Sample records for cell lines formed

  1. Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment.

    PubMed

    Eguchi, Takanori; Sogawa, Chiharu; Okusha, Yuka; Uchibe, Kenta; Iinuma, Ryosuke; Ono, Kisho; Nakano, Keisuke; Murakami, Jun; Itoh, Manabu; Arai, Kazuya; Fujiwara, Toshifumi; Namba, Yuri; Murata, Yoshiki; Ohyama, Kazumi; Shimomura, Manami; Okamura, Hirohiko; Takigawa, Masaharu; Nakatsura, Tetsuya; Kozaki, Ken-Ichi; Okamoto, Kuniaki; Calderwood, Stuart K

    2018-01-01

    Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression.

  2. Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment

    PubMed Central

    Okusha, Yuka; Uchibe, Kenta; Iinuma, Ryosuke; Ono, Kisho; Nakano, Keisuke; Murakami, Jun; Itoh, Manabu; Arai, Kazuya; Fujiwara, Toshifumi; Namba, Yuri; Murata, Yoshiki; Ohyama, Kazumi; Shimomura, Manami; Okamura, Hirohiko; Takigawa, Masaharu; Nakatsura, Tetsuya; Kozaki, Ken-ichi; Okamoto, Kuniaki; Calderwood, Stuart K.

    2018-01-01

    Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression. PMID:29415026

  3. Exclusion from spheroid formation identifies loss of essential cell-cell adhesion molecules in colon cancer cells.

    PubMed

    Stadler, Mira; Scherzer, Martin; Walter, Stefanie; Holzner, Silvio; Pudelko, Karoline; Riedl, Angelika; Unger, Christine; Kramer, Nina; Weil, Beatrix; Neesen, Jürgen; Hengstschläger, Markus; Dolznig, Helmut

    2018-01-18

    Many cell lines derived from solid cancers can form spheroids, which recapitulate tumor cell clusters and are more representative of the in vivo situation than 2D cultures. During spheroid formation, a small proportion of a variety of different colon cancer cell lines did not integrate into the sphere and lost cell-cell adhesion properties. An enrichment protocol was developed to augment the proportion of these cells to 100% purity. The basis for the separation of spheroids from non-spheroid forming (NSF) cells is simple gravity-sedimentation. This protocol gives rise to sub-populations of colon cancer cells with stable loss of cell-cell adhesion. SW620 cells lacked E-cadherin, DLD-1 cells lost α-catenin and HCT116 cells lacked P-cadherin in the NSF state. Knockdown of these molecules in the corresponding spheroid-forming cells demonstrated that loss of the respective proteins were indeed responsible for the NSF phenotypes. Loss of the spheroid forming phenotype was associated with increased migration and invasion properties in all cell lines tested. Hence, we identified critical molecules involved in spheroid formation in different cancer cell lines. We present here a simple, powerful and broadly applicable method to generate new sublines of tumor cell lines to study loss of cell-cell adhesion in cancer progression.

  4. A developmentally plastic adult mouse kidney cell line spontaneously generates multiple adult kidney structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Webb, Carol F., E-mail: carol-webb@omrf.org; Immunobiology and Cancer Research, Oklahoma Medical Research Foundation, Oklahoma City, OK; Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK

    Despite exciting new possibilities for regenerative therapy posed by the ability to induce pluripotent stem cells, recapitulation of three-dimensional kidneys for repair or replacement has not been possible. ARID3a-deficient mouse tissues generated multipotent, developmentally plastic cells. Therefore, we assessed the adult mouse ARID3a−/− kidney cell line, KKPS5, which expresses renal progenitor surface markers as an alternative cell source for modeling kidney development. Remarkably, these cells spontaneously developed into multicellular nephron-like structures in vitro, and engrafted into immunocompromised medaka mesonephros, where they formed mouse nephron structures. These data implicate KKPS5 cells as a new model system for studying kidney development. - Highlights:more » • An ARID3a-deficient mouse kidney cell line expresses multiple progenitor markers. • This cell line spontaneously forms multiple nephron-like structures in vitro. • This cell line formed mouse kidney structures in immunocompromised medaka fish kidneys. • Our data identify a novel model system for studying kidney development.« less

  5. Attempt to develop taste bud models in three-dimensional culture.

    PubMed

    Nishiyama, Miyako; Yuki, Saori; Fukano, Chiharu; Sako, Hideyuki; Miyamoto, Takenori; Tomooka, Yasuhiro

    2011-09-01

    Taste buds are the end organs of taste located in the gustatory papillae, which occur on the surface of the oral cavity. The goal of the present study was to establish a culture model mimicking the lingual taste bud of the mouse. To this end, three cell lines were employed: taste bud-derived cell lines (TBD cell lines), a lingual epithelial cell-derived cell line (20A cell line), and a mesenchymal cell-derived cell line (TMD cell line). TBD cells embedded in collagen gel formed three-dimensional clusters, which had an internal cavity equipped with a tight junction-like structure, a microvilluslike structure, and a laminin-positive layer surrounding the cluster. The cells with this epitheliumlike morphology expressed marker proteins of taste cells: gustducin and NCAM. TBD cells formed a monolayer on collagen gel when they were co-cultured with TMD cells. TBD, 20A, and TMD cell lines were maintained in a triple cell co-culture, in which TBD cells were pre-seeded as aggregates or in suspension on the collagen gel containing TMD cells, and 20A cells were laid over the TBD cells. TBD cells in the triple cell co-culture expressed NCAM. This result suggests that co-cultured TBD cells exhibited a characteristic of Type III taste cells. The culture model would be useful to study morphogenesis and functions of the gustatory organ.

  6. Establishment and characterization of immortalized gingival epithelial and fibroblastic cell lines for the development of organotypic cultures.

    PubMed

    Bao, Kai; Akguel, Baki; Bostanci, Nagihan

    2014-01-01

    In vitro studies using 3D co-cultures of gingival cells can resemble their in vivo counterparts much better than 2D models that typically only utilize monolayer cultures with short-living primary cells. However, the use of 3D gingival models is still limited through lack of appropriate cell lines. We aimed to establish immortalized cell line models of primary human gingival epithelium keratinocytes (HGEK) and gingival fibroblasts (GFB). Immortalized cell lines (HGEK-16 and GFB-16) were induced by E6 and E7 oncoproteins of human papillomavirus. In addition, 3D multilayered organotypic cultures were formed by embedding GFB-16 cells within a collagen (Col) matrix and seeding of HGEK-16 cells on the upper surfaces. Cell growth was analyzed in both immortalized cell lines and their parental primary cells. The expression levels of cell type-specific markers, i.e. cytokeratin (CK) 10, CK13, CK16, CK18, CK19 for HGEK-16 and Col I and Col II for GFB-16, were evaluated by quantitative real-time polymerase chain reaction (qRT-PCR). Expansion of the primary cultures was impeded at early passages, while the transformed immortalized cell lines could be expanded for more than 30 passages. In 3D cultures, immortalized HGEK formed a multilayer of epithelial cells. qRT-PCR showed that cell-specific marker expression in the 3D cultures was qualitatively and quantitatively closer to that in human gingival tissue than to monolayer cultures. These results indicate that immortalized gingival fibroblastic and epithelial cell lines can successfully form organotypic multilayered cultures and, therefore, may be useful tools for studying gingival tissue in vitro. © 2014 S. Karger AG, Basel.

  7. Supra-physiological folic acid concentrations induce aberrant DNA methylation in normal human cells in vitro.

    PubMed

    Charles, Michelle A; Johnson, Ian T; Belshaw, Nigel J

    2012-07-01

    The micronutrients folate and selenium may modulate DNA methylation patterns by affecting intracellular levels of the methyl donor S-adenosylmethionine (SAM) and/or the product of methylation reactions S-adenosylhomocysteine (SAH). WI-38 fibroblasts and FHC colon epithelial cells were cultured in the presence of two forms of folate or four forms of selenium at physiologically-relevant doses, and their effects on LINE-1 methylation, gene-specific CpG island (CGI) methylation and intracellular SAM:SAH were determined. At physiologically-relevant doses the forms of folate or selenium had no effect on LINE-1 or CGI methylation, nor on intracellular SAM:SAH. However the commercial cell culture media used for the selenium studies, containing supra-physiological concentrations of folic acid, induced LINE-1 hypomethylation, CGI hypermethylation and decreased intracellular SAM:SAH in both cell lines. We conclude that the exposure of normal human cells to supra-physiological folic acid concentrations present in commercial cell culture media perturbs the intracellular SAM:SAH ratio and induces aberrant DNA methylation.

  8. Experimental tumor growth of canine osteosarcoma cell line on chick embryo chorioallantoic membrane (in vivo studies).

    PubMed

    Walewska, Magdalena; Dolka, Izabella; Małek, Anna; Wojtalewicz, Anna; Wojtkowska, Agata; Żbikowski, Artur; Lechowski, Roman; Zabielska-Koczywąs, Katarzyna

    2017-05-12

    The chick embryo chorioallantoic membrane (CAM) model is extensively used in human medicine in preclinical oncological studies. The CAM model has several advantages: low cost, simple experimental approach, time saving and following "3R principles". Research has shown that the human osteosarcoma cell lines U2OS, MMNG-HOS, and SAOS can form tumors on the CAM. In veterinary medicine, this has been described only for feline fibrosarcomas, feline mammary carcinomas and canine osteosarcomas. However, in case of canine osteosarcomas, it has been shown that only non-adherent osteosarcoma stem cells isolated from KTOSA5 and CSKOS cell lines have the ability to form microtumors on the CAM after an incubation period of 5 days, in contrast to adherent KTOSA5 and CSKOS cells. In the presented study, we have proven that the commercial adherent canine osteosarcoma cell line (D-17) can form vascularized tumors on the CAM after the incubation period of 10 days.

  9. 78 FR 25091 - Submission for OMB Review; 30-Day Comment Request: Request for Human Embryonic Stem Cell Line To...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-29

    ...; 30-Day Comment Request: Request for Human Embryonic Stem Cell Line To Be Approved for Use in NIH... Embryonic Stem Cell Line to be Approved for Use in NIH-Funded Research, 0925-0601, Expiration Date 04/30... Information Collection: The form is used by applicants to request that human embryonic stem cell lines be...

  10. Metabolism of the tropine indole-3-carboxylate ICS 205-930 by differentiated rat and human hepatoma cells.

    PubMed

    Fischer, V; Baldeck, J P; Wiebel, F J

    The metabolism of the tropine indole-3-carboxylate ICS 205-930 (ICS), a highly potent and selective antagonist of 5-HT3 receptors, was investigated in continuous cell lines derived from rat or human liver and compared to the in vivo metabolism in rat and human. The well-differentiated rat hepatoma line 2sFou extensively metabolized ICS by hydroxylation of the indole moiety and subsequent conjugation to form the corresponding glucuronides and sulfates. The 2sFou cells also oxidized ICS at the tropinyl moiety to form both N-demethyl and N-oxide derivatives. The relative amount of the various metabolites was dependent on the substrate concentration. Pretreatment of the cells with dexamethasone increased the rate of metabolism for all pathways, while benz[a]anthracene caused an increase in hydroxylation at the indole moiety at the expense of N-oxidation. Phenobarbital pretreatment had no effect on ICS metabolism. The pattern of metabolites formed in 2sFou cells was qualitatively similar to that formed in rat urine. The human hepatoma line HepG2 metabolized ICS only to a small extent. The HepG2 cells failed to form detectable amounts of ICS conjugates found in human urine. The N-oxide-ICS was not found in HepG2 cells or in human urine. Virtually no ICS metabolites were found in human lung adenocarcinoma lines NCI-H358 or NCI-H322. The results suggest that continuous cell lines such as the differentiated rat hepatoma cells 2sFou might be used to mimic the metabolism of xenobiotics in rat and to clarify their complex metabolic pathways.

  11. Clonogenic assay: adherent cells.

    PubMed

    Rafehi, Haloom; Orlowski, Christian; Georgiadis, George T; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C

    2011-03-13

    The clonogenic (or colony forming) assay has been established for more than 50 years; the original paper describing the technique was published in 1956. Apart from documenting the method, the initial landmark study generated the first radiation-dose response curve for X-ray irradiated mammalian (HeLa) cells in culture. Basically, the clonogenic assay enables an assessment of the differences in reproductive viability (capacity of cells to produce progeny; i.e. a single cell to form a colony of 50 or more cells) between control untreated cells and cells that have undergone various treatments such as exposure to ionising radiation, various chemical compounds (e.g. cytotoxic agents) or in other cases genetic manipulation. The assay has become the most widely accepted technique in radiation biology and has been widely used for evaluating the radiation sensitivity of different cell lines. Further, the clonogenic assay is commonly used for monitoring the efficacy of radiation modifying compounds and for determining the effects of cytotoxic agents and other anti-cancer therapeutics on colony forming ability, in different cell lines. A typical clonogenic survival experiment using adherent cells lines involves three distinct components, 1) treatment of the cell monolayer in tissue culture flasks, 2) preparation of single cell suspensions and plating an appropriate number of cells in petri dishes and 3) fixing and staining colonies following a relevant incubation period, which could range from 1-3 weeks, depending on the cell line. Here we demonstrate the general procedure for performing the clonogenic assay with adherent cell lines with the use of an immortalized human keratinocyte cell line (FEP-1811). Also, our aims are to describe common features of clonogenic assays including calculation of the plating efficiency and survival fractions after exposure of cells to radiation, and to exemplify modification of radiation-response with the use of a natural antioxidant formulation.

  12. Establishment and characterization of the NCC-SS1-C1 synovial sarcoma cell line.

    PubMed

    Kito, Fusako; Oyama, Rieko; Takai, Yoko; Sakumoto, Marimu; Shiozawa, Kumiko; Qiao, Zhiwei; Uehara, Takenori; Yoshida, Akihiko; Kawai, Akira; Kondo, Tadashi

    2018-04-01

    Synovial sarcoma is an aggressive mesenchymal malignancy characterized by unique gene fusions. Tissue culture cells are essential tools for further understanding tumorigenesis and anti-cancer drug development; however, only a limited number of well-characterized synovial sarcoma cell lines exist. Thus, the objective of this study was to establish a patient-derived synovial sarcoma cell line. We established a synovial sarcoma cell line from tumor tissue isolated from a 72-year-old female patient. Prepared cells were analyzed for the presence of gene fusions by fluorescence in situ hybridization, RT-PCR, and karyotyping. In addition, the resulting cell line was characterized by viability, short tandem repeat, colony and spheroid formation, and invasion analyses. Differences in gene enrichment between the primary tumor and cell line were examined by mass spectrometric protein expression profiling and KEGG pathway analysis. Our analyses revealed that the primary tumor and NCC-SS1-C1 cell line harbored the SS18-SSX1 fusion gene typical of synovial sarcoma and similar proteomics profiles. In vitro analyses also confirmed that the established cell line harbored invasive, colony-forming, and spheroid-forming potentials. Moreover, drug screening with chemotherapeutic agents and tyrosine kinase inhibitors revealed that doxorubicin, a subset of tyrosine kinase inhibitors, and several molecular targeting drugs markedly decreased NCC-SS1-C1 cell viability. Results from the present study support that the NCC-SS1-C1 cell line will be an effective tool for sarcoma research.

  13. Assessment of the Tumorigenic Potential of Spontaneously Immortalized and hTERT-Immortalized Cultured Dental Pulp Stem Cells

    PubMed Central

    Wilson, Ryan; Urraca, Nora; Skobowiat, Cezary; Hope, Kevin A.; Miravalle, Leticia; Chamberlin, Reed; Donaldson, Martin; Seagroves, Tiffany N.

    2015-01-01

    Dental pulp stem cells (DPSCs) provide an exciting new avenue to study neurogenetic disorders. DPSCs are neural crest-derived cells with the ability to differentiate into numerous tissues including neurons. The therapeutic potential of stem cell-derived lines exposed to culturing ex vivo before reintroduction into patients could be limited if the cultured cells acquired tumorigenic potential. We tested whether DPSCs that spontaneously immortalized in culture acquired features of transformed cells. We analyzed immortalized DPSCs for anchorage-independent growth, genomic instability, and ability to differentiate into neurons. Finally, we tested both spontaneously immortalized and human telomerase reverse transcriptase (hTERT)-immortalized DPSC lines for the ability to form tumors in immunocompromised animals. Although we observed increased colony-forming potential in soft agar for the spontaneously immortalized and hTERT-immortalized DPSC lines relative to low-passage DPSC, no tumors were detected from any of the DPSC lines tested. We noticed some genomic instability in hTERT-immortalized DPSCs but not in the spontaneously immortalized lines tested. We determined that immortalized DPSC lines generated in our laboratory, whether spontaneously or induced, have not acquired the potential to form tumors in mice. These data suggest cultured DPSC lines that can be differentiated into neurons may be safe for future in vivo therapy for neurobiological diseases. Significance This study demonstrated that immortalized dental pulp stem cells (DPSCs) do not form tumors in animals and that immortalized DPSCs can be differentiated into neurons in culture. These results lend support to the use of primary and immortalized DPSCs for future therapeutic approaches to treatment of neurobiological diseases. PMID:26032749

  14. Establishment and partial characterization of a human tumor cell line, GBM-HSF, from a glioblastoma multiforme.

    PubMed

    Qu, Jiagui; Rizak, Joshua D; Fan, Yaodong; Guo, Xiaoxuan; Li, Jiejing; Huma, Tanzeel; Ma, Yuanye

    2014-07-01

    This paper outlines the establishment of a new and stable cell line, designated GBM-HSF, from a malignant glioblastoma multiforme (GBM) removed from a 65-year-old Chinese woman. This cell line has been grown for 1 year without disruption and has been passaged over 50 times. The cells were adherently cultured in RPMI-1640 media with 10% fetal bovine serum supplementation. Cells displayed spindle and polygonal morphology, and displayed multi-layered growth without evidence of contact inhibition. The cell line had a high growth rate with a doubling time of 51 h. The cells were able to grow without adhering to the culture plates, and 4.5% of the total cells formed colonies in soft agar. The cell line has also been found to form tumors in nude mice and to be of a highly invasive nature. The cells were also partially characterized with RT-PCR. The RT-PCR revealed that Nestin, β-tubulin III, Map2, Klf4, Oct4, Sox2, Nanog, and CD26 were positively transcribed, whereas GFAP, Rex1, and CD133 were negatively transcribed in this cell line. These results suggest that the GBM-HSF cell line will provide a good model to study the properties of cancer stem cells and metastasis. It will also facilitate more detailed molecular and cellular studies of GBM cell division and pathology.

  15. Assessment of the Tumorigenic Potential of Spontaneously Immortalized and hTERT-Immortalized Cultured Dental Pulp Stem Cells.

    PubMed

    Wilson, Ryan; Urraca, Nora; Skobowiat, Cezary; Hope, Kevin A; Miravalle, Leticia; Chamberlin, Reed; Donaldson, Martin; Seagroves, Tiffany N; Reiter, Lawrence T

    2015-08-01

    Dental pulp stem cells (DPSCs) provide an exciting new avenue to study neurogenetic disorders. DPSCs are neural crest-derived cells with the ability to differentiate into numerous tissues including neurons. The therapeutic potential of stem cell-derived lines exposed to culturing ex vivo before reintroduction into patients could be limited if the cultured cells acquired tumorigenic potential. We tested whether DPSCs that spontaneously immortalized in culture acquired features of transformed cells. We analyzed immortalized DPSCs for anchorage-independent growth, genomic instability, and ability to differentiate into neurons. Finally, we tested both spontaneously immortalized and human telomerase reverse transcriptase (hTERT)-immortalized DPSC lines for the ability to form tumors in immunocompromised animals. Although we observed increased colony-forming potential in soft agar for the spontaneously immortalized and hTERT-immortalized DPSC lines relative to low-passage DPSC, no tumors were detected from any of the DPSC lines tested. We noticed some genomic instability in hTERT-immortalized DPSCs but not in the spontaneously immortalized lines tested. We determined that immortalized DPSC lines generated in our laboratory, whether spontaneously or induced, have not acquired the potential to form tumors in mice. These data suggest cultured DPSC lines that can be differentiated into neurons may be safe for future in vivo therapy for neurobiological diseases. ©AlphaMed Press.

  16. Characterization of three new serous epithelial ovarian cancer cell lines

    PubMed Central

    Ouellet, Véronique; Zietarska, Magdalena; Portelance, Lise; Lafontaine, Julie; Madore, Jason; Puiffe, Marie-Line; Arcand, Suzanna L; Shen, Zhen; Hébert, Josée; Tonin, Patricia N; Provencher, Diane M; Mes-Masson, Anne-Marie

    2008-01-01

    Background Cell lines constitute a powerful model to study cancer, and here we describe three new epithelial ovarian cancer (EOC) cell lines derived from poorly differentiated serous solid tumors (TOV-1946, and TOV-2223G), as well as the matched ascites for one case (OV-1946). Methods In addition to growth parameters, the cell lines were characterized for anchorage independent growth, migration and invasion potential, ability to form spheroids and xenografts in SCID mice. Results While all cell lines were capable of anchorage independent growth, only the TOV-1946 and OV-1946 cell lines were able to form spheroid and produce tumors. Profiling of keratins, p53 and Her2 protein expression was assessed by immunohistochemistry and western blot analyses. Somatic TP53 mutations were found in all cell lines, with TOV-1946 and OV-1946 harboring the same mutation, and none harbored the commonly observed somatic mutations in BRAF, KRAS or germline BRCA1/2 mutations found to recur in the French Canadian population. Conventional cytogenetics and spectral karyotype (SKY) analyses revealed complex karyotypes often observed in ovarian disease. Conclusion This is the first report of the establishment of matched EOC cell lines derived from both solid tumor and ascites of the same patient. PMID:18507860

  17. [Effect of DOT1L gene silence on proliferation of acute monocytic leukemia cell line THP-1].

    PubMed

    Zhang, Yu-Juan; Li, Hua-Wen; Chang, Guo-Qiang; Zhang, Hong-Ju; Wang, Jian; Lin, Ya-Ni; Zhou, Jia-Xi; Li, Qing-Hua; Pang, Tian-Xiang

    2013-08-01

    This study was aimed to investigate the influence of short hairpin RNA (shRNA) on proliferation of human leukemia cell line THP-1. The shRNA targeting the site 732-752 of DOT1L mRNA was designed and chemically synthesized, then a single-vector lentiviral, tet-inducible shRNA-DOT1L system (Plko-Tet-On) was generated. Thereafter, the THP-1 cells with lentivirus were infected to create stable cell line with regulatable shRNA expression. The expression of DOT1L in the THP-1 cell line was assayed by RT-PCR. Effect of shRNA-DOT1L on the proliferation of THP-1 cells was detected with MTT method,and the change of colony forming potential of THP-1 cells was analyzed by colony forming unit test. Cell cycle distribution was tested by flow cytometry. The results indicated that the expression of DOT1L was statistically lower than that in the control groups. The proliferation and colony forming capacity of THP-1 cells were significantly inhibited. The percentage of cells at G0/G1 phase increased in THP-1/shRNA cells treated with Dox while the percentage of cells at S phase significantly decreased as compared with that in the control group. It is concluded that the shRNA targeting DOT1L can effectively inhibit the proliferation of acute monocytic leukemia cell line THP-1.

  18. The influence of differential processing of procathepsin H on its aminopeptidase activity, secretion and subcellular localization in human cell lines.

    PubMed

    Rojnik, Matija; Jevnikar, Zala R; Doljak, Bojan; Turk, Samo; Zidar, Nace; Kos, Janko

    2012-10-01

    Cathepsin H is a unique member of the cysteine cathepsins that acts primarily as an aminopeptidase. Like other cysteine cathepsins, it is synthesized as an inactive precursor and activated by proteolytic removal of its propeptide. Here we demonstrate that, in human cells, the processing of the propeptide is an autocatalytic, multistep process proceeding from an inactive 41kDa pro-form, through a 30kDa intermediate form, to the 28kDa mature form. Tyr87P and Gly90P were identified as the two major endopeptidase cleavage sites, converting the 30kDa form into the mature 28kDa form. The level of processing differs significantly in different human cell lines. In monocyte-derived macrophages U937 and prostate cancer cells PC-3, the 28kDa form is predominant, whereas in osteoblasts HOS the processing from the 30kDa form to the 28kDa form is significantly lower. The aminopeptidase activity of the enzyme and its subcellular localization are independent of the product, however the 30kDa form was not secreted in HOS cells. The activity of the resulting cathepsin H in U937 cells was significantly lower than that in HOS cells, presumably due to the high levels of endogenous cysteine protease inhibitor cystatin F present specifically in this cell line. These results provide an insight into the dependence of human cathepsin H processing and regulation on cell type. Copyright © 2012 Elsevier GmbH. All rights reserved.

  19. Preparation of a cell line persistently infected with maedi/visna virus and production of viral antigens.

    PubMed

    Suzuki, Kazuya; Oguma, Keisuke; Sentsui, Hiroshi

    2017-01-20

    We attempted to prepare a cell line that produces maedi/visna virus (MVV) and is free of contamination by other viruses and mycoplasmas. Three cell lines, which originated from a sheep, goat and bat, were infected with MVV and passaged approximately every 5 days. The cultured cells were then subjected to polymerase chain reaction analysis for MVV provirus. As a result, a cell line persistently infected with MVV was established from ZZ-R cells, which originated from the fetal goat tongue. The 50-fold concentrated culture fluid formed a precipitation line against reference antiserum.

  20. Comparison of steroid receptors from the androgen responsive DDT1 cell line and the nonresponsive HVP cell line.

    PubMed

    Norris, J S; Kohler, P O

    1978-01-01

    Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.

  1. Development and characterization of cell culture systems from Puntius (Tor) chelynoides (McClelland).

    PubMed

    Goswami, M; Sharma, B S; Tripathi, A K; Yadav, Kamalendra; Bahuguna, S N; Nagpure, N S; Lakra, W S; Jena, J K

    2012-05-25

    Puntius (Tor) chelynoides, commonly known as dark mahseer, is a commercially important coldwater fish species which inhabits fast-flowing hill-streams of India and Nepal. Cell culture systems were developed from eye, fin, heart and swim bladder tissues of P. chelynoides using explant method. The cell culture system developed from eye has been maintained towards a continuous cell line designated as PCE. The cells were grown in 25cm(2) tissue culture flasks with Leibovitz' L-15 media supplemented with 20 % fetal bovine serum (FBS) at 24°C. The PCE cell line consists of predominantly fibroblast-like cells and showed high plating efficiency. The monolayer formed from the fin and heart explants were comprised of epithelial as well as fibroblast-like cells, a prominent and rhythmic heartbeat was also observed in heart explants. Monolayer formed from swim bladder explants showed the morphology of fibroblast-like cells. All the cells from different tissues are able to grow at an optimum temperature of 24°C and growth rate increased as the FBS concentration increased. The PCE cell line was characterized using amplification of mitochondrial cytochrome oxidase subunit I (COI) & 16S rRNA genes which confirmed that the cell line originated from P. chelynoides. Cytogenetic analysis of PCE cell line and cells from fin revealed a diploid count of 100 chromosomes. Upon transfection with pEGFP-C1 plasmid, bright fluorescent signals were observed, suggesting that this cell line can be used for transgenic and genetic manipulation studies. Further, genotoxicity assessment of PCE cells illustrated the utility of this cell line as an in vitro model for aquatic toxicological studies. The PCE cell line was successfully cryopreserved and revived at different passage levels. The cell line and culture systems are being maintained to develop continuous cell lines for further studies. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Establishment and characterization of SUIT-58 pancreas cancer cell line and its subline S58-SF adapted to serum-free condition derived from metastatic liver tumor.

    PubMed

    Takahashi, Nobuyasu; Aoyama, Fumiyo; Ohuchida, Jiro; Sameshima, Naoki; Asada, Yujiro; Sawaguchi, Akira

    2015-10-01

    A new pancreas cancer cell line, SUIT-58, was established from metastatic liver tumor. The cultured cells exhibited polygonal shape, and proliferated in a form of sheet-structure showing prominent nucleoli and frequent mitotic features. Chromosome count ranged from 54 to 73 with modal chromosome numbers 72 and 73. It was noteworthy that this cell line grew in the serum-free media and maintained in this condition for 30 passages (designated as S58-SF). Both SUIT-58 and S58-SF cell lines were successfully transplanted into nude mice, and their tumor doubling times in xenografts were calculated as 5.4 and 2.8 days, respectively. Histopathologically, the xenografts formed glandular structure that resembled the original tumor. In culture media, the doubling time of SUIT-58 and S58-SF cell lines was calculated as 32 and 35.7 h, respectively. Although the cellular arrangements of SUIT-58 and S58-SF cell lines are different to some extent, their subcellular structures under electron microscope were similar with a large number of lysosomes and distinct desmosomes at cell-cell adhesion sites. The present SUIT-58 and its derivative cell line S58-SF will be applicable for biological studies to develop a new clinical treatment of refractory pancreatic cancer.

  3. Effects of curcumin on stem-like cells in human esophageal squamous carcinoma cell lines.

    PubMed

    Almanaa, Taghreed N; Geusz, Michael E; Jamasbi, Roudabeh J

    2012-10-24

    Many cancers contain cell subpopulations that display characteristics of stem cells. Because these cancer stem cells (CSCs) appear to provide resistance to chemo-radiation therapy, development of therapeutic agents that target CSCs is essential. Curcumin is a phytochemical agent that is currently used in clinical trials to test its effectiveness against cancer. However, the effect of curcumin on CSCs is not well established. The current study evaluated curcumin-induced cell death in six cancer cell lines derived from human esophageal squamous cell carcinomas. Moreover, these cell lines and the ones established from cells that survived curcumin treatments were characterized. Cell loss was assayed after TE-1, TE-8, KY-5, KY-10, YES-1, and YES-2 cells were exposed to 20-80 μM curcumin for 30 hrs. Cell lines surviving 40 or 60 μM curcumin were established from these six original lines. The stem cell markers aldehyde dehydrogenase-1A1 (ALDH1A1) and CD44 as well as NF-κB were used to compare CSC-like subpopulations within and among the original lines as well as the curcumin-surviving lines. YES-2 was tested for tumorsphere-forming capabilities. Finally, the surviving lines were treated with 40 and 60 μM curcumin to determine whether their sensitivity was different from the original lines. The cell loss after curcumin treatment increased in a dose-dependent manner in all cell lines. The percentage of cells remaining after 60 μM curcumin treatment varied from 10.9% to 36.3% across the six lines. The cell lines were heterogeneous with respect to ALDH1A1, NF-κB and CD44 expression. KY-5 and YES-1 were the least sensitive and had the highest number of stem-like cells whereas TE-1 had the lowest. The curcumin-surviving lines showed a significant loss in the high staining ALDH1A1 and CD44 cell populations. Tumorspheres formed from YES-2 but were small and rare in the YES-2 surviving line. The curcumin-surviving lines showed a small but significant decrease in sensitivity to curcumin when compared with the original lines. Our results suggest that curcumin not only eliminates cancer cells but also targets CSCs. Therefore, curcumin may be an effective compound for treating esophageal and possibly other cancers in which CSCs can cause tumor recurrence.

  4. Stem/progenitor cell-like properties of desmoglein 3dim cells in primary and immortalized keratinocyte lines.

    PubMed

    Wan, Hong; Yuan, Ming; Simpson, Cathy; Allen, Kirsty; Gavins, Felicity N E; Ikram, Mohammed S; Basu, Subham; Baksh, Nuzhat; O'Toole, Edel A; Hart, Ian R

    2007-05-01

    We showed previously that primary keratinocytes selected for low desmoglein 3 (Dsg3) expression levels exhibited increased colony-forming efficiency and heightened proliferative potential relative to cells with higher Dsg3 expression levels, characteristics consistent with a more "stem/progenitor cell-like" phenotype. Here, we have confirmed that Dsg3(dim) cells derived from cultured primary human adult keratinocytes have comparability with alpha(6)(bri)/CD71(dim) stem cells in terms of colony-forming efficiency. Moreover, these Dsg3(dim) cells exhibit increased reconstituting ability in in vitro organotypic culture on de-epidermalized dermis (DED); they are small, actively cycling cells, and they express elevated levels of various p63 isoforms. In parallel, using the two immortalized keratinocyte cell lines HaCaT and NTERT, we obtained essentially similar though occasionally different findings. Thus, reduced colony-forming efficiency by Dsg3(bri) cells consistently was observed in both cell lines even though the cell cycle profile and levels of p63 isoforms in the bri and dim populations differed between these two cell lines. Dsg3(dim) cells from both immortalized lines produced thicker and better ordered hierarchical structural organization of reconstituted epidermis relative to Dsg3(bri) and sorted control cells. Dsg3(dim) HaCaT cells also show sebocyte-like differentiation in the basal compartment of skin reconstituted after a 4-week organotypic culture. No differences in percentages of side population cells (also a putative marker of stem cells) were detected between Dsg3(dim) and Dsg3(bri) populations. Taken together our data indicate that Dsg3(dim) populations from primary human adult keratinocytes and long-term established keratinocyte lines possess certain stem/progenitor cell-like properties, although the side population characteristic is not one of these features. Disclosure of potential conflicts of interest is found at the end of this article.

  5. Identification of tumor-initiating cells derived from two canine rhabdomyosarcoma cell lines

    PubMed Central

    KISHIMOTO, Takuya Evan; YASHIMA, Shoko; NAKAHIRA, Rei; ONOZAWA, Eri; AZAKAMI, Daigo; UJIKE, Makoto; OCHIAI, Kazuhiko; ISHIWATA, Toshiyuki; TAKAHASHI, Kimimasa; MICHISHITA, Masaki

    2017-01-01

    Cancer stem cells or tumor-initiating cells (TICs) are a small subpopulation of cells that have the capacity to self-renew, differentiate and initiate tumors. These cells may function in tumor initiation, aggression and recurrence. Whether spheres derived from canine rhabdomyosarcoma cells have stem cell-like properties is unclear. We induced sphere formation in the canine rhabdomyosarcoma cell lines, CMS-C and CMS-J, and characterized the spheres in vitro and in vivo. Sphere-forming cells were more resistant to vincristine, mitoxantrone and doxorubicin than adherent cells. Xenograft transplantation demonstrated that 1 × 103 sphere-forming cells derived from CMS-C were sufficient for tumor formation. The sphere assay showed that the sphere-forming cells were present in these tumors. These results suggest that the spheres derived from canine rhabdomyosarcoma cells may possess characteristics of TICs. This study provides the foundation for elucidating the contribution of TICs to rhabdomyosarcoma tumorigenesis. PMID:28529244

  6. Identification of tumor-initiating cells derived from two canine rhabdomyosarcoma cell lines.

    PubMed

    Kishimoto, Takuya Evan; Yashima, Shoko; Nakahira, Rei; Onozawa, Eri; Azakami, Daigo; Ujike, Makoto; Ochiai, Kazuhiko; Ishiwata, Toshiyuki; Takahashi, Kimimasa; Michishita, Masaki

    2017-07-07

    Cancer stem cells or tumor-initiating cells (TICs) are a small subpopulation of cells that have the capacity to self-renew, differentiate and initiate tumors. These cells may function in tumor initiation, aggression and recurrence. Whether spheres derived from canine rhabdomyosarcoma cells have stem cell-like properties is unclear. We induced sphere formation in the canine rhabdomyosarcoma cell lines, CMS-C and CMS-J, and characterized the spheres in vitro and in vivo. Sphere-forming cells were more resistant to vincristine, mitoxantrone and doxorubicin than adherent cells. Xenograft transplantation demonstrated that 1 × 10 3 sphere-forming cells derived from CMS-C were sufficient for tumor formation. The sphere assay showed that the sphere-forming cells were present in these tumors. These results suggest that the spheres derived from canine rhabdomyosarcoma cells may possess characteristics of TICs. This study provides the foundation for elucidating the contribution of TICs to rhabdomyosarcoma tumorigenesis.

  7. Clonogenic Assay: Adherent Cells

    PubMed Central

    Rafehi, Haloom; Orlowski, Christian; Georgiadis, George T.; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C.

    2011-01-01

    The clonogenic (or colony forming) assay has been established for more than 50 years; the original paper describing the technique was published in 19561. Apart from documenting the method, the initial landmark study generated the first radiation-dose response curve for X-ray irradiated mammalian (HeLa) cells in culture1. Basically, the clonogenic assay enables an assessment of the differences in reproductive viability (capacity of cells to produce progeny; i.e. a single cell to form a colony of 50 or more cells) between control untreated cells and cells that have undergone various treatments such as exposure to ionising radiation, various chemical compounds (e.g. cytotoxic agents) or in other cases genetic manipulation. The assay has become the most widely accepted technique in radiation biology and has been widely used for evaluating the radiation sensitivity of different cell lines. Further, the clonogenic assay is commonly used for monitoring the efficacy of radiation modifying compounds and for determining the effects of cytotoxic agents and other anti-cancer therapeutics on colony forming ability, in different cell lines. A typical clonogenic survival experiment using adherent cells lines involves three distinct components, 1) treatment of the cell monolayer in tissue culture flasks, 2) preparation of single cell suspensions and plating an appropriate number of cells in petri dishes and 3) fixing and staining colonies following a relevant incubation period, which could range from 1-3 weeks, depending on the cell line. Here we demonstrate the general procedure for performing the clonogenic assay with adherent cell lines with the use of an immortalized human keratinocyte cell line (FEP-1811)2. Also, our aims are to describe common features of clonogenic assays including calculation of the plating efficiency and survival fractions after exposure of cells to radiation, and to exemplify modification of radiation-response with the use of a natural antioxidant formulation. PMID:21445039

  8. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines

    PubMed Central

    Yu, Channing; Mannan, Aristotle M.; Yvone, Griselda Metta; Ross, Kenneth N.; Zhang, Yan-Ling; Marton, Melissa A.; Taylor, Bradley R.; Crenshaw, Andrew; Gould, Joshua Z.; Tamayo, Pablo; Weir, Barbara A.; Tsherniak, Aviad; Wong, Bang; Garraway, Levi A.; Shamji, Alykhan F.; Palmer, Michelle A.; Foley, Michael A.; Winckler, Wendy; Schreiber, Stuart L.; Kung, Andrew L.; Golub, Todd R.

    2016-01-01

    Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control1-4. Here, we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes. PRISM displayed the expected patterns of cell killing seen in conventional (unpooled) assays. In a screen of 102 cell lines across 8,400 compounds, PRISM led to the identification of BRD-7880 as a potent and highly specific inhibitor of aurora kinases B and C. Cell line pools also efficiently formed tumors as xenografts, and PRISM recapitulated the expected pattern of erlotinib sensitivity in vivo. PMID:26928769

  9. [Establishment and characterization of a new carcinoma cell line from uterine cervix of Uyghur women].

    PubMed

    Zhang, Lu; Aerziguli, Tursun; Guzalnur, Abliz

    2012-04-01

    To establish a uterine cervical carcinoma cell line of Uyghur ethnical background and to evaluate the related biological characteristics for future biomedical investigations of diseases in the Uyghur population. Poorly-differentiated squamous cell carcinoma specimens of Uyghur patients were obtained and cultured in vitro by enzymatic digestion method, followed by continuous passaging to reach a stable growth determined by cell viability and growth curve. Morphological study, cell cycling and chromosomal analysis were performed. Tumorigenesis study was conducted by inoculation of nude mice. Biomarker (CK17, CD44, Ki-67, CK14 and vimentin) expression was detected by immunofluorescence and immunocytochemical techniques. A cervical carcinoma cell line was successfully established and maintained for 12 months through 70 passages. The cell line had a stable growth with a population doubling time of 51.9 h. Flask method and double agar-agar assay showed that the cell line had colony-forming rates of 32.5% and 15.6%, respectively. Ultrastructural evaluation demonstrated numerous cell surface protrusions or microvilli, a large number of rod-shape structures in cytoplasm, typical desmosomes and nuclear atypia. Chromosomal analysis revealed human karyotype with the number of chromosomes per cell varying from 32 - 97 with a majority of 54 - 86 (60.3%). Xenogeneic tumors formed in nude mice showed histological structures identical to those of the primary tumor. The cells had high expression of CK17, CD44, Ki-67 and vimentin but no CK14 expression. A cervical carcinoma cell line from a female Uyghur patient is successfully established. The cell line has the characteristics of human cervical squamous cell carcinoma, and it is stable with maintaining the characteristic biological and morphological features in vitro for more than 12 months, therefore, qualified as a stable cell line for further biomedical research.

  10. Variation of Keratin 7 Expression and Other Phenotypic Characteristics of Independent Isolates of Cadmium Transformed Human Urothelial Cells (UROtsa)

    PubMed Central

    Somji, Seema; Zhou, Xu Dong; Mehus, Aaron; Sens, Mary Ann; Garrett, Scott H.; Lutz, Krista L.; Dunlevy, Jane R.; Zheng, Yun; Sens, Donald. A.

    2009-01-01

    This laboratory has shown that a human urothelial cell line (UROtsa) transformed by cadmium (Cd+2) produced subcutaneous tumor heterotransplants that resemble human transitional cell carcinoma (TCC). In the present study, additional Cd+2 transformed cell lines were isolated to determine if independent exposures of the cell line to Cd+2 would result in malignantly transformed cell lines possessing similar phenotypic properties. Seven independent isolates were isolated and assessed for their doubling times, morphology, ability to heterotransplant subcutaneously and in the peritoneal cavity of nude mice and for the expression keratin 7. The 7 cell lines all displayed an epithelial morphology with no evidence of squamous differentiation. Doubling times were variable among the isolates, being significantly reduced or similar to the parental cells. All 7 isolates were able to form subcutaneous tumor heterotransplants with a TCC morphology and all heterotransplants displayed areas of squamous differentiation of the transitional cells. The degree of squamous differentiation varied among the isolates. In contrast to subcutaneous tumor formation, only 1 isolate of the Cd+2 transformed cells (UTCd#1) was able to effectively colonize multiple sites within the peritoneal cavity. An analysis of keratin 7 expression showed no correlation with squamous differentiation for the subcutaneous heterotransplants generated from the 7 cell lines. Keratin 7 was expressed in 6 of the 7 cell lines and their subcutaneous tumor heterotransplants. Keratin 7 was not expressed in the cell line that was able to form tumors within the peritoneal cavity. These results show that individual isolates of Cd+2 transformed cells have both similarities and differences in their phenotype. PMID:19921857

  11. Newly established human retinoblastoma cell lines exhibit an "immortalized" but not an invasive phenotype in vitro.

    PubMed

    Griegel, S; Hong, C; Frötschl, R; Hülser, D F; Greger, V; Horsthemke, B; Rajewsky, M F

    1990-07-15

    Retinoblastoma (RB), an intraocular childhood tumor occurring in a hereditary (mostly bilateral) or non-hereditary (unilateral) form, is associated with the inactivation of both alleles of a putative tumor suppressor gene (RB-I) located on chromosome 13q14. Both the process of RB development and the biological characteristics of RB cells are as yet poorly understood. We have established 7 new RBL lines (RBL13, RBL14, RBL18 and RBL30, derived from unilateral RB; and RBL7, RBL15 and RBL20, derived from bilateral RB). Southern blot analyses of restriction fragment length polymorphisms in DNA samples from 6 cell lines revealed loss of constitutional heterozygosity at one or several polymorphic loci on chromosome 13 in 4 cases. Gross deletions involving the RB-I locus and amplification of the N-myc gene were not detected in any of the RBL lines. The phenotypic properties of the RBL lines were analyzed in comparison with cells from the original RB tumors, with 4 RB lines established by others (RB383, RB355, RB247C3 and Y79) and with the adenovirus-EIA-transformed human retinoblast line HER-Xhol-CC2. It was found that RB tumors consist of phenotypically heterogeneous cell subpopulations with varying nutrient requirements and differentiation potential in vitro. All cell lines showed the typical characteristics of established ("immortalized") cells. In some cases, cells from original RB tumors or cell lines were able to form colonies when cell aggregates of 2-10 cells were suspended in semi-solid agar medium; however, anchorage-independent colonies never developed from single cells. Cell lines RBL13, RBL18, RB247C3, RB355, RB383 and Y79 were tested for invasion into embryonic chick heart fragments in vitro and found to be non-invasive. None of the RBL or RB lines were tumorigenic in nu/nu (T-) mice. Y79 cells (propagated in culture for many years) exhibited properties distinctly different from those of the other cell lines, and thus cannot be considered phenotypically representative of RB cells.

  12. Herpesvirus papio: state and properties of intracellular viral DNA in baboon lymphoblastoid cell lines.

    PubMed

    Falk, L; Lindahl, T; Bjursell, G; Klein, G

    1979-07-15

    Herpesvirus papio (HVP) is an indigenous B-lymphotropic virus of baboons (Papio sp.) present in latent form in baboon lymphoblastoid cell lines. It shares cross-reacting viral capsid and early antigens with the Epstein-Barr virus (EBV), and HVP DNA and EBV DNA show partial sequence homology. EBV-specific complementary RNA was employed here as a probe to investigate the physical state of the HVP DNA component in baboon lymphoblastoid cells after fractionation of cellular DNA by density gradient centrifugation. Five virus-producing cultures contained both free and integrated HVP DNA sequences while one non-producing cell line had two or three viral genome equivalents per cell in an apparently integrated form. Further analysis of one virus-producing line showed that the free HVP DNA fraction was composed of both linear and circular viral DNA. Contour length measurements of HVP circular DNA molecules by electron microscopy revealed that they were similar in length to the EBV circular DNA present in human lymphoblastoid cells.

  13. In vitro model for Campylobacter pylori adherence properties.

    PubMed Central

    Neman-Simha, V; Mégraud, F

    1988-01-01

    The adherence of 12 strains of Campylobacter pylori was studied on four cell lines. Immunofluorescence and scanning and transmission electron microscopy were used to visualize the bacteria. A heavy adherence to the epithelial cell line HEp-2 and to the intestinal cell line Int-407 was noted. By transmission electron microscopy, a close association between bacteria and cells in the form of cup-like structures was observed, but pedestals were not present. Images PMID:3182085

  14. SPARC Expression Is Selectively Suppressed in Tumor Initiating Urospheres Isolated from As+3- and Cd+2-Transformed Human Urothelial Cells (UROtsa) Stably Transfected with SPARC.

    PubMed

    Slusser-Nore, Andrea; Larson-Casey, Jennifer L; Zhang, Ruowen; Zhou, Xu Dong; Somji, Seema; Garrett, Scott H; Sens, Donald A; Dunlevy, Jane R

    2016-01-01

    This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As(+3)) and cadmium (Cd(+2))-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd(+2)-and As(+3)-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice. Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As(+3)-and Cd(+2)-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF). Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres. It was shown that the As(+3)-and Cd(+2)-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As(+3)-and Cd(+2)-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells. Tumor initiating cells isolated from SPARC-transfected As(+3)-and Cd(+2)-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA.

  15. SPARC Expression Is Selectively Suppressed in Tumor Initiating Urospheres Isolated from As+3- and Cd+2-Transformed Human Urothelial Cells (UROtsa) Stably Transfected with SPARC

    PubMed Central

    Slusser-Nore, Andrea; Larson-Casey, Jennifer L.; Zhang, Ruowen; Zhou, Xu Dong; Somji, Seema; Garrett, Scott H.; Sens, Donald A.; Dunlevy, Jane R.

    2016-01-01

    Background This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As+3) and cadmium (Cd+2)-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd+2-and As+3-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice. Methods Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As+3-and Cd+2-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF). Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres. Results It was shown that the As+3-and Cd+2-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As+3-and Cd+2-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells. Conclusions Tumor initiating cells isolated from SPARC-transfected As+3-and Cd+2-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA. PMID:26783756

  16. Ethical and technical considerations for the creation of cell lines in the head & neck and tissue harvesting for research and drug development (Part I): Techniques of tissue harvesting and propagation

    PubMed Central

    Upile, Tahwinder; Jerjes, Waseem; Kafas, Panagiotis; Singh, Sandeep U; Sudhoff, Holger; Mahil, Jaspal; Sandison, Ann; Hopper, Colin

    2009-01-01

    Background Although much has been published for the development of cell lines, these were lab based and developed for scientific technical staff. Objective of review We present a simple and successful protocol for the development of cell lines and tissue harvesting for the clinical scientist. We also discuss the ethical implications of tissue retention and present a generic consent form. Conclusion The advantages of hospital-based cell line creation are numerous. We can be more certain that cell lines are developed from the particular tissues of interest and accurate anatomical and appropriate clinico-pathological control tissues are also harvested. We can also be certain of less cell line cross contamination. PMID:19344501

  17. Two populations of double minute chromosomes harbor distinct amplicons, the MYC locus at 8q24.2 and a 0.43-Mb region at 14q24.1, in the SW613-S human carcinoma cell line.

    PubMed

    Guillaud-Bataille, M; Brison, O; Danglot, G; Lavialle, C; Raynal, B; Lazar, V; Dessen, P; Bernheim, A

    2009-01-01

    High-level amplifications observed in tumor cells are usually indicative of genes involved in oncogenesis. We report here a high resolution characterization of a new amplified region in the SW613-S carcinoma cell line. This cell line contains tumorigenic cells displaying high-level MYC amplification in the form of double minutes (DM(+) cells) and non tumorigenic cells exhibiting low-level MYC amplification in the form of homogeneously staining regions (DM(-) cells). Both cell types were studied at genomic and functional levels. The DM(+) cells display a second amplification, corresponding to the 14q24.1 region, in a distinct population of DMs. The 0.43-Mb amplified and overexpressed region contains the PLEK2, PIGH, ARG2, VTI1B, RDH11, and ZFYVE26 genes. Both amplicons were stably maintained upon in vitro and in vivo propagation. However, the 14q24.1 amplicon was not found in cells with high-level MYC amplification in the form of HSRs, either obtained after spontaneous integration of endogenous DM MYC copies or after transfection of DM(-) cells with a MYC gene expression vector. These HSR-bearing cells are highly tumorigenic. The 14q24.1 amplification may not play a role in malignancy per se but might contribute to maintaining the amplification in the form of DMs. Copyright 2009 S. Karger AG, Basel.

  18. Isolation, immortalization, and characterization of a human breast epithelial cell line with stem cell properties

    PubMed Central

    Gudjonsson, Thorarinn; Villadsen, René; Nielsen, Helga Lind; Rønnov-Jessen, Lone; Bissell, Mina J.; Petersen, Ole William

    2002-01-01

    The epithelial compartment of the human breast comprises two distinct lineages: the luminal epithelial and the myoepithelial lineage. We have shown previously that a subset of the luminal epithelial cells could convert to myoepithelial cells in culture signifying the possible existence of a progenitor cell. We therefore set out to identify and isolate the putative precursor in the luminal epithelial compartment. Using cell surface markers and immunomagnetic sorting, we isolated two luminal epithelial cell populations from primary cultures of reduction mammoplasties. The major population coexpresses sialomucin (MUC+) and epithelial-specific antigen (ESA+) whereas the minor population has a suprabasal position and expresses epithelial specific antigen but no sialomucin (MUC−/ESA+). Two cell lines were further established by transduction of the E6/E7 genes from human papilloma virus type 16. Both cell lines maintained a luminal epithelial phenotype as evidenced by expression of the tight junction proteins, claudin-1 and occludin, and by generation of a high transepithelial electrical resistance on semipermeable filters. Whereas in clonal cultures, the MUC+/ESA+ epithelial cell line was luminal epithelial restricted in its differentiation repertoire, the suprabasal-derived MUC−/ESA+ epithelial cell line was able to generate itself as well as MUC+/ESA+ epithelial cells and Thy-1+/α-smooth muscle actin+ (ASMA+) myoepithelial cells. The MUC−/ESA+ epithelial cell line further differed from the MUC+/ESA+ epithelial cell line by the expression of keratin K19, a feature of a subpopulation of epithelial cells in terminal duct lobular units in vivo. Within a reconstituted basement membrane, the MUC+/ESA+ epithelial cell line formed acinus-like spheres. In contrast, the MUC−/ESA+ epithelial cell line formed elaborate branching structures resembling uncultured terminal duct lobular units both by morphology and marker expression. Similar structures were obtained by inoculating the extracellular matrix-embedded cells subcutaneously in nude mice. Thus, MUC−/ESA+ epithelial cells within the luminal epithelial lineage may function as precursor cells of terminal duct lobular units in the human breast. PMID:11914275

  19. Cell Motility and Jamming across the EMT

    NASA Astrophysics Data System (ADS)

    Grosser, Steffen; Oswald, Linda; Lippoldt, Jürgen; Heine, Paul; Kaes, Josef A.

    We use single-cell tracking and cell shape analysis to highlight the different roles that cell jamming plays in the behaviour of epithelial vs. mesenchymal mammary breast cell lines (MCF-10A, MDA-MB-231) in 2D adherent culture. An automatic segmentation allows for the evaluation of cell shapes, which we compare to predictions made by the self-propelled vertex (SPV) model. On top of that, we employ co-cultures to study the emerging demixing behaviour of these cell lines, demonstrating that the mesenchymal MDA-MB-231 cell line forms unjammed islands within the jammed collective.

  20. A critical synopsis: Continuous growth of proximal tubular kidney epithelial cells in hormone-supplemented serum-free medium

    NASA Technical Reports Server (NTRS)

    Chuman, L. M.; FINE; COHEN; Saier, M. H.

    1985-01-01

    The kidney forms urine and reabsorbs electrolytes and water. Kidney cell lines and hormone supplemented serum free medium were used for growth. The hormones were insulin, transferrin, vasopressin, cholesterol, prostaglandins, hydrocortisone, and triidothyronine. Epithelial cell lines are polar and form hemicysts. The Madin-Darby canine kidney(MDCK) cell line used is distal tubulelike. LLC-PK sub 1 cells are derived from pig kidneys and have the properties of different kidney segments. The LLC-PK sub 1 cells with proximal tubule properties were maintained in hormone-supplemented serum free medium. Seven factors (the aforementioned homrones and selenium) were needed for growth. Hormone-defined medium supported LLC-PK sub 1 cell growth, allowed transport (as seen by hemicyst formation), and influenced cell morphology. Vasopressin (used for growth and morphology) could be partially replaced by isobutylmethylxanthine or dibutyryl cAMP. The defined medium was used to isolate rabbit proximal tubule kidney epithelial cells free of fibroblasts.

  1. Specific DNA binding activity of T antigen subclasses varies among different SV40-transformed cell lines.

    PubMed

    Burger, C; Fanning, E

    1983-04-15

    Large tumor antigen (T antigen) occurs in at least three different oligomeric subclasses in cells infected or transformed by simian virus 40 (SV40): 5-7 S, 14-16 S, and 23-25 S. The 23-25 S form is complexed with a host phosphoprotein (p53). The DNA binding properties of these three subclasses of T antigen from nine different cell lines and free p53 protein were compared using an immunoprecipitation assay. All three subclasses of T antigen bound specifically to SV40 DNA sequences near the origin of replication. However, the DNA binding activity varied between different cell lines over a 40- to 50-fold range. The 23-25 S and 14-16 S forms from most of the cell lines tested bound much less SV40 origin DNA than 5-7 S T antigen. The free p53 phosphoprotein did not bind specifically to any SV40 DNA sequences.

  2. Apical Cyst Theory: a Missing Link.

    PubMed

    Huang, George T-J

    2010-10-05

    The mechanism of the formation of apical cyst has been elusive. Several theories have long been proposed and discussed speculating how an apical cyst is developed and formed in the jaw bone resulting from endododontic infection. Two popular theories are the nutritional deficiency theory and the abscess theory. The nutritional deficiency theory assumes that the over proliferated epithelial cells will form a ball mass such that the cells in the center of the mass will be deprived of nutrition. The abscess theory postulates that when an abscess cavity is formed in connective tissue, epithelial cells proliferate and line the preexisting cavity because of their inherent tendency to cover exposed connective tissue surfaces. Based on the nature of epithelial cells and the epithelium, nutritional theory is a fairy tale, while abscess theory at best just indicates that abscess may be one of the factors that allows the stratified epithelium to form but not to explain a mechanism that makes the cyst to form. Apical cyst formation is the result of proliferation of resting epithelial cells, due to inflammation, to a sufficient number such that they are able to form a polarized and stratified epithelial lining against dead tissues or foreign materials. These stratified epithelial lining expands along the dead tissue or foreign materials and eventually wrap around them as a spherical sac, i.e. a cyst. The space in the sac is considered the external environment separating the internal (tissue) environment - the natural function of epithelium. This theory may be tested by introducing a biodegradable device able to slowly release epithelial cell mitogens in an in vivo environment implanted with epithelial cells next to a foreign object. This will allow the cells to continuously proliferate which may form a cystic sac wrapping around the foreign object.

  3. Apical Cyst Theory: a Missing Link

    PubMed Central

    Huang, George T.-J.

    2012-01-01

    Introduction The mechanism of the formation of apical cyst has been elusive. Several theories have long been proposed and discussed speculating how an apical cyst is developed and formed in the jaw bone resulting from endododontic infection. Two popular theories are the nutritional deficiency theory and the abscess theory. The nutritional deficiency theory assumes that the over proliferated epithelial cells will form a ball mass such that the cells in the center of the mass will be deprived of nutrition. The abscess theory postulates that when an abscess cavity is formed in connective tissue, epithelial cells proliferate and line the preexisting cavity because of their inherent tendency to cover exposed connective tissue surfaces. Based on the nature of epithelial cells and the epithelium, nutritional theory is a fairy tale, while abscess theory at best just indicates that abscess may be one of the factors that allows the stratified epithelium to form but not to explain a mechanism that makes the cyst to form. The hypothesis Apical cyst formation is the result of proliferation of resting epithelial cells, due to inflammation, to a sufficient number such that they are able to form a polarized and stratified epithelial lining against dead tissues or foreign materials. These stratified epithelial lining expands along the dead tissue or foreign materials and eventually wrap around them as a spherical sac, i.e. a cyst. The space in the sac is considered the external environment separating the internal (tissue) environment – the natural function of epithelium. Evaluation of the hypothesis This theory may be tested by introducing a biodegradable device able to slowly release epithelial cell mitogens in an in vivo environment implanted with epithelial cells next to a foreign object. This will allow the cells to continuously proliferate which may form a cystic sac wrapping around the foreign object. PMID:25346864

  4. A New Extensively Characterised Conditionally Immortal Muscle Cell-Line for Investigating Therapeutic Strategies in Muscular Dystrophies

    PubMed Central

    Muses, Sofia; Morgan, Jennifer E.; Wells, Dominic J.

    2011-01-01

    A new conditionally immortal satellite cell-derived cell-line, H2K 2B4, was generated from the H2Kb-tsA58 immortomouse. Under permissive conditions H2K 2B4 cells terminally differentiate in vitro to form uniform myotubes with a myogenic protein profile comparable with freshly isolated satellite cells. Following engraftment into immunodeficient dystrophin-deficient mice, H2K 2B4 cells regenerated host muscle with donor derived myofibres that persisted for at least 24 weeks, without forming tumours. These cells were readily transfectable using both retrovirus and the non-viral transfection methods and importantly upon transplantation, were able to reconstitute the satellite cell niche with functional donor derived satellite cells. Finally using the Class II DNA transposon, Sleeping Beauty, we successfully integrated a reporter plasmid into the genome of H2K 2B4 cells without hindering the myogenic differentiation. Overall, these data suggest that H2K 2B4 cells represent a readily transfectable stable cell-line in which to investigate future stem cell based therapies for muscle disease. PMID:21935475

  5. A new extensively characterised conditionally immortal muscle cell-line for investigating therapeutic strategies in muscular dystrophies.

    PubMed

    Muses, Sofia; Morgan, Jennifer E; Wells, Dominic J

    2011-01-01

    A new conditionally immortal satellite cell-derived cell-line, H2K 2B4, was generated from the H2K(b)-tsA58 immortomouse. Under permissive conditions H2K 2B4 cells terminally differentiate in vitro to form uniform myotubes with a myogenic protein profile comparable with freshly isolated satellite cells. Following engraftment into immunodeficient dystrophin-deficient mice, H2K 2B4 cells regenerated host muscle with donor derived myofibres that persisted for at least 24 weeks, without forming tumours. These cells were readily transfectable using both retrovirus and the non-viral transfection methods and importantly upon transplantation, were able to reconstitute the satellite cell niche with functional donor derived satellite cells. Finally using the Class II DNA transposon, Sleeping Beauty, we successfully integrated a reporter plasmid into the genome of H2K 2B4 cells without hindering the myogenic differentiation. Overall, these data suggest that H2K 2B4 cells represent a readily transfectable stable cell-line in which to investigate future stem cell based therapies for muscle disease.

  6. Cell lines for the production of monoclonal antibodies to human glycophorin A

    DOEpatents

    Bigbee, William L.; Fong, Stella S. N.; Jensen, Ronald H.; Vanderlaan, Martin; Langlois, Richard G.

    1988-01-01

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.

  7. In Vitro Analysis of Breast Cancer Cell Line Tumourspheres and Primary Human Breast Epithelia Mammospheres Demonstrates Inter- and Intrasphere Heterogeneity

    PubMed Central

    Vargas, Ana Cristina; Keith, Patricia; Reid, Lynne; Wockner, Leesa; Amiri, Marjan Askarian; Sarkar, Debina; Simpson, Peter T.; Clarke, Catherine; Schmidt, Chris W.; Reynolds, Brent A.

    2013-01-01

    Mammosphere and breast tumoursphere culture have gained popularity as in vitro assays for propagating and analysing normal and cancer stem cells. Whether the spheres derived from different sources or parent cultures themselves are indeed single entities enriched in stem/progenitor cells compared to other culture formats has not been fully determined. We surveyed sphere-forming capacity across 26 breast cell lines, immunophenotyped spheres from six luminal- and basal-like lines by immunohistochemistry and flow cytometry and compared clonogenicity between sphere, adherent and matrigel culture formats using in vitro functional assays. Analyses revealed morphological and molecular intra- and inter-sphere heterogeneity, consistent with adherent parental cell line phenotypes. Flow cytometry showed sphere culture does not universally enrich for markers previously associated with stem cell phenotypes, although we found some cell-line specific changes between sphere and adherent formats. Sphere-forming efficiency was significantly lower than adherent or matrigel clonogenicity and constant over serial passage. Surprisingly, self-renewal capacity of sphere-derived cells was similar/lower than other culture formats. We observed significant correlation between long-term-proliferating-cell symmetric division rates in sphere and adherent cultures, suggesting functional overlap between the compartments sustaining them. Experiments with normal primary human mammary epithelia, including sorted luminal (MUC1+) and basal/myoepithelial (CD10+) cells revealed distinct luminal-like, basal-like and mesenchymal entities amongst primary mammospheres. Morphological and colony-forming-cell assay data suggested mammosphere culture may enrich for a luminal progenitor phenotype, or induce reversion/relaxation of the basal/mesenchymal in vitro selection occurring with adherent culture. Overall, cell line tumourspheres and primary mammospheres are not homogenous entities enriched for stem cells, suggesting a more cautious approach to interpreting data from these assays and careful consideration of its limitations. Sphere culture may represent an alternative 3-dimensional culture system which rather than universally ‘enriching’ for stem cells, has utility as one of a suite of functional assays that provide a read-out of progenitor activity. PMID:23750209

  8. Establishment of goat embryonic stem cells from in vivo produced blastocyst-stage embryos.

    PubMed

    Behboodi, E; Bondareva, A; Begin, I; Rao, K; Neveu, N; Pierson, J T; Wylie, C; Piero, F D; Huang, Y J; Zeng, W; Tanco, V; Baldassarre, H; Karatzas, C N; Dobrinski, I

    2011-03-01

    Embryonic stem (ES) cells with the capacity for germ line transmission have only been verified in mouse and rat. Methods for derivation, propagation, and differentiation of ES cells from domestic animals have not been fully established. Here, we describe derivation of ES cells from goat embryos. In vivo-derived embryos were cultured on goat fetal fibroblast feeders. Embryos either attached to the feeder layer or remained floating and expanded in culture. Embryos that attached showed a prominent inner cell mass (ICM) and those that remained floating formed structures resembling ICM disks surrounded by trophectodermal cells. ICM cells and embryonic disks were isolated mechanically, cultured on feeder cells in the presence of hLIF, and outgrown into ES-like colonies. Two cell lines were cultured for 25 passages and stained positive for alkaline phosphatase, POU5F1, NANOG, SOX2, SSEA-1, and SSEA-4. Embryoid bodies formed in suspension culture without hLIF. One cell line was cultured for 2 years (over 120 passages). This cell line differentiated in vitro into epithelia and neuronal cells, and could be stably transfected and selected for expression of a fluorescent marker. When cells were injected into SCID mice, teratomas were identified 5-6 weeks after transplantation. Expression of known ES cell markers, maintenance in vitro for 2 years in an undifferentiated state, differentiation in vitro, and formation of teratomas in immunodeficient mice provide evidence that the established cell line represents goat ES cells. This also is the first report of teratoma formation from large animal ES cells. Copyright © 2011 Wiley-Liss, Inc.

  9. Isolation and characterization of a metastatic hybrid cell line generated by ER negative and ER positive breast cancer cells in mouse bone marrow.

    PubMed

    Mukhopadhyay, Keya De; Bandyopadhyay, Abhik; Chang, Ting-Tung A; Elkahloun, Abdel G; Cornell, John E; Yang, Junhua; Goins, Beth A; Yeh, I-Tien; Sun, Lu-Zhe

    2011-01-01

    The origin and the contribution of breast tumor heterogeneity to its progression are not clear. We investigated the effect of a growing orthotopic tumor formed by an aggressive estrogen receptor (ER)-negative breast cancer cell line on the metastatic potential of a less aggressive ER-positive breast cancer cell line for the elucidation of how the presence of heterogeneous cancer cells might affect each other's metastatic behavior. ER positive ZR-75-1/GFP/puro cells, resistant to puromycin and non-tumorigenic/non-metastatic without exogenous estrogen supplementation, were injected intracardiacally into mice bearing growing orthotopic tumors, formed by ER negative MDA-MB-231/GFP/Neo cells resistant to G418. A variant cell line B6, containing both estrogen-dependent and -independent cells, were isolated from GFP expressing cells in the bone marrow and re-inoculated in nude mice to generate an estrogen-independent cell line B6TC. The presence of ER negative orthotopic tumors resulted in bone metastasis of ZR-75-1 without estrogen supplementation. The newly established B6TC cell line was tumorigenic without estrogen supplementation and resistant to both puromycin and G418 suggesting its origin from the fusion of MDA-MB-231/GFP/Neo and ZR-75-1/GFP/puro in the mouse bone marrow. Compared to parental cells, B6TC cells were more metastatic to lung and bone after intracardiac inoculation. More significantly, B6TC mice also developed brain metastasis, which was not observed in the MDA-MB-231/GFP/Neo cell-inoculated mice. Low expression of ERα and CD24, and high expression of EMT-related markers such as Vimentin, CXCR4, and Integrin-β1 along with high CD44 and ALDH expression indicated stem cell-like characteristics of B6TC. Gene microarray analysis demonstrated a significantly different gene expression profile of B6TC in comparison to those of parental cell lines. Spontaneous generation of the novel hybrid cell line B6TC, in a metastatic site with stem cell-like properties and propensity to metastasize to brain, suggest that cell fusion can contribute to tumor heterogeneity.

  10. Monoclonal antibodies to human glycophorin A and cell lines for the production thereof

    DOEpatents

    Vanderlaan, Martin; Bigbee, William L.; Jensen, Ronald H.; Fong, Stella S. N.; Langlois, Richard G.

    1988-01-01

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that are highly specific to and exhibit high affinity for glycophorin A.sup.N and differentiate between the M and N forms of human glycophorin A.

  11. Tumorigenic risk of human induced pluripotent stem cell explants cultured on mouse SNL76/7 feeder cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kamada, Mizuna; Mitsui, Youji, E-mail: y-mitsui8310@hb.tp1.jp; Kumazaki, Tsutomu

    2014-10-24

    Highlights: • hiPS cell explants formed malignant tumors when SNL76/7 feeder cells were used. • Multi type tumors developed by interaction of SNL76/7 feeder cells with hiPS cells. • Tumorigenic risk occurs by co-culture of hiPS cells with SNL76/7 feeder cells. - Abstract: The potential for tumor formation from transplanted human induced pluripotent stem cell (hiPSC) derivatives represents a high risk in their application to regenerative medicine. We examined the genetic origin and characteristics of tumors, that were formed when 13 hiPSC lines, established by ourselves, and 201B7 hiPSC from Kyoto University were transplanted into severe combined immune-deficient (SCID) mice.more » Though teratomas formed in 58% of mice, five angiosarcomas, one malignant solitary fibrous tumor and one undifferentiated pleomorphic sarcoma formed in the remaining mice. Three malignant cell lines were established from the tumors, which were derived from mitomycin C (MMC)-treated SNL76/7 (MMC-SNL) feeder cells, as tumor development from fusion cells between MMC-SNL and hiPSCs was negative by genetic analysis. While parent SNL76/7 cells produced malignant tumors, neither MMC-SNL nor MMC-treated mouse embryo fibroblast (MEF) produced malignant tumors. When MMC-SNL feeder cells were co-cultured with hiPSCs, growing cell lines were generated, that expressed genes similar to the parent SNL76/7 cells. Thus, hiPSCs grown on MMC-SNL feeder cells have a high risk of generating feeder-derived malignant tumors. The possible mechanism(s) of growth restoration and the formation of multiple tumor types are discussed with respect of the interactions between MMC-SNL and hiPSC.« less

  12. Characterization of tumor cell lines derived from murine gammaherpesvirus-68-infected mice.

    PubMed Central

    Usherwood, E J; Stewart, J P; Nash, A A

    1996-01-01

    Cell lines were derived from mice with murine gammaherpesvirus-68 (MHV-68)-associated lymphoproliferative disease. Four were of an ambiguous phenotype and were MHV-68 negative. One, S11, was a B lymphocyte that contained MHV-68 genomes in both linear and episomal forms and released virus. The line was clonable and grew into tumors in nude mice. This is the first naturally occurring MHV-68-positive B-cell line to be generated, and it will be an invaluable tool for the study of MHV-68 latency. PMID:8709292

  13. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells

    PubMed Central

    Pujol, Remy; Cunningham, Dale E.; Hailey, Dale W.; Prendergast, Andrew; Rubel, Edwin W.; Raible, David W.

    2016-01-01

    ABSTRACT Failure to form proper synapses in mechanosensory hair cells, the sensory cells responsible for hearing and balance, leads to deafness and balance disorders. Ribbons are electron-dense structures that tether synaptic vesicles to the presynaptic zone of mechanosensory hair cells where they are juxtaposed with the post-synaptic endings of afferent fibers. They are initially formed throughout the cytoplasm, and, as cells mature, ribbons translocate to the basolateral membrane of hair cells to form functional synapses. We have examined the effect of post-synaptic elements on ribbon formation and maintenance in the zebrafish lateral line system by observing mutants that lack hair cell innervation, wild-type larvae whose nerves have been transected and ribbons in regenerating hair cells. Our results demonstrate that innervation is not required for initial ribbon formation but suggest that it is crucial for regulating the number, size and localization of ribbons in maturing hair cells, and for ribbon maintenance at the mature synapse. PMID:27103160

  14. Innervation regulates synaptic ribbons in lateral line mechanosensory hair cells.

    PubMed

    Suli, Arminda; Pujol, Remy; Cunningham, Dale E; Hailey, Dale W; Prendergast, Andrew; Rubel, Edwin W; Raible, David W

    2016-06-01

    Failure to form proper synapses in mechanosensory hair cells, the sensory cells responsible for hearing and balance, leads to deafness and balance disorders. Ribbons are electron-dense structures that tether synaptic vesicles to the presynaptic zone of mechanosensory hair cells where they are juxtaposed with the post-synaptic endings of afferent fibers. They are initially formed throughout the cytoplasm, and, as cells mature, ribbons translocate to the basolateral membrane of hair cells to form functional synapses. We have examined the effect of post-synaptic elements on ribbon formation and maintenance in the zebrafish lateral line system by observing mutants that lack hair cell innervation, wild-type larvae whose nerves have been transected and ribbons in regenerating hair cells. Our results demonstrate that innervation is not required for initial ribbon formation but suggest that it is crucial for regulating the number, size and localization of ribbons in maturing hair cells, and for ribbon maintenance at the mature synapse. © 2016. Published by The Company of Biologists Ltd.

  15. Establishment of an agamid cell line and isolation of adenoviruses from central bearded dragons (Pogona vitticeps).

    PubMed

    Ball, Inna; Hoferer, Marc; Marschang, Rachel E

    2014-03-01

    A cell line was established from whole 6-8-week-old central bearded dragon (Pogona vitticeps) embryos. Cells were mid-sized and showed an elongated and polymorphic form. The cell line grew in a monolayer and has been serially passaged for 17 passages at time of publication. This cell line has been used with samples from adenovirus polymerase chain reaction (PCR)-positive bearded dragons, and 2 virus isolates have been obtained so far. The isolates show a clear cytopathic effect in inoculated cells. Both virus isolates have been serially passaged on this cell line, and have been identified by PCR amplification and sequencing of a portion of the DNA-dependent DNA polymerase gene and show 100% nucleotide identity to the corresponding region of an agamid adenovirus. Electron microscopic examination of supernatant from infected cells demonstrated the presence of nonenveloped particles, with a diameter of approximately 80 nm in both virus isolates.

  16. Retrovirus-mediated conditional immortalization and analysis of established cell lines of osteoclast precursor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawata, Shigehisa; Suzuki, Jun; Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871

    2006-11-10

    Osteoclast precursor cells (OPCs) have previously been established from bone marrow cells of SV40 temperature-sensitive T antigen-expressing transgenic mice. Here, we use retrovirus-mediated gene transfer to conditionally immortalize OPCs by expressing temperature-sensitive large T antigen (tsLT) from wild type bone marrow cells. The immortalized OPCs proliferated at the permissive temperature of 33.5 deg. C, but stopped growing at the non-permissive temperature of 39 deg. C. In the presence of receptor activator of NF{kappa}B ligand (RANKL), the OPCs differentiated into tartrate-resistant acid phosphatase (TRAP)-positive cells and formed multinucleate osteoclasts at 33.5 deg. C. From these OPCs, we cloned two types ofmore » cell lines. Both differentiated into TRAP-positive cells, but one formed multinucleate osteoclasts while the other remained unfused in the presence of RANKL. These results indicate that the established cell lines are useful for analyzing mechanisms of differentiation, particularly multinucleate osteoclast formation. Retrovirus-mediated conditional immortalization should be a useful method to immortalize OPCs from primary bone marrow cells.« less

  17. Two clonal cell lines of immortalized human corneal endothelial cells show either differentiated or precursor cell characteristics.

    PubMed

    Valtink, Monika; Gruschwitz, Rita; Funk, Richard H W; Engelmann, Katrin

    2008-01-01

    Access to primary human corneal endothelial cells (HCEC) is limited and donor-derived differences between cultures exacerbate the issue of data reproducibility, whereas cell lines can provide sufficient numbers of homogenous cells for multiple experiments. An immortalized HCEC population was adapted to serum-free culture medium and repeated cloning was performed. Clonally grown cells were propagated under serum-free conditions and growth curves were recorded. Cells were characterized immunocytochemically for junctional proteins, collagens, Na,K-ATPase and HCEC-specific 9.3.E-antigen. Ultrastructure was monitored by scanning and transmission electron microscopy. Two clonal cell lines, HCEC-B4G12 and HCEC-H9C1, could be isolated and expanded, which differed morphologically: B4G12 cells were polygonal, strongly adherent and formed a strict monolayer, H9C1 cells were less adherent and formed floating spheres. The generation time of B4G12 cells was 62.26 +/- 14.5 h and that of H9C1 cells 44.05 +/- 5.05 h. Scanning electron microscopy revealed that B4G12 cells had a smooth cell surface, while H9C1 cells had numerous thin filopodia. Both cell lines expressed ZO-1 and occludin adequately, and little but well detectable amounts of connexin-43. Expression of HCEC-specific 9.3.E-antigen was found commensurately in both cell lines, while expression of Na,K-ATPase alpha1 was higher in H9C1 cells than in B4G12 cells. B4G12 cells expressed collagen IV abundantly and almost no collagen III, while H9C1 cells expressed both collagens at reasonable amounts. It is concluded that the clonal cell line B4G12 represents an ideal model of differentiated HCEC, while H9C1 may reflect features of developing or transitional HCEC. Copyright 2008 S. Karger AG, Basel.

  18. Vitamin D fails to prevent serum starvation- or staurosporine-induced apoptosis in human and rat osteosarcoma-derived cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witasp, Erika; Division of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm; Gustafsson, Ann-Catrin

    2005-05-13

    Previous studies have suggested that 1,25(OH){sub 2}D{sub 3}, the active form of vitamin D{sub 3}, may increase the survival of bone-forming osteoblasts through an inhibition of apoptosis. On the other hand, vitamin D{sub 3} has also been shown to trigger apoptosis in human cancer cells, including osteosarcoma-derived cell lines. In the present study, we show that 1,25(OH){sub 2}D{sub 3} induces a time- and dose-dependent loss of cell viability in the rat osteosarcoma cell line, UMR-106, and the human osteosarcoma cell line, TE-85. We were unable, however, to detect nuclear condensation, phosphatidylserine externalization, or other typical signs of apoptosis in thismore » model. Moreover, 1,25(OH){sub 2}D{sub 3} failed to protect against apoptosis induced by serum starvation or incubation with the protein kinase inhibitor, staurosporine. These in vitro findings are thus at variance with several previous reports in the literature and suggest that induction of or protection against apoptosis of bone-derived cells may not be a primary function of vitamin D{sub 3}.« less

  19. Method and cell lines for the production of monoclonal antibodies to human glycophorin A

    DOEpatents

    Bigbee, W.L.; Fong, S.S.N.; Jensen, R.H.; Vanderlaan, M.

    Cloned mouse hybridoma cell lines have been established which continuously produce antibodies that differentiate between the M and N forms of human glycophorin A. These antibodies have potential application as human blood group reagents, as markers for terminally differentiated erythroid cells and as immunofluorescent labels of somatically variant human erythrocytes.

  20. Gastrointestinal cell lines form polarized epithelia with an adherent mucus layer when cultured in semi-wet interfaces with mechanical stimulation.

    PubMed

    Navabi, Nazanin; McGuckin, Michael A; Lindén, Sara K

    2013-01-01

    Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface.

  1. Gastrointestinal Cell Lines Form Polarized Epithelia with an Adherent Mucus Layer when Cultured in Semi-Wet Interfaces with Mechanical Stimulation

    PubMed Central

    Navabi, Nazanin; McGuckin, Michael A.; Lindén, Sara K.

    2013-01-01

    Mucin glycoproteins are secreted in large quantities by mucosal epithelia and cell surface mucins are a prominent feature of the glycocalyx of all mucosal epithelia. Currently, studies investigating the gastrointestinal mucosal barrier use either animal experiments or non-in vivo like cell cultures. Many pathogens cause different pathology in mice compared to humans and the in vitro cell cultures used are suboptimal because they are very different from an in vivo mucosal surface, are often not polarized, lack important components of the glycocalyx, and often lack the mucus layer. Although gastrointestinal cell lines exist that produce mucins or polarize, human cell line models that reproducibly create the combination of a polarized epithelial cell layer, functional tight junctions and an adherent mucus layer have been missing until now. We trialed a range of treatments to induce polarization, 3D-organization, tight junctions, mucin production, mucus secretion, and formation of an adherent mucus layer that can be carried out using standard equipment. These treatments were tested on cell lines of intestinal (Caco-2, LS513, HT29, T84, LS174T, HT29 MTX-P8 and HT29 MTX-E12) and gastric (MKN7, MKN45, AGS, NCI-N87 and its hTERT Clone5 and Clone6) origins using Ussing chamber methodology and (immuno)histology. Semi-wet interface culture in combination with mechanical stimulation and DAPT caused HT29 MTX-P8, HT29 MTX-E12 and LS513 cells to polarize, form functional tight junctions, a three-dimensional architecture resembling colonic crypts, and produce an adherent mucus layer. Caco-2 and T84 cells also polarized, formed functional tight junctions and produced a thin adherent mucus layer after this treatment, but with less consistency. In conclusion, culture methods affect cell lines differently, and testing a matrix of methods vs. cell lines may be important to develop better in vitro models. The methods developed herein create in vitro mucosal surfaces suitable for studies of host-pathogen interactions at the mucosal surface. PMID:23869232

  2. Apparatus and method for the electrolytic production of metals

    DOEpatents

    Sadoway, Donald R.

    1991-01-01

    Improved electrolytic cells and methods for producing metals by electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells and methods, a protective surface layer is formed upon at least one electrode in the electrolytic reduction cell and, optionally, upon the lining of the cell. This protective surface layer comprises a material that, at the operating conditions of the cell: (a) is not substantially reduced by the metal product; (b) is not substantially reactive with the cell electrolyte to form materials that are reactive with the metal product; and, (c) has an electrochemical potential that is more electronegative than that of the compound undergoing electrolysis to produce the metal product of the cell. The protective surface layer can be formed upon an electrode metal layer comprising a material, the oxide of which also satisfies the protective layer selection criteria. The protective layer material can also be used on the surface of a cell lining.

  3. A Human Tissue Culture Cell Line from a Transitional Cell Tumour of the Urinary Bladder: Growth, Chromosome Pattern and Ultrastructure

    PubMed Central

    Rigby, Carolyn C.; Franks, L. M.

    1970-01-01

    Cell cultures were made from 18 human bladder tumours. Three cell lines were maintained for seven transfer generations, but all had a “fibroblastic” morphology and a normal diploid karyotype. A fourth line has been maintained for over 80 transfer generations. This was derived from a well differentiated papillary tumour of bladder. Morphologically the light and electron microscopic structure of the cells resembled that of bladder tumours. The cells formed tumour nodules, with a similar structure, when transplanted into hamster cheek pouches. There is a stem line chromosome number of 48. Karyotypes of 60% of the stem line cells had one extra chromosome in Group C and one in Group D. ImagesFig. 11Figs. 12-15Fig. 16Fig. 17Figs. 1-4Fig. 18Figs. 5-8Figs. 9-10 PMID:5503601

  4. A tumor-promoting mechanism mediated by retrotransposon-encoded reverse transcriptase is active in human transformed cell lines

    PubMed Central

    Sciamanna, Ilaria; Gualtieri, Alberto; Cossetti, Cristina; Osimo, Emanuele Felice; Ferracin, Manuela; Macchia, Gianfranco; Aricò, Eleonora; Prosseda, Gianni; Vitullo, Patrizia; Misteli, Tom; Spadafora, Corrado

    2013-01-01

    LINE-1 elements make up the most abundant retrotransposon family in the human genome. Full-length LINE-1 elements encode a reverse transcriptase (RT) activity required for their own retrotranpsosition as well as that of non-autonomous Alu elements. LINE-1 are poorly expressed in normal cells and abundantly in cancer cells. Decreasing RT activity in cancer cells, by either LINE-1-specific RNA interference, or by RT inhibitory drugs, was previously found to reduce proliferation and promote differentiation and to antagonize tumor growth in animal models. Here we have investigated how RT exerts these global regulatory functions. We report that the RT inhibitor efavirenz (EFV) selectively downregulates proliferation of transformed cell lines, while exerting only mild effects on non-transformed cells; this differential sensitivity matches a differential RT abundance, which is high in the former and undetectable in the latter. Using CsCl density gradients, we selectively identify Alu and LINE-1 containing DNA:RNA hybrid molecules in cancer but not in normal cells. Remarkably, hybrid molecules fail to form in tumor cells treated with EFV under the same conditions that repress proliferation and induce the reprogramming of expression profiles of coding genes, microRNAs (miRNAs) and ultraconserved regions (UCRs). The RT-sensitive miRNAs and UCRs are significantly associated with Alu sequences. The results suggest that LINE-1-encoded RT governs the balance between single-stranded and double-stranded RNA production. In cancer cells the abundant RT reverse-transcribes retroelement-derived mRNAs forming RNA:DNA hybrids. We propose that this impairs the formation of double-stranded RNAs and the ensuing production of small regulatory RNAs, with a direct impact on gene expression. RT inhibition restores the ‘normal’ small RNA profile and the regulatory networks that depend on them. Thus, the retrotransposon-encoded RT drives a previously unrecognized mechanism crucial to the transformed state in tumor cells. PMID:24345856

  5. Neoplastic transformation of SV40-immortalized human urinary tract epithelial cells by in vitro exposure to 3-methylcholanthrene.

    PubMed

    Reznikoff, C A; Loretz, L J; Christian, B J; Wu, S Q; Meisner, L F

    1988-08-01

    Normal human urinary tract epithelial cells (HUC) were neoplastically transformed in vitro using a step-wise strategy. First, a partially transformed non-virus-producing cell line was obtained after infection of HUC with simian virus 40 (SV40). This cell line (SV-HUC-1) was demonstrated to be clonal in origin, as 100% of cells contained at least five of seven marker chromosomes. Marker chromosomes were formed by balanced translocations resulting in a 'pseudodiploid' cell line. SV-HUC-1 showed altered growth properties in vitro (e.g. anchorage independent growth) but failed to form tumors in athymic nude mice, even after 3 years in culture (80 passages). In the studies reported here, SV-HUC-1 at early passages (P15-P19) were exposed to 3-methylcholanthrene (MCA) in three separate experiments. After a six-week post-treatment period of cell culture, cells were inoculated s.c. into athymic nude mice. In all experiments, MCA-treated SV-HUC-1 formed carcinomas in mice usually with a latent period of 5-8 weeks. These carcinomas showed heterogeneity with respect to histopathologies and growth properties in the mice and karyotypes. All the tumors retained SV-HUC-1 chromosome markers, but each independent transformant was aneuploid and contained unique new marker chromosomes. Chromosomes usually altered in tumor cells included numbers 3, 5, 6, 9, 11 and 13. Mutations in the ras family of cellular proto-oncogenes resulting in altered mobility of the p21 protein product were not detected in six cell lines established from independently derived tumors. It is not yet known whether other cellular proto-oncogenes are activated in these tumorigenic transformants. Neither control SV-HUC-1 (which were not exposed to MCA), nor early passage HUC exposed to MCA formed tumors when inoculated into mice. Thus, the tumorigenic transformation of HUC resulted from the combined actions of SV40 and MCA.

  6. [Apoptosis-modulating effects of heat shock proteins: the influence of Hsp27 chaperone on TBA Bcl-2 family proteins in Jurkat cell line].

    PubMed

    Riazantseva, N V; Kaĭgorodova, E V; Maroshkina, A N; Belkina, M V; Novitskiĭ, V V

    2012-01-01

    The in vitro phosphorylated and non-phosphorylated Hsp27 forms concentrations and Bcl-2 proteins affected by Hsp27 inhibition were studied in Jurkat-line tumor cells and healthy donor mononuclear lymphocytes by Western blotting technique. The Hsp27 inhibition causes the increase of intracellular Bax protein concentration and the decrease of Bcl-2 level leading to an increase of apoptotic changes in Jurkat line cells.

  7. Newly-derived neuroblastoma cell lines propagated in serum-free media recapitulate the genotype and phenotype of primary neuroblastoma tumours.

    PubMed

    Bate-Eya, Laurel T; Ebus, Marli E; Koster, Jan; den Hartog, Ilona J M; Zwijnenburg, Danny A; Schild, Linda; van der Ploeg, Ida; Dolman, M Emmy M; Caron, Huib N; Versteeg, Rogier; Molenaar, Jan J

    2014-02-01

    Recently protocols have been devised for the culturing of cell lines from fresh tumours under serum-free conditions in defined neural stem cell medium. These cells, frequently called tumour initiating cells (TICs) closely retained characteristics of the tumours of origin. We report the isolation of eight newly-derived neuroblastoma TICs from six primary neuroblastoma tumours and two bone marrow metastases. The primary tumours from which these TICs were generated have previously been fully typed by whole genome sequencing (WGS). Array comparative genomic hybridisation (aCGH) analysis showed that TIC lines retained essential characteristics of the primary tumours and exhibited typical neuroblastoma chromosomal aberrations such as MYCN amplification, gain of chromosome 17q and deletion of 1p36. Protein analysis showed expression for neuroblastoma markers MYCN, NCAM, CHGA, DBH and TH while haematopoietic markers CD19 and CD11b were absent. We analysed the growth characteristics and confirmed tumour-forming potential using sphere-forming assays, subcutaneous and orthotopic injection of these cells into immune-compromised mice. Affymetrix mRNA expression profiling of TIC line xenografts showed an expression pattern more closely mimicking primary tumours compared to xenografts from classical cell lines. This establishes that these neuroblastoma TICs cultured under serum-free conditions are relevant and useful neuroblastoma tumour models. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felthaus, O.; Department of Oral and Maxillofacial Surgery, University of Regensburg; Ettl, T.

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simplemore » method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.« less

  9. Expression of apoptosis-regulatory genes in lung tumour cell lines: relationship to p53 expression and relevance to acquired drug resistance.

    PubMed Central

    Reeve, J. G.; Xiong, J.; Morgan, J.; Bleehen, N. M.

    1996-01-01

    As a first step towards elucidating the potential role(s) of bcl-2 and bcl-2-related genes in lung tumorigenesis and therapeutic responsiveness, the expression of these genes has been examined in a panel of lung cancer cell lines derived from untreated and treated patients, and in cell lines selected in vitro for multidrug resistance. Bcl-2 was hyperexpressed in 15 of 16 small-cell lung cancer (SCLC) cell lines and two of five non-small-cell lung cancer (NSCLC) lines compared with normal lung and brain, and hyperexpression was not chemotherapy related. Bcl-x was hyperexpressed in the majority of SCLC and NSCLC cell lines as compared with normal tissues, and all lung tumour lines preferentially expressed bcl-x1-mRNA, the splice variant form that inhibits apoptosis. Bax gene transcripts were hyperexpressed in most SCLC and NSCLC cell lines examined compared with normal adult tissues. Mutant p53 gene expression was detected in the majority of the cell lines and no relationship between p53 gene expression and the expression of either bcl-2, bcl-x or bax was observed. No changes in bcl-2, bcl-x and bax gene expression were observed in multidrug-resistant cell lines compared with their drug-sensitive counterparts. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8630278

  10. New oxirane derivatives of 1,4-naphthoquinones and their evaluation against T. cruzi epimastigote forms.

    PubMed

    Carneiro, Paula F; do Nascimento, Samara B; Pinto, Antonio V; Pinto, Maria do Carmo F R; Lechuga, Guilherme C; Santos, Dilvani O; dos Santos Júnior, Helvécio M; Resende, Jackson A L C; Bourguignon, Saulo C; Ferreira, Vitor F

    2012-08-15

    New oxirane derivatives were synthesized using six naphthoquinones as the starting materials. Our biological results showed that these oxiranes acted as trypanocidal agents against Trypanosoma cruzi with minimal cytotoxicity in the VERO cell line compared to naphthoquinones. In particular, oxirane derivative 14 showed low cytotoxicity in a mammalian cell line and exhibited better activity against epimastigote forms of T.cruzi than the current drug used to treat Chagas disease, benznidazole. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. The requirement for freshly isolated human colorectal cancer (CRC) cells in isolating CRC stem cells.

    PubMed

    Fan, F; Bellister, S; Lu, J; Ye, X; Boulbes, D R; Tozzi, F; Sceusi, E; Kopetz, S; Tian, F; Xia, L; Zhou, Y; Bhattacharya, R; Ellis, L M

    2015-02-03

    Isolation of colorectal cancer (CRC) cell populations enriched for cancer stem cells (CSCs) may facilitate target identification. There is no consensus regarding the best methods for isolating CRC stem cells (CRC-SCs). We determined the suitability of various cellular models and various stem cell markers for the isolation of CRC-SCs. Established human CRC cell lines, established CRC cell lines passaged through mice, patient-derived xenograft (PDX)-derived cells, early passage/newly established cell lines, and cells directly from clinical specimens were studied. Cells were FAC-sorted for the CRC-SC markers CD44, CD133, and aldehyde dehydrogenase (ALDH). Sphere formation and in vivo tumorigenicity studies were used to validate CRC-SC enrichment. None of the markers studied in established cell lines, grown either in vitro or in vivo, consistently enriched for CRC-SCs. In the three other cellular models, CD44 and CD133 did not reliably enrich for stemness. In contrast, freshly isolated PDX-derived cells or early passage/newly established CRC cell lines with high ALDH activity formed spheres in vitro and enhanced tumorigenicity in vivo, whereas cells with low ALDH activity did not. PDX-derived cells, early passages/newly established CRC cell lines and cells from clinical specimen with high ALDH activity can be used to identify CRC-SC-enriched populations. Established CRC cell lines should not be used to isolate CSCs.

