation, but remarkable phototoxicity after irradiation. Meanwhile, FSAP had showed good biocompatibility and low dark toxicity against normal cells in the biological experiments on mouse normal fibroblast cell lines (L929 cells). In addition, in the photochemical process of FSAP mediated photodynamic therapy, the Type-II photo-oxygenation process (generated singlet oxygen) played an important role in the induction of cell damage.
NASA Astrophysics Data System (ADS)
Hirschberg, Joseph G.; Kohen, Elli; Kohen, Cahide; Pinon, Raul
1994-02-01
Microspectrofluorometry has been used in conjunction with fluorescence micrography for metabolic control analysis in normal and genetically deficient human fibroblasts, as well as human melanoma cells. These studies point to the role of mitochondria as the `cell's policeman' with regard to metabolic control. Cytotoxic agents active on mitochondrial structure and function (i.e. anthralin, azelaic acid) produce an unleashing of extramitochondrial pathways characterized by large and out-of-control NAD(P)H transients elicited by microinjected substrates. An interesting aspect has been the demonstration of an active nuclear energy metabolism, by NAD(P)H fluorescence excited at 365 nm, which may help to link cell bioenergetics to gene expression in the eukaryotes by the use of DNA probes. The metabolic control analysis of cell bioenergetics has been extended to the pathways involved in the cell's handling of cytotoxic agents. Non invasive fluorescence equipment offers possibilities for diagnostics and therapeutics in dermatology. Structure and function studies can be carried out at considerably enhanced resolution and with on-line interpretation by introducing scanning nearfield optics microscopy (SNOM) and real-time interactive parameter experimentation control (RIPEC).
Hong, Seong Cheol; Murale, Dhiraj P; Jang, Se-Young; Haque, Md Mamunul; Seo, Minah; Lee, Seok; Woo, Deok Ha; Kwon, Junghoon; Song, Chang-Seon; Kim, Yun Kyung; Lee, Jun-Seok
2018-06-22
Avian Influenza (AI) caused an annual epidemic outbreak that led to destroying tens of millions of poultry worldwide. Current gold standard AI diagnosis method is an embryonic egg-based hemagglutination assay followed by immunoblotting or PCR sequencing to confirm subtypes. It requires, however, specialized facilities to handle egg inoculation and incubation, and the subtyping methods relied on costly reagents. Here, we demonstrated the first differential sensing approach to distinguish AI subtypes using series of cell lines and fluorescent sensor. Susceptibility of AI virus differs depending on genetic backgrounds of host cells. Thus, we examined cells from different organ origin, and the infection patterns against a panel of cells were utilized for AI virus subtyping. To quantify AI infection, we designed a highly cell-permeable fluorescent superoxide sensor to visualize infection. Though many AI monitoring strategies relied on sophisticated antibody have been extensively studied, our differential sensing strategy successfully proved discriminations of AI subtypes and demonstrated as a useful primary screening platform to monitor a large number of samples. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Femtosecond laser pulse optimization for multiphoton cytometry and control of fluorescence
NASA Astrophysics Data System (ADS)
Tkaczyk, Eric Robert
This body of work encompasses optimization of near infrared femtosecond laser pulses both for enhancement of flow cytometry as well as adaptive pulse shaping to control fluorescence. A two-photon system for in vivo flow cytometry is demonstrated, which allows noninvasive quantification of circulating cell populations in a single live mouse. We monitor fluorescently-labeled red blood cells for more than two weeks, and are also able to noninvasively measure circulation times of two distinct populations of breast cancer cells simultaneously in a single mouse. We build a custom laser excitation source in the form of an extended cavity mode-locked oscillator, which enables superior detection in whole blood or saline of cell lines expressing fluorescent proteins including the green fluorescent protein (GFP), tdTomato and mPlum. A mathematical model explains unique features of the signals. The ability to distinguish different fluorescent species is central to simultaneous measurement of multiple molecular targets in high throughput applications including the multiphoton flow cytometer. We demonstrate that two dyes which are not distinguishable to one-photon measurements can be differentiated and in fact quantified in mixture via phase-shaped two-photon excitation pulses found by a genetic algorithm. We also selectively enhance or suppress two-photon fluorescence of numerous common dyes with tailored pulse shapes. Using a multiplicative (rather than ratiometric) fitness parameter, we are able to control the fluorescence while maintaining a strong signal. With this method, we control the two-photon fluorescence of the blue fluorescent protein (BFP), which is of particular interest in investigations of protein-protein interactions, and has frustrated previous attempts of control. Implementing an acousto-optic interferometer, we use the same experimental setup to measure two-photon excitation cross-sections of dyes and prove that photon-photon interferences are the predominant mechanism of control. This research establishes the basis for molecularly tailored pulse shaping in multiphoton flow cytometry, which will advance our ability to probe the biology of circulating cells during disease progression and response to therapy.
Escherichia coli STb toxin induces apoptosis in intestinal epithelial cell lines.
Syed, H Claudia; Dubreuil, J Daniel
2012-09-01
A previous study conducted in our laboratory demonstrated that cells having internalized Escherichia coli STb toxin display apoptotic-like morphology. We therefore investigated if STb could induce programmed cell death in both a human and an animal intestinal epithelial cell lines. HRT-18 (Human Colon Tumor) and IEC-18 (Rat Ileum Epithelial Cells) cell lines were used. As STb is frequently tested in a rat model, the IEC-18 cell line was most relevant to our work. The cell lines were treated with various amounts of purified STb (nanomole range) for a period of 24 h after which cells were harvested and examined for apoptotic characteristics. Caspase-9, the initiator of mitochondrion-mediated apoptosis, and caspase-3, an effector of caspase-9, were both activated following STb intoxication of HRT-18 and IEC-18 cells whereas caspase-8, the initiator caspase of the extrinsic pathway, was not activated. For both cell lines, agarose gel electrophoresis of the cell DNA content reveals laddering of DNA, resulting from DNA fragmentation, a characteristic of apoptosis. Hoechst 33342-stained DNA of STb-treated cell lines, observed using fluorescence microscopy, revealed condensation and fragmentation of the nuclei. Apoptotic indexes calculated from fragmented nuclei of Hoechst 33342-stained DNA for HRT-18 and IEC-18 cells showed an STb dose-dependent response. Overall, these data indicate that STb toxin induces a mitochondrion-mediated caspase-dependent apoptotic pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pelz, Antje-Friederike; Weilepp, Gisela; Wieacker, Peter F
2005-01-01
Chronic myelogenous leukemia (CML) is a clonal bone marrow disease with progression from a chronic phase to an aggressive blast crisis. The cell line NALM-1 was originally established by Minowada and coworkers from the peripheral blood of a patient in CML blastic crisis. A karyotype analysis of the NALM-1 cell line was performed in the 1970s. To the best of our knowledge, this karyotype was not re-analyzed by molecular cytogenetic techniques, although this cell line is the source of many molecular investigations including expression studies. To establish this cell line as a CML control in our own laboratory, NALM-1 was analyzed by GTG banding, fluorescence in situ hybridization, and spectral karyotyping. Our results differ from the original publication of Sonta and coworkers. We describe for the first time the karyotype of the NALM-1 cell line: 44,X,-X,der(7)t(7;9;15)(q10;?;q15),der(9)t(9;9)(p24;q33 approximately q34)t(9;22)(q34;q11),der(15)t(7;9;15) (?;?;q15),der(22)t(9;22)(q34;q11).
Chumarina, Margarita; Azevedo, Carla; Bigarreau, Julie; Vignon, Clémentine; Kim, Kwang-Soo; Li, Jia-Yi; Roybon, Laurent
2017-03-01
Mouse embryonic stem cell (mESC) lines were derived by crossing heterozygous transgenic (tg) mice expressing green fluorescent protein (GFP) under the control of the rat tyrosine hydroxylase (TH) promoter, with homozygous alpha-synuclein (aSYN) mice expressing human mutant SNCA A53T under the control of the mouse Prion promoter (MoPrP), or wildtype (WT) mice. The expression of GFP and human aSYN was validated by immunocytochemistry in midbrain neuron cultures upon differentiation of mESC lines using stromal cell-derived inducing activity. These mESC lines can help to study the impact of human aSYN expression in neurons and oligodendrocytes, and also trace GFP-expressing midbrain neurons. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Argyris, Prokopios P; Wehrs, Rebecca N; García, Joaquín J; Koutlas, Ioannis G
2015-05-01
The pathogenesis of intraosseous mucoepidermoid carcinoma (IMEC) remains unknown. Coexistence with odontogenic cysts (ODC) has been reported in 32-48% of IMEC. Furthermore, prosoplastic mucous cells are often seen in the epithelial lining of ODCs. MECT1-MAML2 fusion transcripts have been identified in >66% of salivary gland MEC cases. The aim of this study was to investigate the presence of MAML2 rearrangement in ODCs featuring mucous prosoplasia. Ten cases of ODC with a mucous cell component and three cases of IMEC were evaluated using fluorescence in-situ hybridization. All cases occurred in the mandible. The ODCs exhibited a M:F ratio of 4:1 (mean age 49.2 years), while all IMECs occurred in women (mean age 68.3 years). All three IMECs demonstrated MAML2 rearrangement, in 26-61% of tumour cells. Successful hybridization was observed in nine of 10 cases of ODC. In two of these nine, there was MAML2 rearrangement in 12% and 24% of the lining epithelial cells, while three of the nine showed rearrangement in 7-8% of cells; the remaining four cases were negative. We identified MAML2 rearrangements in five of nine ODCs lined by mucus-secreting cells. This suggests that at least a subset of ODCs with mucous prosoplasia are characterized by molecular events considered diagnostic for intraosseous and extraosseous MEC. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Plank, David M.; Sussman, Mark A.
2005-06-01
Altered intracellular Ca2+ dynamics are characteristically observed in cardiomyocytes from failing hearts. Studies of Ca2+ handling in myocytes predominantly use Fluo-3 AM, a visible light excitable Ca2+ chelating fluorescent dye in conjunction with rapid line-scanning confocal microscopy. However, Fluo-3 AM does not allow for traditional ratiometric determination of intracellular Ca2+ concentration and has required the use of mathematic correction factors with values obtained from separate procedures to convert Fluo-3 AM fluorescence to appropriate Ca2+ concentrations. This study describes methodology to directly measure intracellular Ca2+ levels using inactivated, Fluo-3-AM-loaded cardiomyocytes equilibrated with Ca2+ concentration standards. Titration of Ca2+ concentration exhibits a linear relationship to increasing Fluo-3 AM fluorescence intensity. Images obtained from individual myocyte confocal scans were recorded, average pixel intensity values were calculated, and a plot is generated relating the average pixel intensity to known Ca2+ concentrations. These standard plots can be used to convert transient Ca2+ fluorescence obtained with experimental cells to Ca2+ concentrations by linear regression analysis. Standards are determined on the same microscope used for acquisition of unknown Ca2+ concentrations, simplifying data interpretation and assuring accuracy of conversion values. This procedure eliminates additional equipment, ratiometric imaging, and mathematic correction factors and should be useful to investigators requiring a straightforward method for measuring Ca2+ concentrations in live cells using Ca2+-chelating dyes exhibiting variable fluorescence intensity.
Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo.
Krasieva, Tatiana B; Stringari, Chiara; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L; Gratton, Enrico; Tromberg, Bruce J
2013-03-01
Changes in the amounts of cellular eumelanin and pheomelanin have been associated with carcinogenesis. The goal of this work is to develop methods based on two-photon-excited-fluorescence (TPEF) for measuring relative concentrations of these compounds. We acquire TPEF emission spectra (λ(ex)=1000 nm) of melanin in vitro from melanoma cells, hair specimens, and in vivo from healthy volunteers. We find that the pheomelanin emission peaks at approximately 615 to 625 nm and eumelanin exhibits a broad maximum at 640 to 680 nm. Based on these data we define an optical melanin index (OMI) as the ratio of fluorescence intensities at 645 and 615 nm. The measured OMI for the MNT-1 melanoma cell line is 1.6 ± 0.22 while the Mc1R gene knockdown lines MNT-46 and MNT-62 show substantially greater pheomelanin production (OMI=0.5 ± 0.05 and 0.17 ± 0.03, respectively). The measured values are in good agreement with chemistry-based melanin extraction methods. In order to better separate melanin fluorescence from other intrinsic fluorophores, we perform fluorescence lifetime imaging microscopy of in vitro specimens. The relative concentrations of keratin, eumelanin, and pheomelanin components are resolved using a phasor approach for analyzing lifetime data. Our results suggest that a noninvasive TPEF index based on spectra and lifetime could potentially be used for rapid melanin ratio characterization both in vitro and in vivo.
Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo
NASA Astrophysics Data System (ADS)
Krasieva, Tatiana B.; Stringari, Chiara; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L.; Gratton, Enrico; Tromberg, Bruce J.
2013-03-01
Changes in the amounts of cellular eumelanin and pheomelanin have been associated with carcinogenesis. The goal of this work is to develop methods based on two-photon-excited-fluorescence (TPEF) for measuring relative concentrations of these compounds. We acquire TPEF emission spectra (λex=1000 nm) of melanin in vitro from melanoma cells, hair specimens, and in vivo from healthy volunteers. We find that the pheomelanin emission peaks at approximately 615 to 625 nm and eumelanin exhibits a broad maximum at 640 to 680 nm. Based on these data we define an optical melanin index (OMI) as the ratio of fluorescence intensities at 645 and 615 nm. The measured OMI for the MNT-1 melanoma cell line is 1.6±0.22 while the Mc1R gene knockdown lines MNT-46 and MNT-62 show substantially greater pheomelanin production (OMI=0.5±0.05 and 0.17±0.03, respectively). The measured values are in good agreement with chemistry-based melanin extraction methods. In order to better separate melanin fluorescence from other intrinsic fluorophores, we perform fluorescence lifetime imaging microscopy of in vitro specimens. The relative concentrations of keratin, eumelanin, and pheomelanin components are resolved using a phasor approach for analyzing lifetime data. Our results suggest that a noninvasive TPEF index based on spectra and lifetime could potentially be used for rapid melanin ratio characterization both in vitro and in vivo.
Two-photon excited fluorescence lifetime imaging and spectroscopy of melanins in vitro and in vivo
Krasieva, Tatiana B.; Stringari, Chiara; Liu, Feng; Sun, Chung-Ho; Kong, Yu; Balu, Mihaela; Meyskens, Frank L.; Gratton, Enrico
2012-01-01
Abstract. Changes in the amounts of cellular eumelanin and pheomelanin have been associated with carcinogenesis. The goal of this work is to develop methods based on two-photon-excited-fluorescence (TPEF) for measuring relative concentrations of these compounds. We acquire TPEF emission spectra (λex=1000 nm) of melanin in vitro from melanoma cells, hair specimens, and in vivo from healthy volunteers. We find that the pheomelanin emission peaks at approximately 615 to 625 nm and eumelanin exhibits a broad maximum at 640 to 680 nm. Based on these data we define an optical melanin index (OMI) as the ratio of fluorescence intensities at 645 and 615 nm. The measured OMI for the MNT-1 melanoma cell line is 1.6±0.22 while the Mc1R gene knockdown lines MNT-46 and MNT-62 show substantially greater pheomelanin production (OMI=0.5±0.05 and 0.17±0.03, respectively). The measured values are in good agreement with chemistry-based melanin extraction methods. In order to better separate melanin fluorescence from other intrinsic fluorophores, we perform fluorescence lifetime imaging microscopy of in vitro specimens. The relative concentrations of keratin, eumelanin, and pheomelanin components are resolved using a phasor approach for analyzing lifetime data. Our results suggest that a noninvasive TPEF index based on spectra and lifetime could potentially be used for rapid melanin ratio characterization both in vitro and in vivo. PMID:23235925
Wang, Haiying; Wang, Hong; Chen, Shaopei; Dzakah, Emmanuel E; Kang, Keren; Wang, Jihua; Wang, Jufang
2015-04-15
Procalcitonin (PCT) has been recognized as a biomarker in severe inflammation, infection and sepsis. PCT detection in serum requires sensitive and specific antibodies. In this study, we generated monoclonal antibodies (mAbs) and developed fluorescent immunochromatographic assay for PCT detection. Human recombinant PCT was used as immunogen. mAbs against PCT were developed and applied to fluorescent immunochromatographic assay for PCT detection in clinical samples. Out of 35 hybridoma cell lines secreting antibodies against the recombinant PCT, five sensitive and specific cell lines were selected and designated as F6, G2, C2, D2 and E5. All these antibodies have no cross reaction with calcitonin or calcitonin gene-related peptides (CGRP). After screening for pairing, mAb F6 was labeled with fluorescent microspheres and C2 was coated on a nitrocellulose membrane for immunochromatographic test. All 35 clinical samples were detected by the mAb F6-C2 test strips and the bioMérieux PCT assay. The test strips showed high specificity and sensitivity for PCT. Good correlation was observed between our immunochromatographic test strips and the bioMérieux PCT assay (R(2):0.986). These newly developed anti-PCT mAbs and fluorescent immunochromatographic assay can serve as important diagnostic tools for a fast, reliable and point-of-care testing for easy determination of PCT in serum and diagnosis of bacterial infection, inflammation or sepsis. Copyright © 2015 Elsevier B.V. All rights reserved.
Preparation and characterization of dextran nanobubbles for oxygen delivery.
Cavalli, R; Bisazza, A; Giustetto, P; Civra, A; Lembo, D; Trotta, G; Guiot, C; Trotta, M
2009-11-03
Dextran nanobubbles were prepared with a dextran shell and a perfluoropentan core in which oxygen was stored. To increase the stability polyvinylpirrolidone was also added to the formulation as stabilizing agent. Rhodamine B was used as fluorescent marker to obtain fluorescent nanobubbles. The nanobubble formulations showed sizes of about 500nm, a negative surface charge and a good capacity of loading oxygen, no hemolytic activity or toxic effect on cell lines. The fluorescent labelled nanobubbles could be internalized in Vero cells. Oxygen-filled nanobubbles were able to release oxygen in different hypoxic solutions at different time after their preparation in in vitro experiments. The oxygen release kinetics could be enhanced after nanobubble insonation with ultrasound at 2.5MHz. The oxygen-filled nanobubble formulations might be proposed for therapeutic applications in various diseases.
Li, Shenglan; Xue, Haipeng; Wu, Jianbo; Rao, Mahendra S; Kim, Dong H; Deng, Wenbin; Liu, Ying
2015-12-15
Human induced pluripotent stem cell (hiPSC) technologies are powerful tools for modeling development and disease, drug screening, and regenerative medicine. Faithful gene targeting in hiPSCs greatly facilitates these applications. We have developed a fast and precise clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) technology-based method and obtained fluorescent protein and antibiotic resistance dual knockin reporters in hiPSC lines for neurogenin2 (NEUROG2), an important proneural transcription factor. Gene targeting efficiency was greatly improved in CRISPR/Cas9-mediated homology directed recombination (∼ 33% correctly targeted clones) compared to conventional targeting protocol (∼ 3%) at the same locus. No off-target events were detected. In addition, taking the advantage of the versatile applications of the CRISPR/Cas9 system, we designed transactivation components to transiently induce NEUROG2 expression, which helps identify transcription factor binding sites and trans-regulation regions of human NEUROG2. The strategy of using CRISPR/Cas9 genome editing coupled with fluorescence-activated cell sorting of neural progenitor cells in a knockin lineage hiPSC reporter platform might be broadly applicable in other stem cell derivatives and subpopulations.
NASA Astrophysics Data System (ADS)
Polverino, Arianna; Longo, Angela; Donizetti, Aldo; Drongitis, Denise; Frucci, Maria; Schiavo, Loredana; Carotenuto, Gianfranco; Nicolais, Luigi; Piscopo, Marina; Vitale, Emilia; Fucci, Laura
2014-07-01
While nanomedicine has an enormous potential to improve the precision of specific therapy, the ability to efficiently deliver these materials to regions of disease in vivo remains limited. In this study, we describe analyses of (AuNPs)-mmi cellular intake via fluorescence microscopy and its effects on H3K4 and H3K9 histone dimethylation. Specifically, we studied the level of H3K4 dimethylation in serving the role of an epigenetic marker of euchromatin, and of H3K9 dimethylation as a marker of transcriptional repression in four different cell lines. We analyzed histone di-methyl-H3K4 and di-methyl-H3K9 using either variable concentrations of nanoparticles or variable time points after cellular uptake. The observed methylation effects decreased consistently with decreasing (AuNPs)-mmi concentrations. Fluorescent microscopy and a binarization algorithm based on a thresholding process with RGB input images demonstrated the continued presence of (AuNPs)-mmi in cells at the lowest concentration used. Furthermore, our results show that the treated cell line used is able to rescue the untreated cell phenotype.
Li, Shenglan; Xue, Haipeng; Wu, Jianbo; Rao, Mahendra S.; Kim, Dong H.; Deng, Wenbin
2015-01-01
Human induced pluripotent stem cell (hiPSC) technologies are powerful tools for modeling development and disease, drug screening, and regenerative medicine. Faithful gene targeting in hiPSCs greatly facilitates these applications. We have developed a fast and precise clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR associated protein 9 (Cas9) technology-based method and obtained fluorescent protein and antibiotic resistance dual knockin reporters in hiPSC lines for neurogenin2 (NEUROG2), an important proneural transcription factor. Gene targeting efficiency was greatly improved in CRISPR/Cas9-mediated homology directed recombination (∼33% correctly targeted clones) compared to conventional targeting protocol (∼3%) at the same locus. No off-target events were detected. In addition, taking the advantage of the versatile applications of the CRISPR/Cas9 system, we designed transactivation components to transiently induce NEUROG2 expression, which helps identify transcription factor binding sites and trans-regulation regions of human NEUROG2. The strategy of using CRISPR/Cas9 genome editing coupled with fluorescence-activated cell sorting of neural progenitor cells in a knockin lineage hiPSC reporter platform might be broadly applicable in other stem cell derivatives and subpopulations. PMID:26414932
Establishment of optimized MDCK cell lines for reliable efflux transport studies.
Gartzke, Dominik; Fricker, Gert
2014-04-01
Madin-Darby canine kidney (MDCK) cells transfected with human MDR1 gene (MDCK-MDR1) encoding for P-glycoprotein (hPgp, ABCB1) are widely used for transport studies to identify drug candidates as substrates of this efflux protein. Therefore, it is necessary to rely on constant and comparable expression levels of Pgp to avoid false negative or positive results. We generated a cell line with homogenously high and stable expression of hPgp through sorting single clones from a MDCK-MDR1 cell pool using fluorescence-activated cell sorting (FACS). To obtain control cell lines for evaluation of cross-interactions with endogenous canine Pgp (cPgp) wild-type cells were sorted with a low expression pattern of cPgp in comparison with the MDCK-MDR1. Expression of other transporters was also characterized in both cell lines by quantitative real-time PCR and Western blot. Pgp function was investigated applying the Calcein-AM assay as well as bidirectional transport assays using (3) H-Digoxin, (3) H-Vinblastine, and (3) H-Quinidine as substrates. Generated MDCK-MDR1 cell lines showed high expression of hPgp. Control MDCK-WT cells were optimized in showing a comparable expression level of cPgp in comparison with MDCK-MDR1 cell lines. Generated cell lines showed higher and more selective Pgp transport compared with parental cells. Therefore, they provide a significant improvement in the performance of efflux studies yielding more reliable results. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
Tao, Yong; Ou, Yunsheng; Yin, Hang; Chen, Yanyang; Zhong, Shenxi; Gao, Yongjian; Zhao, Zenghui; He, Bin; Huang, Qiu; Deng, Qianxing
2017-11-01
The present study was performed to establish and characterize new human osteosarcoma cell lines resistant to pyropheophorbide-α methyl ester‑mediated photodynamic therapy (MPPa-PDT). MPPa-PDT-resistant cells are isolated from the human osteosarcoma MG63 and HOS cell lines and two resistant populations were finally acquired, including MG63/PDT and HOS/PDT. Cell Counting Kit-8 (CCK-8) assay was used to determine the MPPa-PDT, cisplatin (CDDP) resistance and proliferation of MG63, MG63/PDT, HOS and HOS/PDT cells. The intracellular ROS were analyzed using DCFH-DA staining. The colony formation, invasion and migration of parental and resistant cells were compared. FCM was employed to examine the cell cycle distribution, the apoptosis rate and the proportion of CD133+ cells. The fluorescence intensity of intracellular MPPa was observed by fluorescence microscopy and quantified using microplate reader. The protein levels were assessed by western blotting (WB). Compared with two parental cells, MG63/PDT and HOS/PDT were 1.67- and 1.61-fold resistant to MPPa-PDT, respectively, and also exhibited the resistance to CDDP. FCM assays confirmed that both MG63/PDT and HOS/PDT cells treated with MPPa-PDT displayed a significantly lower apoptosis rate in comparison with their corresponding parental cells. The expression of apoptosis-related proteins (i.e. cleaved-caspase 3 and cleaved‑PARP), intracellular ROS and the antioxidant proteins (HO-1 and SOD1) in MG63/PDT and HOS/PDT cells was also lower than that in parental cells. Both MG63/PDT and HOS/PDT cells exhibited changes in proliferation, photosensitizer absorption, colony formation, invasion, migration and the cell cycle distribution as compared to MG63 and HOS cells, respectively. Compared to MG63 and HOS cells, both resistant cell lines had a higher expression of CD133, survivin, Bcl-xL, Bcl-2, MRP1, MDR1 and ABCG2, but a lower expression of Bax. The present study successfully established two resistant human osteosarcoma cell lines which are valuable to explore the resistance-related mechanisms and the approaches to overcome resistance.
Tao, Yong; Ou, Yunsheng; Yin, Hang; Chen, Yanyang; Zhong, Shenxi; Gao, Yongjian; Zhao, Zenghui; He, Bin; Huang, Qiu; Deng, Qianxing
2017-01-01
The present study was performed to establish and characterize new human osteosarcoma cell lines resistant to pyropheophorbide-α methyl ester-mediated photodynamic therapy (MPPa-PDT). MPPa-PDT-resistant cells are isolated from the human osteosarcoma MG63 and HOS cell lines and two resistant populations were finally acquired, including MG63/PDT and HOS/PDT. Cell Counting Kit-8 (CCK-8) assay was used to determine the MPPa-PDT, cisplatin (CDDP) resistance and proliferation of MG63, MG63/PDT, HOS and HOS/PDT cells. The intracellular ROS were analyzed using DCFH-DA staining. The colony formation, invasion and migration of parental and resistant cells were compared. FCM was employed to examine the cell cycle distribution, the apoptosis rate and the proportion of CD133+ cells. The fluorescence intensity of intracellular MPPa was observed by fluorescence microscopy and quantified using microplate reader. The protein levels were assessed by western blotting (WB). Compared with two parental cells, MG63/PDT and HOS/PDT were 1.67- and 1.61-fold resistant to MPPa-PDT, respectively, and also exhibited the resistance to CDDP. FCM assays confirmed that both MG63/PDT and HOS/PDT cells treated with MPPa-PDT displayed a significantly lower apoptosis rate in comparison with their corresponding parental cells. The expression of apoptosis-related proteins (i.e. cleaved-caspase 3 and cleaved-PARP), intracellular ROS and the antioxidant proteins (HO-1 and SOD1) in MG63/PDT and HOS/PDT cells was also lower than that in parental cells. Both MG63/PDT and HOS/PDT cells exhibited changes in proliferation, photosensitizer absorption, colony formation, invasion, migration and the cell cycle distribution as compared to MG63 and HOS cells, respectively. Compared to MG63 and HOS cells, both resistant cell lines had a higher expression of CD133, survivin, Bcl-xL, Bcl-2, MRP1, MDR1 and ABCG2, but a lower expression of Bax. The present study successfully established two resistant human osteosarcoma cell lines which are valuable to explore the resistance-related mechanisms and the approaches to overcome resistance. PMID:29048645
C-reactive protein specifically binds to Fcgamma receptor type I on a macrophage-like cell line.
Tron, Kyrylo; Manolov, Dimitar E; Röcker, Carlheinz; Kächele, Martin; Torzewski, Jan; Nienhaus, G Ulrich
2008-05-01
C-reactive protein (CRP) is a prototype acute-phase protein that may be intimately involved in human disease. Its cellular receptors are still under debate; the main candidates are FcR for immunoglobulin G, as CRP was shown to bind specifically to FcgammaRI and FcgammaRIIa. Using ultrasensitive confocal live-cell imaging, we have studied CRP binding to FcgammaR naturally expressed in the plasma membranes of cells from a human leukemia cell line (Mono Mac 6). These macrophage-like cells express high levels of FcgammaRI and FcgammaRII. They were shown to bind fluorescently labeled CRP with micromolar affinity, KD = (6.6 +/- 1.5) microM. CRP binding could be inhibited by pre-incubation with human but not mouse IgG and was thus FcgammaR-specific. Blocking of FcgammaRI by an FcgammaRI-specific antibody abolished CRP binding essentially completely, whereas application of antibodies against FcgammaRII did not have a noticeable effect. In fluorescence images of Mono Mac 6 cells, the intensity patterns of bound CRP were correlated with those of FcgammaRI, but not FcgammaRII. These results provide clear evidence of specific interactions between CRP and FcgammaR (predominantly FcgammaRI) naturally expressed on macrophage-like cells.
Tsuji, Atsushi B.; Sudo, Hitomi; Sugyo, Aya; Furukawa, Takako; Ukai, Yoshinori; Kurosawa, Yoshikazu; Saga, Tsuneo
2016-01-01
To explore suitable imaging probes for early and specific detection of pancreatic cancer, we demonstrated that α6β4 integrin is a good target and employed single-photon emission computed tomography (SPECT) or near-infrared (NIR) imaging for immunotargeting. Expression levels of α6β4 were examined by Western blotting and flow cytometry in certain human pancreatic cancer cell lines. The human cell line BxPC-3 was used for α6β4-positive and a mouse cell line, A4, was used for negative counterpart. We labeled antibody against α6β4 with Indium-111 (111In) or indocyanine green (ICG). After injection of 111In-labeled probe to tumor-bearing mice, biodistribution, SPECT, autoradiography (ARG), and immunohistochemical (IHC) studies were conducted. After administration of ICG-labeled probe, in vivo and ex vivo NIR imaging and fluorescence microscopy of tumors were performed. BxPC-3 tumor showed a higher radioligand binding in SPECT and higher fluorescence intensity as well as a delay in the probe washout in NIR imaging when compared to A4 tumor. The biodistribution profile of 111In-labeled probe, ARG, and IHC confirmed the α6β4 specific binding of the probe. Here, we propose that α6β4 is a desirable target for the diagnosis of pancreatic cancer and that it could be detected by radionuclide imaging and NIR imaging using a radiolabeled or ICG-labeled α6β4 antibody. PMID:27030400
NASA Astrophysics Data System (ADS)
Taylor, Robert M.; Huber, Dale L.; Monson, Todd C.; Ali, Abdul-Mehdi S.; Bisoffi, Marco; Sillerud, Laurel O.
2011-10-01
Superparamagnetic iron oxide nanoparticles (SPIONs) are the most common type of contrast agents used in contrast agent-enhanced magnetic resonance imaging (MRI). Still, there is a great deal of room for improvement, and nanoparticles with increased MRI relaxivities are needed to increase the contrast enhancement in MRI applied to various medical conditions including cancer. We report the synthesis of superparamagnetic iron platinum nanoparticles (SIPPs) and subsequent encapsulation using PEGylated phospholipids to create stealth immunomicelles (DSPE-SIPPs) that can be specifically targeted to human prostate cancer cell lines and detected using both MRI and fluorescence imaging. SIPP cores and DSPE-SIPPs were 8.5 ± 1.6 nm and 42.9 ± 8.2 nm in diameter, respectively, and the SIPPs had a magnetic moment of 120 A m2/kg iron. J591, a monoclonal antibody against prostate specific membrane antigen (PSMA), was conjugated to the DSPE-SIPPs (J591-DSPE-SIPPs), and specific targeting of J591-DSPE-SIPPs to PSMA-expressing human prostate cancer cell lines was demonstrated using fluorescence confocal microscopy. The transverse relaxivity of the DSPE-SIPPs, measured at 4.7 Tesla, was 300.6 ± 8.5 s-1 mM-1, which is 13-fold better than commercially available SPIONs (23.8 ± 6.9 s-1 mM-1) and 3-fold better than reported relaxivities for Feridex® and Resovist®. Our data suggest that J591-DSPE-SIPPs specifically target human prostate cancer cells in vitro, are superior contrast agents in T 2-weighted MRI, and can be detected using fluorescence imaging. To our knowledge, this is the first report on the synthesis of multifunctional SIPP micelles and using SIPPs for the specific detection of prostate cancer.
Establishment and characterization of a novel dedifferentiated liposarcoma cell line, NDDLS-1.
Ariizumi, Takashi; Ogose, Akira; Kawashima, Hiroyuki; Hotta, Tetsuo; Li, Guidong; Xu, Yongjun; Hirose, Takanori; Endo, Naoto
2011-08-01
We established a dedifferentiated liposarcoma cell line (NDDLS-1) that produces interleukin-6 (IL-6) and granulocyte-colony stimulating factor (G-CSF). The parental tumor showed high leukemoid reactions. The NDDLS-1 cell line was established from a pleural effusion associated with a lung metastasis. Pleomorphic tumor cells arranged in a haphazard growth pattern were seen in xenograft tumors. Numerous inflammatory cells including neutrophils or eosinophils were present throughout the tumor cells. This finding resembled the dedifferentiated area of the parental tumor. The mice bearing NDDLS-1 showed marked leukocytosis. In addition, the NDDLS-1 cells expressed IL-6 and G-CSF at both the mRNA and protein levels, while the NDDLS-1 cells produced near normal levels of tumor necrosis factor alpha (TNF-α). In the cytogenetic analysis, both the parental tumor and the NDDLS-1 cells showed a ring or giant marker chromosomes. The NDDLS-1 cell line demonstrated the amplification and expression of both MDM2 and CDK4 by fluorescence in situ hybridization and immunohistochemical analysis. The NDDLS-1 cell line is consistent with the parental dedifferentiated liposarcoma, and it should therefore be useful for further investigations of human dedifferentiated liposarcomas. © 2011 The Authors. Pathology International © 2011 Japanese Society of Pathology and Blackwell Publishing Asia Pty Ltd.
Dharmu, Indra; Ramamurty, N; Kannan, Ramalingam; Babu, Mary
2007-01-01
The hemolymph-derived achatinin(H) (lectin) from Achatina fulica showed a marked cytotoxic effect on MCF7, a human mammary carcinoma cell line. IC(50) values as measured by the 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide assay for achatinin(H) ranged from 6 to 10 microg/ml in the MCF7 cells. MCF7 cells showed significant morphological changes leading to cell death. The above cell death was observed after 48 h of treatment with 8 microg/ml when compared to untreated cells. Alterations in the tumor marker enzymes, as well as in antioxidant enzymes, were observed after achatinin(H) treatment. The specificity and purity of the achatinin(H) was confirmed by the Western blot assay. Achatinin(H) binding to MCF7 cells was detected by anti-achatinin(H), and visualization of the achatinin(H) binding sites on confluent MCF7 cells was confirmed by flourescein isothiocyanate conjugated secondary antibody. MCF7-treated cells fluoresced, indicating the presence of achatinin(H) binding sites. Fluorescence-activated cell sorting analysis of the cell cycle showed a significant increase in S-phase in MCF7 cells after 48 h of achatinin(H) treatment. The cells were arrested in G(2)/M phase of the cell cycle after 48 h with significant changes in cell viability. Cellular damage was confirmed by agarose gel electrophoresis with the characteristic appearance of a DNA streak in treated MCF7 cells indicating the ongoing apoptosis.
Photon-Counting H33D Detector for Biological Fluorescence Imaging
Michalet, X.; Siegmund, O.H.W.; Vallerga, J.V.; Jelinsky, P.; Millaud, J.E.; Weiss, S.
2010-01-01
We have developed a photon-counting High-temporal and High-spatial resolution, High-throughput 3-Dimensional detector (H33D) for biological imaging of fluorescent samples. The design is based on a 25 mm diameter S20 photocathode followed by a 3-microchannel plate stack, and a cross delay line anode. We describe the bench performance of the H33D detector, as well as preliminary imaging results obtained with fluorescent beads, quantum dots and live cells and discuss applications of future generation detectors for single-molecule imaging and high-throughput study of biomolecular interactions. PMID:20151021
Day, Richard N.; Booker, Cynthia F.; Periasamy, Ammasi
2008-01-01
The genetically encoded fluorescent proteins (FP), used in combination with Förster resonance energy transfer (FRET) microscopy, provide the tools necessary for the direct visualization of protein interactions inside living cells. Typically, the Cerulean and Venus variants of the cyan and yellow FPs are used for FRET studies, but there are limitations to their use. Here, Cerulean and the newly developed monomeric Teal FP (mTFP) are compared as FRET donors for Venus using spectral and fluorescence lifetime measurements from living cells. The results demonstrate that when compared to Cerulean, mTFP has increased brightness, optimal excitation using the standard 458-nm laser line, increased photostability, and improved spectral overlap with Venus. In addition, the two-photon excitation and fluorescence lifetime characteristics are determined for mTFP. Together, these measurements indicate that mTFP is an excellent donor fluorophore for FRET studies, and that its use may improve the detection of interactions involving proteins that are difficult to express, or that need to be produced at low levels in cells. PMID:18601527
Imaging intracellular protein dynamics by spinning disk confocal microscopy
Stehbens, Samantha; Pemble, Hayley; Murrow, Lindsay; Wittmann, Torsten
2012-01-01
The palette of fluorescent proteins has grown exponentially over the last decade, and as a result live imaging of cells expressing fluorescently tagged proteins is becoming more and more main stream. Spinning disk confocal microscopy (SDC) is a high speed optical sectioning technique, and a method of choice to observe and analyze intracellular fluorescent protein dynamics at high spatial and temporal resolution. In an SDC system, a rapidly rotating pinhole disk generates thousands of points of light that scan the specimen simultaneously, which allows direct capture of the confocal image with low noise scientific grade cooled charged-coupled device (CCD) cameras, and can achieve frame rates of up 1000 frames per second. In this chapter we describe important components of a state-of-the-art spinning disk system optimized for live cell microscopy, and provide a rationale for specific design choices. We also give guidelines how other imaging techniques such as total internal reflection (TIRF) microscopy or spatially controlled photoactivation can be coupled with SDC imaging, and provide a short protocol on how to generate cell lines stably expressing fluorescently tagged proteins by lentivirus-mediated transduction. PMID:22264541
Seeding arterial prostheses with vascular endothelium. The nature of the lining.
Herring, M B; Dilley, R; Jersild, R A; Boxer, L; Gardner, A; Glover, J
1979-01-01
Arterial prostheses seeded with autogenous vascular endothelium demonstrate a well-organized, cellular, inner lining. To determine the nature of the lining cells, six animals underwent replacement of the infrarenal aorta with Dacron prostheses. During the preparation of three such grafts, endothelium was scraped from the saphenous vein with a steel wool pledget, suspended in chilled Sack's solution, and mixed with blood used to preclot the graft. This suspension was omitted from the three control grafts. After six weeks, the grafts were removed, rinsed and examined. Fluorescent Factor VIII related antigen (F VIII-RA) strongly stained the lining cells. Silver nitrate Haütchen and electron microscopy preparations revealed a lining pattern characteristic of vascular endothelium. Endothelial cell-specific Weibel-Palade bodies were identified in the lining cell cytoplasm. Masson's trichrome staining revealed a relatively collagen-poor connective tissue within the seeded fabric. Transmission electron microscopy disclosed vascular smooth muscle cells between the seeded graft fabric and the lining cells. Vasa vasorum, arising from the outer capsule, penetrated the fabric to supply the inner capsules of the seeded grafts. It is concluded that the cells lining seeded canine arterial prostheses are true vascular endothelium supported by vascular smooth muscle cells, that the lining contains minimal connective tissue, and that vasa vasorum develop. Unseeded control grafts lacked these features. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10. PMID:464684
Description of the cover: The micrograph shows lipid droplets (red) accumulating at the apical surface of secretory cells (green) between oxytocin-induced contractions in a transgenic mouse line that expresses green fluorescent protein in the cytoplasm of most cells.
Lemons, Michele L
2012-01-01
Inquiry-based projects promote discovery and retention of key concepts, increase student engagement, and stimulate interest in research. Described here are a series of lab exercises within an undergraduate upper level neuroscience course that train students to design, execute and analyze their own hypothesis-driven research project. Prior to developing their own projects, students learn several research techniques including aseptic cell culture, cell line maintenance, immunocytochemistry and fluorescent microscopy. Working in groups, students choose how to use these techniques to characterize and identify a "mystery" cell line. Each lab group is given a unique cell line with either a neural, astrocyte, or Schwann cell origin. Working together, students plan and execute experiments to determine the cellular origin and other unique characteristics of their mystery cell line. Students generate testable hypotheses, design interpretable experiments, generate and analyze data, and report their findings in both oral and written formats. Students receive instructor and peer feedback throughout the entire project. In summary, these labs train students the process of scientific research. This series of lab exercises received very strong positive feedback from the students. Reflections on student feedback and plans for future improvements are discussed.
Lemons, Michele L.
2012-01-01
Inquiry-based projects promote discovery and retention of key concepts, increase student engagement, and stimulate interest in research. Described here are a series of lab exercises within an undergraduate upper level neuroscience course that train students to design, execute and analyze their own hypothesis-driven research project. Prior to developing their own projects, students learn several research techniques including aseptic cell culture, cell line maintenance, immunocytochemistry and fluorescent microscopy. Working in groups, students choose how to use these techniques to characterize and identify a “mystery” cell line. Each lab group is given a unique cell line with either a neural, astrocyte, or Schwann cell origin. Working together, students plan and execute experiments to determine the cellular origin and other unique characteristics of their mystery cell line. Students generate testable hypotheses, design interpretable experiments, generate and analyze data, and report their findings in both oral and written formats. Students receive instructor and peer feedback throughout the entire project. In summary, these labs train students the process of scientific research. This series of lab exercises received very strong positive feedback from the students. Reflections on student feedback and plans for future improvements are discussed. PMID:23504583
Yang, Sunny Y; Amor, Souheila; Laguerre, Aurélien; Wong, Judy M Y; Monchaud, David
2017-05-01
The development of quadruplex-directed molecular diagnostic and therapy rely on mechanistic insights gained at both cellular and tissue levels by fluorescence imaging. This technique is based on fluorescent reporters that label cellular DNA and RNA quadruplexes to spatiotemporally address their complex cell biology. The photophysical characteristics of quadruplex probes usually dictate the modality of cell imaging by governing the selection of the light source (lamp, LED, laser), the optical light filters and the detection modality. Here, we report the characterizations of prototype from a new generation of quadruplex dye termed G4-REP (for quadruplex-specific red-edge probe) that provides fluorescence responses regardless of the excitation wavelength and modality (owing to the versatility gained through the red-edge effect), thus allowing for diverse applications and most imaging facilities. This is demonstrated by cell images (and associated quantifications) collected through confocal and multiphoton microscopy as well as through real-time live-cell imaging system over extended period, monitoring both non-cancerous and cancerous human cell lines. Our results promote a new way of designing versatile, efficient and convenient quadruplex-reporting dyes for tracking these higher-order nucleic acid structures in living human cells. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Lu, Ying-Ying; Chen, Tong-Sheng; Wang, Xiao-Ping; Li, Li
2010-07-01
Dihydroartemisinin (DHA), a front-line antimalarial herbal compound, has been shown to possess promising anticancer activity with low toxicity. We have previously reported that DHA induced caspase-3-dependent apoptosis in human lung adenocarcinoma cells. However, the cellular target and molecular mechanism of DHA-induced apoptosis is still poorly defined. We use confocal fluorescence microscopy imaging, fluorescence resonance energy transfer, and fluorescence recovery after photobleaching techniques to explore the roles of DHA-elicited reactive oxygen species (ROS) in the DHA-induced Bcl-2 family proteins activation, mitochondrial dysfunction, caspase cascade, and cell death. Cell Counting Kit-8 assay and flow cytometry analysis showed that DHA induced ROS-mediated apoptosis. Confocal imaging analysis in a single living cell and Western blot assay showed that DHA triggered ROS-dependent Bax translocation, mitochondrial membrane depolarization, alteration of mitochondrial morphology, cytochrome c release, caspase-9, caspase-8, and caspase-3 activation, indicating the coexistence of ROS-mediated mitochondrial and death receptor pathway. Collectively, our findings demonstrate for the first time that DHA induces cell apoptosis by triggering ROS-mediated caspase-8/Bid activation and the mitochondrial pathway, which provides some novel insights into the application of DHA as a potential anticancer drug and a new therapeutic strategy by targeting ROS signaling in lung adenocarcinoma therapy in the future.
