Sample records for cell lines total

  1. Effect of total hydroalcholic extract of Nigella sativa and its n-hexane and ethyl acetate fractions on ACHN and GP-293 cell lines.

    PubMed

    Shahraki, Samira; Khajavirad, Abolfazl; Shafei, Mohammad Naser; Mahmoudi, Mahmoud; Tabasi, Nafisa Sadat

    2016-01-01

    Medicinal plants are noted for their many advantages including the ability to treat diseases such as cancer. In this study, we examined the antitumor effect of the medicinal plant Nigella sativa on the morphology, survival, and apoptosis of ACHN (human renal adenocarcinoma) and GP-293 (normal renal epithelial) cell lines. From a hydroalcoholic extract of N. sativa, n-hexane and ethyl acetate fractions were extracted. Cells were treated with various concentrations of total hydroalcholic extract and n-hexane and ethyl acetate fractions; cell viability, morphological changes, and apoptosis were then determined. Results were presented as mean ± standard error of the mean (SEM). One-way analysis of variance (ANOVA) was applied for the statistical analysis of the data. The total extract and the fractions in a dose- and time-dependent manner reduced the cell viability in ACHN with no effect on the GP-293 cell line. In addition, the total extract resulted in more morphological changes in the ACHN cells compared to the GP-293 cells. The effect of the total extract in inducing apoptosis after 48 hours in the ACHN cell line was greater than in GP-293. In addition, the effect of the two fractions was lower than the total extract at all used concentrations. Therefore, the effect of total extract and n-hexane and ethyl acetate fractions of N. sativa on cell viability and apoptosis in the ACHN cell line is greater than in the GP-293 cell line. However, the effect of the total extract is higher than either of the two fractions on their own.

  2. The first total synthesis and biological evaluation of marine natural products ma'edamines A and B.

    PubMed

    Saha, Sanjay; Venkata Ramana Reddy, Ch; Chiranjeevi, T; Addepally, Uma; Chinta Rao, T S; Patro, Balaram

    2013-02-15

    We have developed the first total syntheses of marine natural products ma'edamines A (18) and B (20). Structurally, they contain a pyrazine-2-(1H)-one core and were screened for antiproliferative activity on several cancer cell lines. Out of the six cell lines tested, ma'edamines A and B showed significant cytotoxicity against human colon cancer line COLO 205 (IC(50) 7.9 and 10.3 μM, respectively), breast cancer cell line MCF-7 (IC(50): 6.9 and 10.5 μM, respectively) and human lung adenocarcinoma cell line A549 (IC(50): 12.2 and 15.4 μM, respectively). The apoptotic effect of ma'edamines was confirmed by comet assay. Hence ma'edamines are likely to be useful as leads for development of a new class of anti-cancer agents. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Antiproliferative activity in tumor cell lines, antioxidant capacity and total phenolic, flavonoid and tannin contents of Myrciaria floribunda.

    PubMed

    Tietbohl, Luis A C; Oliveira, Adriana P; Esteves, Ricardo S; Albuquerque, Ricardo D D G; Folly, Diogo; Machado, Francisco P; Corrêa, Arthur L; Santos, Marcelo G; Ruiz, Ana L G; Rocha, Leandro

    2017-01-01

    Myrciaria floribunda (H. West ex Willd.) O. Berg, Myrtaceae, is a native plant species of the Atlantic Rain Forest, from north to south of Brazil. The lyophilized ethyl acetate extract from the leaves of M. floribunda was investigated for its antiproliferative activity in tumor cell lines, antioxidant capacity and its total phenolic, flavonoid and tannin contents. Antiproliferative activity was tested in vitro against seven human cancer cells and against immortalized human skin keratinocytes line (HaCat, no cancer cell). Antioxidant activity was determined using 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging and oxygen radical absorbing capacity (ORAC) assays and total phenolic, flavonoid and tannin contents were determined by spectrophotometric techniques. Ethyl acetate extract of M. floribunda exhibited antiproliferative activity against cancer cell lines with total growth inhibition (TGI) between 69.70 and 172.10 µg/mL. For HaCat cell, TGI value was 213.60 µg/mL. M. floribunda showed a strong antioxidant potential: EC50 of 45.89±0.42 µg/mL and 0.55±0.05 mmol TE/g for DPPH and ORAC, respectively. Total phenolic content was 0.23±0.013g gallic acid equivalents (GAE)/g extract and exhibited 13.10±1.60% of tannins content. The content of flavonoid was 24.08±0.44% expressed as rutin equivalents. These results provide a direction for further researches about the antitumoral potential of M. floribunda.

  4. Assessment of Antioxidant and Cytotoxicity Activities of Saponin and Crude Extracts of Chlorophytum borivilianum

    PubMed Central

    Abd Aziz, Maheran; Stanslas, Johnson; Abdul Kadir, Mihdzar

    2013-01-01

    The present paper focused on antioxidant and cytotoxicity assessment of crude and total saponin fraction of Chlorophytum borivilianum as an important medicinal plant. In this study, three different antioxidant activities (2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), ferrous ion chelating (FIC), and β-carotene bleaching (BCB) activity) of crude extract and total saponin fraction of C. borivilianum tubers were performed. Crude extract was found to possess higher free radical scavenging activity (ascorbic acid equivalents 2578 ± 111 mg AA/100 g) and bleaching activity (IC50 = 0.7 mg mL−1), while total saponin fraction displayed higher ferrous ion chelating (EC50 = 1 mg mL−1). Cytotoxicity evaluation of crude extract and total saponin fraction against MCF-7, PC3, and HCT-116 cancer cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) cell viability assay indicated a higher cytotoxicity activity of the crude extract than the total saponin fraction on all cell lines, being most effective and selective on MCF-7 human breast cancer cell line. PMID:24223502

  5. Fluoroorotic acid-selected Nicotiana plumbaginifolia cell lines with a stable thymine starvation phenotype have lost the thymine-regulated transcriptional program.

    PubMed

    Santoso, D; Thornburg, R

    2000-08-01

    We have selected 143 independent Nicotiana plumbaginifolia cell lines that survive in the presence of 5-fluoroorotic acid. These lines show several diverse phenotypes. The majority of these cell lines showed reduced levels of UMP synthase. However, one particular phenotype, which represents 14% of the total independent lines (20 cell lines), showed an unexpected, high level of UMP synthase and was therefore analyzed in detail. The selected cell lines showed no differences with wild-type cells with respect to uptake of orotic acid, affinity of UMP synthase for its substrates, or UMP synthase gene-copy number. Alternative detoxification mechanisms were also excluded. The elevated enzyme activity was correlated with elevated UMP synthase protein levels as well as elevated UMP synthase mRNA levels. In contrast to wild-type cell lines, the fluoroorotic acid-selected cell lines did not respond to thymine or to other biochemicals that affect thymine levels. In addition, there was also a concomitant up-regulation of aspartate transcarbamoylase, however, dihydroorotase and dihydroorotate dehydrogenase are not up-regulated in these cell lines.

  6. Fluoroorotic Acid-Selected Nicotiana plumbaginifolia Cell Lines with a Stable Thymine Starvation Phenotype Have Lost the Thymine-Regulated Transcriptional Program1

    PubMed Central

    Santoso, Djoko; Thornburg, Robert

    2000-01-01

    We have selected 143 independent Nicotiana plumbaginifolia cell lines that survive in the presence of 5-fluoroorotic acid. These lines show several diverse phenotypes. The majority of these cell lines showed reduced levels of UMP synthase. However, one particular phenotype, which represents 14% of the total independent lines (20 cell lines), showed an unexpected, high level of UMP synthase and was therefore analyzed in detail. The selected cell lines showed no differences with wild-type cells with respect to uptake of orotic acid, affinity of UMP synthase for its substrates, or UMP synthase gene-copy number. Alternative detoxification mechanisms were also excluded. The elevated enzyme activity was correlated with elevated UMP synthase protein levels as well as elevated UMP synthase mRNA levels. In contrast to wild-type cell lines, the fluoroorotic acid-selected cell lines did not respond to thymine or to other biochemicals that affect thymine levels. In addition, there was also a concomitant up-regulation of aspartate transcarbamoylase, however, dihydroorotase and dihydroorotate dehydrogenase are not up-regulated in these cell lines. PMID:10938367

  7. 31P-nuclear magnetic resonance spectroscopy in vivo of six human melanoma xenograft lines: tumour bioenergetic status and blood supply.

    PubMed Central

    Lyng, H.; Olsen, D. R.; Southon, T. E.; Rofstad, E. K.

    1993-01-01

    Six human melanoma xenograft lines grown s.c. in BALB/c-nu/nu mice were subjected to 31P-nuclear magnetic resonance (31P-NMR) spectroscopy in vivo. The following resonances were detected: phosphomonoesters (PME), inorganic phosphate (Pi), phosphodiesters (PDE), phosphocreatine (PCr) and nucleoside triphosphate gamma, alpha and beta (NTP gamma, alpha and beta). The main purpose of the work was to search for possible relationships between 31P-NMR resonance ratios and tumour pH on the one hand and blood supply per viable tumour cell on the other. The latter parameter was measured by using the 86Rb uptake method. Tumour bioenergetic status [the (PCr + NTP beta)/Pi resonance ratio], tumour pH and blood supply per viable tumour cell decreased with increasing tumour volume for five of the six xenograft lines. The decrease in tumour bioenergetic status was due to a decrease in the (PCr + NTP beta)/total resonance ratio as well as an increase in the Pi/total resonance ratio. The decrease in the (PCr + NTP beta)/total resonance ratio was mainly a consequence of a decrease in the PCr/total resonance ratio for two lines and mainly a consequence of a decrease in the NTP beta/total resonance ratio for three lines. The magnitude of the decrease in the (PCr + NTP beta)/total resonance ratio and the magnitude of the decrease in tumour pH were correlated to the magnitude of the decrease in blood supply per viable tumour cell. Tumour pH decreased with decreasing tumour bioenergetic status, and the magnitude of this decrease was larger for the tumour lines showing a high than for those showing a low blood supply per viable tumour cell. No correlations across the tumour lines were found between tumour pH and tumour bioenergetic status or any other resonance ratio on the one hand and blood supply per viable tumour cell on the other. The differences in the 31P-NMR spectrum between the tumour lines were probably caused by differences in the intrinsic biochemical properties of the tumour cells rather than by the differences in blood supply per viable tumour cell. Biochemical properties of particular importance included rate of respiration, glycolytic capacity and tolerance to hypoxic stress. On the other hand, tumour bioenergetic status and tumour pH were correlated to blood supply per viable tumour cell within individual tumour lines. These observations suggest that 31P-NMR spectroscopy may be developed to be a clinically useful method for monitoring tumour blood supply and parameters related to tumour blood supply during and after physiological intervention and tumour treatment. However, clinically useful parameters for prediction of tumour treatment resistance caused by insufficient blood supply can probably not be derived from a single 31P-NMR spectrum since correlations across tumour lines were not detected; additional information is needed. PMID:8260356

  8. Increasing anthraquinone production by overexpression of 1-deoxy-D: -xylulose-5-phosphate synthase in transgenic cell suspension cultures of Morinda citrifolia.

    PubMed

    Quevedo, Carla; Perassolo, María; Alechine, Eugenia; Corach, Daniel; Giulietti, Ana María; Talou, Julián Rodriguez

    2010-07-01

    A Morinda citrifolia cell line was obtained by overexpresion of 1-deoxy-D: -xylulose 5-phosphate synthase (DXS) from Catharanthus roseus, a key enzyme of the metabolic pathway of anthraquinones (AQs). This cell line increased AQs production by about 24% compared to the control cell line. This transgenic cell line which carries dxs cDNA isolated from Catharanthus roseus, was achieved by direct transformation of cell suspension cultures of M. citrifolia using a hypervirulent Agrobacterium tumefaciens strain. The effects of the overexpression of the dxs gene also resulted in increased levels of dxs mRNA transcripts and DXS activity compared to the control cell line. In addition, total phenolics and phenylalanine ammonia-lyase activity were evaluated and were significantly higher in the transgenic line than in controls.

  9. Ganoderma lucidum total triterpenes attenuate DLA induced ascites and EAC induced solid tumours in Swiss albino mice.

    PubMed

    Smina, T P; Mathew, J; Janardhanan, K K

    2016-04-30

    G. lucidum total triterpenes were assessed for its apoptosis-inducing and anti-tumour activities. The ability of the total triterpenes to induce apoptosis was evaluated in Dalton's lymphoma ascites (DLA) and Ehrlich's ascites carcinoma (EAC) cell lines. Total triterpenes were found to be highly cytotoxic to DLA and EAC cell lines with IC50 values 5 ± 0.32 and 7.9 ± 0.2 µg/ml respectively. Total triterpenes induced apoptosis in both cell lines which is evident from the DNA fragmentation assay. Anti-tumour activity was accessed using DLA induced solid and EAC induced ascites tumour models in Swiss albino mice. Administration of 10, 50 and 100 mg/kg b. wt. total triterpenes showed 11.86, 27.27 and 40.57% increase in life span of animals in ascites tumour model. Treatment with 10, 50 and 100 mg/kg b. wt. total triterpenes exhibited 76.86, 85.01 and 91.03% inhibition in tumour volume and 67.96, 72.38 and 77.90% inhibition in tumour weight respectively in the solid tumour model. The study reveals the significant dose-dependent anti-tumour activity of total triterpenes in both models. Total triterpenes were more active against the solid tumour than the ascites tumour. The anti-oxidant potential and ability to induce cell-specific apoptosis could be contributing to its anti-tumour activities.

  10. Picking Cell Lines for High-Throughput Transcriptomic Toxicity ...

    EPA Pesticide Factsheets

    High throughput, whole genome transcriptomic profiling is a promising approach to comprehensively evaluate chemicals for potential biological effects. To be useful for in vitro toxicity screening, gene expression must be quantified in a set of representative cell types that captures the diversity of potential responses across chemicals. The ideal dataset to select these cell types would consist of hundreds of cell types treated with thousands of chemicals, but does not yet exist. However, basal gene expression data may be useful as a surrogate for representing the relevant biological space necessary for cell type selection. The goal of this study was to identify a small (< 20) number of cell types that capture a large, quantifiable fraction of basal gene expression diversity. Three publicly available collections of Affymetrix U133+2.0 cellular gene expression data were used: 1) 59 cell lines from the NCI60 set; 2) 303 primary cell types from the Mabbott et al (2013) expression atlas; and 3) 1036 cell lines from the Cancer Cell Line Encyclopedia. The data were RMA normalized, log-transformed, and the probe sets mapped to HUGO gene identifiers. The results showed that <20 cell lines capture only a small fraction of the total diversity in basal gene expression when evaluated using either the entire set of 20960 HUGO genes or a subset of druggable genes likely to be chemical targets. The fraction of the total gene expression variation explained was consistent when

  11. Enhanced cytotoxic activity of effector T-cells against cholangiocarcinoma by dendritic cells pulsed with pooled mRNA.

    PubMed

    Junking, Mutita; Grainok, Janya; Thepmalee, Chutamas; Wongkham, Sopit; Yenchitsomanus, Pa-Thai

    2017-10-01

    Cholangiocarcinoma is a malignancy of bile duct epithelia with an increasing in incidence rate worldwide. Surgery is the only curative treatment, while adjuvant chemotherapy and radiotherapy render poor responses. Cell-based immunotherapy is a potential strategy for cholangiocarcinoma treatment. However, variation of tumor antigens in cholangiocarcinoma leads to the ineffectiveness of cell-based immunotherapy. In this study, we examined the activation of effector T-cells by dendritic cells pulsed with protein lysate or total RNA from cholangiocarcinoma cell lines for their cytolytic activity against cholangiocarcinoma. Broad-spectrum antigen types with respect to RNA antigen sources were obtained from combination of three cholangiocarcinoma cell lines (KKU-213, KKU-100, and KKU-055). Compared with protein lysate-pulsed dendritic cells, total RNA-pulsed dendritic cells induced anti-tumor effector T-cell response with higher killing ability to KKU-100 and KKU-213 cells compared with protein lysate-pulsed dendritic cells. Moreover, pooled messenger RNA from three cholangiocarcinoma cell lines significantly increased the specific killing capacity of activated lymphocytes against KKU-213 cells. These results suggest that activation of anti-tumor effector T-cells against cholangiocarcinoma by RNA-pulsed dendritic cells is more effective than that by protein lysate-pulsed dendritic cells. In addition, pulsing dendritic cells with pooled messenger RNA from multiple cell lines enhanced the efficacy of a cellular immune response against cholangiocarcinoma.

  12. A PCR-aided transcript titration assay (PATTY) to measure topoisomerase I gene expression in human tumor specimens.

    PubMed

    Meersma, G J; Bakker, M; Groen, H J; Van der Zee, A G; Jensen, P B; Giaccone, G; De Vries, E G; Smit, E F

    1999-01-01

    Topoisomerase I (topo I) inhibitors are promising anticancer agents with demonstrated activity against a wide range of solid tumors. Quantitative information on topol mRNA levels in tumor biopsies may predict response to topo I inhibitors. A polymerase chain reaction aided transcript titration assay (PATTY) was developed to allow quantitation of topol mRNA in small samples. Concentrations of topol mRNA in total RNA samples were estimated by RT-PCR analysis in a human small cell lung cancer (SCLC) cell line (GLC,) and its topotecan (GL2C/SK and F) and camptothecin (GL2C/Campt) resistant sublines, human non-small cell lung cancer (NSCLC) and ovarian carcinoma samples. Topol PATTY showed a decreased topo I mRNA level in GLC2/SK and F (4.5 pg/100 ng total RNA) and GLC,/Campt (2.2 pg/100 ng total RNA), respectively, compared to the parent cell line GLC2 (5.4 pg/100 ng total RNA). Topol protein levels as measured by Western blotting were compatible with topol mRNA levels. Median (range) topol mRNA levels were 3.23 (2.33-5.10) pg/100 ng total RNA in resected NSCLC specimen (n = 6), and 2.03 (0.54-0.95) pg/100 ng total RNA in resected ovarian cancer specimen (n = 6). We conclude that topol PATTY is a new assay that quantitates topol mRNA levels in cell lines and small tumor samples.

  13. Using Interferon Alfa Before Tyrosine Kinase Inhibitors May Increase Survival in Patients With Metastatic Renal Cell Carcinoma: A Turkish Oncology Group (TOG) Study.

    PubMed

    Artaç, Mehmet; Çoşkun, Hasan Şenol; Korkmaz, Levent; Koçer, Murat; Turhal, Nazım Serdar; Engin, Hüseyin; Dede, İsa; Paydaş, Semra; Öksüzoğlu, Berna; Bozcuk, Hakan; Demirkazık, Ahmet

    2016-08-01

    We aimed to investigate the outcomes of interferon alfa and sequencing tyrosine kinase inhibitors (TKIs) in patients with metastatic renal cell carcinoma. This multicenter study assessing the efficacy of TKIs after interferon alfa therapy in the first-line setting in patients with metastatic renal cell carcinoma. Patients (n = 104) from 8 centers in Turkey, who had been treated with interferon alfa in the first-line setting, were included in the study. Prognostic factors were evaluated for progression-free survival (PFS). The median age of the patients was 57 years. The median PFS of the patients treated with interferon alfa in the first-line was 3.6 months. A total of 61 patients received TKIs (sunitinib, n = 58; sorafenib, n = 3) after progression while on interferon alfa. The median PFS among the TKI-treated patients was 13.2 months. In the univariate analysis for interferon alfa treatment, neutrophil and hemoglobin level, platelet count, and Karnofsky performance status were the significant factors associated with PFS. In the univariate analysis for TKI treatment, neutrophil and hemoglobin levels were the significant factors for PFS. The median total PFS of the patients who had been treated with first-line interferon alfa and second-line TKIs was 24.9 months. This study showed that first-line interferon alfa treatment before TKIs may improve the total PFS in patients with metastatic renal cell carcinoma. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Diversity of miRNAs, siRNAs, and piRNAs across 25 Drosophila cell lines

    PubMed Central

    Wen, Jiayu; Mohammed, Jaaved; Bortolamiol-Becet, Diane; Tsai, Harrison; Robine, Nicolas; Westholm, Jakub O.; Ladewig, Erik; Dai, Qi; Okamura, Katsutomo; Flynt, Alex S.; Zhang, Dayu; Andrews, Justen; Cherbas, Lucy; Kaufman, Thomas C.; Cherbas, Peter; Siepel, Adam; Lai, Eric C.

    2014-01-01

    We expanded the knowledge base for Drosophila cell line transcriptomes by deeply sequencing their small RNAs. In total, we analyzed more than 1 billion raw reads from 53 libraries across 25 cell lines. We verify reproducibility of biological replicate data sets, determine common and distinct aspects of miRNA expression across cell lines, and infer the global impact of miRNAs on cell line transcriptomes. We next characterize their commonalities and differences in endo-siRNA populations. Interestingly, most cell lines exhibit enhanced TE-siRNA production relative to tissues, suggesting this as a common aspect of cell immortalization. We also broadly extend annotations of cis-NAT-siRNA loci, identifying ones with common expression across diverse cells and tissues, as well as cell-restricted loci. Finally, we characterize small RNAs in a set of ovary-derived cell lines, including somatic cells (OSS and OSC) and a mixed germline/somatic cell population (fGS/OSS) that exhibits ping-pong piRNA signatures. Collectively, the ovary data reveal new genic piRNA loci, including unusual configurations of piRNA-generating regions. Together with the companion analysis of mRNAs described in a previous study, these small RNA data provide comprehensive information on the transcriptional landscape of diverse Drosophila cell lines. These data should encourage broader usage of fly cell lines, beyond the few that are presently in common usage. PMID:24985917

  15. Antiradical and cytotoxic activity of different Helichrysum plicatum flower extracts.

    PubMed

    Bigović, Dubravka; Savikin, Katarina; Janković, Teodora; Menković, Nebojsa; Zdunić, Gordana; Stanojković, Tatjana; Djurić, Zorica

    2011-06-01

    Flowers of Helichrysum plicatum were extracted under different experimental conditions, and their antioxidant activity was determined by DPPH radical scavenging assay. Extracts obtained with higher concentration of ethyl acetate (90% or 100%) were found to contain the greatest amount of total phenolics (> 250 mg gallic acid equivalents/g of dried extract), and high correlation between total phenolic content and antiradical activity was observed (r = -0.79). Based on the total phenolic content and antiradical activity, some extracts were selected for investigation of cytotoxic activity toward PC3, HeLa and K562 human cancer cell lines in vitro. All tested extracts exhibited moderate activity against HeLa cells (41.9-42.1 microg/mL), whereas the extract obtained with 100% ethyl acetate was the most active against K562 and PC3 cell lines (25.9 and 39.2 microg/mL, respectively). Statistical analysis revealed significant correlation between total phenolic content and cytotoxic activity against PC3 and K562 cells. HPLC identification of phenolic compounds from the extracts indicated the presence of apigenin, naringenin and kaempferol as free aglycones, and glycosides of apigenin, naringenin, quercetin and kaempferol. Among aglycones, kaempferol displayed moderate cytostatic activity against all cell lines (24.8-64.7 microM).

  16. Cytometric comparisons between circulating tumor cells from prostate cancer patients and the prostate-tumor-derived LNCaP cell line

    NASA Astrophysics Data System (ADS)

    Lazar, Daniel C.; Cho, Edward H.; Luttgen, Madelyn S.; Metzner, Thomas J.; Loressa Uson, Maria; Torrey, Melissa; Gross, Mitchell E.; Kuhn, Peter

    2012-02-01

    Many important experiments in cancer research are initiated with cell line data analysis due to the ease of accessibility and utilization. Recently, the ability to capture and characterize circulating tumor cells (CTCs) has become more prevalent in the research setting. This ability to detect, isolate and analyze CTCs allows us to directly compare specific protein expression levels found in patient CTCs to cell lines. In this study, we use immunocytochemistry to compare the protein expression levels of total cytokeratin (CK) and androgen receptor (AR) in CTCs and cell lines from patients with prostate cancer to determine what translational insights might be gained through the use of cell line data. A non-enrichment CTC detection assay enables us to compare cytometric features and relative expression levels of CK and AR by indirect immunofluorescence from prostate cancer patients against the prostate cancer cell line LNCaP. We measured physical characteristics of these two groups and observed significant differences in cell size, fluorescence intensity and nuclear to cytoplasmic ratio. We hope that these experiments will initiate a foundation to allow cell line data to be compared against characteristics of primary cells from patients.

  17. Hematologic changes after total body irradiation and autologous transplantation of hematopoietic peripheral blood progenitor cells in dogs with lymphoma.

    PubMed

    Escobar, C; Grindem, C; Neel, J A; Suter, S E

    2012-03-01

    Dogs with and without lymphoma have undergone hematopoietic cell transplantation in a research setting for decades. North Carolina State University is currently treating dogs with B- and T-cell lymphoma in a clinical setting with autologous peripheral blood progenitor cell transplants, using peripheral blood CD34+ progenitor cells harvested using an apheresis machine. Complete blood counts were performed daily for 15 to 19 days posttransplantation to monitor peripheral blood cell nadirs and subsequent CD34+ cell engraftment. This study documents the hematologic toxicities of total body irradiation in 10 dogs and the subsequent recovery of the affected cell lines after peripheral blood progenitor cell transplant, indicating successful CD34+ engraftment. All peripheral blood cell lines, excluding red blood cells, experienced grade 4 toxicities. All dogs had ≥ 500 neutrophils/μl by day 12, while thrombocytopenia persisted for many weeks. All dogs were clinically normal at discharge.

  18. Total synthesis of panicein A2

    PubMed Central

    Yeung, Lili; Pilkington, Lisa I; Cadelis, Melissa M; Copp, Brent R

    2015-01-01

    Summary The first total synthesis of the unusual aromatic sesquiterpene panicein A2 is reported and the structure of the natural product has been confirmed. When tested by the NCI against a range of human cancer cell lines, it was found that panicein A2 exhibits very little antiproliferative activity at 10 μM – an observation that is at odds with the earlier report that stated panicein A2 exhibits in vitro cytotoxicity against a number of tumour cell lines. PMID:26664619

  19. Lack of differences in radiation-induced immunogenicity parameters between HPV-positive and HPV-negative human HNSCC cell lines.

    PubMed

    Schneider, Karolin; Bol, Vanesa; Grégoire, Vincent

    2017-09-01

    Clinical studies indicate that patients with HPV/p16-associated head & neck squamous cell carcinoma (HNSCC) represent a subgroup with a better prognosis and improved response to conventional radiotherapy. Involvement of immune-based factors has been hypothesized. In the present study, we investigated radiation-induced differences in release of damage associated molecular patterns (DAMPs), cytokines and activation of dendritic cells (DCs) in HPV-positive and negative HNSCC cancer cell lines. Calreticulin (CRT) exposure was detected on cancer cell surface. ATP, HMGB1 and cytokines were measured in culture supernatants. Maturation marker CD83 surface exposure was determined on DCs after co-incubation with irradiated tumor cells. There was no increase in DAMPs and cytokine profiles after radiation treatment and no difference between HPV+ and HPV- cell lines. The HPV/p16-positive SCC90 cells showed a trend for increased total CRT, HMGB1, and number of cytokines compared to all other cell lines. None of the irradiated cancer cell lines could affect DC maturation. Radiation treatment did not increase immunogenicity of HNSCC cell lines assessed by membrane CRT, ATP, HMGB1, cytokines production, and by activation of immature DCs. There was no difference between HPV-positive and HPV-negative cell lines. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. LC-MS analysis of Hep-2 and Hek-293 cell lines treated with Brazilian red propolis reveals differences in protein expression.

    PubMed

    da Silva Frozza, Caroline O; da Silva Brum, Emyle; Alving, Anjali; Moura, Sidnei; Henriques, João A P; Roesch-Ely, Mariana

    2016-08-01

    Red propolis, an exclusive variety of propolis found in the northeast of Brazil has shown to present antitumour activity, among several other biological properties. This article aimed to help to evaluate the underlying molecular mechanisms of the potential anticancer effects of red propolis on tumour, Hep-2, and non-tumour cells, Hek-293. Differentially expressed proteins in human cell lines were identified through label-free quantitative MS-based proteomic platform, and cells were stained with Giemsa to show morphological changes. A total of 1336 and 773 proteins were identified for Hep-2 and Hek-293, respectively. Among the proteins here identified, 16 were regulated in the Hep-2 cell line and 04 proteins in the Hek-293 line. Over a total of 2000 proteins were identified under MS analysis, and approximately 1% presented differential expression patterns. The GO annotation using Protein Analysis THrough Evolutionary Relationships classification system revealed predominant molecular function of catalytic activity, and among the biological processes, the most prominent was associated to cell metabolism. The proteomic profile here presented should help to elucidate further molecular mechanisms involved in inhibition of cancer cell proliferation by red propolis, which remain unclear to date. © 2016 Royal Pharmaceutical Society.

  1. Gene expression analysis of rheumatoid arthritis synovial lining regions by cDNA microarray combined with laser microdissection: up-regulation of inflammation-associated STAT1, IRF1, CXCL9, CXCL10, and CCL5

    PubMed Central

    Yoshida, S; Arakawa, F; Higuchi, F; Ishibashi, Y; Goto, M; Sugita, Y; Nomura, Y; Niino, D; Shimizu, K; Aoki, R; Hashikawa, K; Kimura, Y; Yasuda, K; Tashiro, K; Kuhara, S; Nagata, K; Ohshima, K

    2012-01-01

    Objectives The main histological change in rheumatoid arthritis (RA) is the villous proliferation of synovial lining cells, an important source of cytokines and chemokines, which are associated with inflammation. The aim of this study was to evaluate gene expression in the microdissected synovial lining cells of RA patients, using those of osteoarthritis (OA) patients as the control. Methods Samples were obtained during total joint replacement from 11 RA and five OA patients. Total RNA from the synovial lining cells was derived from selected specimens by laser microdissection (LMD) for subsequent cDNA microarray analysis. In addition, the expression of significant genes was confirmed immunohistochemically. Results The 14 519 genes detected by cDNA microarray were used to compare gene expression levels in synovial lining cells from RA with those from OA patients. Cluster analysis indicated that RA cells, including low- and high-expression subgroups, and OA cells were stored in two main clusters. The molecular activity of RA was statistically consistent with its clinical and histological activity. Expression levels of signal transducer and activator of transcription 1 (STAT1), interferon regulatory factor 1 (IRF1), and the chemokines CXCL9, CXCL10, and CCL5 were statistically significantly higher in the synovium of RA than in that of OA. Immunohistochemically, the lining synovium of RA, but not that of OA, clearly expressed STAT1, IRF1, and chemokines, as was seen in microarray analysis combined with LMD. Conclusions Our findings indicate an important role for lining synovial cells in the inflammatory and proliferative processes of RA. Further understanding of the local signalling in structural components is important in rheumatology. PMID:22401175

  2. Establishment and partial characterization of a human tumor cell line, GBM-HSF, from a glioblastoma multiforme.

    PubMed

    Qu, Jiagui; Rizak, Joshua D; Fan, Yaodong; Guo, Xiaoxuan; Li, Jiejing; Huma, Tanzeel; Ma, Yuanye

    2014-07-01

    This paper outlines the establishment of a new and stable cell line, designated GBM-HSF, from a malignant glioblastoma multiforme (GBM) removed from a 65-year-old Chinese woman. This cell line has been grown for 1 year without disruption and has been passaged over 50 times. The cells were adherently cultured in RPMI-1640 media with 10% fetal bovine serum supplementation. Cells displayed spindle and polygonal morphology, and displayed multi-layered growth without evidence of contact inhibition. The cell line had a high growth rate with a doubling time of 51 h. The cells were able to grow without adhering to the culture plates, and 4.5% of the total cells formed colonies in soft agar. The cell line has also been found to form tumors in nude mice and to be of a highly invasive nature. The cells were also partially characterized with RT-PCR. The RT-PCR revealed that Nestin, β-tubulin III, Map2, Klf4, Oct4, Sox2, Nanog, and CD26 were positively transcribed, whereas GFAP, Rex1, and CD133 were negatively transcribed in this cell line. These results suggest that the GBM-HSF cell line will provide a good model to study the properties of cancer stem cells and metastasis. It will also facilitate more detailed molecular and cellular studies of GBM cell division and pathology.

  3. Data on the number and frequency of scientific literature citations for established medulloblastoma cell lines.

    PubMed

    Ivanov, D P; Walker, D A; Coyle, B; Grabowska, A M

    2016-12-01

    This article collates information about the number of scientific articles mentioning each of the established medulloblastoma cell lines, derived through a systematic search of Web of Science, Scopus and Google Scholar in 2016. The data for each cell line have been presented as raw number of citations, percentage share of the total citations for each search engine and as an average percentage between the three search engines. In order to correct for the time since each cell line has been in use, the raw citation data have also been divided by the number of years since the derivation of each cell line. This is a supporting article for a review of in vitro models of medulloblastoma published in "in vitro models of medulloblastoma: choosing the right tool for the job" (D.P. Ivanov, D.A. Walker, B. Coyle, A.M. Grabowska, 2016) [1].

  4. [Intergration and epression of porcine endogenous retrovinus in the immortal cell line of Banna Minipig Inberd Line-Mesenhymal Stem Cells].

    PubMed

    Yu, Ping; Liu, Jin; Zhang, Li; Li, Shrng-Fu; Bu, Hong; Li, You-Ping; Cheng, Jing-Qui; Lu, Yan-Rong; Long, Dan

    2005-11-01

    To detect the integration and expression of porcine endogenous retrovirus (PERV) in the immortal cell line of Banna Minipig Inbred Line-Mesenchymal Stem Cells (BMI-MSCs). DNA and total RNA of the immortal cell line of BMI-MSCs were extracted and PCR, RT-PCR were performed to detect PERV-gag, pol and env gene, and the type of PERV was also detected. PERV-gag, pol and env gene were all detected in the primary culture and immortal cell line (passage 150 and passage 180) of BMI-MSCs, and the type of PERV was PERV-A, B. Functional expression of PERV-gag and pol mRNA was also detected. In this laboratory, PERV was not lost during the proceeding of pig inbred and since has been in long-term culture of pig cells in vitro. PERV has integrated into the genome of its natural host, and virus mRNA can effectively express. So it is very essential to evaluate the possibility of xenozoonoses in pig-to-human xenotransplantation.

  5. Self- and Air-Broadened Line Shapes in the 2v3 P and R Branches of 12CH4

    NASA Technical Reports Server (NTRS)

    Devi, V. Malathy; Benner, D. Chris; Sung, Keeyoon; Crawford, Timothy J.; Yu, Shanshan; Brown, Linda R.; Smith, Mary Ann H.; Mantz, Arlan W.; Boudon, Vincent; Ismail, Syed

    2015-01-01

    In this paper we report line shape parameters of 12CH4 for several hundred 2V(sub 3) transitions in the spectral regions 5891-5996 cm( exp -1) (P branch) and 6015-6115 cm(exp -1) (R branch). Air- and self-broadening coefficients were measured as a function of temperature; line mixing via off-diagonal relaxation matrix element coefficients was also obtained for 47 transition pairs. In total, nearly 1517 positions and intensities were retrieved, but many transitions were too weak for the line shape study. For this analysis, we used 25 high-resolution (0.0056 and 0.0067 cm(ex[ -1) and high signal-to-noise (S/N) spectra of high-purity 12CH4 and the same high-purity 12CH4 broadened by dry air recorded at different sample temperatures between 130 K and 295 K with the Bruker IFS 125HR Fourier transform spectrometer at JPL. Three different absorption cells were used (1) a White cell set to a path length of 13.09 m for room temperature data, (2) a single-pass 0.2038 m long coolable cell (for self-broadening) and (3) a multipass cell with 20.941 m total path coolable Herriott cell (for air-broadening). In total there were 13 spectra with pure 12CH4 (0.27-599 Torr) and 12 air-broadened spectra with total sample pressures of 80-805 Torr and volume mixing ratios (VMR) of methane between 0.18 and 1.0. An interactive multispectrum nonlinear least-squares technique was employed to fit the individual P10-P1 and R0-R10 manifolds in all the spectra simultaneously. Results obtained from the present analysis are compared to other recent measurements.

  6. A Low Power Linear Phase Programmable Long Delay Circuit.

    PubMed

    Rodriguez-Villegas, Esther; Logesparan, Lojini; Casson, Alexander J

    2014-06-01

    A novel linear phase programmable delay is being proposed and implemented in a 0.35 μm CMOS process. The delay line consists of N cascaded cells, each of which delays the input signal by Td/N, where Td is the total line delay. The delay generated by each cell is programmable by changing a clock frequency and is also fully independent of the frequency of the input signal. The total delay hence depends only on the chosen clock frequency and the total number of cascaded cells. The minimum clock frequency is limited by the maximum time a voltage signal can effectively be held by an individual cell. The maximum number of cascaded cells will be limited by the effects of accumulated offset due to transistor mismatch, which eventually will affect the operating mode of the individual transistors in a cell. This latter limitation has however been dealt with in the topology by having an offset compensation mechanism that makes possible having a large number of cascaded cells and hence a long resulting delay. The delay line has been designed for scalp-based neural activity analysis that is predominantly in the sub-100 Hz frequency range. For these signals, the delay generated by a 31-cell cascade has been demonstrated to be programmable from 30 ms to 3 s. Measurement results demonstrate a 31 stage, 50 Hz bandwidth, 0.3 s delay that operates from a 1.1 V supply with power consumption of 270 nW.

  7. Analysis and functional annotation of expressed sequence tags from in vitro cell lines of elasmobranchs: spiny dogfish shark (Squalus acanthias) and little skate (Leucoraja erinacea)

    PubMed Central

    Parton, Angela; Bayne, Christopher J.; Barnes, David W.

    2010-01-01

    Elasmobranchs are the most commonly used experimental models among the jawed, cartilaginous fish (Chondrichthyes). Previously we developed cell lines from embryos of two elasmobranchs, Squalus acanthias the spiny dogfish shark (SAE line), and Leucoraja erinacea the little skate (LEE-1 line). From these lines cDNA libraries were derived and expressed sequence tags (ESTs) generated. From the SAE cell line 4303 unique transcripts were identified, with 1848 of these representing unknown sequences (showing no BLASTX identification). From the LEE-1 cell line, 3660 unique transcripts were identified, and unknown, unique sequences totaled 1333. Gene Ontology (GO) annotation showed that GO assignments for the two cell lines were in general similar. These results suggest that the procedures used to derive the cell lines led to isolation of cell types of the same general embryonic origin from both species. The LEE-1 transcripts included GO categories “envelope” and “oxidoreductase activity” but the SAE transcripts did not. GO analysis of SAE transcripts identified the category “anatomical structure formation” that was not present in LEE-1 cells. Increased organelle compartments may exist within LEE-1 cells compared to SAE cells, and the higher oxidoreductase activity in LEE-1 cells may indicate a role for these cells in responses associated with innate immunity or in steroidogenesis. These EST libraries from elasmobranch cell lines provide information for assembly of genomic sequences and are useful in revealing gene diversity, new genes and molecular markers, as well as in providing means for elucidation of full-length cDNAs and probes for gene array analyses. This is the first study of this type with members of the Chondrichthyes. PMID:20471924

  8. Analysis and functional annotation of expressed sequence tags from in vitro cell lines of elasmobranchs: Spiny dogfish shark (Squalus acanthias) and little skate (Leucoraja erinacea).

    PubMed

    Parton, Angela; Bayne, Christopher J; Barnes, David W

    2010-09-01

    Elasmobranchs are the most commonly used experimental models among the jawed, cartilaginous fish (Chondrichthyes). Previously we developed cell lines from embryos of two elasmobranchs, Squalus acanthias the spiny dogfish shark (SAE line), and Leucoraja erinacea the little skate (LEE-1 line). From these lines cDNA libraries were derived and expressed sequence tags (ESTs) generated. From the SAE cell line 4303 unique transcripts were identified, with 1848 of these representing unknown sequences (showing no BLASTX identification). From the LEE-1 cell line, 3660 unique transcripts were identified, and unknown, unique sequences totaled 1333. Gene Ontology (GO) annotation showed that GO assignments for the two cell lines were in general similar. These results suggest that the procedures used to derive the cell lines led to isolation of cell types of the same general embryonic origin from both species. The LEE-1 transcripts included GO categories "envelope" and "oxidoreductase activity" but the SAE transcripts did not. GO analysis of SAE transcripts identified the category "anatomical structure formation" that was not present in LEE-1 cells. Increased organelle compartments may exist within LEE-1 cells compared to SAE cells, and the higher oxidoreductase activity in LEE-1 cells may indicate a role for these cells in responses associated with innate immunity or in steroidogenesis. These EST libraries from elasmobranch cell lines provide information for assembly of genomic sequences and are useful in revealing gene diversity, new genes and molecular markers, as well as in providing means for elucidation of full-length cDNAs and probes for gene array analyses. This is the first study of this type with members of the Chondrichthyes. Copyright 2010 Elsevier Inc. All rights reserved.

  9. Enhanced expression of unique gangliosides with GM2-determinant in human uterine cervical carcinoma-derived cell lines.

    PubMed

    Tanaka, Kyoko; Miyazawa, Masaki; Mikami, Mikio; Aoki, Daisuke; Kiguchi, Kazushige; Iwamori, Masao

    2016-10-01

    Monoclonal antibody YHD-06 generated by immunization with GM2 reacted with gangliosides with GM2-determinant, i.e., GM2, GalNAc-GM1b and GalNAc-GD1a, among which GalNAc-GD1a was characterized as an antigen of autoimmune peripheral neuropathies including Guillain-Barré syndrome. When glycolipids were examined by TLC-immunostaining with YHD-06 in seven human cervical carcinoma-derived cell lines, GM2 was found in all cell lines, amounting to 15.5 % to 57.5 % of total gangliosides. Whereas GalNAc-GD1a was present in three cell lines, amounting to 5.4-17.5 % of total gangliosides, and GalNAc-GM1b in four cell lines in amounts of less than 2 %. The elevated amounts of gangliosides with GM2 determinant were closely correlated with the relative intensities of gene expression of GalNAc transferase, this being characteristic of cervical carcinoma-derived cells. However, in tissues from patients with several histological types of cervical carcinomas, GM3 was ubiquitously expressed in amounts of more than 66 % of total gangliosides, GM2 was expressed in only five of 15 tissues, and both GalNAc-GM1b and GalNAc-GD1a were not even detected in trace amounts. Since GM1 was detected in all tissues in amounts of less than 0.06 μg/mg dried tissue, all cervical carcinoma tissues were revealed to exhibit GM2 synthesis, indicating that enhanced synthesis of gangliosides with GM2 determinant is a characteristic of cultivated cells in vitro. Similarly, although I(3)SO3-GalCer was not present in the squamous cell carcinoma (SCC) tissues, SCC-derived cells selectively expressed II(3)SO3-LacCer. Since enhanced synthesis of GM2 has been reported in SV-40 virus-transfected fibroblasts, papilloma virus might be involved in the expression of GM2 in cervical carcinoma-derived cells.

  10. Imaging exocytosis of single glucagon-like peptide-1 containing granules in a murine enteroendocrine cell line with total internal reflection fluorescent microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohara-Imaizumi, Mica; Aoyagi, Kyota; Akimoto, Yoshihiro

    To analyze the exocytosis of glucagon-like peptide-1 (GLP-1) granules, we imaged the motion of GLP-1 granules labeled with enhanced yellow fluorescent protein (Venus) fused to human growth hormone (hGH-Venus) in an enteroendocrine cell line, STC-1 cells, by total internal reflection fluorescent (TIRF) microscopy. We found glucose stimulation caused biphasic GLP-1 granule exocytosis: during the first phase, fusion events occurred from two types of granules (previously docked granules and newcomers), and thereafter continuous fusion was observed mostly from newcomers during the second phase. Closely similar to the insulin granule fusion from pancreatic {beta} cells, the regulated biphasic exocytosis from two typesmore » of granules may be a common mechanism in glucose-evoked hormone release from endocrine cells.« less

  11. Total Phenolic and Flavonoid Contents of Aqueous Extract of Stinging Nettle and In Vitro Antiproliferative Effect on Hela and BT-474 Cell Lines.

    PubMed

    Fattahi, Sadegh; Zabihi, Ebrahim; Abedian, Zeinab; Pourbagher, Roghayeh; Motevalizadeh Ardekani, Ali; Mostafazadeh, Amrollah; Akhavan-Niaki, Haleh

    2014-01-01

    Phenolic compounds including flavonoids and phenolic acids are plants secondary metabolites. Due to their ability to act as antioxidant agents, there is a growing interest to use those components in traditional medicine for cancer prevention or treatment. The aim of this study was to measure the amounts of total phenolics and flavonoids as well as anti-proliferative effect of aqueous extract of Stinging nettle on BT-474 and Hela cell lines. The amounts of phenolics content and total flavonoids were determined by folin ciocalteu and aluminium chloride methods, respectively. The free radical scavenging activity was measured by using diphenyl - picrylhydrazyl (DPPH). The reducing power of the extract was measured in the presence of potassium hexacyanoferrate and its antiproliferative activity was assessed on BT-474 and Hela cell lines using MTT assay. Total phenolic content was 322.941± 11.811 mg gallic acid/g extract. Total flavonoid content was 133.916±12.006 mg Catechin/g. The IC50 of DPPH radical was 1.2 mg/ ml and the reducing power was 218.9± 15.582 μg ascorbic acid/ g. Cell viability of BT-474 cells decreased to less than half of the control (no added extract) at the presence of 3 mg/ ml extract while no significant changes were detected for Hela cells at similar conditions. There was no significant difference in the percentage of surviving cells between consecutive days (day 1, 2 and 3) for both BT-474 and Hela cells (P>0.05). Although the relatively high amount of phenolic and flavonoid contents of the aqueous extract make this plant a promising candidate for diseases treatment; however, there is not a direct relationship between the amounts of these antioxidant components and the efficiency in in vitro cancer treatment.

  12. Total Phenolic and Flavonoid Contents of Aqueous Extract of Stinging Nettle and In Vitro Antiproliferative Effect on Hela and BT-474 Cell Lines

    PubMed Central

    Fattahi, Sadegh; Zabihi, Ebrahim; Abedian, Zeinab; Pourbagher, Roghayeh; Motevalizadeh Ardekani, Ali; Mostafazadeh, Amrollah; Akhavan-Niaki, Haleh

    2014-01-01

    Phenolic compounds including flavonoids and phenolic acids are plants secondary metabolites. Due to their ability to act as antioxidant agents, there is a growing interest to use those components in traditional medicine for cancer prevention or treatment. The aim of this study was to measure the amounts of total phenolics and flavonoids as well as anti-proliferative effect of aqueous extract of Stinging nettle on BT-474 and Hela cell lines. The amounts of phenolics content and total flavonoids were determined by folin ciocalteu and aluminium chloride methods, respectively. The free radical scavenging activity was measured by using diphenyl - picrylhydrazyl (DPPH). The reducing power of the extract was measured in the presence of potassium hexacyanoferrate and its antiproliferative activity was assessed on BT-474 and Hela cell lines using MTT assay. Total phenolic content was 322.941± 11.811 mg gallic acid/g extract. Total flavonoid content was 133.916±12.006 mg Catechin/g. The IC50 of DPPH radical was 1.2 mg/ ml and the reducing power was 218.9± 15.582 μg ascorbic acid/ g. Cell viability of BT-474 cells decreased to less than half of the control (no added extract) at the presence of 3 mg/ ml extract while no significant changes were detected for Hela cells at similar conditions. There was no significant difference in the percentage of surviving cells between consecutive days (day 1, 2 and 3) for both BT-474 and Hela cells (P>0.05). Although the relatively high amount of phenolic and flavonoid contents of the aqueous extract make this plant a promising candidate for diseases treatment; however, there is not a direct relationship between the amounts of these antioxidant components and the efficiency in in vitro cancer treatment. PMID:25035860

  13. Simulation and comparison of progression-free survival among patients with non-squamous non-small-cell lung cancer receiving sequential therapy.