  12. Identification of Alternative Splice Variants Using Unique Tryptic Peptide Sequences for Database Searches.

    PubMed

    Tran, Trung T; Bollineni, Ravi C; Strozynski, Margarita; Koehler, Christian J; Thiede, Bernd

    2017-07-07

    Alternative splicing is a mechanism in eukaryotes by which different forms of mRNAs are generated from the same gene. Identification of alternative splice variants requires the identification of peptides specific for alternative splice forms. For this purpose, we generated a human database that contains only unique tryptic peptides specific for alternative splice forms from Swiss-Prot entries. Using this database allows an easy access to splice variant-specific peptide sequences that match to MS data. Furthermore, we combined this database without alternative splice variant-1-specific peptides with human Swiss-Prot. This combined database can be used as a general database for searching of LC-MS data. LC-MS data derived from in-solution digests of two different cell lines (LNCaP, HeLa) and phosphoproteomics studies were analyzed using these two databases. Several nonalternative splice variant-1-specific peptides were found in both cell lines, and some of them seemed to be cell-line-specific. Control and apoptotic phosphoproteomes from Jurkat T cells revealed several nonalternative splice variant-1-specific peptides, and some of them showed clear quantitative differences between the two states.

  13. Cytogenetics of small cell carcinoma of the lung.

    PubMed

    Wurster-Hill, D H; Cannizzaro, L A; Pettengill, O S; Sorenson, G D; Cate, C C; Maurer, L H

    1984-12-01

    Nineteen cell lines derived from various malignant tissues of 15 patients with small cell carcinoma of the lung (SCCL) have been studied. The results showed heterogeneity in all cell lines, with no one consistent abnormality among them. Cell lines from 11 of the patients had minute and double minute chromosomes, and cell lines from 2 patients had abnormally banding regions, designated as ABRs, as distinguished from homogeneously staining regions (HSRs). The latter 2 and several of the former cell lines were derived from specimens taken before the patients were placed on therapy. All but 2 of the cell lines had a constant marker load, consisting of 24%-35% of the complement. Some markers remained stable through months and years of culture life, while other markers came and went. Chromosomes #1, #6 and #11 were most frequently involved in marker formation in the cell lines, and these were compared to similar markers in direct bone marrow preparations. Chromosome #1 markers were of variable structure, whereas #6 and #11 most often took the form of 6q- and 11p+ markers, with breakpoints most frequently at 6q23-25 and 11p11-12. A 3p- marker was found in a minority of cell lines. All of these markers were also found in direct marrow preparations from some patients with SCCL. Nonmonoclonal tumors arose from inoculation of bimodal cell lines into nude mice, but population selection by undetermined mechanism was evident. Cytogenetic parameters showed no positive correlation with hormone production by these cell lines.

  14. FOXO3a-mediated suppression of the self-renewal capacity of sphere-forming cells derived from the ovarian cancer SKOV3 cell line by 7-difluoromethoxyl-5,4'-di-n-octyl genistein.

    PubMed

    Ning, Yingxia; Luo, Chaoyuan; Ren, Kaiqun; Quan, Meifang; Cao, Jianguo

    2014-05-01

    Carcinogenesis is predominantly dependent on the cancer stem cells (CSCs) residing or populating within the cancer. We previously demonstrated that the novel synthetic genistein analogue, 7-difluoromethoxyl-5,4'-di-n-octylgenistein (DFOG), induced apoptotic cell death of ovarian and gastric cancer cells. The present study demonstrated that sphere‑forming cells (SFCs) derived from the ovarian cancer cell-line SKOV3 possessed ovarian cancer stem-like cell (OCSLC) properties, including self-renewal and high tumorigenicity. DFOG may be effective in inhibiting the self‑renewal capacity of SFCs derived from the SKOV3 cell line. DFOG decreased the level of phosphorylated FOXO3a protein in SKOV3 cell‑derived SFCs. The inhibition of FOXO3a expression by siRNA significantly attenuated the ability of DFOG to inhibit the self-renewal capacity of SKOV3-derived SFCs. Our results suggested that DFOG has been demonstrated to significantly inhibit the self-renewal capacity of ovarian cancer stem cells (OCSCs) through a mechanism partly dependent on the activation of FOXO3a.

  15. Pluripotent stem cells and reprogrammed cells in farm animals.

    PubMed

    Nowak-Imialek, Monika; Kues, Wilfried; Carnwath, Joseph W; Niemann, Heiner

    2011-08-01

    Pluripotent cells are unique because of their ability to differentiate into the cell lineages forming the entire organism. True pluripotent stem cells with germ line contribution have been reported for mice and rats. Human pluripotent cells share numerous features of pluripotentiality, but confirmation of their in vivo capacity for germ line contribution is impossible due to ethical and legal restrictions. Progress toward derivation of embryonic stem cells from domestic species has been made, but the derived cells were not able to produce germ line chimeras and thus are termed embryonic stem-like cells. However, domestic animals, in particular the domestic pig (Sus scrofa), are excellent large animals models, in which the clinical potential of stem cell therapies can be studied. Reprogramming technologies for somatic cells, including somatic cell nuclear transfer, cell fusion, in vitro culture in the presence of cell extracts, in vitro conversion of adult unipotent spermatogonial stem cells into germ line derived pluripotent stem cells, and transduction with reprogramming factors have been developed with the goal of obtaining pluripotent, germ line competent stem cells from domestic animals. This review summarizes the present state of the art in the derivation and maintenance of pluripotent stem cells in domestic animals.

  16. Transformation of primary chick embryo fibroblasts by Marek's disease virus.

    PubMed

    Buranathai, C; Rodriguez, J; Grose, C

    1997-12-08

    Marek's disease virus (MDV) is an alphaherpesvirus, which can mediate the malignant transformation of lymphocytes to form lymphomas in chickens. In this study, we demonstrate that MDV can transform primary chick embryo fibroblasts (CEF). The cell line derived from primary CEF infected with the GA strain of MDV was called CEM(MDV). The fibroblast nature of CEM(MDV) was verified by absence of cytokeratin type II. The CEM(MDV) phenotype differed from either primary CEF or MDV-infected CEF. CEM(MDV) were extensively vacuolated, with unusual multilamellar structures in the cytoplasm, The nuclei were considerably larger than those in primary CEF and were uniformly positive for proliferating cell nuclear antigen. The cell line was subcultured for more than 10 generations; however, CEM(MDV) did not support a fully productive MDV infection, because complete nucleocapsids were not detected and infectivity assays showed that cell line produced no infectious virus. PCR analyses demonstrated that this cell line carried both polypeptide 38 (pp38) and Meq DNA, MDV-specific genes associated with transformation. In addition, examination by laser scanning confocal microscopy revealed that CEM(MDV) constitutively produced MDV MEQ protein in nuclei and pp38 as well as glycoprotein B in the cytoplasm and on the plasma membrane. Growth in soft agar assay demonstrated that CEM(MDV) formed colonies, similar to HeLa and human melanoma cells. Retroviral insertion was not detected in DNA from the CEM(MDV) line.

  17. Boric acid inhibits human prostate cancer cell proliferation.

    PubMed

    Barranco, Wade T; Eckhert, Curtis D

    2004-12-08

    The role of boron in biology includes coordinated regulation of gene expression in mixed bacterial populations and the growth and proliferation of higher plants and lower animals. Here we report that boric acid, the dominant form of boron in plasma, inhibits the proliferation of prostate cancer cell lines, DU-145 and LNCaP, in a dose-dependent manner. Non-tumorigenic prostate cell lines, PWR-1E and RWPE-1, and the cancer line PC-3 were also inhibited, but required concentrations higher than observed human blood levels. Studies using DU-145 cells showed that boric acid induced a cell death-independent proliferative inhibition, with little effect on cell cycle stage distribution and mitochondrial function.

  18. Three-photon-excited luminescence from unsymmetrical cyanostilbene aggregates: morphology tuning and targeted bioimaging.

    PubMed

    Mandal, Amal Kumar; Sreejith, Sivaramapanicker; He, Tingchao; Maji, Swarup Kumar; Wang, Xiao-Jun; Ong, Shi Li; Joseph, James; Sun, Handong; Zhao, Yanli

    2015-05-26

    We report an experimental observation of aggregation-induced enhanced luminescence upon three-photon excitation in aggregates formed from a class of unsymmetrical cyanostilbene derivatives. Changing side chains (-CH3, -C6H13, -C7H15O3, and folic acid) attached to the cyanostilbene core leads to instantaneous formation of aggregates with sizes ranging from micrometer to nanometer scale in aqueous conditions. The crystal structure of a derivative with a methyl side chain reveals the planarization in the unsymmetrical cyanostilbene core, causing luminescence from corresponding aggregates upon three-photon excitation. Furthermore, folic acid attached cyanostilbene forms well-dispersed spherical nanoaggregates that show a high three-photon cross-section of 6.0 × 10(-80) cm(6) s(2) photon(-2) and high luminescence quantum yield in water. In order to demonstrate the targeted bioimaging capability of the nanoaggregates, three cell lines (HEK293 healthy cell line, MCF7 cancerous cell line, and HeLa cancerous cell line) were employed for the investigations on the basis of their different folate receptor expression level. Two kinds of nanoaggregates with and without the folic acid targeting ligand were chosen for three-photon bioimaging studies. The cell viability of three types of cells incubated with high concentration of nanoaggregates still remained above 70% after 24 h. It was observed that the nanoaggregates without the folic acid unit could not undergo the endocytosis by both healthy and cancerous cell lines. No obvious endocytosis of folic acid attached nanoaggregates was observed from the HEK293 and MCF7 cell lines having a low expression of the folate receptor. Interestingly, a significant amount of endocytosis and internalization of folic acid attached nanoaggregates was observed from HeLa cells with a high expression of the folate receptor under three-photon excitation, indicating targeted bioimaging of folic acid attached nanoaggregates to the cancer cell line. This study presents a paradigm of using organic nanoaggregates for targeted three-photon bioimaging.

  19. Anti-cancer Effect of Luminacin, a Marine Microbial Extract, in Head and Neck Squamous Cell Carcinoma Progression via Autophagic Cell Death.

    PubMed

    Shin, Yoo Seob; Cha, Hyun Young; Lee, Bok-Soon; Kang, Sung Un; Hwang, Hye Sook; Kwon, Hak Cheol; Kim, Chul-Ho; Choi, Eun Chang

    2016-04-01

    The purpose of this study is to determine whether luminacin, a marine microbial extract from the Streptomyces species, has anti-tumor effects on head and neck squamous cell carcinoma (HNSCC) cell lines via autophagic cell death. Inhibition of cell survival and increased cell death was measured using cell viability, colony forming, and apoptosis assays. Migration and invasion abilities of head and cancer cells were evaluated using wound healing, scattering, and invasion assays. Changes in the signal pathway related to autophagic cell death were investigated. Drug toxicity of luminacin was examined in in vitro HaCaT cells and an in vivo zebrafish model. Luminacin showed potent cytotoxicity in HNSCC cells in cell viability, colony forming, and fluorescence-activated cell sorting analysis. In vitro migration and invasion of HNSCC cells were attenuated by luminacin treatment. Combined with Beclin-1 and LC3B, Luminacin induced autophagic cell death in head and neck cancer cells. In addition, in a zebrafish model and human keratinocyte cell line used for toxicity testing, luminacin treatment with a cytotoxic concentration to HNSCC cells did not cause toxicity. Taken together, these results demonstrate that luminacin induces the inhibition of growth and cancer progression via autophagic cell death in HNSCC cell lines, indicating a possible alternative chemotherapeutic approach for treatment of HNSCC.

  20. Amplification of tumor inducing putative cancer stem cells (CSCs) by vitamin A/retinol from mammary tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Rohit B.; Wang, Qingde; Khillan, Jaspal S., E-mail: khillan@pitt.edu

    Highlights: •Vitamin A supports self renewal of putative CSCs from mammary tumors. •These cells exhibit impaired retinol metabolism into retinoic acid. •CSCs from mammary tumors differentiate into mammary specific cell lineages. •The cells express mammary stem cell specific CD29 and CD49f markers. •Putative CSCs form highly metastatic tumors in NOD SCID mouse. -- Abstract: Solid tumors contain a rare population of cancer stem cells (CSCs) that are responsible for relapse and metastasis. The existence of CSC however, remains highly controversial issue. Here we present the evidence for putative CSCs from mammary tumors amplified by vitamin A/retinol signaling. The cells exhibitmore » mammary stem cell specific CD29{sup hi}/CD49f{sup hi}/CD24{sup hi} markers, resistance to radiation and chemo therapeutic agents and form highly metastatic tumors in NOD/SCID mice. The cells exhibit indefinite self renewal as cell lines. Furthermore, the cells exhibit impaired retinol metabolism and do not express enzymes that metabolize retinol into retinoic acid. Vitamin A/retinol also amplified putative CSCs from breast cancer cell lines that form highly aggressive tumors in NOD SCID mice. The studies suggest that high purity putative CSCs can be isolated from solid tumors to establish patient specific cell lines for personalized therapeutics for pre-clinical translational applications. Characterization of CSCs will allow understanding of basic cellular and molecular pathways that are deregulated, mechanisms of tumor metastasis and evasion of therapies that has direct clinical relevance.« less

  1. Development of an Efficient Genome Editing Method by CRISPR/Cas9 in a Fish Cell Line.

    PubMed

    Dehler, Carola E; Boudinot, Pierre; Martin, Samuel A M; Collet, Bertrand

    2016-08-01

    CRISPR/Cas9 system has been used widely in animals and plants to direct mutagenesis. To date, no such method exists for fish somatic cell lines. We describe an efficient procedure for genome editing in the Chinook salmon Oncorhynchus tshawytscha CHSE. This cell line was genetically modified to firstly overexpress a monomeric form of EGFP (cell line CHSE-E Geneticin resistant) and additionally to overexpress nCas9n, a nuclear version of Cas9 (cell line CHSE-EC, Hygromycin and Geneticin resistant). A pre-validated sgRNA was produced in vitro and used to transfect CHSE-EC cells. The EGFP gene was disrupted in 34.6 % of cells, as estimated by FACS and microscopy. The targeted locus was characterised by PCR amplification, cloning and sequencing of PCR products; inactivation of the EGFP gene by deletions in the expected site was validated in 25 % of clones. This method opens perspectives for functional genomic studies compatible with high-throughput screening.

  2. Series interconnected photovoltaic cells and method for making same

    DOEpatents

    Albright, S.P.; Chamberlin, R.R.; Thompson, R.A.

    1995-01-31

    A novel photovoltaic module and method for constructing the same are disclosed. The module includes a plurality of photovoltaic cells formed on a substrate and laterally separated by interconnection regions. Each cell includes a bottom electrode, a photoactive layer and a top electrode layer. Adjacent cells are connected in electrical series by way of a conductive-buffer line. The buffer line is also useful in protecting the bottom electrode against severing during downstream layer cutting processes. 11 figs.

  3. Phosphate uptake by a kidney cell line (LLC-PK1).

    PubMed

    Rabito, C A

    1983-07-01

    The uptake of inorganic phosphate was studied in an epithelial cell line of renal origin. Phosphate was accumulated through a mechanism with several features of a carrier-mediated process. The influx was accounted for by a saturable Na+-dependent and a nonsaturable Na+-independent process. Kinetic analysis at pH 6.6 and 7.4 suggests that the dibasic form of phosphate is the form transported by the saturable Na+-dependent system. The presence of Na+ in the incubation medium increased Vmax without affecting Km. Arsenate competitively inhibited the Na+-dependent phosphate transport with a Ki of 1.2 mM at 140 mM Na+ and pH 7.4. Other known inhibitors of phosphate reabsorption in the proximal tubule also inhibited phosphate transport by this cell line. Uptake studies from either side of the monolayers indicated that this transport system is preferentially located in the apical membrane of the cultured renal cells. These results show a close similarity between the Na+-dependent phosphate transport system in LLC-PK1 cells and the system present in the apical membrane of the proximal tubular cells.

  4. The Human Glioblastoma Cell Culture Resource: Validated Cell Models Representing All Molecular Subtypes.

    PubMed

    Xie, Yuan; Bergström, Tobias; Jiang, Yiwen; Johansson, Patrik; Marinescu, Voichita Dana; Lindberg, Nanna; Segerman, Anna; Wicher, Grzegorz; Niklasson, Mia; Baskaran, Sathishkumar; Sreedharan, Smitha; Everlien, Isabelle; Kastemar, Marianne; Hermansson, Annika; Elfineh, Lioudmila; Libard, Sylwia; Holland, Eric Charles; Hesselager, Göran; Alafuzoff, Irina; Westermark, Bengt; Nelander, Sven; Forsberg-Nilsson, Karin; Uhrbom, Lene

    2015-10-01

    Glioblastoma (GBM) is the most frequent and malignant form of primary brain tumor. GBM is essentially incurable and its resistance to therapy is attributed to a subpopulation of cells called glioma stem cells (GSCs). To meet the present shortage of relevant GBM cell (GC) lines we developed a library of annotated and validated cell lines derived from surgical samples of GBM patients, maintained under conditions to preserve GSC characteristics. This collection, which we call the Human Glioblastoma Cell Culture (HGCC) resource, consists of a biobank of 48 GC lines and an associated database containing high-resolution molecular data. We demonstrate that the HGCC lines are tumorigenic, harbor genomic lesions characteristic of GBMs, and represent all four transcriptional subtypes. The HGCC panel provides an open resource for in vitro and in vivo modeling of a large part of GBM diversity useful to both basic and translational GBM research.

  5. Establishment and proteomic characterization of a novel synovial sarcoma cell line, NCC-SS2-C1.

    PubMed

    Oyama, Rieko; Kito, Fusako; Sakumoto, Marimu; Shiozawa, Kumiko; Toki, Shunichi; Endo, Makoto; Yoshida, Akihiko; Kawai, Akira; Kondo, Tadashi

    2018-05-01

    Synovial sarcoma is an aggressive mesenchymal tumor, characterized by the presence of unique transfusion gene, SS18-SSX. Cell lines enable researchers to investigate the molecular backgrounds of disease and the significance of SS18-SSX in relevant cellular contexts. We report the establishment and proteomic characterization of a novel synovial sarcoma cell line. Primary tissue culture was performed using tumor tissue of synovial sarcoma. The established cell line was authenticated by assessing its DNA microsatellite short tandem repeat analysis and characterized by in vitro assay. Proteomic study was achieved by mass spectrometry, and the results were analyzed by treemap. The cell line NCC-SS2-C1 was established from a primary tumor tissue of a synovial sarcoma patient. The cell line has grown well for 11 mo and has been subcultured more than 15 times. The established cells were authenticated by assessing their short tandem repeat pattern comparing with that of original tumor tissue. The cells showed polygonal in shape and formed spheroid when seeded on the low-attachment dish. Proteomic analysis revealed the molecular pathways which are unique to the original tumor tissue or the established cell line. In conclusion, a novel synovial sarcoma cell line NCC-SS2-C1 was successfully established from the primary tumor tissue. The cell line has characteristic transfusion SS18-SSX and poses aggressive in vitro growth and capability of spheroid formation. Thus, NCC-SS2-C1 cell line will be a useful tool for investigation of the mechanisms of disease and the biological role of fusion gene.

  6. Innate responses to gene knockouts impact overlapping gene networks and vary with respect to resistance to viral infection.

    PubMed

    Liu, Yonghong; Liu, Yuanyuan; Wu, Jiaming; Roizman, Bernard; Zhou, Grace Guoying

    2018-04-03

    Analyses of the levels of mRNAs encoding IFIT1, IFI16, RIG-1, MDA5, CXCL10, LGP2, PUM1, LSD1, STING, and IFNβ in cell lines from which the gene encoding LGP2, LSD1, PML, HDAC4, IFI16, PUM1, STING, MDA5, IRF3, or HDAC 1 had been knocked out, as well as the ability of these cell lines to support the replication of HSV-1, revealed the following: ( i ) Cell lines lacking the gene encoding LGP2, PML, or HDAC4 (cluster 1) exhibited increased levels of expression of partially overlapping gene networks. Concurrently, these cell lines produced from 5 fold to 12 fold lower yields of HSV-1 than the parental cells. ( ii ) Cell lines lacking the genes encoding STING, LSD1, MDA5, IRF3, or HDAC 1 (cluster 2) exhibited decreased levels of mRNAs of partially overlapping gene networks. Concurrently, these cell lines produced virus yields that did not differ from those produced by the parental cell line. The genes up-regulated in cell lines forming cluster 1, overlapped in part with genes down-regulated in cluster 2. The key conclusions are that gene knockouts and subsequent selection for growth causes changes in expression of multiple genes, and hence the phenotype of the cell lines cannot be ascribed to a single gene; the patterns of gene expression may be shared by multiple knockouts; and the enhanced immunity to viral replication by cluster 1 knockout cell lines but not by cluster 2 cell lines suggests that in parental cells, the expression of innate resistance to infection is specifically repressed.

  7. Generation and characterization of two immortalized human osteoblastic cell lines useful for epigenetic studies.

    PubMed

    Pérez-Campo, Flor M; May, Tobias; Zauers, Jeannette; Sañudo, Carolina; Delgado-Calle, Jesús; Arozamena, Jana; Berciano, María T; Lafarga, Miguel; Riancho, José A

    2017-03-01

    Different model systems using osteoblastic cell lines have been developed to help understand the process of bone formation. Here, we report the establishment of two human osteoblastic cell lines obtained from primary cultures upon transduction of immortalizing genes. The resulting cell lines had no major differences to their parental lines in their gene expression profiles. Similar to primary osteoblastic cells, osteocalcin transcription increased following 1,25-dihydroxyvitamin D 3 treatment and the immortalized cells formed a mineralized matrix, as detected by Alizarin Red staining. Moreover, these human cell lines responded by upregulating ALPL gene expression after treatment with the demethylating agent 5-aza-2'-deoxycytidine (AzadC), as shown before for primary osteoblasts. We further demonstrate that these cell lines can differentiate in vivo, using a hydroxyapatite/tricalcium phosphate composite as a scaffold, to produce bone matrix. More importantly, we show that these cells respond to demethylating treatment, as shown by the increase in SOST mRNA levels, the gene encoding sclerostin, upon treatment of the recipient mice with AzadC. This also confirms, in vivo, the role of DNA methylation in the regulation of SOST expression previously shown in vitro. Altogether our results show that these immortalized cell lines constitute a particularly useful model system to obtain further insight into bone homeostasis, and particularly into the epigenetic mechanisms regulating sclerostin production.

  8. The Biology of the Germ line in Echinoderms

    PubMed Central

    Wessel, Gary M.; Brayboy, Lynae; Fresques, Tara; Gustafson, Eric A.; Oulhen, Nathalie; Ramos, Isabela; Reich, Adrian; Swartz, S. Zachary; Yajima, Mamiko; Zazueta, Vanessa

    2014-01-01

    SUMMARY The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed. PMID:23900765

  9. Quantum dot-based molecular imaging of cancer cell growth using a clone formation assay.

    PubMed

    Geng, Xia-Fei; Fang, Min; Liu, Shao-Ping; Li, Yan

    2016-10-01

    This aim of the present study was to investigate clonal growth behavior and analyze the proliferation characteristics of cancer cells. The MCF‑7 human breast cancer cell line, SW480 human colon cancer cell line and SGC7901 human gastric cancer cell line were selected to investigate the morphology of cell clones. Quantum dot‑based molecular targeted imaging techniques (which stained pan‑cytokeratin in the cytoplasm green and Ki67 in the cell nucleus yellow or red) were used to investigate the clone formation rate, cell morphology, discrete tendency, and Ki67 expression and distribution in clones. From the cell clone formation assay, the MCF‑7, SW480 and SGC7901 cells were observed to form clones on days 6, 8 and 12 of cell culture, respectively. These three types of cells had heterogeneous morphology, large nuclear:cytoplasmic ratios, and conspicuous pathological mitotic features. The cells at the clone periphery formed multiple pseudopodium. In certain clones, cancer cells at the borderline were separated from the central cell clusters or presented a discrete tendency. With quantum dot‑based molecular targeted imaging techniques, cells with strong Ki67 expression were predominantly shown to be distributed at the clone periphery, or concentrated on one side of the clones. In conclusion, cancer cell clones showed asymmetric growth behavior, and Ki67 was widely expressed in clones of these three cell lines, with strong expression around the clones, or aggregated at one side. Cell clone formation assay based on quantum dots molecular imaging offered a novel method to study the proliferative features of cancer cells, thus providing a further insight into tumor biology.

  10. Origin and development of the germ line in sea stars

    PubMed Central

    Wessel, Gary M.; Fresques, Tara; Kiyomoto, Masato; Yajima, Mamiko; Zazueta, Vanesa

    2014-01-01

    This review summarizes and integrates our current understanding of how sea stars make gametes. Although little is known of the mechanism of germ line formation in these animals, recent results point to specific cells and to cohorts of molecules in the embryos and larvae that may lay the ground work for future research efforts. A coelomic outpocketing forms in the posterior of the gut in larvae, referred to as the posterior enterocoel (PE), that when removed, significantly reduces the number of germ cell later in larval growth. This same PE structure also selectively accumulates several germ-line associated factors – vasa, nanos, piwi – and excludes factors involved in somatic cell fate. Since its formation is relatively late in development, these germ cells may form by inductive mechanisms. When integrated into the morphological observations of germ cells and gonad development in larvae, juveniles, and adults, the field of germ line determination appears to have a good model system to study inductive germ line determination to complement the recent work on the molecular mechanisms in mice. We hope this review will also guide investigators interested in germ line determination and regulation of the germ line in how these animals can help in this research field. The review is not intended to be comprehensive – sea star reproduction has been studied over 100 years and many reviews are comprehensive in their coverage of, for example, seasonal growth of the gonads in response to light, nutrient, and temperature. Rather the intent of this review is to help the reader focus on new experimental results attached to the historical underpinnings of how the germ cell functions in sea stars with particular emphasis to clarify the important areas of priority for future research. PMID:24648114

  11. Selection of Phage Display Peptides Targeting Human Pluripotent Stem Cell-Derived Progenitor Cell Lines.

    PubMed

    Bignone, Paola A; Krupa, Rachel A; West, Michael D; Larocca, David

    2016-01-01

    The ability of human pluripotent stem cells (hPS) to both self-renew and differentiate into virtually any cell type makes them a promising source of cells for cell-based regenerative therapies. However, stem cell identity, purity, and scalability remain formidable challenges that need to be overcome for translation of pluripotent stem cell research into clinical applications. Directed differentiation from hPS cells is inefficient and residual contamination with pluripotent cells that have the potential to form tumors remains problematic. The derivation of scalable (self-renewing) embryonic progenitor stem cell lines offers a solution because they are well defined and clonally pure. Clonally pure progenitor stem cell lines also provide a means for identifying cell surface targeting reagents that are useful for identification, tracking, and repeated derivation of the corresponding progenitor stem cell types from additional hPS cell sources. Such stem cell targeting reagents can then be applied to the manufacture of genetically diverse banks of human embryonic progenitor cell lines for drug screening, disease modeling, and cell therapy. Here we present methods to identify human embryonic progenitor stem cell targeting peptides by selection of phage display libraries on clonal embryonic progenitor cell lines and demonstrate their use for targeting quantum dots (Qdots) for stem cell labeling.

  12. Characterization of the biosynthesis, processing, and sorting of human HBP/CAP37/azurocidin.

    PubMed

    Lindmark, A; Garwicz, D; Rasmussen, P B; Flodgaard, H; Gullberg, U

    1999-10-01

    Azurocidin is a multifunctional endotoxin-binding serine protease homolog synthesized during the promyelocytic stage of neutrophil development. To characterize the biosynthesis and processing of azurocidin, cDNA encoding human preproazurocidin was stably transfected to the rat basophilic leukemia cell line RBL-1 and the murine myeloblast-like cell line 32D cl3; cell lines previously utilized to study the related proteins cathepsin G and proteinase 3. After 30 min of pulse radiolabeling, two forms of newly synthesized proazurocidin (34.5 and 37 kDa), differing in carbohydrate content but with protein cores of identical sizes, were recognized. With time, the 34.5-kDa form disappeared, while the 37-kDa form was further processed proteolytically, as judged by digestion with N-glycosidase F. Conversion of high-mannose oligosaccharides into complex forms was shown by acquisition of complete resistance to endoglycosidase H. Radiosequence analysis demonstrated that the amino-terminal seven amino acid propeptide of proazurocidin was removed in a stepwise manner during processing; initial removal of five amino acids was followed by cleavage of a dipeptide. Presence of the protease inhibitors Gly-Phe-diazomethyl ketone, bestatin, or leupeptin inhibited only the cleavage of the dipeptide, thus indicating the involvement of at least two amino-terminal processing enzymes. Translocation of azurocidin to granules was shown by subcellular fractionation. Similar results, with efficient biosynthesis, processing, and targeting to granules in both cell lines, were obtained with a mutant form of human preproazurocidin lacking the amino-terminal heptapropeptide. In conclusion, this investigation is an important addition to our previous studies on related azurophil granule proteins, and provides novel information concerning the biosynthesis and distinctive amino-terminal processing of human azurocidin.

  13. Establishment and Biological Characterization of a Panel of Glioblastoma Multiforme (GBM) and GBM Variant Oncosphere Cell Lines.

    PubMed

    Binder, Zev A; Wilson, Kelli M; Salmasi, Vafi; Orr, Brent A; Eberhart, Charles G; Siu, I-Mei; Lim, Michael; Weingart, Jon D; Quinones-Hinojosa, Alfredo; Bettegowda, Chetan; Kassam, Amin B; Olivi, Alessandro; Brem, Henry; Riggins, Gregory J; Gallia, Gary L

    2016-01-01

    Human tumor cell lines form the basis of the majority of present day laboratory cancer research. These models are vital to studying the molecular biology of tumors and preclinical testing of new therapies. When compared to traditional adherent cell lines, suspension cell lines recapitulate the genetic profiles and histologic features of glioblastoma multiforme (GBM) with higher fidelity. Using a modified neural stem cell culture technique, here we report the characterization of GBM cell lines including GBM variants. Tumor tissue samples were obtained intra-operatively and cultured in neural stem cell conditions containing growth factors. Tumor lines were characterized in vitro using differentiation assays followed by immunostaining for lineage-specific markers. In vivo tumor formation was assayed by orthotopic injection in nude mice. Genetic uniqueness was confirmed via short tandem repeat (STR) DNA profiling. Thirteen oncosphere lines derived from GBM and GBM variants, including a GBM with PNET features and a GBM with oligodendroglioma component, were established. All unique lines showed distinct genetic profiles by STR profiling. The lines assayed demonstrated a range of in vitro growth rates. Multipotency was confirmed using in vitro differentiation. Tumor formation demonstrated histologic features consistent with high grade gliomas, including invasion, necrosis, abnormal vascularization, and high mitotic rate. Xenografts derived from the GBM variants maintained histopathological features of the primary tumors. We have generated and characterized GBM suspension lines derived from patients with GBMs and GBM variants. These oncosphere cell lines will expand the resources available for preclinical study.

  14. Reversible transition towards a fibroblastic phenotype in a rat carcinoma cell line.

    PubMed

    Boyer, B; Tucker, G C; Vallés, A M; Gavrilovic, J; Thiery, J P

    1989-01-01

    Two distinct mechanisms by which bladder carcinoma cells of the NBT-II cell line dissociate and migrate away from an in vitro reconstituted epithelial sheet were examined as regards intercellular adhesion and cell locomotion. Scattering of NBT-II bladder carcinoma cell line was promoted by 2 distinct culture protocols: (i) deposition of some components of the extracellular matrix onto the culture substratum (glass or plastic) induced cell dispersion of the epithelial sheet of carcinoma cells, and (ii) addition of Ultroser G, a serum substitute, to the culture medium induced scattering and acquisition of motility of NBT-II cells. Under both culture conditions, NBT-II cells dissociated, lost their epithelial morphology, acquired fibroblastic shape and migrated actively. We show that, among different extracellular matrix proteins, only collagens were able to promote the transition towards fibroblastic phenotype (referred as epithelium-to-mesenchyme transition or EMT). Furthermore, the native 3-dimensional helical structure of collagens was required for their function. During induction of EMT of NBT-II cells with Ultroser G, the junctions between epithelial cells were split, polarized epithelial cell organization was lost, and the resulting individual cells became motile and assumed a spindle-like fibroblastoid appearance. Using immunofluorescence microscopy techniques, we demonstrate that this change is accompanied by redistribution of desmosomal plaque proteins (desmoplakins, desmoglein, plakoglobin) and by reorganization of the cytokeratin and the actin-fodrin filament systems. Intermediate-sized filaments of the vimentin type were formed de novo in the fibroblastoid cell form. The observed transition towards fibroblastic phenotype (epithelium-to-mesenchyme transition or EMT) was fully reversed by removing the inducing factors from the culture medium, as shown by the disappearance of vimentin filaments and the reappearance of desmosomes in the newly formed epithelial cells.

  15. Aggregation and lack of secretion of most newly synthesized proinsulin in non-beta-cell lines.

    PubMed

    Zhu, Yong Lian; Abdo, Alexander; Gesmonde, Joan F; Zawalich, Kathleen C; Zawalich, Walter; Dannies, Priscilla S

    2004-08-01

    Myoblasts transfected with HB10D insulin secrete more hormone than those transfected with wild-type insulin, as published previously, indicating that production of wild-type insulin is not efficient in these cells. The ability of non-beta-cells to produce insulin was examined in several cell lines. In clones of neuroendocrine GH(4)C(1) cells stably transfected with proinsulin, two thirds of (35)S-proinsulin was degraded within 3 h of synthesis, whereas (35)S-prolactin was stable. In transiently transfected neuroendocrine AtT20 cells, half of (35)S-proinsulin was degraded within 3 h after synthesis, whereas (35)S-GH was stable. In transiently transfected fibroblast COS cells, (35)S-proinsulin was stable for longer, but less than 10% was secreted 8 h after synthesis. Proinsulin formed a concentrated patch detected by immunofluorescence in transfected cells that did not colocalize with calreticulin or BiP, markers for the endoplasmic reticulum, but did colocalize with membrin, a marker for the cis-medial Golgi complex. Proinsulin formed a Lubrol-insoluble aggregate within 30 min after synthesis in non-beta-cells but not in INS-1E cells, a beta-cell line that normally produces insulin. More than 45% of (35)S-HB10D proinsulin was secreted from COS cells 3 h after synthesis, and this mutant formed less Lubrol-insoluble aggregate in the cells than did wild-type hormone. These results indicate that proinsulin production from these non-beta-cells is not efficient and that proinsulin aggregates in their secretory pathways. Factors in the environment of the secretory pathway of beta-cells may prevent aggregation of proinsulin to allow efficient production.

  16. Malignant transformation of guinea pig cells after exposure to ultraviolet-irradiated guinea pig cytomegalovirus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isom, H.C.; Mummaw, J.; Kreider, J.W.

    1983-04-30

    Guinea pig cells were malignantly transformed in vitro by ultraviolet (uv)-irradiated guinea pig cytomegalovirus (GPCMV). When guinea pig hepatocyte monolayers were infected with uv-irradiated GPCMV, three continuous epithelioid cell lines which grew in soft agarose were established. Two independently derived GPCMV-transformed liver cells and a cell line derived from a soft agarose clone of one of these lines induced invasive tumors when inoculated subcutaneously or intraperitoneally into nude mice. The tumors were sarcomas possibly derived from hepatic stroma or sinusoid. Transformed cell lines were also established after infection of guinea pig hepatocyte monolayers with human cytomegalovirus (HCMV) or simian virusmore » 40 (SV40). These cell lines also formed colonies in soft agarose and induced sarcomas in nude mice. It is concluded that (i) GPCMV can malignantly transform guinea pig cells; (ii) cloning of GPCMV-transformed cells in soft agarose produced cells that induced tumors with a shorter latency period but with no alteration in growth rate or final tumor size; and (iii) the tumors produced by GPCMV-and HCMV-transformed guinea pig cells were more similar to each other in growth rate than to those induced by SV40-transformed guinea pig cells.« less

  17. Water electrolysis

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H. (Inventor); Grigger, David J. (Inventor)

    1992-01-01

    This disclosure is directed to an electrolysis cell forming hydrogen and oxygen at space terminals. The anode terminal is porous and able to form oxygen within the cell and permit escape of the gaseous oxygen through the anode and out through a flow line in the presence of backpressure. Hydrogen is liberated in the cell at the opposing solid metal cathode which is permeable to hydrogen but not oxygen so that the migratory hydrogen formed in the cell is able to escape from the cell. The cell is maintained at an elevated pressure so that the oxygen liberated by the cell is delivered at elevated pressure without pumping to raise the pressure of the oxygen.

  18. Chronophin regulates active vitamin B6 levels and transcriptomic features of glioblastoma cell lines cultured under non-adherent, serum-free conditions.

    PubMed

    Schulze, Markus; Hutterer, Maria; Sabo, Anja; Hoja, Sabine; Lorenz, Julia; Rothhammer-Hampl, Tanja; Herold-Mende, Christel; Floßbach, Lucia; Monoranu, Camelia; Riemenschneider, Markus J

    2018-05-03

    The phosphatase chronophin (CIN/PDXP) has been shown to be an important regulator of glioma cell migration and invasion. It has two known substrates: p-Ser3-cofilin, the phosphorylated form of the actin binding protein cofilin, and pyridoxal 5'-phosphate, the active form of vitamin B6. Phosphoregulation of cofilin, among other functions, plays an important role in cell migration, whereas active vitamin B6 is a cofactor for more than one hundred enzymatic reactions. The role of CIN has yet only been examined in glioblastoma cell line models derived under serum culture conditions. We found that CIN is highly expressed in cells cultured under non-adherent, serum-free conditions that are thought to better mimic the in vivo situation. Furthermore, the substrates of CIN, p-Ser3-cofilin and active vitamin B6, were significantly reduced as compared to cell lines cultured in serum-containing medium. To further examine its molecular role we stably knocked down the CIN protein with two different shRNA hairpins in the glioblastoma cell lines NCH421k and NCH644. Both cell lines did not show any significant alterations in proliferation but expression of differentiation markers (such as GFAP or TUBB3) was increased in the knockdown cell lines. In addition, colony formation was significantly impaired in NCH644. Of note, in both cell lines CIN knockdown increased active vitamin B6 levels with vitamin B6 being known to be important for S-adenosylmethionine biosynthesis. Nevertheless, global histone and DNA methylation remained unaltered as was chemoresistance towards temozolomide. To further elucidate the role of phosphocofilin in glioblastoma cells we applied inhibitors for ROCK1/2 and LIMK1/2 to our model. LIMK- and ROCK-inhibitor treatment alone was not toxic for glioblastoma cells. However, it had profound, but antagonistic effects in NCH421k and NCH644 under chemotherapy. In non-adherent glioblastoma cell lines cultured in serum-free medium, chronophin knockdown induces phenotypic changes, e.g. in colony formation and transcription, but these are highly dependent on the cellular background. The same is true for phenotypes observed after treatment with inhibitors for kinases regulating cofilin phosphorylation (ROCKs and LIMKs). Targeting the cofilin phosphorylation pathway might therefore not be a straightforward therapeutic option in glioblastoma.

  19. Inhibition of B cell proliferation by antisense DNA to both alpha and beta forms of Fc epsilon R II.

    PubMed

    Bhatti, L; Behle, K; Stevens, R H

    1992-10-01

    Epstein-Barr Virus (EBV) infection activates B lymphocyte proliferation through partially understood mechanisms, resulting in phenotypic changes, including the appearance of new antigens. One such antigen is Fc epsilon R II/CD-23 which may be relevant for B cell proliferation. We have used anti-sense oligonucleotides to study the importance of the two forms of this molecule for proliferation in the EBV-transformed, Fc epsilon R II +ve lymphoblastoid B cell line, RPMI 8866. Anti-sense oligodeoxynucleotides were generated to the two forms of Fc epsilon R II; Fc epsilon R IIa (alpha) and IIb (beta) which differ only in their intracytoplasmic domains. Addition of increasing concentrations of anti-sense oligonucleotides, ranging from 1 to 30 microM, significantly decreased cellular proliferation as measured by the incorporation of [3H]thymidine (inhibition range 8-88%). Optimum inhibition of cellular proliferation was apparent at 15 microM concentration of both anti-sense Fc epsilon R IIa and IIb (Fc epsilon R IIa, mean +/- SE = 75 +/- 7% inhibition, p less than 0.001; Fc epsilon R IIb, mean +/- SE = 71 +/- 7% inhibition, p less than 0.001). Anti-sense oligonucleotides complementary to the common part of Fc epsilon R II resulted in a similar inhibition of proliferation. Sense oligonucleotides did not induce significant inhibition. Preincubation of sense and anti-sense oligonucleotides resulted in an abrogation of proliferation inhibition. Moreover, none of these oligonucleotides had any effect on a Fc epsilon R II -ve cell line. Incubation with both anti-sense IIa and IIb resulted in additive, but not synergistic inhibition of proliferation. Addition of soluble Fc epsilon R II did not reverse inhibition of proliferation, suggesting that membrane-bound or intracellular rather than soluble Fc epsilon R II was important for the induced proliferation. Analysis of cell surface expression for Fc epsilon II indicated that while there was a pronounced effect on cell number following incubation with anti-sense oligonucleotides, surface expression of Fc epsilon R II was consistent as measured over different time points. PCR analysis revealed that while most cells expressed either the alpha or the beta form of Fc epsilon R II, EBV-transformed cell lines, particularly RPMI 8866, were found to express both alpha and beta forms simultaneously. This may constitute a mechanism whereby EBV infection confers an immortal state to the cell, resulting in its uncontrolled proliferation. Cell lines expressing only one receptor form, either alpha or beta, were unaffected after incubation with anti-sense oligonucleotides.(ABSTRACT TRUNCATED AT 400 WORDS)

  20. Eighteen-Year Cryopreservation Does Not Negatively Affect the Pluripotency of Human Embryos: Evidence from Embryonic Stem Cell Derivation

    PubMed Central

    Rungsiwiwut, Ruttachuk; Numchaisrika, Pranee; Ahnonkitpanit, Vichuda; Isarasena, Nipan; Virutamasen, Pramuan

    2012-01-01

    Abstract Human embryonic stem (hES) cells are considered to be a potential source for the therapy of human diseases, drug screening, and the study of developmental biology. In the present study, we successfully derived hES cell lines from blastocysts developed from frozen and fresh embryos. Seventeen- to eighteen-year-old frozen embryos were thawed, cultured to the blastocyst stage, and induced to form hES cells using human foreskin fibroblasts. The Chula2.hES cell line and the Chula4.hES and Chula5.hES cell lines were derived from blastocysts developed from frozen and fresh embryos, respectively. The cell lines expressed pluripotent markers, including alkaline phosphatase (AP), Oct3/4, stage-specific embryonic antigen (SSEA)-4, and tumor recognition antigen (TRA)-1-60 and TRA-1-81 as detected with immunocytochemistry. The real-time polymerase chain reaction (RT-PCR) results showed that the cell lines expressed pluripotent genes, including OCT3/4, SOX2, NANOG, UTF, LIN28, REX1, NODAL, and E-Cadherin. In addition, the telomerase activities of the cell lines were higher than in the fibroblast cells. Moreover, the cell lines differentiated into all three germ layers both in vitro and in vivo. The cell lines had distinct identities, as revealed with DNA fingerprinting, and maintained their normal karyotype after a long-term culture. This study is the first to report the successful derivation of hES cell lines in Thailand and that frozen embryos maintained their pluripotency similar to fresh embryos, as shown by the success of hES cell derivation, even after years of cryopreservation. Therefore, embryos from prolonged cryopreservation could be an alternative source for embryonic stem cell research. PMID:23514952

  1. Novel Synthesis Method of Micronized Ti-Zeolite Na-A and Cytotoxic Activity of Its Silver Exchanged Form

    PubMed Central

    Youssef, H. F.; Hegazy, W. H.; Abo-almaged, H. H.; El-Bassyouni, G. T.

    2015-01-01

    The core-shell method is used as a novel synthetic process of micronized Ti-Zeolite Na-A which involves calcination at 700°C of coated Egyptian Kaolin with titanium tetrachloride in acidic medium as the first step. The produced Ti-coated metakaolinite is subjected to microwave irradiation at low temperature of 80°C for 2 h. The prepared micronized Ti-containing Zeolites-A (Ti-Z-A) is characterized by FTIR, XRF, XRD, SEM, and EDS elemental analysis. Ag-exchanged form of Ti-Z-Ag is also prepared and characterized. The Wt% of silver exchanged onto the Ti-Zeolite structure was determined by atomic absorption spectra. The in vitro cytotoxic activity of Ti-Z-Ag against human hepatocellular carcinoma cell line (HePG2), colon cell line carcinoma (HCT116), lung carcinoma cell line (A549), and human Caucasian breast adenocarcinoma (MCF7) is reported. The results were promising and revealed that the exchanged Ag form of micronized Ti-Zeolite-A can be used as novel antitumor drug. PMID:25705142

  2. Malignant Mesothelioma—Health Professional Version

    Cancer.gov

    Epithelial mesothelioma is the most common type of malignant mesothelioma, which forms in the cells that line organs. The other types begin in spindle-shaped cells called sarcomatoid cells or are a mixture of both cell types. Find evidence-based information on malignant mesothelioma treatment.

  3. Expression of membrane-type 1 matrix metalloproteinase (MT1-MMP) on prostate cancer cell lines.

    PubMed

    Nagakawa, O; Murakami, K; Yamaura, T; Fujiuchi, Y; Murata, J; Fuse, H; Saiki, I

    2000-07-31

    Membrane-type metalloproteinase-1 (MT1-MMP) is a transmembrane metalloproteinase, which activates proMMP-2 and expressed on the cell surface in many invasive cancer cells. We investigated the expression of MT1-MMP in prostate cancer cell lines. MT1-MMP protein and mRNA were expressed in PC-3, DU-145 and TSU-pr1 cells (androgen-independent prostate cancer cell lines), but in LNCaP cells (androgen-dependent prostate cancer cell line). MT1-MMP protein was negative and mRNA was low to detect by RT-PCR. Cell lysate of PC-3 cleaved proMMP-2 to the active form. In addition, both hepatocyte growth factor (HGF) and gastrin-releasing peptide (GRP) increased Matrigel invasion and induced the expression of MT1-MMP protein in DU-145 prostate cancer cells. These results suggest that MT1-MMP is indeed the tumor-specific activator of proMMP-2 in androgen-independent prostate cancer cells and plays an important role in the invasive properties of prostate cancer cells.

  4. Changes in cell wall properties coincide with overexpression of extensin fusion proteins in suspension cultured tobacco cells.

    PubMed

    Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; Avci, Utku; Qian, Jin; Arter, Allison; Chen, Liwei; Hahn, Michael G; Ragauskas, Arthur J; Kieliszewski, Marcia J

    2014-01-01

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increased wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. These data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.

  5. The status of intercellular junctions in established lens epithelial cell lines

    PubMed Central

    Dave, Alpana; Craig, Jamie E.

    2012-01-01

    Purpose Cataract is the major cause of vision-related disability worldwide. Mutations in the crystallin genes are the most common known cause of inherited congenital cataract. Mutations in the genes associated with intercellular contacts, such as Nance-Horan Syndrome (NHS) and Ephrin type A receptor-2 (EPHA2), are other recognized causes of congenital cataract. The EPHA2 gene has been also associated with age-related cataract, suggesting that intercellular junctions are important in not only lens development, but also in maintaining lens transparency. The purpose of this study was to analyze the expression and localization of the key cell junction and cytoskeletal proteins, and of NHS and EPHA2, in established lens epithelial cell lines to determine their suitability as model epithelial systems for the functional investigation of genes involved in intercellular contacts and implicated in cataract. Methods The expression and subcellular localization of occludin and zona occludens protein-1 (ZO-1), which are associated with tight junctions; E-cadherin, which is associated with adherence junctions; and the cytoskeletal actin were analyzed in monolayers of a human lens epithelial cell line (SRA 01/04) and a mouse lens epithelial cell line (αTN4). In addition, the expression and subcellular localization of the NHS and EPHA2 proteins were analyzed in these cell lines. Protein or mRNA expression was respectively determined by western blotting or reverse transcription-polymerase chain reaction (RT–PCR), and localization was determined by immunofluorescence labeling. Results Human SRA 01/04 and mouse αTN4 lens epithelial cells expressed either the proteins of interest or their encoding mRNA. Occludin, ZO-1, and NHS proteins localized to the cellular periphery, whereas E-cadherin, actin, and EPHA2 localized in the cytoplasm in these cell lines. Conclusions The human SRA 01/04 and mouse αTN4 lens epithelial cells express the key junctional proteins. The localization patterns of these proteins suggest that these cell lines form tight junctions but do not form E-cadherin-based adherence junctions. These data further indicate that the regulatory role of NHS in actin remodeling, suggested in another study, is cell type dependent. In conclusion, the SRA 01/04 and αTN4 lens epithelial cell lines model some characteristics of an epithelium. PMID:23288986

  6. The status of intercellular junctions in established lens epithelial cell lines.

    PubMed

    Dave, Alpana; Craig, Jamie E; Sharma, Shiwani

    2012-01-01

    Cataract is the major cause of vision-related disability worldwide. Mutations in the crystallin genes are the most common known cause of inherited congenital cataract. Mutations in the genes associated with intercellular contacts, such as Nance-Horan Syndrome (NHS) and Ephrin type A receptor-2 (EPHA2), are other recognized causes of congenital cataract. The EPHA2 gene has been also associated with age-related cataract, suggesting that intercellular junctions are important in not only lens development, but also in maintaining lens transparency. The purpose of this study was to analyze the expression and localization of the key cell junction and cytoskeletal proteins, and of NHS and EPHA2, in established lens epithelial cell lines to determine their suitability as model epithelial systems for the functional investigation of genes involved in intercellular contacts and implicated in cataract. The expression and subcellular localization of occludin and zona occludens protein-1 (ZO-1), which are associated with tight junctions; E-cadherin, which is associated with adherence junctions; and the cytoskeletal actin were analyzed in monolayers of a human lens epithelial cell line (SRA 01/04) and a mouse lens epithelial cell line (αTN4). In addition, the expression and subcellular localization of the NHS and EPHA2 proteins were analyzed in these cell lines. Protein or mRNA expression was respectively determined by western blotting or reverse transcription-polymerase chain reaction (RT-PCR), and localization was determined by immunofluorescence labeling. Human SRA 01/04 and mouse αTN4 lens epithelial cells expressed either the proteins of interest or their encoding mRNA. Occludin, ZO-1, and NHS proteins localized to the cellular periphery, whereas E-cadherin, actin, and EPHA2 localized in the cytoplasm in these cell lines. The human SRA 01/04 and mouse αTN4 lens epithelial cells express the key junctional proteins. The localization patterns of these proteins suggest that these cell lines form tight junctions but do not form E-cadherin-based adherence junctions. These data further indicate that the regulatory role of NHS in actin remodeling, suggested in another study, is cell type dependent. In conclusion, the SRA 01/04 and αTN4 lens epithelial cell lines model some characteristics of an epithelium.

  7. Establishment and characterization of a new human acinar cell carcinoma cell line, Faraz-ICR, from pancreas.

    PubMed

    Rezaei, Marzieh; Hosseini, Ahmad; Nikeghbalian, Saman; Ghaderi, Abbas

    Basic research in the field of acinar cell carcinoma (ACC) as a rare neoplasm of the pancreas is dependent on the availability of pragmatic model such as new pancreatic cancer cell lines. Thus, establishment and characterization of new pancreatic cancer cell lines from ACC origin are deemed important. Faraz-ICR cell line was derived from a 58-years old woman with pancreatic acinar cell carcinoma by the collagenase digestion protocol. We characterized the cell line by examining its morphology and cytostructural and functional profile. Faraz-ICR has a doubling time of 35 hours and grows in soft agar with a colony-forming efficiency of 25%. The cell had nearly normal pattern of chromosomes in karyotype analysis and Comparative Genomic Hybridization (CGH) array analysis. Evaluation of cells by flowcytometry showed that Faraz-ICR is negative for EpCAM and mesenchymal markers in different passages, and has epithelial nature. Immunofluorescence staining revealed that cells were strongly positive for vimentin, desmin, ezrin, S100, nestin and they were negative for pan-cytokeratins, chromogranin and alpha smooth muscle actin. We were able to establish a new pancreatic carcinoma cell line with partial aspects of Epithelial-mesenchymal transition and aggressiveness. This cell line might be suitable for studying various anticancer drugs and protein profile aiming to see any possible tumor associated marker for ACC. Copyright © 2017 IAP and EPC. Published by Elsevier B.V. All rights reserved.

  8. The effect of a guide field on the structures of magnetic islands formed during multiple X line reconnections: Two-dimensional particle-in-cell simulations

    NASA Astrophysics Data System (ADS)

    Huang, Can; Lu, Quanming; Lu, San; Wang, Peiran; Wang, Shui

    2014-02-01

    A magnetic island plays an important role in magnetic reconnection. In this paper, using a series of two-dimensional particle-in-cell simulations, we investigate the magnetic structures of a magnetic island formed during multiple X line magnetic reconnections, considering the effects of the guide field in symmetric and asymmetric current sheets. In a symmetric current sheet, the current in the x direction forms a tripolar structure inside a magnetic island during antiparallel reconnection, which results in a quadrupole structure of the out-of-plane magnetic field. With the increase of the guide field, the symmetry of both the current system and out-of-plane magnetic field inside the magnetic island is distorted. When the guide field is sufficiently strong, the current forms a ring along the magnetic field lines inside a magnetic island. At the same time, the current carried by the energetic electrons accelerated in the vicinity of the X lines forms another ring at the edge of the magnetic island. Such a dual-ring current system enhances the out-of-plane magnetic field inside the magnetic island with a dip in the center of the magnetic island. In an asymmetric current sheet, when there is no guide field, electrons flow toward the X lines along the separatrices from the side with a higher density and are then directed away from the X lines along the separatrices to the side with a lower density. The formed current results in the enhancement of the out-of-plane magnetic field at one end of the magnetic island and the attenuation at the other end. With the increase of the guide field, the structures of both the current system and the out-of-plane magnetic field are distorted.

  9. Establishment and characterization of fetal and maternal mesenchymal stem/stromal cell lines from the human term placenta.

    PubMed

    Qin, Sharon Q; Kusuma, Gina D; Al-Sowayan, Batla; Pace, Rishika A; Isenmann, Sandra; Pertile, Mark D; Gronthos, Stan; Abumaree, Mohamed H; Brennecke, Shaun P; Kalionis, Bill

    2016-03-01

    Human placental mesenchymal stem/stromal cells (MSC) are an attractive source of MSC with great therapeutic potential. However, primary MSC are difficult to study in vitro due to their limited lifespan and patient-to-patient variation. Fetal and maternal MSC were prepared from cells of the chorionic and basal plates of the placenta, respectively. Fetal and maternal MSC were transduced with the human telomerase reverse transcriptase (hTERT). Conventional stem cell assays assessed the MSC characteristics of the cell lines. Functional assays for cell proliferation, cell migration and ability to form colonies in soft agar were used to assess the whether transduced cells retained properties of primary MSC. Fetal chorionic and maternal MSC were successfully transduced with hTERT to create the cell lines CMSC29 and DMSC23 respectively. The lifespans of CMSC29 and DMSC23 were extended in cell culture. Both cell lines retained important MSC characteristics including cell surface marker expression and multipotent differentiation potential. Neither of the cell lines was tumourigenic in vitro. Gene expression differences were observed between CMSC29 and DMSC23 cells and their corresponding parent, primary MSC. Both cell lines show similar migration potential to their corresponding primary, parent MSC. The data show that transduced MSC retained important functional properties of the primary MSC. There were gene expression and functional differences between cell lines CMSC29 and DMSC23 that reflect their different tissue microenvironments of the parent, primary MSC. CMSC29 and DMSC23 cell lines could be useful tools for optimisation and functional studies of MSC. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Spheroid-forming subpopulation of breast cancer cells demonstrates vasculogenic mimicry via hsa-miR-299–5p regulated de novo expression of osteopontin

    PubMed Central

    Shevde, Lalita A; Metge, Brandon J; Mitra, Aparna; Xi, Yaguang; Ju, Jingfang; King, Judy A; Samant, Rajeev S

    2010-01-01

    Abstract The growth of cancer cells as multicellular spheroids has frequently been reported to mimic the in vivo tumour architecture and physiology and has been utilized to study antitumour drugs. In order to determine the distinctive characteristics of the spheroid-derived cells compared to the corresponding monolayer-derived cells, we enriched multicellular spheroid-forming subpopulations of cells from three human breast cancer cell lines (MCF7, MCF10AT and MCF10DCIS.com). These spheroid-derived cells were injected into female athymic nude mice to assess their tumorigenic potential and were profiled for their characteristic miRNA signature. We discovered that the spheroid-derived cells expressed increased levels of osteopontin (OPN), an oncogenic protein that has been clinically correlated with increased tumour burden and adverse prognosis in patients with breast cancer metastasis. Our studies further show that increased OPN levels are brought about in part, by decreased levels of hsa-mir-299–5p in the spheroid-forming population from all three cell lines. Moreover, the spheroid-forming cells can organize into vascular structures in response to nutritional limitation; these structures recapitulate a vascular phenotype by the expression of endothelial markers CD31, Angiopoeitin-1 and Endoglin. In this study, we have validated that hsa-mir-299–5p targets OPN; de novo expression of OPN in turn plays a critical role in enhancing proliferation, tumorigenicity and the ability to display vasculogenic mimicry of the spheroid-forming cells. PMID:19538464

  11. Establishment and characterization of a human uterine endometrial undifferentiated carcinoma cell line, TMG-L.

    PubMed

    Hasegawa, Kiyoshi; Suzuki, Machiko; Ishikawa, Kunimi; Yasue, Akira; Kato, Rina; Nakamura, Azumi; Kuroki, Jun; Udagawa, Yasuhiro

    2003-03-01

    A new cell line of human uterine endometrial undifferentiated carcinoma, designated as TMG-L, was established from the metastatic lymph node of 56-year-old patient TMG-L cells have been cultured with Ham's F-12 medium supplemented with 10% FCS and grew as a loosely adherent monolayer with polygonal or spindle-shaped cells exhibiting poor cell-cell contact and piled up against each other, showing a tendency to grow as floating cells. The doubling time of this cell line was about 48 hours, and chromosomal analysis revealed aneuploidy at passage 25. The cells formed tumors in SCID mouse, the histology of which was similar to that of undifferentiated carcinoma component of primary tumor. TMG-L cells showed the loss of expression and membranous localization of either E-cadherin or alpha-catenin, implied corresponding loss of their adhesive function. And this dysfunction implicated the biological aggressive behavior of uterine endometrial undifferentiated carcinoma. This cell line appears to provide a useful system for studying uterine undifferentiated carcinoma in vivo and in vitro.

  12. Cloning of an osteoblastic cell line involved in the formation of osteoclast-like cells.

    PubMed

    Yamashita, T; Asano, K; Takahashi, N; Akatsu, T; Udagawa, N; Sasaki, T; Martin, T J; Suda, T

    1990-12-01

    Experiments have been carried out to determine the mechanisms involved in the formation of osteoclast-like cells from spleen cells in mice. Osteoclasts were defined as tartrate-resistant acid phosphatase-positive multinucleated cells (TRACP-positive MNCs) in which specific calcitonin receptors were identified by autoradiography with labeled salmon calcitonin. Furthermore, cultures rich in these cells produced resorption pits when grown on dentine slices. Several clonal cell lines were obtained from fetal mouse calvariae and screened for their ability to induce TRACP-positive MNCs in response to 1 alpha, 25-dihydroxyvitamin D3 [1 alpha, 25(OH)2D3] in co-cultures with spleen cells. A cell line, KS-4, was identified with the greatest potency in inducing osteoclast-like cell formation in co-culture with spleen cells. The capacity of KS-4 cells to produce this effect was much greater than that of two bone marrow-derived stromal cell lines (MC3T3-G2/PA6 and ST2 cells), which we have previously shown to be effective in this system but to require treatment with dexamethasone in addition to 1 alpha, 25(OH)2D3 (Udagawa et al.: Endocrinology 125:1805-1813, 1989). Parathyroid hormone (PTH) increased cAMP production in KS-4 cells, and PTH and interleukin-1 alpha also induced TRACP-positive MNCs in co-cultures with spleen cells. Contact between living KS-4 and spleen cells was necessary for osteoclast formation to take place, since this did not occur when the two populations were separated by a membrane filter, or when the KS-4 cells were killed by fixation. Separate cultures of either spleen cells or KS-4 cells formed no TRACP-positive MNCs. KS-4 cells synthesized predominantly type I collagen, formed bone nodules without added of beta-glycerophosphate in a long-term culture, and expressed increasing alkaline phosphatase activity after confluence in culture. These results indicate that the KS-4 cells have properties consistent with progression toward the osteoblast phenotype and represent a single cell line with the ability to promote osteoclast formation by a contact-requiring process.

  13. Heterogeneity of osteosarcoma cell lines led to variable responses in reprogramming.

    PubMed

    Choong, Pei Feng; Teh, Hui Xin; Teoh, Hoon Koon; Ong, Han Kiat; Choo, Kong Bung; Sugii, Shigeki; Cheong, Soon Keng; Kamarul, Tunku

    2014-01-01

    Four osteosarcoma cell lines, Saos-2, MG-63, G-292 and U-2 OS, were reprogrammed to pluripotent state using Yamanaka factors retroviral transduction method. Embryonic stem cell (ESC)-like clusters started to appear between 15 to 20 days post transduction. Morphology of the colonies resembled that of ESC colonies with defined border and tightly-packed cells. The reprogrammed sarcomas expressed alkaline phosphatase and pluripotency markers, OCT4, SSEA4, TRA-1-60 and TRA-1-81, as in ESC up to Passage 15. All reprogrammed sarcomas could form embryoid body-like spheres when cultured in suspension in a low attachment dish for up to 10 days. Further testing on the directed differentiation capacity of the reprogrammed sarcomas showed all four reprogrammed sarcoma lines could differentiate into adipocytes while reprogrammed Saos-2-REP, MG-63-REP and G-292-REP could differentiate into osteocytes. Among the 4 osteosarcoma cell lines, U-2 OS reported the highest transduction efficiency but recorded the lowest reprogramming stability under long term culture. Thus, there may be intrinsic differences governing the variable responses of osteosarcoma cell lines towards reprogramming and long term culture effect of the reprogrammed cells. This is a first report to associate intrinsic factors in different osteosarcoma cell lines with variable reprogramming responses and effects on the reprogrammed cells after prolonged culture.

  14. Expression of membrane-associated mucins MUC1 and MUC4 in major human salivary glands.

    PubMed

    Liu, Bing; Lague, Jessica R; Nunes, David P; Toselli, Paul; Oppenheim, Frank G; Soares, Rodrigo V; Troxler, Robert F; Offner, Gwynneth D

    2002-06-01

    Mucins are high molecular weight glycoproteins secreted by salivary glands and epithelial cells lining the digestive, respiratory, and reproductive tracts. These glycoproteins, encoded in at least 13 distinct human genes, can be subdivided into gel-forming and membrane-associated forms. The gel-forming mucin MUC5B is secreted by mucous acinar cells in major and minor salivary glands, but little is known about the expression pattern of membrane-associated mucins. In this study, RT-PCR and Northern blotting demonstrated the presence of transcripts for MUC1 and MUC4 in both parotid and submandibular glands, and in situ hybridization localized these transcripts to epithelial cells lining striated and excretory ducts and in some serous acinar cells. The same cellular distribution was observed by immunohistochemistry. Soluble forms of both mucins were detected in parotid secretion after immunoprecipitation with mucin-specific antibodies. These studies have shown that membrane-associated mucins are produced in both parotid and submandibular glands and that they are expressed in different cell types than gel-forming mucins. Although the function of these mucins in the oral cavity remains to be elucidated, it is possible that they both contribute to the epithelial protective mucin layer and act as receptors initiating one or more intracellular signal transduction pathways.

  15. Characterization of stem-like cells in a new astroblastoma cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coban, Esra Aydemir; Kasikci, Ezgi; Karatas, Omer Faruk

    Cell lines established from tumors are the most commonly used models in cancer research, and their use in recent years has enabled a greater understanding of the biology of cancer and the means to develop effective treatment strategies. Astroblastomas are uncommon neuroepithelial tumors of glial origin, predominantly affecting young people, mainly teenagers and children, predominantly females. To date, only a single study has reported that astroblastomas contain a large number of neural stem-like cells, which had only a partial proliferation capacity and differentiation. Our objective was to establish an astroblastoma cell line to investigate the presence of astroblastic cells andmore » cancer stem-like cells. The migratory and invasion abilities of the cells were quantified with invasion and migration assays and compared to a glioblastoma cell line. The presence of stem cells was detected with surface-marker analysis by using flow cytometry, and measuring the differentiation ability with a differentiation assay and the self-renewal capacity with a sphere-forming assay. These characteristics may determine whether this novel cell line is a model for astroblastomas that may have stem-cell characteristics. With this novel cell line, scientists can investigate the molecular pathways underlying astroblastomas and develop new therapeutic strategies for patients with these tumors. - Highlights: • An establishment of a novel astroblastoma cell line was proposed. • The presence of astroblastic cells and cancer stem-like cells was investigated. • The molecular pathways underlying astroblastomas may be investigated. • New therapeutic strategies for patients with astroblastoma may be developed.« less

  16. DNA excision repair in cell extracts from human cell lines exhibiting hypersensitivity to DNA-damaging agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansson, J.; Keyse, S.M.; Lindahl, T.

    Whole cell extracts from human lymphoid cell lines can perform in vitro DNA repair synthesis in plasmids damaged by agents including UV or cis-diamminedichloroplatinum(II) (cis-DDP). Extracts from xeroderma pigmentosum (XP) cells are defective in repair synthesis. We have now studied in vitro DNA repair synthesis using extracts from lymphoblastoid cell lines representing four human hereditary syndromes with increased sensitivity to DNA-damaging agents. Extracts of cell lines from individuals with the sunlight-sensitive disorders dysplastic nevus syndrome or Cockayne's syndrome (complementation groups A and B) showed normal DNA repair synthesis in plasmids with UV photoproducts. This is consistent with in vivo measurementsmore » of the overall DNA repair capacity in such cell lines. A number of extracts were prepared from two cell lines representing the variant form of XP (XP-V). Half of the extracts prepared showed normal levels of in vitro DNA repair synthesis in plasmids containing UV lesions, but the remainder of the extracts from the same cell lines showed deficient repair synthesis, suggesting the possibility of an unusually labile excision repair protein in XP-V. Fanconi's anemia (FA) cells show cellular hypersensitivity to cross-linking agents including cis-DDP. Extracts from cell lines belonging to two different complementation groups of FA showed normal DNA repair synthesis in plasmids containing cis-DDP or UV adducts. Thus, there does not appear to be an overall excision repair defect in FA, but the data do not exclude a defect in the repair of interstrand DNA cross-links.« less

  17. The establishment and characterization of immortal hepatocyte cell lines from a mouse liver injury model.

    PubMed

    Risal, Prabodh; Cho, Baik Hwan; Sylvester, Karl G; Kim, Jae-Chun; Kim, Hyoung Tae; Jeong, Yeon Jun

    2011-09-01

    Hepatocytes are an important research tool used for numerous applications. However, a short life span and a limited capacity to replicate in vitro limit the usefulness of primary hepatocyte cultures. We have hypothesized that in vivo priming of hepatocyte could make them more susceptible to growth factors in the medium for continuous proliferation in vitro. Here, a novel approach used to establish hepatocyte cell lines that included hepatocyte priming in vivo prior to culture with a 3,5-diethoxycarbonyl-1,4-dihydrocollidine diet was attempted. The cell line grew in a monolayer while maintaining a granular cytoplasm and a round nucleus. Electron microscopy displayed hepatocyte-like features including mitochondria, glycogen granules, and the presence of bile canaliculi. This cell line expressed many mature hepatocyte-specific genes including albumin, alpha1-antitrypsin, glucose 6-phosphatase, and tyrosine aminotransferase. Functional characteristic of hepatocytes like the ability to store glycogen, lipid, and synthesis of urea is well demonstrated by this cell line. These cells demonstrated anchorage dependent growth properties in soft agar and did not form tumors after transplantation into nude mice. This cell line can be sustained in culture for more than 100 passages (>1.5 years) without undergoing noticeable morphological changes or transformation. This novel method resulted in the establishment of an immortal, non-transformed hepatocyte cell line with functional characteristics that may aid research of cell metabolism, toxicology, and hepatocyte transplantation.

  18. Cementogenic potential of multipotential mesenchymal stem cells purified from the human periodontal ligament.

    PubMed

    Torii, Daisuke; Konishi, Kiyoshi; Watanabe, Nobuyuki; Goto, Shinichi; Tsutsui, Takeki

    2015-01-01

    The periodontal ligament (PDL) consists of a group of specialized connective tissue fibers embedded in the alveolar bone and cementum that are believed to contain progenitors for mineralized tissue-forming cell lineages. These progenitors may contribute to regenerative cell therapy or tissue engineering methods aimed at recovery of tissue formation and functions lost in periodontal degenerative changes. Some reports using immortal clonal cell lines of cementoblasts, which are cells containing mineralized tissue-forming cell lineages, have shown that their phenotypic alteration and gene expression are associated with mineralization. Immortal, multipotential PDL-derived cell lines may be useful biological tools for evaluating differentiation-inducing agents. In this study, we confirmed the gene expression and mineralization potential of primary and immortal human PDL cells and characterized their immunophenotype. Following incubation with mineralization induction medium containing β-glycerophosphate, ascorbic acid, and dexamethasone, normal human PDL (Pel) cells and an immortal derivative line (Pelt) cells showed higher levels of mineralization compared with cells grown in normal growth medium. Both cell types were positive for putative surface antigens of mesenchymal cells (CD44, CD73, CD90, and CD105). They were also positive for stage-specific embryonic antigen-3, a marker of multipotential stem cells. Furthermore, PDL cells expressed cementum attachment protein and cementum protein 1 when cultured with recombinant human bone morphogenetic protein-2 or -7. The results suggest that normal and immortal human PDL cells contain multipotential mesenchymal stem cells with cementogenic potential.

  19. Gonad establishment during asexual reproduction in the annelid Pristina leidyi.

    PubMed

    Özpolat, B Duygu; Bely, Alexandra E

    2015-09-01

    Animals that can reproduce by both asexual agametic reproduction and sexual reproduction must transmit or re-establish their germ line post-embryonically. Although such a dual reproductive mode has evolved repeatedly among animals, how asexually produced individuals establish their germ line remains poorly understood in most groups. We investigated germ line development in the annelid Pristina leidyi, a species that typically reproduces asexually by paratomic fission, intercalating a new tail and head in the middle of the body followed by splitting. We found that in fissioning individuals, gonads occur in anterior segments in the anterior-most individual as well as in new heads forming within fission zones. Homologs of the germ line/multipotency genes piwi, vasa, and nanos are expressed in the gonads, as well as in proliferative tissues including the posterior growth zone, fission zone, and regeneration blastema. In fissioning animals, certain cells on the ventral nerve cord express a homolog of piwi, are abundant near fission zones, and sometimes make contact with gonads. Such cells are typically undetectable near the blastema and posterior growth zone. Time-lapse imaging provides direct evidence that cells on the ventral nerve cord migrate preferentially towards fission zones. Our findings indicate that gonads form routinely in fissioning individuals, that a population of piwi-positive cells on the ventral nerve cord is associated with fission and gonads, and that cells resembling these piwi-positive cells migrate along the ventral nerve cord. We suggest that the piwi-positive ventral cells are germ cells that transmit the germ line across asexually produced individuals via migration along the ventral nerve cord. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. A Comprehensive Panel of Three-Dimensional Models for Studies of Prostate Cancer Growth, Invasion and Drug Responses

    PubMed Central

    Härmä, Ville; Virtanen, Johannes; Mäkelä, Rami; Happonen, Antti; Mpindi, John-Patrick; Knuuttila, Matias; Kohonen, Pekka; Lötjönen, Jyrki; Kallioniemi, Olli; Nees, Matthias

    2010-01-01

    Prostate epithelial cells from both normal and cancer tissues, grown in three-dimensional (3D) culture as spheroids, represent promising in vitro models for the study of normal and cancer-relevant patterns of epithelial differentiation. We have developed the most comprehensive panel of miniaturized prostate cell culture models in 3D to date (n = 29), including many non-transformed and most currently available classic prostate cancer (PrCa) cell lines. The purpose of this study was to analyze morphogenetic properties of PrCa models in 3D, to compare phenotypes, gene expression and metabolism between 2D and 3D cultures, and to evaluate their relevance for pre-clinical drug discovery, disease modeling and basic research. Primary and non-transformed prostate epithelial cells, but also several PrCa lines, formed well-differentiated round spheroids. These showed strong cell-cell contacts, epithelial polarization, a hollow lumen and were covered by a complete basal lamina (BL). Most PrCa lines, however, formed large, poorly differentiated spheroids, or aggressively invading structures. In PC-3 and PC-3M cells, well-differentiated spheroids formed, which were then spontaneously transformed into highly invasive cells. These cell lines may have previously undergone an epithelial-to-mesenchymal transition (EMT), which is temporarily suppressed in favor of epithelial maturation by signals from the extracellular matrix (ECM). The induction of lipid and steroid metabolism, epigenetic reprogramming, and ECM remodeling represents a general adaptation to 3D culture, regardless of transformation and phenotype. In contrast, PI3-Kinase, AKT, STAT/interferon and integrin signaling pathways were particularly activated in invasive cells. Specific small molecule inhibitors targeted against PI3-Kinase blocked invasive cell growth more effectively in 3D than in 2D monolayer culture, or the growth of normal cells. Our panel of cell models, spanning a wide spectrum of phenotypic plasticity, supports the investigation of different modes of cell migration and tumor morphologies, and will be useful for predictive testing of anti-cancer and anti-metastatic compounds. PMID:20454659

  1. BTG2 Is Down-Regulated and Inhibits Cancer Stem Cell-Like Features of Side Population Cells in Hepatocellular Carcinoma.

    PubMed

    Huang, Chen-Song; Zhai, Jing-Ming; Zhu, Xiao-Xu; Cai, Jian-Peng; Chen, Wei; Li, Jian-Hui; Yin, Xiao-Yu

    2017-12-01

    Our previous study found that B cell translocation gene 2 (BTG2) was hyper-methylated and down-regulated in side population (SP) cells of hepatocellular carcinoma (HCC) cell line. However, its clinical significances and biological impacts on HCC SP cells remained unclear. To investigate the prognostic value of BTG2 gene in HCC and its influences on cancer stem cells (CSCs)-like traits of HCC cell line SP cells. BTG2 expression in human HCC and adjacent non-cancerous tissues was detected by immunohistochemical staining and quantitative real-time PCR, and also obtained from GEO and TCGA data. Its prognostic values were assessed. Its biological influences on HCC cell line SP cells were evaluated using cell viability, cell cycle, plate clone-forming assay, and chemoresistance in vitro and tumorigenicity in vivo. BTG2 expression was significantly suppressed in human HCC compared to adjacent non-cancerous tissues. BTG2 expression was correlated with TNM stage, tumor size and vascular invasion. Lower expression of BTG2 was associated with poorer overall survival and disease-free survival. In vitro, overexpression of BTG2 substantially suppressed cell proliferation and accumulation of HCC cell line SP cells in G0/G1 phase. Colony formation ability was markedly suppressed by BTG2 overexpression. Moreover, sensitivity of HCC cell line SP cells to 5-fluorouracil was substantially increased by overexpression of BTG2. Furthermore, tumorigenicity of HCC cell line SP cells transfected with BTG2 plasmids was significantly reduced in vivo. BTG2 gene could regulate the CSC-like traits of HCC cell line SP cells, and it represented as a molecular prognostic marker for HCC.

  2. The influence of matrix properties on growth and morphogenesis of human pancreatic ductal epithelial cells in 3D

    PubMed Central

    Raza, Asad; Ki, Chang Seok; Lin, Chien-Chi

    2013-01-01

    A highly tunable synthetic biomimetic hydrogel platform was developed to study the growth and morphogenesis of pancreatic ductal epithelial cells (PDEC) under the influence of a myriad of instructive cues. A PDEC line, PANC-1, was used as a model system to illustrate the importance of matrix compositions on cell fate determination. PANC-1 is an immortalized ductal epithelial cell line widely used in the study of pancreatic tumor cell behaviors. PANC-1 cells are also increasingly explored as a potential cell source for endocrine differentiation. Thus far, most studies related to PANC-1, among other PDEC lines, are performed on 2D culture surfaces. Here, we evaluated the effect of matrix compositions on PANC-1 cell growth and morphogenesis in 3D. Specifically, PANC-1 cells were encapsulated in PEG-based hydrogels prepared by step-growth thiol-ene photopolymerization. It was found that thiol-ene hydrogels provided a cytocompatible environment for encapsulation and 3D culture of PANC-1 cells. In contrast to a monolayer morphology on 2D culture surfaces, PANC-1 cells formed clusters in 3D thiol-ene hydrogels within 4 days of culture. After culturing for 10 days, however, the growth and structures of these clusters were significantly impacted by gel matrix properties, including sensitivity of the matrix to proteases, stiffness of the matrix, and ECM-mimetic motifs. The use of matrix metalloproteinase (MMP) sensitive linker or the immobilization of fibronectin-derived RGDS ligand in the matrix promoted PANC-1 cell growth and encouraged them to adopt ductal cyst-like structures. On the other hand, the encapsulated cells formed smaller and more compact aggregates in non-MMP responsive gels. The incorporation of laminin-derived YIGSR peptide did not enhance cell growth and caused the cells to form compact aggregates. Immobilized YIGSR also enhanced the expression of epithelial cell markers including β-catenin and E-cadherin. These studies have established PEG-peptide hydrogels formed by thiol-ene photo-click reaction as a suitable platform for studying and manipulating pancreatic epithelial cell growth and morphogenesis in 3D. PMID:23602364

  3. How Escherichia coli lands and forms cell clusters on a surface: a new role of surface topography

    PubMed Central

    Gu, Huan; Chen, Aaron; Song, Xinran; Brasch, Megan E.; Henderson, James H.; Ren, Dacheng

    2016-01-01

    Bacterial response to surface topography during biofilm formation was studied using 5 μm tall line patterns of poly (dimethylsiloxane) (PDMS). Escherichia coli cells attached on top of protruding line patterns were found to align more perpendicularly to the orientation of line patterns when the pattern narrowed. Consistently, cell cluster formation per unit area on 5 μm wide line patterns was reduced by 14-fold compared to flat PDMS. Contrasting the reduced colony formation, cells attached on narrow patterns were longer and had higher transcriptional activities, suggesting that such unfavorable topography may present a stress to attached cells. Results of mutant studies indicate that flagellar motility is involved in the observed preference in cell orientation on narrow patterns, which was corroborated by the changes in cell rotation pattern before settling on different surface topographies. These findings led to a set of new design principles for creating antifouling topographies, which was validated using 10 μm tall hexagonal patterns. PMID:27412365

  4. Static feed water electrolysis subsystem development

    NASA Technical Reports Server (NTRS)

    Schubert, Franz H. (Inventor); Grigger, David J. (Inventor)

    1991-01-01

    This disclosure is directed to an electrolysis cell forming hydrogen and oxygen at spaced terminals. The anode terminal is porous and able to form oxygen within the cell and permit escape of the gaseous oxygen through the anode and out through a flow line in the presence of backpressure. Hydrogen is liberated in the cell at the opposing solid metal cathode which is permeable to hydrogen but not oxygen so that the migratory hydrogen formed in the cell is able to escape from the cell. The cell is maintained at an elevated pressure so that oxygen liberated by the cell is delivered at elevated pressure without pumping to raise the pressure of the oxygen.

  5. Osteoblasts are target cells for transformation in c-fos transgenic mice

    PubMed Central

    1993-01-01

    We have generated transgenic mice expressing the proto-oncogene c-fos from an H-2Kb class I MHC promoter as a tool to identify and isolate cell populations which are sensitive to altered levels of Fos protein. All homozygous H2-c-fosLTR mice develop osteosarcomas with a short latency period. This phenotype is specific for c-fos as transgenic mice expressing the fos- and jun-related genes, fosB and c-jun, from the same regulatory elements do not develop any pathology despite high expression in bone tissues. The c-fos transgene is not expressed during embryogenesis but is expressed after birth in bone tissues before the onset of tumor formation, specifically in putative preosteoblasts, bone- forming osteoblasts, osteocytes, as well as in osteoblastic cells present within the tumors. Primary and clonal cell lines established from c-fos-induced tumors expressed high levels of exogenous c-fos as well as the bone cell marker genes, type I collagen, alkaline phosphatase, and osteopontin/2ar. In contrast, osteocalcin/BGP expression was either low or absent. All cell lines were tumorigenic in vivo, some of which gave rise to osteosarcomas, expressing exogenous c- fos mRNA, and Fos protein in osteoblastic cells. Detailed analysis of one osteogenic cell line, P1, and several P1-derived clonal cell lines indicated that bone-forming osteoblastic cells were transformed by Fos. The regulation of osteocalcin/BGP and alkaline phosphatase gene expression by 1,25-dihydroxyvitamin D3 was abrogated in P1-derived clonal cells, whereas glucocorticoid responsiveness was unaltered. These results suggest that high levels of Fos perturb the normal growth control of osteoblastic cells and exert specific effects on the expression of the osteoblast phenotype. PMID:8335693

  6. Construction of trypanosome artificial mini-chromosomes.

    PubMed Central

    Lee, M G; E, Y; Axelrod, N

    1995-01-01

    We report the preparation of two linear constructs which, when transformed into the procyclic form of Trypanosoma brucei, become stably inherited artificial mini-chromosomes. Both of the two constructs, one of 10 kb and the other of 13 kb, contain a T.brucei PARP promoter driving a chloramphenicol acetyltransferase (CAT) gene. In the 10 kb construct the CAT gene is followed by one hygromycin phosphotransferase (Hph) gene, and in the 13 kb construct the CAT gene is followed by three tandemly linked Hph genes. At each end of these linear molecules are telomere repeats and subtelomeric sequences. Electroporation of these linear DNA constructs into the procyclic form of T.brucei generated hygromycin-B resistant cell lines. In these cell lines, the input DNA remained linear and bounded by the telomere ends, but it increased in size. In the cell lines generated by the 10 kb construct, the input DNA increased in size to 20-50 kb. In the cell lines generated by the 13 kb constructs, two sizes of linear DNAs containing the input plasmid were detected: one of 40-50 kb and the other of 150 kb. The increase in size was not the result of in vivo tandem repetitions of the input plasmid, but represented the addition of new sequences. These Hph containing linear DNA molecules were maintained stably in cell lines for at least 20 generations in the absence of drug selection and were subsequently referred to as trypanosome artificial mini-chromosomes, or TACs. Images PMID:8532534

  7. Series interconnected photovoltaic cells and method for making same

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes R.; Thompson, Roger A.

    1995-01-01

    A novel photovoltaic module (10) and method for constructing the same are disclosed. The module (10) includes a plurality of photovoltaic cells (12) formed on a substrate (14) and laterally separated by interconnection regions (15). Each cell (12) includes a bottom electrode (16), a photoactive layer (18) and a top electrode layer (20). Adjacent cells (12) are connected in electrical series by way of a conductive-buffer line (22). The buffer line (22) is also useful in protecting the bottom electrode (16) against severing during downstream layer cutting processes.

  8. Cellular Prion Protein Combined with Galectin-3 and -6 Affects the Infectivity Titer of an Endogenous Retrovirus Assayed in Hippocampal Neuronal Cells

    PubMed Central

    Shin, Hae-Young; Goto, Joy J.; Carp, Richard I.; Choi, Eun-Kyoung; Kim, Yong-Sun

    2016-01-01

    Prion diseases are infectious and fatal neurodegenerative diseases which require the cellular prion protein, PrPC, for development of diseases. The current study shows that the PrPC augments infectivity and plaque formation of a mouse endogenous retrovirus, MuLV. We have established four neuronal cell lines expressing mouse PrPC, PrP+/+; two express wild type PrPC (MoPrPwild) and the other two express mutant PrPC (MoPrPmut). Infection of neuronal cells from various PrP+/+ and PrP-/- (MoPrPKO) lines with MuLV yielded at least three times as many plaques in PrP+/+ than in PrP-/-. Furthermore, among the four PrP+/+ lines, one mutant line, P101L, had at least 2.5 times as many plaques as the other three PrP+/+ lines. Plaques in P101L were four times larger than those in other PrP+/+ lines. Colocalization of PrP and CAgag was seen in MuLV-infected PrP+/+ cells. In the PrP-MuLV interaction, the involvement of galectin-3 and -6 was observed by immunoprecipitation with antibody to PrPC. These results suggest that PrPC combined with galectin-3 and -6 can act as a receptor for MuLV. P101L, the disease form of mutant PrPC results suggest the genetic mutant form of PrPC may be more susceptible to viral infection. PMID:27936017

  9. Hippocampal place cells construct reward related sequences through unexplored space.

    PubMed

    Ólafsdóttir, H Freyja; Barry, Caswell; Saleem, Aman B; Hassabis, Demis; Spiers, Hugo J

    2015-06-26

    Dominant theories of hippocampal function propose that place cell representations are formed during an animal's first encounter with a novel environment and are subsequently replayed during off-line states to support consolidation and future behaviour. Here we report that viewing the delivery of food to an unvisited portion of an environment leads to off-line pre-activation of place cells sequences corresponding to that space. Such 'preplay' was not observed for an unrewarded but otherwise similar portion of the environment. These results suggest that a hippocampal representation of a visible, yet unexplored environment can be formed if the environment is of motivational relevance to the animal. We hypothesise such goal-biased preplay may support preparation for future experiences in novel environments.

  10. Modulation of Induced Cytotoxicity of Doxorubicin by Using Apoferritin and Liposomal Cages

    PubMed Central

    Gumulec, Jaromir; Fojtu, Michaela; Raudenska, Martina; Sztalmachova, Marketa; Skotakova, Anna; Vlachova, Jana; Skalickova, Sylvie; Nejdl, Lukas; Kopel, Pavel; Knopfova, Lucia; Adam, Vojtech; Kizek, Rene; Stiborova, Marie; Babula, Petr; Masarik, Michal

    2014-01-01

    Doxorubicin is an effective chemotherapeutic drug, however, its toxicity is a significant limitation in therapy. Encapsulation of doxorubicin inside liposomes or ferritin cages decreases cardiotoxicity while maintaining anticancer potency. We synthesized novel apoferritin- and liposome-encapsulated forms of doxorubicin (“Apodox” and “lip-8-dox”) and compared its toxicity with doxorubicin and Myocet on prostate cell lines. Three different prostatic cell lines PNT1A, 22Rv1, and LNCaP were chosen. The toxicity of the modified doxorubicin forms was compared to conventional doxorubicin using the MTT assay, real-time cell impedance-based cell growth method (RTCA), and flow cytometry. The efficiency of doxorubicin entrapment was 56% in apoferritin cages and 42% in the liposome carrier. The accuracy of the RTCA system was verified by flow-cytometric analysis of cell viability. The doxorubicin half maximal inhibition concentrations (IC50) were determined as 170.5, 234.0, and 169.0 nM for PNT1A, 22Rv1, and LNCaP, respectively by RTCA. Lip8-dox is less toxic on the non-tumor cell line PNT1A compared to doxorubicin, while still maintaining the toxicity to tumorous cell lines similar to doxorubicin or epirubicin (IC50 = 2076.7 nM for PNT1A vs. 935.3 and 729.0 nM for 22Rv1 and LNCaP). Apodox IC50 was determined as follows: 603.1, 1344.2, and 931.2 nM for PNT1A, 22Rv1, and LNCaP. PMID:25514405

  11. Multipotent adult germ-line stem cells, like other pluripotent stem cells, can be killed by cytotoxic T lymphocytes despite low expression of major histocompatibility complex class I molecules

    PubMed Central

    Dressel, Ralf; Guan, Kaomei; Nolte, Jessica; Elsner, Leslie; Monecke, Sebastian; Nayernia, Karim; Hasenfuss, Gerd; Engel, Wolfgang

    2009-01-01

    Background Multipotent adult germ-line stem cells (maGSCs) represent a new pluripotent cell type that can be derived without genetic manipulation from spermatogonial stem cells (SSCs) present in adult testis. Similarly to induced pluripotent stem cells (iPSCs), they could provide a source of cellular grafts for new transplantation therapies of a broad variety of diseases. To test whether these stem cells can be rejected by the recipients, we have analyzed whether maGSCs and iPSCs can become targets for cytotoxic T lymphocytes (CTL) or whether they are protected, as previously proposed for embryonic stem cells (ESCs). Results We have observed that maGSCs can be maintained in prolonged culture with or without leukemia inhibitory factor and/or feeder cells and still retain the capacity to form teratomas in immunodeficient recipients. They were, however, rejected in immunocompetent allogeneic recipients, and the immune response controlled teratoma growth. We analyzed the susceptibility of three maGSC lines to CTL in comparison to ESCs, iPSCs, and F9 teratocarcinoma cells. Major histocompatibility complex (MHC) class I molecules were not detectable by flow cytometry on these stem cell lines, apart from low levels on one maGSC line (maGSC Stra8 SSC5). However, using a quantitative real time PCR analysis H2K and B2m transcripts were detected in all pluripotent stem cell lines. All pluripotent stem cell lines were killed in a peptide-dependent manner by activated CTLs derived from T cell receptor transgenic OT-I mice after pulsing of the targets with the SIINFEKL peptide. Conclusion Pluripotent stem cells, including maGSCs, ESCs, and iPSCs can become targets for CTLs, even if the expression level of MHC class I molecules is below the detection limit of flow cytometry. Thus they are not protected against CTL-mediated cytotoxicity. Therefore, pluripotent cells might be rejected after transplantation by this mechanism if specific antigens are presented and if specific activated CTLs are present. Our results show that the adaptive immune system has in principle the capacity to kill pluripotent and teratoma forming stem cells. This finding might help to develop new strategies to increase the safety of future transplantations of in vitro differentiated cells by exploiting a selective immune response against contaminating undifferentiated cells. Reviewers This article was reviewed by Bhagirath Singh, Etienne Joly and Lutz Walter. PMID:19715575

  12. Experimental infection of Leishmania (L.) chagasi in a cell line derived from Lutzomyia longipalpis (Diptera:Psychodidae).

    PubMed

    Bello, Felio J; Mejía, Astrid J; Corena, María del Pilar; Ayala, Martha; Sarmiento, Ladys; Zuñiga, Claudio; Palau, María T

    2005-10-01

    The present work describes the in vitro infection of a cell line Lulo, derived from Lutzomyia longipalpis embryonic tissue, by Leishmania chagasi promastigotes. This infection process is compared with a parallel one developed using the J774 cell line. The L. chagasi MH/CO/84/CI-044B strain was used for experimental infection in two cell lines. The cells were seeded on glass coverslips in 24-well plates to reach a final number of 2 x 10(5) cells/well. Parasites were added to the adhered Lulo and J774 cells in a 10:1 ratio and were incubated at 28 and 37 masculineC respectively. After 2, 4, 6, 8, and 10 days post-infection, the cells were extensively washed with PBS, fixed with methanol, and stained with Giemsa. The number of internalized parasites was determined by counting at least 400 cultured cells on each coverslip. The results showed continuous interaction between L. chagasi promastigotes with the cell lines. Some ultrastructural characteristics of the amastigote forms were observed using transmission electron microscopy. The highest percentage of infection in Lulo cells was registered on day 6 post-infection (29.6%) and on day 4 in the J774 cells (51%). This work shows similarities and differences in the L. chagasi experimental infection process in the two cell lines. However, Lulo cells emerge as a new model to study the life-cycle of this parasite.