Eady, J. J.; Orta, T.; Dennis, M. F.; Stratford, M. R.; Peacock, J. H.
1995-01-01
Large fluctuations in glutathione content were observed on a daily basis using the Tietze enzyme recycling assay in a panel of six human cell lines of varying radiosensitivity. Glutathione content tended to increase to a maximum during exponential cell proliferation, and then decreased at different rates as the cells approached plateau phase. By reference to high-performance liquid chromatography and flow cytometry of the fluorescent bimane derivative we were able to verify that these changes were real. However, the Tietze assay was occasionally unable to detect glutathione in two of our cell lines (MGH-U1 and AT5BIVA), although the other methods indicated its presence. The existence of an inhibitory activity responsible for these anomalies was confirmed through spiking our samples with known amounts of glutathione. We were unable to detect a direct relationship between cellular glutathione concentration and aerobic radiosensitivity in our panel of cell lines. PMID:7577452
Roberts, I; Gordon, A; Wang, R; Pritchard-Jones, K; Shipley, J; Coleman, N
2001-01-01
Rhabdomyosarcoma in children is a "small round blue cell tumour" that displays skeletal muscle differentiation. Two main histological variants are recognised, alveolar (ARMS) and embryonal (ERMS) rhabdomyosarcoma. Whereas consistent chromosome translocations characteristic of ARMS have been reported, no such cytogenetic abnormality has yet been described in ERMS. We have used multiple colour chromosome painting to obtain composite karyotypes for five ERMS cell lines and one PAX-FOXO1A fusion gene negative ARMS. The cell lines were assessed by spectral karyotyping (SKY), tailored multi-fluorophore fluorescence in situ hybridisation (M-FISH) using series of seven colour paint sets generated to examine specific abnormalities, and comparative genomic hybridisation (CGH). This approach enabled us to obtain karyotypes of the cell lines in greater detail than previously possible. Several recurring cytogenetic abnormalities were demonstrated, including translocations involving chromosomes 1 and 15 and chromosomes 2 and 15, in 4/6 and 2/6 cell lines respectively. All six cell lines demonstrated abnormalities of chromosome 15. Translocations between chromosomes 1 and 15 have previously been recorded in two primary cases of ERMS by conventional cytogenetics. Analysis of the translocation breakpoints may suggest mechanisms of ERMS tumourigenesis and may enable the development of novel approaches to the clinical management of this tumour. Copyright 2002 S. Karger AG, Basel
Kimura, Wataru; Sharkar, Mohammad Tofael Kabir; Sultana, Nishat; Islam, Mohammod Johirul; Uezato, Tadayoshi; Miura, Naoyuki
2013-06-01
Thymus development is a complicated process that includes highly dynamic morphological changes and reciprocal tissue interactions between endoderm-derived epithelial cells of the anterior foregut and neural crest-derived mesenchymal cells. We generated and characterized a Tbx1-AmCyan1 reporter transgenic mouse to visualize thymus precursor cells during early embryonic development. In transgenic embryos, AmCyan1 fluorescence was specifically detected in the endoderm of the developing 3rd and 4th pharyngeal pouches and later in thymus epithelium until E14.5. Cells expressing AmCyan1 that were isolated based on AmCyan1 fluorescence expressed endodermal, thymic, and parathyroid markers, but they did not express neural crest or endothelial markers; these findings indicated that this transgenic mouse strain could be used to collect thymic or parathyroid precursor cells or both. We also showed that in nude mice, which exhibit defects in thymus development, the thymus precursors were clearly labeled with AmCyan1. In summary, these AmCyan1-fluorescent transgenic mice are useful for investigating early thymus development.
Zhang, Qi-Ya; Ruan, Hong-Mei; Li, Zhen-Qiu; Yuan, Xiu-Ping; Gui, Jian-Fang
2003-12-03
The causative agent of lymphocystis disease that frequently occurs in cultured flounder Paralichthys olivaceus in China is lymphocystis virus (LV). In this study, 13 fish cell lines were tested for their susceptibility to LV. Of these, 2 cell lines derived from the freshwater grass carp Ctenopharyngodon idellus proved susceptible to the LV, and 1 cell line, GCO (grass carp ovary), was therefore used to replicate and propagate the virus. An obvious cytopathic effect (CPE) was first observed in cell monolayers at 1 d post-inoculation, and at 3 d this had extended to about 75% of the cell monolayer. However, no further CPE extension was observed after 4 d. Cytopathic characteristics induced by the LV were detected by Giemsa staining and fluorescence microscopic observation with Hoechst 33258 staining. The propagated virus particles were also observed by electron microscopy. Ultrastructure analysis revealed several distinct cellular changes, such as chromatin compaction and margination, vesicle formation, cell-surface convolution, nuclear fragmentation and the occurrence of characteristic 'blebs' and cell fusion. This study provides a detailed report of LV infection and propagation in a freshwater fish cell line, and presents direct electron microscopy evidence for propagation of the virus in infected cells. A possible process by which the CPEs are controlled is suggested.
Gallavardin, Thibault; Maurin, Mathieu; Marotte, Sophie; Simon, Timea; Gabudean, Ana-Maria; Bretonnière, Yann; Lindgren, Mikael; Lerouge, Frédéric; Baldeck, Patrick L; Stéphan, Olivier; Leverrier, Yann; Marvel, Jacqueline; Parola, Stéphane; Maury, Olivier; Andraud, Chantal
2011-07-01
The synthesis and photophysical properties of two lipophilic quadrupolar chromophores featuring anthracenyl (1) or dibromobenzene (2) were described. These two chromophores combined significant two-photon absorption cross-sections with high fluorescence quantum yield for 1 and improved singlet oxygen generation efficiency for 2, in organic solvents. The use of Pluronic nanoparticles allowed a simple and straightforward introduction of these lipophilic chromophores into biological cell media. Their internal distribution in various cell lines was studied using fluorescence microscopy and flow-cytometry following a successful staining that was achieved upon 2 h of incubation. Finally, multiphoton excitation microscopy and photodynamic therapy capability of the chromophores were demonstrated by cell exposure to a 820 nm fs laser and cell death upon one photon resonant irradiation at 436 ± 10 nm, respectively.
Zhou, Yizhou; Shaw, David; Lam, Cynthia; Tsukuda, Joni; Yim, Mandy; Tang, Danming; Louie, Salina; Laird, Michael W; Snedecor, Brad; Misaghi, Shahram
2017-09-23
Establishing that a cell line was derived from a single cell progenitor and defined as clonally-derived for the production of clinical and commercial therapeutic protein drugs has been the subject of increased emphasis in cell line development (CLD). Several regulatory agencies have expressed that the prospective probability of clonality for CHO cell lines is assumed to follow the Poisson distribution based on the input cell count. The probability of obtaining monoclonal progenitors based on the Poisson distribution of all cells suggests that one round of limiting dilution may not be sufficient to assure the resulting cell lines are clonally-derived. We experimentally analyzed clonal derivatives originating from single cell cloning (SCC) via one round of limiting dilution, following our standard legacy cell line development practice. Two cell populations with stably integrated DNA spacers were mixed and subjected to SCC via limiting dilution. Cells were cultured in the presence of selection agent, screened, and ranked based on product titer. Post-SCC, the growing cell lines were screened by PCR analysis for the presence of identifying spacers. We observed that the percentage of nonclonal populations was below 9%, which is considerably lower than the determined probability based on the Poisson distribution of all cells. These results were further confirmed using fluorescence imaging of clonal derivatives originating from SCC via limiting dilution of mixed cell populations expressing GFP or RFP. Our results demonstrate that in the presence of selection agent, the Poisson distribution of all cells clearly underestimates the probability of obtaining clonally-derived cell lines. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 2017. © 2017 American Institute of Chemical Engineers.
Generation of stable cell line by using chitosan as gene delivery system.
Şalva, Emine; Turan, Suna Özbaş; Ekentok, Ceyda; Akbuğa, Jülide
2016-08-01
Establishing stable cell lines are useful tools to study the function of various genes and silence or induce the expression of a gene of interest. Nonviral gene transfer is generally preferred to generate stable cell lines in the manufacturing of recombinant proteins. In this study, we aimed to establish stable recombinant HEK-293 cell lines by transfection of chitosan complexes preparing with pDNA which contain LacZ and GFP genes. Chitosan which is a cationic polymer was used as gene delivery system. Stable HEK-293 cell lines were established by transfection of cells with complexes which were prepared with chitosan and pVitro-2 plasmid vector that contains neomycin drug resistance gene, beta gal and GFP genes. The transfection efficiency was shown with GFP expression in the cells using fluorescence microscopy. Beta gal protein expression in stable cells was examined by beta-galactosidase assay as enzymatically and X-gal staining method as histochemically. Full complexation was shown in the above of 1/1 ratio in the chitosan/pDNA complexes. The highest beta-galactosidase activity was obtained with transfection of chitosan complexes. Beta gal gene expression was 15.17 ng/ml in the stable cells generated by chitosan complexes. In addition, intensive blue color was observed depending on beta gal protein expression in the stable cell line with X-gal staining. We established a stable HEK-293 cell line that can be used for recombinant protein production or gene expression studies by transfecting the gene of interest.
Veeranarayanan, Srivani; Poulose, Aby Cheruvathoor; Mohamed, Sheikh; Aravind, Athulya; Nagaoka, Yutaka; Yoshida, Yasuhiko; Maekawa, Toru; Kumar, D Sakthi
2012-03-01
The use of fluorescent nanomaterials has gained great importance in the field of medical imaging. Many traditional imaging technologies have been reported utilizing dyes in the past. These methods face drawbacks due to non-specific accumulation and photobleaching of dyes. We studied the uptake and internalization of two different sized (30 nm and 100 nm) FITC labeled silica nanoparticles in Human umbilical vein endothelial cell line. These nanomaterials show high biocompatability and are highly photostable inside live cells for increased period of time in comparison to the dye alone. To our knowledge, we report for the first time the use of 30 nm fluorescent silica nanoparticles as efficient endothelial tags along with the well studied 100 nm particles. We also have emphasized the good photostability of these materials in live cells.
Kodama, Tatsushi; Motoi, Noriko; Ninomiya, Hironori; Sakamoto, Hiroshi; Kitada, Kunio; Tsukaguchi, Toshiyuki; Satoh, Yasuko; Nomura, Kimie; Nagano, Hiroko; Ishii, Nobuya; Terui, Yasuhito; Hatake, Kiyohiko; Ishikawa, Yuichi
2014-11-01
EML4-ALK is a driver oncogene in non-small-cell lung cancer (NSCLC) and has been developed into a promising molecular target for antitumor agents. Although EML4-ALK is reported to be formed by inversion of chromosome 2, other mechanisms of this gene fusion remain unknown. This study aimed to examine the mechanism of EML4-ALK rearrangement using a novel cell line with the EML4-ALK fusion gene. An EML4-ALK-positive cell line, termed JFCR-LC649, was established from pleomorphic carcinoma, a rare subtype of NSCLC. We investigated the chromosomal aberrations using fluorescence in situ hybridization and comparative genomic hybridization (CGH). Alectinib/CH5424802, a selective ALK inhibitor, was evaluated in the antitumor activity against JFCR-LC649 in vitro and in vivo xenograft model. We established an EML4-ALK-positive cell line, termed JFCR-LC649, derived from a patient with NSCLC and revealed that the JFCR-LC649 cells harbor variant 3 of the EML4-ALK fusion with twofold copy number gain. Interestingly, comparative genomic hybridization and metaphase-fluorescence in situ hybridization analysis showed that in addition to two normal chromosome 2, JFCR-LC649 cells contained two aberrant chromosome 2 that were fragmented and scattered. These observations provided the first evidence that EML4-ALK fusion in JFCR-LC649 cells was formed in chromosome 2 by a distinct mechanism of genomic rearrangement, termed chromothripsis. Furthermore, a selective ALK inhibitor alectinib/CH5424802 suppressed tumor growth of the JFCR-LC649 cells through inhibition of phospho-ALK in vitro and in vivo in a xenograft model. Our results suggested that chromothripsis may be a mechanism of oncogenic rearrangement of EML4-ALK. In addition, alectinib was effective against EML4-ALK-positive tumors with ALK copy number gain mediated by chromothripsis.
Direct Imaging of ER Calcium with Targeted-Esterase Induced Dye Loading (TED)
Samtleben, Samira; Jaepel, Juliane; Fecher, Caroline; Andreska, Thomas; Rehberg, Markus; Blum, Robert
2013-01-01
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca2+ indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca2+ indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca2+ indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca2+ indicator and a hydrophilic fluorescent dye/Ca2+ complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0. PMID:23685703
Direct imaging of ER calcium with targeted-esterase induced dye loading (TED).
Samtleben, Samira; Jaepel, Juliane; Fecher, Caroline; Andreska, Thomas; Rehberg, Markus; Blum, Robert
2013-05-07
Visualization of calcium dynamics is important to understand the role of calcium in cell physiology. To examine calcium dynamics, synthetic fluorescent Ca(2+) indictors have become popular. Here we demonstrate TED (= targeted-esterase induced dye loading), a method to improve the release of Ca(2+) indicator dyes in the ER lumen of different cell types. To date, TED was used in cell lines, glial cells, and neurons in vitro. TED bases on efficient, recombinant targeting of a high carboxylesterase activity to the ER lumen using vector-constructs that express Carboxylesterases (CES). The latest TED vectors contain a core element of CES2 fused to a red fluorescent protein, thus enabling simultaneous two-color imaging. The dynamics of free calcium in the ER are imaged in one color, while the corresponding ER structure appears in red. At the beginning of the procedure, cells are transduced with a lentivirus. Subsequently, the infected cells are seeded on coverslips to finally enable live cell imaging. Then, living cells are incubated with the acetoxymethyl ester (AM-ester) form of low-affinity Ca(2+) indicators, for instance Fluo5N-AM, Mag-Fluo4-AM, or Mag-Fura2-AM. The esterase activity in the ER cleaves off hydrophobic side chains from the AM form of the Ca(2+) indicator and a hydrophilic fluorescent dye/Ca(2+) complex is formed and trapped in the ER lumen. After dye loading, the cells are analyzed at an inverted confocal laser scanning microscope. Cells are continuously perfused with Ringer-like solutions and the ER calcium dynamics are directly visualized by time-lapse imaging. Calcium release from the ER is identified by a decrease in fluorescence intensity in regions of interest, whereas the refilling of the ER calcium store produces an increase in fluorescence intensity. Finally, the change in fluorescent intensity over time is determined by calculation of ΔF/F0.
Droplet Microfluidic Platform for the Determination of Single-Cell Lactate Release.
Mongersun, Amy; Smeenk, Ian; Pratx, Guillem; Asuri, Prashanth; Abbyad, Paul
2016-03-15
Cancer cells release high levels of lactate that has been correlated to increased metastasis and tumor recurrence. Single-cell measurements of lactate release can identify malignant cells and help decipher metabolic cancer pathways. We present here a novel droplet microfluidic method that allows the fast and quantitative determination of lactate release in many single cells. Using passive forces, droplets encapsulated cells are positioned in an array. The single-cell lactate release rate is determined from the increase in droplet fluorescence as the lactate is enzymatically converted to a fluorescent product. The method is used to measure the cell-to-cell variance of lactate release in K562 leukemia and U87 glioblastoma cancer cell lines and under the chemical inhibition of lactate efflux. The technique can be used in the study of cancer biology, but more broadly in cell biology, to capture the full range of stochastic variations in glycolysis activity in heterogeneous cell populations in a repeatable and high-throughput manner.
Nagata, Chisako; Miwa, Chika; Tanaka, Natsuki; Kato, Mariko; Suito, Momoe; Tsuchihira, Ayako; Sato, Yori; Segami, Shoji; Maeshima, Masayoshi
2016-05-01
The Ca(2+)-binding protein-1 (PCaP1) of Arabidopsis thaliana is a new type protein that binds to phosphatidylinositol phosphates and Ca(2+)-calmodulin complex as well as free Ca(2+). Although biochemical properties, such as binding to ligands and N-myristoylation, have been revealed, the intracellular localization, tissue and cell specificity, integrity of membrane association and physiological roles of PCaP1 are unknown. We investigated the tissue and intracellular distribution of PCaP1 by using transgenic lines expressing PCaP1 linked with a green fluorescence protein (GFP) at the carboxyl terminus of PCaP1. GFP fluorescence was obviously detected in most tissues including root, stem, leaf and flower. In these tissues, PCaP1-GFP signal was observed predominantly in the plasma membrane even under physiological stress conditions but not in other organelles. The fluorescence was detected in the cytosol when the 25-residue N-terminal sequence was deleted from PCaP1 indicating essential contribution of N-myristoylation to the plasma membrane anchoring. Fluorescence intensity of PCaP1-GFP in roots was slightly decreased in seedlings grown in medium supplemented with high concentrations of iron for 1 week and increased in those grown with copper. In stomatal guard cells, PCaP1-GFP was strictly, specifically localized to the plasma membrane at the epidermal-cell side but not at the pore side. A T-DNA insertion mutant line of PCaP1 did not show marked phenotype in a life cycle except for well growth under high CO2 conditions. However, stomata of the mutant line did not close entirely even in high osmolarity, which usually induces stomata closure. These results suggest that PCaP1 is involved in the stomatal movement, especially closure process, in leaves and response to excessive copper in root and leaf as a mineral nutrient as a physiological role.
Cai, Huawei; Singh, Ajay N; Sun, Xiankai; Peng, Fangyu
2015-01-01
To synthesize a fluorescent Her2-NLP peptide conjugate consisting of Her2/neu targeting peptide and nuclear localization sequence peptide (NLP) and assess its cellular uptake and intracellular localization for radionuclide cancer therapy targeting Her2/neu-positive circulating breast cancer cells (CBCC). Fluorescent Cy5.5 Her2-NLP peptide conjugate was synthesized by coupling a bivalent peptide sequence, which consisted of a Her2-binding peptide (NH2-GSGKCCYSL) and an NLP peptide (CGYGPKKKRKVGG) linked by a polyethylene glycol (PEG) chain with 6 repeating units, with an activated Cy5.5 ester. The conjugate was separated and purified by HPLC and then characterized by Maldi-MS. The intracellular localization of fluorescent Cy5.5 Her2-NLP peptide conjugate was assessed by fluorescent microscopic imaging using a confocal microscope after incubation of Cy5.5-Her2-NLP with Her2/neu positive breast cancer cells and Her2/neu negative control breast cancer cells, respectively. Fluorescent signals were detected in cytoplasm of Her2/neu positive breast cancer cells (SKBR-3 and BT474 cell lines), but not or little in cytoplasm of Her2/neu negative breast cancer cells (MDA-MB-231), after incubation of the breast cancer cells with Cy5.5-Her2-NLP conjugates in vitro. No fluorescent signals were detected within the nuclei of Her2/neu positive SKBR-3 and BT474 breast cancer cells, neither Her2/neu negative MDA-MB-231 cells, incubated with the Cy5.5-Her2-NLP peptide conjugates, suggesting poor nuclear localization of the Cy5.5-Her2-NLP conjugates localized within the cytoplasm after their cellular uptake and internalization by the Her2/neu positive breast cancer cells. Her2-binding peptide (KCCYSL) is a promising agent for radionuclide therapy of Her2/neu positive breast cancer using a β(-) or α emitting radionuclide, but poor nuclear localization of the Her2-NLP peptide conjugates may limit its use for eradication of Her2/neu-positive CBCC using I-125 or other Auger electron emitting radionuclide.
Two-dimensional nanosecond electric field mapping based on cell electropermeabilization.
Chen, Meng-Tse; Jiang, Chunqi; Vernier, P Thomas; Wu, Yu-Hsuan; Gundersen, Martin A
2009-11-11
Nanosecond, megavolt-per-meter electric pulses cause permeabilization of cells to small molecules, programmed cell death (apoptosis) in tumor cells, and are under evaluation as a treatment for skin cancer. We use nanoelectroporation and fluorescence imaging to construct two-dimensional maps of the electric field associated with delivery of 15 ns, 10 kV pulses to monolayers of the human prostate cancer cell line PC3 from three different electrode configurations: single-needle, five-needle, and flat-cut coaxial cable. Influx of the normally impermeant fluorescent dye YO-PRO-1 serves as a sensitive indicator of membrane permeabilization. The level of fluorescence emission after pulse exposure is proportional to the applied electric field strength. Spatial electric field distributions were compared in a plane normal to the center axis and 15-20 mum from the tip of the center electrode. Measurement results agree well with models for the three electrode arrangements evaluated in this study. This live-cell method for measuring a nanosecond pulsed electric field distribution provides an operationally meaningful calibration of electrode designs for biological applications and permits visualization of the relative sensitivities of different cell types to nanoelectropulse stimulation. PACS Codes: 87.85.M-
Cultivation of Anaplasma ovis in the HL-60 human promyelocytic leukemia cell line.
Wei, Ran; Liu, Hong-Bo; Jongejan, Frans; Jiang, Bao-Gui; Chang, Qiao-Cheng; Fu, Xue; Jiang, Jia-Fu; Jia, Na; Cao, Wu-Chun
2017-09-20
The tick-borne bacterium Anaplasma ovis is a widely distributed pathogen affecting sheep, goats and wild ruminants. Here, the HL-60 human promyelocytic leukemia cell line was used to isolate A. ovis from PCR-positive sheep and goats in Heilongjiang Province, China. Two weeks after inoculation, morulae were observed in cytoplasmic vacuoles in four different HL-60 cultures. Confocal microscopy using a Cy3-labeled A. ovis-specific probe confirmed that the HL-60 cells were infected with A. ovis. Cells from the 6th HL-60 subculture displayed positive fluorescence when incubated with A. ovis antiserum in the indirect fluorescent antibody assay. PCR amplification and sequencing of 16S rRNA, groEL, gltA, msp2 and msp4 Anaplasma genes revealed that the four A. ovis culture isolates were identical. Phylogenetic analysis showed that the sequences clustered with other A. ovis strains but could clearly be distinguished from other Anaplasma species. When the 18th subculture of infected HL-60 cells was examined by electron microscopy, lysosomes were often observed near the vacuoles. After the 24th subculture, Giemsa staining and PCR indicated that the HL-60 cells were negative for A. ovis. Although A. ovis can infect HL-60 cells for only four months, the ability of the organism to infect and multiply in HL-60 cells provides a tool to study intra-erythrocytic Anaplasma and host cell interactions.
Selection of fluorescence lidar operating parameters for SNR maximization
NASA Technical Reports Server (NTRS)
Heaps, W. S.
1981-01-01
Fluorescence lidar when applicable offers one of the most sensitive methods for measuring the concentration of trace constituents of the atmosphere. In the conduct of a fluorescence lidar experiment, a number of parameters which can be used to optimize the SNR can be controlled. In this paper the optimum division of laser pulses centered on and off the fluorescence excitation wavelength is calculated as a function of the ratio of the fluorescence signal strength to the strength of fluorescence from interfering species. For strong interference signals the time should be divided equally on and off the line. For strong fluorescence signals the time on line is proportional to the square root of the on-line off-line signal ratio. The optimization of the integration time for varying values of signal-to-background and signal-to-interference ratios, atmospheric attenuation, laser energy variations, background measurement time, and on-line off-line time division is also considered.
Diode laser-induced infrared fluorescence of water vapour
NASA Astrophysics Data System (ADS)
Li, Hejie; Hanson, Ronald K.; Jeffries, Jay B.
2004-07-01
Infrared laser-induced fluorescence (LIF) of water vapour was investigated for its potential as a spatially resolved gasdynamic diagnostic. A cw diode laser operating near 1392 nm was scanned across a single absorption transition in the ngr1 + ngr3 band of H2O in a static cell, and the resulting fluorescence signal was collected near 2.7 µm (both ngr1 and ngr3 bands). Experiments were conducted at low pressure in pure water vapour and mixtures of water vapour and N2 using a 20 mW laser in a double-pass arrangement. A simple analytical model was developed to relate LIF intensity to gas properties as a function of laser power. The spectrally resolved, single-line excitation spectrum was fitted with a Voigt profile, allowing inference of the water vapour temperature from the Doppler-broadened component of the measured fluorescence lineshape. A two-line excitation scheme was also investigated as a means of measuring temperature with reduced measurement time. From these initial measurements, we estimate that a practical sensor for atmospheric pressure applications would require a minimum of 1-2 W of laser power for two-line, fixed-wavelength temperature measurements and a minimum of about 70 W of power for scanned-wavelength measurements.
Characterization of Gastric and Neuronal Histaminergic Populations Using a Transgenic Mouse Model
Walker, Angela K.; Park, Won-Mee; Chuang, Jen-Chieh; Perello, Mario; Sakata, Ichiro; Osborne-Lawrence, Sherri; Zigman, Jeffrey M.
2013-01-01
Histamine is a potent biogenic amine that mediates numerous physiological processes throughout the body, including digestion, sleep, and immunity. It is synthesized by gastric enterochromaffin-like cells, a specific set of hypothalamic neurons, as well as a subset of white blood cells, including mast cells. Much remains to be learned about these varied histamine-producing cell populations. Here, we report the validation of a transgenic mouse line in which Cre recombinase expression has been targeted to cells expressing histidine decarboxylase (HDC), which catalyzes the rate-limiting step in the synthesis of histamine. This was achieved by crossing the HDC-Cre mouse line with Rosa26-tdTomato reporter mice, thus resulting in the expression of the fluorescent Tomato (Tmt) signal in cells containing Cre recombinase activity. As expected, the Tmt signal co-localized with HDC-immunoreactivity within the gastric mucosa and gastric submucosa and also within the tuberomamillary nucleus of the brain. HDC expression within Tmt-positive gastric cells was further confirmed by quantitative PCR analysis of mRNA isolated from highly purified populations of Tmt-positive cells obtained by fluorescent activated cell sorting (FACS). HDC expression within these FACS-separated cells was found to coincide with other markers of both ECL cells and mast cells. Gastrin expression was co-localized with HDC expression in a subset of histaminergic gastric mucosal cells. We suggest that these transgenic mice will facilitate future studies aimed at investigating the function of histamine-producing cells. PMID:23555941
Effect of Adipose-Derived Stem Cells on Head and Neck Squamous Cell Carcinoma.
Danan, Deepa; Lehman, Christine E; Mendez, Rolando E; Langford, Brian; Koors, Paul D; Dougherty, Michael I; Peirce, Shayn M; Gioeli, Daniel G; Jameson, Mark J
2018-05-01
Objective Patients with head and neck squamous cell carcinoma (HNSCC) have significant wound-healing difficulties. While adipose-derived stem cells (ASCs) facilitate wound healing, ASCs may accelerate recurrence when applied to a cancer field. This study evaluates the impact of ASCs on HNSCC cell lines in vitro and in vivo. Study Design In vitro experiments using HNSCC cell lines and in vivo mouse experiments. Setting Basic science laboratory. Subjects and Methods Impact of ASCs on in vitro proliferation, survival, and migration was assessed using 8 HNSCC cell lines. One cell line was used in a mouse orthotopic xenograft model to evaluate in vivo tumor growth in the presence and absence of ASCs. Results Addition of ASCs did not increase the number of HNSCC cells. In clonogenic assays to assess cell survival, addition of ASCs increased colony formation only in SCC9 cells (maximal effect 2.3-fold, P < .02) but not in other HNSCC cell lines. In scratch assays to assess migration, fluorescently tagged ASCs did not migrate appreciably and did not increase the rate of wound closure in HNSCC cell lines. Addition of ASCs to HNSCC xenografts did not increase tumor growth. Conclusion Using multiple in vitro and in vivo approaches, ASCs did not significantly stimulate HNSCC cell proliferation or migration and increased survival in only a single cell line. These findings preliminarily suggest that the use of ASCs may be safe in the setting of HNSCC but that further investigation on the therapeutic use of ASCs in the setting of HNSCC is needed.
Self-assembled Targeting of Cancer Cells by Iron(III)-doped, Silica Nanoparticles.
Mitchell, K K Pohaku; Sandoval, S; Cortes-Mateos, M J; Alfaro, J G; Kummel, A C; Trogler, W C
2014-12-07
Iron(III)-doped silica nanoshells are shown to possess an in vitro cell-receptor mediated targeting functionality for endocytosis. Compared to plain silica nanoparticles, iron enriched ones are shown to be target-specific, a property that makes them potentially better vehicles for applications, such as drug delivery and tumor imaging, by making them more selective and thereby reducing the nanoparticle dose. Iron(III) in the nanoshells can interact with endogenous transferrin, a serum protein found in mammalian cell culture media, which subsequently promotes transport of the nanoshells into cells by the transferrin receptor-mediated endocytosis pathway. The enhanced uptake of the iron(III)-doped nanoshells relative to undoped silica nanoshells by a transferrin receptor-mediated pathway was established using fluorescence and confocal microscopy in an epithelial breast cancer cell line. This process was also confirmed using fluorescence activated cell sorting (FACS) measurements that show competitive blocking of nanoparticle uptake by added holo-transferrin.
NASA Astrophysics Data System (ADS)
Zitzelsberger, Horst; Fung, Jingly; Janish, C.; McNamara, George; Bryant, P. E.; Riches, A. C.; Weier, Heinz-Ulli G.
1999-05-01
Radiocarcinogenesis is widely recognized as occupational, environmental and therapeutical hazard, but the underlying mechanisms and cellular targets have not yet been identified. We applied SKY to study chromosomal rearrangements leading to malignant transformation of irradiated thyroid epithelial cells. SKY is a recently developed technique to detect translocations involving non-homologous based on unique staining of all 24 human chromosomes by hybridization with a mixture of whole chromosome painting probes. A tuneable interferometer mounted on a fluorescence microscope in front of a CCD camera allows to record the 400 nm - 1000 nm fluorescence spectrum for each pixel in the image. After background correction, spectra recorded for each pixel are compared to reference spectra stored previously for each chromosome-specific probe. Thus, pixel spectra can be associated with specific chromosomes and displayed in 'classification' colors, which are defined so that even small translocations become readily discernible. SKY analysis was performed on several radiation-transformed cell lines. Line S48T was generated from a primary tumor of a child exposed to elevated levels of radiation following the Chernobyl nuclear accident. Subclones were generated from the human thyroid epithelial cell line (HTori-3) by exposure to gamma or alpha irradiation. SKY analysis revealed multiple translocations and, combined with G-banding, allowed the definition of targets for positional cloning of tumor related genes.
CRISPR/Cas-Mediated Knockin in Human Pluripotent Stem Cells.
Verma, Nipun; Zhu, Zengrong; Huangfu, Danwei
2017-01-01
Fluorescent reporter and epitope-tagged human pluripotent stem cells (hPSCs) greatly facilitate studies on the pluripotency and differentiation characteristics of these cells. Unfortunately traditional procedures to generate such lines are hampered by a low targeting efficiency that necessitates a lengthy process of selection followed by the removal of the selection cassette. Here we describe a procedure to generate fluorescent reporter and epitope tagged hPSCs in an efficient one-step process using the CRISPR/Cas technology. Although the method described uses our recently developed iCRISPR platform, the protocols can be adapted for general use with CRISPR/Cas or other engineered nucleases. The transfection procedures described could also be used for additional applications, such as overexpression or lineage tracing studies.
Chatelier, R C; Ashcroft, R G; Lloyd, C J; Nice, E C; Whitehead, R H; Sawyer, W H; Burgess, A W
1986-01-01
A method is developed for determining ligand-cell association parameters from a model-free analysis of data obtained with a flow cytometer. The method requires measurement of the average fluorescence per cell as a function of ligand and cell concentration. The analysis is applied to data obtained for the binding of fluoresceinated epidermal growth factor to a human epidermoid carcinoma cell line, A431. The results indicate that the growth factor binds to two classes of sites on A431 cells: 4 X 10(4) sites with a dissociation constant (KD) of less than or equal to 20 pM, and 1.5 X 10(6) sites with a KD of 3.7 nM. A derived plot of the average fluorescence per cell versus the average number of bound ligands per cell is used to construct binding isotherms for four sub-populations of A431 cells fractionated on the basis of low-angle light scatter. The four sub-populations bind the ligand with equal affinity but differ substantially in terms of the number of binding sites per cell. We also use this new analysis to critically evaluate the use of 'Fluorotrol' as a calibration standard in flow cytometry. PMID:3015587
Silver nanoparticle-induced degranulation observed with quantitative phase microscopy
NASA Astrophysics Data System (ADS)
Yang, Wenzhong; Lee, Seungrag; Lee, Jiyong; Bae, Yoonsung; Kim, Dugyoung
2010-07-01
Monitoring a degranulation process in a live mast cell is a quite important issue in immunology and pharmacology. Because the size of a granule is normally much smaller than the resolution limit of an optical microscope system, there is no direct real-time live cell imaging technique for observing degranulation processes except for fluorescence imaging techniques. In this research, we propose optical quantitative phase microscopy (QPM) as a new observation tool to study degranulation processes in a live mast cell without any fluorescence labeling. We measure the cell volumes and the cross sectional profiles (x-z plane) of an RBL-2H3 cell and a HeLa cell, before and after they are exposed to calcium ionophore A23187 and silver nanoparticles (AgNPs). We verify that the volume and the cross sectional line profile of the RBL-2H3 cell were changed significantly when it was exposed to A23187. When 50 μg/mL of AgNP is used instead of A23187, the measurements of cell volume and cross sectional profiles indicate that RBL-2H3 cells also follow degranulation processes. Degranulation processes for these cells are verified by monitoring the increase of intracellular calcium ([Ca2+]i) and histamine with fluorescent methods.
Goswami, M; Sharma, B S; Tripathi, A K; Yadav, Kamalendra; Bahuguna, S N; Nagpure, N S; Lakra, W S; Jena, J K
2012-05-25
Puntius (Tor) chelynoides, commonly known as dark mahseer, is a commercially important coldwater fish species which inhabits fast-flowing hill-streams of India and Nepal. Cell culture systems were developed from eye, fin, heart and swim bladder tissues of P. chelynoides using explant method. The cell culture system developed from eye has been maintained towards a continuous cell line designated as PCE. The cells were grown in 25cm(2) tissue culture flasks with Leibovitz' L-15 media supplemented with 20 % fetal bovine serum (FBS) at 24°C. The PCE cell line consists of predominantly fibroblast-like cells and showed high plating efficiency. The monolayer formed from the fin and heart explants were comprised of epithelial as well as fibroblast-like cells, a prominent and rhythmic heartbeat was also observed in heart explants. Monolayer formed from swim bladder explants showed the morphology of fibroblast-like cells. All the cells from different tissues are able to grow at an optimum temperature of 24°C and growth rate increased as the FBS concentration increased. The PCE cell line was characterized using amplification of mitochondrial cytochrome oxidase subunit I (COI) & 16S rRNA genes which confirmed that the cell line originated from P. chelynoides. Cytogenetic analysis of PCE cell line and cells from fin revealed a diploid count of 100 chromosomes. Upon transfection with pEGFP-C1 plasmid, bright fluorescent signals were observed, suggesting that this cell line can be used for transgenic and genetic manipulation studies. Further, genotoxicity assessment of PCE cells illustrated the utility of this cell line as an in vitro model for aquatic toxicological studies. The PCE cell line was successfully cryopreserved and revived at different passage levels. The cell line and culture systems are being maintained to develop continuous cell lines for further studies. Copyright © 2012 Elsevier B.V. All rights reserved.
Fluorescently labeled therapeutic antibodies for detection of microscopic melanoma
Day, Kristine E.; Beck, Lauren N.; Deep, Nicholas L.; Kovar, Joy; Zinn, Kurt R; Rosenthal, Eben L.
2013-01-01
Objective Detection of microscopic disease during surgical resection of melanoma remains a significant challenge. To assess real-time optical imaging for visualization of microscopic cancer, we evaluated three FDA-approved therapeutic monoclonal antibodies. Study Design Prospective, basic science Methods Melanoma cell lines (A375 and SKMEL5) were xenografted into the ears of immunodeficient mice. Bevacizumab, panitumumab, tocilizumab, or a non-specific IgG were covalently linked to a near-infrared (NIR) fluorescent probe (IRDye800CW) and systemically injected. Primary tumors were imaged and then resected under fluorescent guidance using the SPY, an NIR imaging system used in plastic and reconstructive surgeries to evaluate perfusion. Mice were also imaged with the Pearl Impulse small animal imager, an NIR imaging system designed for use with IRDye800CW. Post-resection, small tissue fragments were fluorescently imaged and presence of tumor subsequently confirmed by correlation with histology. Results All fluorescently-labeled therapeutic monoclonal antibodies could adequately delineate tumor from normal tissue based on tumor-to-background ratios (TBR) compared to IgG-IRDye800CW. On serial imaging, panitumumab achieved the highest TBRs with both SPY and Pearl (3.8 and 6.6). When used to guide resections, the antibody-dye conjugates generated TBRs in the range of 1.3-2.2 (average=1.6) using the SPY and 1.9-6.3 (average=2.7) using the Pearl. There was no significant difference amongst the antibodies with either imaging modality or cell line (one-way ANOVA). Conclusion Our data suggests that FDA approved antibodies may be suitable targeting agents for the intraoperative fluorescent detection of melanoma. Level of Evidence N/A PMID:23616260
Combustion-Derived Ultrafine Particles Transport Organic Toxicants to Target Respiratory Cells
Penn, Arthur; Murphy, Gleeson; Barker, Steven; Henk, William; Penn, Lynn
2005-01-01
Epidemiologic evidence supports associations between inhalation of fine and ultrafine ambient particulate matter [aerodynamic diameter ≤ 2.5 μm (PM2.5)] and increases in cardiovascular/respiratory morbidity and mortality. Less attention has been paid to how the physical and chemical characteristics of these particles may influence their interactions with target cells. Butadiene soot (BDS), produced during combustion of the high-volume petrochemical 1,3-butadiene, is rich in polynuclear aromatic hydrocarbons (PAHs), including known carcinogens. We conducted experiments to characterize BDS with respect to particle size distribution, assembly, PAH composition, elemental content, and interaction with respiratory epithelial cells. Freshly generated, intact BDS is primarily (> 90%) PAH-rich, metals-poor (nickel, chromium, and vanadium concentrations all < 1 ppm) PM2.5, composed of uniformly sized, solid spheres (30–50 nm) in aggregated form. Cells of a human bronchial epithelial cell line (BEAS-2B) exhibit sequential fluorescent responses—a relatively rapid (~ 30 min), bright but diffuse fluorescence followed by the slower (2–4 hr) appearance of punctate cytoplasmic fluorescence—after BDS is added to medium overlying the cells. The fluorescence is associated with PAH localization in the cells. The ultrafine BDS particles move down through the medium to the cell membrane. Fluorescent PAHs are transferred from the particle surface to the cell membrane, cross the membrane into the cytosol, and appear to accumulate in lipid vesicles. There is no evidence that BDS particles pass into the cells. The results demonstrate that uptake of airborne ultrafine particles by target cells is not necessary for transfer of toxicants from the particles to the cells. PMID:16079063
Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses.
Furusawa, Tadashi; Ohkoshi, Katsuhiro; Kimura, Koji; Matsuyama, Shuichi; Akagi, Satoshi; Kaneda, Masahiro; Ikeda, Mitsumi; Hosoe, Misa; Kizaki, Keiichiro; Tokunaga, Tomoyuki
2013-08-01
Bovine embryonic stem (ES) cells have the potential to provide significant benefits in a range of agricultural and biomedical applications. Here, we employed a combination of conventional methods using glycogen synthase kinase 3 and mitogen-activated protein kinase inhibitors to establish ES cell lines from in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) bovine embryos. Five male cell lines were established from IVF embryos, and two female and three male cell lines from SCNT blastocysts; we named these lines bovine ES cell-like cells (bESLCs). The lines exhibited dome-shaped colonies, stained positively for alkaline phosphatase, and expressed pluripotent stem cell markers such as POU5F1, SOX2, and SSEA-1. The expression levels of these markers, especially for NANOG, varied among the cell lines. A DNA methylation assay showed the POU5F1 promoter region was hypomethylated compared to fibroblast cells. An in vitro differentiation assay showed that endoderm and ectoderm marker genes, but not mesoderm markers, were upregulated in differentiating bESLCs. To examine bESLCs in later embryonic stages, we created 22 chimeric blastocysts with a male bESLC line carrying a GFP marker gene and transferred these to a recipient cow. Four chimeric embryos were subsequently retrieved on Day 13 and retransferred to two recipient cows. One living fetus was obtained at Day 62. GFP signals were not identified in fetal cells by fluorescence microscopy; however, genomic PCR analysis detected the GFP gene in major organs. Clusters of GFP-positive cells were observed in amniotic membranes, suggesting that bESLCs can be categorized as a novel type of ICM-derived cells that can potentially differentiate into epiblast and hypoblast lineages.
Fluorescence technique for on-line monitoring of state of hydrogen-producing microorganisms
Seibert, Michael [Lakewood, CO; Makarova, Valeriya [Golden, CO; Tsygankov, Anatoly A [Pushchino, RU; Rubin, Andrew B [Moscow, RU
2007-06-12
In situ fluorescence method to monitor state of sulfur-deprived algal culture's ability to produce H.sub.2 under sulfur depletion, comprising: a) providing sulfur-deprived algal culture; b) illuminating culture; c) measuring onset of H.sub.2 percentage in produced gas phase at multiple times to ascertain point immediately after anerobiosis to obtain H.sub.2 data as function of time; and d) determining any abrupt change in three in situ fluorescence parameters; i) increase in F.sub.t (steady-state level of chlorophyll fluorescence in light adapted cells); ii) decrease in F.sub.m', (maximal saturating light induced fluorescence level in light adapted cells); and iii) decrease in .DELTA.F/F.sub.m'=(F.sub.m'-F.sub.t)/F.sub.m' (calculated photochemical activity of photosystem II (PSII) signaling full reduction of plastoquinone pool between PSII and PSI, which indicates start of anaerobic conditions that induces synthesis of hydrogenase enzyme for subsequent H.sub.2 production that signal oxidation of plastoquinone pool asmain factor to regulate H.sub.2 under sulfur depletion.
Su, Fengyu; Agarwal, Shubhangi; Pan, Tingting; Qiao, Yuan; Zhang, Liqiang; Shi, Zhengwei; Kong, Xiangxing; Day, Kevin; Chen, Meiwan; Meldrum, Deirdre; Kodibagkar, Vikram D; Tian, Yanqing
2018-01-17
In this paper, we report synthesis and characterization of a novel multimodality (MRI/fluorescence) probe for pH sensing and imaging. A multifunctional polymer was derived from poly(N-(2-hydroxypropyl)methacrylamide) (PHPMA) and integrated with a naphthalimide-based-ratiometric fluorescence probe and a gadolinium-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid complex (Gd-DOTA complex). The polymer was characterized using UV-vis absorption spectrophotometry, fluorescence spectrofluorophotometry, magnetic resonance imaging (MRI), and confocal microscopy for optical and MRI-based pH sensing and cellular imaging. In vitro labeling of macrophage J774 and esophageal CP-A cell lines shows the polymer's ability to be internalized in the cells. The transverse relaxation time (T 2 ) of the polymer was observed to be pH-dependent, whereas the spin-lattice relaxation time (T 1 ) was not. The pH probe in the polymer shows a strong fluorescence-based ratiometric pH response with emission window changes, exhibiting blue emission under acidic conditions and green emission under basic conditions, respectively. This study provides new materials with multimodalities for pH sensing and imaging.