    PubMed

    Walzer, Stefan; Chouaid, Christos; Lister, Johanna; Gultyaev, Dmitry; Vergnenegre, Alain; de Marinis, Filippo; Meng, Jie; de Castro Carpeno, Javier; Crott, Ralph; Kleman, Martin; Ngoh, Charles

    2015-01-01

    In recent years, the treatment landscape in advanced non-squamous non-small-cell lung cancer (nsNSCLC) has changed. New therapies (e.g., bevacizumab indicated in first line) have become available and other therapies (e.g., pemetrexed in first line and second line) moved into earlier lines in the treatment paradigm. While there has been an expansion of the available treatment options, it is still a key research question which therapy sequence results in the best survival outcomes for patients with nsNSCLC. A therapy-sequencing disease model that approximates treatment outcomes in up to five lines of treatment was developed for patients with nsNSCLC. The primary source of data for progression-free survival (PFS) and time to death was published pivotal trial data. All patients were treatment-naïve and in the PFS state, received first-line treatment with either bevacizumab-based therapy or doublet chemotherapy (including the option of pemetrexed + cisplatin). Patients would then progress to a subsequent line of therapy, remain in PFS or die. In case of progression, it was assumed that each survivor would receive a subsequent line of therapy, based on EMA licensed therapies. Weibull distribution curves were fitted to the data. All bevacizumab-based first-line therapy sequences analyzed achieved total PFS of around 15 months. Bevacizumab + carboplatin + paclitaxel (first line) → pemetrexed (second line) → erlotinib (third line) → docetaxel (fourth line) resulted in total mean PFS time of 15.7 months, for instance. Sequences with pemetrexed in combination with cisplatin in first line achieved total PFS times between 12.6 and 12.8 months with a slightly higher total PFS time achieved when assuming pemetrexed continuation therapy in maintenance after pemetrexed + cisplatin in first-line induction. Overall survival results followed the same trend as PFS. The model suggests that treatment-sequencing strategies starting with a bevacizumab-based combination in first line yield better survival outcomes than those starting with pemetrexed-based combinations, a result that is attributable to the possibility of one further line of treatment with first-line bevacizumab-based treatment sequences.

  14. The transcriptional diversity of 25 Drosophila cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cherbas, Lucy; Willingham, Aarron; Zhang, Dayu

    2010-12-22

    Drosophila melanogaster cell lines are important resources for cell biologists. In this article, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signalingmore » pathways are well represented: most differentiation pathways are ‘‘off’’ and survival/growth pathways ‘‘on.’’ Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common ‘‘cell line‘‘ gene expression pattern. We report the transcriptional profiles of 25 Drosophila melanogaster cell lines, principally by whole-genome tiling microarray analysis of total RNA, carried out as part of the modENCODE project. The data produced in this study add to our knowledge of the cell lines and of the Drosophila transcriptome in several ways. We summarize the expression of previously annotated genes in each of the 25 lines with emphasis on what those patterns reveal about the origins of the lines and the stability of spatial expression patterns. In addition, we offer an initial analysis of previously unannotated transcripts in the cell lines.« less

  15. Systemic Analysis of Heat Shock Response Induced by Heat Shock and a Proteasome Inhibitor MG132

    PubMed Central

    Kim, Hee-Jung; Joo, Hye Joon; Kim, Yung Hee; Ahn, Soyeon; Chang, Jun; Hwang, Kyu-Baek; Lee, Dong-Hee; Lee, Kong-Joo

    2011-01-01

    The molecular basis of heat shock response (HSR), a cellular defense mechanism against various stresses, is not well understood. In this, the first comprehensive analysis of gene expression changes in response to heat shock and MG132 (a proteasome inhibitor), both of which are known to induce heat shock proteins (Hsps), we compared the responses of normal mouse fibrosarcoma cell line, RIF- 1, and its thermotolerant variant cell line, TR-RIF-1 (TR), to the two stresses. The cellular responses we examined included Hsp expressions, cell viability, total protein synthesis patterns, and accumulation of poly-ubiquitinated proteins. We also compared the mRNA expression profiles and kinetics, in the two cell lines exposed to the two stresses, using microarray analysis. In contrast to RIF-1 cells, TR cells resist heat shock caused changes in cell viability and whole-cell protein synthesis. The patterns of total cellular protein synthesis and accumulation of poly-ubiquitinated proteins in the two cell lines were distinct, depending on the stress and the cell line. Microarray analysis revealed that the gene expression pattern of TR cells was faster and more transient than that of RIF-1 cells, in response to heat shock, while both RIF-1 and TR cells showed similar kinetics of mRNA expression in response to MG132. We also found that 2,208 genes were up-regulated more than 2 fold and could sort them into three groups: 1) genes regulated by both heat shock and MG132, (e.g. chaperones); 2) those regulated only by heat shock (e.g. DNA binding proteins including histones); and 3) those regulated only by MG132 (e.g. innate immunity and defense related molecules). This study shows that heat shock and MG132 share some aspects of HSR signaling pathway, at the same time, inducing distinct stress response signaling pathways, triggered by distinct abnormal proteins. PMID:21738571

  16. Inhibiting the Aurora B Kinase Potently Suppresses Repopulation During Fractionated Irradiation of Human Lung Cancer Cell Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sak, Ali, E-mail: ali.sak@uni-due.de; Stuschke, Martin; Groneberg, Michael

    2012-10-01

    Purpose: The use of molecular-targeted agents during radiotherapy of non-small-cell lung cancer (NSCLC) is a promising strategy to inhibit repopulation, thereby improving therapeutic outcome. We assessed the combined effectiveness of inhibiting Aurora B kinase and irradiation on human NSCLC cell lines in vitro. Methods and Materials: NSCLC cell lines were exposed to concentrations of AZD1152-hydroxyquinazoline pyrazol anilide (AZD1152-HQPA) inhibiting colony formation by 50% (IC50{sub clone}) in combination with single dose irradiation or different fractionation schedules using multiple 2-Gy fractions per day up to total doses of 4-40 Gy. The total irradiation dose required to control growth of 50% of themore » plaque monolayers (TCD50) was determined. Apoptosis, G2/M progression, and polyploidization were also analyzed. Results: TCD50 values after single dose irradiation were similar for the H460 and H661 cell lines with 11.4 {+-} 0.2 Gy and 10.7 {+-} 0.3 Gy, respectively. Fractionated irradiation using 3 Multiplication-Sign 2 Gy/day, 2 Multiplication-Sign 2 Gy/day, and 1 Multiplication-Sign 2 Gy/day schedules significantly increased TCD50 values for both cell lines grown as plaque monolayers with increasing radiation treatment time. This could be explained by a repopulation effect per day that counteracts 75 {+-} 8% and 27 {+-} 6% of the effect of a 2-Gy fraction in H460 and H661 cells, respectively. AZD1152-HQPA treatment concomitant to radiotherapy significantly decreased the daily repopulation effect (H460: 28 {+-} 5%, H661: 10 {+-} 4% of a 2-Gy fraction per day). Treatment with IC50{sub clone} AZD1152-HPQA did not induce apoptosis, prolong radiation-induced G2 arrest, or delay cell cycle progression before the spindle check point. However, polyploidization was detected, especially in cell lines without functional p53. Conclusions: Inhibition of Aurora B kinase with low AZD1152-HQPA concentrations during irradiation of NSCLC cell lines affects repopulation during radiotherapy. Thus, concomitant Aurora B kinase inhibition and irradiation may be a promising strategy for fast repopulating tumors, which are difficult to cure by dose escalation based on conventional fractionation.« less

  17. Impedance Analysis of Ovarian Cancer Cells upon Challenge with C-terminal Clostridium Perfringens Enterotoxin

    NASA Astrophysics Data System (ADS)

    Gordon, Geoffrey; Lo, Chun-Min

    2007-03-01

    Both in vitro and animal studies in breast, prostate, and ovarian cancers have shown that clostridium perfringens enterotoxin (CPE), which binds to CLDN4, may have an important therapeutic benefit, as it is rapidly cytotoxic in tissues overexpressing CLDN4. This study sought to evaluate the ability of C-terminal clostridium perfringens enterotoxin (C-CPE), a CLDN4-targetting molecule, to disrupt tight junction barrier function. Electric cell-substrate impedance sensing (ECIS) was used to measure both junctional resistance and average cell-substrate separation of ovarian cancer cell lines after exposure to C-CPE. A total of 14 ovarian cancer cell lines were used, and included cell lines derived from serous, mucinous, and clear cells. Our results showed that junctional resistance increases as CLDN4 expression increases. In addition, C-CPE is non-cytotoxic in ovarian cancer cells expressing CLDN4. However, exposure to C-CPE results in a significant (p<0.05) dose- and CLDN4-dependent decrease in junctional resistance and an increase in cell-substrate separation. Treatment of ovarian cancer cell lines with C-CPE disrupts tight junction barrier function.

  18. Ophiobolin A, a sesterpenoid fungal phytotoxin, displays different mechanisms of cell death in mammalian cells depending upon the cancer cell origin.

    PubMed

    Morrison, Rachel; Lodge, Tiffany; Evidente, Antonio; Kiss, Robert; Townley, Helen

    2017-03-01

    Herein we have undertaken a systematic analysis of the effects of the fungal derivative ophiobolin A (OphA) on eight cancer cell lines from different tissue types. The LD50 for each cell line was determined and the change in cell size determined. Flow cytometric analysis and western blotting were used to assess the cell death markers for early apoptosis, late apoptosis and necrosis, and the involvement of the caspase signalling pathway. Alterations in calcium levels and reactive oxygen species were assessed due to their integral involvement in intracellular signalling. Subsequently, the endoplasmic reticulum (ER) and mitochondrial responses were investigated more closely. The extent of ER swelling, and the upregulation of proteins involved in the unfolded protein responses (UPR) were seen to vary according to cell line. The mitochondria were also shown to behave differently in response to the OphA in the different cell lines in terms of the change in membrane potential, the total area of mitochondria in the cell and the number of mitochondrial bifurcations. The data obtained in the present study indicate that the cancer cell lines tested are unable to successfully activate the ER stress/UPR responses, and that the mitochondria appear to be a central player in OphA-induced cancer cell death.

  19. GS-Nitroxide (JP4-039)-Mediated Radioprotection of Human Fanconi Anemia Cell Lines

    PubMed Central

    Bernard, Mark E.; Kim, Hyun; Berhane, Hebist; Epperly, Michael W.; Franicola, Darcy; Zhang, Xichen; Houghton, Frank; Shields, Donna; Wang, Hong; Bakkenist, Christopher J.; Frantz, Marie-Celine; Forbeck, Erin M.; Goff, Julie P.; Wipf, Peter; Greenberger, Joel S.

    2011-01-01

    Fanconi anemia (FA) is an inherited disorder characterized by defective DNA repair and cellular sensitivity to DNA crosslinking agents. Clinically, FA is associated with high risk for marrow failure, leukemia and head and neck squamous cell carcinoma (HNSCC). Radiosensitivity in FA patients compromises the use of total-body irradiation for hematopoietic stem cell transplantation and radiation therapy for HNSCC. A radioprotector for the surrounding tissue would therefore be very valuable during radiotherapy for HNSCC. Clonogenic radiation survival curves were determined for pre- or postirradiation treatment with the parent nitroxide Tempol or JP4-039 in cells of four FA patient-derived cell lines and two transgene-corrected subclonal lines. FancG–/– (PD326) and FancD2–/– (PD20F) patient lines were more sensitive to the DNA crosslinking agent mitomycin C (MMC) than their transgene-restored subclonal cell lines (both P < 0.0001). FancD2–/– cells were more radiosensitive than the transgene restored subclonal cell line (ñ = 2.0 ± 0.7 and 4.7 ± 2.2, respectively, P = 0.03). In contrast, FancG–/– cells were radioresistant relative to the transgene-restored subclonal cell line (ñ = 9.4 ± 1.5 and 2.2 ± 05, respectively, P = 0.001). DNA strand breaks measured by the comet assay correlated with radiosensitivity. Cell lines from a Fanc-C and Fanc-A patients showed radiosensitivity similar to that of Fanc-D2–/– cells. A fluorophore-tagged JP4-039 (BODIPY-FL) analog targeted the mitochondria of the cell lines. Preirradiation or postirradiation treatment with JP4-039 at a lower concentration than Tempol significantly increased the radioresistance and stabilized the antioxidant stores of all cell lines. Tempol increased the toxicity of MMC in FancD2–/– cells. These data provide support for the potential clinical use of JP4-039 for normal tissue radioprotection during chemoradiotherapy in FA patients. PMID:21939290

  20. GS-nitroxide (JP4-039)-mediated radioprotection of human Fanconi anemia cell lines.

    PubMed

    Bernard, Mark E; Kim, Hyun; Berhane, Hebist; Epperly, Michael W; Franicola, Darcy; Zhang, Xichen; Houghton, Frank; Shields, Donna; Wang, Hong; Bakkenist, Christopher J; Frantz, Marie-Celine; Forbeck, Erin M; Goff, Julie P; Wipf, Peter; Greenberger, Joel S

    2011-11-01

    Fanconi anemia (FA) is an inherited disorder characterized by defective DNA repair and cellular sensitivity to DNA crosslinking agents. Clinically, FA is associated with high risk for marrow failure, leukemia and head and neck squamous cell carcinoma (HNSCC). Radiosensitivity in FA patients compromises the use of total-body irradiation for hematopoietic stem cell transplantation and radiation therapy for HNSCC. A radioprotector for the surrounding tissue would therefore be very valuable during radiotherapy for HNSCC. Clonogenic radiation survival curves were determined for pre- or postirradiation treatment with the parent nitroxide Tempol or JP4-039 in cells of four FA patient-derived cell lines and two transgene-corrected subclonal lines. FancG(-/-) (PD326) and FancD2(-/-) (PD20F) patient lines were more sensitive to the DNA crosslinking agent mitomycin C (MMC) than their transgene-restored subclonal cell lines (both P < 0.0001). FancD2(-/-) cells were more radiosensitive than the transgene restored subclonal cell line (ñ = 2.0 ± 0.7 and 4.7 ± 2.2, respectively, P = 0.03). In contrast, FancG(-/-) cells were radioresistant relative to the transgene-restored subclonal cell line (ñ = 9.4 ± 1.5 and 2.2 ± 05, respectively, P = 0.001). DNA strand breaks measured by the comet assay correlated with radiosensitivity. Cell lines from a Fanc-C and Fanc-A patients showed radiosensitivity similar to that of Fanc-D2(-/-) cells. A fluorophore-tagged JP4-039 (BODIPY-FL) analog targeted the mitochondria of the cell lines. Preirradiation or postirradiation treatment with JP4-039 at a lower concentration than Tempol significantly increased the radioresistance and stabilized the antioxidant stores of all cell lines. Tempol increased the toxicity of MMC in FancD2(-/-) cells. These data provide support for the potential clinical use of JP4-039 for normal tissue radioprotection during chemoradiotherapy in FA patients.

  1. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts

    PubMed Central

    2011-01-01

    Background Arctium lappa, known as burdock, is widely used in popular medicine for hypertension, gout, hepatitis and other inflammatory disorders. Pharmacological studies indicated that burdock roots have hepatoprotective, anti-inflammatory, free radical scavenging and antiproliferative activities. The aim of this study was to evaluate total phenolic content, radical scavenging activity by DPPH and in vitro antiproliferative activity of different A. lappa root extracts. Methods Hot and room temperature dichloromethanic, ethanolic and aqueous extracts; hydroethanolic and total aqueous extract of A. lappa roots were investigated regarding radical scavenging activity by DPPH, total phenolic content by Folin-Ciocalteau method and antiproliferative in vitro activity was evaluated in human cancer cell lines. The hydroethanolic extract analyzed by high-resolution electrospray ionization mass spectroscopy. Results Higher radical scavenging activity was found for the hydroethanolic extract. The higher phenolic contents were found for the dichloromethane, obtained both by Soxhlet and maceration extraction and hydroethanolic extracts. The HRESI-MS demonstrated the presence of arctigenin, quercetin, chlorogenic acid and caffeic acid compounds, which were identified by comparison with previous data. The dichloromethane extracts were the only extracts that exhibited activity against cancer cell lines, especially for K562, MCF-7 and 786-0 cell lines. Conclusions The hydroethanolic extracts exhibited the strongest free radical scavenging activity, while the highest phenolic content was observed in Soxhlet extraction. Moreover, the dichloromethanic extracts showed selective antiproliferative activity against K562, MCF-7 and 786-0 human cancer cell lines. PMID:21429215

  2. Antioxidative and in vitro antiproliferative activity of Arctium lappa root extracts.

    PubMed

    Predes, Fabricia S; Ruiz, Ana L T G; Carvalho, João E; Foglio, Mary A; Dolder, Heidi

    2011-03-23

    Arctium lappa, known as burdock, is widely used in popular medicine for hypertension, gout, hepatitis and other inflammatory disorders. Pharmacological studies indicated that burdock roots have hepatoprotective, anti-inflammatory, free radical scavenging and antiproliferative activities. The aim of this study was to evaluate total phenolic content, radical scavenging activity by DPPH and in vitro antiproliferative activity of different A. lappa root extracts. Hot and room temperature dichloromethanic, ethanolic and aqueous extracts; hydroethanolic and total aqueous extract of A. lappa roots were investigated regarding radical scavenging activity by DPPH, total phenolic content by Folin-Ciocalteau method and antiproliferative in vitro activity was evaluated in human cancer cell lines. The hydroethanolic extract analyzed by high-resolution electrospray ionization mass spectroscopy. Higher radical scavenging activity was found for the hydroethanolic extract. The higher phenolic contents were found for the dichloromethane, obtained both by Soxhlet and maceration extraction and hydroethanolic extracts. The HRESI-MS demonstrated the presence of arctigenin, quercetin, chlorogenic acid and caffeic acid compounds, which were identified by comparison with previous data. The dichloromethane extracts were the only extracts that exhibited activity against cancer cell lines, especially for K562, MCF-7 and 786-0 cell lines. The hydroethanolic extracts exhibited the strongest free radical scavenging activity, while the highest phenolic content was observed in Soxhlet extraction. Moreover, the dichloromethanic extracts showed selective antiproliferative activity against K562, MCF-7 and 786-0 human cancer cell lines. © 2011 Predes et al; licensee BioMed Central Ltd.

  3. Isolation of Canine parvovirus with a view to identify the prevalent serotype on the basis of partial sequence analysis.

    PubMed

    Kaur, Gurpreet; Chandra, Mudit; Dwivedi, P N; Sharma, N S

    2015-01-01

    The aim of this study was to isolate Canine parvovirus (CPV) from suspected dogs on madin darby canine kidney (MDCK) cell line and its confirmation by polymerase chain reaction (PCR) and nested PCR (NPCR). Further, VP2 gene of the CPV isolates was amplified and sequenced to determine prevailing antigenic type. A total of 60 rectal swabs were collected from dogs showing signs of gastroenteritis, processed and subjected to isolation in MDCK cell line. The samples showing cytopathic effects (CPE) were confirmed by PCR and NPCR. These samples were subjected to PCR for amplification of VP2 gene of CPV, sequenced and analyzed to study the prevailing antigenic types of CPV. Out of the 60 samples subjected to isolation in MDCK cell line five samples showed CPE in the form of rounding of cells, clumping of cells and finally detachment of the cells. When these samples and the two commercially available vaccines were subjected to PCR for amplification of VP2 gene, a 1710 bp product was amplified. The sequence analysis revealed that the vaccines belonged to the CPV-2 type and the samples were of CPV-2b type. It can be concluded from the present study that out of a total of 60 samples 5 samples exhibited CPE as observed in MDCK cell line. Sequence analysis of the VP2 gene among the samples and vaccine strains revealed that samples belonged to CPV-2b type and vaccines belonging to CPV-2.

  4. Whole genome sequence analysis of BT-474 using complete Genomics' standard and long fragment read technologies.

    PubMed

    Ciotlos, Serban; Mao, Qing; Zhang, Rebecca Yu; Li, Zhenyu; Chin, Robert; Gulbahce, Natali; Liu, Sophie Jia; Drmanac, Radoje; Peters, Brock A

    2016-01-01

    The cell line BT-474 is a popular cell line for studying the biology of cancer and developing novel drugs. However, there is no complete, published genome sequence for this highly utilized scientific resource. In this study we sought to provide a comprehensive and useful data set for the scientific community by generating a whole genome sequence for BT-474. Five μg of genomic DNA, isolated from an early passage of the BT-474 cell line, was used to generate a whole genome sequence (114X coverage) using Complete Genomics' standard sequencing process. To provide additional variant phasing and structural variation data we also processed and analyzed two separate libraries of 5 and 6 individual cells to depths of 99X and 87X, respectively, using Complete Genomics' Long Fragment Read (LFR) technology. BT-474 is a highly aneuploid cell line with an extremely complex genome sequence. This ~300X total coverage genome sequence provides a more complete understanding of this highly utilized cell line at the genomic level.

  5. Oxygen consumption rate and mitochondrial density in human melanoma monolayer cultures and multicellular spheroids.

    PubMed

    Hystad, M E; Rofstad, E K

    1994-05-15

    Rate of oxygen consumption per cell has been shown in previous studies to decrease with increasing depth in the viable rim of multicellular spheroids initiated from rodent cells, human colon-carcinoma cells, and human glioma cells, due to progressive accumulation of quiescent cells during spheroid growth. The purpose of our work was to determine oxygen-consumption profiles in human melanoma spheroids. Monolayer cultures of 4 lines (BEX-c, COX-c, SAX-c, and WIX-c) and spheroid cultures of 2 lines (BEX-c and WIX-c) were subjected to investigation. Spheroids were initiated from monolayer cell cultures and grown in spinner flasks. Rate of oxygen consumption was measured with a Clarke-type electrode. Mitochondrial density was determined by stereological analysis of transmission electron micrographs. Thickness of viable rim and cell packing density were assessed by light microscopy of central spheroid sections. Cell-cycle distribution was determined by analysis of DNA histograms measured by flow cytometry. Cell volume was measured by an electronic particle counter. Rate of oxygen consumption per cell differed by a factor of approximately 1.8 between the 4 cell lines and was positively correlated to total volume of mitochondria per cell. Rate of oxygen consumption per cell and total volume of mitochondria per cell were equal for monolayer cell cultures, 600-microns spheroids and 1,200-microns spheroids of the same line. Mitochondrial density and location in the cell did not differ between cells at the spheroid surface, in the middle of the viable rim and adjacent to the central necrosis. Cell-cycle distribution, cell volume, and cell-packing density in the outer and inner halves of the viable rim were not significantly different. Consequently, the rate of oxygen consumption per cell in inner regions of the viable rim was probably equal to that at the spheroid surface, suggesting that oxygen diffusion distances may be shorter in some melanomas than in many other tumor types.

  6. Pharmacodynamics of cisplatin in human head and neck cancer: correlation between platinum content, DNA adduct levels and drug sensitivity in vitro and in vivo

    PubMed Central

    Welters, M J P; Fichtinger-Schepman, A M J; Baan, R A; Jacobs-Bergmans, A J; Kegel, A; van der Vijgh, W J F; Braakhuis, B J M

    1999-01-01

    Total platinum contents and cisplatin–DNA adduct levels were determined in vivo in xenografted tumour tissues in mice and in vitro in cultured tumour cells of head and neck squamous cell carcinoma (HNSCC), and correlated with sensitivity to cisplatin. In vivo, a panel of five HNSCC tumour lines growing as xenografts in nude mice was used. In vitro, the panel consisted of five HNSCC cell lines, of which four had an in vivo equivalent. Sensitivity to cisplatin varied three- to sevenfold among cell lines and tumours respectively. However, the ranking of the sensitivities of the tumour lines (in vivo), also after reinjection of the cultured tumour cells, did not coincide with that of the corresponding cell lines, which showed that cell culture systems are not representative for the in vivo situation. Both in vitro and in vivo, however, significant correlations were found between total platinum levels, measured by atomic absorption spectrophotometry (AAS), and tumour response to cisplatin therapy at all time points tested. The levels of the two major cisplatin–DNA adduct types were determined by a recently developed and improved32P post-labelling assay at various time points after cisplatin treatment. Evidence is presented that the platinum–AG adduct, in which platinum is bound to guanine and an adjacent adenine, may be the cytotoxic lesion because a significant correlation was found between the platinum–AG levels and the sensitivities in our panel of HNSCC, in vitro as well as in vivo. This correlation with the platinum–AG levels was established at 1 h (in vitro) and 3 h (in vivo) after the start of the cisplatin treatment, which emphasizes the importance of early sampling. © 1999 Cancer Research Campaign PMID:10408697

  7. Significance of CD133 positive cells in four novel HPV-16 positive cervical cancer-derived cell lines and biopsies of invasive cervical cancer.

    PubMed

    Javed, Shifa; Sharma, Bal Krishan; Sood, Swati; Sharma, Sanjeev; Bagga, Rashmi; Bhattacharyya, Shalmoli; Rayat, Charan Singh; Dhaliwal, Lakhbir; Srinivasan, Radhika

    2018-04-02

    Cervical cancer is a major cause of cancer-related mortality in women in the developing world. Cancer Stem cells (CSC) have been implicated in treatment resistance and metastases development; hence understanding their significance is important. Primary culture from tissue biopsies of invasive cervical cancer and serial passaging was performed for establishing cell lines. Variable Number Tandem Repeat (VNTR) assay was performed for comparison of cell lines with their parental tissue. Tumorsphere and Aldefluor assays enabled isolation of cancer stem cells (CSC); immunofluorescence and flow cytometry were performed for their surface phenotypic expression in cell lines and in 28 tissue samples. Quantitative real-time PCR for stemness and epithelial-mesenchymal transition (EMT) markers, MTT cytotoxicity assay, cell cycle analysis and cell kinetic studies were performed. Four low-passage novel cell lines designated RSBS-9, - 14 and - 23 from squamous cell carcinoma and RSBS-43 from adenocarcinoma of the uterine cervix were established. All were HPV16+. VNTR assay confirmed their uniqueness and derivation from respective parental tissue. CSC isolated from these cell lines showed CD133 + phenotype. In tissue samples of untreated invasive cervical cancer, CD133 + CSCs ranged from 1.3-23% of the total population which increased 2.8-fold in radiation-resistant cases. Comparison of CD133 + with CD133 - bulk population cells revealed increased tumorsphere formation and upregulation of stemness and epithelial-mesenchymal transition (EMT) markers with no significant difference in cisplatin sensitivity. Low-passage cell lines developed would serve as models for studying tumor biology. Cancer Stem Cells in cervical cancer display CD133 + phenotype and are increased in relapsed cases and hence should be targeted for achieving remission.

  8. Superior anticancer activity is demonstrated by total extract of Curcuma longa L. as opposed to individual curcuminoids separated by centrifugal partition chromatography.

    PubMed

    Kukula-Koch, Wirginia; Grabarska, Aneta; Łuszczki, Jarogniew; Czernicka, Lidia; Nowosadzka, Ewa; Gumbarewicz, Ewelina; Jarząb, Agata; Audo, Gregoire; Upadhyay, Shakti; Głowniak, Kazimierz; Stepulak, Andrzej

    2018-05-01

    Three curcuminoids: bisdemethoxycurcumin, demethoxycurcumin, and curcumin from turmeric were successfully separated by a high capacity solvent system composed of heptane: chloroform: methanol: water mixture (5: 6: 3: 2 v/v/v/v) tailored for centrifugal partition chromatographs at K-values of 0.504, 1.057, 1.644, respectively. These three ferulic acid derivatives obtained at a purity rate exceeding 95% were analysed by an HPLC-MS spectrometer. Turmeric extract inhibited the proliferation/viability of A549 human lung cancer, HT29 colon cancer, and T98G glioblastoma cell lines in (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) tetrazolium reduction assay (MTT). Single curcuminoids significantly decreased the viability/proliferation of lung cancer cells in a dose-dependent manner. However, total extract displayed the superior anticancer activity in the investigated cell lines. Crude extract in combination with cisplatin augmented the decrease in the viability of cancer cells compared with single compound treatment in A549 lung cancer cells. Total extract of Curcuma longa could be regarded as being more effective against lung cancer cells in vitro than its separated compounds. Copyright © 2018 John Wiley & Sons, Ltd.

  9. [Partial purification of peptides present in the Tityus macrochirus (Buthidae) scorpion venom and preliminary assessment of their cytotoxicity].

    PubMed

    Rincón-Cortés, Clara Andrea; Reyes-Montaño, Edgar Antonio; Vega-Castro, Nohora Angélica

    2017-06-01

    Scorpion venom contains peptides with neurotoxic action primarily active on ion channels in the nervous system of insects and mammals. They are also characterized as cytolytic and anticancer, biological characteristics that have not yet been reported for the Tityus macrochirus venom. To assess if the total T. macrochirus venom and the fraction of partially purified peptides decrease the viability of various tumor-derived cell lines. The scorpion venom was collected by electrical stimulation and, subsequently, subjected to chromatography, electrophoresis, and ultrafiltration with Amicon Ultra 0.5® membranes for the partial identification and purification of its peptides. The cytotoxic activity of the venom and the peptides fraction trials on tumor-derived cell lines were carried out by the MTT method. The T. macrochirus scorpion venom has peptides with molecular weights ranging between 3 and 10 kDa. They were partially purified using the ultrafiltration technique, and assessed by the RP-HPLC method. Cytotoxicity trials with the whole T. macrochirus venom showed a higher viability decrease on the PC3 cell line compared to the other cell lines assessed, while the partially purified peptides decreased the HeLa cell line viability. Peptides in the T. macrochirus scorpion venom showed cytotoxic activity on some tumorderived cell lines. We observed some degree of selectivity against other cell lines assessed.

  10. Proteomic and comparative genomic analysis of two Brassica napus lines differing in oil content.

    PubMed

    Gan, Lu; Zhang, Chun-yu; Wang, Xiao-dong; Wang, Hao; Long, Yan; Yin, Yong-tai; Li, Dian-rong; Tian, Jian-Hua; Li, Zai-yun; Lin, Zhi-wei; Yu, Long-Jiang; Li, Mao-Teng

    2013-11-01

    Ultrastructural observations, combined with proteomic and comparative genomic analyses, were applied to interpret the differences in protein composition and oil-body characteristics of mature seed of two Brassica napus lines with high and low oil contents of 55.19% and 36.49%, respectively. The results showed that oil bodies were arranged much closer in the high than in the low oil content line, and differences in cell size and thickness of cell walls were also observed. There were 119 and 32 differentially expressed proteins (DEPs) of total and oil-body proteins identified. The 119 DEPs of total protein were mainly involved in the oil-related, dehydration-related, storage and defense/disease, and some of these may be related to oil formation. The DEPs involved with dehydration-related were both detected in total and oil-body proteins for high and low oil lines and may be correlated with the number and size of oil bodies in the different lines. Some genes that corresponded to DEPs were confirmed by quantitative trait loci (QTL) mapping analysis for oil content. The results revealed that some candidate genes deduced from DEPs were located in the confidence intervals of QTL for oil content. Finally, the function of one gene that coded storage protein was verified by using a collection of Arabidopsis lines that can conditionally express the full length cDNA from developing seeds of B. napus.

  11. Predictors of CD34+ cell mobilization and collection in adult men with germ cell tumors: implications for the salvage treatment strategy.

    PubMed

    Necchi, Andrea; Miceli, Rosalba; Pedrazzoli, Paolo; Giannatempo, Patrizia; Secondino, Simona; Di Nicola, Massimo; Farè, Elena; Raggi, Daniele; Magni, Michele; Matteucci, Paola; Longoni, Paolo; Milanesi, Marco; Paternò, Emanuela; Ravagnani, Fernando; Arienti, Flavio; Nicolai, Nicola; Salvioni, Roberto; Carlo-Stella, Carmelo; Gianni, Alessandro M

    2014-06-01

    High-dose chemotherapy with tandem or triple carboplatin and etoposide course is currently the first curative choice for relapsing GCT. The collection of an adequate amount of hematopoietic (CD34(+)) stem cells is a priority. We analyzed data of patients who underwent HDCT at 2 referral institutions. Chemotherapy followed by myeloid growth factors was applied in all cases. Uni- and multivariable models were used to evaluate the association between 2 prespecified variables and mobilization parameters. Analyses included only the first mobilizing course of chemotherapy and mobilization failures. A total of 116 consecutive patients underwent a mobilization attempt from December 1995 to November 2012. Mobilizing regimens included cyclophosphamide (CTX) 7 gr/m(2) (n = 39), cisplatin, etoposide, and ifosfamide (PEI) (n = 42), paclitaxel, cisplatin, and gemcitabine (TPG) (n = 11), and mixed regimens (n = 24). Thirty-seven percent were treated in first-line, 50% (n = 58) in second-line, 9.5% (n = 11) and 3.4% (n = 4) in third- and fourth-line settings, respectively. Six patients did not undergo HDCT because they were poor mobilizers, 2 in first- and second-line (1.9%), and 4 beyond the second-line (26.7%). In the multivariable model, third-line or later setting was associated with a lower CD34(+) cell peak/μL (P = .028) and a lower total CD34(+)/kg collected (P = .008). The latter was also influenced by the type of mobilizing regimen (P < .001). A decline in significant mobilization parameters was found, primarily depending on the pretreatment load. Results lend support to the role of CD34(+) cell mobilization in the therapeutic algorithm of relapsing GCT, for whom multiple HDCT courses are still an option, and potentially a cure. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Mass spectrometry (LC-MS/MS) identified proteomic biosignatures of breast cancer in proximal fluid.

    PubMed

    Whelan, Stephen A; He, Jianbo; Lu, Ming; Souda, Puneet; Saxton, Romaine E; Faull, Kym F; Whitelegge, Julian P; Chang, Helena R

    2012-10-05

    We have begun an early phase of biomarker discovery in three clinically important types of breast cancer using a panel of human cell lines: HER2 positive, hormone receptor positive and HER2 negative, and triple negative (HER2-, ER-, PR-). We identified and characterized the most abundant secreted, sloughed, or leaked proteins released into serum free media from these breast cancer cell lines using a combination of protein fractionation methods before LC-MS/MS mass spectrometry analysis. A total of 249 proteins were detected in the proximal fluid of 7 breast cancer cell lines. The expression of a selected group of high abundance and/or breast cancer-specific potential biomarkers including thromobospondin 1, galectin-3 binding protein, cathepsin D, vimentin, zinc-α2-glycoprotein, CD44, and EGFR from the breast cancer cell lines and in their culture media were further validated by Western blot analysis. Interestingly, mass spectrometry identified a cathepsin D protein single-nucleotide polymorphism (SNP) by alanine to valine replacement from the MCF-7 breast cancer cell line. Comparison of each cell line media proteome displayed unique and consistent biosignatures regardless of the individual group classifications, demonstrating the potential for stratification of breast cancer. On the basis of the cell line media proteome, predictive Tree software was able to categorize each cell line as HER2 positive, HER2 negative, and hormone receptor positive and triple negative based on only two proteins, muscle fructose 1,6-bisphosphate aldolase and keratin 19. In addition, the predictive Tree software clearly identified MCF-7 cell line overexpresing the HER2 receptor with the SNP cathepsin D biomarker.

  13. Mechanistic mathematical modelling of mercaptopurine effects on cell cycle of human acute lymphoblastic leukaemia cells

    PubMed Central

    Panetta, J C; Evans, W E; Cheok, M H

    2006-01-01

    The antimetabolite mercaptopurine (MP) is widely used to treat childhood acute lymphoblastic leukaemia (ALL). To study the dynamics of MP on the cell cycle, we incubated human T-cell leukaemia cell lines (Molt-4 sensitive and resistant subline and P12 resistant) with 10 μM MP and measured total cell count, cell cycle distribution, percent viable, percent apoptotic, and percent dead cells serially over 72 h. We developed a mathematical model of the cell cycle dynamics after treatment with MP and used it to show that the Molt-4 sensitive controls had a significantly higher rate of cells entering apoptosis (2.7-fold, P<0.00001) relative to the resistant cell lines. Additionally, when treated with MP, the sensitive cell line showed a significant increase in the rate at which cells enter apoptosis compared to its controls (2.4-fold, P<0.00001). Of note, the resistant cell lines had a higher rate of antimetabolite incorporation into the DNA of viable cells (>1.4-fold, P<0.01). Lastly, in contrast to the other cell lines, the Molt-4 resistant subline continued to cycle, though at a rate slower relative to its control, rather than proceed to apoptosis. This led to a larger S-phase block in the Molt-4 resistant cell line, but not a higher rate of cell death. Gene expression of apoptosis, cell cycle, and repair genes were consistent with mechanistic dynamics described by the model. In summary, the mathematical model provides a quantitative assessment to compare the cell cycle effects of MP in cells with varying degrees of MP resistance. PMID:16333308

  14. Ophiobolin A, a sesterpenoid fungal phytotoxin, displays different mechanisms of cell death in mammalian cells depending upon the cancer cell origin

    PubMed Central

    Morrison, Rachel; Lodge, Tiffany; Evidente, Antonio; Kiss, Robert; Townley, Helen

    2017-01-01

    Herein we have undertaken a systematic analysis of the effects of the fungal derivative ophiobolin A (OphA) on eight cancer cell lines from different tissue types. The LD50 for each cell line was determined and the change in cell size determined. Flow cytometric analysis and western blotting were used to assess the cell death markers for early apoptosis, late apoptosis and necrosis, and the involvement of the caspase signalling pathway. Alterations in calcium levels and reactive oxygen species were assessed due to their integral involvement in intracellular signalling. Subsequently, the endoplasmic reticulum (ER) and mitochondrial responses were investigated more closely. The extent of ER swelling, and the upregulation of proteins involved in the unfolded protein responses (UPR) were seen to vary according to cell line. The mitochondria were also shown to behave differently in response to the OphA in the different cell lines in terms of the change in membrane potential, the total area of mitochondria in the cell and the number of mitochondrial bifurcations. The data obtained in the present study indicate that the cancer cell lines tested are unable to successfully activate the ER stress/UPR responses, and that the mitochondria appear to be a central player in OphA-induced cancer cell death. PMID:28112374

  15. A facile, branched DNA assay to quantitatively measure glucocorticoid receptor auto-regulation in T-cell acute lymphoblastic leukemia

    PubMed Central

    Schwartz, Jason R.; Sarvaiya, Purvaba J.; Leiva, Lily E.; Velez, Maria C.; Singleton, Tammuella C.; Yu, Lolie C.; Vedeckis, Wayne V.

    2012-01-01

    Glucocorticoid (GC) steroid hormones are used to treat acute lymphoblastic leukemia (ALL) because of their pro-apoptotic effects in hematopoietic cells. However, not all leukemia cells are sensitive to GC, and no assay to stratify patients is available. In the GC-sensitive T-cell ALL cell line CEM-C7, auto-up-regulation of RNA transcripts for the glucocorticoid receptor (GR) correlates with increased apoptotic response. This study aimed to determine if a facile assay of GR transcript levels might be promising for stratifying ALL patients into hormone-sensitive and hormone-resistant populations. The GR transcript profiles of various lymphoid cell lines and 4 bone marrow samples from patients with T-cell ALL were analyzed using both an optimized branched DNA (bDNA) assay and a real-time quantitative reverse transcription-polymerase chain reaction assay. There were significant correlations between both assay platforms when measuring total GR (exon 5/6) transcripts in various cell lines and patient samples, but not for a probe set that detects a specific, low abundance GR transcript (exon 1A3). Our results suggest that the bDNA platform is reproducible and precise when measuring total GR transcripts and, with further development, may ultimately offer a simple clinical assay to aid in the prediction of GC-sensitivity in ALL patients. PMID:22739263

  16. Antioxidant, Antiproliferative, and Antiangiogenesis Effects of Polyphenol-Rich Seaweed (Sargassum muticum)

    PubMed Central

    Namvar, Farideh; Mohamad, Rosfarizan; Baharara, Javad; Zafar-Balanejad, Saeedeh; Fargahi, Fahimeh; Rahman, Heshu Sulaiman

    2013-01-01

    In the present study, we evaluated the effect of brown seaweeds Sargassum muticum methanolic extract (SMME), against MCF-7 and MDA-MB-231 breast cancer cell lines proliferation. This algae extract was also evaluated for reducing activity and total polyphenol content. The MTT assay results indicated that the extracts were cytotoxic against breast cancer cell lines in a dose-dependent manner, with IC50 of 22 μg/ml for MCF-7 and 55 μg/ml for MDA-MB-231 cell lines. The percentages of apoptotic MCF-7-treated cells increased from 13% to 67% by increasing the concentration of the SMME. The antiproliferative efficacy of this algal extract was positively correlated with the total polyphenol contents, suggesting a causal link related to extract content of phenolic acids. Cell cycle analysis showed a significant increase in the accumulation of SMME-treated cells at sub-G1 phase, indicating the induction of apoptosis by SMME. Further apoptosis induction was confirmed by Hoechst 33342 and AO/PI staining. Also SMME implanted in vivo into fertilized chicken eggs induced dose-related antiangiogenic activity in the chorioallantoic membrane (CAM). Our results imply a new insight on the novel function of Sargassum muticum polyphenol-rich seaweed in cancer research by induction of apoptosis, antioxidant, and antiangiogenesis effects. PMID:24078922

  17. Characterization of the IPEC-J2 MDR1 (iP-gp) cell line as a tool for identification of P-gp substrates.

    PubMed

    Ozgür, Burak; Saaby, Lasse; Langthaler, Kristine; Brodin, Birger

    2018-01-15

    Recently, we transfected the porcine intestinal cell line IPEC-J2, with human P-glycoprotein (P-gp, ABCB1). The resulting cell line, iP-gp, has a high expression of functional human P-gp in the apical membrane, and a low expression of nonhuman ATP-binding cassette (ABC) transporters. The aim of the present work was to investigate the usability of iP-gp cell line for determining transepithelial transport kinetics of the prototypical P-gp substrates digoxin and rhodamine 123. The cell line generated tight monolayers after 16days of culture, reflected by high transepithelial electrical resistance values (TEER>15,000Ω·cm 2 ), immunocytochemistry and low fluxes of the paracellular flux marker [ 14 C]-mannitol. Monolayer integrity was not affected the common solvents dimethyl sulfoxide (DMSO), methanol and ethanol in concentrations up to 2% (v/v). Transepithelial fluxes of [ 3 H]-labeled digoxin and rhodamine 123 were measured at varying donor concentrations, and kinetic parameters were estimated. K m and V max of P-gp mediated basolateral-to-apical (B-A) flux of rhodamine 123 were estimated to 332±124μM and 111±16pmol·cm -2 ·min -1 (n=3, total N=6), respectively. V max and K m of digoxin B-A flux could not be estimated due to the low aqueous solubility of digoxin. The half maximal inhibitory concentrations (IC 50 ) of the selective P-gp inhibitor, zosuquidar (LY-335979), were estimated to 0.05±0.01μM (n=3, total N=6) and 0.04±0.01μM (n=3, total N=6) in transport experiments with digoxin and rhodamine 123 as substrates, respectively. Bidirectional fluxes of digoxin and rhodamine 123 were measured in transfected Madin Darby canine kidney cells (MDCK II MDR1) and compared with the fluxes obtained with the iP-gp cell monolayers. Efflux ratios were highest in the iP-gp cells, due to a tighter paracellular pathway. In conclusion, both digoxin and rhodamine 123 could be used to obtain IC 50 values of inhibition, K i values were only possible to obtain using rhodamine 123. The observed tightness, robustness towards solvents and the high efflux ratios confirmed that the iP-gp cell line may serve as a useful screening tool for investigations of substrate-P-gp interactions and modulation of P-gp function. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Cervical Cancer Cell Line Secretome Highlights the Roles of Transforming Growth Factor-Beta-Induced Protein ig-h3, Peroxiredoxin-2, and NRF2 on Cervical Carcinogenesis.

    PubMed

    Kontostathi, Georgia; Zoidakis, Jerome; Makridakis, Manousos; Lygirou, Vasiliki; Mermelekas, George; Papadopoulos, Theofilos; Vougas, Konstantinos; Vlamis-Gardikas, Alexios; Drakakis, Peter; Loutradis, Dimitrios; Vlahou, Antonia; Anagnou, Nicholas P; Pappa, Kalliopi I

    2017-01-01

    Cancer cells acquire unique secretome compositions that contribute to tumor development and metastasis. The aim of our study was to elucidate the biological processes involved in cervical cancer, by performing a proteomic analysis of the secretome from the following informative cervical cell lines: SiHa (HPV16+), HeLa (HPV18+), C33A (HPV-), and HCK1T (normal). Proteins were analyzed by 2D gel electrophoresis coupled to MALDI-TOF-MS. Enrichment of secreted proteins with characteristic profiles for each cell line was followed by the identification of differentially expressed proteins. Particularly, transforming growth factor-beta-induced protein ig-h3 (Beta ig-h3) and peroxiredoxin-2 (PRDX2) overexpression in the secretome of cancer cell lines was detected and confirmed by Western blot. Bioinformatics analysis identified the transcription factor NRF2 as a regulator of differentially expressed proteins in the cervical cancer secretome. NRF2 levels were measured by both Western blot and Multiple Reaction Monitoring (MRM) in the total cell extract of the four cell lines. NRF2 was upregulated in SiHa and C33A compared to HCK1T. In conclusion, the secreted proteins identified in cervical cancer cell lines indicate that aberrant NRF2-mediated oxidative stress response (OSR) is a prominent feature of cervical carcinogenesis.

  19. Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen.

    PubMed

    Michaelis, Martin; Agha, Bishr; Rothweiler, Florian; Löschmann, Nadine; Voges, Yvonne; Mittelbronn, Michel; Starzetz, Tatjana; Harter, Patrick N; Abhari, Behnaz A; Fulda, Simone; Westermann, Frank; Riecken, Kristoffer; Spek, Silvia; Langer, Klaus; Wiese, Michael; Dirks, Wilhelm G; Zehner, Richard; Cinatl, Jaroslav; Wass, Mark N; Cinatl, Jindrich

    2015-02-03

    Flubendazole was shown to exert anti-leukaemia and anti-myeloma activity through inhibition of microtubule function. Here, flubendazole was tested for its effects on the viability of in total 461 cancer cell lines. Neuroblastoma was identified as highly flubendazole-sensitive cancer entity in a screen of 321 cell lines from 26 cancer entities. Flubendazole also reduced the viability of five primary neuroblastoma samples in nanomolar concentrations thought to be achievable in humans and inhibited vessel formation and neuroblastoma tumour growth in the chick chorioallantoic membrane assay. Resistance acquisition is a major problem in high-risk neuroblastoma. 119 cell lines from a panel of 140 neuroblastoma cell lines with acquired resistance to various anti-cancer drugs were sensitive to flubendazole in nanomolar concentrations. Tubulin-binding agent-resistant cell lines displayed the highest flubendazole IC50 and IC90 values but differences between drug classes did not reach statistical significance. Flubendazole induced p53-mediated apoptosis. The siRNA-mediated depletion of the p53 targets p21, BAX, or PUMA reduced the neuroblastoma cell sensitivity to flubendazole with PUMA depletion resulting in the most pronounced effects. The MDM2 inhibitor and p53 activator nutlin-3 increased flubendazole efficacy while RNAi-mediated p53-depletion reduced its activity. In conclusion, flubendazole represents a potential treatment option for neuroblastoma including therapy-refractory cells.