  13. In vitro culture of various typed meningiomas and characterization of a human malignant meningioma cell line (HKBMM).

    PubMed

    Ishiwata, Isamu; Ishiwata, Chieko; Ishiwata, Emiko; Sato, Yoshiro; Kiguchi, Kazushige; Tachibana, Toshiaki; Ishikawa, Hiroshi

    2004-12-01

    We placed on culture the 13 cases of meningiomas, succeeded in making a primary culture of 10 cases and maintained 5 cases in vitro over considerable period of time (over three month), and one cell line derived from a malignant meningioma were established. In the early period of the primary culture, meningioma cells were spindle- or round-shaped cells. In the case of psammomatous type, the cultured cells were characterized as forming psammoma bodies. A cell line designated "HKBMM" was established from a human malignant meningioma occurred from frontal lobe. This line grew well without interruption for 5 years and was subcultivated over 120 times. The cells were spindle and fibrous in shape, and neoplastic and pleomorphic features, and multilayering without contact inhibition. The cells proliferated rapidly, and the population doubling time was about 29 hours. The chromosome number showed a wide distribution of aneuploidy. The mode was in the diploid range. The culture cells were easily transplanted into the subcutis of nude mice and produced the tumor resembling the original tumor.

  14. Fucosylation is a common glycosylation type in pancreatic cancer stem cell-like phenotypes.

    PubMed

    Terao, Naoko; Takamatsu, Shinji; Minehira, Tomomi; Sobajima, Tomoaki; Nakayama, Kotarosumitomo; Kamada, Yoshihiro; Miyoshi, Eiji

    2015-04-07

    To evaluate/isolate cancer stem cells (CSCs) from tissue or cell lines according to various definitions and cell surface markers. Lectin microarray analysis was conducted on CSC-like fractions of the human pancreatic cancer cell line Panc1 by establishing anti-cancer drug-resistant cells. Changes in glycan structure of CSC-like cells were also investigated in sphere-forming cells as well as in CSC fractions obtained from overexpression of CD24 and CD44. Several types of fucosylation were increased under these conditions, and the expression of fucosylation regulatory genes such as fucosyltransferases, GDP-fucose synthetic enzymes, and GDP-fucose transporters were dramatically enhanced in CSC-like cells. These changes were significant in gemcitabine-resistant cells and sphere cells of a human pancreatic cancer cell line, Panc1. However, downregulation of cellular fucosylation by knockdown of the GDP-fucose transporter did not alter gemcitabine resistance, indicating that increased cellular fucosylation is a result of CSC-like transformation. Fucosylation might be a biomarker of CSC-like cells in pancreatic cancer.

  15. Expression of sialosyl-Tn in colony-forming unit-erythroid, erythroblasts, B cells, and a subset of CD4+ cells.

    PubMed

    Muroi, K; Suda, T; Nakamura, M; Okada, S; Nojiri, H; Amemiya, Y; Miura, Y; Hakomori, S

    1994-01-01

    The epitopes Tn and sialosyl-Tn are expressed on erythrocytes of individuals with a very rare blood group, who often suffer from "Tn syndrome." We surveyed expression of Tn and sialosyl-Tn in normal blood cells, malignant transformed cells, and progenitor stem cells from bone marrow (BM). An anti-Tn antibody, IE3, and an anti-sialosyl-Tn antibody, TKH2, were used in this study. TKH2 reacted with erythroblasts, B cells, and a subset of CD4+ cells; but not with erythrocytes. Erythroblastic cell lines (K562, HEL, and UT7/EPO) and B-cell lines (Daudi, Raji, and B-cell lines transformed by Epstein-Barr virus) showed reactivity to TKH2. Similar results from the reactivity of TKH2 with transformed cells from leukemia patients and lymphoma patients were obtained; TKH2 reacted with blasts from erythroleukemia (M6; for 4 of 4 cases) and with lymphocytes from B-cell chronic lymphocytic leukemia (3 of 3), B-cell lymphoma (5 of 5), and CD4+ adult T-cell leukemia (4 of 4), but did not react with blasts from acute myeloid leukemia (M0 to M5; 0 of 22) or acute lymphoid leukemia (B-lymphoid leukemia, 0 of 11; T-lymphoid leukemia, 0 of 2; undifferentiated leukemia, 0 of 1). IE3 did not react with all of the tested cells. CD2-CD19-TKH2+ normal BM cells (BMC) contained blasts and various maturation stages of erythroblasts. The TKH2+ cells produced a large number of colony-forming unit-erythroid (CFU-E) colonies, whereas they produced a small number of burst-forming unit-erythroid colonies and CFU-granulocyte-macrophage colonies. CD34+ normal BMC did not express Tn and sialosyl-Tn. These findings suggest that sialosyl-Tn expresses in CFU-E to erythroblasts.

  16. Experimental Model to Study the Role of Retinoblastoma Gene Product (pRb) for Determination of Adipocyte Differentiation.

    PubMed

    Popov, B V; Shilo, P S; Zhidkova, O V; Zaichik, A M; Petrov, N S

    2015-06-01

    Using stable constitutive expression of retinoblastoma gene product (pRb) in polypotent mesenchymal 10T1/2 cells we obtained stable cell lines hyperexpressing functionally active or inactive mutant pRb. The cells producing active exogenous pRb demonstrated high sensitivity to adipocyte differentiation inductors, whereas production of inactive form of the exogenous protein suppressed adipocyte differentiation. The obtained lines can serve as the experimental model for studying the role of pRb in determination of adipocyte differentiation.

  17. Anatomic Characteristics Associated with Head Splitting in Cabbage (Brassica oleracea var. capitata L.)

    PubMed Central

    Li, Xiaonan; Choi, Su Ryun; Wang, Yunbo; Sung, Chang-keun; Im, Subin; Ramchiary, Nirala; Zhou, Guangsheng; Lim, Yong Pyo

    2015-01-01

    Cabbage belonging to Brassicaceae family is one of the most important vegetables cultivated worldwide. The economically important part of cabbage crop is head, formed by leaves which may be of splitting and non-splitting types. Cabbage varieties showing head splitting causes huge loss to the farmers and therefore finding the molecular and structural basis of splitting types would be helpful to breeders. To determine which anatomical characteristics were related to head-splitting in cabbage, we analyzed two contrasting cabbage lines and their offspring using a field emission scanning electron microscope. The inbred line “747” is an early head-splitting type, while the inbred line “748” is a head-splitting-resistant type. The petiole cells of “747” seems to be larger than those of “748” at maturity; however, there was no significant difference in petiole cell size at both pre-heading and maturity stages. The lower epidermis cells of “747” were larger than those of “748” at the pre-heading and maturity stages. “747” had thinner epidermis cell wall than “748” at maturity stage, however, there was no difference of the epidermis cell wall thickness in the two lines at the pre-heading stage. The head-splitting plants in the F1 and F2 population inherited the larger cell size and thinner cell walls of epidermis cells in the petiole. In the petiole cell walls of “747” and the F1 and F2 plants that formed splitting heads, the cellulose microfibrils were loose and had separated from each other. These findings verified that anomalous cellulose microfibrils, larger cell size and thinner-walled epidermis cells are important genetic factors that make cabbage heads prone to splitting. PMID:26536356

  18. CLONING AND CHARACTERIZATION OF OSTEOCLAST PRECURSORS FROM THE RAW264.7 CELL LINE

    PubMed Central

    Cuetara, Bethany L. V.; Crotti, Tania N.; O'Donoghue, Anthony J.

    2006-01-01

    SUMMARY Osteoclasts are bone-resorbing cells that differentiate from macrophage precursors in response to receptor activator of NF-κB (RANKL). In vitro models of osteoclast differentiation are principally based on primary cell culture, which are poorly suited to molecular and transgene studies due to the limitations associated with the use of primary macrophage. RAW264.7 is a transfectable macrophage cell line with the capacity to form osteoclast-like cells. In the present study we have identified osteoclast precursors among clones of RAW264.7 cells. RAW264.7 cell were cloned by limiting dilution and induced to osteoclast differentiation by treatment with recombinant RANKL. Individual RAW264.7 cell clones formed tartrate resistant acid phosphatase (TRAP) positive multinuclear cells to various degrees with RANKL treatment. All clones tested expressed the RANKL receptor RANK. Each of the clones expressed the osteoclast marker genes TRAP and cathepsin-K mRNA with RANKL treatment. However, we noted that only select clones were able to form large, well-spread, TRAP positive multinuclear cells. Clones capable of forming large TRAP positive multinuclear cells also expressed β3 integrin and calcitonin receptor mRNAs and were capable of resorbing a mineralized matrix. All clones tested activated NF-κB with RANKL treatment. cDNA expression profiling of osteoclast precursor RAW264.7 cell clones demonstrates appropriate expression of a large number of genes before and after osteoclastic differentiation. These osteoclast precursor RAW264.7 cell clones provide a valuable model for dissecting the cellular and molecular regulation of osteoclast differentiation and activation. PMID:16948499

  19. Novel derivatives of 6-mercaptopurine: synthesis, characterization and antiproliferative activities of S-allylthio-mercaptopurines.

    PubMed

    Miron, T; Arditti, F; Konstantinovski, L; Rabinkov, A; Mirelman, D; Berrebi, A; Wilchek, M

    2009-02-01

    Biologically active S-allylthio derivatives of 6-mercaptopurine (6-MP) and 6-mercaptopurine riboside (6-MPR) were synthesized. The products, S-allylthio-6-mercaptopurine (SA-6MP) and S-allylthio-6-mercaptopurine riboside (SA-6MPR) were characterized. The antiproliferative activity of the new prodrugs was tested on human leukemia and monolayer cell lines, and compared to that of their parent reactants. The new prodrugs acted by a concentration-dependent mechanism. They inhibited cell proliferation and induced-apoptosis more efficiently than the parent molecules. Leukemia cell lines were more sensitive to the new prodrugs than monolayer cell lines. Higher hydrophobicity of the derivatives improves their penetration into cells, where upon reaction with glutathione, S-allylthioglutathione (GSSA) is formed, and 6-MP or 6-MPR is released for further processing.

  20. Induced Pluripotent Stem Cell Models to Enable In Vitro Models for Screening in the Central Nervous System.

    PubMed

    Hunsberger, Joshua G; Efthymiou, Anastasia G; Malik, Nasir; Behl, Mamta; Mead, Ivy L; Zeng, Xianmin; Simeonov, Anton; Rao, Mahendra

    2015-08-15

    There is great need to develop more predictive drug discovery tools to identify new therapies to treat diseases of the central nervous system (CNS). Current nonpluripotent stem cell-based models often utilize non-CNS immortalized cell lines and do not enable the development of personalized models of disease. In this review, we discuss why in vitro models are necessary for translational research and outline the unique advantages of induced pluripotent stem cell (iPSC)-based models over those of current systems. We suggest that iPSC-based models can be patient specific and isogenic lines can be differentiated into many neural cell types for detailed comparisons. iPSC-derived cells can be combined to form small organoids, or large panels of lines can be developed that enable new forms of analysis. iPSC and embryonic stem cell-derived cells can be readily engineered to develop reporters for lineage studies or mechanism of action experiments further extending the utility of iPSC-based systems. We conclude by describing novel technologies that include strategies for the development of diversity panels, novel genomic engineering tools, new three-dimensional organoid systems, and modified high-content screens that may bring toxicology into the 21st century. The strategic integration of these technologies with the advantages of iPSC-derived cell technology, we believe, will be a paradigm shift for toxicology and drug discovery efforts.

  1. Changes in Cell Wall Properties Coincide with Overexpression of Extensin Fusion Proteins in Suspension Cultured Tobacco Cells

    DOE PAGES

    Tan, Li; Pu, Yunqiao; Pattathil, Sivakumar; ...

    2014-12-23

    Extensins are one subfamily of the cell wall hydroxyproline-rich glycoproteins, containing characteristic SerHyp4 glycosylation motifs and intermolecular cross-linking motifs such as the TyrXaaTyr sequence. Extensins are believed to form a cross-linked network in the plant cell wall through the tyrosine-derivatives isodityrosine, pulcherosine, and di-isodityrosine. Overexpression of three synthetic genes encoding different elastin-arabinogalactan protein-extensin hybrids in tobacco suspension cultured cells yielded novel cross-linking glycoproteins that shared features of the extensins, arabinogalactan proteins and elastin. The cell wall properties of the three transgenic cell lines were all changed, but in different ways. One transgenic cell line showed decreased cellulose crystallinity and increasedmore » wall xyloglucan content; the second transgenic cell line contained dramatically increased hydration capacity and notably increased cell wall biomass, increased di-isodityrosine, and increased protein content; the third transgenic cell line displayed wall phenotypes similar to wild type cells, except changed xyloglucan epitope extractability. In conclusion, these data indicate that overexpression of modified extensins may be a route to engineer plants for bioenergy and biomaterial production.« less

  2. Growth and Development Symposium: Development, characterization, and use of a porcine epiblast-derived liver stem cell line: ARS-PICM-19.

    PubMed

    Talbot, N C; Caperna, T J; Garrett, W M

    2013-01-01

    Totipotent embryonic stem cell lines have not been established from ungulates; however, we have developed a somatic stem cell line from the in vitro culture of pig epiblast cells. The cell line, ARS-PICM-19, was isolated via colony cloning and was found to spontaneously differentiate into hepatic parenchymal epithelial cell types, namely hepatocytes and bile duct cells. Hepatocytes form as monolayers and bile duct cells as 3-dimensional bile ductules. Transmission electron microscopy revealed that the ductules were composed of radially arranged, monociliated cells with their cilia projecting into the lumen of the ductule whereas hepatocytes were arranged in monolayers with lateral canalicular structures containing numerous microvilli and connected by tight junctions and desmosomes. Extensive Golgi and rough endoplasmic reticulum networks were also present, indicative of active protein synthesis. Analysis of conditioned medium by 2-dimensional electrophoresis and mass spectrometry indicated a spectrum of serum-protein secretion by the hepatocytes. The PICM-19 cell line maintains a range of inducible cytochrome P450 activities and, most notably, is the only nontransformed cell line that synthesizes urea in response to ammonia challenge. The PICM-19 cell line has been used for several biomedical- and agricultural-related purposes, such as the in vitro replication of hepatitis E virus, a zoonotic virus of pigs, and a spaceflight experiment to evaluate somatic stem cell differentiation and liver cell function in microgravity. The cell line was also evaluated as a platform for toxicity testing and has been used in a commercial artificial liver rescue device bioreactor. A PICM-19 subclone, PICM-19H, which only differentiates into hepatocytes, was isolated and methods are currently under development to grow PICM-19 cells without feeder cells. Feeder-cell-independent growth will facilitate the study of mesenchymal-parenchymal interactions that influence the divergent differentiation of the PICM-19 cells, enhance our ability to genetically modify the cells, and provide a better model system to investigate porcine hepatic metabolism.

  3. Immortalized Human Schwann Cell Lines Derived From Tumors of Schwannomatosis Patients.

    PubMed

    Ostrow, Kimberly Laskie; Donaldson, Katelyn; Blakeley, Jaishri; Belzberg, Allan; Hoke, Ahmet

    2015-01-01

    Schwannomatosis, a rare form of neurofibromatosis, is characterized predominantly by multiple, often painful, schwannomas throughout the peripheral nervous system. The current standard of care for schwannomatosis is surgical resection. A major obstacle to schwannomatosis research is the lack of robust tumor cell lines. There is a great need for mechanistic and drug discovery studies of schwannomatosis, yet appropriate tools are not currently available. Schwannomatosis tumors are difficult to grow in culture as they survive only a few passages before senescence. Our lab has extensive experience in establishing primary and immortalized human Schwann cell cultures from normal tissue that retain their phenotypes after immortalization. Therefore we took on the challenge of creating immortalized human Schwann cell lines derived from tumors from schwannomatosis patients. We have established and fully characterized 2 schwannomatosis cell lines from 2 separate patients using SV40 virus large T antigen. One patient reported pain and the other did not. The schwannomatosis cell lines were stained with S100B antibodies to confirm Schwann cell identity. The schwannomatosis cells also expressed the Schwann cell markers, p75NTR, S100B, and NGF after multiple passages. Cell morphology was retained following multiple passaging and freeze/ thaw cycles. Gene expression microarray analysis was used to compare the cell lines with their respective parent tumors. No differences in key genes were detected, with the exception that several cell cycle regulators were upregulated in the schwannomatosis cell lines when compared to their parent tumors. This upregulation was apparently a product of cell culturing, as the schwannomatosis cells exhibited the same expression pattern of cell cycle regulatory genes as normal primary human Schwann cells. Cell growth was also similar between normal primary and immortalized tumor cells in culture. Accurate cell lines derived directly from human tumors will serve as invaluable tools for advancing schwannomatosis research, including drug screening.

  4. Immortalized Human Schwann Cell Lines Derived From Tumors of Schwannomatosis Patients

    PubMed Central

    Ostrow, Kimberly Laskie; Donaldson, Katelyn; Blakeley, Jaishri; Belzberg, Allan; Hoke, Ahmet

    2015-01-01

    Schwannomatosis, a rare form of neurofibromatosis, is characterized predominantly by multiple, often painful, schwannomas throughout the peripheral nervous system. The current standard of care for schwannomatosis is surgical resection. A major obstacle to schwannomatosis research is the lack of robust tumor cell lines. There is a great need for mechanistic and drug discovery studies of schwannomatosis, yet appropriate tools are not currently available. Schwannomatosis tumors are difficult to grow in culture as they survive only a few passages before senescence. Our lab has extensive experience in establishing primary and immortalized human Schwann cell cultures from normal tissue that retain their phenotypes after immortalization. Therefore we took on the challenge of creating immortalized human Schwann cell lines derived from tumors from schwannomatosis patients. We have established and fully characterized 2 schwannomatosis cell lines from 2 separate patients using SV40 virus large T antigen. One patient reported pain and the other did not. The schwannomatosis cell lines were stained with S100B antibodies to confirm Schwann cell identity. The schwannomatosis cells also expressed the Schwann cell markers, p75NTR, S100B, and NGF after multiple passages. Cell morphology was retained following multiple passaging and freeze/ thaw cycles. Gene expression microarray analysis was used to compare the cell lines with their respective parent tumors. No differences in key genes were detected, with the exception that several cell cycle regulators were upregulated in the schwannomatosis cell lines when compared to their parent tumors. This upregulation was apparently a product of cell culturing, as the schwannomatosis cells exhibited the same expression pattern of cell cycle regulatory genes as normal primary human Schwann cells. Cell growth was also similar between normal primary and immortalized tumor cells in culture. Accurate cell lines derived directly from human tumors will serve as invaluable tools for advancing schwannomatosis research, including drug screening. PMID:26657314

  5. Comparison of Normal and Breast Cancer Cell lines using Proteome, Genome and Interactome data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patwardhan, Anil J.; Strittmatter, Eric F.; Camp, David G.

    2005-12-01

    Normal and cancer cell line proteomes were profiled using high throughput mass spectrometry techniques. Application of both protein-level and peptide-level sample fractionation combined with LC-MS/MS analysis enabled the confident identification of 2,235 unmodified proteins representing a broad range of functional and compartmental classes. An iterative multi-step search strategy was used to identify post-translational modifications and detected several proteins that are preferentially modified in cancer cells. Information regarding both unmodified and modified protein forms was combined with publicly available gene expression and protein-protein interaction data. The resulting integrated dataset revealed several functionally related proteins that are differentially regulated between normal andmore » cancer cell lines.« less

  6. Differential expression of Oct4 in HPV-positive and HPV-negative cervical cancer cells is not regulated by DNA methyltransferase 3A.

    PubMed

    Liu, Dongbo; Zhou, Peng; Zhang, Li; Wu, Gengze; Zheng, Yingru; He, Fengtian

    2011-10-01

    The colony-forming ability of cervical cancer is affected by many factors. Oct4, an important transcription factor, is highly expressed in several tumors and promotes the colony-forming ability of cancer cells. Thus, it is considered a potential target for the treatment of cancer. However, we know little about the expression level of Oct4 and its epigenetic regulatory mechanism in cervical cancer cells. In this study, we are the first to observe that human papillomavirus (HPV)-positive cervical cancer cell lines (HeLa, Caski) have a stronger colony-forming ability than HPV-negative cervical cancer cell lines (C-33A). Moreover, the expression level of Oct4 in both HeLa and Caski cells was also higher than that in C-33A cells. We then confirmed that there was a negative correlation between the expression of Oct4 and DNMT3A in these three types of cervical cancer cells, whereas DNA methyltransferase 1 and 3B had no differences among the cell lines. However, after DNA methylation in both key regulatory regions of the Oct4 gene and the genomic levels were analyzed, we found that DNA methyltransferase 3A could neither regulate the expression of Oct4 nor affect the whole level of genomic DNA methylation. These results suggest three points: (1) Oct4 might be treated as a new target for the treatment of cervical cancer, (2) we could not inhibit the expression of Oct4 by DNA demethylation, and (3) HPV virus might initiate cervical carcinogenesis by upregulation of Oct4 expression.

  7. Generation of Homogenous Three-Dimensional Pancreatic Cancer Cell Spheroids Using an Improved Hanging Drop Technique

    PubMed Central

    Ware, Matthew J.; Colbert, Kevin; Keshishian, Vazrik; Ho, Jason; Corr, Stuart J.; Curley, Steven A.

    2016-01-01

    In vitro characterization of tumor cell biology or of potential anticancer drugs is usually performed using tumor cell lines cultured as a monolayer. However, it has been previously shown that three-dimensional (3D) organization of the tumor cells is important to provide insights on tumor biology and transport of therapeutics. Several methods to create 3D tumors in vitro have been proposed, with hanging drop technique being the most simple and, thus, most frequently used. However, in many cell lines this method has failed to form the desired 3D tumor structures. The aim of this study was to design and test an easy-to-use and highly reproducible modification of the hanging drop method for tumor sphere formation by adding methylcellulose polymer. Most pancreatic cancer cells do not form cohesive and manageable spheres when the original hanging drop method is used, thus we investigated these cell lines for our modified hanging drop method. The spheroids produced by this improved technique were analyzed by histology, light microscopy, immunohistochemistry, and scanning electron microscopy. Results show that using the proposed simple method; we were able to produce uniform spheroids for all five of the tested human pancreatic cancer cell lines; Panc-1, BxPC-3, Capan-1, MiaPaCa-2, and AsPC-1. We believe that this method can be used as a reliable and reproducible technique to make 3D cancer spheroids for use in tumor biology research and evaluation of therapeutic responses, and for the development of bio-artificial tissues. PMID:26830354

  8. Generation of Homogenous Three-Dimensional Pancreatic Cancer Cell Spheroids Using an Improved Hanging Drop Technique.

    PubMed

    Ware, Matthew J; Colbert, Kevin; Keshishian, Vazrik; Ho, Jason; Corr, Stuart J; Curley, Steven A; Godin, Biana

    2016-04-01

    In vitro characterization of tumor cell biology or of potential anticancer drugs is usually performed using tumor cell lines cultured as a monolayer. However, it has been previously shown that three-dimensional (3D) organization of the tumor cells is important to provide insights on tumor biology and transport of therapeutics. Several methods to create 3D tumors in vitro have been proposed, with hanging drop technique being the most simple and, thus, most frequently used. However, in many cell lines this method has failed to form the desired 3D tumor structures. The aim of this study was to design and test an easy-to-use and highly reproducible modification of the hanging drop method for tumor sphere formation by adding methylcellulose polymer. Most pancreatic cancer cells do not form cohesive and manageable spheres when the original hanging drop method is used, thus we investigated these cell lines for our modified hanging drop method. The spheroids produced by this improved technique were analyzed by histology, light microscopy, immunohistochemistry, and scanning electron microscopy. Results show that using the proposed simple method; we were able to produce uniform spheroids for all five of the tested human pancreatic cancer cell lines; Panc-1, BxPC-3, Capan-1, MiaPaCa-2, and AsPC-1. We believe that this method can be used as a reliable and reproducible technique to make 3D cancer spheroids for use in tumor biology research and evaluation of therapeutic responses, and for the development of bio-artificial tissues.

  9. Important roles of the AKR1C2 and SRD5A1 enzymes in progesterone metabolism in endometrial cancer model cell lines.

    PubMed

    Sinreih, Maša; Anko, Maja; Zukunft, Sven; Adamski, Jerzy; Rižner, Tea Lanišnik

    2015-06-05

    Endometrial cancer is the most frequently diagnosed gynecological malignancy. It is associated with prolonged exposure to estrogens that is unopposed by progesterone, whereby enhanced metabolism of progesterone may decrease its protective effects, as it can deprive progesterone receptors of their active ligand. Furthermore, the 5α-pregnane metabolites formed can stimulate proliferation and may thus contribute to carcinogenesis. The aims of our study were to: (1) identify and quantify progesterone metabolites formed in the HEC-1A and Ishikawa model cell lines of endometrial cancer; and (2) pinpoint the enzymes involved in progesterone metabolism, and delineate their roles. Progesterone metabolism studies combined with liquid chromatography-tandem mass spectrometry enabled identification and quantification of the metabolites formed in these cells. Further quantitative PCR analysis and small-interfering-RNA-mediated gene silencing identified individual progesterone metabolizing enzymes and their relevant roles. In Ishikawa and HEC-1A cells, progesterone was metabolized mainly to 20α-hydroxy-pregn-4-ene-3-one, 20α-hydroxy-5α-pregnane-3-one, and 5α-pregnane-3α/β,20α-diol. The major difference between these cell lines was rate of progesterone metabolism, which was faster in HEC-1A cells. In the Ishikawa and HEC-1A cells, expression of AKR1C2 was 110-fold and 6800-fold greater, respectively, than expression of AKR1C1, which suggests that 20-ketosteroid reduction of 5α-pregnanes and 4-pregnenes is catalyzed mainly by AKR1C2. AKR1C1/AKR1C2 gene silencing showed decreased progesterone metabolism in both cell lines, thus further supporting the significant role of AKR1C2. SRD5A1 was also expressed in these cells, and its silencing confirmed that 5α-reduction is catalyzed by 5α-reductase type 1. Silencing of SRD5A1 also had the most pronounced effects, with decreased rate of progesterone metabolism, and consequently higher concentrations of unmetabolized progesterone. Our data confirm that in model cell lines of endometrial cancer, AKR1C2 and SRD5A1 have crucial roles in progesterone metabolism, and may represent novel targets for treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  10. Imaging of bioluminescent LNCaP-luc-M6 tumors: a new animal model for the study of metastatic human prostate cancer.

    PubMed

    Scatena, Caroline D; Hepner, Mischa A; Oei, Yoko A; Dusich, Joan M; Yu, Shang-Fan; Purchio, Tony; Contag, Pamela R; Jenkins, Darlene E

    2004-05-15

    Animal experiments examining hormone-sensitive metastatic prostate cancer using the human LNCaP cell line have been limited to endpoint analyses. To permit longitudinal studies, we generated a luciferase-expressing cell line and used bioluminescent imaging (BLI) to non-invasively monitor the in vivo growth of primary LNCaP tumors and metastasis. LNCaP.FGC cells were transfected to constitutively express firefly luciferase. LNCaP-luc-M6 cells were tested for bioluminescent signal intensity and hormone responsiveness in vitro. The cells were implanted in subcutaneous and orthotopic sites in SCID-bg mice and imaged over time. The LNCaP-luc-M6 cells formed subcutaneous and orthotopic tumors in SCID-bg mice, and nearly all tumor-bearing animals developed pulmonary metastases. Early detection and temporal growth of primary tumors and metastatic lesions was successfully monitored by BLI. The LNCaP-luc-M6 cell line is a bioluminescent, hormone-sensitive prostate cancer cell line applicable for BLI studies to non-invasively monitor subcutaneous and orthotopic prostate tumor growth and metastasis in vivo. Copyright 2004 Wiley-Liss, Inc.

  11. Three dimensional living neural networks

    NASA Astrophysics Data System (ADS)

    Linnenberger, Anna; McLeod, Robert R.; Basta, Tamara; Stowell, Michael H. B.

    2015-08-01

    We investigate holographic optical tweezing combined with step-and-repeat maskless projection micro-stereolithography for fine control of 3D positioning of living cells within a 3D microstructured hydrogel grid. Samples were fabricated using three different cell lines; PC12, NT2/D1 and iPSC. PC12 cells are a rat cell line capable of differentiation into neuron-like cells NT2/D1 cells are a human cell line that exhibit biochemical and developmental properties similar to that of an early embryo and when exposed to retinoic acid the cells differentiate into human neurons useful for studies of human neurological disease. Finally induced pluripotent stem cells (iPSC) were utilized with the goal of future studies of neural networks fabricated from human iPSC derived neurons. Cells are positioned in the monomer solution with holographic optical tweezers at 1064 nm and then are encapsulated by photopolymerization of polyethylene glycol (PEG) hydrogels formed by thiol-ene photo-click chemistry via projection of a 512x512 spatial light modulator (SLM) illuminated at 405 nm. Fabricated samples are incubated in differentiation media such that cells cease to divide and begin to form axons or axon-like structures. By controlling the position of the cells within the encapsulating hydrogel structure the formation of the neural circuits is controlled. The samples fabricated with this system are a useful model for future studies of neural circuit formation, neurological disease, cellular communication, plasticity, and repair mechanisms.

  12. Novel dihydropyridine thioglycosides and their corresponding dehydrogenated forms as potent anti-hepatocellular carcinoma agents.

    PubMed

    Elgemeie, Galal H; El-Naggar, Dina H

    2018-05-03

    A novel method for preparation of a new class of dihydropyridine thioglycosides and their corresponding dehydrogenated forms, via reaction of piperidinium salts of dihydropyridinethiones with 2,3,4,6-tetra-O-acetyl-α-D-gluco- and galactopyranosyl bromides has been studied. The evaluation of antiproliferative activity against HepG-2 cell lines (liver carcinoma cell lines) of the dihydropyridine thioglycosides and pyridine thioglycosides revealed that many of the thioglycosides have interesting antitumor activities specifically 5c, 5g, 5l, 5o, 5p, 7a, 7i, 7p, 8b, 8f, 8s, and 8v.

  13. Coexistence of mucous retention cyst and basal cell adenoma arising from the lining epithelium of the cyst. Report of two cases.

    PubMed

    Antoniades, D; Epivatianos, A; Markopoulos, A; Kolokotronis, A; Zaraboukas, T

    2009-01-01

    To report 2 cases of coexisting mucous retention cyst and basal cell adenoma arising from the lining epithelium of the cyst. Two cases of painless swellings, well-demarcated, soft to palpation, and located in the submucosa of the upper lip were clinically examined with the provisional diagnosis of mucocele or salivary gland tumor. Histological examination showed the presence of a large unilocular cystic cavity in many parts surrounded by single or bilayered lining epithelium composed of flattened to cuboidal cells, and in other parts surrounded by projections of cells arranged in a trabecular pattern far into the cystic cavity. The trabeculae were composed of basal and low columnar cells that sometimes formed small duct-like structures. Immunohistochemistry showed that the lining epithelium of the cystic cavity and the cells of the projections expressed cytokeratin 7 and high-molecular-weight cytokeratins. The cells of the projections were weakly positive for S-100 protein and negative for vimentin and alpha-smooth muscle actin. Based on the results, a diagnosis of coexisting mucous retention cysts and basal cell adenomas arising from the lining epithelium of cysts was made. The coexistence of mucous retention cysts and basal cell adenomas arising from the lining epithelium of the cyst is reported. Copyright 2009 S. Karger AG, Basel.

  14. The periesophageal celom of the articulate brachiopod Hemithyris psittacea (Rhynchonelliformea, Brachiopoda).

    PubMed

    Kuzmina, Tatyana V; Malakhov, Vladimir V

    2011-02-01

    The celomic system of the articulate brachiopod Hemithyris psittacea is composed of the perivisceral cavity, the canal system of the lophophore, and the periesophageal celom. We study the microscopic anatomy and ultrastructure of the periesophageal celom using scanning and transmission electron microscopy. The periesophageal celom surrounds the esophagus, is isolated from the perivisceral cavity, and is divided by septa. The lining of the periesophageal celom includes two types of cells, epithelial cells and myoepithelial cells, both are monociliary. Some epithelial cells have long processes extending along the basal lamina, suggesting that these cells might function as podocytes. The myoepithelial cells have basal myofilaments and may be overlapped by the apical processes of the adjacent epithelial cells. The periesophageal celom forms protrusions that penetrate the extracellular matrix (ECM) of the body wall above the mouth and the ECM that surrounds the esophagus. The canals of the esophageal ECM form a complicated system. The celomic lining of the external circumferential canals consists of the epithelial cells and the podocyte-like cells. The deepest canals lack a lumen; they are filled with the muscle cells surrounded by basal lamina. These branched canals might perform dual functions. First, they increase the surface area and might therefore facilitate ultrafiltration through the podocyte-like cells. Second, the deepest canals form the thickened muscle wall of the esophagus and could be necessary for antiperistalsis of the gut. Copyright © 2010 Wiley-Liss, Inc.

  15. Early development of the enteric nervous system visualized by using a new transgenic zebrafish line harboring a regulatory region for choline acetyltransferase a (chata) gene.

    PubMed

    Nikaido, Masataka; Izumi, Saki; Ohnuki, Honoka; Takigawa, Yuki; Yamasu, Kyo; Hatta, Kohei

    2018-06-01

    The enteric nervous system (ENS) is the largest part of the peripheral nervous system in vertebrates. Toward the visualization of the development of the vertebrate ENS, we report our creation of a new transgenic line, Tg(chata:GGFF2) which has a 1.5-kb upstream region of the zebrafish choline acetyltransferase a (chata) gene followed by modified green fluorescent protein (gfp). During development, GFP + cells were detected in the gut by 60 h post-fertilization (hpf). In the gut of 6- and 12-days post-fertilization (dpf) larvae, an average of 92% of the GFP + cells were positive for the neuronal marker HuC/D, suggesting that GFP marks enteric neurons in this transgenic line. We also observed that 66% of the GFP + cells were choline acetyltransferase (ChAT)-immunopositive at 1.5 months. Thus, GFP is expressed at the larval stages at which ChAT protein expression is not yet detected by immunostaining. We studied the spatiotemporal pattern of neural differentiation in the ENS by live-imaging of this transgenic line. We observed that GFP + or gfp + cells initially formed a pair of bilateral rows at 60 hpf or 53 hpf, respectively, in the migrating enteric neural crest cells. Most of the GFP + cells did not migrate, and most of the new GFP + cells were added to fill the space among the previously formed GFP + cells. GFP expression reached the anus by 72 hpf. New GFP + cells then also appeared in the dorsal and ventral sides of the initial GFP + rows, resulting in their distribution on the entire gut by 4 dpf. A small number of new GFP + cells were found to move among older GFP + cells just before the cells stopped migration, suggesting that the moving GFP + cells may represent neural precursor cells searching for a place for the final differentiation. Our data suggest that the Tg(chata:GGFF2) line could serve as a useful tool for studies of enteric neural differentiation and cell behavior. Copyright © 2018. Published by Elsevier B.V.

  16. Informed consent and federal funding for stem cell research.

    PubMed

    Streiffer, Robert

    2008-01-01

    A review of the consent forms signed by those who donated embryos for the NIH-approved embryonic stem cell lines reveals several problems, providing ethical as well as scientific reasons to overturn the Bush administration's restrictions on federal funding for stem cell research.

  17. Isolation and characterization of conditionally immortalized mouse glomerular endothelial cell lines.

    PubMed

    Rops, Angelique L; van der Vlag, Johan; Jacobs, Cor W; Dijkman, Henry B; Lensen, Joost F; Wijnhoven, Tessa J; van den Heuvel, Lambert P; van Kuppevelt, Toin H; Berden, Jo H

    2004-12-01

    The culture and establishment of glomerular cell lines has proven to be an important tool for the understanding of glomerular cell functions in glomerular physiology and pathology. Especially, the recent establishment of a conditionally immortalized visceral epithelial cell line has greatly boosted the research on podocyte biology. Glomeruli were isolated from H-2Kb-tsA58 transgenic mice that contain a gene encoding a temperature-sensitive variant of the SV40 large tumor antigen, facilitating proliferative growth at 33 degrees C and differentiation at 37 degrees C. Glomerular endothelial cells were isolated from glomerular outgrowth by magnetic beads loaded with CD31, CD105, GSL I-B4, and ULEX. Clonal cell lines were characterized by immunofluorescence staining with antibodies/lectins specific for markers of endothelial cells, podocytes, and mesangial cells. Putative glomerular endothelial cell lines were analyzed for (1) cytokine-induced expression of adhesion molecules; (2) tube formation on Matrigel coating; and (3) the presence of fenestrae. As judged by immunostaining for Wilms tumor-1, smooth muscle actin (SMA), podocalyxin, and von Willebrand factor (vWF), we obtained putative endothelial, podocyte and mesangial cell lines. The mouse glomerular endothelial cell clone #1 (mGEnC-1) was positive for vWF, podocalyxin, CD31, CD105, VE-cadherin, GSL I-B4, and ULEX, internalized acetylated-low-density lipoprotein (LDL), and showed increased expression of adhesion molecules after activation with proinflammatory cytokines. Furthermore, mGEnC-1 formed tubes and contained nondiaphragmed fenestrae. The mGEnC-1 represents a conditionally immortalized cell line with various characteristics of differentiated glomerular endothelial cells when cultured at 37 degrees C. Most important, mGEnC-1 contains nondiaphragmed fenestrae, which is a unique feature of glomerular endothelial cells.

  18. Phenotypic characterization of telomerase-immortalized primary non-malignant and malignant tumor-derived human prostate epithelial cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Yongpeng; Li Hongzhen; Miki, Jun

    2006-04-01

    In vitro human prostate cell culture models are critical for clarifying the mechanism of prostate cancer progression and for testing preventive and therapeutic agents. Cell lines ideal for the study of human primary prostate tumors would be those derived from spontaneously immortalized tumor cells; unfortunately, explanted primary prostate cells survive only short-term in culture, and rarely immortalize spontaneously. Therefore, we recently have generated five immortal human prostate epithelial cell cultures derived from both the benign and malignant tissues of prostate cancer patients with telomerase, a gene that prevents cellular senescence. Examination of these cell lines for their morphologies and proliferativemore » capacities, their abilities to grow in low serum, to respond to androgen stimulation, to grow above the agar layer, to form tumors in SCID mice, suggests that they may serve as valid, useful tools for the elucidation of early events in prostate tumorigenesis. Furthermore, the chromosome alterations observed in these immortalized cell lines expressing aspects of the malignant phenotypes imply that these cell lines accurately recapitulate the genetic composition of primary tumors. These novel in vitro models may offer unique models for the study of prostate carcinogenesis and also provide the means for testing both chemopreventive and chemotherapeutic agents.« less

  19. Generation and characterization of p53 null transformed hepatic progenitor cells: oval cells give rise to hepatocellular carcinoma.

    PubMed

    Dumble, Melissa L; Croager, Emma J; Yeoh, George C T; Quail, Elizabeth A

    2002-03-01

    Oval cells are bipotential liver stem cells able to differentiate into hepatocytes and bile duct epithelia. In normal adult liver oval cells are quiescent, existing in low numbers around the periportal region, and proliferate following severe, prolonged liver trauma. There is evidence implicating oval cells in the development of hepatocellular carcinoma, and hence the availability of an immortalized oval cell line would be invaluable for the study of liver cell lineage differentiation and carcinogenesis. A novel approach in the generation of cell lines is the use of the p53 knockout mouse. Absence of p53 allows a cell to cycle past the normal Hayflick limit, rendering it immortalized, although subsequent genetic alterations are thought necessary for transformation. p53 knockout mice were fed a choline-deficient, ethionine-supplemented diet, previously shown to increase oval cell numbers in wild-type mice. The oval cells were isolated by centrifugal elutriation and maintained in culture. Colonies of hepatic cells were isolated and characterized with respect to phenotype, growth characteristics and tumorigenicity. Analysis of gene expression by Northern blotting and immunocytochemistry suggests they are oval-like cells by virtue of albumin and transferrin expression, as well as the oval cell markers alpha fetoprotein, M(2)-pyruvate kinase and A6. Injection into athymic nude mice shows the cell lines are capable of forming tumors which phenotypically resemble hepatocellular carcinoma. Thus, the use of p53 null hepatic cells successfully generated immortalized and tumorigenic hepatic stem cell lines. The results presented support the idea that deleting p53 allows immortalization and contributes to the transformation of the oval-like cell lines. Further, the tumorigenic status of the cell lines is direct evidence for the participation of oval cells in the formation of hepatocellular carcinoma.

  20. WAVE2- and microtubule-dependent formation of long protrusions and invasion of cancer cells cultured on three-dimensional extracellular matrices.

    PubMed

    Kikuchi, Keiji; Takahashi, Kazuhide

    2008-11-01

    Invadopodia, small protrusions formed at ventral membranes of several types of invasive cancer cells upon contact with the extracellular matrix (ECM), are implicated in cell invasion; however, the relationship between invadopodia formation and cell invasion through the ECM is still unknown. To correlate the formation of membrane protrusions and cell invasion, a three-dimensional (3-D) gel culture system with native collagen type-I matrix overlaid with a thin basement membrane equivalent (Matrigel) was made. Human breast cancer cell line MDA-MB-231 formed long protrusions in addition to small protrusions reminiscent of invadopodia and migrated into the collagen layer. Comparative analyses with other cancer cell lines indicate that cellular ability to form long protrusions, but not small protrusions or invadopodia, correlates with cellular invasiveness in the 3-D culture. Some of the long protrusions in MDA-MB-231 cells appeared to extend from the adherence membrane, implying that they are derived from small protrusions. The formation of long protrusions and invasion, as well as the formation of invadopodia, required WAVE2 in MDA-MB-231 cells. Accumulation of tubulin was observed in long protrusions but not in invadopodia. Correspondingly, a microtubule-stabilizing agent, paclitaxel, suppressed the formation of long protrusions and invasion, but not the formation of invadopodia, in MDA-MB-231 cells. These results suggest that long protrusions formed in a WAVE2- and microtubule-dependent manner may identify the cells at the later stage of invasion, possibly after the formation of invadopodia in the 3-D cultures.

  1. Three dimensional culture of the murine osteoblastic cell line OCT-1 on collagen coated microcarriers

    NASA Astrophysics Data System (ADS)

    Lau, P.; Hellweg, C. E.; Kirchner, S.; Baumstark-Khan, C.

    2005-08-01

    During long-term space missions, astronauts suffer from the loss of minerals especially from weightbearing bones due to prolonged sojourn under microgravity. Bone loss during space flight is about 1-2% per month. Bone is continually being remodelled under the influence of three types of highly specialized cells. Osteoblasts, the bone forming cells, osteoclasts, the bone resorbing cells and finally osteocytes preserve the homeostasis of bone formation and resorption. In vitro 3- dimensional cell culture of osteoblastic cell lines on microcarrier beads might be a better model to evaluate changes in bone cell morphology, function and differentiation under influence of spaceflight related factors than the conventional 2-D monolayer culture technique. Furthermore, it allows production of a greater amount of cells compared to the monolayer culture. Aim of this study is to examine the effects of culturing the immortalized murine osteoblastic cell line OCT-1 in a 3- dimensional environment on cell morphology and proliferation rate.

  2. An intense, quasi-steady thunderstorm over mountainous terrain. I - Evolution of the storm-initiating mesoscale circulation

    NASA Technical Reports Server (NTRS)

    Cotton, W. R.; George, R. L.; Knupp, K. R.

    1982-01-01

    The evolution of mesoscale systems that eventually lead to the formation of large quasi-steady storm systems is investigated. The morphological and turbulent structure of the quasi-steady storm is described. Data obtained during the South Park Area Cumulus Experiment from surface meteorological stations, rawinsondes and tethered balloons, conventional and Doppler radars, powered aircraft, and satellites, indicate that on July 19, 1977, a north-south oriented line of intense convective cells formed and remained within South Park. Elevated surface heating created a region of low-level convergence, importing Pacific moisture from west of the Rockies. The mesoscale thunderstorm line formed over this convergence zone, and a single large convective cell was observed to grow on the southern end of the mesoscale line, exhibiting supercell characteristics and substantial modifications of the environmental flow.

  3. Synthesis of novel lipoamino acid conjugates of sapienic acid and evaluation of their cytotoxicity activities.

    PubMed

    Gopal, Sanganamoni Chinna; Kaki, Shiva Shanker; Rao, Bhamidipati V S K; Poornachandra, Yedla; Kumar, Chityal Ganesh; Narayana Prasad, Rachapudi Badari

    2014-01-01

    Novel lipoamino acids were prepared with the coupling of sapienic acid [(Z)-6-hexadecenoic acid] with α - amino group of amino acids and the resulting N-sapienoyl amino acids were tested for their cytotoxicity activities against four cancer based cell lines. Initially, sapienic acid was synthesized by the Wittig coupling of triphenylphosphonium bromide salt of 6-bromohexanoic acid and decanal with a Z specific reagent. The prepared sapienic acid was subsequently converted to its acid chloride which was further coupled with amino acids by the Schotten-Baumann reaction to form N-sapienoyl amino acid conjugates. Structural characterization of the prepared N-sapienoyl amino acid derivatives was done by spectral data (IR, mass spectra and NMR). These lipoamino acid derivatives were screened for in vitro cytotoxicity evaluation. Cytotoxicity evaluation against four cancer cell lines showed that N-sapienoyl isoleucine was active against three cell lines whereas other derivatives either showed activity against only one or two cell lines with very moderate activity and two derivatives were observed to be inactive against the tested cell lines.

  4. Piezo1 forms mechanosensitive ion channels in the human MCF-7 breast cancer cell line

    NASA Astrophysics Data System (ADS)

    Li, Chouyang; Rezania, Simin; Kammerer, Sarah; Sokolowski, Armin; Devaney, Trevor; Gorischek, Astrid; Jahn, Stephan; Hackl, Hubert; Groschner, Klaus; Windpassinger, Christian; Malle, Ernst; Bauernhofer, Thomas; Schreibmayer, Wolfgang

    2015-02-01

    Mechanical interaction between cells - specifically distortion of tensional homeostasis-emerged as an important aspect of breast cancer genesis and progression. We investigated the biophysical characteristics of mechanosensitive ion channels (MSCs) in the malignant MCF-7 breast cancer cell line. MSCs turned out to be the most abundant ion channel species and could be activated by negative pressure at the outer side of the cell membrane in a saturable manner. Assessing single channel conductance (GΛ) for different monovalent cations revealed an increase in the succession: Li+ < Na+ < K+ ~Rb+ ~ Cs+. Divalent cations permeated also with the order: Ca2+ < Ba2+. Comparison of biophysical properties enabled us to identify MSCs in MCF-7 as ion channels formed by the Piezo1 protein. Using patch clamp technique no functional MSCs were observed in the benign MCF-10A mammary epithelial cell line. Blocking of MSCs by GsMTx-4 resulted in decreased motility of MCF-7, but not of MCF-10A cells, underscoring a possible role of Piezo1 in invasion and metastatic propagation. The role of Piezo1 in biology and progression of breast cancer is further substantiated by markedly reduced overall survival in patients with increased Piezo1 mRNA levels in the primary tumor.

  5. Plasminogen Activator Production Accompanies Loss of Anchorage Regulation in Transformation of Primary Rat Embryo Cells by Simian Virus 40

    PubMed Central

    Pollack, R.; Risser, R.; Conlon, S.; Rifkin, D.

    1974-01-01

    We have isolated several lines of rat embryo cells transformed by simian virus 40. All these lines are fully transformed with regard to saturation density and serum sensitivity, but they differ greatly in their anchorage dependence, as assayed by efficiency of plating in methyl cellulose suspension. This set of lines reveals a consistent relation of plasminogen activator production to plating efficiency in methyl cellulose. T-antigen-positive transformed lines that synthesize activator grow in methyl cellulose suspension, while T-antigen-positive transformed lines that do not synthesize activator fail to form colonies in suspension. Normal rat embryo cells produce very little plasminogen activator and do not grow in methyl cellulose. Sera that permit high levels of plasmin formation and activity support growth in semi-solid medium better than sera whose plasminogen is activated poorly and/or sera that contain inhibitors to plasmin. PMID:4373730

  6. BINDING OF SOLUBLE IMMUNE COMPLEXES TO HUMAN LYMPHOBLASTOID CELLS

    PubMed Central

    Theofilopoulos, Argyrios N.; Dixon, Frank J.; Bokisch, Viktor A.

    1974-01-01

    In the present work we studied the expression of membrane-bound Ig (MBIg) as well as receptors for IgG Fc and complement on nine human lymphoblastoid cell lines. When MBIg and receptors for IgG Fc were compared, four categories of cell lines could be distinguished: (a) cell lines having both MBIg and receptors for IgG Fc, (b) cell lines having MBIg but lacking receptors for IgG Fc, (c) cell lines lacking MBIg but having receptors for IgG Fc, and (d) cell lines lacking both MBIg and receptors for IgG Fc. Two types of receptors for complement could be detected on the cell lines studied, one for C3-C3b and one for C3d. When sensitized red cells carrying C3b or C3d were used for rosette tests, three categories of cell lines could be distinguished: (a) cell lines having receptors for C3b and C3d, (b) cell lines having receptors only for C3d and (c) cell lines lacking both receptors. However, when a more sensitive immunofluorescent method was used instead of the rosette technique, it was found that cell lines unable to form rosettes with EAC1423bhu were able to bind soluble C3 or C3b which indicated the presence of these receptors on the cell surface. Inhibition experiments showed that receptors for C3-C3b and receptors for C3d are distinct and that receptors for C3-C3b and C3d are different from receptors for IgG Fc. A cell line (Raji) without MBIg but with receptors for IgG Fc, C3-C3b, and C3d was selected for use in studying the binding mechanism of soluble immune complexes to cell surface membrane. Aggregated human gamma globulin was used in place of immune complexes. Immune complexes containing complement bind to Raji cells only via receptors for complement, namely receptors for C3-C3b and C3d. Binding of immune complexes containing complement to cells is much greater than that of complexes without complement. Immune complexes bound to cells via receptors for complement can be partially released from the cell surface by addition of normal human serum as well as isolated human C3 or C3b. We postulate that such release is due to competition of immune complex bound C3b and free C3 or C3b for the receptors on Raji cells. PMID:4139225

  7. β-Cell Replacement in Mice Using Human Type 1 Diabetes Nuclear Transfer Embryonic Stem Cells.

    PubMed

    Sui, Lina; Danzl, Nichole; Campbell, Sean R; Viola, Ryan; Williams, Damian; Xing, Yuan; Wang, Yong; Phillips, Neil; Poffenberger, Greg; Johannesson, Bjarki; Oberholzer, Jose; Powers, Alvin C; Leibel, Rudolph L; Chen, Xiaojuan; Sykes, Megan; Egli, Dieter

    2018-01-01

    β-Cells derived from stem cells hold great promise for cell replacement therapy for diabetes. Here we examine the ability of nuclear transfer embryonic stem cells (NT-ESs) derived from a patient with type 1 diabetes to differentiate into β-cells and provide a source of autologous islets for cell replacement. NT-ESs differentiate in vitro with an average efficiency of 55% into C-peptide-positive cells, expressing markers of mature β-cells, including MAFA and NKX6.1. Upon transplantation in immunodeficient mice, grafted cells form vascularized islet-like structures containing MAFA/C-peptide-positive cells. These β-cells adapt insulin secretion to ambient metabolite status and show normal insulin processing. Importantly, NT-ES-β-cells maintain normal blood glucose levels after ablation of the mouse endogenous β-cells. Cystic structures, but no teratomas, were observed in NT-ES-β-cell grafts. Isogenic induced pluripotent stem cell lines showed greater variability in β-cell differentiation. Even though different methods of somatic cell reprogramming result in stem cell lines that are molecularly indistinguishable, full differentiation competence is more common in ES cell lines than in induced pluripotent stem cell lines. These results demonstrate the suitability of NT-ES-β-cells for cell replacement for type 1 diabetes and provide proof of principle for therapeutic cloning combined with cell therapy. © 2017 by the American Diabetes Association.

  8. Effects of endoplasmic reticulum stressors on maturation and signaling of hemizygous and heterozygous wild-type and mutant forms of KIT.

    PubMed

    Brahimi-Adouane, Sabrina; Bachet, Jean-Baptiste; Tabone-Eglinger, Séverine; Subra, Frédéric; Capron, Claude; Blay, Jean-Yves; Emile, Jean-François

    2013-06-01

    Gain of function mutations of KIT are frequent in some human tumors, and are sensible to tyrosine kinase inhibitors. In most tumors, oncogenic mutations are heterozygous, however most in vitro data of KIT activation have been obtained with hemizygous mutation. This study aimed to investigate the maturation and activation of wild-type (WT) and mutant (M) forms of KIT in hemizygous and heterozygous conditions. WT and two types of exon 11 deletions M forms of human KIT were expressed in NIH3T3 cell lines. Membrane expression of KIT was quantified by flow cytometry. Quantification of glycosylated forms of KIT and phosphorylated forms of AKT and ERK were performed by western blot. Simultaneous activation of WT KIT and treatment with endoplasmic reticulum (ER) inhibitors, tunicamycin or brefeldin A induced a complete inhibition of membrane expression of the 145 kDa form of KIT. By contrast activation or ER inhibitors alone, only partly inhibited this form. ER inhibitors also inhibited KIT activation-dependent phosphorylation of AKT and ERK1/2. Brefeldin A induced a complete down regulation of the 145 kDa form in hemizygous M, and induced an intra-cellular accumulation of the 125 kDa form in WT but not in hemizygous M. Heterozygous cells had glycosylation and response to ER inhibitors patterns more similar to WT than to hemizygous M. Phosphorylated AKT was reduced in hemizygous cells in comparison to WT KIT cells and heterozygous cells, and in the presence of brefeldin A in all cell lines. Effects of ER inhibitors are significantly different in hemizygous and heterozygous mutants. Differences in intra-cellular trafficking of KIT forms result in differences in downstream signaling pathways, and activation of PI3K/AKT pathway appears to be tied to the presence of the mature 145 kDa form of KIT at the membrane surface. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. KHYG-1, a model for the study of enhanced natural killer cell cytotoxicity.

    PubMed

    Suck, Garnet; Branch, Donald R; Smyth, Mark J; Miller, Richard G; Vergidis, Joanna; Fahim, Soad; Keating, Armand

    2005-10-01

    To compare the cytotoxicity of KHYG-1 with other natural killer (NK)/NK T-cell lines and identify molecules that may be associated with enhanced cytotoxicity, thereby eventually leading to improved NK cell-mediated cancer immunotherapy. NK/NK T-cell lines KHYG-1, NK-92, YT, and SNT-8 were compared with a novel flow cytometric cytotoxicity assay under different culture conditions. Transcription, expression, and phosphorylation studies were performed using polymerase chain reaction sequence-specific primers, reverse transcription polymerase chain reaction, immunoblotting, and flow cytometry. KHYG-1 is a highly cytotoxic cell line, exceeding the cytolytic capacity of the other cell lines against K562. KHYG-1 is also highly cytotoxic against the leukemia cell lines EM2, EM3, and HL60. The novel activation receptor NKp44 and its adaptor, DAP12, NKG2D, and constitutively phosphorylated ERK2 may be associated with the enhanced cytotoxicity of KHYG-1. This cell line most likely mediates cytolysis by granzyme M (but not granzymes A and B) together with perforin, which is constitutively fully cleaved to the 60-kD form, in contrast to the other cell lines. KHYG-1 is a valuable model for the study of enhanced cytotoxicity by NK cells. In addition to the activation of NKp44, KHYG-1 may induce apoptosis of tumor cells by the newly described granzyme M/perforin pathway. Targeted modifications of effector molecules demonstrated in this model could generate NK cells with even greater killing ability that may be particularly attractive for clinical application. Moreover, our demonstration of greater cytotoxicity of KHYG-1 versus NK-92 cells, already in clinical trials, suggests a direct therapeutic role for KHYG-1.

  10. Characteristics and EGFP expression of goat mammary gland epithelial cells.

    PubMed

    Zheng, Y-M; He, X-Y; Zhang, Y

    2010-12-01

    The aims of this study were (i) to establish a goat mammary gland epithelial (GMGE) cell line, and (ii) to determine if these GMGE cells could be maintained long-term in culture by continuous subculturing following transfection with a reporter gene, enhanced green fluorescence protein (EGFP). Primary culture of GMGE cells was achieved by outgrowth of migrating cells from the fragments of the mammary gland tissue of a lactating goat. The passage 16 GMGE cells were transfected with EGFP gene using lipofection. The expression of Cell keratins of epithelial cells in GMGE cells was test by immunofluorescence. Βeta-Casein gene mRNA was test for GMGE cells by RT-PCR. The results showed that when grown at low density on a plastic substratum, the GMGE cells formed islands, and when grown to confluency, the cells formed a monolayer and aggregated with the characteristic cobble-stone morphology of epithelial cells. GMGE cells could form dome-like structure which looked like nipple, and the lumen-like structures formed among the cells. Several blister-like structures appeared in the appearance of the cells. The GMGE cells contained different cell types, majority of the cells were short shuttle-like or polygon which were beehive-like. A part of cells were round and flat, a small number of cells were elongated. Some of the GMGE cells contained milk drops. The cell nuclei were round which had 2-4 obvious cores. The expression of Cell keratins demonstrated the property of epithelial cells in GMGE cells by immunofluorescence. The GMGE cells could express transcript encoding a Βeta-Casein protein. EGFP gene was successfully transferred into the GMGE cells, and the transfected cells could be maintained long-term in culture by continuous subculturing. In conclusion, we have established a EGFP gene transfected GMGE (ET-GMGE) cell line and maintained it long-term in culture by continuous subculturing. © 2010 Blackwell Verlag GmbH.

  11. Derivation and characterization of novel nonhuman primate embryonic stem cell lines from in vitro-fertilized baboon preimplantation embryos.

    PubMed

    Chang, Tien-Cheng; Liu, Ya-Guang; Eddy, Carlton A; Jacoby, Ethan S; Binkley, Peter A; Brzyski, Robert G; Schenken, Robert S

    2011-06-01

    The development of nonhuman primate (NHP) embryonic stem cell (ESC) models holds great promise for cell-mediated treatment of debilitating diseases and to address numerous unanswered questions regarding the therapeutic efficacy of ESCs while supplanting ethical considerations involved with human studies. Here we report successful establishment and characterization of 3 novel baboon (Papio cynocephalus) ESC lines from the inner cell mass of intracytoplasmic sperm injection-derived blastocysts. Embryos were cultured in an improved baboon embryo in vitro culture protocol. The inner cell mass of blastocyst was laser-dissected and plated on mouse embryonic fibroblast feeder cell monolayer in the NHP ESC culture medium. Three cell lines with characteristic ESC morphology have been cultured through an extended period (>14 months), with 2 male cell lines (UT-1 and -2) and 1 female cell line (UT-3) displaying normal baboon karyotypes. Reverse transcription-polymerase chain reaction analysis confirmed that all 3 lines express primate ESC pluripotency markers, including OCT-4, NANOG, SOX-2, TERT, TDGF, LEFTYA, and REX-1. All 3 lines demonstrated positive immunocytochemical staining for OCT-4, stage-specific embryonic antigen-3, stage-specific embryonic antigen-4, TRA-1-60, and TRA-1-81. Baboon ESCs injected into NOD/SCID mice formed teratomas with all 3 germ layers. In addition, embryoid body-like spherical structures were derived and initial outgrowth was observed when embedded into extracellular matrix Matrigel. The ESC lines established in this NHP model have the potential to extend our knowledge in the fields of developmental biology, regenerative medicine, and future applications, including preclinical safety assessment of in vivo stem cell therapy.

  12. Plasma confinement apparatus using solenoidal and mirror coils

    DOEpatents

    Fowler, T. Kenneth; Condit, William C.

    1979-01-01

    A plasma confinement apparatus, wherein multiple magnetic mirror cells are linked by magnetic field lines inside of a solenoid with the mirroring regions for adjacent magnetic mirror cells each formed by a separate mirror coil inside of the solenoid. The magnetic mirror cells may be field reversed.

  13. A novel role of HLA class I in the pathology of medulloblastoma.

    PubMed

    Smith, Courtney; Santi, Mariarita; Rajan, Bhargavi; Rushing, Elisabeth J; Choi, Mi Rim; Rood, Brian R; Cornelison, Robert; MacDonald, Tobey J; Vukmanovic, Stanislav

    2009-07-12

    MHC class I expression by cancer cells enables specific antigen recognition by the immune system and protection of the host. However, in some cancer types MHC class I expression is associated with an unfavorable outcome. We explored the basis of MHC class I association with unfavorable prognostic marker expression in the case of medulloblastoma. We investigated expression of four essential components of MHC class I (heavy chain, beta2m, TAP1 and TAP2) in 10 medulloblastoma mRNA samples, a tissue microarray containing 139 medulloblastoma tissues and 3 medulloblastoma cell lines. Further, in medulloblastoma cell lines we evaluated the effects of HLA class I engagement on activation of ERK1/2 and migration in vitro. The majority of specimens displayed undetectable or low levels of the heavy chains. Medulloblastomas expressing high levels of HLA class I displayed significantly higher levels of anaplasia and c-myc expression, markers of poor prognosis. Binding of beta2m or a specific antibody to open forms of HLA class I promoted phosphorylation of ERK1/2 in medulloblastoma cell line with high levels, but not in the cell line with low levels of HLA heavy chain. This treatment also promoted ERK1/2 activation dependent migration of medulloblastoma cells. MHC class I expression in medulloblastoma is associated with anaplasia and c-myc expression, markers of poor prognosis. Peptide- and/or beta2m-free forms of MHC class I may contribute to a more malignant phenotype of medulloblastoma by modulating activation of signaling molecules such as ERK1/2 that stimulates cell mobility.

  14. A novel role of HLA class I in the pathology of medulloblastoma

    PubMed Central

    Smith, Courtney; Santi, Mariarita; Rajan, Bhargavi; Rushing, Elisabeth J; Choi, Mi Rim; Rood, Brian R; Cornelison, Robert; MacDonald, Tobey J; Vukmanovic, Stanislav

    2009-01-01

    Background MHC class I expression by cancer cells enables specific antigen recognition by the immune system and protection of the host. However, in some cancer types MHC class I expression is associated with an unfavorable outcome. We explored the basis of MHC class I association with unfavorable prognostic marker expression in the case of medulloblastoma. Methods We investigated expression of four essential components of MHC class I (heavy chain, β2m, TAP1 and TAP2) in 10 medulloblastoma mRNA samples, a tissue microarray containing 139 medulloblastoma tissues and 3 medulloblastoma cell lines. Further, in medulloblastoma cell lines we evaluated the effects of HLA class I engagement on activation of ERK1/2 and migration in vitro. Results The majority of specimens displayed undetectable or low levels of the heavy chains. Medulloblastomas expressing high levels of HLA class I displayed significantly higher levels of anaplasia and c-myc expression, markers of poor prognosis. Binding of β2m or a specific antibody to open forms of HLA class I promoted phosphorylation of ERK1/2 in medulloblastoma cell line with high levels, but not in the cell line with low levels of HLA heavy chain. This treatment also promoted ERK1/2 activation dependent migration of medulloblastoma cells. Conclusion MHC class I expression in medulloblastoma is associated with anaplasia and c-myc expression, markers of poor prognosis. Peptide- and/or β2m-free forms of MHC class I may contribute to a more malignant phenotype of medulloblastoma by modulating activation of signaling molecules such as ERK1/2 that stimulates cell mobility. PMID:19594892

  15. Establishment of rat embryonic stem-like cells from the morula using a combination of feeder layers.

    PubMed

    Sano, Chiaki; Matsumoto, Asako; Sato, Eimei; Fukui, Emiko; Yoshizawa, Midori; Matsumoto, Hiromichi

    2009-08-01

    Embryonic stem (ES) cells are characterized by pluripotency, in particular the ability to form a germline on injection into blastocysts. Despite numerous attempts, ES cell lines derived from rat embryos have not yet been established. The reason for this is unclear, although certain intrinsic biological differences among species and/or strains have been reported. Herein, using Wistar-Imamichi rats, specific characteristics of preimplantation embryos are described. At the blastocyst stage, Oct4 (also called Pou5f1) was expressed in both the inner cell mass (ICM) and the trophectoderm (TE), whereas expression of Cdx2 was localized to the TE. In contrast, at an earlier stage, expression of Oct4 was detected in all the nuclei in the morula. These stages were examined using a combination of feeder layers (rat embryonic fibroblast [REF] for primary outgrowth and SIM mouse embryo-derived thioguanine- and ouabain-resistant [STO] cells for passaging) to establish rat ES-like cell lines. The rat ES-like cell lines obtained from the morula maintained expression of Oct4 over long-term culture, whereas cell lines derived from blastocysts lost pluripotency during early passage. The morula-derived ES-like cell lines showed Oct4 expression in a long-term culture, even after cryogenic preservation, thawing and EGFP transfection. These results indicate that rat ES-like cell lines with long-term Oct4 expression can be established from the morula of Wistar-Imamichi rats using a combination of feeder layers.

  16. Generation of stable PDX derived cell lines using conditional reprogramming.

    PubMed

    Borodovsky, Alexandra; McQuiston, Travis J; Stetson, Daniel; Ahmed, Ambar; Whitston, David; Zhang, Jingwen; Grondine, Michael; Lawson, Deborah; Challberg, Sharon S; Zinda, Michael; Pollok, Brian A; Dougherty, Brian A; D'Cruz, Celina M

    2017-12-06

    Efforts to develop effective cancer therapeutics have been hindered by a lack of clinically predictive preclinical models which recapitulate this complex disease. Patient derived xenograft (PDX) models have emerged as valuable tools for translational research but have several practical limitations including lack of sustained growth in vitro. In this study, we utilized Conditional Reprogramming (CR) cell technology- a novel cell culture system facilitating the generation of stable cultures from patient biopsies- to establish PDX-derived cell lines which maintain the characteristics of the parental PDX tumor. Human lung and ovarian PDX tumors were successfully propagated using CR technology to create stable explant cell lines (CR-PDX). These CR-PDX cell lines maintained parental driver mutations and allele frequency without clonal drift. Purified CR-PDX cell lines were amenable to high throughput chemosensitivity screening and in vitro genetic knockdown studies. Additionally, re-implanted CR-PDX cells proliferated to form tumors that retained the growth kinetics, histology, and drug responses of the parental PDX tumor. CR technology can be used to generate and expand stable cell lines from PDX tumors without compromising fundamental biological properties of the model. It offers the ability to expand PDX cells in vitro for subsequent 2D screening assays as well as for use in vivo to reduce variability, animal usage and study costs. The methods and data detailed here provide a platform to generate physiologically relevant and predictive preclinical models to enhance drug discovery efforts.

  17. A cell line resource derived from honey bee (Apis mellifera) embryonic tissues.

    PubMed

    Goblirsch, Michael J; Spivak, Marla S; Kurtti, Timothy J

    2013-01-01

    A major hindrance to the study of honey bee pathogens or the effects of pesticides and nutritional deficiencies is the lack of controlled in vitro culture systems comprised of honey bee cells. Such systems are important to determine the impact of these stress factors on the developmental and cell biology of honey bees. We have developed a method incorporating established insect cell culture techniques that supports sustained growth of honey bee cells in vitro. We used honey bee eggs mid to late in their embryogenesis to establish primary cultures, as these eggs contain cells that are progressively dividing. Primary cultures were initiated in modified Leibovitz's L15 medium and incubated at 32(°)C. Serial transfer of material from several primary cultures was maintained and has led to the isolation of young cell lines. A cell line (AmE-711) has been established that is composed mainly of fibroblast-type cells that form an adherent monolayer. Most cells in the line are diploid (2n = 32) and have the Apis mellifera karyotype as revealed by Giemsa stain. The partial sequence for the mitochondrial-encoded cytochrome c oxidase subunit I (Cox 1) gene in the cell line is identical to those from honey bee tissues and a consensus sequence for A. mellifera. The population doubling time is approximately 4 days. Importantly, the cell line is continuously subcultured every 10-14 days when split at a 1:3 ratio and is cryopreserved in liquid nitrogen. The cell culture system we have developed has potential application for studies aimed at honey bee development, genetics, pathogenesis, transgenesis, and toxicology.

  18. The fibrous form of intracellular inclusion bodies in recombinant variant fibrinogen-producing cells is specific to the hepatic fibrinogen storage disease-inducible variant fibrinogen.

    PubMed

    Arai, Shinpei; Ogiwara, Naoko; Mukai, Saki; Takezawa, Yuka; Sugano, Mitsutoshi; Honda, Takayuki; Okumura, Nobuo

    2017-06-01

    Fibrinogen storage disease (FSD) is a rare disorder that is characterized by the accumulation of fibrinogen in hepatocytes and induces liver injury. Six mutations in the γC domain (γG284R, γT314P, γD316N, the deletion of γG346-Q350, γG366S, and γR375W) have been identified for FSD. Our group previously established γ375W fibrinogen-producing Chinese hamster ovary (CHO) cells and observed aberrant large granular and fibrous forms of intracellular inclusion bodies. The aim of this study was to investigate whether fibrous intracellular inclusion bodies are specific to FSD-inducible variant fibrinogen. Thirteen expression vectors encoding the variant γ-chain were stably or transiently transfected into CHO cells expressing normal fibrinogen Aα- and Bβ-chains or HuH-7 cells, which were then immunofluorescently stained. Six CHO and HuH-7 cell lines that transiently produced FSD-inducible variant fibrinogen presented the fibrous (3.2-22.7 and 2.1-24.5%, respectively) and large granular (5.4-25.5 and 7.7-23.9%) forms of intracellular inclusion bodies. Seven CHO and HuH-7 cell lines that transiently produced FSD-non-inducible variant fibrinogen only exhibit the large granular form. These results demonstrate that transiently transfected variant fibrinogen-producing CHO cells and inclusion bodies of the fibrous form may be useful in non-invasive screening for FSD risk factors for FSD before its onset.

  19. A murine model of acute myeloid leukemia with Evi1 overexpression and autocrine stimulation by an intracellular form of GM-CSF in DA-3 cells.

    PubMed

    Cardona, Maria E; Simonson, Oscar E; Oprea, Iulian I; Moreno, Pedro M D; Silva-Lara, Maria F; Mohamed, Abdalla J; Christensson, Birger; Gahrton, Gösta; Dilber, M Sirac; Smith, C I Edvard; Arteaga, H Jose

    2016-01-01

    The poor treatment response of acute myeloid leukemia (AML) overexpressing high-risk oncogenes such as EVI1, demands specific animal models for new treatment evaluations. Evi1 is a common site of activating integrations in murine leukemia virus (MLV)-induced AML and in retroviral and lentiviral gene-modified HCS. Still, a model of overt AML induced by Evi1 has not been generated. Cell lines from MLV-induced AML are growth factor-dependent and non-transplantable. Hence, for the leukemia maintenance in the infected animals, a growth factor source such as chronic immune response has been suggested. We have investigated whether these leukemias are transplantable if provided with growth factors. We show that the Evi1(+)DA-3 cells modified to express an intracellular form of GM-CSF, acquired growth factor independence and transplantability and caused an overt leukemia in syngeneic hosts, without increasing serum GM-CSF levels. We propose this as a general approach for modeling different forms of high-risk human AML using similar cell lines.

  20. Erlotinib-loaded albumin nanoparticles: A novel injectable form of erlotinib and its in vivo efficacy against pancreatic adenocarcinoma ASPC-1 and PANC-1 cell lines.

    PubMed

    Noorani, M; Azarpira, N; Karimian, K; Heli, H

    2017-10-05

    Erlotinib was loaded on albumin nanoparticles for the first time and the cytotoxic effect of the resulting nanoparticles against ASPC-1 and PANC-1 pancreatic adenocarcinoma cell lines was evaluated. The carrier (albumin nanoparticles, ANPs) was synthesized by desolvation method using a mixed solvent followed by thermal crosslinking for stabilization. ANPs and the drug-loaded ANPs were characterized by field emission scanning and transmission electron microscopies, particle size analysis and Fourier transform infrared spectroscopy. The nanoformulation had a size of <14nm with a good monodispersity. Drug loading and encapsulation efficiencies were evaluated as 27 and 44%. Cytotoxicity assays after 72h revealed the potential of ANPs to improve erlotinib toxicity (54% against 34% of free drug toward ASPC-1 cell line, and 52% against 30% toward PANC-1 cell line). Values of IC 50 were obtained for both cell lines and indicated significant reduction in the erlotinib dose necessary for killing the cells, while, ANPs were completely safe. The results demonstrated that erlotinib-loaded ANPs had a remarkable potential for pancreatic cancer drug delivery. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Synthesis, DNA binding ability and anticancer activity of 2-heteroaryl substituted benzimidazoles linked pyrrolo[2,1-c][1,4]benzodiazepine conjugates.

    PubMed

    Kamal, Ahmed; Pogula, Praveen Kumar; Khan, Mohammed Naseer Ahmed; Seshadri, Bobburi Naga; Sreekanth, Kokkonda

    2013-08-01

    As a continuation of our efforts to develop the benzimidazole-PBD conjugates as potential anticancer agents, a series of heteroaryl substituted benzimidazole linked PBD conjugates has been synthesized and evaluated for their anticancer potential in 60 human cancer cell lines. Most of the compounds exhibited promising anticancer activity and interestingly, compounds 4c and 4d displayed significant activity in most of the cell lines tested. Whereas, compound 4e showed selectivity in renal cancer cells with GI50 values of <10 and 70 nM against RXF 393 and UO-31 cell lines, respectively. Further, these compounds also showed significant DNA-binding affinity by thermal denaturation study using duplex form of calf thymus (CT) DNA.

  2. Evidence for epithelial-mesenchymal transition in cancer stem-like cells derived from carcinoma cell lines of the cervix uteri.

    PubMed

    Lin, Jiaying; Liu, Xishi; Ding, Ding

    2015-01-01

    The cancer stem cell (CSC) paradigm is one possible way to understand the genesis of cancer, and cervical cancer in particular. We quantified and enriched ALDH1(+) cells within cervical cancer cell lines and subsequently characterized their phenotypical and functional properties like invasion capacity and epithelial-mesenchymal transition (EMT). ALDH1 expression in spheroid-derived cells (SDC) and the parental monolayer-derived cell (MDC) line was compared by flow-cytometry. Invasion capability was evaluated by Matrigel assay and expression of EMT-related genes Twist 1, Twist 2, Snail 1, Snail 2, Vimentin and E-cadherin by real-time PCR. ALDH1 expression was significantly higher in SDC. ALDH1(+) cells showed increased colony-formation. SDC expressed lower levels of E-cadherin and elevated levels of Twist 1, Twist 2, Snail 1, Snail 2 and Vimentin compared to MDC. Cervical cancer cell lines harbor potential CSC, characterized by ALDH1 expression as well as properties like invasiveness, colony-forming ability, and EMT. CSC can be enriched by anchorage-independent culture techniques, which may be important for the investigation of their contribution to therapy resistance, tumor recurrence and metastasis.

  3. Cryopreservation of Human Stem Cells for Clinical Application: A Review

    PubMed Central

    Hunt, Charles J.

    2011-01-01

    Summary Stem cells have been used in a clinical setting for many years. Haematopoietic stem cells have been used for the treatment of both haematological and non-haematological disease; while more recently mesenchymal stem cells derived from bone marrow have been the subject of both laboratory and early clinical studies. Whilst these cells show both multipotency and expansion potential, they nonetheless do not form stable cell lines in culture which is likely to limit the breadth of their application in the field of regenerative medicine. Human embryonic stem cells are pluripotent cells, capable of forming stable cell lines which retain the capacity to differentiate into cells from all three germ layers. This makes them of special significance in both regenerative medicine and toxicology. Induced pluripotent stem (iPS) cells may also provide a similar breadth of utility without some of the confounding ethical issues surrounding embryonic stem cells. An essential pre-requisite to the commercial and clinical application of stem cells are suitable cryopreservation protocols for long-term storage. Whilst effective methods for cryopreservation and storage have been developed for haematopoietic and mesenchymal stem cells, embryonic cells and iPS cells have proved more refractory. This paper reviews the current state of cryopreservation as it pertains to stem cells and in particular the embryonic and iPS cell. PMID:21566712

  4. Cryopreservation of Human Stem Cells for Clinical Application: A Review.

    PubMed

    Hunt, Charles J

    2011-01-01

    SUMMARY: Stem cells have been used in a clinical setting for many years. Haematopoietic stem cells have been used for the treatment of both haematological and non-haematological disease; while more recently mesenchymal stem cells derived from bone marrow have been the subject of both laboratory and early clinical studies. Whilst these cells show both multipotency and expansion potential, they nonetheless do not form stable cell lines in culture which is likely to limit the breadth of their application in the field of regenerative medicine. Human embryonic stem cells are pluripotent cells, capable of forming stable cell lines which retain the capacity to differentiate into cells from all three germ layers. This makes them of special significance in both regenerative medicine and toxicology. Induced pluripotent stem (iPS) cells may also provide a similar breadth of utility without some of the confounding ethical issues surrounding embryonic stem cells. An essential pre-requisite to the commercial and clinical application of stem cells are suitable cryopreservation protocols for long-term storage. Whilst effective methods for cryopreservation and storage have been developed for haematopoietic and mesenchymal stem cells, embryonic cells and iPS cells have proved more refractory. This paper reviews the current state of cryopreservation as it pertains to stem cells and in particular the embryonic and iPS cell.

  5. Ell3 stimulates proliferation, drug resistance, and cancer stem cell properties of breast cancer cells via a MEK/ERK-dependent signaling pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ahn, Hee-Jin; Kim, Gwangil; Park, Kyung-Soon, E-mail: kspark@cha.ac.kr

    2013-08-09

    Highlights: •Ell3 enhances proliferation and drug resistance of breast cancer cell lines. •Ell3 is related to the cancer stem cell characteristics of breast cancer cell lines. •Ell3 enhances oncogenicity of breast cancer through the ERK1/2 signaling pathway. -- Abstract: Ell3 is a RNA polymerase II transcription elongation factor that is enriched in testis. The C-terminal domain of Ell3 shows strong similarities to that of Ell (eleven−nineteen lysine-rich leukemia gene), which acts as a negative regulator of p53 and regulates cell proliferation and survival. Recent studies in our laboratory showed that Ell3 induces the differentiation of mouse embryonic stem cells bymore » protecting differentiating cells from apoptosis via the promotion of p53 degradation. In this study, we evaluated the function of Ell3 in breast cancer cell lines. MCF-7 cell lines overexpressing Ell3 were used to examine cell proliferation and cancer stem cell properties. Ectopic expression of Ell3 in breast cancer cell lines induces proliferation and 5-FU resistance. In addition, Ell3 expression increases the cancer stem cell population, which is characterized by CD44 (+) or ALDH1 (+) cells. Mammosphere-forming potential and migration ability were also increased upon Ell3 expression in breast cancer cell lines. Through biochemical and molecular biological analyses, we showed that Ell3 regulates proliferation, cancer stem cell properties and drug resistance in breast cancer cell lines partly through the MEK−extracellular signal-regulated kinase signaling pathway. Murine xenograft experiments showed that Ell3 expression promotes tumorigenesis in vivo. These results suggest that Ell3 may play a critical role in promoting oncogenesis in breast cancer by regulating cell proliferation and cancer stem cell properties via the ERK1/2 signaling pathway.« less

  6. A human beta cell line with drug inducible excision of immortalizing transgenes

    PubMed Central

    Benazra, Marion; Lecomte, Marie-José; Colace, Claire; Müller, Andreas; Machado, Cécile; Pechberty, Severine; Bricout-Neveu, Emilie; Grenier-Godard, Maud; Solimena, Michele; Scharfmann, Raphaël; Czernichow, Paul; Ravassard, Philippe

    2015-01-01

    Objectives Access to immortalized human pancreatic beta cell lines that are phenotypically close to genuine adult beta cells, represent a major tool to better understand human beta cell physiology and develop new therapeutics for Diabetes. Here we derived a new conditionally immortalized human beta cell line, EndoC-βH3 in which immortalizing transgene can be efficiently removed by simple addition of tamoxifen. Methods We used lentiviral mediated gene transfer to stably integrate a tamoxifen inducible form of CRE (CRE-ERT2) into the recently developed conditionally immortalized EndoC βH2 line. The resulting EndoC-βH3 line was characterized before and after tamoxifen treatment for cell proliferation, insulin content and insulin secretion. Results We showed that EndoC-βH3 expressing CRE-ERT2 can be massively amplified in culture. We established an optimized tamoxifen treatment to efficiently excise the immortalizing transgenes resulting in proliferation arrest. In addition, insulin expression raised by 12 fold and insulin content increased by 23 fold reaching 2 μg of insulin per million cells. Such massive increase was accompanied by enhanced insulin secretion upon glucose stimulation. We further observed that tamoxifen treated cells maintained a stable function for 5 weeks in culture. Conclusions EndoC βH3 cell line represents a powerful tool that allows, using a simple and efficient procedure, the massive production of functional non-proliferative human beta cells. Such cells are close to genuine human beta cells and maintain a stable phenotype for 5 weeks in culture. PMID:26909308

  7. Functional characterisation of osteosarcoma cell lines and identification of mRNAs and miRNAs associated with aggressive cancer phenotypes

    PubMed Central

    Lauvrak, S U; Munthe, E; Kresse, S H; Stratford, E W; Namløs, H M; Meza-Zepeda, L A; Myklebost, O

    2013-01-01

    Background: Osteosarcoma is the most common primary malignant bone tumour, predominantly affecting children and adolescents. Cancer cell line models are required to understand the underlying mechanisms of tumour progression and for preclinical investigations. Methods: To identify cell lines that are well suited for studies of critical cancer-related phenotypes, such as tumour initiation, growth and metastasis, we have evaluated 22 osteosarcoma cell lines for in vivo tumorigenicity, in vitro colony-forming ability, invasive/migratory potential and proliferation capacity. Importantly, we have also identified mRNA and microRNA (miRNA) gene expression patterns associated with these phenotypes by expression profiling. Results: The cell lines exhibited a wide range of cancer-related phenotypes, from rather indolent to very aggressive. Several mRNAs were differentially expressed in highly aggressive osteosarcoma cell lines compared with non-aggressive cell lines, including RUNX2, several S100 genes, collagen genes and genes encoding proteins involved in growth factor binding, cell adhesion and extracellular matrix remodelling. Most notably, four genes—COL1A2, KYNU, ACTG2 and NPPB—were differentially expressed in high and non-aggressive cell lines for all the cancer-related phenotypes investigated, suggesting that they might have important roles in the process of osteosarcoma tumorigenesis. At the miRNA level, miR-199b-5p and mir-100-3p were downregulated in the highly aggressive cell lines, whereas miR-155-5p, miR-135b-5p and miR-146a-5p were upregulated. miR-135b-5p and miR-146a-5p were further predicted to be linked to the metastatic capacity of the disease. Interpretation: The detailed characterisation of cell line phenotypes will support the selection of models to use for specific preclinical investigations. The differentially expressed mRNAs and miRNAs identified in this study may represent good candidates for future therapeutic targets. To our knowledge, this is the first time that expression profiles are associated with functional characteristics of osteosarcoma cell lines. PMID:24064976

  8. High-Density Spot Seeding for Tissue Model Formation

    NASA Technical Reports Server (NTRS)

    Marquette, Michele L. (Inventor); Sognier, Marguerite A. (Inventor)

    2016-01-01

    A model of tissue is produced by steps comprising seeding cells at a selected concentration on a support to form a cell spot, incubating the cells to allow the cells to partially attach, rinsing the cells to remove any cells that have not partially attached, adding culture medium to enable the cells to proliferate at a periphery of the cell spot and to differentiate toward a center of the cell spot, and further incubating the cells to form the tissue. The cells may be C2C12 cells or other subclones of the C2 cell line, H9c2(2-1) cells, L6 cells, L8 cells, QM7 cells, Sol8 cells, G-7 cells, G-8 cells, other myoblast cells, cells from other tissues, or stem cells. The selected concentration is in a range from about 1 x 10(exp 5) cells/ml to about 1 x 10(exp 6) cells/ml. The tissue formed may be a muscle tissue or other tissue depending on the cells seeded.

  9. A new type of exocrine gland and its function in mass recruitment in the ant Cylindromyrmex whymperi (Formicidae, Cerapachyinae)

    NASA Astrophysics Data System (ADS)

    Gobin, Bruno; Rüppell, Olav; Hartmann, Annegret; Jungnickel, Harald; Morgan, David; Billen, Johan

    2001-08-01

    Workers of the ant Cylindromyrmex whymperi display mass trail recruitment. Bioassays show that the trail pheromone originates from a unique gland between abdominal sternites 6 and 7. The gland has a hitherto unknown structural organization. Upon leaving the secretory cell, the duct cell widens to form a sclerotized pear-shaped reservoir chamber, lined with multiple duct cells. Each duct thus forms a miniature reservoir for the secretions of each single secretory cell, a novel structural arrangement in exocrine glands of social Hymenoptera.

  10. Spontaneous rat nephroblastoma: ultrastructure of a transplant line.

    PubMed

    Hard, G C; Noble, R L

    1982-08-01

    Tumor tissue derived from a nephroblastoma arising spontaneously in an Nb hooded rat and carried for 56 generations as a subcutaneous syngeneic transplant was examined by electron microscopy. Histologically, the transplant showed the typical pattern of dense clusters or sheets of basophilic epithelioid cells set within ramifying tracts of fibrous mesenchyme. At the ultrastructural level, the tumor cells within dense clusters were arranged in anastomotic cords that circumscribed clear intervening spaces. The tumor cells were a monomorphic population possessing the morphologic characteristics of blast cells, including polyribosomes as the predominant cytoplasmic organelle. Furthermore, the close contiguity of cells within the cords, their polyhedral form, and their connection by intercellular junctions established the tumor cell type as epithelial. Consistent with benign stroma, mesenchymal tracts contained highly differentiated, mature fibroblasts, collagen, phagocytes, cells of the lymphoid series, and normal blood vessels. No transitional forms between epithelium and mesenchyme suggestive of bipotential differentiation were seen. Although the data represent only a single transplantation line, the observations support the contention (based on light microscopic appraisal of a number of primary tumors) that nephroblastoma in te rat can be a purely epithelial neoplasm.

  11. Multidrug resistance characterization in multicellular tumour spheroids from two human lung cancer cell lines.

    PubMed

    Barrera-Rodríguez, Raúl; Fuentes, Jorge Morales

    2015-01-01

    Most of the knowledge about the mechanisms of multidrug resistance in lung cancer has been achieved through the use of cell lines isolated from tumours cultivated either in suspensions of isolated cells or in monolayers and following exposition to different cytostatic agents. However, tumour cell lines growing as multicellular tumour spheroids (MTS) frequently develop multicellular resistance in a drug-independent form. The aim of this study was to characterize the phenotypic and functional differences between two human NSCLC cell lines (INER-37 and INER-51) grown as traditional monolayer cultures versus as MTS. After 72 hours treatment with anticancer drugs, chemosensitivity in monolayers and tumour spheroids cultures was assessed using MTT assay. Reverse transcription-polymerase chain reaction was employed to detect the mRNAs of multidrug resistance-related genes. The expression of P-gp was analyzed by immunohistochemical staining and cell cycle profiles were analyzed using FACS. The results indicate that when grown as MTS each lung cancer cell line had different morphologies as well as and abrogation of cell proliferation with decrease of the G2/M phase. Also, MTS acquired multicellular resistance to several chemotherapeutic agents in only a few days of culture which were accomplished by significant changes in the expression of MDR-related genes. Overall, the MTS culture changed the cellular response to drugs nevertheless each of the cell lines studied seems to implement different mechanisms to acquire multicellular resistance.

  12. High-Density Spot Seeding for Tissue Model Formation

    NASA Technical Reports Server (NTRS)

    Marquette, Michele L. (Inventor); Sognier, Marguerite A. (Inventor)

    2014-01-01

    A method for making a tissue includes seeding cells at a selected concentration on a support to form a cell spot, incubating the cells to allow the cells to partially attach, rinsing the cells to remove any unattached cells, adding culture medium to enable the cells to proliferate at a periphery of the cell spot and to differentiate toward a center of the cell spot, and further incubating the cells to form the tissue. The cells may be C2C12 cells or other subclones of the C2 cell line, H9c2(2-1) cells, L6 cells, L8 cells, QM7 cells, Sol8 cells, G-7 cells, G-8 cells, other myoblast cells, cells from other tissues, or stem cells. The selected concentration is in a range from about 1 x 10(exp 5) cells/ml to about 1 x 10(exp 6) cells/ml. The tissue formed may be a skeletal muscle tissue, a cardiac muscle tissue, nerve tissue, or a bone tissue.

  13. Provirus Integration at the 3 Region of N‐myc in Cell Lines Established from Thymic Lymphomas Spontaneously Formed in AKR Mice and a [(BALB/c × B6)F1AKR] Bone Marrow Chimera

    PubMed Central

    Yano, Yoko; Kobayashi, Seiichi; Yasumizu, Ryoji; Tamaki, Junko; Kubo, Mitsumasa; Sasaki, Akio; Hasan, Shahid; Okuyama, Harue; Inaba, Muneo; Ikehara, Susumu; Hiai, Hiroshi; Kakinuma, Mitsuaki

    1991-01-01

    Among 18 thymic leukemia cell lines which have been established from spontaneous thymic lym‐phomas in AKR mice as well as in bone marrow chimeras which were constructed by transplanting allogeneic bone marrow cells into irradiated AKR mice, three proviral integration sites were identified; near c‐myc, N‐myc and pim‐l loci. No integration site specific for chimeric leukemia cell lines was found. In three thymic leukemia cell lines which contained rearranged N‐myc, genes, insertions of long terminal repeats (LTRs) of murine leukemia viruses were detected at 18 or 20 bp downstream of the translational termination codon. These results demonstrate that the 3’region of the N‐myc gene is one of the integration targets for murine leukemia viruses in spontaneous thymic lymphomas. In these three cell lines, N‐myc mRNA was stably transcribed and transcription of c‐myc mRNA was down‐regulated. The integrated murine leukemia viruses in AKR thymic leukemia were most likely AKV, though the DNA sequence of the LTR inserted in the genome of a leukemic cell line from [(BALB/c × B6)F1‐AKR], CAK20, was different from LTRs of murine leukemia viruses so far reported. PMID:1900822

  14. West Nile virus infectious replicon particles generated using a packaging-restricted cell line is a safe reporter system.

    PubMed

    Li, Wei; Ma, Le; Guo, Li-Ping; Wang, Xiao-Lei; Zhang, Jing-Wei; Bu, Zhi-Gao; Hua, Rong-Hong

    2017-06-12

    West Nile virus (WNV) is a neurotropic pathogen which causes zoonotic disease in humans. Recently, there have been an increasing number of infected cases and there are no clinically approved vaccines or effective drugs to treat WNV infections in humans. The purpose of this study was to facilitate vaccine and antiviral drug discovery by developing a packaging cell line-restricted WNV infectious replicon particle system. We constructed a DNA-based WNV replicon lacking the C-prM-E coding region and replaced it with a GFP coding sequence. To produce WNV replicon particles, cell lines stably-expressing prM-E and C-prM-E were constructed. When the WNV replicon plasmid was co-transfected with a WNV C-expressing plasmid into the prM-E-expressing cell line or directly transfected the C-prM-E expressing cell line, the replicon particle was able to replicate, form green fluorescence foci, and exhibit cytopathic plaques similar to that induced by the wild type virus. The infectious capacity of the replicon particles was restricted to the packaging cell line as the replicons demonstrated only one round of infection in other permissive cells. Thus, this system provides a safe and convenient reporter WNV manipulating tool which can be used to study WNV viral invasion mechanisms, neutralizing antibodies and antiviral efficacy.