Guyotat, Jacques; Pallud, Johan; Armoiry, Xavier; Pavlov, Vladislav; Metellus, Philippe
2016-01-01
The current first-line treatment of malignant gliomas consists in surgical resection (if possible) as large as possible. The existing tools don't permit to identify the limits of tumor infiltration, which goes beyond the zone of contrast enhancement on MRI. The fluorescence-guided malignant gliomas surgery was started 15 years ago and had become a standard of care in many countries. The technique is based on fluorescent molecule revelation using the filters, positioned within the surgical microscope. The fluorophore, protoporphyrin IX (PpIX), is converted in tumoral cells from 5-aminolevulinic acid (5-ALA), given orally before surgery. Many studies have shown that the ratio of gross total resections was higher if the fluorescence technique was used. The fluorescence signal intensity is correlated to the cell density and the PpIX concentration. The current method has a very high specificity but still lower sensibility, particularly regarding the zones with poor tumoral infiltration. This book reviews the principles of the technique and the results (extent of resection and survival).
Shih, Wenting; Yamada, Soichiro
2011-12-22
Traditionally, cell migration has been studied on two-dimensional, stiff plastic surfaces. However, during important biological processes such as wound healing, tissue regeneration, and cancer metastasis, cells must navigate through complex, three-dimensional extracellular tissue. To better understand the mechanisms behind these biological processes, it is important to examine the roles of the proteins responsible for driving cell migration. Here, we outline a protocol to study the mechanisms of cell migration using the epithelial cell line (MDCK), and a three-dimensional, fibrous, self-polymerizing matrix as a model system. This optically clear extracellular matrix is easily amenable to live-cell imaging studies and better mimics the physiological, soft tissue environment. This report demonstrates a technique for directly visualizing protein localization and dynamics, and deformation of the surrounding three-dimensional matrix. Examination of protein localization and dynamics during cellular processes provides key insight into protein functions. Genetically encoded fluorescent tags provide a unique method for observing protein localization and dynamics. Using this technique, we can analyze the subcellular accumulation of key, force-generating cytoskeletal components in real-time as the cell maneuvers through the matrix. In addition, using multiple fluorescent tags with different wavelengths, we can examine the localization of multiple proteins simultaneously, thus allowing us to test, for example, whether different proteins have similar or divergent roles. Furthermore, the dynamics of fluorescently tagged proteins can be quantified using Fluorescent Recovery After Photobleaching (FRAP) analysis. This measurement assays the protein mobility and how stably bound the proteins are to the cytoskeletal network. By combining live-cell imaging with the treatment of protein function inhibitors, we can examine in real-time the changes in the distribution of proteins and morphology of migrating cells. Furthermore, we also combine live-cell imaging with the use of fluorescent tracer particles embedded within the matrix to visualize the matrix deformation during cell migration. Thus, we can visualize how a migrating cell distributes force-generating proteins, and where the traction forces are exerted to the surrounding matrix. Through these techniques, we can gain valuable insight into the roles of specific proteins and their contributions to the mechanisms of cell migration.
Enterochromaffin cells of the human gut: sensors for spices and odorants.
Braun, Thomas; Voland, Petra; Kunz, Lars; Prinz, Christian; Gratzl, Manfred
2007-05-01
Release of serotonin from mucosal enterochromaffin cells triggered by luminal substances is the key event in the regulation of gut motility and secretion. We were interested to know whether nasal olfactory receptors are also expressed in the human gut mucosa by enterochromaffin cells and whether their ligands and odorants present in spices, fragrances, detergents, and cosmetics cause serotonin release. Receptor expression was studied by the reverse-transcription polymerase chain reaction method in human mucosal enterochromaffin cells isolated by laser microdissection and in a cell line derived from human enterochromaffin cells. Activation of the cells by odorants was investigated by digital fluorescence imaging using the fluorescent Ca(2+) indicator Fluo-4. Serotonin release was measured in culture supernatants by a serotonin enzyme immunoassay and amperometry using carbon fiber microelectrodes placed on single cells. We found expression of 4 olfactory receptors in microdissected human mucosal enterochromaffin cells and in a cell line derived from human enterochromaffin cells. Ca(2+) imaging studies revealed that odorant ligands of the identified olfactory receptors cause Ca(2+) influx, elevation of intracellular free Ca(2+) levels, and, consequently, serotonin release. Our results show that odorants present in the luminal environment of the gut may stimulate serotonin release via olfactory receptors present in human enterochromaffin cells. Serotonin controls both gut motility and secretion and is implicated in pathologic conditions such as vomiting, diarrhea, and irritable bowel syndrome. Thus, olfactory receptors are potential novel targets for the treatment of gastrointestinal diseases and motility disorders.
Ng, David; Pauli, Jutta; Resch-Genger, Ute; Kühn, Enrico; Heuer, Steffen; Beisker, Wolfgang; Köster, Reinhard W.; Zitzelsberger, Horst; Caldwell, Randolph B
2014-01-01
With rare exceptions, natural evolution is an extremely slow process. One particularly striking exception in the case of protein evolution is in the natural production of antibodies. Developing B cells activate and diversify their immunoglobulin (Ig) genes by recombination, gene conversion (GC) and somatic hypermutation (SHM). Iterative cycles of hypermutation and selection continue until antibodies of high antigen binding specificity emerge (affinity maturation). The avian B cell line DT40, a cell line which is highly amenable to genetic manipulation and exhibits a high rate of targeted integration, utilizes both GC and SHM. Targeting the DT40's diversification machinery onto transgenes of interest inserted into the Ig loci and coupling selective pressure based on the desired outcome mimics evolution. Here we further demonstrate the usefulness of this platform technology by selectively pressuring a large shift in the spectral properties of the fluorescent protein eqFP615 into the highly stable and advanced optical imaging expediting fluorescent protein Amrose. The method is advantageous as it is time and cost effective and no prior knowledge of the outcome protein's structure is necessary. Amrose was evolved to have high excitation at 633 nm and excitation/emission into the far-red, which is optimal for whole-body and deep tissue imaging as we demonstrate in the zebrafish and mouse model. PMID:25192257
Schoetz, Ulrike; Deliolanis, Nikolaos C; Ng, David; Pauli, Jutta; Resch-Genger, Ute; Kühn, Enrico; Heuer, Steffen; Beisker, Wolfgang; Köster, Reinhard W; Zitzelsberger, Horst; Caldwell, Randolph B
2014-01-01
With rare exceptions, natural evolution is an extremely slow process. One particularly striking exception in the case of protein evolution is in the natural production of antibodies. Developing B cells activate and diversify their immunoglobulin (Ig) genes by recombination, gene conversion (GC) and somatic hypermutation (SHM). Iterative cycles of hypermutation and selection continue until antibodies of high antigen binding specificity emerge (affinity maturation). The avian B cell line DT40, a cell line which is highly amenable to genetic manipulation and exhibits a high rate of targeted integration, utilizes both GC and SHM. Targeting the DT40's diversification machinery onto transgenes of interest inserted into the Ig loci and coupling selective pressure based on the desired outcome mimics evolution. Here we further demonstrate the usefulness of this platform technology by selectively pressuring a large shift in the spectral properties of the fluorescent protein eqFP615 into the highly stable and advanced optical imaging expediting fluorescent protein Amrose. The method is advantageous as it is time and cost effective and no prior knowledge of the outcome protein's structure is necessary. Amrose was evolved to have high excitation at 633 nm and excitation/emission into the far-red, which is optimal for whole-body and deep tissue imaging as we demonstrate in the zebrafish and mouse model.
Alkynyl-naphthalimide Fluorophores: Gold Coordination Chemistry and Cellular Imaging Applications.
Langdon-Jones, Emily E; Lloyd, David; Hayes, Anthony J; Wainwright, Shane D; Mottram, Huw J; Coles, Simon J; Horton, Peter N; Pope, Simon J A
2015-07-06
A range of fluorescent alkynyl-naphthalimide fluorophores has been synthesized and their photophysical properties examined. The fluorescent ligands are based upon a 4-substituted 1,8-naphthalimide core and incorporate structural variations (at the 4-position) to tune the amphiphilic character: chloro (L1), 4-[2-(2-aminoethoxy)ethanol] (L2), 4-[2-(2-methoxyethoxy)ethylamino] (L3), piperidine (L4), morpholine (L5), 4-methylpiperidine (L6), and 4-piperidone ethylene ketal (L7) variants. The amino-substituted species (L2-L7) are fluorescent in the visible region at around 517-535 nm through a naphthalimide-localized intramolecular charge transfer (ICT), with appreciable Stokes' shifts of ca. 6500 cm(-1) and lifetimes up to 10.4 ns. Corresponding two-coordinate Au(I) complexes [Au(L)(PPh3)] were isolated, with X-ray structural studies revealing the expected coordination mode via the alkyne donor. The Au(I) complexes retain the visible fluorescence associated with the coordinated alkynyl-naphthalimide ligand. The ligands and complexes were investigated for their cytotoxicity across a range of cell lines (LOVO, MCF-7, A549, PC3, HEK) and their potential as cell imaging agents for HEK (human embryonic kidney) cells and Spironucleus vortens using confocal fluorescence microscopy. The images reveal that these fluorophores are highly compatible with fluorescence microscopy and show some clear intracellular localization patterns that are dependent upon the specific nature of the naphthalimide substituent.
Photoimmunotherapy of Gastric Cancer Peritoneal Carcinomatosis in a Mouse Model
Sato, Kazuhide; Choyke, Peter L.; Kobayashi, Hisataka
2014-01-01
Photoimmunotherapy (PIT) is a new cancer treatment that combines the specificity of antibodies for targeting tumors with the toxicity induced by photosensitizers after exposure to near infrared (NIR) light. We performed PIT in a model of disseminated gastric cancer peritoneal carcinomatosis and monitored efficacy with in vivo GFP fluorescence imaging. In vitro and in vivo experiments were conducted with a HER2-expressing, GFP-expressing, gastric cancer cell line (N87-GFP). A conjugate comprised of a photosensitizer, IR-700, conjugated to trastuzumab (tra-IR700), followed by NIR light was used for PIT. In vitro PIT was evaluated by measuring cytotoxicity with dead staining and a decrease in GFP fluorescence. In vivo PIT was evaluated in a disseminated peritoneal carcinomatosis model and a flank xenograft using tumor volume measurements and GFP fluorescence intensity. In vivo anti-tumor effects of PIT were confirmed by significant reductions in tumor volume (at day 15, p<0.0001 vs. control) and GFP fluorescence intensity (flank model: at day 3, PIT treated vs. control p<0.01 and peritoneal disseminated model: at day 3 PIT treated vs. control, p<0.05). Cytotoxic effects in vitro were shown to be dependent on the light dose and caused necrotic cell rupture leading to GFP release and a decrease in fluorescence intensity in vitro. Thus, loss of GFP fluorescence served as a useful biomarker of cell necrosis after PIT. PMID:25401794
Identification of plant compounds that inactivate Shiga toxin from Escherichia coli O157:H7
USDA-ARS?s Scientific Manuscript database
In the present study, we describe a simple cell-based assay for the detection of Stxs and inhibitors of Stx activity. A Vero cell line that expresses a destabilized variant (t1/2 = 2 hours) of the enhanced green fluorescent protein (d2EGFP) was used to monitor the Stx-induced inhibition of protein ...
Zigan, Lars; Trost, Johannes; Leipertz, Alfred
2016-02-20
This paper reports for the first time, to the best of our knowledge, on the simultaneous imaging of the gas-phase temperature and fuel vapor mass fraction distribution in a direct-injection spark-ignition (DISI) spray under engine-relevant conditions using tracer planar laser-induced fluorescence (TPLIF). For measurements in the spray, the fluorescence tracer 3-pentanone is added to the nonfluorescent surrogate fuel iso-octane, which is excited quasi-simultaneously by two different excimer lasers for two-line excitation LIF. The gas-phase temperature of the mixture of fuel vapor and surrounding gas and the fuel vapor mass fraction can be calculated from the two LIF signals. The measurements are conducted in a high-temperature, high-pressure injection chamber. The fluorescence calibration of the tracer was executed in a flow cell and extended significantly compared to the existing database. A detailed error analysis for both calibration and measurement is provided. Simultaneous single-shot gas-phase temperature and fuel vapor mass fraction fields are processed for the assessment of cyclic spray fluctuations.
Cell-Based Odorant Sensor Array for Odor Discrimination Based on Insect Odorant Receptors.
Termtanasombat, Maneerat; Mitsuno, Hidefumi; Misawa, Nobuo; Yamahira, Shinya; Sakurai, Takeshi; Yamaguchi, Satoshi; Nagamune, Teruyuki; Kanzaki, Ryohei
2016-07-01
The olfactory system of living organisms can accurately discriminate numerous odors by recognizing the pattern of activation of several odorant receptors (ORs). Thus, development of an odorant sensor array based on multiple ORs presents the possibility of mimicking biological odor discrimination mechanisms. Recently, we developed novel odorant sensor elements with high sensitivity and selectivity based on insect OR-expressing Sf21 cells that respond to target odorants by displaying increased fluorescence intensity. Here we introduce the development of an odorant sensor array composed of several Sf21 cell lines expressing different ORs. In this study, an array pattern of four cell lines expressing Or13a, Or56a, BmOR1, and BmOR3 was successfully created using a patterned polydimethylsiloxane film template and cell-immobilizing reagents, termed biocompatible anchor for membrane (BAM). We demonstrated that BAM could create a clear pattern of Sf21 sensor cells without impacting their odorant-sensing performance. Our sensor array showed odorant-specific response patterns toward both odorant mixtures and single odorant stimuli, allowing us to visualize the presence of 1-octen-3-ol, geosmin, bombykol, and bombykal as an increased fluorescence intensity in the region of Or13a, Or56a, BmOR1, and BmOR3 cell lines, respectively. Therefore, we successfully developed a new methodology for creating a cell-based odorant sensor array that enables us to discriminate multiple target odorants. Our method might be expanded into the development of an odorant sensor capable of detecting a large range of environmental odorants that might become a promising tool used in various applications including the study of insect semiochemicals and food contamination.
Cell surface antigens in renal tumour cells: detection by immunoluminescence and enzymatic analysis
Laube, F; Göhring, B; Sann, H; Willhardt, I
2001-01-01
Two renal cell carcinoma cell lines (49RC 43STR and 75RC 2STR) were characterized by detection of the cell surface proteins: CD44(var), intercellular adhesion molecule-1 (ICAM-1), urokinase-type plasminogen activator (uPA) and its receptor and aminopeptidase N (APN). To detect their localization the immunoluminescent technique was used. In addition, the enzyme activity of uPA and APN was investigated in cell suspensions as well as in monolayers. The latter procedure was more advantageous since the additional use of HPLC permits a single registration of the fluorescent hydrolysis-product AMC (7-amino-4-methylcoumarin) without interference by cellular autofluorescence or non-reacted fluorescent substrate. Unlike 75RC 2STR, the cell line 49RC 43STR expressed high levels of uPA and APN. Contrary to that the cell line 75RC 2STR expressed high levels of ICAM-1 and CD44(v6), whereas 49RC 43STR showed a low level of ICAM-1 and no distinct light signal with anti-CD44(v6). The uPA activity was measured directly as well as indirectly (via plasmin) with the substrate Z-Gly-Gly-Arg-AMC. Both activator and plasmin activity were inhibited by D-Val-Phe-Lys-CMK and phenylmethylsulfonyl fluoride. The anti-catalytic antibody to uPA and that to uPA receptor were found to be inhibiting the uPA activity in a concentration-dependent manner. APN activity was assayed using alanine-p-nitroanilide. Peptidase activity was effectively inhibited by 1,10-phenanthroline and partly inhibited by ethylenediamine-tetraacetic acid. © 2001 Cancer Research Campaignhttp://www.bjcancer.com PMID:11556847
NASA Astrophysics Data System (ADS)
Shiltagh, Nagham M.; Mendoza Luna, Luis G.; Watkins, Mark J.; Thornton, Stuart C.; von Haeften, Klaus
2018-01-01
A new apparatus was constructed to investigate the visible and near infrared fluorescence spectroscopy of electronically excited helium over a wide range of pressures and temperatures, covering both the gaseous and liquid phases. To achieve sufficient throughput, increased sensitivity was established by employing a micro-discharge cell and a high performance lens system that allows for a large collection solid angle. With this set-up, several thousand spectra were recorded. The atomic 3 s 1 S → 2 p 1 P and 3 s 3 S → 2 p 3 P atomic transitions showed line shifts, spectral broadening and intensity changes that were dependent in magnitude on pressure, temperature and thermodynamic phase. While in the gas phase the lines showed little dependency on the discharge cell temperature, the opposite was observed for the liquid phase, suggesting that a significant number of atoms were solvated. Triplet lines were up to a factor of 50 times stronger in intensity than the singlet lines, depending on pressure. When taking the particle density into account, this effect was stronger in the gas phase than in the liquid phase of helium. This was attributed to the recombination of He2 +, He3 + and He4 + with electrons, which is facilitated in the gas phase because of the significantly higher mobility.
Real-time fluorescence imaging of the DNA damage repair response during mitosis.
Miwa, Shinji; Yano, Shuya; Yamamoto, Mako; Matsumoto, Yasunori; Uehara, Fuminari; Hiroshima, Yukihiko; Toneri, Makoto; Murakami, Takashi; Kimura, Hiroaki; Hayashi, Katsuhiro; Yamamoto, Norio; Efimova, Elena V; Tsuchiya, Hiroyuki; Hoffman, Robert M
2015-04-01
The response to DNA damage during mitosis was visualized using real-time fluorescence imaging of focus formation by the DNA-damage repair (DDR) response protein 53BP1 linked to green fluorescent protein (GFP) (53BP1-GFP) in the MiaPaCa-2(Tet-On) pancreatic cancer cell line. To observe 53BP1-GFP foci during mitosis, MiaPaCa-2(Tet-On) 53BP1-GFP cells were imaged every 30 min by confocal microscopy. Time-lapse imaging demonstrated that 11.4 ± 2.1% of the mitotic MiaPaCa-2(Tet-On) 53BP1-GFP cells had increased focus formation over time. Non-mitotic cells did not have an increase in 53BP1-GFP focus formation over time. Some of the mitotic MiaPaCa-2(Tet-On) 53BP1-GFP cells with focus formation became apoptotic. The results of the present report suggest that DNA strand breaks occur during mitosis and undergo repair, which may cause some of the mitotic cells to enter apoptosis in a phenomenon possibly related to mitotic catastrophe. © 2014 Wiley Periodicals, Inc.
FLIM data analysis of NADH and Tryptophan autofluorescence in prostate cancer cells
NASA Astrophysics Data System (ADS)
O'Melia, Meghan J.; Wallrabe, Horst; Svindrych, Zdenek; Rehman, Shagufta; Periasamy, Ammasi
2016-03-01
Fluorescence lifetime imaging microscopy (FLIM) is one of the most sensitive techniques to measure metabolic activity in living cells, tissues and whole animals. We used two- and three-photon fluorescence excitation together with time-correlated single photon counting (TCSPC) to acquire FLIM signals from normal and prostate cancer cell lines. FLIM requires complex data fitting and analysis; we explored different ways to analyze the data to match diverse cellular morphologies. After non-linear least square fitting of the multi-photon TCSPC images by the SPCImage software (Becker & Hickl), all image data are exported and further processed in ImageJ. Photon images provide morphological, NAD(P)H signal-based autofluorescent features, for which regions of interest (ROIs) are created. Applying these ROIs to all image data parameters with a custom ImageJ macro, generates a discrete, ROI specific database. A custom Excel (Microsoft) macro further analyzes the data with charts and statistics. Applying this highly automated assay we compared normal and cancer prostate cell lines with respect to their glycolytic activity by analyzing the NAD(P)H-bound fraction (a2%), NADPH/NADH ratio and efficiency of energy transfer (E%) for Tryptophan (Trp). Our results show that this assay is able to differentiate the effects of glucose stimulation and Doxorubicin in these prostate cell lines by tracking the changes in a2% of NAD(P)H, NADPH/NADH ratio and the changes in Trp E%. The ability to isolate a large, ROI-based data set, reflecting the heterogeneous cellular environment and highlighting even subtle changes -- rather than whole cell averages - makes this assay particularly valuable.
Tilgner, Katarzyna; Atkinson, Stuart P; Yung, Sun; Golebiewska, Anna; Stojkovic, Miodrag; Moreno, Ruben; Lako, Majlinda; Armstrong, Lyle
2010-01-01
The isolation of significant numbers of human primordial germ cells at several developmental stages is important for investigations of the mechanisms by which they are able to undergo epigenetic reprogramming. Only small numbers of these cells can be obtained from embryos of appropriate developmental stages, so the differentiation of human embryonic stem cells is essential to obtain sufficient numbers of primordial germ cells to permit epigenetic examination. Despite progress in the enrichment of human primordial germ cells using fluorescence-activated cell sorting (FACS), there is still no definitive marker of the germ cell phenotype. Expression of the widely conserved RNA helicase VASA is restricted to germline cells, but in contrast to species such as Mus musculus in which reporter constructs expressing green fluorescent protein (GFP) under the control of a Vasa promoter have been developed, such reporter systems are lacking in human in vitro models. We report here the generation and characterization of human embryonic stem cell lines stably carrying a VASA-pEGFP-1 reporter construct that expresses GFP in a population of differentiating human embryonic stem cells that show expression of characteristic markers of primordial germ cells. This population shows a different pattern of chromatin modifications to those obtained by FACS enrichment of Stage Specific Antigen one expressing cells in our previous publication.
Plaza, N; Simón, D; Sierra, J; Moreno-Flores, M T
2016-01-26
Olfactory ensheathing glia (OEG) cells are known to foster axonal regeneration of central nervous system (CNS) neurons. Several lines of reversibly immortalized human OEG (ihOEG) have been previously established that enabled to develop models for their validation in vitro and in vivo. In this work, a constitutively GFP-expressing ihOEG cell line was obtained, and named Ts14-GFP. Ts14-GFP neuroregenerative ability was similar to that found for the parental line Ts14 and it can be assayed using in vivo transplantation experimental paradigms, after spinal cord or optic nerve damage. Additionally, we have engineered a low-regenerative ihOEG line, hTL2, using lentiviral transduction of the large T antigen from SV40 virus, denominated from now on Ts12. Ts12 can be used as a low regeneration control in these experiments. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Zdobnova, Tatiana; Sokolova, Evgeniya; Stremovskiy, Oleg; Karpenko, Dmitry; Telford, William; Turchin, Ilya; Balalaeva, Irina; Deyev, Sergey
2015-01-01
We have created a novel fluorescent model of a human ovarian carcinoma xenograft overexpressing receptor HER2, a promising molecular target of solid tumors. The model is based on a newly generated SKOV-kat cell line stably expressing far-red fluorescent protein Katushka. Katushka is most suitable for the in vivo imaging due to an optimal combination of high brightness and emission in the “window of tissue transparency”. The relevance of the fluorescent model for the in vivo monitoring of tumor growth and response to treatment was demonstrated using a newly created HER2-targeted recombinant immunotoxin based on the 4D5scFv antibody and a fragment of the Pseudomonas exotoxin A. PMID:26436696
NASA Astrophysics Data System (ADS)
Wu, Wei-Na; Wu, Hao; Wang, Yuan; Mao, Xian-Jie; Zhao, Xiao-Lei; Xu, Zhou-Qing; Fan, Yun-Chang; Xu, Zhi-Hong
2018-01-01
A coumarin-based sensor C1, namely 3-acetoacetylcoumarin was designed, synthesized and applied for hydrazine detection. Hydrazinolysis of the chemosensor gives a fluorescent coumarin-pyrazole product C1 - N2H4 [3-(3-methyl-1H-pyrazol-5-yl)coumarin], and thus resulting in a prominent fluorescence off-on response toward hydrazine under physiological conditions. The probe is highly selective toward hydrazine over cations, anions and other biologically/environmentally abundant analytes. The detection limit of the probe is 3.2 ppb. The sensing mechanism was supported by 1H NMR, IR, MS and DFT calculation. The application of the fluorescent probe in monitoring intracellular hydrazine in glioma cell line U251 was also demonstrated.
An automated fluorescence videomicroscopy assay for the detection of mitotic catastrophe
Rello-Varona, S; Kepp, O; Vitale, I; Michaud, M; Senovilla, L; Jemaà, M; Joza, N; Galluzzi, L; Castedo, M; Kroemer, G
2010-01-01
Mitotic catastrophe can be defined as a cell death mode that occurs during or shortly after a prolonged/aberrant mitosis, and can show apoptotic or necrotic features. However, conventional procedures for the detection of apoptosis or necrosis, including biochemical bulk assays and cytofluorometric techniques, cannot discriminate among pre-mitotic, mitotic and post-mitotic death, and hence are inappropriate to monitor mitotic catastrophe. To address this issue, we generated isogenic human colon carcinoma cell lines that differ in ploidy and p53 status, yet express similar amounts of fluorescent biosensors that allow for the visualization of chromatin (histone H2B coupled to green fluorescent protein (GFP)) and centrosomes (centrin coupled to the Discosoma striata red fluorescent protein (DsRed)). By combining high-resolution fluorescence videomicroscopy and automated image analysis, we established protocols and settings for the simultaneous assessment of ploidy, mitosis, centrosome number and cell death (which in our model system occurs mainly by apoptosis). Time-lapse videomicroscopy showed that this approach can be used for the high-throughput detection of mitotic catastrophe induced by three mechanistically distinct anti-mitotic agents (dimethylenastron (DIMEN), nocodazole (NDZ) and paclitaxel (PTX)), and – in this context – revealed an important role of p53 in the control of centrosome number. PMID:21364633
Gruhlke, Martin C. H.; Nicco, Carole; Batteux, Frederic; Slusarenko, Alan J.
2016-01-01
Garlic (Allium sativum L.) has been used as a spice and medicinal plant since ancient times. Garlic produces the thiol-reactive defence substance, allicin, upon wounding. The effects of allicin on human lung epithelium carcinoma (A549), mouse fibroblast (3T3), human umbilical vein endothelial cell (HUVEC), human colon carcinoma (HT29) and human breast cancer (MCF7) cell lines were tested. To estimate toxic effects of allicin, we used a standard MTT-test (methylthiazoltetrazolium) for cell viability and 3H-thymidine incorporation for cell proliferation. The glutathione pool was measured using monobromobimane and the formation of reactive species was identified using 2′,7′-dichlorofluoresceine-diacetate. The YO-PRO-1 iodide staining procedure was used to estimate apoptosis. Allicin reduced cell viability and cell proliferation in a concentration dependent manner. In the bimane test, it was observed that cells treated with allicin showed reduced fluorescence, suggesting glutathione oxidation. The cell lines tested differed in sensitivity to allicin in regard to viability, cell proliferation and glutathione oxidation. The 3T3 and MCF-7 cells showed a higher proportion of apoptosis compared to the other cell types. These data show that mammalian cell lines differ in their sensitivity and responses to allicin. PMID:28035949
NASA Astrophysics Data System (ADS)
Peng, Limin; Zheng, Yuan; You, Feng; Wu, Zhihao; Zou, Yuxia; Zhang, Peijun
2016-09-01
The culture of Sertoli cells has become an indispensable resource in studying spermatogenesis. A new Sertoli cell line (POSC) that consisted predominantly of fibroblast-like cells was derived from the testis of the olive flounder Paralichthys olivaceus and sub-cultured for 48 passages. Analysis of the mtDNA COI gene partial sequence confirmed that the cell line was from P. olivaceus. Cells were optimally maintained at 25°C in DMEM/F12 medium supplemented with fetal bovine serum, basic fibroblast growth factor, and epidermal growth factor. The growth curve of POSC showed a typical "S" shape. Chromosome analysis revealed that the cell line possessed the normal P. olivaceus diploid karyotype of 2n=48t. POSC expressed dmrt1 but not vasa, which was detected using RT-PCR and sequencing. Immunocytochemistry revealed that the cells exhibited the testicular Sertoli cell marker FasL. Therefore, POSC appeared to consist of testicular Sertoli cells. Bright fluorescent signals were observed after the cells were transfected with pEGFP-N3 plasmid, with the transfection efficiency reaching 10%. This research not only offers an ideal model for further gene expression and regulation studies on P. olivaceus, but also serves as valuable material in studying fish spermatogenesis, Sertoli cell-germ cell interactions, and the mechanism of growth and development of testis.
Engineering cell-fluorescent ion track hybrid detectors.
Niklas, Martin; Greilich, Steffen; Melzig, Claudius; Akselrod, Mark S; Debus, Jürgen; Jäkel, Oliver; Abdollahi, Amir
2013-06-11
The lack of sensitive biocompatible particle track detectors has so far limited parallel detection of physical energy deposition and biological response. Fluorescent nuclear track detectors (FNTDs) based on Al₂O₃:C,Mg single crystals combined with confocal laser scanning microscopy (CLSM) provide 3D information on ion tracks with a resolution limited by light diffraction. Here we report the development of next generation cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). The biocompatibility of FNTDs was tested using six different cell lines, i.e. human non-small cell lung carcinoma (A549), glioblastoma (U87), androgen independent prostate cancer (PC3), epidermoid cancer (A431) and murine (VmDk) glioma SMA-560. To evaluate cell adherence, viability and conformal coverage of the crystals different seeding densities and alternative coating with extracellular matrix (fibronectin) was tested. Carbon irradiation was performed in Bragg peak (initial 270.55 MeV u⁻¹). A series of cell compartment specific fluorescence stains including nuclear (HOECHST), membrane (Glut-1), cytoplasm (Calcein AM, CM-DiI) were tested on Cell-Fit-HDs and a single CLSM was employed to co-detect the physical (crystal) as well as the biological (cell layer) information. The FNTD provides a biocompatible surface. Among the cells tested, A549 cells formed the most uniform, viable, tightly packed epithelial like monolayer. The ion track information was not compromised in Cell-Fit-HD as compared to the FNTD alone. Neither cell coating and culturing, nor additional staining procedures affected the properties of the FNTD surface to detect ion tracks. Standard immunofluorescence and live staining procedures could be employed to co-register cell biology and ion track information. The Cell-Fit-Hybrid Detector system is a promising platform for a multitude of studies linking biological response to energy deposition at high level of optical microscopy resolution.
Generation and characterization of PDGFRα-GFPCreERT2 knock-In mouse line.
Miwa, Hiroyuki; Era, Takumi
2015-05-01
Platelet-derived growth factor (PDGF) and its receptor play an important role in embryogenesis. PDGF receptor α (PDGFRα) is expressed specifically in the embryonic day 7.5 (E7.5) mesoderm and in the E9.5 neural crest among other tissues. PDGFRα-expressing cells and their descendants are involved in the formation of various tissues. To trace PDGFRα-expressing cells in vivo, we generated a knock-in mouse line that expressed a fusion protein of green fluorescent protein (GFP), Cre recombinase (Cre), and mutated estrogen receptor ligand-binding domain (ERT2) under the control of the PDGFRα promoter. In these mice, Cre activity in PDGFRα-expressing cells could be induced by tamoxifen treatment. Taken together, our results suggest that the knock-in mouse line generated here could be useful for studying PDGFRα-expressing cells and their descendants in vivo at various stages of development. © 2015 Wiley Periodicals, Inc.
Porciani, David; Cardwell, Leah N; Tawiah, Kwaku D; Alam, Khalid K; Lange, Margaret J; Daniels, Mark A; Burke, Donald H
2018-06-11
Large RNAs and ribonucleoprotein complexes have powerful therapeutic potential, but effective cell-targeted delivery tools are limited. Aptamers that internalize into target cells can deliver siRNAs (<15 kDa, 19-21 nt/strand). We demonstrate a modular nanostructure for cellular delivery of large, functional RNA payloads (50-80 kDa, 175-250 nt) by aptamers that recognize multiple human B cell cancer lines and transferrin receptor-expressing cells. Fluorogenic RNA reporter payloads enable accelerated testing of platform designs and rapid evaluation of assembly and internalization. Modularity is demonstrated by swapping in different targeting and payload aptamers. Both modules internalize into leukemic B cell lines and remained colocalized within endosomes. Fluorescence from internalized RNA persists for ≥2 h, suggesting a sizable window for aptamer payloads to exert influence upon targeted cells. This demonstration of aptamer-mediated, cell-internalizing delivery of large RNAs with retention of functional structure raises the possibility of manipulating endosomes and cells by delivering large aptamers and regulatory RNAs.
Gallo, Juan; Cerqueira, María de Fátima; Menéndez-Miranda, Mario; Costa-Fernández, José Manuel; Diéguez, Lorena; Espiña, Begoña
2018-01-01
Carbon dots have demonstrated great potential as luminescent nanoparticles in bioapplications. Although such nanoparticles appear to exhibit low toxicity compared to other metal luminescent nanomaterials, today we know that the toxicity of carbon dots (C-dots) strongly depends on the protocol of fabrication. In this work, aqueous fluorescent C-dots have been synthesized from cinnamon, red chilli, turmeric and black pepper, by a one-pot green hydrothermal method. The synthesized C-dots were firstly characterized by means of UV–vis, fluorescence, Fourier transform infrared and Raman spectroscopy, dynamic light scattering and transmission electron microscopy. The optical performance showed an outstanding ability for imaging purposes, with quantum yields up to 43.6%. Thus, the cytotoxicity of the above mentioned spice-derived C-dots was evaluated in vitro in human glioblastoma cells (LN-229 cancer cell line) and in human kidney cells (HK-2 non-cancerous cell line). Bioimaging and viability studies were performed with different C-dot concentrations from 0.1 to 2 mg·mL−1, exhibiting a higher uptake of C-dots in the cancer cultures compared to the non-cancerous cells. Results showed that the spice-derived C-dots inhibited cell viability dose-dependently after a 24 h incubation period, displaying a higher toxicity in LN-229, than in HK-2 cells. As a control, C-dots synthesized from citric acid did not show any significant toxicity in either cancerous or non-cancerous cells, implying that the tumour cell growth inhibition properties observed in the spice-derived C-dots can be attributed to the starting material employed for their fabrication. These results evidence that functional groups in the surface of the C-dots might be responsible for the selective cytotoxicity, as suggested by the presence of piperine in the surface of black pepper C-dots analysed by ESI-QTOF-MS. PMID:29527430
Evaluation of cell toxicity and DNA and protein binding of green synthesized silver nanoparticles.
Ribeiro, A P C; Anbu, S; Alegria, E C B A; Fernandes, A R; Baptista, P V; Mendes, R; Matias, A S; Mendes, M; Guedes da Silva, M F C; Pombeiro, A J L
2018-05-01
Silver nanoparticles (AgNPs) were prepared by GREEN chemistry relying on the reduction of AgNO 3 by phytochemicals present in black tea extract. AgNPs were fully characterized by transmission electron microscopy (TEM), ultraviolet-visible spectroscopy ((UV-vis)), X-ray diffraction (XRD) and energy dispersive absorption spectroscopy (EDS). The synthesized AgNPs induced a decrease of the cell viability in a dose-dependent manner with a low IC 50 (0.5 ± 0.1 μM) for an ovarian carcinoma cell line (A2780) compared to primary human fibroblasts (IC 50 5.0 ± 0.1 μM). The DNA binding capability of CT (calf thymus) DNA was investigated using electronic absorption and fluorescence spectroscopies, circular dichroism and viscosity titration methods. Additionally, the AgNPs strongly quench the intrinsic fluorescence of BSA, as determined by synchronous fluorescence spectra. Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Rolland, J.B.; Bouchard, D.; Coll, J.; Winton, J.R.
2005-01-01
Infectious salmon anemia (ISA) is a severe disease primarily affecting commercially farmed Atlantic salmon (Salmo salar) in seawater. The disease has been reported in portions of Canada, the United Kingdom, the Faroe Islands, and the United States. Infectious salmon anemia virus (ISAV), the causative agent of ISA, has also been isolated from several asymptomatic marine and salmonid fish species. Diagnostic assays for the detection of ISAV include virus isolation in cell culture, a reverse transcriptase-PCR, an enzyme-linked immunosorbent assay, and an indirect fluorescent antibody test. Virus isolation is considered the gold standard, and 5 salmonid cell lines are known to support growth of ISAV. In this study, the relative performance of the salmon head kidney 1 (SHK-1), Atlantic salmon kidney (ASK), and CHSE-214 cell lines in detecting ISAV was evaluated using samples from both experimentally and naturally infected Atlantic salmon. Interlaboratory comparisons were conducted using a quality control-quality assurance ring test. Both the ASK and SHK-1 cell lines performed well in detecting ISAV, although the SHK-1 line was more variable in its sensitivity to infection and somewhat slower in the appearance of cytopathic effect. Relative to the SHK-1 and ASK lines, the CHSE-214 cell line performed poorly. Although the ASK line appeared to represent a good alternative to the more commonly used SHK-1 line, use of a single cell line for diagnostic assays may increase the potential for false-negative results. Thus, the SHK-1 and ASK cell lines can be used in combination to provide enhanced ability to detect ISAV.
Indovina, Paola; Collini, Maddalena; Chirico, Giuseppe; Santini, Maria Teresa
2007-02-20
Hypoxia through HRE (hypoxia-responsive element) activity in MG-63 human osteosarcoma cells grown in monolayer and as very small, three-dimensional tumor spheroids was investigated using molecular imaging techniques. MG-63 cells were stably transfected with a vector constructed with multiple copies of the HRE sequence of the human vascular endothelial growth factor (VEGF) gene and with the enhanced green fluorescent protein (EGFP) coding sequence. During hypoxia when HIF-1alpha (hypoxia-inducible factor-1alpha) is stabilized, the binding of HIF-1 to the HRE sequences of the vector allows the transcription of EGFP and the appearance of fluorescence. Transfected monolayer cells were characterized by flow cytometric analysis in response to various hypoxic conditions and HIF-1alpha expression in these cells was assessed by Western blotting. Two-photon excitation (TPE) microscopy was then used to examine both MG-63-transfected monolayer cells and spheroids at 2 and 5 days of growth in normoxic conditions. Monolayer cells reveal almost no fluorescence, whereas even very small spheroids (<100 microm) after 2 days of growth contain regions of high fluorescence. For the first time in the literature, at least to our knowledge, it is demonstrated, using highly sensitive and non-perturbing molecular imaging techniques, that three-dimensional cell organization leads to almost immediate HRE activation. This activation of the HRE sequences, which control a wide variety of genes, suggests that monolayer cells and spheroids of the MG-63 cell line have different genes activated and thus diverse functional activities.
CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation
2013-01-01
The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening. PMID:23938087
CellSegm - a MATLAB toolbox for high-throughput 3D cell segmentation.
Hodneland, Erlend; Kögel, Tanja; Frei, Dominik Michael; Gerdes, Hans-Hermann; Lundervold, Arvid
2013-08-09
: The application of fluorescence microscopy in cell biology often generates a huge amount of imaging data. Automated whole cell segmentation of such data enables the detection and analysis of individual cells, where a manual delineation is often time consuming, or practically not feasible. Furthermore, compared to manual analysis, automation normally has a higher degree of reproducibility. CellSegm, the software presented in this work, is a Matlab based command line software toolbox providing an automated whole cell segmentation of images showing surface stained cells, acquired by fluorescence microscopy. It has options for both fully automated and semi-automated cell segmentation. Major algorithmic steps are: (i) smoothing, (ii) Hessian-based ridge enhancement, (iii) marker-controlled watershed segmentation, and (iv) feature-based classfication of cell candidates. Using a wide selection of image recordings and code snippets, we demonstrate that CellSegm has the ability to detect various types of surface stained cells in 3D. After detection and outlining of individual cells, the cell candidates can be subject to software based analysis, specified and programmed by the end-user, or they can be analyzed by other software tools. A segmentation of tissue samples with appropriate characteristics is also shown to be resolvable in CellSegm. The command-line interface of CellSegm facilitates scripting of the separate tools, all implemented in Matlab, offering a high degree of flexibility and tailored workflows for the end-user. The modularity and scripting capabilities of CellSegm enable automated workflows and quantitative analysis of microscopic data, suited for high-throughput image based screening.
Sub-natural width resonances in Cs vapor confined in micrometric thickness optical cell
NASA Astrophysics Data System (ADS)
Cartaleva, S.; Krasteva, A.; Sargsyan, A.; Sarkisyan, D.; Slavov, D.; Vartanyan, T.
2013-03-01
We present here the behavior of Electromagnetically Induced Transparency (EIT), Velocity Selective Optical Pumping (VSOP) resonances and Velocity Selective Excitation (VSE) resonances observed in Cs vapor confined in а micrometric optical cell (MC) with thickness L = 6λ, λ = 852nm. For comparison of behavior of VSE resonance another conventional optical cell with thickness L=2.5 cm is used. Cells are irradiated in orthogonal to their windows directions by probe beam scanned on the Fg = 4 → Fe= 3, 4, 5 set of transitions and pump beam fixed at the Fg = 3 → Fe = 4 transition, on the D2 line of Cs. The enhanced absorption (fluorescence) narrow VSOP resonance at the closed transition transforms into reduced absorption (fluorescence) one with small increase of atomic concentration or light intensity. A striking difference appears between the VSE resonance broadening in L = 6λ and conventional L = 2.5cm cells.
SYTO probes: markers of apoptotic cell demise.
Wlodkowic, Donald; Skommer, Joanna
2007-10-01
As mechanistic studies on tumor cell death advance towards their ultimate translational goal, there is a need for specific, rapid, and high-throughput analytical tools to detect diverse cell demise modes. Patented DNA-binding SYTO probes, for example, are gaining increasing interest as easy-to-use markers of caspase-dependent apoptotic cell death. They are proving convenient for tracking apoptosis in diverse hematopoietic cell lines and primary tumor samples, and, due to their spectral characteristics, appear to be useful for the development of multiparameter flow cytometry assays. Herein, several protocols for multiparametric assessment of apoptotic events using SYTO probes are provided. There are protocols describing the use of green fluorescent SYTO 16 and red fluorescent SYTO 17 dyes in combination with plasma membrane permeability markers. Another protocol highlights the multiparametric use of SYTO 16 dye in conjunction with the mitochondrial membrane potential sensitive probe, tetramethylrhodamine methyl ester (TMRM), and the plasma membrane permeability marker, 7-aminoactinomycin D (7-AAD).
Cellular Effects of Perfluorinated Fatty Acids.
1985-01-01
perfluoro -n-de canoic acid ( PFDA ), fluoresce e -- I j ~recovery after photobleaching (FRAPB), cell culture ~ . 19. ABSTRACT (Continue an reverse if...necessmzejj dctiy by block number) --Tecompoubd perfluor i--ecan’oic’ acid ( PFDA ) was exposed to three tissue culturer cell lines, PTK2 (kidney),/BRL (buffalo...all cell systems. In particular, previous in vivo and in vitro studies on the similarities of the toxic effects of perfluoro -n-decanoic acid ( PFDA ) and
NASA Astrophysics Data System (ADS)
Kromp, Florian; Taschner-Mandl, Sabine; Schwarz, Magdalena; Blaha, Johanna; Weiss, Tamara; Ambros, Peter F.; Reiter, Michael
2015-02-01
We propose a user-driven method for the segmentation of neuroblastoma nuclei in microscopic fluorescence images involving the gradient energy tensor. Multispectral fluorescence images contain intensity and spatial information about antigene expression, fluorescence in situ hybridization (FISH) signals and nucleus morphology. The latter serves as basis for the detection of single cells and the calculation of shape features, which are used to validate the segmentation and to reject false detections. Accurate segmentation is difficult due to varying staining intensities and aggregated cells. It requires several (meta-) parameters, which have a strong influence on the segmentation results and have to be selected carefully for each sample (or group of similar samples) by user interactions. Because our method is designed for clinicians and biologists, who may have only limited image processing background, an interactive parameter selection step allows the implicit tuning of parameter values. With this simple but intuitive method, segmentation results with high precision for a large number of cells can be achieved by minimal user interaction. The strategy was validated on handsegmented datasets of three neuroblastoma cell lines.