  20. Identification of flubendazole as potential anti-neuroblastoma compound in a large cell line screen

    PubMed Central

    Michaelis, Martin; Agha, Bishr; Rothweiler, Florian; Löschmann, Nadine; Voges, Yvonne; Mittelbronn, Michel; Starzetz, Tatjana; Harter, Patrick N.; Abhari, Behnaz A.; Fulda, Simone; Westermann, Frank; Riecken, Kristoffer; Spek, Silvia; Langer, Klaus; Wiese, Michael; Dirks, Wilhelm G.; Zehner, Richard; Cinatl, Jaroslav; Wass, Mark N.; Cinatl, Jindrich

    2015-01-01

    Flubendazole was shown to exert anti-leukaemia and anti-myeloma activity through inhibition of microtubule function. Here, flubendazole was tested for its effects on the viability of in total 461 cancer cell lines. Neuroblastoma was identified as highly flubendazole-sensitive cancer entity in a screen of 321 cell lines from 26 cancer entities. Flubendazole also reduced the viability of five primary neuroblastoma samples in nanomolar concentrations thought to be achievable in humans and inhibited vessel formation and neuroblastoma tumour growth in the chick chorioallantoic membrane assay. Resistance acquisition is a major problem in high-risk neuroblastoma. 119 cell lines from a panel of 140 neuroblastoma cell lines with acquired resistance to various anti-cancer drugs were sensitive to flubendazole in nanomolar concentrations. Tubulin-binding agent-resistant cell lines displayed the highest flubendazole IC50 and IC90 values but differences between drug classes did not reach statistical significance. Flubendazole induced p53-mediated apoptosis. The siRNA-mediated depletion of the p53 targets p21, BAX, or PUMA reduced the neuroblastoma cell sensitivity to flubendazole with PUMA depletion resulting in the most pronounced effects. The MDM2 inhibitor and p53 activator nutlin-3 increased flubendazole efficacy while RNAi-mediated p53-depletion reduced its activity. In conclusion, flubendazole represents a potential treatment option for neuroblastoma including therapy-refractory cells. PMID:25644037

  1. Cervical Cancer Cell Line Secretome Highlights the Roles of Transforming Growth Factor-Beta-Induced Protein ig-h3, Peroxiredoxin-2, and NRF2 on Cervical Carcinogenesis

    PubMed Central

    Zoidakis, Jerome; Makridakis, Manousos; Lygirou, Vasiliki; Mermelekas, George; Vougas, Konstantinos; Drakakis, Peter

    2017-01-01

    Cancer cells acquire unique secretome compositions that contribute to tumor development and metastasis. The aim of our study was to elucidate the biological processes involved in cervical cancer, by performing a proteomic analysis of the secretome from the following informative cervical cell lines: SiHa (HPV16+), HeLa (HPV18+), C33A (HPV−), and HCK1T (normal). Proteins were analyzed by 2D gel electrophoresis coupled to MALDI-TOF-MS. Enrichment of secreted proteins with characteristic profiles for each cell line was followed by the identification of differentially expressed proteins. Particularly, transforming growth factor-beta-induced protein ig-h3 (Beta ig-h3) and peroxiredoxin-2 (PRDX2) overexpression in the secretome of cancer cell lines was detected and confirmed by Western blot. Bioinformatics analysis identified the transcription factor NRF2 as a regulator of differentially expressed proteins in the cervical cancer secretome. NRF2 levels were measured by both Western blot and Multiple Reaction Monitoring (MRM) in the total cell extract of the four cell lines. NRF2 was upregulated in SiHa and C33A compared to HCK1T. In conclusion, the secreted proteins identified in cervical cancer cell lines indicate that aberrant NRF2-mediated oxidative stress response (OSR) is a prominent feature of cervical carcinogenesis. PMID:28261610

  2. Isolation of Canine parvovirus with a view to identify the prevalent serotype on the basis of partial sequence analysis

    PubMed Central

    Kaur, Gurpreet; Chandra, Mudit; Dwivedi, P. N.; Sharma, N. S.

    2015-01-01

    Aim: The aim of this study was to isolate Canine parvovirus (CPV) from suspected dogs on madin darby canine kidney (MDCK) cell line and its confirmation by polymerase chain reaction (PCR) and nested PCR (NPCR). Further, VP2 gene of the CPV isolates was amplified and sequenced to determine prevailing antigenic type. Materials and Methods: A total of 60 rectal swabs were collected from dogs showing signs of gastroenteritis, processed and subjected to isolation in MDCK cell line. The samples showing cytopathic effects (CPE) were confirmed by PCR and NPCR. These samples were subjected to PCR for amplification of VP2 gene of CPV, sequenced and analyzed to study the prevailing antigenic types of CPV. Results: Out of the 60 samples subjected to isolation in MDCK cell line five samples showed CPE in the form of rounding of cells, clumping of cells and finally detachment of the cells. When these samples and the two commercially available vaccines were subjected to PCR for amplification of VP2 gene, a 1710 bp product was amplified. The sequence analysis revealed that the vaccines belonged to the CPV-2 type and the samples were of CPV-2b type. Conclusion: It can be concluded from the present study that out of a total of 60 samples 5 samples exhibited CPE as observed in MDCK cell line. Sequence analysis of the VP2 gene among the samples and vaccine strains revealed that samples belonged to CPV-2b type and vaccines belonging to CPV-2. PMID:27046996

  3. Oxidative Stress and Nano-Toxicity Induced by TiO2 and ZnO on WAG Cell Line

    PubMed Central

    Dubey, Akhilesh; Goswami, Mukunda; Yadav, Kamalendra; Chaudhary, Dharmendra

    2015-01-01

    Metallic nanoparticles are widely used in cosmetics, food products and textile industry. These particles are known to cause respiratory toxicity and epithelial inflammation. They are eventually released to aquatic environment necessitating toxicity studies in cells from respiratory organs of aquatic organisms. Hence, we have developed and characterized a new cell line, WAG, from gill tissue of Wallago attu for toxicity assessment of TiO2 and ZnO nanoparticles. The efficacy of the cell line as an in vitro system for nanoparticles toxicity studies was established using electron microscopy, cytotoxicity assays, genotoxicity assays and oxidative stress biomarkers. Results obtained with MTT assay, neutral red uptake assay and lactate dehydrogenase assay showed acute toxicity to WAG cells with IC50 values of 25.29±0.12, 34.99±0.09 and 35.06±0.09 mg/l for TiO2 and 5.716±0.1, 3.160±0.1 and 5.57±0.12 mg/l for ZnO treatment respectively. The physicochemical properties and size distribution of nanoparticles were characterized using electron microscopy with integrated energy dispersive X-ray spectroscopy and Zetasizer. Dose dependent increase in DNA damage, lipid peroxidation and protein carbonylation along with a significant decrease in activity of Superoxide Dismutase, Catalase, total Glutathione levels and total antioxidant capacity with increasing concentration of exposed nanoparticles indicated that the cells were under oxidative stress. The study established WAG cell line as an in vitro system to study toxicity mechanisms of nanoparticles on aquatic organisms. PMID:26011447

  4. Lethality of radiation-induced chromosome aberrations in human tumour cell lines with different radiosensitivities.

    PubMed

    Coco-Martin, J M; Ottenheim, C P; Bartelink, H; Begg, A C

    1996-03-01

    In order to find an explanation for the eventual disappearance of all chromosome aberrations in two radiosensitive human tumour cell lines, the type and stability of different aberration types was investigated in more detail. To classify the aberrations into unstable and stable types, three-colour fluorescence in situ hybridization was performed, including a whole-chromosome probe, a pancentromere probe, and a stain for total DNA. This technique enables the appropriate classification of the aberrations principally by the presence (stable) or not (unstable) of a single centromere per chromosome. Unstable-type aberrations were found to disappear within 7 days (several divisions) in the two radiosensitive and the two radioresistant tumour lines investigated. Stable-type aberrations were found to remain at an approximately constant level over the duration of the experiment (14 days; 8-10 divisions) in the two radioresistant lines. In contrast, the majority of these stable-type aberrations had disappeared by 14 days in the two radiosensitive lines. The previous findings of disappearance of total aberrations in radiosensitive cells was therefore not due to a reduced induction of stable-type aberrations, but the complete disappearance of cells with this aberration type. These results could not be explained by differences in apoptosis or G1 blocks. Two possible explanations for these unexpected findings involve non-random induction of unstable-type aberrations, or lethality of stable-type aberrations. The results suggest caution in the use of stable-type aberration numbers as a predictor for radiosensitivity.

  5. Mutational analysis of genes coding for cell surface proteins in colorectal cancer cell lines reveal novel altered pathways, druggable mutations and mutated epitopes for targeted therapy

    PubMed Central

    Correa, Bruna R.; Bettoni, Fabiana; Koyama, Fernanda C.; Navarro, Fabio C.P.; Perez, Rodrigo O.; Mariadason, John; Sieber, Oliver M.; Strausberg, Robert L.; Simpson, Andrew J.G.; Jardim, Denis L.F.; Reis, Luiz Fernando L.; Parmigiani, Raphael B.; Galante, Pedro A.F.; Camargo, Anamaria A.

    2014-01-01

    We carried out a mutational analysis of 3,594 genes coding for cell surface proteins (Surfaceome) in 23 colorectal cancer cell lines, searching for new altered pathways, druggable mutations and mutated epitopes for targeted therapy in colorectal cancer. A total of 3,944 somatic non-synonymous substitutions and 595 InDels, occurring in 2,061 (57%) Surfaceome genes were catalogued. We identified 48 genes not previously described as mutated in colorectal tumors in the TCGA database, including genes that are mutated and expressed in >10% of the cell lines (SEMA4C, FGFRL1, PKD1, FAM38A, WDR81, TMEM136, SLC36A1, SLC26A6, IGFLR1). Analysis of these genes uncovered important roles for FGF and SEMA4 signaling in colorectal cancer with possible therapeutic implications. We also found that cell lines express on average 11 druggable mutations, including frequent mutations (>20%) in the receptor tyrosine kinases AXL and EPHA2, which have not been previously considered as potential targets for colorectal cancer. Finally, we identified 82 cell surface mutated epitopes, however expression of only 30% of these epitopes was detected in our cell lines. Notwithstanding, 92% of these epitopes were expressed in cell lines with the mutator phenotype, opening new venues for the use of “general” immune checkpoint drugs in this subset of patients. PMID:25193853

  6. Mesenchymal change and drug resistance in neuroblastoma.

    PubMed

    Naiditch, Jessica A; Jie, Chunfa; Lautz, Timothy B; Yu, Songtao; Clark, Sandra; Voronov, Dimitry; Chu, Fei; Madonna, Mary Beth

    2015-01-01

    Metastatic initiation has many phenotypic similarities to epithelial-to-mesenchymal transition, including loss of cell-cell adhesion, increased invasiveness, and increased cell mobility. We have previously demonstrated that drug resistance is associated with a metastatic phenotype in neuroblastoma (NB). The purpose of this project was to determine if the development of doxorubicin resistance is associated with characteristics of mesenchymal change in human NB cells. Total RNA was isolated from wild type (WT) and doxorubicin-resistant (DoxR) human NB cell lines (SK-N-SH and SK-N-BE(2)C) and analyzed using the Illumina Human HT-12 version 4 Expression BeadChip. Differentially expressed genes (DEGs) were identified. Volcano plots and heat maps were generated. Genes of interest with a fold change in expression >1.5 and an adjusted P < 0.1 were analyzed. Immunofluorescence (IF) and Western blot analysis confirmed microarray results of interest. Matrigel invasion assay and migration wounding assays were performed. Volcano plots and heat maps visually demonstrated a similar pattern of DEGs in the SK-N-SH and SK-N-BE(2)C DoxR cell lines relative to their parental WT lines. Venn diagramming revealed 1594 DEGs common to both DoxR cell lines relative to their parental cell lines. Network analysis pointed to several significantly upregulated epithelial-to-mesenchymal transition pathways, through TGF-beta pathways via RhoA, PI3K, and ILK and via SMADs, as well as via notch signaling pathways. DoxR cell lines displayed a more invasive phenotype than respective WT cell lines. Human SK-N-SH and SK-N-BE(2)C NB cells display characteristics of mesenchymal change via multiple pathways in the transition to a drug-resistant state. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Novel Listeria Vectors Secreting Gut Flora Altering Agents to Prevent Colon Cancer and Treat Colitis

    DTIC Science & Technology

    2016-09-01

    L1 KO cell line using CRISPR to optimize library screening for anti-B7-H1 scFv. We collected useful data on immune and signaling events in colon...down B7-H1 in the B16F10 line for screening, but this was also inefficient. We then used CRISPR /Cas9 to effect a total KO of B7-H1 in the B16F10 cell

  8. Putative embryonic stem cells derived from porcine cloned blastocysts using induced pluripotent stem cells as donors.

    PubMed

    Kim, Eunhye; Hwang, Seon-Ung; Yoo, Hyunju; Yoon, Junchul David; Jeon, Yubyeol; Kim, Hyunggee; Jeung, Eui-Bae; Lee, Chang-Kyu; Hyun, Sang-Hwan

    2016-03-01

    The establishment of porcine embryonic stem cells (ESCs) would have great impact in biomedical studies and preclinical trials through their use in genetic engineering. However, authentic porcine ESCs have not been established until now. In this study, a total of seven putative ESC lines were derived from porcine embryos of various origins, including in vitro fertilization, parthenogenetic activation, and, in particular, induced pluripotent stem (iPS) nuclear transfer (NT) from a donor cell with induced pluripotent stem cells (iPSCs). To characterize these cell lines, several assays including an assessment of intensive alkaline phosphatase activity, karyotyping, embryoid body formation, expression analysis of the pluripotency-associated markers, and the three germ layerassociated markers were performed. Based on quantitative polymerase chain reaction, the expression levels of REX1 and FGFR2 in iPS-NT lines were higher than those of cells of other origins. Additionally, only iPS-NT lines showed multiple aberrant patterns of nuclear foci elucidated by immunofluorescence staining of H3K27me3 as a marker of the state of X chromosome inactivation and a less mature form of mitochondria like naive ESCs, by transmission electron microscopy. Together, these data suggested that established putative porcine ESC lines generally exhibited a primed pluripotent state, like human ESCs. However, iPS-NT lines have especially unique characteristics distinct from other origins because they have more epigenetic instability and naive-like mitochondrial morphology than other putative ESC lines. This is the first study to establish and characterize the iPSC-derived putative ESC lines and compare them with other lines derived from different origins in pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Elevated oxidized glutathione in cystinotic proximal tubular epithelial cells.

    PubMed

    Wilmer, Martijn J G; de Graaf-Hess, Adriana; Blom, Henk J; Dijkman, Henry B P M; Monnens, Leo A; van den Heuvel, Lambertus P; Levtchenko, Elena N

    2005-11-18

    Cystinosis, the most frequent cause of inborn Fanconi syndrome, is characterized by the lysosomal cystine accumulation, caused by mutations in the CTNS gene. To elucidate the pathogenesis of cystinosis, we cultured proximal tubular cells from urine of cystinotic patients (n = 9) and healthy controls (n = 9), followed by immortalization with human papilloma virus (HPV E6/E7). Obtained cell lines displayed basolateral polarization, alkaline phosphatase activity, and presence of aminopeptidase N (CD-13) and megalin, confirming their proximal tubular origin. Cystinotic cell lines exhibited elevated cystine levels (0.86 +/- 0.95 nmol/mg versus 0.09 +/- 0.01 nmol/mg protein in controls, p = 0.03). Oxidized glutathione was elevated in cystinotic cells (1.16 +/- 0.83 nmol/mg versus 0.29 +/- 0.18 nmol/mg protein, p = 0.04), while total glutathione, free cysteine, and ATP contents were normal in these cells. In conclusion, elevated oxidized glutathione in cystinotic proximal tubular epithelial cell lines suggests increased oxidative stress, which may contribute to tubular dysfunction in cystinosis.

  10. Synthesis of a high molecular weight thyroglobulin dimer by two ovine thyroid cell lines: the OVNIS.

    PubMed

    Hovsépian, S; Aouani, A; Fayet, G

    1986-05-01

    The OVNIS 6H and 5H thyroid cells, 2 permanent cell lines isolated 3 years ago from ovine tissue, synthesize a high molecular weight glycosylated protein, immunologically related to ovine thyroglobulin, which is similar to the prothyroid hormone dimer (17-19) S: thyroglobulin. Using sucrose gradient centrifugation and cell labelling with [14C]Leu or [3H]GlNH2, radioactivity was observed in proteins purified from cell layers and from cell culture media. Addition of thyrotropin to or removal from the media resulted respectively in an increase (+773%) or decrease (-1090%) of the total radioactivity detected in the (17-19)S thyroglobulin fraction. Estimation of thyroglobulin by RIA gave similar though less pronounced effects. These experiments prove (1) that thyroglobulin is still expressed in these OVNIS thyroid cell lines even after 3 years of permanent culture, (2) that TSH modulates the level of this protein through a TSH-receptor functional system.

  11. Chemical composition and cytotoxicity evaluation of essential oil from leaves of Casearia sylvestris, its main compound α-zingiberene and derivatives.

    PubMed

    Bou, Diego Dinis; Lago, João Henrique G; Figueiredo, Carlos R; Matsuo, Alisson L; Guadagnin, Rafael C; Soares, Marisi G; Sartorelli, Patricia

    2013-08-08

    Casearia sylvestris (Salicaceae), popularly known as "guaçatonga", is a plant widely used in folk medicine to treat various diseases, including cancer. The present work deals with the chemical composition as well as the cytotoxic evaluation of its essential oil, its main constituent and derivatives. Thus, the crude essential oil from leaves of C. sylvestris was obtained using a Clevenger type apparatus and analyzed by GC/MS. This analysis afforded the identification of 23 substances, 13 of which corresponded to 98.73% of the total oil composition, with sesquiterpene a-zingiberene accounting for 50% of the oil. The essential oil was evaluated for cytotoxic activity against several tumor cell lines, giving IC50 values ranging from 12 to 153 mg/mL. Pure a-zingiberene, isolated from essential oil, was also evaluated against the tumor cell lines showing activity for HeLa, U-87, Siha and HL60 cell lines, but with IC50 values higher than those determined for the crude essential oil. Aiming to evaluate the effect of the double bonds of a-zingiberene on the cytotoxic activity, partially hydrogenated a-zingiberene (PHZ) and fully hydrogenated a-zingiberene (THZ) derivatives were obtained. For the partially hydrogenated derivative only cytotoxic activity to the B16F10-Nex2 cell line (IC50 65 mg/mL) was detected, while totally hydrogenated derivative showed cytotoxic activity for almost all cell lines, with B16F10-Nex2 and MCF-7 as exceptions and with IC50 values ranging from 34 to 65 mg/mL. These results indicate that cytotoxic activity is related with the state of oxidation of compound.

  12. Biological activities and chemical composition of lichens from Serbia

    PubMed Central

    Kosanic, Marijana; Rankovic, Branislav; Stanojkovic, Tatjana; Vasiljevic, Perica; Manojlovic, Nedeljko

    2014-01-01

    The aim of this study is to investigate chemical composition of acetone extracts of the lichens Parmelia arseneana and Acarospora fuscata and in vitro antioxidant, antimicrobial, and anticancer activities of these extracts and gyrophoric acid isolated from A. fuscata. The HPLC-UV method was used for the identification of secondary metabolites. Stictic acid, norstictic acid, gyrophoric acid, usnic acid, atranorin and chloroatranorin were identified in the A. fuscata. In P. arseneana, we detected stictic acid, norstictic acid, usnic acid and atranorin, while gyrophoric acid was not identified. Antioxidant activity was evaluated by measuring the scavenging capacity of tested samples on DPPH and superoxide anion radicals, reducing the power of samples and determination of total phenolic compounds in extracts. As a result of the study, gyrophoric acid was found to have the largest DPPH radical scavenging activity with an IC50 value of 105.75 µg/ml. Moreover, the tested samples had an effective superoxide anion radical scavenging and reducing power. The total content of phenol in extracts was determined as pyrocatechol equivalent. The antimicrobial activity was estimated by determination of the minimal inhibitory concentration by the broth microdilution method. The most active was also gyrophoric acid, with minimum inhibitory concentration values ranging from 0.019 to 1.25 mg/ml. Anticancer activity was tested against LS174 (human colon carcinoma cell line), A549 (human lung carcinoma cell line), Fem-x (malignant melanoma cell line), and a chronic myelogeneous leukaemia K562 cell line using the MTT method. Extract of P. arseneana expressed the strongest anticancer activity against all cell lines with IC50 values ranging from 11.61 to 47.06 µg/ml. PMID:26417336

  13. Establishment and characterization of feeder cell-dependent bovine fetal liver cell lines.

    PubMed

    Talbot, Neil C; Wang, Ling; Garrett, Wesley M; Caperna, Thomas J; Tang, Young

    2016-03-01

    The establishment and initial characterization of bovine fetal liver cell lines are described. Bovine fetal hepatocytes were cultured from the liver of a 34-d bovine fetus by physical disruption of the liver tissue. Released liver cells and clumps of cells were plated on STO (SIMS mouse strain, thioguanine- and ouabain-resistant) feeder layers and were cultured in a medium supplemented with 10% fetal bovine serum. After 2-3 wk, primary colonies of hepatocytes were observed by phase-contrast microscopic observation. Individual hepatocyte colonies were colony-cloned into independent bovine fetal liver (BFL) cell lines. Two cell lines, BFL-6 and BFL-9, grew the best of several isolates, and they were further characterized for growth potential and for hepatocyte morphology and function. The two cell lines were found to grow markedly better in the presence of the transforming growth factor (TGF)-beta inhibitor, SB431542 (1 μM). Their continuous culture also depended on a particular medium height-for T12.5 flasks, 3 ml total medium produced optimum growth. Higher or lower amounts of medium caused less cell growth or cessation of growth. The cell lines were propagated for over a year at split ratios of 1:2 or 1:3 at each passage until reaching senescence at approximately 30 passages. The cells were laterally polarized with well-developed canalicular spaces occurring between adjacent BFL cells. Treatment of the cultures with cyclic adenosine monophosphate (cAMP)-stimulating chemicals or peptides (e.g., forskolin or glucagon) caused physical expansion of the canaliculi between the cells within 15 min. The cells secreted a spectrum of serum proteins, were positive for the expression of several hepatocyte-specific genes, and converted ammonia to urea, although at a relatively low rate. The culture system provides an in vitro model of fetal bovine hepatocytes and is the first demonstration of the continuous culture of normal bovine hepatocytes as cell lines.

  14. Transcription Factor Activities Enhance Markers of Drug Sensitivity in Cancer.

    PubMed

    Garcia-Alonso, Luz; Iorio, Francesco; Matchan, Angela; Fonseca, Nuno; Jaaks, Patricia; Peat, Gareth; Pignatelli, Miguel; Falcone, Fiammetta; Benes, Cyril H; Dunham, Ian; Bignell, Graham; McDade, Simon S; Garnett, Mathew J; Saez-Rodriguez, Julio

    2018-02-01

    Transcriptional dysregulation induced by aberrant transcription factors (TF) is a key feature of cancer, but its global influence on drug sensitivity has not been examined. Here, we infer the transcriptional activity of 127 TFs through analysis of RNA-seq gene expression data newly generated for 448 cancer cell lines, combined with publicly available datasets to survey a total of 1,056 cancer cell lines and 9,250 primary tumors. Predicted TF activities are supported by their agreement with independent shRNA essentiality profiles and homozygous gene deletions, and recapitulate mutant-specific mechanisms of transcriptional dysregulation in cancer. By analyzing cell line responses to 265 compounds, we uncovered numerous TFs whose activity interacts with anticancer drugs. Importantly, combining existing pharmacogenomic markers with TF activities often improves the stratification of cell lines in response to drug treatment. Our results, which can be queried freely at dorothea.opentargets.io, offer a broad foundation for discovering opportunities to refine personalized cancer therapies. Significance: Systematic analysis of transcriptional dysregulation in cancer cell lines and patient tumor specimens offers a publicly searchable foundation to discover new opportunities to refine personalized cancer therapies. Cancer Res; 78(3); 769-80. ©2017 AACR . ©2017 American Association for Cancer Research.

  15. Getting the current out

    NASA Astrophysics Data System (ADS)

    Burger, D. R.

    1983-11-01

    Progress of a photovoltaic (PV) device from a research concept to a competitive power-generation source requires an increasing concern with current collection. The initial metallization focus is usually on contact resistance, since a good ohmic contact is desirable for accurate device characterization measurements. As the device grows in size, sheet resistance losses become important and a metal grid is usually added to reduce the effective sheet resistance. Later, as size and conversion efficiency continue to increase, grid-line resistance and cell shadowing must be considered simultaneously, because grid-line resistance is inversely related to total grid-line area and cell shadowing is directly related. A PV cell grid design must consider the five power-loss phenomena mentioned above: sheet resistance, contact resistance, grid resistance, bus-bar resistance and cell shadowing. Although cost, reliability and usage are important factors in deciding upon the best metallization system, this paper will focus only upon grid-line design and substrate material problems for flat-plate solar arrays.

  16. Brush border membrane vesicle and Caco-2 cell line: Two experimental models for evaluation of absorption enhancing effects of saponins, bile salts, and some synthetic surfactants

    PubMed Central

    Moghimipour, Eskandar; Tabassi, Sayyed Abolghassem Sajadi; Ramezani, Mohammad; Handali, Somayeh; Löbenberg, Raimar

    2016-01-01

    The aim of this study was to investigate the influence of absorption enhancers in the uptake of hydrophilic compounds. The permeation of the two hydrophilic drug models gentamicin and 5 (6)-carboxyfluorescein (CF) across the brush border membrane vesicles and Caco-2 cell lines were evaluated using total saponins of Acanthophyllum squarrosum, Quillaja saponaria, sodium lauryl sulfate, sodium glycocholate, sodium taurodeoxycholate, and Tween 20 as absorption enhancers. Transepithelial electrical resistance (TEER) measurement was utilized to assess the paracellular permeability of cell lines. Confocal laser scanning microscopy (CLSM) was performed to obtain images of the distribution of CF in Caco-2 cells. These compounds were able to loosen tight junctions, thus increasing paracellular permeability. CLSM confirmed the effect of these absorption enhancers on CF transport across Caco-2 lines and increased the Caco-2 permeability via transcellular route. It was also confirmed that the decrease in TEER was transient and reversible after removal of permeation enhancers. PMID:27429925

  17. Preparation of Proper Immunogen by Cloning and Stable Expression of cDNA coding for Human Hematopoietic Stem Cell Marker CD34 in NIH-3T3 Mouse Fibroblast Cell Line

    PubMed Central

    Shafaghat, Farzaneh; Abbasi-Kenarsari, Hajar; Majidi, Jafar; Movassaghpour, Ali Akbar; Shanehbandi, Dariush; Kazemi, Tohid

    2015-01-01

    Purpose: Transmembrane CD34 glycoprotein is the most important marker for identification, isolation and enumeration of hematopoietic stem cells (HSCs). We aimed in this study to clone the cDNA coding for human CD34 from KG1a cell line and stably express in mouse fibroblast cell line NIH-3T3. Such artificial cell line could be useful as proper immunogen for production of mouse monoclonal antibodies. Methods: CD34 cDNA was cloned from KG1a cell line after total RNA extraction and cDNA synthesis. Pfu DNA polymerase-amplified specific band was ligated to pGEMT-easy TA-cloning vector and sub-cloned in pCMV6-Neo expression vector. After transfection of NIH-3T3 cells using 3 μg of recombinant construct and 6 μl of JetPEI transfection reagent, stable expression was obtained by selection of cells by G418 antibiotic and confirmed by surface flow cytometry. Results: 1158 bp specific band was aligned completely to reference sequence in NCBI database corresponding to long isoform of human CD34. Transient and stable expression of human CD34 on transfected NIH-3T3 mouse fibroblast cells was achieved (25% and 95%, respectively) as shown by flow cytometry. Conclusion: Cloning and stable expression of human CD34 cDNA was successfully performed and validated by standard flow cytometric analysis. Due to murine origin of NIH-3T3 cell line, CD34-expressing NIH-3T3 cells could be useful as immunogen in production of diagnostic monoclonal antibodies against human CD34. This approach could bypass the need for purification of recombinant proteins produced in eukaryotic expression systems. PMID:25789221

  18. Chemical Agonists of the PML/Daxx Pathway for Prostate Cancer Therapy

    DTIC Science & Technology

    2011-04-01

    positive nuclei. These data suggest that the assay is highly specific and will not suffer from promiscuous reactivity with NIH library compounds...Figure 16B). Strikingly, when we compared Daxx levels in PCa cell lines to a nontumorigenic human prostatic epithelial line, PWR -1E, they were...Lysates from six different cell types ( PWR -1E, ALVA-31 Daxx K/D, ALVA-31 WT, DU145, LNCaP, and PC3) were normalized for total protein content (60 μg

  19. PI3 K/Akt/mTOR-mediated translational control regulates proliferation and differentiation of lineage-restricted RoSH stem cell lines

    PubMed Central

    Que, Jianwen; Lian, Qizhou; El Oakley, Reida M; Lim, Bing; Lim, Sai-Kiang

    2007-01-01

    Background We have previously derived highly similar lineage-restricted stem cell lines, RoSH and E-RoSH cell lines from mouse embryos and CD9hi SSEA-1- differentiated mouse embryonic stem cells, respectively. These cell lines are not pluripotent and differentiate readily into endothelial cells in vitro and in vivo. Results We investigated the signaling pathway that maintains proliferation of these cells in an undifferentiated state, and demonstrate that PI3 K/Akt/mTOR, but not Raf/MEK/Erk, signaling in these cells was active during proliferation and was downregulated during endothelial differentiation. Inhibition of PI3 K/Akt/mTOR signaling, but not Raf/MEK/Erk, reduced proliferation and induced expression of endothelial specific proteins. During differentiation or inhibition of PI3 K/Akt/mTOR signaling, cyclinD2 transcript abundance in ribosome-enriched RNA but not in total RNA was reduced with a corresponding reduction in protein level. In contrast, transcript abundance of endothelial-specific genes e.g. Kdr, Tek and Pdgfrα in ribosome-enriched RNA fraction was not reduced and their protein levels were increased. Together these observations suggested that translational control mediated by PI3K/Akt/mTOR signaling was critical in regulating proliferation and endothelial differentiation of lineage-restricted RoSH-like stem cell lines. Conclusion This study highlights translation regulation as a critical regulatory mechanism during proliferation and differentiation in stem cells. PMID:17892597

  20. Working towards recalcitrance mechanisms: increased xylan and homogalacturonan production by overexpression of GAlactUronosylTransferase12 (GAUT12) causes increased recalcitrance and decreased growth in Populus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswal, Ajaya K.; Atmodjo, Melani A.; Pattathil, Sivakumar

    The development of fast-growing hardwood trees as a source of lignocellulosic biomass for biofuel and biomaterial production requires a thorough understanding of the plant cell wall structure and function that underlie the inherent recalcitrance properties of woody biomass. Downregulation of GAUT12.1 in Populus deltoides was recently reported to result in improved biomass saccharification, plant growth, and biomass yield. To further understand GAUT12.1 function in biomass recalcitrance and plant growth, here we report the effects of P. trichocarpa GAUT12.1 overexpression in P. deltoides. Increasing GAUT12.1 transcript expression by 7-49% in P. deltoides PtGAUT12.1-overexpression (OE) lines resulted in a nearly complete oppositemore » biomass saccharification and plant growth phenotype to that observed previously in PdGAUT12.1-knockdown (KD) lines. This also included significantly reduced glucose, xylose, and total sugar release (12-13%), plant height (6-54%), stem diameter (8-40%), and overall total aerial biomass yield (48-61%) in 3-month-old, greenhouse-grown PtGAUT12.1-OE lines compared to controls. Total lignin content was unaffected by the gene overexpression. Importantly, selected PtGAUT12.1-OE lines retained the recalcitrance and growth phenotypes upon growth for 9 months in the greenhouse and 2.8 years in the field. PtGAUT12.1-OE plants had significantly smaller leaves with lower relative water content, and significantly reduced stem wood xylem cell numbers and size. At the cell wall level, xylose and galacturonic acid contents increased markedly in total cell walls as well as in soluble and insoluble cell wall extracts, consistent with increased amounts of xylan and homogalacturonan in the PtGAUT12.1-OE lines. This led to increased cell wall recalcitrance, as manifested by the 9-15% reduced amounts of recovered extractable wall materials and 8-15% greater amounts of final insoluble pellet in the PtGAUT12.1-OE lines compared to controls. The combined phenotype and chemotype data from P. deltoides PtGAUT12.1-OE and PdGAUT12.1-KD transgenics clearly establish GAUT12.1 as a recalcitrance- and growth-associated gene in poplar. Overall, the data support the hypothesis that GAUT12.1 synthesizes either an HG-containing primer for xylan synthesis or an HG glycan required for proper xylan deposition, anchoring, and/or architecture in the wall, and the possibility of HG and xylan glycans being connected to each other by a base-sensitive covalent linkage.« less

  1. Working towards recalcitrance mechanisms: increased xylan and homogalacturonan production by overexpression of GAlactUronosylTransferase12 (GAUT12) causes increased recalcitrance and decreased growth in Populus

    DOE PAGES

    Biswal, Ajaya K.; Atmodjo, Melani A.; Pattathil, Sivakumar; ...

    2018-01-17

    The development of fast-growing hardwood trees as a source of lignocellulosic biomass for biofuel and biomaterial production requires a thorough understanding of the plant cell wall structure and function that underlie the inherent recalcitrance properties of woody biomass. Downregulation of GAUT12.1 in Populus deltoides was recently reported to result in improved biomass saccharification, plant growth, and biomass yield. To further understand GAUT12.1 function in biomass recalcitrance and plant growth, here we report the effects of P. trichocarpa GAUT12.1 overexpression in P. deltoides. Increasing GAUT12.1 transcript expression by 7-49% in P. deltoides PtGAUT12.1-overexpression (OE) lines resulted in a nearly complete oppositemore » biomass saccharification and plant growth phenotype to that observed previously in PdGAUT12.1-knockdown (KD) lines. This also included significantly reduced glucose, xylose, and total sugar release (12-13%), plant height (6-54%), stem diameter (8-40%), and overall total aerial biomass yield (48-61%) in 3-month-old, greenhouse-grown PtGAUT12.1-OE lines compared to controls. Total lignin content was unaffected by the gene overexpression. Importantly, selected PtGAUT12.1-OE lines retained the recalcitrance and growth phenotypes upon growth for 9 months in the greenhouse and 2.8 years in the field. PtGAUT12.1-OE plants had significantly smaller leaves with lower relative water content, and significantly reduced stem wood xylem cell numbers and size. At the cell wall level, xylose and galacturonic acid contents increased markedly in total cell walls as well as in soluble and insoluble cell wall extracts, consistent with increased amounts of xylan and homogalacturonan in the PtGAUT12.1-OE lines. This led to increased cell wall recalcitrance, as manifested by the 9-15% reduced amounts of recovered extractable wall materials and 8-15% greater amounts of final insoluble pellet in the PtGAUT12.1-OE lines compared to controls. The combined phenotype and chemotype data from P. deltoides PtGAUT12.1-OE and PdGAUT12.1-KD transgenics clearly establish GAUT12.1 as a recalcitrance- and growth-associated gene in poplar. Overall, the data support the hypothesis that GAUT12.1 synthesizes either an HG-containing primer for xylan synthesis or an HG glycan required for proper xylan deposition, anchoring, and/or architecture in the wall, and the possibility of HG and xylan glycans being connected to each other by a base-sensitive covalent linkage.« less

  2. CRISPR/Cas9 mutagenesis invalidates a putative cancer dependency targeted in on-going clinical trials.

    PubMed

    Lin, Ann; Giuliano, Christopher J; Sayles, Nicole M; Sheltzer, Jason M

    2017-03-24

    The Maternal Embryonic Leucine Zipper Kinase (MELK) has been reported to be a genetic dependency in several cancer types. MELK RNAi and small-molecule inhibitors of MELK block the proliferation of various cancer cell lines, and MELK knockdown has been described as particularly effective against the highly-aggressive basal/triple-negative subtype of breast cancer. Based on these preclinical results, the MELK inhibitor OTS167 is currently being tested as a novel chemotherapy agent in several clinical trials. Here, we report that mutagenizing MELK with CRISPR/Cas9 has no effect on the fitness of basal breast cancer cell lines or cell lines from six other cancer types. Cells that harbor null mutations in MELK exhibit wild-type doubling times, cytokinesis, and anchorage-independent growth. Furthermore, MELK-knockout lines remain sensitive to OTS167, suggesting that this drug blocks cell division through an off-target mechanism. In total, our results undermine the rationale for a series of current clinical trials and provide an experimental approach for the use of CRISPR/Cas9 in preclinical target validation that can be broadly applied.

  3. A Catalog of Genes Homozygously Deleted in Human Lung Cancer and the Candidacy of PTPRD as a Tumor Suppressor Gene

    PubMed Central

    Kohno, Takashi; Otsuka, Ayaka; Girard, Luc; Sato, Masanori; Iwakawa, Reika; Ogiwara, Hideaki; Sanchez-Cespedes, Montse; Minna, John D.; Yokota, Jun

    2010-01-01

    A total of 176 genes homozygously deleted in human lung cancer were identified by DNA array-based whole genome scanning of 52 lung cancer cell lines and subsequent genomic PCR in 74 cell lines, including the 52 cell lines scanned. One or more exons of these genes were homozygously deleted in one (1%) to 20 (27%) cell lines. These genes included known tumor suppressor genes, e.g., CDKN2A/p16, RB1, and SMAD4, and candidate tumor suppressor genes whose hemizygous or homozygous deletions were reported in several types of human cancers, such as FHIT, KEAP1, and LRP1B/LRP-DIP. CDKN2A/p16 and p14ARF located in 9p21 were most frequently deleted (20/74, 27%). The PTPRD gene was most frequently deleted (8/74, 11%) among genes mapping to regions other than 9p21. Somatic mutations, including a nonsense mutation, of the PTPRD gene were detected in 8/74 (11%) of cell lines and 4/95 (4%) of surgical specimens of lung cancer. Reduced PTPRD expression was observed in the majority (>80%) of cell lines and surgical specimens of lung cancer. Therefore, PTPRD is a candidate tumor suppressor gene in lung cancer. Microarray-based expression profiling of 19 lung cancer cell lines also indicated that some of the 176 genes, such as KANK and ADAMTS1, are preferentially inactivated by epigenetic alterations. Genetic/epigenetic as well as functional studies of these 176 genes will increase our understanding of molecular mechanisms behind lung carcinogenesis. PMID:20073072

  4. Systems analysis of apoptosis protein expression allows the case-specific prediction of cell death responsiveness of melanoma cells

    PubMed Central

    Passante, E; Würstle, M L; Hellwig, C T; Leverkus, M; Rehm, M

    2013-01-01

    Many cancer entities and their associated cell line models are highly heterogeneous in their responsiveness to apoptosis inducers and, despite a detailed understanding of the underlying signaling networks, cell death susceptibility currently cannot be predicted reliably from protein expression profiles. Here, we demonstrate that an integration of quantitative apoptosis protein expression data with pathway knowledge can predict the cell death responsiveness of melanoma cell lines. By a total of 612 measurements, we determined the absolute expression (nM) of 17 core apoptosis regulators in a panel of 11 melanoma cell lines, and enriched these data with systems-level information on apoptosis pathway topology. By applying multivariate statistical analysis and multi-dimensional pattern recognition algorithms, the responsiveness of individual cell lines to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) or dacarbazine (DTIC) could be predicted with very high accuracy (91 and 82% correct predictions), and the most effective treatment option for individual cell lines could be pre-determined in silico. In contrast, cell death responsiveness was poorly predicted when not taking knowledge on protein–protein interactions into account (55 and 36% correct predictions). We also generated mathematical predictions on whether anti-apoptotic Bcl-2 family members or x-linked inhibitor of apoptosis protein (XIAP) can be targeted to enhance TRAIL responsiveness in individual cell lines. Subsequent experiments, making use of pharmacological Bcl-2/Bcl-xL inhibition or siRNA-based XIAP depletion, confirmed the accuracy of these predictions. We therefore demonstrate that cell death responsiveness to TRAIL or DTIC can be predicted reliably in a large number of melanoma cell lines when investigating expression patterns of apoptosis regulators in the context of their network-level interplay. The capacity to predict responsiveness at the cellular level may contribute to personalizing anti-cancer treatments in the future. PMID:23933815

  5. Large-scale culture of a megakaryocytic progenitor cell line with a single-use bioreactor system.

    PubMed

    Nurhayati, Retno Wahyu; Ojima, Yoshihiro; Dohda, Takeaki; Kino-Oka, Masahiro

    2018-03-01

    The increasing application of regenerative medicine has generated a growing demand for stem cells and their derivatives. Single-use bioreactors offer an attractive platform for stem cell expansion owing to their scalability for large-scale production and feasibility of meeting clinical-grade standards. The current work evaluated the capacity of a single-use bioreactor system (1 L working volume) for expanding Meg01 cells, a megakaryocytic (MK) progenitor cell line. Oxygen supply was provided by surface aeration to minimize foaming and orbital shaking was used to promote oxygen transfer. Oxygen transfer rates (k L a) of shaking speeds 50, 100, and 125 rpm were estimated to be 0.39, 1.12, and 10.45 h -1 , respectively. Shaking speed was a critical factor for optimizing cell growth. At 50 rpm, Meg01 cells exhibited restricted growth due to insufficient mixing. A negative effect occurred when the shaking speed was increased to 125 rpm, likely caused by high hydrodynamic shear stress. The bioreactor culture achieved the highest growth profile when shaken at 100 rpm, achieving a total expansion rate up to 5.7-fold with a total cell number of 1.2 ± 0.2 × 10 9 cells L -1 . In addition, cells expanded using the bioreactor system could maintain their potency to differentiate following the MK lineage, as analyzed from specific surface protein and morphological similarity with the cells grown in the conventional culturing system. Our study reports the impact of operational variables such as shaking speed for growth profile and MK differentiation potential of a progenitor cell line in a single-use bioreactor. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 34:362-369, 2018. © 2017 American Institute of Chemical Engineers.

  6. Silencing of high-mobility group box 2 (HMGB2) modulates cisplatin and 5-fluorouracil sensitivity in head and neck squamous cell carcinoma.

    PubMed

    Syed, Nazia; Chavan, Sandip; Sahasrabuddhe, Nandini A; Renuse, Santosh; Sathe, Gajanan; Nanjappa, Vishalakshi; Radhakrishnan, Aneesha; Raja, Remya; Pinto, Sneha M; Srinivasan, Anand; Prasad, T S Keshava; Srikumar, Kotteazeth; Gowda, Harsha; Santosh, Vani; Sidransky, David; Califano, Joseph A; Pandey, Akhilesh; Chatterjee, Aditi

    2015-01-01

    Dysregulation of protein expression is associated with most diseases including cancer. MS-based proteomic analysis is widely employed as a tool to study protein dysregulation in cancers. Proteins that are differentially expressed in head and neck squamous cell carcinoma (HNSCC) cell lines compared to the normal oral cell line could serve as biomarkers for patient stratification. To understand the proteomic complexity in HNSCC, we carried out iTRAQ-based MS analysis on a panel of HNSCC cell lines in addition to a normal oral keratinocyte cell line. LC-MS/MS analysis of total proteome of the HNSCC cell lines led to the identification of 3263 proteins, of which 185 proteins were overexpressed and 190 proteins were downregulated more than twofold in at least two of the three HNSCC cell lines studied. Among the overexpressed proteins, 23 proteins were related to DNA replication and repair. These included high-mobility group box 2 (HMGB2) protein, which was overexpressed in all three HNSCC lines studied. Overexpression of HMGB2 has been reported in various cancers, yet its role in HNSCC remains unclear. Immunohistochemical labeling of HMGB2 in a panel of HNSCC tumors using tissue microarrays revealed overexpression in 77% (54 of 70) of tumors. The HMGB proteins are known to bind to DNA structure resulting from cisplatin-DNA adducts and affect the chemosensitivity of cells. We observed that siRNA-mediated silencing of HMGB2 increased the sensitivity of the HNSCC cell lines to cisplatin and 5-FU. We hypothesize that targeting HMGB2 could enhance the efficacy of existing chemotherapeutic regimens for treatment of HNSCC. All MS data have been deposited in the ProteomeXchange with identifier PXD000737 (http://proteomecentral.proteomexchange.org/dataset/PXD000737). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Analytic Validation of RNA In Situ Hybridization (RISH) for AR and AR-V7 Expression in Human Prostate Cancer

    PubMed Central

    Guedes, Liana B.; Morais, Carlos L.; Almutairi, Fawaz; Haffner, Michael C.; Zheng, Qizhi; Isaacs, John T.; Antonarakis, Emmanuel S.; Lu, Changxue; Tsai, Harrison; Luo, Jun; De Marzo, Angelo M.; Lotan, Tamara L.

    2016-01-01

    Purpose RNA expression of androgen receptor splice variants may be a biomarker of resistance to novel androgen deprivation therapies in castrate resistant prostate cancer (CRPC). We analytically validated an RNA in situ hybridization (RISH) assay for total AR and AR-V7 for use in formalin fixed paraffin embedded (FFPE) prostate tumors. Experimental Design We used prostate cell lines and xenografts to validate chromogenic RISH to detect RNA containing AR exon 1 (AR-E1, surrogate for total AR RNA species) and cryptic exon 3 (AR-CE3, surrogate for AR-V7 expression). RISH signals were quantified in FFPE primary tumors and CRPC specimens, comparing to known AR and AR-V7 status by immunohistochemistry and RT-PCR. Results The quantified RISH results correlated significantly with total AR and AR-V7 levels by RT-PCR in cell lines, xenografts and autopsy metastases. Both AR-E1 and AR-CE3 RISH signals were localized in nuclear punctae in addition to the expected cytoplasmic speckles. Compared to admixed benign glands, AR-E1 expression was significantly higher in primary tumor cells with a median fold increase of 3.0 and 1.4 in two independent cohorts (p<0.0001 and p=0.04, respectively). While AR-CE3 expression was detectable in primary prostatic tumors, levels were substantially higher in a subset of CRPC metastases and cell lines, and were correlated with AR-E1 expression. Conclusions RISH for AR-E1 and AR-CE3 is an analytically valid method to examine total AR and AR-V7 RNA levels in FFPE tissues. Future clinical validation studies are required to determine whether AR RISH is a prognostic or predictive biomarker in specific clinical contexts. PMID:27166397

  8. MiRNA-Target Interaction Reveals Cell-Specific Post-Transcriptional Regulation in Mammalian Cell Lines

    PubMed Central

    Kulkarni, Varun; Naqvi, Afsar Raza; Uttamani, Juhi Raju; Nares, Salvador

    2016-01-01

    MicroRNAs are 18–22 nucleotides long, non-coding RNAs that bind transcripts with complementary sequences leading to either mRNA degradation or translational suppression. However, the inherent differences in preferred mode of miRNA regulation among cells of different origin have not been examined. In our previous transcriptome profiling studies, we observed that post-transcriptional regulation can differ substantially depending on the cell in context. Here we examined mechanistic differences in the regulation of a let-7a targeted (wild type) or resistant (mutant) engineered renilla transcript across various mammalian cell lines of diverse origin. Dual luciferase assays show that compared to mutant (mut), the reporter gene containing wild type (wt) let-7a binding sites was efficiently suppressed upon transfection in various cell lines. Importantly, the strength of miRNA regulation varied across the cell lines. Total RNA analysis demonstrates that wt renilla mRNA was expressed to similar or higher levels compared to mut suggesting that translation repression is a predominant mode of miRNA regulation. Nonetheless, transcript degradation was observed in some cell lines. Ago-2 immunoprecipitation show that miRNA repressed renilla mRNA are associated with functional mi-RISC (miRNA-RNA induced silencing complex). Given the immense potential of miRNA as a therapeutic option, these findings highlight the necessity to thoroughly examine the mode of mRNA regulation in order to achieve the beneficial effects in targeting cells. PMID:26761000

  9. Inositol Pyrophosphate Profiling of Two HCT116 Cell Lines Uncovers Variation in InsP8 Levels

    PubMed Central

    Gu, Chunfang; Wilson, Miranda S. C.; Jessen, Henning J.; Saiardi, Adolfo; Shears, Stephen B.