  15. Expression of c-Kit isoforms in multiple myeloma: differences in signaling and drug sensitivity.

    PubMed

    Montero, Juan Carlos; López-Pérez, Ricardo; San Miguel, Jesús F; Pandiella, Atanasio

    2008-06-01

    c-Kit is expressed in the plasma cells from 30% of patients with multiple myeloma. Two different isoforms of c-Kit, characterized by the presence or absence of the tetrapeptide sequence GNNK in the extracellular domain, have been described. However, their expression and function in myeloma cells are unknown. We explored the function and expression of these c-Kit isoforms in myeloma cells. Expression of c-Kit isoforms was investigated by reverse transcriptase polymerase chain reaction in fresh plasma cells from patients and cell lines. The function of these c-Kit isoforms was analyzed upon expression in myeloma cells. Signaling was investigated by western blotting using antibodies specific for activated forms of several signaling proteins. The impact of c-Kit on the action of drugs commonly used in the treatment of multiple myeloma was investigated by MTT proliferation assays. Fresh plasma cells from patients as well as myeloma cell lines expressed the two isoforms of c-Kit. Retroviral infection of myeloma cells with vectors that code for c-Kit-GNNK+ or c-Kit-GNNK- forms demonstrated differences in the kinetics of phosphorylation between these isoforms. Stem cell factor-induced activation of the GNNK- form was faster and more pronounced than that of the GNNK+ form, whose activation, however, lasted for longer. The c-Kit receptors weakly activated the Erk1/2 and Erk5 pathways. Both receptors, however, efficiently coupled to the PI3K/Akt pathway, and stimulated p70S6K activation. The latter was sensitive to the mTOR inhibitor, rapamycin. Studies of drug sensitivity indicated that cells expressing the GNNK- form were more resistant to the anti-myeloma action of bortezomib and melphalan. Our data indicate that c-Kit expression in multiple myeloma cells is functional, and coupled to survival pathways that may modulate cell death in response to therapeutic compounds used in the treatment of this disease.

  16. Proliferation of epithelial cell rests, formation of apical cysts, and regression of apical cysts after periapical wound healing.

    PubMed

    Lin, Louis M; Huang, George T-J; Rosenberg, Paul A

    2007-08-01

    There is continuing controversy regarding the potential for inflammatory apical cysts to heal after nonsurgical endodontic therapy. Molecular cell biology may provide answers to a series of related questions. How are the epithelial cell rests of Malassez stimulated to proliferate? How are the apical cysts formed? How does the lining epithelium of apical cysts regress after endodontic therapy? Epithelial cell rests are induced to divide and proliferate by inflammatory mediators, proinflammatory cytokines, and growth factors released from host cells during periradicular inflammation. Quiescent epithelial cell rests can behave like restricted-potential stem cells if stimulated to proliferate. Formation of apical cysts is most likely caused by the merging of proliferating epithelial strands from all directions to form a three-dimensional ball mass. After endodontic therapy, epithelial cells in epithelial strands of periapical granulomas and the lining epithelium of apical cysts may stop proliferating because of a reduction in inflammatory mediators, proinflammatory cytokines, and growth factors. Epithelial cells will also regress because of activation of apoptosis or programmed cell death through deprivation of survival factors or by receiving death signals during periapical wound healing.

  17. TSA-induced cell death in prostate cancer cell lines is caspase-2 dependent and involves the PIDDosome.

    PubMed

    Taghiyev, Agshin F; Guseva, Natalya V; Glover, Rebecca A; Rokhlin, Oskar W; Cohen, Michael B

    2006-09-01

    The histone deacetylase inhibitor Trichostatin A (TSA) has previously been found to induce caspase activity in the human prostate cancer cell lines DU145 and LNCaP. TSA treatment resulted in the release of cytochrome c and Smac/DIABLO from mitochondria in DU145, and activation of caspase-9 in both cell lines. We concluded that TSA mediated its effect via the mitochondrial pathway. The aim of the current study was to determine how TSA initiated the caspase cascade. The results revealed that caspase-2 plays an important role in TSA-induced apoptosis. Inhibition of caspase-2 by siRNA or expression of caspase-2dn substantially decreased caspase activity after TSA treatment in both cell lines, siRNA caspase-2 also inhibited TSA-induced cell death. Caspase-2 acts upstream of caspase-8 and -9 and mediates mitochondrial cytochrome c release. Coimmunoprecipitation experiments show that caspase-2 formed protein complexes with RADD/RAIDD and PIDD. Together, these data indicate that caspase-2 initiates caspase cascade after TSA treatment and involves the formation of the PIDDosome.

  18. Failure of matrix metalloproteinase-9 dimer induction by phorbol 12-myristate 13-acetate in normal human cell lines.

    PubMed

    Waheed Roomi, Mohd; Kalinovsky, Tatiana; Rath, Matthias; Niedzwiecki, Aleksandra

    2015-06-01

    Increasing experimental and clinical data has identified an association between increased levels of matrix metalloproteinase (MMP)-9 and shortened patient survival, cancer progression and metastasis. MMP-9 has a significant role in tumor cell invasion and metastasis, as it digests the basement membrane and components of the extracellular matrix. MMP-9 is secreted in either a monomeric or dimeric form. Although limited evidence exists concerning MMP-9 dimers, certain studies have demonstrated that the dimer is associated with aggressive tumor progression. This is believed to be due to the fact that cellular migration depends upon the MMP-9 dimer, and not the monomer. Our previous study revealed that cancer cell MMP-9 dimer secretion patterns could be divided into different categories, and that high MMP-9 and MMP-9 dimer secretion levels were correlated with the most aggressive cancer cell lines. It has been established that signal transduction pathways and cytokines, including those activated by phorbol 12-myristate 13-acetate (PMA), regulate the expression of MMPs. The aim of the present study was to analyze the expression patterns of MMP-2, MMP-9 and MMP-9 dimer in normal human cells from a number of tissues treated with PMA. Muscle, epithelial and connective tissues were selected for use in the present study, since adenosarcomas, carcinomas and sarcomas are derived from these tissue types, respectively. The cell lines were first cultured in 24-well tissue culture plates containing recommended media that was supplemented with 10% fetal bovine serum and antibiotics. When at confluency, the cells were washed and fresh medium was added. In addition, a parallel set of cultures was treated with PMA. Subsequent to a 24-h incubation period, the media were collected and analyzed using gelatinase zymography for the expression of MMP-2 and MMP-9 monomer and dimer forms. The results revealed that the cellular expression of MMP-2 and MMP-9 was dependent upon the primary tissue subtype. All cell lines, regardless of tissue origin, expressed MMP-2. PMA induced the expression of MMP-9 in muscle tissue, glandular epithelia and supportive connective tissue cell lines. By contrast, cell lines of endothelial origin and proper connective tissue were insensitive to treatment with PMA. MMP-9 dimer secretion was not observed in any of the cell lines, which indicated that cellular migration is not supported by these cells.

  19. Method for rapid isolation of sensitive mutants

    DOEpatents

    Freyer, James P.

    1997-01-01

    Sensitive mammalian cell mutants are rapidly isolated using flow cytometry. A first population of clonal spheroids is established to contain both normal and mutant cells. The population may be naturally occurring or may arise from mutagenized cells. The first population is then flow sorted by size to obtain a second population of clonal spheroids of a first uniform size. The second population is then exposed to a DNA-damaging agent that is being investigated. The exposed second population is placed in a growth medium to form a third population of clonal spheroids comprising spheroids of increased size from the mammalian cells that are resistant to the DNA-damaging agent and spheroids of substantially the first uniform size formed from the mammalian cells that are sensitive to the DNA-damaging agent. The third population is not flow sorted to differentiate the spheroids formed from resistant mammalian cells from spheroids formed from sensitive mammalian cells. The spheroids formed from sensitive mammalian cells are now treated to recover viable sensitive cells from which a sensitive cell line can be cloned.

  20. Method for rapid isolation of sensitive mutants

    DOEpatents

    Freyer, J.P.

    1997-07-29

    Sensitive mammalian cell mutants are rapidly isolated using flow cytometry. A first population of clonal spheroids is established to contain both normal and mutant cells. The population may be naturally occurring or may arise from mutagenized cells. The first population is then flow sorted by size to obtain a second population of clonal spheroids of a first uniform size. The second population is then exposed to a DNA-damaging agent that is being investigated. The exposed second population is placed in a growth medium to form a third population of clonal spheroids comprising spheroids of increased size from the mammalian cells that are resistant to the DNA-damaging agent and spheroids of substantially the first uniform size formed from the mammalian cells that are sensitive to the DNA-damaging agent. The third population is not flow sorted to differentiate the spheroids formed from resistant mammalian cells from spheroids formed from sensitive mammalian cells. The spheroids formed from sensitive mammalian cells are now treated to recover viable sensitive cells from which a sensitive cell line can be cloned. 15 figs.

  1. DNA methylation on N6-adenine in mammalian embryonic stem cells

    PubMed Central

    Wu, Tao P.; Wang, Tao; Seetin, Matthew G.; Lai, Yongquan; Zhu, Shijia; Lin, Kaixuan; Liu, Yifei; Byrum, Stephanie D.; Mackintosh, Samuel G.; Zhong, Mei; Tackett, Alan; Wang, Guilin; Hon, Lawrence S.; Fang, Gang; Swenberg, James A.; Xiao, Andrew Z.

    2016-01-01

    It has been widely accepted that 5-methylcytosine is the only form of DNA methylation in mammalian genomes. Here we identify N6-methyladenine as another form of DNA modification in mouse embryonic stem cells. Alkbh1 encodes a demethylase for N6-methyladenine. An increase of N6-methyladenine levels in Alkbh1-deficient cells leads to transcriptional silencing. N6-methyladenine deposition is inversely correlated with the evolutionary age of LINE-1 transposons; its deposition is strongly enriched at young (<1.5 million years old) but not old (>6 million years old) L1 elements. The deposition of N6-methyladenine correlates with epigenetic silencing of such LINE-1 transposons, together with their neighbouring enhancers and genes, thereby resisting the gene activation signals during embryonic stem cell differentiation. As young full-length LINE-1 transposons are strongly enriched on the X chromosome, genes located on the X chromosome are also silenced. Thus, N6-methyladenine developed a new role in epigenetic silencing in mammalian evolution distinct from its role in gene activation in other organisms. Our results demonstrate that N6-methyladenine constitutes a crucial component of the epigenetic regulation repertoire in mammalian genomes. PMID:27027282

  2. Transcriptional Ontogeny of the Developing Liver

    EPA Science Inventory

    During embryogenesis the liver is derived from endodermal cells lining the digestive tract. These endodermal progenitor cells contribute to forming the parenchyma of a number of organs including the liver and pancreas. Early in organogenesis the fetal liver is populated by hemato...

  3. ASK1 regulates the survival of neuroblastoma cells by interacting with TLX and stabilizing HIF-1α.

    PubMed

    Sobhan, Praveen K; Zhai, Qiwei; Green, Lydia C; Hansford, Loen M; Funa, Keiko

    2017-01-01

    Elevated expression of TLX (also called as NR2E1) in neuroblastoma (NB) correlates with unfavorable prognosis, and TLX is required for self-renewal of NB cells. Knockdown of TLX has been shown to reduce the NB sphere-forming ability. ASK1 (MAP3K5) and TLX expression are both enhanced in SP (side population) NB and patient-derived primary NB sphere cell lines, but the majority of non-SP NB lines express lower ASK1 expression. We found that ASK1 phosphorylated and stabilized TLX, which led induction of HIF-1α, and its downstream VEGF-A in an Akt dependent manner. In depleting ASK1 upon hypoxia, TLX decreased and the apoptosis ratio of NB cells was enhanced, while low-ASK1-expressing NB cell lines were refractory in TUNEL assay by using flow cytometry. Interestingly, primary NB spheres cell lines express only high levels of active pASK1Thr-838 but the established cell lines expressed inhibitory pASK1Ser-966, and both could be targeted by ASK1 depletion. We report a novel pro-survival role of ASK1 in the tumorigenic NB cell populations, which may be applied as a therapeutic target, inducing apoptosis specifically in cancer stem cells. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. A New Water-Soluble Nanomicelle Formed through Self-Assembly of Pectin-Curcumin Conjugates: Preparation, Characterization, and Anticancer Activity Evaluation.

    PubMed

    Bai, Feng; Diao, Jiajing; Wang, Ying; Sun, Shixin; Zhang, Hongmei; Liu, Yunyun; Wang, Yanqing; Cao, Jian

    2017-08-16

    Curcumin is a dominating active component of Curcuma longa and has been studied widely because of its prominent biological activities. The extremely low aqueous solubility, stability, and bioavailability of curcumin limit its application in the field of medicine. In this study, we developed pectin-curcumin (PEC-CCM) conjugates that could self-assemble water-soluble nanomicelles in aqueous solution. The structure of PEC-CCM conjugates was characterized by ultraviolet-visible spectra, fluorescence spectra, Fourier transform infrared spectroscopy, and 1 H nuclear magnetic resonance spectroscopy. The thermal property of PEC-CCM conjugates was investigated by thermogravimetric analysis. It was found that PEC-CCM conjugates had formed nanomicelles in aqueous medium via self-assembly. These nanomicelles were observed as small spheres or ellipsoids and aggregated with a size range of 70-190 nm by transmission electron microscopy analysis. In a solution of nanomicelles, the stability of curcumin was improved, and its antioxidant property was preserved. The anticancer activity of PEC-CCM conjugates was quantified by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay using a hepatic cancer cell line (HepG2), a breast cancer cell line (MCF-7), a cervical cancer cell line (HeLa), and a human normal kidney cell line (293A). It was found that the curcumin of PEC-CCM conjugates had a more significant inhibitory effect on cancer cells and was less cytotoxic to normal cells than free curcumin was. PEC-CCM conjugates have great potential for some food and pharmaceutical applications.

  5. Post-translational modification and stability of low molecular weight cyclin E.

    PubMed

    Mull, B B; Cox, J; Bui, T; Keyomarsi, K

    2009-09-03

    Our laboratory has previously described the presence of five tumor-specific low molecular weight isoforms of cyclin E in both tumor cell lines and breast cancer patient biopsies. We have also shown that one of these low forms arises from an alternate start site, whereas the other four appear as two sets of doublets following cleavage through an elastase-like enzyme. However, the origin of both sets of doublets was unknown. Here, we demonstrate that the larger isoform of each doublet is the result of phosphorylation at a key degradation site. Through site-directed mutagenesis of different phosphorylation sites within the cyclin E protein, we discovered that phosphorylation of threonine 395 is responsible for generating the larger isoform of each doublet. Because phosphorylation of threonine 395 has been linked to the proteasome-mediated degradation of full length cyclin E, we examined the stability of T395A phospho-mutants in both non-tumorigenic mammary epithelial cells and tumor cells. The results revealed that the low molecular weight isoforms appear to be stable in both a tumor cell line and a non-tumor forming cell line regardless of the presence of this critical phosphorylation site. The stability of low molecular weight cyclin E may have implications for both tumorigenesis and treatment of tumors expressing them.

  6. [Inheritable phenotypic normalization of rodent cells transformed by simian adenovirus SA7 E1 oncogenes by singled-stranded oligonucleotides complementary to a long region of integrated oncogenes].

    PubMed

    Grineva, N I; Borovkova, T V; Sats, N V; Kurabekova, R M; Rozhitskaia, O S; Solov'ev, G Ia; Pantin, V I

    1995-08-01

    G11 mouse cells and SH2 rat cells transformed with simian adenovirus SA7 DNA showed inheritable oncogen-specific phenotypic normalization when treated with sense and antisense oligonucleotides complementary to long RNA sequences, plus or minus strands of the integrated adenovirus oncogenes E1A and E1B. Transitory treatment of the cells with the oligonucleotides in the absence of serum was shown to cause the appearance of normalized cell lines with fibroblastlike morphology, slower cell proliferation, and lack of ability to form colonies in soft agar. Proliferative activity and adhesion of the normalized cells that established cell lines were found to depend on the concentration of growth factors in the cultural medium. In some of the cell lines, an inhibition of transcription of the E1 oncogenes was observed. The normalization also produced cells that divided 2 - 5 times and died and cells that reverted to a transformed phenotype in 2 - 10 days. The latter appeared predominantly upon the action of the antisense oligonucleotides.

  7. The neoplastic potential of rat tracheal epithelial cell lines induced by dibenzo(a, i)pyrene and 1-nitropyrene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiang, M.; Ong, T.; Nath, J.

    1997-10-01

    The rat tracheal epithelial (RTE) cell transformation system is an important short-term assay for respiratory carcinogenesis. In our laboratories, studies have been performed using this assay system to determine the carcinogenic potential of dibenzo(a,i)pyrene (DBP) and 1-nitropyrene (1-NP), two compounds commonly contaminating occupational and environmental settings. RTE cells were exposed in vivo to DBP or 1-NP by intertracheal instillation. RTE cells were then isolated and plated on a medium for determination of cloning and transformation frequencies. Cell lines established from transformed cells induced by DBP and 1-NP were analyzed for their neoplastic potential with the soft agar cloning and themore » athymic nude mouse tumorigenicity assays. Results showed that: (1) incidence of transformed foci in cultures treated with DBP or 1-NP in vivo was significantly higher than that in the control cultures; (2) 8 and 25 cell lines were established from 28 and 48 transformed foci induced by DBP and 1-NP, respectively; (3) 3 of 5 cell lines from DBP and 5 anchorage independent growth in soft agar; (4) some of the cell lines from DBP and 1-NP induced transformed foci formed tumors after cells were injected in athymic nude mice. These results indicate that in vivo exposure to DBP and 1-NP can induce RTE cell transformation and that transformed cells induced by DBP and 1-NP may have neoplastic potential.« less

  8. Characteristics of a cell line established from a patient with multiple osteosarcoma, appearing 13 years after treatment for bilateral retinoblastoma.

    PubMed

    Fodstad, O; Brøgger, A; Bruland, O; Solheim, O P; Nesland, J M; Pihl, A

    1986-07-15

    An osteosarcoma cell line, OHS, was established from a patient with multiple skeletal manifestations of osteosarcoma, developing after bilateral retinoblastoma. The tumor cells expressed sarcoma-associated antigens and showed rapid growth in monolayers and as multicellular spheroids. They formed distinct colonies in soft agar, and subcutaneous tumors in nude mice. Morphological studies indicated that OHS cells had retained important characteristics of the cells of origin. No deletion of the retinoblastoma genes on chromosome 13q14 could be demonstrated with the banding techniques used. However, cytogenetic studies revealed double minute chromosomes, as evidence of gene amplification, as well as translocations involving chromosomes 1,6,11 and 13. The OHS line can be used to study the genetic basis of tumor initiation and growth, and to elucidate factors predisposing for second primary cancers in retinoblastoma patients.

  9. Monoclonal antibodies targeting non-small cell lung cancer stem-like cells by multipotent cancer stem cell monoclonal antibody library.

    PubMed

    Cao, Kaiyue; Pan, Yunzhi; Yu, Long; Shu, Xiong; Yang, Jing; Sun, Linxin; Sun, Lichao; Yang, Zhihua; Ran, Yuliang

    2017-02-01

    Cancer stem cells (CSCs) are a rare subset of cancer cells that play a significant role in cancer initiation, spreading, and recurrence. In this study, a subpopulation of lung cancer stem-like cells (LCSLCs) was identified from non-small cell lung carcinoma cell lines, SPCA-1 and A549, using serum-free suspension sphere-forming culture method. A monoclonal antibody library was constructed using immunized BLAB/c mice with the multipotent CSC cell line T3A-A3. Flow cytometry analysis showed that 33 mAbs targeted antigens can be enriched in sphere cells compared with the parental cells of SPCA-1 and A549 cell lines. Then, we performed functional antibody screening including sphere-forming inhibiting and invasion inhibiting assay. The results showed that two antibodies, 12C7 and 9B8, notably suppressed the self-renewal and invasion of LCSLCs. Fluorescence-activated cell sorting (FACs) found that the positive cells recognized by mAbs, 12C7 or 9B8, displayed features of LCSLCs. Interestingly, we found that these two antibodies recognized different subsets of cells and their combination effect was superior to the individual effect both in vitro and in vivo. Tissue microarrays were applied to detect the expression of the antigens targeted by these two antibodies. The positive expression of 12C7 and 9B8 targeted antigen was 84.4 and 82.5%, respectively, which was significantly higher than that in the non-tumor lung tissues. In conclusion, we screened two potential therapeutic antibodies that target different subsets of LCSLCs.

  10. Irradiation With Carbon Ion Beams Induces Apoptosis, Autophagy, and Cellular Senescence in a Human Glioma-Derived Cell Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jinno-Oue, Atsushi; Shimizu, Nobuaki; 21st Century Center of Excellence Program for Biomedical Research Using Accelerator Technology, Maebashi, Gunma

    2010-01-15

    Purpose: We examined biological responses of human glioma cells to irradiation with carbon ion beams (C-ions). Methods and Materials: A human glioma-derived cell line, NP-2, was irradiated with C-ions. Apoptotic cell nuclei were stained with Hoechst 33342. Induction of autophagy was examined either by staining cells with monodansylcadaverine (MDC) or by Western blotting to detect conversion of microtuble-associated protein light chain 3 (MAP-LC3) (LC3-I) to the membrane-bound form (LC3-II). Cellular senescence markers including induction of senescence-associated beta-galactosidase (SA-beta-gal) were examined. The mean telomere length of irradiated cells was determined by Southern blot hybridization. Expression of tumor suppressor p53 and cyclin/cyclin-dependentmore » kinase inhibitor p21{sup WAF1/CIP1} in the irradiated cells was analyzed by Western blotting. Results: When NP-2 cells were irradiated with C-ions at 6 Gy, the major population of the cells died of apoptosis and autophagy. The residual fraction of attached cells (<1% of initially irradiated cells) could not form a colony: however, they showed a morphological phenotype consistent with cellular senescence, that is, enlarged and flattened appearance. The senescent nature of these attached cells was further indicated by staining for SA-beta-gal. The mean telomere length was not changed after irradiation with C-ions. Phosphorylation of p53 at serine 15 as well as the expression of p21{sup WAF1/CIP1} was induced in NP-2 cells after irradiation. Furthermore, we found that irradiation with C-ions induced cellular senescence in a human glioma cell line lacking functional p53. Conclusions: Irradiation with C-ions induced apoptosis, autophagy, and cellular senescence in human glioma cells.« less

  11. Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors.

    PubMed

    Kim, Eunhye; Hwang, Seon-Ung; Yoo, Hyunju; Yoon, Junchul David; Jeon, Yubyeol; Kim, Hyunggee; Jeung, Eui-Bae; Lee, Chang-Kyu; Hyun, Sang-Hwan

    2016-03-01

    The establishment of porcine embryonic stem cells (ESCs) would have great impact in biomedical studies and preclinical trials through their use in genetic engineering. However, authentic porcine ESCs have not been established until now. In this study, a total of seven putative ESC lines were derived from porcine embryos of various origins, including in vitro fertilization, parthenogenetic activation, and, in particular, induced pluripotent stem (iPS) nuclear transfer (NT) from a donor cell with induced pluripotent stem cells (iPSCs). To characterize these cell lines, several assays including an assessment of intensive alkaline phosphatase activity, karyotyping, embryoid body formation, expression analysis of the pluripotency-associated markers, and the three germ layerassociated markers were performed. Based on quantitative polymerase chain reaction, the expression levels of REX1 and FGFR2 in iPS-NT lines were higher than those of cells of other origins. Additionally, only iPS-NT lines showed multiple aberrant patterns of nuclear foci elucidated by immunofluorescence staining of H3K27me3 as a marker of the state of X chromosome inactivation and a less mature form of mitochondria like naive ESCs, by transmission electron microscopy. Together, these data suggested that established putative porcine ESC lines generally exhibited a primed pluripotent state, like human ESCs. However, iPS-NT lines have especially unique characteristics distinct from other origins because they have more epigenetic instability and naive-like mitochondrial morphology than other putative ESC lines. This is the first study to establish and characterize the iPSC-derived putative ESC lines and compare them with other lines derived from different origins in pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Higher titers of some H5N1 and recent human H1N1 and H3N2 influenza viruses in Mv1 Lu vs. MDCK cells

    PubMed Central

    2011-01-01

    Background The infectivity of influenza A viruses can differ among the various primary cells and continuous cell lines used for such measurements. Over many years, we observed that all things equal, the cytopathic effects caused by influenza A subtype H1N1, H3N2, and H5N1 viruses were often detected earlier in a mink lung epithelial cell line (Mv1 Lu) than in MDCK cells. We asked whether virus yields as measured by the 50% tissue culture infectious dose and plaque forming titer also differed in MDCK and Mv1 Lu cells infected by the same influenza virus subtypes. Results The 50% tissue culture infectious dose and plaque forming titer of many influenza A subtype H1N1, H3N2, and H5N1 viruses was higher in Mv1 Lu than in MDCK cells. Conclusions The yields of influenza subtype H1N1, H3N2, and H5N1 viruses can be higher in Mv1 Lu cells than in MDCK cells. PMID:21314955

  13. Design of a TEM cell EMP simulator

    NASA Astrophysics Data System (ADS)

    Sevat, Pete

    1991-06-01

    Electromagnetic pulse (EMP) simulators are designed to simulate the EMP generated by a nuclear weapon and are used to harden equipment against the effects of EMP. A transverse electromagnetic (TEM) cell is a square or rectangular coaxial transmission line tapered at each end to form a closed cell. The cell is fed at one end with a signal generator, a continuous wave or pulse generator, and terminated at the other end with a resistor equal to the characteristic impedance of the line. An advantage of the TEM cell is that the field is well characterized and reasonably uniform. A small, symmetric, TEM cell EMP simulator is described which is intended for applications such as susceptibility testing of small equipment, calibration of sensors, design and testing of countermeasures, measurement of transfer functions, and research and development. A detailed design is presented for a 50 ohm and 100 ohm TEM cell with an inner volume of 4 m(exp 3) and a test volume of 0.24 m(exp 3). The pulse generator and terminating network are integrated into the cell to form a completely shielded structure. In this way no interference from the inside of the cell to the outside, or vice versa, will occur.

  14. Influence of calcitriol on prostaglandin- and vitamin D-metabolising enzymes in benign and malignant breast cell lines.

    PubMed

    Thill, Marc; Cordes, Tim; Hoellen, Friederike; Becker, Steffi; Dittmer, Christine; Kümmel, Sherko; Salehin, Darius; Friedrich, Michael; Diedrich, Klaus; Köster, Frank

    2012-01-01

    Cyclooxygenase-2 (COX-2) is a potential molecular prognostic factor for breast cancer, and calcitriol [1,25(OH)(2)D(3)], the biologically active form of vitamin D, is a promising target in breast cancer therapy. The influence of calcitriol on the proliferation and the effects of calcitriol on the expression of prostaglandin- and vitamin D-metabolising enzymes were examined in benign and malignant breast cells. Calcitriol inhibited the proliferation of MCF-10F and MCF-7 cells but not of invasive MDA-MB-231 cells and reduced the expression of COX-2 and 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in the benign breast cell line MCF-10F. Furthermore, dysregulation in vitamin D-metabolising proteins was detected, especially in MDA-MB-231 cells. These results suggest dysregulation of vitamin D metabolism and a lack of a possible influence of calcitriol on the metabolism of prostaglandins in the malignant breast cell lines.

  15. The combined effects of high-energy shock waves and ionising radiation on a human bladder cancer cell line.

    PubMed

    Fickweiler, S; Steinbach, P; Wörle, K; Hofstädter, F

    1996-01-01

    The effects of high-energy shock waves (HESW) generated by an experimental Siemens lithotripter in combination with 137Cs gamma-rays were examined in vitro. Proliferation after treatment of immobilised pellets of either single cells or multicellular spheroids of the bladder cancer cell line RT4 was determined using colony-forming assays and cell cycle analysis. Surviving and cell cycle fractions were calculated for each shock wave and radiation application mode separately, and for sequential combination in different successions for the purpose of characterizing the interaction of both treatment modalities. Combination of HESW and ionising radiation turned out to act additively or slightly supra-additively on both biologic models.

  16. A new PDAC mouse model originated from iPSCs-converted pancreatic cancer stem cells (CSCcm)

    PubMed Central

    Calle, Anna Sanchez; Nair, Neha; Oo, Aung KoKo; Prieto-Vila, Marta; Koga, Megumi; Khayrani, Apriliana Cahya; Hussein, Maram; Hurley, Laura; Vaidyanath, Arun; Seno, Akimasa; Iwasaki, Yoshiaki; Calle, Malu; Kasai, Tomonari; Seno, Masaharu

    2016-01-01

    Pancreatic ductal adenocarcinoma (PDAC) is the most representative form of pancreatic cancers. PDAC solid tumours are constituted of heterogeneous populations of cells including cancer stem cells (CSCs), differentiated cancer cells, desmoplastic stroma and immune cells. The identification and consequent isolation of pancreatic CSCs facilitated the generation of genetically engineered murine models. Nonetheless, the current models may not be representative for the spontaneous tumour occurrence. In the present study, we show the generation of a novel pancreatic iPSC-converted cancer stem cell lines (CSCcm) as a cutting-edge model for the study of PDAC. The CSCcm lines were achieved only by the influence of pancreatic cancer cell lines conditioned medium and were not subjected to any genetic manipulation. The xenografts tumours from CSCcm lines displayed histopathological features of ADM, PanIN and PDAC lesions. Further molecular characterization from RNA-sequencing analysis highlighted primary culture cell lines (1st CSCcm) as potential candidates to represent the pancreatic CSCs and indicated the establishment of the pancreatic cancer molecular pattern in their subsequent progenies 2nd CSCcm and 3rd CSCcm. In addition, preliminary RNA-seq SNPs analysis showed that the distinct CSCcm lines did not harbour single point mutations for the oncogene Kras codon 12 or 13. Therefore, PDAC-CSCcm model may provide new insights about the actual occurrence of the pancreatic cancer leading to develop different approaches to target CSCs and abrogate the progression of this fatidic disease. PMID:28042501

  17. Combining bio-electrospraying with gene therapy: a novel biotechnique for the delivery of genetic material via living cells.

    PubMed

    Ward, Eliot; Chan, Emma; Gustafsson, Kenth; Jayasinghe, Suwan N

    2010-05-01

    The investigations reported in this article demonstrate the ability of bio-electrosprays and cell electrospinning to deliver a genetic construct in association with living cells. Previous studies on both bio-electrosprays and cell electrospinning demonstrated great promise for tissue engineering and regenerative biology/medicine. The investigations described herein widen the applicability of these biotechniques by combining gene therapy protocols, resulting in a novel drug delivery methodology previously unexplored. In these studies a human cell line was transduced with recombinant self-inactivating lentiviral particles. These particles incorporated a green fluorescent protein fused to an endosomal targeting construct. This construct encodes a peptide, which can subsequently be detected on the surface of cells by specific T-cells. The transduced cell line was subsequently manipulated in association with either bio-electrospraying or cell electrospinning. Hence this demonstrates (i) the ability to safely handle genetically modified living cells and (ii) the ability to directly form pre-determined architectures bearing living therapeutic cells. This merged technology demonstrates a unique approach for directly forming living therapeutic architectures for controlled and targeted release of experimental cells/genes, as well as medical cell/gene therapeutics for a plethora of biological and medical applications. Hence, such developments could be applied to personalised medicine.

  18. Ascorbate/menadione-induced oxidative stress kills cancer cells that express normal or mutated forms of the oncogenic protein Bcr-Abl. An in vitro and in vivo mechanistic study.

    PubMed

    Beck, Raphaël; Pedrosa, Rozangela Curi; Dejeans, Nicolas; Glorieux, Christophe; Levêque, Philippe; Gallez, Bernard; Taper, Henryk; Eeckhoudt, Stéphane; Knoops, Laurent; Calderon, Pedro Buc; Verrax, Julien

    2011-10-01

    Numerous studies suggest that generation of oxidative stress could be useful in cancer treatment. In this study, we evaluated, in vitro and in vivo, the antitumor potential of oxidative stress induced by ascorbate/menadione (asc/men). This combination of a reducing agent (ascorbate) and a redox active quinone (menadione) generates redox cycling leading to formation of reactive oxygen species (ROS). Asc/men was tested in several cell types including K562 cells (a stable human-derived leukemia cell line), freshly isolated leukocytes from patients with chronic myeloid leukemia, BaF3 cells (a murine pro-B cell line) transfected with Bcr-Abl and peripheral blood leukocytes derived from healthy donors. Although these latter cells were resistant to asc/men, survival of all the other cell lines was markedly reduced, including the BaF3 cells expressing either wild-type or mutated Bcr-Abl. In a standard in vivo model of subcutaneous tumor transplantation, asc/men provoked a significant delay in the proliferation of K562 and BaF3 cells expressing the T315I mutated form of Bcr-Abl. No effect of asc/men was observed when these latter cells were injected into blood of mice most probably because of the high antioxidant potential of red blood cells, as shown by in vitro experiments. We postulate that cancer cells are more sensitive to asc/men than healthy cells because of their lack of antioxidant enzymes, mainly catalase. The mechanism underlying this cytotoxicity involves the oxidative cleavage of Hsp90 with a subsequent loss of its chaperone function thus leading to degradation of wild-type and mutated Bcr-Abl protein.

  19. Enrichment and characterization of cancer stem cells from a human non-small cell lung cancer cell line.

    PubMed

    Zhao, Changhong; Setrerrahmane, Sarra; Xu, Hanmei

    2015-10-01

    Tumor cells from the same origin comprise different cell populations. Among them, cancer stem cells (CSCs) have higher tumorigenicity. It is necessary to enrich CSCs to determine an effective way to suppress and eliminate them. In the present study, using the non-adhesive culture system, tumor spheres were successfully generated from human A549 non-small cell lung cancer (NSCLC) cell line within 2 weeks. Compared to A549 adherent cells, sphere cells had a higher self-renewal ability and increased resistance to cytotoxic drugs. Sphere cells were more invasive and expressed stem cell markers including octamer‑binding transcription factor 4 (Oct4) and sex-determining region Y-box 2 (Sox2) at high levels. CD133, a disputed marker of lung CSCs, was also upregulated. Tumor sphere cells showed higher tumorigenic ability in vivo, indicating that more CSCs were enriched in the sphere cells. More blood vessels were formed in the tumor generated by sphere cells suggesting the interaction between CSCs and blood vessel. A reliable model of enriching CSCs from the human A549 NSCLC cell line was established that was simple and cost-effective compared to other methods.

  20. Expression and processing of human preprogastrin in murine medullary thyroid carcinoma cells.

    PubMed

    Daugherty, D F; Dickinson, C J; Takeuchi, T; Bachwich, D; Yamada, T

    1991-05-01

    Gastrin, the primary hormonal mediator of postprandial gastric acid secretion, is produced from its precursor progastrin by a series of posttranslational processing reactions including dibasic residue cleavage and carboxyl-terminal alpha-amidation. Progastrin contains three dibasic cleavage signals, Arg57Arg58, Lys74Lys75, and Arg94Arg95, that appear to be cleaved differently in different tissues. Differential processing is a potential means by which the production of biologically active peptides may be regulated in a tissue-specific manner. To study these reactions further, we used the pZipNeo SV(X) retroviral vector to express human gastrin cDNA in a heterologous cell line (MTC 6-23) known to be capable of processing other peptide precursors. The psi 2 packaging cell line transfected with the gastrin cDNA-retroviral construct (pSVXgas) produced progastrin, but no substantial amounts of processed amidated gastrin were detected. amounts of processed amidated gastrin were detected. In contrast, MTC 6-23 cells infected with the viral stock obtained from the supernatant of pSVXgas-transfected psi 2 cells produced carboxyl-terminally amidated gastrin in all of its standard molecular forms, including sulfated and nonsulfated forms of tetratriacontagastrin (G-34), heptadecagastrin (G-17), and tetradecagastrin (G-14). These studies indicate that heterologous endocrine cell lines infected with a retroviral-peptide cDNA construct can serve as useful models for peptide hormone posttranslational processing.

  1. Notch signaling is a potent inducer of growth arrest and apoptosis in a wide range of B-cell malignancies

    PubMed Central

    Zweidler-McKay, Patrick A.; He, Yiping; Xu, Lanwei; Rodriguez, Carlos G.; Karnell, Fredrick G.; Carpenter, Andrea C.; Aster, Jon C.; Allman, David; Pear, Warren S.

    2005-01-01

    Although Notch receptor expression on malignant B cells is widespread, the effect of Notch signaling in these cells is poorly understood. To investigate Notch signaling in B-cell malignancy, we assayed the effect of Notch activation in multiple murine and human B-cell tumors, representing both immature and mature subtypes. Expression of constitutively active, truncated forms of the 4 mammalian Notch receptors (ICN1-4) inhibited growth and induced apoptosis in both murine and human B-cell lines but not T-cell lines. Similar results were obtained in human precursor B-cell acute lymphoblastic leukemia lines when Notch activation was achieved by coculture with fibroblasts expressing the Notch ligands Jagged1 or Jagged2. All 4 truncated Notch receptors, as well as the Jagged ligands, induced Hes1 transcription. Retroviral expression of Hairy/Enhancer of Split-1 (Hes1) recapitulated the Notch effects, suggesting that Hes1 is an important mediator of Notch-induced growth arrest and apoptosis in B cells. Among the B-cell malignancies that were susceptible to Notch-mediated growth inhibition/apoptosis were mature B-cell and therapy-resistant B-cell malignancies, including Hodgkin, myeloma, and mixed-lineage leukemia (MLL)–translocated cell lines. These results suggest that therapies capable of activating Notch/Hes1 signaling may have therapeutic potential in a wide range of human B-cell malignancies. PMID:16118316

  2. Molecular association of 2-(n-alkylamino)-1,4-naphthoquinone derivatives: Electrochemical, DFT studies and antiproliferative activity against leukemia cell lines

    NASA Astrophysics Data System (ADS)

    Patil, Rishikesh; Bhand, Sujit; Konkimalla, V. Badireenath; Banerjee, Priyabrata; Ugale, Bharat; Chadar, Dattatray; Saha, Sourav Kr.; Praharaj, Prakash Priyadarshi; Nagaraja, C. M.; Chakrovarty, Debamitra; Salunke-Gawali, Sunita

    2016-12-01

    Molecular structures and their molecular association of 2-(n-alkylamino)-1,4-naphthoquinone, viz., LH-3; propyl, LH-4; butyl and LH-8; octyl derivatives were studied by single crystal X-ray diffraction studies. Synthesis and characterization of 2-octylamino-1,4-naphthoquinone; LH-8 was discussed. The molecule of LH-3 crystallizes in orthorhombic space group P21/c, while the LH-4 and LH-8 molecule crystallizes in triclinic space group P-1. LH-3, LH-4 and LH-8 showed intermolecular N-H⋯O and C-H⋯O interactions, LH-3 showed unique C(3)-H(3)⋯O(1) interaction. Interchain π-π stacking, slipped π-π stacking and C⋯O close contacts was respectively observed in LH-3, LH-4 and LH-8. Electrochemical studies were performed on first eight members of homologous series of 2-(n-alkylamino)-1,4-naphthoquinone (LH-1 to LH-8) by cyclic voltammetry. Naphthoquinone to naphthosemiquinone reversible redox couple was observed in all compounds ∼ E1/2 = -0.657 ± 0.05 V. HOMO-LUMO band gap was determined for the neutral form as well as the monoanionic radical form viz. naphthosemiquinone form of selected derivatives by DFT studies. It has been observed that the electron density is delocalized in the naphthoquinone ring in both neutral as well as one electron reduced form of compounds. Antiproliferative activity of LH-1 to LH-8 was evaluated against two cancer cell lines, THP1(acute monocytic leukemia) and K562(human immortalized myelogenous leukemia cell line) cells. It was observed that, in THP1 cells, compounds LH-2 and LH-3 are very active while LH-1, LH-4 and LH-6 were moderately active and LH-5, LH-7 and LH-8 were totally inactive. Contrastingly, in K562 cells all of the compounds were moderately active.

  3. Cell-wall deficient L. monocytogenes L-forms feature abrogated pathogenicity

    PubMed Central

    Schnell, Barbara; Staubli, Titu; Harris, Nicola L.; Rogler, Gerhard; Kopf, Manfred; Loessner, Martin J.; Schuppler, Markus

    2014-01-01

    Stable L-forms are cell wall-deficient bacteria which are able to multiply and propagate indefinitely, despite the absence of a rigid peptidoglycan cell wall. We investigated whether L-forms of the intracellular pathogen L. monocytogenes possibly retain pathogenicity, and if they could trigger an innate immune response. While phagocytosis of L. monocytogenes L-forms by non-activated macrophages sometimes resulted in an unexpected persistence of the bacteria in the phagocytes, they were effectively eliminated by IFN-γ preactivated or bone marrow-derived macrophages (BMM). These findings were in line with the observed down-regulation of virulence factors in the cell-wall deficient L. monocytogenes. Absence of Interferon-β (IFN-β) triggering indicated inability of L-forms to escape from the phagosome into the cytosol. Moreover, abrogated cytokine response in MyD88-deficient dendritic cells (DC) challenged with L. monocytogenes L-forms suggested an exclusive TLR-dependent host response. Taken together, our data demonstrate a strong attenuation of Listeria monocytogenes L-form pathogenicity, due to diminished expression of virulence factors and innate immunity recognition, eventually resulting in elimination of L-form bacteria from phagocytes. PMID:24904838

  4. [Formation of protodioscin and deltoside isomers in suspension cultures of Nepal yam (Dioscorea deltoidea Wall.) cells].

    PubMed

    Khandy, M T; Titova, M V; Konstantinova, S V; Kochkin, D V; Ivanov, I M; Nosov, A M

    2016-01-01

    Changes in the content of the furostanol glycosides protodioscin and deltoside, particularly that of the (25S)-isomers of the glycosides, during suspension cultivation of different lines of Nepal yam (Dioscorea deltoidea Wall.) cells of the strain IFR-DM-0.5 has been investigated. The composition of furostanol glycosides has been characterized, and the dynamics of the accumulation of individual glycosides during lengthy subcultivation of cells maintained in flasks or in a barbotage bioreactor has been analyzed. A positive correlation between the growth and accumulation of substances that belonged to the class of furostanol glycosides has been demonstrated for cultured dioscorea cells, whereas the content of some of the individual glycosides varied considerably between the lines of the strain, cultures maintained under different conditions, and even between cells in different phases of the growth cycle. The increased content of (25R)-forms of the glycosides (protodioscin and deltoside) was correlated with a decrease in the cellular growth rate, whereas an increase in culture growth intensity occurred concomitantly to an increase of the amount of (25S)-isomers. This may be indicative of the specific stimulatory effect of (25S)-glycosides, but not the (25R)-forms, on cell proliferation in vitro. Thus, the concentration of (25S)-forms may increase due to the autoselection of cells capable of intensive division during prolonged cultivation.

  5. Inhibition of exportin-1 function results in rapid cell cycle-associated DNA damage in cancer cells

    PubMed Central

    Burke, Russell T.; Marcus, Joshua M.; Orth, James D.

    2017-01-01

    Selective inhibitors of nuclear export (SINE) are small molecules in development as anti-cancer agents. The first-in-class SINE, selinexor, is in clinical trials for blood and solid cancers. Selinexor forms a covalent bond with exportin-1 at cysteine-528, and blocks its ability to export cargos. Previous work has shown strong cell cycle effects and drug-induced cell death across many different cancer-derived cell lines. Here, we report strong cell cycle-associated DNA double-stranded break formation upon the treatment of cancer cells with SINE. In multiple cell models, selinexor treatment results in the formation of clustered DNA damage foci in 30-40% of cells within 8 hours that is dependent upon cysteine-528. DNA damage strongly correlates with G1/S-phase and decreased DNA replication. Live cell microscopy reveals an association between DNA damage and cell fate. Cells that form damage in G1-phase more often die or arrest, while those damaged in S/G2-phase frequently progress to cell division. Up to half of all treated cells form damage foci, and most cells that die after being damaged, were damaged in G1-phase. By comparison, non-transformed cell lines show strong cell cycle effects but little DNA damage and less death than cancer cells. Significant drug combination effects occur when selinexor is paired with different classes of agents that either cause DNA damage or that diminish DNA damage repair. These data present a novel effect of exportin-1 inhibition and provide a strong rationale for multiple combination treatments of selinexor with agents that are currently in use for the treatment of different solid cancers. PMID:28467801

  6. Use of HL cells for improved isolation and passage of Chlamydia pneumoniae.

    PubMed Central

    Cles, L D; Stamm, W E

    1990-01-01

    We compared growth of the recently discovered respiratory pathogen Chlamydia pneumoniae in McCoy, HeLa 229, BHK-21, and HL cells. When cells were not pretreated with DEAE-dextran, HL cells had significantly higher mean numbers of inclusion-forming units (IFUs) on initial inoculation than the other cell lines. When cells were pretreated with DEAE-dextran, HeLa 229 and HL cells had equivalent mean numbers of IFUs on initial inoculation. HL cells had strikingly higher mean numbers of IFUs in passage than HeLa 229, BHK-21, or McCoy cells. In addition, HL cells did not require pretreatment with DEAE-dextran and could be used from 2 to 4 days after seeding. We conclude that HL cells are an excellent cell culture system for laboratory propagation of C. pneumoniae and may be a more sensitive cell line for initial isolation. PMID:2191013

  7. In Vitro Study of Taenia solium Postoncospheral Form.

    PubMed

    Chile, Nancy; Clark, Taryn; Arana, Yanina; Ortega, Ynes R; Palma, Sandra; Mejia, Alan; Angulo, Noelia; Kosek, Jon C; Kosek, Margaret; Gomez-Puerta, Luis A; Garcia, Hector H; Gavidia, Cesar M; Gilman, Robert H; Verastegui, Manuela

    2016-02-01

    The transitional period between the oncosphere and the cysticercus of Taenia solium is the postoncospheral (PO) form, which has not yet been completely characterized. The aim of this work was to standardize a method to obtain T. solium PO forms by in vitro cultivation. We studied the morphology of the PO form and compared the expression of antigenic proteins among the PO form, oncosphere, and cysticerci stages. T. solium activated oncospheres were co-cultured with ten cell lines to obtain PO forms, which we studied at three stages of development--days 15, 30, and 60. A high percentage (32%) of PO forms was obtained using HCT-8 cells in comparison to the other cell lines. The morphology was observed by bright field, scanning, and transmission electron microscopy. Morphology of the PO form changed over time, with the six hooks commonly seen in the oncosphere stage disappearing in the PO forms, and vesicles and microtriches observed in the tegument. The PO forms grew as they aged, reaching a diameter of 2.5 mm at 60 days of culture. 15-30 day PO forms developed into mature cysticerci when inoculated into rats. Antigenic proteins expressed in the PO forms are also expressed by the oncosphere and cysticerci stages, with more cysticerci antigenic proteins expressed as the PO forms ages. This is the first report of an in vitro production method of T. solium PO forms. The changes observed in protein expression may be useful in identifying new targets for vaccine development. In vitro culture of PO form will aid in understanding the host-parasite relationship, since the structural changes of the developing PO forms may reflect the parasite's immunoprotective mechanisms. A wider application of this method could significantly reduce the use of animals, and thus the costs and time required for further experimental investigations.

  8. Development of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy.

    PubMed

    Nittayacharn, Pinunta; Nasongkla, Norased

    2017-07-01

    The objective of this work was to develop self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system for liver cancer chemotherapy and studied the release profiles of doxorubicin (Dox) from different depot formulations. Tri-block copolymers of poly(ε-caprolactone), poly(D,L-lactide) and poly(ethylene glycol) named PLECs were successfully used as a biodegradable material to encapsulate Dox as the injectable local drug delivery system. Depot formation and encapsulation efficiency of these depots were evaluated. Results show that depots could be formed and encapsulate Dox with high drug loading content. For the release study, drug loading content (10, 15 and 20% w/w) and polymer concentration (25, 30, and 35% w/v) were varied. It could be observed that the burst release occurred within 1-2 days and this burst release could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. The degradation at the surface and cross-section of the depots were examined by Scanning Electron Microscope (SEM). In addition, cytotoxicity of Dox-loaded depots and blank depots were tested against human liver cancer cell lines (HepG2). Dox released from depots significantly exhibited potent cytotoxic effect against HepG2 cell line compared to that of blank depots. Results from this study reveals an important insight in the development of injectable drug delivery system for liver cancer chemotherapy. Schematic diagram of self-forming doxorubicin-loaded polymeric depots as an injectable drug delivery system and in vitro characterizations. (a) Dox-loaded PLEC depots could be formed with more than 90% of sustained-release Dox at 25% polymer concentration and 20% Dox-loading content. The burst release occurred within 1-2 days and could be reduced by physical mixing of hydroxypropyl-beta-cyclodextrin (HP-β-CD) into the depot system. (b) Dox released from depots significantly exhibited potent cytotoxic effect against human liver cancer cell lines (HepG2 cell line) compared to that of blank depots. (c) Dox-loaded depots showed bulk erosion with hollow core at day 60.

  9. Bufalin inhibits the differentiation and proliferation of human osteosarcoma cell line hMG63-derived cancer stem cells.

    PubMed

    Chang, Yuewen; Zhao, Yongfang; Zhan, Hongsheng; Wei, Xiaoen; Liu, Tianjin; Zheng, Bo

    2014-02-01

    Cancer stem cells (CSCs) play an important role in drug resistance of tumor and are responsible for high recurrence rates. Agents that can suppress the proliferation and differentiation of CSCs would provide new opportunity to fight against tumor recurrence. In this study, we developed a new strategy to enrich CSCs in human osteosarcoma cell line hMG63. Using these CSCs as model, we tested the effect of bufalin, a traditional Chinese medicine, on the proliferation and differentiation of CSCs. hMG63 cells were cultured in poly-HEMA-treated dish and cancer stem cell-specific medium. In this nonadhesive culture system, hMG63 formed spheres, which were then collected and injected into the immunodeficient mice. Cisplatin was administered every 3 days for five times. The enriched xenograft tumors were cultured in cancer stem cell-specific medium again to form tumor spheres. Expression of cancer stem cell markers of these cells was measured by flow cytometry. These cells were then treated with bufalin, and the proliferation and differentiation ability were indicated by the expression level of molecular markers and the formation of sphere again in vitro. We obtained a low CD133+/CD44 cell population with high-level stem cell marker. When treated with bufalin, the sphere could not get attached to the flask and failed to differentiate, which was indicated by the stable expression of stem cell marker CD133 and OCT-4 in the condition permissive to differentiation. Treatment of bufalin also suppressed the single cells isolated from the sphere to form sphere again in the nonadhesive culture system, and a decreased expression of proliferation marker Ki67 was also detected in these cells. Sphere-formed and chemoresistant colon xenograft tumors in immunodeficient mice could enrich cancer stem cell population. Bufalin could inhibit proliferation and differentiation of CSCs.

  10. Photodynamic treatment (PDT) of endometrium primary cultures serving as an in-vitro-model for endometriosis

    NASA Astrophysics Data System (ADS)

    Werter, Wiebke; Viereck, Volker; Keckstein, J.; Steiner, Rudolf W.; Rueck, Angelika C.

    1994-05-01

    As a new treatment model for endometriosis, photodynamic therapy (PDT) was applied to endometrium cultures. Endometriosis is a benign disease. Therefore primary cultures were used instead of cell lines. Endometrium is composed of epithelial and stromal cells which can also be found in primary culture. While stromal cells take a polygonal shape in culture, epithelial cells form cell colonies. PSIII (Photasan III), which is similar to hematorporphyrin derivate (HpD), meso-tetra (4-sulfonatophenyl) porphyrin (TPPS4), which posses a high fluorescence quantum yield and may be useful in fluorescence diagnosis of subtle endometriotic spots, and methylene blue (MB), a vital dye with phototoxic properties, were used as photosensitizers. Different sensitizer concentrations and incubation times were applied. The highest phototoxicity was observed for PSIII; TPPS4 and MB were less phototoxic. We compared our results with the sensitivity of cell lines described in the literature. The necessary irradiation to destroy stromal cells was relatively high but still in the same dimension as for cell lines. However they were even more sensitive than epithelial cells. This was true for all sensitizers used.

  11. Photodynamic therapy (PDT) of endometrium primary cultures serving as an in-vitro model for endometriosis

    NASA Astrophysics Data System (ADS)

    Herter, Wiebke; Viereck, Volker; Keckstein, J.; Steiner, Rudolf W.; Rueck, Angelika C.

    1994-05-01

    As a new treatment model for endometriosis, photodynamic therapy (PDT) was applied to endometrium cultures. Endometriosis is a benign disease. Therefore primary cultures were used instead of cell lines. Endometrium is composed of epithelial and stromal cells which can also be found in primary culture. While stromal cells take a polygonal shape in culture, epithelial cells form cell colonies. PSIII (Photasan III), which is similar to hematorporphyrin derivate (HpD), meso-tetra (4-sulfonatophenyl) porphyrin (TPPS4), which posses a high fluorescence quantum yield and may be useful in fluorescence diagnosis of subtle endometriotic spots, and methylene blue (MB), a vital dye with phototoxic properties, were used as photosensitizers. Different sensitizer concentrations and incubation times were applied. The highest phototoxicity was observed for PSIII; TPPS4 and MB were less phototoxic. We compared our results with the sensitivity of cell lines described in the literature. The necessary irradiation to destroy stromal cells was relatively high but still in the same dimension as for cell lines. However they were even more sensitive than epithelial cells. This was true for all sensitizers used.

  12. Bidirectional Fusion of the Heart-forming Fields in the Developing Chick Embryo

    PubMed Central

    Moreno-Rodriguez, R.A.; Krug, E.L.; Reyes, L.; Villavicencio, L.; Mjaatvedt, C.H.; Markwald, R.R.

    2007-01-01

    It is generally thought that the early pre-tubular chick heart is formed by fusion of the anterior or cephalic limits of the paired cardiogenic fields. However, this study shows that the heart fields initially fuse at their midpoint to form a transitory “butterfly”-shaped, cardiogenic structure. Fusion then progresses bi-directionally along the longitudinal axis in both cranial and caudal directions. Using in vivo labeling, we demonstrate that cells along the ventral fusion line are highly motile, crossing future primitive segments. We found that mesoderm cells migrated cephalically from the unfused tips of the anterior/cephalic wings into the head mesenchyme in the region that has been called the secondary heart field. Perturbing the anterior/cranial fusion results in formation of a biconal heart. A theoretical role of the ventral fusion line acting as a “heart organizer” and its role in cardia bifida is discussed. PMID:16252277

  13. Physics of amniote formation

    NASA Astrophysics Data System (ADS)

    Fleury, Vincent; Murukutla, Ameya Vaishnavi; Chevalier, Nicolas R.; Gallois, Benjamin; Capellazzi-Resta, Marina; Picquet, Pierre; Peaucelle, Alexis

    2016-08-01

    We present a detailed study of the formation of the amniotic sac in the avian embryo, and a comparison with the crocodile amniotic sac. We show that the amniotic sac forms at a circular line of stiffness contrast, separating rings of cell domains. Cells align at this boundary, and this in turn orients and concentrates the tension forces. The tissue fold which forms the amniotic sac is locked exactly along this line due to the colocalization of the stiffness contrast and of the tensile force. In addition, the tensile force plays a regenerative role when the amniotic sac is cut. The fold forming the ventral side of the embryo displays the same characteristics. This work shows that amniote embryogenesis consists of a cascade of buckling events taking place at the boundaries between regions of differing mechanical properties. Hence, amniote embryogenesis relies on a simple and robust biomechanical scheme used repeatedly, and selected ancestrally.

  14. A continuous cell line, SYSU-OfHe-C, from hemocytes of Ostrinia furnacalis possesses immune ability depending on the presence of larval plasma.

    PubMed

    Hu, Jian; Feng, Xiangping; Yang, Zhongguo; Chen, Zhuoxin; Zhang, Wenqing

    2014-07-01

    A continuous cell line, SYSU-OfHe-C, from larval hemocytes of corn borer, Ostrinia furnacalis was established. With increasing passages, the cells grew increasingly faster, and approximately 45% of the cells were in division at passage 55. The culture was mainly composed of two types of cells, granulocytes and plasmatocytes, which showed different division and proliferation behaviors, but possessed similar phagocytic ability. Its spreading ability was significantly weaker than that of hemocytes from naïve larva; however, it could be promoted by larval plasma. Furthermore, its encapsulation ability was also promoted by larval plasma to form multilayer capsules on Sephadex A-25 beads. Finally, the expression of several immune-related genes was verified after provocation by microbes or Sephadex beads. These results indicated that the cell line possessed immune ability depending on the presence of plasma of naïve larvae and are beneficial to studies of insect cellular systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Effect of caffeine on the ultraviolet light induction of SV40 virus from transformed hamster cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zamansky, G.B.; Kleinman, L.F.; Little, J.B.

    1976-01-01

    The effect of caffeine on the uv light induction of SV40 virus from two transformed hamster cell lines heterogeneous for the induction of infectious virus was studied. The amount of virus induced was significantly increased in both cell lines when exposure to uv light was followed by treatment with caffeine. Caffeine in the absence of uv irradiation did not stimulate virus induction, nor did it stimulate SV40 replication in a lytic infection. There was an apparent difference in the concentrations of caffeine which maximally stimulated SV40 virus induction in the two cell lines. This effect could not be explained bymore » differences in cell survival after exposure to uv light and caffeine. Since caffeine is known to cause the accumulation of gaps formed in DNA during postreplication repair of uv-irradiated rodent cells, our results support the hypothesis that the formation of gaps or breaks in DNA is an important early step in virus induction.« less

  16. Establishment and characterization of a human pancreatic cancer cell line (SUIT-2) producing carcinoembryonic antigen and carbohydrate antigen 19-9.

    PubMed

    Iwamura, T; Katsuki, T; Ide, K

    1987-01-01

    A new tumor cell line (SUIT-2) derived from a metastatic liver tumor of human pancreatic carcinoma has been established in tissue culture and in nude mice, and maintained for over five years. In tissue culture, the cells grew in a monolayered sheet with a population doubling time of about 38.2 hr, and floated or piled up to form small buds above the monolayered surface in relatively confluent cultures. Chromosome counts ranged from 34 to 176 with a modal number of 45. Subcutaneous injection of cultured cells into nude mice resulted in tumor formation, histopathologically closely resembling the original neoplasm which had been classified as moderately differentiated tubular adenocarcinoma. Electron microscopic observation of the neoplastic cells revealed a characteristic pancreatic ductal epithelium. SUIT-2 cell line produces and releases at least two tumor markers, carcinoembryonic antigen and carbohydrate antigen 19-9, propagates even in serum-free medium, and metastasizes to the regional lymph nodes in nude mice xenografts.

  17. Lymphotoxin activation by human T-cell leukemia virus type I-infected cell lines: role for NF-kappa B.

    PubMed

    Paul, N L; Lenardo, M J; Novak, K D; Sarr, T; Tang, W L; Ruddle, N H

    1990-11-01

    Human T-cell leukemia virus type I (HTLV-I)-infected T-cell lines constitutively produce high levels of biologically active lymphotoxin (LT; tumor necrosis factor-beta) protein and LT mRNA. To understand the regulation of LT transcription by HTLV-I, we analyzed the ability of a series of deletions of the LT promoter to drive the chloramphenicol acetyltransferase (CAT) reporter gene in HTLV-I-positive MT-2 cells. The smallest LT promoter fragment (-140 to +77) that was able to drive CAT activity contained a site that was similar to the immunoglobulin kappa-chain NF-kappa B-binding site. Since the HTLV-I tax gene activates the nuclear form of NF-kappa B, this finding suggested a possible means of HTLV-I activation of LT production. We found that the LT kappa B-like site specifically formed a complex with NF-kappa B-containing nuclear extract from MT-2, C81-66-45, and other activated T cells. Mutation of the LT kappa B site in the context of the LT promoter (-293 to +77) (mutant M1) reduced the ability of the promoter to drive the CAT gene in HTLV-I-infected and noninfected human T-cell lines. These data suggest a general role for NF-kappa B activation in the induction of LT gene transcription. Activation of LT in HTLV-I-infected cells may explain the pathology associated with HTLV-I infection, including the hypercalcemia that is prevalent in adult T-cell leukemia.

  18. 184AA3: a xenograft model of ER+ breast adenocarcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hines, William C.; Kuhn, Irene; Thi, Kate

    Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER +) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Xenografts of one cell line, 184AA3, consistently formed ER + adenocarcinomas that had a high proliferative rate and other features consistentmore » with “luminal B” intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44 High  subpopulation was discovered, yet their tumor forming ability was far less than CD44 Low  cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER +  cancers. In conclusion, this model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing, and drug development.« less

  19. Lymphotoxin activation by human T-cell leukemia virus type I-infected cell lines: role for NF-kappa B.

    PubMed Central

    Paul, N L; Lenardo, M J; Novak, K D; Sarr, T; Tang, W L; Ruddle, N H

    1990-01-01

    Human T-cell leukemia virus type I (HTLV-I)-infected T-cell lines constitutively produce high levels of biologically active lymphotoxin (LT; tumor necrosis factor-beta) protein and LT mRNA. To understand the regulation of LT transcription by HTLV-I, we analyzed the ability of a series of deletions of the LT promoter to drive the chloramphenicol acetyltransferase (CAT) reporter gene in HTLV-I-positive MT-2 cells. The smallest LT promoter fragment (-140 to +77) that was able to drive CAT activity contained a site that was similar to the immunoglobulin kappa-chain NF-kappa B-binding site. Since the HTLV-I tax gene activates the nuclear form of NF-kappa B, this finding suggested a possible means of HTLV-I activation of LT production. We found that the LT kappa B-like site specifically formed a complex with NF-kappa B-containing nuclear extract from MT-2, C81-66-45, and other activated T cells. Mutation of the LT kappa B site in the context of the LT promoter (-293 to +77) (mutant M1) reduced the ability of the promoter to drive the CAT gene in HTLV-I-infected and noninfected human T-cell lines. These data suggest a general role for NF-kappa B activation in the induction of LT gene transcription. Activation of LT in HTLV-I-infected cells may explain the pathology associated with HTLV-I infection, including the hypercalcemia that is prevalent in adult T-cell leukemia. Images PMID:1976820

  20. Generation and characterization of a human oral squamous carcinoma cell line SCC-9 with CRISPR/Cas9-mediated deletion of the p75 neurotrophin receptor.

    PubMed

    Huang, Ping; Tong, Dongdong; Sun, Jing; Li, Qing; Zhang, Fenghe

    2017-10-01

    To investigate the importance of the p75 neurotrophin receptor (p75 NTR ) in human tongue squamous carcinoma cells, we exploited the CRISPR/Cas9 technology to establish a p75 NTR -knockout SCC-9 cell line and to explore the effect on biological functions. The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated endonuclease (Cas9) system was used to generate genomic deletion mutants of p75 NTR in the tongue squamous carcinoma cell lines SCC-9. Single-guide RNA (sgRNA) sequences were designed to target the p75 NTR genomic sequence and were cloned into plasmid pGK1.1. The linearized vector was electroporated into SCC-9 cells and p75 NTR deletion was confirmed using Cruiser™ enzyme digestion and PCR amplification. SCC-9 clones with successful deletion of p75 NTR were identified and verified by sequencing and selected for functional testing in cell proliferation, invasion, migration, and colony-forming assays. Compared with control cells, p75 NTR -knockout SCC-9 cells showed significantly diminished abilities to proliferate, invade, migrate, and form colonies, indicating a reduction in pro-tumorigenic behavior. These data demonstrate, first, that the CRISPR/Cas9 system is a simplified method for generating p75 NTR knockouts with relatively high efficiency, and second, that deletion of p75 NTR suppresses several tumor-promoting properties of SCC-9 cells, suggesting that p75 NTR is a potential target for the development of novel therapies for tongue cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. 184AA3: a xenograft model of ER+ breast adenocarcinoma

    DOE PAGES

    Hines, William C.; Kuhn, Irene; Thi, Kate; ...

    2015-12-12

    Despite the prevalence and significant morbidity resulting from estrogen receptor positive (ER +) breast adenocarcinomas, there are only a few models of this cancer subtype available for drug development and arguably none for studying etiology. Those models that do exist have questionable clinical relevance. Given our goal of developing luminal models, we focused on six cell lines derived by minimal mutagenesis from normal human breast cells, and asked if any could generate clinically relevant xenografts, which we then extensively characterized. Xenografts of one cell line, 184AA3, consistently formed ER + adenocarcinomas that had a high proliferative rate and other features consistentmore » with “luminal B” intrinsic subtype. Squamous and spindle cell/mesenchymal differentiation was absent, in stark contrast to other cell lines that we examined or others have reported. We explored intratumoral heterogeneity produced by 184AA3 by immunophenotyping xenograft tumors and cultured cells, and characterized marker expression by immunofluorescence and flow cytometry. A CD44 High  subpopulation was discovered, yet their tumor forming ability was far less than CD44 Low  cells. Single cell cloning revealed the phenotypic plasticity of 184AA3, consistent with the intratumoral heterogeneity observed in xenografts. Characterization of ER expression in cultures revealed ER protein and signaling is intact, yet when estrogen was depleted in culture, and in vivo, it did not impact cell or tumor growth, analogous to therapeutically resistant ER +  cancers. In conclusion, this model is appropriate for studies of the etiology of ovarian hormone independent adenocarcinomas, for identification of therapeutic targets, predictive testing, and drug development.« less

  2. Synthesis, Aqueous Reactivity, and Biological Evaluation of Carboxylic Acid Ester-Functionalized Platinum–Acridine Hybrid Anticancer Agents

    PubMed Central

    Graham, Leigh A.; Suryadi, Jimmy; West, Tiffany K.; Kucera, Gregory L.; Bierbach, Ulrich

    2012-01-01

    The synthesis of platinum–acridine hybrid agents containing carboxylic acid ester groups is described. The most active derivatives and the unmodified parent compounds showed up to 6-fold higher activity in ovarian cancer (OVCAR-3) and breast cancer (MCF-7, MDA-MB-23) cell lines than cisplatin. Inhibition of cell proliferation at nanomolar concentrations was observed in pancreatic (PANC-1) and non-small cell lung cancer cells (NSCLC, NCI-H460) of 80- and 150-fold, respectively. Introduction of the ester groups did not affect the cytotoxic properties of the hybrids, which form the same monofunctional–intercalative DNA adducts as the parent compounds, as demonstrated in a plasmid unwinding assay. In-line high-performance liquid chromatography and electrospray mass spectrometry (LC-ESMS) shows that the ester moieties undergo platinum-mediated hydrolysis in a chloride concentration-dependent manner to form carboxylate chelates. Potential applications of the chloride-sensitive ester hydrolysis as a self-immolative release mechanism for tumor-selective delivery of platinum–acridines are discussed. PMID:22871158

  3. Comparative Gene Expression Profiling of Primary and Metastatic Renal Cell Carcinoma Stem Cell-Like Cancer Cells

    PubMed Central

    Czarnecka, Anna M.; Lewicki, Sławomir; Helbrecht, Igor; Brodaczewska, Klaudia; Koch, Irena; Zdanowski, Robert; Król, Magdalena; Szczylik, Cezary

    2016-01-01

    Background Recent advancement in cancer research has shown that tumors are highly heterogeneous, and multiple phenotypically different cell populations are found in a single tumor. Cancer development and tumor growth are driven by specific types of cells—stem cell-like cancer cells (SCLCCs)—which are also responsible for metastatic spread and drug resistance. This research was designed to verify the presence of SCLCCs in renal cell cancer cell lines. Subsequently, we aimed to characterize phenotype and cell biology of CD105+ cells, defined previously as renal cell carcinoma tumor-initiating cells. The main goal of the project was to describe the gene-expression profile of stem cell-like cancer cells of primary tumor and metastatic origin. Materials and Methods Real-time PCR analysis of stemness genes (Oct-4, Nanog and Ncam) and soft agar colony formation assay were conducted to check the stemness properties of renal cell carcinoma (RCC) cell lines. FACS analysis of CD105+ and CD133+ cells was performed on RCC cells. Isolated CD105+ cells were verified for expression of mesenchymal markers—CD24, CD146, CD90, CD73, CD44, CD11b, CD19, CD34, CD45, HLA-DR and alkaline phosphatase. Hanging drop assay was used to investigate CD105+ cell-cell cohesion. Analysis of free-floating 3D spheres formed by isolated CD105+ was verified, as spheres have been hypothesized to contain undifferentiated multipotent progenitor cells. Finally, CD105+ cells were sorted from primary (Caki-2) and metastatic (ACHN) renal cell cancer cell lines. Gene-expression profiling of sorted CD105+ cells was performed with Agilent’s human GE 4x44K v2 microarrays. Differentially expressed genes were further categorized into canonical pathways. Network analysis and downstream analysis were performed with Ingenuity Pathway Analysis. Results Metastatic RCC cell lines (ACHN and Caki-1) demonstrated higher colony-forming ability in comparison to primary RCC cell lines. Metastatic RCC cell lines harbor numerous CD105+ cell subpopulations and have higher expression of stemness genes (Oct-4 and Nanog). CD105+ cells adopt 3D grape-like floating structures under handing drop conditions. Sorted CD105+ cells are positive for human mesenchymal stem cell (MSC) markers CD90, CD73, CD44, CD146, and alkaline phosphatase activity, but not for CD24 and hematopoietic lineage markers CD34, CD11b, CD19, CD45, and HLA-DR. 1411 genes are commonly differentially expressed in CD105+ cells (both from primary [Caki-2] and metastatic RCC [ACHN] cells) in comparison to a healthy kidney epithelial cell line (ASE-5063). TGF-β, Wnt/β-catenine, epithelial-mesenchymal transition (EMT), Rap1 signaling, PI3K-Akt signaling, and Hippo signaling pathway are deregulated in CD105+ cells. TGFB1, ERBB2, and TNF are the most significant transcriptional regulators activated in these cells. Conclusions All together, RCC-CD105+ cells present stemlike properties. These stem cell-like cancer cells may represent a novel target for therapy. A unique gene-expression profile of CD105+ cells could be used as initial data for subsequent functional studies and drug design. PMID:27812180

  4. Preventing the activation or cycling of the Rap1 GTPase alters adhesion and cytoskeletal dynamics and blocks metastatic melanoma cell extravasation into the lungs.

    PubMed

    Freeman, Spencer A; McLeod, Sarah J; Dukowski, Janet; Austin, Pamela; Lee, Crystal C Y; Millen-Martin, Brandie; Kubes, Paul; McCafferty, Donna-Marie; Gold, Michael R; Roskelley, Calvin D

    2010-06-01

    The Rap1 GTPase is a master regulator of cell adhesion, polarity, and migration. We show that both blocking Rap1 activation and expressing a constitutively active form of Rap1 reduced the ability of B16F1 melanoma cells to extravasate from the microvasculature and form metastatic lesions in the lungs. This correlated with a decreased ability of the tumor cells to undergo transendothelial migration (TEM) in vitro and form dynamic, F-actin-rich pseudopodia that penetrate capillary endothelial walls in vivo. Using multiple tumor cell lines, we show that the inability to form these membrane protrusions, which likely promote TEM and extravasation, can be explained by altered adhesion dynamics and impaired cell polarization that result when Rap1 activation or cycling is perturbed. Thus, targeting Rap1 could be a useful approach for reducing the metastatic dissemination of tumor cells that undergo active TEM. Copyright 2010 AACR.

  5. Conditionally immortalized stem cell lines from human spinal cord retain regional identity and generate functional V2a interneurons and motorneurons.

    PubMed

    Cocks, Graham; Romanyuk, Nataliya; Amemori, Takashi; Jendelova, Pavla; Forostyak, Oksana; Jeffries, Aaron R; Perfect, Leo; Thuret, Sandrine; Dayanithi, Govindan; Sykova, Eva; Price, Jack

    2013-06-07

    The use of immortalized neural stem cells either as models of neural development in vitro or as cellular therapies in central nervous system (CNS) disorders has been controversial. This controversy has centered on the capacity of immortalized cells to retain characteristic features of the progenitor cells resident in the tissue of origin from which they were derived, and the potential for tumorogenicity as a result of immortalization. Here, we report the generation of conditionally immortalized neural stem cell lines from human fetal spinal cord tissue, which addresses these issues. Clonal neural stem cell lines were derived from 10-week-old human fetal spinal cord and conditionally immortalized with an inducible form of cMyc. The derived lines were karyotyped, transcriptionally profiled by microarray, and assessed against a panel of spinal cord progenitor markers with immunocytochemistry. In addition, the lines were differentiated and assessed for the presence of neuronal fate markers and functional calcium channels. Finally, a clonal line expressing eGFP was grafted into lesioned rat spinal cord and assessed for survival, differentiation characteristics, and tumorogenicity. We demonstrate that these clonal lines (a) retain a clear transcriptional signature of ventral spinal cord progenitors and a normal karyotype after extensive propagation in vitro, (b) differentiate into relevant ventral neuronal subtypes with functional T-, L-, N-, and P/Q-type Ca(2+) channels and spontaneous calcium oscillations, and (c) stably engraft into lesioned rat spinal cord without tumorogenicity. We propose that these cells represent a useful tool both for the in vitro study of differentiation into ventral spinal cord neuronal subtypes, and for examining the potential of conditionally immortalized neural stem cells to facilitate functional recovery after spinal cord injury or disease.

  6. Analysis of the Effects of δ-Tocopherol on RAW264.7 and K562 Cells Based on 1H NMR Metabonomics.

    PubMed

    Lu, Yang; Li, Hui; Geng, Yue

    2018-01-31

    δ-Tocopherol (δ-TOH) is a form of vitamin E with higher bioactivity. In this study, we studied the bioactivity of δ-TOH using the IC 50 of δ-TOH on RAW264.7 (80 μM) and K562 (110 μM) cells. We compared the differential metabolites from the cell lines with and without δ-TOH treatment by 1 H NMR metabonomics analysis. It was found that δ-TOH affected the protein biosynthesis, betaine metabolism, and urea cycle in various ways in both cell lines. Metabolic levels of the cell lines were changed after treatment with δ-TOH as differential metabolites were produced. The betaine level in RAW264.7 cells was reduced significantly, while the l-lactic acid level in K562 cells was significantly enhanced. The metabolic changes might contribute to the switch of the respiration pattern from aerobic respiration to anaerobic respiration in K562 cells. These results are helpful in further understanding the subtoxicity of δ-TOH.

  7. Bioreactor cultivation enhances NTEB formation and differentiation of NTES cells into cardiomyocytes.

    PubMed

    Lü, Shuanghong; Liu, Sheng; He, Wenjun; Duan, Cuimi; Li, Yanmin; Liu, Zhiqiang; Zhang, Ye; Hao, Tong; Wang, Yanmeng; Li, Dexue; Wang, Changyong; Gao, Shaorong

    2008-09-01

    Autogenic embryonic stem cells established from somatic cell nuclear transfer (SCNT) embryos have been proposed as unlimited cell sources for cell transplantation-based treatment of many genetic and degenerative diseases, which can eliminate the immune rejection that occurs after transplantation. In the present study, pluripotent nuclear transfer ES (NTES) cell lines were successfully established from different strains of mice. One NTES cell line, NT1, with capacity of germline transmission, was used to investigate in vitro differentiation into cardiomyocytes. To optimize differentiation conditions for mass production of embryoid bodies (NTEBs) from NTES cells, a slow-turning lateral vessel (STLV) rotating bioreactor was used for culturing the NTES cells to produce NTEBs compared with a conventional static cultivation method. Our results demonstrated that the NTEBs formed in STLV bioreactor were more uniform in size, and no large necrotic centers with most of the cells in NTEBs were viable. Differentiation of the NTEBs formed in both the STLV bioreactor and static culture into cardiomyocytes was induced by ascorbic acid, and the results demonstrated that STLV-produced NTEBs differentiated into cardiomyocytes more efficiently. Taken together, our results suggested that STLV bioreactor provided a more ideal culture condition, which can facilitate the formation of better quality NTEBs and differentiation into cardiomyocytes more efficiently in vitro.

  8. Progesterone signaling mediated through progesterone receptor membrane component-1 in ovarian cells with special emphasis on ovarian cancer.

    PubMed

    Peluso, John J

    2011-08-01

    Various ovarian cell types including granulosa cells and ovarian surface epithelial cells express the progesterone (P4) binding protein, progesterone receptor membrane component-1 (PGRMC1). PGRMC1 is also expressed in ovarian tumors. PGRMC1 plays an essential role in promoting the survival of both normal and cancerous ovarian cell in vitro. Given the clinical significance of factors that regulate the viability of ovarian cancer, this review will focus on the role of PGRMC1 in ovarian cancer, while drawing insights into the mechanism of PGRMC1's action from cell lines derived from healthy ovaries as well as ovarian tumors. Studies using PGRMC1siRNA demonstrated that P4's ability to inhibit ovarian cells from undergoing apoptosis in vitro is dependent on PGRMC1. To confirm the importance of PGRMC1, the ability of PGRMC1-deplete ovarian cancer cell lines to form tumors in intact nude mice was assessed. Compared to PGRMC1-expressing ovarian cancer cells, PGRMC1-deplete ovarian cancer cells formed tumors in fewer mice (80% compared to 100% for controls). Moreover, the number of tumors derived from PGRMC1-deplete ovarian cancer cells was 50% of that observed in controls. Finally, the tumors that formed from PGRMC1-deplete ovarian cancer cells were about a fourth the size of tumors derived from ovarian cancer cells with normal levels of PGRMC1. One reason for PGRMC1-deplete tumors being smaller is that they had a poorly developed microvasculature system. How PGRMC1 regulates cell viability and in turn tumor growth is not known but part of the mechanism likely involves the regulation of genes that promote cell survival and inhibit apoptosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Induced Pluripotent Stem Cells: A novel frontier in the study of human primary immunodeficiencies

    PubMed Central

    Pessach, Itai M.; Ordovas-Montanes, Jose; Zhang, Shen-Ying; Casanova, Jean-Laurent; Giliani, Silvia; Gennery, Andrew R.; Al-Herz, Waleed; Manos, Philip D.; Schlaeger, Thorsten M.; Park, In-Hyun; Rucci, Francesca; Agarwal, Suneet; Mostoslavsky, Gustavo; Daley, George Q.; Notarangelo, Luigi D.

    2010-01-01

    Background The novel ability to epigenetically reprogram somatic cells into induced pluripotent stem cells through the exogenous expression of transcription promises to revolutionize the study of human diseases. Objective Here we report on the generation of 25 induced pluripotent stem cell lines from 6 patients with various forms of Primary Immunodeficiencies, affecting adaptive and/or innate immunity. Methods Patients’ dermal fibroblasts were reprogrammed by expression of four transcription factors, OCT4, SOX2, KLF4, and c-MYC using a single excisable polycistronic lentiviral vector. Results Induced pluripotent stem cells derived from patients with primary immunodeficiencies show a stemness profile that is comparable to that observed in human embryonic stem cells. Following in vitro differentiation into embryoid bodies, pluripotency of the patient-derived indiced pluripotent stem cells lines was demonstrated by expression of genes characteristic of each of the three embryonic layers. We have confirmed the patient-specific origin of the induced pluripotent stem cell lines, and ascertained maintenance of karyotypic integrity. Conclusion By providing a limitless source of diseased stem cells that can be differentiated into various cell types in vitro, the repository of induced pluripotent stem cell lines from patients with primary immunodeficiencies represents a unique resource to investigate the pathophysiology of hematopoietic and extra-hematopoietic manifestations of these diseases, and may assist in the development of novel therapeutic approaches based on gene correction. PMID:21185069

  10. A novel mechanism of EML4-ALK rearrangement mediated by chromothripsis in a patient-derived cell line.

    PubMed

    Kodama, Tatsushi; Motoi, Noriko; Ninomiya, Hironori; Sakamoto, Hiroshi; Kitada, Kunio; Tsukaguchi, Toshiyuki; Satoh, Yasuko; Nomura, Kimie; Nagano, Hiroko; Ishii, Nobuya; Terui, Yasuhito; Hatake, Kiyohiko; Ishikawa, Yuichi

    2014-11-01

    EML4-ALK is a driver oncogene in non-small-cell lung cancer (NSCLC) and has been developed into a promising molecular target for antitumor agents. Although EML4-ALK is reported to be formed by inversion of chromosome 2, other mechanisms of this gene fusion remain unknown. This study aimed to examine the mechanism of EML4-ALK rearrangement using a novel cell line with the EML4-ALK fusion gene. An EML4-ALK-positive cell line, termed JFCR-LC649, was established from pleomorphic carcinoma, a rare subtype of NSCLC. We investigated the chromosomal aberrations using fluorescence in situ hybridization and comparative genomic hybridization (CGH). Alectinib/CH5424802, a selective ALK inhibitor, was evaluated in the antitumor activity against JFCR-LC649 in vitro and in vivo xenograft model. We established an EML4-ALK-positive cell line, termed JFCR-LC649, derived from a patient with NSCLC and revealed that the JFCR-LC649 cells harbor variant 3 of the EML4-ALK fusion with twofold copy number gain. Interestingly, comparative genomic hybridization and metaphase-fluorescence in situ hybridization analysis showed that in addition to two normal chromosome 2, JFCR-LC649 cells contained two aberrant chromosome 2 that were fragmented and scattered. These observations provided the first evidence that EML4-ALK fusion in JFCR-LC649 cells was formed in chromosome 2 by a distinct mechanism of genomic rearrangement, termed chromothripsis. Furthermore, a selective ALK inhibitor alectinib/CH5424802 suppressed tumor growth of the JFCR-LC649 cells through inhibition of phospho-ALK in vitro and in vivo in a xenograft model. Our results suggested that chromothripsis may be a mechanism of oncogenic rearrangement of EML4-ALK. In addition, alectinib was effective against EML4-ALK-positive tumors with ALK copy number gain mediated by chromothripsis.

  11. Bone formation in vitro and in nude mice by human osteosarcoma cells.

    PubMed

    Ogose, A; Motoyama, T; Hotta, T; Watanabe, H; Takahashi, H E

    1995-01-01

    Osteosarcomas contain variable amounts of bony tissue, but the mechanism of bone formation by osteosarcoma is not well understood. While a number of cultured human osteosarcoma cell lines have been established, they are maintained by different media and differ qualitatively with regard to bone formation. We examined different media for their ability to support bone formation in vitro and found the alpha-modification of Eagle's minimal essential medium supplemented with beta glycerophosphate was best for this purpose, because it contained the proper calcium and phosphate concentrations. Subsequently, we compared seven human osteosarcoma cell lines under the same experimental conditions to clarify their ability to induce bone formation. NOS-1 cells most frequently exhibited features of bone formation in vitro and in nude mice. Collagen synthesis by tumour cells themselves seemed to be the most important factor for bone volume. However, even HuO9 cells, which lacked collagen synthesis and failed to form bone in vitro, successfully formed tumours containing bone in nude mice. Histological analysis of HuO9 cells in diffusion chambers implanted in nude mice and the findings of polymerase chain reaction indicated that the phenomenon was probably due to bone morphogenetic protein.

  12. Protein-free culture of the human pancreatic cancer cell line, SUIT-2.

    PubMed

    Taniguchi, S; Iwamura, T; Kitamura, N; Yamanari, H; Kojima, A; Hidaka, K; Seguchi, K; Setoguchi, T

    1994-12-01

    A human pancreatic cancer cell line (SUIT-2), usually cultured in serum-supplemented medium (DMEM/FBS), was adapted to protein-free conditions using a 1:1 mixture of DMEM and Ham's F12 medium (DMEM/F12). The cells have been maintained in DMEM/F12 for more than 2 years, with over 50 passages. The SUIT-2 cells grew in DMEM/F12 with a doubling time of 35.7 h, which was similar to that in DMEM/FBS (35.0 h). The cellular morphology was similar in both media. Type IV collagenolytic activity was detected in the conditioned media from cells grown in DMEM/F12. The secretion of CEA and CA19-9 initially decreased in DMEM/F12. CEA was not detected after passage 5 (p5) but the concentration of CA19-9 did not decrease further after the first few serial passages in protein-free medium. Xenografts of SUIT-2 cells cultured in DMEM/F12 remained tumorigenic and could form metastatic tumors in nude mice. In conclusion, SUIT-2 cells grown in protein-free media continued to produce CA19-9 and type IV collagenase in vitro and formed metastatic tumors in vivo.

  13. Activated Leukocyte Cell Adhesion Molecule Expression and Shedding in Thyroid Tumors

    PubMed Central

    Miccichè, Francesca; Da Riva, Luca; Fabbi, Marina; Pilotti, Silvana; Mondellini, Piera; Ferrini, Silvano; Canevari, Silvana; Pierotti, Marco A.; Bongarzone, Italia

    2011-01-01

    Activated leukocyte cell adhesion molecule (ALCAM, CD166) is expressed in various tissues, cancers, and cancer-initiating cells. Alterations in expression of ALCAM have been reported in several human tumors, and cell adhesion functions have been proposed to explain its association with cancer. Here we documented high levels of ALCAM expression in human thyroid tumors and cell lines. Through proteomic characterization of ALCAM expression in the human papillary thyroid carcinoma cell line TPC-1, we identified the presence of a full-length membrane-associated isoform in cell lysate and of soluble ALCAM isoforms in conditioned medium. This finding is consistent with proteolytically shed ALCAM ectodomains. Nonspecific agents, such as phorbol myristate acetate (PMA) or ionomycin, provoked increased ectodomain shedding. Epidermal growth factor receptor stimulation also enhanced ALCAM secretion through an ADAM17/TACE-dependent pathway. ADAM17/TACE was expressed in the TPC-1 cell line, and ADAM17/TACE silencing by specific small interfering RNAs reduced ALCAM shedding. In addition, the CGS27023A inhibitor of ADAM17/TACE function reduced ALCAM release in a dose-dependent manner and inhibited cell migration in a wound-healing assay. We also provide evidence for the existence of novel O-glycosylated forms and of a novel 60-kDa soluble form of ALCAM, which is particularly abundant following cell stimulation by PMA. ALCAM expression in papillary and medullary thyroid cancer specimens and in the surrounding non-tumoral component was studied by western blot and immunohistochemistry, with results demonstrating that tumor cells overexpress ALCAM. These findings strongly suggest the possibility that ALCAM may have an important role in thyroid tumor biology. PMID:21364949

  14. Carprofen Induction of p75NTR Dependent Apoptosis via the p38 MAPK Pathway in Prostate Cancer Cells

    PubMed Central

    Khwaja, Fatima S.; Quann, Emily J.; Pattabiraman, Nagarajan; Wynne, Shehla; Djakiew, Daniel

    2008-01-01

    The p75NTR functions as a tumor suppressor in prostate epithelial cells, where its expression declines with progression to malignant cancer. Previously, we demonstrated that treatment with R-flurbiprofen or ibuprofen induced p75NTR expression in several prostate cancer cell lines leading to p75NTR mediated decreased survival. Utilizing the 2-phenyl propionic acid moiety of these profens as a pharmacophore, we screened an in silico data base of 30 million compounds and identified carprofen as having an order of magnitude greater activity for induction of p75NTR levels and inhibition of cell survival. Prostate (PC-3, DU-145) and bladder (T24) cancer cells were more sensitive to carprofen induction of p75NTR associated loss of survival than breast (MCF7) and fibroblast (3T3) cells. Transfection of prostate cell lines with a dominant negative form of p75NTR prior to carprofen treatment partially rescued cell survival demonstrating a cause and effect relationship between carprofen induction of p75NTR levels and inhibition of survival. Carprofen induced apoptotic nuclear fragmentation in prostate but not in MCF7 and 3T3 cells. Furthermore, siRNA knockdown of the p38 MAPK protein prevented induction of p75NTR by carprofen in both prostate cell lines. Carprofen treatment induced phosphorylation of p38 MAPK as early as within 1 minute. Expression of a dominant negative form of MK2, the kinase downstream of p38 MAPK frequently associated with signaling cascades leading to apoptosis, prevented carprofen induction of the p75NTR protein. Collectively, we identify carprofen as a highly potent profen capable of inducing p75NTR dependent apoptosis via the p38 MAPK pathway in prostate cancer cells. PMID:18974393

  15. Characterization of LHY-821, a novel moderately differentiated endometrial carcinoma cell line.

    PubMed

    Hu, Qian; Yu, Li; Chen, Rui; Zhang, Yan; Xie, Ya; Liao, Qinping

    2012-08-01

    Endometrial cancer is a major problem for women but only a small number of comprehensively characterized cell models are available for studies. Here, we established a new cell line derived from a Stage IIIc(1) Grade 2 endometrial adenocarcinoma. The cell line, designated LHY-821, was characterized using growth curve, karyotyping, immunohistochemical staining, immunoblotting, drug sensitivity assay, invasion assay, and xenografting in nude mice. LHY-821 has a doubling time of about 46 h and a colony-forming efficiency of approximately 71 %. These cells expresse high levels of progesterone receptor but not estrogen receptor and are sensitive to medroxyprogesterone acetate (MPA). LHY-821 also expresses pan-cytokeratin, PTEN, p53, β-catenin, IGF-1, and IGF-2. In addition, karyotype analysis revealed that LHY-821 possessed a near diploid karyotype including 6q-, 10p-, Xq-, 13q+, 17p+, and Triplo-12. LHY-821 showed highly tumorigenicity in nude mice (100 %) and weak invasiveness. Chemosensitivity tests showed that LHY-821 was sensitive to both carboplatin and paclitaxel. LHY-821 is an immortalized cell line which had survived more than 80 serial passages; it may provide a novel tool to study the molecular mechanism and potential treatment for endometrial cancer.

  16. Transgene-free human induced pluripotent stem cell line (HS5-SV.hiPS) generated from cesarean scar-derived fibroblasts.

    PubMed

    Rungsiwiwut, Ruttachuk; Pavarajarn, Wipawee; Numchaisrika, Pranee; Virutamasen, Pramuan; Pruksananonda, Kamthorn

    2016-01-01

    Transgene-free human HS5-SV.hiPS line was generated from human cesarean scar-derived fibroblasts using temperature-sensitive Sendai virus vectors carrying Oct4, Sox2, cMyc and Klf4 exogenous transcriptional factors. The viral constructs were eliminated from HS5-SV.hiPS line through heat treatment. Transgene-free HS5-SV.hiPS cells expressed pluripotent associated transcription factors Oct4, Nanog, Sox2, Rex1 and surface markers SSEA-4, TRA-1-60 and OCT4. HS5-SV.hiPS cells formed embryoid bodies and differentiated into three embryonic germ layers in vivo. HS5-SV.hiPS cells maintained their normal karyotype (46, XX) after culture for extended period. HS5-SV.hiPS displayed the similar pattern of DNA fingerprinting to the parenteral scar-derived fibroblasts. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Analysis of the therapeutic gain in the treatment of human osteosarcoma microcolonies in vitro with 211At-labelled monoclonal antibody.

    PubMed

    Larsen, R H; Bruland, O S; Hoff, P; Alstad, J; Rofstad, E K

    1994-06-01

    Microcolonies were obtained by culturing cells of two human osteosarcoma lines (OHS and KPDX) and one human melanoma line (WIX-c) for either 24 or 72 h. The microcolonies were treated with either alpha-particle radiation emitted by the 211At-labelled monoclonal antibody (MAb) TP-3 or external beam X-rays. Survival of microcolonies was assayed by colony formation. Therapeutic gain factor (TGF) values were calculated for two survival levels, 50% and 20% microcolony regeneration (i.e. at least one cell in 50% or 20% of the colonies survived the treatments). The TGF values were affected by the specific activity of the 211At-MAb conjugate, the antigen expression of the cells and the size and growth pattern of the microcolonies. Treatment with 211At-TP-3 gave TGF values that varied from 1.3 +/- 0.4 to 4.5 +/- 0.7 (mean +/- s.e.). The antigen-rich OHS cell line had on average 1.6 times higher TGF than the antigen-poor KPDX cell line. The TGF increased significantly with colony size for the densely packed colonies of the KPDX cell line but not for the OHS cell line, which had colonies with cells growing in a more scattered pattern. Control experiments with the two non-specific 211At forms, free 211At and 211At-labelled bovine serum albumin, gave TGF values from 0.6 +/- 0.1 to 1.0 +/- 0.3. This study suggests that in vivo evaluation of 211At-MAbs using relevant tumour models is desirable.

  18. Analysis of the therapeutic gain in the treatment of human osteosarcoma microcolonies in vitro with 211At-labelled monoclonal antibody.

    PubMed Central

    Larsen, R. H.; Bruland, O. S.; Hoff, P.; Alstad, J.; Rofstad, E. K.