Use of GFP for in vivo imaging: concepts and misconceptions
NASA Astrophysics Data System (ADS)
Hoffman, Robert M.
2008-02-01
Although GFP and fluorescent proteins are used extensively for in vivo imaging, there are many misconceptions about GFP imaging especially compared to luciferase. GFP is not toxic, indeed, transgenic animals with GFP expressed in every cell (1) live as long as non-transgenic animals. Cancer cells with GFP are as aggressive and malignant as the cells without GFP (2-4). Cell lines can be made very bright with fluorescent proteins with no toxicity. The in vivo signal from fluorescent proteins is at least 1,000 times greater than luciferase (5). GFP is so bright that a single molecule of GFP can be seen in a bacterium (6). GFP can be observed through the skin on deep organs (7). Skin autofluorescence presents no problem for in vivo GFP imaging with proper filters (8). Fur can be rapidly clipped removing this autofluorescence (9). GFP is readily quantified by the image area which correlates to tumor volume (10). There are now numerous clones of GFP, RFP, YFP and proteins that change color (11) that can be used in vivo.
Derivation and characterization of putative embryonic stem cells from cloned rabbit embryos.
Intawicha, Payungsuk; Siriboon, Chawalit; Chen, Chien-Hong; Chiu, Yung-Tsung; Lin, Tzu-An; Kere, Michel; Lo, Neng-Wen; Lee, Kun-Hsiung; Chang, Li-Yung; Chiang, Hsing-I; Ju, Jyh-Cherng
2016-10-15
The present study aimed to establish embryonic stem (ES) cell lines, i.e., ntES cells, using rabbit blastocyst stage embryos cloned by somatic cell nuclear transfer. First, we investigated the development of cloned rabbit embryos reconstructed with normal fibroblasts and fibroblasts transfected with enhanced green fluorescence protein (eGFP). Blastocyst rates were 27.4% and 23.9%, respectively, for the embryos reconstructed with normal fibroblasts and fibroblasts transfected with eGFP compared with that from the parthenogenetic group (43.1%). One ntES cell line was established from embryos reconstructed with eGFP-transfected fibroblasts (1 of 17, 5.9%), and three ntES cell lines were derived from those with normal fibroblasts (3 of 17, 17.6%). All the ntES cell lines retained alkaline phosphatase activity and expressed ES cell-specific markers SSEA-4, Oct-4, TRA-1-60, and TRA-1-81. The pluripotency was further confirmed by reverse transcription-polymerase chain reaction analyses of Oct-4, Nanog, and Sox-2 expressions in ntES cell lines. The differentiation capacity of ntES cells was also examined in vitro and in vivo, by which these ntES cell lines were able to differentiate into all three germ layers through embryoid bodies and teratomas. In conclusion, it is apparent that the efficiency of ntES cells derived using eGFP-transfected donor cells is lower than that with nontransfected, normal fibroblasts donor cells. Similar to those from parthenogenetic embryos, all ntES cell lines derived from cloned rabbit embryos are able to express pluripotency markers and retain their capability to differentiate into various cell lineages both in vitro and in vivo. Copyright © 2016 Elsevier Inc. All rights reserved.
Chiaraviglio, Lucius
2014-01-01
Abstract Interpretation of high throughput screening (HTS) data in cell-based assays may be confounded by cytotoxic properties of screening compounds. Therefore, assessing cell toxicity in real time during the HTS process itself would be highly advantageous. Here, we investigate the potential of putatively impermeant, fluorescent, DNA-binding dyes to give cell toxicity readout during HTS. Amongst 19 DNA-binding dyes examined, three classes were identified that were (1) permeant, (2) cytotoxic, or (3) neither permeant nor cytotoxic during 3-day incubation with a macrophage cell line. In the last class, four dyes (SYTOX Green, CellTox Green, GelGreen, and EvaGreen) gave highly robust cytotoxicity data in 384-well screening plates. As proof of principle, successful combination with a luminescence-based assay in HTS format was demonstrated. Here, both intracellular growth of Legionella pneumophila (luminescence) and host cell viability (SYTOX Green exclusion) were assayed in the same screening well. Incorporation of membrane-impermeant, DNA-binding, fluorescent dyes in HTS assays should prove useful by allowing evaluation of cytotoxicity in real time, eliminating reagent addition steps and effort associated with endpoint cell viability analysis, and reducing the need for follow-up cytotoxicity screening. PMID:24831788
NASA Astrophysics Data System (ADS)
Illien, Françoise; Rodriguez, Nicolas; Amoura, Mehdi; Joliot, Alain; Pallerla, Manjula; Cribier, Sophie; Burlina, Fabienne; Sagan, Sandrine
2016-11-01
The mechanism of cell-penetrating peptides entry into cells is unclear, preventing the development of more efficient vectors for biotechnological or therapeutic purposes. Here, we developed a protocol relying on fluorometry to distinguish endocytosis from direct membrane translocation, using Penetratin, TAT and R9. The quantities of internalized CPPs measured by fluorometry in cell lysates converge with those obtained by our previously reported mass spectrometry quantification method. By contrast, flow cytometry quantification faces several limitations due to fluorescence quenching processes that depend on the cell line and occur at peptide/cell ratio >6.108 for CF-Penetratin. The analysis of cellular internalization of a doubly labeled fluorescent and biotinylated Penetratin analogue by the two independent techniques, fluorometry and mass spectrometry, gave consistent results at the quantitative and qualitative levels. Both techniques revealed the use of two alternative translocation and endocytosis pathways, whose relative efficacy depends on cell-surface sugars and peptide concentration. We confirmed that Penetratin translocates at low concentration and uses endocytosis at high μM concentrations. We further demonstrate that the hydrophobic/hydrophilic nature of the N-terminal extremity impacts on the internalization efficiency of CPPs. We expect these results and the associated protocols to help unraveling the translocation pathway to the cytosol of cells.
Tobacco Arp3 is localized to actin-nucleating sites in vivo
Maisch, Jan; Fišerová, Jindřiška; Fischer, Lukáš; Nick, Peter
2009-01-01
The polarity of actin is a central determinant of intracellular transport in plant cells. To visualize actin polarity in living plant cells, the tobacco homologue of the actin-related protein 3 (ARP3) was cloned and a fusion with the red fluorescent protein (RFP) was generated. Upon transient expression of these fusions in the tobacco cell line BY-2 (Nicotiana tabacum L. cv. Bright Yellow 2), punctate structures were observed near the nuclear envelope and in the cortical plasma. These dots could be shown to decorate actin filaments by expressing RFP–ARP3 in a marker line, where actin was tagged by GFP (green fluorescent protein)–FABD (fimbrin actin-binding domain 2). When actin filaments were disrupted by latrunculin B or by prolonged cold treatment, and subsequently allowed to recover, the actin filaments reformed from the RFP–ARP3 structures, that therefore represented actin nucleation sites. The intracellular distribution of these sites was followed during the formation of pluricellular files, and it was observed that the density of RFP–ARP3 increased in the apex of the polarized, terminal cells of a file, whereas it was equally distributed in the central cells of a file. These findings are interpreted in terms of position-dependent differences of actin organization. PMID:19129161
In vitro effects of Apixaban on 5 different cancer cell lines
Guasti, Luigina; Moretto, Paola; Vigetti, Davide; Ageno, Walter; Dentali, Francesco; Maresca, Andrea M.; Campiotti, Leonardo; Grandi, Anna M.; Passi, Alberto
2017-01-01
Background Cancer is associated with hypercoagulability. However, several data suggest that anticoagulant drugs may have an effect on tumor development and progression mediated by both coagulation dependent processes and non-coagulation dependent processes. Therefore, we investigated the in vitro effects of Apixaban on cell proliferation, mortality, cell migration, gene expression and matrix metalloproteinase in 5 different cancer cell lines. Methods The following cancer cell lines, and 2 normal fibroblast cultures (lung and dermal fibroblasts), were studied: OVCAR3 (ovarian cancer), MDA MB 231 (breast cancer), CaCO-2 (colon cancer), LNCaP (prostate cancer) and U937 (histiocytic lymphoma). Proliferation and cell mortality were assessed in control cells and Apixaban treated cultures (dose from 0.1 to 5 μg/ml, 0 to 96-h). Necrosis/Apoptosis (fluorescence microscopy), cell migration (24-h after scratch test), matrix metalloproteinase (MMP) activity and mRNA expression (RT PCR) of p16, p21, p53 and HAS were also assessed. Results High-dose (5 μg/ml) Apixaban incubation was associated with a significantly reduced proliferation in 3 cancer cell lines (OVCAR3, CaCO-2 and LNCaP) and with increased cancer cell mortality in all, except LNCaP, cancer lines. Apoptosis seems to account for the increased mortality. The migration capacity seems to be impaired after high-dose Apixaban incubation in OVCAR3 and CaCO-2 cells. Data on mRNA expression suggest a consistent increase in tumor suppression gene p16 in all cell lines. Conclusions Our data suggest that high-dose Apixaban may be able to interfere with cancer cell in vitro, reducing proliferation and increasing cancer cell mortality through apoptosis in several cancer cell lines. PMID:29023465
USDA-ARS?s Scientific Manuscript database
To facilitate further evaluation of pheromone biosynthesis activating neuropeptide receptor (PBANR) functionality and regulation, we generated cultured insect cell lines stably expressing a number of fluorescent Bombyx mori PBANR (BommoPBANR) and Pseudaletia separata PBANR (PsesePBANR) variants incl...
Role of Bunyamwera Orthobunyavirus NSs protein in infection of mosquito cells.
Szemiel, Agnieszka M; Failloux, Anna-Bella; Elliott, Richard M
2012-01-01
Bunyamwera orthobunyavirus is both the prototype and study model of the Bunyaviridae family. The viral NSs protein seems to contribute to the different outcomes of infection in mammalian and mosquito cell lines. However, only limited information is available on the growth of Bunyamwera virus in cultured mosquito cells other than the Aedes albopictus C6/36 line. To determine potential functions of the NSs protein in mosquito cells, replication of wild-type virus and a recombinant NSs deletion mutant was compared in Ae. albopictus C6/36, C7-10 and U4.4 cells, and in Ae. aegypti Ae cells by monitoring N protein production and virus yields at various times post infection. Both viruses established persistent infections, with the exception of NSs deletion mutant in U4.4 cells. The NSs protein was nonessential for growth in C6/36 and C7-10 cells, but was important for productive replication in U4.4 and Ae cells. Fluorescence microscopy studies using recombinant viruses expressing green fluorescent protein allowed observation of three stages of infection, early, acute and late, during which infected cells underwent morphological changes. In the absence of NSs, these changes were less pronounced. An RNAi response efficiently reduced virus replication in U4.4 cells transfected with virus specific dsRNA, but not in C6/36 or C7/10 cells. Lastly, Ae. aegypti mosquitoes were exposed to blood-meal containing either wild-type or NSs deletion virus, and at various times post-feeding, infection and disseminated infection rates were measured. Compared to wild-type virus, infection rates by the mutant virus were lower and more variable. If the NSs deletion virus was able to establish infection, it was detected in salivary glands at 6 days post-infection, 3 days later than wild-type virus. Bunyamwera virus NSs is required for efficient replication in certain mosquito cell lines and in Ae. aegypti mosquitoes.
Protein and siRNA delivery by transportan and transportan 10 into colorectal cancer cell lines.
Wierzbicki, Piotr M; Kogut-Wierzbicka, Marzena; Ruczynski, Jaroslaw; Siedlecka-Kroplewska, Kamila; Kaszubowska, Lucyna; Rybarczyk, Agnieszka; Alenowicz, Magdalena; Rekowski, Piotr; Kmiec, Zbigniew
2014-01-01
Cell penetrating peptides (CPPs) have the ability to translocate through cell membranes with high efficiency and therefore can introduce biological agents with pharmaceutical properties into the cell. Transportan (TP) and its shorter analog transportan 10 (TP10) are among the best studied CPPs, however, their effects on viability of and cargo introduction into colorectal cancer (CRC) cells have yet not been investigated. The aim of our study was to evaluate the cytotoxic effects of TP and TP10 on representative CRC lines and the efficiency of protein (streptavidin) and siRNA cargo delivery by TP-biotinylated derivatives (TP-biot). HT29 (early stage CRC model) and HCT116 (metastatic CRC model) cell lines were incubated with TP, TP10, TP-biot1, TP-biot13 and TP10-biot1. The effects of studied CPPs on cell viability and cell cycle were assessed by MTT and annexin V assays. The uptake of streptavidin-FITC complex into cells was determined by flow cytometry and fluorescence microscopy, with the inhibition of cellular vesicle trafficking by brefeldin A. The efficiency of siRNA for SASH1 gene delivery was measured by quantitative PCR (qPCR). Since up to 10 µM concentrations of each CPP showed no significant cytotoxic effect, the concentrations of 0.5-5 µM were used for further analyses. Within this concentration range none of the studied CPPs affected cell viability and cell cycle. The efficient and endocytosis-independent introduction of streptavidin-FITC complex into cells was observed for TP10-biot1 and TP-biot1 with the cytoplasmic location of the fluorescent cargo; decreased SASH1 mRNA level was noticed with the use of siRNA and analyzed CPPs. We conclude that TP, TP10 and their biotinylated derivatives can be used as efficient delivery vehicles of small and large cargoes into CRC cells.
Homma, S; Toda, G; Gong, J; Kufe, D; Ohno, T
2001-11-01
The prevention of recurrence of hepatocellular carcinoma (HCC) after treatment is very important for improvement of the prognosis of HCC patients. Dendritic cells (DCs) are potent antigen-presenting cells that can prime naive T cells to induce a primary immune response. We attempted to induce preventive antitumor immunity against HCC by immunizing BALB/c mice with fusions of DCs and HCC cells. Murine bone marrow-derived DCs and a murine HCC cell line. BNL cells, were fused by treatment with 50% polyethyleneglvcol (PEG). Fusion efficacy was assessed by the analysis of fusions of BNL cells stained with red fluorescent dye and DCs stained with green fluorescent dye. Mice injected intravenously with DC/BNL fusions were challenged by BNL cell inoculation. About 30% of the PEG-treated non-adherent cells with both fluorescences were considered to be fusion cells. The cell fraction of DC/BNL fusions showed phenotypes of DCs, MHC class II, CD80, CD86, and intercellular adhesion molecule (ICAM)-1, which were not expressed on BNL cells. Mice immunized with the fusions were protected against the inoculation of BNL tumor cells, whereas injection with a mixture of DCs and BNL cells not treated with PEG did not provide significant resistance against BNL cell inoculation. Splenocytes from DC/BNL fusion-immunized mice showed lytic activity against BNL cells. These results demonstrate that immunization with fusions of DCs and HCC cells is capable of inducing preventive antitumor immunity against HCC.
Li, Wei; Ma, Le; Guo, Li-Ping; Wang, Xiao-Lei; Zhang, Jing-Wei; Bu, Zhi-Gao; Hua, Rong-Hong
2017-06-12
West Nile virus (WNV) is a neurotropic pathogen which causes zoonotic disease in humans. Recently, there have been an increasing number of infected cases and there are no clinically approved vaccines or effective drugs to treat WNV infections in humans. The purpose of this study was to facilitate vaccine and antiviral drug discovery by developing a packaging cell line-restricted WNV infectious replicon particle system. We constructed a DNA-based WNV replicon lacking the C-prM-E coding region and replaced it with a GFP coding sequence. To produce WNV replicon particles, cell lines stably-expressing prM-E and C-prM-E were constructed. When the WNV replicon plasmid was co-transfected with a WNV C-expressing plasmid into the prM-E-expressing cell line or directly transfected the C-prM-E expressing cell line, the replicon particle was able to replicate, form green fluorescence foci, and exhibit cytopathic plaques similar to that induced by the wild type virus. The infectious capacity of the replicon particles was restricted to the packaging cell line as the replicons demonstrated only one round of infection in other permissive cells. Thus, this system provides a safe and convenient reporter WNV manipulating tool which can be used to study WNV viral invasion mechanisms, neutralizing antibodies and antiviral efficacy.
Liu, Dongfang; Liu, Peidang; Zhang, Dongsheng
2014-01-01
A practical and effective strategy for synthesis of Folate-NIR 797-conjugated Magnetic Albumin Nanospheres (FA-NIR 797-MAN) was developed. For this strategy, Magnetic Albumin Nanospheres (MAN), composed of superparamagnetic iron oxide nanoparticles (SPIONs) and bovine serum albumin (BSA), were covalently conjugated with folic acid (FA) ligands to enhance the targeting capability of the particles to folate receptor (FR) over-expressing tumours. Subsequently, a near-infrared (NIR) fluorescent dye NIR 797 was conjugated with FA-conjugated MAN for in vivo fluorescence imaging. The FA-NIR 797-MAN exhibited low toxicity to a human nasopharyngeal epidermal carcinoma cell line (KB cells). Additionally, in vitro and in vivo evaluation of the dynamic behaviour and targeting ability of FA-NIR 797-MAN to KB tumours validated the highly selective affinity of FA-NIR 797-MAN for FR-positive tumours. In summary, the FA-NIR 797-MAN prepared here exhibited great potential for tumour imaging, since the near-infrared fluorescence contrast agents target cells via FR-mediated endocytosis. The high fluorescence intensity together with the targeting effect makes FA-NIR 797-MAN a promising candidate for imaging, monitoring, and early diagnosis of cancer at the molecular and cellular levels. PMID:25188308
Cellular uptake of modified oligonucleotides: fluorescence approach
NASA Astrophysics Data System (ADS)
Kočišová, Eva; Praus, Petr; Rosenberg, Ivan; Seksek, Olivier; Sureau, Franck; Štěpánek, Josef; Turpin, Pierre-Yves
2005-06-01
Cellular uptake and intracellular distribution of the synthetic antisense analogue of dT 15 oligonucleotide (homogenously containing 3'-O-P-CH 2-O-5' internucleotide linkages and labeled with tetramethylrhodamine dye) was studied on B16 melanoma cell line by fluorescence micro-imaging and time-resolved microspectrofluorimetry. By using amphotericin B 3-dimethylaminopropyl amide as an enhancer molecule for the uptake process, homogenous staining of the cells with rather distinct nucleoli staining was achieved after 4 h of incubation. Two spectral components of 2.7 and 1.3 ns lifetime, respectively, were resolved in the emission collected from the cell nucleus. The way of staining and the long-lived component differed from our previous experiments demonstrating complexity of the intracellular oligonucleotide distribution and in particular of the binding inside the nucleus.
Surface plasmon enhanced cell microscopy with blocked random spatial activation
NASA Astrophysics Data System (ADS)
Son, Taehwang; Oh, Youngjin; Lee, Wonju; Yang, Heejin; Kim, Donghyun
2016-03-01
We present surface plasmon enhanced fluorescence microscopy with random spatial sampling using patterned block of silver nanoislands. Rigorous coupled wave analysis was performed to confirm near-field localization on nanoislands. Random nanoislands were fabricated in silver by temperature annealing. By analyzing random near-field distribution, average size of localized fields was found to be on the order of 135 nm. Randomly localized near-fields were used to spatially sample F-actin of J774 cells (mouse macrophage cell-line). Image deconvolution algorithm based on linear imaging theory was established for stochastic estimation of fluorescent molecular distribution. The alignment between near-field distribution and raw image was performed by the patterned block. The achieved resolution is dependent upon factors including the size of localized fields and estimated to be 100-150 nm.
Identification of Prostate Cancer Prognostic Markers
2015-10-01
downregulation of GABARAPL2, a gene located in a chromosomal region deleted in PCa metastases, showed increase in autophagy in a PCa cell line and reduced...alteration, chromosome gain and deletion, fluorescence in situ hybridization (FISH), prognostic markers, biomarkers, tissue microarrays, autophagy 16...TMA), colony formation assay, cell growth, autophagy . 3. ACCOMPLISHMENTS: What were the major goals of the project? The hypothesis of the project is
Hasegawa, Kosuke; Suetsugu, Atsushi; Nakamura, Miki; Matsumoto, Takuro; Kunisada, Takahiro; Shimizu, Masahito; Saji, Shigetoyo; Moriwaki, Hisataka; Bouvet, Michael; Hoffman, Robert M
2016-09-01
Fluorescence-guided surgery (FGS) of cancer is an emerging technology. We have previously shown the importance of resecting both the tumor and the tumor microenvironment (TME) for curative FGS. We also previously developed a syngeneic model using the mouse lymphoma cell line EL-4, expressing red fluorescent protein (EL-4-RFP), growing in green fluorescent protein (GFP) transgenic mice, which we have used in the present report to develop FGS of the tumor microenvironment. EL-4-RFP lymphoma cells were injected subcutaneously in C57/BL6 GFP transgenic mice. EL-4-RFP cells subsequently formed tumors by 35 days after cell transplantation. Using the portable hand-held Dino-Lite digital imaging system, subcutaneous tumors were resected by FGS. Resected tumor tissues were visualized with the Olympus FV1000 confocal microscope. Using the Dino-Lite, subcutaneous tumors and the tumor microenvironment were clearly visualized and resected. In the resected tumor, host stromal cells, including adipocyte-like cells and blood vessels with lymphocytes, were observed by confocal microscopy in addition to cancer cells by color-coded confocal imaging. The cancer cells and stromal cells in the TME were deeply intermingled in a highly-complex pattern. Color-coded FGS is an effective method to completely resect cancer cells along with the stromal cells in the TME which interact in a highly-complex pattern. Microscopically, cancer cells invade the TME and vice versa. To prevent tumor recurrence, it is necessary to resect the TME along with the tumor. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.
NASA Astrophysics Data System (ADS)
Shen, Danjin; Henry, Maxime; Trouillet, Vanessa; Comby-Zerbino, Clothilde; Bertorelle, Franck; Sancey, Lucie; Antoine, Rodolphe; Coll, Jean-Luc; Josserand, Véronique; Le Guével, Xavier
2017-05-01
Gold nanoclusters (Au NCs) are an emerging type of theranostic agents combining therapeutic and imaging features with reduced toxicity. Au NCs stabilized by a zwitterion ligand with a fine control of the metal core size and the ligand coverage were synthesized by wet chemistry. Intense fluorescence signal is reported for the highest ligand coverage, whereas photoacoustic signal is stronger for the largest metal core. The best Au NC candidate with an average molecular weight of 17 kDa could be detected with high sensitivity on a 2D-near-infrared imaging instrument (limit of detection (LOD) = 2.3 μ M ) and by photoacoustic imaging. In vitro and in vivo experiments demonstrate an efficient cell uptake in U87 cell lines, a fast renal clearance (t1 /2 α = 6.5 ± 1.3 min), and a good correlation between near infrared fluorescence and photoacoustic measurements to follow the early uptake of Au NCs in liver.
Magnetic field design for selecting and aligning immunomagnetic labeled cells.
Tibbe, Arjan G J; de Grooth, Bart G; Greve, Jan; Dolan, Gerald J; Rao, Chandra; Terstappen, Leon W M M
2002-03-01
Recently we introduced the CellTracks cell analysis system, in which samples are prepared based on a combination of immunomagnetic selection, separation, and alignment of cells along ferromagnetic lines. Here we describe the underlying magnetic principles and considerations made in the magnetic field design to achieve the best possible cell selection and alignment of magnetically labeled cells. Materials and Methods Computer simulations, in combination with experimental data, were used to optimize the design of the magnets and Ni lines to obtain the optimal magnetic configuration. A homogeneous cell distribution on the upper surface of the sample chamber was obtained with a magnet where the pole faces were tilted towards each other. The spatial distribution of magnetically aligned objects in between the Ni lines was dependent on the ratio of the diameter of the aligned object and the line spacing, which was tested with magnetically and fluorescently labeled 6 microm polystyrene beads. The best result was obtained when the line spacing was equal to or smaller than the diameter of the aligned object. The magnetic gradient of the designed permanent magnet extracts magnetically labeled cells from any cell suspension to a desired plane, providing a homogeneous cell distribution. In addition, it magnetizes ferro-magnetic Ni lines in this plane whose additional local gradient adds to the gradient of the permanent magnet. The resultant gradient aligns the magnetically labeled cells first brought to this plane. This combination makes it possible, in a single step, to extract and align cells on a surface from any cell suspension. Copyright 2002 Wiley-Liss, Inc.
Guo, Sujuan; Pridham, Kevin J; Sheng, Zhi
2016-01-01
Autophagy is a catabolic process whereby cellular components are degraded to fuel cells for longer survival during stress. Hence, autophagy plays a vital role in determining cell fate and is central for homeostasis and pathogenesis of many human diseases including chronic myeloid leukemia (CML). It has been well established that autophagy is important for the leukemogenesis as well as drug resistance in CML. Thus, autophagy is an intriguing therapeutic target. However, current approaches that detect autophagy lack reliability and often fail to provide quantitative measurements. To overcome this hurdle and facilitate the development of autophagy-related therapies, we have recently developed an autophagy assay termed as the Cyto-ID fluorescence spectrophotometric assay. This method uses a cationic fluorescence dye, Cyto-ID, which specifically labels autophagic compartments and is detected by a spectrophotometer to permit a large-scale and quantitative analysis. As such, it allows rapid, reliable, and quantitative detection of autophagy and estimation of autophagy flux. In this chapter, we further provide technical details of this method and step-by-step protocols for measuring autophagy or autophagy flux in CML cell lines as well as primary hematopoietic cells.
Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique
NASA Astrophysics Data System (ADS)
Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming
2006-05-01
Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the ACV-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.
Monitoring apoptosis of TK-GFP-expressing ACC-M cells induced by ACV using FRET technique
NASA Astrophysics Data System (ADS)
Xiong, Tao; Zhang, Zhihong; Lin, Juqiang; Yang, Jie; Zeng, Shaoqun; Luo, Qingming
2006-09-01
Apoptosis is an evolutionary conserved cellular process that plays an important role during development, but it is also involved in tissue homeostasis and in many diseases. To study the characteristics of suicide gene system of the herpes simplex virus thymidine kinase (HSV-tk) gene in tumor cells and explore the apoptosis phenomena in this system and its effect on the human adenoid cystic carcinoma line ACC-M cell, we detected apoptosis of CD3- (ECFP-CRS-DsRed) and TK-GFP-expressing ACC-M (ACC-M-TK-GFP-CD3) cells induced by acyclovir (ACV) using fluorescence resonance energy transfer (FRET) technique. CD3 is a FRET-based indicator for activity of caspase-3, which is composed of an enhanced cyan fluorescent protein, a caspase-3 sensitive linker, and a red fluorescent protein from Discosoma with efficient maturation property. FRET from ECFP to DsRed could be detected in normal ACC-M-TK-GFP-CD3 cells, and the FRET efficient was remarkably decreased and then disappeared during the cells apoptosis induced by ACV. It was due to the activated caspase-3 cleaved the CD3 fusion protein. In this study, the results suggested that the AVC-induced apoptosis of ACC-M-TK-GFP-CD3 cells was through caspase-3 pathway.
Pol, Arno; van Ruissen, Fred; Schalkwijk, Joost
2002-08-01
Inflamed epidermis (psoriasis, wound healing, ultraviolet-irradiated skin) harbors keratinocytes that are hyperproliferative and display an abnormal differentiation program. A distinct feature of this so-called regenerative maturation pathway is the expression of proteins such as the cytokeratins CK6, CK16, and CK17 and the antiinflammatory protein SKALP/elafin. These proteins are absent in normal skin but highly induced in lesional psoriatic skin. Expression of these genes can be used as a surrogate marker for psoriasis in drug-screening procedures of large compound libraries. The aim of this study was to develop a keratinocyte cell line that contained a reporter gene under the control of a psoriasis-associated endogenous promoter and demonstrate its use in an assay suitable for screening. We generated a stably transfected keratinocyte cell line that expresses enhanced green fluorescent protein (EGFP), under the control of a 0.8-kb fragment derived from the promoter of the SKALP/elafin gene, which confers high levels of tissue-specific expression at the mRNA level. Induction of the SKALP promoter by tumor necrosis factor-alpha resulted in increased expression levels of the secreted SKALP-EGFP fusion protein as assessed by direct readout of fluorescence and fluorescence polarization in 96-well cell culture plates. The fold stimulation of the reporter gene was comparable to that of the endogenous SKALP gene as assessed by enzyme-linked immunosorbent assay. Although the dynamic range of the screening system is limited, the small standard deviation yields a Z factor of 0.49. This indicates that the assay is suitable as a high-throughput screen, and provides proof of the concept that a secreted EGFP fusion protein under the control of a physiologically relevant endogenous promoter can be used as a fluorescence-based high-throughput screen for differentiation-modifying or antiinflammatory compounds that act via the keratinocyte.
van den Berg, Frans; Racher, Andrew J.; Martin, Elaine B.; Jaques, Colin
2017-01-01
Cell culture process development requires the screening of large numbers of cell lines and process conditions. The development of miniature bioreactor systems has increased the throughput of such studies; however, there are limitations with their use. One important constraint is the limited number of offline samples that can be taken compared to those taken for monitoring cultures in large‐scale bioreactors. The small volume of miniature bioreactor cultures (15 mL) is incompatible with the large sample volume (600 µL) required for bioanalysers routinely used. Spectroscopy technologies may be used to resolve this limitation. The purpose of this study was to compare the use of NIR, Raman, and 2D‐fluorescence to measure multiple analytes simultaneously in volumes suitable for daily monitoring of a miniature bioreactor system. A novel design‐of‐experiment approach is described that utilizes previously analyzed cell culture supernatant to assess metabolite concentrations under various conditions while providing optimal coverage of the desired design space. Multivariate data analysis techniques were used to develop predictive models. Model performance was compared to determine which technology is more suitable for this application. 2D‐fluorescence could more accurately measure ammonium concentration (RMSECV 0.031 g L−1) than Raman and NIR. Raman spectroscopy, however, was more robust at measuring lactate and glucose concentrations (RMSECV 1.11 and 0.92 g L−1, respectively) than the other two techniques. The findings suggest that Raman spectroscopy is more suited for this application than NIR and 2D‐fluorescence. The implementation of Raman spectroscopy increases at‐line measuring capabilities, enabling daily monitoring of key cell culture components within miniature bioreactor cultures. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 33:337–346, 2017 PMID:28271638
Nishizawa, Koji; Nishiyama, Hiroyuki; Oishi, Shinya; Tanahara, Noriko; Kotani, Hirokazu; Mikami, Yoshiki; Toda, Yoshinobu; Evans, Barry J; Peiper, Stephen C; Saito, Ryoichi; Watanabe, Jun; Fujii, Nobutaka; Ogawa, Osamu
2010-09-01
We previously reported that the expression of CXC chemokine receptor-4 (CXCR4) was upregulated in invasive bladder cancers and that the small peptide T140 was a highly sensitive antagonist for CXCR4. In this study, we identified that CXCR4 expression was induced in high-grade superficial bladder tumors, including carcinoma in situ and invasive bladder tumors. To visualize the bladder cancer cells using urinary sediments from the patients and chemically induced mouse bladder cancer model, a novel fluorescent CXCR4 antagonist TY14003 was developed, that is a T140 derivative. TY14003 could label bladder cancer cell lines expressing CXCR4, whereas negative-control fluorescent peptides did not label them. When labeling urinary sediments from patients with invasive bladder cancer, positive-stained cells were identified in all patients with bladder cancer and positive urine cytology but not in controls. Although white blood cells in urine were also labeled with TY14003, they could be easily discriminated from urothelial cells by their shape and size. Finally, intravesical instillation of TY14003 into mouse bladder, using N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-induced bladder cancer model, demonstrated that fluorescent signals were detected in the focal areas of bladder of all mice examined at 12 weeks of BBN drinking by confocal microscopy and fluorescent endoscopy. On the contrary, all the normal bladders were found to be negative for TY14003 staining. In conclusion, these results indicate that TY14003 is a promising diagnostic tool to visualize small or flat high-grade superficial bladder cancer.
Leclerc, L; Rima, W; Boudard, D; Pourchez, J; Forest, V; Bin, V; Mowat, P; Perriat, P; Tillement, O; Grosseau, P; Bernache-Assollant, D; Cottier, M
2012-08-01
Micrometric and nanometric particles are increasingly used in different fields and may exhibit variable toxicity levels depending on their physicochemical characteristics. The aim of this study was to determine the impact of the size parameter on cellular uptake and biological activity, working with well-characterized fluorescent particles. We focused our attention on macrophages, the main target cells of the respiratory system responsible for the phagocytosis of the particles. FITC fluorescent silica particles of variable submicronic sizes (850, 500, 250 and 150 nm) but with similar surface coating (COOH) were tailored and physico-chemically characterized. These particles were then incubated with the RAW 264.7 macrophage cell line. After microscopic observations (SEM, TEM, confocal), a quantitative evaluation of the uptake was carried out. Fluorescence detected after a quenching with trypan blue allows us to distinguish and quantify entirely engulfed fluorescent particles from those just adhering to the cell membrane. Finally, these data were compared to the in vitro toxicity assessed in terms of cell damage, inflammation and oxidative stress (evaluated by LDH release, TNF-α and ROS production respectively). Particles were well characterized (fluorescence, size distribution, zeta potential, agglomeration and surface groups) and easily visualized after cellular uptake using confocal and electron microscopy. The number of internalized particles was precisely evaluated. Size was found to be an important parameter regarding particles uptake and in vitro toxicity but this latter strongly depends on the particles doses employed.
Alvarado-Kristensson, Maria
2018-01-01
When using fluorescence microscope techniques to study cells, it is essential that the cell structure and contents are preserved after preparation of the samples, and that the preparation method employed does not create artefacts that can be perceived as cellular structure/components. γ-Tubulin forms filaments that in some cases are immunostained with an anti-γ-tubulin antibody, but this immunostaining is not reproducible [[1], [2
Fujikawa, Yuuta; Nampo, Taiki; Mori, Masaya; Kikkawa, Manami; Inoue, Hideshi
2018-03-01
Pi class glutathione S-transferase (GSTP1) is highly expressed in various cancerous cells and pre-neoplastic legions, where it is involved in apoptotic resistance or metabolism of several anti-tumour chemotherapeutics. Therefore, GSTP1 is a marker of malignant and pre-malignant cells and is a promising target for visualization and drug development. Here we demonstrate that fluorescein diacetate (FDA), a fluorescent probe used for vital staining, is a fluorescently activated by esterolytic activity of human GSTP1 (hGSTP1) selectively among various cytosolic GSTs. Fluorescence activation of FDA susceptible to GST inhibitors was observed in MCF7 cells exogenously overexpressing hGSTP1, but not in cells overexpressing hGSTA1 or hGSTM1. Inhibitor-sensitive fluorescence activation was also observed in several cancer cell lines endogenously expressing GSTP1, suggesting that GSTP1 is involved in FDA esterolysis in these cells. Among the FDA derivatives examined, FOMe-Ac, the acetyl ester of fluorescein O-methyl ether, was found to be a potential reporter for GSH-dependent GSTP1 activity as well as for carboxylesterase activity. Since GSTP1 is highly expressed in various types of cancer cells compared to their normal counterparts, improving the fluorogenic substrates to be more selective to the esterolysis activity of GSTP1 rather than carboxylesterases should lead to development of tools for detecting GSTP1-overexpressing cancer cells and investigating the biological functions of GSTP1. Copyright © 2017 Elsevier B.V. All rights reserved.
Cho, Su-Jin; Lee, Young S; Lee, Jae-Ik; Bang, Jae-Il; Yang, Jing; Klassen, Henry; Kong, Il-Keun
2010-12-01
The production of transgenic animals is highly desirable for biotechnology and basic research. We investigated the reproductive ability of a red fluorescence protein (RFP) transgenic cloned male cat (RFP TG cat) by natural mating with a domestic female cat. The RFP expression levels were examined in early embryogenesis, tissues from 45-day-old two fetuses, and four RFP TG cat offspring. The RFP gene was detected in tissue samples from one dead kitten, including several organs and the skin. Also, under a fluorescent light source, we were able to directly detect the RFP expression of in in vitro-produced blastocysts derived with sperm from the RFP TG cat. These results indicate that the RFP TG cat exhibits normal reproductive fertility, stable germ-line transmission of the RFP transgene, and characteristic RFP expression in its offspring. We isolated feline neural progenitor cells from a 45-day-old fetus derived from the natural mating of the RFP TG cat with a domestic female cat. Isolated brain and retinal progenitor cells were successfully passaged at least four times post isolation (day 23), and showed a high RFP expression level. This method of producing genetically modified cloned cats will be important for generating biomedical models of human diseases.
Song, Kai; Xue, Yiqun; Wang, Xiaohua; Wan, Yinglang; Deng, Xin; Lin, Jinxing
2017-06-01
Membrane proteins exert functions by forming oligomers or molecular complexes. Currently, step-wise photobleaching has been applied to count the fluorescently labelled subunits in plant cells, for which an accurate and reliable control is required to distinguish individual subunits and define the basal fluorescence. However, the common procedure using immobilized GFP molecules is obviously not applicable for analysis in living plant cells. Using the spatial intensity distribution analysis (SpIDA), we found that the A206K mutation reduced the dimerization of GFP molecules. Further ectopic expression of Myristoyl-GFP A206K driven by the endogenous AtCLC2 promoter allowed imaging of individual molecules at a low expression level. As a result, the percentage of dimers in the transgenic pCLC2::Myristoyl-mGFP A206K line was significantly reduced in comparison to that of the pCLC2::Myristoyl-GFP line, confirming its application in defining the basal fluorescence intensity of GFP. Taken together, our results demonstrated that pCLC2::Myristoyl-mGFP A206K can be used as a standard control for monomer GFP, facilitating the analysis of the step-wise photobleaching of membrane proteins in Arabidopsis thaliana. Copyright © 2017 Elsevier GmbH. All rights reserved.
Yun, Bo; Azad, Mohammad A. K.; Nowell, Cameron J.; Nation, Roger L.; Thompson, Philip E.; Roberts, Kade D.
2015-01-01
Polymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity. PMID:26392495
Loiola, Rodrigo A; Torres, Tathiany C; Aburaya, Carla M; Landgraf, Maristella A; Landgraf, Richardt G; Bosco Pesquero, João; Fernandes, Liliam
2013-05-01
Endothelial cells from microvasculature are directly involved in a large number of vascular diseases; however, culture of these cells is problematic, since most methodologies employ proteolytic enzymes or mechanical techniques, leading to cell damage and contamination of endothelial cultures with other cellular types. Besides, primary cultured cells have a short life span in vitro and undergo replicative senescence after 3-4 passages, limiting long-term studies. In the present work we report the generation of a spontaneously immortalized endothelial culture obtained from mice pulmonary capillaries. Firstly, primary (third passage) and immortalized (100th) cultures were established. Further, monoclonal populations were obtained by serial dilutions from immortalized cultures. Cells were analyzed according to: (1) morphological appearance, (2) expression of specific endothelial markers by fluorescent staining [von Willebrand Factor (vWF), endothelial nitric oxide synthase (eNOS), angiotensin converting enzyme (ACE) and Ulex europaeus (UEA-1)] and by flow cytometry (endoglin, VE-cadherin and VCAM-1), and (3) release of nitric oxide (NO), assessed by the specific fluorescent dye DAF-2 DA, and prostacyclin (PGI2), quantified by enzyme immune assay. In both cultures cells grew in monolayers and presented cobblestone appearance at confluence. Positive staining for vWF, eNOS, ACE and UEA-1 was detected in cloned as well as in early-passage cultured cells. Similarly, cultures presented equal expressions of endoglin, VE-cadherin and VCAM-1. Values of NO and PGI2 levels did not differ between cultures. From these results we confirm that the described spontaneously immortalized endothelial cell line is capable of unlimited growth and retains typical morphological and functional properties exhibited by primary cultured cells. Therefore, the endothelial cell line described in the present study can become a suitable tool in the field of endothelium research and can be useful for the investigation of production of endothelial mediators, angiogenesis and inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.
Martinez-Torres, A; Miledi, R
2001-02-13
The functional characteristics and cellular localization of the gamma aminobutyric acid (GABA) rho 1 receptor and its nonfunctional isoform rho 1 Delta 450 were investigated by expressing them as gene fusions with the enhanced version of the green fluorescent protein (GFP). Oocytes injected with rho 1-GFP had receptors that gated chloride channels when activated by GABA. The functional characteristics of these receptors were the same as for those of wild-type rho 1 receptors. Fluorescence, because of the chimeric receptors expressed, was over the whole oocyte but was more intense near the cell surface and more abundant in the animal hemisphere. Similar to the wild type, rho 1 Delta 450-GFP did not lead to the expression of functional GABA receptors, and injected oocytes failed to generate currents even after exposure to high concentrations of GABA. Nonetheless, the fluorescence displayed by oocytes expressing rho 1 Delta 450-GFP was distributed similarly to that of rho 1-GFP. Mammalian cells transfected with the rho 1-GFP or rho 1 Delta 450-GFP constructs showed mostly intracellularly distributed fluorescence in confocal microscope images. A sparse localization of fluorescence was observed in the plasma membrane regardless of the cell line used. We conclude that rho 1 Delta 450 is expressed and transported close to, and perhaps incorporated into, the plasma membrane. Thus, rho 1- and rho 1 Delta 450-GFP fusions provide a powerful tool to visualize the traffic of GABA type C receptors.
Zebrabow: multispectral cell labeling for cell tracing and lineage analysis in zebrafish
Pan, Y. Albert; Freundlich, Tom; Weissman, Tamily A.; Schoppik, David; Wang, X. Cindy; Zimmerman, Steve; Ciruna, Brian; Sanes, Joshua R.; Lichtman, Jeff W.; Schier, Alexander F.
2013-01-01
Advances in imaging and cell-labeling techniques have greatly enhanced our understanding of developmental and neurobiological processes. Among vertebrates, zebrafish is uniquely suited for in vivo imaging owing to its small size and optical translucency. However, distinguishing and following cells over extended time periods remains difficult. Previous studies have demonstrated that Cre recombinase-mediated recombination can lead to combinatorial expression of spectrally distinct fluorescent proteins (RFP, YFP and CFP) in neighboring cells, creating a ‘Brainbow’ of colors. The random combination of fluorescent proteins provides a way to distinguish adjacent cells, visualize cellular interactions and perform lineage analyses. Here, we describe Zebrabow (Zebrafish Brainbow) tools for in vivo multicolor imaging in zebrafish. First, we show that the broadly expressed ubi:Zebrabow line provides diverse color profiles that can be optimized by modulating Cre activity. Second, we find that colors are inherited equally among daughter cells and remain stable throughout embryonic and larval stages. Third, we show that UAS:Zebrabow lines can be used in combination with Gal4 to generate broad or tissue-specific expression patterns and facilitate tracing of axonal processes. Fourth, we demonstrate that Zebrabow can be used for long-term lineage analysis. Using the cornea as a model system, we provide evidence that embryonic corneal epithelial clones are replaced by large, wedge-shaped clones formed by centripetal expansion of cells from the peripheral cornea. The Zebrabow tool set presented here provides a resource for next-generation color-based anatomical and lineage analyses in zebrafish. PMID:23757414
Initiation of oncogenic transformation in human mammary epithelial cells by charged particles
NASA Technical Reports Server (NTRS)
Yang, T. C.; Georgy, K. A.; Craise, L. M.; Durante, M.