    2016-01-01

    The HCT116 cell line, which has a pseudo-diploid karotype, is a popular model in the fields of cancer cell biology, intestinal immunity, and inflammation. In the current study, we describe two batches of diverged HCT116 cells, which we designate as HCT116NIH and HCT116UCL. Using both gel electrophoresis and HPLC, we show that HCT116UCL cells contain 6-fold higher levels of InsP8 than HCT116NIH cells. This observation is significant because InsP8 is one of a group of molecules collectively known as ‘inositol pyrophosphates’ (PP-InsPs)—highly ‘energetic’ and conserved regulators of cellular and organismal metabolism. Variability in the cellular levels of InsP8 within divergent HCT116 cell lines could have impacted the phenotypic data obtained in previous studies. This difference in InsP8 levels is more remarkable for being specific; levels of other inositol phosphates, and notably InsP6 and 5-InsP7, are very similar in both HCT116NIH and HCT116UCL lines. We also developed a new HPLC procedure to record 1-InsP7 levels directly (for the first time in any mammalian cell line); 1-InsP7 comprised <2% of total InsP7 in HCT116NIH and HCT116UCL lines. The elevated levels of InsP8 in the HCT116UCL lines were not due to an increase in expression of the PP-InsP kinases (IP6Ks and PPIP5Ks), nor to a decrease in the capacity to dephosphorylate InsP8. We discuss how the divergent PP-InsP profiles of the newly-designated HCT116NIH and HCT116UCL lines should be considered an important research opportunity: future studies using these two lines may uncover new features that regulate InsP8 turnover, and may also yield new directions for studying InsP8 function. PMID:27788189

  10. Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Matthews, Q.; Jirasek, A.; Lum, J. J.; Brolo, A. G.

    2011-11-01

    This work applies noninvasive single-cell Raman spectroscopy (RS) and principal component analysis (PCA) to analyze and correlate radiation-induced biochemical changes in a panel of human tumour cell lines that vary by tissue of origin, p53 status and intrinsic radiosensitivity. Six human tumour cell lines, derived from prostate (DU145, PC3 and LNCaP), breast (MDA-MB-231 and MCF7) and lung (H460), were irradiated in vitro with single fractions (15, 30 or 50 Gy) of 6 MV photons. Remaining live cells were harvested for RS analysis at 0, 24, 48 and 72 h post-irradiation, along with unirradiated controls. Single-cell Raman spectra were acquired from 20 cells per sample utilizing a 785 nm excitation laser. All spectra (200 per cell line) were individually post-processed using established methods and the total data set for each cell line was analyzed with PCA using standard algorithms. One radiation-induced PCA component was detected for each cell line by identification of statistically significant changes in the PCA score distributions for irradiated samples, as compared to unirradiated samples, in the first 24-72 h post-irradiation. These RS response signatures arise from radiation-induced changes in cellular concentrations of aromatic amino acids, conformational protein structures and certain nucleic acid and lipid functional groups. Correlation analysis between the radiation-induced PCA components separates the cell lines into three distinct RS response categories: R1 (H460 and MCF7), R2 (MDA-MB-231 and PC3) and R3 (DU145 and LNCaP). These RS categories partially segregate according to radiosensitivity, as the R1 and R2 cell lines are radioresistant (SF2 > 0.6) and the R3 cell lines are radiosensitive (SF2 < 0.5). The R1 and R2 cell lines further segregate according to p53 gene status, corroborated by cell cycle analysis post-irradiation. Potential radiation-induced biochemical response mechanisms underlying our RS observations are proposed, such as (1) the regulated synthesis and degradation of structured proteins and (2) the expression of anti-apoptosis factors or other survival signals. This study demonstrates the utility of RS for noninvasive radiobiological analysis of tumour cell radiation response, and indicates the potential for future RS studies designed to investigate, monitor or predict radiation response.

  11. Phytochemical and biological evaluation of some Sargassum species from Persian Gulf

    PubMed Central

    Mehdinezhad, Negin; Ghannadi, Alireza; Yegdaneh, Afsaneh

    2016-01-01

    Sea algae are widely consumed in the world. There are several seaweeds including brown algae which are authorized for human consumption. These plants contain important phytochemical constituents and have various potential biological activities. The present study investigated the presence of phytochemical constituents and total phenolic quantity of the seaweeds Sargassum angustifolium, Sargassum oligocystum and Sargassum boveanum. Cytotoxicity of seaweeds was tested against HT-29, HeLa and MCF-7 cell lines. Antioxidant potential of these 3 Sargassum species was also analyzed. Cytotoxicity was characterized by IC50 of human cancer cell lines using sulforhodamine assay. Antioxidant activities were evaluated using 2,2-diphenyl-1- picrylhydrazil. The analysis revealed that tannins, saponins, sterols and triterpenes were the most abundant compounds in these Sargassum species while cyanogenic and cardiac glycosides were the least ones. Sargassum angustifolium had the highest content of total phenolics (0.061 mg/g) and showed the highest antioxidant activity (IC50 = 0.231). Cytotoxic results showed that all species could inhibit cell growth effectively, especially MCF-7 cell line (IC50 = 67.3, 56.9, 60.4 for S. oligocystum, S. angustifolium and S. boveanum respectively). Considerable phytochemicals and moderate cytotoxic activity of S. angustifolium, S. oligocystum and S. boveanum make them appropriate candidate for further studies and identification of their bioactive principles. PMID:27499794

  12. Phytochemical and biological evaluation of some Sargassum species from Persian Gulf.

    PubMed

    Mehdinezhad, Negin; Ghannadi, Alireza; Yegdaneh, Afsaneh

    2016-01-01

    Sea algae are widely consumed in the world. There are several seaweeds including brown algae which are authorized for human consumption. These plants contain important phytochemical constituents and have various potential biological activities. The present study investigated the presence of phytochemical constituents and total phenolic quantity of the seaweeds Sargassum angustifolium, Sargassum oligocystum and Sargassum boveanum. Cytotoxicity of seaweeds was tested against HT-29, HeLa and MCF-7 cell lines. Antioxidant potential of these 3 Sargassum species was also analyzed. Cytotoxicity was characterized by IC50 of human cancer cell lines using sulforhodamine assay. Antioxidant activities were evaluated using 2,2-diphenyl-1- picrylhydrazil. The analysis revealed that tannins, saponins, sterols and triterpenes were the most abundant compounds in these Sargassum species while cyanogenic and cardiac glycosides were the least ones. Sargassum angustifolium had the highest content of total phenolics (0.061 mg/g) and showed the highest antioxidant activity (IC50 = 0.231). Cytotoxic results showed that all species could inhibit cell growth effectively, especially MCF-7 cell line (IC50 = 67.3, 56.9, 60.4 for S. oligocystum, S. angustifolium and S. boveanum respectively). Considerable phytochemicals and moderate cytotoxic activity of S. angustifolium, S. oligocystum and S. boveanum make them appropriate candidate for further studies and identification of their bioactive principles.

  13. Recombinant rabbit leukemia inhibitory factor and rabbit embryonic fibroblasts support the derivation and maintenance of rabbit embryonic stem cells.

    PubMed

    Xue, Fei; Ma, Yinghong; Chen, Y Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang; Xu, Jie

    2012-08-01

    The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs.

  14. Characterisation of the p53 pathway in cell lines established from TH-MYCN transgenic mouse tumours.

    PubMed

    Chen, Lindi; Esfandiari, Arman; Reaves, William; Vu, Annette; Hogarty, Michael D; Lunec, John; Tweddle, Deborah A

    2018-03-01

    Cell lines established from the TH-MYCN transgenic murine model of neuroblastoma are a valuable preclinical, immunocompetent, syngeneic model of neuroblastoma, for which knowledge of their p53 pathway status is important. In this study, the Trp53 status and functional response to Nutlin-3 and ionising radiation (IR) were determined in 6 adherent TH-MYCN transgenic cell lines using Sanger sequencing, western blot analysis and flow cytometry. Sensitivity to structurally diverse MDM2 inhibitors (Nutlin-3, MI-63, RG7388 and NDD0005) was determined using XTT proliferation assays. In total, 2/6 cell lines were Trp53 homozygous mutant (NHO2A and 844MYCN+/+) and 1/6 (282MYCN+/-) was Trp53 heterozygous mutant. For 1/6 cell lines (NHO2A), DNA from the corresponding primary tumour was found to be Trp53 wt. In all cases, the presence of a mutation was consistent with aberrant p53 signalling in response to Nutlin-3 and IR. In comparison to TP53 wt human neuroblastoma cells, Trp53 wt murine control and TH-MYCN cell lines were significantly less sensitive to growth inhibition mediated by MI-63 and RG7388. These murine Trp53 wt and mutant TH-MYCN cell lines are useful syngeneic, immunocompetent neuroblastoma models, the former to test p53-dependent therapies in combination with immunotherapies, such as anti-GD2, and the latter as models of chemoresistant relapsed neuroblastoma when aberrations in the p53 pathway are more common. The spontaneous development of Trp53 mutations in 3 cell lines from TH-MYCN mice may have arisen from MYCN oncogenic driven and/or ex vivo selection. The identified species-dependent selectivity of MI-63 and RG7388 should be considered when interpreting in vivo toxicity studies of MDM2 inhibitors.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhan, Yu; Abi Saab, Widian F.; Modi, Nidhi

    Mixed lineage kinase 3 (MLK3) is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates MAPK signaling pathways and regulates cellular responses such as proliferation, migration and apoptosis. Here we report high levels of total and phospho-MLK3 in ovarian cancer cell lines in comparison to immortalized nontumorigenic ovarian epithelial cell lines. Using small interfering RNA (siRNA)-mediated gene silencing, we determined that MLK3 is required for the invasion of SKOV3 and HEY1B ovarian cancer cells. Furthermore, mlk3 silencing substantially reduced matrix metalloproteinase (MMP)-1, -2, -9 and -12 gene expression and MMP-2 and -9 activities in SKOV3 and HEY1B ovarian cancer cells.more » MMP-1, -2, -9 and-12 expression, and MLK3-induced activation of MMP-2 and MMP-9 requires both extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) activities. In addition, inhibition of activator protein-1 (AP-1) reduced MMP-1, MMP-9 and MMP-12 gene expression. Collectively, these findings establish MLK3 as an important regulator of MMP expression and invasion in ovarian cancer cells. -- Highlights: Black-Right-Pointing-Pointer Ovarian cancer cell lines have high levels of total and phosphorylated MLK3. Black-Right-Pointing-Pointer MLK3 is required for MMP expression and activity in ovarian cancer cells. Black-Right-Pointing-Pointer MLK3 is required for invasion of SKOV3 and HEY1B ovarian cancer cells. Black-Right-Pointing-Pointer MLK3-dependent regulation of MMP-2 and MMP-9 activities requires ERK and JNK.« less

  16. Phosphotyrosine profiling identifies ephrin receptor A2 as a potential therapeutic target in esophageal squamous‐cell carcinoma

    PubMed Central

    Syed, Nazia; Barbhuiya, Mustafa A.; Pinto, Sneha M.; Nirujogi, Raja Sekhar; Renuse, Santosh; Datta, Keshava K.; Khan, Aafaque Ahmad; Srikumar, Kotteazeth; Prasad, T. S. Keshava; Kumar, M. Vijaya; Kumar, Rekha Vijay; Chatterjee, Aditi; Pandey, Akhilesh

    2015-01-01

    Esophageal squamous‐cell carcinoma (ESCC) is one of the most common malignancies in Asia. Currently, surgical resection of early‐stage tumor is the best available treatment. However, most patients present late when surgery is not an option. Data suggest that chemotherapy regimens are inadequate for clinical management of advanced cancer. Targeted therapy has emerged as one of the most promising approaches to treat several malignancies. A prerequisite for developing targeted therapy is prior knowledge of proteins and pathways that drive proliferation in malignancies. We carried out phosphotyrosine profiling across four different ESCC cell lines and compared it to non‐neoplastic Het‐1A cell line to identify activated tyrosine kinase signaling pathways in ESCC. A total of 278 unique phosphopeptides were identified across these cell lines. This included several tyrosine kinases and their substrates that were hyperphosphorylated in ESCC. Ephrin receptor A2 (EPHA2), a receptor tyrosine kinase, was hyperphosphorylated in all the ESCC cell lines used in the study. EPHA2 is reported to be oncogenic in several cancers and is also known to promote metastasis. Immunohistochemistry‐based studies have revealed EPHA2 is overexpressed in nearly 50% of ESCC. We demonstrated EPHA2 as a potential therapeutic target in ESCC by carrying out siRNA‐based knockdown studies. Knockdown of EPHA2 in ESCC cell line TE8 resulted in significant decrease in cell proliferation and invasion, suggesting it is a promising therapeutic target in ESCC that warrants further evaluation. PMID:25366905

  17. Ontogeny of con A and PHA responses of chicken blood cells in MHC-compatible lines 6(3) and 7(2).

    PubMed

    Fredericksen, T L; Gilmour, D G

    1983-06-01

    The development of T cell responsiveness to Con A and PHA was examined in two MHC-compatible inbred chicken lines, RPRL 6(3) and 7(2), at ages 2 to 118 days posthatching. These lines are respectively resistant or susceptible to Marek's disease, a naturally occurring, virally induced T cell lymphoma. Between-line comparisons were made of optimal in vitro responses of diluted serum-free blood cells to each mitogen in two groups of chicks tested over ages 2 to 63 and 41 to 118 days. Over 2 to 63 days, Con A responses increased with age at the same rate in each line, but 7(2) responses averaged 2.3 times higher than 6(3). The increase with age was dependent on blood lymphocyte counts, which also increased with age in parallel in both lines. In contrast, the between-line difference in responsiveness was dependent on intrinsic reactivity of cells as well as lymphocyte counts. Covariance analysis was used to estimate that line 7(2) was 1.4 times higher than 6(3) in intrinsic cell reactivity, after accounting for the effect of the twofold higher blood lymphocyte counts in 7(2), and that this intrinsic difference contributed almost one-half the total difference. Over 41 to 118 days Con A responses no longer increased with age, although lymphocyte counts were still increasing, and the line difference (2.6 times) was now almost entirely contributed by a 2.3-fold superiority of 7(2) blood cells in intrinsic reactivity. The line difference in PHA responses was the reverse of the above in young chicks, with 6(3) responses greater than 7(2) in spite of lower lymphocyte counts. In additional chicks tested over 5 to 26 days, intrinsic reactivity of 6(3) cells to PHA averaged 4.5 times higher than 7(2). There was an abrupt decline in intrinsic reactivity of line 6(3) blood cells between 26 and 41 days to a level equal with 7(2). After this age, line 7(2) responses were 1.8 times greater than those of 6(3), and this difference was dependent solely on lymphocyte count differences. The results suggest that different gene systems mediate blood cell responses to PHA as compared with Con A. The pattern of developmental differences between inbred lines indicates the existence of distinct or partly overlapping T cell subsets with different reactivities to PHA or Con A, and of higher suppressor activity of adherent cells in line 6(3) blood. Both these differences may be related to line 6(3) inherited resistance to Marek's disease.

  18. Increased Expression of HER2, HER3, and HER2:HER3 Heterodimers in HPV-Positive HNSCC Using a Novel Proximity-Based Assay: Implications for Targeted Therapies.

    PubMed

    Pollock, Netanya I; Wang, Lin; Wallweber, Gerald; Gooding, William E; Huang, Weidong; Chenna, Ahmed; Winslow, John; Sen, Malabika; DeGrave, Kara A; Li, Hua; Zeng, Yan; Grandis, Jennifer R

    2015-10-15

    In other cancer types, HPV infection has been reported to coincide with overexpression of HER2 (ERBB2) and HER3 (ERBB3); however, the association between HER2 or HER3 expression and dimer formation in HNSCC has not been reported. Overexpression of HER2 and HER3 may contribute to resistance to EGFR inhibitors, including cetuximab, although the contribution of HPV in modulating cetuximab response remains unknown. Determination of heterodimerization of HER receptors is challenging and has not been reported in HNSCC. The present study aimed to determine the expression of HER proteins in HPV(+) versus HPV(-) HNSCC tumors using a proximity-based protein expression assay (VeraTag), and to determine the efficacy of HER-targeting agents in HPV(+) and HPV(-) HNSCC cell lines. Expression of total HER1, HER2, and HER3, p95HER2, p-HER3, HER1:HER1 homodimers, HER2:HER3 heterodimers, and the HER3-PI3K complex in 88 HNSCC was determined using VeraTag, including 33 baseline tumors from individuals treated in a trial including cetuximab. Inhibition of cell growth and protein activation with cetuximab and afatinib was compared in HPV(+) and HPV(-) cetuximab-resistant cell lines. Expression of total HER2, total HER3, HER2:HER3 heterodimers, and the HER3:PI3K complex were significantly elevated in HPV(+) HNSCC. Total EGFR was significantly increased in HPV(-) HNSCC where VeraTag assay results correlated with IHC. Afatinib significantly inhibited cell growth when compared with cetuximab in the HPV(+) and HPV(-) cetuximab-resistant HNSCC cell lines. These findings suggest that agents targeting multiple HER proteins may be effective in the setting of HPV(+) HNSCC and/or cetuximab resistance. ©2015 American Association for Cancer Research.

  19. MHC class I loaded ligands from breast cancer cell lines: A potential HLA-I-typed antigen collection

    PubMed Central

    Rozanov, Dmitri V.; Rozanov, Nikita D.; Chiotti, Kami; Reddy, Ashok; Wilmarth, Phillip A.; David, Larry L.; Cha, Seung W.; Woo, Sunghee; Pevzner, Pavel; Bafna, Vineet; Burrows, Gregory G.; Rantala, Juha K.; Levin, Trevor; Anur, Pavana; Johnson-Camacho, Katie; Tabatabaei, Shaadi; Munson, Daniel J.; Bruno, Tullia C.; Slansky, Jill E.; Kappler, John W.; Hirano, Naoto; Boegel, Sebastian; Fox, Bernard A.; Egelston, Colt; Simons, Diana L.; Jimenez, Grecia; Lee, Peter P.; Gray, Joe W.; Spellman, Paul T.

    2018-01-01

    Breast cancer therapy based on amplifying a patient’s antitumor immune response depends on the availability of appropriate MHC class I-restricted, breast cancer-specific epitopes. To build a catalog of peptides presented by breast cancer cells, we undertook systematic MHC class I immunoprecipitation followed by elution of MHC class I-loaded peptides in breast cancer cell lines. We determined the sequence of 3,196 MHC class I-bound peptides representing 1,921 proteins from a panel of 20 breast cancer cell lines including basal, luminal, and claudin-low subtypes. The data has been deposited to the ProteomeXchange with identifier PXD006406. After removing duplicate peptides, i.e., the same peptide eluted from more than one cell line, the total number of unique peptides was 2,740. Of the unique peptides eluted, more than 1,750 had been previously identified, and of these, sixteen have been shown to be immunogenic. Importantly, only 3 of these immunogenic peptides have been identified in breast cancer cells in earlier studies. MHC class I binding probability of eluted peptides was used to plot the distribution of MHC class I allele-specific peptides in accordance with the binding score for each breast cancer cell line. We also determined that the tested breast cancer cells presented 89 mutation-containing peptides and peptides derived from aberrantly translated genes, 7 of which were shared between four or two different cell lines. Overall, the high throughput identification of MHC class I-loaded peptides is an effective strategy for systematic characterization of cancer peptides, and could be employed for design of multi-peptide anticancer vaccines. PMID:29331515

  20. Combined M-FISH and CGH analysis allows comprehensive description of genetic alterations in neuroblastoma cell lines.

    PubMed

    Van Roy, N; Van Limbergen, H; Vandesompele, J; Van Gele, M; Poppe, B; Salwen, H; Laureys, G; Manoel, N; De Paepe, A; Speleman, F

    2001-10-01

    Cancer cell lines are essential gene discovery tools and have often served as models in genetic and functional studies of particular tumor types. One of the future challenges is comparison and interpretation of gene expression data with the available knowledge on the genomic abnormalities in these cell lines. In this context, accurate description of these genomic abnormalities is required. Here, we show that a combination of M-FISH with banding analysis, standard FISH, and CGH allowed a detailed description of the genetic alterations in 16 neuroblastoma cell lines. In total, 14 cryptic chromosome rearrangements were detected, including a balanced t(2;4)(p24.3;q34.3) translocation in cell line NBL-S, with the 2p24 breakpoint located at about 40 kb from MYCN. The chromosomal origin of 22 marker chromosomes and 41 cytogenetically undefined translocated segments was determined. Chromosome arm 2 short arm translocations were observed in six cell lines (38%) with and five (31%) without MYCN amplification, leading to partial chromosome arm 2p gain in all but one cell line and loss of material in the various partner chromosomes, including 1p and 11q. These 2p gains were often masked in the GGH profiles due to MYCN amplification. The commonly overrepresented region was chromosome segment 2pter-2p22, which contains the MYCN gene, and five out of eleven 2p breakpoints clustered to the interface of chromosome bands 2p16 and 2p21. In neuroblastoma cell line SJNB-12, with double minutes (dmins) but no MYCN amplification, the dmins were shown to be derived from 16q22-q23 sequences. The ATBF1 gene, an AT-binding transcription factor involved in normal neurogenesis and located at 16q22.2, was shown to be present in the amplicon. This is the first report describing the possible implication of ATBF1 in neuroblastoma cells. We conclude that a combined approach of M-FISH, cytogenetics, and CGH allowed a more complete and accurate description of the genetic alterations occurring in the investigated cell lines. Copyright 2001 Wiley-Liss, Inc.

  1. Relative biological effectiveness in canine osteosarcoma cells irradiated with accelerated charged particles

    PubMed Central

    Maeda, Junko; Cartwright, Ian M.; Haskins, Jeremy S.; Fujii, Yoshihiro; Fujisawa, Hiroshi; Hirakawa, Hirokazu; Uesaka, Mitsuru; Kitamura, Hisashi; Fujimori, Akira; Thamm, Douglas H.; Kato, Takamitsu A.

    2016-01-01

    Heavy ions, characterized by high linear energy transfer (LET) radiation, have advantages compared with low LET protons and photons in their biological effects. The application of heavy ions within veterinary clinics requires additional background information to determine heavy ion efficacy. In the present study, comparison of the cell-killing effects of photons, protons and heavy ions was investigated in canine osteosarcoma (OSA) cells in vitro. A total of four canine OSA cell lines with various radiosensitivities were irradiated with 137Cs gamma-rays, monoenergetic proton beams, 50 keV/µm carbon ion spread out Bragg peak beams and 200 keV/µm iron ion monoenergetic beams. Clonogenic survival was examined using colony-forming as says, and relative biological effectiveness (RBE) values were calculated relative to gamma-rays using the D10 value, which is determined as the dose (Gy) resulting in 10% survival. For proton irradiation, the RBE values for all four cell lines were 1.0–1.1. For all four cell lines, exposure to carbon ions yielded a decreased cell survival compared with gamma-rays, with the RBE values ranging from 1.56–2.10. Iron ions yielded the lowest cell survival among tested radiation types, with RBE values ranging from 3.51–3.69 observed in the three radioresistant cell lines. The radiosensitive cell line investigated demonstrated similar cell survival for carbon and iron ion irradiation. The results of the present study suggest that heavy ions are more effective for killing radioresistant canine OSA cells when compared with gamma-rays and protons. This markedly increased efficiency of cell killing is an attractive reason for utilizing heavy ions for radioresistant canine OSA. PMID:27446477

  2. Distinct Hypericum perforatum L. total extracts exert different antitumour activity on erythroleukemic K562 cells.

    PubMed

    Valletta, Elena; Rinaldi, Annamaria; Marini, Mario; Franzese, Ornella; Roscetti, Gianna

    2018-05-22

    Total flower extracts of Hypericum perforatum L. obtained with 3 different solvent systems were tested on tumour cell line cultures by comparing two groups of plants harvested in different times and places. The extracts, characterized according to the spectroscopic profile and the hypericin content, were tested on the growth and apoptotic death of K562 cells, a human erythroleukemic cell line. Growth and apoptosis were analysed by viable cell count, flow cytometry, and fluorescence microscopy at 6, 24, and 48 hr of culture following 1 hr exposure to the extracts under investigation. Here, we show that Hypericum extracts are able to reduce the growth of K562 cells and induce different degrees and kinetics of apoptosis according to the group of plants of origin. Also, we highlighted interesting differences in terms of efficacy among the extracts, with some samples losing their effectiveness along the culture time and others able to maintain or even increase their efficacy. Furthermore, the data herein obtained confirm the role of non hypericin compounds that are present in different proportions in the two plant groups and in the extracts analysed. Copyright © 2018 John Wiley & Sons, Ltd.

  3. Enhanced heterologous expression of biologically active human granulocyte colony stimulating factor in transgenic tobacco BY-2 cells by localization to endoplasmic reticulum.

    PubMed

    Nair, Nisha R; Chidambareswaren, M; Manjula, S

    2014-09-01

    Tobacco Bright Yellow-2 (BY-2) cells, one of the best characterized cell lines is an attractive expression system for heterologous protein expression. However, the expression of foreign proteins is currently hampered by their low yield, which is partially the result of proteolytic degradation. Human granulocyte colony stimulating factor (hG-CSF) is a hematopoietic cytokine. Recombinant hG-CSF is successfully being used for the treatment of chemotherapy-induced neutropenia in cancer patients. Here, we describe a simple strategy for producing biologically active hG-CSF in tobacco BY-2 cells, localized in the apoplast of BY-2 cells, as well as targeted to the endoplasmic reticulum (ER). ER targeting significantly enhanced recombinant production which scaled to 17.89 mg/l from 4.19 mg/l when expressed in the apoplasts. Southern blotting confirmed the stable integration of hG-CSF in the BY-2 nuclear genome, and the expression of hG-CSF was analysed by Western blotting. Total soluble protein containing hG-CSF isolated from positive calli showed proliferative potential when tested on HL-60 cell lines by MTT assay. We also report the potential of a Fluorescence-activated cell sorting approach for an efficient sorting of the hG-CSF-expressing cell lines, which will enable the generation of homogenous high-producing cell lines.

  4. The influence of lateral forces on the cell stiffness measurement by optical tweezers vertical indentation

    NASA Astrophysics Data System (ADS)

    Ndoye, Fatou; Sulaiman Yousafzai, Muhammad; Coceano, Giovanna; Bonin, Serena; Scoles, Giacinto; Ka, Oumar; Niemela, Joseph; Cojoc, Dan

    2016-01-01

    We studied the lateral forces arising during the vertical indentation of the cell membrane by an optically trapped microbead, using back focal plane interferometry to determine force components in all directions. We analyzed the cell-microbead interaction and showed that indeed the force had also lateral components. Using the Hertz model, we calculated and compared the elastic moduli resulting from the total and vertical forces, showing that the differences are important and the total force should be considered. To confirm our results we analyzed cells from two breast cancer cell lines: MDA-MB-231 and HBL-100, known to have different cancer aggressiveness and hence stiffness.

  5. The effects of the fungicides fenhexamid and myclobutanil on SH-SY5Y and U-251 MG human cell lines.

    PubMed

    Nagel, David A; Hill, Eric J; O'Neil, John; Mireur, Alexandra; Coleman, Michael D

    2014-11-01

    Mixtures of pesticides in foodstuffs and the environment are ubiquitous in the developed world and although agents are usually exhaustively tested individually, the toxicological implications of pesticide mixtures are underreported. In this study, the effects of two fungicides, fenhexamid and myclobutanil were investigated individually and in combination on two human cell lines, SH-SY5Y neuronal cells and U-251 MG glial cells. After 48h of incubation with increasing concentrations of pesticides ranging from 1 to 1000μM, gene expression profiles were studied in addition to toxicity end points, including cell viability, mitochondrial depolarisation as well as cellular glutathione maintenance. There were no significant differences between the susceptibility of the two cell lines in terms of cell viability assessment or mitochondrial membrane potential, when agents were administered either individually or in combination. By contrast, in the presence of the fungicides, the SH-SY5Y cells showed significantly greater susceptibility to oxidative stress in terms of total thiol depletion in comparison with the astrocytic cells. Treatment with the two pesticides led to significant changes in the cell lines' expression of several genes which regulate cell cycle control and growth (RB1, TIMP1) as well as responses to DNA attrition (ATM and CDA25A) and control of apoptosis (FAS). There was no evidence in this study that the combination of fenhexamid and myclobutanil was significantly more toxic than individual exposure, although gene expression changes suggested there may be differences in the sub-lethal response of both cell lines to both individual and combined exposure. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Polymorphisms in O-methyltransferase genes are associated with stover cell wall digestibility in European maize (Zea mays L.).

    PubMed

    Brenner, Everton A; Zein, Imad; Chen, Yongsheng; Andersen, Jeppe R; Wenzel, Gerhard; Ouzunova, Milena; Eder, Joachim; Darnhofer, Birte; Frei, Uschi; Barrière, Yves; Lübberstedt, Thomas

    2010-02-12

    OMT (O-methyltransferase) genes are involved in lignin biosynthesis, which relates to stover cell wall digestibility. Reduced lignin content is an important determinant of both forage quality and ethanol conversion efficiency of maize stover. Variation in genomic sequences coding for COMT, CCoAOMT1, and CCoAOMT2 was analyzed in relation to stover cell wall digestibility for a panel of 40 European forage maize inbred lines, and re-analyzed for a panel of 34 lines from a published French study. Different methodologies for association analysis were performed and compared. Across association methodologies, a total number of 25, 12, 1, 6 COMT polymorphic sites were significantly associated with DNDF, OMD, NDF, and WSC, respectively. Association analysis for CCoAOMT1 and CCoAOMT2 identified substantially fewer polymorphic sites (3 and 2, respectively) associated with the investigated traits. Our re-analysis on the 34 lines from a published French dataset identified 14 polymorphic sites significantly associated with cell wall digestibility, two of them were consistent with our study. Promising polymorphisms putatively causally associated with variability of cell wall digestibility were inferred from the total number of significantly associated SNPs/Indels. Several polymorphic sites for three O-methyltransferase loci were associated with stover cell wall digestibility. All three tested genes seem to be involved in controlling DNDF, in particular COMT. Thus, considerable variation among Bm3 wildtype alleles can be exploited for improving cell-wall digestibility. Target sites for functional markers were identified enabling development of efficient marker-based selection strategies.

  7. Polymorphisms in O-methyltransferase genes are associated with stover cell wall digestibility in European maize (Zea mays L.)

    PubMed Central

    2010-01-01

    Background OMT (O-methyltransferase) genes are involved in lignin biosynthesis, which relates to stover cell wall digestibility. Reduced lignin content is an important determinant of both forage quality and ethanol conversion efficiency of maize stover. Results Variation in genomic sequences coding for COMT, CCoAOMT1, and CCoAOMT2 was analyzed in relation to stover cell wall digestibility for a panel of 40 European forage maize inbred lines, and re-analyzed for a panel of 34 lines from a published French study. Different methodologies for association analysis were performed and compared. Across association methodologies, a total number of 25, 12, 1, 6 COMT polymorphic sites were significantly associated with DNDF, OMD, NDF, and WSC, respectively. Association analysis for CCoAOMT1 and CCoAOMT2 identified substantially fewer polymorphic sites (3 and 2, respectively) associated with the investigated traits. Our re-analysis on the 34 lines from a published French dataset identified 14 polymorphic sites significantly associated with cell wall digestibility, two of them were consistent with our study. Promising polymorphisms putatively causally associated with variability of cell wall digestibility were inferred from the total number of significantly associated SNPs/Indels. Conclusions Several polymorphic sites for three O-methyltransferase loci were associated with stover cell wall digestibility. All three tested genes seem to be involved in controlling DNDF, in particular COMT. Thus, considerable variation among Bm3 wildtype alleles can be exploited for improving cell-wall digestibility. Target sites for functional markers were identified enabling development of efficient marker-based selection strategies. PMID:20152036

  8. Quantitative Evaluation of Cisplatin Uptake in Sensitive and Resistant Individual Cells by Single-Cell ICP-MS (SC-ICP-MS).

    PubMed

    Corte Rodríguez, M; Álvarez-Fernández García, R; Blanco, E; Bettmer, J; Montes-Bayón, M

    2017-11-07

    One of the main limitations to the Pt-therapy in cancer is the development of associated drug resistance that can be associated with a significant reduction of the intracellular platinum concentration. Thus, intracellular Pt concentration could be considered as a biomarker of cisplatin resistance. In this work, an alternative method to address intracellular Pt concentration in individual cells is explored to permit the evaluation of different cell models and alternative therapies in a relatively fast way. For this aim, total Pt analysis in single cells has been implemented using a total consumption nebulizer coupled to inductively coupled plasma mass spectrometric detection (ICP-MS). The efficiency of the proposed device has been evaluated in combination with flow cytometry and turned out to be around 25% (cells entering the ICP-MS from the cells in suspension). Quantitative uptake studies of a nontoxic Tb-containing compound by individual cells were conducted and the results compared to those obtained by bulk analysis of the same cells. Both sets of data were statistically comparable. Thus, final application of the developed methodology to the comparative uptake of Pt-species in cisplatin resistant and sensitive cell lines (A2780cis and A2780) was conducted. The results obtained revealed the potential of this analytical strategy to differentiate between different cell lines of different sensitivity to the drug which might be of high medical interest.

  9. Structural Complexity of Non-acid Glycosphingolipids in Human Embryonic Stem Cells Grown under Feeder-free Conditions*

    PubMed Central

    Barone, Angela; Benktander, John; Ångström, Jonas; Aspegren, Anders; Björquist, Petter; Teneberg, Susann; Breimer, Michael. E.

    2013-01-01

    Due to their pluripotency and growth capability, there are great expectations for human embryonic stem cells, both as a resource for functional studies of early human development and as a renewable source of cells for use in regenerative medicine and transplantation. However, to bring human embryonic stem cells into clinical applications, their cell surface antigen expression and its chemical structural complexity have to be defined. In the present study, total non-acid glycosphingolipid fractions were isolated from two human embryonic stem cell lines (SA121 and SA181) originating from leftover in vitro fertilized human embryos, using large amounts of starting material (1 × 109 cells/cell line). The total non-acid glycosphingolipid fractions were characterized by antibody and lectin binding, mass spectrometry, and proton NMR. In addition to the globo-series and type 1 core chain glycosphingolipids previously described in human embryonic stem cells, a number of type 2 core chain glycosphingolipids (neo-lactotetraosylceramide, the H type 2 pentaosylceramide, the Lex pentaosylceramide, and the Ley hexaosylceramide) were identified as well as the blood group A type 1 hexaosylceramide. Finally, the mono-, di-, and triglycosylceramides were characterized as galactosylceramide, glucosylceramide, lactosylceramide, galabiaosylceramide, globotriaosylceramide, and lactotriaosylceramide. Thus, the glycan diversity of human embryonic stem cells, including cell surface immune determinants, is more complex than previously appreciated. PMID:23404501

  10. The anticancer properties of iron core–gold shell nanoparticles in colorectal cancer cells

    PubMed Central

    Wu, Ya-Na; Wu, Ping-Ching; Yang, Li-Xing; Ratinac, Kyle R; Thordarson, Pall; Jahn, Kristina A; Chen, Dong-Hwang; Shieh, Dar-Bin; Braet, Filip

    2013-01-01

    Previously, iron core–gold shell nanoparticles (Fe@Au) have been shown to possess cancer-preferential cytotoxicity in oral and colorectal cancer (CRC) cells. However, CRC cell lines are less sensitive to Fe@Au treatment when compared with oral cancer cell lines. In this research, Fe@Au are found to decrease the cell viability of CRC cell lines, including Caco-2, HT-29, and SW480, through growth inhibition rather than the induction of cell death. The cytotoxicity induced by Fe@Au in CRC cells uses different subcellular pathways to the mitochondria-mediated autophagy found in Fe@Au-treated oral cancer cells, OECM1. Interestingly, the Caco-2 cell line shows a similar response to OECM1 cells and is thus more sensitive to Fe@Au treatment than the other CRC cell lines studied. We have investigated the underlying cell resistance mechanisms of Fe@Au-treated CRC cells. The resistance of CRC cells to Fe@Au does not result from the total amount of Fe@Au internalized. Instead, the different amounts of Fe and Au internalized appear to determine the different response to treatment with Fe-only nanoparticles in Fe@Au-resistant CRC cells compared with the Fe@Au-sensitive OECM1 cells. The only moderately cytotoxic effect of Fe@Au nanoparticles on CRC cells, when compared to the highly sensitive OECM1 cells, appears to arise from the CRC cells’ relative insensitivity to Fe, as is demonstrated by our Fe-only treatments. This is a surprising outcome, given that Fe has thus far been considered to be the “active” component of Fe@Au nanoparticles. Instead, we have found that the Au coatings, previously considered only as a passivating coating to protect the Fe cores from oxidation, significantly enhance the cytotoxicity of Fe@Au in certain CRC cells. Therefore, we conclude that both the Fe and Au in these core–shell nanoparticles are essential for the anticancer properties observed in CRC cells. PMID:24039416

  11. Identification of the thiamin pyrophosphokinase gene in rainbow trout: Characteristic structure and expression of seven splice variants in tissues and cell lines and during embryo development

    USGS Publications Warehouse

    Yuge, Shinya; Richter, Catherine A.; Wright-Osment, Maureen K.; Nicks, Diane; Saloka, Stephanie K.; Tillitt, Donald E.; Li, Weiming

    2012-01-01

    Thiamin pyrophosphokinase (TPK) converts thiamin to its active form, thiamin diphosphate. In humans, TPK expression is down-regulated in some thiamin deficiency related syndrome, and enhanced during pregnancy. Rainbow trout are also vulnerable to thiamin deficiency in wild life and are useful models for thiamin metabolism research. We identified the tpk gene transcript including seven splice variants in the rainbow trout. Almost all cell lines and tissues examined showed co-expression of several tpk splice variants including a potentially major one at both mRNA and protein levels. However, relative to other tissues, the longest variant mRNA expression was predominant in the ovary and abundant in embryos. During embryogenesis, total tpk transcripts increased abruptly in early development, and decreased to about half of the peak shortly after hatching. In rainbow trout, the tpk transcript complex is ubiquitously expressed for all tissues and cells examined, and its increase in expression could be important in the early-middle embryonic stages. Moreover, decimated tpk expression in a hepatoma cell line relative to hepatic and gonadal cell lines appears to be consistent with previously reported down-regulation of thiamin metabolism in cancer.

  12. In-situ gamma-ray assay of the west cell line in the 235-F plutonium fuel form facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, A. H.; Diprete, D.

    On August 29th, 2013, scientists from SRNL took a series of in-situ gamma-ray measurements in the maintenance trench beneath Cells 6-9 on the west line of the PuFF facility using an uncollimated, highpurity germanium detector. The detector efficiency was estimated using a combination of MCNP simulations and empirical measurements. Data analysis was performed using three gamma-rays emitted by Pu-238 (99.85 keV, 152.7 keV, and 766.4 keV) providing three independent estimates of the mass of Pu-238 holdup in each of the cells. The weighted mean of these three results was used as the best estimate of Pu-238 holdup in the Westmore » Cell Line of PuFF. The results of the assay measurements are found in the table below along with the results from the scoping assay performed in 2006. All uncertainties in this table (as well as the rest of the report) are given as 1σ. The total holdup in the West Cell Line was 2.4 ± 0.7 grams. This result is 0.6 g higher than the previous estimate, a 0.4σ difference.« less

  13. CRISPR/Cas9 mutagenesis invalidates a putative cancer dependency targeted in on-going clinical trials

    PubMed Central

    Lin, Ann; Giuliano, Christopher J; Sayles, Nicole M; Sheltzer, Jason M

    2017-01-01

    The Maternal Embryonic Leucine Zipper Kinase (MELK) has been reported to be a genetic dependency in several cancer types. MELK RNAi and small-molecule inhibitors of MELK block the proliferation of various cancer cell lines, and MELK knockdown has been described as particularly effective against the highly-aggressive basal/triple-negative subtype of breast cancer. Based on these preclinical results, the MELK inhibitor OTS167 is currently being tested as a novel chemotherapy agent in several clinical trials. Here, we report that mutagenizing MELK with CRISPR/Cas9 has no effect on the fitness of basal breast cancer cell lines or cell lines from six other cancer types. Cells that harbor null mutations in MELK exhibit wild-type doubling times, cytokinesis, and anchorage-independent growth. Furthermore, MELK-knockout lines remain sensitive to OTS167, suggesting that this drug blocks cell division through an off-target mechanism. In total, our results undermine the rationale for a series of current clinical trials and provide an experimental approach for the use of CRISPR/Cas9 in preclinical target validation that can be broadly applied. DOI: http://dx.doi.org/10.7554/eLife.24179.001 PMID:28337968

  14. Taxol and LPS Modulation of c-kit and nm23 Expression in Macrophages and Normal vs. Malignant Breast Cancer Cell Lines.

    DTIC Science & Technology

    1999-07-01

    medium only, LPS (100 ng/ml), or paclitaxel (35 ^iM), concentrations found to induce maximal levels of mRNA in murine macrophages. Total RNA was...not detected in RNA derived from the DA-3 cells over an 8 h timecourse, even after 40 cycles of PCR amplification, without or with treatment...indicated times after stimulation with LPS or paclitaxel. Isolation of total cellular RNA . For in vitro experiments, culture supematants were removed

  15. A Sensitive Sensor Cell Line for the Detection of Oxidative Stress Responses in Cultured Human Keratinocytes

    PubMed Central

    Hofmann, Ute; Priem, Melanie; Bartzsch, Christine; Winckler, Thomas; Feller, Karl-Heinz

    2014-01-01

    In the progress of allergic and irritant contact dermatitis, chemicals that cause the generation of reactive oxygen species trigger a heat shock response in keratinocytes. In this study, an optical sensor cell line based on cultured human keratinocytes (HaCaT cells) expressing green fluorescent protein (GFP) under the control of the stress-inducible HSP70B' promoter were constructed. Exposure of HaCaT sensor cells to 25 μM cadmium, a model substance for oxidative stress induction, provoked a 1.7-fold increase in total glutathione and a ∼300-fold induction of transcript level of the gene coding for heat shock protein HSP70B'. An extract of Arnica montana flowers resulted in a strong induction of the HSP70B' gene and a pronounced decrease of total glutathione in keratinocytes. The HSP70B' promoter-based sensor cells conveniently detected cadmium-induced stress using GFP fluorescence as read-out with a limit of detection of 6 μM cadmium. In addition the sensor cells responded to exposure of cells to A. montana extract with induction of GFP fluorescence. Thus, the HaCaT sensor cells provide a means for the automated detection of the compromised redox status of keratinocytes as an early indicator of the development of human skin disorders and could be applied for the prediction of skin irritation in more complex in vitro 3D human skin models and in the development of micro-total analysis systems (μTAS) that may be utilized in dermatology, toxicology, pharmacology and drug screenings. PMID:24967604

  16. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth.

    PubMed

    Kim, Eun-Kyung; Cho, Jae Hee; Kim, EuiJoo; Kim, Yoon Jae

    2017-01-01

    The regulation of reactive oxygen species (ROS) exists as a therapeutic target for cancer treatments. Previous studies have shown that ursodeoxycholic acid (UDCA) suppresses the proliferation of colon cancer cells. The aim of this study was to evaluate the effect of UDCA upon the proliferation of colon cancer cells as a direct result of the regulation of ROS. Colon cancer cell lines (HT29 and HCT116) were treated with UDCA. The total number of cells and the number of dead cells were determined using cell counters. A fluorescein isothiocyanate-bromodeoxyuridine flow kit was used to analyze cell cycle variations. Upon exposure to UDCA, the protein levels of p27, p21, CDK2, CDK4 and CDK6 were determined using western blotting, and qRT-PCR was used to determine levels of mRNA. We preformed dichlorofluorescindiacetate (DCF-DA) staining to detect alteration of intracellular ROS using fluorescence activated cell sorting (FACS). Colon cancer stem-like cell lines were generated by tumorsphere culture and treated with UDCA for seven days. The total number of tumorspheres was determined using microscopy. We found that UDCA reduced the total number of colon cancer cells, but did not increase the number of dead cells. UDCA inhibited the G1/S and G2/M transition phases in colon cancer cells. UDCA induced expression of cell cycle inhibitors such as p27 and p21. However, it was determined that UDCA suppressed levels of CDK2, CDK4, and CDK6. UDCA regulated intracellular ROS generation in colon cancer cells, and induced activation of Erk1/2. Finally, UDCA inhibited formation of colon cancer stem-like cells. Our results indicate that UDCA suppresses proliferation through regulation of oxidative stress in colon cancer cells, as well as colon cancer stem-like cells.

  17. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth

    PubMed Central

    Kim, EuiJoo

    2017-01-01

    Introduction The regulation of reactive oxygen species (ROS) exists as a therapeutic target for cancer treatments. Previous studies have shown that ursodeoxycholic acid (UDCA) suppresses the proliferation of colon cancer cells. The aim of this study was to evaluate the effect of UDCA upon the proliferation of colon cancer cells as a direct result of the regulation of ROS. Method Colon cancer cell lines (HT29 and HCT116) were treated with UDCA. The total number of cells and the number of dead cells were determined using cell counters. A fluorescein isothiocyanate-bromodeoxyuridine flow kit was used to analyze cell cycle variations. Upon exposure to UDCA, the protein levels of p27, p21, CDK2, CDK4 and CDK6 were determined using western blotting, and qRT-PCR was used to determine levels of mRNA. We preformed dichlorofluorescindiacetate (DCF-DA) staining to detect alteration of intracellular ROS using fluorescence activated cell sorting (FACS). Colon cancer stem-like cell lines were generated by tumorsphere culture and treated with UDCA for seven days. The total number of tumorspheres was determined using microscopy. Results We found that UDCA reduced the total number of colon cancer cells, but did not increase the number of dead cells. UDCA inhibited the G1/S and G2/M transition phases in colon cancer cells. UDCA induced expression of cell cycle inhibitors such as p27 and p21. However, it was determined that UDCA suppressed levels of CDK2, CDK4, and CDK6. UDCA regulated intracellular ROS generation in colon cancer cells, and induced activation of Erk1/2. Finally, UDCA inhibited formation of colon cancer stem-like cells. Conclusion Our results indicate that UDCA suppresses proliferation through regulation of oxidative stress in colon cancer cells, as well as colon cancer stem-like cells. PMID:28708871

  18. Radiologic Differences between Bone Marrow Stromal and Hematopoietic Progenitor Cell Lines from Fanconi Anemia (Fancd2−/−) Mice

    PubMed Central

    Berhane, Hebist; Epperly, Michael W.; Goff, Julie; Kalash, Ronny; Cao, Shaonan; Franicola, Darcy; Zhang, Xichen; Shields, Donna; Houghton, Frank; Wang, Hong; Wipf, Peter; Parmar, Kalindi; Greenberger, Joel S.

    2014-01-01

    FancD2 plays a central role in the human Fanconi anemia DNA damage response (DDR) pathway. Fancd2−/− mice exhibit many features of human Fanconi anemia including cellular DNA repair defects. Whether the DNA repair defect in Fancd2−/− mice results in radiologic changes in all cell lineages is unknown. We measured stress of hematopoiesis in long-term marrow cultures and radiosensitivity in clonogenic survival curves, as well as comet tail intensity, total antioxidant stores and radiation-induced gene expression in hematopoietic progenitor compared to bone marrow stromal cell lines. We further evaluated radioprotection by a mitochondrial-targeted antioxidant GS-nitroxide, JP4-039. Hematopoiesis longevity in Fancd2−/− mouse long-term marrow cultures was diminished and bone marrow stromal cell lines were radiosensitive compared to Fancd2+/+ stromal cells (Fancd2−/− D0 = 1.4 ± 0.1 Gy, ñ = 5.0 ± 0.6 vs. Fancd2+/+ D0 = 1.6 ± 0.1 Gy, ñ = 6.7 ± 1.6), P = 0.0124 for D0 and P = 0.0023 for ñ, respectively). In contrast, Fancd2−/− IL-3-dependent hematopoietic progenitor cells were radioresistant (D0 = 1.71 ± 0.04 Gy and ñ = 5.07 ± 0.52) compared to Fancd2+/+ (D0 = 1.39 ± 0.09 Gy and ñ = 2.31 ± 0.85, P = 0.001 for D0). CFU-GM from freshly explanted Fancd2−/− marrow was also radioresistant. Consistent with radiosensitivity, irradiated Fancd2−/− stromal cells had higher DNA damage by comet tail intensity assay compared to Fancd2+/+ cells (P < 0.0001), slower DNA damage recovery, lower baseline total antioxidant capacity, enhanced radiation-induced depletion of antioxidants, and increased CDKN1A-p21 gene transcripts and protein. Consistent with radioresistance, Fancd2−/− IL-3-dependent hematopoietic cells had higher baseline and post irradiation total antioxidant capacity. While, there was no detectable alteration of radiation-induced cell cycle arrest with Fancd2−/− stromal cells, hematopoietic progenitor cells showed reduced G2/M cell cycle arrest. The absence of the mouse Fancd2 gene product confers radiosensitivity to bone marrow stromal but not hematopoietic progenitor cells. PMID:24397476

  19. Inhibition of cell growth and induction of apoptosis in ovarian carcinoma cell lines CaOV3 and SKOV3 by natural withanolide Withaferin A.