    1994-01-01

    Microcolonies were obtained by culturing cells of two human osteosarcoma lines (OHS and KPDX) and one human melanoma line (WIX-c) for either 24 or 72 h. The microcolonies were treated with either alpha-particle radiation emitted by the 211At-labelled monoclonal antibody (MAb) TP-3 or external beam X-rays. Survival of microcolonies was assayed by colony formation. Therapeutic gain factor (TGF) values were calculated for two survival levels, 50% and 20% microcolony regeneration (i.e. at least one cell in 50% or 20% of the colonies survived the treatments). The TGF values were affected by the specific activity of the 211At-MAb conjugate, the antigen expression of the cells and the size and growth pattern of the microcolonies. Treatment with 211At-TP-3 gave TGF values that varied from 1.3 +/- 0.4 to 4.5 +/- 0.7 (mean +/- s.e.). The antigen-rich OHS cell line had on average 1.6 times higher TGF than the antigen-poor KPDX cell line. The TGF increased significantly with colony size for the densely packed colonies of the KPDX cell line but not for the OHS cell line, which had colonies with cells growing in a more scattered pattern. Control experiments with the two non-specific 211At forms, free 211At and 211At-labelled bovine serum albumin, gave TGF values from 0.6 +/- 0.1 to 1.0 +/- 0.3. This study suggests that in vivo evaluation of 211At-MAbs using relevant tumour models is desirable. PMID:8198960

  19. Rho kinase inhibitor Y-27632 and Accutase dramatically increase mouse embryonic stem cell derivation.

    PubMed

    Zhang, Peng; Wu, Xinglong; Hu, Chunchao; Wang, Pengbo; Li, Xiangyun

    2012-01-01

    Although it has been 30 yr since the development of derivation methods for mouse embryonic stem (ES) cells, the biology of derivation of ES cells is poorly understood and the efficiency varies dramatically between cell lines. Recently, the Rho kinase inhibitor Y-27632 and the cell dissociation reagent Accutase were reported to significantly inhibit apoptosis of human ES cells during passaging. Therefore, in the current study, C57BL/6×129/Sv mouse blastocysts were used to evaluate the effect of the combination of the two reagents instead of using the conventional 129 line in mouse ES cell derivation. The data presented in this study suggests that the combination of Y-27632 and Accutase significantly increases the efficiency of mouse ES cell derivation; furthermore, no negative side effects were observed with Y-27632 and Accutase treatment. The newly established ES cell lines retain stable karyotype, surface markers expression, formed teratomas, and contributed to viable chimeras and germline transmission by tetraploid complementation assay. In addition, Y-27632 improved embryoid body formation of ES cells. During ES cell microinjection, Y-27632 prevented the formation of dissociation-induced cell blebs and facilitates the selection and the capture of intact cells. The methods presented in this study clearly demonstrate that inhibition of Rho kinase with Y-27632 and Accutase dissociation improve the derivation efficiently and reproducibility of mouse ES cell generation which is essential for reducing variability in the results obtained from different cell lines.

  20. The TP53 dependence of radiation-induced chromosome instability in human lymphoblastoid cells

    NASA Technical Reports Server (NTRS)

    Schwartz, Jeffrey L.; Jordan, Robert; Evans, Helen H.; Lenarczyk, Marek; Liber, Howard

    2003-01-01

    The dose and TP53 dependence for the induction of chromosome instability were examined in cells of three human lymphoblastoid cell lines derived from WIL2 cells: TK6, a TP53-normal cell line, NH32, a TP53-knockout created from TK6, and WTK1, a WIL2-derived cell line that spontaneously developed a TP53 mutation. Cells of each cell line were exposed to (137)Cs gamma rays, and then surviving clones were isolated and expanded in culture for approximately 35 generations before the frequency and characteristics of the instability were analyzed. The presence of dicentric chromosomes, formed by end-to-end fusions, served as a marker of chromosomal instability. Unexposed TK6 cells had low levels of chromosomal instability (0.002 +/- 0.001 dicentrics/cell). Exposure of TK6 cells to doses as low as 5 cGy gamma rays increased chromosome instability levels nearly 10-fold to 0.019 +/- 0.008 dicentrics/cell. There was no further increase in instability levels beyond 5 cGy. In contrast to TK6 cells, unexposed cultures of WTK1 and NH32 cells had much higher levels of chromosome instability of 0.034 +/- 0.007 and 0.041 +/- 0.009, respectively, but showed little if any effect of radiation on levels of chromosome instability. The results suggest that radiation exposure alters the normal TP53-dependent cell cycle checkpoint controls that recognize alterations in telomere structure and activate apoptosis.

  1. Establishment of a non-tumorigenic papillary thyroid cell line (FB-2) carrying the RET/PTC1 rearrangement.

    PubMed

    Basolo, Fulvio; Giannini, Riccardo; Toniolo, Antonio; Casalone, Rosario; Nikiforova, Marina; Pacini, Furio; Elisei, Rossella; Miccoli, Paolo; Berti, Piero; Faviana, Pinuccia; Fiore, Lisa; Monaco, Carmen; Pierantoni, Giovanna Maria; Fedele, Monica; Nikiforov, Yuri E; Santoro, Massimo; Fusco, Alfredo

    2002-02-10

    A novel human thyroid papillary carcinoma cell line (FB-2) has been established and characterized. FB-2 cells harbor the RET/PTC1 chimeric oncogene in which the RET kinase domain is fused to the H4 gene. FB-2 cells neither formed colonies in semisolid media nor induced tumors after heterotransplant into severe combined immunodeficient mice. However, HMGI(Y), HMGI-C and c-myc genes, which are associated to thyroid cell transformation, were abundantly expressed in FB-2 cells but not in normal thyroid cells. FB-2 cells only partially retained the differentiated thyroid phenotype. In fact, the PAX-8 gene, which codes for a transcriptional factor required for thyroid cell differentiation, was expressed, while thyroglobulin, TSH-receptor and thyroperoxidase genes were not. Moreover, FB-2 cells produced high levels of interleukin (IL)-6 and IL-8. Copyright 2001 Wiley-Liss, Inc.

  2. Long-term cultivation of human corneal endothelial cells by telomerase expression.

    PubMed

    Liu, Zhiping; Zhuang, Jing; Li, Chaoyang; Wan, Pengxia; Li, Naiyang; Zhou, Qiang; Zhou, Chenjing; Huang, Zheqian; Wang, Zhichong

    2012-07-01

    The objective of this study was to explore the potential role of human telomerase reverse transcriptase (TERT) in extending the proliferative lifespan of human corneal endothelial cells (HCECs) under long-term cultivation. A primary culture was initiated with a pure population of HCECs in DMEM/F12 media containing 10% fetal bovine serum and other various supplements. TERT gene was successfully transfected into normal HCECs. A stable HCECs cell line (TERT-HCECs) that expressed TERT was established. The cells could be subcultured for 36 passages. Within this line of cells, TERT not only extended proliferative lifespan and inhibited apoptosis but also enhanced the cell line remaining the normal characteristics similar to HCECs. There were no significantly differences in the expression of the pump function related proteins voltage dependent anion channel 3 (VDAC3), sodium bicarbonate cotransporter member 4 (SLC4A4), chloride channel protein 3 (CLCN3), Na(+)/K(+)-ATPase α1, and ZO-1 in the cell line TERT-HCECs and primary HCECs. TERT-HCECs formed a monolayer cell sheet, maintained similar cell junction formation and pump function with primary HCECs. Karyotype analysis exhibited normal chromosomal numbers. The soft agar colony assay and tumor formation in nude mice assay showed no malignant alterations in TERT-HCECs. Our findings indicated that we had established a cell line with its similar phenotype and properties to primary HCECs. Further study of the TERT-HCECs may be valuable in studying the function of the cells in vivo. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Production of Zebrafish Offspring from Cultured Female Germline Stem Cells

    PubMed Central

    Wong, Ten-Tsao; Tesfamichael, Abraham; Collodi, Paul

    2013-01-01

    Zebrafish female germline stem cell (FGSC) cultures were generated from a transgenic line of fish that expresses Neo and DsRed under the control of the germ cell specific promoter, ziwi [Tg(ziwi:neo);Tg(ziwi:DsRed)]. Homogeneous FGSC cultures were established by G418 selection and continued to express ziwi for more than 6 weeks along with the germ cell markers nanos3, dnd, dazl and vasa. A key component of the cell culture system was the use of a feeder cell line that was initiated from ovaries of a transgenic line of fish [Tg(gsdf:neo)] that expresses Neo controlled by the zebrafish gonadal soma derived factor (gsdf) promoter. The feeder cell line was selected in G418 and engineered to express zebrafish leukemia inhibitory factor (Lif), basic fibroblast growth factor (Fgf2) and glial-cell-line derived neurotrophic factor (Gdnf). These factors were shown to significantly enhance FGSC growth, survival and germline competency in culture. Results from cell transplantation experiments revealed that the cultured FGSCs were able to successfully colonize the gonad of sterile recipient fish and generate functional gametes. Up to 20% of surviving recipient fish that were injected with the cultured FGSCs were fertile and generated multiple batches of normal offspring for at least 6 months. The FGSC cultures will provide an in vitro system for studies of zebrafish germ cell growth and differentiation and their high frequency of germline transmission following transplantation could form the basis of a stem cell-mediated strategy for gene transfer and manipulation of the zebrafish genome. PMID:23671620

  4. Loss of N-Cadherin Expression in Tumor Transplants Produced From As+3- and Cd+2-Transformed Human Urothelial (UROtsa) Cell Lines.

    PubMed

    Sandquist, Elizabeth J; Somji, Seema; Dunlevy, Jane R; Garrett, Scott H; Zhou, Xu Dong; Slusser-Nore, Andrea; Sens, Donald A

    2016-01-01

    Epithelial to mesenchymal transition is a process in which a cell experiences a loss of epithelial cell characteristics and acquires a more mesenchymal cell phenotype. In cancer, epithelial to mesenchymal transition has been proposed to play an important role during specific stages of tumor progression. The role epithelial to mesenchymal transition and mesenchymal to epithelial transition might play in toxicant-induced urothelial cancer is unknown. Real-time PCR, Western blotting, immuno-histochemistry and immuno-fluorescence were used to determine the expression of E- and N-cadherin in the UROtsa parent, the As+3- and Cd+2-transformed cell lines, the spheroids isolated from these cell lines as well as the tumor heterotransplants that were produced by the injection of the transformed cells into immune compromised mice. This study showed that N-cadherin expression was increased in 6 As+3- and 7 Cd+2- transformed cell lines generated from human urothelial cells (UROtsa). The expression varied within each cell line, with 10% to 95% of the cells expressing N-cadherin. Tumors produced from these cell lines showed no expression of the N-cadherin protein. Spheroids which are made up of putative cancer initiating cells produced from these cell lines showed only background expression of N-cadherin mRNA, increased expression of aldehyde dehydrogenase 1 mRNA and produced tumors which did not express N-cadherin. There was no change in the expression of E-cadherin in the tumors, and the tumors formed by all the As+3 and Cd+2-transformed cell lines and cancer initiating cells stained intensely and uniformly for E-cadherin. The finding that the cells expressing N-cadherin gave rise to tumors with no expression of N-cadherin is in agreement with the classical view of epithelial to mesenchymal transition. Epithelial to mesenchymal transition and N-cadherin are associated with dissemination and not with the ability to establish new tumor growth. Mesenchymal to epithelial transition and E-cadherin are viewed as necessary for a cell to establish a new metastatic site. The lack of N-cadherin expression in tumor transplants is consistent with E-cadherin expressing cells "seeding" a site for tumor growth. The study shows that a minority population of cultured cells can be the initiators of tumor growth.

  5. Loss of N-Cadherin Expression in Tumor Transplants Produced From As+3- and Cd+2-Transformed Human Urothelial (UROtsa) Cell Lines

    PubMed Central

    Sandquist, Elizabeth J.; Somji, Seema; Dunlevy, Jane R.; Garrett, Scott H.; Zhou, Xu Dong; Slusser-Nore, Andrea

    2016-01-01

    Background Epithelial to mesenchymal transition is a process in which a cell experiences a loss of epithelial cell characteristics and acquires a more mesenchymal cell phenotype. In cancer, epithelial to mesenchymal transition has been proposed to play an important role during specific stages of tumor progression. The role epithelial to mesenchymal transition and mesenchymal to epithelial transition might play in toxicant-induced urothelial cancer is unknown. Methods Real-time PCR, Western blotting, immuno-histochemistry and immuno-fluorescence were used to determine the expression of E- and N-cadherin in the UROtsa parent, the As+3- and Cd+2-transformed cell lines, the spheroids isolated from these cell lines as well as the tumor heterotransplants that were produced by the injection of the transformed cells into immune compromised mice. Results This study showed that N-cadherin expression was increased in 6 As+3- and 7 Cd+2- transformed cell lines generated from human urothelial cells (UROtsa). The expression varied within each cell line, with 10% to 95% of the cells expressing N-cadherin. Tumors produced from these cell lines showed no expression of the N-cadherin protein. Spheroids which are made up of putative cancer initiating cells produced from these cell lines showed only background expression of N-cadherin mRNA, increased expression of aldehyde dehydrogenase 1 mRNA and produced tumors which did not express N-cadherin. There was no change in the expression of E-cadherin in the tumors, and the tumors formed by all the As+3 and Cd+2-transformed cell lines and cancer initiating cells stained intensely and uniformly for E-cadherin. Conclusions The finding that the cells expressing N-cadherin gave rise to tumors with no expression of N-cadherin is in agreement with the classical view of epithelial to mesenchymal transition. Epithelial to mesenchymal transition and N-cadherin are associated with dissemination and not with the ability to establish new tumor growth. Mesenchymal to epithelial transition and E-cadherin are viewed as necessary for a cell to establish a new metastatic site. The lack of N-cadherin expression in tumor transplants is consistent with E-cadherin expressing cells “seeding” a site for tumor growth. The study shows that a minority population of cultured cells can be the initiators of tumor growth. PMID:27224422

  6. Recombinant rabbit leukemia inhibitory factor and rabbit embryonic fibroblasts support the derivation and maintenance of rabbit embryonic stem cells.

    PubMed

    Xue, Fei; Ma, Yinghong; Chen, Y Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang; Xu, Jie

    2012-08-01

    The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs.

  7. CXCR6, a newly defined biomarker of tissue-specific stem cell asymmetric self-renewal, identifies more aggressive human melanoma cancer stem cells.

    PubMed

    Taghizadeh, Rouzbeh; Noh, Minsoo; Huh, Yang Hoon; Ciusani, Emilio; Sigalotti, Luca; Maio, Michele; Arosio, Beatrice; Nicotra, Maria R; Natali, PierGiorgio; Sherley, James L; La Porta, Caterina A M

    2010-12-22

    A fundamental problem in cancer research is identifying the cell type that is capable of sustaining neoplastic growth and its origin from normal tissue cells. Recent investigations of a variety of tumor types have shown that phenotypically identifiable and isolable subfractions of cells possess the tumor-forming ability. In the present paper, using two lineage-related human melanoma cell lines, primary melanoma line IGR39 and its metastatic derivative line IGR37, two main observations are reported. The first one is the first phenotypic evidence to support the origin of melanoma cancer stem cells (CSCs) from mutated tissue-specific stem cells; and the second one is the identification of a more aggressive subpopulation of CSCs in melanoma that are CXCR6+. We defined CXCR6 as a new biomarker for tissue-specific stem cell asymmetric self-renewal. Thus, the relationship between melanoma formation and ABCG2 and CXCR6 expression was investigated. Consistent with their non-metastatic character, unsorted IGR39 cells formed significantly smaller tumors than unsorted IGR37 cells. In addition, ABCG2+ cells produced tumors that had a 2-fold greater mass than tumors produced by unsorted cells or ABCG2- cells. CXCR6+ cells produced more aggressive tumors. CXCR6 identifies a more discrete subpopulation of cultured human melanoma cells with a more aggressive MCSC phenotype than cells selected on the basis of the ABCG2+ phenotype alone. The association of a more aggressive tumor phenotype with asymmetric self-renewal phenotype reveals a previously unrecognized aspect of tumor cell physiology. Namely, the retention of some tissue-specific stem cell attributes, like the ability to asymmetrically self-renew, impacts the natural history of human tumor development. Knowledge of this new aspect of tumor development and progression may provide new targets for cancer prevention and treatment.

  8. Induction of DNA-strand breaks after X- irradiation in murine bone cells of various differentiation capacities

    NASA Astrophysics Data System (ADS)

    Lau, P.; Hellweg, C. E.; Kirchner, S.; Arenz, A.; Baumstark-Khan, C.; Horneck, G.

    Bone loss resulting from long-duration space flight is a well known medical risk for space travellers, as a weakened skeleton is more susceptible to bone fractures. In addition to weightlessness the astronaut is also exposed to cosmic ionizing radiation. In order to elucidate changes in bone cell metabolism by ionizing radiation, a ground-based bone cell model has been developed. This model consists of a bunch of immortalized murine osteocyte, osteoblast and pre-osteoblast cell lines representing discrete stages of differentiation: The osteocyte cell line MLO-Y4 (obtained from L. Bonewald, Kansas City, USA), the osteoblast cell line OCT-1 (obtained from D. Chen, San Antonio, USA), and the subclones 4 and 24 of the osteoblast cell line MC3T3-E1 (obtained from ATCC, Manassas, Virginia, USA). Regarding their growth properties, MLO-Y4 cells show the highest growth velocity with a doubling time of 15.8 h. The osteoblast cell line OCT-1 has a doubling time of 27.3 h. The respective values for MC3T3-E1 subclone 24 and S4 are 90.5 h and 51.6 h. To investigate the stage of differentiation, the expression of alkaline phosphatase, of osteocalcin and of E11 was examined. Survival after X-ray exposure was determined using the colony forming ability test. The resulting dose-effect relationships revealed significant differences. The parameter D0 of the survival curves ranges between 1.8 Gy for OCT-1, 1.9 Gy for MLO-Y4, 2.0 Gy for subclone 24 and 2,3 Gy for subclone 4. The quantitative acquisition of DNA-strand breaks was performed by Fluorescent Analysis of DNA-Unwinding (FADU). The results can be correlated with the corresponding survival curve. In conclusion, the cell lines with higher differentiation levels are less sensitive to radiation when compared to the lower differentiated osteoblast cell lines.

  9. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model.

    PubMed

    Swift, Brenna E; Williams, Brent A; Kosaka, Yoko; Wang, Xing-Hua; Medin, Jeffrey A; Viswanathan, Sowmya; Martinez-Lopez, Joaquin; Keating, Armand

    2012-07-01

    Novel therapies capable of targeting drug resistant clonogenic MM cells are required for more effective treatment of multiple myeloma. This study investigates the cytotoxicity of natural killer cell lines against bulk and clonogenic multiple myeloma and evaluates the tumor burden after NK cell therapy in a bioluminescent xenograft mouse model. The cytotoxicity of natural killer cell lines was evaluated against bulk multiple myeloma cell lines using chromium release and flow cytometry cytotoxicity assays. Selected activating receptors on natural killer cells were blocked to determine their role in multiple myeloma recognition. Growth inhibition of clonogenic multiple myeloma cells was assessed in a methylcellulose clonogenic assay in combination with secondary replating to evaluate the self-renewal of residual progenitors after natural killer cell treatment. A bioluminescent mouse model was developed using the human U266 cell line transduced to express green fluorescent protein and luciferase (U266eGFPluc) to monitor disease progression in vivo and assess bone marrow engraftment after intravenous NK-92 cell therapy. Three multiple myeloma cell lines were sensitive to NK-92 and KHYG-1 cytotoxicity mediated by NKp30, NKp46, NKG2D and DNAM-1 activating receptors. NK-92 and KHYG-1 demonstrated 2- to 3-fold greater inhibition of clonogenic multiple myeloma growth, compared with killing of the bulk tumor population. In addition, the residual colonies after treatment formed significantly fewer colonies compared to the control in a secondary replating for a cumulative clonogenic inhibition of 89-99% at the 20:1 effector to target ratio. Multiple myeloma tumor burden was reduced by NK-92 in a xenograft mouse model as measured by bioluminescence imaging and reduction in bone marrow engraftment of U266eGFPluc cells by flow cytometry. This study demonstrates that NK-92 and KHYG-1 are capable of killing clonogenic and bulk multiple myeloma cells. In addition, multiple myeloma tumor burden in a xenograft mouse model was reduced by intravenous NK-92 cell therapy. Since multiple myeloma colony frequency correlates with survival, our observations have important clinical implications and suggest that clinical studies of NK cell lines to treat MM are warranted.

  10. The effect of the immunophilin ligands rapamycin and FK506 on proliferation of mast cells and other hematopoietic cell lines.

    PubMed Central

    Hultsch, T; Martin, R; Hohman, R J

    1992-01-01

    The immunosuppressive drugs FK506 and cyclosporin A have an identical spectrum of activities with respect to IgE receptor (Fc epsilon RI)-mediated exocytosis from mast cells and T cell receptor-mediated transcription of IL-2. These findings suggest a common step in receptor-mediated signal transduction leading to exocytosis and transcription and imply that immunosuppressive drugs target specific signal transduction pathways, rather than specific cell types. This hypothesis is supported by studies on the effect of rapamycin on IL-3 dependent proliferation of the rodent mast cell line PT18. Rapamycin inhibits proliferation of PT18 cells, achieving a plateau of 80% inhibition at 1 nM. This inhibition is prevented in a competitive manner by FK506, a structural analogue of rapamycin. Proliferation of rat basophilic leukemia cells and WEHI-3 cells was also inhibited, at doses comparable to those shown previously to inhibit IL-2-dependent proliferation of cytotoxic T lymphocyte line (CTLL) cells. In contrast, proliferation of A-431 cells, a epidermoid cell line, was not affected by rapamycin. DNA histograms indicate that complexes formed between the rapamycin-FK506-binding protein (FKBP) and rapamycin arrest-proliferating PT18 cells in the G0/G1-phase. It is concluded that FKBP-rapamycin complexes may inhibit proliferative signals emanating from IL-3 receptors, resulting in growth arrest of cytokine-dependent, hematopoietic cells. PMID:1384815

  11. Valproic acid exhibits different cell growth arrest effect in three HPV-positive/negative cervical cancer cells and possibly via inducing Notch1 cleavage and E6 downregulation.

    PubMed

    Feng, Shuyu; Yang, Yue; Lv, Jingyi; Sun, Lichun; Liu, Mingqiu

    2016-07-01

    We investigated the effect of valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, and the mechanism of VPA-induced growth inhibition on three cervical cancer cell lines with different molecular and genetic background. We found that VPA induced proliferation suppression, cell apoptosis and cell cycle arrest in all tested cell lines, with an increase of Notch1 active form ICN1 as a tumor suppressor and its target gene HES1. Noteworthy, blocking of Notch signaling with DAPT resulted in growth inhibition in ICN1-overexpressing CaSki and HT-3 cells. Thus, endogenous Notch signaling may be necessary for survival of ICN1-overexpressing cervical cancer cell lines. Furthermore, G1 phase arrest was induced in HeLa and CaSki cells by VPA while G2 phase arrest was induced in HT-3 cells, suggesting different mechanism in this cycle arrest. We also found VPA suppressed oncogene E6 in a Notch-independent manner, and induced significant apoptosis in E6-overexpressing HPV positive CaSki cells. Cell morphological change was also observed in HeLa and HT-3 cell lines after VPA treatment with an upregulation of EMT transcription factor Snail1. Notch signaling inhibitor DAPT partly reversed VPA-induced Snail1 upregulation in HeLa cells. This discovery supports that VPA may induce EMT at least partly via Notch activation.

  12. Comparison of Tumor- and Bone Marrow-Derived Mesenchymal Stromal/Stem Cells from Patients with High-Grade Osteosarcoma

    PubMed Central

    Le Nail, Louis-Romée; Brennan, Meadhbh; Rosset, Philippe; Piloquet, Philippe; Pichon, Olivier; Le Caignec, Cédric; Crenn, Vincent; Layrolle, Pierre; Hérault, Olivier; De Pinieux, Gonzague

    2018-01-01

    Osteosarcoma (OS) is suspected to originate from dysfunctional mesenchymal stromal/stem cells (MSC). We sought to identify OS-derived cells (OSDC) with potential cancer stem cell (CSC) properties by comparing OSDC to MSC derived from bone marrow of patients. This study included in vitro characterization with sphere forming assays, differentiation assays, cytogenetic analysis, and in vivo investigations of their tumorigenicity and tumor supportive capacities. Primary cell lines were isolated from nine high-grade OS samples. All primary cell lines demonstrated stromal cell characteristics. Compared to MSC, OSDC presented a higher ability to form sphere clones, indicating a potential CSC phenotype, and were more efficient at differentiation towards osteoblasts. None of the OSDC displayed the complex chromosome rearrangements typical of high grade OS and none of them induced tumors in immunodeficient mice. However, two OSDC demonstrated focused genomic abnormalities. Three out of seven, and six out of seven OSDC showed a supportive role on local tumor development, and on metastatic progression to the lungs, respectively, when co-injected with OS cells in nude mice. The observation of OS-associated stromal cells with rare genetic abnormalities and with the capacity to sustain tumor progression may have implications for future tumor treatments. PMID:29494553

  13. Density-dependent regulation of growth of BSC-1 cells in cell culture: growth inhibitors formed by the cells.

    PubMed Central

    Holley, R W; Armour, R; Baldwin, J H

    1978-01-01

    Inhibitors formed by a monkey epithelial cell line, BSC-1, play an important role in limiting growth at high cell densities. At least three inhibitors are formed: lactic acid, ammonia, and an unidentified inhibitor that may be an unstable protein. The unidentified inhibitor is destroyed by shaking the conditioned medium, by bubbling gas through the medium, or by heating or storing the medium in the absence of cells. The concentrations of lactic acid and ammonia that accumulate in conditioned medium inhibit growth when added to fresh medium. These results, together with earlier studies, indicate that density-dependent regulation of growth of BSC-1 cells results from the combined effects of (a) inhibitors formed by the cells, (b) decreased availability of receptor sites for serum growth factors as the cells become crowded, and (c) limiting concentrations of low molecular weight nutrients in the medium. In contrast, density-dependent regulation of growth in 3T3 mouse embryo fibroblasts results almost entirely from inactivation of serum factors. PMID:273914

  14. PSMB4 promotes multiple myeloma cell growth by activating NF-κB-miR-21 signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Peihao; Guo, Honggang; Li, Guangchao

    2015-03-06

    Proteasomal subunit PSMB4, was recently identified as potential cancer driver genes in several tumors. However, the regulatory mechanism of PSMB4 on carcinogenesis process remains unclear. In this study, we investigated the expression and roles of PSMB4 in multiple myeloma (MM). We found a significant up-regulation of PSMB4 in MM plasma and cell lines. Ectopic overexpression of PSMB4 promoted cell growth and colony forming ability of MM cells, whereas inhibition of PSMB4 led to a decrease of such events. Furthermore, our results demonstrated the up-regulation of miR-21 and a positive correlation between the levels of miR-21 and PSMB4 in MM. Re-expressionmore » of miR-21 markedly rescued PSMB4 knockdown-mediated suppression of cell proliferation and clone-formation. Additionally, while enforced expression of PSMB4 profoundly increased NF-κB activity and the level of miR-21, PSMB4 knockdown or NF-κB inhibition suppressed miR-21 expression in MM cells. Taken together, our results demonstrated that PSMB4 regulated MM cell growth in part by activating NF-κB-miR-21 signaling, which may represent promising targets for novel specific therapies. - Highlights: • First reported upregulation of PSMB4 in MM plasma and cell lines. • PSMB4 promoted MM cell growth and colony forming ability. • Further found miR-21 was up-regulated by PSMB4 in MM plasma and cell lines. • PSMB4-induced miR-21 expression was modulated by NF-κB. • PSMB4-NF-κB-miR-21 axis may be potential therapeutic targets of MM.« less

  15. Toxicity of tungsten carbide and cobalt-doped tungsten carbide nanoparticles in mammalian cells in vitro.

    PubMed

    Bastian, Susanne; Busch, Wibke; Kühnel, Dana; Springer, Armin; Meissner, Tobias; Holke, Roland; Scholz, Stefan; Iwe, Maria; Pompe, Wolfgang; Gelinsky, Michael; Potthoff, Annegret; Richter, Volkmar; Ikonomidou, Chrysanthy; Schirmer, Kristin

    2009-04-01

    Tungsten carbide nanoparticles are being explored for their use in the manufacture of hard metals. To develop nanoparticles for broad applications, potential risks to human health and the environment should be evaluated and taken into consideration. We aimed to assess the toxicity of well-characterized tungsten carbide (WC) and cobalt-doped tungsten carbide (WC-Co) nanoparticle suspensions in an array of mammalian cells. We examined acute toxicity of WC and of WC-Co (10% weight content Co) nanoparticles in different human cell lines (lung, skin, and colon) as well as in rat neuronal and glial cells (i.e., primary neuronal and astroglial cultures and the oligodendrocyte precursor cell line OLN-93). Furthermore, using electron microscopy, we assessed whether nanoparticles can be taken up by living cells. We chose these in vitro systems in order to evaluate for potential toxicity of the nanoparticles in different mammalian organs (i.e., lung, skin, intestine, and brain). Chemical-physical characterization confirmed that WC as well as WC-Co nanoparticles with a mean particle size of 145 nm form stable suspensions in serum-containing cell culture media. WC nanoparticles were not acutely toxic to the studied cell lines. However, cytotoxicity became apparent when particles were doped with Co. The most sensitive were astrocytes and colon epithelial cells. Cytotoxicity of WC-Co nanoparticles was higher than expected based on the ionic Co content of the particles. Analysis by electron microscopy demonstrated presence of WC nanoparticles within mammalian cells. Our findings demonstrate that doping of WC nanoparticles with Co markedly increases their cytotoxic effect and that the presence of WC-Co in particulate form is essential to elicit this combinatorial effect.

  16. Toxicity of Tungsten Carbide and Cobalt-Doped Tungsten Carbide Nanoparticles in Mammalian Cells in Vitro

    PubMed Central

    Bastian, Susanne; Busch, Wibke; Kühnel, Dana; Springer, Armin; Meißner, Tobias; Holke, Roland; Scholz, Stefan; Iwe, Maria; Pompe, Wolfgang; Gelinsky, Michael; Potthoff, Annegret; Richter, Volkmar; Ikonomidou, Chrysanthy; Schirmer, Kristin

    2009-01-01

    Background Tungsten carbide nanoparticles are being explored for their use in the manufacture of hard metals. To develop nanoparticles for broad applications, potential risks to human health and the environment should be evaluated and taken into consideration. Objective We aimed to assess the toxicity of well-characterized tungsten carbide (WC) and cobaltdoped tungsten carbide (WC-Co) nanoparticle suspensions in an array of mammalian cells. Methods We examined acute toxicity of WC and of WC-Co (10% weight content Co) nanoparticles in different human cell lines (lung, skin, and colon) as well as in rat neuronal and glial cells (i.e., primary neuronal and astroglial cultures and the oligodendro cyte precursor cell line OLN-93). Furthermore, using electron microscopy, we assessed whether nanoparticles can be taken up by living cells. We chose these in vitro systems in order to evaluate for potential toxicity of the nanoparticles in different mammalian organs (i.e., lung, skin, intestine, and brain). Results Chemical–physical characterization confirmed that WC as well as WC-Co nanoparticles with a mean particle size of 145 nm form stable suspensions in serum-containing cell culture media. WC nanoparticles were not acutely toxic to the studied cell lines. However, cytotoxicity became apparent when particles were doped with Co. The most sensitive were astrocytes and colon epithelial cells. Cytotoxicity of WC-Co nanoparticles was higher than expected based on the ionic Co content of the particles. Analysis by electron microscopy demonstrated presence of WC nanoparticles within mammalian cells. Conclusions Our findings demonstrate that doping of WC nanoparticles with Co markedly increases their cytotoxic effect and that the presence of WC-Co in particulate form is essential to elicit this combinatorial effect. PMID:19440490

  17. Characterization of human pancreatic progenitor cells.

    PubMed

    Noguchi, Hirofumi; Naziruddin, Bashoo; Jackson, Andrew; Shimoda, Masayuki; Ikemoto, Tetsuya; Fujita, Yasutaka; Chujo, Daisuke; Takita, Morihito; Kobayashi, Naoya; Onaca, Nicholas; Hayashi, Shuji; Levy, Marlon F; Matsumoto, Shinichi

    2010-01-01

    β-Cell replacement therapy via islet transplantation is an effective treatment for diabetes mellitus, but its widespread use is severely limited by the shortage of donor organs. Because pancreatic stem/progenitor cells are abundantly available in the pancreas of these patients and in donor organs, the cells could become a useful target for β-cell replacement therapy. We previously established a mouse pancreatic stem cell line without genetic manipulation. In this study, we used the techniques to identify and isolate human pancreatic stem/progenitor cells. The cells from a duct-rich population were cultured in 23 kinds of culture media, based on media for mouse pancreatic stem cells or for human embryonic stem cells. The cells in serum-free media formed "cobblestone" morphologies, similar to a mouse pancreatic stem cell line. On the other hand, the cells in serum-containing medium and the medium for human embryonic stem cells formed "fibroblast-like" morphologies. The cells divided actively until day 30, and the population doubling level (PDL) was 6-10. However, the cells stopped dividing after 30 days in any culture conditions. During the cultures, the nucleus/cytoplasm (N/C) ratio decreased, suggesting that the cells entered senescence. Exendin-4 treatment and transduction of PDX-1 and NeuroD proteins by protein transduction technology into the cells induced insulin and pancreas-related gene expression. Although the duplications of these cells were limited, this approach could provide a potential new source of insulin-producing cells for transplantation.

  18. Anti-tumour potential of a gallic acid-containing phenolic fraction from Oenothera biennis.

    PubMed

    Pellegrina, Chiara Dalla; Padovani, Giorgia; Mainente, Federica; Zoccatelli, Gianni; Bissoli, Gaetano; Mosconi, Silvia; Veneri, Gianluca; Peruffo, Angelo; Andrighetto, Giancarlo; Rizzi, Corrado; Chignola, Roberto

    2005-08-08

    A phenolic fraction purified form defatted seeds of Oenothera biennis promoted selective apoptosis of human and mouse bone marrow-derived cell lines following first-order kinetics through a caspase-dependent pathway. In non-leukemia tumour cell lines, such as human colon carcinoma CaCo(2) cells and mouse fibrosarcoma WEHI164 cells, this fraction inhibited (3)H-thymidine incorporation but not cell death or cell cycle arrest. Human peripheral blood mononuclear cells showed low sensitivity to treatment. Single bolus injection of the phenolic fraction could delay the growth of established myeloma tumours in syngeneic animals. HPLC and mass spectrometry analysis revealed that the fraction contains gallic acid. However, the biological activity of the fraction differs from the activity of this phenol and hence it should be attributed to other co-purified molecules which remain still unidentified.

  19. Human gene therapy and slippery slope arguments.

    PubMed Central

    McGleenan, T

    1995-01-01

    Any suggestion of altering the genetic makeup of human beings through gene therapy is quite likely to provoke a response involving some reference to a 'slippery slope'. In this article the author examines the topography of two different types of slippery slope argument, the logical slippery slope and the rhetorical slippery slope argument. The logical form of the argument suggests that if we permit somatic cell gene therapy then we are committed to accepting germ line gene therapy in the future because there is no logically sustainable distinction between them. The rhetorical form posits that allowing somatic cell therapy now will be taking the first step on a slippery slope which will ultimately lead to the type of genocide perpetrated by the Nazis. The author tests the validity of these lines of argument against the facts of human gene therapy and concludes that because of their dependence on probabilities that cannot be empirically proven they should be largely disregarded in the much more important debate on moral line-drawing in gene therapy. PMID:8778459

  20. Human gene therapy and slippery slope arguments.

    PubMed

    McGleenan, T

    1995-12-01

    Any suggestion of altering the genetic makeup of human beings through gene therapy is quite likely to provoke a response involving some reference to a 'slippery slope'. In this article the author examines the topography of two different types of slippery slope argument, the logical slippery slope and the rhetorical slippery slope argument. The logical form of the argument suggests that if we permit somatic cell gene therapy then we are committed to accepting germ line gene therapy in the future because there is no logically sustainable distinction between them. The rhetorical form posits that allowing somatic cell therapy now will be taking the first step on a slippery slope which will ultimately lead to the type of genocide perpetrated by the Nazis. The author tests the validity of these lines of argument against the facts of human gene therapy and concludes that because of their dependence on probabilities that cannot be empirically proven they should be largely disregarded in the much more important debate on moral line-drawing in gene therapy.

  1. Comparative analysis of different cell systems for Zika virus (ZIKV) propagation and evaluation of anti-ZIKV compounds in vitro.

    PubMed

    Vicenti, Ilaria; Boccuto, Adele; Giannini, Alessia; Dragoni, Filippo; Saladini, Francesco; Zazzi, Maurizio

    2018-01-15

    A strong correlation between Zika virus (ZIKV) infection and severe neurological disease in newborns and occasionally adults has emerged in the Brazilian outbreak. Efficient human cell-based assays are required to test candidate inhibitors of ZIKV replication. The aim of this work was to investigate ZIKV propagation and quantification in different cell lines. The human (U87, A549, Huh7), mosquito (C6/36) and monkey (VERO E6) cell lines tested were all permissive to ZIKV infection. When assessed by plaque forming units (PFU) in three different target cell lines, the maximal production of ZIKV was achieved in Huh7 at day 3 post-infection (6.38±0.44 log 10 PFU/ml). The C6/36 cell line showed a low and slow production of virus when compared with other cell lines. A549 readout cells generated a larger number of plaques compared to Huh7 but not to VERO E6 cells. ZIKV PFU and RNA titers showed the highest correlation when Huh7 and A549 were used as the producer and readout cells, respectively. Also, U87 cells produced ZIKV RNA titers which were highly correlated with PFU independently from the readout cell line. Using the best virus-cell system, sofosbuvir and ribavirin EC 50 were 1.2μM and 1.1μM when measured through plaque assay, and 4.2μM and 5.2μM when measured by quantitative real time PCR (qRT-PCR), respectively. In summary, ZIKV can efficiently infect different human cell lines and rapidly reach peak viral titers. Overall, A549 cells appear to be as efficient as the VERO E6 gold standard for plaque assay allowing the use of human, rather than simian, cells for evaluating candidate anti-ZIKV compounds by the reference assay. The possibility to replace the labor-intensive plaque assay with the more rapid and easy-to-perform qRT-PCR is appealing and warrants further investigation. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Low Temperature Plasma Kills SCaBER Cancer Cells

    NASA Astrophysics Data System (ADS)

    Barekzi, Nazir; van Way, Lucas; Laroussi, Mounir

    2013-09-01

    Squamous cell carcinoma of the bladder is a rare type of bladder cancer that forms as a result of chronic irritation of the epithelial lining of the bladder. The cell line used in this study is SCaBER (ATCC® HTB-3™) derived from squamous cell carcinoma of the human urinary bladder. Current treatments of bladder cancer include surgery, radiation and chemotherapy. However, the cost of these treatments, the potential toxicity of the chemotherapeutic agents and the systemic side-effects warrant an alternative to current cancer treatment. This paper represents preliminary studies to determine the effects of biologically tolerant plasma (BTP) on a cell line of human bladder cancer cells. Previous work by our group using the plasma pencil revealed the efficacy of BTP on leukemia cells suspended in solution. Based on these earlier findings we hypothesized that the plasma exposure would elicit a similar programmed cell death in the SCaBER cells. Trypan blue exclusion and MTT assays revealed the cell killing after exposure to BTP. Our study indicates that low temperature plasma generated by ionizing helium gas and the reactive species may be a suitable and safe alternative for cancer therapy.

  3. Radiation-Induced Dedifferentiation of Head and Neck Cancer Cells Into Cancer Stem Cells Depends on Human Papillomavirus Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vlashi, Erina, E-mail: evlashi@mednet.ucla.edu; Jonsson Comprehensive Cancer Center at UCLA, Los Angeles, California; Chen, Allen M.

    Purpose: To test the hypothesis that the radiation response of cancer stem cells (CSCs) in human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) differs and is not reflected in the radiation response of the bulk tumor populations, that radiation therapy (RT) can dedifferentiate non-stem HNSCC cells into CSCs, and that radiation-induced dedifferentiation depends on the HPV status. Methods and Materials: Records of a cohort of 162 HNSCC patients were reviewed, and their outcomes were correlated with their HPV status. Using a panel of HPV-positive and HPV-negative HNSCC cell lines expressing a reporter for CSCs, we characterized HPV-positivemore » and HPV-negative lines via flow cytometry, sphere-forming capacity assays in vitro, and limiting dilution assays in vivo. Non-CSCs were treated with different doses of radiation, and the dedifferentiation of non-CSCs into CSCs was investigated via flow cytometry and quantitative reverse transcription–polymerase chain reaction for re-expression of reprogramming factors. Results: Patients with HPV-positive tumors have superior overall survival and local–regional control. Human papillomavirus–positive HNSCC cell lines have lower numbers of CSCs, which inversely correlates with radiosensitivity. Human papillomavirus–negative HNSCC cell lines lack hierarchy owing to enhanced spontaneous dedifferentiation. Non-CSCs from HPV-negative lines show enhanced radiation-induced dedifferentiation compared with HPV-positive lines, and RT induced re-expression of Yamanaka reprogramming factors. Conclusions: Supporting the favorable prognosis of HPV-positive HNSCCs, we show that (1) HPV-positive HNSCCs have a lower frequency of CSCs; (2) RT can dedifferentiate HNSCC cells into CSCs; and (3) radiation-induced dedifferentiation depends on the HPV status of the tumor.« less

  4. Establishment of cholangiocarcinoma cell lines from patients in the endemic area of liver fluke infection in Thailand.

    PubMed

    Saensa-Ard, Sunitta; Leuangwattanawanit, Saman; Senggunprai, Laddawan; Namwat, Nisana; Kongpetch, Sarinya; Chamgramol, Yaovalux; Loilome, Watcharin; Khansaard, Walaiporn; Jusakul, Apinya; Prawan, Auemduan; Pairojkul, Chawalit; Khantikeo, Narong; Yongvanit, Puangrat; Kukongviriyapan, Veerapol

    2017-11-01

    Cholangiocarcinoma is a rare type of cancer which is an increasingly discernible health threat. The disease is usually very difficult in diagnosis and various treatment modalities are typically not effective. Cholangiocarcinoma is a complex and very heterogeneous malignancy characterized by tumor location, different risk factors, molecular profiling, and prognosis. Cancer cell lines represent an important tool for investigation in various aspects of tumor biology and molecular therapeutics. We established two cell lines, KKU-452 and KKU-023, which were derived from patients residing in the endemic area of liver fluke infection in Thailand. Both of tumor tissues have gross pathology of perihilar and intrahepatic mass-forming cholangiocarcinoma. Two cell lines were characterized for their biological, molecular and genetic properties. KKU-452 and KKU-023 cells are both adherent cells with epithelium morphology, but have some differences in their growth pattern (a doubling time of 17.9 vs 34.8 h, respectively) and the expression of epithelial bile duct markers, CK7 and CK19. Cytogenetic analysis of KKU-452 and KKU-023 cells revealed their highly complex karyotypes; hypertriploid and hypotetraploid, respectively, with multiple chromosomal aberrations. Both cell lines showed mutations in p53 but not in KRAS. KKU-452 showed a very rapid migration and invasion properties in concert with low expression of E-cadherin and high expression of N-cadherin, whereas KKU-023 showed opposite characters. KKU-023, but not KKU-452, showed in vivo tumorigenicity in xenografted nude mice. Those two established cholangiocarcinoma cell lines with unique characters may be valuable for better understanding the process of carcinogenesis and developing new therapeutics for the patients.

  5. Radiation-Induced Dedifferentiation of Head and Neck Cancer Cells Into Cancer Stem Cells Depends on Human Papillomavirus Status.

    PubMed

    Vlashi, Erina; Chen, Allen M; Boyrie, Sabrina; Yu, Garrett; Nguyen, Andrea; Brower, Philip A; Hess, Clayton B; Pajonk, Frank

    2016-04-01

    To test the hypothesis that the radiation response of cancer stem cells (CSCs) in human papillomavirus (HPV)-positive and HPV-negative head and neck squamous cell carcinoma (HNSCC) differs and is not reflected in the radiation response of the bulk tumor populations, that radiation therapy (RT) can dedifferentiate non-stem HNSCC cells into CSCs, and that radiation-induced dedifferentiation depends on the HPV status. Records of a cohort of 162 HNSCC patients were reviewed, and their outcomes were correlated with their HPV status. Using a panel of HPV-positive and HPV-negative HNSCC cell lines expressing a reporter for CSCs, we characterized HPV-positive and HPV-negative lines via flow cytometry, sphere-forming capacity assays in vitro, and limiting dilution assays in vivo. Non-CSCs were treated with different doses of radiation, and the dedifferentiation of non-CSCs into CSCs was investigated via flow cytometry and quantitative reverse transcription-polymerase chain reaction for re-expression of reprogramming factors. Patients with HPV-positive tumors have superior overall survival and local-regional control. Human papillomavirus-positive HNSCC cell lines have lower numbers of CSCs, which inversely correlates with radiosensitivity. Human papillomavirus-negative HNSCC cell lines lack hierarchy owing to enhanced spontaneous dedifferentiation. Non-CSCs from HPV-negative lines show enhanced radiation-induced dedifferentiation compared with HPV-positive lines, and RT induced re-expression of Yamanaka reprogramming factors. Supporting the favorable prognosis of HPV-positive HNSCCs, we show that (1) HPV-positive HNSCCs have a lower frequency of CSCs; (2) RT can dedifferentiate HNSCC cells into CSCs; and (3) radiation-induced dedifferentiation depends on the HPV status of the tumor. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL.

    PubMed

    Etzkorn, James R; McQuaide, Sarah C; Anderson, Judy B; Meldrum, Deirdre R; Parviz, Babak A

    2009-06-01

    We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing "single-cell" biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells.

  7. Germ line mechanics – and unfinished business

    PubMed Central

    Wessel, Gary M.

    2016-01-01

    Primordial germ cells are usually made early in the development of an organism. These are the mother of all stem cells that are necessary for propagation of the species, yet use highly diverse mechanisms between organisms. How they are specified, and when and where they form, are central to developmental biology. Using diverse organisms to study this development is illuminating for understanding the mechanics these cells use in this essential function, and for identifying the breadth of evolutionary changes that have occurred between species. This essay emphasizes how echinoderms may contribute to the patch-work quilt of our understanding of germ line formation during embryogenesis. PMID:26970000

  8. Germ Line Mechanics--And Unfinished Business.

    PubMed

    Wessel, Gary M

    2016-01-01

    Primordial germ cells are usually made early in the development of an organism. These are the mother of all stem cells that are necessary for propagation of the species, yet use highly diverse mechanisms between organisms. How they are specified, and when and where they form, are central to developmental biology. Using diverse organisms to study this development is illuminating for understanding the mechanics these cells use in this essential function and for identifying the breadth of evolutionary changes that have occurred between species. This essay emphasizes how echinoderms may contribute to the patchwork quilt of our understanding of germ line formation during embryogenesis. © 2016 Elsevier Inc. All rights reserved.

  9. CRISPR/Cas9 mediated generation of stable chondrocyte cell lines with targeted gene knockouts; analysis of an aggrecan knockout cell line.

    PubMed

    Yang, Maozhou; Zhang, Liang; Stevens, Jeff; Gibson, Gary

    2014-12-01

    The Swarm rat chondrosarcoma (RCS) cell lines derived from a spontaneous neoplasm in a rat spine several decades ago have provided excellent models of chondrosarcoma tumor development. In addition the robust chondrocyte phenotype (expression of a large panel of genes identical to that seen in normal rat cartilage) and the ability to generate cell clones have facilitated their extensive use in the identification of chondrocyte proteins and genes. The clustered regularly interspersed short palindromic repeat (CRISPR) technology employing the RNA-guided nuclease Cas9 has rapidly dominated the genome engineering field as a unique and powerful gene editing tool. We have generated a stable RCS cell line (RCS Cas9) expressing the nuclease Cas9 that enables the editing of any target gene or non-coding RNA by simple transfection with a guide RNA. As proof of principle, stable cell lines with targeted ablation of aggrecan expression (Acan KO) were generated and characterized. The studies show that stable chondrocyte cell lines with targeted genome editing can be quickly generated from RCS Cas9 cells using this system. The Acan KO cell lines also provided a tool for characterizing the response of chondrocytes to aggrecan loss and the role of aggrecan in chondrosarcoma development. Loss of aggrecan expression while not affecting the chondrocyte phenotype resulted in a much firmer attachment of cells to their substrate in culture. Large changes in the expression of several genes were observed in response to the absence of the proteoglycan matrix, including those for several small leucine rich proteoglycans (SLRPs), transcription factors and membrane transporters. Acan KO cells failed to form a substantial chondrosarcoma when injected subcutaneously in nude mice consistent with previous suggestions that the glycosaminoglycan-rich matrix surrounding the chondrosarcoma protects it from destruction by the host immune system. The studies provide new understanding of aggrecan function and the RCS Cas9 cell line is expected to provide a very valuable tool for the study gene function in chondrocytes. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Integration sites of Epstein-Barr virus genome on chromosomes of human lymphoblastoid cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuu, K.D.; Chen, Y.J.; Wang-Wuu, S.

    1994-09-01

    Epstein-Barr virus (EBV) is the pathogen of infectious mononucleosis. The viral genome is present in more than 95% of the African cases of Burkitt lymphoma and it is usually maintained in episomal form in the tumor cells. Viral integration has been described only for Nanalwa which is a Burkitt lymphoma cell line lacking episomes. In order to examine the role of EBV in the immortalization of human Blymphocytes, we investigated whether the EBV integration into the human genome is essential. If the integration does occur, we would like to know whether the integration is randomly distributed or whether the viralmore » DNA integrates preferentially at certain sites. Fourteen in vitro immortalized human lymphoblastoid cell lines (LCLs) were examined by fluorescence in situ hybridization (FISH) with a biotinylated EBV BamHI w DNA fragment as probe. The episomal form of EBV DNA was found in all cells of these cell lines, while only about 65% of the cells have the integrated viral DNA. This might suggest that integration is not a pre-requisite for cell immortalization. Although all chromosomes, except Y, have been found with integrated viral genome, chromsomes 1 and 5 are the most frequent EBV DNA carrier (p<0.05). Nine chromosome bands, namely, 1p31, 1q31, 2q32, 3q13, 3q26, 5q14, 6q24, 7q31 and 12q21, are preferential targets for EBV integration (p<0.001). Eighty percent of the total 938 EBV hybridization signals were found to be at G-band-positive area. This suggests that the mechanism of EBV integration might be different from that of the retroviruses, which specifically integrate to G-band-negative areas. Thus, we conclude that the integration of EBV to host genome is non-random and it may have something to do with the structure of chromosome and DNA sequences.« less

  11. Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles

    PubMed Central

    Maeda, Junko; Cartwright, Ian M.; Haskins, Jeremy S.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Hirakawa, Hirokazu; Uesaka, Mitsuru; Kitamura, Hisashi; Fujimori, Akira; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0–1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56–2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51–3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA. PMID:27446477

  12. Optimization of Protocols for Derivation of Mouse Embryonic Stem Cell Lines from Refractory Strains, Including the Non Obese Diabetic Mouse

    PubMed Central

    Davies, Timothy J.

    2012-01-01

    The derivation of pluripotent embryonic stem cells (ESCs) from a variety of genetic backgrounds remains a desirable objective in the generation of mice functionally deficient in genes of interest and the modeling of human disease. Nevertheless, disparity in the ease with which different strains of mice yield ESC lines has long been acknowledged. Indeed, the generation of bona fide ESCs from the non obese diabetic (NOD) mouse, a well-characterized model of human type I diabetes, has historically proved especially difficult to achieve. Here, we report the development of protocols for the derivation of novel ESC lines from C57Bl/6 mice based on the combined use of high concentrations of leukemia inhibitory factor and serum-replacement, which is equally applicable to fresh and cryo-preserved embryos. Further, we demonstrate the success of this approach using Balb/K and CBA/Ca mice, widely considered to be refractory strains. CBA/Ca ESCs contributed to the somatic germ layers of chimeras and displayed a very high competence at germline transmission. Importantly, we were able to use the same protocol for the derivation of ESC lines from nonpermissive NOD mice. These ESCs displayed a normal karyotype that was robustly stable during long-term culture, were capable of forming teratomas in vivo and germline competent chimeras after injection into recipient blastocysts. Further, these novel ESC lines efficiently formed embryoid bodies in vitro and could be directed in their differentiation along the dendritic cell lineage, thus illustrating their potential application to the generation of cell types of relevance to the pathogenesis of type I diabetes. PMID:21933027

  13. Automatic microscopy for mitotic cell location.

    NASA Technical Reports Server (NTRS)

    Herron, J.; Ranshaw, R.; Castle, J.; Wald, N.

    1972-01-01

    Advances are reported in the development of an automatic microscope with which to locate hematologic or other cells in mitosis for subsequent chromosome analysis. The system under development is designed to perform the functions of: slide scanning to locate metaphase cells; conversion of images of selected cells into binary form; and on-line computer analysis of the digitized image for significant cytogenetic data. Cell detection criteria are evaluated using a test sample of 100 mitotic cells and 100 artifacts.

  14. Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells

    NASA Astrophysics Data System (ADS)

    Roy, Prathik; Periasamy, Arun Prakash; Lin, Chiu-Ya; Her, Guor-Mour; Chiu, Wei-Jane; Li, Chi-Lin; Shu, Chia-Lun; Huang, Chih-Ching; Liang, Chi-Te; Chang, Huan-Tsung

    2015-01-01

    Apoptosis (programmed cell death) is linked to many incurable neurodegenerative, cardiovascular and cancer causing diseases. Numerous methods have been developed for imaging apoptotic cells in vitro; however, there are few methods available for imaging apoptotic cells in live animals (in vivo). Here we report a novel method utilizing the unique photoluminescence properties of plant leaf-derived graphene quantum dots (GQDs) modified with annexin V antibody (AbA5) to form (AbA5)-modified GQDs (AbA5-GQDs) enabling us to label apoptotic cells in live zebrafish (Danio rerio). The key is that zebrafish shows bright red photoluminescence in the presence of apoptotic cells. The toxicity of the GQDs has also been investigated with the GQDs exhibiting high biocompatibility as they were excreted from the zebrafish's body without affecting its growth significantly at a concentration lower than 2 mg mL-1 over a period of 4 to 72 hour post fertilization. The GQDs have further been used to image human breast adenocarcinoma cell line (MCF-7 cells), human cervical cancer cell line (HeLa cells), and normal human mammary epithelial cell line (MCF-10A). These results are indispensable to further the advance of graphene-based nanomaterials for biomedical applications.Apoptosis (programmed cell death) is linked to many incurable neurodegenerative, cardiovascular and cancer causing diseases. Numerous methods have been developed for imaging apoptotic cells in vitro; however, there are few methods available for imaging apoptotic cells in live animals (in vivo). Here we report a novel method utilizing the unique photoluminescence properties of plant leaf-derived graphene quantum dots (GQDs) modified with annexin V antibody (AbA5) to form (AbA5)-modified GQDs (AbA5-GQDs) enabling us to label apoptotic cells in live zebrafish (Danio rerio). The key is that zebrafish shows bright red photoluminescence in the presence of apoptotic cells. The toxicity of the GQDs has also been investigated with the GQDs exhibiting high biocompatibility as they were excreted from the zebrafish's body without affecting its growth significantly at a concentration lower than 2 mg mL-1 over a period of 4 to 72 hour post fertilization. The GQDs have further been used to image human breast adenocarcinoma cell line (MCF-7 cells), human cervical cancer cell line (HeLa cells), and normal human mammary epithelial cell line (MCF-10A). These results are indispensable to further the advance of graphene-based nanomaterials for biomedical applications. Electronic supplementary information (ESI) available: Experimental discussion on synthesis, characterization, cellular imaging, cytotoxicity of GQDs in addition to its effect on zebrafish embryos, preparation of annexin V (A5)-modified GQDs (AbA5-GQDs), staining procedures and imaging are given. Figures for XRD, UV-vis absorption, photoluminescence of GQDs, mortality of zebrafish, time course recording of morphology of zebrafish embryos and morphology of adult zebrafish exposed to GQDs are illustrated. See DOI: 10.1039/c4nr07005d

  15. [THE OPTIMIZATION OF NUTRITION FUNCTION UNDER SYNDROME OF RESISTANCE TO INSULIN, DISORDER OF FATTY ACIDS' METABOLISM AND ABSORPTION OF GLUCOSE BY CELLS (A LECTURE)].

    PubMed

    Titov, V N

    2016-01-01

    The phylogenetic processes continue to proceed in Homo Sapiens. At the very early stages ofphylogenesis, the ancient Archaea that formed mitochondria under symbiotic interaction with later bacterial cells conjointly formed yet another system. In this system, there are no cells' absorption of glucose if it is possible to absorb fatty acids from intercellular medium in the form of unesterfied fatty acids or ketonic bodies--metabolites of fatty acids. This is caused by objectively existed conditions and subsequent availability of substrates at the stages ofphylogenesis: acetate, ketonic bodies, fatty acids and only later glucose. The phylogenetically late insulin used after billions years the same dependencies at formation of regulation ofmetabolism offatty acids and cells' absorption of glucose. In order that syndrome ofresistance ceased to exist as afoundation of metabolic pandemic Homo Sapiens has to understand the following. After successful function ofArchaea+bacterial cells and considered by biology action of insulin for the third time in phylogenesis and using biological function of intelligence the content ofphylogenetically earlier palmitic saturated fatty acid infood can't to exceed possibilities of phylogenetically late lipoproteins to transfer it in intercellular medium and blood and cells to absorb it. It is supposed that at early stages of phylogenesis biological function of intelligence is primarily formed to bring into line "unconformities" of regulation of metabolism against the background of seeming relative biological "perfection". These unconformities were subsequently and separately formed at the level of cells in paracrin regulated cenosises of cells and organs and at the level of organism. The prevention of resistance to insulin basically requires biological function of intelligence, principle of self-restraint, bringing into line multiple desires of Homo Sapiens with much less extensive biological possibilities. The "unconformities" of regulation of metabolism in vivo are etiological factors of all metabolic pandemics including atherosclerosis, metabolic arterial hypertension, obesity and metabolic syndrome Tertiannondatum.

  16. Gamma-ray imaging assay of cells 3-5 of the east cell line in the 235-F plutonium fuel form facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brand, A. D.; Aucott, T. J.; Diprete, D. P.

    In August and September, 2016, scientists from the Savannah River National Laboratory (SRNL) took a series of gamma-ray imaging measurements through the cell windows in front of Cells 3-5 on the east line of the Plutonium Fuel Form (PuFF) Facility using an electrically cooled, high-purity germanium detector. A Germanium Gamma Ray Imager (GeGI) was utilized since it allowed for the location from which the radiation was being emitted to be identified by incoming gamma-ray energy. This measurement technique provided a tool which allowed for the relative concentration of Pu-238 to be mapped throughout each cell. The mapping and new assaymore » data were then used to update the model used in an assay discussed in a 2014 report (SRNL-STI-2014-00629) and to calculate a more accurate value for the holdup in each of the cells [1]. Note that the mapping and new assay data did not replace the previous assay data in the model. Rather, the mapping and new assay data provided additional details on source distribution, which supplemented the previous assay data.« less

  17. Development of experimental tumors formed by mouse and human embryonic stem and teratocarcinoma cells after subcutaneous and intraperitoneal transplantations into immunodeficient and immunocompetent mice.

    PubMed

    Gordeeva, O F; Nikonova, T M

    2013-01-01

    Pluripotent stem cells represent an attractive cell source for regenerative medicine. However, the risk of teratoma formation after transplantation restricts their clinical application. Therefore, to adequately evaluate the potential risk of tumorigenicity after cell transplantation into human tissues, effective animal transplantation assays need to be developed. We performed a multiparameter (cell number, transplantation site, cell type, host) comparative analysis of the efficiency of tumor development after transplantation of mouse and human embryonic stem (ES) cells and their malignant counterparts, teratocarcinoma (EC) cells, into animal recipients and revealed several key correlations. We found that the efficiency of tumor growth was higher after intraperitoneal than after subcutaneous transplantations of all cell lines studied. The minimal cell numbers sufficient for tumor growth in immunodeficient nude mice were 100-fold lower for intraperitoneal than for subcutaneous transplantations of mouse and human ES cells (10(3) vs. 10(5) and 10(4) vs. 10(6), respectively). Moreover, mouse ES and EC cells formed tumors in immunodeficient and immunocompetent mice more effectively than human ES and EC cells. After intraperitoneal transplantation of 10(3), 10(4), and 10(5) mouse ES cells, teratomas developed in 83%, 100%, and 100% of nude mice, whereas after human ES cell transplantation, teratomas developed in 0%, 17%, and 60%, respectively. In addition, malignant mouse and human EC cells initiated tumor growth after intraperitoneal transplantation significantly faster and more effectively than ES cells. Mouse and human ES cells formed different types of teratomas containing derivatives of three germ layers but different numbers of undifferentiated cells. ES cell-like sublines with differentiation potential similar to the parental cell line were recloned only from mouse, but not from human, ES cell teratomas. These findings provide new information about the possibility and efficiency of tumor growth after transplantation of pluripotent stem cells. This information allows one to predict and possibly prevent the possible risks of tumorigenicity that could arise from stem cell therapeutics.

  18. Identification and Characterization of Cells with Cancer Stem Cell Properties in Human Primary Lung Cancer Cell Lines

    PubMed Central

    Suo, Zhenhe; Munthe, Else; Solberg, Steinar; Ma, Liwei; Wang, Mengyu; Westerdaal, Nomdo Anton Christiaan; Kvalheim, Gunnar; Gaudernack, Gustav

    2013-01-01

    Lung cancer (LC) with its different subtypes is generally known as a therapy resistant cancer with the highest morbidity rate worldwide. Therapy resistance of a tumor is thought to be related to cancer stem cells (CSCs) within the tumors. There have been indications that the lung cancer is propagated and maintained by a small population of CSCs. To study this question we established a panel of 15 primary lung cancer cell lines (PLCCLs) from 20 fresh primary tumors using a robust serum-free culture system. We subsequently focused on identification of lung CSCs by studying these cell lines derived from 4 representative lung cancer subtypes such as small cell lung cancer (SCLC), large cell carcinoma (LCC), squamous cell carcinoma (SCC) and adenocarcinoma (AC). We identified a small population of cells strongly positive for CD44 (CD44high) and a main population which was either weakly positive or negative for CD44 (CD44low/−). Co-expression of CD90 further narrowed down the putative stem cell population in PLCCLs from SCLC and LCC as spheroid-forming cells were mainly found within the CD44highCD90+ sub-population. Moreover, these CD44highCD90+ cells revealed mesenchymal morphology, increased expression of mesenchymal markers N-Cadherin and Vimentin, increased mRNA levels of the embryonic stem cell related genes Nanog and Oct4 and increased resistance to irradiation compared to other sub-populations studied, suggesting the CD44highCD90+ population a good candidate for the lung CSCs. Both CD44highCD90+ and CD44highCD90− cells in the PLCCL derived from SCC formed spheroids, whereas the CD44low/− cells were lacking this potential. These results indicate that CD44highCD90+ sub-population may represent CSCs in SCLC and LCC, whereas in SCC lung cancer subtype, CSC potentials were found within the CD44high sub-population. PMID:23469181

  19. Hepatoblastoma: A Need for Cell Lines and Tissue Banks to Develop Targeted Drug Therapies

    PubMed Central

    Rikhi, Rishi Raj; Spady, Kimberlee K.; Hoffman, Ruth I.; Bateman, Michael S.; Bateman, Max; Howard, Lisa Easom

    2016-01-01

    Limited research exists regarding the most aggressive forms of hepatoblastoma. Cell lines of the rare subtypes of hepatoblastoma with poor prognosis are not only difficult to attain but also challenging to characterize histologically. A community-driven approach to educating parents and families, regarding the need for donated tissue, is necessary for scientists to have access to resources for murine models and drug discovery. Herein, we describe the currently available resources, existing gaps in research, and the path to move forward for uniform cure of hepatoblastoma. PMID:27047905

  20. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, Russell B.

    1987-01-01

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  1. Pulse shaping with transmission lines

    DOEpatents

    Wilcox, R.B.

    1985-08-15

    A method and apparatus for forming shaped voltage pulses uses passive reflection from a transmission line with nonuniform impedance. The impedance of the reflecting line varies with length in accordance with the desired pulse shape. A high voltage input pulse is transmitted to the reflecting line. A reflected pulse is produced having the desired shape and is transmitted by pulse removal means to a load. Light activated photoconductive switches made of silicon can be utilized. The pulse shaper can be used to drive a Pockels cell to produce shaped optical pulses.

  2. Analysis of the cytoskeleton organization and its possible functions in male earthworm germ-line cysts equipped with a cytophore.

    PubMed

    Małota, Karol; Świątek, Piotr

    2016-10-01

    We studied the organization of F-actin and the microtubular cytoskeleton in male germ-line cysts in the seminal vesicles of the earthworm Dendrobaena veneta using light, fluorescent and electron microscopy along with both chemically fixed tissue and life cell imaging. Additionally, in order to follow the functioning of the cytoskeleton, we incubated the cysts in colchicine, nocodazole, cytochalasin D and latrunculin A. The male germ-line cells of D. veneta are interconnected via stable intercellular bridges (IB), and form syncytial cysts. Each germ cell has only one IB that connects it to the anuclear central cytoplasmic mass, the cytophore. During the studies, we analyzed the cytoskeleton in spermatogonial, spermatocytic and spermatid cysts. F-actin was detected in the cortical cytoplasm and forms distinct rings in the IBs. The arrangement of the microtubules changed dynamically during spermatogenesis. The microtubules are distributed evenly in whole spermatogonial and spermatocytic cysts; however, they primarily accumulate within the IBs in spermatogonia. In early spermatids, microtubules pass through the IBs and are present in whole cysts. During spermatid elongation, the microtubules form a manchette while they are absent in the cytophore and in the IBs. Use of cytoskeletal drugs did not alter the general morphology of the cysts. Detectable effects-the occurrence of nuclei in the late spermatids and manchette fragments in the cytophore-were observed only after incubation in nocodazole. Our results suggest that the microtubules are responsible for cytoplasmic/organelle transfer between the germ cells and the cytophore during spermatogenesis and for the positioning of the spermatid nuclei.

  3. Role of non-canonical Beclin 1-independent autophagy in cell death induced by resveratrol in human breast cancer cells.

    PubMed

    Scarlatti, F; Maffei, R; Beau, I; Codogno, P; Ghidoni, R

    2008-08-01

    Resveratrol, a polyphenol found in grapes and other fruit and vegetables, is a powerful chemopreventive and chemotherapeutic molecule potentially of interest for the treatment of breast cancer. The human breast cancer cell line MCF-7, which is devoid of caspase-3 activity, is refractory to apoptotic cell death after incubation with resveratrol. Here we show that resveratrol arrests cell proliferation, triggers death and decreases the number of colonies of cells that are sensitive to caspase-3-dependent apoptosis (MCF-7 casp-3) and also those that are unresponsive to it (MCF-7vc). We demonstrate that resveratrol (i) acts via multiple pathways to trigger cell death, (ii) induces caspase-dependent and caspase-independent cell death in MCF-7 casp-3 cells, (iii) induces only caspase-independent cell death in MCF-7vc cells and (iv) stimulates macroautophagy. Using BECN1 and hVPS34 (human vacuolar protein sorting 34) small interfering RNAs, we demonstrate that resveratrol activates Beclin 1-independent autophagy in both cell lines, whereas cell death via this uncommon form of autophagy occurs only in MCF-7vc cells. We also show that this variant form of autophagic cell death is blocked by the expression of caspase-3, but not by its enzymatic activity. In conclusion, this study reveals that non-canonical autophagy induced by resveratrol can act as a caspase-independent cell death mechanism in breast cancer cells.

  4. Identification of drug-resistant subpopulations in canine hemangiosarcoma

    PubMed Central

    Khammanivong, A.; Gorden, B. H.; Frantz, A. M.; Graef, A. J.; Dickerson, E. B.

    2017-01-01

    Canine hemangiosarcoma is a rapidly progressive disease that is poorly responsive to conventional chemotherapy. Despite numerous attempts to advance treatment options and improve outcomes, drug resistance remains a hurdle to successful therapy. To address this problem, we used recently characterized progenitor cell populations derived from canine hemangiosarcoma cell lines and grown as non-adherent spheres to identify potential drug resistance mechanisms as well as drug-resistant cell populations. Cells from sphere-forming cultures displayed enhanced resistance to chemotherapy drugs, expansion of dye-excluding side populations and altered ATP-binding cassette (ABC) transporter expression. Invasion studies demonstrated variability between cell lines as well as between sphere and monolayer cell populations. Collectively, our results suggest that sphere cell populations contain distinct subpopulations of drug-resistant cells that utilize multiple mechanisms to evade cytotoxic drugs. Our approach represents a new tool for the study of drug resistance in hemangiosarcoma, which could alter approaches for treating this disease. PMID:25112808

  5. Subcloning of three osteoblastic cell lines with distinct differentiation phenotypes from the mouse osteoblastic cell line KS-4.

    PubMed

    Yamashita, T; Ishii, H; Shimoda, K; Sampath, T K; Katagiri, T; Wada, M; Osawa, T; Suda, T

    1996-11-01

    Three distinct osteoblastic cell lines (KS418, KS460, and KS483) were subcloned from the mouse osteoblastic KS-4 cells, which possessed the abilities not only to differentiate into mature osteoblasts, but also to support osteoclast differentiation in coculture with spleen cells. The order of the magnitude of the basal alkaline phosphatase (ALP) activity was KS483 > KS418 > KS460. KS483 cells were also more differentiated than KS418 and KS460 in terms of ALP activity and osteocalcin production, when cultured in growth medium containing 10% fetal bovine serum. In long-term culture, KS418 and KS483 apparently differentiated into mature osteoblasts and formed calcified nodules without addition of beta-glycerophosphate. Electron microscopic analysis demonstrated that calcification occurring in the nodules was initiated in the matrix vesicles as observed in bone formation in vivo. Nodule formation and mineral deposition occurred simultaneously in the presence of beta-glycerophosphate, but the former always preceded the latter without addition of beta-glycerophosphate. In contrast, KS460 cells did not show time-dependent increases of ALP activity, type I collagen expression and osteocalcin production, which were induced by treatment with recombinant osteogenic protein-1 (OP-1). The three cell lines similarly supported osteoclast differentiation in coculture with spleen cells in response to 1,25-dihydroxyvitamin D3. These results indicate that the three cell lines subcloned from the original KS-4 cells represent phenotypically distinct osteoblasts during osteoblast differentiation, but are equipped similarly with the capacity to support osteoclast differentiation. The subcloned cells of the KS-4 series may provide useful systems in which to study osteoblast differentiation and function.

  6. Air-dried cells from the anhydrobiotic insect, Polypedilum vanderplanki, can survive long term preservation at room temperature and retain proliferation potential after rehydration.

    PubMed

    Watanabe, Kazuyo; Imanishi, Shigeo; Akiduki, Gaku; Cornette, Richard; Okuda, Takashi

    2016-08-01

    Pv11, a cell line derived from the anhydrobiotic insect, Polypedilum vanderplanki, was preserved in a dry form (only 6% residual moisture) at room temperature for up to 251 days and restarted proliferating after rehydration. A previous study already reported survival of Pv11 cells after desiccation, but without subsequent proliferation. Here, the protocol was improved to increase survival and achieve proliferation of Pv11 cells after dry storage. The method basically included preincubation, desiccation and rehydration processes and each step was investigated. So far, preincubation in a 600 mM trehalose solution for 48 h before dehydration was the most favourable preconditioning to achieve successful dry preservation of Pv11 cells, allowing about 16% of survival after rehydration and subsequent cell proliferation. Although the simple air-dry method established for Pv11 cells here was not applicable for successful dry-preservation of other insect cell lines, Pv11 is the first dry-preservable animal cell line and will surely contribute not only to basic but also applied sciences. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Raman spectroscopy differentiates between sensitive and resistant multiple myeloma cell lines

    NASA Astrophysics Data System (ADS)

    Franco, Domenico; Trusso, Sebastiano; Fazio, Enza; Allegra, Alessandro; Musolino, Caterina; Speciale, Antonio; Cimino, Francesco; Saija, Antonella; Neri, Fortunato; Nicolò, Marco S.; Guglielmino, Salvatore P. P.

    2017-12-01

    Current methods for identifying neoplastic cells and discerning them from their normal counterparts are often nonspecific and biologically perturbing. Here, we show that single-cell micro-Raman spectroscopy can be used to discriminate between resistant and sensitive multiple myeloma cell lines based on their highly reproducible biomolecular spectral signatures. In order to demonstrate robustness of the proposed approach, we used two different cell lines of multiple myeloma, namely MM.1S and U266B1, and their counterparts MM.1R and U266/BTZ-R subtypes, resistant to dexamethasone and bortezomib, respectively. Then, micro-Raman spectroscopy provides an easily accurate and noninvasive method for cancer detection for both research and clinical environments. Characteristic peaks, mostly due to different DNA/RNA ratio, nucleic acids, lipids and protein concentrations, allow for discerning the sensitive and resistant subtypes. We also explored principal component analysis (PCA) for resistant cell identification and classification. Sensitive and resistant cells form distinct clusters that can be defined using just two principal components. The identification of drug-resistant cells by confocal micro-Raman spectroscopy is thus proposed as a clinical tool to assess the development of resistance to glucocorticoids and proteasome inhibitors in myeloma cells.

  8. FORMING SELF-ASSEMBLED CELL ARRAYS AND MEASURING THE OXYGEN CONSUMPTION RATE OF A SINGLE LIVE CELL

    PubMed Central

    Etzkorn, James R.; McQuaide, Sarah C.; Anderson, Judy B.; Meldrum, Deirdre R.; Parviz, Babak A.

    2010-01-01

    We report a method for forming arrays of live single cells on a chip using polymer micro-traps made of SU8. We have studied the toxicity of the microfabricated structures and the associated environment for two cell lines. We also report a method for measuring the oxygen consumption rate of a single cell using optical interrogation of molecular oxygen sensors placed in micromachined micro-wells by temporarily sealing the cells in the micro-traps. The new techniques presented here add to the collection of tools available for performing “single-cell” biology. A single-cell self-assembly yield of 61% was achieved with oxygen draw down rates of 0.83, 0.82, and 0.71 fmol/minute on three isolated live A549 cells. PMID:20694048

  9. Overexpression of microRNA-21 strengthens stem cell-like characteristics in a hepatocellular carcinoma cell line.

    PubMed

    Jiang, Jinghang; Yang, Peipei; Guo, Zhe; Yang, Rirong; Yang, Haojie; Yang, Fuquan; Li, Lequn; Xiang, Bangde

    2016-10-28

    Liver cancer stem cells (LCSCs) have been shown to express higher levels of microRNA-21 (miR-21). Here, we examine the possible contributions of miR-21 to the phenotype of LCSCs in culture and in xenograft tumors in nude mice. The hepatocellular carcinoma cell line MHCC-97H was stably transformed with a retroviral vector to establish cells overexpressing miR-21, while a cell line transformed with empty vector served as a negative control. RT-PCR and Western blotting were used to evaluate the effects of miR-21 overexpression on the expression of various LCSC markers, a Transwell assay was used to assess the effects on cell migration and invasion, and a spheroid formation assay was used to examine the effects on clonogenesis. The effects of miR-21 overexpression were also examined in tumors in nude mice. An MHCC-97H cell line was constructed that stably overexpresses miR-21 at 7.78 ± 1.51-fold higher levels than the negative control cell line. Expression of the LCSC markers CD13, Ep-CAM, CD90, and OCT4 was significantly higher in the miR-21-overexpressing cell line than in the negative control at both mRNA and protein levels. The overexpressing cell line formed larger, tighter, and more numerous spheroids. Overexpression of miR-21 was associated with greater cell migration and invasion. Tumors of overexpressing cells in nude mice had a significantly larger mean volume after 34 days of growth (773.62 ± 163.46 mm 3 ) than tumors of negative control cells (502.79 ± 33.94 mm 3 , p = 0.048), as well as greater mean weight (0.422 ± 0.019 vs. 0.346 ± 0.006 g, p = 0.003). Overexpression of miR-21 strengthens the phenotype of LCSCs, facilitating invasion, migration, and tumorigenesis in hepatocellular carcinoma.

  10. Characterization of growth and Oryctes rhinoceros nudivirus production in attached cultures of the DSIR-HA-1179 coleopteran insect cell line.

    PubMed

    Pushparajan, Charlotte; Claus, Juan Daniel; Marshall, Sean David Goldie; Visnovsky, Gabriel

    2013-12-01

    The DSIR-HA-1179 coleopteran cell line is a susceptible and permissive host to the Oryctes rhinoceros nudivirus (OrNV), which has been used as a biocontrol agent against the coconut rhinoceros beetle (Oryctes rhinoceros); a pest of palms in the Asia-Pacific region. However, little is known about growth and metabolism of this cell line, knowledge of which is necessary to develop an in vitro large-scale OrNV production process. The strong anchorage-dependent characteristics of the cell line, its particular fragility and its tendency to form dense clumps when manipulated, are the most likely reasons that have precluded further development of the cell line. In order to characterize DSIR-HA-1179 cells, there was first a need for a reliable technique to count the cells. A homogenous cell suspension suitable for enumeration could be produced by treatment with TrypLE Express™ with optimum mean time for cell release calculated as 30 min. The cell line was adapted to grow in four serum-supplemented culture media namely TC-100, IPL-41, Sf-900 II and Sf-900 III and cell growth, glucose consumption, lactate and ammonia production were assessed from static-batch cultures. The maximum viable cell density was reached in Sf-900 II (17.9 × 10(5) cells/ml), with the maximum specific growth rate observed in this culture medium as well (0.0074 h(-1)). Higher production of OrNV was observed in IPL-41 and TC-100 (4.1 × 10(7) TCID50/ml) than in cultures infected in Sf-900 III (2.0 × 10(7) TCID50/ml) and Sf-900 II (1.4 × 10(7) TCID50/ml). At the end of the growth period, glucose was completely consumed in cultures grown in TC-100, while remained in excess in the other three culture media. The cell line produced lactate and ammonia to very low levels in the TC-100 culture medium which is a promising aspect for its cultivation at large-scale.

  11. Identification of the thiamin pyrophosphokinase gene in rainbow trout: Characteristic structure and expression of seven splice variants in tissues and cell lines and during embryo development

    USGS Publications Warehouse

    Yuge, Shinya; Richter, Catherine A.; Wright-Osment, Maureen K.; Nicks, Diane; Saloka, Stephanie K.; Tillitt, Donald E.; Li, Weiming

    2012-01-01

    Thiamin pyrophosphokinase (TPK) converts thiamin to its active form, thiamin diphosphate. In humans, TPK expression is down-regulated in some thiamin deficiency related syndrome, and enhanced during pregnancy. Rainbow trout are also vulnerable to thiamin deficiency in wild life and are useful models for thiamin metabolism research. We identified the tpk gene transcript including seven splice variants in the rainbow trout. Almost all cell lines and tissues examined showed co-expression of several tpk splice variants including a potentially major one at both mRNA and protein levels. However, relative to other tissues, the longest variant mRNA expression was predominant in the ovary and abundant in embryos. During embryogenesis, total tpk transcripts increased abruptly in early development, and decreased to about half of the peak shortly after hatching. In rainbow trout, the tpk transcript complex is ubiquitously expressed for all tissues and cells examined, and its increase in expression could be important in the early-middle embryonic stages. Moreover, decimated tpk expression in a hepatoma cell line relative to hepatic and gonadal cell lines appears to be consistent with previously reported down-regulation of thiamin metabolism in cancer.

  12. In-situ gamma-ray assay of the west cell line in the 235-F plutonium fuel form facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A. H.; Diprete, D.

    On August 29th, 2013, scientists from SRNL took a series of in-situ gamma-ray measurements in the maintenance trench beneath Cells 6-9 on the west line of the PuFF facility using an uncollimated, highpurity germanium detector. The detector efficiency was estimated using a combination of MCNP simulations and empirical measurements. Data analysis was performed using three gamma-rays emitted by Pu-238 (99.85 keV, 152.7 keV, and 766.4 keV) providing three independent estimates of the mass of Pu-238 holdup in each of the cells. The weighted mean of these three results was used as the best estimate of Pu-238 holdup in the Westmore » Cell Line of PuFF. The results of the assay measurements are found in the table below along with the results from the scoping assay performed in 2006. All uncertainties in this table (as well as the rest of the report) are given as 1σ. The total holdup in the West Cell Line was 2.4 ± 0.7 grams. This result is 0.6 g higher than the previous estimate, a 0.4σ difference.« less

  13. *NO and oxyradical metabolism in new cell lines of rat brain capillary endothelial cells forming the blood-brain barrier.

    PubMed

    Blasig, I E; Giese, H; Schroeter, M L; Sporbert, A; Utepbergenov, D I; Buchwalow, I B; Neubert, K; Schönfelder, G; Freyer, D; Schimke, I; Siems, W E; Paul, M; Haseloff, R F; Blasig, R

    2001-09-01

    To investigate the relevance of *NO and oxyradicals in the blood-brain barrier (BBB), differentiated and well-proliferating brain capillary endothelial cells (BCEC) are required. Therefore, rat BCEC (rBCEC) were transfected with immortalizing genes. The resulting lines exhibited endothelial characteristics (factor VIII, angiotensin-converting enzyme, high prostacyclin/thromboxane release rates) and BBB markers (gamma-glutamyl transpeptidase, alkaline phosphatase). The control line rBCEC2 (mock transfected) revealed fibroblastoid morphology, less factor VIII, reduced gamma-glutamyl transpeptidase, weak radical defence, low prostanoid metabolism, and limited proliferation. Lines transfected with immortalizing genes (especially rBCEC4, polyoma virus large T antigen) conserved primary properties: epitheloid morphology, subcultivation with high proliferation rate under pure culture conditions, and powerful defence against reactive oxygen species (Mn-, Cu/Zn-superoxide dismutase, catalase, glutathione peroxidase, glutathione) effectively controlling radical metabolism. Only 100 microM H2O2 overcame this defence and stimulated the formation of eicosanoids similarly as in primary cells. Some BBB markers were expressed to a lower degree; however, cocultivation with astrocytes intensified these markers (e.g., alkaline phosphatase) and paraendothelial tightness, indicating induction of BBB properties. Inducible NO synthase was induced by a cytokine plus lipopolysaccharide mixture in all lines and primary cells, resulting in *NO release. Comparing the cell lines obtained, rBCEC4 are stable immortalized and reveal the best conservation of properties from primary cells, including enzymes producing or decomposing reactive species. These cells can be subcultivated in large amounts and, hence, they are suitable to study the role of radical metabolism in the BBB and in the cerebral microvasculature. Copyright 2001 Academic Press.

  14. A selective splicing variant of hepcidin mRNA in hepatocellular carcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Toki, Yasumichi; Sasaki, Katsunori, E-mail: k-sasaki@asahikawa-med.ac.jp; Tanaka, Hiroki

    2016-08-05

    Hepcidin is a main regulator of iron metabolism, of which abnormal expression affects intestinal absorption and reticuloendothelial sequestration of iron by interacting with ferroportin. It is also noted that abnormal iron accumulation is one of the key factors to facilitate promotion and progression of cancer including hepatoma. By RT-PCR/agarose gel electrophoresis of hepcidin mRNA in a hepatocellular carcinoma cell line HLF, a smaller mRNA band was shown in addition to the wild-type hepcidin mRNA. From sequencing analysis, this additional band was a selective splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene, producing the transcript that encodes truncatedmore » peptide lacking 20 amino acids at the middle of preprohepcidin. In the present study, we used the digital PCR, because such a small amount of variant mRNA was difficult to quantitate by the conventional RT-PCR amplification. Among seven hepatoma-derived cell lines, six cell lines have significant copy numbers of this variant mRNA, but not in one cell line. In the transient transfection analysis of variant-type hepcidin cDNA, truncated preprohepcidin has a different character comparing with native preprohepcidin: its product is insensitive to digestion, and secreted into the medium as a whole preprohepcidin form without maturation. Loss or reduction of function of HAMP gene by aberrantly splicing may be a suitable phenomenon to obtain the proliferating advantage of hepatoma cells. - Highlights: • An aberrant splicing variant of hepcidin mRNA lacking exon 2 of HAMP gene. • Absolute quantification of hepcidin mRNA by digital PCR amplification. • Hepatoma-derived cell lines have significant copies of variant-type hepcidin mRNA. • Truncated preprohepcidin is secreted from cells without posttranslational cleavage.« less

  15. Functional importance of GLP-1 receptor species and expression levels in cell lines.

    PubMed

    Knudsen, Lotte Bjerre; Hastrup, Sven; Underwood, Christina Rye; Wulff, Birgitte Schjellerup; Fleckner, Jan

    2012-04-10

    Of the mammalian species, only the GLP-1 receptors of rat and human origin have been described and characterized. Here, we report the cloning of the homologous GLP-1 receptors from mouse, rabbit, pig, cynomolgus monkey and chimp. The GLP-1 receptor is highly conserved across species, thus underlining the physiological importance of the peptide hormone and its receptor across a wide range of mammals. We expressed the receptors by stable transfection of BHK cells, both in cell lines with high expression levels of the cloned receptors, as well as in cell lines with lower expression levels, more comparable to endogenous expression of these receptors. High expression levels of cloned GLP-1 receptors markedly increased the potency of GLP-1 and other high affinity ligands, whereas the K(d) values were not affected. For a low affinity ligand like the ago-allosteric modulator Compound 2, expression levels of the human GLP-1 receptor were important for maximal efficacy as well as potency. The two natural metabolites of GLP-1, GLP-1(9-37) and GLP-1(9-36)amide were agonists when tested on a cell line with high expression of the recombinant human GLP-1 receptor, whereas they behaved as (low potent) antagonists on a cell line that expressed the receptor endogenously, as well as cells expressing a moderate level of the recombinant human GLP-1 receptor. The amide form was a more potent agonist than the free acid from. In conclusion, receptor expression level is an important parametre for selecting cell lines with cloned GLP-1 receptors for functional characterization of physiological and pharmaceutical ligands. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. [Peripheral neuropathy and blood-nerve barrier].

    PubMed

    Kanda, Takashi

    2009-11-01

    It is important to know the cellular properties of endoneurial microvascular endothelial cells (PnMECs) and microvascular pericytes which constitute blood-nerve barrier (BNB), since this barrier structure in the peripheral nervous system (PNS) may play pivotal pathophysiological roles in various disorders of the PNS including inflammatory neuropathies (i.e. Guillain-Barré syndrome), vasculitic neuropathies, hereditary neuropathies and diabetic neuropathy. However, in contrast to blood-brain barrier (BBB), very few studies have been directed to BNB and no adequate cell lines originating from BNB had been launched. In our laboratory, we successfully established human immortalized cell lines originating from BNB using temperature-sensitive SV40 large T antigen and the cellular properties of human cell lines are presented in this paper. Human PnMEC cell line showed high transendothelial electrical resistance and expressed tight junction components and various types of influx as well as efflux transporters that have been reported to function at BBB. Human pericyte cell line also possessed tight junction proteins except claudin-5 and secrete various cytokines and growth factors including bFGF, VEGF, GDNF, NGF, BDNF and angiopoietin-1. Co-culture with pericytes or pericyte-conditioned media strengthend barrier properties of PnMEC, suggesting that in the PNS, peripheral nerve pericytes support the BNB function and play the same role of astrocytes in the BBB. Future accumulation of the knowledge concerning the cellular properties of BNB-forming cells will open the door to novel therapeutic strategies for intractable peripheral neuropathies.

  17. Combined treatment with silibinin and either sorafenib or gefitinib enhances their growth-inhibiting effects in hepatocellular carcinoma cells

    PubMed Central

    Gu, Ha Ra; Choi, Su Jin; Lee, Jae Cheol; Kim, You Cheoul; Han, Chul Ju; Kim, Jin; Yang, Ki Young; Kim, Yeon Joo; Noh, Geum Youb; No, So Hyeon; Jeong, Jae-Hoon

    2015-01-01

    Background/Aims Silibinin, the main component of silymarin, is used as a hepatoprotectant and exhibits anticancer effects against various cancer cells. This study evaluated the effects of a combination of silibinin with either gefitinib or sorafenib on hepatocellular carcinoma (HCC) cells. Methods Several different human HCC cell lines were used to test the growth-inhibiting effects and cell toxicity of silibinin both alone and in combination with either gefitinib or sorafenib. The cell viability and growth inhibition were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, trypan blue staining, and a colony-forming assay. Furthermore, changes in epidermal growth factor receptor (EGFR)-related signals were evaluated by Western blot analysis. Results Gefitinib, sorafenib, and silibinin individually exhibited dose-dependent antiproliferative effects on HCC cells. Combined treatment with silibinin enhanced the gefitinib-induced growth-inhibiting effects in some HCC cell lines. The combination effect of gefitinib and silibinin was synergistic in the SNU761 cell line, but was only additive in the Huh-BAT cell line. The combination effect may be attributable to inhibition of EGFR-dependent Akt signaling. Enhanced growth-inhibiting effects were also observed in HCC cells treated with a combination of sorafenib and silibinin. Conclusions Combined treatment with silibinin enhanced the growth-inhibiting effects of both gefitinib and sorafenib. Therefore, the combination of silibinin with either sorafenib or gefitinib could be a useful treatment approach for HCC in the future. PMID:25834802

  18. Combined treatment with silibinin and either sorafenib or gefitinib enhances their growth-inhibiting effects in hepatocellular carcinoma cells.

    PubMed

    Gu, Ha Ra; Park, Su Cheol; Choi, Su Jin; Lee, Jae Cheol; Kim, You Cheoul; Han, Chul Ju; Kim, Jin; Yang, Ki Young; Kim, Yeon Joo; Noh, Geum Youb; No, So Hyeon; Jeong, Jae-Hoon

    2015-03-01

    Silibinin, the main component of silymarin, is used as a hepatoprotectant and exhibits anticancer effects against various cancer cells. This study evaluated the effects of a combination of silibinin with either gefitinib or sorafenib on hepatocellular carcinoma (HCC) cells. Several different human HCC cell lines were used to test the growth-inhibiting effects and cell toxicity of silibinin both alone and in combination with either gefitinib or sorafenib. The cell viability and growth inhibition were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, trypan blue staining, and a colony-forming assay. Furthermore, changes in epidermal growth factor receptor (EGFR)-related signals were evaluated by Western blot analysis. Gefitinib, sorafenib, and silibinin individually exhibited dose-dependent antiproliferative effects on HCC cells. Combined treatment with silibinin enhanced the gefitinib-induced growth-inhibiting effects in some HCC cell lines. The combination effect of gefitinib and silibinin was synergistic in the SNU761 cell line, but was only additive in the Huh-BAT cell line. The combination effect may be attributable to inhibition of EGFR-dependent Akt signaling. Enhanced growth-inhibiting effects were also observed in HCC cells treated with a combination of sorafenib and silibinin. Combined treatment with silibinin enhanced the growth-inhibiting effects of both gefitinib and sorafenib. Therefore, the combination of silibinin with either sorafenib or gefitinib could be a useful treatment approach for HCC in the future.