1997-01-01
Experimental studies have shown that high linear-energy transfer (LET) charged particles can be more effective than x-rays and gamma-rays in inducing oncogenic transformation in cultured cells and tumors in animals. Based on these results, experiments were designed and performed with an immortal human mammary epithelial cell line (H184B5), and several clones transformed by heavy ions were obtained. Cell fusion experiments were subsequently done, and results indicate that the transforming gene(s) is recessive. Chromosome analysis with fluorescence in situ hybridization (FISH) techniques also showed additional translocations in transformed human mammary epithelial cells. In addition, studies with these cell lines indicate that heavy ions can effectively induce deletion, break, and dicentrics. Deletion of tumor suppressor gene(s) and/or formation of translocation through DNA double strand breaks is a likely mechanism for the initiation of oncogenic transformation in human mammary epithelial cells.
Yoshida, Yuki; Saitoh, Kana; Aihara, Yoshiko; Okada, Shinji; Misaka, Takumi; Abe, Keiko
2007-10-08
In mammals, transient receptor potential (TRP) channel M5 (TRPM5) is coexpressed with phospholipaseC-beta2 (PLC-beta2) in the taste receptor cells, and both PLC-beta2 and TRPM5 are essential elements in the signal transduction of sweet, bitter and umami stimuli. In this study, we identified the zebrafish homologue of TRPM5 (zfTRPM5) and examined its expression in the gustatory system by in-situ hybridization. Using a transgenic zebrafish line that expressed green fluorescent protein under the control of the PLC-beta2 promoter, we showed that zfTRPM5 is expressed in green fluorescent protein-labeled cells of the taste buds. These results demonstrate that zfTRPM5 and PLC-beta2 colocalize in zebrafish taste receptor cells, suggesting their crucial roles in taste signaling via the fish taste receptors.
Complexing Methylene Blue with Phosphorus Dendrimers to Increase Photodynamic Activity.
Dabrzalska, Monika; Janaszewska, Anna; Zablocka, Maria; Mignani, Serge; Majoral, Jean Pierre; Klajnert-Maculewicz, Barbara
2017-02-23
The efficiency of photodynamic therapy is limited mainly due to low selectivity, unfavorable biodistribution of photosensitizers, and long-lasting skin sensitivity to light. However, drug delivery systems based on nanoparticles may overcome the limitations mentioned above. Among others, dendrimers are particularly attractive as carriers, because of their globular architecture and high loading capacity. The goal of the study was to check whether an anionic phosphorus dendrimer is suitable as a carrier of a photosensitizer-methylene blue (MB). As a biological model, basal cell carcinoma cell lines were used. We checked the influence of the MB complexation on its singlet oxygen production ability using a commercial fluorescence probe. Next, cellular uptake, phototoxicity, reactive oxygen species (ROS) generation, and cell death were investigated. The MB-anionic dendrimer complex (MB-1an) was found to generate less singlet oxygen; however, the complex showed higher cellular uptake and phototoxicity against basal cell carcinoma cell lines, which was accompanied with enhanced ROS production. Owing to the obtained results, we conclude that the photodynamic activity of MB complexed with an anionic dendrimer is higher than free MB against basal cell carcinoma cell lines.
Kalb, Daniel M; Fencl, Frank A; Woods, Travis A; Swanson, August; Maestas, Gian C; Juárez, Jaime J; Edwards, Bruce S; Shreve, Andrew P; Graves, Steven W
2017-09-19
Flow cytometry provides highly sensitive multiparameter analysis of cells and particles but has been largely limited to the use of a single focused sample stream. This limits the analytical rate to ∼50K particles/s and the volumetric rate to ∼250 μL/min. Despite the analytical prowess of flow cytometry, there are applications where these rates are insufficient, such as rare cell analysis in high cellular backgrounds (e.g., circulating tumor cells and fetal cells in maternal blood), detection of cells/particles in large dilute samples (e.g., water quality, urine analysis), or high-throughput screening applications. Here we report a highly parallel acoustic flow cytometer that uses an acoustic standing wave to focus particles into 16 parallel analysis points across a 2.3 mm wide optical flow cell. A line-focused laser and wide-field collection optics are used to excite and collect the fluorescence emission of these parallel streams onto a high-speed camera for analysis. With this instrument format and fluorescent microsphere standards, we obtain analysis rates of 100K/s and flow rates of 10 mL/min, while maintaining optical performance comparable to that of a commercial flow cytometer. The results with our initial prototype instrument demonstrate that the integration of key parallelizable components, including the line-focused laser, particle focusing using multinode acoustic standing waves, and a spatially arrayed detector, can increase analytical and volumetric throughputs by orders of magnitude in a compact, simple, and cost-effective platform. Such instruments will be of great value to applications in need of high-throughput yet sensitive flow cytometry analysis.
Kubo, Shuji; Kawasaki, Yoshiko; Yamaoka, Norie; Tagawa, Masatoshi; Kasahara, Noriyuki; Terada, Nobuyuki; Okamura, Haruki
2010-01-01
Background Malignant mesothelioma is a highly aggressive tumor with poor prognosis. Conventional therapies for mesothelioma are generally non-curative, and new treatment paradigms are urgently needed. We hypothesized that the tumor-specific midkine (Mdk) promoter could confer transcriptional targeting to oncolytic adenoviruses for effective treatment of malignant mesothelioma. Methods We analyzed Mdk expression by quantitative RT-PCR in six human mesothelioma cell lines, and tested Mdk promoter activity by luciferase reporter assay. Based on these data, we constructed a replication-selective oncolytic adenovirus, designated AdMdk-E1-iresTK, which contains an Mdk promoter-driven adenoviral E1 gene and HSV-thymidine kinase (TK) suicide gene, and CMV promoter-driven green fluorescent protein (GFP) marker gene. Selectivity of viral replication and cytolysis were characterized in normal vs. mesothelioma cells in vitro, and intratumoral spread and antitumor efficacy were investigated in vivo. Results Mdk promoter activity was restricted in normal cells, but highly activated in mesothelioma cell lines. AdMdk-E1-iresTK was seen to efficiently replicate, produce viral progeny, and spread in multiple mesothelioma cell lines. Lytic spread of AdMdk-E1-iresTK mediated efficient killing of these mesothelioma cells, and its in vitro cytocidal effect was significantly enhanced by treatment with the prodrug, ganciclovir. Intratumoral injection of AdMdk-E1-iresTK caused complete regression of MESO4 and MSTO human mesothelioma xenografts in athymic mice. In vivo fluorescence imaging demonstrated intratumoral spread of AdMdk-E1-iresTK-derived signals, which vanished after tumor eradication. Conclusions These data indicate that transcriptional targeting of viral replication by the Mdk promoter represents a promising general strategy for oncolytic virotherapy of cancers with upregulated Mdk expression, including malignant mesothelioma. PMID:20635326
Li, Henan; Mu, Yawen; Qian, Shanshan; Lu, Jusheng; Wan, Yakun; Fu, Guodong; Liu, Songqin
2015-01-21
MicroRNA (miRNA) is found to be up-regulated in many kinds of cancer and therefore is classified as an oncomiR. Herein, we design a multifunctional fluorescent nanoprobe (FSiNP-AS/MB) with the AS1411 aptamer and a molecular beacon (MB) co-immobilized on the surface of the fluorescent dye-doped silica nanoparticles (FSiNPs) for target-cell-specific delivery and intracellular miRNA imaging. The FSiNPs were prepared by a facile reverse microemulsion method from tetraethoxysilane and silane derivatized coumarin that was previously synthesized by click chemistry. The as-prepared FSiNPs possess uniform size distribution, good optical stability and biocompatibility. In addition, there is a remarkable affinity interaction between the AS1411 aptamer and the nucleolin protein on the cancer cell surface. Thus, a target-cell-specific delivery system by the FSiNP-AS/MB is proposed for effectively transferring a MB into the cancer cells to recognize the target miRNA. Using miRNA-21 in MCF-7 cells (a human breast cancer cell line) as a model, the proposed multifunctional nanosystems not only allow target-cell-specific delivery with the binding affinity of AS1411, but also can track simultaneously the transfected cells and detect intracellular miRNA in situ. The proposed multifunctional nanosystems are a promising platform for a highly sensitive luminescent nonviral vector in biomedical and clinical research.
Novel antiproliferative flavonoids induce cell cycle arrest in human prostate cancer cell lines.
Haddad, A Q; Venkateswaran, V; Viswanathan, L; Teahan, S J; Fleshner, N E; Klotz, L H
2006-01-01
Epidemiologic studies have demonstrated an inverse association between flavonoid intake and prostate cancer (PCa) risk. The East Asian diet is very high in flavonoids and, correspondingly, men in China and Japan have the lowest incidence of PCa worldwide. There are thousands of different naturally occurring and synthetic flavonoids. However, only a few have been studied in PCa. Our aim was to identify novel flavonoids with antiproliferative effect in PCa cell lines, as well as determine their effects on cell cycle. We have screened a representative subgroup of 26 flavonoids for antiproliferative effect on the human PCa (LNCaP and PC3), breast cancer (MCF-7), and normal prostate stromal cell lines (PrSC). Using a fluorescence-based cell proliferation assay (Cyquant), we have identified five flavonoids, including the novel compounds 2,2'-dihydroxychalcone and fisetin, with antiproliferative and cell cycle arresting properties in human PCa in vitro. Most of the flavonoids tested exerted antiproliferative effect at lower doses in the PCa cell lines compared to the non-PCa cells. Flow cytometry was used as a means to determine the effects on cell cycle. PC3 cells were arrested in G2/M phase by flavonoids. LNCaP cells demonstrated different cell cycle profiles. Further studies are warranted to determine the molecular mechanism of action of 2,2'-DHC and fisetin in PCa, and to establish their effectiveness in vivo.
Zuo, Hao-yi; Gao, Jie; Yang, Jing-guo
2007-03-01
A new method to enhance the intensity of the different orders of Stokes lines of SRS by using mixed dye fluorescence is reported. The Stokes lines from the second-order to the fifth-order of CCl4 were enhanced by the fluorescence of mixed R6G and RB solutions in different proportions of 20:2, 20:13 and 20:40 (R6g:Rb), respectively. It is considered that the Stokes lines from the second-order to the fifth-order are near the fluorescence peaks of the three mixed solutions, and far from the absorption peaks of R6g and Rb, so the enhancement effect dominates the absorption effect; as a result, these stokes lines are enhanced. On the contrary, the first-order stokes line is near the absorption peak of RB and far from the fluorescence peaks of the mixed solutions, which leads to the weakening of this stokes line. It is also reported that the first-order, the second-order and the third-order Stokes lines of benzene were enhanced by the fluorescence of mixed solutions of R6g and DCM with of different proportions. The potential application of this method is forecasted.
Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos.
Behboodi, E; Bondareva, A; Begin, I; Rao, K; Neveu, N; Pierson, J T; Wylie, C; Piero, F D; Huang, Y J; Zeng, W; Tanco, V; Baldassarre, H; Karatzas, C N; Dobrinski, I
2011-03-01
Embryonic stem (ES) cells with the capacity for germ line transmission have only been verified in mouse and rat. Methods for derivation, propagation, and differentiation of ES cells from domestic animals have not been fully established. Here, we describe derivation of ES cells from goat embryos. In vivo-derived embryos were cultured on goat fetal fibroblast feeders. Embryos either attached to the feeder layer or remained floating and expanded in culture. Embryos that attached showed a prominent inner cell mass (ICM) and those that remained floating formed structures resembling ICM disks surrounded by trophectodermal cells. ICM cells and embryonic disks were isolated mechanically, cultured on feeder cells in the presence of hLIF, and outgrown into ES-like colonies. Two cell lines were cultured for 25 passages and stained positive for alkaline phosphatase, POU5F1, NANOG, SOX2, SSEA-1, and SSEA-4. Embryoid bodies formed in suspension culture without hLIF. One cell line was cultured for 2 years (over 120 passages). This cell line differentiated in vitro into epithelia and neuronal cells, and could be stably transfected and selected for expression of a fluorescent marker. When cells were injected into SCID mice, teratomas were identified 5-6 weeks after transplantation. Expression of known ES cell markers, maintenance in vitro for 2 years in an undifferentiated state, differentiation in vitro, and formation of teratomas in immunodeficient mice provide evidence that the established cell line represents goat ES cells. This also is the first report of teratoma formation from large animal ES cells. Copyright © 2011 Wiley-Liss, Inc.
Two-photon excited photoconversion of cyanine-based dyes
NASA Astrophysics Data System (ADS)
Kwok, Sheldon J. J.; Choi, Myunghwan; Bhayana, Brijesh; Zhang, Xueli; Ran, Chongzhao; Yun, Seok-Hyun
2016-03-01
The advent of phototransformable fluorescent proteins has led to significant advances in optical imaging, including the unambiguous tracking of cells over large spatiotemporal scales. However, these proteins typically require activating light in the UV-blue spectrum, which limits their in vivo applicability due to poor light penetration and associated phototoxicity on cells and tissue. We report that cyanine-based, organic dyes can be efficiently photoconverted by nonlinear excitation at the near infrared (NIR) window. Photoconversion likely involves singlet-oxygen mediated photochemical cleavage, yielding blue-shifted fluorescent products. Using SYTO62, a biocompatible and cell-permeable dye, we demonstrate photoconversion in a variety of cell lines, including depth-resolved labeling of cells in 3D culture. Two-photon photoconversion of cyanine-based dyes offer several advantages over existing photoconvertible proteins, including use of minimally toxic NIR light, labeling without need for genetic intervention, rapid kinetics, remote subsurface targeting, and long persistence of photoconverted signal. These findings are expected to be useful for applications involving rapid labeling of cells deep in tissue.
NASA Astrophysics Data System (ADS)
Yang, Meng; Baranov, Eugene; Shimada, Hiroshi; Moossa, A. R.; Hoffman, Robert M.
2000-04-01
We report here a new approach to genetically engineering tumors to become fluorescence such that they can be imaged externally in freely-moving animals. We describe here external high-resolution real-time fluorescent optical imaging of metastatic tumors in live mice. Stable high-level green flourescent protein (GFP)-expressing human and rodent cell lines enable tumors and metastasis is formed from them to be externally imaged from freely-moving mice. Real-time tumor and metastatic growth were quantitated from whole-body real-time imaging in GFP-expressing melanoma and colon carcinoma models. This GFP optical imaging system is highly appropriate for high throughput in vivo drug screening.
Biomedical applications of nanodiamonds in imaging and therapy.
Perevedentseva, Elena; Lin, Yu-Chung; Jani, Mona; Cheng, Chia-Liang
2013-12-01
Nanodiamonds have attracted remarkable scientific attention for bioimaging and therapeutic applications owing to their low toxicity with many cell lines, convenient surface properties and stable fluorescence without photobleaching. Newer techniques are being applied to enhance fluorescence. Interest is also growing in exploring the possibilities for modifying the nanodiamond surface and functionalities by attaching various biomolecules of interest for interaction with the targets. The potential of Raman spectroscopy and fluorescence properties of nanodiamonds has been explored for bioimaging and drug delivery tracing. The interest in nanodiamonds' biological/medical application appears to be continuing with enhanced focus. In this review an attempt is made to capture the scope, spirit and recent developments in the field of nanodiamonds for biomedical applications.
Intracellular Protein Delivery for Treating Breast Cancer
2012-06-01
are efficiently internalized by mammalian cells lines as characterized by confocal microscopy, and rhodamine-labeled apoptin can be observed in the...To determine the cellular localization of delivered proteins, confocal images were taken with HeLa, MCF-7, or HEF cells incubated with 20 nM of S-S...and analyzed by Nikon NIS Element software. Fluorescence images were acquired on a Yokogawa spinning-disk confocal scanner system using a Nikon
Bioconjugation and Applications of Amino Functional Fluorescence Polymers.
Geyik, Caner; Guler, Emine; Gumus, Zinar Pinar; Barlas, Firat Baris; Akbulut, Huseyin; Demirkol, Dilek Odaci; Timur, Suna; Yagci, Yusuf
2017-03-01
Synthesis and novel applications of biofunctional polymers for diagnosis and therapy are promising area involving various research domains. Herein, three fluorescent polymers, poly(p-phenylene-co-thiophene), poly(p-phenylene), and polythiophene with amino groups (PPT-NH 2 , PPP-NH 2 , and PT-NH 2 , respectively) are synthesized and investigated for cancer cell targeted imaging, drug delivery, and radiotherapy. Polymers are conjugated to anti-HER2 antibody for targeted imaging studies in nontoxic concentrations. Three cell lines (A549, Vero, and HeLa) with different expression levels of HER2 are used. In a model of HER2 expressing cell line (A549), radiotherapy experiments are carried out and results show that all three polymers increase the efficacy of radiotherapy. This effect is even more increased when conjugated to anti-HER2. In the second part of this work, one of the selected polymers (PT-NH 2 ) is conjugated with a drug model; methotrexate via pH responsive hydrazone linkage and a drug carrier property of PT-NH 2 is demonstrated on neuroblastoma (SH-SY5Y) cell model. Our results indicate that, PPT-NH 2 , PPP-NH 2 , and PT-NH 2 have a great potential as biomaterials for various bioapplications in cancer research. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Yang, Delin; Huo, Qian; Luan, Ting; Wang, Jiansong; Tang, Zhaoran; Wang, Haifeng
2016-08-01
In order to investigate how valsartan-the angiotensin II 1 receptor (AT1R) antagonist-affects the expressions of AT1R antigen, matrix metalloproteinases (MMPs) -2 and -9 in carcinoma of urinary bladder (CUB) cell lines with different invasive abilities. Three cell lines, EJ-M3, EJ, and BIU-87, with different invasive abilities were cultured and treated with valsartan. Cell proliferation states were determined by the methyl thiazolyl tetrazolium (MTT) method. The expressions at protein level and gene level were determined by Western blot and real-time fluorescence reverse transcription polymerase chain reaction (RT-PCR), respectively. The invasive abilities and migratory abilities of the three cell lines were determined by Transwell in vitro cell invasion assay and wound healing assay, respectively. MTT results show that valsartan can inhibit the proliferation of CUB cells, and the inhibition effect is enhanced with the increase of concentration. AngII promotes the MMP2 and MMP9 expressions (both protein and gene levels) in CUB cells through AT1R, but their expressions can be effectively inhibited by valsartan, the AngII inhibitor. AngII inhibitor may become a novel drug that can inhibit CUB metastasis and prolong the survival of CUB patients.
Beck, P J; Orlean, P; Albright, C; Robbins, P W; Gething, M J; Sambrook, J F
1990-01-01
The Saccharomyces cerevisiae DPM1 gene product, dolichol-phosphate-mannose (Dol-P-Man) synthase, is involved in the coupled processes of synthesis and membrane translocation of Dol-P-Man. Dol-P-Man is the lipid-linked sugar donor of the last four mannose residues that are added to the core oligosaccharide transferred to protein during N-linked glycosylation in the endoplasmic reticulum. We present evidence that the S. cerevisiae gene DPM1, when stably transfected into a mutant Chinese hamster ovary cell line, B4-2-1, is able to correct the glycosylation defect of the cells. Evidence for complementation includes (i) fluorescence-activated cell sorter analysis of differential lectin binding to cell surface glycoproteins, (ii) restoration of Dol-P-Man synthase enzymatic activity in crude cell lysates, (iii) isolation and high-performance liquid chromatography fractionation of the lipid-linked oligosaccharides synthesized in the transfected and control cell lines, and (iv) the restoration of endoglycosidase H sensitivity to the oligosaccharides transferred to a specific glycoprotein synthesized in the DPM1 CHO transfectants. Indirect immunofluorescence with a primary antibody directed against the DPM1 protein shows a reticular staining pattern of protein localization in transfected hamster and monkey cell lines. Images PMID:2201896
Patau syndrome with long survival in a case of unusual mosaic trisomy 13.
Fogu, Giuseppina; Maserati, Emanuela; Cambosu, Francesca; Moro, Maria Antonietta; Poddie, Fausto; Soro, Giovanna; Bandiera, Pasquale; Serra, Gigliola; Tusacciu, Gianni; Sanna, Giuseppina; Mazzarello, Vittorio; Montella, Andrea
2008-01-01
We report a 12-year-old patient with Patau syndrome, in whom two cell lines were present from birth, one with total trisomy 13 due to isochromosome (13q), and one with partial trisomy 13. A cytogenetic re-evaluation at 9 years of age brought to light in skin fibroblasts a third cell line, partially monosomic for chromosome 13. The derivatives (13) present in the three cell lines were characterized through fluorescence in situ hybridization (FISH) experiments with suitable probes; the results suggested a sequence of rearrangements which beginning from an isochromosome (13q) could have led to the other two derivatives. We report the clinical data at birth and at the age of 12; at this age pigmentary lesions with phylloid pattern were noted. Cytogenetic findings of the chromosomal analyses on different tissues, including skin fibroblasts from differently pigmented areas, are also reported.
Inoue, Yu; Hasegawa, Seiji; Miyachi, Katsuma; Yamada, Takaaki; Nakata, Satoru; Ipponjima, Sari; Hibi, Terumasa; Nemoto, Tomomi; Tanaka, Masahiko; Suzuki, Ryo; Hirashima, Naohide
2018-05-01
The epidermis, the outermost layer of the skin, retains moisture and functions as a physical barrier against the external environment. Epidermal cells are continuously replaced by turnover, and thus to understand in detail the dynamic cellular events in the epidermis, techniques to observe live tissues in 3D are required. Here, we established a live 3D imaging technique for epidermis models. We first obtained immortalized human epidermal cell lines which have a normal differentiation capacity and fluorescence-labelled cytoplasm or nuclei. The reconstituted 3D epidermis was prepared with these lines. Using this culture system, we were able to observe the structure of the reconstituted epidermis live in 3D, which was similar to an in vivo epidermis, and evaluate the effect of a skin irritant. This technique may be useful for dermatological science and drug development. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Balashanmugam, Pannerselvam; Durai, Prabhu; Balakumaran, Manickam Dakshinamoorthi; Kalaichelvan, Pudupalayam Thangavelu
2016-12-01
Gold nanoparticles are considered of great importance compared to other noble metal nanoparticles and its wide range of applications like pharmaceutics, therapeutics and diagnostics etc. During the past decade, phytosynthesized gold nanoparticles (AuNPs) are more focused in in vitro and in vivo study. The present study was focused on the gold chloride and phytosynthesized gold nanoparticles from aqueous leaf extract of Cassia roxburghii and their toxic effects on African green monkey normal kidney Vero cell line and three different cancer cell lines such as HepG2, MCF7 and HeLa. Phytosynthesized AuNPs were characterized by HRTEM, EDX, XRD and FTIR analysis. The particles size range of 25-35nm was confirmed by HRTEM. The elemental gold and the crystalline nature of AuNPs were confirmed by EDX and XRD, respectively. The reduction of functional groups was confirmed by FTIR. In in vitro study, the IC 50 of HepG2 cells was found to be 30μg/ml compared to other cell lines, HeLa and MCF7 cell line showing IC 50 of 50μg/ml and normal Vero cell line also nontoxic up to 75μg/ml confirmed by MTT assay. Further, apoptosis in HepG2 was analyzed by fluorescence microscope and DNA fragmentation was observed in HepG2 treated cells. These results suggested that phytosynthesized AuNPs of C. roxburghii extract clearly limited toxic on normal cells but toxic in cancer cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Time-resolved experiments in the frequency domain using synchrotron radiation (invited)
NASA Astrophysics Data System (ADS)
De Stasio, Gelsomina; Giusti, A. M.; Parasassi, T.; Ravagnan, G.; Sapora, O.
1992-01-01
PLASTIQUE is the only synchrotron radiation beam line in the world that performs time-resolved fluorescence experiments in frequency domain. These experiments are extremely valuable sources of information on the structure and the dynamics of molecules. This technique measures fluorescence lifetimes with picosecond resolution in the near UV spectral range. Such accurate measurements are rendered possible by taking phase and modulation data, and by the advantages of the cross-correlation technique. A successful experiment demonstrated the radiation damage induced by low doses of radiation on rabbit blood cell membranes.
Uptake of bright fluorophore core-silica shell nanoparticles by biological systems
Zane, Andrew; McCracken, Christie; Knight, Deborah A; Young, Tanya; Lutton, Anthony D; Olesik, John W; Waldman, W James; Dutta, Prabir K
2015-01-01
Nanoparticles are used in a variety of consumer applications. Silica nanoparticles in particular are common, including as a component of foods. There are concerns that ingested nano-silica particles can cross the intestinal epithelium, enter the circulation, and accumulate in tissues and organs. Thus, tracking these particles is of interest, and fluorescence spectroscopic methods are well-suited for this purpose. However, nanosilica is not fluorescent. In this article, we focus on core-silica shell nanoparticles, using fluorescent Rhodamine 6G, Rhodamine 800, or CdSe/CdS/ZnS quantum dots as the core. These stable fluorophore/silica nanoparticles had surface characteristics similar to those of commercial silica particles. Thus, they were used as model particles to examine internalization by cultured cells, including an epithelial cell line relevant to the gastrointestinal tract. Finally, these particles were administered to mice by gavage, and their presence in various organs, including stomach, small intestine, cecum, colon, kidney, lung, brain, and spleen, was examined. By combining confocal fluorescence microscopy with inductively coupled plasma mass spectrometry, the presence of nanoparticles, rather than their dissolved form, was established in liver tissues. PMID:25759579
NASA Astrophysics Data System (ADS)
Fiel, Luana Almeida; Contri, Renata Vidor; Bica, Juliane Freitas; Figueiró, Fabrício; Battastini, Ana Maria Oliveira; Guterres, Sílvia Stanisçuaski; Pohlmann, Adriana Raffin
2014-05-01
The synthesis of novel fluorescent materials represents a very important step to obtain labeled nanoformulations in order to evaluate their biological behavior. The strategy of conjugating a fluorescent dye with triacylglycerol allows that either particles differing regarding supramolecular structure, i.e., nanoemulsions, nanocapsules, lipid-core nanocapsules, or surface charge, i.e., cationic nanocapsules and anionic nanocapsules, can be tracked using the same labeled material. In this way, a rhodamine B-conjugated triglyceride was obtained to prepare fluorescent polymeric nanocapsules. Different formulations were obtained, nanocapsules (NC) or lipid-core nanocapsules (LNC), using the labeled oil and Eudragit RS100, Eudragit S100, or poly(caprolactone) (PCL), respectively. The rhodamine B was coupled with the ricinolein by activating the carboxylic function using a carbodiimide derivative. Thin layer chromatography, proton nuclear magnetic resonance (1H-NMR), Fourier transform infrared spectroscopy (FTIR), UV-vis, and fluorescence spectroscopy were used to identify the new product. Fluorescent nanocapsule aqueous suspensions were prepared by the solvent displacement method. Their pH values were 4.6 (NC-RS100), 3.5 (NC-S100), and 5.0 (LNC-PCL). The volume-weighted mean diameter ( D 4.3) and polydispersity values were 150 nm and 1.05 (NC-RS100), 350 nm and 2.28 (NC-S100), and 270 nm and 1.67 (LNC-PCL). The mean diameters determined by photon correlation spectroscopy (PCS) ( z-average) were around 200 nm. The zeta potential values were +5.85 mV (NC-RS100), -21.12 mV (NC-S100), and -19.25 mV (LNC-PCL). The wavelengths of maximum fluorescence emission were 567 nm (NC-RS100 and LNC-PCL) and 574 nm (NC-S100). Fluorescence microscopy was used to evaluate the cell uptake (human macrophage cell line) of the fluorescent nanocapsules in order to show the applicability of the approach. When the cells were treated with the fluorescent nanocapsules, red emission was detected around the cell nucleus. We demonstrated that the rhodamine B-conjugated triglyceride is a promising new material to obtain versatile dye-labeled nanocarriers presenting different chemical nature in their surfaces.
Visualization of DNA Replication in the Vertebrate Model System DT40 using the DNA Fiber Technique
Schwab, Rebekka A.V.; Niedzwiedz, Wojciech
2011-01-01
Maintenance of replication fork stability is of utmost importance for dividing cells to preserve viability and prevent disease. The processes involved not only ensure faithful genome duplication in the face of endogenous and exogenous DNA damage but also prevent genomic instability, a recognized causative factor in tumor development. Here, we describe a simple and cost-effective fluorescence microscopy-based method to visualize DNA replication in the avian B-cell line DT40. This cell line provides a powerful tool to investigate protein function in vivo by reverse genetics in vertebrate cells1. DNA fiber fluorography in DT40 cells lacking a specific gene allows one to elucidate the function of this gene product in DNA replication and genome stability. Traditional methods to analyze replication fork dynamics in vertebrate cells rely on measuring the overall rate of DNA synthesis in a population of pulse-labeled cells. This is a quantitative approach and does not allow for qualitative analysis of parameters that influence DNA synthesis. In contrast, the rate of movement of active forks can be followed directly when using the DNA fiber technique2-4. In this approach, nascent DNA is labeled in vivo by incorporation of halogenated nucleotides (Fig 1A). Subsequently, individual fibers are stretched onto a microscope slide, and the labeled DNA replication tracts are stained with specific antibodies and visualized by fluorescence microscopy (Fig 1B). Initiation of replication as well as fork directionality is determined by the consecutive use of two differently modified analogues. Furthermore, the dual-labeling approach allows for quantitative analysis of parameters that influence DNA synthesis during the S-phase, i.e. replication structures such as ongoing and stalled forks, replication origin density as well as fork terminations. Finally, the experimental procedure can be accomplished within a day, and requires only general laboratory equipment and a fluorescence microscope. PMID:22064662
Phospholamban mutants compete with wild type for SERCA binding in living cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gruber, Simon J.; Haydon, Suzanne; Thomas, David D., E-mail: ddt@umn.edu
2012-04-06
Highlights: Black-Right-Pointing-Pointer PLB phosphorylation in HEK cells increased FRET between YFP-PLB and CFP-SERCA. Black-Right-Pointing-Pointer Competition: Expressing loss-of-function PLB mutants in the system decreased FRET. Black-Right-Pointing-Pointer The FRET assay could screen potential therapeutic PLB mutants to activate SERCA. -- Abstract: We have used fluorescent fusion proteins stably expressed in HEK cells to detect directly the interaction between the sarcoplasmic reticulum Ca-ATPase (SERCA) and phospholamban (PLB) in living cells, in order to design PLB mutants for gene therapy. Ca{sup 2+} cycling in muscle cells depends strongly on SERCA. Heart failure (HF), which contributes to 12% of US deaths, typically exhibits decreased SERCAmore » activity, and several potential therapies for HF aim to increase SERCA activity. We are investigating the use of LOF-PLB mutants (PLB{sub M}) as gene therapy vectors to increase SERCA activity. Active SERCA1a and WT-PLB, tagged at their N termini with fluorescent proteins (CFP and YFP), were coexpressed in stable HEK cell lines, and fluorescence resonance energy transfer (FRET) was used to detect their interaction directly. Phosphorylation of PLB, induced by forskolin, caused an increase in FRET from CFP-SERCA to YFP-PLB, indicating that SERCA inhibition can be relieved without dissociation of the complex. This suggests that a LOF mutant might bind to SERCA with sufficient affinity to complete effectively with WT-PLB, thus relieving SERCA inhibition. Therefore, we transiently expressed a series of PLB{sub M} in the CFP-SERCA/YFP-PLB cell line, and found decreased FRET, implying competition between PLB{sub M} and WT-PLB for binding to SERCA. These results establish this FRET assay as a rapid and quantitative means of screening PLB{sub M} for optimization of gene therapy to activate SERCA, as needed for gene therapy in HF.« less
NASA Astrophysics Data System (ADS)
Wang, Qiming; Gossweiler, Gregory R.; Craig, Stephen L.; Zhao, Xuanhe
2014-09-01
Cephalopods can display dazzling patterns of colours by selectively contracting muscles to reversibly activate chromatophores - pigment-containing cells under their skins. Inspired by this novel colouring strategy found in nature, we design an electro-mechano-chemically responsive elastomer system that can exhibit a wide variety of fluorescent patterns under the control of electric fields. We covalently couple a stretchable elastomer with mechanochromic molecules, which emit strong fluorescent signals if sufficiently deformed. We then use electric fields to induce various patterns of large deformation on the elastomer surface, which displays versatile fluorescent patterns including lines, circles and letters on demand. Theoretical models are further constructed to predict the electrically induced fluorescent patterns and to guide the design of this class of elastomers and devices. The material and method open promising avenues for creating flexible devices in soft/wet environments that combine deformation, colorimetric and fluorescent response with topological and chemical changes in response to a single remote signal.
Comparison of segmentation algorithms for fluorescence microscopy images of cells.
Dima, Alden A; Elliott, John T; Filliben, James J; Halter, Michael; Peskin, Adele; Bernal, Javier; Kociolek, Marcin; Brady, Mary C; Tang, Hai C; Plant, Anne L
2011-07-01
The analysis of fluorescence microscopy of cells often requires the determination of cell edges. This is typically done using segmentation techniques that separate the cell objects in an image from the surrounding background. This study compares segmentation results from nine different segmentation techniques applied to two different cell lines and five different sets of imaging conditions. Significant variability in the results of segmentation was observed that was due solely to differences in imaging conditions or applications of different algorithms. We quantified and compared the results with a novel bivariate similarity index metric that evaluates the degree of underestimating or overestimating a cell object. The results show that commonly used threshold-based segmentation techniques are less accurate than k-means clustering with multiple clusters. Segmentation accuracy varies with imaging conditions that determine the sharpness of cell edges and with geometric features of a cell. Based on this observation, we propose a method that quantifies cell edge character to provide an estimate of how accurately an algorithm will perform. The results of this study will assist the development of criteria for evaluating interlaboratory comparability. Published 2011 Wiley-Liss, Inc.
Hearst, Scoty M; Gilder, Andrew S; Negi, Sandeep S; Davis, Misty D; George, Eric M; Whittom, Angela A; Toyota, Cory G; Husedzinovic, Alma; Gruss, Oliver J; Hebert, Michael D
2009-06-01
Cajal bodies (CBs) are nuclear structures that are thought to have diverse functions, including small nuclear ribonucleoprotein (snRNP) biogenesis. The phosphorylation status of coilin, the CB marker protein, might impact CB formation. We hypothesize that primary cells, which lack CBs, contain different phosphoisoforms of coilin compared with that found in transformed cells, which have CBs. Localization, self-association and fluorescence recovery after photobleaching (FRAP) studies on coilin phosphomutants all suggest this modification impacts the function of coilin and may thus contribute towards CB formation. Two-dimensional gel electrophoresis demonstrates that coilin is hyperphosphorylated in primary cells compared with transformed cells. mRNA levels of the nuclear phosphatase PPM1G are significantly reduced in primary cells and expression of PPM1G in primary cells induces CBs. Additionally, PPM1G can dephosphorylate coilin in vitro. Surprisingly, however, expression of green fluorescent protein alone is sufficient to form CBs in primary cells. Taken together, our data support a model whereby coilin is the target of an uncharacterized signal transduction cascade that responds to the increased transcription and snRNP demands found in transformed cells.
Imaging of Ras/Raf activity induced by low energy laser irradiation in living cell using FRET
NASA Astrophysics Data System (ADS)
Wang, Fang; Chen, Tong-Sheng; Xing, Da
2005-01-01
Ras/Raf signaling pathway is an important signaling pathway that governs cell proliferation, differential and apoptosis. Low-energy laser irradiation (LELI) was found to modulate various processes. Generally, cell proliferation is induced by low doses LELI and apoptosis is induced by high doses LELI. Mechanism of biological effect of LELI has not been clear. Recently, activation of MEK (mitogen-activated protein kinase) and ERK (extracellular-signal-regulated kinase), which are downstream protein kinases of Ras/Raf, are observed during LELI-induced cell proliferation by immunoprecipitation and western blot analysis. RaichuRas reporter consisting of fusions of H-ras, the Ras-binding domain of Raf (RafRBD), a cyan fluorescent protein (CFP) and a yellow fluorescent protein (YFP). Therefore, intramolecular binding of GTP-Ras to RafRBD brings CFP close to YFP and increases FRET between CFP and YFP. Human lung adenocarcinoma cell line (ASTC-a-1) was transfected with the plasmid (pRaichuRas) and then treated with LELI at dose of 60J/cm2. Effect of LELI on Ras/Raf in physiological condition of living cells was observed by fluorescence resonance energy transfer (FRET) technique during lung adenocarcinoma cell apoptosis induced by high dose (60J/cm2) LELI. Experimental results showed that after high dose LELI treatment, the binding of Ras and Raf decreases obviously, Ras/Raf signaling pathway deregulates and cell apoptosis occurs.
Moongkarndi, Primchanien; Kaslungka, Sineenart; Kosem, Nuttavut; Junnu, Sarawut; Jongsomboonkusol, Suna; Theptaranon, Yodsaward; Neungton, Neelobol
2003-03-01
OVS1 monoclonal antibody (MAb) produced against ovarian cancer is currently used to identify mucinous cystadenocarcinoma antigen as a tumor marker secreted in serum. The potential of OVS1 MAb in ovarian cancer treatment was studied by evaluating the induction of cytotoxicity and apoptosis of SKOV3 ovarian cancer and BT549 breast cancer cell lines induced by OVS1. Paclitaxel, an antitumor drug, was used as positive control and applied as a combined drug together with OVS1 MAb. OVS1 MAb and paclitaxel were found by MTT assay to induce cytotoxicity against both cell lines. The ED50 of OVS1 MAb were 26.25 and 25.00 microg/ml and of paclitaxel were 21.88 and 9.20 nM against SKOV3 and BT549 cell lines, respectively. The quantitative amount of cells determined by fluorimetric assay was correlated to the results of the MTT assay. The combined application of OVS1 MAb and paclitaxel on these two cell lines resulted in a greater cytotoxicity than observed by either agent alone. OVS1 MAb and paclitaxel applied against both cell lines induced the morphological changes of apoptotic cell death at 24 hours visualized by two color fluorescence dyes, Ho33342 and propidium iodide. Combination of the two substances enhanced the rate of apoptosis compared to either OVS1 MAb or paclitaxel given alone. DNA fragmentation was detected in an agarose gel electrophoresis after treating cells with OVS1 MAb and paclitaxel at 24 hours. These findings on the induction of cytotoxicity and apoptosis by OVS1 MAb on cancer cell lines have implications on the potential application of OVS1 MAb for clinical therapy.
A black raspberry extract inhibits proliferation and regulates apoptosis in cervical cancer cells
Zhang, Zhaoxia; Knobloch, Thomas J.; Seamon, Leigh G.; Stoner, Gary D.; Cohn, David E.; Paskett, Electra D.; Fowler, Jeffrey M.; Weghorst, Christopher M.
2014-01-01
Objective Cervical cancer is the second most common female cancer worldwide, and it remains a challenge to manage preinvasive and invasive lesions. Food-based cancer prevention entities, such as black raspberries and their derivatives, have demonstrated a marked ability to inhibit preclinical models of epithelial cancer cell growth and tumor formation. Here, we extend the role of black raspberry-mediated chemoprevention to that of cervical carcinogenesis. Methods Three human cervical cancer cell lines, HeLa (HPV16−/HPV18+, adenocarcinoma), SiHa (HPV16+/HPV18−, squamous cell carcinoma) and C-33A (HPV16−/HPV18−, squamous cell carcinoma), were treated with a lyophilized black raspberry ethanol extract (RO-ET) at 25, 50, 100 or 200 μg/ml for 1, 3 and 5 days, respectively. Cell proliferation was measured by WST1 (tetrazolium salt cleavage) assays. Flow cytometry (propidium iodide and Annexin V staining) and fluorescence microscopy analysis were used to measure apoptotic cell changes. Results We found that non-toxic levels of RO-ET significantly inhibited the growth of human cervical cancer cells, in a dose-dependent and time-dependent manner to a maximum of 54%, 52% and 67%, respectively (p<0.05). Furthermore, cell growth inhibition was persistent following short-term withdrawal of RO-ET from the culture medium. Flow cytometry and fluorescence microscopy demonstrated RO-ET-induced apoptosis in all cell lines. Conclusion Black raspberries and their bioactive components represent promising candidates for future phytochemical-based mechanistic pathway-targeted cancer prevention strategies. PMID:21831414
Kelsen, Silvia; Patel, Bijal J; Parker, Lawson B; Vera, Trinity; Rimoldi, John M; Gadepalli, Rama S V; Drummond, Heather A; Stec, David E
2008-10-01
Heme oxygenase (HO)-1 induction can attenuate the development of angiotensin II (ANG II)-dependent hypertension. However, the mechanism by which HO-1 lowers blood pressure is not clear. The goal of this study was to test the hypothesis that induction of HO-1 can reduce the ANG II-mediated increase in superoxide production in cultured thick ascending loop of Henle (TALH) cells. Studies were performed on an immortalized cell line of mouse TALH (mTALH) cells. HO-1 was induced in cultured mTALH cells by treatment with cobalt protoporphyrin (CoPP, 10 microM) or hemin (50 microM) or by transfection with a plasmid containing the human HO-1 isoform. Treatment of mTALH cells with 10(-9) M ANG II increased dihydroethidium (DHE) fluorescence (an index of superoxide levels) from 35.5+/-5 to 136+/-18 relative fluorescence units (RFU)/microm2. Induction of HO-1 via CoPP, hemin, or overexpression of the human HO-1 isoform significantly reduced ANG II-induced DHE fluorescence to 64+/-5, 64+/-8, and 41+/-4 RFU/microm2, respectively. To determine which metabolite of HO-1 is responsible for reducing ANG II-mediated increases in superoxide production in mTALH cells, cells were preincubated with bilirubin or carbon monoxide (CO)-releasing molecule (CORM)-A1 (each at 100 microM) before exposure to ANG II. DHE fluorescence averaged 80+/-7 RFU/microm2 after incubation with ANG II and was significantly decreased to 55+/-7 and 53+/-4 RFU/microm2 after pretreatment with bilirubin and CORM-A1. These results demonstrate that induction of HO-1 in mTALH cells reduces the levels of ANG II-mediated superoxide production through the production of both bilirubin and CO.
NASA Technical Reports Server (NTRS)
Theisen, Arnold F.
2000-01-01
Solar-stimulated chlorophyll fluorescence measured with the Fraunhofer line depth method has correlated well with vegetation stress in previous studies. However, the instruments used in those studies were limited to a single solar absorption line (e.g. 656.3 nm), obviating the red/far-red ratio (R/FR) method. Optics and detector technology have reached the level whereby multiple, very narrow Fraunhofer lines are resolvable. Thirteen such lines span the visible spectrum in the red to far-red region where chlorophyll fluorescence occurs. Fluorescence intensities at the 13 Fraunhofer line wavelengths were used to model emission spectra. The source data were collected for summer and fall bean crops (Phaseolus vulgaris L.) subjected to various levels of nitrogen fertilization. The intensities were adjusted to account for Fraunhofer line depth and atmospheric transmittance. Multiple R/FR fluorescence ratios, calculated from the modeled fluorescence spectra, correlated strongly with leaf chlorophyll concentration and well with applied nitrogen. The ratio yielding the best correlation with chlorophyll utilized red fluorescence at the 694.5 nm Fraunhofer line and farred fluorescence at the 755.6 nm Fraunhofer line. Twenty R/FR ratios, each evaluated for the maximum differential between low and high (optimal) nitrogen treatments, ranked higher in some cases and lower in others, possibly related to the time of year the crops were grown and the stage of growth of the crops. Ratios with 728.9 nm and 738.9 nm in the denominator consistently ranked in the lowest and next lowest quartile, respectively. Ratios of the 656.3 nm Fraunhofer line and the 755.6 nm line consistently ranked highest for the summer crop. Ratios with 755.6 nm in the denominator ranked in the upper quartile for 10 out of 12 measurement dates. Differences in ratio ranking indicate that physiological conditions may be estimated using selected ratios of Fraunhofer lines within the context of R/FR analysis. A passive instrument designed to monitor R/FR chlorophyll fluorescence (i.e. vegetation stress) from orbit could be built today.
Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, André; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz
2015-01-01
Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests. PMID:25816103
Zakrzewska, Karolina Ewa; Samluk, Anna; Wierzbicki, Mateusz; Jaworski, Sławomir; Kutwin, Marta; Sawosz, Ewa; Chwalibog, André; Pijanowska, Dorota Genowefa; Pluta, Krzysztof Dariusz
2015-01-01
Nanoparticles have attracted a great deal of attention as carriers for drug delivery to cancer cells. However, reports on their potential cytotoxicity raise questions of their safety and this matter needs attentive consideration. In this paper, for the first time, the cytotoxic effects of two carbon based nanoparticles, diamond and graphite, on glioblastoma and hepatoma cells were compared. First, we confirmed previous results that diamond nanoparticles are practically nontoxic. Second, graphite nanoparticles exhibited a negative impact on glioblastoma, but not on hepatoma cells. The studied carbon nanoparticles could be a potentially useful tool for therapeutics delivery to the brain tissue with minimal side effects on the hepatocytes. Furthermore, we showed the influence of the nanoparticles on the stable, fluorescently labeled tumor cell lines and concluded that the labeled cells are suitable for drug cytotoxicity tests.
NASA Astrophysics Data System (ADS)
Jocelin, G.; Arivarasan, A.; Ganesan, M.; Prasad, N. Rajendra; Sasikala, G.
2016-04-01
Quantum dots (QDs) are gaining widespread recognition for its luminescence behavior and unique photo physical properties as a bio-marker and inorganic fluorophore. In spite of such rampant advantages, its application is clinically hampered depending on the surface coating decreasing its luminescence efficiency. The present study reports preparation of CdTe QDs capped with biologically active thiol based material, mercaptosuccinic acid (MSA) for diagnosis of oral cancer (KB) cells by acting as a fluorophore marking targeted tumor cells and at the same time exhibiting certain cytotoxic effects. Synthesized MSA coated CdTe QDs is spherical in shape with an average particle size of 3-5nm. In vitro, the rapid uptake of MSA CdTe QDs in oral cancer cell lines were assessed through fluorescence microscopy. Further, this study evaluates the therapeutic efficiency of MSA CdTe QDs in human oral cancer cell lines using MTT analysis. MSA CdTe QDs exhibit significant cytotoxicity in oral cancer cells in a dose dependent manner with low IC50 when compared with other raw CdTe QDs. MSA CdTe QDs were also treated with human lymphocytes (normal cells) to assess and compare the toxicity profile of QDs in normal and oral tumors. The results of our present study strengthen our hypothesis of using MSA CdTe QDs as detector for tracking and fluorescence imaging of oral cancer cells and exhibiting sufficient cytotoxicity in them.
Stiefelhagen, Marius; Sellner, Leopold; Kleinschmidt, Jürgen A; Jauch, Anna; Laufs, Stephanie; Wenz, Frederik; Zeller, W Jens; Fruehauf, Stefan; Veldwijk, Marlon R
2008-01-01
Background For many promising target cells (e.g.: haematopoeitic progenitors), the susceptibility to standard adeno-associated viral (AAV) vectors is low. Advancements in vector development now allows the generation of target cell-selected AAV capsid mutants. Methods To determine its suitability, the method was applied on a chronic myelogenous leukaemia (CML) cell line (K562) to obtain a CML-targeted vector and the resulting vectors tested on leukaemia, non-leukaemia, primary human CML and CD34+ peripheral blood progenitor cells (PBPC); standard AAV2 and a random capsid mutant vector served as controls. Results Transduction of CML (BV173, EM3, K562 and Lama84) and AML (HL60 and KG1a) cell lines with the capsid mutants resulted in an up to 36-fold increase in CML transduction efficiency (K562: 2-fold, 60% ± 2% green fluorescent protein (GFP)+ cells; BV173: 9-fold, 37% ± 2% GFP+ cells; Lama84: 36-fold, 29% ± 2% GFP+ cells) compared to controls. For AML (KG1a, HL60) and one CML cell line (EM3), no significant transduction (<1% GFP+ cells) was observed for any vector. Although the capsid mutant clone was established on a cell line, proof-of-principle experiments using primary human cells were performed. For CML (3.2-fold, mutant: 1.75% ± 0.45% GFP+ cells, p = 0.03) and PBPC (3.5-fold, mutant: 4.21% ± 3.40% GFP+ cells) a moderate increase in gene transfer of the capsid mutant compared to control vectors was observed. Conclusion Using an AAV random peptide library on a CML cell line, we were able to generate a capsid mutant, which transduced CML cell lines and primary human haematopoietic progenitor cells with higher efficiency than standard recombinant AAV vectors. PMID:18789140
Zhang, Rui; Wang, Yan; Song, Bo; Han, Zhi Qiang; Xu, Yu Ming
2012-01-01
To establish HSV2 VP16 targeting shRNA-expressing cell lines and investigate the antiviral effect of shRNA targeting HSV2 VP16. The cell lines Vero-shRNAs and negative-control Vero-shCON were established. Their inhibition effects on VP16 mRNA expression were tested by real-time fluorescent quantitative polymerase chain reaction (PCR) and their antiviral effects were evaluated by yield reduction assay. The influence of passage numbers on the inhibition ability of cell lines was researched. Vero-shRNA24 targeting the upper stream, Vero-shRNA642 targeting the lower stream and Vero-shCON were established. Vero-shRNA24, Vero-shRNA642 and Vero-shRNA24 + 642 could reduce the VP16 mRNA significantly. Vero-shRNA24 was the most efficient. The HSV2 titers in Vero and Vero-shCON were the highest at 72 h after infection, and started decreasing thereafter. The viral titers of the Vero-shRNA groups reached a peak after 84 h and the highest titers were lower than in the Vero group. The inhibiting effect on VP16 mRNA expression and viral replication of Vero-shRNA24 cell lines of passages 10 and 20 were not significantly different from the primary cell line. Although of no statistical significance, the passage 50 cell line showed decreased inhibiting ability. Recombinant cell lines expressing shRNA targeting HSV2 VP16 were established. They can stably inhibit HSV2 VP16 mRNA expression and viral replication within passage 50. Copyright © 2012 S. Karger AG, Basel.
Si, Ying-jian; Guang, Li-xia; Yuan, Fa-huan; Zhang, Ke-bin
2006-08-01
To find out a possible approach to improve the effectiveness of radiotherapy and chemotherapy for Ewing's sarcoma by constructing a eukaryotic expression vector expressing herpes simplex virus-thymidine kinase (HSV-TK) regulated by hypoxia responsive element (HRE) under hypoxia and to evaluate the effects of this HRE regulated HSV-TK system on killing effect of gancyclovir (GCV) on Ewing's sarcoma cell line SK-ES under hypoxic condition. The HRE was synthesized according to the literature and cloned into the enhancer site of pIRES(2)-EGFP vector to obtain the pHRE recombinant plasmid. The HSV-TK was amplified by PCR and cloned into the multiple clone site of pIRES(2)-EGFP and pHRE to obtain pTK and pHRE-TK recombinant plasmid. The human Ewing's sarcoma cell line SK-ES was transfected by pTK or pHRE-TK recombinant plasmid with liposome and then was exposed to normoxic (21% oxygen) or hypoxic (3% oxygen) condition. The expression of enhanced green fluorescent protein (EGFP) was monitored by fluorescent microscopy. The sensitivity of human Ewing's sarcoma cell line SK-ES transfected with pTK or pHRE-TK recombinant plasmid to the anti-tumour drug GCV was determined with the method of tetrazolium (MTT) after treating with GCV for five days. (1) The result of sequencing showed that the recombinant plasmid pHRE contained HRE, and that the recombinant plasmid pTK and pHRE-TK contained HSV-TK gene in the sense direction. (2) Comparison of fluorescent optical density (FOD) showed that (1) the EGFP FOD value of pHRE and pHRE-TK group cells exposed to hypoxia was significantly higher than those exposed to normoxia (P < 0.01); (2) when the cells were exposed to hypoxia, the EGFP FOD value of pHRE and pHRE-TK group cells was significantly higher than that of pTK and empty vector group (P < 0.01); (3) there was no significant difference among the four groups of cells when they were exposed to normoxia (P > 0.05). (3) Comparison of the sensitivity of four groups of cells to GCV showed that (1) the cells in pHRE-TK and pTK groups were much more sensitive to GCV than the cells in pHRE group under hypoxia condition (P < 0.01), the higher the GCV concentration, the greater the difference; (2) the cells of pHRE-TK group were more sensitive to GCV than those in pTK group under hypoxic condition (P < 0.01), but was almost equally sensitive under normoxic condition (P > 0.05); (3) the pHRE-TK group cells had higher sensitivity to GCV under hypoxia than normoxia (P < 0.01) while the pTK group cells had almost the same sensitivity to GCV under hypoxia and normoxia (P > 0.05). (1) The eukaryotic expression vector expressing herpes simplex virus-thymidine kinase (HSV-TK) regulated by hypoxia responsive element (HRE) under hypoxia was constructed successfully. (2) HRE could up-regulate expression of EGFP by SK-ES cells under hypoxia condition. (3) HRE could enhance the killing effect of HSV-TK/GCV system on human Ewing's sarcoma cell line SK-ES under hypoxic condition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, S.; Wong, S.; Zhao, X.
An efficient mechanism-based tumor-targeting drug delivery system, based on tumor-specific vitamin-receptor mediated endocytosis, has been developed. The tumor-targeting drug delivery system is a conjugate of a tumor-targeting molecule (biotin: vitamin H or vitamin B-7), a mechanism-based self-immolative linker and a second-generation taxoid (SB-T-1214) as the cytotoxic agent. This conjugate (1) is designed to be (i) specific to the vitamin receptors overexpressed on tumor cell surface and (ii) internalized efficiently through receptor-mediated endocytosis, followed by smooth drug release via glutathione-triggered self-immolation of the linker. In order to monitor and validate the sequence of events hypothesized, i.e., receptor-mediated endocytosis of the conjugate,more » drug release, and drug-binding to the target protein (microtubules), three fluorescent/fluorogenic molecular probes (2, 3, and 4) were designed and synthesized. The actual occurrence of these processes was unambiguously confirmed by means of confocal fluorescence microscopy (CFM) and flow cytometry using L1210FR leukemia cells, overexpressing biotin receptors. The molecular probe 4, bearing the taxoid linked to fluorescein, was also used to examine the cell specificity (i.e., efficacy of receptor-based cell targeting) for three cell lines, L1210FR (biotin receptors overexpressed), L1210 (biotin receptors not overexpressed), and WI38 (normal human lung fibroblast, biotin receptor negative). As anticipated, the molecular probe 4 exhibited high specificity only to L1210FR. To confirm the direct correlation between the cell-specific drug delivery and anticancer activity of the probe 4, its cytotoxicity against these three cell lines was also examined. The results clearly showed a good correlation between the two methods. In the same manner, excellent cell-specific cytotoxicity of the conjugate 1 (without fluorescein attachment to the taxoid) against the same three cell lines was confirmed. This mechanism-based tumor-targeting drug delivery system will find a range of applications.« less
Ma, Jie; Jiang, Nan; LaPatra, Scott E; Jin, Ling; Xu, Jin; Fan, Yuding; Zhou, Yong; Zeng, Lingbing
2015-06-12
Haematopoietic necrosis of gibel carp (Carassius auratus gibelio) is caused by cyprinid herpesvirus 2 (CyHV-2) and has caused huge economic losses in aquaculture worldwide. Currently the isolation and propagation of CyHV-2 in vitro is very difficult due to the lack of permissive cell lines. Studies on the pathogenesis of CyHV-2 have been hampered because the virus has not been extensively characterized. In this study, a novel cell line from the brain of gibel carp, denoted GiCB, has been established and characterized. Sustainable propagation of CyHV-2 in the GiCB cell line has been confirmed by virus infection and titration, PCR, transmission electron microscopy, immunofluorescence assay and fluorescence in situ hybridization. The GiCB cells showed typical cytopathic effect by day 6 post-infection with CyHV-2 including cell shrinkage, rounding, and cell fusion with cytoplasmic vacuolization. The virus titer reached 10(7.5 ± 0.37)TCID₅₀/ml and has been successfully passaged over 50 times in the GiCB cell line. Electron microscopy analysis revealed the complete replication of CyHV-2 in GiCB cells. CyHV-2-infected GiCB cells reacted strongly with polyclonal antibodies against CyHV-2 and CyHV-2 RNA in cells hybridized specifically with the virus RNA probes. Additionally, an experimental infection demonstrated that CyHV-2 produced in GiCB cells caused 100% mortality in gibel carp. All the results provide solid evidence that the GiCB cell line is highly permissive for the isolation and propagation of CyHV-2. This is a significant advancement that will promote additional research on CyHV-2 infection in fish in the future. Copyright © 2015 Elsevier B.V. All rights reserved.
PD and PDT for hepatoblastoma? Preclinical considerations
NASA Astrophysics Data System (ADS)
Stepp, Herbert; Bergmann, Florian; Johansson, Ann; Heide, Michael; Metzger, Roman; Rolle, Udo; Till, Holger
2011-07-01
Objective: Provide preclinical data on the feasibility of 5-aminolevulinic acid (5-ALA) -based photodetection (PD) and Photodynamic Therapy (PDT) of early childhood tumors. Methods: Hepatoblastoma (HuH6), neuroblastoma (MHH-NB11) and N1-fibroblast cell lines were tested for their relative capacities to synthesize Protoporphyrin IX (PpIX) from 5-ALA and for their susceptibility to PDT in vitro. HuH6-cells were also inoculated in the peritoneum of rats. The pharmacokinetics of porphyrin accumulation was measured in 9 rats by laparoscopic spectroscopy. 5-ALA was applied by i.p. injection of 500 mg/kg bw. In another 21 animals, tumors (n=20), liver (n=5) and peritoneum (n=4) were treated by PDT laparoscopically. 48 h after irradiation, animals were again incubated with 5-ALA and then sacrificed and tissues were removed for further investigation. Results: Both tumor cell lines showed higher levels of porphyrin fluorescence than the fibroblasts. Cell viability testing proved the HuH6 cells to be most susceptible to PDT. Pharmacokinetic measurements of PpIX in xenografted tumors showed a peak at 80-200 min after i.p. injection of 5-ALA. Irradiation resulted in pronounced photobleaching at all irradiated sites and necrosis of tumor and liver tissue, whereas peritoneum appeared to remain unaffected. Necrosis induced by PDT could be seen in fluorescence microscopy due to the lack of porphyrin synthesis in necrotic tissue after the re-incubation with 5-ALA.
Qutaish, Mohammed Q.; Sullivant, Kristin E.; Burden-Gulley, Susan M.; Lu, Hong; Roy, Debashish; Wang, Jing; Basilion, James P.; Brady-Kalnay, Susann M.; Wilson, David L.
2012-01-01
Purpose The goals of this study were to create cryo-imaging methods to quantify characteristics (size, dispersal, and blood vessel density) of mouse orthotopic models of glioblastoma multiforme (GBM) and to enable studies of tumor biology, targeted imaging agents, and theranostic nanoparticles. Procedures Green fluorescent protein-labeled, human glioma LN-229 cells were implanted into mouse brain. At 20–38 days, cryo-imaging gave whole brain, 4-GB, 3D microscopic images of bright field anatomy, including vasculature, and fluorescent tumor. Image analysis/visualization methods were developed. Results Vessel visualization and segmentation methods successfully enabled analyses. The main tumor mass volume, the number of dispersed clusters, the number of cells/cluster, and the percent dispersed volume all increase with age of the tumor. Histograms of dispersal distance give a mean and median of 63 and 56 μm, respectively, averaged over all brains. Dispersal distance tends to increase with age of the tumors. Dispersal tends to occur along blood vessels. Blood vessel density did not appear to increase in and around the tumor with this cell line. Conclusion Cryo-imaging and software allow, for the first time, 3D, whole brain, microscopic characterization of a tumor from a particular cell line. LN-229 exhibits considerable dispersal along blood vessels, a characteristic of human tumors that limits treatment success. PMID:22125093
Dörr, Jonas M; van Coevorden-Hameete, Marleen H; Hoogenraad, Casper C; Killian, J Antoinette
2017-11-01
Extracting membrane proteins from biological membranes by styrene-maleic acid copolymers (SMAs) in the form of nanodiscs has developed into a powerful tool in membrane research. However, the mode of action of membrane (protein) solubilization in a cellular context is still poorly understood and potential specificity for cellular compartments has not been investigated. Here, we use fluorescence microscopy to visualize the process of SMA solubilization of human cells, exemplified by the immortalized human HeLa cell line. Using fluorescent protein fusion constructs that mark distinct subcellular compartments, we found that SMA solubilizes membranes in a concentration-dependent multi-stage process. While all major intracellular compartments were affected without a strong preference, plasma membrane solubilization was found to be generally slower than the solubilization of organelle membranes. Interestingly, some plasma membrane-localized proteins were more resistant against solubilization than others, which might be explained by their presence in specific membrane domains with differing properties. Our results support the general applicability of SMA for the isolation of membrane proteins from different types of (sub)cellular membranes. Copyright © 2017 Elsevier B.V. All rights reserved.
Herrero-Foncubierta, Pilar; Cuerva, Juan M.; Miguel, Delia
2018-01-01
The development of new fluorescent probes for cellular imaging is currently a very active field because of the large potential in understanding cell physiology, especially targeting anomalous behaviours due to disease. In particular, red-emitting dyes are keenly sought, as the light in this spectral region presents lower interferences and a deeper depth of penetration in tissues. In this work, we have synthesized a red-emitting, dual probe for the multiplexed intracellular detection of biothiols and phosphate ions. We have prepared a fluorogenic construct involving a silicon-substituted fluorescein for red emission. The fluorogenic reaction is selectively started by the presence of biothiols. In addition, the released fluorescent moiety undergoes an excited-state proton transfer reaction promoted by the presence of phosphate ions, which modulates its fluorescence lifetime, τ, with the total phosphate concentration. Therefore, in a multidimensional approach, the intracellular levels of biothiols and phosphate can be detected simultaneously using a single fluorophore and with spectral clearing of cell autofluorescence interferences. We have applied this concept to different cell lines, including photoreceptor cells, whose levels of biothiols are importantly altered by light irradiation and other oxidants. PMID:29315248
Ait-Mohamed, Ouardia; Battisti, Valentine; Joliot, Véronique; Fritsch, Lauriane; Pontis, Julien; Medjkane, Souhila; Redeuilh, Catherine; Lamouri, Aazdine; Fahy, Christine; Rholam, Mohamed; Atmani, Djebbar; Ait-Si-Ali, Slimane
2011-01-01
Plants are an invaluable source of potential new anti-cancer drugs. Here, we investigated the cytotoxic activity of the acetonic extract of Buxus sempervirens on five breast cancer cell lines, MCF7, MCF10CA1a and T47D, three aggressive triple positive breast cancer cell lines, and BT-20 and MDA-MB-435, which are triple negative breast cancer cell lines. As a control, MCF10A, a spontaneously immortalized but non-tumoral cell line has been used. The acetonic extract of Buxus sempervirens showed cytotoxic activity towards all the five studied breast cancer cell lines with an IC50 ranging from 7.74 µg/ml to 12.5 µg/ml. Most importantly, the plant extract was less toxic towards MCF10A with an IC50 of 19.24 µg/ml. Fluorescence-activated cell sorting (FACS) analysis showed that the plant extract induced cell death and cell cycle arrest in G0/G1 phase in MCF7, T47D, MCF10CA1a and BT-20 cell lines, concomitant to cyclin D1 downregulation. Application of MCF7 and MCF10CA1a respective IC50 did not show such effects on the control cell line MCF10A. Propidium iodide/Annexin V double staining revealed a pre-apoptotic cell population with extract-treated MCF10CA1a, T47D and BT-20 cells. Transmission electron microscopy analyses indicated the occurrence of autophagy in MCF7 and MCF10CA1a cell lines. Immunofluorescence and Western blot assays confirmed the processing of microtubule-associated protein LC3 in the treated cancer cells. Moreover, we have demonstrated the upregulation of Beclin-1 in these cell lines and downregulation of Survivin and p21. Also, Caspase-3 detection in treated BT-20 and T47D confirmed the occurrence of apoptosis in these cells. Our findings indicate that Buxus sempervirens extract exhibit promising anti-cancer activity by triggering both autophagic cell death and apoptosis, suggesting that this plant may contain potential anti-cancer agents for single or combinatory cancer therapy against breast cancer. PMID:21935420
NASA Astrophysics Data System (ADS)
Wang, Fang; Chen, Xiao-Chuan; Xing, Da
2004-07-01
Low-energy laser irradiation (LELI) has been shown to promote cell proliferation in various cell types, yet the mechanism of which has not been fully clarified. The Ras/Raf/MEK (mitogen-activated protein kinase)ERK kinase)/ERK (extracellular-signal-regulated kinase) signaling pathway is a network that govern proliferation, differentiation and cell survival. Recent studies suggested that Ras/Raf/MEK/ERK pathway is involved in the LELI-induced cell proliferation. Here, we utilized fluorescence resonance energy transfer (FRET) technique to investigate the effect of LELI on Ras/Raf signaling pathway in living cells. Raichu-Ras reporter plasmid was utilized which consisted of fusions of H-ras, the Ras-binding domain of Raf(RafRBD), a cyan fluorescent protein (CFP) and a yellow fluorescent protein (YFP), so that intramolecular binding of GTP-Ras to RafRBD brings CFP close to YFP and increases FRET between CFP and YFP. Human lung adenocarcinoma cell line (ASTC-a-1) were transfected with the plasmid (pRaichu-Ras) and then were treated by LELI. The living cell imaging showed the increase of FRET at different time points after LELI at the dose of 1.8 J/cm2, which corresponds to the Ras/Raf activation assayed by Western Blotting. Furthermore, this dose of LELI enhanced the proliferation of ASTC-a-1 cells. Taken together, these in vivo imaging data provide direct evidences with temporal or spatial resolution that Ras/Raf/MEK/ pathway plays an important role in LELI-promoted cell proliferation.
Cibiel, Agnes; Nguyen Quang, Nam; Gombert, Karine; Thézé, Benoit; Garofalakis, Anikitos; Ducongé, Frédéric
2014-01-01
Background Cell-SELEX is now widely used for the selection of aptamers against cell surface biomarkers. However, despite negative selection steps using mock cells, this method sometimes results in aptamers against undesirable targets that are expressed both on mock and targeted cells. Studying these junk aptamers might be useful for further applications than those originally envisaged. Methodology/Principal Findings Cell-SELEX was performed to identify aptamers against CHO-K1 cells expressing human Endothelin type B receptor (ETBR). CHO-K1 cells were used for negative selection of aptamers. Several aptamers were identified but no one could discriminate between both cell lines. We decided to study one of these aptamers, named ACE4, and we identified that it binds to the Annexin A2, a protein overexpressed in many cancers. Radioactive binding assays and flow cytometry demonstrated that the aptamer was able to bind several cancer cell lines from different origins, particularly the MCF-7 cells. Fluorescence microscopy revealed it could be completely internalized in cells in 2 hours. Finally, the tumor targeting of the aptamer was evaluated in vivo in nude mice xenograft with MCF-7 cells using fluorescence diffuse optical tomography (fDOT) imaging. Three hours after intravenous injection, the aptamer demonstrated a significantly higher uptake in the tumor compared to a scramble sequence. Conclusions/Significance Although aptamers could be selected during cell-SELEX against other targets than those initially intended, they represent a potential source of ligands for basic research, diagnoses and therapy. Here, studying such aptamers, we identify one with high affinity for Annexin A2 that could be a promising tool for biomedical application. PMID:24489826
2017-01-01
Pathogenic gram-negative bacteria cause serious diseases in animals and plants. These bacterial pathogens use the type III secretion system (T3SS) to deliver effector proteins into host cells; these effectors then localize to different subcellular compartments to attenuate immune responses by altering biological processes of the host cells. The fluorescent protein (FP)-based approach to monitor effectors secreted from bacteria into the host cells is not possible because the folded FP prevents effector delivery through the T3SS. Therefore, we optimized an improved variant of self-assembling split super-folder green fluorescent protein (sfGFPOPT) system to investigate the spatiotemporal dynamics of effectors delivered through bacterial T3SS into plant cells. In this system, effectors are fused to 11th β-strand of super-folder GFP (sfGFP11), and when delivered into plant cells expressing sfGFP1-10 β-strand (sfGFP1-10OPT), the two proteins reconstitute GFP fluorescence. We generated a number of Arabidopsis thaliana transgenic lines expressing sfGFP1-10OPT targeted to various subcellular compartments to facilitate localization of sfGFP11-tagged effectors delivered from bacteria. We demonstrate the efficacy of this system using Pseudomonas syringae effectors AvrB and AvrRps4 in Nicotiana benthamiana and transgenic Arabidopsis plants. The versatile split sfGFPOPT system described here will facilitate a better understanding of bacterial invasion strategies used to evade plant immune responses. PMID:28619883
Generation of iPS-derived model cells for analyses of hair shaft differentiation.
Kido, Takumi; Horigome, Tomoatsu; Uda, Minori; Adachi, Naoki; Hirai, Yohei
2017-09-01
Biological evaluation of hair growth/differentiation activity in vitro has been a formidable challenge, primarily due to the lack of relevant model cell systems. To solve this problem, we generated a stable model cell line in which successive differentiation via epidermal progenitors to hair components is easily inducible and traceable. Mouse induced pluripotent stem (iPS) cell-derived cells were selected to stably express a tetracycline (Tet)-inducible bone morphogenic protein-4 (BMP4) expression cassette and a luciferase reporter driven by a hair-specific keratin 31 gene (krt31) promoter (Tet-BMP4-KRT31-Luc iPS). While Tet- BMP4-KRT31-Luc iPS cells could be maintained as stable iPS cells, the cells differentiated to produce luciferase luminescence in the presence of all-trans retinoic acid (RA) and doxycycline (Dox), and addition of a hair differentiation factor significantly increased luciferase fluorescence. Thus, this cell line may provide a reliable cell-based screening system to evaluate drug candidates for hair differentiation activity.
Lai, Cheng-Wei; Chen, Hsiao-Ling; Yen, Chih-Ching; Wang, Jiun-Long; Yang, Shang-Hsun; Chen, Chuan-Mu
2016-12-01
Lung adenocarcinoma is characterized by a poor prognosis and high mortality worldwide. In this study, we purposed to use the live imaging techniques and a reporter gene that generates highly penetrative near-infrared (NIR) fluorescence to establish a preclinical animal model that allows in vivo monitoring of lung cancer development and provides a non-invasive tool for the research on lung cancer pathogenesis and therapeutic efficacy. A human lung adenocarcinoma cell line (A549), which stably expressed the dual fluorescence reporting gene (pCAG-iRFP-2A-Venus), was used to generate subcutaneous or orthotopic lung cancer in nude mice. Cancer development was evaluated by live imaging via the NIR fluorescent signals from iRFP, and the signals were verified ex vivo by the green fluorescence of Venus from the gross lung. The tumor-bearing mice received miR-16 nucleic acid therapy by intranasal administration to demonstrate therapeutic efficacy in this live imaging system. For the subcutaneous xenografts, the detection of iRFP fluorescent signals revealed delicate changes occurring during tumor growth that are not distinguishable by conventional methods of tumor measurement. For the orthotopic xenografts, the positive correlation between the in vivo iRFP signal from mice chests and the ex vivo green fluorescent signal from gross lung tumors and the results of the suppressed tumorigenesis by miR-16 treatment indicated that lung tumor size can be accurately quantified by the emission of NIR fluorescence. In addition, orthotopic lung tumor localization can be accurately visualized using iRFP fluorescence tomography in vivo, thus revealing the trafficking of lung tumor cells. We introduced a novel dual fluorescence lung cancer model that provides a non-invasive option for preclinical research via the use of NIR fluorescence in live imaging of lung.
Effects of exogenous zinc on cell cycle, apoptosis and viability of MDAMB231, HepG2 and 293 T cells.
Wang, Yan-hong; Li, Ke-jin; Mao, Li; Hu, Xin; Zhao, Wen-jie; Hu, An; Lian, Hong-zhen; Zheng, Wei-juan
2013-09-01
As a non-toxic metal to humans, zinc is essential for cell proliferation, differentiation, regulation of DNA synthesis, genomic stability and mitosis. Zinc homeostasis in cells, which is crucial for normal cellular functioning, is maintained by various protein families including ZnT (zinc transporter/SLC30A) and ZIP (Zrt-, Irt-like proteins/SLC39A) that decrease and increase cytosolic zinc availability, respectively. In this study, we investigated the influences of a specific concentration range of ZnSO4 on cell cycle and apoptosis by flow cytometry, and cell viability by MTT method in MDAMB231, HepG2 and 293 T cell lines. Fluorescent sensors NBD-TPEA and the counterstain for nuclei Hoechst 33342 were used to stain the treated cells for observing the localisation and amount of Zn(2+) via laser scanning confocal microscope. It was found that the influence manners of ZnSO4 on cell cycle, apoptosis and cell viability in various cell lines were different and corresponding to the changes of Zn(2+) content of the three cell lines, respectively. The significant increase on intracelluar zinc content of MDAMB231 cells resulted in cell death, G1 and G2/M cell cycle arrest and increased apoptotic fraction. Additionally, the mRNA expression levels of ZnT and ZIP families in the three cell lines, when treated with high concentration of ZnSO4, increased and decreased corresponding to their functions, respectively.
NASA Astrophysics Data System (ADS)
Krishnaswami, Venkataraman; De Luca, Giulia M. R.; Breedijk, Ronald M. P.; Van Noorden, Cornelis J. F.; Manders, Erik M. M.; Hoebe, Ron A.
2017-02-01
Fluorescence microscopy is an important tool in biomedical imaging. An inherent trade-off lies between image quality and photodamage. Recently, we have introduced rescan confocal microscopy (RCM) that improves the lateral resolution of a confocal microscope down to 170 nm. Previously, we have demonstrated that with controlled-light exposure microscopy, spatial control of illumination reduces photodamage without compromising image quality. Here, we show that the combination of these two techniques leads to high resolution imaging with reduced photodamage without compromising image quality. Implementation of spatially-controlled illumination was carried out in RCM using a line scanning-based approach. Illumination is spatially-controlled for every line during imaging with the help of a prediction algorithm that estimates the spatial profile of the fluorescent specimen. The estimation is based on the information available from previously acquired line images. As a proof-of-principle, we show images of N1E-115 neuroblastoma cells, obtained by this new setup with reduced illumination dose, improved resolution and without compromising image quality.
NASA Astrophysics Data System (ADS)
Xu, Xiaohui; Fan, Tingjun; Jiang, Guojian; Yang, Xiuxia
2015-12-01
A novel continuous ovary cell line from barfin flounder ( Verasper moseri) (BFO cell line) was established with its primitive application in transgenic expression demonstrated in this study. Primarily cultured cells grew well at 22°C in Dulbecco's modified Eagle medium/F12 medium (DMEM/F12, 1:1; pH 7.2) supplemented with 20% fetal bovine serum (FBS), carboxymethyl chitooligosaccharide, basic fibroblast growth factor (bFGF) and insulin-like growth factor-I (IGF-I). The primary BFO cells in fibroblastic morphology proliferated into a confluent monolayer about 2 weeks later, and were able to be subcultured. Impacts of medium and temperature on the growth of the cells were examined. The optimum growth was found in DMEM/F12 with 20% FBS and at 22°C. The BFO cells can be continuously subcultured to Passage 120 steadily with a population doubling time of 32.7 h at Passage 60. Chromosome analysis revealed that 72% of BFO cells at Passage 60 maintained the normal diploid chromosome number (46) with a normal karyotype of 2st+44t. The results of gene transformation indicated that green fluorescence protein (GFP) positively expressed in these cells after being transformed with pcDNA3.1-GFP. Therefore, a continuous and transformable BFO cell line was successfully established, which may serve as a useful tool for cytotechnological manipulation and transgenic modification of this fish.
Kolostova, Katarina; Zhang, Yong; Hoffman, Robert M; Bobek, Vladimir
2014-09-01
In the present study, we demonstrate an animal model and recently introduced size-based exclusion method for circulating tumor cells (CTCs) isolation. The methodology enables subsequent in vitro CTC-culture and characterization. Human lung cancer cell line H460, expressing red fluorescent protein (H460-RFP), was orthotopically implanted in nude mice. CTCs were isolated by a size-based filtration method and successfully cultured in vitro on the separating membrane (MetaCell®), analyzed by means of time-lapse imaging. The cultured CTCs were heterogeneous in size and morphology even though they originated from a single tumor. The outer CTC-membranes were blebbing in general. Abnormal mitosis resulting in three daughter cells was frequently observed. The expression of RFP ensured that the CTCs originated from lung tumor. These readily isolatable, identifiable and cultivable CTCs can be used to characterize individual patient cancers and for screening of more effective treatment.
Imaging tumor microscopic viscosity in vivo using molecular rotors
Shimolina, Lyubov’ E.; Izquierdo, Maria Angeles; López-Duarte, Ismael; Bull, James A.; Shirmanova, Marina V.; Klapshina, Larisa G.; Zagaynova, Elena V.; Kuimova, Marina K.
2017-01-01
The microscopic viscosity plays an essential role in cellular biophysics by controlling the rates of diffusion and bimolecular reactions within the cell interior. While several approaches have emerged that have allowed the measurement of viscosity and diffusion on a single cell level in vitro, the in vivo viscosity monitoring has not yet been realized. Here we report the use of fluorescent molecular rotors in combination with Fluorescence Lifetime Imaging Microscopy (FLIM) to image microscopic viscosity in vivo, both on a single cell level and in connecting tissues of subcutaneous tumors in mice. We find that viscosities recorded from single tumor cells in vivo correlate well with the in vitro values from the same cancer cell line. Importantly, our new method allows both imaging and dynamic monitoring of viscosity changes in real time in live animals and thus it is particularly suitable for diagnostics and monitoring of the progress of treatments that might be accompanied by changes in microscopic viscosity. PMID:28134273
Mishra, Anurag; Mishra, Ritu; Gottschalk, Sven; Pal, Robert; Sim, Neil; Engelmann, Joern; Goldberg, Martin; Parker, David
2014-02-19
A series of bimodal metabotropic glutamate-receptor targeted MRI contrast agents has been developed and evaluated, based on established competitive metabotropic Glu receptor subtype 5 (mGluR5) antagonists. In order to directly visualize mGluR5 binding of these agents on the surface of live astrocytes, variations in the core structure were made. A set of gadolinium conjugates containing either a cyanine dye or a fluorescein moiety was accordingly prepared, to allow visualization by optical microscopy in cellulo. In each case, surface receptor binding was compromised and cell internalization observed. Another approach, examining the location of a terbium analogue via sensitized emission, also exhibited nonspecific cell uptake in neuronal cell line models. Finally, biotin derivatives of two lead compounds were prepared, and the specificity of binding to the mGluR5 cell surface receptors was demonstrated with the aid of their fluorescently labeled avidin conjugates, using both total internal reflection fluorescence (TIRF) and confocal microscopy.
Dogra, Nilambra; Mukhopadhyay, Tapas
2012-01-01
In recent years, there has been a great deal of interest in proteasome inhibitors as a novel class of anticancer drugs. We report that fenbendazole (FZ) (methyl N-(6-phenylsulfanyl-1H-benzimidazol-2-yl)carbamate) exhibits a potent growth-inhibitory activity against cancer cell lines but not normal cells. We show here, using fluorogenic substrates, that FZ treatment leads to the inhibition of proteasomal activity in the cells. Succinyl-Leu-Leu-Val-Tyr-methylcoumarinamide (MCA), benzyloxycarbonyl-Leu-Leu-Glu-7-amido-4-MCA, and t-butoxycarbonyl-Gln-Ala-Arg-7-amido-4-MCA fluorescent derivatives were used to assess chymotrypsin-like, post-glutamyl peptidyl-hydrolyzing, and trypsin-like protease activities, respectively. Non-small cell lung cancer cells transiently transfected with an expression plasmid encoding pd1EGFP and treated with FZ showed an accumulation of the green fluorescent protein in the cells due to an increase in its half-life. A number of apoptosis regulatory proteins that are normally degraded by the ubiquitin-proteasome pathway like cyclins, p53, and IκBα were found to be accumulated in FZ-treated cells. In addition, FZ induced distinct ER stress-associated genes like GRP78, GADD153, ATF3, IRE1α, and NOXA in these cells. Thus, treatment of human NSCLC cells with fenbendazole induced endoplasmic reticulum stress, reactive oxygen species production, decreased mitochondrial membrane potential, and cytochrome c release that eventually led to cancer cell death. This is the first report to demonstrate the inhibition of proteasome function and induction of endoplasmic reticulum stress/reactive oxygen species-dependent apoptosis in human lung cancer cell lines by fenbendazole, which may represent a new class of anticancer agents showing selective toxicity against cancer cells. PMID:22745125
Ohara-Imaizumi, Mica; Nakamichi, Yoko; Tanaka, Toshiaki; Katsuta, Hidenori; Ishida, Hitoshi; Nagamatsu, Shinya
2002-04-01
The dynamics of exocytosis/endocytosis of insulin secretory granules in pancreatic beta-cells remains to be clarified. In the present study, we visualized and analysed the motion of insulin secretory granules in MIN6 cells using pH-sensitive green fluorescent protein (pHluorin) fused to either insulin or the vesicle membrane protein, phogrin. In order to monitor insulin exocytosis, pHluorin, which is brightly fluorescent at approximately pH 7.4, but not at approximately pH 5.0, was attached to the C-terminus of insulin. To monitor the motion of insulin secretory granules throughout exocytosis/endocytosis, pHluorin was inserted between the third and fourth amino acids after the identified signal-peptide cleavage site of rat phogrin cDNA. Using this method of cDNA construction, pHluorin was located in the vesicle lumen, which may enable discrimination of the unfused acidic secretory granules from the fused neutralized ones. In MIN6 cells expressing insulin-pHluorin, time-lapse confocal laser scanning microscopy (5 or 10 s intervals) revealed the appearance of fluorescent spots by depolarization after stimulation with 50 mM KCl and 22 mM glucose. The number of these spots in the image at the indicated times was counted and found to be consistent with the results of insulin release measured by RIA during the time course. In MIN6 cells expressing phogrin-pHluorin, data showed that fluorescent spots appeared following high KCl stimulation and remained stationary for a while, moved on the plasma membrane and then disappeared. Thus we demonstrate the visualized motion of insulin granule exocytosis/endocytosis using the pH-sensitive marker, pHluorin.
Engineering cell-fluorescent ion track hybrid detectors
2013-01-01
Background The lack of sensitive biocompatible particle track detectors has so far limited parallel detection of physical energy deposition and biological response. Fluorescent nuclear track detectors (FNTDs) based on Al2O3:C,Mg single crystals combined with confocal laser scanning microscopy (CLSM) provide 3D information on ion tracks with a resolution limited by light diffraction. Here we report the development of next generation cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). Methods The biocompatibility of FNTDs was tested using six different cell lines, i.e. human non-small cell lung carcinoma (A549), glioblastoma (U87), androgen independent prostate cancer (PC3), epidermoid cancer (A431) and murine (VmDk) glioma SMA-560. To evaluate cell adherence, viability and conformal coverage of the crystals different seeding densities and alternative coating with extracellular matrix (fibronectin) was tested. Carbon irradiation was performed in Bragg peak (initial 270.55 MeV u−1). A series of cell compartment specific fluorescence stains including nuclear (HOECHST), membrane (Glut-1), cytoplasm (Calcein AM, CM-DiI) were tested on Cell-Fit-HDs and a single CLSM was employed to co-detect the physical (crystal) as well as the biological (cell layer) information. Results The FNTD provides a biocompatible surface. Among the cells tested, A549 cells formed the most uniform, viable, tightly packed epithelial like monolayer. The ion track information was not compromised in Cell-Fit-HD as compared to the FNTD alone. Neither cell coating and culturing, nor additional staining procedures affected the properties of the FNTD surface to detect ion tracks. Standard immunofluorescence and live staining procedures could be employed to co-register cell biology and ion track information. Conclusions The Cell-Fit-Hybrid Detector system is a promising platform for a multitude of studies linking biological response to energy deposition at high level of optical microscopy resolution. PMID:23758749
Murota, Yoshitaka; Tabu, Kouichi; Taga, Tetsuya
2016-11-04
Elucidating the precise properties of cancer stem cells (CSCs) is indispensable for the development of effective therapies against tumors, because CSCs are key drivers of tumor development, metastasis and relapse. We previously reported that the Hoechst 33342 dye-low staining side population (SP) method can enrich for CSCs in the C6 glioma cell line, and that the positively stained main population (MP) cells are non-CSCs. Presence of cancer stem-like SP cells is reported in various types of cancer. Although altered cellular energy metabolism is a hallmark of cancer, very little has been studied on the applicability of fluorescent probes for the understanding of CSC energy metabolism. The metabolic status of C6 SP and MP cells are evaluated by CellROX, MitoTracker Green (MTG) and JC-1 for cellular oxidative stress, mitochondrial amount, and mitochondrial membrane potential, respectively. SP cells were found to exhibit significantly lower fluorescent intensities of CellROX and MTG than MP cells. However, inhibition of ATP binding cassette (ABC) transporters by verapamil enhanced the intensities of these probes in SP cells to the levels similar to those in MP cells, indicating that SP cells expel the probes outside of the cells through ABC transporters. Next, SP cells were stained with JC-1 dye which exhibits membrane potential dependent accumulation in mitochondrial matrix, followed by formation of aggregates. The mitochondrial membrane potential indicated by the aggregates of JC-1 was 5.0-fold lower in SP cells than MP cells. Inhibition of ABC transporters enhanced the fluorescent intensities of the JC-1 aggregates in both SP and MP cells, the former of which was still 2.2-fold lower than the latter. This higher JC-1 signal in MP cells was further found to be due to the Hoechst 33342 dye existing in MP cells. When SP and MP cells were recultured to deprive the intracellular Hoechst 33342 dye and then stained with JC-1 in the presence of verapamil, the intensities of JC-1 aggregates in such SP and MP cells became comparable. Inhibiting ABC transporters and depriving Hoechst 33342 dye are required for the accurate assessment of side population-defined C6 glioma stem cell metabolism using fluorescent probes.