    PubMed

    Zhang, Xuan; Samadi, Abbas K; Roby, Katherine F; Timmermann, Barbara; Cohen, Mark S

    2012-03-01

    Withaferin A, a natural withanolide, has shown anti-cancer properties in various cancers including breast cancer, but its effects in ovarian cancer remain unexplored. Notch 1 and Notch3 are critically involved in ovarian cancer progression. We decided to examine the effects of Withaferin A in ovarian carcinoma cell lines and its molecular mechanism of action including its regulation of Notch. The effects of Withaferin A were examined in CaOV3 and SKOV3 ovarian carcinoma cell lines using MTS assay, clonogenic assay, annexin V/propidium iodide flow cytometry, and cell cycle analysis. Western analysis was conducted to examine the molecular mechanisms of action. Withaferin A inhibited the growth and colony formation of CaOV3 and SKOV3 cells by inducing apoptosis and cell cycle arrest. These changes correlated with down-regulation of Notch1, Notch3, cdc25C, total and phosphorylated Akt, and bcl-2 proteins. Withaferin A inhibits CaOV3 and SKOV3 ovarian carcinoma cell growth, at least in part by targeting Notch1 and Notch3. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Enrichment of prostate cancer stem-like cells from human prostate cancer cell lines by culture in serum-free medium and chemoradiotherapy.

    PubMed

    Wang, Lei; Huang, Xing; Zheng, Xinmin; Wang, Xinghuan; Li, Shiwen; Zhang, Lin; Yang, Zhonghua; Xia, Zhiping

    2013-01-01

    The discovery of rare subpopulations of cancer stem cells (CSCs) has created a new focus in cancer research. As CSCs demonstrate resistance to chemoradiation therapy relative to other cancer cells, this allows the enrichment of CSC populations by killing apoptosis-susceptible cancer cells. In this study, three commonly used human prostate cancer (PCa) cell lines (DU145, PC-3 and LNCaP) were examined for their expression of the putative stem cell markers CD133 and CD44 via flow cytometric analysis. Under normal culture conditions, CD133(+)/CD44(+) cells were only present in the DU145 cell line, and comprised only a minor percentage (0.1% ± 0.01%) of the total population. However, the proportion of these CD133(+)/CD44(+) prostate CSCs could be increased in these cell lines via culture in serum-free medium (SFM), or through chemotherapy or radiotherapy. Indeed, after culture in SFM, the proportion of CD133(+)/CD44(+) cells in DU145 and PC-3 had increased to 10.3% and 3.0%, respectively. Moreover, the proportion had increased to 9.8% enriched by chemotherapy and 3.5% by radiotherapy in DU145. Colony-formation tests, cell invasion assays, and tumor xenografts in BALB/c nude mice were used to evaluate the stem cell properties of CD133(+)/CD44(+) PCa cells that were isolated via fluorescence-activated cell sorting (FACS). CD133(+)/CD44(+) cells had an enhanced colony-formation capability and invasive ability in vitro, and displayed greater tumorigenic properties in vivo. These results demonstrate the presence of CD133(+)/CD44(+) prostate CSCs in established PCa cell lines and that populations of these cells can be enriched by culture in SFM or chemoradiotherapy. Finding novel therapies to override chemoradiation resistance in the prostate CSCs is the key to improve long-term results in PCa management.

  1. [The correlation of synuclein-γ and matrix metalloproteinase 9 in breast cancer].

    PubMed

    Chen, Jian; Huang, Shuo; Wu, Ke-jin; Wang, Yong-kun; Jia, Yi-jun; Lu, Yun-shu; Weng, Zi-yi

    2013-07-01

    To evaluate the expression of synuclein-γ (SNCG) and metalloproteinase 9 (MMP-9) both in the invasive ductal breast cancer samples and T47D and T47D(SNCG)- cell lines, to investigate the correlation between SNCG and MMP-9. Totally 96 invasive ductal breast cancer samples (female, mean age of (56 ± 8) years) were collected between June 2009 and June 2012. The expressions of SNCG and MMP-9 were investigated by immunohistochemistry. T47D and SNCG knock down T47D(SNCG)- cell lines were established and SNCG and MMP-9 protein expression were investigated by Western blot and gene expression by real-time PCR. Among 96 samples, 26 (27.1%) of them co-expressed SNCG and MMP-9, 30(31.2%) of them expressed neither SNCG nor MMP-9. The expression of SNCG was correlated with the expression of MMP-9 (r = 0.655, P = 0.000).SNCG mRNA level of T47D cell line was 13.5 fold of T47D(SNCG)- cell line and SNCG protein expression was 2.1 fold. While MMP-9 mRNA level of T47D cell line was 7.3 fold of T47D(SNCG)- cell line and MMP-9 protien expression was 1.6 fold.When SNCG was knocked down, the expression of MMP-9 decreased. SNCG and MMP-9 are significantly correlated with each other in breast cancer. SNCG may promote the invasion and metastasis of breast cancer mediated by up-regulating the expression of MMP-9.

  2. Antioxidant potential, cytotoxic activity and total phenolic content of Alpinia pahangensis rhizomes.

    PubMed

    Phang, Chung-Weng; Malek, Sri Nurestri Abd; Ibrahim, Halijah

    2013-10-01

    Alpinia pahangensis, a wild ginger distributed in the lowlands of Pahang, Malaysia, is used by the locals to treat flatulence. In this study, the antioxidant and cytotoxic activities of the crude aqueous methanol and fractionated extracts of Alpinia pahangensis against five different cancer and one normal cell lines were investigated. The total phenolic content of each extract and its fractions were also quantified. This is the first report on the antioxidant and cytotoxic activities of Alpinia pahangensis extract. In the current study, the crude methanol and fractionated extract of the rhizomes of Alpinia pahangensis were investigated for their antioxidant activity using four different assays namely, the DPPH scavenging activity, superoxide anion scavenging, β-carotene bleaching and reducing power assays whilst their phenolic contents were measured by the Folin-Ciocalteu's method.In vitro neutral red cytotoxicity assay was employed to evaluate the cytotoxic activity against five different cancer cell lines, colon cancer (HCT 116 and HT-29), cervical cancer (Ca Ski), breast cancer (MCF7) and lung cancer (A549) cell lines, and one normal cell line (MRC-5). The extract that showed high cytotoxic activity was further investigated for its chemical constituents by GC-MS (gas chromatography-mass spectrometry) analysis. The ethyl acetate fraction showed the strongest DPPH radical scavenging (0.35 ± 0.094 mg/ml) and SOD activities (51.77 ± 4.9%) whilst the methanol extract showed the highest reducing power and also the strongest antioxidant activity in the β-carotene bleaching assays in comparison to other fractions. The highest phenolic content was found in the ethyl acetate fraction, followed by the crude methanol extract, hexane and water fractions. The results showed a positive correlation between total phenolic content with DPPH radical scavenging capacities and SOD activities. The hexane fraction showed potent cytotoxic effect against KB, Ca Ski and HCT 116 cell lines with IC₅₀ of 5.8 ± 0.1 and 9.1 ± 2.0 ug/ml, respectively. The major components of hexane fraction analysed by GC-MS analysis were mostly methyl esters. The current study suggests that the methanol extract and ethyl acetate fraction of A. pahangensis is a potential source of natural antioxidant for protective as well as prevention of life-threatening diseases. The hexane fraction of A. pahangensis may have the potential to be developed into therapeutic option for treating cancer.

  3. Metabolic Imaging of Pancreatic Ductal Adenocarcinoma Detects Altered Choline Metabolism

    PubMed Central

    Penet, Marie-France; Shah, Tariq; Bharti, Santosh; Krishnamachary, Balaji; Artemov, Dmitri; Mironchik, Yelena; Wildes, Flonné; Maitra, Anirban; Bhujwalla, Zaver M.

    2014-01-01

    Purpose Pancreatic ductal adenocarcinoma (PDAC) is an aggressive and lethal disease that develops relatively symptom-free and is therefore advanced at the time of diagnosis. The absence of early symptoms and effective treatments has created a critical need for identifying and developing new noninvasive biomarkers and therapeutic targets. Experimental Design We investigated the metabolism of a panel of PDAC cell lines in culture and noninvasively in vivo with 1H magnetic resonance spectroscopic imaging (MRSI) to identify noninvasive biomarkers and uncover potential metabolic targets. Results We observed elevated choline-containing compounds in the PDAC cell lines and tumors. These elevated choline-containing compounds were easily detected by increased total choline (tCho) in vivo, in spectroscopic images obtained from tumors. Principal component analysis of the spectral data identified additional differences in metabolites between HPNE and neoplastic PDAC cells. Molecular characterization revealed overexpression of choline kinase (Chk)-α, choline transporter 1 (CHT1), and choline transporter-like protein 1 (CTL1) in the PDAC cell lines and tumors. Conclusions Collectively, these data identify new metabolic characteristics of PDAC and reveal potential metabolic targets. Total choline detected with 1H MRSI may provide an intrinsic, imaging-probe independent biomarker to complement existing techniques in detecting PDAC. The expression of Chk-α, CHT1, and CTL1 may provide additional molecular markers in aspirated cytological samples. PMID:25370468

  4. Ionizing radiation modulates the surface expression of human leukocyte antigen-G in a human melanoma cell line.

    PubMed

    Michelin, Severino; Gallegos, Cristina E; Dubner, Diana; Favier, Benoit; Carosella, Edgardo D

    2009-12-01

    Human leukocyte antigen G (HLA-G) is a nonclassical HLA class I molecule involved in fetus protection from the maternal immune system, transplant tolerance, and viral and tumoral immune escape. Tumor-specific HLA-G expression has been described for a wide variety of malignancies, including melanomas. The aim of this study was to evaluate whether ionizing radiation (IR) could modulate the surface expression of HLA-G1 in a human melanoma cell line that expresses endogenously membrane-bound HLA-G1. For this purpose, cells were exposed to increasing doses of gamma-irradiation (0-20 Gy) and HLA-G1 levels at the plasma membrane were analyzed at different times postirradiation by flow cytometry. HLA-G total expression and the presence of the soluble form of HLA-G1 (sHLA-G1) in the culture medium of irradiated cells were also evaluated. IR was capable of downregulating cell surface and total HLA-G levels, with a concomitant increase of sHLA-G1 in the medium. These results could indicate that gamma-irradiation decreases HLA-G1 surface levels by enhancing the proteolytic cleavage of this molecule.

  5. The lateral line receptor array of cyprinids from different habitats.

    PubMed

    Schmitz, Anke; Bleckmann, Horst; Mogdans, Joachim

    2014-04-01

    The lateral line system of teleost fishes consists of an array of superficial and canal neuromasts (CN). Number and distribution of neuromasts and the morphology of the lateral line canals vary across species. We investigated the morphology of the lateral line system in four diurnal European cyprinids, the limnophilic bitterling (Rhodeus sericeus), the indifferent gudgeon (Gobio gobio), and ide (Leuciscus idus), and the rheophilic minnow (Phoxinus phoxinus). All fish had lateral line canals on head and trunk. The total number of both, CN and superficial neuromasts (SN), was comparable in minnow and ide but was greater than in gudgeon and bitterling. The ratio of SNs to CNs for the head was comparable in minnow and bitterling but was greater in gudgeon and ide. The SN-to-CN ratio for the trunk was greatest in bitterling. Polarization of hair cells in CNs was in the direction of the canal. Polarization of hair cells in SNs depended on body area. In cephalic SNs, hair cell polarization was dorso-ventral or rostro-caudal. In trunk SNs, it was rostro-caudal on lateral line scales and dorso-ventral on other trunk scales. On the caudal fin, hair cell polarization was rostro-caudal. The data show that, in the four species studied here, number, distribution, and orientation of CNs and SNs cannot be unequivocally related to habitat. Copyright © 2013 Wiley Periodicals, Inc.

  6. Study on Anticancer Activity of Extracts of Sponges Collected from Biak Water, Indonesia

    NASA Astrophysics Data System (ADS)

    Trianto, A.; Ridhlo, A.; Triningsih, D. W.; Tanaka, J.

    2017-02-01

    Indonesia is center of biodiversity where marine sponges are abundant. a source of bioactive compounds with various pharmaceutical properties such as anticancer, antifungal, antibacterial, antioxidants, anti-inflammatory, and anti-malarial. In a continuation of a search for biologically active molecules from marine organisms we investigated the potency of marine sponges as anticancer. A total of 106 sponge specimens were collected between 3-40 m depths by SCUBA diving in Biak waters during August 2005. The specimens were extracted with methanol to provided crude extracts. The methanolic extracts were tested against NBT-T2 cell line. The assay result showed that 8.5 %, 29.2 % and 46.2 % of the extract have activity against the cell line at 0.1, 1.0 and 10.0 μg/mL. While, a 16.0 % of the extract did not showed activity against the cell line.

  7. Patau syndrome with long survival in a case of unusual mosaic trisomy 13.

    PubMed

    Fogu, Giuseppina; Maserati, Emanuela; Cambosu, Francesca; Moro, Maria Antonietta; Poddie, Fausto; Soro, Giovanna; Bandiera, Pasquale; Serra, Gigliola; Tusacciu, Gianni; Sanna, Giuseppina; Mazzarello, Vittorio; Montella, Andrea

    2008-01-01

    We report a 12-year-old patient with Patau syndrome, in whom two cell lines were present from birth, one with total trisomy 13 due to isochromosome (13q), and one with partial trisomy 13. A cytogenetic re-evaluation at 9 years of age brought to light in skin fibroblasts a third cell line, partially monosomic for chromosome 13. The derivatives (13) present in the three cell lines were characterized through fluorescence in situ hybridization (FISH) experiments with suitable probes; the results suggested a sequence of rearrangements which beginning from an isochromosome (13q) could have led to the other two derivatives. We report the clinical data at birth and at the age of 12; at this age pigmentary lesions with phylloid pattern were noted. Cytogenetic findings of the chromosomal analyses on different tissues, including skin fibroblasts from differently pigmented areas, are also reported.

  8. Recombinant Rabbit Leukemia Inhibitory Factor and Rabbit Embryonic Fibroblasts Support the Derivation and Maintenance of Rabbit Embryonic Stem Cells

    PubMed Central

    Xue, Fei; Ma, Yinghong; Chen, Y. Eugene; Zhang, Jifeng; Lin, Tzu-An; Chen, Chien-Hong; Lin, Wei-Wen; Roach, Marsha; Ju, Jyh-Cherng; Yang, Lan; Du, Fuliang

    2012-01-01

    Abstract The rabbit is a classical experimental animal species. A major limitation in using rabbits for biomedical research is the lack of germ-line-competent rabbit embryonic stem cells (rbESCs). We hypothesized that the use of homologous feeder cells and recombinant rabbit leukemia inhibitory factor (rbLIF) might improve the chance in deriving germ-line-competent rbES cells. In the present study, we established rabbit embryonic fibroblast (REF) feeder layers and synthesized recombinant rbLIF. We derived a total of seven putative rbESC lines, of which two lines (M5 and M23) were from culture Condition I using mouse embryonic fibroblasts (MEFs) as feeders supplemented with human LIF (hLIF) (MEF+hLIF). Another five lines (R4, R9, R15, R21, and R31) were derived from Condition II using REFs as feeder cells supplemented with rbLIF (REF+rbLIF). Similar derivation efficiency was observed between these two conditions (8.7% vs. 10.2%). In a separate experiment with 2×3 factorial design, we examined the effects of feeder cells (MEF vs. REF) and LIFs (mLIF, hLIF vs. rbLIF) on rbESC culture. Both Conditions I and II supported satisfactory rbESC culture, with similar or better population doubling time and colony-forming efficiency than other combinations of feeder cells with LIFs. Rabbit ESCs derived and maintained on both conditions displayed typical ESC characteristics, including ESC pluripotency marker expression (AP, Oct4, Sox2, Nanog, and SSEA4) and gene expression (Oct4, Sox2, Nanog, c-Myc, Klf4, and Dppa5), and the capacity to differentiate into three primary germ layers in vitro. The present work is the first attempt to establish rbESC lines using homologous feeder cells and recombinant rbLIF, by which the rbESCs were derived and maintained normally. These cell lines are unique resources and may facilitate the derivation of germ-line-competent rbESCs. PMID:22775411

  9. Loss of the deubiquitylase BAP1 alters class I histone deacetylase expression and sensitivity of mesothelioma cells to HDAC inhibitors

    PubMed Central

    Sacco, Joseph J.; Kenyani, Jenna; Butt, Zohra; Carter, Rachel; Chew, Hui Yi; Cheeseman, Liam P.; Darling, Sarah; Denny, Michael; Urbé, Sylvie; Clague, Michael J.; Coulson, Judy M.

    2015-01-01

    Histone deacetylases are important targets for cancer therapeutics, but their regulation is poorly understood. Our data show coordinated transcription of HDAC1 and HDAC2 in lung cancer cell lines, but suggest HDAC2 protein expression is cell-context specific. Through an unbiased siRNA screen we found that BRCA1-associated protein 1 (BAP1) regulates their expression, with HDAC2 reduced and HDAC1 increased in BAP1 depleted cells. BAP1 loss-of-function is increasingly reported in cancers including thoracic malignancies, with frequent mutation in malignant pleural mesothelioma. Endogenous HDAC2 directly correlates with BAP1 across a panel of lung cancer cell lines, and is downregulated in mesothelioma cell lines with genetic BAP1 inactivation. We find that BAP1 regulates HDAC2 by increasing transcript abundance, rather than opposing its ubiquitylation. Importantly, although total cellular HDAC activity is unaffected by transient depletion of HDAC2 or of BAP1 due to HDAC1 compensation, this isoenzyme imbalance sensitizes MSTO-211H cells to HDAC inhibitors. However, other established mesothelioma cell lines with low endogenous HDAC2 have adapted to become more resistant to HDAC inhibition. Our work establishes a mechanism by which BAP1 loss alters sensitivity of cancer cells to HDAC inhibitors. Assessment of BAP1 and HDAC expression may ultimately help identify patients likely to respond to HDAC inhibitors. PMID:25970771

  10. Amygdalin blocks the in vitro adhesion and invasion of renal cell carcinoma cells by an integrin-dependent mechanism.

    PubMed

    Juengel, Eva; Afschar, Masud; Makarević, Jasmina; Rutz, Jochen; Tsaur, Igor; Mani, Jens; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2016-03-01

    Information about the natural compound amygdalin, which is employed as an antitumor agent, is sparse and thus its efficacy remains controversial. In this study, to determine whether amygdalin exerts antitumor effects on renal cell carcinoma (RCC) cells, its impact on RCC metastatic activity was investigated. The RCC cell lines, Caki-1, KTC-26 and A498, were exposed to amygdalin from apricot kernels, and adhesion to human vascular endothelium, immobilized collagen or fibronectin was investigated. The influence of amygdalin on chemotactic and invasive activity was also determined, as was the influence of amygdalin on surface and total cellular α and β integrin expression, which are involved in metastasis. We noted that amygdalin caused significant reductions in chemotactic activity, invasion and adhesion to endothelium, collagen and fibronectin. Using FACScan analysis, we noted that amygdalin also induced reductions, particularly in integrins α5 and α6, in all three cell lines. Functional blocking of α5 resulted in significantly diminished adhesion of KTC-26 and A498 to collagen and also in decreased chemotactic behavior in all three cell lines. Blocking α6 integrin significantly reduced chemotactic activity in all three cell lines. Thus, we suggest that exposing RCC cells to amygdalin inhibits metastatic spread and is associated with downregulation of α5 and α6 integrins. Therefore, we posit that amygdalin exerts antitumor activity in vitro, and this may be linked to integrin regulation.

  11. Effects of epidermal growth factor receptor kinase inhibition on radiation response in canine osteosarcoma cells.

    PubMed

    Mantovani, Fernanda B; Morrison, Jodi A; Mutsaers, Anthony J

    2016-05-31

    Radiation therapy is a palliative treatment modality for canine osteosarcoma, with transient improvement in analgesia observed in many cases. However there is room for improvement in outcome for these patients. It is possible that the addition of sensitizing agents may increase tumor response to radiation therapy and prolong quality of life. Epidermal growth factor receptor (EGFR) expression has been documented in canine osteosarcoma and higher EGFR levels have been correlated to a worse prognosis. However, effects of EGFR inhibition on radiation responsiveness in canine osteosarcoma have not been previously characterized. This study examined the effects of the small molecule EGFR inhibitor erlotinib on canine osteosarcoma radiation responses, target and downstream protein expression in vitro. Additionally, to assess the potential impact of treatment on tumor angiogenesis, vascular endothelial growth factor (VEGF) levels in conditioned media were measured. Erlotinib as a single agent reduced clonogenic survival in two canine osteosarcoma cell lines and enhanced the impact of radiation in one out of three cell lines investigated. In cell viability assays, erlotinib enhanced radiation effects and demonstrated single agent effects. Erlotinib did not alter total levels of EGFR, nor inhibit downstream protein kinase B (PKB/Akt) activation. On the contrary, erlotinib treatment increased phosphorylated Akt in these osteosarcoma cell lines. VEGF levels in conditioned media increased after erlotinib treatment as a single agent and in combination with radiation in two out of three cell lines investigated. However, VEGF levels decreased with erlotinib treatment in the third cell line. Erlotinib treatment promoted modest enhancement of radiation effects in canine osteosarcoma cells, and possessed activity as a single agent in some cell lines, indicating a potential role for EGFR inhibition in the treatment of a subset of osteosarcoma patients. The relative radioresistance of osteosarcoma cells does not appear to be related to EGFR signalling exclusively. Angiogenic responses to radiation and kinase inhibitors are similarly likely to be multifactorial and require further investigation.

  12. Development of a recombinant human ovarian (BG1) cell line containing estrogen receptor α and β for improved detection of estrogenic/antiestrogenic chemicals.

    PubMed

    Brennan, Jennifer C; Bassal, Arzoo; He, Guochun; Denison, Michael S

    2016-01-01

    Estrogenic endocrine-disrupting chemicals are found in environmental and biological samples, commercial and consumer products, food, and numerous other sources. Given their ubiquitous nature and potential for adverse effects, a critical need exists for rapidly detecting these chemicals. The authors developed an estrogen-responsive recombinant human ovarian (BG1Luc4E2) cell line recently accepted by the US Environmental Protection Agency (USEPA) and Organisation for Economic Co-operation and Development (OECD) as a bioanalytical method to detect estrogen receptor (ER) agonists/antagonists. Unfortunately, these cells appear to contain only 1 of the 2 known ER isoforms, ERα but not ERβ, and the differential ligand selectivity of these ERs indicates that the currently accepted screening method only detects a subset of total estrogenic chemicals. To improve the estrogen screening bioassay, BG1Luc4E2 cells were stably transfected with an ERβ expression plasmid and positive clones identified using ERβ-selective ligands (genistein and Br-ERβ-041). A highly responsive clone (BG1LucERβc9) was identified that exhibited greater sensitivity and responsiveness to ERβ-selective ligands than BG1Luc4E2 cells, and quantitative reverse-transcription polymerase chain reaction confirmed the presence of ERβ expression in these cells. Screening of pesticides and industrial chemicals identified chemicals that preferentially stimulated ERβ-dependent reporter gene expression. Together, these results not only demonstrate the utility of this dual-ER recombinant cell line for detecting a broader range of estrogenic chemicals than the current BG1Luc4E2 cell line, but screening with both cell lines allows identification of ERα- and ERβ-selective chemicals. © 2015 SETAC.

  13. Development of a recombinant human ovarian (BG1) cell line containing estrogen receptor α and β for improved detection of estrogenic/antiestrogenic chemicals

    PubMed Central

    Brennan, Jennifer C.; Bassal, Arzoo; He, Guochun; Denison, Michael S.

    2016-01-01

    Estrogenic endocrine disrupting chemicals are found in environmental and biological samples, commercial and consumer products, food, and numerous other sources. Given their ubiquitous nature and potential for adverse effects, there is a critical need for rapidly detecting these chemicals. We developed an estrogen-responsive recombinant human ovarian (BG1Luc4E2) cell line recently accepted by the USEPA and OECD as a bioanalytical method to detect estrogen receptor (ER) agonists/antagonists. Unfortunately, these cells appear to contain only one of the two known ER isoforms, ERα but not ERβ, and the differential ligand selectivity of these ERs indicates that the currently accepted screening method only detects a subset of total estrogenic chemicals. To improve the estrogen screening bioassay, BG1Luc4E2 cells were stably transfected with an ERβ expression plasmid and positive clones identified using ERβ-selective ligands (genistein and Br-ERβ-041). A highly responsive clone (BG1LucERβc9) was identified that exhibited greater sensitivity and responsiveness to ERβ-selective ligands than BG1Luc4E2 cells and qRT-PCR confirmed the presence of ERβ expression in these cells. Screening of pesticides and industrial chemicals identified chemicals that preferentially stimulated ERβ-dependent reporter gene expression. Together, these results not only demonstrate the utility of this dual ER recombinant cell line for detecting a broader range of estrogenic chemicals than the current BG1Luc4E2 cell line, but screening with both cell lines allows identification of ERα and ERβ-selective chemicals. PMID:26139245

  14. Analysis of induced pluripotent stem cells carrying 22q11.2 deletion.

    PubMed

    Toyoshima, M; Akamatsu, W; Okada, Y; Ohnishi, T; Balan, S; Hisano, Y; Iwayama, Y; Toyota, T; Matsumoto, T; Itasaka, N; Sugiyama, S; Tanaka, M; Yano, M; Dean, B; Okano, H; Yoshikawa, T

    2016-11-01

    Given the complexity and heterogeneity of the genomic architecture underlying schizophrenia, molecular analyses of these patients with defined and large effect-size genomic defects could provide valuable clues. We established human-induced pluripotent stem cells from two schizophrenia patients with the 22q11.2 deletion (two cell lines from each subject, total of four cell lines) and three controls (total of four cell lines). Neurosphere size, neural differentiation efficiency, neurite outgrowth, cellular migration and the neurogenic-to-gliogenic competence ratio were significantly reduced in patient-derived cells. As an underlying mechanism, we focused on the role of DGCR8, a key gene for microRNA (miRNA) processing and mapped in the deleted region. In mice, Dgcr8 hetero-knockout is known to show a similar phenotype of reduced neurosphere size (Ouchi et al., 2013). The miRNA profiling detected reduced expression levels of miRNAs belonging to miR-17/92 cluster and miR-106a/b in the patient-derived neurospheres. Those miRNAs are reported to target p38α, and conformingly the levels of p38α were upregulated in the patient-derived cells. p38α is known to drive gliogenic differentiation. The inhibition of p38 activity by SB203580 in patient-derived neurospheres partially restored neurogenic competence. Furthermore, we detected elevated expression of GFAP, a gliogenic (astrocyte) marker, in postmortem brains from schizophrenia patients without the 22q11.2 deletion, whereas inflammation markers (IL1B and IL6) remained unchanged. In contrast, a neuronal marker, MAP2 expressions were decreased in schizophrenia brains. These results suggest that a dysregulated balance of neurogenic-to-gliogenic competence may underlie neurodevelopmental disorders such as schizophrenia.

  15. Molecular effects of the phosphatidylinositol-3-kinase inhibitor NVP-BKM120 on T and B-cell acute lymphoblastic leukaemia.

    PubMed

    Pereira, João Kleber Novais; Machado-Neto, João Agostinho; Lopes, Matheus Rodrigues; Morini, Beatriz Corey; Traina, Fabiola; Costa, Fernando Ferreira; Saad, Sara Teresinha Olalla; Favaro, Patricia

    2015-09-01

    Constitutive activation of the PI3K pathway in T cell acute lymphoblastic leukaemia (T-ALL) has been reported and in a mouse model, PI3K activation, together with MYC, cooperates in Burkitt lymphoma (BL) pathogenesis. We investigated the effects of NVP-BKM120, a potent pan-class I PI3K inhibitor, in lymphoblastic leukaemia cell lines. Effects of NVP-BKM120 on cell viability, clonogenicity, apoptosis, cell cycle, cell signalling and autophagy were assessed in vitro on T-ALL (Jurkat and MOLT-4) and BL (Daudi and NAMALWA) cell lines. NVP-BKM120 treatment decreased cell viability and clonogenic growth in all tested cells. Moreover, the drug arrested cell cycling in association with a decrease in Cyclin B1 protein levels, and increased apoptosis. Immunoblotting analysis of cells treated with the drug revealed decreased phosphorylation, in a dose-dependent manner, of AKT, mTOR, P70S6K and 4EBP1, with stable total protein levels. Additionally, we observed a dose-dependent decrease in BAD phosphorylation, in association with augmented BAX:BCL2 ratio. Quantification of autophagy showed a dose-dependent increase in acidic vesicular organelles in all cells tested. In summary, our present study establishes that NVP-BKM120 presents an effective antitumour activity against T-ALL and BL cell lines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Identification of a subgroup with worse prognosis among patients with poor-risk testicular germ cell tumor.

    PubMed

    Kojima, Takahiro; Kawai, Koji; Tsuchiya, Kunihiko; Abe, Takashige; Shinohara, Nobuo; Tanaka, Toshiaki; Masumori, Naoya; Yamada, Shigeyuki; Arai, Yoichi; Narita, Shintaro; Tsuchiya, Norihiko; Habuchi, Tomonori; Nishiyama, Hiroyuki

    2015-10-01

    To clarify the significance of the International Germ Cell Cancer Collaborative Group classification in the 2000s, especially in intermediate- and poor-prognosis testicular germ cell tumor in Japan. We retrospectively analyzed 117 patients with intermediate- and poor-prognosis testicular non-seminomatous germ cell tumor treated at five university hospitals in Japan between 2000 and 2010. Data collected included age, levels of tumor markers, spread to non-pulmonary visceral metastases, treatment details and survival. The median follow-up period of all patients was 57 months. A total of 50 patients (43%) were classified as having intermediate prognosis, and 67 patients (57%) as poor prognosis according to the International Germ Cell Cancer Collaborative Group classification. As first-line chemotherapy, 92 patients (79%) received bleomycin, etoposide and cisplatin. Of all patients, 74 patients (63%) received second-line chemotherapy. The most commonly used second-line chemotherapy regimens were a combination of taxanes, ifosfamide and platinum in 49 cases (66%). Overall, 33 patients (28%) received third-line chemotherapy. A total of 88 patients (75%) underwent post-chemotherapy surgery. The 5-year overall survival for intermediate (n = 50) and poor prognosis (n = 67) was 89% and 83% (P = 0.21), respectively. In poor prognosis patients, patients with two or more risk factors (any of high lactic dehydrogenase, alpha-fetoprotein and human chorionic gonadotropin levels, and presence of non-pulmonary visceral metastases) had significantly worse survival than those with only one risk factor (71% and 91%, respectively, P = 0.01). The 5-year overall survivals of poor-prognosis testicular non-seminomatous germ cell tumor patients reached 83%. Further stratification of poor-prognosis patients based on a number of risk factors has the potential to further identify those with poorer prognosis. © 2015 The Japanese Urological Association.

  17. Understanding drugs in breast cancer through drug sensitivity screening.

    PubMed

    Uhr, Katharina; Prager-van der Smissen, Wendy J C; Heine, Anouk A J; Ozturk, Bahar; Smid, Marcel; Göhlmann, Hinrich W H; Jager, Agnes; Foekens, John A; Martens, John W M

    2015-01-01

    With substantial numbers of breast tumors showing or acquiring treatment resistance, it is of utmost importance to develop new agents for the treatment of the disease, to know their effectiveness against breast cancer and to understand their relationships with other drugs to best assign the right drug to the right patient. To achieve this goal drug screenings on breast cancer cell lines are a promising approach. In this study a large-scale drug screening of 37 compounds was performed on a panel of 42 breast cancer cell lines representing the main breast cancer subtypes. Clustering, correlation and pathway analyses were used for data analysis. We found that compounds with a related mechanism of action had correlated IC50 values and thus grouped together when the cell lines were hierarchically clustered based on IC50 values. In total we found six clusters of drugs of which five consisted of drugs with related mode of action and one cluster with two drugs not previously connected. In total, 25 correlated and four anti-correlated drug sensitivities were revealed of which only one drug, Sirolimus, showed significantly lower IC50 values in the luminal/ERBB2 breast cancer subtype. We found expected interactions but also discovered new relationships between drugs which might have implications for cancer treatment regimens.

  18. High-temperature multipass cell for infrared spectroscopy of heated gases and vapors.

    PubMed

    Bartlome, R; Baer, M; Sigrist, M W

    2007-01-01

    In absorption spectroscopy, infrared spectra of heated gases or condensed samples in the vapor phase are usually recorded with a single pass heated gas cell. This device exhibits two orders of magnitude lower sensitivity than the high-temperature multipass cell presented in this article. Our device is a novel type of compact long path absorption cell that can withstand aggressive chemicals in addition to temperatures up to 723 K. The construction of the cell and its technical features are described in detail, paying special attention to the mechanisms that compensate for thermal expansion and that allow the user to vary the optical path length under any thermal or vacuum condition. The cell may be used with a laser source or implemented within a Fourier transform infrared spectrometer. Its design is compatible with optical arrangements using astigmatic mirrors or spherical mirrors in a Herriott configuration. Here we implement a homebuilt Herriott-type cell with a total optical path length of up to 35 m. In order to demonstrate the feasibility of the cell, methane and water vapor absorption lines showing dissimilar temperature effects on line intensity were recorded with the help of a mid-infrared laser source tunable between 3 and 4 microm. Emphasis is put on lines that are too weak to be recorded with a single pass cell.

  19. Lectin-resistant variants of mouse Lewis lung carcinoma cells. II. Altered glycosylation of membrane glycoproteins.

    PubMed

    Debray, H; Dus, D; Hueso, P; Radzikowski, C; Montreuil, J

    1990-01-01

    Lectin-resistant variants of mouse Lewis lung carcinoma LL2 cell line, selected with wheat germ agglutinin (WGAR), Ricinus communis agglutinin II (RCA IIR) and Aleuria aurantia agglutinin (AAAR) were studied. Total cellular glycopeptides of the parent LL2 line and of the five lectin-resistant variants were analyzed by gel filtration and affinity chromatography on immobilized concanavalin A and Lens culinaris agglutinin. The results revealed that low-metastatic WGAR and RCA IIR variants possessed less highly branched tri- and tetra-antennary N-acetyllactosaminic type glycans with a simultaneous increase in biantennary N-acetyllactosaminic type, oligomannosidic type or hybrid type glycans, as compared to the parent metastasizing LL2 cell line. These findings imply that cell surface carbohydrate changes may possibly be relevant for metastasis. However, the AAAR variant, which possessed reduced spontaneous metastatic ability after s.c. administration, but increased experimental metastatic ability after i.v. inoculation, exhibited apparently the same glycan pattern than the parent LL2 line. This particular variant is under investigation in order to find specific modification(s) of glycan(s) which could play a specific role in the metastatic process.

  20. Global profiling of proteolytically modified proteins in human metastatic hepatocellular carcinoma cell lines reveals CAPN2 centered network.

    PubMed

    Shen, Chengpin; Yu, Yanyan; Li, Hong; Yan, Guoquan; Liu, Mingqi; Shen, Huali; Yang, Pengyuan

    2012-06-01

    Proteolysis affects every protein at some point in its life cycle. Many biomarkers of disease or cancer are stable proteolytic fragments in biological fluids. There is great interest and a challenge in proteolytically modified protein study to identify physiologic protease-substrate relationships and find potential biomarkers. In this study, two human hepatocellular carcinoma (HCC) cell lines with different metastasis potential, MHCC97L, and HCCLM6, were researched with a high-throughput and sensitive PROTOMAP platform. In total 391 proteins were found to be proteolytically processed and many of them were cleaved into persistent fragments instead of completely degraded. Fragments related to 161 proteins had different expressions in these two cell lines. Through analyzing these significantly changed fragments with bio-informatic tools, several bio-functions such as tumor cell migration and anti-apoptosis were enriched. A proteolysis network was also built up, of which the CAPN2 centered subnetwork, including SPTBN1, ATP5B, and VIM, was more active in highly metastatic HCC cell line. Interestingly, proteolytic modifications of CD44 and FN1 were found to affect their secretion. This work suggests that proteolysis plays an important role in human HCC metastasis. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Mutations of the LIM protein AJUBA mediate sensitivity of head and neck squamous cell carcinoma to treatment with cell-cycle inhibitors.

    PubMed

    Zhang, Ming; Singh, Ratnakar; Peng, Shaohua; Mazumdar, Tuhina; Sambandam, Vaishnavi; Shen, Li; Tong, Pan; Li, Lerong; Kalu, Nene N; Pickering, Curtis R; Frederick, Mitchell; Myers, Jeffrey N; Wang, Jing; Johnson, Faye M

    2017-04-28

    The genomic alterations identified in head and neck squamous cell carcinoma (HNSCC) tumors have not resulted in any changes in clinical care, making the development of biomarker-driven targeted therapy for HNSCC a major translational gap in knowledge. To fill this gap, we used 59 molecularly characterized HNSCC cell lines and found that mutations of AJUBA, SMAD4 and RAS predicted sensitivity and resistance to treatment with inhibitors of polo-like kinase 1 (PLK1), checkpoint kinases 1 and 2, and WEE1. Inhibition or knockdown of PLK1 led to cell-cycle arrest at the G 2 /M transition and apoptosis in sensitive cell lines and decreased tumor growth in an orthotopic AJUBA-mutant HNSCC mouse model. AJUBA protein expression was undetectable in most AJUBA-mutant HNSCC cell lines, and total PLK1 and Bora protein expression were decreased. Exogenous expression of wild-type AJUBA in an AJUBA-mutant cell line partially rescued the phenotype of PLK1 inhibitor-induced apoptosis and decreased PLK1 substrate inhibition, suggesting a threshold effect in which higher drug doses are required to affect PLK1 substrate inhibition. PLK1 inhibition was an effective therapy for HNSCC in vitro and in vivo. However, biomarkers to guide such therapy are lacking. We identified AJUBA, SMAD4 and RAS mutations as potential candidate biomarkers of response of HNSCC to treatment with these mitotic inhibitors. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. A magnetic-dependent protein corona of tailor-made superparamagnetic iron oxides alters their biological behaviors

    NASA Astrophysics Data System (ADS)

    Liu, Ziyao; Zhan, Xiaohui; Yang, Minggang; Yang, Qi; Xu, Xianghui; Lan, Fang; Wu, Yao; Gu, Zhongwei

    2016-03-01

    In recent years, it is becoming increasingly evident that once nanoparticles come into contact with biological fluids, a protein corona surely forms and critically affects the biological behaviors of nanoparticles. Herein, we investigate whether the formation of protein corona on the surface of superparamagnetic iron oxides (SPIOs) is influenced by static magnetic field. Under static magnetic field, there is no obvious variation in the total amount of protein adsorption, but the proportion of adsorbed proteins significantly changes. Noticeably, certain proteins including apolipoproteins, complement system proteins and acute phase proteins, increase in the protein corona of SPIOs in the magnetic field. More importantly, the magnetic-dependent protein corona of SPIOs enhances the cellular uptake of SPIOs into the normal cell line (3T3 cells) and tumor cell line (HepG2 cells), due to increased adsorption of apolipoprotein. In addition, SPIOs with the magnetic-dependent protein corona cause high cytotoxicity to 3T3 cells and HepG2 cells. This work discloses that superparamagnetism as a key feature of SPIOs affects the composition of protein corona to a large extent, which further alters the biological behaviors of SPIOs.In recent years, it is becoming increasingly evident that once nanoparticles come into contact with biological fluids, a protein corona surely forms and critically affects the biological behaviors of nanoparticles. Herein, we investigate whether the formation of protein corona on the surface of superparamagnetic iron oxides (SPIOs) is influenced by static magnetic field. Under static magnetic field, there is no obvious variation in the total amount of protein adsorption, but the proportion of adsorbed proteins significantly changes. Noticeably, certain proteins including apolipoproteins, complement system proteins and acute phase proteins, increase in the protein corona of SPIOs in the magnetic field. More importantly, the magnetic-dependent protein corona of SPIOs enhances the cellular uptake of SPIOs into the normal cell line (3T3 cells) and tumor cell line (HepG2 cells), due to increased adsorption of apolipoprotein. In addition, SPIOs with the magnetic-dependent protein corona cause high cytotoxicity to 3T3 cells and HepG2 cells. This work discloses that superparamagnetism as a key feature of SPIOs affects the composition of protein corona to a large extent, which further alters the biological behaviors of SPIOs. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08447d

  3. In vitro antioxidant and cytotoxic properties of ethanol extract of Alpinia oxyphylla fruits.

    PubMed

    Wang, Cheng-zhong; Yuan, Hui-hui; Bao, Xiao-li; Lan, Min-bo

    2013-11-01

    Alpinia oxyphylla Miquel (Zingiberaceae) is a traditional Chinese herbal medicine widely used for the treatment of intestinal disorders, urosis and diuresis. However, information about antioxidant and cytotoxic properties of its fruits remains to be elucidated. The ethanol crude extract (CE) and its fractions [petroleum ether fraction (PF), ethyl acetate fraction (EF), n-butanol fraction (BF) and water fraction (WF) extracted by petroleum ether, ethyl acetate, n-butanol and water, respectively] of A. oxyphylla fruits were investigated for their antioxidant activity and cytotoxicity. The total phenolic content (TPC) and antioxidant activity of the extracts were determined by Folin-Ciocalteu reagent, 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)), Trolox equivalent antioxidant capacity and reducing power assay. Cytotoxicity of the extracts (0-200 μg/mL) was tested on six human cancer cell lines (breast cancer cell line, cervix carcinoma cell line, lung adenocarcinoma cell line, liver carcinoma cell line, gastric cancer cell line and colon cancer cell line) using the sulforhodamine B assay. The TPC of extracts varied from 8.2 to 20.3 mg gallic acid equivalents/g dry weight. DPPH radical scavenging effect of extracts decreased in the order of EF > BF > CE > PF > WF, with IC50 values ranging from 74.7 to 680.8 μg/mL. 2,2-azo-bis(3-Ethylbenzothiazoline-6-sulfoic acid) diammonium salt scavenging activity ranged from 0.118 to 0.236 mmol Trolox equivalence/mg extract. The extracts exhibited concentration-dependent reducing power, and EF showed the highest reducing ability. A satisfactory correlation (R(2) > 0.826) between TPC and antioxidant activity was observed. In addition, EF, PF and CE exhibited potent anticancer effects on six cancer cell lines with IC50 values ranging from 40.1 to 166.3 μg/mL. The ethanol extract of A. oxyphylla fruit, especially the EF, was found to possess potent antioxidant and anticancer activities, and thus a great potential for the application in food and drug products.

  4. Generation of Hypertension-Associated STK39 Polymorphism Knockin Cell Lines With the Clustered Regularly Interspaced Short Palindromic Repeats/Cas9 System.

    PubMed

    Mandai, Shintaro; Mori, Takayasu; Sohara, Eisei; Rai, Tatemitsu; Uchida, Shinichi

    2015-12-01

    Previous genome-wide association studies identified serine threonine kinase 39 (STK39), encoding STE20/SPS1-related proline/alanine-rich kinase, as one of a limited number of hypertension susceptibility genes. A recent meta-analysis confirmed the association of STK39 intronic polymorphism rs3754777 with essential hypertension, among previously reported hypertension-associated STK39 polymorphisms. However, the biochemical function of this polymorphism in the mechanism responsible for hypertension is yet to be clarified. We generated rs3754777G>A knockin human cell lines with clustered regularly interspaced short palindromic repeats-mediated genome engineering. Homozygous (A/A) and heterozygous (G/A) knockin human embryonic kidney cell lines were generated using a double nickase, single-guide RNAs targeting STK39 intron 5 around single-nucleotide polymorphism, and a 100-bp donor single-stranded DNA oligonucleotide. Reverse transcription polymerase chain reaction with sequencing analyses revealed the identical STK39 transcripts among the wild-type and both knockin cell lines. Quantitative reverse transcription polymerase chain reaction showed increased STK39 mRNA expression, and immunoblot analysis revealed increases in total and phosphorylated STE20/SPS1-related proline/alanine-rich kinase with increased phosphorylated Na-K-Cl cotransporter isoform 1 in both knockin cell lines. The largest increases in these molecules were observed in the homozygous cell line. These findings indicated that this intronic polymorphism increases STK39 transcription, leading to activation of the STE20/SPS1-related proline/alanine-rich kinase-solute carrier family 12A signaling cascade. Increased interactions between STE20/SPS1-related proline/alanine-rich kinase and the target cation-chloride cotransporters may be responsible for hypertension susceptibility in individuals with this polymorphism. © 2015 American Heart Association, Inc.

  5. Chemical composition of Schinus molle essential oil and its cytotoxic activity on tumour cell lines.

    PubMed

    Díaz, Cecilia; Quesada, Silvia; Brenes, Oscar; Aguilar, Gilda; Cicció, José F

    2008-01-01

    The leaf essential oil hydrodistilled from Schinus molle grown in Costa Rica was characterised in terms of its chemical composition, antioxidant activity, ability to induce cytotoxicity and the mechanism of cell death involved in the process. As a result, 42 constituents, accounting for 97.2% of the total oil, were identified. The major constituents of the oil were beta-pinene and alpha-pinene. The antioxidant activity showed an IC(50) of 36.3 microg mL(-1). The essential oil was cytotoxic in several cell lines, showing that it is more effective on breast carcinoma and leukemic cell lines. The LD(50) for cytotoxicity at 48 h in K562 corresponded to 78.7 microg mL(-1), which was very similar to the LD(50) obtained when apoptosis was measured. The essential oil did not induce significant necrosis up to 200 microg mL(-1), which together with the former results indicate that apoptosis is the main mechanism of toxicity induced by S. molle essential oil in this cell line. In conclusion, the essential oil tested was weak antioxidant and induced cytotoxicity in different cell types by a mechanism related to apoptosis. It would be interesting to elucidate the role that different components of the oil play in the effect observed here, since some of them could have potential anti-tumoural effects, either alone or in combination.

  6. Resistance of a soybean cell line to oxyfluorfen by overproduction of mitochondrial protoporphyrinogen oxidase.

    PubMed

    Warabi, E; Usui, K; Tanaka, Y; Matsumoto, H

    2001-08-01

    The diphenyl ether herbicide oxyfluorfen (2-chloro-4-trifluoromethylphenyl 3-ethoxy-4-nitrophenyl ether) inhibits protoporphyrinogen oxidase (Protox) which catalyzes the oxidation of protoporphyrinogen IX (Protogen) to protoporphyrin IX (Proto IX), the last step of the common pathway to chlorophyll and haeme biosynthesis. We have selected an oxyfluorfen-resistant soybean cell line by stepwise selection methods, and the resistance mechanism has been investigated. No growth inhibition was observed in resistant cells at a concentration of 10(-7) M oxyfluorfen, a concentration at which normal cells did not survive. While the degree of inhibition of total extractable Protox by oxyfluorfen was the same in both cell types, the enzyme activity in the mitochondrial fraction from non-treated resistant cells was about nine-fold higher than that from normal cells. Northern analysis of mitochondrial Protox revealed that the concentration of mitochondrial Protox mRNA was much higher in resistant cells than that in normal cells. There were no differences in the absorption and metabolic breakdown of oxyfluorfen. The growth of resistant cells was also insensitive to oxadiazon [5-tert-butyl-3-(2,4-dichloro-5-isopropoxyphenyl)-1,3,4-oxadiazol-2-(3H)- one], the other chemical class of Protox inhibitor. Therefore, the resistance of the selected soybean cell line to oxyfluorfen is probably mainly due to the overproduction of mitochondrial Protox.