  19. Dasatinib and Doxorubicin Treatment of Sarcoma Initiating Cells: A Possible New Treatment Strategy.

    PubMed

    Aggerholm-Pedersen, Ninna; Demuth, Christina; Safwat, Akmal; Meldgaard, Peter; Kassem, Moustapha; Sandahl Sorensen, Boe

    2016-01-01

    Background. One of the major challenges affecting sarcoma treatment outcome, particularly that of metastatic disease, is resistance to chemotherapy. Cancer-initiating cells are considered a major contributor to this resistance. Methods. An immortalised nontransformed human stromal (mesenchymal) stem cell line hMSC-TERT4 and a transformed cell line hMSC-TERT20-CE8, known to form sarcoma-like tumours when implanted in immune-deficient mice, were used as models. Receptor tyrosine kinase (RTK) activation was analysed by RTK arrays and cellular viability after tyrosine kinases inhibitor (TKI) treatment with or without doxorubicin was assessed by MTS assay. Results. Initial results showed that the hMSC-TERT4 was more doxorubicin-sensitive while hMSC-TERT20-CE8 was less doxorubicin-sensitive evidenced by monitoring cell viability in the presence of doxorubicin at different doses. The epidermal growth factor receptor (EGFR) was activated in both cell lines. However hMSC-TERT20-CE8 exhibited significantly higher expression of the EGFR ligands. EGFR inhibitors such as erlotinib and afatinib alone or in combination with doxorubicin failed to further decrease cell viability of hMSC-TERT20-CE8. However, inhibition with the TKI dasatinib in combination with doxorubicin decreased cell viability of the hMSC-TERT20-CE8 cell line. Conclusion. Our results demonstrate that dasatinib, but not EGFR-directed treatment, can decrease cell viability of stromal cancer stem cells less sensitive to doxorubicin.

  20. TP53-dependent chromosome instability is associated with transient reductions in telomere length in immortal telomerase-positive cell lines

    NASA Technical Reports Server (NTRS)

    Schwartz, J. L.; Jordan, R.; Liber, H.; Murnane, J. P.; Evans, H. H.

    2001-01-01

    Telomere shortening in telomerase-negative somatic cells leads to the activation of the TP53 protein and the elimination of potentially unstable cells. We examined the effect of TP53 gene expression on both telomere metabolism and chromosome stability in immortal, telomerase-positive cell lines. Telomere length, telomerase activity, and chromosome instability were measured in multiple clones isolated from three related human B-lymphoblast cell lines that vary in TP53 expression; TK6 cells express wild-type TP53, WTK1 cells overexpress a mutant form of TP53, and NH32 cells express no TP53 protein. Clonal variations in both telomere length and chromosome stability were observed, and shorter telomeres were associated with higher levels of chromosome instability. The shortest telomeres were found in WTK1- and NH32-derived cells, and these cells had 5- to 10-fold higher levels of chromosome instability. The primary marker of instability was the presence of dicentric chromosomes. Aneuploidy and other stable chromosome alterations were also found in clones showing high levels of dicentrics. Polyploidy was found only in WTK1-derived cells. Both telomere length and chromosome instability fluctuated in the different cell populations with time in culture, presumably as unstable cells and cells with short telomeres were eliminated from the growing population. Our results suggest that transient reductions in telomere lengths may be common in immortal cell lines and that these alterations in telomere metabolism can have a profound effect on chromosome stability. Copyright 2000 Wiley-Liss, Inc.

  1. Effects of different feeder layers on culture of bovine embryonic stem cell-like cells in vitro.

    PubMed

    Cong, Shan; Cao, Guifang; Liu, Dongjun

    2014-12-01

    To find a suitable feeder layer is important for successful culture conditions of bovine embryonic stem cell-like cells. In this study, expression of pluripotency-related genes OCT4, SOX2 and NANOG in bovine embryonic stem cell-like cells on mouse embryonic fibroblast feeder layers at 1-5 passages were monitored in order to identify the possible reason that bovine embryonic stem cell-like cells could not continue growth and passage. Here, we developed two novel feeder layers, mixed embryonic fibroblast feeder layers of mouse and bovine embryonic fibroblast at different ratios and sources including mouse fibroblast cell lines. The bovine embryonic stem cell-like cells generated in our study displayed typical stem cell morphology and expressed specific markers such as OCT4, stage-specific embryonic antigen 1 and 4, alkaline phosphatase, SOX2, and NANOG mRNA levels. When feeder layers and cell growth factors were removed, the bovine embryonic stem cell-like cells formed embryoid bodies in a suspension culture. Furthermore, we compared the expression of the pluripotent markers during bovine embryonic stem cell-like cell in culture on mixed embryonic fibroblast feeder layers, including mouse fibroblast cell lines feeder layers and mouse embryonic fibroblast feeder layers by real-time quantitative polymerase chain reaction. Results suggested that mixed embryonic fibroblast and sources including mouse fibroblast cell lines feeder layers were more suitable for long-term culture and growth of bovine embryonic stem cell-like cells than mouse embryonic fibroblast feeder layers. The findings may provide useful experimental data for the establishment of an appropriate culture system for bovine embryonic stem cell lines.

  2. Holoclone Forming Cells from Pancreatic Cancer Cells Enrich Tumor Initiating Cells and Represent a Novel Model for Study of Cancer Stem Cells

    PubMed Central

    Tan, Lei; Sui, Xin; Deng, Hongkui; Ding, Mingxiao

    2011-01-01

    Background Pancreatic cancer is one of the direct causes of cancer-related death. High level of chemoresistance is one of the major obstacles of clinical treatment. In recent years, cancer stem cells have been widely identified and indicated as the origin of chemoresistance in multi-types of solid tumors. Increasing evidences suggest that cancer stem cells reside in the cells capable of forming holoclones continuously. However, in pancreatic cancer, holoclone-forming cells have not been characterized yet. Therefore, the goal of our present study was to indentify the holoclone-forming pancreatic cancer stem cells and develop an in vitro continuous colony formation system, which will greatly facilitate the study of pancreatic cancer stem cells. Methodology/Principal Findings Pancreatic cancer cell line BxPC3 was submitted to monoclonal cultivation to generate colonies. Based on the morphologies, colonies were classified and analyzed for their capacities of secondary colony formation, long-term survival in vitro, tumor formation in vivo, and drug resistance. Flowcytometry and quantitative RT-PCR were performed to detect the expression level of cancer stem cells associated cell surface markers, regulatory genes and microRNAs in distinct types of colonies. Three types of colonies with distinct morphologies were identified and termed as holo-, mero-, and paraclones, in which only holoclones generated descendant colonies of all three types in further passages. Compared to mero- and paraclones, holoclones possessed higher capacities of long-term survival, tumor initiation, and chemoresistance. The preferential expression of cancer stem cells related marker (CXCR4), regulatory genes (BMI1, GLI1, and GLI2) and microRNAs (miR-214, miR-21, miR-221, miR-222 and miR-155) in holoclones were also highlighted. Conclusions/Significance Our results indicate that the pancreatic tumor-initiating cells with high level of chemoresistance were enriched in holoclones derived from BxPC3 cell line. Generation of holoclones can serve as a novel model for studying cancer stem cells, and attribute to developing new anti-cancer drugs. PMID:21826251

  3. Cytokeratins in normal and malignant transitional epithelium. Maintenance of expression of urothelial differentiation features in transitional cell carcinomas and bladder carcinoma cell culture lines.

    PubMed Central

    Moll, R.; Achtstätter, T.; Becht, E.; Balcarova-Ständer, J.; Ittensohn, M.; Franke, W. W.

    1988-01-01

    The pattern of cytokeratins expressed in normal urothelium has been compared with that of various forms of transitional cell carcinomas (TCCs; 21 cases) and cultured bladder carcinoma cell lines, using immunolocalization and gel electrophoretic techniques. In normal urothelium, all simple-epithelium-type cytokeratins (polypeptides 7, 8, 18, 19) were detected in all cell layers, whereas antibodies to cytokeratins typical for stratified epithelia reacted with certain basal cells only or, in the case of cytokeratin 13, with cells of the basal and intermediate layers. This pattern was essentially maintained in low-grade (G1, G1/2) TCCs but was remarkably modified in G2 TCCs. In G3 TCCs simple-epithelial cytokeratins were predominant whereas the amounts of component 13 were greatly reduced. Squamous metaplasia was accompanied generally by increased or new expression of some stratified-epithelial cytokeratins. The cytokeratin patterns of cell culture lines RT-112 and RT-4 resembled those of G1 and G2 TCCs, whereas cell line T-24 was comparable to G3 carcinomas. The cell line EJ showed a markedly different pattern. The results indicate that, in the cell layers of the urothelium, the synthesis of stratification-related cytokeratins such as component 13 is inversely oriented compared with that in other stratified epithelia where these proteins are suprabasally expressed, that TCCs retain certain intrinsic cytoskeletal features of urothelium, and that different TCCs can be distinguished by their cytokeratin patterns. The potential value of these observations in histopathologic and cytologic diagnoses is discussed. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 PMID:2456018

  4. Human papillomavirus E6 protein enriches the CD55(+) population in cervical cancer cells, promoting radioresistance and cancer aggressiveness.

    PubMed

    Leung, Thomas Ho-Yin; Tang, Hermit Wai-Man; Siu, Michelle Kwan-Yee; Chan, David Wai; Chan, Karen Kar-Loen; Cheung, Annie Nga-Yin; Ngan, Hextan Yuen-Sheung

    2018-02-01

    Accumulating evidence indicates that the human papillomavirus (HPV) E6 protein plays a crucial role in the development of cervical cancer. Subpopulations of cells that reside within tumours are responsible for tumour resistance to cancer therapy and recurrence. However, the identity of such cells residing in cervical cancer and their relationship with the HPV-E6 protein have not been identified. Here, we isolated sphere-forming cells, which showed self-renewal ability, from primary cervical tumours. Gene expression profiling revealed that cluster of differentiation (CD) 55 was upregulated in primary cervical cancer sphere cells. Flow-cytometric analysis detected abundant CD55(+) populations among a panel of HPV-positive cervical cancer cell lines, whereas few CD55(+) cells were found in HPV-negative cervical cancer and normal cervical epithelial cell lines. The CD55(+) subpopulation isolated from the C33A cell line showed significant sphere-forming ability and enhanced tumourigenicity, cell migration, and radioresistance. In contrast, the suppression of CD55 in HPV-positive CaSki cells inhibited tumourigenicity both in vitro and in vivo, and sensitized cells to radiation treatment. In addition, ectopic expression of the HPV-E6 protein in HPV-negative cervical cancer cells dramatically enriched the CD55(+) subpopulation. CRISPR/Cas9 knockout of CD55 in an HPV-E6-overexpressing stable clone abolished the tumourigenic effects of the HPV-E6 protein. Taken together, our data suggest that HPV-E6 protein expression enriches the CD55(+) population, which contributes to tumourigenicity and radioresistance in cervical cancer cells. Targeting CD55 via CRISPR/Cas9 may represent a novel avenue for developing new strategies and effective therapies for the treatment of cervical cancer. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  5. An AKT activity threshold regulates androgen-dependent and androgen-independent PSA expression in prostate cancer cell lines.

    PubMed

    Paliouras, Miltiadis; Diamandis, Eleftherios P

    2008-06-01

    The androgen receptor (AR) plays an important role in early prostate cancer by activating transcription of a number of genes participating in cell proliferation and growth and cancer progression. However, as the cancer progresses, prostate cancer cells transform from an androgen-dependent to an androgen-independent state. Androgen-independent prostate cancer can manifest itself in several forms, including a percentage of cancers that show reduced levels of prostate-specific antigen (PSA) and can progress without the need for the ligand or active receptor. Therefore, our goal was to examine the role of intracellular signaling pathways in an androgen-independent prostate cancer in vitro model. Using the cell line PC3(AR)(2), we stimulated cells with 5-alpha-dihydrotestosterone (DHT) and epidermal growth factor (EGF) and then analyzed PSA expression. We observed lower PSA expression when cells were jointly stimulated with DHT and EGF, and this was associated with an increase in AKT activity. We examined the role of AKT in AR activity and PSA expression by creating stable PC3(AR)(2) cell lines transfected with a PI3K-Ras-effector loop mutant. These cell lines showed lower DHT-stimulated PSA expression that correlated to changes in the phosphorylated state of AR. Therefore, we propose an in vitro androgen-independent model in which a PI3K/AKT activity threshold and subsequent AR transactivation regulate PSA expression.

  6. Desmoplakin expression and distribution in cultured rat bladder epithelial cells of varying tumorigenic potential.

    PubMed

    Green, K J; Stappenbeck, T S; Noguchi, S; Oyasu, R; Nilles, L A

    1991-03-01

    The expression and distribution of the desmosomal plaque proteins, desmoplakins (DPs) I and II, were studied in nontumorigenic (RBE-8) and a series of tumorigenic (AY34, R-4909, SS-24B, RBTCC-8, and 804G) rat bladder epithelial cell lines. These cell lines ranged from slow-growing papillary transitional cells (AY34) to rapidly metastatic carcinoma cells (RBTCC-8). DPs I and II were shown by immunoblotting and Northern analysis to be present in nontumorigenic RBE-8 cells as well as in all of the tumorigenic cell lines, albeit in differing amounts. Immunofluorescence microscopy revealed striking differences in DP distribution, corresponding in general with increases in tumorigenic potential. Whereas DPs of normal RBE-8 cells and less tumorigenic AY34 cells were localized predominantly at cell interfaces, the more tumorigenic lines exhibited a high proportion of DP in the form of cytoplasmic dots, a distribution reminiscent of that seen in epithelial cells maintained in low levels of extracellular calcium. In 804G cells, which represented the most extreme example of this phenomenon, the majority of DPs were organized as cytoplasmic dots. Electron microscopy revealed intermediate filament (IF)-associated spots in the cytoplasm as well as an elaborate array of IF-associated plaques at the cell-substratum interface. The IF-associated spots in the cytoplasm reacted with anti-DP antibody in immunogold labeling experiments while those at the cell-substratum did not react. In more dense cultures of 804G cells, certain cells stratified and expressed increased amounts of DP followed by the induction of new keratins including those of the skin type. Decreasing extracellular calcium resulted in a rearrangement of DP in each cell line; staining at cell-cell interfaces disappeared and was replaced with a pattern of cytoplasmic dots. These results demonstrate a possible relationship between desmosome assembly and/or maintenance and tumorigenic potential.

  7. A polycomb repressive complex 2 gene regulates apogamy and gives evolutionary insights into early land plant evolution.

    PubMed

    Okano, Yosuke; Aono, Naoki; Hiwatashi, Yuji; Murata, Takashi; Nishiyama, Tomoaki; Ishikawa, Takaaki; Kubo, Minoru; Hasebe, Mitsuyasu

    2009-09-22

    Land plants have distinct developmental programs in haploid (gametophyte) and diploid (sporophyte) generations. Although usually the two programs strictly alternate at fertilization and meiosis, one program can be induced during the other program. In a process called apogamy, cells of the gametophyte other than the egg cell initiate sporophyte development. Here, we report for the moss Physcomitrella patens that apogamy resulted from deletion of the gene orthologous to the Arabidopsis thaliana CURLY LEAF (PpCLF), which encodes a component of polycomb repressive complex 2 (PRC2). In the deletion lines, a gametophytic vegetative cell frequently gave rise to a sporophyte-like body. This body grew indeterminately from an apical cell with the character of a sporophytic pluripotent stem cell but did not form a sporangium. Furthermore, with continued culture, the sporophyte-like body branched. Sporophyte branching is almost unknown among extant bryophytes. When PpCLF was expressed in the deletion lines once the sporophyte-like bodies had formed, pluripotent stem cell activity was arrested and a sporangium-like organ formed. Supported by the observed pattern of PpCLF expression, these results demonstrate that, in the gametophyte, PpCLF represses initiation of a sporophytic pluripotent stem cell and, in the sporophyte, represses that stem cell activity and induces reproductive organ development. In land plants, branching, along with indeterminate apical growth and delayed initiation of spore-bearing reproductive organs, were conspicuous innovations for the evolution of a dominant sporophyte plant body. Our study provides insights into the role of PRC2 gene regulation for sustaining evolutionary innovation in land plants.

  8. Oxalate induces mitochondrial dysfunction and disrupts redox homeostasis in a human monocyte derived cell line.

    PubMed

    Patel, Mikita; Yarlagadda, Vidhush; Adedoyin, Oreoluwa; Saini, Vikram; Assimos, Dean G; Holmes, Ross P; Mitchell, Tanecia

    2018-05-01

    Monocytes/macrophages are thought to be recruited to the renal interstitium during calcium oxalate (CaOx) kidney stone disease for crystal clearance. Mitochondria play an important role in monocyte function during the immune response. We recently determined that monocytes in patients with CaOx kidney stones have decreased mitochondrial function compared to healthy subjects. The objective of this study was to determine whether oxalate, a major constituent found in CaOx kidney stones, alters cell viability, mitochondrial function, and redox homeostasis in THP-1 cells, a human derived monocyte cell line. THP-1 cells were treated with varying concentrations of CaOx crystals (insoluble form) or sodium oxalate (NaOx; soluble form) for 24h. In addition, the effect of calcium phosphate (CaP) and cystine crystals was tested. CaOx crystals decreased cell viability and induced mitochondrial dysfunction and redox imbalance in THP-1 cells compared to control cells. However, NaOx only caused mitochondrial damage and redox imbalance in THP-1 cells. In contrast, both CaP and cystine crystals did not affect THP-1 cells. Separate experiments showed that elevated oxalate also induced mitochondrial dysfunction in primary monocytes from healthy subjects. These findings suggest that oxalate may play an important role in monocyte mitochondrial dysfunction in CaOx kidney stone disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    PubMed

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  10. No preclinical rationale for IGF1R directed therapy in chondrosarcoma of bone.

    PubMed

    Peterse, Elisabeth F P; Cleven, Arjen H G; De Jong, Yvonne; Briaire-de Bruijn, Inge; Fletcher, Jonathan A; Danen, Erik H J; Cleton-Jansen, Anne-Marie; Bovée, Judith V M G

    2016-07-14

    Chondrosarcoma is a malignant cartilage forming bone tumour for which no effective systemic treatment is available. Previous studies illustrate the need for a better understanding of the role of the IGF pathway in chondrosarcoma to determine if it can be a target for therapy, which was therefore explored in this study. Expression of mediators of IGF1R signalling and phosphorylation status of IRS1 was determined in chondrosarcoma cell lines by qRT-PCR and western blot. The effect of activation and inhibition of IGF1R signalling on downstream targets was assessed by western blot. Ten chondrosarcoma cell lines were treated with OSI-906 (IGF1R and IR dual inhibitor) after which cell proliferation and migration were determined by a viability assay and the xCELLigence system, respectively. In addition, four chondrosarcoma cell lines were treated with a combination of doxorubicin and OSI-906. By immunohistochemistry, IGF1R expression levels were determined in tissue microarrays of 187 cartilage tumours and ten paraffin embedded cell lines. Mediators of IGF1R signalling are heterogeneously expressed and phosphorylated IRS1 was detected in 67 % of the tested chondrosarcoma cell lines, suggesting that IGF1R signalling is active in a subset of chondrosarcoma cell lines. In the cell lines with phosphorylated IRS1, inhibition of IGF1R signalling decreased phosphorylated Akt levels and increased IGF1R expression, but it did not influence MAPK or S6 activity. In line with these findings, treatment with IGF1R/IR inhibitors did not impact proliferation or migration in any of the chondrosarcoma cell lines, even upon stimulation with IGF1. Although synergistic effects of IGF1R/IR inhibition with doxorubicin are described for other cancers, our results demonstrate that this was not the case for chondrosarcoma. In addition, we found minimal IGF1R expression in primary tumours in contrast to the high expression detected in chondrosarcoma cell lines, even if both were derived from the same tumour, suggesting that in vitro culturing upregulates IGF1R expression. The results from this study indicate that the IGF pathway is not essential for chondrosarcoma growth, migration or chemoresistance. Furthermore, IGF1R is only minimally expressed in chondrosarcoma primary tumours. Therefore, the IGF pathway is not expected to be an effective therapeutic target for chondrosarcoma of bone.

  11. Immortalized N/TERT keratinocytes as an alternative cell source in 3D human epidermal models.

    PubMed

    Smits, Jos P H; Niehues, Hanna; Rikken, Gijs; van Vlijmen-Willems, Ivonne M J J; van de Zande, Guillaume W H J F; Zeeuwen, Patrick L J M; Schalkwijk, Joost; van den Bogaard, Ellen H

    2017-09-19

    The strong societal urge to reduce the use of experimental animals, and the biological differences between rodent and human skin, have led to the development of alternative models for healthy and diseased human skin. However, the limited availability of primary keratinocytes to generate such models hampers large-scale implementation of skin models in biomedical, toxicological, and pharmaceutical research. Immortalized cell lines may overcome these issues, however, few immortalized human keratinocyte cell lines are available and most do not form a fully stratified epithelium. In this study we compared two immortalized keratinocyte cell lines (N/TERT1, N/TERT2G) to human primary keratinocytes based on epidermal differentiation, response to inflammatory mediators, and the development of normal and inflammatory human epidermal equivalents (HEEs). Stratum corneum permeability, epidermal morphology, and expression of epidermal differentiation and host defence genes and proteins in N/TERT-HEE cultures was similar to that of primary human keratinocytes. We successfully generated N/TERT-HEEs with psoriasis or atopic dermatitis features and validated these models for drug-screening purposes. We conclude that the N/TERT keratinocyte cell lines are useful substitutes for primary human keratinocytes thereby providing a biologically relevant, unlimited cell source for in vitro studies on epidermal biology, inflammatory skin disease pathogenesis and therapeutics.

  12. Specific targeting and toxicity of sulphonated aluminium phthalocyanine photosensitised liposomes directed to cells by monoclonal antibody in vitro.

    PubMed Central

    Morgan, J.; Gray, A. G.; Huehns, E. R.

    1989-01-01

    A partially purified fraction of the water soluble photosensitive dye sulphonated aluminium phthalocyanine (AlSPc) was encapsulated in liposomes which were then linked to a targeting monoclonal antibody 791T/36 using a heterobifunctional linking agent. The photocytotoxic effects of the liposomes were determined on two cell lines bearing an antigen with which the targeting antibody binds: 791T, an osteosarcoma and C170, a colorectal carcinoma; and a control cell line not bearing the antigen; DW-BCL, an Epstein-Barr virus immortalised B-cell line. Antibody dependent cytotoxicity was observed in 791T and C170 cells and was proportional to the number of antigens on the cells, the AlSPc concentration and the time of exposure to activating red light. No significant toxicity was seen using untargeted liposomes, control cells or free AlSPc fraction under similar conditions. Targeted cells and controls kept in the dark also showed no significant toxicity. A possible mechanism of action is postulated and simple adaptations which demonstrate the versatility of the model are discussed. Some suggestions as to the clinical situations to which this system might be applied in the form of photodynamic therapy (PDT) are made. PMID:2930700

  13. Quantitative analysis of cell columns in the cerebral cortex.

    PubMed

    Buxhoeveden, D P; Switala, A E; Roy, E; Casanova, M F

    2000-04-01

    We present a quantified imaging method that describes the cell column in mammalian cortex. The minicolumn is an ideal template with which to examine cortical organization because it is a basic unit of function, complete in itself, which interacts with adjacent and distance columns to form more complex levels of organization. The subtle details of columnar anatomy should reflect physiological changes that have occurred in evolution as well as those that might be caused by pathologies in the brain. In this semiautomatic method, images of Nissl-stained tissue are digitized or scanned into a computer imaging system. The software detects the presence of cell columns and describes details of their morphology and of the surrounding space. Columns are detected automatically on the basis of cell-poor and cell-rich areas using a Gaussian distribution. A line is fit to the cell centers by least squares analysis. The line becomes the center of the column from which the precise location of every cell can be measured. On this basis several algorithms describe the distribution of cells from the center line and in relation to the available surrounding space. Other algorithms use cluster analyses to determine the spatial orientation of every column.

  14. Role of SMAD4 in the mechanism of valproic acid's inhibitory effect on prostate cancer cell invasiveness.

    PubMed

    Jiang, Wei; Zheng, Yi; Huang, Zhongxian; Wang, Muwen; Zhang, Yinan; Wang, Zheng; Jin, Xunbo; Xia, Qinghua

    2014-05-01

    To investigate the influence of the histone deacetylase inhibitor valproic acid (VPA) on SMAD4 expression and invasive ability of prostate cancer cell lines. DU145 and PC3 cell lines were treated with 0, 2, and 5 mMol/l of VPA; invasion of DU145 and PC3 cells were then examined by transwell assay. Immunohistochemistry and Western blot were used to examine SMAD4 protein expression in DU145 and PC3 cells. Compared with controls, VPA significantly suppressed invasiveness in both PC3 and DU145 cells in a dose-dependent way (P < 0.05). VPA also inhibited AKT protein (which was regarded as an effective indicator here), and meanwhile, SMAD4 expression was down-regulated after VPA treatment in a dose-dependent manner in both DU145 (P < 0.05) and PC3 (P < 0.01) cells. Valproic acid could suppress invasiveness of prostate cancer cell lines PC3 and Du145, possibly through multiple pathways other than the SAMD4 pathway. This implies that VPA treatment combined with other SMAD4 enhancers could form a basis for a novel prostate cancer treatment.

  15. Generation of urine-derived induced pluripotent stem cells from a patient with phenylketonuria

    PubMed Central

    Qi, Zijuan; Cui, Yazhou; Shi, Liang; Luan, Jing; Zhou, Xiaoyan; Han, Jinxiang

    2018-01-01

    Summary The aim of the study was to establish an induced pluripotent stem cell line from urine-derived cells (UiPSCs) from a patient with phenylketonuria (PKU) in order to provide a useful research tool with which to examine the pathology of this rare genetic metabolic disease. Urine-derived epithelial cells (UCs) from a 15-year-old male patient with PKU were isolated and reprogrammed with integration-free episomal vectors carrying an OCT4, SOX2, KLF4, and miR-302-367 cluster. PKU-UiPSCs were verified as correct using alkaline phosphatase staining. Pluripotency markers were detected with real-time PCR and flow cytometry. Promoter methylation in two pluripotent genes, NANOG and OCT4, was analyzed using bisulphite sequencing. An embryoid body (EB) formation assay was also performed. An induced pluripotent stem cell line (iPSC) was generated from epithelial cells in urine from a patient with PKU. This cell line had increased expression of stem cell biomarkers, it efficiently formed EBs, it stained positive for alkaline phosphatase (ALP), and it had a marked decrease in promoter methylation in the NANOG and OCT4 genes. The PKU-UiPSCs created here had typical characteristics and are suitable for further differentiation.

  16. Characterization of a continuous feline mammary epithelial cell line susceptible to feline epitheliotropic viruses.

    PubMed

    Pesavento, Patricia; Liu, Hongwei; Ossiboff, Robert J; Stucker, Karla M; Heymer, Anna; Millon, Lee; Wood, Jason; van der List, Deborah; Parker, John S L

    2009-04-01

    Mucosal epithelial cells are the primary targets for many common viral pathogens of cats. Viral infection of epithelia can damage or disrupt the epithelial barrier that protects underlying tissues. In vitro cell culture systems are an effective means to study how viruses infect and disrupt epithelial barriers, however no true continuous or immortalized feline epithelial cell culture lines are available. A continuous cell culture of feline mammary epithelial cells (FMEC UCD-04-2) that forms tight junctions with high transepithelial electrical resistance (>2000Omegacm(-1)) 3-4 days after reaching confluence was characterized. In addition, it was shown that FMECs are susceptible to infection with feline calicivirus (FCV), feline herpesvirus (FHV-1), feline coronavirus (FeCoV), and feline panleukopenia virus (FPV). These cells will be useful for studies of feline viral disease and for in vitro studies of feline epithelia.

  17. Overhead Projection Cell for Streamline Flow

    ERIC Educational Resources Information Center

    Waage, Harold M.

    1969-01-01

    Describes the construction and operation of an overhead projection apparatus designed to demonstrate streamline flow of a liquid. The apparatus consists of a Plexiglass tank containing water in which plates forming the cell are submerged, a constant level reservoir, an overflow device and a system for marking the flow lines with a dye. (LC)

  18. Occludin as a functional marker of vascular endothelial cells on tube-forming activity.

    PubMed

    Kanayasu-Toyoda, Toshie; Ishii-Watabe, Akiko; Kikuchi, Yutaka; Kitagawa, Hiroko; Suzuki, Hiroko; Tamura, Hiroomi; Tada, Minoru; Suzuki, Takuo; Mizuguchi, Hiroyuki; Yamaguchi, Teruhide

    2018-02-01

    Cell therapy using endothelial progenitor cells (EPCs) is a promising strategy for the treatment of ischemic diseases. Two types of EPCs have been identified: early EPCs and late EPCs. Late EPCs are able to form tube structure by themselves, and have a high proliferative ability. The functional marker(s) of late EPCs, which relate to their therapeutic potential, have not been fully elucidated. Here we compared the gene expression profiles of several human cord blood derived late EPC lines which exhibit different tube formation activity, and we observed that the expression of occludin (OCLN) in these lines correlated with the tube formation ability, suggesting that OCLN is a candidate functional marker of late EPCs. When OCLN was knocked down by transfecting siRNA, the tube formation on Matrigel, the S phase + G 2 /M phase in the cell cycle, and the spheroid-based sprouting of late EPCs were markedly reduced, suggesting the critical role of OCLN in tube formation, sprouting, and proliferation. These results indicated that OCLN plays a novel role in neovascularization and angiogenesis. © 2017 Wiley Periodicals, Inc.

  19. [Kinetic study of neutrophil and macrophage cell reproduction and differentiation in the common frog at different seasons of the year].

    PubMed

    Goryshina, E N

    1980-07-01

    A supposed life-span of hemosiderin-containing macrophages in the frog spleen has been described on the basis of their morphology, changes in the number of nuclei, and results of autoradiographic studies of DNA synthesis in various seasons. The hibernating stages of the lines are hemocytoblasts, mononuclear and moderately polynuclear macrophages, which renew the phagocytosis and nuclear division at the beginning of spring. A new population of monomuclear macrophages develops from hemocytoblasts during spring. Large polynuclear forms appear during spring and summer, reach their maximal size and erythrophagocytotic activity towards the end of summer, and die in winter. The most part of the stored pigments is removed from the spleen. DNA synthesis and division occur asynchronously in the nuclei of one cell. Some pathologic forms of macrophages are described. The similarity in the proliferation cell kinetics of neutrophilic and macrophagal lines confirms a close relation between the two. The role of temperature and photoperiod in the regulations of proliferative activity of these cells during spring is discussed.

  20. Establishing Clonal Cell Lines with Endothelial-Like Potential from CD9hi, SSEA-1− Cells in Embryonic Stem Cell-Derived Embryoid Bodies

    PubMed Central

    Lian, Qizhou; Yeo, KengSuan; Que, Jianwen; Tan, EileenKhiaWay; Yu, Fenggang; Yin, Yijun; Salto-Tellez, Manuel; Oakley, Reida Menshawe El; Lim, Sai-Kiang

    2006-01-01

    Background Differentiation of embryonic stem cells (ESCs) into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. Methodology/Principal Findings We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs). Despite originating from different mouse strains, RoSH and E- RoSH lines have similar gene expression profiles (r2 = 0.93) while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9hi, SSEA-1− while ESCs are CD9lo, SSEA-1+. Isolation of CD9hi, SSEA-1− cells that constituted 1%–10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r2 = 0.95) and a propensity to differentiate into endothelial-like cells. Conclusions By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells with endothelial-like potential from mouse ESCs. PMID:17183690

  1. Phosphoric and electric utility fuel cell technology development

    NASA Astrophysics Data System (ADS)

    Breault, R. D.; Briggs, T. A.; Congdon, J. V.; Gelting, R. L.; Goller, G. J.; Luoma, W. L.; McCloskey, M. W.; Mientek, A. P.; Obrien, J. J.; Randall, S. A.

    1985-01-01

    A subscale cell containing GSB-18, dry mix catalyst has accumulated over 6500 hours with performance 10 mV above E-line at 120 psia and 400 F. Over 150 thick separator plates were molded for use in cooler assemblies. The full-size 10-ft, 460 cell structural work-up is completed. All repeat components for the next 10-ft short stack are formed and processed.

  2. New Inhibitors of the Peripheral Site in Acetycholinesterase that Specifically Block Organophosphorylation

    DTIC Science & Technology

    1999-09-01

    P~ "I" C 3CH20--P-- 0 at 28 *C. S2 cells were cotransfected with pPac carrying the hygromycin CH3 0 C3&13! phosphotransferase gene for selection of...cells with hygromycin B. After selection with 0.2 mg/ml hygromycin B, monoclonal cell lines were isolated from colonies formed using a modified soft

  3. Leptin-induced ER-α-positive breast cancer cell viability and migration is mediated by suppressing CCN5-signaling via activating JAK/AKT/STAT-pathway.

    PubMed

    Haque, Inamul; Ghosh, Arnab; Acup, Seth; Banerjee, Snigdha; Dhar, Kakali; Ray, Amitabha; Sarkar, Sandipto; Kambhampati, Suman; Banerjee, Sushanta K

    2018-01-25

    In menopausal women, one of the critical risk factors for breast cancer is obesity/adiposity. It is evident from various studies that leptin, a 16 kDa protein hormone overproduced in obese people, plays the critical role in neovascularization and tumorigenesis in breast and other organs. However, the mechanisms by which obesity influences the breast carcinogenesis remained unclear. In this study, by analyzing different estrogen receptor-α (ER-α)-positive and ER-α-negative BC cell lines, we defined the role of CCN5 in the leptin-mediated regulation of growth and invasive capacity. We analyzed the effect of leptin on cell viability of ER-α-positive MCF-7 and ZR-75-1 cell lines and ER-α-negative MDA-MB-231 cell line. Additionally, we also determined the effect of leptin on the epithelial-mesenchymal transition (EMT) bio-markers, in vitro invasion and sphere-formation of MCF-7 and ZR-75-1 cell lines. To understand the mechanism, we determined the impact of leptin on CCN5 expression and the functional role of CCN5 in these cells by the treatment of human recombinant CCN5 protein(hrCCN5). Moreover, we also determined the role of JAK-STAT and AKT in the regulation of leptin-induced suppression of CCN5 in BC cells. Present studies demonstrate that leptin can induce cell viability, EMT, sphere-forming ability and migration of MCF-7 and ZR-75-1 cell lines. Furthermore, these studies found that leptin suppresses the expression of CCN5 at the transcriptional level. Although the CCN5 suppression has no impact on the constitutive proliferation of MCF-7 and ZR-75-1 cells, it is critical for leptin-induced viability and necessary for EMT, induction of in vitro migration and sphere formation, as the hrCCN5 treatment significantly inhibits the leptin-induced viability, EMT, migration and sphere-forming ability of these cells. Mechanistically, CCN5-suppression by leptin is mediated via activating JAK/AKT/STAT-signaling pathways. These studies suggest that CCN5 serves as a gatekeeper for leptin-dependent growth and progression of luminal-type (ER-positive) BC cells. Leptin may thus need to destroy the CCN5-barrier to promote BC growth and progression via activating JAK/AKT/STAT signaling. Therefore, these observations suggest a therapeutic potency of CCN5 by restoration or treatment in obese-related luminal-type BC growth and progression.

  4. Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro.

    PubMed

    Chen, Huan-Huan; Zhou, Hui-Jun; Fang, Xin

    2003-09-01

    Artemisinin derivatives artesunate (ART) and dihydroartemisinin are remarkable anti-malarial drugs with low toxicity to humans. In the present investigation, we find they also inhibited tumor cell growth and suppressed angiogenesis in vitro. The anti-cancer activity was demonstrated by inhibition (IC(50)) of four human cancer cell lines: cervical cancer Hela, uterus chorion cancer JAR, embryo transversal cancer RD and ovarian cancer HO-8910 cell lines growth by the MTT assay. IC(50) values ranged from 15.4 to 49.7 microM or from 8.5 to 32.9 microM after treatment with ART or dihydroartemisinin for 48 h, indicating that dihydroartemisinin was more effective than ART in inhibiting cancer cell lines. The anti-angiogenic activities were tested on in vitro models of angiogenesis, namely, proliferation, migration and tube formation of human umbilical vein endothelial (HUVE) cells. We investigated the inhibitory effects of ART and dihydroartemisinin on HUVE cells proliferation by cell counting, migration into the scratch wounded area in HUVE cell monolayers and microvessel tube-like formation on collagen gel. The results showed ART and dihydroartemisinin significantly inhibited angiogenisis in a dose-dependent form in range of 12.5-50 microM and 2.5-50 microM, respectively. They indicated that dihydroartemisinin was more effective than ART in inhibiting angiogenesis either. These results and the known low toxicity are clues that ART and dihydroartemisinin may be promising novel candidates for cancer chemotherapy.

  5. In Vitro Study of Taenia solium Postoncospheral Form

    PubMed Central

    Chile, Nancy; Clark, Taryn; Arana, Yanina; Ortega, Ynes R.; Palma, Sandra; Mejia, Alan; Angulo, Noelia; Kosek, Jon C.; Kosek, Margaret; Gomez-Puerta, Luis A.; Garcia, Hector H.; Gavidia, Cesar M.; Gilman, Robert H.; Verastegui, Manuela

    2016-01-01

    Background The transitional period between the oncosphere and the cysticercus of Taenia solium is the postoncospheral (PO) form, which has not yet been completely characterized. The aim of this work was to standardize a method to obtain T. solium PO forms by in vitro cultivation. We studied the morphology of the PO form and compared the expression of antigenic proteins among the PO form, oncosphere, and cysticerci stages. Methodology/Principal Findings T. solium activated oncospheres were co-cultured with ten cell lines to obtain PO forms, which we studied at three stages of development–days 15, 30, and 60. A high percentage (32%) of PO forms was obtained using HCT-8 cells in comparison to the other cell lines. The morphology was observed by bright field, scanning, and transmission electron microscopy. Morphology of the PO form changed over time, with the six hooks commonly seen in the oncosphere stage disappearing in the PO forms, and vesicles and microtriches observed in the tegument. The PO forms grew as they aged, reaching a diameter of 2.5 mm at 60 days of culture. 15–30 day PO forms developed into mature cysticerci when inoculated into rats. Antigenic proteins expressed in the PO forms are also expressed by the oncosphere and cysticerci stages, with more cysticerci antigenic proteins expressed as the PO forms ages. Conclusions/Significance This is the first report of an in vitro production method of T. solium PO forms. The changes observed in protein expression may be useful in identifying new targets for vaccine development. In vitro culture of PO form will aid in understanding the host-parasite relationship, since the structural changes of the developing PO forms may reflect the parasite’s immunoprotective mechanisms. A wider application of this method could significantly reduce the use of animals, and thus the costs and time required for further experimental investigations. PMID:26863440

  6. Usefulness of sural nerve biopsy in the genomic era.

    PubMed

    Kanda, Takashi

    2009-08-01

    The value of peripheral nerve biopsy is now sometimes questioned due to the high complication rate and the recent development of noninvasive molecular techniques for diagnosis of hereditary neuropathy. However, the disorders that can be diagnosed by genetic analysis are limited and sural nerve biopsy is still a powerful tool for making a correct diagnosis of peripheral neuropathy. Histological evaluation of the sural nerve has long focused on changes of the two major components of peripheral nerves, axons and myelin, as well as on the detection of diagnostic changes such as amyloid deposits, sarcoid tubercles, and vasculitis. In addition to these components, the sural nerve biopsy specimen contains various important cells, including perineurial cells, mast cells, endothelial cells, pericytes, and lymphocytes. Among these cells, the endothelial cells and pericytes form the blood-nerve barrier (BNB) and investigation of these cells can reveal important information, especially in inflammatory neuropathies. To better understand the biological basis of BNB, we established rat and human immortal cell lines from the endothelial cells and pericytes of endoneurial microvessels. Characterization of these cell lines is now underway at our laboratory. These BNB cell lines should provide useful information concerning the pathophysiology of peripheral neuropathy, and we should obtain a new perspective for the investigation of nerve biopsy specimens after understanding the molecular background of the BNB.

  7. Human autoantibodies specific for the α1A calcium channel subunit reduce both P-type and Q-type calcium currents in cerebellar neurons

    PubMed Central

    Pinto, Ashwin; Gillard, Samantha; Moss, Fraser; Whyte, Kathryn; Brust, Paul; Williams, Mark; Stauderman, Ken; Harpold, Michael; Lang, Bethan; Newsom-Davis, John; Bleakman, David; Lodge, David; Boot, John

    1998-01-01

    The pharmacological properties of voltage-dependent calcium channel (VDCC) subtypes appear mainly to be determined by the α1 pore-forming subunit but, whether P-and Q-type VDCCs are encoded by the same α1 gene presently is unresolved. To investigate this, we used IgG antibodies to presynaptic VDCCs at motor nerve terminals that underlie muscle weakness in the autoimmune Lambert–Eaton myasthenic syndrome (LEMS). We first studied their action on changes in intracellular free Ca2+ concentration [Ca2+]i in human embryonic kidney (HEK293) cell lines expressing different combinations of human recombinant VDCC subunits. Incubation for 18 h with LEMS IgG (2 mg/ml) caused a significant dose-dependent reduction in the K+-stimulated [Ca2+]i increase in the α1A cell line but not in the α1B, α1C, α1D, and α1E cell lines, establishing the α1A subunit as the target for these autoantibodies. Exploiting this specificity, we incubated cultured rat cerebellar neurones with LEMS IgG and observed a reduction in P-type current in Purkinje cells and both P- and Q-type currents in granule cells. These data are consistent with the hypothesis that the α1A gene encodes for the pore-forming subunit of both P-type and Q-type VDCCs. PMID:9653186

  8. A short treatise concerning a musical approach for the interpretation of gene expression data

    PubMed Central

    Staege, Martin S.

    2015-01-01

    Recent technical developments allow the genome-wide and near-complete analysis of gene expression in a given sample, e.g. by usage of high-density DNA microarrays or next generation sequencing. The generated data structure is usually multi-dimensional and requires extensive processing not only for analysis but also for presentation of the results. Today, such data are usually presented graphically, e.g. in the form of heat maps. In the present paper, we propose an alternative form of analysis and presentation which is based on the transformation of gene expression data into sounds that are characterized by their frequency (pitch) and tone duration. Using DNA microarray data from a panel of neuroblastoma and Ewing sarcoma cell lines as well as from Hodgkin’s lymphoma cell lines and normal B cells, we demonstrate that this Gene Expression Music Algorithm (GEMusicA) can be used for discrimination between samples with different biology and for the characterization of differentially expressed genes. PMID:26472273

  9. Consistency of the Proteome in Primary Human Keratinocytes With Respect to Gender, Age, and Skin Localization*

    PubMed Central

    Sprenger, Adrian; Weber, Sebastian; Zarai, Mostafa; Engelke, Rudolf; Nascimento, Juliana M.; Gretzmeier, Christine; Hilpert, Martin; Boerries, Melanie; Has, Cristina; Busch, Hauke; Bruckner-Tuderman, Leena; Dengjel, Jörn

    2013-01-01

    Keratinocytes account for 95% of all cells of the epidermis, the stratified squamous epithelium forming the outer layer of the skin, in which a significant number of skin diseases takes root. Immortalized keratinocyte cell lines are often used as research model systems providing standardized, reproducible, and homogenous biological material. Apart from that, primary human keratinocytes are frequently used for medical studies because the skin provides an important route for drug administration and is readily accessible for biopsies. However, comparability of these cell systems is not known. Cell lines may undergo phenotypic shifts and may differ from the in vivo situation in important aspects. Primary cells, on the other hand, may vary in biological functions depending on gender and age of the donor and localization of the biopsy specimen. Here we employed metabolic labeling in combination with quantitative mass spectrometry-based proteomics to assess A431 and HaCaT cell lines for their suitability as model systems. Compared with cell lines, comprehensive profiling of the primary human keratinocyte proteome with respect to gender, age, and skin localization identified an unexpected high proteomic consistency. The data were analyzed by an improved ontology enrichment analysis workflow designed for the study of global proteomics experiments. It enables a quick, comprehensive and unbiased overview of altered biological phenomena and links experimental data to literature. We guide through our workflow, point out its advantages compared with other methods and apply it to visualize differences of cell lines compared with primary human keratinocytes. PMID:23722187

  10. Human Brain Microvascular Endothelial Cells Derived from the BC1 iPS Cell Line Exhibit a Blood-Brain Barrier Phenotype.

    PubMed

    Katt, Moriah E; Xu, Zinnia S; Gerecht, Sharon; Searson, Peter C

    2016-01-01

    The endothelial cells that form capillaries in the brain are highly specialized, with tight junctions that minimize paracellular transport and an array of broad-spectrum efflux pumps that make drug delivery to the brain extremely challenging. One of the major limitations in blood-brain barrier research and the development of drugs to treat central nervous system diseases is the lack of appropriate cell lines. Recent reports indicate that the derivation of human brain microvascular endothelial cells (hBMECs) from human induced pluripotent stem cells (iPSCs) may provide a solution to this problem. Here we demonstrate the derivation of hBMECs extended to two new human iPSC lines: BC1 and GFP-labeled BC1. These hBMECs highly express adherens and tight junction proteins VE-cadherin, ZO-1, occludin, and claudin-5. The addition of retinoic acid upregulates VE-cadherin expression, and results in a significant increase in transendothelial electrical resistance to physiological values. The permeabilities of tacrine, rhodamine 123, and Lucifer yellow are similar to values obtained for MDCK cells. The efflux ratio for rhodamine 123 across hBMECs is in the range 2-4 indicating polarization of efflux transporters. Using the rod assay to assess cell organization in small vessels and capillaries, we show that hBMECs resist elongation with decreasing diameter but show progressive axial alignment. The derivation of hBMECs with a blood-brain barrier phenotype from the BC1 cell line highlights that the protocol is robust. The expression of GFP in hBMECs derived from the BC1-GFP cell line provides an important new resource for BBB research.

  11. Epithelial morphogenesis of germline-derived pluripotent stem cells on organotypic skin equivalents in vitro.

    PubMed

    van de Kamp, Julia; Kramann, Rafael; Anraths, Julia; Schöler, Hans R; Ko, Kinarm; Knüchel, Ruth; Zenke, Martin; Neuss, Sabine; Schneider, Rebekka K

    2012-03-01

    For tissue engineering, cultivation of pluripotent stem cells on three-dimensional scaffolds allows the generation of organ-like structures. Previously, we have established an organotypic culture system of skin to induce epidermal differentiation in adult stem cells. Multipotent stem cells are not able to differentiate across germinal boundaries. In contrast, pluripotent stem cells readily differentiate into tissues of all three germ layers. Germline-derived pluripotent stem cells (gPS cells) can be generated by induction of pluripotency in mouse unipotent germline stem cells without the introduction of exogenous transcription factors. In the current study, we analyzed the influence of organotypic culture conditions of skin on the epithelial differentiation of gPS cells in comparison to the well-established HM1 ES cell line. Quantitative RT-PCR data of the pluripotency gene Oct4 showed that gPS cells are characterized by an accelerated Oct4-downregulation compared to HM1 ES cells. When subjected to the organotypic culture conditions of skin, gPS cells formed tubulocystic structures lined by stratified (CK5/6(+), CK14(+), CK8/18(-)) epithelia. HM1 ES cells formed only small tubulocystic structures lined by simple, CK8/18(+) epithelia. BMP-4, an epidermal morphogen, significantly enhanced the expression of epithelial markers in HM1 ES cells, but did not significantly affect the formation of complex (squamous) epithelia in gPS cells. In HM1 ES cells the differentiation into squamous epithelium was only inducible in the presence of mature dermal fibroblasts. Both pluripotent stem cell types spontaneously differentiated into mesodermal, endodermal and into neuroectodermal cells at low frequency, underlining their pluripotent differentiation capacity. Concluding, the organotypic culture conditions of skin induce a multilayered, stratified epithelium in gPS cells, in HM1 ES cells only in the presence of dermal fibroblasts. Thus, our data show that differentiation protocols strongly depend on the stem cell type and have to be modified for each specific stem cell type. Copyright © 2011 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  12. Repeated cisplatin treatment can lead to a multiresistant tumor cell population with stem cell features and sensitivity to 3-bromopyruvate.

    PubMed

    Wintzell, My; Löfstedt, Lina; Johansson, Joel; Pedersen, Anne B; Fuxe, Jonas; Shoshan, Maria

    2012-12-01

    Cisplatin is used in treatment of several types of cancer, including epithelial ovarian carcinoma (EOC). In order to mimic clinical treatment and to investigate longterm effects of cisplatin in surviving cancer cells, two EOC cell lines were repeatedly treated with low doses. In the SKOV-3 cell line originating from malignant ascites, but not in A2780 cells from a primary tumor, this led to emergence of a stable population (SKOV-3-R) which in the absence of cisplatin showed increased motility, epithelial-mesenchymal transition (EMT) and expression of cancer stem cell markers CD117, CD44 and ALDH1. Accordingly, the cells formed self-renewing spheres in serum-free stem cell medium. Despite upregulation of mitochondrial mass and cytochrome c, and no upregulation of Bcl-2/Bcl-xL, SKOV-3-R were multiresistant to antineoplastic drugs. Cancer stem cells, or tumor-initiating cells (TICs) are highly chemoresistant and are believed to cause relapse into disseminated and resistant EOC. Our second aim was therefore to target resistance in these TIC-like cells. Resistance could be correlated with upregulation of hexokinase-II and VDAC, which are known to form a survival-promoting mitochondrial complex. The cells were thus sensitive to 3-bromopyruvate, which dissociates hexokinase-II from this complex, and were particularly sensitive to combination treatment with cisplatin at doses down to 0.1 x IC 50. 3-bromopyruvate might thus be of use in targeting the especially aggressive TIC populations.

  13. Repeated cisplatin treatment can lead to a multiresistant tumor cell population with stem cell features and sensitivity to 3-bromopyruvate

    PubMed Central

    Wintzell, My; Löfstedt, Lina; Johansson, Joel; Pedersen, Anne B.; Fuxe, Jonas; Shoshan, Maria

    2012-01-01

    Cisplatin is used in treatment of several types of cancer, including epithelial ovarian carcinoma (EOC). In order to mimic clinical treatment and to investigate longterm effects of cisplatin in surviving cancer cells, two EOC cell lines were repeatedly treated with low doses. In the SKOV-3 cell line originating from malignant ascites, but not in A2780 cells from a primary tumor, this led to emergence of a stable population (SKOV-3-R) which in the absence of cisplatin showed increased motility, epithelial-mesenchymal transition (EMT) and expression of cancer stem cell markers CD117, CD44 and ALDH1. Accordingly, the cells formed self-renewing spheres in serum-free stem cell medium. Despite upregulation of mitochondrial mass and cytochrome c, and no upregulation of Bcl-2/Bcl-xL, SKOV-3-R were multiresistant to antineoplastic drugs. Cancer stem cells, or tumor-initiating cells (TICs) are highly chemoresistant and are believed to cause relapse into disseminated and resistant EOC. Our second aim was therefore to target resistance in these TIC-like cells. Resistance could be correlated with upregulation of hexokinase-II and VDAC, which are known to form a survival-promoting mitochondrial complex. The cells were thus sensitive to 3-bromopyruvate, which dissociates hexokinase-II from this complex, and were particularly sensitive to combination treatment with cisplatin at doses down to 0.1 x IC50. 3-bromopyruvate might thus be of use in targeting the especially aggressive TIC populations. PMID:22954696

  14. Regulation of callus status and cell-suspending culture in naked seed oat (Avena nuda).

    PubMed

    Cui, L; Fan, Y

    1998-01-01

    The original calli were obtained by inducing culture of mature embryos of naked seed oat on N6 medium. The original calli were white-colored tumor forms, soft outside and hard inside. These kinds of calli are easy to differentiate into plantlets, and they are not the friable type. Friable embryogenic calli could be obtained by cycled regulated culture on IM1-IM4 medium for 7-8 months from the original calli. They became vigorous, lightish yellow in color, with small grainy forms. Well-separated and fast-growing suspending cell lines have been obtained from the above-mentioned embryogenic calli in the liquid medium. Regenerated plants have been obtained for this kind of suspension line by culturing on the medium for differentiation. The surviving percentage for such plantlets was over 95% after planting in the soil.

  15. Morphology-based optical separation of subpopulations from a heterogeneous murine breast cancer cell line.

    PubMed

    Tamura, Masato; Sugiura, Shinji; Takagi, Toshiyuki; Satoh, Taku; Sumaru, Kimio; Kanamori, Toshiyuki; Okada, Tomoko; Matsui, Hirofumi

    2017-01-01

    Understanding tumor heterogeneity is an urgent and unmet need in cancer research. In this study, we used a morphology-based optical cell separation process to classify a heterogeneous cancer cell population into characteristic subpopulations. To classify the cell subpopulations, we assessed their morphology in hydrogel, a three-dimensional culture environment that induces morphological changes according to the characteristics of the cells (i.e., growth, migration, and invasion). We encapsulated the murine breast cancer cell line 4T1E, as a heterogeneous population that includes highly metastatic cells, in click-crosslinkable and photodegradable gelatin hydrogels, which we developed previously. We observed morphological changes within 3 days of encapsulating the cells in the hydrogel. We separated the 4T1E cell population into colony- and granular-type cells by optical separation, in which local UV-induced degradation of the photodegradable hydrogel around the target cells enabled us to collect those cells. The obtained colony- and granular-type cells were evaluated in vitro by using a spheroid assay and in vivo by means of a tumor growth and metastasis assay. The spheroid assay showed that the colony-type cells formed compact spheroids in 2 days, whereas the granular-type cells did not form spheroids. The tumor growth assay in mice revealed that the granular-type cells exhibited lower tumor growth and a different metastasis behavior compared with the colony-type cells. These results suggest that morphology-based optical cell separation is a useful technique to classify a heterogeneous cancer cell population according to its cellular characteristics.

  16. Excellent response to chemotherapy post immunotherapy

    PubMed Central

    Dwary, Ashish D.; Master, Samip; Patel, Abhishek; Cole, Constance; Mansour, Richard; Mills, Glenn; Koshy, Nebu; Peddi, Prakash; Burton, Gary; Hammoud, Dalia; Beedupalli, Kavitha

    2017-01-01

    Introduction Immunotherapy in the form of immune checkpoint inhibitors has changed the landscape of cancer treatment. Newer monoclonal antibodies are coming up and are being tested in various cancers during different stages of treatment. With the increasing use of immune checkpoint inhibitors in the management of various types of cancers, the question is raised as to what next can be offered to a patient who has progressed on this newer treatment. Does Sequence matter? There have been reports of improved responses to chemotherapy after immunotherapy in the form of vaccines. Here we present a case series of 6 patients who progressed on immunotherapy with immune checkpoint inhibitors after initial modality of treatment (chemotherapy/radiation), subsequently received chemotherapy with excellent response. Methods We have a cohort of six patients who had disease progression on second line Immunotherapy for solid or hematological malignancies and had ECOG < 2. All these patients received third line salvage chemotherapy. Three patients had metastatic head and neck cancer, 2 had non-small cell lung cancer (NSCLC), and one had T -cell rich B- cell lymphoma. Prior review and approval were obtained from our institutional review board. Results All patients had an excellent response to chemotherapy in third line setting, after immune checkpoint inhibitors and most of them achieved a complete response. Conclusion Targeting cancer with chemotherapy after failure of immunotherapy is a valid option and can lead to better response rates and PFS which may lead to OS. This effect may be secondary to immunotherapy removing the inhibition exerted by tumor cells or other immune cells initially followed by cytotoxic chemotherapy mediated killing of tumor cells. PMID:29207685

  17. Anti-inflammatory and cytotoxic effects of methanol, ethanol, and water extracts of Angelicae Dahuricae Radix.

    PubMed

    Wang, Myeong-Hyeon; Jeong, Su-Hyeon; Guo, Huifang; Park, Jun-Beom

    2016-01-01

    Angelicae Dahuricae Radix has been used for the treatment of headaches, rhinitis, and colds in traditional medicine. Methanol, ethanol, and water extracts of Angelicae Dahuricae Radix were collected. A statistically significant reduction in the cellular viability of the mouse leukemic monocyte macrophage cell line was noted after treatment with water extracts of Angelicae Dahuricae Radix. Stimulation with lipopolysaccharides (LPS) for 24 h led to a robust increase in nitric oxide production, but Angelicae Dahuricae Radix at 400 μg/mL concentration significantly suppressed nitric oxide produced by the LPS-stimulated RAW 264.7 cells in 70% ethanol, absolute ethanol, 70% methanol, absolute methanol, and boiling water groups (P < 0.05). Pretreatment with absolute ethanol extract of Angelicae Dahuricae Radix suppressed the LPS-stimulated inducible nitric oxide synthase, interleukin-1β, and cycloxygenase-2 expression. Angelicae Dahuricae Radix showed significant cytotoxic effects on the human adenocarcinoma cell line and keratin-forming cell line. (J Oral Sci 58, 125-131, 2016).

  18. FMR1 Epigenetic Silencing Commonly Occurs in Undifferentiated Fragile X-Affected Embryonic Stem Cells

    PubMed Central

    Avitzour, Michal; Mor-Shaked, Hagar; Yanovsky-Dagan, Shira; Aharoni, Shira; Altarescu, Gheona; Renbaum, Paul; Eldar-Geva, Talia; Schonberger, Oshrat; Levy-Lahad, Ephrat; Epsztejn-Litman, Silvina; Eiges, Rachel

    2014-01-01

    Summary Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from epigenetic silencing of the X-linked FMR1 gene by a CGG expansion in its 5′-untranslated region. Taking advantage of a large set of FXS-affected human embryonic stem cell (HESC) lines and isogenic subclones derived from them, we show that FMR1 hypermethylation commonly occurs in the undifferentiated state (six of nine lines, ranging from 24% to 65%). In addition, we demonstrate that hypermethylation is tightly linked with FMR1 transcriptional inactivation in undifferentiated cells, coincides with loss of H3K4me2 and gain of H3K9me3, and is unrelated to CTCF binding. Taken together, these results demonstrate that FMR1 epigenetic gene silencing takes place in FXS HESCs and clearly highlights the importance of examining multiple cell lines when investigating FXS and most likely other epigenetically regulated diseases. PMID:25418717

  19. FMR1 epigenetic silencing commonly occurs in undifferentiated fragile X-affected embryonic stem cells.

    PubMed

    Avitzour, Michal; Mor-Shaked, Hagar; Yanovsky-Dagan, Shira; Aharoni, Shira; Altarescu, Gheona; Renbaum, Paul; Eldar-Geva, Talia; Schonberger, Oshrat; Levy-Lahad, Ephrat; Epsztejn-Litman, Silvina; Eiges, Rachel

    2014-11-11

    Fragile X syndrome (FXS) is the most common heritable form of cognitive impairment. It results from epigenetic silencing of the X-linked FMR1 gene by a CGG expansion in its 5'-untranslated region. Taking advantage of a large set of FXS-affected human embryonic stem cell (HESC) lines and isogenic subclones derived from them, we show that FMR1 hypermethylation commonly occurs in the undifferentiated state (six of nine lines, ranging from 24% to 65%). In addition, we demonstrate that hypermethylation is tightly linked with FMR1 transcriptional inactivation in undifferentiated cells, coincides with loss of H3K4me2 and gain of H3K9me3, and is unrelated to CTCF binding. Taken together, these results demonstrate that FMR1 epigenetic gene silencing takes place in FXS HESCs and clearly highlights the importance of examining multiple cell lines when investigating FXS and most likely other epigenetically regulated diseases.

  20. Natural killer cell lines preferentially kill clonogenic multiple myeloma cells and decrease myeloma engraftment in a bioluminescent xenograft mouse model

    PubMed Central

    Swift, Brenna E.; Williams, Brent A.; Kosaka, Yoko; Wang, Xing-Hua; Medin, Jeffrey A.; Viswanathan, Sowmya; Martinez-Lopez, Joaquin; Keating, Armand

    2012-01-01

    Background Novel therapies capable of targeting drug resistant clonogenic MM cells are required for more effective treatment of multiple myeloma. This study investigates the cytotoxicity of natural killer cell lines against bulk and clonogenic multiple myeloma and evaluates the tumor burden after NK cell therapy in a bioluminescent xenograft mouse model. Design and Methods The cytotoxicity of natural killer cell lines was evaluated against bulk multiple myeloma cell lines using chromium release and flow cytometry cytotoxicity assays. Selected activating receptors on natural killer cells were blocked to determine their role in multiple myeloma recognition. Growth inhibition of clonogenic multiple myeloma cells was assessed in a methylcellulose clonogenic assay in combination with secondary replating to evaluate the self-renewal of residual progenitors after natural killer cell treatment. A bioluminescent mouse model was developed using the human U266 cell line transduced to express green fluorescent protein and luciferase (U266eGFPluc) to monitor disease progression in vivo and assess bone marrow engraftment after intravenous NK-92 cell therapy. Results Three multiple myeloma cell lines were sensitive to NK-92 and KHYG-1 cytotoxicity mediated by NKp30, NKp46, NKG2D and DNAM-1 activating receptors. NK-92 and KHYG-1 demonstrated 2- to 3-fold greater inhibition of clonogenic multiple myeloma growth, compared with killing of the bulk tumor population. In addition, the residual colonies after treatment formed significantly fewer colonies compared to the control in a secondary replating for a cumulative clonogenic inhibition of 89–99% at the 20:1 effector to target ratio. Multiple myeloma tumor burden was reduced by NK-92 in a xenograft mouse model as measured by bioluminescence imaging and reduction in bone marrow engraftment of U266eGFPluc cells by flow cytometry. Conclusions This study demonstrates that NK-92 and KHYG-1 are capable of killing clonogenic and bulk multiple myeloma cells. In addition, multiple myeloma tumor burden in a xenograft mouse model was reduced by intravenous NK-92 cell therapy. Since multiple myeloma colony frequency correlates with survival, our observations have important clinical implications and suggest that clinical studies of NK cell lines to treat MM are warranted. PMID:22271890

  1. A computer program for converting rectangular coordinates to latitude-longitude coordinates

    USGS Publications Warehouse

    Rutledge, A.T.

    1989-01-01

    A computer program was developed for converting the coordinates of any rectangular grid on a map to coordinates on a grid that is parallel to lines of equal latitude and longitude. Using this program in conjunction with groundwater flow models, the user can extract data and results from models with varying grid orientations and place these data into grid structure that is oriented parallel to lines of equal latitude and longitude. All cells in the rectangular grid must have equal dimensions, and all cells in the latitude-longitude grid measure one minute by one minute. This program is applicable if the map used shows lines of equal latitude as arcs and lines of equal longitude as straight lines and assumes that the Earth 's surface can be approximated as a sphere. The program user enters the row number , column number, and latitude and longitude of the midpoint of the cell for three test cells on the rectangular grid. The latitude and longitude of boundaries of the rectangular grid also are entered. By solving sets of simultaneous linear equations, the program calculates coefficients that are used for making the conversion. As an option in the program, the user may build a groundwater model file based on a grid that is parallel to lines of equal latitude and longitude. The program reads a data file based on the rectangular coordinates and automatically forms the new data file. (USGS)

  2. Cancer cell death induced by the intracellular self-assembly of an enzyme-responsive supramolecular gelator.

    PubMed

    Tanaka, Akiko; Fukuoka, Yuki; Morimoto, Yuka; Honjo, Takafumi; Koda, Daisuke; Goto, Masahiro; Maruyama, Tatsuo

    2015-01-21

    We report cancer cell death initiated by the intracellular molecular self-assembly of a peptide lipid, which was derived from a gelator precursor. The gelator precursor was designed to form nanofibers via molecular self-assembly, after cleavage by a cancer-related enzyme (matrix metalloproteinase-7, MMP-7), leading to hydrogelation. The gelator precursor exhibited remarkable cytotoxicity to five different cancer cell lines, while the precursor exhibited low cytotoxicity to normal cells. Cancer cells secrete excessive amounts of MMP-7, which converted the precursor into a supramolecular gelator prior to its uptake by the cells. Once inside the cells, the supramolecular gelator formed a gel via molecular self-assembly, exerting vital stress on the cancer cells. The present study thus describes a new drug where molecular self-assembly acts as the mechanism of cytotoxicity.

  3. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor.

    PubMed

    Poon, S K; Peacock, L; Gibson, W; Gull, K; Kelly, S

    2012-02-01

    Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes.

  4. A modular and optimized single marker system for generating Trypanosoma brucei cell lines expressing T7 RNA polymerase and the tetracycline repressor

    PubMed Central

    Poon, S. K.; Peacock, L.; Gibson, W.; Gull, K.; Kelly, S.

    2012-01-01

    Here, we present a simple modular extendable vector system for introducing the T7 RNA polymerase and tetracycline repressor genes into Trypanosoma brucei. This novel system exploits developments in our understanding of gene expression and genome organization to produce a streamlined plasmid optimized for high levels of expression of the introduced transgenes. We demonstrate the utility of this novel system in bloodstream and procyclic forms of Trypanosoma brucei, including the genome strain TREU927/4. We validate these cell lines using a variety of inducible experiments that recapture previously published lethal and non-lethal phenotypes. We further demonstrate the utility of the single marker (SmOx) TREU927/4 cell line for in vivo experiments in the tsetse fly and provide a set of plasmids that enable both whole-fly and salivary gland-specific inducible expression of transgenes. PMID:22645659

  5. Three-dimensional alginate spheroid culture system of murine osteosarcoma.

    PubMed

    Akeda, Koji; Nishimura, Akinobu; Satonaka, Haruhiko; Shintani, Ken; Kusuzaki, Katsuyuki; Matsumine, Akihiko; Kasai, Yuichi; Masuda, Koichi; Uchida, Atsumasa

    2009-11-01

    Osteosarcoma (OS) is the most common primary malignant tumor of the bone and often forms pulmonary metastases, which are the most important prognostic factor. For further elucidation of the mechanism underlying the progression and metastasis of human OS, a culture system mimicking the microenvironment of the tumor in vivo is needed. We report a novel three-dimensional (3D) alginate spheroid culture system of murine osteosarcoma. Two different metastatic clones, the parental Dunn and its derivative line LM8, which has a higher metastatic potential to the lungs, were encapsulated in alginate beads to develop the 3D culture system. The beads containing murine OS cells were also transplanted into mice to determine their metastatic potential in vivo. In this culture system, murine OS cells encapsulated in alginate beads were able to grow in a 3D structure with cells detaching from the alginate environment. The number of detaching cells was higher in the LM8 cell line than the Dunn cell line. In the in vivo alginate bead transplantation model, the rate of pulmonary metastasis was higher with LM8 cells compared with that of Dunn cells. The cell characteristics and kinetics in this culture system closely reflect the original malignant potential of the cells in vivo.

  6. Identification of anti-proliferative kinase inhibitors as potential therapeutic agents to treat canine osteosarcoma.

    PubMed

    Mauchle, Ulrike; Selvarajah, Gayathri T; Mol, Jan A; Kirpensteijn, Jolle; Verheije, Monique H

    2015-08-01

    Osteosarcoma is the most common primary bone tumour in dogs but various forms of therapy have not significantly improved clinical outcomes. As dysregulation of kinase activity is often present in tumours, kinases represent attractive molecular targets for cancer therapy. The purpose of this study was to identify novel compounds targeting kinases with the potential to induce cell death in a panel of canine osteosarcoma cell lines. The ability of 80 well-characterized kinase inhibitor compounds to inhibit the proliferation of four canine osteosarcoma cell lines was investigated in vitro. For those compounds with activity, the mechanism of action and capability to potentiate the activity of doxorubicin was further evaluated. The screening showed 22 different kinase inhibitors that induced significant anti-proliferative effects across the four canine osteosarcoma cell lines investigated. Four of these compounds (RO 31-8220, 5-iodotubercidin, BAY 11-7082 and an erbstatin analog) showed significant cell growth inhibitory effects across all cell lines in association with variable induction of apoptosis. RO 31-8220 and 5-iodotubercidin showed the highest ability to potentiate the effects of doxorubicin on cell viability. In conclusion, the present study identified several potent kinase inhibitors targeting the PKC, CK1, PKA, ErbB2, mTOR and NF-κB pathways, which may warrant further investigations for the treatment of osteosarcoma in dogs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Recombinant Rabbit Leukemia Inhibitory Factor and Rabbit Embryonic Fibroblasts Support the Derivation and Maintenance of Rabbit Embryonic Stem Cells

    PubMed Central

    Xue, Fei; Ma, Yinghong; Chen, Y. Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang

    2012-01-01

    Abstract The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs. PMID:22775411

  8. Synthesis of adriamycin-coupled polyglutaraldehyde microspheres and evaluation of their cytostatic activity

    NASA Technical Reports Server (NTRS)

    Tokes, Z. A.; Rogers, K. E.; Rembaum, A.

    1982-01-01

    Adriamycin was coupled to polyglutaraldehyde microspheres having an average diameter of 4500 A. The coupled microspheres remained stable during incubation with cells. Full cytostatic activity was observed when the coupled adriamycin was tested with murine or human leukemia and murine sarcoma cell lines. A 10-fold increase in sensitivity was obtained with drug-resistant human leukemia cell lines. Repeated use of the coupled microspheres in the cytostatic assays did not decrease their activity, indicating that these complexes can be recycled. The results suggest that coupled adriamycin sufficiently perturbs the plasma membrane to lead to cytostatic activity. It is proposed that this mode of drug delivery provides multiple and repetitious sites for drug-cell interactions. In addition, the drug-polymer complexes may overcome those forms of resistance that are the result of decreased drug binding at the cell surface.

  9. The Three Bacterial Lines of Defense against Antimicrobial Agents.

    PubMed

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2015-09-09

    Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances.

  10. The Three Bacterial Lines of Defense against Antimicrobial Agents

    PubMed Central

    Zhou, Gang; Shi, Qing-Shan; Huang, Xiao-Mo; Xie, Xiao-Bao

    2015-01-01

    Antimicrobial agents target a range of extra- and/or intracellular loci from cytoplasmic wall to membrane, intracellular enzymes and genetic materials. Meanwhile, many resistance mechanisms employed by bacteria to counter antimicrobial agents have been found and reported in the past decades. Based on their spatially distinct sites of action and distribution of location, antimicrobial resistance mechanisms of bacteria were categorized into three groups, coined the three lines of bacterial defense in this review. The first line of defense is biofilms, which can be formed by most bacteria to overcome the action of antimicrobial agents. In addition, some other bacteria employ the second line of defense, the cell wall, cell membrane, and encased efflux pumps. When antimicrobial agents permeate the first two lines of defense and finally reach the cytoplasm, many bacteria will make use of the third line of defense, including alterations of intracellular materials and gene regulation to protect themselves from harm by bactericides. The presented three lines of defense theory will help us to understand the bacterial resistance mechanisms against antimicrobial agents and design efficient strategies to overcome these resistances. PMID:26370986

  11. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines.

    PubMed

    Yu, Vicky; Rahimy, Mehran; Korrapati, Avinaash; Xuan, Yinan; Zou, Angela E; Krishnan, Aswini R; Tsui, Tzuhan; Aguilera, Joseph A; Advani, Sunil; Crotty Alexander, Laura E; Brumund, Kevin T; Wang-Rodriguez, Jessica; Ongkeko, Weg M

    2016-01-01

    Evaluate the cytotoxicity and genotoxicity of short- and long-term e-cigarette vapor exposure on a panel of normal epithelial and head and neck squamous cell carcinoma (HNSCC) cell lines. HaCaT, UMSCC10B, and HN30 were treated with nicotine-containing and nicotine-free vapor extract from two popular e-cigarette brands for periods ranging from 48 h to 8 weeks. Cytotoxicity was assessed using Annexin V flow cytometric analysis, trypan blue exclusion, and clonogenic assays. Genotoxicity in the form of DNA strand breaks was quantified using the neutral comet assay and γ-H2AX immunostaining. E-cigarette-exposed cells showed significantly reduced cell viability and clonogenic survival, along with increased rates of apoptosis and necrosis, regardless of e-cigarette vapor nicotine content. They also exhibited significantly increased comet tail length and accumulation of γ-H2AX foci, demonstrating increased DNA strand breaks. E-cigarette vapor, both with and without nicotine, is cytotoxic to epithelial cell lines and is a DNA strand break-inducing agent. Further assessment of the potential carcinogenic effects of e-cigarette vapor is urgently needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Electronic cigarettes induce DNA strand breaks and cell death independently of nicotine in cell lines

    PubMed Central

    Yu, Vicky; Rahimy, Mehran; Korrapati, Avinaash; Xuan, Yinan; Zou, Angela E.; Krishnan, Aswini R.; Tsui, Tzuhan; Aguilera, Joseph A.; Advani, Sunil; Crotty Alexander, Laura E.; Brumund, Kevin T.; Wang-Rodriguez, Jessica

    2016-01-01

    Objectives Evaluate the cytotoxicity and genotoxicity of short- and long-term e-cigarette vapor exposure on a panel of normal epithelial and head and neck squamous cell carcinoma (HNSCC) cell lines. Materials and Methods HaCaT, UMSCC10B, and HN30 were treated with nicotine-containing and nicotine-free vapor extract from two popular e-cigarette brands for periods ranging from 48 hours to 8 weeks. Cytotoxicity was assessed using Annexin V flow cytometric analysis, trypan blue exclusion, and clonogenic assays. Genotoxicity in the form of DNA strand breaks was quantified using the neutral comet assay and γ-H2AX immunostaining. Results E-cigarette-exposed cells showed significantly reduced cell viability and clonogenic survival, along with increased rates of apoptosis and necrosis, regardless of e-cigarette vapor nicotine content. They also exhibited significantly increased comet tail length and accumulation of γ-H2AX foci, demonstrating increased DNA strand breaks. Conclusion E-cigarette vapor, both with and without nicotine, is cytotoxic to epithelial cell lines and is a DNA strand break-inducing agent. Further assessment of the potential carcinogenic effects of e-cigarette vapor is urgently needed. PMID:26547127

  13. LC-MS/MS Based Quantitation of ABC and SLC Transporter Proteins in Plasma Membranes of Cultured Primary Human Retinal Pigment Epithelium Cells and Immortalized ARPE19 Cell Line.

    PubMed

    Pelkonen, Laura; Sato, Kazuki; Reinisalo, Mika; Kidron, Heidi; Tachikawa, Masanori; Watanabe, Michitoshi; Uchida, Yasuo; Urtti, Arto; Terasaki, Tetsuya

    2017-03-06

    The retinal pigment epithelium (RPE) forms the outer blood-retinal barrier between neural retina and choroid. The RPE has several important vision supporting functions, such as transport mechanisms that may also modify pharmacokinetics in the posterior eye segment. Expression of plasma membrane transporters in the RPE cells has not been quantitated. The aim of this study was to characterize and compare transporter protein expression in the ARPE19 cell line and hfRPE (human fetal RPE) cells by using quantitative targeted absolute proteomics (QTAP). Among 41 studied transporters, 16 proteins were expressed in hfRPE and 13 in ARPE19 cells. MRP1, MRP5, GLUT1, 4F2hc, TAUT, CAT1, LAT1, and MATE1 proteins were detected in both cell lines within 4-fold differences. MPR7, OAT2 and RFC1 were detected in the hfRPE cells, but their expression levels were below the limit of quantification in ARPE19 cells. PCFT was detected in both studied cell lines, but the expression was over 4-fold higher in hfRPE cells. MCT1, MCT4, MRP4, and Na + /K + ATPase were upregulated in the ARPE19 cell line showing over 4-fold differences in the quantitative expression values. Expression levels of 25 transporters were below the limit of quantification in both cell models. In conclusion, we present the first systematic and quantitative study on transporter protein expression in the plasma membranes of ARPE19 and hfRPE cells. Overall, transporter expression in the ARPE19 and hfRPE cells correlated well and the absolute expression levels were similar, but not identical. The presented quantitative expression levels could be a useful basis for further studies on drug permeation in the outer blood-retinal barrier.

  14. Oncolytic Activity of Avian Influenza Virus in Human Pancreatic Ductal Adenocarcinoma Cell Lines

    PubMed Central

    Pizzuto, Matteo S.; Silic-Benussi, Micol; Pavone, Silvia; Ciminale, Vincenzo; Capua, Ilaria

    2014-01-01

    ABSTRACT Pancreatic ductal adenocarcinoma (PDA) is the most lethal form of human cancer, with dismal survival rates due to late-stage diagnoses and a lack of efficacious therapies. Building on the observation that avian influenza A viruses (IAVs) have a tropism for the pancreas in vivo, the present study was aimed at testing the efficacy of IAVs as oncolytic agents for killing human PDA cell lines. Receptor characterization confirmed that human PDA cell lines express the alpha-2,3- and the alpha-2,6-linked glycan receptor for avian and human IAVs, respectively. PDA cell lines were sensitive to infection by human and avian IAV isolates, which is consistent with this finding. Growth kinetic experiments showed preferential virus replication in PDA cells over that in a nontransformed pancreatic ductal cell line. Finally, at early time points posttreatment, infection with IAVs caused higher levels of apoptosis in PDA cells than gemcitabine and cisplatin, which are the cornerstone of current therapies for PDA. In the BxPC-3 PDA cell line, apoptosis resulted from the engagement of the intrinsic mitochondrial pathway. Importantly, IAVs did not induce apoptosis in nontransformed pancreatic ductal HPDE6 cells. Using a model based on the growth of a PDA cell line as a xenograft in SCID mice, we also show that a slightly pathogenic avian IAV significantly inhibited tumor growth following intratumoral injection. Taken together, these results are the first to suggest that IAVs may hold promise as future agents of oncolytic virotherapy against pancreatic ductal adenocarcinomas. IMPORTANCE Despite intensive studies aimed at designing new therapeutic approaches, PDA still retains the most dismal prognosis among human cancers. In the present study, we provide the first evidence indicating that avian IAVs of low pathogenicity display a tropism for human PDA cells, resulting in viral RNA replication and a potent induction of apoptosis in vitro and antitumor effects in vivo. These results suggest that slightly pathogenic IAVs may prove to be effective for oncolytic virotherapy of PDA and provide grounds for further studies to develop specific and targeted viruses, with the aim of testing their efficacy in clinical contexts. PMID:24899201

  15. Cell adhesion molecules expression pattern indicates that somatic cells arbitrate gonadal sex of differentiating bipotential fetal mouse gonad.

    PubMed

    Piprek, Rafal P; Kolasa, Michal; Podkowa, Dagmara; Kloc, Malgorzata; Kubiak, Jacek Z

    2017-10-01

    Unlike other organ anlagens, the primordial gonad is sexually bipotential in all animals. In mouse, the bipotential gonad differentiates into testis or ovary depending on the genetic sex (XY or XX) of the fetus. During gonad development cells segregate, depending on genetic sex, into distinct compartments: testis cords and interstitium form in XY gonad, and germ cell cysts and stroma in XX gonad. However, our knowledge of mechanisms governing gonadal sex differentiation remains very vague. Because it is known that adhesion molecules (CAMs) play a key role in organogenesis, we suspected that diversified expression of CAMs should also play a crucial role in gonad development. Using microarray analysis we identified 129 CAMs and factors regulating cell adhesion during sexual differentiation of mouse gonad. To identify genes expressed differentially in three cell lines in XY and XX gonads: i) supporting (Sertoli or follicular cells), ii) interstitial or stromal cells, and iii) germ cells, we used transgenic mice expressing EGFP reporter gene and FACS cell sorting. Although a large number of CAMs expressed ubiquitously, expression of certain genes was cell line- and genetic sex-specific. The sets of CAMs differentially expressed in supporting versus interstitial/stromal cells may be responsible for segregation of these two cell lines during gonadal development. There was also a significant difference in CAMs expression pattern between XY supporting (Sertoli) and XX supporting (follicular) cells but not between XY and XX germ cells. This indicates that differential CAMs expression pattern in the somatic cells but not in the germ line arbitrates structural organization of gonadal anlagen into testis or ovary. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Human T-cell leukemia virus type 1 Tax oncoprotein represses the expression of the BCL11B tumor suppressor in T-cells

    PubMed Central

    Takachi, Takayuki; Takahashi, Masahiko; Takahashi-Yoshita, Manami; Higuchi, Masaya; Obata, Miki; Mishima, Yukio; Okuda, Shujiro; Tanaka, Yuetsu; Matsuoka, Masao; Saitoh, Akihiko; Green, Patrick L; Fujii, Masahiro

    2015-01-01

    Human T-cell leukemia virus type 1 (HTLV-1) is the etiological agent of adult T cell leukemia (ATL), which is an aggressive form of T-cell malignancy. HTLV-1 oncoproteins, Tax and HBZ, play crucial roles in the immortalization of T-cells and/or leukemogenesis by dysregulating the cellular functions in the host. Recent studies show that HTLV-1-infected T-cells have reduced expression of the BCL11B tumor suppressor protein. In the present study, we explored whether Tax and/or HBZ play a role in downregulating BCL11B in HTLV-1-infected T-cells. Lentiviral transduction of Tax in a human T-cell line repressed the expression of BCL11B at both the protein and mRNA levels, whereas the transduction of HBZ had little effect on the expression. Tax mutants with a decreased activity for the NF-κB, CREB or PDZ protein pathways still showed a reduced expression of the BCL11B protein, thereby implicating a different function of Tax in BCL11B downregulation. In addition, the HTLV-2 Tax2 protein reduced the BCL11B protein expression in T-cells. Seven HTLV-1-infected T-cell lines, including three ATL-derived cell lines, showed reduced BCL11B mRNA and protein expression relative to an uninfected T-cell line, and the greatest reductions were in the cells expressing Tax. Collectively, these results indicate that Tax is responsible for suppressing BCL11B protein expression in HTLV-1-infected T-cells; Tax-mediated repression of BCL11B is another mechanism that Tax uses to promote oncogenesis of HTLV-1-infected T-cells. PMID:25613934

  17. Inhibition of latent membrane protein 1 impairs the growth and tumorigenesis of latency II Epstein-Barr virus-transformed T cells.

    PubMed

    Ndour, Papa Alioune; Brocqueville, Guillaume; Ouk, Tan-Sothéa; Goormachtigh, Gautier; Morales, Olivier; Mougel, Alexandra; Bertout, Julie; Melnyk, Oleg; Fafeur, Véronique; Feuillard, Jean; Coll, Jean; Adriaenssens, Eric

    2012-04-01

    Epstein-Barr virus (EBV) is a common human herpesvirus. Infection with EBV is associated with several human malignancies in which the virus expresses a set of latent proteins, among which is latent membrane protein 1 (LMP1). LMP1 is able to transform numerous cell types and is considered the main oncogenic protein of EBV. The mechanism of action is based on mimicry of activated members of the tumor necrosis factor (TNF) receptor superfamily, through the ability of LMP1 to bind similar adapters and to activate signaling pathways. We previously generated two unique models: a monocytic cell line and a lymphocytic (NC5) cell line immortalized by EBV that expresses the type II latency program. Here we generated LMP1 dominant negative forms (DNs), based on fusion between green fluorescent protein (GFP) and transformation effector site 1 (TES1) or TES2 of LMP1. Then we generated cell lines conditionally expressing these DNs. These DNs inhibit NF-κB and Akt pathways, resulting in the impairment of survival processes and increased apoptosis in these cell lines. This proapoptotic effect is due to reduced interaction of LMP1 with specific adapters and the recruitment of these adapters to DNs, which enable the generation of an apoptotic complex involving TRADD, FADD, and caspase 8. Similar results were obtained with cell lines displaying a latency III program in which LMP1-DNs decrease cell viability. Finally, we prove that synthetic peptides display similar inhibitory effects in EBV-infected cells. DNs derived from LMP1 could be used to develop therapeutic approaches for malignant diseases associated with EBV.

  18. Inhibition of Latent Membrane Protein 1 Impairs the Growth and Tumorigenesis of Latency II Epstein-Barr Virus-Transformed T Cells

    PubMed Central

    Ndour, Papa Alioune; Brocqueville, Guillaume; Ouk, Tan-Sothéa; Goormachtigh, Gautier; Morales, Olivier; Mougel, Alexandra; Bertout, Julie; Melnyk, Oleg; Fafeur, Véronique; Feuillard, Jean; Coll, Jean

    2012-01-01

    Epstein-Barr virus (EBV) is a common human herpesvirus. Infection with EBV is associated with several human malignancies in which the virus expresses a set of latent proteins, among which is latent membrane protein 1 (LMP1). LMP1 is able to transform numerous cell types and is considered the main oncogenic protein of EBV. The mechanism of action is based on mimicry of activated members of the tumor necrosis factor (TNF) receptor superfamily, through the ability of LMP1 to bind similar adapters and to activate signaling pathways. We previously generated two unique models: a monocytic cell line and a lymphocytic (NC5) cell line immortalized by EBV that expresses the type II latency program. Here we generated LMP1 dominant negative forms (DNs), based on fusion between green fluorescent protein (GFP) and transformation effector site 1 (TES1) or TES2 of LMP1. Then we generated cell lines conditionally expressing these DNs. These DNs inhibit NF-κB and Akt pathways, resulting in the impairment of survival processes and increased apoptosis in these cell lines. This proapoptotic effect is due to reduced interaction of LMP1 with specific adapters and the recruitment of these adapters to DNs, which enable the generation of an apoptotic complex involving TRADD, FADD, and caspase 8. Similar results were obtained with cell lines displaying a latency III program in which LMP1-DNs decrease cell viability. Finally, we prove that synthetic peptides display similar inhibitory effects in EBV-infected cells. DNs derived from LMP1 could be used to develop therapeutic approaches for malignant diseases associated with EBV. PMID:22258264

  19. MicroRNA-196b promotes cell proliferation and suppress cell differentiation in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Donglin, E-mail: caodlgz@sina.com; Hu, Liangshan; Lei, Da

    Highlights: • miRNA-196b increases proliferation and blocks differentiation of progenitor cell. • miRNA-196b inhibits apoptosis and increases viability of cells lines. • Forced expression of miR-196b blocks the differentiation of THP1 induced by PMA. - Abstract: MicroRNA-196b (miR-196b) is frequently amplified and aberrantly overexpressed in acute leukemias. To investigate the role of miR-196b in acute leukemias, it has been observed that forced expression of this miRNA increases proliferation and inhibits apoptosis in human cell lines. More importantly, we show that this miRNA can significantly increase the colony-forming capacity of mouse normal bone marrow progenitor cells alone, as well as partiallymore » blocking the cells from differentiation. Taken together, our studies suggest that miRNA-196b may play an essential role in the development of MLL-associated leukemias through inhibiting cell differentiation and apoptosis, while promoting cell proliferation.« less

  20. Inhibition of calmodulin-dependent phosphodiesterase induces apoptosis in human leukemic cells.

    PubMed Central

    Jiang, X; Li, J; Paskind, M; Epstein, P M

    1996-01-01

    Cytosolic extracts from a human lymphoblastoid B-cell line, RPMI-8392, established from a patient with acute lymphocytic leukemia, contain two major forms of cyclic nucleotide phosphodiesterase (PDE): Ca2+-calmodulin dependent PDE (PDE1) and cAMP-specific PDE (PDE4). In contrast, normal quiescent human peripheral blood lymphocytes (HPBL) are devoid of PDE1 activity [Epstein, P. M., Moraski, S., Jr., and Hachisu, R. (1987) Biochem. J. 243, 533-539]. Using reverse transcription-polymerase chain reaction (RT-PCR), we show that the mRNA encoding the 63-kDa form of PDE1 (PDE1B1) is expressed in RPMI-8392 cells, but not in normal, resting HPBL. This mRNA is, however, induced in HPBL following mitogenic stimulation by phytohemagglutinin (PHA). Also using RT-PCR, the full open reading frame for human PDE1B1 cDNA was cloned from RPMI-8392 cells and it encodes a protein of 536 amino acids with 96% identity to bovine, rat, and mouse species. RT-PCR also identifies the presence of PDE1B1 in other human lymphoblastoid and leukemic cell lines of B- (RPMI-1788, Daudi) and T-(MOLT-4, NA, Jurkat) cell origin. Inhibition of PDE1 or PDE4 activity by selective inhibitors induced RPMI-8392 cells, as well as the other cell lines, to undergo apoptosis. Culture of RPMI-8392 cells with an 18-bp phosphorothioate antisense oligodeoxynucleotide, targeted against the translation initiation region of the RPMI-8392 mRNA, led to a specific reduction in the amount of PDE1B1 mRNA after 1 day, and its disappearance after 2 days, and induced apoptosis in these cells in a sequence specific manner. This suggests that PDEs, particularly PDE1B1, because its expression is selective, may be useful targets for inducing the death of leukemic cells. Images Fig. 1 Fig. 3 Fig. 5 Fig. 6 PMID:8855339

  1. Carprofen induction of p75NTR-dependent apoptosis via the p38 mitogen-activated protein kinase pathway in prostate cancer cells.

    PubMed

    Khwaja, Fatima S; Quann, Emily J; Pattabiraman, Nagarajan; Wynne, Shehla; Djakiew, Daniel

    2008-11-01

    The p75 neurotrophin receptor (p75(NTR)) functions as a tumor suppressor in prostate epithelial cells, where its expression declines with progression to malignant cancer. Previously, we showed that treatment with R-flurbiprofen or ibuprofen induced p75(NTR) expression in several prostate cancer cell lines leading to p75(NTR)-mediated decreased survival. Using the 2-phenyl propionic acid moiety of these profens as a pharmacophore, we screened an in silico database of 30 million compounds and identified carprofen as having an order of magnitude greater activity for induction of p75(NTR) levels and inhibition of cell survival. Prostate (PC-3 and DU-145) and bladder (T24) cancer cells were more sensitive to carprofen induction of p75(NTR)-associated loss of survival than breast (MCF-7) and fibroblast (3T3) cells. Transfection of prostate cell lines with a dominant-negative form of p75(NTR) before carprofen treatment partially rescued cell survival, showing a cause-and-effect relationship between carprofen induction of p75(NTR) levels and inhibition of survival. Carprofen induced apoptotic nuclear fragmentation in prostate but not in MCF-7 and 3T3 cells. Furthermore, small interfering RNA knockdown of the p38 mitogen-activated protein kinase (MAPK) protein prevented induction of p75(NTR) by carprofen in both prostate cell lines. Carprofen treatment induced phosphorylation of p38 MAPK as early as within 1 min. Expression of a dominant-negative form of MK2, the kinase downstream of p38 MAPK frequently associated with signaling cascades leading to apoptosis, prevented carprofen induction of the p75(NTR) protein. Collectively, we identify carprofen as a highly potent profen capable of inducing p75(NTR)-dependent apoptosis via the p38 MAPK pathway in prostate cancer cells.