Krishnakumar, Vivek; Choi, Yongwook; Beck, Erin; Wu, Qingyu; Luo, Anding; Sylvester, Anne; Jackson, David; Chan, Agnes P
2015-01-01
Maize is a global crop and a powerful system among grain crops for genetic and genomic studies. However, the development of novel biological tools and resources to aid in the functional identification of gene sequences is greatly needed. Towards this goal, we have developed a collection of maize marker lines for studying native gene expression in specific cell types and subcellular compartments using fluorescent proteins (FPs). To catalog FP expression, we have developed a public repository, the Maize Cell Genomics (MCG) Database, (http://maize.jcvi.org/cellgenomics), to organize a large data set of confocal images generated from the maize marker lines. To date, the collection represents major subcellular structures and also developmentally important progenitor cell populations. The resource is available to the research community, for example to study protein localization or interactions under various experimental conditions or mutant backgrounds. A subset of the marker lines can also be used to induce misexpression of target genes through a transactivation system. For future directions, the image repository can be expanded to accept new image submissions from the research community, and to perform customized large-scale computational image analysis. This community resource will provide a suite of new tools for gaining biological insights by following the dynamics of protein expression at the subcellular, cellular and tissue levels. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Kesavan, Gokul; Chekuru, Avinash; Machate, Anja; Brand, Michael
2017-01-01
The midbrain-hindbrain boundary (MHB) acts as an organizer and controls the fate of neighboring cells to develop into either mesencephalic (midbrain) or metencephalic (hindbrain) cells by secreting signaling molecules like Wnt1 and Fgf8. The zebrafish is an excellent vertebrate model for studying MHB development due to the ease of gene manipulation and the possibility of following cellular dynamics and morphogenetic processes using live imaging. Currently, only very few reporter and/or Cre-driver lines are available to study gene expression at the MHB, hampering the understanding of MHB development, and traditional transgenic technologies using promoter/enhancer fragments or bacterial artificial chromosome (BAC)-mediated transgenesis often do not faithfully recapitulate endogenous expression patterns. In contrast, CRISPR/Cas9-mediated genome editing technology now provides a great opportunity to efficiently knock-in or knock-out genes. We have generated four CRISPR/Cas9-based knock-in fluorescent reporter lines for two crucial genes involved in MHB development, namely otx2 and pax2a. The coding sequences of the reporters were knocked-in upstream of the corresponding ATG and are, thus, under the control of the endogenous promoter/enhancer elements. Interestingly, this strategy does not disturb endogenous gene expression. Using the fast maturing fluorescent protein reporter, Venus, enabled us to follow MHB development using cell tracking and live imaging. In addition, we show that these reporter lines label various neuronal and glial cell types in the adult zebrafish brain, making them highly suitable for investigating embryonic and adult midbrain, hindbrain, and MHB development. PMID:28713249
Kesavan, Gokul; Chekuru, Avinash; Machate, Anja; Brand, Michael
2017-01-01
The midbrain-hindbrain boundary (MHB) acts as an organizer and controls the fate of neighboring cells to develop into either mesencephalic (midbrain) or metencephalic (hindbrain) cells by secreting signaling molecules like Wnt1 and Fgf8. The zebrafish is an excellent vertebrate model for studying MHB development due to the ease of gene manipulation and the possibility of following cellular dynamics and morphogenetic processes using live imaging. Currently, only very few reporter and/or Cre-driver lines are available to study gene expression at the MHB, hampering the understanding of MHB development, and traditional transgenic technologies using promoter/enhancer fragments or bacterial artificial chromosome (BAC)-mediated transgenesis often do not faithfully recapitulate endogenous expression patterns. In contrast, CRISPR/Cas9-mediated genome editing technology now provides a great opportunity to efficiently knock-in or knock-out genes. We have generated four CRISPR/Cas9-based knock-in fluorescent reporter lines for two crucial genes involved in MHB development, namely otx2 and pax2a . The coding sequences of the reporters were knocked-in upstream of the corresponding ATG and are, thus, under the control of the endogenous promoter/enhancer elements. Interestingly, this strategy does not disturb endogenous gene expression. Using the fast maturing fluorescent protein reporter, Venus, enabled us to follow MHB development using cell tracking and live imaging. In addition, we show that these reporter lines label various neuronal and glial cell types in the adult zebrafish brain, making them highly suitable for investigating embryonic and adult midbrain, hindbrain, and MHB development.
Bright fluorescent Streptococcus pneumoniae for live-cell imaging of host-pathogen interactions.
Kjos, Morten; Aprianto, Rieza; Fernandes, Vitor E; Andrew, Peter W; van Strijp, Jos A G; Nijland, Reindert; Veening, Jan-Willem
2015-03-01
Streptococcus pneumoniae is a common nasopharyngeal resident in healthy people but, at the same time, one of the major causes of infectious diseases such as pneumonia, meningitis, and sepsis. The shift from commensal to pathogen and its interaction with host cells are poorly understood. One of the major limitations for research on pneumococcal-host interactions is the lack of suitable tools for live-cell imaging. To address this issue, we developed a generally applicable strategy to create genetically stable, highly fluorescent bacteria. Our strategy relies on fusing superfolder green fluorescent protein (GFP) or a far-red fluorescent protein (RFP) to the abundant histone-like protein HlpA. Due to efficient translation and limited cellular diffusion of these fusions, the cells are 25-fold brighter than those of the currently best available imaging S. pneumoniae strain. These novel bright pneumococcal strains are fully virulent, and the GFP reporter can be used for in situ imaging in mouse tissue. We used our reporter strains to study the effect of the polysaccharide capsule, a major pneumococcal virulence factor, on different stages of infection. By dual-color live-cell imaging experiments, we show that unencapsulated pneumococci adhere significantly better to human lung epithelial cells than encapsulated strains, in line with previous data obtained by classical approaches. We also confirm with live-cell imaging that the capsule protects pneumococci from neutrophil phagocytosis, demonstrating the versatility and usability of our reporters. The described imaging tools will pave the way for live-cell imaging of pneumococcal infection and help further understanding of the mechanisms of pneumococcal pathogenesis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Chip-Based Dynamic Real-Time Quantification of Drug-Induced Cytotoxicity in Human Tumor Cells
Wlodkowic, Donald; Skommer, Joanna; McGuinness, Dagmara; Faley, Shannon; Kolch, Walter; Darzynkiewicz, Zbigniew; Cooper, Jonathan M.
2013-01-01
Cell cytotoxicity tests are among the most common bioassays using flow cytometry and fluorescence imaging analysis. The permeability of plasma membranes to charged fluorescent probes serves, in these assays, as a marker distinguishing live from dead cells. Since it is generally assumed that probes, such as propidium iodide (PI) or 7-amino-actinomycin D (7-AAD), are themselves cytotoxic, they are currently generally used only as the end-point markers of assays for live versus dead cells. In the current study, we provide novel insights into potential applications of these classical plasma membrane integrity markers in the dynamic tracking of drug-induced cytotoxicity. We show that treatment of a number of different human tumor cell lines in cultures for up to 72 h with the PI, 7-AAD, SYTOX Green (SY-G), SYTOX Red (SYR), TO-PRO, and YO-PRO had no effect on cell viability assessed by the integrity of plasma membrane, cell cycle progression, and rate of proliferation. We subsequently explore the potential of dynamic labeling with these markers in real-time analysis, by comparing results from both conventional cytometry and microfluidic chips. Considering the simplicity of the staining protocols and their low cost combined with the potential for real-time data collection, we show how that real-time fluorescent imaging and Lab-on-a-Chip platforms have the potential to be used for automated drug screening routines. PMID:19572560
Wild-type rabies virus induces autophagy in human and mouse neuroblastoma cell lines.
Peng, Jiaojiao; Zhu, Shenghe; Hu, Lili; Ye, Pingping; Wang, Yifei; Tian, Qin; Mei, Mingzhu; Chen, Hao; Guo, Xiaofeng
2016-10-02
Different rabies virus (RABV) strains have their own biological characteristics, but little is known about their respective impact on autophagy. Therefore, we evaluated whether attenuated RABV HEP-Flury and wild-type RABV GD-SH-01 strains triggered autophagy. We found that GD-SH-01 infection significantly increased the number of autophagy-like vesicles, the accumulation of enhanced green fluorescent protein (EGFP)-LC3 fluorescence puncta and the conversion of LC3-I to LC3-II, while HEP-Flury was not able to induce this phenomenon. When evaluating autophagic flux, we found that GD-SH-01 infection triggers a complete autophagic response in the human neuroblastoma cell line (SK), while autophagosome fusion with lysosomes was inhibited in a mouse neuroblastoma cell line (NA). In these cells, GD-SH-01 led to apoptosis and mitochondrial dysfunction while triggering autophagy, and apoptosis could be decreased by enhancing autophagy. To further identify the virus constituent causing autophagy, 5 chimeric recombinant viruses carrying single genes of HEP-Flury instead of those of GD-SH-01 were rescued. While the HEP-Flury virus carrying the wild-type matrix protein (M) gene of RABV triggered LC3-I to LC3-II conversion in SK and NA cells, replacement of genes of nucleoprotein (N), phosphoprotein (P) and glycoprotein (G) produced only minor autophagy. But no one single structural protein of GD-SH-01 induced autophagy. Moreover, the AMPK signaling pathway was activated by GD-SH-01 in SK. Therefore, our data provide strong evidence that autophagy is induced by GD-SH-01 and can decrease apoptosis in vitro. Furthermore, the M gene of GD-SH-01 may cooperatively induce autophagy.
Kawahara, Akihiko; Taira, Tomoki; Abe, Hideyuki; Watari, Kosuke; Murakami, Yuichi; Fukumitsu, Chihiro; Takase, Yorihiko; Yamaguchi, Tomohiko; Azuma, Koichi; Akiba, Jun; Ono, Mayumi; Kage, Masayoshi
2014-02-01
Cytological diagnosis of respiratory disease has become important, not only for histological typing using immunocytochemistry (ICC) but also for molecular DNA analysis of cytological material. The aim of this study was to investigate the fixation effect of SurePath preservative fluids. Human lung cancer PC9 and 11-18 cell lines, and lung adenocarcinoma cells in pleural effusion, were fixed in CytoRich Blue, CytoRich Red, 15% neutral-buffered formalin, and 95% ethanol, respectively. PC9 and 11-18 cell lines were examined by ICC with epidermal growth factor receptor (EGFR) mutation-specific antibodies, the EGFR mutation DNA assay, and fluorescence in situ hybridization. The effect of antigenic storage time was investigated in lung adenocarcinoma cells in pleural effusion by ICC using the lung cancer detection markers. PC9 and 11-18 cell lines in formalin-based fixatives showed strong staining of EGFR mutation-specific antibodies and lung cancer detection markers by ICC as compared with ethanol-based fixatives. DNA preservation with CytoRich Blue and CytoRich Red was superior to that achieved with 95% ethanol and 15% neutral-buffered formalin fixatives, whereas EGFR mutations by DNA assay and EGFR gene amplification by fluorescence in situ hybridization were successfully identified in all fixative samples. Although cytoplasmic antigens maintained high expression levels, expression levels in nuclear antigens fell as storage time increased. These results indicate that CytoRich Red is not only suitable for ICC with EGFR mutation-specific antibodies, but also for DNA analysis of cytological material, and is useful in molecular testing of lung cancer, for which various types of analyses will be needed in future. © 2013 American Cancer Society.
Pratt, Christopher P.; Kuljis, Dika A.; Homanics, Gregg E.; He, Jianjun; Kolodieznyi, Dmytro; Dudem, Srikanth; Hollywood, Mark A.; Barth, Alison L.; Bruchez, Marcel P.
2017-01-01
BK channels are critical regulators of neuronal activity, controlling firing, neurotransmitter release, cerebellar function, and BK channel mutations have been linked to seizure disorders. Modulation of BK channel gating is well characterized, regulated by accessory subunit interactions, intracellular signaling pathways, and membrane potential. In contrast, the role of intracellular trafficking mechanisms in controlling BK channel function, especially in live cells, has been less studied. Fluorogen-activating peptides (FAPs) are well-suited for trafficking and physiological studies due to the binding of malachite green (MG)-based dyes with sub-nanomolar affinity to the FAP, resulting in bright, photostable, far-red fluorescence. Cell-excluded MG dyes enable the selective tagging of surface protein and tracking through endocytic pathways. We used CRISPR to insert the FAP at the extracellular N-terminus of BKα in the first exon of its native locus, enabling regulation by the native promoter elements and tag incorporation into multiple splice isoforms. Motor coordination was found to be normal; however, BK channel expression seems to be reduced in some locations. Alternate start site selection or post-translational proteolytic processing resulted in incomplete FAP tagging of the BKα proteins in brain tissues. In Purkinje cell somata, FAP revealed BK channel clustering previously only observed by electron microscopy. Measurement of these clusters in β4+/- and β4-/- mice showed that puncta number and cluster fluorescence intensity on the soma are reduced in β4-/- knockout animals. This novel mouse line provides a versatile fluorescent platform for studying endogenous BK channels in living and fixed tissues. Future studies could apply this line to ex vivo neuronal cultures to study live-cell channel trafficking. PMID:29163049
Day, Kristine E.; Sweeny, Larissa; Kulbersh, Brian; Zinn, Kurt R.; Rosenthal, Eben L.
2014-01-01
Purpose: Though various targets have been proposed and evaluated, no agent has yet been investigated in a clinical setting for head and neck cancer. The present study aimed to compare two fluorescently labeled anti-epidermal growth factor receptor (EGFR) antibodies for detection of head and neck squamous cell carcinoma (HNSCC). Procedures: Antigen specificities and in vitro imaging of the fluorescently labeled anti-EGFR antibodies were performed. Next, immunodeficient mice (n=22) bearing HNSCC (OSC-19 and SCC-1) tongue tumors received systemic injections of cetuximab-IRDye800CW, panitumumab-IRDye800CW, or IgG-IRDye800CW (a nonspecific control). Tumors were imaged and resected using two near-infrared imaging systems, SPY and Pearl. Fluorescent lymph nodes were also identified, and all resected tissues were sent for pathology. Results: Panitumumab-IRDye800CW and cetuximab-IRDye800CW had specific and high affinity binding for EGFR (KD=0.12 and 0.31 nM, respectively). Panitumumab-IRDye800CW demonstrated a 2-fold increase in fluorescence intensity compared to cetuximab-IRDye800CW in vitro. In vivo, both fluorescently labeled antibodies produced higher tumor-to-background ratios compared to IgG-IRDye800CW. However, there was no significant difference between the two in either cell line or imaging modality (OSC-19: p=0.08 SPY, p=0.48 Pearl; SCC-1: p=0.77 SPY, p=0.59 Pearl; paired t tests). Conclusions: There was no significant difference between the two fluorescently labeled anti-EGFR monoclonal antibodies in murine models of HNSCC. Both cetuximab and panitumumab can be considered suitable targeting agents for fluorescent intraoperative detection of HNSCC. PMID:23715932
Oliveira, Virgínia Carla; Bartasson, Lorrainy; de Castro, Maria Elita Batista; Corrêa, José Raimundo; Ribeiro, Bergmann Morais; Resende, Renato Oliveira
2011-01-01
The nonstructural protein (NSs) of the Tomato spotted wilt virus (TSWV) has been identified as an RNAi suppressor in plant cells. A recombinant Autographa californica multiple nucleopolyhedrovirus (AcMNPV) designated vAcNSs, containing the NSs gene under the control of the viral polyhedrin (polh) gene promoter, was constructed and the effects of NSs in permissive, semipermissive and nonpermissive insect cells to vAcNSs infection were evaluated. vAcNSs produced more budded virus when compared to wild type in semipermissive cells. Co-infection of vAcNSs with wild type baculoviruses clearly enhanced polyhedra production in all host cells. Confocal microscopy analysis showed that NSs accumulated in abundance in the cytoplasm of permissive and semipermissive cells. In contrast, high amounts of NSs were detected in the nuclei of nonpermissive cells. Co-infection of vAcNSs with a recombinant AcMNPV containing the enhanced green fluorescent protein (egfp) gene, significantly increased EGFP expression in semipermissive cells and in Anticarsia gemmatalis-hemocytes. Absence of small RNA molecules of egfp transcripts in this cell line and in a permissive cell line indicates the suppression of gene silencing activity. On the other hand, vAcNSs was not able to suppress RNAi in a nonpermissive cell line. Our data showed that NSs protein of TSWV facilitates baculovirus replication in different lepidopteran cell lines, and these results indicate that NSs could play a similar role during TSWV-infection in its thrips vector. Copyright © 2010 Elsevier B.V. All rights reserved.
2010-01-01
Background Photodynamic therapy (PDT) involves excitation of sensitizer molecules by visible light in the presence of molecular oxygen, thereby generating reactive oxygen species (ROS) through electron/energy transfer processes. The ROS, thus produced can cause damage to both the structure and the function of the cellular constituents resulting in cell death. Our preliminary investigations of dose-response relationships in a human glioma cell line (BMG-1) showed that disulphonated aluminum phthalocyanine (AlPcS2) photodynamically induced loss of cell survival in a concentration dependent manner up to 1 μM, further increases in AlPcS2concentration (>1 μM) were, however, observed to decrease the photodynamic toxicity. Considering the fact that for most photosensitizers only monotonic dose-response (survival) relationships have been reported, this result was unexpected. The present studies were, therefore, undertaken to further investigate the concentration dependent photodynamic effects of AlPcS2. Methods Concentration-dependent cellular uptake, sub-cellular localization, proliferation and photodynamic effects of AlPcS2 were investigated in BMG-1 cells by absorbance and fluorescence measurements, image analysis, cell counting and colony forming assays, flow cytometry and micronuclei formation respectively. Results The cellular uptake as a function of extra-cellular AlPcS2 concentrations was observed to be biphasic. AlPcS2 was distributed throughout the cytoplasm with intense fluorescence in the perinuclear regions at a concentration of 1 μM, while a weak diffuse fluorescence was observed at higher concentrations. A concentration-dependent decrease in cell proliferation with accumulation of cells in G2+M phase was observed after PDT. The response of clonogenic survival after AlPcS2-PDT was non-monotonic with respect to AlPcS2 concentration. Conclusions Based on the results we conclude that concentration-dependent changes in physico-chemical properties of sensitizer such as aggregation may influence intracellular transport and localization of photosensitizer. Consequent modifications in the photodynamic induction of lesions and their repair leading to different modes of cell death may contribute to the observed non-linear effects. PMID:20433757
Yun, Bo; Azad, Mohammad A K; Nowell, Cameron J; Nation, Roger L; Thompson, Philip E; Roberts, Kade D; Velkov, Tony; Li, Jian
2015-12-01
Polymyxins are cyclic lipopeptide antibiotics that serve as a last line of defense against Gram-negative bacterial superbugs. However, the extensive accumulation of polymyxins in renal tubular cells can lead to nephrotoxicity, which is the major dose-limiting factor in clinical use. In order to gain further insights into the mechanism of polymyxin-induced nephrotoxicity, we have rationally designed novel fluorescent polymyxin probes to examine the localization of polymyxins in rat renal tubular (NRK-52E) cells. Our design strategy focused on incorporating a dansyl fluorophore at the hydrophobic centers of the polymyxin core structure. To this end, four novel regioselectively labeled monodansylated polymyxin B probes (MIPS-9541, MIPS-9542, MIPS-9543, and MIPS-9544) were designed, synthesized, and screened for their antimicrobial activities and apoptotic effects against rat kidney proximal tubular cells. On the basis of the assessment of antimicrobial activities, cellular uptake, and apoptotic effects on renal tubular cells, incorporation of a dansyl fluorophore at either position 6 or 7 (MIPS-9543 and MIPS-9544, respectively) of the polymyxin core structure appears to be an appropriate strategy for generating representative fluorescent polymyxin probes to be utilized in intracellular imaging and mechanistic studies. Furthermore, confocal imaging experiments utilizing these probes showed evidence of partial colocalization of the polymyxins with both the endoplasmic reticulum and mitochondria in rat renal tubular cells. Our results highlight the value of these new fluorescent polymyxin probes and provide further insights into the mechanism of polymyxin-induced nephrotoxicity. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Lan, Lan; Qin, Weixi; Zhan, Xiaoping; Liu, Zenglu; Mao, Zhenmin
2014-01-01
A novel series of 3-substituted-4-(4-methylthio phenyl)-1H-pyrrole derivatives were synthesized via Van Leusen pyrrole synthesis. The in vitro anticancer activity against a panel of 16 cancer cell lines and 2 normal cell lines was investigated by MTT assay. It was found that some of the pyrrole compounds showed similar antiproliferative activity against cancer cells compared with Paclitaxel, but little impact on normal cell lines, which indicated that the novel pyrrole derivatives could be used as potential anticancer candidates for possessing both selectivity and good therapeutic efficacy. Structure-activity relationship analysis found that 3-phenylacetyl-4- (4-methylthio phenyl)-1H-pyrrole derivatives displayed the most strong anticancer activity, among which [4-(4-methylthio phenyl)-1H-pyrrol- 3-yl] (4-methoxy phenyl) methanone (3j) was employed to investigate the effect of these pyrrole analogues on cell cycle by propidium iodide (PI) staining on cell flow cytometry. Cell necrotic effect of 10.0 µM 3j against MGC80-3 cells were also observed under fluorescence microscope and transmission electron microscope by ultrathin sections observation.
Expression of γ-aminobutyric acid ρ1 and ρ1Δ450 as gene fusions with the green fluorescent protein
Martínez-Torres, Ataúlfo; Miledi, Ricardo
2001-01-01
The functional characteristics and cellular localization of the γaminobutyric acid (GABA) ρ1 receptor and its nonfunctional isoform ρ1Δ450 were investigated by expressing them as gene fusions with the enhanced version of the green fluorescent protein (GFP). Oocytes injected with ρ1-GFP had receptors that gated chloride channels when activated by GABA. The functional characteristics of these receptors were the same as for those of wild-type ρ1 receptors. Fluorescence, because of the chimeric receptors expressed, was over the whole oocyte but was more intense near the cell surface and more abundant in the animal hemisphere. Similar to the wild type, ρ1Δ450-GFP did not lead to the expression of functional GABA receptors, and injected oocytes failed to generate currents even after exposure to high concentrations of GABA. Nonetheless, the fluorescence displayed by oocytes expressing ρ1Δ450-GFP was distributed similarly to that of ρ1-GFP. Mammalian cells transfected with the ρ1-GFP or ρ1Δ450-GFP constructs showed mostly intracellularly distributed fluorescence in confocal microscope images. A sparse localization of fluorescence was observed in the plasma membrane regardless of the cell line used. We conclude that ρ1Δ450 is expressed and transported close to, and perhaps incorporated into, the plasma membrane. Thus, ρ1- and ρ1Δ450-GFP fusions provide a powerful tool to visualize the traffic of GABA type C receptors. PMID:11172056
Klein, G; Falk, L; Falk, K
1978-01-01
Herpesvirus papio(HVP)-carrying baboon lymphoblastoid lines do not express a nuclear antigen like the Epstein-Barr virus(EBV)-determined nuclear antigen (EBNA), as judged by in situ anticomplement fluorescence staining, although the carry multiple viral genomes and, in the case of producerlines, early antigen (EA) and viral capsid antigen (VCA) that cross-react with the corresponding human EBV-determined antigens. To test whether the lack of in situ nuclear antigen expression is a property innate to the baboon virus or the baboon cell, nonproducer HVP-carrying baboon lymphoid cells of the 26 CB-1 line were superinfected with two human EBV strains. B95-8-derived EBV induced brilliant EBNA staining, proving that the baboon lymphoid cell was competent to synthesize EBNA. In the mirror experiment, HVP derived from the 9B or the 18C baboon line was added to the EBV-carrying Raji line, the EBV-negative Ramos and BJAB lines and the HVP-carrying nonproducer 26 CB-1 line, respectively. HVP induced EA and VCA in Raji, and EA in BJAB and 26 CB-1. EBNA was not induced in any of the three EBNA-negative lines, BJAB, Ramos and 26 CB-1. It is concluded that the lack of in situ nuclear staining in HVP-carrying baboon lines is a HVP-associated property and is not due to any innate inability of the baboon lymphoid cell to synthesize an antigen of the EBNA type.
Hu, P F; Guan, W J; Li, X C; Zhang, W X; Li, C L; Ma, Y H
2013-01-01
Establishment of fibroblast cell lines of endangered goat breeds and research on the gene or protein functions based on the cells made a significant contribution to the conservation and utilization of genetic resources. In this study, a fibroblast cell line of Liaoning cashmere goat, frozen in 174 cryovials with 5 × 10(6) cells each, was successfully established from 60 goats ear marginal tissues using explant culture and cryopreservation techniques. Biological analysis of in vitro cultured cell line showed that, the cells were morphologically consistent with fibroblasts; the average viability of the cells was 94.9 % before freezing and 90.1 % after thawing; the growth process of cells was consisted of a lag phase, a logarithmic phase and a plateau phase; cell population doubling time was 65.5 h; more than 90 % of cells were diploid prior to the 6th generation; Neither microbial contamination nor cross-contamination was detected. To determine cell permeability, intracellular path and stability of exogenous proteins during the transduction, a TAT protein transduction domain was fused to the C-terminus of enhanced green fluorescent protein, the established fibroblast cell line was treated with the purified exogenous proteins at various concentrations by adding them to the cell culture media for 1-24 h and assayed cell morphology and protein presence, it was found that the purified exogenous proteins readily entered cells at a concentration of 0.1 mg/ml within 1.5 h and some of them could translocate into nucleus, moreover, the exogenous proteins appeared to be stable inside cells for up to 24 h.
Nair, Nisha R; Chidambareswaren, M; Manjula, S
2014-09-01
Tobacco Bright Yellow-2 (BY-2) cells, one of the best characterized cell lines is an attractive expression system for heterologous protein expression. However, the expression of foreign proteins is currently hampered by their low yield, which is partially the result of proteolytic degradation. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine. Recombinant hG-CSF is successfully being used for the treatment of chemotherapy-induced neutropenia in cancer patients. Here, we describe a simple strategy for producing biologically active hG-CSF in tobacco BY-2 cells, localized in the apoplast of BY-2 cells, as well as targeted to the endoplasmic reticulum (ER). ER targeting significantly enhanced recombinant production which scaled to 17.89 mg/l from 4.19 mg/l when expressed in the apoplasts. Southern blotting confirmed the stable integration of hG-CSF in the BY-2 nuclear genome, and the expression of hG-CSF was analysed by Western blotting. Total soluble protein containing hG-CSF isolated from positive calli showed proliferative potential when tested on HL-60 cell lines by MTT assay. We also report the potential of a Fluorescence-activated cell sorting approach for an efficient sorting of the hG-CSF-expressing cell lines, which will enable the generation of homogenous high-producing cell lines.
NASA Astrophysics Data System (ADS)
Pierce, Mark C.; Higgins, Laura M.; Ganapathy, Vidya; Kantamneni, Harini; Riman, Richard E.; Roth, Charles M.; Moghe, Prabhas V.
2017-02-01
We are investigating the ability of targeted rare earth (RE) doped nanocomposites to detect and track micrometastatic breast cancer lesions to distant sites in pre-clinical in vivo models. Functionalizing RE nanocomposites with AMD3100 promotes targeting to CXCR4, a recognized marker for highly metastatic disease. Mice were inoculated with SCP-28 (CXCR4 positive) and 4175 (CXCR4 negative) cell lines. Whole animal in vivo SWIR fluorescence imaging was performed after bioluminescence imaging confirmed tumor burden in the lungs. Line-scanning confocal fluorescence microscopy provided high-resolution imaging of RE nanocomposite uptake and native tissue autofluorescence in ex vivo lung specimens. Co-registered optical coherence tomography imaging allowed assessment of tissue microarchitecture. In conclusion, multiscale optical molecular imaging can be performed in pre-clinical models of metastatic breast cancer, using targeted RE-doped nanocomposites.
Fantoni, Frédéric; Hervé, Lionel; Poher, Vincent; Gioux, Sylvain; Mars, Jérôme I; Dinten, Jean-Marc
2015-10-01
Intraoperative fluorescence imaging in reflectance geometry is an attractive imaging modality as it allows to noninvasively monitor the fluorescence targeted tumors located below the tissue surface. Some drawbacks of this technique are the background fluorescence decreasing the contrast and absorption heterogeneities leading to misinterpretations concerning fluorescence concentrations. We propose a correction technique based on a laser line scanning illumination scheme. We scan the medium with the laser line and acquire, at each position of the line, both fluorescence and excitation images. We then use the finding that there is a relationship between the excitation intensity profile and the background fluorescence one to predict the amount of signal to subtract from the fluorescence images to get a better contrast. As the light absorption information is contained both in fluorescence and excitation images, this method also permits us to correct the effects of absorption heterogeneities. This technique has been validated on simulations and experimentally. Fluorescent inclusions are observed in several configurations at depths ranging from 1 mm to 1 cm. Results obtained with this technique are compared with those obtained with a classical wide-field detection scheme for contrast enhancement and with the fluorescence by an excitation ratio approach for absorption correction.
Hannes, Tobias; Wolff, Marie; Doss, Michael Xavier; Pfannkuche, Kurt; Haustein, Moritz; Müller-Ehmsen, Jochen; Sachinidis, Agapios; Hescheler, Jürgen; Khalil, Markus; Halbach, Marcel
2015-01-01
Modelling of cardiac development, physiology and pharmacology by differentiation of embryonic stem cells (ESCs) requires comparability of cardiac differentiation between different ESC lines. To investigate whether the outcome of cardiac differentiation is consistent between different ESC lines, we compared electrophysiological properties of ESC-derived cardiomyocytes (ESC-CMs) of different murine ESC lines. Two wild-type (D3 and R1) and two transgenic ESC lines (D3/aPIG44 and CGR8/AMPIGX-7) were differentiated under identical culture conditions. The transgenic cell lines expressed enhanced green fluorescent protein (eGFP) and puromycin-N-acetyltransferase under control of the cardiac specific α-myosin heavy chain (αMHC) promoter. Action potentials (APs) were recorded using sharp electrodes and multielectrode arrays in beating clusters of ESC-CMs. Spontaneous AP frequency and AP duration (APD) as well as maximal upstroke velocity differed markedly between unpurified CMs of the four ESC lines. APD heterogeneity was negligible in D3/aPIG44, moderate in D3 and R1 and extensive in CGR8/AMPIGX-7. Interspike intervals calculated from long-term recordings showed a high degree of variability within and between recordings in CGR8/AMPIGX-7, but not in D3/aPIG44. Purification of the αMHC+ population by puromycin treatment posed only minor changes to APD in D3/aPIG44, but significantly shortened APD in CGR8/AMPIGX-7. Electrophysiological properties of ESC-CMs are strongly cell line-dependent and can be influenced by purification of cardiomyocytes by antibiotic selection. Thus, conclusions on cardiac development, physiology and pharmacology derived from single stem cell lines have to be interpreted carefully. © 2015 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Hutcheson, Joshua A.; Majid, Aneeka A.; Powless, Amy J.; Muldoon, Timothy J.
2015-09-01
Linear image sensors have been widely used in numerous research and industry applications to provide continuous imaging of moving objects. Here, we present a widefield fluorescence microscope with a linear image sensor used to image translating objects for image cytometry. First, a calibration curve was characterized for a custom microfluidic chamber over a span of volumetric pump rates. Image data were also acquired using 15 μm fluorescent polystyrene spheres on a slide with a motorized translation stage in order to match linear translation speed with line exposure periods to preserve the image aspect ratio. Aspect ratios were then calculated after imaging to ensure quality control of image data. Fluorescent beads were imaged in suspension flowing through the microfluidics chamber being pumped by a mechanical syringe pump at 16 μl min-1 with a line exposure period of 150 μs. The line period was selected to acquire images of fluorescent beads with a 40 dB signal-to-background ratio. A motorized translation stage was then used to transport conventional glass slides of stained cellular biospecimens. Whole blood collected from healthy volunteers was stained with 0.02% (w/v) proflavine hemisulfate was imaged to highlight leukocyte morphology with a 1.56 mm × 1.28 mm field of view (1540 ms total acquisition time). Oral squamous cells were also collected from healthy volunteers and stained with 0.01% (w/v) proflavine hemisulfate to demonstrate quantifiable subcellular features and an average nuclear to cytoplasmic ratio of 0.03 (n = 75), with a resolution of 0.31 μm pixels-1.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutcheson, Joshua A.; Majid, Aneeka A.; Powless, Amy J.
Linear image sensors have been widely used in numerous research and industry applications to provide continuous imaging of moving objects. Here, we present a widefield fluorescence microscope with a linear image sensor used to image translating objects for image cytometry. First, a calibration curve was characterized for a custom microfluidic chamber over a span of volumetric pump rates. Image data were also acquired using 15 μm fluorescent polystyrene spheres on a slide with a motorized translation stage in order to match linear translation speed with line exposure periods to preserve the image aspect ratio. Aspect ratios were then calculated aftermore » imaging to ensure quality control of image data. Fluorescent beads were imaged in suspension flowing through the microfluidics chamber being pumped by a mechanical syringe pump at 16 μl min{sup −1} with a line exposure period of 150 μs. The line period was selected to acquire images of fluorescent beads with a 40 dB signal-to-background ratio. A motorized translation stage was then used to transport conventional glass slides of stained cellular biospecimens. Whole blood collected from healthy volunteers was stained with 0.02% (w/v) proflavine hemisulfate was imaged to highlight leukocyte morphology with a 1.56 mm × 1.28 mm field of view (1540 ms total acquisition time). Oral squamous cells were also collected from healthy volunteers and stained with 0.01% (w/v) proflavine hemisulfate to demonstrate quantifiable subcellular features and an average nuclear to cytoplasmic ratio of 0.03 (n = 75), with a resolution of 0.31 μm pixels{sup −1}.« less
NASA Astrophysics Data System (ADS)
Jeon, Seong-Beom; Yi, Se Won; Samal, Monica; Park, Keun-Hong; Yun, Kyusik
2018-04-01
We investigated the biocompatibility of GQDs in terms of the cellular response, an aspect often overlooked. Herein, we synthesized two types of GQDs - Glu-GQDs (GQDs which are derived from glucose) and Gr-GQDs (GQDs which are derived from graphite) - with different functional groups on their surfaces. Both types of GQDs shared similar morphological features (shape and size distribution); the size distribution varied between 1.5 nm to 9.5 nm in both cases. Spectral analysis confirmed the difference in their chemical composition. The presence of nitrogen and chlorine in the Glu-GQDs is the major distinction between the two types of GQDs. Fluorescence emission of the obtained GQDs was observed at 480 nm for the Glu-GQDs, and at 550 nm for the Gr-GQDs. The cytotoxicity in NHDF and HeLa cell line was evaluated by a CCK-8 assay, and it confirmed that the cell viability was above 80% despite the high concentration (1024 μg/mL) in both cases. Cellular response after GQDs treatment was different from the control, but it was not lethal in the cell viability aspect. Furthermore, the potential of the GQDs as bio-imaging agents was examined using a fluorescence microscope and a laser scanning confocal microscope. The Glu-GQDs dispersed throughout the cells in NHDF and HeLa cell line, while the Gr-GQDs dispersed in the cytoplasm of the NHDF cells, and were distributed throughout the cell in HeLa. This study demonstrates that GQDs have potential in biomedical applications, even though their functionalities may be different.
Target cell specific antibody-based photosensitizers for photodynamic therapy
NASA Astrophysics Data System (ADS)
Rosenblum, Lauren T.; Mitsunaga, Makoto; Kakareka, John W.; Morgan, Nicole Y.; Pohida, Thomas J.; Choyke, Peter L.; Kobayashi, Hisataka
2011-03-01
In photodynamic therapy (PDT), localized monochromatic light is used to activate targeted photosensitizers (PS) to induce cellular damage through the generation of cytotoxic species such as singlet oxygen. While first-generation PS passively targeted malignancies, a variety of targeting mechanisms have since been studied, including specifically activatable agents. Antibody internalization has previously been employed as a fluorescence activation system and could potentially enable similar activation of PS. TAMRA, Rhodamine-B and Rhodamine-6G were conjugated to trastuzumab (brand name Herceptin), a humanized monoclonal antibody with specificity for the human epidermal growth factor receptor 2 (HER2), to create quenched PS (Tra-TAM, Tra-RhoB, and Tra-Rho6G). Specific PDT with Tra-TAM and Tra-Rho6G, which formed covalently bound H-dimers, was demonstrated in HER2+ cells: Minimal cell death (<6%) was observed in all treatments of the HER2- cell line (BALB/3T3) and in treatments the HER2+ cell line (3T3/HER2) with light or trastuzumab only. There was significant light-induced cell death in HER2 expressing cells using Tra-TAM (3% dead without light, 20% at 50 J/cm2, 46% at 100 J/cm2) and Tra-Rho6G (5% dead without light, 22% at 50 J/cm2, 46% at 100 J/cm2). No efficacy was observed in treatment with Tra-RhoB, which was also non-specifically taken up by BALB/3T3 cells and which had weaker PS-antibody interactions (as demonstrated by visualization of protein and fluorescence on SDS-PAGE).
Li, Xia; Szewczuk, Myron R; Malardier-Jugroot, Cecile
2016-01-01
Targeted drug delivery using polymeric nanostructures is an emerging cancer research area, engineered for safer, more efficient, and effective use of chemotherapeutic drugs. A pH-responsive, active targeting delivery system was designed using folic acid functionalized amphiphilic alternating copolymer poly(styrene-alt-maleic anhydride) (FA-DABA-SMA) via a biodegradable linker 2,4-diaminobutyric acid (DABA). The polymeric template is pH responsive, forming amphiphilic nanostructures at pH 7, allowing the encapsulation of hydrophobic drugs on its interior. Moreover, the structure is stable only at neutral pH and collapses in the acidic tumor microenvironment, releasing drugs on-site from its core. The delivery vehicle is investigated using human pancreatic PANC-1 cancer cells and RAW-Blue™ mouse macrophage reporter cell line, both of which have overly expression of folic acid receptors. To trace the cellular uptake by both cell lines, curcumin was selected as a dye and drug mimic owing to its fluorescence nature and hydrophobic properties. Fluorescent microscopy of FA-DABA-SMA loaded with curcumin revealed a significant internalization of the dye by human pancreatic PANC-1 cancer cells compared to those with unfunctionalized polymers (SMA). Moreover, the FA-DABA-SMA polymers exhibit rodlike association specific to the cells. Both empty SMA and FA-DABA-SMA show little toxicity to PANC-1 cells as characterized by WST-1 cell proliferation assay. These results clearly indicate that FA-DABA-SMA polymers show potential as an active tumor targeting drug delivery system with the ability to internalize hydrophobic chemotherapeutics after they specifically attach to cancer cells.
Bakshi, Hamid; Sam, Smitha; Rozati, Roya; Sultan, Phalisteen; Islam, Tajamul; Rathore, Babita; Lone, Zahoor; Sharma, Manik; Triphati, Jagrati; Saxena, Ramesh Chand
2010-01-01
Apoptosis, a widely important mechanism that contributes to cell growth reduction, is reported to be induced by Crocus sativus in different cancer types. The present study was designed to elucidate apoptosis induction by crocin, a main component of Crocus sativus in a human pancreatic cancer cell line (BxPC-3). Cell viability was measured by MTT assay, Hoechest33258 staining was used to detect the chromatin condensation characteristic of apoptosis, and DNA fragmentation was assessed by gel electrophoresis and cell cycle analysis by flow cytometry. Crocin induced apoptosis and G1-phase cell cycle arrest of BxPC-3 cells, while decreasing cell viability in a dose dependent and time dependent manner. Cells treated with 10μg/L crocin exhibited apoptotic morphology (brightly blue-fluorescent condensed nuclei on Hoechst 33258 staining) and reduction of volume. DNA analysis revealed typical ladders as early as 12 hours after treatment indicative of apoptosis. Our preclinical study demonstrated a pancreatic cancer cell line to be highly sensitive to crocin-mediated growth inhibition and apoptotic cell death. Although the molecular mechanisms of crocin action are not yet clearly understood, it appears to have potential as a therapeutic agent.
Karthikeyan, Chandrabose; Amawi, Haneen; Viana, Arabela Guedes; Sanglard, Leticia; Hussein, Noor; Saddler, Maria; Ashby, Charles R; Moorthy, N S Hari Narayana; Trivedi, Piyush; Tiwari, Amit K
2018-07-15
A series of lH-pyrazolo[3,4-b]quinolin-3-amine derivatives were synthesized and evaluated for anticancer efficacy in a panel of ten cancer cell lines, including breast (MDAMB-231 and MCF-7), colon (HCT-116, HCT-15, HT-29 and LOVO), prostate (DU-145 and PC3), brain (LN-229), ovarian (A2780), and human embryonic kidney (HEK293) cells, a non-cancerous cell line. Among the eight derivatives screened, compound QTZ05 had the most potent and selective antitumor efficacy in the four colon cancer cell lines, with IC 50 values ranging from 2.3 to 10.2 µM. Furthermore, QTZ05 inhibited colony formation in HCT-116 cells in a concentration-dependent manner. Cell cycle analysis data indicated that QTZ05 caused an arrest in the sub G1 cell cycle in HCT-116 cells. QTZ05 induced apoptosis in HCT-116 cells in a concentration-dependent manner that was characterized by chromatin condensation and increase in the fluorescence of fluorochrome-conjugated Annexin V. The findings from our study suggest that QTZ05 may be a valuable prototype for the development of chemotherapeutics targeting apoptotic pathways in colorectal cancer cells. Copyright © 2018 Elsevier Ltd. All rights reserved.
Subcellular real-time in vivo imaging of intralymphatic and intravascular cancer-cell trafficking
NASA Astrophysics Data System (ADS)
McElroy, M.; Hayashi, K.; Kaushal, S.; Bouvet, M.; Hoffman, Robert M.
2008-02-01
With the use of fluorescent cells labeled with green fluorescent protein (GFP) in the nucleus and red fluorescent protein (RFP) in the cytoplasm and a highly sensitive small animal imaging system with both macro-optics and micro-optics, we have developed subcellular real-time imaging of cancer cell trafficking in live mice. Dual-color cancer cells were injected by a vascular route in an abdominal skin flap in nude mice. The mice were imaged with an Olympus OV100 small animal imaging system with a sensitive CCD camera and four objective lenses, parcentered and parfocal, enabling imaging from macrocellular to subcellular. We observed the nuclear and cytoplasmic behavior of cancer cells in real time in blood vessels as they moved by various means or adhered to the vessel surface in the abdominal skin flap. During extravasation, real-time dual-color imaging showed that cytoplasmic processes of the cancer cells exited the vessels first, with nuclei following along the cytoplasmic projections. Both cytoplasm and nuclei underwent deformation during extravasation. Different cancer cell lines seemed to strongly vary in their ability to extravasate. We have also developed real-time imaging of cancer cell trafficking in lymphatic vessels. Cancer cells labeled with GFP and/or RFP were injected into the inguinal lymph node of nude mice. The labeled cancer cells trafficked through lymphatic vessels where they were imaged via a skin flap in real-time at the cellular level until they entered the axillary lymph node. The bright dual-color fluorescence of the cancer cells and the real-time microscopic imaging capability of the Olympus OV100 enabled imaging the trafficking cancer cells in both blood vessels and lymphatics. With the dual-color cancer cells and the highly sensitive imaging system described here, the subcellular dynamics of cancer metastasis can now be observed in live mice in real time.
Ex vivo Live Imaging of Lung Metastasis and Their Microenvironment
Maynard, Carrie; Plaks, Vicki
2016-01-01
Metastasis is a major cause for cancer-related morbidity and mortality. Metastasis is a multistep process and due to its complexity, the exact cellular and molecular processes that govern metastatic dissemination and growth are still elusive. Live imaging allows visualization of the dynamic and spatial interactions of cells and their microenvironment. Solid tumors commonly metastasize to the lungs. However, the anatomical location of the lungs poses a challenge to intravital imaging. This protocol provides a relatively simple and quick method for ex vivo live imaging of the dynamic interactions between tumor cells and their surrounding stroma within lung metastasis. Using this method, the motility of cancer cells as well as interactions between cancer cells and stromal cells in their microenvironment can be visualized in real time for several hours. By using transgenic fluorescent reporter mice, a fluorescent cell line, injectable fluorescently labeled molecules and/or antibodies, multiple components of the lung microenvironment can be visualized, such as blood vessels and immune cells. To image the different cell types, a spinning disk confocal microscope that allows long-term continuous imaging with rapid, four-color image acquisition has been used. Time-lapse movies compiled from images collected over multiple positions and focal planes show interactions between live metastatic and immune cells for at least 4 hr. This technique can be further used to test chemotherapy or targeted therapy. Moreover, this method could be adapted for the study of other lung-related pathologies that may affect the lung microenvironment. PMID:26862704
Resolution Limits of Nanoimprinted Patterns by Fluorescence Microscopy
NASA Astrophysics Data System (ADS)
Kubo, Shoichi; Tomioka, Tatsuya; Nakagawa, Masaru
2013-06-01
The authors investigated optical resolution limits to identify minimum distances between convex lines of fluorescent dye-doped nanoimprinted resist patterns by fluorescence microscopy. Fluorescent ultraviolet (UV)-curable resin and thermoplastic resin films were transformed into line-and-space patterns by UV nanoimprinting and thermal nanoimprinting, respectively. Fluorescence immersion observation needed an immersion medium immiscible to the resist films, and an ionic liquid of triisobutyl methylphosphonium tosylate was appropriate for soluble thermoplastic polystyrene patterns. Observation with various numerical aperture (NA) values and two detection wavelength ranges showed that the resolution limits were smaller than the values estimated by the Sparrow criterion. The space width to identify line patterns became narrower as the line width increased. The space width of 100 nm was demonstrated to be sufficient to resolve 300-nm-wide lines in the detection wavelength range of 575-625 nm using an objective lens of NA= 1.40.