  7. Differential proteomic analysis of cancer stem cell properties in hepatocellular carcinomas by isobaric tag labeling and mass spectrometry.

    PubMed

    Ko, Ching-Huai; Cheng, Chieh-Fang; Lai, Chin-Pen; Tzu, Te-Hui; Chiu, Chih-Wei; Lin, Mei-Wei; Wu, Si-Yuan; Sun, Chung-Yuan; Tseng, Hsiang-Wen; Wang, Chun-Chung; Kuo, Zong-Keng; Wang, Ling-Mei; Chen, Sung-Fang

    2013-08-02

    Malignant tumors are relatively resistant to treatment due to their heterogeneous nature, drug resistance, and tendency for metastasis. Recent studies suggest that a subpopulation of cancer cells is responsible for the malignant outcomes. These cells are considered as cancer stem cells (CSC). Although a number of molecules have been identified in different cancer cells as markers for cancer stem cells, no promising markers are currently available for hepatocellular carcinoma cells. In this study, two clones of Hep3B cell lines were functionally characterized as control or CSC-like cells, based on properties including spheroid formation, drug resistance, and tumor initiation. Furthermore, their protein expression profiles were investigated by isobaric tags for relative and absolute quantitation (iTRAQ), and a total of 1,127 proteins were identified and quantified from the combined fractions; 50 proteins exhibited at least 2-fold differences between these two clones. These 50 proteins were analyzed by GeneGo and were found to be associated with liver neoplasms, hepatocellular carcinoma (HCC), and liver diseases. They were also components of metabolic pathways, immune responses, and cytoskeleton remodeling. Among these proteins, the expressions of S100P, S100A14, and vimentin were verified in several HCC cell lines, and their expressions were correlated with tumorigenicity in HCC cell lines. The functional significance of vimentin and S100A14 were also investigated and verified.

  8. [Establishment of a new human glioma cell line and analysis of its biological characteristics].

    PubMed

    Chen, Guilin; Li, Yanyan; Xie, Xueshun; Chen, Jinming; Wu, Tingfeng; Li, Xuetao; Wang, Hangzhou; Zhou, Youxin; Du, Ziwei

    2015-02-01

    To establish a new glioma cell line and analyze its biological characteristics, and to provide a useful cellular tool with new features for cancer research. Glioma tissue was taken from surgical specimen clinical of a clinical patient. Primary culture was carried out, and a cell line (SHG139) was established after 10 passages. Immunofluorescence staining was performed to detect the expression of proteins, and cell proliferation and cycle were detected by flow cytometry method (FCM). The biological characteristics of SHG139 cells were detected by chromosome karyotype analysis. SHG139s glioma cells derived from SHG139 glioma cell line were cultured with neural stem cell medium. Then stem cell markers were determined. SHG139s cells were induced with serum-containing medium, and their expression of A2B5, GFAP, β-III tubulin, and GalC was detected. Intracranial xenograft tumor of both SHG139 glioma cells and SHG139s glioma stem cell spheres was generated in rats. The expressions of A2B5, GalC, GFAP, S-100, and vimentin in the 20 and 60 passages of SHG139 cells were positive, consistent with the immunohistochemical results and pathological features. SHG139 cells proliferated significantly within 24 h after subculture, and their total number of chromosomes was 68 and mostly multiploid. They were positive for A2B5 (84.12±9.96)%, nestin (73.86±5.01)%, and NG2 (73.37±2.09)%. SHG139s cells were induced, and the ratio of positive cells of GFAP, β-III tubulin and GalC was (92.89±2.24)%, (64.85±4.09)% and (33.57±4.14)%, respectively. SHG139 is an astroglioma cell line, from which SHG139s cells can be successfully obtained by culture with NSCM. SHG139s cells are of A2B5(+)/CD133(-) GSCs subgroup cells, with potentials of self-renewal and multi-directional differentiation. Compared with the intracranial SHG139 xenograft tumor, the intracranial SHG139s xenograft tumor is more malignant and aggressive.

  9. Current and projected patient and insurer costs for the care of patients with non-small cell lung cancer in the United States through 2040.

    PubMed

    Hess, Lisa M; Cui, Zhanglin Lin; Wu, Yixun; Fang, Yun; Gaynor, Paula J; Oton, Ana B

    2017-08-01

    The objective of this study was to quantify the current and to project future patient and insurer costs for the care of patients with non-small cell lung cancer in the US. An analysis of administrative claims data among patients diagnosed with non-small cell lung cancer from 2007-2015 was conducted. Future costs were projected through 2040 based on these data using autoregressive models. Analysis of claims data found the average total cost of care during first- and second-line therapy was $1,161.70 and $561.80 for patients, and $45,175.70 and $26,201.40 for insurers, respectively. By 2040, the average total patient out-of-pocket costs are projected to reach $3,047.67 for first-line and $2,211.33 for second-line therapy, and insurance will pay an average of $131,262.39 for first-line and $75,062.23 for second-line therapy. Claims data are not collected for research purposes; therefore, there may be errors in entry and coding. Additionally, claims data do not contain important clinical factors, such as stage of disease at diagnosis, tumor histology, or data on disease progression, which may have important implications on the cost of care. The trajectory of the cost of lung cancer care is growing. This study estimates that the cost of care may double by 2040, with the greatest proportion of increase in patient out-of-pocket costs. Despite the average cost projections, these results suggest that a small sub-set of patients with very high costs could be at even greater risk in the future.

  10. Large Root Cortical Cell Size Improves Drought Tolerance in Maize1[C][W][OPEN

    PubMed Central

    Chimungu, Joseph G.; Brown, Kathleen M.

    2014-01-01

    The objective of this study was to test the hypothesis that large cortical cell size (CCS) would improve drought tolerance by reducing root metabolic costs. Maize (Zea mays) lines contrasting in root CCS measured as cross-sectional area were grown under well-watered and water-stressed conditions in greenhouse mesocosms and in the field in the United States and Malawi. CCS varied among genotypes, ranging from 101 to 533 µm2. In mesocosms, large CCS reduced respiration per unit of root length by 59%. Under water stress in mesocosms, lines with large CCS had between 21% and 27% deeper rooting (depth above which 95% of total root length is located in the soil profile), 50% greater stomatal conductance, 59% greater leaf CO2 assimilation, and between 34% and 44% greater shoot biomass than lines with small CCS. Under water stress in the field, lines with large CCS had between 32% and 41% deeper rooting (depth above which 95% of total root length is located in the soil profile), 32% lighter stem water isotopic ratio of 18O to 16O signature, signifying deeper water capture, between 22% and 30% greater leaf relative water content, between 51% and 100% greater shoot biomass at flowering, and between 99% and 145% greater yield than lines with small cells. Our results are consistent with the hypothesis that large CCS improves drought tolerance by reducing the metabolic cost of soil exploration, enabling deeper soil exploration, greater water acquisition, and improved growth and yield under water stress. These results, coupled with the substantial genetic variation for CCS in diverse maize germplasm, suggest that CCS merits attention as a potential breeding target to improve the drought tolerance of maize and possibly other cereal crops. PMID:25293960

  11. On-line observation of cell growth in a three-dimensional matrix on surface-modified microelectrode arrays.

    PubMed

    Lin, Shu-Ping; Kyriakides, Themis R; Chen, Jia-Jin J

    2009-06-01

    Despite many successful applications of microelectrode arrays (MEAs), typical two-dimensional in-vitro cultures do not project the full scale of the cell growth environment in the three-dimensional (3D) in-vivo setting. This study aims to on-line monitor in-vitro cell growth in a 3D matrix on the surface-modified MEAs with a dynamic perfusion culture system. A 3D matrix consisting of poly(ethylene glycol) hydrogel supplemented with poly-D-lysine was subsequently synthesized in situ on the self-assembled monolayer modified MEAs. FTIR spectrum analysis revealed a peak at 2100 cm(-1) due to the degradation of the structure of the 3D matrix. After 2 wks, microscopic examination revealed that the non-degraded area was around 1500 microm(2) and provided enough space for cell growth. Fluorescence microscopy revealed that the degraded 3D matrix was non-cytotoxic allowing the growth of NIH3T3 fibroblasts and cortical neurons in vitro. Time-course changes of total impedance including resistance and reactance were recorded for 8 days to evaluate the cell growth in the 3D matrix on the MEA. A consistent trend reflecting changes of reactance and total impedance was observed. These in-vitro assays demonstrate that our 3D matrix can construct a biomimetic system for cell growth and analysis of cell surface interactions.

  12. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation.

    PubMed

    Leen, Ann M; Bollard, Catherine M; Mendizabal, Adam M; Shpall, Elizabeth J; Szabolcs, Paul; Antin, Joseph H; Kapoor, Neena; Pai, Sung-Yun; Rowley, Scott D; Kebriaei, Partow; Dey, Bimalangshu R; Grilley, Bambi J; Gee, Adrian P; Brenner, Malcolm K; Rooney, Cliona M; Heslop, Helen E

    2013-06-27

    Virus-specific T cell (VST) lines could provide useful antiviral prophylaxis and treatment of immune-deficient patients if it were possible to avoid the necessity of generating a separate line for each patient, often on an emergency basis. We prepared a bank of 32 virus-specific lines from individuals with common HLA polymorphisms who were immune to Epstein-Barr virus (EBV), cytomegalovirus, or adenovirus. A total of 18 lines were administered to 50 patients with severe, refractory illness because of infection with one of these viruses after hematopoietic stem cell transplant. The cumulative rates of complete or partial responses at 6 weeks postinfusion were 74.0% (95% CI, 58.5%-89.5%) for the entire group (n = 50), 73.9% (95% CI, 51.2% -96.6%) for cytomegalovirus (n = 23), 77.8% for adenovirus (n = 18), and 66.7% (95% CI, 36.9%-96.5%) for EBV (n = 9). Only 4 responders had a recurrence or progression. There were no immediate infusion-related adverse events, and de novo graft-versus-host disease developed in only 2 patients. Despite the disparity between the lines and their recipients, the mean frequency of VSTs increased significantly postinfusion, coincident with striking decreases in viral DNA and resolution of clinical symptoms. The use of banked third-party VSTs is a feasible and safe approach to rapidly treat severe or intractable viral infections after stem cell transplantation. This study is registered at www.clinicaltrials.gov as NCT00711035.

  13. Seed Structure Characteristics to Form Ultrahigh Oil Content in Rapeseed

    PubMed Central

    Zhang, Liang; Deng, Lin-Bin; Wang, Xin-Fa; Liu, Gui-Hua; Hao, Wan-Jun; Wang, Han-Zhong

    2013-01-01

    Background Rapeseed (Brassica napus L.) is an important oil crop in the world, and increasing its oil content is a major breeding goal. The studies on seed structure and characteristics of different oil content rapeseed could help us to understand the biological mechanism of lipid accumulation, and be helpful for rapeseed breeding. Methodology/Principal Findings Here we report on the seed ultrastructure of an ultrahigh oil content rapeseed line YN171, whose oil content is 64.8%, and compared with other high and low oil content rapeseed lines. The results indicated that the cytoplasms of cotyledon, radicle, and aleuronic cells were completely filled with oil and protein bodies, and YN171 had a high oil body organelle to cell area ratio for all cell types. In the cotyledon cells, oil body organelles comprised 81% of the total cell area in YN171, but only 53 to 58% in three high oil content lines and 33 to 38% in three low oil content lines. The high oil body organelle to cotyledon cell area ratio and the cotyledon ratio in seed were the main reasons for the ultrahigh oil content of YN171. The correlation analysis indicated that oil content is significantly negatively correlated with protein content, but is not correlated with fatty acid composition. Conclusions/Significance Our results indicate that the oil content of YN171 could be enhanced by increasing the oil body organelle to cell ratio for some cell types. The oil body organelle to seed ratio significantly highly positively correlates with oil content, and could be used to predict seed oil content. Based on the structural analysis of different oil content rapeseed lines, we estimate the maximum of rapeseed oil content could reach 75%. Our results will help us to screen and identify high oil content lines in rapeseed breeding. PMID:23637973

  14. Solid-phase total synthesis of cherimolacyclopeptide E and discovery of more potent analogues by alanine screening.

    PubMed

    Shaheen, Farzana; Rizvi, Tania S; Musharraf, Syed G; Ganesan, A; Xiao, Kai; Townsend, Jared B; Lam, Kit S; Choudhary, M Iqbal

    2012-11-26

    Cherimolacyclopeptide E (1) is a cyclic hexapeptide obtained from Annona cherimola, reported to be cytotoxic against the KB (human nasopharyngeal carcinoma) cell line. The solid-phase total syntheses of this cyclic peptide and its analogues were accomplished by employing FMOC/tert-butyl-protected amino acids and the Kenner sulfonamide safety-catch linker. The synthetic peptide 1 was found to be weakly cytotoxic against four cell lines (MOLT-4, Jurkat T lymphoma, MDA-MB-231, and KB). Analogues 3 and 7, where glycine at positions 2 and 6 of the parent compound was replaced by Ala, exhibited enhanced cytotoxicity against KB (3, IC50 6.3 μM; 7, IC50 7.8 μM) and MDA-MB-231 breast cancer cells (3, IC50 10.2 μM; 7, IC50 7.7 μM), thereby suggesting possible selective targeting of these cancer cells by these peptides. The spectral data of synthetic peptide 1 was found to be similar to that reported for the natural product. However, a striking difference in biological activity was noted, which warrants the re-evaluation of the original natural product for purity and the existence of conformational differences.

  15. Sequence-specific inhibition of microRNA-130a gene by CRISPR/Cas9 system in breast cancer cell line

    NASA Astrophysics Data System (ADS)

    Ainina Abdollah, Nur; Das Kumitaa, Theva; Yusof Narazah, Mohd; Razak, Siti Razila Abdul

    2017-05-01

    MicroRNAs (miRNAs) are short stranded noncoding RNA that play important roles in apoptosis, cell survival, development and cell proliferation. However, gene expression control via small regulatory RNA, particularly miRNA in breast cancer is still less explored. Therefore, this project aims to develop an approach to target microRNA-130a using the Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/Cas9 system in MCF7, breast cancer cell line. The 20 bp sequences target at stem loop, 3ʹ and 5ʹ end of miR130a were cloned into pSpCas9(BB)-2A-GFP (PX458) plasmid, and the positive clones were confirmed by sequencing. A total of 5 μg of PX458-miR130a was transfected to MCF7 using Lipofectamine® 3000 according to manufacturer’s protocol. The transfected cells were maintained in the incubator at 37 °C under humidified 5% CO2. After 48 hours, cells were harvested and total RNA was extracted using miRNeasy Mini Kit (Qiagen). cDNAs were synthesised specific to miR-130a using TaqMan MicroRNA Reverse Transcription Kit (Applied Biosystems). Then, qRT-PCR was carried out using TaqMan Universal Master Mix (Applied Biosystems) to quantify the knockdown level of mature miRNAs in the cells. Result showed that miR-130a-5p was significantly downregulated in MCF7 cell line. However, no significant changes were observed for sequences targeting miR-130a-3p and stem loop. Thus, this study showed that the expression of miR-130a-5p was successfully down-regulated using CRISPR silencing system. This technique may be useful to manipulate the level of miRNA in various cell types to answer clinical questions at the molecular level.

  16. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation.

    PubMed

    Wu, Hao; Ying, Minfeng; Hu, Xun

    2016-06-28

    While transformation of normal cells to cancer cells is accompanied with a switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, it is interesting to ask if cancer cells can revert from Warburg effect to OXPHOS. Our previous works suggested that cancer cells reverted to OXPHOS, when they were exposed to lactic acidosis, a common factor in tumor environment. However, the conclusion cannot be drawn unless ATP output from glycolysis and OXPHOS is quantitatively determined. Here we quantitatively measured ATP generation from glycolysis and OXPHOS in 9 randomly selected cancer cell lines. Without lactic acidosis, glycolysis and OXPHOS generated 23.7% - 52.2 % and 47.8% - 76.3% of total ATP, respectively; with lactic acidosis (20 mM lactate with pH 6.7), glycolysis and OXPHOS provided 5.7% - 13.4% and 86.6% - 94.3% of total ATP. We concluded that cancer cells under lactic acidosis reverted from Warburg effect to OXPHOS phenotype.

  17. Cytotoxic effects of Euterpe oleracea Mart. in malignant cell lines.

    PubMed

    Silva, Dulcelena Ferreira; Vidal, Flávia Castello Branco; Santos, Debora; Costa, Maria Célia Pires; Morgado-Díaz, José Andrés; do Desterro Soares Brandão Nascimento, Maria; de Moura, Roberto Soares

    2014-05-29

    Euterpe oleracea Mart., a plant from the Amazon region, is commonly known as açaí or juçara; it has high nutritional value and elevated levels of lipids, proteins, and minerals. Açaí is an abundant and much consumed fruit by the Amazon local population, and studies have demonstrated that it is rich in phytochemicals with antioxidant, anti-inflammatory, and anticancer activities. Therefore, the aim of this study was to test this plant for anticancer activity in different human malignant cell lines. Cell lines derived from breast and colorectal adenocarcinomas were treated with 10, 20, and 40 μg/mL of bark, seed, and total açaí fruit hydroalcoholic extracts for 24 and 48 h. After treatment, cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and cell morphological features were observed by light and transmission electron microscopy. The type of cell death was also evaluated. The data were analyzed statistically by one-way analysis of variance (ANOVA), followed by Dunnett's or Tukey's post hoc tests, as appropriate. We observed that of all the cell lines tested, MCF-7 was the only line that responded to açaí treatment. The extracts caused significant reduction (p<0.01) in cell viability and altered cell morphological features by inducing the appearance of autophagic vacuoles, as observed by transmission electron microscopy. Furthermore, increased expression of LC3BII, a protein marker of autophagosome formation, was observed by western blotting. Caspase Glo™ assays and morphologic observations by DAPI nuclear staining and transmission electron microscopy did not indicate any apoptotic events. The present study demonstrated that açaí possesses antitumorigenic potential in the MCF-7 cell line. Further studies are needed to identify the compound (s) responsible for this cytotoxic activity and the molecular target in the cell. This discovery of the anticancer potential of açaí may help in the development of chemopreventive drugs and may have therapeutic effects in the treatment of breast cancer.

  18. Cytotoxic effects of Euterpe oleracea Mart. in malignant cell lines

    PubMed Central

    2014-01-01

    Background Euterpe oleracea Mart., a plant from the Amazon region, is commonly known as açaí or juçara; it has high nutritional value and elevated levels of lipids, proteins, and minerals. Açaí is an abundant and much consumed fruit by the Amazon local population, and studies have demonstrated that it is rich in phytochemicals with antioxidant, anti-inflammatory, and anticancer activities. Therefore, the aim of this study was to test this plant for anticancer activity in different human malignant cell lines. Methods Cell lines derived from breast and colorectal adenocarcinomas were treated with 10, 20, and 40 μg/mL of bark, seed, and total açaí fruit hydroalcoholic extracts for 24 and 48 h. After treatment, cell viability was measured using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, and cell morphological features were observed by light and transmission electron microscopy. The type of cell death was also evaluated. The data were analyzed statistically by one-way analysis of variance (ANOVA), followed by Dunnett’s or Tukey’s post hoc tests, as appropriate. Results We observed that of all the cell lines tested, MCF-7 was the only line that responded to açaí treatment. The extracts caused significant reduction (p < 0.01) in cell viability and altered cell morphological features by inducing the appearance of autophagic vacuoles, as observed by transmission electron microscopy. Furthermore, increased expression of LC3BII, a protein marker of autophagosome formation, was observed by western blotting. Caspase Glo™ assays and morphologic observations by DAPI nuclear staining and transmission electron microscopy did not indicate any apoptotic events. Conclusions The present study demonstrated that açaí possesses antitumorigenic potential in the MCF-7 cell line. Further studies are needed to identify the compound (s) responsible for this cytotoxic activity and the molecular target in the cell. This discovery of the anticancer potential of açaí may help in the development of chemopreventive drugs and may have therapeutic effects in the treatment of breast cancer. PMID:24886139

  19. A novel, immortal, and multipotent human neural stem cell line generating functional neurons and oligodendrocytes.

    PubMed

    De Filippis, Lidia; Lamorte, Giuseppe; Snyder, Evan Y; Malgaroli, Antonio; Vescovi, Angelo L

    2007-09-01

    The discovery and study of neural stem cells have revolutionized our understanding of the neurogenetic process, and their inherent ability to adopt expansive growth behavior in vitro is of paramount importance for the development of novel therapeutics based on neural cell replacement. Recent advances in high-throughput assays for drug development and gene discovery dictate the need for rapid, reproducible, long-term expansion of human neural stem cells (hNSCs). In this view, the complement of wild-type cell lines currently available is insufficient. Here we report the establishment of a stable human neural stem cell line (immortalized human NSCs [IhNSCs]) by v-myc-mediated immortalization of previously derived wild-type hNSCs. These cells demonstrate three- to fourfold faster proliferation than wild-type cells in response to growth factors but retain rather similar properties, including multipotentiality. By molecular biology, biochemistry, immunocytochemistry, fluorescence microscopy, and electrophysiology, we show that upon growth factor removal, IhNSCs completely downregulate v-myc expression, cease proliferation, and differentiate terminally into three major neural lineages: astrocytes, oligodendrocytes, and neurons. The latter are functional, mature cells displaying clear-cut morphological and physiological features of terminally differentiated neurons, encompassing mostly the GABAergic, glutamatergic, and cholinergic phenotypes. Finally, IhNSCs produce bona fide oligodendrocytes in fractions up to 20% of total cell number. This is in contrast to the negligible propensity of hNSCs to generate oligodendroglia reported so far. Thus, we describe an immortalized hNSC line endowed with the properties of normal hNSCs and suitable for developing the novel, reliable assays and reproducible high-throughput gene and drug screening that are essential in both diagnostics and cell therapy studies.

  20. Epigenetic Inactivation of GALR1 in Head and Neck Cancer

    PubMed Central

    Misawa, Kiyoshi; Ueda, Yo; Kanazawa, Takeharu; Misawa, Yuki; Jang, Ilwhan; Brenner, John Chadwick; Ogawa, Tetsuya; Takebayashi, Satoru; Grenman, Reidar A.; Herman, James G.; Mineta, Hiroyuki; Carey, Thomas E.

    2011-01-01

    Purpose One copy of the GALR1 locus on 18q is often deleted and expression is absent in some head and neck squamous cell carcinoma (HNSCC) cell lines. To determine if LOH and hypermethylation might silence the GALR1 gene, promoter methylation status and gene expression were assessed in a large panel of HNSCC cell lines and tumors. Experimental Design Promoter methylation of GALR1 in 72 cell lines and 100 primary tumor samples was analyzed using methylation-specific PCR (MSP). GALR1 expression and methylation status were analyzed further by real-time PCR and bisulfite sequencing analysis. Results The GALR1 promoter was fully or partially methylated in 38 of 72 HNSCC cell lines (52.7%) but not in the majority 18/20 (90.0%) of non-malignant lines. GALR1 methylation was also found in 38/100 (38%) primary tumor specimens. Methylation correlated with decreased GALR1 expression. In tumors methylation was significantly correlated with increased tumor size (P=0.0036), lymph-node status (P=0.0414), tumor stage (P=0.0037), cyclin D1 expression (P=0.0420), and p16 methylation (P=0.0494) and survival (P=0.045). Bisulfite sequencing of 36 CpG sites upstream of the transcription start site revealed that CpG methylation within transcription factor binding sites correlated with complete suppression of GALR1 mRNA. Treatment with TSA and 5-azacytidine restored GALR1 expression. In UM-SCC-23 cells that have total silencing of GALR1, exogenous GALR1 expression and stimulation with galanin suppressed cell proliferation. Conclusions Frequent promoter hypermethylation, gene silencing, association with prognosis, and growth suppression after re-expression support the hypothesis that GALR1 is a tumor suppressor gene in HNSCC. PMID:19047085

  1. Overexpression of the Anthocyanidin Synthase Gene in Strawberry Enhances Antioxidant Capacity and Cytotoxic Effects on Human Hepatic Cancer Cells.

    PubMed

    Giampieri, Francesca; Gasparrini, Massimiliano; Forbes-Hernandez, Tamara Y; Mazzoni, Luca; Capocasa, Franco; Sabbadini, Silvia; Alvarez-Suarez, Josè M; Afrin, Sadia; Rosati, Carlo; Pandolfini, Tiziana; Molesini, Barbara; Sánchez-Sevilla, José F; Amaya, Iraida; Mezzetti, Bruno; Battino, Maurizio

    2018-01-24

    Food fortification through the increase and/or modulation of bioactive compounds has become a major goal for preventing several diseases, including cancer. Here, strawberry lines of cv. Calypso transformed with a construct containing an anthocyanidin synthase (ANS) gene were produced to study the effects on anthocyanin biosynthesis, metabolism, and transcriptome. Three strawberry ANS transgenic lines (ANS L5, ANS L15, and ANS L18) were analyzed for phytochemical composition and total antioxidant capacity (TAC), and their fruit extracts were assessed for cytotoxic effects on hepatocellular carcinoma. ANS L18 fruits had the highest levels of total phenolics and flavonoids, while those of ANS L15 had the highest anthocyanin concentration; TAC positively correlated with total polyphenol content. Fruit transcriptome was also specifically affected in the polyphenol biosynthesis and in other related metabolic pathways. Fruit extracts of all lines exerted cytotoxic effects in a dose/time-dependent manner, increasing cellular apoptosis and free radical levels and impairing mitochondrial functionality.

  2. Toward improving fine needle aspiration cytology by applying Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Becker-Putsche, Melanie; Bocklitz, Thomas; Clement, Joachim; Rösch, Petra; Popp, Jürgen

    2013-04-01

    Medical diagnosis of biopsies performed by fine needle aspiration has to be very reliable. Therefore, pathologists/cytologists need additional biochemical information on single cancer cells for an accurate diagnosis. Accordingly, we applied three different classification models for discriminating various features of six breast cancer cell lines by analyzing Raman microspectroscopic data. The statistical evaluations are implemented by linear discriminant analysis (LDA) and support vector machines (SVM). For the first model, a total of 61,580 Raman spectra from 110 single cells are discriminated at the cell-line level with an accuracy of 99.52% using an SVM. The LDA classification based on Raman data achieved an accuracy of 94.04% by discriminating cell lines by their origin (solid tumor versus pleural effusion). In the third model, Raman cell spectra are classified by their cancer subtypes. LDA results show an accuracy of 97.45% and specificities of 97.78%, 99.11%, and 98.97% for the subtypes basal-like, HER2+/ER-, and luminal, respectively. These subtypes are confirmed by gene expression patterns, which are important prognostic features in diagnosis. This work shows the applicability of Raman spectroscopy and statistical data handling in analyzing cancer-relevant biochemical information for advanced medical diagnosis on the single-cell level.

  3. A dual reporter cell assay for identifying serotype and drug susceptibility of herpes simplex virus.

    PubMed

    Lu, Wen-Wen; Sun, Jun-Ren; Wu, Szu-Sian; Lin, Wan-Hsuan; Kung, Szu-Hao

    2011-08-15

    A dual reporter cell assay (DRCA) that allows real-time detection of herpes simplex virus (HSV) infection was developed. This was achieved by stable transfection of cells with an expression cassette that contains the dual reporter genes, secreted alkaline phosphatase (SEAP) and enhanced green fluorescent protein (EGFP), under the control of an HSV early gene promoter. Baby hamster kidney (BHK) and Chinese hamster ovary (CHO) cell lines were used as parental cell lines because the former is permissive for both HSV serotypes, HSV-1 and HSV-2, whereas the latter is susceptible to infection only by HSV-2. The DRCA permitted differential detection of HSV-1 and HSV-2 by observation of EGFP-positive cells, as substantiated by screening a total of 35 samples. The BHK-based cell line is sensitive to a viral titer as low as a single plaque-forming unit with a robust assay window as measured by a chemiluminescent assay. Evaluations of the DRCA with representative acyclovir-sensitive and acyclovir-resistant HSV strains demonstrated that their drug susceptibilities were accurately determined by a 48-h format. In summary, this novel DRCA is a useful means for serotyping of HSV in real time as well as a rapid screening method for determining anti-HSV susceptibilities. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Pseudomonas fluorescens N21.4 metabolites enhance secondary metabolism isoflavones in soybean (Glycine max) calli cultures.

    PubMed

    Algar, Elena; Gutierrez-Mañero, Francisco Javier; Bonilla, Alfonso; Lucas, Jose Antonio; Radzki, Wojtek; Ramos-Solano, Beatriz

    2012-11-07

    Phytopharmaceuticals are plant secondary metabolites that are strongly inducible and especially sensitive to biotic changes. Plant cell cultures are a good alternative to obtain secondary metabolites, in case effective stimulation can be achieved. In this study, metabolic elicitors from two rhizobacteria able to enhance isoflavone content in soybean seedlings were tested on three different soybean calli cell lines. Results show that metabolic elicitors from Chryseobacterium balustinum Aur9 were not effective. However, there are at least two different metabolic elicitors from Pseudomonas fluorescens N21.4, one under 10 kDa and another over 10 kDa, that trigger isoflavone metabolism in the three cell lines with different isoflavone content. Elicitors from N21.4 achieved total isoflavone increases up to 29.7% (0.205 mg/g), 64.5% (0.487 mg/g), and 23.4% (0.726 mg/g) in the low-, intermediate-, and high-yield lines, respectively. Therefore, these elicitors have a great potential to enhance isoflavone production in cell cultures for development of functional ingredients.

  5. Antioxidant potential, cytotoxic activity and total phenolic content of Alpinia pahangensis rhizomes

    PubMed Central

    2013-01-01

    Background Alpinia pahangensis, a wild ginger distributed in the lowlands of Pahang, Malaysia, is used by the locals to treat flatulence. In this study, the antioxidant and cytotoxic activities of the crude aqueous methanol and fractionated extracts of Alpinia pahangensis against five different cancer and one normal cell lines were investigated. The total phenolic content of each extract and its fractions were also quantified. This is the first report on the antioxidant and cytotoxic activities of Alpinia pahangensis extract. Methods In the current study, the crude methanol and fractionated extract of the rhizomes of Alpinia pahangensis were investigated for their antioxidant activity using four different assays namely, the DPPH scavenging activity, superoxide anion scavenging, β-carotene bleaching and reducing power assays whilst their phenolic contents were measured by the Folin-Ciocalteu’s method. In vitro neutral red cytotoxicity assay was employed to evaluate the cytotoxic activity against five different cancer cell lines, colon cancer (HCT 116 and HT-29), cervical cancer (Ca Ski), breast cancer (MCF7) and lung cancer (A549) cell lines, and one normal cell line (MRC-5). The extract that showed high cytotoxic activity was further investigated for its chemical constituents by GC-MS (gas chromatography–mass spectrometry) analysis. Results The ethyl acetate fraction showed the strongest DPPH radical scavenging (0.35 ± 0.094 mg/ml) and SOD activities (51.77 ± 4.9%) whilst the methanol extract showed the highest reducing power and also the strongest antioxidant activity in the β-carotene bleaching assays in comparison to other fractions. The highest phenolic content was found in the ethyl acetate fraction, followed by the crude methanol extract, hexane and water fractions. The results showed a positive correlation between total phenolic content with DPPH radical scavenging capacities and SOD activities. The hexane fraction showed potent cytotoxic effect against KB, Ca Ski and HCT 116 cell lines with IC50 of 5.8 ± 0.1 and 9.1 ± 2.0 ug/ml, respectively. The major components of hexane fraction analysed by GC-MS analysis were mostly methyl esters. Conclusions The current study suggests that the methanol extract and ethyl acetate fraction of A. pahangensis is a potential source of natural antioxidant for protective as well as prevention of life-threatening diseases. The hexane fraction of A. pahangensis may have the potential to be developed into therapeutic option for treating cancer. PMID:24083445

  6. Enhanced expression of IL-8 in normal human keratinocytes and human keratinocyte cell line HaCaT in vitro after stimulation with contact sensitizers, tolerogens and irritants.

    PubMed

    Mohamadzadeh, M; Müller, M; Hultsch, T; Enk, A; Saloga, J; Knop, J

    1994-12-01

    To investigate the interleukin-8 production of keratinocytes after stimulation in vitro we have used various agents: (i) contact sensitizer (2,4-dinitrofluorobenzene, 3-n-pentadecylcatechol); (ii) tolerogen (5-methyl-3-n-pentadecylcatechol); (iii) irritant (sodium lauryl sulfate). Interleukin-8 gene expression was assessed by northern blot hybridization of the total cytoplasmic RNA extracted from subconfluent normal human keratinocyte cultures and the keratinocyte cell line HaCaT using a radiolabeled DNA probe specific for human interleukin-8. Interleukin-8 gene expression was markedly increased upon in vitro stimulation after 1-6 h with contact sensitizers, tolerogen and the irritant. In contrast, interleukin-8 production was not detectable in unstimulated normal human keratinocytes or the HaCaT keratinocyte cell line. These results suggest that the induction and production of interleukin-8 is a response to nonspecific stimuli and may play a critical role in the early response to immunogenic or inflammatory signals in man.

  7. Deep Proteomics of Mouse Skeletal Muscle Enables Quantitation of Protein Isoforms, Metabolic Pathways, and Transcription Factors*

    PubMed Central

    Deshmukh, Atul S.; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T.; Cox, Jürgen; Mann, Matthias

    2015-01-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. PMID:25616865

  8. Influence of ribosomal protein L39-L in the drug resistance mechanisms of lacrimal gland adenoid cystic carcinoma cells.

    PubMed

    Ye, Qing; Ding, Shao-Feng; Wang, Zhi-An; Feng, Jie; Tan, Wen-Bin

    2014-01-01

    Cancer constitutes a key pressure on public health regardless of the economy state in different countries. As a kind of highly malignant epithelial tumor, lacrimal gland adenoid cystic carcinoma can occur in any part of the body, such as salivary gland, submandibular gland, trachea, lung, breast, skin and lacrimal gland. Chemotherapy is one of the key treatment techniques, but drug resistance, especially MDR, seriously blunts its effects. As an element of the 60S large ribosomal subunit, the ribosomal protein L39-L gene appears to be documented specifically in the human testis and many human cancer samples of different origins. Total RNA of cultured drug-resistant and susceptible lacrimal gland adenoid cystic carcinoma cells was seperated, and real time quantitative RT-PCR were used to reveal transcription differences between amycin resistant and susceptible strains of lacrimal gland adenoid cystic carcinoma cells. Viability assays were used to present the amycin resistance difference in a RPL39-L transfected lacrimal gland adenoid cystic carcinoma cell line as compared to control vector and null-transfected lacrimal gland adenoid cystic carcinoma cell lines. The ribosomal protein L39-L transcription level was 6.5-fold higher in the drug-resistant human lacrimal gland adenoid cystic carcinoma cell line than in the susceptible cell line by quantitative RT-PCR analysis. The ribosomal protein L39-L transfected cells revealed enhanced drug resistance compared to plasmid vector-transfected or null-transfected cells as determined by methyl tritiated thymidine (3H-TdR) incorporation. The ribosomal protein L39-L gene could possibly have influence on the drug resistance mechanism of lacrimal gland adenoid cystic carcinoma cells.

  9. Dihydroartemisinin increases temozolomide efficacy in glioma cells by inducing autophagy

    PubMed Central

    ZHANG, ZE-SHUN; WANG, JING; SHEN, YOU-BI; GUO, CHENG-CHENG; SAI, KE; CHEN, FU-RONG; MEI, XIN; HAN, FU; CHEN, ZHONG-PING

    2015-01-01

    Artemisinin, a powerful antimalarial medicine, is extracted from the Chinese herb, Artemisia annua L., and has the ability to inhibit the proliferation of cancer cells. Dihydroartemisinin (DHA), the major active metabolite of artemisinin, is able to inhibit the growth of a variety of types of human cancer. However, the effect of DHA on human glioma cells remains unclear. The aim of the present study was to investigate the effect of DHA on the proliferation of glioma cells, and whether DHA was able to enhance temozolomide (TMZ) sensitivity in vitro and in vivo. In total, 10 human glioma cell lines were used to analyze the growth inhibition ability of DHA by MTT assay. The typical autophagic vacuoles were monitored by the application of the autofluorescent agent, monodansylcadaverine. Western blotting was used to detect markers of apoptosis and autophagy, namely Caspase-3, Beclin-1 and LC3-B. The combination efficiency of DHA and TMZ was assessed in vitro and in vivo. The half maximal inhibitory concentration (IC50) of DHA differed among the ten human glioma cell lines. The number of autophagic vacuoles was higher in DHA-treated SKMG-4 cells; this was highest of all cell lines analyzed. The expression of autophagy molecular markers, Beclin-1 and LC3-B, was increased following DHA treatment, while no significant alteration was detected in the expression of apoptotic marker Caspase-3. When combined with DHA, the IC50 of TMZ decreased significantly in the four glioma cell lines analyzed. Furthermore, DHA enhanced the tumor inhibition ability of TMZ in tumor-burdened mice. The results of the present study demonstrated that DHA inhibited the proliferation of glioma cells and enhanced the tumor inhibition efficacy of TMZ in vitro and in vivo through the induction of autophagy. PMID:26171034

  10. Fibroblast cell line establishment, cryopreservation and interspecies embryos reconstruction in red panda ( Ailurus fulgens).

    PubMed

    Tao, Yong; Liu, Jianming; Zhang, Yunhai; Zhang, Meiling; Fang, Junshun; Han, Wei; Zhang, Zhizhong; Liu, Ya; Ding, Jianping; Zhang, Xiaorong

    2009-05-01

    In evolution, the red panda (Ailurus fulgens) plays a pivotal role in the higher level phylogeny of arctoides carnivore mammals. The red panda inhabits certain Asian countries only and its numbers are decreasing. Therefore, the development of feasible ways to preserve this species is necessary. Genetic resource cryopreservation and somatic cell nuclear transfer (SCNT) have been used extensively to rescue this endangered species. The present study describes the establishment, for the first time, of a red panda ear fibroblast cell line, which was then cryopreserved, thawed and cultured. Through micromanipulation, interspecies embryos were reconstructed using the cryopreserved-thawed fibroblasts of the red panda as the donor and rabbit oocytes as recipients. A total of 194 enucleated rabbit oocytes were reconstructed with red panda ear fibroblasts; enucleated oocytes were activated without fusion as the control. The results show that the fibroblast cell line was established successfully by tissue culture and then cryopreserved in liquid nitrogen. Supplementation with 20% fetal bovine serum and 8% dimethyl sulphoxide in basic medium facilitated the cryopreservation. The interspecies embryos were successfully reconstructed. The cleavage, morulae and blastocyst rates after in vitro culture were 71, 47 and 23% (31/194), respectively. This study indicated that a somatic cell line could be established and cryopreserved from red panda and that rabbit cytoplast supports mitotic cleavage of the red panda karyoplasts and is capable of reprogramming the nucleus to achieve blastocysts.

  11. Comparison of aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase induction by polycyclic aromatic compounds in human and mouse cell lines.

    PubMed

    Jaiswal, A K; Nebert, D W; Eisen, H W

    1985-08-01

    The human MCF-7 and the mouse Hepa-1 cell culture lines were compared for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and benzo[a]anthracene (BA) and TCDD- and BA-specific binding in the cytosol and nucleus. The effective concentration of BA in the growth medium required to induce either enzyme to 50% of its maximally inducible activity (EC50) was the same (5-11 microM) in both MCF-7 and Hepa-1 cells. On the other hand, the EC50 for TCDD in MCF-7 cells (5-25 nM) was more than 40-fold greater than that in Hepa-1 cells (0.4 to 0.6 nM). P1-450- and P3-450-specific mouse cDNA probes were used to quantitate mRNA induction in the Hepa-1 cell line. P1-450 mRNA was induced markedly by TCDD and benzo[a] anthracene, whereas P3-450 mRNA was induced negligibly. A P1-450-specific human cDNA probe was used to quantitate P1-450 mRNA induction in the MCF-7 cell line. Aryl hydrocarbon hydroxylase inducibility by TCDD or BA always paralleled P1-450 mRNA inducibility in either the mouse or human line. Although the cytosolic Ah receptor in Hepa-1 cells was easily detected by sucrose density gradient centrifugation, gel permeation chromatography, and anion-exchange high-performance liquid chromatography, the cytosolic receptor cannot be detected in MCF-7 cells. Following in vivo exposure of cultures to radiolabeled TCDD, the intranuclear concentration of inducer-receptor complex was at least fifty times greater in Hepa-1 than MCF-7 cultures. The complete lack of measurable cytosolic receptor and almost totally absent inducer-receptor complex in the nucleus of MCF-7 cells was, therefore, out of proportion to its capacity for aryl hydrocarbon hydroxylase and acetanilide 4-hydroxylase inducibility. This MCF-7 line should provide an interesting model for a better understanding of the mechanisms of drug-metabolizing enzyme induction by polycyclic aromatic compounds, including the Ah receptor-mediated mechanism.

  12. The goat mammary glandular epithelial (GMGE) cell line promotes polyfucosylation and N,N'-diacetyllactosediaminylation of N-glycans linked to recombinant human erythropoietin.

    PubMed

    Sánchez, O; Montesino, R; Toledo, J R; Rodríguez, E; Díaz, D; Royle, L; Rudd, P M; Dwek, R A; Gerwig, G J; Kamerling, J P; Harvey, D J; Cremata, J A

    2007-08-15

    We have established a continuous, non-transformed cell line from primary cultures from Capra hircus mammary gland. Low-density cultures showed a homogeneous epithelial morphology without detectable fibroblastic or myoepithelial cells. The culture was responsive to contact inhibition of proliferation and its doubling time was dependent on the presence of insulin and epidermal growth factor (EGF). GMGE cells secrete caseins regardless of the presence or absence of lactogenic hormones in the culture media. Investigation of the total N-glycan pool of human erythropoietin (rhEPO) expressed in GMGE cells by monosaccharide analysis, HPLC profiling, and mass spectrometry, indicated significant differences with respect to the same protein expressed in Chinese hamster ovary (CHO) cells. N-Glycans of rhEPO-GMGE are core-fucosylated, but fucosylation of outer arms was also found. Our results also revealed the presence of low levels of sialylation (>95% Neu5Ac), N,N'-diacetyllactosediamine units, and possibly Gal-Gal non-reducing terminal elements.

  13. Industrial Production of Therapeutic Proteins: Cell Lines, Cell Culture, and Purification

    NASA Astrophysics Data System (ADS)

    Zhu, Marie M.; Mollet, Michael; Hubert, Rene S.

    The biotechnology and pharmaceutical industries have seen a recent surge in the development of biological drug products manufactured from engineered mammalian cell lines. Since the hugely successful launch of human tissue plasminogen activator in 1987 and erythropoietin in 1988, the biopharmaceutical market has grown immensely. Global sales in 2003 exceeded US 30 billion.1 Currently, a total of 108 biotherapeutics are approved and available to patients (Table 32.1). In addition, 324 medically related, biotechnology-derived medicines for nearly 150 diseases are in clinical trials or under review by the U.S. Food and Drug Administration.2 These biopharmaceutical candidates promise to bring more and better treatments to patients. Compared to small molecule drugs, biotherapeutics show exquisite specificity with fewer off-target interactions and improved safety profiles.

  14. Negative extensibility metamaterials: phase diagram calculation

    NASA Astrophysics Data System (ADS)

    Klein, John T.; Karpov, Eduard G.

    2017-12-01

    Negative extensibility metamaterials are able to contract against the line of increasing external tension. A bistable unit cell exhibits several nonlinear mechanical behaviors including the negative extensibility response. Here, an exact form of the total mechanical potential is used based on engineering strain measure. The mechanical response is a function of the system parameters that specify unit cell dimensions and member stiffnesses. A phase diagram is calculated, which maps the response to regions in the diagram using the system parameters as the coordinate axes. Boundary lines pinpoint the onset of a particular mechanical response. Contour lines allow various material properties to be fine-tuned. Analogous to thermodynamic phase diagrams, there exist singular "triple points" which simultaneously satisfy conditions for three response types. The discussion ends with a brief statement about how thermodynamic phase diagrams differ from the phase diagram in this paper.

  15. [Dynamics of LINE-1 Retrotransposon Methylation Levels in Circulating DNA from Lung Cancer Patients Undergoing Antitumor Therapy].

    PubMed

    Ponomaryova, A A; Cherdyntseva, N V; Bondar, A A; Dobrodeev, A Y; Zavyalov, A A; Tuzikov, S A; Vlassov, V V; Choinzonov, E L; Laktionov, P P; Rykova, E Y

    2017-01-01

    Malignant cell transformation is accompanied with abnormal DNA methylation, such as the hypermethylation of certain gene promoters and hypomethylation of retrotransposons. In particular, the hypomethylation of the human-specific family of LINE-1 retrotransposons was observed in lung cancer tissues. It is also known that the circulating DNA (cirDNA) of blood plasma and cell-surface-bound circulating DNA (csb-cirDNA) of cancer patients accumulate tumor-specific aberrantly methylated DNA fragments, which are currently considered to be valuable cancer markers. This work compares LINE-1 retrotransposon methylation patterns in cirDNA of 16 lung cancer patients before and after treatment. CirDNA was isolated from blood plasma, and csb-cirDNA fractions were obtained by successive elution with EDTA-containing phosphate buffered saline and trypsin. Concentrations of methylated LINE-1 region 1 copies (LINE-1-met) were assayed by real-time methylation-specific PCR. LINE-1 methylation levels were normalized to the concentration of LINE-1 region 2, which was independent of the methylation status (LINE-1-Ind). The concentrations of LINE-1-met and LINE-1-Ind in csb-cirDNA of lung cancer patients exhibited correlations before treatment (r = 0.54), after chemotherapy (r = 0.72), and after surgery (r = 0.83) (P < 0.05, Spearman rank test). In the total group of patients, the level of LINE-1 methylation (determined as the LINE-1-met/LINE-1-Ind ratio) was shown to increase significantly during the follow-up after chemotherapy (P < 0.05, paired t test) and after surgery compared to the level of methylation before treatment (P < 0.05, paired t test). The revealed association between the level of LINE-1 methylation and the effect of antitumor therapy was more pronounced in squamous cell lung cancer than in adenocarcinoma (P < 0.05 and P > 0.05, respectively). These results suggest a need for the further investigation of dynamic changes in levels of LINE-1 methylation depending on the antitumor therapy.

  16. Adaptation of retrovirus producer cells to serum deprivation: Implications in lipid biosynthesis and vector production.

    PubMed

    Rodrigues, A F; Amaral, A I; Veríssimo, V; Alves, P M; Coroadinha, A S

    2012-05-01

    The manufacture of enveloped virus, particularly retroviral (RV) and lentiviral (LV) vectors, faces the challenge of low titers that are aggravated under serum deprivation culture conditions. Also, the scarce knowledge on the biochemical pathways related with virus production is still limiting the design of rational strategies for improved production yields. This work describes the adaptation to serum deprivation of two human RV packaging cell lines, 293 FLEX and Te Fly and its effects on lipid biosynthetic pathways and infectious vector production. Total lipid content as well as cellular cholesterol were quantified and lipid biosynthesis was assessed by (13)C-NMR spectroscopy; changes in gene expression of lipid biosynthetic enzymes were also evaluated. The effects of adaptation to serum deprivation in lipid biosynthesis were cell line specific and directly correlated with infectious virus titers: 293 FLEX cells faced severe lipid starvation-up to 50% reduction in total lipid content-along with a 68-fold reduction in infectious vector titers; contrarily, Te Fly cells were able to maintain identical levels of total lipid content by rising de novo lipid biosynthesis, particularly for cholesterol-50-fold increase-with the consequent recovery of infectious vector productivities. Gene expression analysis of lipid biosynthetic enzymes further confirmed cholesterol production pathway to be prominently up-regulated under serum deprivation conditions for Te Fly cells, providing a genotype-phenotype validation for enhanced cholesterol synthesis. These results highlight lipid metabolism dynamics and the ability to activate lipid biosynthesis under serum deprivation as an important feature for high retroviral titers. Mechanisms underlying virus production and its relationship with lipid biosynthesis, with special focus on cholesterol, are discussed as potential targets for cellular metabolic engineering. Copyright © 2011 Wiley Periodicals, Inc.