  2. Bioenergetic and Antiapoptotic Properties of Mitochondria from Cultured Human Prostate Cancer Cell Lines PC-3, DU145 and LNCaP

    PubMed Central

    Panov, Alexander; Orynbayeva, Zulfiya

    2013-01-01

    The purpose of this work was to reveal the metabolic features of mitochondria that might be essential for inhibition of apoptotic potential in prostate cancer cells. We studied mitochondria isolated from normal prostate epithelial cells (PrEC), metastatic prostate cancer cell lines LNCaP, PC-3, DU145; and non-prostate cancer cells - human fibrosarcoma HT1080 cells; and normal human lymphoblastoid cells. PrEC cells contained 2 to 4 times less mitochondria per gram of cells than the three PC cell lines. Respiratory activities of PrEC cell mitochondria were 5-20-fold lower than PC mitochondria, depending on substrates and the metabolic state, due to lower content and lower activity of the respiratory enzyme complexes. Mitochondria from the three metastatic prostate cancer cell lines revealed several features that are distinctive only to these cells: low affinity of Complex I for NADH, 20-30 mV higher electrical membrane potential (ΔΨ). Unprotected with cyclosporine A (CsA) the PC-3 mitochondria required 4 times more Ca2+ to open the permeability transition pore (mPTP) when compared with the PrEC mitochondria, and they did not undergo swelling even in the presence of alamethicin, a large pore forming antibiotic. In the presence of CsA, the PC-3 mitochondria did not open spontaneously the mPTP. We conclude that the low apoptotic potential of the metastatic PC cells may arise from inhibition of the Ca2+-dependent permeability transition due to a very high ΔΨ and higher capacity to sequester Ca2+. We suggest that due to the high ΔΨ, mitochondrial metabolism of the metastatic prostate cancer cells is predominantly based on utilization of glutamate and glutamine, which may promote development of cachexia. PMID:23951286

  3. Src Drives Growth of Antiestrogen Resistant Breast Cancer Cell Lines and Is a Marker for Reduced Benefit of Tamoxifen Treatment

    PubMed Central

    Larsen, Sarah L.; Laenkholm, Anne-Vibeke; Duun-Henriksen, Anne Katrine; Bak, Martin; Lykkesfeldt, Anne E.; Kirkegaard, Tove

    2015-01-01

    The underlying mechanisms leading to antiestrogen resistance in estrogen-receptor α (ER)-positive breast cancer is still poorly understood. The aim of this study was therefore to identify biomarkers and novel treatments for antiestrogen resistant breast cancer. We performed a kinase inhibitor screen on antiestrogen responsive T47D breast cancer cells and T47D-derived tamoxifen and fulvestrant resistant cell lines. We found that dasatinib, a broad-spectrum kinase inhibitor, inhibited growth of the antiestrogen resistant cells compared to parental T47D cells. Furthermore western blot analysis showed increased expression and phosphorylation of Src in the resistant cells and that dasatinib inhibited phosphorylation of Src and also signaling via Akt and Erk in all cell lines. Immunoprecipitation revealed Src: ER complexes only in the parental T47D cells. In fulvestrant resistant cells, Src formed complexes with the Human Epidermal growth factor Receptor (HER)1 and HER2. Neither HER receptors nor ER were co-precipitated with Src in the tamoxifen resistant cell lines. Compared to treatment with dasatinib alone, combined treatment with dasatinib and fulvestrant had a stronger inhibitory effect on tamoxifen resistant cell growth, whereas dasatinib in combination with tamoxifen had no additive inhibitory effect on fulvestrant resistant growth. When performing immunohistochemical staining on 268 primary tumors from breast cancer patients who had received tamoxifen as first line endocrine treatment, we found that membrane expression of Src in the tumor cells was significant associated with reduced disease-free and overall survival. In conclusion, Src was identified as target for treatment of antiestrogen resistant T47D breast cancer cells. For tamoxifen resistant T47D cells, combined treatment with dasatinib and fulvestrant was superior to treatment with dasatinib alone. Src located at the membrane has potential as a new biomarker for reduced benefit of tamoxifen. PMID:25706943

  4. E-cigarette vapour is not inert and exposure can lead to cell damage.

    PubMed

    Holliday, Richard; Kist, Ralf; Bauld, Linda

    2016-03-01

    In vitro experiments were performed on normal epithelial cells as well as head and neck squamous cell carcinoma (HNSCC) cell lines. The widely available cell line HaCat, a spontaneously transformed immortal keratinocyte and the HNSCC cell lines HN30 and UMSCC10B were used. Cells were exposed to nicotine-containing and nicotine-free vapour extract from two popular e-cigarette brands for periods ranging from 48 hours to eight weeks. Cytotoxicity was assessed using Annexin V flow cytometric analysis, trypan blue exclusion and clonogenic assays. Genotoxicity in the form of DNA strand breaks was quantified using the neutral comet assay and γ-H2AX immunostaining. E-cigarette-exposed cells showed significantly reduced cell viability and clonogenic survival, along with increased rates of apoptosis and necrosis, regardless of e-cigarette vapour nicotine content. They also exhibited significantly increased comet tail length and accumulation of γ-H2AX foci, demonstrating increased DNA strand breaks. In conclusion, our study strongly suggests that electronic cigarettes are not as safe as their marketing makes them appear to the public. Our in vitro experiments employing two brands of e-cigs show that at biologically relevant doses, vapourised e-cig liquids induce increased DNA strand breaks and cell death, and decreased clono- genic survival in both normal epithelial and HNSCC cell lines independently of nicotine content. Further research is needed to definitively determine the long-term effects of e-cig usage, as well as whether the DNA damage shown in our study as a result of e-cig exposure will lead to mutations that ultimately result in cancer.

  5. Modulation of the Substitution Pattern of 5-Aryl-2-Aminoimidazoles Allows Fine-Tuning of Their Antibiofilm Activity Spectrum and Toxicity

    PubMed Central

    Peeters, Elien; Hooyberghs, Geert; Robijns, Stijn; Waldrant, Kai; De Weerdt, Ami; Delattin, Nicolas; Liebens, Veerle; Kucharíková, Soňa; Tournu, Hélène; Verstraeten, Natalie; Dovgan, Barbara; Girandon, Lenart; Fröhlich, Mirjam; De Brucker, Katrijn; Michiels, Jan; Cammue, Bruno P. A.; Thevissen, Karin; Vanderleyden, Jozef; Van der Eycken, Erik

    2016-01-01

    We previously synthesized several series of compounds, based on the 5-aryl-2-aminoimidazole scaffold, that showed activity preventing the formation of Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa biofilms. Here, we further studied the activity spectrum of a number of the most active N1- and 2N-substituted 5-aryl-2-aminoimidazoles against a broad panel of biofilms formed by monospecies and mixed species of bacteria and fungi. An N1-substituted compound showed very strong activity against the biofilms formed by Gram-negative and Gram-positive bacteria and the fungus Candida albicans but was previously shown to be toxic against various eukaryotic cell lines. In contrast, 2N-substituted compounds were nontoxic and active against biofilms formed by Gram-negative bacteria and C. albicans but had reduced activity against biofilms formed by Gram-positive bacteria. In an attempt to develop nontoxic compounds with potent activity against biofilms formed by Gram-positive bacteria for application in antibiofilm coatings for medical implants, we synthesized novel compounds with substituents at both the N1 and 2N positions and tested these compounds for antibiofilm activity and toxicity. Interestingly, most of these N1-,2N-disubstituted 5-aryl-2-aminoimidazoles showed very strong activity against biofilms formed by Gram-positive bacteria and C. albicans in various setups with biofilms formed by monospecies and mixed species but lost activity against biofilms formed by Gram-negative bacteria. In light of application of these compounds as anti-infective coatings on orthopedic implants, toxicity against two bone cell lines and the functionality of these cells were tested. The N1-,2N-disubstituted 5-aryl-2-aminoimidazoles in general did not affect the viability of bone cells and even induced calcium deposition. This indicates that modulating the substitution pattern on positions N1 and 2N of the 5-aryl-2-aminoimidazole scaffold allows fine-tuning of both the antibiofilm activity spectrum and toxicity. PMID:27550355

  6. Neopterin formation and tryptophan degradation by a human myelomonocytic cell line (THP-1) upon cytokine treatment.

    PubMed

    Werner-Felmayer, G; Werner, E R; Fuchs, D; Hausen, A; Reibnegger, G; Wachter, H

    1990-05-15

    Determination of neopterin [D-erythro-6-(1',2',3'-trihydroxypropyl)pterin] in body fluids is a powerful diagnostic tool in a variety of diseases in which activation of cellular immune mechanisms is involved, such as certain malignancies, allograft rejection, and autoimmune and infectious diseases. In vitro, neopterin is released into the supernatant by peripheral blood-derived monocytes/macrophages upon stimulation with gamma-interferon. In parallel, cleavage of tryptophan by indoleamine 2,3-dioxygenase is induced. We report here that the human myelomonocytic cell line THP-1 forms neopterin and degrades tryptophan upon treatment with gamma-interferon. Like in macrophages alpha-interferon and beta-interferon induce these pathways only to a much smaller degree. The action of interferons is enhanced by cotreatment with tumor necrosis factor alpha, lipopolysaccharide, or dexamethasone. gamma-Interferon-induced neopterin formation and indoleamine 2,3-dioxygenase activity are increased by raising extracellular tryptophan concentrations. The pattern of intracellularly formed pteridines upon stimulation with gamma-interferon shows the unique characteristics of human monocytes/macrophages. Neopterin, monapterin, and biopterin are produced in a 50:2:1 ratio. Thus, the THP-1 cell line provides a permanent, easily accessible in vitro system for studying the induction and mechanism of neopterin formation.

  7. Promotion of malignant phenotype after disruption of the three-dimensional structure of cultured spheroids from colorectal cancer.

    PubMed

    Piulats, Jose M; Kondo, Jumpei; Endo, Hiroko; Ono, Hiromasa; Hagihara, Takeshi; Okuyama, Hiroaki; Nishizawa, Yasuko; Tomita, Yasuhiko; Ohue, Masayuki; Okita, Kouki; Oyama, Hidejiro; Bono, Hidemasa; Masuko, Takashi; Inoue, Masahiro

    2018-03-23

    Individual and small clusters of cancer cells may detach from the edges of a main tumor and invade vessels, which can act as the origin of metastasis; however, the mechanism for this phenomenon is not well understood. Using cancer tissue-originated spheroids, we studied whether disturbing the 3D architecture of cancer spheroids can provoke the reformation process and progression of malignancy. We developed a mechanical disruption method to achieve homogenous disruption of the spheroids while maintaining cell-cell contact. After the disruption, 9 spheroid lines from 9 patient samples reformed within a few hours, and 3 of the 9 lines exhibited accelerated spheroid growth. Marker expression, spheroid forming capacity, and tumorigenesis indicated that stemness increased after spheroid disruption. In addition, the spheroid forming capacity increased in 6 of 11 spheroid lines. The disruption signature determined by gene expression profiling supported the incidence of remodeling and predicted the prognosis of patients with colorectal cancer. Furthermore, WNT and HER3 signaling were increased in the reformed spheroids, and suppression of these signaling pathways attenuated the increased proliferation and stemness after the disruption. Overall, the disruption and subsequent reformation of cancer spheroids promoted malignancy-related phenotypes through the activation of the WNT and ERBB pathways.

  8. Induction of DNA-strand breaks after X-irradiation in murine bone cells of various differentiation capacities

    NASA Astrophysics Data System (ADS)

    Lau, Patrick; Hellweg, Christine E.; Kirchner, Simone; Baumstark-Khan, Christa

    During longterm space missions, astronauts suffer from the loss of minerals especially from weightbearing bones due to prolonged sojourn under microgravity. In addition to weightlessness, exposure to cosmic ionization radiation is another space related factor endangering health and productivity of astronauts. In order to elucidate changes in bone cell metabolism induced by ionizing radiation, ground-based bone cell models have been developed. The differentiation level of the bone cells may influence their radiation sensitivity. Therefore, our cell model comprises a collection of immortalized murine pre-osteoblast, osteoblast and osteocyte cell lines representing discrete stages of differentiation: the subclones 4 and 24 of the osteoblast cell line MC3T3-E1, the osteoblast cell line OCT-1 and the osteocyte cell line MLO-Y4 display varying potential to produce mineralized bone matrix upon incubation with ascorbic acid and β-glycerophosphate (osteogenic medium). The MLO-Y4 cells showed the highest and subclone 24 the lowest proliferation rate. The most intense von Kossa reaction after culture in osteogenic medium was observed in subclone 4, indicating mineralized bone matrix. The bone cell markers alkaline phosphatase and osteocalcin were determined to further characterize the differentiation stage. All cell lines expressed osteocalcin, as determined by reverse transcriptase polymerase chain reaction. The activity of alkaline phosphatase was highest in the cell line OCT-1 and very low in MLO-Y4 and S4. The peculiarity of the markers suggests a characterization of OCT-1 and S24 as preosteoblast, S4 as (mature) osteoblast, and MLO-Y4 as osteocyte. Survival after exposure to X-rays was determined using the colony forming ability test. The resulting dose-effect relationships revealed normal radiation sensitivity (compared to human fibroblasts). Cell clone specific variations (subclones 4 and 24) in the radiation sensitivity may be due to the differentiation level. The survival curve of MLO-Y4 shows a broad shoulder, suggesting a high repair capacity or a high DNA damage or misrepair tolerance. The quantitative acquisition of DNA-strand breaks was performed by fluorescent analysis of DNA unwinding and revealed a high level of DNA damage immediately after X-irradiation, which increases dose dependently. In conclusion, the cell line with the highest differentiation level (MLO-Y4) displays lower radiation sensitivity, regarding the shoulder width of the dose-effect curve, compared to the less differentiated osteoblast cell lines.

  9. Cell-free synthesis of membrane subunits of ATP synthase in phospholipid bicelles: NMR shows subunit a fold similar to the protein in the cell membrane

    PubMed Central

    Uhlemann, Eva-Maria E; Pierson, Hannah E; Fillingame, Robert H; Dmitriev, Oleg Y

    2012-01-01

    NMR structure determination of large membrane proteins is hampered by broad spectral lines, overlap, and ambiguity of signal assignment. Chemical shift and NOE assignment can be facilitated by amino acid selective isotope labeling in cell-free protein synthesis system. However, many biological detergents are incompatible with the cell-free synthesis, and membrane proteins often have to be synthesized in an insoluble form. We report cell-free synthesis of subunits a and c of the proton channel of Escherichia coli ATP synthase in a soluble form in a mixture of phosphatidylcholine derivatives. In comparison, subunit a was purified from the cell-free system and from the bacterial cell membranes. NMR spectra of both preparations were similar, indicating that our procedure for cell-free synthesis produces protein structurally similar to that prepared from the cell membranes. PMID:22162071

  10. Cyclopentenone derivatives and polyhydroxylated steroids from the soft coral Sinularia acuta.

    PubMed

    Zhang, Nai-Xia; Tang, Xu-Li; van Ofwegen, Leen; Xue, Lei; Song, Wen-Juan; Li, Ping-Lin; Li, Guo-Qiang

    2015-02-01

    Four new polyhydroxylated steroids, 1-4, and the racemic form of cyclopentenone 9, together with four known steroids, 5-8, one known cyclopentenone derivative, 10, and one known butenolide derivative, 11, were isolated from the soft coral Sinularia acuta collected from Weizhou Island of Guangxi Province, P. R. China. Their structures were elucidated on the basis of spectroscopic analyses and by comparison of the corresponding data with those previously reported. The cytotoxicities of the isolates 1-11 in vitro against the selected tumor cell lines HL-60, HeLa, and K562 were evaluated. Compounds 2 and 5 showed potent cytotoxicities against HL-60 cell lines with IC50 values of 7.3 and 9.9 μM, respectively. Compounds 5 and 6 showed moderate activities against K562 cell lines with IC50 values of 10.9 and 11.7 μM, respectively, while compounds 1, 2, and 6 showed weak activities against HeLa cell lines with respective IC50 values of 44.8, 27.1, and 18.2 μM. This is the first report on chemical and bioactivity research of S. acuta. Copyright © 2015 Verlag Helvetica Chimica Acta AG, Zürich.

  11. Human ES cells – haematopoiesis and transplantation strategies*

    PubMed Central

    Kaufman, DS; Thomson, JA

    2002-01-01

    Human embryonic stem (ES) cells provide a novel opportunity to study early developmental events in a human system. We have used human ES cell lines, including clonally derived lines, to evaluate haematopoiesis. Co-culture of the human ES cells with irradiated bone marrow stromal cell lines in the presence of fetal bovine serum (FBS), but without other exogenous cytokines, leads to differentiation of the human ES cells within a matter of days. A portion of these differentiated cells express CD34, the best-defined marker for early haematopoietic cells. Haematopoietic colony-forming cells (CFCs) are demonstrated by methylcellulose assay. Myeloid, erythroid, megakaryocyte and multipotential CFCs can all be derived under these conditions. Enrichment of CD34+ cells derived from the human ES cells markedly increases the yield of CFCs, as would be expected for cells derived from adult bone marrow or umbilical cord blood. Transcription factors are also expressed in a manner consistent with haematopoietic differentiation. This system now presents the potential to evaluate specific conditions needed to induce or support events in early human blood development. Human ES cells are also a novel source of cells for transplantation therapies. The immunogenicity of ES cell-derived cells is unknown. The unique properties of ES cells afford the opportunity to explore novel mechanisms to prevent immune-mediated rejection. Potential strategies to overcome rejection will be presented, including creation of haematopoietic chimerism as a means to successfully transplant cells and tissues derived from human ES cells. PMID:12033728

  12. A Caspase-Resistant Form of Bcl-XL, but Not Wild Type Bcl-XL, Promotes Clonogenic Survival After Ionizing Radiation

    PubMed Central

    Rehemtulla, Alnawaz; Hamilton, A Christin; Taneja, Neelam; Fridman, Jordan; Juan, Todd SC; Maybaum, Jonathan; Chinnaiyan, Arul

    1999-01-01

    Abstract Bcl-2 and Bcl-XL belong to a family of proteins overexpressed in a variety of human cancers which inhibit apoptosis in response to a number of stimuli including chemotherapeutic agents and ionizing radiation. To better understand the role of these polypeptides in modulating the response of cancer cells to ionizing radiation we used cell lines that were engineered to overexpress the two polypeptides. Although Bcl-2 and Bcl-XL overexpression resulted in inhibition of radiation-induced apoptosis, it did not result in enhanced clonogenic survival. Consistent with this was the observation that Bcl-2 and Bcl-XL protected cells from DNA fragmentation, loss of mitochondrial membrane potential, and caspase activation for up to 72 hours after irradiation. Beyond 72 hours, there was a rapid loss in the ability of Bcl-2 and Bcl-XL to inhibit these markers of apoptosis. When Bcl-XL was analyzed at 72 hours after irradiation and beyond, a rapid accumulation of a 16-kDa form of Bcl-XL was observed. To test the hypothesis that cleavage of the 29-kDa form of Bcl-XL by caspases to a 16-kDa polypeptide results in its inability to inhibit apoptosis beyond 72 hours, we constructed a cell line that overexpressed a caspase-resistant form of Bcl-XL Bcl-XLΔloop. Cells overexpressing Bcl-XL-Δloop were resistant to apoptosis beyond 72 hours after irradiation and did not contain the 16-kDa form at these time points. In addition, Bcl-XL-Δloop overexpression resulted in enhanced clonogenic survival compared with control or Bcl-XL overexpressing cells. These results provide a molecular basis for the observation that expression of Bcl-2 or Bcl-XL is not a prognostic marker of tumor response to cancer therapy. PMID:10935471

  13. Synthesis and cytotoxic analysis of some disodium 3beta,6beta-dihydroxysterol disulfates.

    PubMed

    Cui, Jianguo; Wang, Hui; Huang, Yanmin; Xin, Yi; Zhou, Aimin

    2009-01-01

    Disodium 3beta,6beta-dihydroxy-5alpha-cholestane disulfate (1) was synthesized in 4 steps with a high overall yield from cholesterol. First, cholesterol (4a) was converted to cholest-4-en-3,6-dione (5a) via oxidation with pyridinium chlorochromate (PCC) and then 5a was reduced by NaBH(4) in the presence of NiCl(2) to produce cholest-3beta,6beta-diol (6a). The reaction of 6a with the triethylamine-sulfur trioxide complex generated diammonium 3beta,6beta-dihydroxy-5alpha-cholestane disulfate (7a) and the treatment of 7a by cation exchange resin 732 (sodium form)(Na(+)) yielded the target steroid 1. Disodium 24-ethyl-3beta,6beta-dihydroxycholest-22-ene disulfate (2) and disodium 24-ethyl-3beta,6beta-dihydroxycholestane disulfate (3) were synthesized using a similar method. The cytotoxicity of these compounds against Sk-Hep-1 (human liver carcinoma cell line), H-292 (human lung carcinoma cell line), PC-3 (human prostate carcinoma cell line) and Hey-1B (human ovarian carcinoma cell line) cells was investigated. Our results indicate that presence of a cholesterol-type side chain at position 17 is necessary for their biological activity.

  14. Derivation and characterisation of the human embryonic stem cell lines, NOTT1 and NOTT2.

    PubMed

    Priddle, Helen; Allegrucci, Cinzia; Burridge, Paul; Munoz, Maria; Smith, Nigel M; Devlin, Lyndsey; Sjoblom, Cecilia; Chamberlain, Sarah; Watson, Sue; Young, Lorraine E; Denning, Chris

    2010-04-01

    The ability to maintain human embryonic stem cells (hESCs) during long-term culture and yet induce differentiation to multiple lineages potentially provides a novel approach to address various biomedical problems. Here, we describe derivation of hESC lines, NOTT1 and NOTT2, from human blastocysts graded as 3BC and 3CB, respectively. Both lines were successfully maintained as colonies by mechanical passaging on mouse embryonic feeder cells or as monolayers by trypsin-passaging in feeder-free conditions on Matrigel. Undifferentiated cells retained expression of pluripotency markers (OCT4, NANOG, SSEA-4, TRA-1-60 and TRA-1-81), a stable karyotype during long-term culture and could be transfected efficiently with plasmid DNA and short interfering RNA. Differentiation via formation of embryoid bodies resulted in expression of genes associated with early germ layers and terminal lineage specification. The electrophysiology of spontaneously beating NOTT1-derived cardiomyocytes was recorded and these cells were shown to be pharmacologically responsive. Histological examination of teratomas formed by in vivo differentiation of both lines in severe immunocompromised mice showed complex structures including cartilage or smooth muscle (mesoderm), luminal epithelium (endoderm) and neuroectoderm (ectoderm). These observations show that NOTT1 and NOTT2 display the accepted characteristics of hESC pluripotency.

  15. Elevated Na+/H+ exchanger-1 expression enhances the metastatic collective migration of head and neck squamous cell carcinoma cells.

    PubMed

    Kaminota, Teppei; Yano, Hajime; Shiota, Kohei; Nomura, Noriko; Yaguchi, Haruna; Kirino, Yui; Ohara, Kentaro; Tetsumura, Issei; Sanada, Tomoyoshi; Ugumori, Toru; Tanaka, Junya; Hato, Naohito

    2017-04-22

    Cancer cells can migrate as collectives during invasion and/or metastasis; however, the precise molecular mechanisms of this form of migration are less clear compared with single cell migration following epithelial-mesenchymal transition. Elevated Na + /H + exchanger1 (NHE1) expression has been suggested to have malignant roles in a number of cancer cell lines and in vivo tumor models. Furthermore, a metastatic human head and neck squamous cell carcinoma (HNSCC) cell line (SASL1m) that was isolated based on its increased metastatic potential also exhibited higher NHE1 expression than its parental line SAS. Time-lapse video recordings indicated that both cell lines migrate as collectives, although with different features, e.g., SASL1m was much more active and changed the direction of migration more frequently than SAS cells, whereas locomotive activities were comparable. SASL1m cells also exhibited higher invasive activity than SAS in Matrigel invasion assays. shRNA-mediated NHE1 knockdown in SASL1m led to reduced locomotive and invasive activities, suggesting a critical role for NHE1 in the collective migration of SASL1m cells. SASL1m cells also exhibited a higher metastatic rate than SAS cells in a mouse lymph node metastasis model, while NHE1 knockdown suppressed in vivo SASL1m metastasis. Finally, elevated NHE1 expression was observed in human HNSCC tissue, and Cariporide, a specific NHE1 inhibitor, reduced the invasive activity of SASL1m cells, implying NHE1 could be a target for anti-invasion/metastasis therapy. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Generation of SNCA Cell Models Using Zinc Finger Nuclease (ZFN) Technology for Efficient High-Throughput Drug Screening.

    PubMed

    Dansithong, Warunee; Paul, Sharan; Scoles, Daniel R; Pulst, Stefan M; Huynh, Duong P

    2015-01-01

    Parkinson's disease (PD) is a progressive neurodegenerative disorder caused by loss of dopaminergic neurons of the substantia nigra. The hallmark of PD is the appearance of neuronal protein aggregations known as Lewy bodies and Lewy neurites, of which α-synuclein forms a major component. Familial PD is rare and is associated with missense mutations of the SNCA gene or increases in gene copy number resulting in SNCA overexpression. This suggests that lowering SNCA expression could be therapeutic for PD. Supporting this hypothesis, SNCA reduction was neuroprotective in cell line and rodent PD models. We developed novel cell lines expressing SNCA fused to the reporter genes luciferase (luc) or GFP with the objective to enable high-throughput compound screening (HTS) for small molecules that can lower SNCA expression. Because SNCA expression is likely regulated by far-upstream elements (including the NACP-REP1 located at 8852 bp upstream of the transcription site), we employed zinc finger nuclease (ZFN) genome editing to insert reporter genes in-frame downstream of the SNCA gene in order to retain native SNCA expression control. This ensured full retention of known and unknown up- and downstream genetic elements controlling SNCA expression. Treatment of cells with the histone deacetylase inhibitor valproic acid (VPA) resulted in significantly increased SNCA-luc and SNCA-GFP expression supporting the use of our cell lines for identifying small molecules altering complex modes of expression control. Cells expressing SNCA-luc treated with a luciferase inhibitor or SNCA siRNA resulted in Z'-scores ≥ 0.75, suggesting the suitability of these cell lines for use in HTS. This study presents a novel use of genome editing for the creation of cell lines expressing α-synuclein fusion constructs entirely under native expression control. These cell lines are well suited for HTS for compounds that lower SNCA expression directly or by acting at long-range sites to the SNCA promoter and 5'-UTR.

  17. Using the MCF10A/MCF10CA1a Breast Cancer Progression Cell Line Model to Investigate the Effect of Active, Mutant Forms of EGFR in Breast Cancer Development and Treatment Using Gefitinib

    PubMed Central

    Bessette, Darrell C.; Tilch, Erik; Seidens, Tatjana; Quinn, Michael C. J.; Wiegmans, Adrian P.; Shi, Wei; Cocciardi, Sibylle; McCart-Reed, Amy; Saunus, Jodi M.; Simpson, Peter T.; Grimmond, Sean M.; Lakhani, Sunil R.; Khanna, Kum Kum; Waddell, Nic; Al-Ejeh, Fares; Chenevix-Trench, Georgia

    2015-01-01

    Background Basal-like and triple negative breast cancer (TNBC) share common molecular features, poor prognosis and a propensity for metastasis to the brain. Amplification of epidermal growth factor receptor (EGFR) occurs in ~50% of basal-like breast cancer, and mutations in the epidermal growth factor receptor (EGFR) have been reported in up to ~ 10% of Asian TNBC patients. In non-small cell lung cancer several different mutations in the EGFR tyrosine kinase domain confer sensitivity to receptor tyrosine kinase inhibitors, but the tumourigenic potential of EGFR mutations in breast cells and their potential for targeted therapy is unknown. Materials and Methods Constructs containing wild type, G719S or E746-A750 deletion mutant forms of EGFR were transfected into the MCF10A breast cells and their tumorigenic derivative, MCF10CA1a. The effects of EGFR over-expression and mutation on proliferation, migration, invasion, response to gefitinib, and tumour formation in vivo was investigated. Copy number analysis and whole exome sequencing of the MCF10A and MCF10CA1a cell lines were also performed. Results Mutant EGFR increased MCF10A and MCF10CA1a proliferation and MCF10A gefitinib sensitivity. The EGFR-E746-A750 deletion increased MCF10CA1a cell migration and invasion, and greatly increased MCF10CA1a xenograft tumour formation and growth. Compared to MCF10A cells, MCF10CA1a cells exhibited large regions of gain on chromosomes 3 and 9, deletion on chromosome 7, and mutations in many genes implicated in cancer. Conclusions Mutant EGFR enhances the oncogenic properties of MCF10A cell line, and increases sensitivity to gefitinib. Although the addition of EGFR E746-A750 renders the MCF10CA1a cells more tumourigenic in vivo it is not accompanied by increased gefitinib sensitivity, perhaps due to additional mutations, including the PIK3CA H1047R mutation, that the MCF10CA1a cell line has acquired. Screening TNBC/basal-like breast cancer for EGFR mutations may prove useful for directing therapy but, as in non-small cell lung cancer, accompanying mutations in PIK3CA may confer gefitinib resistance. PMID:25969993

  18. A magnetic-dependent protein corona of tailor-made superparamagnetic iron oxides alters their biological behaviors

    NASA Astrophysics Data System (ADS)

    Liu, Ziyao; Zhan, Xiaohui; Yang, Minggang; Yang, Qi; Xu, Xianghui; Lan, Fang; Wu, Yao; Gu, Zhongwei

    2016-03-01

    In recent years, it is becoming increasingly evident that once nanoparticles come into contact with biological fluids, a protein corona surely forms and critically affects the biological behaviors of nanoparticles. Herein, we investigate whether the formation of protein corona on the surface of superparamagnetic iron oxides (SPIOs) is influenced by static magnetic field. Under static magnetic field, there is no obvious variation in the total amount of protein adsorption, but the proportion of adsorbed proteins significantly changes. Noticeably, certain proteins including apolipoproteins, complement system proteins and acute phase proteins, increase in the protein corona of SPIOs in the magnetic field. More importantly, the magnetic-dependent protein corona of SPIOs enhances the cellular uptake of SPIOs into the normal cell line (3T3 cells) and tumor cell line (HepG2 cells), due to increased adsorption of apolipoprotein. In addition, SPIOs with the magnetic-dependent protein corona cause high cytotoxicity to 3T3 cells and HepG2 cells. This work discloses that superparamagnetism as a key feature of SPIOs affects the composition of protein corona to a large extent, which further alters the biological behaviors of SPIOs.In recent years, it is becoming increasingly evident that once nanoparticles come into contact with biological fluids, a protein corona surely forms and critically affects the biological behaviors of nanoparticles. Herein, we investigate whether the formation of protein corona on the surface of superparamagnetic iron oxides (SPIOs) is influenced by static magnetic field. Under static magnetic field, there is no obvious variation in the total amount of protein adsorption, but the proportion of adsorbed proteins significantly changes. Noticeably, certain proteins including apolipoproteins, complement system proteins and acute phase proteins, increase in the protein corona of SPIOs in the magnetic field. More importantly, the magnetic-dependent protein corona of SPIOs enhances the cellular uptake of SPIOs into the normal cell line (3T3 cells) and tumor cell line (HepG2 cells), due to increased adsorption of apolipoprotein. In addition, SPIOs with the magnetic-dependent protein corona cause high cytotoxicity to 3T3 cells and HepG2 cells. This work discloses that superparamagnetism as a key feature of SPIOs affects the composition of protein corona to a large extent, which further alters the biological behaviors of SPIOs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08447d

  19. Efficient Metabolic Engineering of GM3 on Tumor Cells by N-Phenylacetyl-D-mannosamine†

    PubMed Central

    Chefalo, Peter; Pan, Yanbin; Nagy, Nancy; Guo, Zhongwu; Harding, Clifford V.

    2008-01-01

    Abnormal carbohydrates expressed on tumor cells, which are referred to as tumor-associated carbohydrate antigens (TACAs), are potential targets for development of cancer vaccines. However, immune tolerance to TACAs has severely hindered progress in this area. To overcome this problem, we have developed a novel immunotherapeutic strategy based on synthetic cancer vaccines and metabolic engineering of TACAs on tumor cells. One critical step of this new strategy is metabolic engineering of cancer, namely to induce expression of an artificial form of a TACA by supplying tumors with an artificial monosaccharide precursor. To identify the proper precursor for this application, N-propionyl, N-butanoyl, N-iso-butanoyl and N-phenylacetyl derivatives of D-mannosamine were synthesized, and their efficiency as biosynthetic precursors to modify sialic acid and induce expression of modified forms of GM3 antigen on tumor cells was investigated. For this purpose, tumor cells were incubated with different N-acyl-D-mannosamines, and modified forms of GM3 expressed on tumor cells were analyzed by flow cytometry using antigen-specific antisera. N-phenylacetyl-D-mannosamine was efficiently incorporated in a time and dose dependent manner to bioengineer GM3 expression by several tumor cell lines including K562, SKMEL-28 and B16-F0. Moreover, these tumor cell lines also showed ManPAc-dependent sensitivity to cytotoxicity medicated by anti-PAcGM3 immune serum and complement. These results provide an important validation for this novel therapeutic strategy. Because N-phenylacetyl GM3-protein conjugates are particularly immunogenic, the combination of an N-phenylacetyl GM3 conjugate vaccine with systemic N-phenylacetyl-D-mannosamine treatment is a promising immunotherapy for future development and application to melanoma and other GM3-bearing tumors. PMID:16533056

  20. Enterokinase Enhances Influenza A Virus Infection by Activating Trypsinogen in Human Cell Lines

    PubMed Central

    Hayashi, Hideki; Kubo, Yoshinao; Izumida, Mai; Takahashi, Etsuhisa; Kido, Hiroshi; Sato, Ko; Yamaya, Mutsuo; Nishimura, Hidekazu; Nakayama, Kou; Matsuyama, Toshifumi

    2018-01-01

    Cleavage and activation of hemagglutinin (HA) by trypsin-like proteases in influenza A virus (IAV) are essential prerequisites for its successful infection and spread. In host cells, some transmembrane serine proteases such as TMPRSS2, TMPRSS4 and HAT, along with plasmin in the bloodstream, have been reported to cleave the HA precursor (HA0) molecule into its active forms, HA1 and HA2. Some trypsinogens can also enhance IAV proliferation in some cell types (e.g., rat cardiomyoblasts). However, the precise activation mechanism for this process is unclear, because the expression level of the physiological activator of the trypsinogens, the TMPRSS15 enterokinase, is expected to be very low in such cells, with the exception of duodenal cells. Here, we show that at least two variant enterokinases are expressed in various human cell lines, including A549 lung-derived cells. The exogenous expression of these enterokinases was able to enhance the proliferation of IAV in 293T human kidney cells, but the proliferation was reduced by knocking down the endogenous enterokinase in A549 cells. The enterokinase was able to enhance HA processing in the cells, which activated trypsinogen in vitro and in the IAV-infected cells also. Therefore, we conclude that enterokinase plays a role in IAV infection and proliferation by activating trypsinogen to process viral HA in human cell lines. PMID:29629340

  1. In vitro characterization of CD133lo cancer stem cells in Retinoblastoma Y79 cell line.

    PubMed

    Nair, Rohini M; Balla, Murali Ms; Khan, Imran; Kalathur, Ravi Kiran Reddy; Kondaiah, Paturu; Vemuganti, Geeta K

    2017-11-21

    Retinoblastoma (Rb), the most common childhood intraocular malignant tumor, is reported to have cancer stem cells (CSCs) similar to other tumors. Our previous investigation in primary tumors identified the small sized cells with low CD133 (Prominin-1) and high CD44 (Hyaluronic acid receptor) expression to be putative Rb CSCs using flow cytometry (FSC lo /SSC lo /CD133 lo /CD44 hi ). With this preliminary data, we have now utilized a comprehensive approach of in vitro characterization of Y79 Rb cell line following CSC enrichment using CD133 surface marker and subsequent validation to confirm the functional properties of CSCs. The cultured Rb Y79 cells were evaluated for surface markers by flow cytometry and CD133 sorted cells (CD133 lo /CD133 hi ) were compared for CSC characteristics by size/percentage, cell cycle assay, colony formation assay, differentiation, Matrigel transwell invasion assay, cytotoxicity assay, gene expression using microarray and validation by semi-quantitative PCR. Rb Y79 cell line shared the profile (CD133, CD90, CXCR4 and ABCB1) of primary tumors except for CD44 expression. The CD133 lo cells (16.1 ± 0.2%) were FSC lo /SSC lo , predominantly within the G0/G1 phase, formed larger and higher number of colonies with ability to differentiate to CD133 hi cells, exhibited increased invasive potential in a matrigel transwell assay (p < 0.05) and were resistant to Carboplatin treatment (p < 0.001) as compared to CD133 hi cells. The CD133 lo cells showed higher expression of several embryonic stem cell genes (HOXB2, HOXA9, SALL1, NANOG, OCT4, LEFTY), stem cells/progenitor genes (MSI2, BMI1, PROX1, ABCB1, ABCB5, ABCG2), and metastasis related gene- MACC1, when compared to the CD133 hi cells. This study validates the observation from our earlier primary tumor study that CSC properties in Rb Y79 cell line are endowed within the CD133 lo population, evident by their characteristics- i.e. small sized, dormant in nature, increased colony forming ability, differentiation to CD133 hi cells, higher invasiveness potential, drug resistance and primitive gene expression pattern. These findings provide a proof of concept for methodological characterization of the retinoblastoma CSCs with future implications for improved diagnostic and treatment strategies.

  2. Identification of drug-resistant subpopulations in canine hemangiosarcoma.

    PubMed

    Khammanivong, A; Gorden, B H; Frantz, A M; Graef, A J; Dickerson, E B

    2016-09-01

    Canine hemangiosarcoma is a rapidly progressive disease that is poorly responsive to conventional chemotherapy. Despite numerous attempts to advance treatment options and improve outcomes, drug resistance remains a hurdle to successful therapy. To address this problem, we used recently characterized progenitor cell populations derived from canine hemangiosarcoma cell lines and grown as non-adherent spheres to identify potential drug resistance mechanisms as well as drug-resistant cell populations. Cells from sphere-forming cultures displayed enhanced resistance to chemotherapy drugs, expansion of dye-excluding side populations and altered ATP-binding cassette (ABC) transporter expression. Invasion studies demonstrated variability between cell lines as well as between sphere and monolayer cell populations. Collectively, our results suggest that sphere cell populations contain distinct subpopulations of drug-resistant cells that utilize multiple mechanisms to evade cytotoxic drugs. Our approach represents a new tool for the study of drug resistance in hemangiosarcoma, which could alter approaches for treating this disease. © 2014 John Wiley & Sons Ltd.

  3. Tamoxifen synergizes with 4-(E)-{(4-hydroxyphenylimino)-methylbenzene, 1,2-diol} and 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol}, novel azaresveratrol analogs, in inhibiting the proliferation of breast cancer cells

    PubMed Central

    Ronghe, Amruta; Chatterjee, Anwesha; Bhat, Nimee K.; Padhye, Subhash; Bhat, Hari K.

    2016-01-01

    We have recently shown that 4-(E)-{(4-hydroxyphenylimino)-methylbenzene, 1,2-diol} (HPIMBD) and 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD), novel analogs of resveratrol (Res), selectively inhibited the proliferation of breast cancer cells. In the current study, we tested HPIMBD and TIMBD individually in combination with tamoxifen (Tam) for inhibition of growth of breast cancer cells. Tamoxifen was first tested on non-neoplastic breast epithelial cell lines and its dose that does not inhibit their growth was determined. A combination of this low dose of Tam with either of the Res analogs HPIMBD or TIMBD, resulted in synergistic inhibition of proliferation of breast cancer cells. Both estrogen receptor (ER)-positive and negative breast cancer cell lines responded to the combination. The combination resulted in a substantial decrease in IC50 values of Res analogs in all breast cancer cell lines tested. Mechanistic studies showed a synergistic increase in apoptosis and autophagy genes (beclin-1 and LC3BII/I) with the combination in ER-negative MDA-MB-231 cells. In ER-positive MCF-7 and T47D cells, the mechanism of synergy was found to be inhibition of expression of ERα and oncogene c-Myc. The combination treatment had a synergistic effect in inhibiting the colony forming and spheroid forming ability of cancer cells. Taken together, our findings indicate that a combination of Tam and Res analogs HPIMBD or TIMBD represents a novel approach to enhancing the use of Tam in therapy for breast cancers. Considering the urgent need for novel therapeutic strategies to treat ER-negative breast cancers and overcoming resistance in ER-positive cancers, this combinatorial approach is worthy of continued investigation. PMID:27351134

  4. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Zhen F.; Gai, Hui; Huang, You Z.

    2006-11-01

    Embryonic stem cells were isolated from rabbit blastocysts derived from fertilization (conventional rbES cells), parthenogenesis (pES cells) and nuclear transfer (ntES cells), and propagated in a serum-free culture system. Rabbit ES (rbES) cells proliferated for a prolonged time in an undifferentiated state and maintained a normal karyotype. These cells grew in a monolayer with a high nuclear/cytoplasm ratio and contained a high level of alkaline phosphate activity. In addition, rbES cells expressed the pluripotent marker Oct-4, as well as EBAF2, FGF4, TDGF1, but not antigens recognized by antibodies against SSEA-1, SSEA-3, SSEA-4, TRA-1-10 and TRA-1-81. All 3 types of ESmore » cells formed embryoid bodies and generated teratoma that contained tissue types of all three germ layers. rbES cells exhibited a high cloning efficiency, were genetically modified readily and were used as nuclear donors to generate a viable rabbit through somatic cell nuclear transfer. In combination with genetic engineering, the ES cell technology should facilitate the creation of new rabbit lines.« less

  5. Glycosylation potential of human prostate cancer cell lines

    PubMed Central

    Gao, Yin; Chachadi, Vishwanath B.; Cheng, Pi-Wan

    2014-01-01

    Altered glycosylation is a universal feature of cancer cells and altered glycans can help cancer cells escape immune surveillance, facilitate tumor invasion, and increase malignancy. The goal of this study was to identify specific glycoenzymes, which could distinguish prostate cancer cells from normal prostatic cells. We investigated enzymatic activities and gene expression levels of key glycosyl- and sulfotransferases responsible for the assembly of O- and N-glycans in several prostatic cells. These cells included immortalized RWPE-1 cells derived from normal prostatic tissues, and prostate cancer cells derived from metastasis in bone (PC-3), brain (DU145), lymph node (LNCaP), and vertebra (VCaP). We found that all cells were capable of synthesizing complex N-glycans and O-glycans with the core 1 structure, and each cell line had characteristic bio-synthetic pathways to modify these structures. The in vitro measured activities corresponded well to the mRNA levels of glycosyltransferases and sulfotransferases. Lectin and antibody binding to whole cells supported these results, which form the basis for the development of tumor cell-specific targeting strategies. PMID:22843320

  6. Activin type IB receptor signaling in prostate cancer cells promotes lymph node metastasis in a xenograft model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Masatoshi, E-mail: nomura@med.kyushu-u.ac.jp; Tanaka, Kimitaka; Wang, Lixiang

    Highlights: Black-Right-Pointing-Pointer ActRIB signaling induces Snail and S100A4 expressions in prostate cancer cells. Black-Right-Pointing-Pointer The prostate cancer cell lines expressing an active form of ActRIB were established. Black-Right-Pointing-Pointer ActRIB signaling promotes EMT and lymph node metastasis in xenograft model. -- Abstract: Activin, a member of the transforming growth factor-{beta} family, has been known to be a growth and differentiating factor. Despite its pluripotent effects, the roles of activin signaling in prostate cancer pathogenesis are still unclear. In this study, we established several cell lines that express a constitutive active form of activin type IB receptor (ActRIBCA) in human prostate cancermore » cells, ALVA41 (ALVA-ActRIBCA). There was no apparent change in the proliferation of ALVA-ActRIBCA cells in vitro; however, their migratory ability was significantly enhanced. In a xenograft model, histological analysis revealed that the expression of Snail, a cell-adhesion-suppressing transcription factor, was dramatically increased in ALVA-ActRIBCA tumors, indicating epithelial mesenchymal transition (EMT). Finally, mice bearing ALVA-ActRIBCA cells developed multiple lymph node metastases. In this study, we demonstrated that ActRIBCA signaling can promote cell migration in prostate cancer cells via a network of signaling molecules that work together to trigger the process of EMT, and thereby aid in the aggressiveness and progression of prostate cancers.« less

  7. Liquid Chromatography Mass Spectrometry Analysis and Cytotoxicity of Asparagus adscendens Roots against Human Cancer Cell Lines.

    PubMed

    Khan, Kashif Maqbool; Nahar, Lutfun; Mannan, Abdul; Arfan, Muhammad; Khan, Ghazanfar Ali; Al-Groshi, Afaf; Evans, Andrew; Dempster, Nicola M; Ismail, Fyaz M D; Sarker, Satyajit D

    2018-01-01

    Asparagus adscendens Roxb. (Asparagaceae), is native to the Himalayas. This plant has been used in the prevention and effective treatment of various forms of cancers. This paper reports, for the first time, on the cytotoxicity of the methanol (MeOH) extract of the roots of A. adscendens and its solid-phase extraction (SPE) fractions against four human carcinoma cell lines and LC-ESI-QTOF-MS analysis of the SPE fractions. Finely powdered roots of A. adscendens were macerated in methanol and extracted through SPE using gradient solvent system (water: methanol) proceeded for analysis on LC-ESI-QTOF-MS and cytotoxicity against four human carcinoma cell lines: breast (MCF7), liver (HEPG2), lung (A549), and urinary bladder (EJ138), using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay. The MeOH extract and four SPE fractions exhibited cytotoxicity against all cell lines with the IC 50 values ranging from 6 to 79 μg/mL. As observed in other Asparagus species, the presence of saponins and sapogenins in the SPE fractions was evident in the liquid chromatography-mass spectrometry data. It is reasonable to assume that the cytotoxicity of the MeOH extract of the roots of A. adscendens and its SPE fractions, at least partly, due to the presence of saponins and their aglycones. This suggests that A. adscendens could be exploited as a potential source of cytotoxic compounds with putative anticancer potential. The MeOH extract and all solid-phase extraction (SPE) fractions exhibited various levels of cytotoxicity against all cell lines with the IC 50 values ranging from 6 to 79 μg/mLThe presence of saponins and sapogenins in the SPE fractions was evident in the Liquid chromatography-mass spectrometry dataDue to the presence of saponins and their aglycones, suggest that A. adscendens could be exploited as a potential source of cytotoxic compounds with putative anticancer potential. Abbreviation used: SPE: Solid-phase extraction, MCF7: Breast cancer cell line, HEPG2: Liver cancer cell line, A549: Lung liver cancer cell line, EJ138: Urinary bladder cancer cell line, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide, LC-MS: Liquid chromatography-mass spectrometry.

  8. Bone remodelling: its local regulation and the emergence of bone fragility.

    PubMed

    Martin, T John; Seeman, Ego

    2008-10-01

    Bone modelling prevents the occurrence of damage by adapting bone structure - and hence bone strength - to its loading circumstances. Bone remodelling removes damage, when it inevitably occurs, in order to maintain bone strength. This cellular machinery is successful during growth, but fails during advancing age because of the development of a negative balance between the volumes of bone resorbed and formed during remodelling by the basic multicellular unit (BMU), high rates of remodelling during midlife in women and late in life in both sexes, and a decline in periosteal bone formation. together resulting in bone loss and structural decay each time a remodelling event occurs. The two steps in remodelling - resorption of a volume of bone by osteoclasts and formation of a comparable volume by osteoblasts - are sequential, but the regulatory events leading to these two fully differentiated functions are not. Reparative remodelling is initiated by damage producing osteocyte apoptosis, which signals the location of damage via the osteocyte canalicular system to endosteal lining cells which forms the canopy of a bone-remodelling compartment (BRC). Within the BRC, local recruitment of osteoblast precursors from the lining cells, the marrow and circulation, direct contact with osteoclast precursors, osteoclastogenesis and molecular cross-talk between precursors, mature cells, cells of the immune system, and products of the resorbed matrix, titrate the birth, work and lifespan of the cells of this multicellular remodelling machinery to either remove or form a net volume of bone appropriate to the mechanical requirements.

  9. Synthesis, characterization and anticancer studies of Ni(II), Pd(II) and Pt(II) complexes with Schiff base derived from N-methylhydrazinecarbothioamide and 2-hydroxy-5-methoxy-3-nitrobenzaldehyde

    NASA Astrophysics Data System (ADS)

    Arafath, Md. Azharul; Adam, Farook; Razali, Mohd. R.; Ahmed Hassan, Loiy E.; Ahamed, Mohamed B. Khadeer; Majid, Amin Malik S. A.

    2017-02-01

    A carbothioamide NSO tridentate Schiff base ligand (HL) and its square planar complexes Na[NiLOAc], Na[PdLOAc] and [PtLdmso] have been synthesized and characterized on the basis of melting point, elemental analysis, FT-IR, 1H NMR, 13C NMR, UV-Vis spectra. The structure of HL was elucidated with X-ray diffraction analysis. In the present study, the synthesized compounds were evaluated for their anticancer properties against three human cancer cell lines breast cancer (MCF-7), cervical (Hela), and colon (HCT-116). In addition, the cytotoxicity of the synthesized compounds was tested on a normal human cell line (human endothelial cell line EA.hy926). Among the tested compounds, the complex [NiLOAc] excelled in halting proliferation of the cervical and colon cancer cells with median inhibitory concentration (IC50) values of 28.33 and 34.4 μM, respectively. The complex, [PdLOAc] demonstrated selective cytotoxicity against breast cancer line MCF-7 with IC50 = 47.5 μM, while HL showed inhibitory effect against colon cancer cell line (HCT-116) with IC50 = 55.66 μM. The complex, [PtLdmso] showed mild activity against breast cancer (MCF-7) and cervical cancer (Hela) cells with IC50 = 64.44 and 68.3 μM, respectively, whereas, it displayed insignificant cytotoxicity against human endothelial cells (EA.hy926) with IC50 > 200 μM. Cancer cells treated with [NiLOAc] showed apoptotic features such as membrane blebbing and DNA condensation. Thus, the findings of the present study demonstrated that the series of metal complexes of HL could form the new lead for development of cancer chemotherapies to treat human cervical, breast and colon malignancies.

  10. Lapatinib-resistant cancer cells possessing epithelial cancer stem cell properties develop sensitivity during sphere formation by activation of the ErbB/AKT/cyclin D2 pathway.

    PubMed

    Ohnishi, Yuichi; Yasui, Hiroki; Kakudo, Kenji; Nozaki, Masami

    2016-11-01

    Lapatinib, a dual inhibitor of epidermal growth factor receptor (EGFR)/ErbB2, has antiproliferative effects and is used to treat patients with ErbB2-positive metastatic breast cancer. In the present study, we examined the effects of lapatinib on growth of oral and prostate cancer cells. Oral squamous cell carcinoma (OSCC) cell lines HSC3, HSC4 and Ca9-22 were sensitive to the antiproliferative effects of lapatinib in anchorage-dependent culture, but the OSCC cell lines KB and SAS and the prostate cancer cell line DU145 were resistant to lapatinib. Phosphorylation levels of EGFR in all cell lines decreased during lapatinib treatment in anchorage‑dependent culture. Furthermore, the phosphorylation levels of ErbB2, ErbB3 and Akt and the protein levels of cyclin D1 were decreased by lapatinib treatment of HSC3, HSC4 and Ca9-22 cells. ErbB3 was not expressed and cyclin D1 protein levels were not altered by lapatinib treatment in KB, DU145 and SAS cells. The phosphorylation of ErbB2 and AKT was not affected by lapatinib in SAS cells and was not detected in KB and DU145 cells. Lapatinib-resistant cell lines exhibited sphere-forming ability, and SAS cells developed sensitivity to lapatinib during sphere formation. The phosphorylation levels of ErbB2 and AKT and protein levels of cyclin D2 increased during sphere formation of SAS cells and decreased with lapatinib treatment. In addition, sphere formation of SAS cells was inhibited by the AKT inhibitor MK2206. AKT phosphorylation and cyclin D2 levels in SAS spheres were decreased by MK2206 treatment. SAS cells expressed E-cadherin, but not vimentin and KB cells expressed vimentin, but not E-cadherin. DU145 cells expressed vimentin and E-cadherin. These results suggested that phosphorylation of EGFR and ErbB2 by cell detachment from the substratum induces the AKT pathway/cyclin D2-dependent sphere growth in SAS epithelial cancer stem-like cells, thereby rendering SAS spheres sensitive to lapatinib treatment.

  11. Properties of the tick-borne encephalitis virus population during persistent infection of ixodid ticks and tick cell lines.

    PubMed

    Belova, Oxana A; Litov, Alexander G; Kholodilov, Ivan S; Kozlovskaya, Liubov I; Bell-Sakyi, Lesley; Romanova, Lidiya Iu; Karganova, Galina G

    2017-10-01

    Tick-borne encephalitis virus (TBEV) is the causative agent of tick-borne encephalitis (TBE), a vector-borne zoonotic neuroinfection. For successful circulation in natural foci the virus has to survive in the vector for a long period of time. Information about the effect of long-term infection of ticks on properties of the viral population is of great importance. In recent years, changes in the eco-epidemiology of TBEV due to changes in distribution of ixodid ticks have been observed. These changes in TBEV-endemic areas could result in a shift of the main tick vector species, which in turn may lead to changes in properties of the virus. In the present study we evaluated the selective pressure on the TBEV population during persistent infection of various species of ticks and tick cell lines. TBEV effectively replicated and formed persistent infection in ticks and tick cell lines of the vector species (Ixodes spp.), potential vectors (Dermacentor spp.) and non-vector ticks (Hyalomma spp.). During TBEV persistence in Ixodes and Dermacentor ticks, properties of the viral population remained virtually unchanged. In contrast, persistent TBEV infection of tick cell lines from both vector and non-vector ticks favoured selection of viral variants with low neuroinvasiveness for laboratory mice and substitutions in the E protein that increased local positive charge of the virion. Thus, selective pressure on viral population may differ in ticks and tick cell lines during persistent infection. Nevertheless, virus variants with properties of the original strain adapted to mouse CNS were not eliminated from the viral population during long-term persistence of TBEV in ticks and tick cell lines. Copyright © 2017 Elsevier GmbH. All rights reserved.

  12. Src kinases in chondrosarcoma chemoresistance and migration: dasatinib sensitises to doxorubicin in TP53 mutant cells

    PubMed Central

    van Oosterwijk, J G; van Ruler, M A J H; Briaire-de Bruijn, I H; Herpers, B; Gelderblom, H; van de Water, B; Bovée, J V M G

    2013-01-01

    Background: Chondrosarcomas are malignant cartilage-forming tumours of bone. Because of their resistance to conventional chemotherapy and radiotherapy, currently no treatment strategies exist for unresectable and metastatic chondrosarcoma. Previously, PI3K/AKT/GSK3β and Src kinase pathways were shown to be activated in chondrosarcoma cell lines. Our aim was to investigate the role of these kinases in chemoresistance and migration in chondrosarcoma in relation to TP53 mutation status. Methods: We used five conventional and three dedifferentiated chondrosarcoma cell lines and investigated the effect of PI3K/AKT/GSK3β pathway inhibition (enzastaurin) and Src pathway inhibition (dasatinib) in chemoresistance using WST assay and live cell imaging with AnnexinV staining. Immunohistochemistry on tissue microarrays (TMAs) containing 157 cartilaginous tumours was performed for Src family members. Migration assays were performed with the RTCA xCelligence System. Results: Src inhibition was found to overcome chemoresistance, to induce apoptosis and to inhibit migration. Cell lines with TP53 mutations responded better to combination therapy than wild-type cell lines (P=0.002). Tissue microarray immunohistochemistry confirmed active Src (pSrc) signalling, with Fyn being most abundantly expressed (76.1%). Conclusion: These results strongly indicate Src family kinases, in particular Fyn, as a potential target for the treatment of inoperable and metastatic chondrosarcomas, and to sensitise for doxorubicin especially in the presence of TP53 mutations. PMID:23922104

  13. Targeted genome editing in a quail cell line using a customized CRISPR/Cas9 system.

    PubMed

    Ahn, Jinsoo; Lee, Joonbum; Park, Ju Yeon; Oh, Keon Bong; Hwang, Seongsoo; Lee, Chang-Won; Lee, Kichoon

    2017-05-01

    Soon after RNA-guided Cas9 (CRISPR-associated protein 9) endonuclease opened a new era of targeted genome editing, the CRISPR/Cas9 platform began to be extensively used to modify genes in various types of cells and organisms. However, successful CRISPR/Cas9-mediated insertion/deletion (indel) mutation remains to be demonstrated in avian cell lines. The objective of this study was to design a poultry-specific CRISPR/Cas9 system to efficiently introduce targeted deletion mutation in chromosomes of the quail muscle clone 7 (QM7) cell line using a customized quail CRISPR vector. In this study, two avian-specific promoters, quail 7SK (q7SK) promoter and CBh promoter, the hybrid form of cytomegalovirus and chicken β-actin promoters, were cloned into a CRISPR vector for the expression of guide RNA and Cas9 protein, respectively. Then, guide RNA, which was designed to target 20-base pair (bp) nucleotides in the quail melanophilin (MLPH) locus, was ligated to the modified CRISPR vector and transfected to QM7 cells. Our results showed multiple indel mutations in the quail MLPH locus in nearly half of the alleles being tested, suggesting the high efficiency of the system for targeted gene modification. The new CRISPR vector developed from this study has the potential application to generate knockout avian cell lines and knockout poultry. © 2016 Poultry Science Association Inc.

  14. Mechanism of Telomerase Activation by v-Rel and Its Contribution to Transformation

    PubMed Central

    Hrdličková, Radmila; Nehyba, Jiří; Liss, Andrew S.; Bose, Henry R.

    2006-01-01

    Telomerase is activated during the transformation of lymphoid cells and fibroblasts by v-Rel, the oncogenic member of the Rel/NF-κB family of transcription factors. v-Rel-transformed cell lines have longer telomeres than untransformed chicken lymphoid cells and have high levels of telomerase activity. v-Rel-mediated activation of telomerase is achieved by multiple mechanisms. The expression of the gene encoding the catalytic subunit of telomerase (TERT) was directly upregulated by v-Rel. Moreover, the expression of v-Rel altered the ratio of alternatively spliced and full-length TERT transcripts in favor of the full-length forms. The activation of telomerase by v-Rel in lymphocytes was also accompanied by inactivation of nuclear inhibitors. The inhibition of telomerase activity in v-Rel-transformed cell lines led to apoptosis within 24 h. The expression of v-Rel in a macrophage cell line resulted in elevated levels of reactive oxygen species (ROS), increased telomerase activity, and increased sensitivity to telomerase inhibitors. In contrast, the ectopic expression of TERT decreased the extent of apoptosis induced by ROS. The activation of telomerase by v-Rel may, therefore, partially protect the transformed cells from apoptosis induced by ROS. PMID:16352553

  15. Lymphocyte functional antigens stabilize agglutination between Reed-Sternberg cells and T cells, but are not responsible for homotypic binding of Hodgkin's Reed-Sternberg cells.

    PubMed Central

    Hsu, S. M.; Hsu, P. L.

    1990-01-01

    The neoplastic (Hodgkin's Reed-Sternberg [H-RS]) cells in Hodgkin's disease (HD) are known for their unique capacity to form rosettes with unprimed T cells. Recently, a family of leukocyte-adherence molecules (LFA-1 and LFA-2) has been identified on T lymphocytes. The molecules bind to intercellular-adhesion molecules (ICAMs) and to LFA-3, respectively, which are associated with antigen-presenting cells. In this study, the authors examined whether these molecules are responsible for the homotypic and heterotypic agglutination that occurs in the cultured H-RS cells HDLM-1, HDLM-1d, and KM-H2. Despite their similar expressions of LFA-3 and ICAM-1, the different H-RS cells tested showed different growth patterns in culture. HDLM-1 cells grew singly, whereas HDLM-1d and KM-H2 cells grew in clumps. The HDLM-1 cells formed clumps when mixed with peripheral-blood T lymphocytes, cells of two lymphoblastic T-cell lines (MOLT-3 and MOLT-4), and cells of two monocyte lines (ML-1 and U-937). The addition of anti-LFA and ICAM-1 antibodies to cultures did not result in disassembly of the homotypic clusters of HDLM-1d or KM-H2 cells and it did not cause any significant changes in the size of heterotypic clusters or in the timing of cluster formation of HDLM-1 cells with other types of cells. In all studies, the cell clusters formed during homotypic and heterotypic aggregation were disassembled only minimally by cell shearing with pipetting. The disaggregation by pipetting was slightly more prominent in the presence of antibodies than was that of control cultures. However, in no case did the use of monoclonal antibodies (MAbs) and cell shearing cause complete disaggregation of homotypic and heterotypic clusters. The result seems to suggest that binding between H-RS cells and T cells and between H-RS cells and monocytes is not mediated primarily by LFAs and ICAMs, but that the binding may be strengthened in the presence of these molecules. Images Figure 1 Figure 3 Figure 4 Figure 5 Figure 6 PMID:1698024

  16. IL-3 specifically inhibits GM-CSF binding to the higher affinity receptor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taketazu, F.; Chiba, S.; Shibuya, K.

    1991-02-01

    The inhibition of binding between human granulocyte-macrophage colony-stimulating factor (GM-CSF) and its receptor by human interleukin-3 (IL-3) was observed in myelogenous leukemia cell line KG-1 which bore the receptors both for GM-CSF and IL-3. In contrast, this phenomenon was not observed in histiocytic lymphoma cell line U-937 or in gastric carcinoma cell line KATO III, both of which have apparent GM-CSF receptor but an undetectable IL-3 receptor. In KG-1 cells, the cross-inhibition was preferentially observed when the binding of GM-CSF was performed under the high-affinity binding condition; i.e., a low concentration of 125I-GM-CSF was incubated. Scatchard analysis of 125I-GM-CSF bindingmore » to KG-1 cells in the absence and in the presence of unlabeled IL-3 demonstrated that IL-3 inhibited GM-CSF binding to the higher-affinity component of GM-CSF receptor on KG-1 cells. Moreover, a chemical cross-linking study has revealed that the cross-inhibition of the GM-CSF binding observed in KG-1 cells is specific for the beta-chain, Mr 135,000 binding protein which has been identified as a component forming the high-affinity GM-CSF receptor existing specifically on hemopoietic cells.« less

  17. Quantification of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in mammalian model cells by CE with LED-induced fluorescence detection.

    PubMed

    Hühner, Jens; Ingles-Prieto, Álvaro; Neusüß, Christian; Lämmerhofer, Michael; Janovjak, Harald

    2015-02-01

    Cultured mammalian cells essential are model systems in basic biology research, production platforms of proteins for medical use, and testbeds in synthetic biology. Flavin cofactors, in particular flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD), are critical for cellular redox reactions and sense light in naturally occurring photoreceptors and optogenetic tools. Here, we quantified flavin contents of commonly used mammalian cell lines. We first compared three procedures for extraction of free and noncovalently protein-bound flavins and verified extraction using fluorescence spectroscopy. For separation, two CE methods with different BGEs were established, and detection was performed by LED-induced fluorescence with limit of detections (LODs 0.5-3.8 nM). We found that riboflavin (RF), FMN, and FAD contents varied significantly between cell lines. RF (3.1-14 amol/cell) and FAD (2.2-17.0 amol/cell) were the predominant flavins, while FMN (0.46-3.4 amol/cell) was found at markedly lower levels. Observed flavin contents agree with those previously extracted from mammalian tissues, yet reduced forms of RF were detected that were not described previously. Quantification of flavins in mammalian cell lines will allow a better understanding of cellular redox reactions and optogenetic tools. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Focal adhesion kinase dependent activation of the PI3 kinase pathway by the functional soluble form of neurotensin receptor-3 in HT29 cells.

    PubMed

    Massa, Fabienne; Devader, Christelle; Béraud-Dufour, Sophie; Brau, Frédéric; Coppola, Thierry; Mazella, Jean

    2013-05-01

    The neurotensin (NT) receptor-3 (NTSR3), also called sortilin, is thought to display several functions including a role as a receptor or a co-receptor, in the sorting to plasma membrane and to lysosomes, and in the regulated secretion. The aim of this study was to investigate the function of the soluble form of NTSR3 (sNTSR3) released from several cell lines including colonic cancer cells. The human adenocarcinoma epithelial cell line HT29 has been used to monitor the release, the binding and internalization of sNTSR3 by radioreceptor assays and confocal microscopy. The modulation of the intracellular signaling pathways by the protein has been investigated by using Fura-2 fluorescence calcium imaging microscopy and Western blots analysis. We demonstrated that sNTSR3 specifically binds and internalizes into HT29 cells. This binding, independent from the transactivation of the epidermal growth factor receptor, leads to the increase of intracellular calcium concentration and to the activation of a FAK/Src-dependent activation of the PI3 kinase pathway. In conclusion, sNTSR3 released from the membrane bound NTSR3 is a functional protein able to activate intracellular pathways involved in cell survival but probably not in cell growth. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. DNA double strand breaks induced by the indirect effect of radiation are more efficiently repaired by non-homologous end joining compared to homologous recombination repair.

    PubMed

    Bajinskis, Ainars; Natarajan, Adayapalam T; Erixon, Klaus; Harms-Ringdahl, Mats

    2013-08-30

    The aim of this study was to investigate the relative involvement of three major DNA repair pathways, i.e., non-homologous end joining (NHEJ), homologous recombination (HRR) and base excision (BER) in repair of DNA lesions of different complexity induced by low- or high-LET radiation with emphasis on the contribution of the indirect effect of radiation for these radiation qualities. A panel of DNA repair-deficient CHO cell lines was irradiated by (137)Cs γ-rays or radon progeny α-particles. Irradiation was also performed in the presence of 2M DMSO to reduce the indirect effect of radiation and the complexity of the DNA damage formed. Clonogenic survival and micronucleus assays were used to estimate efficiencies of the different repair pathways for DNA damages produced by direct and indirect effects. Removal of the indirect effect of low-LET radiation by DMSO increased clonogenic survival and decreased MN formation for all cell lines investigated. A direct contribution of the indirect effect of radiation to DNA base damage was suggested by the significant protection by DMSO seen for the BER deficient cell line. Lesions formed by the indirect effect are more readily repaired by the NHEJ pathway than by HRR after irradiation with γ-rays or α-particles as evaluated by cell survival and the yields of MN. The results obtained with BER- and NHEJ-deficient cells suggest that the indirect effect of radiation contributes significantly to the formation of repair substrates for these pathways. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Anticancer Activity Expressed by a Library of 2,9-Diazaperopyrenium Dications

    PubMed Central

    2016-01-01

    Polyaromatic compounds are well-known to intercalate DNA. Numerous anticancer chemotherapeutics have been developed upon the basis of this recognition motif. The compounds have been designed such that they interfere with the role of the topoisomerases, which control the topology of DNA during the cell-division cycle. Although many promising chemotherapeutics have been developed upon the basis of polyaromatic DNA intercalating systems, these candidates did not proceed past clinical trials on account of their dose-limiting toxicity. Herein, we discuss an alternative, water-soluble class of polyaromatic compounds, the 2,9-diazaperopyrenium dications, and report in vitro cell studies for a library of these dications. These investigations reveal that a number of 2,9-diazaperopyrenium dications show similar activities as doxorubicin toward a variety of cancer cell lines. Additionally, we report the solid-state structures of these dications, and we relate their tendency to aggregate in solution to their toxicity profiles. The addition of bulky substituents to these polyaromatic dications decreases their tendency to aggregate in solution. The derivative substituted with 2,6-diisopropylphenyl groups proved to be the most cytotoxic against the majority of the cell lines tested. In the solid state, the 2,6-diisopropylphenyl-functionalized derivative does not undergo π···π stacking, while in aqueous solution, dynamic light scattering reveals that this derivative forms very small (50–100 nm) aggregates, in contrast with the larger ones formed by dications with less bulky substituents. Alteration of the aromaticitiy in the terminal heterocycles of selected dications reveals a drastic change in the toxicity of these polyaromatic species toward specific cell lines. PMID:25555133

  1. Epigenetic Alterations Associated With CCCTC-Binding Factor Deregulation in Prostate Cancer

    DTIC Science & Technology

    2013-09-01

    cancer cells. (Months 1‐12)  a. Establish cell cultures of human prostate cancer (PC‐3 and PPC‐1) cell  lines, HPECs, non‐tumorigenic HPV16  E6  and/or  E7 ...and non‐tumorigenic HPV16  E6   5 and/or  E7  prostate cell lines. We have had to rederive these due to leakage from the  promoter leading to clonal...and control scrambled shRNA.  f. To test the tumorigenic ability of CTCF shRNA infected non‐tumorigenic  E6 / E7  cells using colony forming assays and

  2. Intervention of Prostate Cancer by a Flavonoid Antioxidant Silymarin

    DTIC Science & Technology

    2001-04-01

    effect of silymarin on PCA tumor growth in nude mice. Treatment of LNCaP and DUl45 human prostate carcinoma cells with silibinin (the pure form of...dimerization. These inhibitory effects of silibinin also corroborate with its inhibitory effect on both cellular and released expression of TGFalpha in...these two cell lines. In cytoplasmic signaling, silibinin showed strong decrease in ERKl/2 phosphorylation in both LNCaP and DUl45 cells and inhibition in

  3. Targeting the Prostate Cancer Microenvironment to Improve Therapeutic Outcomes

    DTIC Science & Technology

    2015-08-01

    molecular chaperone HSP27 upon such a series of cell Figure 4. Growth potential and expression pattern of cell line specific markers. A. Colony-forming...cells that were subject to 3 microtubule toxins and 3 DNA damaging agents, respectively, with p38 and HSP27 as major cytoplasmic objectives. E...LY2228820) and HSP27 (genetic eliminationon) are intensively carried out in our lab, with relevant data to be reported systematically in future

  4. Targeting the Prostate Cancer Microenvironment to Improve Therapeutic Outcomes

    DTIC Science & Technology

    2014-06-01

    chaperone HSP27 upon such a series of cell Figure 4. Growth potential and expression pattern of cell line specific markers. A. Colony-forming unit...lysates collected from PSC27 cells that were subject to 3 microtubule toxins and 3 DNA damaging agents, respectively, with p38 and HSP27 as major...and HSP27 (genetic eliminationon) are intensively carried out in our lab, with relevant data to be reported systematically in future

  5. The Harderian gland, its secretory duct and porphyrin content in the mongolian gerbil (Meriones unguiculatus).

    PubMed Central

    Johnston, H S; McGadey, J; Thompson, G G; Moore, M R; Payne, A P

    1983-01-01

    The Harderian gland, its secretory duct and porphyrin content were examined in the mongolian gerbil (Meriones unguiculatus). The gland consisted of tubules lined by a single layer of epithelial cells and a myoepithelial network. The tubule cells were often binucleate and possessed lipid vacuoles in the apical half of the cell, a corona of granular endoplasmic reticulum surrounding the nucleus, and cytoplasmic 'slashes'. The latter are probably derived from dense membranous couplets and may be precursors of the lipid vacuoles. Holocrine and merocrine secretion was observed. Interstitial cells included plasma cells, mast cells and (predominantly) melanocytes which render the gland black. The gland was surrounded by a collagen capsule and an outer layer of highly attenuated (possibly endothelioid) cells. Within the gland, the secretory duct was lined by a single layer of normal tubule cells. Outside the gland, the duct enlarged to form an ampulla, from which clefts led off to deep crypts. The ampulla and clefts were lined by cells with small dense apical granules and stubby microvilli; some possessed lipid vacuoles. The crypts were lined by serous cells with active Golgi regions. At the duct opening, ampullary cells became squamous and goblet cells occurred. Geometric crystalloid deposits (with a layered structure of 7.6 nm periodicity) occurred at cleft-crypt junctions. Islets of extra-glandular ductal tissue were occasionally found within the gland. Porphyrins were detectable both by chemical assay and fluorescence microscopy. There was a trend for female glands to have a higher content than males. Solid intraluminal accretions of porphyrin and/or lipid were present. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 10 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 PMID:6654750

  6. Combining Heavy Ion Radiation and Artificial MicroRNAs to Target the Homologous Recombination Repair Gene Efficiently Kills Human Tumor Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng Zhiming; Department of Radiation Oncology, School of Medicine, Winship Cancer Institute, Emory University, Atlanta, Georgia; Wang Ping

    2013-02-01

    Purpose: Previously, we demonstrated that heavy ions kill more cells at the same dose than X-rays because DNA-clustered lesions produced by heavy ions affect nonhomologous end-joining (NHEJ) repair but not homologous recombination repair (HRR). We have also shown that our designed artificial microRNAs (amiRs) could efficiently target XRCC4 (an essential factor for NHEJ) or XRCC2 (an essential factor for HRR) and sensitize human tumor cells to X-rays. Based on these data, we were interested in testing the hypothesis that combining heavy ions and amiRs to target HRR but not NHEJ should more efficiently kill human tumor cells. Methods and Materials:more » Human tumor cell lines (U87MG, a brain tumor cell line, and A549, a lung cancer cell line) and their counterparts, overexpressed with amiR to target XRCC2, XRCC4 or both, were used in this study. Survival sensitivities were examined using a clonogenic assay after these cells were exposed to X-rays or heavy ions. In addition, these cell lines were subcutaneously injected into nude mice to form xenografts and the tumor size was compared after the tumor areas were exposed to X-rays or heavy ions. Results: Although targeting either XRCC4 (NHEJ factor) or XRCC2 (HRR factor) sensitized the human tumor cells to X-rays, in vitro and the xenograft animal model, targeting only XRCC2 but not XRCC4 sensitized the human tumor cells to heavy ions in vitro and in the xenograft animal model. Conclusions: Combining heavy ions with targeting the HRR pathway, but not the NHEJ pathway, could significantly improve the efficiency of tumor cell death.« less

  7. Combining heavy ion radiation and artificial microRNAs to target the homologous recombination repair gene efficiently kills human tumor cells.

    PubMed

    Zheng, Zhiming; Wang, Ping; Wang, Hongyan; Zhang, Xiangming; Wang, Minli; Cucinotta, Francis A; Wang, Ya

    2013-02-01

    Previously, we demonstrated that heavy ions kill more cells at the same dose than X-rays because DNA-clustered lesions produced by heavy ions affect nonhomologous end-joining (NHEJ) repair but not homologous recombination repair (HRR). We have also shown that our designed artificial microRNAs (amiRs) could efficiently target XRCC4 (an essential factor for NHEJ) or XRCC2 (an essential factor for HRR) and sensitize human tumor cells to X-rays. Based on these data, we were interested in testing the hypothesis that combining heavy ions and amiRs to target HRR but not NHEJ should more efficiently kill human tumor cells. Human tumor cell lines (U87MG, a brain tumor cell line, and A549, a lung cancer cell line) and their counterparts, overexpressed with amiR to target XRCC2, XRCC4 or both, were used in this study. Survival sensitivities were examined using a clonogenic assay after these cells were exposed to X-rays or heavy ions. In addition, these cell lines were subcutaneously injected into nude mice to form xenografts and the tumor size was compared after the tumor areas were exposed to X-rays or heavy ions. Although targeting either XRCC4 (NHEJ factor) or XRCC2 (HRR factor) sensitized the human tumor cells to X-rays, in vitro and the xenograft animal model, targeting only XRCC2 but not XRCC4 sensitized the human tumor cells to heavy ions in vitro and in the xenograft animal model. Combining heavy ions with targeting the HRR pathway, but not the NHEJ pathway, could significantly improve the efficiency of tumor cell death. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Comparison of a Rat Primary Cell-Based Blood-Brain Barrier Model With Epithelial and Brain Endothelial Cell Lines: Gene Expression and Drug Transport.

    PubMed

    Veszelka, Szilvia; Tóth, András; Walter, Fruzsina R; Tóth, Andrea E; Gróf, Ilona; Mészáros, Mária; Bocsik, Alexandra; Hellinger, Éva; Vastag, Monika; Rákhely, Gábor; Deli, Mária A

    2018-01-01

    Cell culture-based blood-brain barrier (BBB) models are useful tools for screening of CNS drug candidates. Cell sources for BBB models include primary brain endothelial cells or immortalized brain endothelial cell lines. Despite their well-known differences, epithelial cell lines are also used as surrogate models for testing neuropharmaceuticals. The aim of the present study was to compare the expression of selected BBB related genes including tight junction proteins, solute carriers (SLC), ABC transporters, metabolic enzymes and to describe the paracellular properties of nine different culture models. To establish a primary BBB model rat brain capillary endothelial cells were co-cultured with rat pericytes and astrocytes (EPA). As other BBB and surrogate models four brain endothelial cells lines, rat GP8 and RBE4 cells, and human hCMEC/D3 cells with or without lithium treatment (D3 and D3L), and four epithelial cell lines, native human intestinal Caco-2 and high P-glycoprotein expressing vinblastine-selected VB-Caco-2 cells, native MDCK and MDR1 transfected MDCK canine kidney cells were used. To test transporter functionality, the permeability of 12 molecules, glucopyranose, valproate, baclofen, gabapentin, probenecid, salicylate, rosuvastatin, pravastatin, atorvastatin, tacrine, donepezil, was also measured in the EPA and epithelial models. Among the junctional protein genes, the expression level of occludin was high in all models except the GP8 and RBE4 cells, and each model expressed a unique claudin pattern. Major BBB efflux (P-glycoprotein or ABCB1) and influx transporters (GLUT-1, LAT-1) were present in all models at mRNA levels. The transcript of BCRP (ABCG2) was not expressed in MDCK, GP8 and RBE4 cells. The absence of gene expression of important BBB efflux and influx transporters BCRP, MRP6, -9, MCT6, -8, PHT2, OATPs in one or both types of epithelial models suggests that Caco-2 or MDCK models are not suitable to test drug candidates which are substrates of these transporters. Brain endothelial cell lines GP8, RBE4, D3 and D3L did not form a restrictive paracellular barrier necessary for screening small molecular weight pharmacons. Therefore, among the tested culture models, the primary cell-based EPA model is suitable for the functional analysis of the BBB.

  9. Epithelial-mesenchymal transition abolishes the susceptibility of polarized epithelial cell lines to measles virus.

    PubMed

    Shirogane, Yuta; Takeda, Makoto; Tahara, Maino; Ikegame, Satoshi; Nakamura, Takanori; Yanagi, Yusuke

    2010-07-02

    Measles virus (MV), an enveloped negative-strand RNA virus, remains a major cause of morbidity and mortality in developing countries. MV predominantly infects immune cells by using signaling lymphocyte activation molecule (SLAM; also called CD150) as a receptor, but it also infects polarized epithelial cells, forming tight junctions in a SLAM-independent manner. Although the ability of MV to infect polarized epithelial cells is thought to be important for its transmission, the epithelial cell receptor for MV has not been identified. A transcriptional repressor, Snail, induces epithelial-mesenchymal transition (EMT), in which epithelial cells lose epithelial cell phenotypes, such as adherens and tight junctions. In this study, EMT was induced by expressing Snail in a lung adenocarcinoma cell line, II-18, which is highly susceptible to wild-type MV. Snail-expressing II-18 cells lost adherens and tight junctions. Microarray analysis confirmed the induction of EMT in II-18 cells and suggested a novel function of Snail in protein degradation and distribution. Importantly, wild-type MV no longer entered EMT-induced II-18 cells, suggesting that the epithelial cell receptor is down-regulated by the induction of EMT. Other polarized cell lines, NCI-H358 and HT-29, also lost susceptibility to wild-type MV when EMT was induced. However, the complete formation of tight junctions rather reduced MV entry into HT-29 cells. Taken together, these data suggest that the unidentified epithelial cell receptor for MV is involved in the formation of epithelial intercellular junctions.

  10. Transcriptional Profiling Reveals a Common Metabolic Program for Tumorigenicity in High-Risk Human Neuroblastoma and Mouse Neuroblastoma Sphere-Forming Cells

    PubMed Central

    Liu, Mengling; Xia, Yingfeng; Ding, Jane; Ye, Bingwei; Zhao, Erhu; Choi, Jeong-Hyeon; Alptekin, Ahmet; Yan, Chunhong; Dong, Zheng; Huang, Shuang; Yang, Liqun; Cui, Hongjuan; Zha, Yunhong; Ding, Han-Fei

    2017-01-01

    Summary High-risk neuroblastoma remains one of the deadliest childhood cancers. Identification of metabolic pathways that drive or maintain high-risk neuroblastoma may open new avenues of therapeutic interventions. Here we report the isolation and propagation of neuroblastoma sphere-forming cells with self-renewal and differentiation potential from tumors of TH-MYCN mice, an animal model of high-risk neuroblastoma with MYCN amplification. Transcriptional profiling reveals that mouse neuroblastoma sphere-forming cells acquire a metabolic program characterized by transcriptional activation of the cholesterol and serine-glycine synthesis pathways, primarily as a result of increased expression of sterol regulatory element-binding factors and Atf4, respectively. This metabolic reprogramming is recapitulated in high-risk human neuroblastomas and is prognostic for poor clinical outcome. Genetic and pharmacological inhibition of the metabolic program markedly decreases the growth and tumorigenicity of both mouse neuroblastoma sphere-forming cells and human neuroblastoma cell lines. These findings suggest a therapeutic strategy for targeting the metabolic program of high-risk neuroblastoma. PMID:27705805

  11. Transcriptional Profiling Reveals a Common Metabolic Program in High-Risk Human Neuroblastoma and Mouse Neuroblastoma Sphere-Forming Cells.

    PubMed

    Liu, Mengling; Xia, Yingfeng; Ding, Jane; Ye, Bingwei; Zhao, Erhu; Choi, Jeong-Hyeon; Alptekin, Ahmet; Yan, Chunhong; Dong, Zheng; Huang, Shuang; Yang, Liqun; Cui, Hongjuan; Zha, Yunhong; Ding, Han-Fei

    2016-10-04

    High-risk neuroblastoma remains one of the deadliest childhood cancers. Identification of metabolic pathways that drive or maintain high-risk neuroblastoma may open new avenues of therapeutic interventions. Here, we report the isolation and propagation of neuroblastoma sphere-forming cells with self-renewal and differentiation potential from tumors of the TH-MYCN mouse, an animal model of high-risk neuroblastoma with MYCN amplification. Transcriptional profiling reveals that mouse neuroblastoma sphere-forming cells acquire a metabolic program characterized by transcriptional activation of the cholesterol and serine-glycine synthesis pathways, primarily as a result of increased expression of sterol regulatory element binding factors and Atf4, respectively. This metabolic reprogramming is recapitulated in high-risk human neuroblastomas and is prognostic for poor clinical outcome. Genetic and pharmacological inhibition of the metabolic program markedly decreases the growth and tumorigenicity of both mouse neuroblastoma sphere-forming cells and human neuroblastoma cell lines. These findings suggest a therapeutic strategy for targeting the metabolic program of high-risk neuroblastoma. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  12. Social isolation increases number of newly proliferated cells in hippocampus in female flinders sensitive line rats.

    PubMed

    Bjørnebekk, Astrid; Mathé, Aleksander A; Gruber, Susanne H M; Brené, Stefan

    2007-01-01

    Genetic background influences the responsiveness to stress and plays a crucial role in the pathophysiology of depression. In an animal model of depression, Flinders Sensitive Line rats, and Sprague Dawley controls we analyzed if 7 weeks of social isolation of adult animals affect the number of newly proliferated cells in the dentate gyrus or mRNAs of Neuropeptide Y (NPY), the NPY-Y1 receptor, nociceptin, BDNF, and the serotonin 5HT1A and 5HT2A receptors, which are molecules involved in hippocampal plasticity. Since depressive illness more frequently affects women than men, and females seem to respond differently to stressful experiences than males, female rats were used in this study. Bromodeoxyuridine, which is a thymidin analogue that is incorporated into the DNA of newly formed cells, was administered during 9 days to even out the effects of hormonal fluctuations. Social isolation increased the number of newly proliferated Bromodeoxyuridine-immunoreactive cells in the Flinders Sensitive Line rats, whereas it had no impact on the number of cells in the Sprague Dawley strain. Group housed Sprague Dawley rats had a higher expression of BDNF, NPY, and the serotonin 5HT2A receptor mRNA than "depressed" Flinders Sensitive Line. Social isolation downregulated these molecules in Sprague Dawley but not in Flinders Sensitive Line rats thereby eliminating the differences between the two strains. We demonstrate strain and gender specific responses to stress induced regulation of factors important for hippocampal plasticity. (c) 2007 Wiley-Liss, Inc.

  13. Graphene oxide as a nanocarrier for controlled release and targeted delivery of an anticancer active agent, chlorogenic acid.

    PubMed

    Barahuie, Farahnaz; Saifullah, Bullo; Dorniani, Dena; Fakurazi, Sharida; Karthivashan, Govindarajan; Hussein, Mohd Zobir; Elfghi, Fawzi M

    2017-05-01

    We have synthesized graphene oxide using improved Hummer's method in order to explore the potential use of the resulting graphene oxide as a nanocarrier for an active anticancer agent, chlorogenic acid (CA). The synthesized graphene oxide and chlorogenic acid-graphene oxide nanocomposite (CAGO) were characterized using Fourier transform infrared (FTIR) spectroscopy, thermogravimetry and differential thermogravimetry analysis, Raman spectroscopy, powder X-ray diffraction (PXRD), UV-vis spectroscopy and high resolution transmission electron microscopy (HRTEM) techniques. The successful conjugation of chlorogenic acid onto graphene oxide through hydrogen bonding and π-π interaction was confirmed by Raman spectroscopy, FTIR analysis and X-ray diffraction patterns. The loading of CA in the nanohybrid was estimated to be around 13.1% by UV-vis spectroscopy. The release profiles showed favourable, sustained and pH-dependent release of CA from CAGO nanocomposite and conformed well to the pseudo-second order kinetic model. Furthermore, the designed anticancer nanohybrid was thermally more stable than its counterpart. The in vitro cytotoxicity results revealed insignificant toxicity effect towards normal cell line, with a viability of >80% even at higher concentration of 50μg/mL. Contrarily, CAGO nanocomposite revealed enhanced toxic effect towards evaluated cancer cell lines (HepG2 human liver hepatocellular carcinoma cell line, A549 human lung adenocarcinoma epithelial cell line, and HeLa human cervical cancer cell line) compared to its free form. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Xenogenesis in teleost fish through generation of germ-line chimeras by single primordial germ cell transplantation.

    PubMed

    Saito, Taiju; Goto-Kazeto, Rie; Arai, Katsutoshi; Yamaha, Etsuro

    2008-01-01

    Primordial germ cells (PGCs) are the only cells in developing embryos with the potential to transmit genetic information to the next generation. PGCs therefore have the potential to be of value for gene banking and cryopreservation, particularly via the production of donor gametes with germ-line chimeras. Currently, it is not clear how many PGCs are required for germ-line differentiation and formation of gonadal structures. In the present study, we achieved complete germ-line replacement between two related teleost species, the pearl danio (Danio albolineatus) and the zebrafish (Danio rerio), with transplantation of a single PGC into each host embryo. We isolated and transplanted a single PGC into each blastula-stage, zebrafish embryo. Development of host germ-line cells was prevented by an antisense dead end morpholino oligonucleotide. In many host embryos, the transplanted donor PGC successfully migrated toward the gonadal anlage without undergoing cell division. At the gonadal anlage, the PGC differentiated to form one normally sized gonad rather than the pair of gonads usually present. Offspring were obtained from natural spawning of these chimeras. Analyses of morphology and DNA showed that the offspring were of donor origin. We extended our study to confirm that transplanted single PGCs of goldfish (Carassius auratus) and loach (Misgurnus anguillicaudatus) can similarly differentiate into sperm in zebrafish host embryos. Our results show that xenogenesis is realistic and practical across species, genus, and family barriers and can be achieved by the transplantation of a single PGC from a donor species.

  15. Roles of free radicals in type 1 phototherapeutic agents: aromatic amines, sulfenamides, and sulfenates.

    PubMed

    Lin, Tien-Sung; Rajagopalan, Raghavan; Shen, Yuefei; Park, Sungho; Poreddy, Amruta R; Asmelash, Bethel; Karwa, Amolkumar S; Taylor, John-Stephen A

    2013-07-03

    Detailed analyses of the electron spin resonance (ESR) spectra, cell viability, and DNA degradation studies are presented for the photolyzed Type I phototherapeutic agents: aromatic amines, sulfenamides, and sulfenates. The ESR studies provided evidence that copious free radicals can be generated from these N-H, N-S, and S-O containing compounds upon photoirradiation with UV/visible light. The analyses of spectral data allowed us to identify the free radical species. The cell viability studies showed that these agents after exposure to light exert cytotoxicity to kill cancer cells (U937 leukemia cell lines HTC11, KB, and HT29 cell lines) in a dosage- and time-dependent manner. We examined a possible pathway of cell death via DNA degradation by a plasmid cleavage assay for several compounds. The effects of photosensitization with benzophenone in the presence of oxygen were examined. The studies indicate that planar tricyclic amines and sulfenamides tend to form π-electron delocalized aminyl radicals, whereas nonplanar ones tend to yield nitroxide radicals resulting from the recombination of aminyl radicals with oxygen. The ESR studies coupled with the results of cell viability measurements and DNA degradation reveal that planar N-centered radicals can provide higher potency in cell death and allow us to provide some insights on the reaction mechanisms. We also found the formation of azatropylium cations possessing high aromaticity derived from azepines can facilitate secondary electron transfer to form toxic O2(•-) radicals, which can further exert oxidative stress and cause cell death.

  16. Transgenic mice that accept Luciferase- or GFP-expressing syngeneic tumor cells at high efficiencies.

    PubMed

    Aoyama, Naoki; Miyoshi, Hiroyuki; Miyachi, Hitoshi; Sonoshita, Masahiro; Okabe, Masaru; Taketo, Makoto Mark

    2018-05-11

    Jellyfish green fluorescent protein (GFP) and firefly luciferase can serve as versatile tracking markers for identification and quantification of transplanted cancer cells in vivo. However, immune reactions against these markers can hamper the formation of syngraft tumors and metastasis that follows. Here, we report two transgenic (Tg) mouse lines that express nonfunctional mutant marker proteins, namely modified firefly luciferase (Luc2) or enhanced GFP (EGFP). These mice, named as Tg-mLuc2 and Tg-mEGFP, turned out to be immunologically tolerant to the respective tracking markers and thus efficiently accepted syngeneic cancer cells expressing the active forms of the markers. We then injected intrarectally the F 1 hybrid Tg mice (BALB/c × C57BL/6J) with Colon-26 (C26) colon cancer cells that originated from a BALB/c mouse. Even when C26 cells expressed active Luc2 or EGFP, they formed primary tumors in the Tg mice with only 10 4 cells per mouse compared with more than 10 6 cells required in the nontransgenic BALB/c hosts. Furthermore, we detected metastatic foci of C26 cells in the liver and lungs of the Tg mice by tracking the specific reporter activities. These results show the usefulness of the Tg mouse lines as recipients for transplantation experiments with the non-self tracking marker-expressing cells. © 2018 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  17. Identification of Immunogenic Targets for Lung Cancer Vaccines

    DTIC Science & Technology

    2017-09-01

    quantitative proteomic analysis to identify proteins overexpressed in non-small cell lung cancer cell lines compared with normal lung epithelial...Army Medical Research and Materiel Command Fort Detrick, Maryland 21702-5012 DISTRIBUTION STATEMENT: Approved for Public Release; Distribution...Department of the Army position, policy or decision unless so designated by other documentation. REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

  18. Networking of differentially expressed genes in human cancer cells resistant to methotrexate

    PubMed Central

    2009-01-01

    Background The need for an integrated view of data obtained from high-throughput technologies gave rise to network analyses. These are especially useful to rationalize how external perturbations propagate through the expression of genes. To address this issue in the case of drug resistance, we constructed biological association networks of genes differentially expressed in cell lines resistant to methotrexate (MTX). Methods Seven cell lines representative of different types of cancer, including colon cancer (HT29 and Caco2), breast cancer (MCF-7 and MDA-MB-468), pancreatic cancer (MIA PaCa-2), erythroblastic leukemia (K562) and osteosarcoma (Saos-2), were used. The differential expression pattern between sensitive and MTX-resistant cells was determined by whole human genome microarrays and analyzed with the GeneSpring GX software package. Genes deregulated in common between the different cancer cell lines served to generate biological association networks using the Pathway Architect software. Results Dikkopf homolog-1 (DKK1) is a highly interconnected node in the network generated with genes in common between the two colon cancer cell lines, and functional validations of this target using small interfering RNAs (siRNAs) showed a chemosensitization toward MTX. Members of the UDP-glucuronosyltransferase 1A (UGT1A) family formed a network of genes differentially expressed in the two breast cancer cell lines. siRNA treatment against UGT1A also showed an increase in MTX sensitivity. Eukaryotic translation elongation factor 1 alpha 1 (EEF1A1) was overexpressed among the pancreatic cancer, leukemia and osteosarcoma cell lines, and siRNA treatment against EEF1A1 produced a chemosensitization toward MTX. Conclusions Biological association networks identified DKK1, UGT1As and EEF1A1 as important gene nodes in MTX-resistance. Treatments using siRNA technology against these three genes showed chemosensitization toward MTX. PMID:19732436

  19. Characterization of a hydroxyurea-resistant human KB cell line with supersensitivity to 6-thioguanine.

    PubMed

    Yen, Y; Grill, S P; Dutschman, G E; Chang, C N; Zhou, B S; Cheng, Y C

    1994-07-15

    Hydroxyurea (HU) is currently used in the clinic for the treatment of chronic myelogenous leukemia, head and neck carcinoma, and sarcoma. One of its drawbacks, however, is the development of HU resistance. To study this problem, we developed a HU-resistant human KB cell line which exhibits a 15-fold resistance to HU. The characterization of this HU-resistant phenotype revealed a gene amplification of the M2 subunit of ribonucleotide reductase (RR), increased levels of M2 mRNA and protein, and a 3-fold increase of RR activity. This HU-resistant cell line also expressed a "collateral sensitivity" to 6-thioguanine (6-TG), with a 10-fold decrease in the dose inhibiting cell growth by 50% as compared to the KB parental line. The mechanism responsible for this supersensitivity to 6-TG is believed to be related to an increasingly efficient conversion of 6-TG to its triphosphate form, which is subsequently incorporated into DNA. After passage of the resistant cells in the absence of HU, the cell line reverts. The revertant cells lose their resistance to HU and concomitantly their sensitivity to 6-TG. This phenomenon is due to the return of RR to levels comparable to that of the KB parental cell line. These observations and their relevance to cancer chemotherapy will be discussed in this paper. Our results suggest that a clinical protocol could be designed which would allow for a lower dose of 6-TG to be used by taking advantage of the increased RR activity in HU-refractory cancer patients. Two drugs which display collateral sensitivity are known as a "Ying-Yang" pair. Alternate treatment with two different Ying-Yang pairs is the rationale for the "Ying-Yang Ping-Pong" theory in cancer treatment. This rationale allows for effective cancer chemotherapy with reduced toxicity.