NASA Astrophysics Data System (ADS)
Retnakumari, Archana; Setua, Sonali; Menon, Deepthy; Ravindran, Prasanth; Muhammed, Habeeb; Pradeep, Thalappil; Nair, Shantikumar; Koyakutty, Manzoor
2010-02-01
Molecular-receptor-targeted imaging of folate receptor positive oral carcinoma cells using folic-acid-conjugated fluorescent Au25 nanoclusters (Au NCs) is reported. Highly fluorescent Au25 clusters were synthesized by controlled reduction of Au+ ions, stabilized in bovine serum albumin (BSA), using a green-chemical reducing agent, ascorbic acid (vitamin-C). For targeted-imaging-based detection of cancer cells, the clusters were conjugated with folic acid (FA) through amide linkage with the BSA shell. The bioconjugated clusters show excellent stability over a wide range of pH from 4 to 14 and fluorescence efficiency of ~5.7% at pH 7.4 in phosphate buffer saline (PBS), indicating effective protection of nanoclusters by serum albumin during the bioconjugation reaction and cell-cluster interaction. The nanoclusters were characterized for their physico-chemical properties, toxicity and cancer targeting efficacy in vitro. X-ray photoelectron spectroscopy (XPS) suggests binding energies correlating to metal Au 4f7/2~83.97 eV and Au 4f5/2~87.768 eV. Transmission electron microscopy and atomic force microscopy revealed the formation of individual nanoclusters of size ~1 nm and protein cluster aggregates of size ~8 nm. Photoluminescence studies show bright fluorescence with peak maximum at ~674 nm with the spectral profile covering the near-infrared (NIR) region, making it possible to image clusters at the 700-800 nm emission window where the tissue absorption of light is minimum. The cell viability and reactive oxygen toxicity studies indicate the non-toxic nature of the Au clusters up to relatively higher concentrations of 500 µg ml-1. Receptor-targeted cancer detection using Au clusters is demonstrated on FR+ve oral squamous cell carcinoma (KB) and breast adenocarcinoma cell MCF-7, where the FA-conjugated Au25 clusters were found internalized in significantly higher concentrations compared to the negative control cell lines. This study demonstrates the potential of using non-toxic fluorescent Au nanoclusters for the targeted imaging of cancer.
Stiffness nanotomography of human epithelial cancer cells
NASA Astrophysics Data System (ADS)
Staunton, Jack R.; Doss, Bryant L.; Gilbert, C. Michael; Kasas, Sandor; Ros, Robert
2012-02-01
The mechanical stiffness of individual cells is important in both cancer initiation and metastasis. We present atomic force microscopy (AFM) based nanoindentation experiments on various human mammary and esophagus cell lines covering the spectrum from normal immortalized cells to highly metastatic ones. The combination of an AFM with a confocal fluorescence lifetime imaging microscope (FLIM) in conjunction with the ability to move the sample and objective independently allow for precise alignment of AFM probe and laser focus with an accuracy down to a few nanometers. This enables us to correlate the mechanical properties with the point of indentation in the FLIM image. We are using force-volume measurements as well as force indentation curves on distinct points on the cells to compare the elastic moduli of the nuclei, nucleoli, and the cytoplasm, and how they vary within and between individual cells and cell lines. Further, a detailed analysis of the force-indentation curves allows study of the cells' mechanical properties at different indentation depths and to generate 3D elasticity maps.
Frithiof, Henrik; Aaltonen, Kristina; Rydén, Lisa
2016-01-01
Amplification of the HER-2/neu ( HER-2 ) proto-oncogene occurs in 10%-15% of primary breast cancer, leading to an activated HER-2 receptor, augmenting growth of cancer cells. Tumor classification is determined in primary tumor tissue and metastatic biopsies. However, malignant cells tend to alter their phenotype during disease progression. Circulating tumor cell (CTC) analysis may serve as an alternative to repeated biopsies. The Food and Drug Administration-approved CellSearch system allows determination of the HER-2 protein, but not of the HER-2 gene. The aim of this study was to optimize a fluorescence in situ hybridization (FISH)-based method to quantitatively determine HER-2 amplification in breast cancer CTCs following CellSearch-based isolation and verify the method in patient samples. Using healthy donor blood spiked with human epidermal growth factor receptor 2 (HER-2)-positive breast cancer cell lines, SKBr-3 and BT-474, and a corresponding negative control (the HER-2-negative MCF-7 cell line), an in vitro CTC model system was designed. Following isolation in the CellSearch system, CTC samples were further enriched and fixed on microscope slides. Immunocytochemical staining with cytokeratin and 4',6-diamidino-2'-phenylindole dihydrochloride identified CTCs under a fluorescence microscope. A FISH-based procedure was optimized by applying the HER2 IQFISH pharmDx assay for assessment of HER-2 amplification status in breast cancer CTCs. A method for defining the presence of HER-2 amplification in single breast cancer CTCs after CellSearch isolation was established using cell lines as positive and negative controls. The method was validated in blood from breast cancer patients showing that one out of six patients acquired CTC HER-2 amplification during treatment against metastatic disease. HER-2 amplification status of CTCs can be determined following CellSearch isolation and further enrichment. FISH is superior to protein assessment of HER-2 status in predicting response to HER-2-targeted immunotherapy in breast cancer patients. This assay has the potential of identifying patients with a shift in HER-2 status who may benefit from treatment adjustments.
Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines.
Kowarz, Eric; Löscher, Denise; Marschalek, Rolf
2015-04-01
Stable gene expression in mammalian cells is a prerequisite for many in vitro and in vivo experiments. However, either the integration of plasmids into mammalian genomes or the use of retro-/lentiviral systems have intrinsic limitations. The use of transposable elements, e.g. the Sleeping Beauty system (SB), circumvents most of these drawbacks (integration sites, size limitations) and allows the quick generation of stable cell lines. The integration process of SB is catalyzed by a transposase and the handling of this gene transfer system is easy, fast and safe. Here, we report our improvements made to the existing SB vector system and present two new vector types for robust constitutive or inducible expression of any gene of interest. Both types are available in 16 variants with different selection marker (puromycin, hygromycin, blasticidin, neomycin) and fluorescent protein expression (GFP, RFP, BFP) to fit most experimental requirements. With this system it is possible to generate cell lines from stable transfected cells quickly and reliably in a medium-throughput setting (three to five days). Cell lines robustly express any gene-of-interest, either constitutively or tightly regulated by doxycycline. This allows many laboratory experiments to speed up generation of data in a rapid and robust manner. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shin, Yoo Seob; Cha, Hyun Young; Lee, Bok-Soon; Kang, Sung Un; Hwang, Hye Sook; Kwon, Hak Cheol; Kim, Chul-Ho; Choi, Eun Chang
2016-04-01
The purpose of this study is to determine whether luminacin, a marine microbial extract from the Streptomyces species, has anti-tumor effects on head and neck squamous cell carcinoma (HNSCC) cell lines via autophagic cell death. Inhibition of cell survival and increased cell death was measured using cell viability, colony forming, and apoptosis assays. Migration and invasion abilities of head and cancer cells were evaluated using wound healing, scattering, and invasion assays. Changes in the signal pathway related to autophagic cell death were investigated. Drug toxicity of luminacin was examined in in vitro HaCaT cells and an in vivo zebrafish model. Luminacin showed potent cytotoxicity in HNSCC cells in cell viability, colony forming, and fluorescence-activated cell sorting analysis. In vitro migration and invasion of HNSCC cells were attenuated by luminacin treatment. Combined with Beclin-1 and LC3B, Luminacin induced autophagic cell death in head and neck cancer cells. In addition, in a zebrafish model and human keratinocyte cell line used for toxicity testing, luminacin treatment with a cytotoxic concentration to HNSCC cells did not cause toxicity. Taken together, these results demonstrate that luminacin induces the inhibition of growth and cancer progression via autophagic cell death in HNSCC cell lines, indicating a possible alternative chemotherapeutic approach for treatment of HNSCC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Al-Assar, Osama; Muschel, Ruth J.; Mantoni, Tine S.
2009-11-15
Purpose: A subpopulation of cancer stem-like cells (CSLC) is hypothesized to exist in different cancer cell lines and to mediate radioresistance in solid tumors. Methods and Materials: Cells were stained for CSLC markers and sorted (fluorescence-activated cell sorter/magnetic beads) to compare foci and radiosensitivity of phosphorylated histone H2AX at Ser 139 (gamma-H2AX) in sorted vs. unsorted populations in eight cell lines from different organs. CSLC properties were examined using anchorage-independent growth and levels of activated Notch1. Validation consisted of testing tumorigenicity and postirradiation enrichment of CSLC in xenograft tumors. Results: The quantity of CSLC was generally in good agreement withmore » primary tumors. CSLC from MDA-MB-231 (breast) and Panc-1 and PSN-1 (both pancreatic) cells had fewer residual gamma-H2AX foci than unsorted cells, pointing to radioresistance of CSLC. However, only MDA-MB-231 CSLC were more radioresistant than unsorted cells. Furthermore, MDA-MB-231 CSLC showed enhanced anchorage-independent growth and overexpression of activated Notch1 protein. The expression of cancer stem cell surface markers in the MDA-MB-231 xenograft model was increased after exposure to fractionated radiation. In contrast to PSN-1 cells, a growth advantage for MDA-MB-231 CSLC xenograft tumors was found compared to tumors arising from unsorted cells. Conclusions: CSLC subpopulations showed no general radioresistant phenotype, despite the quantities of CSLC subpopulations shown to correspond relatively well in other reports. Likewise, CSLC characteristics were found in some but not all of the tested cell lines. The reported problems in testing for CSLC in cell lines may be overcome by additional techniques, beyond sorting for markers.« less
Innervation of taste buds revealed with Brainbow-labeling in mouse.
Zaidi, Faisal N; Cicchini, Vanessa; Kaufman, Daniel; Ko, Elizabeth; Ko, Abraham; Van Tassel, Heather; Whitehead, Mark C
2016-12-01
Nerve fibers that surround and innervate the taste bud were visualized with inherent fluorescence using Brainbow transgenic mice that were generated by mating the founder line L with nestin-cre mice. Multicolor fluorescence revealed perigemmal fibers as branched within the non-taste epithelium and ending in clusters of multiple rounded swellings surrounding the taste pore. Brainbow-labeling also revealed the morphology and branching pattern of single intragemmal fibers. These taste bud fibers frequently innervated both the peripheral bud, where immature gemmal cells are located, and the central bud, where mature, differentiated cells are located. The fibers typically bore preterminal and terminal swellings, growth cones with filopodia, swellings, and rounded retraction bulbs. These results establish an anatomical substrate for taste nerve fibers to contact and remodel among receptor cells at all stages of their differentiation, an interpretation that was supported by staining with GAP-43, a marker for growing fibers and growth cones. © 2016 Anatomical Society.
Nun, Tamara K.; Kroll, David J.; Oberlies, Nicholas H.; Soejarto, Djaja D.; Case, Ryan J.; Piskaut, Pius; Matainaho, Teatulohi; Hilscher, Chelsey; Wang, Ling; Dittmer, Dirk P.; Gao, Shou-Jiang; Damania, Blossom
2013-01-01
Tumors associated with Kaposi's sarcoma–associated herpesvirus infection include Kaposi's sarcoma, primary effusion lymphoma, and multicentric Castleman's disease. Virtually all of the tumor cells in these cancers are latently infected and dependent on the virus for survival. Latent viral proteins maintain the viral genome and are required for tumorigenesis. Current prevention and treatment strategies are limited because they fail to specifically target the latent form of the virus, which can persist for the lifetime of the host. Thus, targeting latent viral proteins may prove to be an important therapeutic modality for existing tumors as well as in tumor prevention by reducing latent virus load. Here, we describe a novel fluorescence-based screening assay to monitor the maintenance of the Kaposi's sarcoma–associated herpesvirus genome in B lymphocyte cell lines and to identify compounds that induce its loss, resulting in tumor cell death. PMID:17699731
Abeywickrama, Chathura S; Baumann, Hannah J; Alexander, Nicolas; Shriver, Leah P; Konopka, Michael; Pang, Yi
2018-05-09
A series of benzothiazolium-based hemicyanines (3a-3f) have been synthesized. Evaluation of their photophysical properties shows that they exhibit improved photophysical characteristics. In comparison with the available commercial MitoTrackers, the new probes revealed an enhanced Stokes shift (Δλ ∼ 80 nm) and minimized aggregation for increased sensitivity. The synthesized probes are found to exhibit excellent selectivity for mitochondrial staining in an oligodendrocyte cell line. Probes show almost no fluorescence in aqueous environments, while the fluorescence is increased by ∼10-fold in organic solvents, making it possible for mitochondrial imaging without the need for post-staining washing. Since the absorption peaks of probes are close to the laser wavelengths of 561 and 640 nm on a commercial confocal microscope, e.g.3a exhibits λabs ∼ 620 nm and λem ∼ 702 nm, they could be useful probes for mitochondrial tracking in live cells.
Cytocompatibility and uptake of halloysite clay nanotubes.
Vergaro, Viviana; Abdullayev, Elshad; Lvov, Yuri M; Zeitoun, Andre; Cingolani, Roberto; Rinaldi, Ross; Leporatti, Stefano
2010-03-08
Halloysite is aluminosilicate clay with hollow tubular structure of 50 nm external diameter and 15 nm diameter lumen. Halloysite biocompatibility study is important for its potential applications in polymer composites, bone implants, controlled drug delivery, and for protective coating (e.g., anticorrosion or antimolding). Halloysite nanotubes were added to different cell cultures for toxicity tests. Its fluorescence functionalization by aminopropyltriethosilane (APTES) and with fluorescently labeled polyelectrolyte layers allowed following halloysite uptake by the cells with confocal laser scanning microscopy (CLSM). Quantitative Trypan blue and MTT measurements performed with two neoplastic cell lines model systems as a function of the nanotubes concentration and incubation time indicate that halloysite exhibits a high level of biocompatibility and very low cytotoxicity, rendering it a good candidate for household materials and medicine. A combination of transmission electron microscopy (TEM), scanning electron microscopy (SEM), and scanning force microscopy (SFM) imaging techniques have been employed to elucidate the structure of halloysite nanotubes.
Bianchi, A; Evans, J L; Nordlund, A C; Watts, T D; Witters, L A
1992-01-01
Reuber hepatoma cells are useful cultured lines for the study of insulin action, lipid and lipoprotein metabolism, and the regulation of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid biosynthesis. During investigations in different clonal lines of these cells, we have uncovered marked intercellular variability in the activity, enzyme content, and insulin regulation of ACC paralleled by differences in cellular neutral lipid (triglyceride) content. Two contrasting clonal lines, Fao and H356A-1, have been studied in detail. Several features distinguish these two lines, including differences in ACC activity and enzyme kinetics, the content of the two major hepatic ACC isozymes (Mr 280,000 and 265,000 Da) and their heteroisozymic complex, the extent of ACC phosphorylation, and the ability of ACC to be activated on stimulation by insulin and insulinomimetic agonists. As studied by Nile Red staining and fluorescence-activated cell sorting, these two lines also display marked differences in neutral lipid content, which correlates with both basal levels of ACC activity and inhibition of ACC by the fatty acid analog, 5-(tetradecyloxy)-2-furoic acid (TOFA). These results emphasize the importance of characterization of any particular clonal line of Reuber cells for studies of enzyme regulation, substrate metabolism, and hormone action. With respect to ACC, studies in contrasting clonal lines of Reuber cells could provide valuable clues to understanding both the complex mechanisms of intracellular ACC regulation in the absence and presence of hormones and its regulatory role(s) in overall hepatic lipid metabolism.
Tsunematsu, Hiroto; Uyeda, Akiko; Yamamoto, Nobuhiko; Sugo, Noriyuki
2017-08-01
CRISPR/Cas9 system is a powerful method to investigate the role of genes by introducing a mutation selectively and efficiently to specific genome positions in cell and animal lines. However, in primary neuron cultures, this method is affected by the issue that the effectiveness of CRISPR/Cas9 is different in each neuron. Here, we report an easy, quick and reliable method to identify mutants induced by the CRISPR/Cas9 system at a single neuron level, using immunocytochemistry (ICC) and fluorescence imaging. Dissociated cortical cells were transfected with CRISPR/Cas9 plasmids targeting the transcription factor cAMP-response element binding protein (CREB). Fluorescence ICC with CREB antibody and quantitative analysis of fluorescence intensity demonstrated that CREB expression disappeared in a fraction of the transfected neurons. The downstream FOS expression was also decreased in accordance with suppressed CREB expression. Moreover, dendritic arborization was decreased in the transfected neurons which lacked CREB immunoreactivity. Detection of protein expression is efficient to identify individual postmitotic neurons with CRISPR/Cas9-mediated gene disruption in primary cortical cultures. The present method composed of CRISPR/Cas9 system, ICC and fluorescence imaging is applicable to study the function of various genes at a single-neuron level.
Day, Kristine E.; Beck, Lauren N.; Heath, C. Hope; Huang, Conway C.; Zinn, Kurt R.; Rosenthal, Eben L.
2013-01-01
Intraoperative, real-time fluorescence imaging may significantly improve tumor visualization and resection and postoperatively, in pathological assessment. To this end, we sought to determine the optimal FDA approved therapeutic monoclonal antibody for optical imaging of human cutaneous squamous cell carcinoma (cSCC). A near-infrared (NIR) fluorescent probe (IRDye800) was covalently linked to bevacizumab, panitumumab or tocilizumab and injected systemically into immunodeficient mice bearing either cutaneous tumor cell lines (SCC13) or cutaneous human tumor explants. Tumors were then imaged and resected under fluorescent guidance with the SPY, an FDA-approved intraoperative imaging system, and the Pearl Impulse small animal imaging system. All fluorescently labeled antibodies delineated normal tissue from tumor in SCC13 xenografts based on tumor-to-background (TBR) ratios. The conjugated antibodies produced TBRs of 1.2–2 using SPY and 1.6–3.6 using Pearl; in comparison, isotype control antibody IgG-IRDye produced TBRs of 1.0 (SPY) and 0.98 (Pearl). Comparison between antibodies revealed them to be roughly equivalent for imaging purposes with both the SPY and Pearl (p = 0.89 SPY, p = 0.99 Pearl; one way ANOVA). Human tumor explants were also imaged and tumor detection was highest with panitumumab-IRDye800 when using the SPY (TBR 3.0) and Pearl (TBR 4.0). These data suggest that FDA approved antibodies may be clinically used for intraoperative detection of cSCC. PMID:23298904
Zhu, Dong-Mei; Yang, Kun; Wang, Wei-Min; Song, Wen
2013-12-01
This study established and characterized a new cell line (MAF) from the fin of blunt snout bream (Megalobrama amblycephala), a freshwater fish cultivated in China. MAF cells proliferated well in medium 199 supplemented with 10 % fetal bovine serum at 28 °C and have been subcultured more than 95 times in almost a year. MAF cells were revived at 90-95 % viability after 3-6 months of storage in liquid nitrogen. Karyotyping indicated that the modal chromosome number of MAF cells was 48. The MAF cell line consisted predominantly of fibroblastic and epithelial-like cells from M. amblycephala, which was confirmed by immunofluorescence and mitochondrial 12s rRNA sequencing. Viral susceptibility tests showed that MAF cells were susceptible to infection by snakehead rhabdovirus, spring viremia carp virus, and channel catfish virus, which was demonstrated by the presence of cytopathic effect, high viral titers, and PCR products. Bacterial cytotoxicity studies showed that extracellular products from Aeromonas hydrophila were toxic to MAF cells. Cu²⁺ was also cytotoxic to MAF cells, and the 24-h IC₅₀ value was 144.48 μmol/l. When MAF cells were transfected with pEGFP-N1 plasmid, bright fluorescent signals were observed, and the transfection efficiency reached up to 5 %. These results suggest that the MAF cell line may provide a valuable tool for studying virus pathogenesis, as well as cytotoxicity testing and genetic manipulation studies.
NASA Astrophysics Data System (ADS)
Han, Duksun; Cho, Jin Hyoung; Lee, Ra Ham; Bang, Woong; Park, Kyungho; Kim, Minseok S.; Shim, Jung-Hyun; Chae, Jung-Il; Moon, Se Youn
2017-02-01
Human colorectal cancer cell lines (HT29 and HCT116) were exposed to dielectric barrier discharge (DBD) plasma at atmospheric pressure to investigate the anticancer capacity of the plasma. The dose- and time-dependent effects of DBDP on cell viability, regulation of transcription factor Sp1, cell-cycle analysis, and colony formation were investigated by means of MTS assay, DAPI staining, propidium iodide staining, annexin V-FITC staining, Western blot analysis, RT-PCR analysis, fluorescence microscopy, and anchorage-independent cell transformation assay. By increasing the duration of plasma dose times, significant reductions in the levels of both Sp1 protein and Sp1 mRNA were observed in both cell lines. Also, expression of negative regulators related to the cell cycle (such as p53, p21, and p27) was increased and of the positive regulator cyclin D1 was decreased, indicating that the plasma treatment led to apoptosis and cell-cycle arrest. In addition, the sizes and quantities of colony formation were significantly suppressed even though two cancer promoters, such as TPA and epidermal growth factor, accompanied the plasma treatment. Thus, plasma treatment inhibited cell viability and colony formation by suppressing Sp1, which induced apoptosis and cell-cycle arrest in these two human colorectal cancer cell lines.
Perez-Cunningham, Jessica; Boyer, Scott W; Landon, Mark; Forsberg, E Camilla
2016-08-01
Selective labeling of specific cell types by expression of green fluorescent protein (GFP) within the hematopoietic system would have great utility in identifying, localizing, and tracking different cell populations in flow cytometry, microscopy, lineage tracing, and transplantation assays. In this report, we describe the generation and characterization of a new transgenic mouse line with specific GFP labeling of all nucleated hematopoietic cells and platelets. This new "Vav-GFP" mouse line labels the vast majority of hematopoietic cells with GFP during both embryonic development and adulthood, with particularly high expression in hematopoietic stem and progenitor cells (HSPCs). With the exception of transient labeling of fetal endothelial cells, GFP expression is highly selective for hematopoietic cells and persists in donor-derived progeny after transplantation of HSPCs. Finally, we also demonstrate that the loxP-flanked reporter allows for specific GFP labeling of different hematopoietic cell subsets when crossed to various Cre reporter lines. By crossing Vav-GFP mice to Flk2-Cre mice, we obtained robust and highly selective GFP expression in hematopoietic stem cells (HSCs). These data describe a new mouse model capable of directing GFP labeling exclusively of hematopoietic cells or exclusively of HSCs. Copyright © 2016 ISEH - International Society for Experimental Hematology. Published by Elsevier Inc. All rights reserved.
Tsutsumi, T; Tokumura, A; Kitazawa, S
1998-02-05
In this study, we confirmed a previous finding that 1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine (methyl-PAF) expresses higher antineoplastic activity against the promyelocytic leukemia cell line HL-60, than against the erythroleukemic cell line K562, and intended to clarify the reason for this. Using an albumin back-exchange method, we measured the rates of binding and internalization of [3H]methyl-PAF by HL-60 and K562 cells. We found that methyl-PAF associated very rapidly and to similar extents with the two types of cells at low concentrations of extracellular bovine serum albumin, but that when bound to the cell surface, it was internalized into HL-60 cells faster than into K562 cells. The internalization of methyl-PAF by HL-60 cells was concentration-independent, intracellular ATP-independent and susceptible to thiol group-modifying reagents and cytochalasin B. Thus the inward transbilayer movement of methyl-PAF seems to occur by cytochalasin B-sensitive protein-mediated mechanism based on passive diffusion not requiring energy, in which SH-groups of protein play a critical role. We also found that the internalization of 1-hexadecanoyl-2-(4,4-difluoro-5,7- dimethyl-4-bora-3a, 4a-diaza-s-indacene-3-pentanoyl)-sn-glycero-3-phosphocholine (Bodipy-C5-PC), whose structure resembles that of methyl-PAF, into HL-60 cells was faster than that into K562 cells. Using a combination of an albumin back-exchange method and observation by confocal laser scanning microscopy, we next examined the intracellular distribution of this fluorescent phospholipid probe after its internalization. Intracellular membranes, especially those peripheral to nuclei, were fluorescence-labeled in both HL-60 and K562 cells, but fluorescence of the nuclear membranes was weak, suggesting that this probe seems mainly to accumulate in intracellular granules, and may interact directly with several key enzymes for phospholipid metabolism, leading to cell injury. Because the difference between the internalization rates of methyl-PAF in HL-60 and K562 cells was correlated with their different susceptibilities to the cytotoxic effect of methyl-PAF, we suggest that the capacities for uptake of methyl-PAF and its accumulation in intracellular membranes are critical factor for its induction of apoptosis. (c) 1998 Elsevier Science B.V.
Buschmann, Henrik
2016-01-01
The continuing analysis of plant cell division will require additional protein localization studies. This is greatly aided by GFP-technology, but plant transformation and the maintenance of transgenic lines can present a significant technical bottleneck. In this chapter I describe a method for the Agrobacterium-mediated genetic transformation of tobacco BY-2 cells. The method allows for the microscopic analysis of fluorescence-tagged proteins in dividing cells in within 2 days after starting a coculture. This transient transformation procedure requires only standard laboratory equipment. It is hoped that this rapid method would aid researchers conducting live-cell localization studies in plant mitosis and cytokinesis.
NASA Astrophysics Data System (ADS)
Koenig, Karsten; Kienle, Alwin; Boehncke, Wolf-Henning; Kaufmann, Roland; Rueck, Angelika C.; Meier, Thomas H.; Steiner, Rudolf W.
1994-03-01
PDT and on-line fluorescence spectroscopy were carried out on human tumors after ALA- administration using 633 nm-light of a dye laser as therapeutic radiation and as fluorescence excitation radiation. This has the following advantages: (1) use of one laser for PDT and fluorescence diagnosis only, (2) the possibility of on-line fluorescence measurements, and (3) excitation of protoporphyrin molecules in deep tissue layers. Monte Carlo calculations were carried out to determine the excitation and fluorescence photon distribution in the case of red and violet excitation radiation. The results show the possibility of depth-resolved measurements on the fluorophore distribution by variation of the excitation wavelength. The influence of remitted excitation light and of the spontaneous radiation from the laser as well as the possible excitation of food-based degradation products of chlorophyll has to be considered in high-sensitive fluorescence measurements.
Cheng, Zhen; Levi, Jelena; Xiong, Zhengming; Gheysens, Olivier; Keren, Shay; Chen, Xiaoyuan; Gambhir, Sanjiv Sam
2011-01-01
2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) has extensively been used for clinical diagnosis, staging and therapy monitoring of cancer and other diseases. Non-radioactive glucose analogs enabling the screening of the glucose metabolic rate of tumors are of particular interest for anticancer drug development. A non-radioactive fluorescent deoxyglucose analog may have many applications for both imaging of tumors and monitoring therapeutic efficacy of drugs in living animals and may eventually translate to clinical applications. We found that a fluorescent 2-deoxyglucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose (2-NBDG) can be delivered in several tumor cells via the glucose transporters (GLUTs). We therefore conjugated d-glucosamine with a near-infrared (NIR) fluorphor Cy5.5 and tested the feasibility of Cy5.5-d-glucosamine conjugate (Cy5.5-2DG) for NIR fluorescence imaging of tumors in a pre-clinical xenograft animal model. Cy5.5-2DG was prepared by conjugating Cy5.5 monofunctional N-hydroxysuccinimide ester (Cy5.5-NHS) and d-glucosamine followed by high-performance liquid chromatography purification. The accumulation of Cy5.5-2DG and Cy5.5-NHS in different tumor cell lines at 37 °C and 4 °C were imaged using a fluorescence microscope. Tumor targeting and retention of Cy5.5-2DG and Cy5.5-NHS in a subcutaneous U87MG glioma and A375M melanoma tumor model were evaluated and quantified by a Xenogen IVIS 200 optical cooled charged-coupled device system. Fluorescence microscopy imaging shows that Cy5.5-2DG and Cy5.5-NHS are taken up and trapped by a variety of tumor cell lines at 37 °C incubation, while they exhibit marginal uptake at 4 °C. The tumor cell uptake of Cy5.5-2DG can not be blocked by the 50 mM d-glucose, suggesting that Cy5.5-2DG may not be delivered in tumor cells by GLUTs. U87MG and A375M tumor localization were clearly visualized in living mice with both NIR fluorescent probes. Tumor/muscle contrast was clearly visible as early as 30 min post-injection, and the highest U87MG tumor/muscle ratio of 2.81 ± 0.10, 3.34 ± 0.23 were achieved 24 hours post-injection for Cy5.5-2DG and Cy5.5-NHS, respectively. While as a comparison, the micro-positron emission tomography imaging study shows that [18F]FDG preferentially localize to the U87MG tumor, with resulting tumor/muscle ratios ranging from 3.89 to 4.08 after 30 min to 2 h post-administration of the probe. In conclusion, the NIR fluorescent glucose analog, Cy5.5-2DG and Cy5.5-NHS both demonstrate tumor targeting abilities in cell culture and in living mice. More studies are warranted to further explore their application for optical tumor imaging. In order to develop NIR glucose analog with ability to targeting GLUTs/hexokinase, it is highly important to select NIR dyes with reasonable molecular size. PMID:16704203
GAL4 transactivation-based assay for the detection of selective intercellular protein movement.
Kumar, Dhinesh; Chen, Huan; Rim, Yeonggil; Kim, Jae-Yean
2015-01-01
Several plant proteins function as intercellular messenger to specify cell fate and coordinate plant development. Such intercellular communication can be achieved by direct, selective, or nonselective (diffusion-based) trafficking through plasmodesmata (PD), the symplasmic membrane-lined nanochannels adjoining two cells. A trichome rescue trafficking assay was reported to allow the detection of protein movement in Arabidopsis leaf tissue using transgenic gene expression. Here, we provide a protocol to dissect the mode of intercellular protein movement in Arabidopsis root. This assay system involves a root ground tissue-specific GAL4/UAS transactivation expression system in combination with fluorescent reporter proteins. In this system, mCherry, a red fluorescent protein, can move cell to cell via diffusion, while mCherry-H2B is tightly cell autonomous. Thus, a protein fused to mCherry-H2B that can move out from the site of synthesis likely contains a selective trafficking signal to impart a cell-to-cell gain-of-trafficking function to the cell-autonomous mCherry-H2B. This approach can be adapted to investigate the cell-to-cell trafficking properties of any protein of interest.
Key role of dual specificity kinase TTK in proliferation and survival of pancreatic cancer cells
Kaistha, B P; Honstein, T; Müller, V; Bielak, S; Sauer, M; Kreider, R; Fassan, M; Scarpa, A; Schmees, C; Volkmer, H; Gress, T M; Buchholz, M
2014-01-01
Background: Pancreatic ductal adenocarcinoma (PDAC) is among the most aggressive human malignancies with an overall 5-year survival rate of <5%. Despite significant advances in treatment of the disease during the past decade, the median survival rate (∼6 months) has hardly improved, warranting the need to identify novel targets for therapeutic approaches. Methods: Quantitative real time PCR, western blot analyses and immunohistochemical staining of tissue microarrays were used to analyse the expression of TTK gene in primary PDAC tissues and cell lines. To inhibit TTK kinase expression in a variety of pancreatic cancer cell lines, RNA interference was used. Functional roles of this kinase in the context of PDAC were studied using cell proliferation, viability and anchorage-independent growth assays. Western blotting, fluorescence-activated cell sorting analyses and fluorescence microscopy were used to gain mechanistic insight into the functional effects. Conclusions: We show that the dual specificity kinase TTK (also known as Mps1), is strongly overexpressed in human PDAC. Functionally, cell proliferation was significantly attenuated following TTK knockdown, whereas apoptosis and necrosis rates were significantly increased. In addition, anchorage-independent growth, a hallmark of malignant transformation and metastatic potential, was strongly impaired in the absence of TTK gene function. Interestingly, immortalised normal pancreatic hTERT-HPNE cells were not affected by loss of TTK function. Mechanistically, these effects in cancer cells were associated with increased formation of micronuclei, suggesting that loss of TTK function in pancreatic cancer cells results in chromosomal instability and mitotic catastrophe. Taken together, our data show that TTK function is critical for growth and proliferation of pancreatic cancer cells, thus establishing this kinase as an interesting new target for novel therapeutic approaches in combating this malignancy. PMID:25137017
Integrated microfluidic devices for combinatorial cell-based assays.
Yu, Zeta Tak For; Kamei, Ken-ichiro; Takahashi, Hiroko; Shu, Chengyi Jenny; Wang, Xiaopu; He, George Wenfu; Silverman, Robert; Radu, Caius G; Witte, Owen N; Lee, Ki-Bum; Tseng, Hsian-Rong
2009-06-01
The development of miniaturized cell culture platforms for performing parallel cultures and combinatorial assays is important in cell biology from the single-cell level to the system level. In this paper we developed an integrated microfluidic cell-culture platform, Cell-microChip (Cell-microChip), for parallel analyses of the effects of microenvironmental cues (i.e., culture scaffolds) on different mammalian cells and their cellular responses to external stimuli. As a model study, we demonstrated the ability of culturing and assaying several mammalian cells, such as NIH 3T3 fibroblast, B16 melanoma and HeLa cell lines, in a parallel way. For functional assays, first we tested drug-induced apoptotic responses from different cell lines. As a second functional assay, we performed "on-chip" transfection of a reporter gene encoding an enhanced green fluorescent protein (EGFP) followed by live-cell imaging of transcriptional activation of cyclooxygenase 2 (Cox-2) expression. Collectively, our Cell-microChip approach demonstrated the capability to carry out parallel operations and the potential to further integrate advanced functions and applications in the broader space of combinatorial chemistry and biology.
Integrated microfluidic devices for combinatorial cell-based assays
Yu, Zeta Tak For; Kamei, Ken-ichiro; Takahashi, Hiroko; Shu, Chengyi Jenny; Wang, Xiaopu; He, George Wenfu; Silverman, Robert
2010-01-01
The development of miniaturized cell culture platforms for performing parallel cultures and combinatorial assays is important in cell biology from the single-cell level to the system level. In this paper we developed an integrated microfluidic cell-culture platform, Cell-microChip (Cell-μChip), for parallel analyses of the effects of microenvir-onmental cues (i.e., culture scaffolds) on different mammalian cells and their cellular responses to external stimuli. As a model study, we demonstrated the ability of culturing and assaying several mammalian cells, such as NIH 3T3 fibro-blast, B16 melanoma and HeLa cell lines, in a parallel way. For functional assays, first we tested drug-induced apoptotic responses from different cell lines. As a second functional assay, we performed "on-chip" transfection of a reporter gene encoding an enhanced green fluorescent protein (EGFP) followed by live-cell imaging of transcriptional activation of cyclooxygenase 2 (Cox-2) expression. Collectively, our Cell-μChip approach demonstrated the capability to carry out parallel operations and the potential to further integrate advanced functions and applications in the broader space of combinatorial chemistry and biology. PMID:19130244
Gothilf, Yoav; Toyama, Reiko; Coon, Steven L; Du, Shao-Jun; Dawid, Igor B; Klein, David C
2002-11-01
Zebrafish serotonin-N-acetyltransferase-2 (zfAANAT-2) mRNA is exclusively expressed in the pineal gland (epiphysis) at the embryonic stage. Here, we have initiated an effort to study the mechanisms underlying tissue-specific expression of this gene. DNA constructs were prepared in which green fluorescent protein (GFP) is driven by regulatory regions of the zfAANAT-2 gene. In vivo transient expression analysis in zebrafish embryos indicated that in addition to the 5'-flanking region, a regulatory sequence in the 3'-flanking region is required for pineal-specific expression. This finding led to an effort to produce transgenic lines expressing GFP under the control of the 5' and 3' regulatory regions of the zfAANAT-2 gene. Embryos transiently expressing GFP were raised to maturity and tested for germ cell transmission of the transgene. Three transgenic lines were produced in which GFP fluorescence in the pineal was detected starting 1 to 2 days after fertilization. One line was crossed with mindbomb and floating head mutants that cause abnormal development of the pineal and an elevation or reduction of zfAANAT-2 mRNA levels, respectively. Homozygous mutant transgenic embryos exhibited similar effects on GFP expression in the pineal gland. These observations indicate that the transgenic lines described here will be useful in studying the development of the pineal gland and the mechanisms that determine pineal-specific gene expression in the zebrafish. Published 2002 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Goldberg, Robert R.; Goldberg, Michael R.
1999-05-01
A previous paper by the authors presented an algorithm that successfully segmented organs grown in vitro from their surroundings. It was noticed that one difficulty in standard dyeing techniques for the analysis of contours in organs was due to the fact that the antigen necessary to bind with the fluorescent dye was not uniform throughout the cell borders. To address these concerns, a new fluorescent technique was utilized. A transgenic mouse line was genetically engineered utilizing the hoxb7/gfp (green fluorescent protein). Whereas the original technique (fixed and blocking) required a numerous number of noise removal filtering and sophisticated segmentation techniques, segmentation on the GFP kidney required only an adaptive binary threshold technique which yielded excellent results without the need for specific noise reduction. This is important for tracking the growth of kidney development through time.
Poon, Cheuk Ka; Tang, Owen; Chen, Xin-Ming; Kim, Byung; Hartlieb, Matthias; Pollock, Carol A; Hawkett, Brian S; Perrier, Sébastien
2017-10-01
The authors report the preparation of a novel range of functional polyacrylamide stabilized polystyrene nanoparticles, obtained by surfactant-free reversible addition-fragmentation chain transfer (RAFT) emulsion polymerization, their fluorescent tagging, cellular uptake, and biodistribution. The authors show the versatility of the RAFT emulsion process for the design of functional nanoparticles of well-defined size that can be used as drug delivery vectors. Functionalization with a fluorescent tag offers a useful visualization tool for tracing, localization, and clearance studies of these carriers in biological models. The studies are carried out by labeling the sterically stabilized latex particles chemically with rhodamine B. The fluorescent particles are incubated in a healthy human renal proximal tubular cell line model, and intravenously injected into a mouse model. Cellular localization and biodistribution of these particles on the biological models are explored. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Meinert, Tobias; Tietz, Olaf; Palme, Klaus J; Rohrbach, Alexander
2016-08-24
Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection.
Meinert, Tobias; Tietz, Olaf; Palme, Klaus J.; Rohrbach, Alexander
2016-01-01
Image quality in light-sheet fluorescence microscopy is strongly affected by the shape of the illuminating laser beam inside embryos, plants or tissue. While the phase of Gaussian or Bessel beams propagating through thousands of cells can be partly controlled holographically, the propagation of fluorescence light to the detector is difficult to control. With each scatter process a fluorescence photon loses information necessary for the image generation. Using Arabidopsis root tips we demonstrate that ballistic and diffusive fluorescence photons can be separated by analyzing the image spectra in each plane without a priori knowledge. We introduce a theoretical model allowing to extract typical scattering parameters of the biological material. This allows to attenuate image contributions from diffusive photons and to amplify the relevant image contributions from ballistic photons through a depth dependent deconvolution. In consequence, image contrast and resolution are significantly increased and scattering artefacts are minimized especially for Bessel beams with confocal line detection. PMID:27553506
Nakamura, Megumi; Sato, Eiji; Miura, Tomoyuki; Baba, Kenji; Shimoda, Tetsuya; Miyazawa, Takayuki
2010-06-01
Feline leukemia virus (FeLV) is classified into three receptor interference subgroups, A, B and C. In this study, to differentiate FeLV subgroups, we developed a simple assay system using pseudotype viruses expressing green fluorescent protein (GFP). We prepared gfp pseudotype viruses, named gfp(FeLV-A), gfp(FeLV-B) and gfp(FeLV-C) harboring envelopes of FeLV-A, B and C, respectively. The gfp pseudotype viruses completely interfered with the same subgroups of FeLV reference strains on FEA cells (a feline embryonic fibroblast cell line). We also confirmed that the pseudotype viruses could differentiate FeLV subgroups in field isolates. The assay will be useful for differential diagnosis of FeLV subgroups in veterinary diagnostic laboratories in the future.
Madhu Krishna, B; Chaudhary, Sanjib; Mishra, Dipti Ranjan; Naik, Sanoj K; Suklabaidya, S; Adhya, A K; Mishra, Sandip K
2018-05-30
Breast cancer (BC) is highly heterogeneous with ~ 60-70% of estrogen receptor positive BC patient's response to anti-hormone therapy. Estrogen receptors (ERs) play an important role in breast cancer progression and treatment. Estrogen related receptors (ERRs) are a group of nuclear receptors which belong to orphan nuclear receptors, which have sequence homology with ERs and share target genes. Here, we investigated the possible role and clinicopathological importance of ERRβ in breast cancer. Estrogen related receptor β (ERRβ) expression was examined using tissue microarray slides (TMA) of Breast Carcinoma patients with adjacent normal by immunohistochemistry and in breast cancer cell lines. In order to investigate whether ERRβ is a direct target of ERα, we investigated the expression of ERRβ in short hairpin ribonucleic acid knockdown of ERα breast cancer cells by western blot, qRT-PCR and RT-PCR. We further confirmed the binding of ERα by electrophoretic mobility shift assay (EMSA), chromatin immunoprecipitation (ChIP), Re-ChIP and luciferase assays. Fluorescence-activated cell sorting analysis (FACS) was performed to elucidate the role of ERRβ in cell cycle regulation. A Kaplan-Meier Survival analysis of GEO dataset was performed to correlate the expression of ERRβ with survival in breast cancer patients. Tissue microarray (TMA) analysis showed that ERRβ is significantly down-regulated in breast carcinoma tissue samples compared to adjacent normal. ER + ve breast tumors and cell lines showed a significant expression of ERRβ compared to ER-ve tumors and cell lines. Estrogen treatment significantly induced the expression of ERRβ and it was ERα dependent. Mechanistic analyses indicate that ERα directly targets ERRβ through estrogen response element and ERRβ also mediates cell cycle regulation through p18, p21 cip and cyclin D1 in breast cancer cells. Our results also showed the up-regulation of ERRβ promoter activity in ectopically co-expressed ERα and ERRβ breast cancer cell lines. Fluorescence-activated cell sorting analysis (FACS) showed increased G0/G1 phase cell population in ERRβ overexpressed MCF7 cells. Furthermore, ERRβ expression was inversely correlated with overall survival in breast cancer. Collectively our results suggest cell cycle and tumor suppressor role of ERRβ in breast cancer cells which provide a potential avenue to target ERRβ signaling pathway in breast cancer. Our results indicate that ERRβ is a negative regulator of cell cycle and a possible tumor suppressor in breast cancer. ERRβ could be therapeutic target for the treatment of breast cancer.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fetni, R.; Lemieux, N.; Richer, C.L.
A patient with mixed gonadal dysgenesis and Y isochromosomes I(Y) is described. Lymphocyte cultures from peripheral blood contained a high proportion of 45,X cells and several other cell lines with two different marker chromosomes (mars). These markers had either a monocentric (mar1) or a dicentric appearance (mar2). Following high-resolution GTG, RBG, QFQ, and CBG bandings, five cell lines were identified; 45,X/46,X, + mar1/46,X, + mar2/47,X, + mar1x2/47,X + mar2x2. The percentages were 66/6/26/1/1%, respectively. Chromosome banding analyses were insufficient for characterization of the markers. In situ hybridization of specific probes for the Y centromere and its short arm showed, bothmore » in fluorescence and electron microscopy (ENT), two different Y rearrangements. Mar1 is an isochromosome for the short arm i(Yp) and mar2 is a dicentric which was shown by EM to be a double isochromosome Yp, inv dup i(Yp). The breakpoint producing mar1 is within the centromere and the one producing mar2 is within one of the short arms of the Y isochromosome. The findings of different cell populations in peripheral blood lymphocytes indicate the postzygotic instability of this i(Yp). 24 refs., 3 figs., 1 tab.« less