  17. MMP1, MMP9, and COX2 expressions in promonocytes are induced by breast cancer cells and correlate with collagen degradation, transformation-like morphological changes in MCF-10A acini, and tumor aggressiveness.

    PubMed

    Chimal-Ramírez, G K; Espinoza-Sánchez, N A; Utrera-Barillas, D; Benítez-Bribiesca, L; Velázquez, J R; Arriaga-Pizano, L A; Monroy-García, A; Reyes-Maldonado, E; Domínguez-López, M L; Piña-Sánchez, Patricia; Fuentes-Pananá, E M

    2013-01-01

    Tumor-associated immune cells often lack immune effector activities, and instead they present protumoral functions. To understand how tumors promote this immunological switch, invasive and noninvasive breast cancer cell (BRC) lines were cocultured with a promonocytic cell line in a Matrigel-based 3D system. We hypothesized that if communication exists between tumor and immune cells, coculturing would result in augmented expression of genes associated with tumor malignancy. Upregulation of proteases MMP1 and MMP9 and inflammatory COX2 genes was found likely in response to soluble factors. Interestingly, changes were more apparent in promonocytes and correlated with the aggressiveness of the BRC line. Increased gene expression was confirmed by collagen degradation assays and immunocytochemistry of prostaglandin 2, a product of COX2 activity. Untransformed MCF-10A cells were then used as a sensor of soluble factors with transformation-like capabilities, finding that acini formed in the presence of supernatants of the highly aggressive BRC/promonocyte cocultures often exhibited total loss of the normal architecture. These data support that tumor cells can modify immune cell gene expression and tumor aggressiveness may importantly reside in this capacity. Modeling interactions in the tumor stroma will allow the identification of genes useful as cancer prognostic markers and therapy targets.

  18. Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line

    PubMed Central

    Senevirathne, Mahinda; Kim, Soo-Hyun

    2010-01-01

    Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against H2O2-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher cell viability and ROS scavenging activities, and hence, selected for further antioxidant assays. Both AMG and Alcalase hydrolysates also showed higher protective effects against lipid peroxidation, DNA damage and apoptotic body formation in a dose-dependent fashion. Thus, the results indicated that water soluble compounds obtained by enzymatic hydrolysis of blueberry possess good antioxidant activity against H2O2-induced cell damage in vitro. PMID:20607062

  19. Protective effect of enzymatic hydrolysates from highbush blueberry (Vaccinium corymbosum L.) against hydrogen peroxide-induced oxidative damage in Chinese hamster lung fibroblast cell line.

    PubMed

    Senevirathne, Mahinda; Kim, Soo-Hyun; Jeon, You-Jin

    2010-06-01

    Blueberry was enzymatically hydrolyzed using selected commercial food grade carbohydrases (AMG, Celluclast, Termamyl, Ultraflo and Viscozyme) and proteases (Alcalase, Flavourzyme, Kojizyme, Neutrase and Protamex) to obtain water soluble compounds, and their protective effect was investigated against H(2)O(2)-induced damage in Chinese hamster lung fibroblast cell line (V79-4) via various published methods. Both AMG and Alcalase hydrolysates showed higher total phenolic content as well as higher cell viability and ROS scavenging activities, and hence, selected for further antioxidant assays. Both AMG and Alcalase hydrolysates also showed higher protective effects against lipid peroxidation, DNA damage and apoptotic body formation in a dose-dependent fashion. Thus, the results indicated that water soluble compounds obtained by enzymatic hydrolysis of blueberry possess good antioxidant activity against H(2)O(2)-induced cell damage in vitro.

  20. Ubiquitinated Proteins Isolated From Tumor Cells Are Efficient Substrates for Antigen Cross-Presentation.

    PubMed

    Yu, Guangjie; Moudgil, Tarsem; Cui, Zhihua; Mou, Yongbin; Wang, Lixin; Fox, Bernard A; Hu, Hong-Ming

    2017-06-01

    We have previously shown that inhibition of the proteasome causes defective ribosomal products to be shunted into autophagosomes and subsequently released from tumor cells as defective ribosomal products in Blebs (DRibbles). These DRibbles serve as an excellent source of antigens for cross-priming of tumor-specific T cells. Here, we examine the role of ubiquitinated proteins (Ub-proteins) in this pathway. Using purified Ub-proteins from tumor cells that express endogenous tumor-associated antigen or exogenous viral antigen, we tested the ability of these proteins to stimulate antigen-specific T-cell responses, by activation of monocyte-derived dendritic cells generated from human peripheral blood mononuclear cells. Compared with total cell lysates, we found that purified Ub-proteins from both a gp100-specific melanoma cell line and from a lung cancer cell line expressing cytomegalovirus pp65 antigen produced a significantly higher level of IFN-γ in gp100- or pp65-specific T cells, respectively. In addition, Ub-proteins from an allogeneic tumor cell line could be used to stimulate tumor-infiltrating lymphocytes isolated and expanded from non-small cell lung cancer patients. These results establish that Ub-proteins provide a relevant source of antigens for cross-priming of antitumor immune responses in a variety of settings, including endogenous melanoma and exogenous viral antigen presentation, as well as antigen-specific tumor-infiltrating lymphocytes. Thus, ubiquitin can be used as an affinity tag to enrich for unknown tumor-specific antigens from tumor cell lysates to stimulate tumor-specific T cells ex vivo or to be used as vaccines to target short-lived proteins.

  1. The Effect of Garlic Extract on Expression of INFγ And Inos Genes in Macrophages Infected with Leishmania major

    PubMed Central

    Gharavi, MJ; Nobakht, M; Khademvatan, SH; Bandani, E; Bakhshayesh, M; Roozbehani, M

    2011-01-01

    Background The study was aimed to show the effect of molecular mechanism of Aqueous Garlic Extract (AGE) on expression of IFNγ and iNOS genes in Leishmania major. Methods Leishmania major promastigotes (MRHO/IR/75/ER) were added to the in-vitro cultured J774 cell line, the cells were incubated for 72 hours. Various concentrations of garlic extract (9.25, 18.5, 37, 74, 148 mg/ml) were added to the infected cells. MTT assay was applied for cellular proliferation. After 72 hours of incubation, supernatants were collected and total RNA was extracted from the infected cells. The express of IFNγ and iNOS genes were studied by RT-PCR method. Results The colorimetric MTT assay after 3 days of incubation showed cytotoxic effect of garlic extract with an IC50 of 37 mg/ml. In addition, IFNγ and iNOS genes expression by RT-PCR indicated that garlic extract lead to over expression of these genes in J774 cell line infected with L. major. Conclusion Garlic extract exerts cytotoxic effect on infected J774 cell line. In addition, the hypothesis that garlic can improve cellular immunity with raising the expression of IFNγ and of iNOS genes confirmed. PMID:22347300

  2. Different patterns of nuclear and mitochondrial penetration by the G3 PAMAM dendrimer and its biotin–pyridoxal bioconjugate BC-PAMAM in normal and cancer cells in vitro

    PubMed Central

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Gargasz, Krzysztof; Wołowiec, Stanisław; Wałajtys-Rode, Elżbieta

    2015-01-01

    The intracellular localization and colocalization of a fluorescently labeled G3 amine-terminated cationic polyamidoamine (PAMAM) dendrimer and its biotin–pyridoxal (BC-PAMAM) bioconjugate were investigated in a concentration-dependent manner in normal human fibroblast (BJ) and squamous epithelial carcinoma (SCC-15) cell lines. After 24 hours treatment, both cell lines revealed different patterns of intracellular dendrimer accumulation depending on their cytotoxic effects. Cancer cells exhibited much higher (20-fold) tolerance for native PAMAM treatment than fibroblasts, whereas BC-PAMAM was significantly toxic only for fibroblasts at 50 µM concentration. Fibroblasts accumulated the native and bioconjugated dendrimers in a concentration-dependent manner at nontoxic range of concentration, with significantly lower bioconjugate loading. After reaching the cytotoxicity level, fluorescein isothiocyanate-PAMAM accumulation remains at high, comparable level. In cancer cells, native PAMAM loading at higher, but not cytotoxic concentrations, was kept at constant level with a sharp increase at toxic concentration. Mander’s coefficient calculated for fibroblasts and cancer cells confirmed more efficient native PAMAM penetration as compared to BC-PAMAM. Significant differences in nuclear dendrimer penetration were observed for both cell lines. In cancer cells, PAMAM signals amounted to ~25%–35% of the total nuclei area at all investigated concentrations, with lower level (15%–25%) observed for BC-PAMAM. In fibroblasts, the dendrimer nuclear signal amounted to 15% at nontoxic and up to 70% at toxic concentrations, whereas BC-PAMAM remained at a lower concentration-dependent level (0.3%–20%). Mitochondrial localization of PAMAM and BC-PAMAM revealed similar patterns in both cell lines, depending on the extracellular dendrimer concentration, and presented significantly lower signals from BC-PAMAM, which correlated well with the cytotoxicity. PMID:26379435

  3. SWATH™- and iTRAQ-based quantitative proteomic analyses reveal an overexpression and biological relevance of CD109 in advanced NSCLC.

    PubMed

    Zhang, Fanglin; Lin, Hechun; Gu, Aiqin; Li, Jing; Liu, Lei; Yu, Tao; Cui, Yongqi; Deng, Wei; Yan, Mingxia; Li, Jinjun; Yao, Ming

    2014-05-06

    To identify cancer-related proteins, we used isobaric tags in a relative and absolute quantitation (iTRAQ) proteomic approach and SWATH™ quantification approach to analyze the secretome of an isogenic pair of highly metastatic and low metastatic non-small-cell lung cancer (NSCLC) cell lines. In addition, we compared two groups of pooled serum samples (12 early-stage and 12 late-stage patients) to mine data for candidates screened by iTRAQ-labeled proteomic analysis. A total of 110 proteins and 71 proteins were observed to be significantly differentially expressed in the cell line secretome and NSCLC sera, respectively. Among these proteins, CD109 was found to be highly expressed in both the highly metastatic cell line secretome and the group of late-stage patients. A sandwich ELISA assay also demonstrated an elevation of serum CD109 levels in individual NSCLC patients (n=30) compared with healthy subjects (n=19). Furthermore, CD109 displayed higher expression in lung cancer tissues compared with their matched noncancerous lung tissues (n=72). In addition, the knockdown of CD109 influenced several NSCLC cell bio-functions, for instance, depressing cell growth, affecting cell cycle phases. These phenomena suggest that CD109 plays a critical role in NSCLC progression. We simultaneously applied two quantitative proteomic approaches-iTRAQ-labeling and SWATH™-to analyze the secretome of metastatic cell lines, in order to explore the cancer-associated proteins in conditioned media. In this study, our results indicate that CD109 plays a critical role in non-small-cell lung cancer (NSCLC) progression, and is overexpressed in advanced NSCLC. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Multicenter study of banked third-party virus-specific T cells to treat severe viral infections after hematopoietic stem cell transplantation

    PubMed Central

    Leen, Ann M.; Bollard, Catherine M.; Mendizabal, Adam M.; Shpall, Elizabeth J.; Szabolcs, Paul; Antin, Joseph H.; Kapoor, Neena; Pai, Sung-Yun; Rowley, Scott D.; Kebriaei, Partow; Dey, Bimalangshu R.; Grilley, Bambi J.; Gee, Adrian P.; Brenner, Malcolm K.; Rooney, Cliona M.; Heslop, Helen E.

    2013-01-01

    Virus-specific T cell (VST) lines could provide useful antiviral prophylaxis and treatment of immune-deficient patients if it were possible to avoid the necessity of generating a separate line for each patient, often on an emergency basis. We prepared a bank of 32 virus-specific lines from individuals with common HLA polymorphisms who were immune to Epstein-Barr virus (EBV), cytomegalovirus, or adenovirus. A total of 18 lines were administered to 50 patients with severe, refractory illness because of infection with one of these viruses after hematopoietic stem cell transplant. The cumulative rates of complete or partial responses at 6 weeks postinfusion were 74.0% (95% CI, 58.5%-89.5%) for the entire group (n = 50), 73.9% (95% CI, 51.2% -96.6%) for cytomegalovirus (n = 23), 77.8% for adenovirus (n = 18), and 66.7% (95% CI, 36.9%-96.5%) for EBV (n = 9). Only 4 responders had a recurrence or progression. There were no immediate infusion-related adverse events, and de novo graft-versus-host disease developed in only 2 patients. Despite the disparity between the lines and their recipients, the mean frequency of VSTs increased significantly postinfusion, coincident with striking decreases in viral DNA and resolution of clinical symptoms. The use of banked third-party VSTs is a feasible and safe approach to rapidly treat severe or intractable viral infections after stem cell transplantation. This study is registered at www.clinicaltrials.gov as NCT00711035. PMID:23610374

  5. Cytotoxic effects of Pinus eldarica essential oil and extracts on HeLa and MCF-7 cell lines.

    PubMed

    Sarvmeili, Najmeh; Jafarian-Dehkordi, Abbas; Zolfaghari, Behzad

    2016-12-01

    Several attempts have so far been made in the search of new anticancer agents of plant origin. Some studies have reported that different species of Pine genus possess cytotoxic activities against various cancer cell lines. In the present study, we evaluated the cytotoxic effects of Pinus eldarica bark and leaf extracts or leaf essential oil on HeLa and MCF-7 tumor cell lines. Hydroalcoholic and phenolic extracts and the essential oil of plant were prepared. Total phenolic contents of the extracts were measured using Folin-Ciocalteu reagent. Essential oil components were determined by gas chromatography-mass spectroscopy (GC-MS). Cytotoxic activity of the extracts and essential oil against HeLa and MCF-7 tumor cell lines were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The polyphenolic content of hydroalcoholic and phenolic extracts of the bark and hydroalcoholic extract of the leaf were 48.31%, 47.2%, and 8.47%, respectively. According to the GC-MS analysis, the major components of the leaf oil of P. eldarica were: β -caryophyllene (14.8%), germacrene D (12.9%), α-terpinenyl acetate (8.15%), α -pinene (5.7%), and -α humulene (5.9%). Bark extracts and leaf essential oil of P. eldarica significantly reduced the viability of both HeLa and MCF-7 cells in a concentration dependent manner. However, leaf extract showed less inhibitory effects against both cell lines. The essential oil of P. eldarica was more cytotoxic than its hydroalcoholic and phenolic extracts. The terpenes and phenolic compounds were probably responsible for cytotoxicity of P. eldarica . Therefore, P. eldarica might have a good potential for active anticancer agents.

  6. Cytotoxic effects of Pinus eldarica essential oil and extracts on HeLa and MCF-7 cell lines

    PubMed Central

    Sarvmeili, Najmeh; Jafarian-Dehkordi, Abbas; Zolfaghari, Behzad

    2016-01-01

    Several attempts have so far been made in the search of new anticancer agents of plant origin. Some studies have reported that different species of Pine genus possess cytotoxic activities against various cancer cell lines. In the present study, we evaluated the cytotoxic effects of Pinus eldarica bark and leaf extracts or leaf essential oil on HeLa and MCF-7 tumor cell lines. Hydroalcoholic and phenolic extracts and the essential oil of plant were prepared. Total phenolic contents of the extracts were measured using Folin-Ciocalteu reagent. Essential oil components were determined by gas chromatography-mass spectroscopy (GC-MS). Cytotoxic activity of the extracts and essential oil against HeLa and MCF-7 tumor cell lines were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. The polyphenolic content of hydroalcoholic and phenolic extracts of the bark and hydroalcoholic extract of the leaf were 48.31%, 47.2%, and 8.47%, respectively. According to the GC-MS analysis, the major components of the leaf oil of P. eldarica were: β -caryophyllene (14.8%), germacrene D (12.9%), α–terpinenyl acetate (8.15%), α –pinene (5.7%), and –α humulene (5.9%). Bark extracts and leaf essential oil of P. eldarica significantly reduced the viability of both HeLa and MCF-7 cells in a concentration dependent manner. However, leaf extract showed less inhibitory effects against both cell lines. The essential oil of P. eldarica was more cytotoxic than its hydroalcoholic and phenolic extracts. The terpenes and phenolic compounds were probably responsible for cytotoxicity of P. eldarica. Therefore, P. eldarica might have a good potential for active anticancer agents. PMID:28003841

  7. A randomized and blinded comparison of qPCR and NGS-based detection of aneuploidy in a cell line mixture model of blastocyst biopsy mosaicism.

    PubMed

    Goodrich, David; Tao, Xin; Bohrer, Chelsea; Lonczak, Agnieszka; Xing, Tongji; Zimmerman, Rebekah; Zhan, Yiping; Scott, Richard T; Treff, Nathan R

    2016-11-01

    A subset of preimplantation stage embryos may possess mosaicism of chromosomal constitution, representing a possible limitation to the clinical predictive value of comprehensive chromosome screening (CCS) from a single biopsy. However, contemporary methods of CCS may be capable of predicting mosaicism in the blastocyst by detecting intermediate levels of aneuploidy within a trophectoderm biopsy. This study evaluates the sensitivity and specificity of aneuploidy detection by two CCS platforms using a cell line mixture model of a mosaic trophectoderm biopsy. Four cell lines with known karyotypes were obtained and mixed together at specific ratios of six total cells (0:6, 1:5, 2:4, 3:3, 4:2, 5:1, and 6:0). A female euploid and a male trisomy 18 cell line were used for one set, and a male trisomy 13 and a male trisomy 15 cell line were used for another. Replicates of each mixture were prepared, randomized, and blinded for analysis by one of two CCS platforms (quantitative polymerase chain reaction (qPCR) or VeriSeq next-generation sequencing (NGS)). Sensitivity and specificity of aneuploidy detection at each level of mosaicism was determined and compared between platforms. With the default settings for each platform, the sensitivity of qPCR and NGS were not statistically different, and 100 % specificity was observed (no false positives) at all levels of mosaicism. However, the use of previously published custom criteria for NGS increased sensitivity but also significantly decreased specificity (33 % false-positive prediction of aneuploidy). By demonstrating increased false-positive diagnoses when reducing the stringency of predicting an abnormality, these data illustrate the importance of preclinical evaluation of new testing paradigms before clinical implementation.

  8. Characterization of the synthesis and expression of the GTA-kinase from transformed and normal rodent cells.

    PubMed

    Kerr, M; Fischer, J E; Purushotham, K R; Gao, D; Nakagawa, Y; Maeda, N; Ghanta, V; Hiramoto, R; Chegini, N; Humphreys-Beher, M G

    1994-08-02

    The murine transformed cell line YC-8 and beta-adrenergic receptor agonist (isoproternol) treated rat and mouse parotid gland acinar cells ectopically express cell surface beta 1-4 galactosyltransferase during active proliferation. This activity is dependent upon the expression of the GTA-kinase (p58) in these cells. Using total RNA, cDNA clones for the protein coding region of the kinase were isolated by reverse transcriptase-PCR cloning. DNA sequence analysis failed to show sequence differences with the normal homolog from mouse cells although Southern blot analysis of YC-8, and a second cell line KI81, indicated changes in the restriction enzyme digestion profile relative to murine cell lines which do not express cell surface galactosyltransferase. The rat cDNA clone from isoproterenol-treated salivary glands showed a high degree of protein and nucleic acid sequence homology to the GTA-kinase from both murine and human sources. Northern blot analysis of YC-8 and a control cell line LSTRA revealed the synthesis of a major 3.0 kb mRNA from both cell lines plus the unique expression of a 4.5 kb mRNA in the YC-8 cells. Reverse transcriptase-PCR of LSTRA and YC-8 confirmed the increased steady state levels of the GTA-kinase mRNA in YC-8. In the mouse, induction of cell proliferation by isoproterenol resulted in a 50-fold increase in steady state mRNA levels for the kinase over the low level of expression in quiescent cells. Expression of the rat 3' untranslated region in rat parotid cells in vitro led to an increased rate of DNA synthesis, cell number an ectopic expression of cell surface galactosyltransferase in the sense orientation. Antisense expression or vector alone did not alter growth characteristics of acinar cells. A polyclonal antibody monospecific to a murine amino terminal peptide sequence revealed a uniform distribution of GTA-kinase over the cytoplasm of acinar and duct cells of control mouse parotid glands. However, upon growth stimulation, kinase was detected primarily in a perinuclear and nuclear immunostaining pattern. Western blot analysis confirmed a translocation from a cytoplasmic localization in both LSTRA and quiescent salivary cells to a membrane-associated localization in YC-8 and proliferating salivary cells.

  9. Triple SILAC quantitative proteomic analysis reveals differential abundance of cell signaling proteins between normal and lung cancer-derived exosomes.

    PubMed

    Clark, David J; Fondrie, William E; Yang, Austin; Mao, Li

    2016-02-05

    Exosomes are 30-100 nm sized membrane vesicles released by cells into the extracellular space that mediate intercellular communication via transfer of proteins and other biological molecules. To better understand the role of these microvesicles in lung carcinogenesis, we employed a Triple SILAC quantitative proteomic strategy to examine the differential protein abundance between exosomes derived from an immortalized normal bronchial epithelial cell line and two non-small cell lung cancer (NSCLC) cell lines harboring distinct activating mutations in the cell signaling molecules: Kirsten rat sarcoma viral oncogene homolog (KRAS) or epidermal growth factor receptor (EGFR). In total, we were able to quantify 721 exosomal proteins derived from the three cell lines. Proteins associated with signal transduction, including EGFR, GRB2 and SRC, were enriched in NSCLC exosomes, and could actively regulate cell proliferation in recipient cells. This study's investigation of the NSCLC exosomal proteome has identified enriched protein cargo that can contribute to lung cancer progression, which may have potential clinical implications in biomarker development for patients with NSCLC. The high mortality associated with lung cancer is a result of late-stage diagnosis of the disease. Current screening techniques used for early detection of lung cancer lack the specificity for accurate diagnosis. Exosomes are nano-sized extracellular vesicles, and the increased abundance of select protein cargo in exosomes derived from cancer cells may be used for diagnostic purposes. In this paper, we applied quantitative proteomic analysis to elucidate abundance differences in exosomal protein cargo between two NSCLC cell lines with distinctive oncogene mutations and an immortalized normal bronchial epithelial cell line. This study revealed proteins associated with cell adhesion, the extracellular matrix, and a variety of signaling molecules were enriched in NSCLC exosomes. The present data reveals a protein profile associated with NSCLC exosomes that suggests a role these vesicles have in the progression of lung carcinogenesis, as well as identifies several promising candidates that could be utilized as a multi-marker protein panel in a diagnostic platform for NSCLC. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Uracil-DNA Glycosylase in Base Excision Repair and Adaptive Immunity

    PubMed Central

    Doseth, Berit; Visnes, Torkild; Wallenius, Anders; Ericsson, Ida; Sarno, Antonio; Pettersen, Henrik Sahlin; Flatberg, Arnar; Catterall, Tara; Slupphaug, Geir; Krokan, Hans E.; Kavli, Bodil

    2011-01-01

    Genomic uracil is a DNA lesion but also an essential key intermediate in adaptive immunity. In B cells, activation-induced cytidine deaminase deaminates cytosine to uracil (U:G mispairs) in Ig genes to initiate antibody maturation. Uracil-DNA glycosylases (UDGs) such as uracil N-glycosylase (UNG), single strand-selective monofunctional uracil-DNA glycosylase 1 (SMUG1), and thymine-DNA glycosylase remove uracil from DNA. Gene-targeted mouse models are extensively used to investigate the role of these enzymes in DNA repair and Ig diversification. However, possible species differences in uracil processing in humans and mice are yet not established. To address this, we analyzed UDG activities and quantities in human and mouse cell lines and in splenic B cells from Ung+/+ and Ung−/− backcrossed mice. Interestingly, human cells displayed ∼15-fold higher total uracil excision capacity due to higher levels of UNG. In contrast, SMUG1 activity was ∼8-fold higher in mouse cells, constituting ∼50% of the total U:G excision activity compared with less than 1% in human cells. In activated B cells, both UNG and SMUG1 activities were at levels comparable with those measured for mouse cell lines. Moreover, SMUG1 activity per cell was not down-regulated after activation. We therefore suggest that SMUG1 may work as a weak backup activity for UNG2 during class switch recombination in Ung−/− mice. Our results reveal significant species differences in genomic uracil processing. These findings should be taken into account when mouse models are used in studies of uracil DNA repair and adaptive immunity. PMID:21454529

  11. Epidermal growth factor expression in esophageal adenocarcinoma: a clinically relevant target?

    PubMed

    Harper, Nicholas; Li, Yan; Farmer, Russell; Martin, Robert C G

    2012-05-01

    There has been recent widespread enthusiasm in epidermal growth factor (EGFR) as a molecularly active target in esophageal adenocarcinoma (EAC). However, there is limited data on the extent of EGFR expression in EAC. Thus, the aim of this study was to evaluated EGFR, pErk1/2, and total Erk1/2 expression in malignant and benign specimens. Baseline expression of EGFR in the human normal squamous, Barrett's, and EAC cell lines were determined as well as after bile acid treatment and curcumin pretreatment. In addition, EGFR expression was also evaluated in 60 matched normal and malignant EAC resected specimens. The in vitro studies in the Het-1a, BarT, and OE19 cell lines failed to show any measurable expression of EGFR via Western blot technique. The marker serving as the positive control for the study, MnSOD, showed expression in each cell line for all three treatment regimens at approximately 24 kDa EGFR, showing moderate staining in the malignant tumor specimens and low staining in the benign tissue specimens. pErk1/2 showed low staining in the malignant tumor specimens and no staining in the benign tissue specimens. Total Erk1/2 showed high staining in both the malignant tumor specimens and benign tissue specimens. The differences in the mean staining scores for the malignant versus benign tissue specimens for pErk1/2 and total Erk1/2 are not statistically significant (p = 0.0726 and p = 0.7054, respectively). Thus, in conclusion, EGFR expression has been confirmed to be limited to non-existent in EAC and thus its use as a clinically active target is limited at best. Prior to the use of these expensive anti-EGFR therapies, confirmation of overexpression should be verified.

  12. Lightning propagation and flash density in squall lines as determined with radar

    NASA Technical Reports Server (NTRS)

    Mazur, V.; Rust, W. D.

    1983-01-01

    Lightning echo rise times and range-time variations due to discharge propagation are determined using S and L band radars, and the evolution of precipitation reflectivity and the associated lightning activity in squall lines is investigated using VHF and L band radars. The rise time of radar echoes can be explained by ionized channel propagation through the radar beams. Speeds of at least 250,000 m/s are found from measurements of the radial velocity of streamer propagation along the antenna beam. The range-time variations in lightning echoes indicate that either new ionization occurs as streamers develop into different parts of the cloud, channel delay occurs during which adequate ionization exists for radar detection, or continuing current occurs. Determinations of the lightning flash density for a squall line in the U.S. show that the maximum lightning density tends to be near the leading edge of the precipitation cores in developing cells. Long discharges are produced as a cell in the squall line develops and the total lightning density increases, although short discharges predominate. As the cell dissipates, short flashes diminish or cease and the long flashes dominate the lightning activity.

  13. Molecular Biology: Conference on Genetic Engineering Techniques (2nd) Held in London (United Kingdom) on 20-21 November 1986.

    DTIC Science & Technology

    1987-05-27

    system in Chinese t-PA to be a serine protease of 327 amino ovary hamster cells. Precise yields from acids in length. The protein appears, high-level...ham- ster or mouse cell line, allowing the differentiation of human and hamster or ________ mouse clones by hybridization with total human DNA or...appropriate lo- functional protein when transferred into cation downstream of a strong promoter in baby hamster kidney (BHK) cells or rat place of one or

  14. Redox Signaling and Bioenergetics Influence Lung Cancer Cell Line Sensitivity to the Isoflavone ME-344

    PubMed Central

    Manevich, Yefim; Reyes, Leticia; Britten, Carolyn D.; Townsend, Danyelle M.

    2016-01-01

    ME-344 [(3R,4S)-3,4-bis(4-hydroxyphenyl)-8-methyl-3,4-dihydro-2H-chromen-7-ol] is a second-generation derivative natural product isoflavone presently under clinical development. ME-344 effects were compared in lung cancer cell lines that are either intrinsically sensitive or resistant to the drug and in primary immortalized human lung embryonic fibroblasts (IHLEF). Cytotoxicity at low micromolar concentrations occurred only in sensitive cell lines, causing redox stress, decreased mitochondrial ATP production, and subsequent disruption of mitochondrial function. In a dose-dependent manner the drug caused instantaneous and pronounced inhibition of oxygen consumption rates (OCR) in drug-sensitive cells (quantitatively significantly less in drug-resistant cells). This was consistent with targeting of mitochondria by ME-344, with specific effects on the respiratory chain (resistance correlated with higher glycolytic indexes). OCR inhibition did not occur in primary IHLEF. ME-344 increased extracellular acidification rates in drug-resistant cells (significantly less in drug-sensitive cells), implying that ME-344 targets mitochondrial proton pumps. Only in drug-sensitive cells did ME-344 dose-dependently increase the intracellular generation of reactive oxygen species and cause oxidation of total (mainly glutathione) and protein thiols and the concomitant immediate increases in NADPH levels. We conclude that ME-344 causes complex, redox-specific, and mitochondria-targeted effects in lung cancer cells, which differ in extent from normal cells, correlate with drug sensitivity, and provide indications of a beneficial in vitro therapeutic index. PMID:27255112

  15. Micro-RNA expression in cisplatin resistant germ cell tumor cell lines

    PubMed Central

    2011-01-01

    Background We compared microRNA expression patterns in three cisplatin resistant sublines derived from paternal cisplatin sensitive germ cell tumor cell lines in order to improve our understanding of the mechanisms of cisplatin resistance. Methods Three cisplatin resistant sublines (NTERA-2-R, NCCIT-R, 2102EP-R) showing 2.7-11.3-fold increase in drug resistance after intermittent exposure to increasing doses of cisplatin were compared to their parental counterparts, three well established relatively cisplatin sensitive germ cell tumor cell lines (NTERA-2, NCCIT, 2102EP). Cells were cultured and total RNA was isolated from all 6 cell lines in three independent experiments. RNA was converted into cDNA and quantitative RT-PCR was run using 384 well low density arrays covering almost all (738) known microRNA species of human origin. Results Altogether 72 of 738 (9.8%) microRNAs appeared differentially expressed between sensitive and resistant cell line pairs (NTERA-2R/NTERA-2 = 43, NCCIT-R/NCCIT = 53, 2102EP-R/2102EP = 15) of which 46.7-95.3% were up-regulated (NTERA-2R/NTERA-2 = 95.3%, NCCIT-R/NCCIT = 62.3%, 2102EP-R/2102EP = 46.7%). The number of genes showing differential expression in more than one of the cell line pairs was 34 between NTERA-2R/NTERA-2 (79%) and NCCIT-R/NCCIT (64%), and 3 and 4, respectively, between these two cell lines and 2102EP-R/2102EP (about 27%). Only the has-miR-10b involved in breast cancer invasion and metastasis and has-miR-512-3p appeared to be up-regulated (2-3-fold) in all three cell lines. The hsa-miR-371-373 cluster (counteracting cellular senescence and linked with differentiation potency), as well as hsa-miR-520c/-520h (inhibiting the tumor suppressor p21) were 3.9-16.3 fold up-regulated in two of the three cisplatin resistant cell lines. Several new micro-RNA species missing an annotation towards cisplatin resistance could be identified. These were hsa-miR-512-3p/-515/-517/-518/-525 (up to 8.1-fold up-regulated) and hsa-miR-99a/-100/-145 (up to 10-fold down-regulated). Conclusion Examining almost all known human micro-RNA species confirmed the miR-371-373 cluster as a promising target for explaining cisplatin resistance, potentially by counteracting wild-type P53 induced senescence or linking it with the potency to differentiate. Moreover, we describe for the first time an association of the up-regulation of micro-RNA species such as hsa-miR-512-3p/-515/-517/-518/-525 and down-regulation of hsa-miR-99a/-100/-145 with a cisplatin resistant phenotype in human germ cell tumors. Further functional analyses are warranted to gain insight into their role in drug resistance. PMID:21575166

  16. Estimated power quality for line commutated photovoltaic residential system

    NASA Astrophysics Data System (ADS)

    McNeill, B. W.; Mirza, M. A.

    1983-10-01

    A residential photovoltaic system using a line commutated inverter is modeled using a single diode model for the solar cells and a four switch model for the inverter. The model predicts power factor and total harmonic distortion as a function of solar radiation, array voltage, inverter output voltage, and inverter filter capacitor and inductor size. The model was run using parameter values appropriate for the John F. Long PV System and the predicted results compared well with measured results from the system. The model shows that improvements in total harmonic distortion are made at the expense of the power factor. The harmonic distortion is least when the inverter is operating at just continuous conduction. The total harmonic distortion can be kept to less than 0.17 all day if a variable inductor is used in the inverter's input filters.

  17. Proteomic analysis of acquired tamoxifen resistance in MCF-7 cells reveals expression signatures associated with enhanced migration

    PubMed Central

    2012-01-01

    Introduction Acquired tamoxifen resistance involves complex signaling events that are not yet fully understood. Successful therapeutic intervention to delay the onset of hormone resistance depends critically on mechanistic elucidation of viable molecular targets associated with hormone resistance. This study was undertaken to investigate the global proteomic alterations in a tamoxifen resistant MCF-7 breast cancer cell line obtained by long term treatment of the wild type MCF-7 cell line with 4-hydroxytamoxifen (4-OH Tam). Methods We cultured MCF-7 cells with 4-OH Tam over a period of 12 months to obtain the resistant cell line. A gel-free, quantitative proteomic method was used to identify and quantify the proteome of the resistant cell line. Nano-flow high-performance liquid chromatography coupled to high resolution Fourier transform mass spectrometry was used to analyze fractionated peptide mixtures that were isobarically labeled from the resistant and control cell lysates. Real time quantitative PCR and Western blots were used to verify selected proteomic changes. Lentiviral vector transduction was used to generate MCF-7 cells stably expressing S100P. Online pathway analysis was performed to assess proteomic signatures in tamoxifen resistance. Survival analysis was done to evaluate clinical relevance of altered proteomic expressions. Results Quantitative proteomic analysis revealed a wide breadth of signaling events during transition to acquired tamoxifen resistance. A total of 629 proteins were found significantly changed with 364 up-regulated and 265 down-regulated. Collectively, these changes demonstrated the suppressed state of estrogen receptor (ER) and ER-regulated genes, activated survival signaling and increased migratory capacity of the resistant cell line. The protein S100P was found to play a critical role in conferring tamoxifen resistance and enhanced cell motility. Conclusions Our data demonstrate that the adaptive changes in the proteome of tamoxifen resistant breast cancer cells are characterized by down-regulated ER signaling, activation of alternative survival pathways, and enhanced cell motility through regulation of the actin cytoskeleton dynamics. Evidence also emerged that S100P mediates acquired tamoxifen resistance and migration capacity. PMID:22417809

  18. The effect of methyl jasmonate and light irradiation treatments on the stilbenoid biosynthetic pathway in Vitis vinifera cell suspension cultures.

    PubMed

    Andi, Seyed Ali; Gholami, Mansour; Ford, Christopher M

    2018-04-01

    Grape stilbenes are a well-known family of plant polyphenolics that have been confirmed to have many biological activities in relation to health benefits. In the present study, we investigated the effect of methyl jasmonate (MeJA) elicitor at four different concentrations (25, 50, 100 and 200 μM) in combination or not with high-level light irradiation (10,000 LUX) on a cell line obtained from the pulp of Vitis vinifera cv. Shahani. Our results showed that the stilbene synthesis pathway is inhibited by high-light conditions. A concentration of 50 μM MeJA was optimum for efficient production and high accumulation of total phenolics and total flavonoids as well as total stilbenoids. Furthermore, we showed that there is a significant negative correlation between the production of these metabolites and cell growth. These data provide valuable information for the future scale-up of cell cultures for the production of these very high value compounds in bioreactor system.

  19. Regulation of tissue factor in NT2 germ cell tumor cells by cisplatin chemotherapy.

    PubMed

    Jacobsen, Christine; Oechsle, Karin; Hauschild, Jessica; Steinemann, Gustav; Spath, Brigitte; Bokemeyer, Carsten; Ruf, Wolfram; Honecker, Friedemann; Langer, Florian

    2015-09-01

    Patients with germ cell tumors (GCTs) receiving cisplatin-based chemotherapy are at increased risk of thrombosis, but the underlying cellular and molecular mechanisms remain obscure. To study baseline tissue factor (TF) expression by GCT cell lines and its modulation by cisplatin treatment. TF expression was assessed by single-stage clotting and thrombin generation assay, flow cytometry, ELISA, and Western blot analysis. Cell cycle analysis and detection of phosphatidylserine (PS) membrane exposure were carried out by flow cytometry. TF mRNA was analyzed by quantitative RT-PCR. Significant expression of TF-specific procoagulant activity (PCA) was detected on three non-seminoma (NT2, 2102Ep, NCCIT) and one seminoma cell line (TCam-2). Treatment with 0.4μM cisplatin (corresponding to the IC50) for 48hrs increased TF PCA on NT2 cells 3-fold, an effect that was largely independent of PS exposure and that could not be explained by translocation of active TF from intracellular storage pools. Cisplatin-induced TF PCA expression in NT2 cells did not occur before 12hrs, but was steady thereafter and accompanied by a 2-fold increase in total and surface-located TF antigen. Importantly, increased TF gene transcription or production and release of an intermediate factor were not involved in this process. Cell cycle analysis suggested that cisplatin-induced G2/M arrest resulted in an accumulation of procoagulant TF on the membrane surface of NT2 cells. In addition to induction of apoptosis/necrosis with PS-mediated activation of preformed TF, cisplatin may alter the procoagulant phenotype of GCT cells through an increase in total cellular TF antigen. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. AAVS1-Targeted Plasmid Integration in AAV Producer Cell Lines.

    PubMed

    Luo, Yuxia; Frederick, Amy; Martin, John M; Scaria, Abraham; Cheng, Seng H; Armentano, Donna; Wadsworth, Samuel C; Vincent, Karen A

    2017-06-01

    Adeno-associated virus (AAV) producer cell lines are created via transfection of HeLaS3 cells with a single plasmid containing three components (the vector sequence, the AAV rep and cap genes, and a selectable marker gene). As this plasmid contains both the cis (Rep binding sites) and trans (Rep protein encoded by the rep gene) elements required for site-specific integration, it was predicted that plasmid integration might occur within the AAVS1 locus on human chromosome 19 (chr19). The objective of this study was to investigate whether integration in AAVS1 might be correlated with vector yield. Plasmid integration sites within several independent cell lines were assessed via Southern, fluorescence in situ hybridization (FISH) and PCR analyses. In the Southern analyses, the presence of fragments detected by both rep- and AAVS1-specific probes suggested that for several mid- and high-producing lines, plasmid DNA had integrated into the AAVS1 locus. Analysis with puroR and AAVS1-specific probes suggested that integration in AAVS1 was a more widespread phenomenon. High-producing AAV2-secreted alkaline phosphatase (SEAP) lines (masterwell 82 [MW82] and MW278) were evaluated via FISH using probes specific for the plasmid, AAVS1, and a chr19 marker. FISH analysis detected two plasmid integration sites in MW278 (neither in AAVS1), while a total of three sites were identified in MW82 (two in AAVS1). An inverse PCR assay confirmed integration within AAVS1 for several mid- and high-producing lines. In summary, the FISH, Southern, and PCR data provide evidence of site-specific integration of the plasmid within AAVS1 in several AAV producer cell lines. The data also suggest that integration in AAVS1 is a general phenomenon that is not necessarily restricted to high producers. The results also suggest that plasmid integration within the AAVS1 locus is not an absolute requirement for a high vector yield.

  1. Analysis of plasma membrane Ca(2+)-ATPase expression in control and SV40-transformed human fibroblasts.

    PubMed

    Reisner, P D; Brandt, P C; Vanaman, T C

    1997-01-01

    It has been long known that neoplastic transformation is accompanied by a lowered requirement for extracellular Ca2+ for growth. The studies presented here demonstrate that human fibroblastic cell lines produce the two commonly found 'housekeeping' isoforms of the plasma membrane Ca(2+)-ATPase (PMCA), PMCA1b and 4b, and at the expression of both is demonstrably lower in cell lines neoplastically transformed by SV40 than in the corresponding parental cell lines. Western blot analyses of lysates from control (GM00037) and SV40-transformed (GM00637) skin fibroblasts revealed a 138 kDa PMCA whose level was significantly lower in the SV40-transformed cells relative to either total cellular protein or alpha-tubulin. Similar analyses of plasma membrane preparations from control WI-38) and SV40-transformed (WI-38VA13) lung fibroblasts revealed 3-4-fold lower levels of PMCA in the SV40-transformed cells. Competitive ELISAs performed on detergent solubilized plasma membrane preparations indicated at least 3-4-fold lower levels of PMCA in the SV40-transformed cell lines compared to controls. Reverse transcriptase coupled-PCR analyses showed that PMCA1b and PMCA4b were the only isoforms expressed in all four cell lines. The PMCA4b mRNA level detected by Northern analysis also was substantially lower in SV40 transformed skin fibroblasts than in non-transformed fibroblasts. Quantitative RT-PCR analyses showed levels of PMCA1b and 4b mRNAs to be 5 and 10-fold lower, respectively, in GM00637 than in GM00037 when the levels of PCR products were normalized to glyceraldehyde-3-phosphate dehydrogenase (G3PDH) mRNA. These results demonstrate that the expression of these distinct PMCA genes is substantially lower in SV40 transformed human skin and lung fibroblasts and may be coordinately regulated in these cells.

  2. A Rare Case of Klinefelter Syndrome Patient with Quintuple Mosaic Karyotype, Diagnosed by GTG-Banding and FISH

    PubMed Central

    Karimi, Hamideh; Sabbaghian, Marjan; Haratian, Kaveh; Vaziri Nasab, Hamed; Farrahi, Faramarz; Moradi, Shabnam Zari; Tavakolzadeh, Tayebeh; Beheshti, Zahra; Gourabi, Hamid; Meybodi, Anahita Mohseni

    2014-01-01

    Klinefelter syndrome (KS) is the most common sex chromosomal disorder in men. Most of these patients show the 47,XXY karyotype, whereas approximately 15% of them are mosaics with variable phenotype. A 39-year-old male investigated for primary infertility, was clinically normal with small firm testes and elevated levels of FSH, LH and low level of testosterone. Total azoospermia was confirmed on semen analysis. Testicular histopathology revealed no spermatogenesis and absence of germ cells. Karyotype from whole blood culture showed cells with 47,XXY/46,XX/ 45,X/48,XXXY/ 46,XY mosaicism. The predominant cell line was 47,XXY (83.67%). This was confirmed by fluorescence in situ hybridization (FISH). Also the presence of a small population of cells with the 48,XXXY and 45,X karyotypes was detected by FISH. This case illustrates the utility of FISH as an adjunct to conventional cytogenetics in assess the chromosome copy number in each cell line of a mosaic. PMID:25083188

  3. A Rare Case of Klinefelter Syndrome Patient with Quintuple Mosaic Karyotype, Diagnosed by GTG-Banding and FISH.

    PubMed

    Karimi, Hamideh; Sabbaghian, Marjan; Haratian, Kaveh; Vaziri Nasab, Hamed; Farrahi, Faramarz; Moradi, Shabnam Zari; Tavakolzadeh, Tayebeh; Beheshti, Zahra; Gourabi, Hamid; Meybodi, Anahita Mohseni

    2014-07-01

    Klinefelter syndrome (KS) is the most common sex chromosomal disorder in men. Most of these patients show the 47,XXY karyotype, whereas approximately 15% of them are mosaics with variable phenotype. A 39-year-old male investigated for primary infertility, was clinically normal with small firm testes and elevated levels of FSH, LH and low level of testosterone. Total azoospermia was confirmed on semen analysis. Testicular histopathology revealed no spermatogenesis and absence of germ cells. Karyotype from whole blood culture showed cells with 47,XXY/46,XX/ 45,X/48,XXXY/ 46,XY mosaicism. The predominant cell line was 47,XXY (83.67%). This was confirmed by fluorescence in situ hybridization (FISH). Also the presence of a small population of cells with the 48,XXXY and 45,X karyotypes was detected by FISH. This case illustrates the utility of FISH as an adjunct to conventional cytogenetics in assess the chromosome copy number in each cell line of a mosaic.

  4. Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish.

    PubMed

    Moore, Finola E; Garcia, Elaine G; Lobbardi, Riadh; Jain, Esha; Tang, Qin; Moore, John C; Cortes, Mauricio; Molodtsov, Aleksey; Kasheta, Melissa; Luo, Christina C; Garcia, Amaris J; Mylvaganam, Ravi; Yoder, Jeffrey A; Blackburn, Jessica S; Sadreyev, Ruslan I; Ceol, Craig J; North, Trista E; Langenau, David M

    2016-05-30

    Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4(+) cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2(E450fs) mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4(+) cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2(E450fs) mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4(+)/CD8(+) cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia. © 2016 Moore et al.

  5. Single-cell transcriptional analysis of normal, aberrant, and malignant hematopoiesis in zebrafish

    PubMed Central

    Garcia, Elaine G.; Lobbardi, Riadh; Jain, Esha; Tang, Qin; Moore, John C.; Cortes, Mauricio; Molodtsov, Aleksey; Kasheta, Melissa; Luo, Christina C.; Garcia, Amaris J.; Mylvaganam, Ravi; Yoder, Jeffrey A.; Blackburn, Jessica S.; Sadreyev, Ruslan I.; Ceol, Craig J.; North, Trista E.

    2016-01-01

    Hematopoiesis culminates in the production of functionally heterogeneous blood cell types. In zebrafish, the lack of cell surface antibodies has compelled researchers to use fluorescent transgenic reporter lines to label specific blood cell fractions. However, these approaches are limited by the availability of transgenic lines and fluorescent protein combinations that can be distinguished. Here, we have transcriptionally profiled single hematopoietic cells from zebrafish to define erythroid, myeloid, B, and T cell lineages. We also used our approach to identify hematopoietic stem and progenitor cells and a novel NK-lysin 4+ cell type, representing a putative cytotoxic T/NK cell. Our platform also quantified hematopoietic defects in rag2E450fs mutant fish and showed that these fish have reduced T cells with a subsequent expansion of NK-lysin 4+ cells and myeloid cells. These data suggest compensatory regulation of the innate immune system in rag2E450fs mutant zebrafish. Finally, analysis of Myc-induced T cell acute lymphoblastic leukemia showed that cells are arrested at the CD4+/CD8+ cortical thymocyte stage and that a subset of leukemia cells inappropriately reexpress stem cell genes, including bmi1 and cmyb. In total, our experiments provide new tools and biological insights into single-cell heterogeneity found in zebrafish blood and leukemia. PMID:27139488

  6. A newly isolated probiotic Enterococcus faecalis strain from vagina microbiota enhances apoptosis of human cancer cells.

    PubMed

    Nami, Y; Abdullah, N; Haghshenas, B; Radiah, D; Rosli, R; Yari Khosroushahi, A

    2014-08-01

    This study aimed to describe probiotic properties and bio-therapeutic effects of newly isolated Enterococcus faecalis from the human vaginal tract. The Enterococcus faecalis strain was originally isolated from the vaginal microbiota of Iranian women and was molecularly identified using 16SrDNA gene sequencing. Some biochemical methodologies were preliminarily used to characterize the probiotic potential of Ent. faecalis, including antibiotic susceptibility, antimicrobial activity, as well as acid and bile resistance. The bio-therapeutic effects of this strain's secreted metabolites on four human cancer cell lines (AGS, HeLa, MCF-7 and HT-29) and one normal cell line (HUVEC) were evaluated by cytotoxicity assay and apoptosis scrutiny. The characterization results demonstrated into the isolated bacteria strain revealed probiotic properties, such as antibiotic susceptibility, antimicrobial activity and resistance under conditions similar to those in the gastrointestinal tract. Results of bio-therapeutic efficacy assessments illustrated acceptable apoptotic effects on four human cancer cell lines and negligible side effects on assayed normal cell line. Our findings revealed that the apoptotic effect of secreted metabolites mainly depended on proteins secreted by Ent. faecalis on different cancer cells. These proteins can induce the apoptosis of cancer cells. The metabolites produced by this vaginal Ent. faecalis strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. Accordingly, the physicochemical, structural and functional properties of the secreted anticancer substances should be further investigated before using them as anticancer therapeutics. This study aim to screen total bacterial secreted metabolites as a wealthy source to find the new active compounds to introduce as anticancer therapeutics in the future. © 2014 The Society for Applied Microbiology.