  20. Seed Structure Characteristics to Form Ultrahigh Oil Content in Rapeseed

    PubMed Central

    Zhang, Liang; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Hao, Wan-Jun; Wang, Han-Zhong

    2013-01-01

    Background Rapeseed (Brassica napus L.) is an important oil crop in the world, and increasing its oil content is a major breeding goal. The studies on seed structure and characteristics of different oil content rapeseed could help us to understand the biological mechanism of lipid accumulation, and be helpful for rapeseed breeding. Methodology/Principal Findings Here we report on the seed ultrastructure of an ultrahigh oil content rapeseed line YN171, whose oil content is 64.8%, and compared with other high and low oil content rapeseed lines. The results indicated that the cytoplasms of cotyledon, radicle, and aleuronic cells were completely filled with oil and protein bodies, and YN171 had a high oil body organelle to cell area ratio for all cell types. In the cotyledon cells, oil body organelles comprised 81% of the total cell area in YN171, but only 53 to 58% in three high oil content lines and 33 to 38% in three low oil content lines. The high oil body organelle to cotyledon cell area ratio and the cotyledon ratio in seed were the main reasons for the ultrahigh oil content of YN171. The correlation analysis indicated that oil content is significantly negatively correlated with protein content, but is not correlated with fatty acid composition. Conclusions/Significance Our results indicate that the oil content of YN171 could be enhanced by increasing the oil body organelle to cell ratio for some cell types. The oil body organelle to seed ratio significantly highly positively correlates with oil content, and could be used to predict seed oil content. Based on the structural analysis of different oil content rapeseed lines, we estimate the maximum of rapeseed oil content could reach 75%. Our results will help us to screen and identify high oil content lines in rapeseed breeding. PMID:23637973

  1. Development of a walleye spleen stromal cell line sensitive to viral hemorrhagic septicemia virus (VHSV IVb) and to protection by synthetic dsRNA.

    PubMed

    Vo, Nguyen T K; Bender, Aaron W; Ammendolia, Dustin A; Lumsden, John S; Dixon, Brian; Bols, Niels C

    2015-07-01

    A cell line, WE-spleen6, has been developed from the stromal layer of primary spleen cell cultures. On conventional plastic, WE-spleen6 cells had a spindle-shaped morphology at low cell density but grew to become epithelial-like at confluency. On the commercial extracellular matrix (ECM), Matrigel, the cells remained spindle-shaped and formed lumen-like structures. WE-spleen6 cells had intermediate filament protein, vimentin and the ECM protein, collagen I, but not smooth muscle α-actin (SMA) and von Willebrand factor (vWF) and lacked alkaline phosphatase and phagocytic activities. WE-spleen6 was more susceptible to infection with VHSV IVb than a fibroblast and epithelial cell lines from the walleye caudal fin, WE-cfin11f and WE-cfin11e, respectively. Viral transcripts and proteins appeared earlier in WE-spleen6 cultures as did cytopathic effect (CPE) and significant virus production. The synthetic double-stranded RNA (dsRNA), polyinosinic: polycytidylic acid (pIC), induced the antiviral protein Mx in both cell lines. Treating WE-spleen6 cultures with pIC prior to infection with VHSV IVb inhibited the early accumulation of viral transcripts and proteins and delayed the appearance of CPE and significant viral production. Of particular note, pIC caused the disappearance of viral P protein 2 days post infection. WE-spleen6 should be useful for investigating the impact of VHSV IVb on hematopoietic organs and the actions of pIC on the rhabdovirus life cycle. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. The Fanconi anemia (FA) pathway confers glioma resistance to DNA alkylating agents.

    PubMed

    Chen, Clark C; Taniguchi, Toshiyasu; D'Andrea, Alan

    2007-05-01

    DNA alkylating agents including temozolomide (TMZ) and 1,3-bis[2-chloroethyl]-1-nitroso-urea (BCNU) are the most common form of chemotherapy in the treatment of gliomas. Despite their frequent use, the therapeutic efficacy of these agents is limited by the development of resistance. Previous studies suggest that the mechanism of this resistance is complex and involves multiple DNA repair pathways. To better define the pathways contributing to the mechanisms underlying glioma resistance, we tested the contribution of the Fanconi anemia (FA) DNA repair pathway. TMZ and BCNU treatment of FA-proficient cell lines led to a dose- and time-dependent increase in FANCD2 mono-ubiquitination and FANCD2 nuclear foci formation, both hallmarks of FA pathway activation. The FA-deficient cells were more sensitive to TMZ/BCNU relative to their corrected, isogenic counterparts. To test whether these observations were pertinent to glioma biology, we screened a panel of glioma cell lines and identified one (HT16) that was deficient in the FA repair pathway. This cell line exhibited increased sensitivity to TMZ and BCNU relative to the FA-proficient glioma cell lines. Moreover, inhibition of FA pathway activation by a small molecule inhibitor (curcumin) or by small interference RNA suppression caused increased sensitivity to TMZ/BCNU in the U87 glioma cell line. The BCNU sensitizing effect of FA inhibition appeared additive to that of methyl-guanine methyl transferase inhibition. The results presented in this paper underscore the complexity of cellular resistance to DNA alkylating agents and implicate the FA repair pathway as a determinant of this resistance.

  3. In vivo self-bio-imaging of tumors through in situ biosynthesized fluorescent gold nanoclusters

    NASA Astrophysics Data System (ADS)

    Wang, Jianling; Zhang, Gen; Li, Qiwei; Jiang, Hui; Liu, Chongyang; Amatore, Christian; Wang, Xuemei

    2013-01-01

    Fluorescence imaging in vivo allows non-invasive tumor diagnostic thus permitting a direct monitoring of cancer therapies progresses. It is established herein that fluorescent gold nanoclusters are spontaneously biosynthesized by cancerous cell (i.e., HepG2, human hepatocarcinoma cell line; K562, leukemia cell line) incubated with micromolar chloroauric acid solutions, a biocompatible molecular Au(III) species. Gold nanoparticles form by Au(III) reduction inside cells cytoplasms and ultimately concentrate around their nucleoli, thus affording precise cell imaging. Importantly, this does not occur in non-cancerous cells, as evidenced with human embryo liver cells (L02) used as controls. This dichotomy is exploited for a new strategy for in vivo self-bio-imaging of tumors. Subcutaneous injections of millimolar chloroauric acid solution near xenograft tumors of the nude mouse model of hepatocellular carcinoma or chronic myeloid leukemia led to efficient biosynthesis of fluorescent gold nanoclusters without significant dissemination to the surrounding normal tissues, hence allowing specific fluorescent self-bio-marking of the tumors.

  4. Isolation of Canine parvovirus with a view to identify the prevalent serotype on the basis of partial sequence analysis.

    PubMed

    Kaur, Gurpreet; Chandra, Mudit; Dwivedi, P N; Sharma, N S

    2015-01-01

    The aim of this study was to isolate Canine parvovirus (CPV) from suspected dogs on madin darby canine kidney (MDCK) cell line and its confirmation by polymerase chain reaction (PCR) and nested PCR (NPCR). Further, VP2 gene of the CPV isolates was amplified and sequenced to determine prevailing antigenic type. A total of 60 rectal swabs were collected from dogs showing signs of gastroenteritis, processed and subjected to isolation in MDCK cell line. The samples showing cytopathic effects (CPE) were confirmed by PCR and NPCR. These samples were subjected to PCR for amplification of VP2 gene of CPV, sequenced and analyzed to study the prevailing antigenic types of CPV. Out of the 60 samples subjected to isolation in MDCK cell line five samples showed CPE in the form of rounding of cells, clumping of cells and finally detachment of the cells. When these samples and the two commercially available vaccines were subjected to PCR for amplification of VP2 gene, a 1710 bp product was amplified. The sequence analysis revealed that the vaccines belonged to the CPV-2 type and the samples were of CPV-2b type. It can be concluded from the present study that out of a total of 60 samples 5 samples exhibited CPE as observed in MDCK cell line. Sequence analysis of the VP2 gene among the samples and vaccine strains revealed that samples belonged to CPV-2b type and vaccines belonging to CPV-2.

  5. Reduced STMN1 expression induced by RNA interference inhibits the bioactivity of pancreatic cancer cell line Panc-1.

    PubMed

    Li, J; Hu, G H; Kong, F J; Wu, K M; He, B; Song, K; Sun, W J

    2014-01-01

    Increased expression of STMN1 has been observed in many tumor forms, but its expression and potential biological role in pancreatic cancer is still unknown. In this study, we demonstrated that STMN1 was expressed to a large extent in pancreatic cancer tissues and cell lines as compared to normal pancreatic tissues. Suppression of STMN1 expression via transfection with STMN1-specific siRNA could not only significantly inhibit the proliferation, migration and invasion ability of Panc-1 cells, but also enhance the apoptosis of Panc-1 cells. In addition, downregulation of STMN1 obviously enhanced the acetylation level of α-tubulin. All these results indicated that STMN1 plays an important role in pancreatic cancer development, and might serve as a potential therapeutic target for pancreatic cancer.

  6. Generation of induced pluripotent stem cells derived from an autosomal dominant polycystic kidney disease patient with a p.Ser1457fs mutation in PKD1.

    PubMed

    Huang, Ching-Ying; Ho, Ming-Ching; Lee, Jia-Jung; Hwang, Daw-Yang; Ko, Hui-Wen; Cheng, Yu-Che; Hsu, Yu-Hung; Lu, Huai-En; Chen, Hung-Chun; Hsieh, Patrick C H

    2017-10-01

    Autosomal dominant polycystic kidney disease is one of the most prevalent forms of inherited cystic kidney disease, and can be characterized by kidney cyst formation and enlargement. Here we report the generation of a Type 1 ADPKD disease iPS cell line, IBMS-iPSC-012-12, which retains the conserved deletion of PKD1, normal karyotype and exhibits the properties of pluripotent stem cells such as ES-like morphology, expression of pluripotent markers and capacity to differentiate into all three germ layers. Our results show that we have successfully generated a patient-specific iPS cell line with a mutation in PKD1 for study of renal disease pathophysiology. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Comparison of primary human fibroblasts and keratinocytes with immortalized cell lines regarding their sensitivity to sodium dodecyl sulfate in a neutral red uptake cytotoxicity assay.

    PubMed

    Olschläger, Veronika; Schrader, Andreas; Hockertz, Stefan

    2009-01-01

    Cell lines present a valuable tool for in vitro assessment of skin damage caused by application of cosmeticals or pharmaceuticals. They form a reproducible test system under controllable test conditions and, in many cases, can be used as alternatives to animal testing in order to assess the compatibility of drugs or cosmetics and human skin. Yet, it can not necessarily be assumed that the behavior of cultured cells, when treated with different substances, is exactly consistent with the behavior of cells being part of a live organism. Becoming immortal, cells exhibit changes in genotype and/or phenotype, possibly resulting in modified reactions to external influences. Therefore, to obtain results close to in vivo studies, it seems apparent to use primary cells for testing that have not yet undergone any modifications. To compare the properties of primary fibroblasts (Normal Human Dermal Fibroblasts, NHDF) and primary keratinocytes (Normal Human Epidermal Keratinocytes, NHEK) with those of immortal cell lines (3T3 (ACC 173) Swiss albino mouse fibroblasts and HaCaT (human, adult, low calcium, high temperature, human adult skin keratinocytes) cells), their sensitivities in cytotoxicity assays have been assessed. While both fibroblast cell cultures showed similar sensitivities towards sodium dodecyl sulfate (SDS), primary keratinocytes died at SDS concentrations about three times lower than the immortal HaCaT cells.

  8. Long non-coding RNA BANCR regulates cancer stem cell markers in papillary thyroid cancer via the RAF/MEK/ERK signaling pathway.

    PubMed

    Wang, Yuanyuan; Lin, Xiangde; Fu, Xinghao; Yan, Wei; Lin, Fusheng; Kuang, Penghao; Luo, Yezhe; Lin, Ende; Hong, Xiaoquan; Wu, Guoyang

    2018-06-18

    Thyroid cancer is one of the most common malignant tumors of the endocrine system. Among all thyroid cancers, papillary thyroid carcinoma (PTC) is the most common type. The BRAF-activated non-coding RNA (BANCR) is a 693-bp nucleotide transcript which was first identified in melanoma. However, the role of BANCR in the development of thyroid cancer remains unclear. Therefore, the present study investigated the potential involvement of BANCR in the development of thyroid cancer in vitro using patient tissue samples and a panel of thyroid cancer cell lines, and in vivo using a xenograft mouse model. We observed that BANCR was expressed at a higher level in human thyroid tumor tissues than that noted in the adjacent normal tissues. The expression level of BANCR differed between cultured thyroid cancer cell lines; BANCR expression was lower in the BCPAP cell line than that observed in the CAL-62, WRO and FTC-133 cell lines. Western blot analysis and flow cytometry revealed that overexpression of BANCR in the BCPAP cell line resulted in increased expression of the cancer stem cell markers, LGR5 and EpCAM. Single-clone formation experiments showed that upregulated expression of BANCR in the BCPAP cell line promoted an increase in the number of clones formed. Similarly, in microsphere formation experiments, overexpression of BANCR resulted in increased number and size of microspheres compared with the control cell line. Western blotting experiments showed that BANCR overexpression in BCPAP upregulated the expression of phosphorylated c-Raf, MEK1/2 and ERK1/2. Inhibition of c-Raf via U0126 decreased the expression of LGR5 and EpCAM, as well as phosphorylated levels of c-Raf, MEK1/2 and ERK1/2 in the BCPAP cells, compared to levels in the DMSO controls. In the xenograft mouse model, BANCR overexpression in the thyroid cancer cells significantly increased tumor growth. Taken together, these results suggest that BANCR plays a role in PTC development by regulating the expression of cancer stem cell markers LGR5 and EpCAM via the c-Raf/MEK/ERK signaling pathway. Therefore, BANCR may be used as a novel prognostic marker for PTC.

  9. Multistep carcinogenesis of normal human fibroblasts. Human fibroblasts immortalized by repeated treatment with Co-60 gamma rays were transformed into tumorigenic cells with Ha-ras oncogenes.

    PubMed

    Namba, M; Nishitani, K; Fukushima, F; Kimoto, T

    1988-01-01

    Two normal mortal human fibroblast cell strains were transformed into immortal cell lines, SUSM-1 and KMST-6, by treatment with 4-nitroquinoline 1-oxide (4NQO) and Co-60 gamma rays, respectively. These immortalized cell lines showed morphological changes of cells and remarkable chromosome aberrations, but neither of them grew in soft agar or formed tumors in nude mice. The immortal cell line, KMST-6, was then converted into neoplastic cells by treatment with Harvey murine sarcoma virus (Ha-MSV) or the c-Ha-ras oncogene derived from a human lung carcinoma. These neoplastically transformed cells acquired anchorage-independent growth potential and developed tumors when transplanted into nude mice. All the tumors grew progressively without regression until the animals died of tumors. In addition, the tumors were transplantable into other nude mice. Normal human fibroblasts, on the other hand, were not transformed into either immortal or tumorigenic cells by treatment with Ha-MSV or c-Ha-ras alone. Our present data indicate that (1) the chemical carcinogen, 4NQO, or gamma rays worked as an initiator of carcinogenesis in normal human cells, giving rise to immortality, and (2) the ras gene played a role in the progression of the immortally transformed cells to more malignant cells showing anchorage-independent growth and tumorigenicity. In other words, the immortalization process of human cells seems to be a pivotal or rate-limiting step in the carcinogenesis of human cells.

  10. Influence of P53 on the radiotherapy response of hepatocellular carcinoma

    PubMed Central

    Gomes, Ana R.; Abrantes, Ana M.; Brito, Ana F.; Laranjo, Mafalda; Casalta-Lopes, João E.; Gonçalves, Ana C.; Sarmento-Ribeiro, Ana B.; Tralhão, José G.

    2015-01-01

    Background/Aims Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and it has a poor prognosis and few therapeutic options. Radiotherapy is one of the most effective forms of cancer treatment, and P53 protein is one of the key molecules determining how a cell responds to radiotherapy. The aim of this study was to determine the therapeutic efficacy of iodine-131 in three human HCC cell lines. Methods Western blotting was used to measure P53 expression. The effects of radiotherapy with iodine-131 were assessed by using the clonogenic assay to evaluate cell survival. Flow cytometry was carried out to examine the effects of iodine-131 on cell death, oxidative stress, reduced intracellular glutathione expression, the mitochondrial membrane potential, and the cell cycle. Results The P53 protein was not expressed in Hep3B2.1-7 cells, was expressed at normal levels in HepG2 cells, and was overexpressed in HuH7 cells. P53 expression in the HuH7 and HepG2 cell lines increased after internal and external irradiation with iodine-131. Irradiation induced a decrease in cell survival and led to a decrease in cell viability in all of the cell lines studied, accompanied by cell death via late apoptosis/necrosis and necrosis. Irradiation with 131-iodine induced mostly cell-cycle arrest in the G0/G1 phase. Conclusions These results suggest that P53 plays a key role in the radiotherapy response of HCC. PMID:26527121

  11. Evaluation of in vitro anticancer activity of Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris.

    PubMed

    Behbahani, Mandana

    2014-01-01

    The present investigation was carried out to study the relationship between presence of cytotoxic compounds in Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris. The cytotoxic activity of the pure compounds was performed by MTT assay against breast cancer cell lines (MCF-7 and MDA-MB-231) and normal breast cell line (MCF 10A). The induction of apoptosis was measured by the expression levels of p53, bcl-2, bax and caspase-3 genes using quantitative Real Time PCR. Three active fractions were detected by nuclear magnetic resonance as lutein, lupeol and eugenol, respectively, in C. officinalis, A. maurorum and O. basilicum. These compounds and their epoxidized forms were also detected in their parasite C. campestris. The cytotoxic activity of lutein epoxide, lupeol epoxide and eugenol epoxide was significantly more than lutein, lupeol and eugenol. The mRNA expression level of p53, caspase-3 and bax genes were increased in both cancer cells treated with all pure compounds. However, bcl-2 gene expression decreased in treated breast cancer cells. In conclusion, all the data indicated that the epoxide forms of lupeol, lutein and eugenol are potential drug candidates for inducing apoptosis in human breast cancer cells.

  12. Evaluation of In Vitro Anticancer Activity of Ocimum Basilicum, Alhagi Maurorum, Calendula Officinalis and Their Parasite Cuscuta Campestris

    PubMed Central

    Behbahani, Mandana

    2014-01-01

    The present investigation was carried out to study the relationship between presence of cytotoxic compounds in Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris. The cytotoxic activity of the pure compounds was performed by MTT assay against breast cancer cell lines (MCF-7 and MDA-MB-231) and normal breast cell line (MCF 10A). The induction of apoptosis was measured by the expression levels of p53, bcl-2, bax and caspase-3 genes using quantitative Real Time PCR. Three active fractions were detected by nuclear magnetic resonance as lutein, lupeol and eugenol, respectively, in C. officinalis, A. maurorum and O. basilicum. These compounds and their epoxidized forms were also detected in their parasite C. campestris. The cytotoxic activity of lutein epoxide, lupeol epoxide and eugenol epoxide was significantly more than lutein, lupeol and eugenol. The mRNA expression level of p53, caspase-3 and bax genes were increased in both cancer cells treated with all pure compounds. However, bcl-2 gene expression decreased in treated breast cancer cells. In conclusion, all the data indicated that the epoxide forms of lupeol, lutein and eugenol are potential drug candidates for inducing apoptosis in human breast cancer cells. PMID:25548920

  13. Microfluidic Device for Studying Tumor Cell Extravasation in Cancer Metastasis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Henry K; Thundat, Thomas George; Evans III, Boyd Mccutchen

    Metastasis is the process by which cancer spreads to form secondary tumors at downstream locations throughout the body. This uncontrolled spreading is the leading cause of death in patients with epithelial cancers and is the main reason that suppressing and targeting cancer has proven to be so challenging. Tumor cell extravasation is one of the key steps in cancer s progression towards a metastatic state. This occurs when circulating tumor cells found within the blood stream are able to transmigrate through the endothelium lining and basement membrane of the vasculature to form metastatic tumors at secondary sites within the body.more » Predicting the likelihood of this occurrence in patients, or being able to determine specific markers involved in this process could lead to preventative measures targeting these types of cancer; moreover, this may lead to the discovery of novel anti-metastatic drugs. We have developed a microfluidic device that has shown the extravasation of fluorescently labeled tumor cells across an endothelial cell lined membrane coated with matrigel followed by the formation of colonies. This device provides the advantages of combining a controlled environment, mimicking that found within the body, with real-time monitoring capabilities allowing for the study of these biomarkers and cellular interactions along with other potential mechanisms involved in the process of extravasation.« less

  14. Glucocorticoid-induced pancreatic-hepatic trans-differentiation in a human cell line in vitro.

    PubMed

    Fairhall, Emma A; Leitch, Alistair C; Lakey, Anne F; Probert, Philip M E; Richardson, Gabriella; De Santis, Carol; Wright, Matthew C

    2018-05-22

    The rodent pancreatic AR42J-B13 (B-13) cell line differentiates into non-replicative hepatocyte-like cells in response to glucocorticoid mediated via the glucocorticoid receptor (GR). The aims of this study were to identify a human cell line that responds similarly and investigate the mechanisms underpinning any alteration in differentiation. Exposing the human pancreatic adenocarcinoma (HPAC) cell line to 1-10 µM concentrations of dexamethasone (DEX) resulted an inhibition of proliferation, suppressed carcinoembryonic antigen expression, limited expression of pancreatic acinar and hepatic gene expression and significant induction of the constitutively-expressed hepatic CYP3A5 mRNA transcript. These changes were associated with a pulse of genomic DNA methylation and suppressed notch signalling activity. HPAC cells expressed high levels of GR transcript in contrast to other nuclear receptors - such as the glucocorticoid-activated pregnane X receptor (PXR) - and GR transcriptional function was activated by DEX in HPAC cells. Expression of selected hepatocyte transcripts in response to DEX was blocked by co-treatment with the GR antagonist RU486. These data indicate that the HPAC response to glucocorticoid exposure includes an inhibition in proliferation, alterations in notch signalling and a limited change in the expression of genes associated with an acinar and hepatic phenotype. This is the first demonstration of a human cell responding to similarly to the rodent B-13 cell regarding formation of hepatocyte-like cells in response to glucocorticoid. Identifying and modulating the ablating factor(s) may enhance the hepatocyte-like forming capacity of HPAC cells after exposure to glucocorticoid and generate an unlimited in vitro supply of human hepatocytes for toxicology studies and a variety of clinical applications. Copyright © 2018 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  15. Low dosage of arsenic trioxide inhibits vasculogenic mimicry in hepatoblastoma without cell apoptosis

    PubMed Central

    Zhang, Feng; Zhang, Chun-Mei; Li, Shu; Wang, Kun-Kun; Guo, Bin-Bin; Fu, Yao; Liu, Lu-Yang; Zhang, Yu; Jiang, Hai-Yu; Wu, Chang-Jun

    2018-01-01

    Hepatoblastoma (HB) is the most common type of pediatric liver malignancy, which predominantly occurs in young children (aged <5 years), and continues to be a therapeutic challenge in terms of metastasis and drug resistance. As a new pattern of tumor blood supply, vasculogenic mimicry (VM) is a channel structure lined by tumor cells rather than endothelial cells, which contribute to angiogenesis. VM occurs in a variety of solid tumor types, including liver cancer, such as hepatocellular carcinoma. The aim of the present study was to elucidate the effect of arsenic trioxide (As2O3) on VM. In vitro experiments identified that HB cell line HepG2 cells form typical VM structures on Matrigel, and the structures were markedly damaged by As2O3 at a low concentration before the cell viability significantly decreased. The western blot results indicated that As2O3 downregulated the expression level of VM-associated proteins prior to the appearance of apoptotic proteins. In vivo, VM has been observed in xenografts of HB mouse models and identified by periodic acid-Schiff+/CD105− channels lined by HepG2 cells without necrotic cells. As2O3 (2 mg/kg) markedly depresses tumor growth without causing serious adverse reactions by decreasing the number of VM channels via inhibiting the expression level of VM-associated proteins. Thus, the present data strongly indicate that low dosage As2O3 reduces the formation of VM in HB cell line HepG2 cells, independent of cell apoptosis in vivo and in vitro, and may represent as a candidate drug for HB targeting VM. PMID:29138840

  16. Vasculogenic Mimicry in Prostate Cancer: The Roles of EphA2 and PI3K.

    PubMed

    Wang, Hua; Lin, Hao; Pan, Jincheng; Mo, Chengqiang; Zhang, Faming; Huang, Bin; Wang, Zongren; Chen, Xu; Zhuang, Jintao; Wang, Daohu; Qiu, Shaopeng

    2016-01-01

    Aggressive tumor cells can form perfusable networks that mimic normal vasculature and enhance tumor growth and metastasis. A number of molecular players have been implicated in such vasculogenic mimicry, among them the receptor tyrosine kinase EphA2, which is aberrantly expressed in aggressive tumors. Here we study the role and regulation of EphA2 in vasculogenic mimicry in prostate cancer where this phenomenon is still poorly understood. Vasculogenic mimicry was characterized by tubules whose cellular lining was negative for the endothelial cell marker CD34 but positive for periodic acid-Schiff staining, and/or contained red blood cells. Vasculogenic mimicry was assessed in 92 clinical samples of prostate cancer and analyzed in more detail in three prostate cancer cell lines kept in three-dimensional culture. Tissue samples and cell lines were also assessed for total and phosphorylated levels of EphA2 and its potential regulator, Phosphoinositide 3-Kinase (PI3K). In addition, the role of EphA2 in vasculogenic mimicry and in cell migration and invasion were investigated by manipulating the levels of EphA2 through specific siRNAs. Furthermore, the role of PI3K in vasculogenic mimicry and in regulating EphA2 was tested by application of an inhibitor, LY294002. Immunohistochemistry of prostate cancers showed a significant correlation between vasculogenic mimicry and high expression levels of EphA2, high Gleason scores, advanced TNM stage, and the presence of lymph node and distant metastases. Likewise, two prostate cancer cell lines (PC3 and DU-145) formed vasculogenic networks on Matrigel and expressed high EphA2 levels, while one line (LNCaP) showed no vasculogenic networks and lower EphA2 levels. Specific silencing of EphA2 in PC3 and DU-145 cells decreased vasculogenic mimicry as well as cell migration and invasion. Furthermore, high expression levels of PI3K and EphA2 phosphorylation at Ser897 significantly correlated with the presence of vasculogenic mimicry and in vitro inhibition of PI3K by LY294002 disrupted vasculogenic mimicry, potentially through a reduction of EphA2 phosphorylation at Ser897. The expression levels of PI3K and EphA2 are positively correlated with vasculogenic mimicry both in vivo and in vitro. Moreover, phosphorylation levels of EphA2 regulated by PI3K are also significantly associated with vasculogenic mimicry in vivo. Based on its functional implication in vasculogenic mimicry in vitro, EphA2 signaling may be a potential therapeutic target in advanced prostate cancer.

  17. Vasculogenic mimicry in bladder cancer and its association with the aberrant expression of ZEB1

    PubMed Central

    Li, Baimou; Mao, Xiaopeng; Wang, Hua; Su, Guanyu; Mo, Chengqiang; Cao, Kaiyuan; Qiu, Shaopeng

    2018-01-01

    The aim of the present study was to investigate the associations between vasculogenic mimicry (VM) and zinc finger E-box binding homeobox 1 (ZEB1) in bladder cancer. VM structure and ZEB1 expression were analyzed by cluster of differentiation 34/periodic acid Schiff (PAS) double staining and immunohistochemical staining in 135 specimens from patients with bladder cancer, and a further 12 specimens from normal bladder tissues. Three-dimensional (3-D) culture was used to detect VM formation in the bladder transitional cancer cell lines UM-UC-3 and J82, and the immortalized human bladder epithelium cell line SV-HUC-1 in vitro. ZEB1 expression in these cell lines was compared by reverse transcription-quantitative polymerase chain reaction and western blot assays. In addition, small interfering RNA was used to inhibit ZEB1 in UM-UC-3 and J82 cells, followed by 3-D culturing of treated cell lines. As a result, VM was observed in 31.1% of specimens from bladder cancer tissues, and cases with high ZEB1 expression accounted for 60.0% of patients with bladder cancer. In addition, ZEB1 expression was closely associated with VM (r=0.189; P<0.05), and also increased as the grade and stage of the tumor developed. In an in vitro assay, UM-UC-3 and J82 cells exhibited VM formation, however, SV-HUC-1 did not. Furthermore, VM-forming cancer cell lines UM-UC-3 and J82 exhibited higher ZEB1 expression. Notably, VM formation was inhibited following knockdown of ZEB1. In conclusion, ZEB1 may be associated with VM in bladder cancer and serve an important role in the process of VM formation. However, its detailed mechanism requires further study. PMID:29552157

  18. Cytodifferentiation of hair cells during the development of a basal chordate.

    PubMed

    Gasparini, Fabio; Caicci, Federico; Rigon, Francesca; Zaniolo, Giovanna; Burighel, Paolo; Manni, Lucia

    2013-10-01

    Tunicates are unique animals for studying the origin and evolution of vertebrates because they are considered vertebrates' closest living relatives and share the vertebrate body plan and many specific features. Both possess neural placodes, transient thickenings of the cranial ectoderm that give rise to various types of sensory cells, including axonless secondary mechanoreceptors. In vertebrates, these are represented by the hair cells of the inner ear and the lateral line, which have an apical apparatus typically bearing cilia and stereovilli. In tunicates, they are found in the coronal organ, which is a mechanoreceptor located at the base of the oral siphon along the border of the velum and tentacles and is formed of cells bearing a row of cilia and short microvilli. The coronal organ represents the best candidate homolog for the vertebrate lateral line. To further understand the evolution of secondary sensory cells, we analysed the development and cytodifferentiation of coronal cells in the tunicate ascidian Ciona intestinalis for the first time. Here, coronal sensory cells can be identified as early as larval metamorphosis, before tentacles form, as cells with short cilia and microvilli. Sensory cells gradually differentiate, acquiring hair cell features with microvilli containing actin and myosin VIIa; in the meantime, the associated supporting cells develop. The coronal organ grows throughout the animal's lifespan, accompanying the growth of the tentacle crown. Anti-phospho Histone H3 immunostaining indicates that both hair cells and supporting cells can proliferate. This finding contributes to the understanding of the evolution of secondary sensory cells, suggesting that both ancestral cell types were able to proliferate and that this property was progressively restricted to supporting cells in vertebrates and definitively lost in mammals. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Role of latent membrane protein 1 in chronic active Epstein–Barr virus infection-derived T/NK-cell proliferation

    PubMed Central

    Ito, Takuto; Kawazu, Hidetaka; Murata, Takayuki; Iwata, Seiko; Arakawa, Saki; Sato, Yoshitaka; Kuzushima, Kiyotaka; Goshima, Fumi; Kimura, Hiroshi

    2014-01-01

    Epstein–Barr virus (EBV) predominantly infects B cells and causes B-cell lymphomas, such as Burkitt lymphoma and Hodgkin lymphoma. However, it also infects other types of cells, including T and natural killer (NK) cells, and causes disorders, such as chronic active EBV infection (CAEBV) and T/NK-cell lymphoma. The CAEBV is a lymphoproliferative disease with poor prognosis, where EBV-positive T or NK cells grow rapidly, although the molecular mechanisms that cause the cell expansion still remain to be elucidated. EBV-encoded latent membrane protein 1 (LMP1) is an oncogene that can transform some cell types, such as B cells and mouse fibroblasts, and thus may stimulate cell proliferation in CAEBV. Here, we examined the effect of LMP1 on EBV-negative cells using the cells conditionally expressing LMP1, and on CAEBV-derived EBV-positive cells by inhibiting the function of LMP1 using a dominant negative form of LMP1. We demonstrated that LMP1 was responsible for the increased cell proliferation in the cell lines derived from CAEBV, while LMP1 did not give any proliferative advantage to the EBV-negative cell line. PMID:24799376

  20. A dual reporter cell assay for identifying serotype and drug susceptibility of herpes simplex virus.

    PubMed

    Lu, Wen-Wen; Sun, Jun-Ren; Wu, Szu-Sian; Lin, Wan-Hsuan; Kung, Szu-Hao

    2011-08-15

    A dual reporter cell assay (DRCA) that allows real-time detection of herpes simplex virus (HSV) infection was developed. This was achieved by stable transfection of cells with an expression cassette that contains the dual reporter genes, secreted alkaline phosphatase (SEAP) and enhanced green fluorescent protein (EGFP), under the control of an HSV early gene promoter. Baby hamster kidney (BHK) and Chinese hamster ovary (CHO) cell lines were used as parental cell lines because the former is permissive for both HSV serotypes, HSV-1 and HSV-2, whereas the latter is susceptible to infection only by HSV-2. The DRCA permitted differential detection of HSV-1 and HSV-2 by observation of EGFP-positive cells, as substantiated by screening a total of 35 samples. The BHK-based cell line is sensitive to a viral titer as low as a single plaque-forming unit with a robust assay window as measured by a chemiluminescent assay. Evaluations of the DRCA with representative acyclovir-sensitive and acyclovir-resistant HSV strains demonstrated that their drug susceptibilities were accurately determined by a 48-h format. In summary, this novel DRCA is a useful means for serotyping of HSV in real time as well as a rapid screening method for determining anti-HSV susceptibilities. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. An Aqueous Extract of Marine Microalgae Exhibits Antimetastatic Activity through Preferential Killing of Suspended Cancer Cells and Anticolony Forming Activity

    PubMed Central

    Somasekharan, Syam Prakash; El-Naggar, Amal; Sorensen, Poul H.

    2016-01-01

    Research on marine natural products as potential anticancer agents is still limited. In the present study, an aqueous extract of a Canadian marine microalgal preparation was assessed for anticancer activities using various assays and cell lines of human cancers, including lung, prostate, stomach, breast, and pancreatic cancers, as well as an osteosarcoma. In vitro, the microalgal extract exhibited marked anticolony forming activity. In addition, it was more toxic, as indicated by increased apoptosis, to nonadherent cells (grown in suspension) than to adherent cells. In vivo, an antimetastatic effect of the extract was observed in NOD-SCID mice carrying subrenal capsule xenografts of PC3 prostate cancer cells. The results of the present study suggest that the antimetastatic effect of the aqueous microalgal extract is based on inhibition of colony forming ability of cancer cells and the preferential killing of suspended cancer cells. Further research aimed at identification of the molecular basis of the anticancer activities of the microalgal extract appears to be warranted. PMID:27656243

  2. Joint morphogenetic cells in the adult mammalian synovium

    PubMed Central

    Roelofs, Anke J.; Zupan, Janja; Riemen, Anna H. K.; Kania, Karolina; Ansboro, Sharon; White, Nathan; Clark, Susan M.; De Bari, Cosimo

    2017-01-01

    The stem cells that safeguard synovial joints in adulthood are undefined. Studies on mesenchymal stromal/stem cells (MSCs) have mainly focused on bone marrow. Here we show that lineage tracing of Gdf5-expressing joint interzone cells identifies in adult mouse synovium an MSC population largely negative for the skeletal stem cell markers Nestin-GFP, Leptin receptor and Gremlin1. Following cartilage injury, Gdf5-lineage cells underpin synovial hyperplasia through proliferation, are recruited to a Nestin-GFPhigh perivascular population, and contribute to cartilage repair. The transcriptional co-factor Yap is upregulated after injury, and its conditional ablation in Gdf5-lineage cells prevents synovial lining hyperplasia and decreases contribution of Gdf5-lineage cells to cartilage repair. Cultured Gdf5-lineage cells exhibit progenitor activity for stable chondrocytes and are able to self-organize three-dimensionally to form a synovial lining-like layer. Finally, human synovial MSCs transduced with Bmp7 display morphogenetic properties by patterning a joint-like organ in vivo. Our findings further the understanding of the skeletal stem/progenitor cells in adult life. PMID:28508891

  3. Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Booth, Brian W., E-mail: brbooth@clemson.edu; Institute for Biological Interfaces of Engineering, Clemson University, Clemson, SC 29634; Boulanger, Corinne A.

    2010-02-01

    Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D {beta}-geo (CD{beta}geo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CD{beta}geo cells and that the mitogen activated protein kinase signalingmore » pathway is involved in AREG-mediated mammosphere formation. Addition of exogenous AREG promotes mammosphere formation in cells where AREG expression is knocked down by siRNA and mammosphere formation by AREG{sup -/-} mammary epithelial cells. AREG knockdown inhibits mammosphere formation by duct-limited mammary progenitor cells but not lobule-limited mammary progenitor cells. These data demonstrate AREG mediates the function of a subset of mammary progenitor cells in vitro.« less

  4. Amphiregulin mediates self-renewal in an immortal mammary epithelial cell line with stem cell characteristics.

    PubMed

    Booth, Brian W; Boulanger, Corinne A; Anderson, Lisa H; Jimenez-Rojo, Lucia; Brisken, Cathrin; Smith, Gilbert H

    2010-02-01

    Amphiregulin (AREG), a ligand for epidermal growth factor receptor, is required for mammary gland ductal morphogenesis and mediates estrogen actions in vivo, emerging as an essential growth factor during mammary gland growth and differentiation. The COMMA-D beta-geo (CDbetageo) mouse mammary cell line displays characteristics of normal mammary progenitor cells including the ability to regenerate a mammary gland when transplanted into the cleared fat pad of a juvenile mouse, nuclear label retention, and the capacity to form anchorage-independent mammospheres. We demonstrate that AREG is essential for formation of floating mammospheres by CDbetageo cells and that the mitogen activated protein kinase signaling pathway is involved in AREG-mediated mammosphere formation. Addition of exogenous AREG promotes mammosphere formation in cells where AREG expression is knocked down by siRNA and mammosphere formation by AREG(-/-) mammary epithelial cells. AREG knockdown inhibits mammosphere formation by duct-limited mammary progenitor cells but not lobule-limited mammary progenitor cells. These data demonstrate AREG mediates the function of a subset of mammary progenitor cells in vitro. Copyright 2009 Elsevier Inc. All rights reserved.

  5. Immunotherapy targeting HER2 with genetically modified T cells eliminates tumor-initiating cells in osteosarcoma.

    PubMed

    Rainusso, N; Brawley, V S; Ghazi, A; Hicks, M J; Gottschalk, S; Rosen, J M; Ahmed, N

    2012-03-01

    Despite radical surgery and multi-agent chemotherapy, less than one third of patients with recurrent or metastatic osteosarcoma (OS) survive. The limited efficacy of current therapeutic approaches to target tumor-initiating cells (TICs) may explain this dismal outcome. The purpose of this study was to assess the impact of modified T cells expressing a human epidermal growth factor receptor (HER2)-specific chimeric antigen receptor in the OS TIC compartment of human established cell lines. Using the sarcosphere formation assay, we found that OS TICs were resistant to increasing methotrexate concentrations. In contrast, HER2-specific T cells decreased markedly sarcosphere formation capacity and the ability to generate bone tumors in immunodeficient mice after orthotopic transplantation. In vivo, administration of HER2-specific T cells significantly reduced TICs in bulky tumors as judged by decreased sarcosphere forming efficiency in OS cells isolated from explanted tumors. We demonstrate that HER2-specific T cells target drug resistant TICs in established OS cell lines, suggesting that incorporating immunotherapy into current treatment strategies for OS has the potential to improve outcomes.

  6. The mutational profile and infiltration pattern of murine MLH1-/- tumors: concurrences, disparities and cell line establishment for functional analysis.

    PubMed

    Maletzki, Claudia; Beyrich, Franziska; Hühns, Maja; Klar, Ernst; Linnebacher, Michael

    2016-08-16

    Mice lines homozygous negative for one of the four DNA mismatch repair (MMR) genes (MLH1, MSH2, PMS2, MSH6) were generated as models for MMR deficient (MMR-D) diseases. Clinically, hereditary forms of MMR-D include Lynch syndrome (characterized by a germline MMR gene defect) and constitutional MMR-D, the biallelic form. MMR-D knockout mice may be representative for both diseases. Here, we aimed at characterizing the MLH1-/- model focusing on tumor-immune microenvironment and identification of coding microsatellite mutations in lymphomas and gastrointestinal tumors (GIT).All tumors showed microsatellite instability (MSI) in non-coding mononucleotide markers. Mutational profiling of 26 coding loci in MSI+ GIT and lymphomas revealed instability in half of the microsatellites, two of them (Rfc3 and Rasal2) shared between both entities. MLH1-/- tumors of both entities displayed a similar phenotype (high CD71, FasL, PD-L1 and CTLA-4 expression). Additional immunofluorescence verified the tumors' natural immunosuppressive character (marked CD11b/CD200R infiltration). Vice versa, CD3+ T cells as well as immune checkpoints molecules were detectable, indicative for an active immune microenvironment. For functional analysis, a permanent cell line from an MLH1-/- GIT was established. The newly developed MLH1-/- A7450 cells exhibit stable in vitro growth, strong invasive potential and heterogeneous drug response. Moreover, four additional MSI target genes (Nktr1, C8a, Taf1b, and Lig4) not recognized in the primary were identified in this cell line.Summing up, molecular and immunological mechanisms of MLH1-/- driven carcinogenesis correlate well with clinical features of MMR-D. MLH1-/- knockout mice combine characteristics of Lynch syndrome and constitutional MMR-D, making them suitable models for preclinical research aiming at MMR-D related diseases.

  7. The mutational profile and infiltration pattern of murine MLH1-/- tumors: concurrences, disparities and cell line establishment for functional analysis

    PubMed Central

    Hühns, Maja; Klar, Ernst; Linnebacher, Michael

    2016-01-01

    Mice lines homozygous negative for one of the four DNA mismatch repair (MMR) genes (MLH1, MSH2, PMS2, MSH6) were generated as models for MMR deficient (MMR-D) diseases. Clinically, hereditary forms of MMR-D include Lynch syndrome (characterized by a germline MMR gene defect) and constitutional MMR-D, the biallelic form. MMR-D knockout mice may be representative for both diseases. Here, we aimed at characterizing the MLH1-/- model focusing on tumor-immune microenvironment and identification of coding microsatellite mutations in lymphomas and gastrointestinal tumors (GIT). All tumors showed microsatellite instability (MSI) in non-coding mononucleotide markers. Mutational profiling of 26 coding loci in MSI+ GIT and lymphomas revealed instability in half of the microsatellites, two of them (Rfc3 and Rasal2) shared between both entities. MLH1-/- tumors of both entities displayed a similar phenotype (high CD71, FasL, PD-L1 and CTLA-4 expression). Additional immunofluorescence verified the tumors’ natural immunosuppressive character (marked CD11b/CD200R infiltration). Vice versa, CD3+ T cells as well as immune checkpoints molecules were detectable, indicative for an active immune microenvironment. For functional analysis, a permanent cell line from an MLH1-/- GIT was established. The newly developed MLH1-/- A7450 cells exhibit stable in vitro growth, strong invasive potential and heterogeneous drug response. Moreover, four additional MSI target genes (Nktr1, C8a, Taf1b, and Lig4) not recognized in the primary were identified in this cell line. Summing up, molecular and immunological mechanisms of MLH1-/- driven carcinogenesis correlate well with clinical features of MMR-D. MLH1-/- knockout mice combine characteristics of Lynch syndrome and constitutional MMR-D, making them suitable models for preclinical research aiming at MMR-D related diseases. PMID:27447752

  8. The Epstein-Barr virus (EBV) nuclear antigen 1 BamHI F promoter is activated on entry of EBV-transformed B cells into the lytic cycle.

    PubMed Central

    Lear, A L; Rowe, M; Kurilla, M G; Lee, S; Henderson, S; Kieff, E; Rickinson, A B

    1992-01-01

    In Epstein-Barr virus (EBV)-positive Burkitt's lymphoma cell lines exhibiting the latency I form of infection (i.e., EBV nuclear antigen 1 [EBNA1] positive in the absence of other latent proteins), the EBNA1 mRNA has a unique BamHI Q/U/K splice structure and is expressed from a novel promoter, Fp, located near the BamHI FQ boundary. This contrasts with the situation in EBV-transformed lymphoblastoid cell lines (LCLs) exhibiting the latency III form of infection (i.e., positive for all latent proteins), in which transcription from the upstream Cp or Wp promoters is the principal source of EBNA mRNAs. We carried out cDNA amplifications with oligonucleotide primer-probe combinations to determine whether Fp is ever active in an LCL environment. The results clearly showed that some LCLs express a Q/U/K-spliced EBNA1 mRNA in addition to the expected Cp/Wp-initiated transcripts; this seemed inconsistent with the concept of Cp/Wp and Fp as mutually exclusive promoters. Here we show that Fp is indeed silent in latency III cells but is activated at an early stage following the switch from latency III into the virus lytic cycle. Four pieces of evidence support this conclusion: (i) examples of coincident Cp/Wp and Fp usage in LCLs are restricted to those lines in which a small subpopulation of cells have spontaneously entered the lytic cycle; (ii) transcripts initiating from Fp can readily be demonstrated in spontaneously productive lines by S1 nuclease protection; (iii) the presence of Fp-initiated transcripts is not affected by acyclovir blockade of the late lytic cycle; and (iv) infection of latently infected LCLs with a recombinant vaccinia virus encoding the EBV immediate-early protein BZLF1, a transcriptional transactivator which normally initiates the lytic cycle, results in the appearance of the diagnostic Q/U/K-spliced transcripts. Images PMID:1331531

  9. Tumours can act as adjuvants for humoral immunity

    PubMed Central

    Brown, D M; Fisher, T L; Wei, C; Frelinger, J G; Lord, E M

    2001-01-01

    Tumour cells transfected with cDNAs encoding non-self proteins were used to investigate the ability of the immune system to respond to immunogenic antigens expressed by tumours. Secreted, intracellular and surface proteins were used as model antigens, as these reflect the potential forms of tumour antigens. Syngeneic BALB/c mice injected with viable line 1 lung carcinoma or EMT6 mammary tumour cells secreting ovalbumin (OVA) or prostate-specific antigen (PSA) produced very high immunoglobulin G (IgG) antibody titres, equivalent to those of mice injected with protein in Freund's complete adjuvant (FCA). Secretion of the antigens was not necessary as tumour cells expressing a cell-surface antigen (HER-2/Neu) or an intracellular antigen – green fluorescence protein (GFP) – also generated high-titre antigen-specific IgG antibodies. In interleukin-4 (IL-4)-deficient mice, both IgG1 and IgG2a were produced in response to OVA administered in FCA, whereas in response to tumour-produced antigen, the antibodies switched from predominantly IgG1 to IgG2a, indicating that the mechanisms responsible for antibody induction differed between these forms of immunization. In contrast to the line 1 and EMT6 tumours, which are of BALB/c origin, OVA- or PSA-producing B16 melanoma cells, which are of C57BL/6 origin, failed to elicit antibody production. This was not the result of strain differences, as a similar finding was observed when the tumours were grown in (BALB/c × C57BL/6)F1 mice, but appeared to be caused by intrinsic differences in the tumours. Furthermore, co-injection of both B16/OVA and line 1 tumours resulted in production of anti-OVA antibody, indicating that B16 tumours were not immunosuppressive, but instead line 1 tumours appear to exert an adjuvant effect. PMID:11328383

  10. Screening and selection of high carotenoid producing in vitro tomato cell culture lines for [13C]-carotenoid production.

    PubMed

    Engelmann, Nancy J; Campbell, Jessica K; Rogers, Randy B; Rupassara, S Indumathie; Garlick, Peter J; Lila, Mary Ann; Erdman, John W

    2010-09-22

    Isotopically labeled tomato carotenoids, phytoene, phytofluene, and lycopene, are needed for mammalian bioavailability and metabolism research but are currently commercially unavailable. The goals of this work were to establish and screen multiple in vitro tomato cell lines for carotenoid production, test the best producers with or without the bleaching herbicides, norflurazon and 2-(4-chlorophenyl-thio)triethylamine (CPTA), and to use the greatest carotenoid accumulator for in vitro 13C-labeling. Different Solanum lycopersicum allelic variants for high lycopene and varying herbicide treatments were compared for carotenoid accumulation in callus and suspension culture, and cell suspension cultures of the hp-1 line were chosen for isotopic labeling. When grown with [U]-13C-glucose and treated with CPTA, hp-1 suspensions yielded highly enriched 13C-lycopene with 45% of lycopene in the M+40 form and 88% in the M+35 to M+40 isotopomer range. To the authors' knowledge this is the first report of highly enriched 13C-carotenoid production from in vitro plant cell culture.

  11. Genotoxic effects of high-energy iron particles in human lymphoblasts differing in radiation sensitivity

    NASA Technical Reports Server (NTRS)

    Evans, H. H.; Horng, M. F.; Evans, T. E.; Jordan, R.; Schwartz, J. L.

    2001-01-01

    The effects of (56)Fe particles and (137)Cs gamma radiation were compared in TK6 and WTK1 human lymphoblasts, two related cell lines which differ in TP53 status and in the ability to rejoin DNA double-strand breaks. Both cell lines were more sensitive to the cytotoxic and clastogenic effects of (56)Fe particles than to those of gamma rays. However, the mutagenicity of (56)Fe particles and gamma rays at the TK locus was the same per unit dose and was higher for gamma rays than for (56)Fe particles at isotoxic doses. The respective RBEs for TK6 and WTK1 cells were 1.5 and 1.9 for cytotoxicity and 2.5 and 1.9 for clastogenicity, but only 1 for mutagenicity. The results indicate that complex lesions induced by (56)Fe particles are repaired less efficiently than gamma-ray-induced lesions, leading to fewer colony-forming cells, a slightly higher proportion of aberrant cells at the first division, and a lower frequency of viable mutants at isotoxic doses. WTK1 cells (mutant TP53) were more resistant to the cytotoxic effects of both gamma rays and (56)Fe particles, but showed greater cytogenetic and mutagenic damage than TK6 cells (TP53(+)). A deficiency in the number of damaged TK6 cells (a) reaching the first mitosis after exposure and (b) forming viable mutants can explain these results.

  12. Characterization of Nonjunctional Hemichannels in Caterpillar Cells

    PubMed Central

    Luo, Kaijun; Turnbull, Matthew W.

    2011-01-01

    Recent studies have demonstrated that hemichannels, which form gap junctions when paired from apposing cells, may serve additional roles when unpaired including cell adhesion and paracrine communication. Hemichannels in mammals are formed by connexins or pannexins, while in insects they are formed by pannexin homologues termed innexins. The formation of functional gap junctions by insect innexins has been established, although their ability to form functional nonjunctional hemichannels has not been reported. Here the characteristics of nonjunctional hemichannels were examined in three lepidopteran cell types, two cell lines (High Five and Sf9) and explanted hemocytes from Heliothis virescens (Fabricius) (Lepidoptera: Noctuidae). Selective fluorescent dye uptake by hemichannels was observed in a significant minority of cells, using fluorescence microscopy and flow cytometry. Carbenoxelone, an inhibitor of mammalian junctions, disrupted dye uptake, while flufenamic acid and mefloquine did not. The presence of Ca2+ and Mg2+ in the media increased hemichannel activity. Additionally, lipopolysaccharide, a stimulator of immune activity in lepidopterans, decreased dye uptake. These results demonstrate for the first time the activity of nonjunctional hemichannels in insect cells, as well as pharmacological tools to manipulate them. These results will facilitate the further examination of the role of innexins and nonjunctional hemichannels in insect cell biology, including paracrine signaling, and comparative studies of mammalian pannexins and insect innexins. PMID:21521140

  13. Polyphyllin G exhibits antimicrobial activity and exerts anticancer effects on human oral cancer OECM-1 cells by triggering G2/M cell cycle arrest by inactivating cdc25C-cdc2.

    PubMed

    Cai, Xiaoqing; Guo, Lele; Pei, Fei; Chang, Xiaoyun; Zhang, Rui

    2018-04-15

    Plant natural products have long been considered to be important sources of bioactive molecules. A large number of antimicrobial and anticancer agents have been isolated form plants. In the present study we evaluated the antimicrobial and anticancer activity of a plant derived secondery metabolite, Polyphyllin G. The results of antibacterial assays showed that Polyphyllin G prevented the growth of both Gram-positive and Gram-negative bacteria with minimum inhibitory concentrations (MICs) ranging from 13.1 to 78 μg/ml. Antifungal activity measured as inhibition of mycelium growth ranged between 38.32 and 56.50%. Further Polyphyllin G was also evaluated against a panel of cancer cell lines. The IC 50 of Polyphyllin G ranged from 10 to 65 μM. However the IC 50 of Polyphyllin G was found to be comparatively high (120 μM) against the normal FR2 cancer cell line. The lowest IC 50 of 10 μM was found against the oral cancer cell line OECM-1. Therefore further studies were carried out on this cell line only. Our results indicated that Polyphyllin G induced cell arrest in oral cancer OECM-1 cells by inactivation of cdc25C-cdc22 via ATM-Chk 1/2 stimulation. Therefore, we propose that Polyphyllin G might prove a lead molecule in the management of oral cancers and at the same time may prevent the growth of opportunistic microbes. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. Colon cancer chemopreventive effects of baicalein, an active enteric microbiome metabolite from baicalin

    PubMed Central

    WANG, CHONG-ZHI; ZHANG, CHUN-FENG; CHEN, LINA; ANDERSON, SAMANTHA; LU, FANG; YUAN, CHUN-SU

    2015-01-01

    Baicalin is a major constituent of Scutellaria baicalensis, which is a commonly used herbal medicine in many Asian countries. After oral ingestion, intestinal micro-biota metabolism may change parent compound's structure and its biological activities. However, whether baicalin can be metabolized by enteric microbiota and the related anti-cancer activity is not clear. In this study, using human enteric microbiome incubation and HPLC analysis, we observed that baicalin can be quickly converted to baicalein. We compared the antiproliferative effects of baicalin and baicalein using a panel of human cancer cell lines, including three human colorectal cancer (CRC) cell lines. In vitro antiproliferative effects on CRC cells were verified using an in vivo xenograft nude mouse model. Baicalin showed limited antiproliferative effects on some of these cancer cell lines. Baicalein, however, showed significant antiproliferative effects in all the tested cancer cell lines, especially on HCT-116 human colorectal cancer cells. In vivo antitumor results supported our in vitro data. We demonstrated that baicalein exerts potent S phase cell cycle arrest and pro-apoptotic effects in HCT-116 cells. Baicalein induced the activation of caspase 3 and 9. The in silico modeling suggested that baicalein forms hydrogen bonds with residues Ser251 and Asp253 at the active site of caspase 3, while interactions with residues Leu227 and Asp228 in caspase 9 through its hydroxyl groups. Data from this study suggested that baicalein is a potent anticancer metabolite derived from S. baicalensis. Enteric microbiota play a key role in the colon cancer chemoprevention of S. baicalensis. PMID:26398706

  15. Chemical species of sulfur in prostate cancer cells studied by XANES spectroscopy

    NASA Astrophysics Data System (ADS)

    Czapla, Joanna; Kwiatek, Wojciech M.; Lekki, Janusz; Dulińska-Litewka, Joanna; Steininger, Ralph; Göttlicher, Jörg

    2013-12-01

    The role of sulfur in prostate cancer progression may be significant for understanding the process of carcinogenesis. This work, based on X-ray Absorption Near Edge Structure (XANES) spectroscopy, is focused on determination of sulfur chemical species occurring in prostate cancer cell lines. The experimental material consisted of four commercially available cell lines: three from metastasized prostate cancer (PC3, LNCaP, and DU145) and one, used as a control, from the non-tumourigenic peripheral zone of the prostate (PZ-HPV-7). The experiment was performed at the SUL-X beamline of the synchrotron radiation source ANKA, Karlsruhe (Germany). The K-edge XANES spectra of sulfur were analyzed by deconvolution in order to establish sulfur species that occur in prostate cancer cells and to find out whether there are any differences in their content between various cell lines. Experimental spectra were fitted in two ways: with two Gaussian peaks and one arctangent step function, and additionally by a Linear Combination Fit with spectra of reference compounds in order to obtain quantitative chemical information. All fitting procedures were performed with the Athena code (Ravel and Newville, 2005) and the results of deconvolution were used to determine the fraction of each sulfur form. The results of data analysis showed that cell lines from different metastasis had different ratio of reduced to oxidized sulfur species. The LCF analysis demonstrated that the highest content of GSH, one of the most important sulfur-bearing compounds in cells, was observed in DU145 cells. These findings may confirm the hypothesis of changes in redox balance in case of cancer initiation and progression.

  16. Development of Advanced Technologies for Complete Genomic and Proteomic Characterization of Quantized Human Tumor Cells

    DTIC Science & Technology

    2013-07-01

    AVAILABILITY STATEMENT Approved for Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT With the establishment of GBM cell lines...and quantized cell populations form these GBM patients tumor samples we are able to complete some of our aims of our project. We will continue to...collect tumor samples with consent from families of GBM patients in preparation to perform the molecular analysis of these. Our efforts in the development

  17. A simple and fast method for fixation of cultured cell lines that preserves cellular structures containing gamma-tubulin.

    PubMed

    Alvarado-Kristensson, Maria

    2018-01-01

    When using fluorescence microscope techniques to study cells, it is essential that the cell structure and contents are preserved after preparation of the samples, and that the preparation method employed does not create artefacts that can be perceived as cellular structure/components. γ-Tubulin forms filaments that in some cases are immunostained with an anti-γ-tubulin antibody, but this immunostaining is not reproducible [[1], [2

  18. Establishment and characterization of a cell line from human adenoid cystic carcinoma of the lacrimal glands and a nude mouse transplantable model.

    PubMed

    Lin, Tingting; Zhu, Limin; Zhou, Beiqing; Xie, Lianfeng; Lv, Jianmei; Dong, Lijie; He, Yanjin

    2015-06-01

    Using tissue block culture techniques, we established a new human tumor cell line derived from adenoid cystic carcinoma of the lacrimal glands (LACC-1). The LACC-1 cell line was successfully subcultured for more than 100 passages during the last two years. The outgrowth of cells was observed by day 5 after seeding, and then the cells were generated slowly. The first passage proceeded by day 32, and the classical epithelioid cell colonies formed by day 69 after inoculation. After eight passages, homogeneous epithelioid tumor cells appeared when we combined continuous passage, mechanical scraping, repeated adherence, and dissociation methods to remove the fibroblast cells. LACC-1 cells appeared as a histologically solid pattern and continuous passage culture. The population doubling time was approximately 37.1 h. LACC-1 cells appeared as an epithelioid monolayer culture on the cell culture flask and presented with a cobblestone-like appearance when they reached confluency. The nucleus was large and round with many abnormal mitoses. The nucleoplasm ratio was high. Multinucleated tumor giant cells appeared. LACC-1 cells showed a tendency to have overlapping growth without contact inhibition when the cell density continued to increase. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the LACC-1 cells were malignant tumor cells that were poorly differentiated. The surface of the LACC-1 cells exhibited affluent microvilli, protuberances and filopodia under SEM. The no. 84 generation LACC-1 cell line was inoculated subcutaneously into the subaxillary of nude mice and the tumorigenic potential was evident. The formation rate of the transplanted tumors was 100% at day 7 after inoculation. This finding showed that the LACC-1 cell line was malignant with tumorigenic ability. The xenograft tumors retained the same histological characteristics of a solid pattern as the LACC-1 original tumor after inoculation for 49 days. Under TEM observation, the xenograft tumor cells had the same ultrastructure as the LACC-1 cells. Immunohistochemical examination revealed the similarity of both cytoskeletal proteins (e.g., cytokeratin, vimentin, desmin and α-SMA) and S-100 expression in the original tumor, LACC-1 cells and xenograft tumors. Immunoreactivity of these proteins was gradually decreased in these three tissues. Reverse transcription-polymerase chain reaction demonstrated that the xenograft tumors originated from the human. Based on these results, the LACC-1 cell line provides a useful model for studying the biological characteristics of human ACC of the lacrimal glands.

  19. Failure-to-Thrive Syndrome Associated with Tumor Formation by Madin–Darby Canine Kidney Cells in Newborn Nude Mice

    PubMed Central

    Brinster, Lauren R; Omeir, Romelda L; Foseh, Gideon S; Macauley, Juliete N; Snoy, Philip J; Beren, Joel J; Teferedegne, Belete; Peden, Keith; Lewis, Andrew M

    2013-01-01

    Tumors that formed in newborn nude mice that were inoculated with 107 Madin–Darby canine kidney (MDCK) cells were associated with a failure-to-thrive (FTT) syndrome consisting of growth retardation, lethargy, weakness, and dehydration. Scoliosis developed in 41% of affected pups. Pups were symptomatic by week 2; severely affected pups became moribund and required euthanasia within 3 to 4 wk. Mice with FTT were classified into categories of mild, moderate, and severe disease by comparing their weight with that of age-matched normal nude mice. The MDCK-induced tumors were adenocarcinomas that invaded adjacent muscle, connective tissue, and bone; 6 of the 26 pups examined had lung metastases. The induction of FTT did not correlate with cell-line aggressiveness as estimated by histopathology or the efficiency of tumor formation (tumor-forming dose 50% endpoint range = 102.8 to 107.5); however, tumor invasion of the paravertebral muscles likely contributed to the scoliosis noted. In contrast to the effect of MDCK cells, tumor formation observed in newborn mice inoculated with highly tumorigenic, human-tumor–derived cell lines was not associated with FTT development. We suggest that tumor formation and FTT are characteristics of these MDCK cell inocula and that FTT represents a new syndrome that may be similar to the cachexia that develops in humans with cancer or other diseases. PMID:24209967

  20. Stomach (Gastric) Cancer—Patient Version

    Cancer.gov

    Stomach (gastric) cancer occurs when cancer cells form in the lining of the stomach. Risk factors include smoking, infection with H. pylori bacteria, and certain inherited conditions. Start here to find information on stomach (gastric) cancer treatment, causes and prevention, screening, research, and statistics.

  1. The BH3 Mimetic Obatoclax Accumulates in Lysosomes and Causes Their Alkalinization.

    PubMed

    Stamelos, Vasileios A; Fisher, Natalie; Bamrah, Harnoor; Voisey, Carolyn; Price, Joshua C; Farrell, William E; Redman, Charles W; Richardson, Alan

    2016-01-01

    Obatoclax belongs to a class of compounds known as BH3 mimetics which function as antagonists of Bcl-2 family apoptosis regulators. It has undergone extensive preclinical and clinical evaluation as a cancer therapeutic. Despite this, it is clear that obatoclax has additional pharmacological effects that contribute to its cytotoxic activity. It has been claimed that obatoclax, either alone or in combination with other molecularly targeted therapeutics, induces an autophagic form of cell death. In addition, obatoclax has been shown to inhibit lysosomal function, but the mechanism of this has not been elucidated. We have evaluated the mechanism of action of obatoclax in eight ovarian cancer cell lines. Consistent with its function as a BH3 mimetic, obatoclax induced apoptosis in three cell lines. However, in the remaining cell lines another form of cell death was evident because caspase activation and PARP cleavage were not observed. Obatoclax also failed to show synergy with carboplatin and paclitaxel, chemotherapeutic agents which we have previously shown to be synergistic with authentic Bcl-2 family antagonists. Obatoclax induced a profound accumulation of LC-3 but knockdown of Atg-5 or beclin had only minor effects on the activity of obatoclax in cell growth assays suggesting that the inhibition of lysosomal function rather than stimulation of autophagy may play a more prominent role in these cells. To evaluate how obatoclax inhibits lysosomal function, confocal microscopy studies were conducted which demonstrated that obatoclax, which contains two basic pyrrole groups, accumulates in lysosomes. Studies using pH sensitive dyes demonstrated that obatoclax induced lysosomal alkalinization. Furthermore, obatoclax was synergistic in cell growth/survival assays with bafilomycin and chloroquine, two other drugs which cause lysosomal alkalinization. These studies explain, for the first time, how obatoclax inhibits lysosomal function and suggest that lysosomal alkalinization contributes to the cytotoxic activity of obatoclax.

  2. Parthenogenesis in non-rodent species: developmental competence and differentiation plasticity.

    PubMed

    Brevini, T A L; Pennarossa, G; Vanelli, A; Maffei, S; Gandolfi, F

    2012-03-01

    An oocyte can activate its developmental process without the intervention of the male counterpart. This form of reproduction, known as parthenogenesis, occurs spontaneously in a variety of lower organisms, but not in mammals. However, it must be noted that mammalian oocytes can be activated in vitro, mimicking the intracellular calcium wave induced by the spermatozoon at fertilization, which triggers cleavage divisions and embryonic development. The resultant parthenotes are not capable of developing to term and arrest their growth at different stages, depending on the species. It is believed that this arrest is due to genomic imprinting, which causes the repression of genes normally expressed by the paternal allele. Human parthenogenetic embryos have recently been proposed as an alternative, less controversial source of embryonic stem cell lines, based on their inherent inability to form a new individual. However many aspects related to the biology of parthenogenetic embryos and parthenogenetically derived cell lines still need to be elucidated. Limited information is available in particular on the consequences of the lack of centrioles and on the parthenote's ability to assemble a new embryonic centrosome in the absence of the sperm centriole. Indeed, in lower species, successful parthenogenesis largely depends upon the oocyte's ability to regenerate complete and functional centrosomes in the absence of the material supplied by a male gamete, while the control of this event appears to be less stringent in mammalian cells. In an attempt to better elucidate some of these aspects, parthenogenetic cell lines, recently derived in our laboratory, have been characterized for their pluripotency. In vitro and in vivo differentiation plasticity have been assessed, demonstrating the ability of these cells to differentiate into cell types derived from the three germ layers. These results confirmed common features between uni- and bi-parental embryonic stem cells. However data obtained with parthenogenetic cells indicate the presence of an intrinsic deregulation of the mechanisms controlling proliferation vs. differentiation and suggest their uni-parental origin as a possible cause. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Investigating a signature of temozolomide resistance in GBM cell lines using metabolomics.

    PubMed

    St-Coeur, Patrick-Denis; Poitras, Julie J; Cuperlovic-Culf, Miroslava; Touaibia, Mohamed; Morin, Pier

    2015-10-01

    Glioblastoma multiforme (GBM) is the most common form of malignant glioma. Current therapeutic approach to treat this malignancy involves a combination of surgery, radiotherapy and chemotherapy with temozolomide. Numerous mechanisms contributing to inherent and acquired resistance to this chemotherapeutic agent have been identified and can lead to treatment failure. This study undertook a metabolomics-based approach to characterize the metabolic profiles observed in temozolomide-sensitive and temozolomide-resistant GBM cell lines as well as in a small sub-set of primary GBM tumors. This approach was also utilized to explore the metabolic changes modulated upon cell treatment with temozolomide and lomeguatrib, an MGMT inhibitor with temozolomide-sensitizing potential. Metabolites previously explored for their potential role in chemoresistance including glucose, citrate and isocitrate demonstrated elevated levels in temozolomide-resistant GBM cells. In addition, a signature of metabolites comprising alanine, choline, creatine and phosphorylcholine was identified as up-regulated in sensitive GBM cell line across different treatments. These results present the metabolic profiles associated with temozolomide response in selected GBM models and propose interesting leads that could be leveraged for the development of therapeutic or diagnostic tools to impact temozolomide response in GBMs.

  4. Ionospheric convection signatures observed by DE 2 during northward interplanetary magnetic field

    NASA Technical Reports Server (NTRS)

    Heelis, R. A.; Hanson, W. B.; Reiff, P. H.; Winningham, J. D.

    1986-01-01

    Observations of the ionospheric convection signature at high latitudes are examined during periods of prolonged northward interplanetary magnetic field (IMF). The data from Dynamics Explorer 2 show that a four-cell convection pattern can frequently be observed in a region that is displaced to the sunward side of the dawn-dusk meridian regardless of season. In the eclipsed ionosphere, extremely structured or turbulent flow exists with no identifiable connection to a more coherent pattern that may simultaneously exist in the dayside region. The two highest-latitude convection cells that form part of the coherent dayside pattern show a dependence on the y component of the IMF. This dependence is such that a clockwise circulating cell displaced toward dawn dominates the high-latitude region when B(Y) is positive. Anti-clockwise circulation displaced toward dusk dominates the highest latitudes when B(Y) is negative. Examination of the simultaneously observed energetic particle environment suggests that both open and closed field lines may be associated with the high-latitude convection cells. On occasions these entire cells can exist on open field lines. The existence of closed field lines in regions of sunward flow is also apparent in the data.

  5. Chloride transporting capability of Calu-3 epithelia following persistent knockdown of the cystic fibrosis transmembrane conductance regulator, CFTR

    PubMed Central

    MacVinish, L J; Cope, G; Ropenga, A; Cuthbert, A W

    2007-01-01

    Background and purpose: Calu-3 cells are derived from serous cells of human lung submucosal glands, a prime target for therapy in cystic fibrosis (CF). Calu-3 cells can be cultured to form epithelia capable of transepithelial transport of chloride. A CF Calu-3 cell is not available. Experimental approach: A retroviral vector was used to cause persistent down regulation of CFTR using siRNA methodology, in Calu-3 cells. A Calu-3 cell line with CFTR content less than 5% of the original line has been established. Epithelia grown using the modified cells have been used in comparative studies of transporting capability. Key results: All aspects of cAMP activated chloride secretion were attenuated in the epithelia with reduced CFTR content. However transporting capability was reduced less than the CFTR content. From studies with the CFTR channel inhibitor, GlyH-101, it was concluded that wild type Calu-3 cells have a reserve of CFTR channels not located in the membrane, but available for replacement, while in the modified Calu-3 cell line there was little or no reserve. Lubiprostone, a putative ClC-2 activator, increased transepithelial chloride secretion in both modified and wild type Calu-3 epithelia. Modified Calu-3 epithelia with the residual CFTR currents blocked with GlyH-101 responded equally well to lubiprostone as those without the blocking agent. Conclusions and implications: It appears that lubiprostone is capable of stimulating a non-CFTR dependent transepithelial chloride secretion in Calu-3 monolayers, with obvious implications for CF therapy. Cell lines, however, do not always reflect the behaviour of the native tissue with integrity. PMID:17339840

  6. Effects of cholera toxin on human colon carcinoma cell lines.

    PubMed

    Barkla, D H; Whitehead, R H; Hayward, I P

    1992-10-01

    This study reports on changes in morphology and membrane transport in 5 human colon carcinoma cell lines treated with cholera toxin (CT). Three of the cell lines that grew as monolayers (LIM 1215, LIM 1899, LIM 2099) and 1 that grew as floating clumps (LIM 2408) did not show morphological changes after CT treatment. However, cell line LIM 1863 that grows as floating "crypt-like" organoids showed rapid and distinctive changes in morphology and membrane transport after CT treatment. At 1 and 6 hrs after CT treatment, light and transmission electron microscopy revealed rapid dilatation of the central lumen of organoids and the appearance of 2 populations of apical vesicular inclusions. The first population was unusual in being non-membrane bound and limited by fuzzy filamentous material. The second population was membrane bound. Scanning electron microscopy at 1-6 hr after CT treatment showed swelling and loss of surface microvilli on some, but not all, cells. At 24 hr after CT treatment the majority of organoids showed evidence of fluid accumulation and small apical vesicles coalesced to form large single vacuoles that obliterated normal cell morphology. By 48 hr, continued swelling produced extreme attenuation of the plasma membrane with cells taking on an "endothelial cell-like" appearance. The response to CT was dose-dependent. Uptake studies using 86Rubidium and blocking studies using ouabain and amiloride indicated that CT is acting on the Na+/K+ ATPase membrane pump to cause the increased fluid uptake by LIM 1863 cells. This study is the first to report specific morphological changes in intestine-derived cells in response to CT.(ABSTRACT TRUNCATED AT 250 WORDS)

  7. Openings between Defective Endothelial Cells Explain Tumor Vessel Leakiness

    PubMed Central

    Hashizume, Hiroya; Baluk, Peter; Morikawa, Shunichi; McLean, John W.; Thurston, Gavin; Roberge, Sylvie; Jain, Rakesh K.; McDonald, Donald M.

    2000-01-01

    Leakiness of blood vessels in tumors may contribute to disease progression and is key to certain forms of cancer therapy, but the structural basis of the leakiness is unclear. We sought to determine whether endothelial gaps or transcellular holes, similar to those found in leaky vessels in inflammation, could explain the leakiness of tumor vessels. Blood vessels in MCa-IV mouse mammary carcinomas, which are known to be unusually leaky (functional pore size 1.2–2 μm), were compared to vessels in three less leaky tumors and normal mammary glands. Vessels were identified by their binding of intravascularly injected fluorescent cationic liposomes and Lycopersicon esculentum lectin and by CD31 (PECAM) immunoreactivity. The luminal surface of vessels in all four tumors had a defective endothelial monolayer as revealed by scanning electron microscopy. In MCa-IV tumors, 14% of the vessel surface was lined by poorly connected, overlapping cells. The most superficial lining cells, like endothelial cells, had CD31 immunoreactivity and fenestrae with diaphragms, but they had a branched phenotype with cytoplasmic projections as long as 50 μm. Some branched cells were separated by intercellular openings (mean diameter 1.7 μm; range, 0.3–4.7 μm). Transcellular holes (mean diameter 0.6 μm) were also present but were only 8% as numerous as intercellular openings. Some CD31-positive cells protruded into the vessel lumen; others sprouted into perivascular tumor tissue. Tumors in RIP-Tag2 mice had, in addition, tumor cell-lined lakes of extravasated erythrocytes. We conclude that some tumor vessels have a defective cellular lining composed of disorganized, loosely connected, branched, overlapping or sprouting endothelial cells. Openings between these cells contribute to tumor vessel leakiness and may permit access of macromolecular therapeutic agents to tumor cells. PMID:10751361

  8. Interleukin-6 expression under gravitational stress due to vibration and hypergravity in follicular thyroid cancer cells.

    PubMed

    Ma, Xiao; Wehland, Markus; Aleshcheva, Ganna; Hauslage, Jens; Waßer, Kai; Hemmersbach, Ruth; Infanger, Manfred; Bauer, Johann; Grimm, Daniela

    2013-01-01

    It is known that exposing cell lines in vitro to parabolic flights changes their gene expression and protein production patterns. Parabolic flights and spaceflight in general are accompanied by transient hypergravity and vibration, which may impact the cells and therefore, have to be considered too. To estimate the possible impact of transient hypergravity and vibration, we investigated the effects of these forces separately using dedicated ground-based facilities. We placed follicular thyroid ML-1 and CGTH W-1 cancer cells in a specific centrifuge (MuSIC Multi Sample Incubator Centrifuge; SAHC Short Arm Human Centrifuge) simulating the hypergravity phases that occur during one (P1) and 31 parabolas (P31) of parabolic flights, respectively. On the Vibraplex device, the same cell lines were treated with vibration waves corresponding to those that occur during a whole parabolic flight lasting for two hours. After the various treatments, cells were harvested and analyzed by quantitative real-time PCR, focusing on the genes involved in forming (ACTB, MYO9, TUBB, VIM, TLN1, and ITGB1) and modulating (EZR, RDX, and MSN) the cytoskeleton, as well as those encoding growth factors (EGF, CTGF, IL6, and IL8) or protein kinases (PRKAA1 and PRKCA). The analysis revealed alterations in several genes in both cell lines; however, fewer genes were affected in ML-1 than CGTH W-1 cells. Interestingly, IL6 was the only gene whose expression was changed in both cell lines by each treatment, while PKCA transcription remained unaffected in all experiments. We conclude that a PKCa-independent mechanism of IL6 gene activation is very sensitive to physical forces in thyroid cells cultured in vitro as monolayers.

  9. Interleukin-6 Expression under Gravitational Stress Due to Vibration and Hypergravity in Follicular Thyroid Cancer Cells

    PubMed Central

    Ma, Xiao; Wehland, Markus; Aleshcheva, Ganna; Hauslage, Jens; Waßer, Kai; Hemmersbach, Ruth; Infanger, Manfred; Bauer, Johann; Grimm, Daniela

    2013-01-01

    It is known that exposing cell lines in vitro to parabolic flights changes their gene expression and protein production patterns. Parabolic flights and spaceflight in general are accompanied by transient hypergravity and vibration, which may impact the cells and therefore, have to be considered too. To estimate the possible impact of transient hypergravity and vibration, we investigated the effects of these forces separately using dedicated ground-based facilities. We placed follicular thyroid ML-1 and CGTH W-1 cancer cells in a specific centrifuge (MuSIC Multi Sample Incubator Centrifuge; SAHC Short Arm Human Centrifuge) simulating the hypergravity phases that occur during one (P1) and 31 parabolas (P31) of parabolic flights, respectively. On the Vibraplex device, the same cell lines were treated with vibration waves corresponding to those that occur during a whole parabolic flight lasting for two hours. After the various treatments, cells were harvested and analyzed by quantitative real-time PCR, focusing on the genes involved in forming (ACTB, MYO9, TUBB, VIM, TLN1, and ITGB1) and modulating (EZR, RDX, and MSN) the cytoskeleton, as well as those encoding growth factors (EGF, CTGF, IL6, and IL8) or protein kinases (PRKAA1 and PRKCA). The analysis revealed alterations in several genes in both cell lines; however, fewer genes were affected in ML-1 than CGTH W-1 cells. Interestingly, IL6 was the only gene whose expression was changed in both cell lines by each treatment, while PKCA transcription remained unaffected in all experiments. We conclude that a PKCa-independent mechanism of IL6 gene activation is very sensitive to physical forces in thyroid cells cultured in vitro as monolayers. PMID:23844163

  10. Elucidation of proliferative capability of mononuclear tetraploid cells, emerging spontaneously from diploid cells, using image cytometry and fluorescence in situ hybridization.

    PubMed

    Ito, Hideaki; Oga, Atsunori; Furuya, Tomoko; Ikemoto, Kenzo; Amakawa, Genta; Chochi, Yasuyo; Kawauchi, Shigeto; Sasaki, Kohsuke

    2013-06-01

    Proliferation of tetraploid cells (TCs) emerging from diploid cells is considered to be a critical event toward tumourigenesis, or cancer progression. Recently, several studies have reported that binuclear TCs emerging from normal cells are capable of mitosis, however, it has not been confirmed directly whether mononuclear TCs emerging from normal cells could proliferate, even cancer cells. The aim of this study is to detect mononuclear TCs in vitro, spontaneously emerging from diploid cells and to elucidate their proliferative capability directly. For this purpose, we have developed a novel method. In this study, two completely disomic cell lines were used, TIG-7, a fibroblast cell line and CAL-51, a breast cancer cell line. Cells were cultured on microscope slides and their DNA content was determined using an image cytometer. On the same slides, chromosome numbers were scored using centromere fluorescence in situ hybridization (FISH). For evaluating proliferative capability of TCs, bromodeoxyuridine (BrdUrd) incorporation and colony-forming ability were examined. Using our method, spontaneous emergence of mononuclear TCs was detected in both TIG-7 and CAL-51. Colonies of TIG-7 TCs were not observed, but were observed of CAL-51 TCs. Our method enables detection of mononuclear TCs and elucidation of their proliferative capability, directly; this evidence reveals that mononuclear TIG-7 TCs do not proliferate but that mononuclear CAL-51 TCs are able to. © 2013 Blackwell Publishing Ltd.

  11. Putative porcine embryonic stem cell lines derived from aggregated four-celled cloned embryos produced by oocyte bisection cloning.

    PubMed

    Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng

    2015-01-01

    We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P < 0.05) attachment, outgrowth formation and primary colonization in both 2× and 3× aggregated cloned embryos (62.8, 42.6 and 12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P < 0.05) in those derived from TSA-treated 3× blastocysts (36.7 and 26.7%) than from the non-treated aggregated group (23.1 and 11.5%). These cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state.

  12. Putative Porcine Embryonic Stem Cell Lines Derived from Aggregated Four-Celled Cloned Embryos Produced by Oocyte Bisection Cloning

    PubMed Central

    Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng

    2015-01-01

    We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P < 0.05) attachment, outgrowth formation and primary colonization in both 2× and 3× aggregated cloned embryos (62.8, 42.6 and12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P < 0.05) in those derived from TSA-treated 3× blastocysts (36.7 and 26.7%) than from the non-treated aggregated group (23.1 and 11.5%). These cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state. PMID:25680105

  13. Neutral endopeptidase: variable expression in human lung, inactivation in lung cancer, and modulation of peptide-induced calcium flux.

    PubMed

    Cohen, A J; Bunn, P A; Franklin, W; Magill-Solc, C; Hartmann, C; Helfrich, B; Gilman, L; Folkvord, J; Helm, K; Miller, Y E

    1996-02-15

    Neutral endopeptidase (NEP; CALLA, CD10, EC 3.4.24.11) is a cell surface endopeptidase that hydrolyses bioactive peptides, including the bombesin-like peptides, as well as other neuropeptides. Bombesin-like peptides and other neuropeptides are autocrine growth factors for both small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC). Low expression of NEP has been reported in SCLC and NSCLC cell lines. NEP inhibition has been shown to increase proliferation in one cell line. To date, NEP expression has not been quantitatively evaluated in normal adult lung, SCLC or NSCLC tumors, paired uninvolved lung from the same patient, or in other pulmonary neoplasms such as mesotheliomas and carcinoids. We examined the expression of NEP in these tissues and human cell lines using immunohistochemistry, flow cytometry, enzyme activity, ELISA, Western blot, and reverse transcription (RT)-PCR. Uninvolved lung tissue from different individuals displayed considerable variation in NEP activity and protein. By immunohistochemistry, NEP expression was detectable in alveolar and airway epithelium, fibroblasts of normal lung, and in mesotheliomas, whereas it was undetectable in most SCLC, adenocarcinoma, squamous cell carcinoma, and carcinoid tumors of the lung. NEP activity and protein levels were lower in all SCLC and adenocarcinoma tumors when compared to adjacent uninvolved lung, often at levels consistent with expression derived from contaminating stroma. NEP expression and activity were reduced or undetectable in most SCLC and lung adenocarcinoma cell lines. NEP mRNA by RT-PCR was not expressed or was in low abundance in the majority of lung cancer cell lines. The majority of lung tumors did not express NEP by RT-PCR as compared with normal adjacent lung. In addition, recombinant NEP abolished, whereas an NEP inhibitor potentiated, the calcium flux generated by neuropeptides in some lung cancer cell lines, demonstrating potential physiological significance for low NEP expression. NEP, therefore, is a signal transduction and possibly a growth modulator for both SCLC and NSCLC, emphasizing the role of neuropeptides in the pathogenesis of the major histological forms of lung cancer.

  14. Label-free longitudinal monitoring of melanogenesis in the evolution of melanoma treatment resistance (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Osseiran, Sam; Wang, Hequn; Dutton-Regester, Ken; Garraway, Levi A.; Evans, Conor L.

    2017-02-01

    While melanoma is not the most common form of skin cancer, it represents the vast majority of skin cancer-related deaths. Indeed, while combination therapies such as Dabrafenib and Trametinib have shown great promise in clinical trials for treating metastatic disease, some melanoma subtypes nevertheless develop resistances to front-line treatments. Under in vitro conditions, some metastatic human melanoma cell lines have been observed to evolve resistance to treatment while simultaneously changing color under brightfield microscopy, hinting at perturbations in pigment synthesis. The process known as melanogenesis gives rise to the two forms of melanin found in mammals: eumelanin, a dark brown/black pigment, and pheomelanin, a much more pale red/blond pigment. Interestingly, pheomelanin has been shown to contribute to the onset and development of melanoma in an ultraviolet-radiation-independent manner through a mechanism of oxidative stress. Eumelanin, on the other hand, is a known antioxidant whose chemical properties seem to shield cells against oxidative damage. To study these pigments in closer detail, nonlinear optical microscopy including coherent anti-Stokes Raman scattering (CARS) was used for the specific visualization and quantification of the relative abundance of pheomelanin and eumelanin within these treatment resistant cell lines. These microscopy toolkits provide a means to monitor changes in pigmentation in a noninvasive and non-destructive manner without the use of exogenous dyes to better understand the molecular basis of treatment resistance.

  15. A glycosyl transferase family 43 protein involved in xylan biosynthesis is associated with straw digestibility in Brachypodium distachyon.

    PubMed

    Whitehead, Caragh; Ostos Garrido, Francisco J; Reymond, Matthieu; Simister, Rachael; Distelfeld, Assaf; Atienza, Sergio G; Piston, Fernando; Gomez, Leonardo D; McQueen-Mason, Simon J

    2018-05-01

    The recalcitrance of secondary plant cell walls to digestion constrains biomass use for the production of sustainable bioproducts and for animal feed. We screened a population of Brachypodium recombinant inbred lines (RILs) for cell wall digestibility using commercial cellulases and detected a quantitative trait locus (QTL) associated with this trait. Examination of the chromosomal region associated with this QTL revealed a candidate gene that encodes a putative glycosyl transferase family (GT) 43 protein, orthologue of IRX14 in Arabidopsis, and hence predicted to be involved in the biosynthesis of xylan. Arabinoxylans form the major matrix polysaccharides in cell walls of grasses, such as Brachypodium. The parental lines of the RIL population carry alternative nonsynonymous polymorphisms in the BdGT43A gene, which were inherited in the RIL progeny in a manner compatible with a causative role in the variation in straw digestibility. In order to validate the implied role of our candidate gene in affecting straw digestibility, we used RNA interference to lower the expression levels of the BdGT43A gene in Brachypodium. The biomass of the silenced lines showed higher digestibility supporting a causative role of the BdGT43A gene, suggesting that it might form a good target for improving straw digestibility in crops. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  16. Prohormone convertase and autocrine growth factor mRNAs are coexpressed in small cell lung carcinoma.

    PubMed

    Rounseville, M P; Davis, T P

    2000-08-01

    A hallmark of small cell lung carcinoma (SCLC) is the expression of autocrine growth factors such as neurotensin and gastrin-releasing peptide, which bind to cellular receptors and stimulate cell division. The biological activity of autocrine growth factors requires the concurrent expression of prohormone convertases that cleave the growth factors to their active form, suggesting the expression of these genes is linked in SCLCs. RNase protection assays were used to detect the expression of autocrine growth factor and prohormone convertase mRNAs in a panel of lung cancer cell lines. These mRNAs are coexpressed in SCLC and lung carcinoid cell lines, but not in normal lung epithelium or in non-small cell lung cancers. These findings, together with earlier results from our laboratory, suggest the expression of prohormone convertases has an important role in the development and maintenance of the SCLC phenotype and that autocrine growth factor and prohormone convertase genes respond to a common transcriptional activator in SCLC.

  17. An improved protocol that induces human embryonic stem cells to differentiate into neural cells in vitro.

    PubMed

    Zhou, Jun-Mei; Chu, Jian-Xin; Chen, Xue-Jin

    2008-01-01

    Human embryonic stem (ES) cells have the capacity for self-renewal and are able to differentiate into any cell type. However, obtaining high-efficient neural differentiation from human ES cells remains a challenge. This study describes an improved 4-stage protocol to induce a human ES cell line derived from a Chinese population to differentiate into neural cells. At the first stage, embryonic bodies (EBs) were formed in a chemically-defined neural inducing medium rather than in traditional serum or serum-replacement medium. At the second stage, rosette-like structures were formed. At the third stage, the rosette-like structures were manually selected rather than enzymatically digested to form floating neurospheres. At the fourth stage, the neurospheres were further differentiated into neurons. The results show that, at the second stage, the rate of the formation of rosette-like structures from EBs induced by noggin was 88+/-6.32%, higher than that of retinoic acid 55+/-5.27%. Immunocytochemistry staining was used to confirm the neural identity of the cells. These results show a major improvement in obtaining efficient neural differentiation of human ES cells.

  18. Negative extensibility metamaterials: phase diagram calculation

    NASA Astrophysics Data System (ADS)

    Klein, John T.; Karpov, Eduard G.

    2017-12-01

    Negative extensibility metamaterials are able to contract against the line of increasing external tension. A bistable unit cell exhibits several nonlinear mechanical behaviors including the negative extensibility response. Here, an exact form of the total mechanical potential is used based on engineering strain measure. The mechanical response is a function of the system parameters that specify unit cell dimensions and member stiffnesses. A phase diagram is calculated, which maps the response to regions in the diagram using the system parameters as the coordinate axes. Boundary lines pinpoint the onset of a particular mechanical response. Contour lines allow various material properties to be fine-tuned. Analogous to thermodynamic phase diagrams, there exist singular "triple points" which simultaneously satisfy conditions for three response types. The discussion ends with a brief statement about how thermodynamic phase diagrams differ from the phase diagram in this paper.

  19. Novel C12orf65 mutations in patients with axonal neuropathy and optic atrophy.

    PubMed

    Tucci, Arianna; Liu, Yo-Tsen; Preza, Elisabeth; Pitceathly, Robert D S; Chalasani, Annapurna; Plagnol, Vincent; Land, John M; Trabzuni, Daniah; Ryten, Mina; Jaunmuktane, Zane; Reilly, Mary M; Brandner, Sebastian; Hargreaves, Iain; Hardy, John; Singleton, Andrew B; Abramov, Andrey Y; Houlden, Henry

    2014-05-01

    Charcot-Marie Tooth disease (CMT) forms a clinically and genetically heterogeneous group of disorders. Although a number of disease genes have been identified for CMT, the gene discovery for some complex form of CMT has lagged behind. The association of neuropathy and optic atrophy (also known as CMT type 6) has been described with autosomaldominant, recessive and X-linked modes of inheritance. Mutations in Mitofusin 2 have been found to cause dominant forms of CMT6. Phosphoribosylpyrophosphate synthetase-I mutations cause X-linked CMT6, but until now, mutations in the recessive forms of disease have never been identified. We here describe a family with three affected individuals who inherited in an autosomal recessive fashion a childhood onset neuropathy and optic atrophy. Using homozygosity mapping in the family and exome sequencing in two affected individuals we identified a novel protein-truncating mutation in the C12orf65 gene, which encodes for a protein involved in mitochondrial translation. Using a variety of methods we investigated the possibility of mitochondrial impairment in the patients cell lines. We described a large consanguineous family with neuropathy and optic atrophy carrying a loss of function mutation in the C12orf65 gene. We report mitochondrial impairment in the patients cell lines, followed by multiple lines of evidence which include decrease of complex V activity and stability (blue native gel assay), decrease in mitochondrial respiration rate and reduction of mitochondrial membrane potential. This work describes a mutation in the C12orf65 gene that causes recessive form of CMT6 and confirms the role of mitochondrial dysfunction in this complex axonal neuropathy.

  20. Cancer Stem-Like Cells Enriched in Panc-1 Spheres Possess Increased Migration Ability and Resistance to Gemcitabine

    PubMed Central

    Yin, Tao; Wei, Hongji; Gou, Shanmiao; Shi, Pengfei; Yang, Zhiyong; Zhao, Gang; Wang, Chunyou

    2011-01-01

    Pancreatic cancer is one of the most lethal malignancies with poor prognosis. Previously, we found that a subpopulation of cancer stem cells (CSCs) in the Panc-1 pancreatic cancer cell line could propagate to form spheres. Here we characterized the malignant phenotypes of the pancreatic cancer stem CD44+/CD24+ cells, which were enriched under sphere forming conditions as analyzed by flow cytometry. These cells demonstrated increased resistance to gemcitabine and increased migration ability. Moreover, these cells exhibited epithelial to mesenchymal transition characterized by a decreased level of the epithelial marker E-cadherin and an increased level of the mesenchymal marker vimentin. Notably, abnormal expression of Bmi-1, ABCG2, Cyclin D1 and p16 were found in Panc-1 CSCs. Our results suggest that targeted inhibition of CSCs represents a novel therapeutic approach to overcome chemoresistance and metastasis of pancreatic cancer. PMID:21673909

Top