  7. Blockage of both the extrinsic and intrinsic pathways of diazinon-induced apoptosis in PaTu cells by magnesium oxide and selenium nanoparticles.

    PubMed

    Shiri, Mahdi; Navaei-Nigjeh, Mona; Baeeri, Maryam; Rahimifard, Mahban; Mahboudi, Hossein; Shahverdi, Ahmad Reza; Kebriaeezadeh, Abbas; Abdollahi, Mohammad

    Diazinon (DZ) is an organophosphorus insecticide that acts as an acetylcholinesterase inhibitor. It is important to note that it can induce oxidative stress, lipid peroxidation, diabetic disorders, and cytotoxicity. Magnesium oxide (MgO) and selenium nanoparticles (Se NPs) showed promising protection against oxidative stress, lipid peroxidation, cytotoxicity, and diabetic disorders. Therefore, this study was conducted to explore the possible protective mechanisms of MgO and Se NPs against DZ-induced cytotoxicity in PaTu cell line. Cytotoxicity of DZ, in the presence or absence of effective doses of MgO and Se NPs, was determined in human pancreatic cancer cell line (PaTu cells) after 24 hours of exposure by using mitochondrial activity and mitochondrial membrane potential assays. Then, the insulin, proinsulin, and C-peptide release; caspase-3 and -9 activities; and total thiol molecule levels were assessed. Determination of cell viability, including apoptotic and necrotic cells, was assessed via acridine orange/ethidium bromide double staining. Furthermore, expression of 15 genes associated with cell death/apoptosis in various phenomena was examined after 24 hours of contact with DZ and NPs by using real-time polymerase chain reaction. Compared to the individual cases, the group receiving the combination of MgO and Se NPs showed more beneficial effects in reducing the toxicity of DZ. Cotreatment of PaTu cell lines with MgO and Se NPs counteracts the toxicity of DZ on insulin-producing cells.

  8. 2-Deoxy-d-glucose increases GFAT1 phosphorylation resulting in endoplasmic reticulum-related apoptosis via disruption of protein N-glycosylation in pancreatic cancer cells.

    PubMed

    Ishino, Kousuke; Kudo, Mitsuhiro; Peng, Wei-Xia; Kure, Shoko; Kawahara, Kiyoko; Teduka, Kiyoshi; Kawamoto, Yoko; Kitamura, Taeko; Fujii, Takenori; Yamamoto, Tetsushi; Wada, Ryuichi; Naito, Zenya

    2018-06-27

    The glycolytic inhibitor 2-deoxy-d-glucose (2DG) causes energy starvation, affecting cell viability in a wide range of cancer cell lines. To determine the action of 2DG in pancreatic cancer, we performed proteomic analysis of pancreatic cancer cell line after 2DG treatment. Eighty proteins showed differential expression and among these, proteins involved in phosphohexose metabolism were upregulated. Up-regulation of glutamine: fructose 6-phosphate aminotransferase 1 (GFAT1), which belongs to the hexosamine biosynthesis pathway (HBP) that produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) to maintain glycoprotein, was validated by evaluation of mRNA and protein levels. Therefore, we assessed the amounts of total N-glycoproteins. Unexpectedly, we found a reduction of total N-glycoproteins and phosphorylation of GFAT1 by AMP-activated protein kinase (AMPK). These data may shed light on HBP dysfunction. Furthermore, we found endoplasmic reticulum (ER) stress accompanied by increased expression of ER stress markers, such as glucose response protein 78 (GRP78) and C/EBP-homologous protein (CHOP), in 2DG-treated cells. Moreover, the additive activation of AMPK by metformin (Met) synergistically enhanced the reduction of protein N-glycosylation and cell growth inhibition in the presence of 2DG. These results suggest that 2DG reduces N-glycosylation of proteins following the increase of phosphorylation of GFAT1 and results in the inhibition of cell growth mediated by ER stress in pancreatic cancer cells. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  9. [Cloning goat producing human lactoferrin with genetically modified donor cells selected by single or dual markers].

    PubMed

    An, Liyou; Yuan, Yuguo; Yu, Baoli; Yang, Tingjia; Cheng, Yong

    2012-12-01

    We compared the efficiency of cloning goat using human lactoferrin (hLF) with genetically modified donor cells marked by single (Neo(r)) or double (Neo(r)/GFP) markers. Single marker expression vector (pBLC14) or dual markers expression vector (pAPLM) was delivered to goat fetal fibroblasts (GFF), and then the transgenic GFF was used as donor cells to produce transgenic goats. Respectively, 58.8% (20/34) and 86.7% (26/30) resistant cell lines confirmed the transgenic integration by PCR. Moreover, pAPLM cells lines were subcultured with several passages, only 20% (6/30) cell lines was observed fluorescence from each cell during the cell passage. Somatic cell nuclear transfer using the donor cells harbouring pBLC14 or pAPLM construct, resulting in a total of 806 reconstructed embryos, a pregnancy rate at 35 d (53.8%, 39.1%) and 60 d (26.9%, 21.7%), and an offspring birth rate (1.9%, 1.4%) with 5 and 7 newborn cloned goats, respectively. Transgene was confirmed by PCR and southern-blot in all cloned offspring. There were no significant differences at the reconstructed embryo fusion rates, pregnancy rates and the birth rate (P > 0.05) between single and double markers groups. The Neo(r)/GFP double markers could improve the reliability for accurately and efficiently selecting the genetically modified donor cells. No adverse effect was observed on the efficiency of transgenic goat production by SCNT using somatic cells transfected with double (Neo(r)/GFP) markers vector.

  10. Antiproliferation and induction of cell death of Phaffia rhodozyma (Xanthophyllomyces dendrorhous) extract fermented by brewer malt waste on breast cancer cells.

    PubMed

    Teo, Ivy Tuang Ngo; Chui, Chung Hin; Tang, Johnny Cheuk On; Lau, Fung Yi; Cheng, Gregory Yin Ming; Wong, Raymond Siu Ming; Kok, Stanton Hon Lung; Cheng, Chor Hing; Chan, Albert Sun Chi; Ho, Kwok Ping

    2005-11-01

    Astaxanthin has been shown to have antiproliferative activity on breast cancer and skin cancer cells. However, the high cost of production, isolation and purification of purified astaxanthin from natural sources or chemically synthetic methods limit its usage on cancer therapy. We show that astaxanthin could be produced by fermentating the Phaffia rhodozyma (Xanthophyllomyces dendrorhous) yeast cells with brewer malt waste using a 20 L B. Braun fermentor. The percentage composition of astaxanthin from the P. rhodozyma was >70% of total pigment as estimated by the high performance liquid chromatographic analysis. Furthermore, the antiproliferative activity of this P. rhodozyma cell extract (PRE) was demonstrated on breast cancer cell lines including the MCF-7 (estrogen receptor positive) and MDA-MB231 (estrogen receptor negative) by using the [3-(4,5-dimethylthiazol-2-yl)-5-(3-arboxymethoxyphenyl)-2- (4-sulfophenyl)-2H-tetrazolium] (MTS) assay. No apoptotic cell death, but growth inhibitory effect was induced after 48 h of PRE incubation as suggested by morphological investigation. Anchorage-dependent clonogenicity assay showed that PRE could reduce the colony formation potential of both breast cancer cell lines. Cell death was observed from both breast cancer cell lines after incubation with PRE for 6 days. Taken together, our results showed that by using an economic method of brewer malt waste fermentation, we obtained P. rhodozyma with a high yield of astaxanthin and the corresponding PRE could have short-term growth inhibition and long-term cell death activity on breast cancer cells.

  11. Nuclear donor cell lines considerably influence cloning efficiency and the incidence of large offspring syndrome in bovine somatic cell nuclear transfer.

    PubMed

    Liu, J; Wang, Y; Su, J; Luo, Y; Quan, F; Zhang, Y

    2013-08-01

    Total five ear skin fibroblast lines (named F1, F2, F3, F4 and F5) from different newborn Holstein cows have been used as nuclear donor cells for producing cloned cows by somatic cell nuclear transfer (SCNT). The effects of these cell lines on both in vitro and in vivo developmental rates of cloned embryos, post-natal survivability and incidence of large offspring syndrome (LOS) were examined in this study. We found that the different cell lines possessed the same capacity to support pre-implantation development of cloned embryos, the cleavage and blastocyst formation rates ranged from 80.2 ± 0.9 to 84.5 ± 2.5% and 28.5 ± 0.9 to 33.3 ± 1.4%, respectively. However, their capacities to support the in vivo development of SCNT embryos showed significant differences (p < 0.05). The pregnancy rates at 90 and 240 day were significantly lower in groups F2 (4.9% and 3.3%) and F3 (5.4% and 5.4%) compared to groups F1 (23.3% and 16.3%), F4 (25.7% and 18.6%) and F5 (25.9% and 19.8%) (p < 0.05). The cloning efficiency was significantly higher in group F5 than those in group F1, F2, F3 and F4 (9.3% vs 4.1%, 1.2%, 2.0% and 5.0%, respectively, p < 0.05). Moreover, large offspring syndrome (LOS) incidence in group F5 was significantly lower than those in other groups (p < 0.05). All cloned offspring from cell line F1, F2, F3 and F4 showed LOS and gestation length delay, while all cloned offspring from F5 showed normal birthweight and gestation length. We concluded that the nuclear donor cell lines have significant impact on the in vivo development of cloned embryos and the incidence of LOS in cloned calves. © 2013 Blackwell Verlag GmbH.

  12. Correction of Hirschsprung-Associated Mutations in Human Induced Pluripotent Stem Cells Via Clustered Regularly Interspaced Short Palindromic Repeats/Cas9, Restores Neural Crest Cell Function.

    PubMed

    Lai, Frank Pui-Ling; Lau, Sin-Ting; Wong, John Kwong-Leong; Gui, Hongsheng; Wang, Reeson Xu; Zhou, Tingwen; Lai, Wing Hon; Tse, Hung-Fat; Tam, Paul Kwong-Hang; Garcia-Barcelo, Maria-Mercedes; Ngan, Elly Sau-Wai

    2017-07-01

    Hirschsprung disease is caused by failure of enteric neural crest cells (ENCCs) to fully colonize the bowel, leading to bowel obstruction and megacolon. Heterozygous mutations in the coding region of the RET gene cause a severe form of Hirschsprung disease (total colonic aganglionosis). However, 80% of HSCR patients have short-segment Hirschsprung disease (S-HSCR), which has not been associated with genetic factors. We sought to identify mutations associated with S-HSCR, and used the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene editing system to determine how mutations affect ENCC function. We created induced pluripotent stem cell (iPSC) lines from 1 patient with total colonic aganglionosis (with the G731del mutation in RET) and from 2 patients with S-HSCR (without a RET mutation), as well as RET +/- and RET -/- iPSCs. IMR90-iPSC cells were used as the control cell line. Migration and differentiation capacities of iPSC-derived ENCCs were analyzed in differentiation and migration assays. We searched for mutation(s) associated with S-HSCR by combining genetic and transcriptome data from patient blood- and iPSC-derived ENCCs, respectively. Mutations in the iPSCs were corrected using the CRISPR/Cas9 system. ENCCs derived from all iPSC lines, but not control iPSCs, had defects in migration and neuronal lineage differentiation. RET mutations were associated with differentiation and migration defects of ENCCs in vitro. Genetic and transcriptome analyses associated a mutation in the vinculin gene (VCL M209L) with S-HSCR. CRISPR/Cas9 correction of the RET G731del and VCL M209L mutations in iPSCs restored the differentiation and migration capacities of ENCCs. We identified mutations in VCL associated with S-HSCR. Correction of this mutation in iPSC using CRISPR/Cas9 editing, as well as the RET G731del mutation that causes Hirschsprung disease with total colonic aganglionosis, restored ENCC function. Our study demonstrates how human iPSCs can be used to identify disease-associated mutations and determine how they affect cell functions and contribute to pathogenesis. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  13. Ethnobotanical survey and cytotoxicity testing of plants of South-western Nigeria used to treat cancer, with isolation of cytotoxic constituents from Cajanus cajan Millsp. leaves.

    PubMed

    Ashidi, J S; Houghton, P J; Hylands, P J; Efferth, T

    2010-03-24

    There is only scant literature on the anticancer components of medicinal plants from Nigeria, yet traditional healers in the area under study claim to have been managing the disease in their patients with some success using the species studied. To document plants commonly used to treat cancer in South-western Nigeria and to test the scientific basis of the claims using in vitro cytotoxicity tests. Structured questionnaires were used to explore the ethnobotanical practices amongst the traditional healers. Methanol extracts of the most common species cited were screened for cytotoxicity using the sulforhodamine B (SRB) assay in both exposure and recovery experiments. Three cancer cell lines (human breast adenocarcinoma cell line MCF-7, human large cell lung carcinoma cell line COR-L23 and human amelanotic melanoma C32) and one normal cell line (normal human keratinocytes SVK-14) were used for the screening of the extracts and the fractions obtained. The extract of Cajanus cajan showed considerable activity and was further partitioned and the dichloromethane fraction was subjected to preparative chomatography to yield six compounds: hexadecanoic acid methyl ester, alpha-amyrin, beta-sitosterol, pinostrobin, longistylin A and longistylin C. Pinostrobin and longistylins A and C were tested for cytotoxicity on the cancer cell lines. In addition, an adriamycin-sensitive acute T-lymphoblastic leukaemia cell line (CCRF-CEM) and its multidrug-resistant sub-line (CEM/ADR5000) were used in an XTT assay to evaluate the activity of the pure compounds obtained. A total of 30 healers from S W Nigeria were involved in the study. 45 species were recorded with their local names with parts used in the traditional therapeutic preparations. Cytotoxicity (IC(50) values less than 50 microg/mL) was observed in 5 species (Acanthospermum hispidum, Cajanus cajan, Morinda lucida, Nymphaea lotus and Pycnanthus angolensis). Acanthospermum hispidum and Cajanus cajan were the most active. The dichloromethane fraction of Cajanus cajan had IC(50) value 5-10 microg/mL, with the two constituent stilbenes, longistylins A and C, being primarily responsible, with IC(50) values of 0.7-14.7 microM against the range of cancer cell lines. Most of the species tested had some cytotoxic effect on the cancer cell lines, which to some extent supports their traditional inclusion in herbal preparations for treatment of cancer. However, little selectivity for cancer cells was observed, which raises concerns over their safety and efficacy in traditional treatment. The longistylins A and C appear to be responsible for much of the activity of Cajanus cajan extract. Copyright (c) 2010 Elsevier Ireland Ltd. All rights reserved.

  14. Lactic acidosis switches cancer cells from aerobic glycolysis back to dominant oxidative phosphorylation

    PubMed Central

    Wu, Hao; Ying, Minfeng; Hu, Xun

    2016-01-01

    While transformation of normal cells to cancer cells is accompanied with a switch from oxidative phosphorylation (OXPHOS) to aerobic glycolysis, it is interesting to ask if cancer cells can revert from Warburg effect to OXPHOS. Our previous works suggested that cancer cells reverted to OXPHOS, when they were exposed to lactic acidosis, a common factor in tumor environment. However, the conclusion cannot be drawn unless ATP output from glycolysis and OXPHOS is quantitatively determined. Here we quantitatively measured ATP generation from glycolysis and OXPHOS in 9 randomly selected cancer cell lines. Without lactic acidosis, glycolysis and OXPHOS generated 23.7% − 52.2 % and 47.8% − 76.3% of total ATP, respectively; with lactic acidosis (20 mM lactate with pH 6.7), glycolysis and OXPHOS provided 5.7% − 13.4% and 86.6% − 94.3% of total ATP. We concluded that cancer cells under lactic acidosis reverted from Warburg effect to OXPHOS phenotype. PMID:27259254

  15. Characterization of free radical defense system in high glucose cultured HeLa-tat cells: consequences for glucose-induced cytotoxicity.

    PubMed

    Bouvard, Sophie; Faure, Patrice; Roucard, Corinne; Favier, Alain; Halimi, Serge

    2002-09-01

    HeLa cell line stably transfected with the tat gene from human immunodeficiency virus type 1 has a decreased antioxidant potential. In this work, we used this model to investigate the effect of a high glucose level (20 mM) on the glucose induced cytotoxicity and on the antioxidant system. In comparison to cell culture under control medium, HeLa-wild cell cultured under 20 mM glucose did not exhibit necrosis or apoptosis, contrary to HeLa-tat cell presenting a significant increase in necrotic or apoptotic state. Moreover after 48 h culture under high glucose level the HeLa-tat proliferation rate was not higher than the one of HeLa-wild cells. In HeLa-wild cell high glucose level resulted in an induction of glutathione reductase activity in opposition to HeLa-tat cells where no change was observed. High glucose level resulted in 20% increase in GSSG/GSH ratio in HeLa-wild cells and 38% increase in HeLa-tat cells. Moreover, high glucose level resulted in a dramatic cytosolic thiol decrease and an important lipid peroxidation in HeLa-tat cells. No significant change of these two parameters was observed in HeLa-wild cells. In both cell lines, high glucose resulted in an increase of total SOD activity, as a consequence of the increase in Cu,Zn-SOD activity. High glucose did not result in an increase of Mn-SOD activity in both cell lines. As a consequence of tat tranfection Mn-SOD activity was 50% lower in HeLa-tat cells in comparison to HeLa-wild cells. This work emphasizes the importance of the antioxidant system in the glucose induced cytotoxicity.

  16. Over-accumulation of nuclear IGF-1 receptor in tumor cells requires elevated expression of the receptor and the SUMO-conjugating enzyme Ubc9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Deng, Hua; Lin, Yingbo; Badin, Margherita

    2011-01-14

    Research highlights: {yields} SUMOylation mediates nuclear translocation of IGF-1R which activates transcription. {yields} Here we show that nuclear IGF-1R over-accumulates in tumor cells. {yields} This requires overexpression of the receptor that is a common feature in tumor cells. {yields} An increased expression of the SUMO ligase Ubc9 seems to be an involved mechanism too. -- Abstract: The insulin-like growth factor 1 receptor (IGF-1R) plays crucial roles in tumor cell growth and is overexpressed in many cancers. IGF-1R's trans-membrane kinase signaling pathways have been well characterized. Very recently, we showed that SUMOylation mediates nuclear translocation of the IGF-1R, and that nuclearmore » IGF-1R (nIGF-1R) binds to enhancer regions and activates transcription. We identified three lysine residues in the {beta}-subunit of the receptor and that mutation of these blocks nuclear translocation and gene activation. Furthermore, accumulation of nIGF-1R was proven strongly dependent on the specific SUMO-conjugating enzyme Ubc9. Here we show that nIGF-1R originates solely from the cell membrane and that phosphorylation of the core tyrosine residues of the receptor kinase is crucial for nuclear accumulation. We also compared the levels of nIGF-1R, measured as nuclear/membrane ratios, in tumor and normal cells. We found that the breast cancer cell line MCF-7 has 13-fold higher amounts of nIGF-1R than breast epithelial cells (IME) which showed only a small amount of nIGF-1R. In comparison, the total expression of IGF-1R was only 3.7- higher in MCF-7. Comparison of several other tumor and normal cell lines showed similar tumor cell over-accumulation of nIGF-1R, exceeding the total receptor expression substantially. Ectopic overexpression (>10-fold) of the receptor increased nIGF-1R in IME cells but not to that high level as in wild type MCF-7. The levels of Ubc9 were higher in all tumor cell lines, compared to the normal cells, and this probably contributes to over-accumulation of nIGF-1R. Over-accumulation of nIGF-1R may contribute to deregulated gene expression and therewith play a pathophysiological role in cancer cells.« less

  17. Constitutive expression of a grapevine polygalacturonase-inhibiting protein affects gene expression and cell wall properties in uninfected tobacco

    PubMed Central

    2011-01-01

    Background Polygalacturonase-inhibiting proteins (PGIPs) directly limit the effective ingress of fungal pathogens by inhibiting cell wall-degrading endopolygalacturonases (ePGs). Transgenic tobacco plants over-expressing grapevine (Vitis vinifera) Vvpgip1 have previously been shown to be resistant to Botrytis infection. In this study we characterized two of these PGIP over-expressing lines with known resistance phenotypes by gene expression and hormone profiling in the absence of pathogen infection. Results Global gene expression was performed by a cross-species microarray approach using a potato cDNA microarray. The degree of potential cross-hybridization between probes was modeled by a novel computational workflow designed in-house. Probe annotations were updated by predicting probe-to-transcript hybridizations and combining information derived from other plant species. Comparing uninfected Vvpgip1-overexpressing lines to wild-type (WT), 318 probes showed significant change in expression. Functional groups of genes involved in metabolism and associated to the cell wall were identified and consequent cell wall analysis revealed increased lignin-levels in the transgenic lines, but no major differences in cell wall-derived polysaccharides. GO enrichment analysis also identified genes responsive to auxin, which was supported by elevated indole-acetic acid (IAA) levels in the transgenic lines. Finally, a down-regulation of xyloglucan endotransglycosylase/hydrolases (XTHs), which are important in cell wall remodeling, was linked to a decrease in total XTH activity. Conclusions This evaluation of PGIP over-expressing plants performed under pathogen-free conditions to exclude the classical PGIP-ePG inhibition interaction indicates additional roles for PGIPs beyond the inhibition of ePGs. PMID:22078230

  18. The novel curcumin analog FLLL32 decreases STAT3 DNA binding activity and expression, and induces apoptosis in osteosarcoma cell lines

    PubMed Central

    2011-01-01

    Background Curcumin is a naturally occurring phenolic compound shown to have a wide variety of antitumor activities; however, it does not attain sufficient blood levels to do so when ingested. Using structure-based design, a novel compound, FLLL32, was generated from curcumin. FLLL32 possesses superior biochemical properties and more specifically targets STAT3, a transcription factor important in tumor cell survival, proliferation, metastasis, and chemotherapy resistance. In our previous work, we found that several canine and human osteosarcoma (OSA) cell lines, but not normal osteoblasts, exhibit constitutive phosphorylation of STAT3. Compared to curcumin, we hypothesized that FLLL32 would be more efficient at inhibiting STAT3 function in OSA cells and that this would result in enhanced downregulation of STAT3 transcriptional targets and subsequent death of OSA cells. Methods Human and canine OSA cells were treated with vehicle, curcumin, or FLLL32 and the effects on proliferation (CyQUANT®), apoptosis (SensoLyte® Homogeneous AMC Caspase- 3/7 Assay kit, western blotting), STAT3 DNA binding (EMSA), and vascular endothelial growth factor (VEGF), survivin, and matrix metalloproteinase-2 (MMP2) expression (RT-PCR, western blotting) were measured. STAT3 expression was measured by RT-PCR, qRT- PCR, and western blotting. Results Our data showed that FLLL32 decreased STAT3 DNA binding by EMSA. FLLL32 promoted loss of cell proliferation at lower concentrations than curcumin leading to caspase-3- dependent apoptosis, as evidenced by PARP cleavage and increased caspase 3/7 activity; this could be inhibited by treatment with the pan-caspase inhibitor Z-VAD-FMK. Treatment of OSA cells with FLLL32 decreased expression of survivin, VEGF, and MMP2 at both mRNA and protein levels with concurrent decreases in phosphorylated and total STAT3; this loss of total STAT3 occurred, in part, via the ubiquitin-proteasome pathway. Conclusions These data demonstrate that the novel curcumin analog FLLL32 has biologic activity against OSA cell lines through inhibition of STAT3 function and expression. Future work with FLLL32 will define the therapeutic potential of this compound in vivo. PMID:21443800

  19. In vitro expression of Streptococcus pneumoniae ply gene in human monocytes and pneumocytes.

    PubMed

    Hu, Da-Kang; Liu, Yang; Li, Xiang-Yang; Qu, Ying

    2015-05-07

    Streptococcus pneumoniae is one major cause of pneumonia in human and contains various virulence factors that contribute to pathogenesis of pneumococcal disease. This study investigated the role of pneumolysin, Ply, in facilitating S. pneumoniae invasion into the host blood stream. S. pneumoniae strains were isolated from clinical blood and sputum samples and confirmed by PCR. Expression of ply gene was assessed by infecting human monocytes and pneumocytes. A total of 23 strains of S. pneumoniae isolated from blood (n = 11) and sputum (n = 12) along with S. pneumoniae ATCC49619 were used to infect human monocyte (THP-1) and Type II pneumocyte (A549) cell lines. All clinical strains of S. pneumoniae showed higher expression of ply mRNA than the American Type Culture Collection (ATCC) strain. Among the clinical strains, blood isolates showed higher expression of ply genes than sputum isolates, i.e., 2(1.5)- to 2(1.6)-folds in THP-1 and 2(0.4)- to 2(4.9)-folds in A549 cell lines. The data from the current study demonstrated that ply gene of blood- and sputum-derived S. pneumoniae is differentially expressed in two different cell lines. Under survival pressure, ply is highly expressed in these two cell lines for blood-derived S. pneumoniae, indicating that ply gene may facilitate S. pneumoniae invasion into the host blood system.

  20. Abundant constitutive expression of the immediate-early 94K protein from cytomegalovirus (Colburn) in a DNA-transfected mouse cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jeang, K.T.; Cho, M.S.; Hayward, G.S.

    1984-10-01

    A 94-kilodalton phosphoprotein known as IE94 is the only viral polypeptide synthesized in abundance under immediate-early conditions after infection by cytomegalovirus (CMV) strain Colburn in either permissive primate or nonpermissive rodent cells. The authors isolated a clonal Ltk/sup +/ cell line which expressed the /sup 35/methionine-labeled IE94 polypeptide in sufficient abundance to be visualized directly in autoradiographs after gel electrophoresis of total-cell-culture protein extracts. The IE94 polypeptide synthesized in the transfected cells was indistinguishable in size and overall net charge from that produced in virus-infected cells. In addition, the IE94 protein expressed in LH/sub 2/p198-3 cells was phosphorylated (presumably bymore » a cellular protein kinase) and generated similar phosphopeptide patterns after partial tryptic digestion to those obtained with the CMV IE94 protein from infected cells. The cell line contained two to four stably integrated copies of the IE94 gene and synthesized a single virus-specific mRNA of 2.5 kilobases detectable on Northern blots. A new antigen, detectable by indirect anticomplement immunofluorescence with monoclonal antibody against the human CMV IE68 protein, was present in the nuclei of more than 95% of the LH/sub 2/l198-3 cells. This evidence suggests that (unlike most herpesvirus genes) the CMV IE94 gene, together with its complex promoter and spliced mRNA structure, may contain all of the regulatory elements necessary for strong constitutive expression in mammalian cells in the absence of other viral factors.« less

  1. Effect of cryopreservation and in vitro culture of bovine fibroblasts on histone acetylation levels and in vitro development of hand-made cloned embryos

    USGS Publications Warehouse

    Chacon, L.; Gomez, M.C.; Jenkins, J.A.; Leibo, S.P.; Wirtu, G.; Dresser, B.L.; Pope, C.E.

    2011-01-01

    In this study, the relative acetylation levels of histone 3 in lysine 9 (H3K9ac) in cultured and cryopreserved bovine fibroblasts was measured and we determined the influence of the epigenetic status of three cultured (C1, C2 and C3) donor cell lines on the in vitro development of reconstructed bovine embryos. Results showed that cryopreservation did not alter the overall acetylation levels of H3K9 in bovine fibroblasts analysed immediately after thawing (frozen/thawed) compared with fibroblasts cultured for a period of time after thawing. However, reduced cleavage rates were noted in embryos reconstructed with fibroblasts used immediately after thawing. Cell passage affects the levels of H3K9ac in bovine fibroblasts, decreasing after P1 and donor cells with lower H3K9ac produced a greater frequency of embryo development to the blastocyst stage. Cryopreservation did not influence the total cell and ICM numbers, or the ICM/TPD ratios of reconstructed embryos. However, the genetic source of donor cells did influence the total number of cells and the trophectoderm cell numbers, and the cell passage influenced the total ICM cell numbers. ?? Copyright Cambridge University Press 2010.

  2. Total triterpenoids from Ganoderma Lucidum suppresses prostate cancer cell growth by inducing growth arrest and apoptosis.

    PubMed

    Wang, Tao; Xie, Zi-ping; Huang, Zhan-sen; Li, Hao; Wei, An-yang; Di, Jin-ming; Xiao, Heng-jun; Zhang, Zhi-gang; Cai, Liu-hong; Tao, Xin; Qi, Tao; Chen, Di-ling; Chen, Jun

    2015-10-01

    In this study, one immortalized human normal prostatic epithelial cell line (BPH) and four human prostate cancer cell lines (LNCaP, 22Rv1, PC-3, and DU-145) were treated with Ganoderma Lucidum triterpenoids (GLT) at different doses and for different time periods. Cell viability, apoptosis, and cell cycle were analyzed using flow cytometry and chemical assays. Gene expression and binding to DNA were assessed using real-time PCR and Western blotting. It was found that GLT dose-dependently inhibited prostate cancer cell growth through induction of apoptosis and cell cycle arrest at G1 phase. GLT-induced apoptosis was due to activation of Caspases-9 and -3 and turning on the downstream apoptotic events. GLT-induced cell cycle arrest (mainly G1 arrest) was due to up-regulation of p21 expression at the early time and down-regulation of cyclin-dependent kinase 4 (CDK4) and E2F1 expression at the late time. These findings demonstrate that GLT suppresses prostate cancer cell growth by inducing growth arrest and apoptosis, which might suggest that GLT or Ganoderma Lucidum could be used as a potential therapeutic drug for prostate cancer.

  3. SERCA2 Regulates Non-CF and CF Airway Epithelial Cell Response to Ozone

    PubMed Central

    Ahmad, Shama; Nichols, David P.; Strand, Matthew; Rancourt, Raymond C.; Randell, Scott H.; White, Carl W.; Ahmad, Aftab

    2011-01-01

    Calcium mobilization can regulate a wide range of essential functions of respiratory epithelium, including ion transport, ciliary beat frequency, and secretion of mucus, all of which are modified in cystic fibrosis (CF). SERCA2, an important controller of calcium signaling, is deficient in CF epithelium. We conducted this study to determine whether SERCA2 deficiency can modulate airway epithelial responses to environmental oxidants such as ozone. This could contribute to the pathogenesis of pulmonary exacerbations, which are important and frequent clinical events in CF. To address this, we used air-liquid interface (ALI) cultures of non-CF and CF cell lines, as well as differentiated cultures of cells derived from non-CF and CF patients. We found that ozone exposure caused enhanced membrane damage, mitochondrial dysfunction and apoptotic cell death in CF airway epithelial cell lines relative to non-CF. Ozone exposure caused increased proinflammatory cytokine production in CF airway epithelial cell lines. Elevated proinflammatory cytokine production also was observed in shRNA-mediated SERCA2 knockdown cells. Overexpression of SERCA2 reversed ozone-induced proinflammatory cytokine production. Ozone-induced proinflammatory cytokine production was NF-κB- dependent. In a stable NF-κB reporter cell line, SERCA2 inhibition and knockdown both upregulated cytomix-induced NF-κB activity, indicating importance of SERCA2 in modulating NF-κB activity. In this system, increased NF-κB activity was also accompanied by increased IL-8 production. Ozone also induced NF-κB activity and IL-8 release, an effect that was greater in SERCA2-silenced NF-κB-reporter cells. SERCA2 overexpression reversed cytomix-induced increased IL-8 release and total nuclear p65 in CFTR-deficient (16HBE-AS) cells. These studies suggest that SERCA2 is an important regulator of the proinflammatory response of airway epithelial cells and could be a potential therapeutic target. PMID:22096575

  4. Quantitative structure-cytotoxicity relationship of phenylpropanoid amides.

    PubMed

    Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Saito, Takayuki; Sugita, Yoshiaki; Sakagami, Hiroshi

    2014-07-01

    A total of 12 phenylpropanoid amides were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to investigate on their biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean CC50 (50% cytotoxic concentration) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of CC50 to EC50 (50% cytoprotective concentration from HIV infection). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by the LowModeMD method followed by density functional theory (DFT) method. Twelve phenylpropanoid amides showed moderate cytotoxicity against both normal and OSCC cell lines. N-Caffeoyl derivatives coupled with vanillylamine and tyramine exhibited relatively higher tumor selectivity. Cytotoxicity against normal cells was correlated with descriptors related to electrostatic interaction such as polar surface area and chemical hardness, whereas cytotoxicity against tumor cells correlated with free energy, surface area and ellipticity. The tumor-selective cytotoxicity correlated with molecular size (surface area) and electrostatic interaction (the maximum electrostatic potential). The molecular size, shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of phenylpropanoid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Endogenous protein "barcode" for data validation and normalization in quantitative MS analysis.

    PubMed

    Lee, Wooram; Lazar, Iulia M

    2014-07-01

    Quantitative proteomic experiments with mass spectrometry detection are typically conducted by using stable isotope labeling and label-free quantitation approaches. Proteins with housekeeping functions and stable expression level such actin, tubulin, and glyceraldehyde-3-phosphate dehydrogenase are frequently used as endogenous controls. Recent studies have shown that the expression level of such common housekeeping proteins is, in fact, dependent on various factors such as cell type, cell cycle, or disease status and can change in response to a biochemical stimulation. The interference of such phenomena can, therefore, substantially compromise their use for data validation, alter the interpretation of results, and lead to erroneous conclusions. In this work, we advance the concept of a protein "barcode" for data normalization and validation in quantitative proteomic experiments. The barcode comprises a novel set of proteins that was generated from cell cycle experiments performed with MCF7, an estrogen receptor positive breast cancer cell line, and MCF10A, a nontumorigenic immortalized breast cell line. The protein set was selected from a list of ~3700 proteins identified in different cellular subfractions and cell cycle stages of MCF7/MCF10A cells, based on the stability of spectral count data generated with an LTQ ion trap mass spectrometer. A total of 11 proteins qualified as endogenous standards for the nuclear and 62 for the cytoplasmic barcode, respectively. The validation of the protein sets was performed with a complementary SKBR3/Her2+ cell line.

  6. Evaluation of antioxidant, in vitro cytotoxicity of micropropagated and naturally grown plants of Leptadenia reticulata (Retz.) Wight & Arn.-an endangered medicinal plant.

    PubMed

    Mohanty, Sudipta Kumar; Malappa, Kumaraswamy; Godavarthi, Ashok; Subbanarasiman, Balasubramanya; Maniyam, Anuradha

    2014-09-01

    To evaluate the antioxidant and anti proliferative potential of different solvent extract of micropropagated and naturally grown plants of Leptadenia reticulata against various cancer cell lines. In this study different extract were tested for cytotoxicity against human breast adenocarcinoma cell line MCF-7, human colon adenocarcinoma grade II cell line HT-29 and non cancer skeletal muscle cell line L6 through 3-(4, 5-dimethyl thiazol-2-yl)-5-diphenyl tetrazolium bromide assay. The total antioxidant potential was estimated by three different antioxidant model diphenylpicrylhydrazyl free radical scavenging activity, H2O2 scavenging activity and FeCl3 reducing activity. The ethyl acetate extract of both naturally grown plant and tissue cultured plant exhibited significant cytotoxicity with IC50 values of 21 µg/mL, 26 µg/mL and 22 µg/mL; 20 µg/mL, 30 µg/mL and 18 µg/mL respectively against three cell lines. The diphenylpicrylhydrazyl free radical scavenging activity was found to be highest with IC50 value of 267.13 µg/mL in ethyl acetate extract. The methanolic extract exhibited moderate antioxidant activity with IC50 value of 510.15 µg/mL. A highly positive correlation was observed between the antioxidant potential and cytotoxic activity of the plant. The strong cytotoxicity of ethyl acetate extract revealed anti carcinogenic potential of the plant which supports its traditional use as medicine. The present investigation is new to literature till date and will provide better scientific basis for future pharmacological, in vivo studies and novel source of pure bioactive compounds having anti cancer properties in this plant. Copyright © 2014 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  7. Expression and localization of GLUT1 and GLUT12 in prostate carcinoma.

    PubMed

    Chandler, Jenalle D; Williams, Elizabeth D; Slavin, John L; Best, James D; Rogers, Suzanne

    2003-04-15

    Increased glucose consumption is a characteristic of malignant cells and in prostate carcinoma is associated with the proliferation of both androgen-dependent and independent cells. Transport of polar glucose across the nonpolar membrane relies on glucose transporter proteins, known as GLUTs. Increased expression of GLUT1 is a characteristic of many malignant cells. The authors characterized and cloned the cDNA for a novel glucose transporter, GLUT12, which was identified initially in malignant breast epithelial cells. To the authors' knowledge, there have been no reports on the expression of glucose transporters in the human prostate or human prostate carcinoma cells. The authors evaluated GLUT1 and GLUT12 expression in human prostate carcinoma cells. Reverse transcription-polymerase chain reaction was performed on total RNA extracted from cultured prostate carcinoma cells LNCaP, C4, C4-2, and C4-2B using primers to amplify GLUT1, GLUT12, or the housekeeping gene, 36B4. Total protein extracted from prostate carcinoma cell lines was assessed for GLUT12 protein by Western blot analysis. Cultured cell monolayers were incubated with antibodies to GLUT1 or GLUT12 and a peripheral Golgi protein, Golgi 58K, for detection by immunofluorescent confocal microscopy. Sections of benign prostatic hyperplasia and human prostate carcinoma were stained for immunohistochemical detection of GLUT1 and GLUT12. GLUT1 and GLUT12 mRNA and protein were detected in all cell lines evaluated. Immunofluorescence staining demonstrated both GLUT1 and GLUT12 on the plasma membrane and in the cytoplasm in all cultured prostate carcinoma cell lines, with GLUT1 but not GLUT12 appearing to colocalize with the Golgi. Immunohistochemical staining of benign prostatic hyperplasia indicated expression of GLUT1 but not GLUT12. Malignant tissue stained for GLUT12 but was negative for GLUT1. GLUT1 and GLUT12 are expressed in human prostate carcinoma cells. One possible rationale for the GLUT1 Golgi association is that it may supply glucose to the Golgi for byproduct incorporation into the prostatic secretory fluid. Further work will investigate the importance of glucose transport and GLUT1 and GLUT12 in prostate carcinoma cell growth. Copyright 2003 American Cancer Society.

  8. [Safety and effectiveness of pemetrexed in patients with non-small cell lung cancer in Japan - analysis of post-marketing surveillance].

    PubMed

    Okubo, Sumiko; Kobayashi, Noriko; Taketsuna, Masanori; Kaneko, Naoya; Enatsu, Sotaro; Nishiuma, Shinichi

    2014-04-01

    The safety and effectiveness of pemetrexed(PEM)in patients with non-small cell lung cancer(NSCLC)were reviewed using data from post-marketing surveillance. Among 699 patients registered from June 2009 to May 2010, 683 patients were analyzed(343, first-line therapy: 340, second-line therapy or beyond). Patient backgrounds were as follows: median age=65 years(16.1%B75 years old); 64.7% male; 91.9% performance status 0-1; 83.2% Stage IV; 99.0% non-squamous cell cancer. Also, 86% of the first-line and 20% of the second-line cohort were receiving a concomitant anti-cancer drug(mostly platinum agents). The incidence rate of adverse drug reactions(ADR)was 76.7%, including serious cases(18.0%). The most common ADRs were decreased white blood cell count(26.8%), decreased neutrophil count(25.3%), anemia(19.2%), decreased platelet count(17.0%), and nausea(23.0%). The incidence of interstitial lung disease, which is a concern during chemotherapy, was 2.6%. Peripheral neuropathy and alopecia, events influencing a patient's quality of life, were less than 1%. The estimated median survival time was 23.2 months[95%CI: 19.8 months-not calculable]in the first-line cohort, and 11.8 months[95% CI: 10.5-13.7 months]in the B second-line cohort. The surveillance results showed no apparent difference in total ADRs in this current study compared to the safety profile established in clinical trials previously conducted in Japan and overseas. These results demonstrate the safety and effectiveness of PEM treatment for NSCLC patients in daily clinical settings.

  9. Thiopurine pharmacogenomics: association of SNPs with clinical response and functional validation of candidate genes

    PubMed Central

    Matimba, Alice; Li, Fang; Livshits, Alina; Cartwright, Cher S; Scully, Stephen; Fridley, Brooke L; Jenkins, Gregory; Batzler, Anthony; Wang, Liewei; Weinshilboum, Richard; Lennard, Lynne

    2014-01-01

    Aim We investigated candidate genes associated with thiopurine metabolism and clinical response in childhood acute lymphoblastic leukemia. Materials & methods We performed genome-wide SNP association studies of 6-thioguanine and 6-mercaptopurine cytotoxicity using lymphoblastoid cell lines. We then genotyped the top SNPs associated with lymphoblastoid cell line cytotoxicity, together with tagSNPs for genes in the ‘thiopurine pathway’ (686 total SNPs), in DNA from 589 Caucasian UK ALL97 patients. Functional validation studies were performed by siRNA knockdown in cancer cell lines. Results SNPs in the thiopurine pathway genes ABCC4, ABCC5, IMPDH1, ITPA, SLC28A3 and XDH, and SNPs located within or near ATP6AP2, FRMD4B, GNG2, KCNMA1 and NME1, were associated with clinical response and measures of thiopurine metabolism. Functional validation showed shifts in cytotoxicity for these genes. Conclusion The clinical response to thiopurines may be regulated by variation in known thiopurine pathway genes and additional novel genes outside of the thiopurine pathway. PMID:24624911

  10. Deep proteomics of mouse skeletal muscle enables quantitation of protein isoforms, metabolic pathways, and transcription factors.

    PubMed

    Deshmukh, Atul S; Murgia, Marta; Nagaraj, Nagarjuna; Treebak, Jonas T; Cox, Jürgen; Mann, Matthias

    2015-04-01

    Skeletal muscle constitutes 40% of individual body mass and plays vital roles in locomotion and whole-body metabolism. Proteomics of skeletal muscle is challenging because of highly abundant contractile proteins that interfere with detection of regulatory proteins. Using a state-of-the art MS workflow and a strategy to map identifications from the C2C12 cell line model to tissues, we identified a total of 10,218 proteins, including skeletal muscle specific transcription factors like myod1 and myogenin and circadian clock proteins. We obtain absolute abundances for proteins expressed in a muscle cell line and skeletal muscle, which should serve as a valuable resource. Quantitation of protein isoforms of glucose uptake signaling pathways and in glucose and lipid metabolic pathways provides a detailed metabolic map of the cell line compared with tissue. This revealed unexpectedly complex regulation of AMP-activated protein kinase and insulin signaling in muscle tissue at the level of enzyme isoforms. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Adaptive on-line prediction of the available power of lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Waag, Wladislaw; Fleischer, Christian; Sauer, Dirk Uwe

    2013-11-01

    In this paper a new approach for prediction of the available power of a lithium-ion battery pack is presented. It is based on a nonlinear battery model that includes current dependency of the battery resistance. It results in an accurate power prediction not only at room temperature, but also at lower temperatures at which the current dependency is substantial. The used model parameters are fully adaptable on-line to the given state of the battery (state of charge, state of health, temperature). This on-line adaption in combination with an explicit consideration of differences between characteristics of individual cells in a battery pack ensures an accurate power prediction under all possible conditions. The proposed trade-off between the number of used cell parameters and the total accuracy as well as the optimized algorithm results in a real-time capability of the method, which is demonstrated on a low-cost 16 bit microcontroller. The verification tests performed on a software-in-the-loop test bench system with four 40 Ah lithium-ion cells show promising results.

  12. Cytotoxic activity of ten algae from the Persian Gulf and Oman Sea on human breast cancer cell lines; MDA-MB-231, MCF-7, and T-47D

    PubMed Central

    Erfani, Nasrollah; Nazemosadat, Zahra; Moein, Mahmoodreza

    2015-01-01

    Background: Seaweeds have proven to be a promising natural source of bioactive metabolites for drug development. Objective: This study aimed to monitor the ethanol extract of ten algae from the Persian Gulf and Oman Sea, for their in vitro cytotoxic activity on three human breast cancer cell lines. Materials and Methods: Three human breast cancer cell lines including MDA-MB-231(ER−), MCF-7(ER+), and T-47D (ER+) were treated by different concentrations of total ethanol (90%) algae extracts and the cytotoxic effects were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Doxorubicin (Ebewe, Austria) was used as a positive control. After 72 h of incubation, the cytotoxic effect of the algae was calculated and presented as 50%-inhibitory concentration (IC50). Results: The results indicated Gracilaria foliifera and Cladophoropsis sp. to be the most active algae in terms of cytotoxic effects on the investigated cancer cell lines. The IC50 values against MDA-MB-231, MCF-7, and T-47D cells were, respectively, 74.89 ± 21.71, 207.81 ± 12.07, and 203.25 ± 30.98 µg/ml for G. foliifera and 66.48 ± 4.96, 150.86 ± 51.56 and >400 µg/ml for Cladophoropsis sp. The rest of the algal extracts were observed not to have significant cytotoxic effects in the concentration range from 6.25 µg/ml to 400 µg/ml. Conclusion: Our data conclusively suggest that G. foliifera and Cladophoropsis sp. may be good candidates for further fractionation to obtain novel anticancer substances. Moreover, stronger cytotoxic effects on estrogen negative breast cancer cell line (MDA-MB-231(ER−)) in comparison to estrogen positive cells (MCF-7 and T-47D) suggest that the extract of G. foliifera and Cladophoropsis sp. may have an estrogen receptor/progesterone receptor-independent mechanism for their cellular growth inhibition. PMID:25829786

  13. Streamlined Total Synthesis of Trioxacarcins and Its Application to the Design, Synthesis, and Biological Evaluation of Analogues Thereof. Discovery of Simpler Designed and Potent Trioxacarcin Analogues.

    PubMed

    Nicolaou, K C; Chen, Pengxi; Zhu, Shugao; Cai, Quan; Erande, Rohan D; Li, Ruofan; Sun, Hongbao; Pulukuri, Kiran Kumar; Rigol, Stephan; Aujay, Monette; Sandoval, Joseph; Gavrilyuk, Julia

    2017-11-01

    A streamlined total synthesis of the naturally occurring antitumor agents trioxacarcins is described, along with its application to the construction of a series of designed analogues of these complex natural products. Biological evaluation of the synthesized compounds revealed a number of highly potent, and yet structurally simpler, compounds that are effective against certain cancer cell lines, including a drug-resistant line. A novel one-step synthesis of anthraquinones and chloro anthraquinones from simple ketone precursors and phenylselenyl chloride is also described. The reported work, featuring novel chemistry and cascade reactions, has potential applications in cancer therapy, including targeted approaches as in antibody-drug conjugates.

  14. In-situ gamma-ray assay of the east cell line in the 235-F Plutonium fuel form facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diprete, D.

    On September 17th -19th , 2013, scientists from SRNL took a series of in-situ gamma-ray measurements in the maintenance trench beneath Cells 1-5 on the east line of the PuFF facility using a well-collimated, high-purity germanium detector. The cell interiors were assayed along with the furnaces and storage coolers that protrude beneath the cells. The detector efficiency was estimated using a combination of MCNP simulations and empirical measurements. Data analysis was performed using three gamma-rays emitted by Pu-238 (99.85 keV, 152.7 keV, and 766.4 keV) providing three independent estimates of the mass of Pu-238 holdup in each of the cells.more » The weighted mean of these three results was used as the best estimate of Pu-238 holdup in the East Cell Line of PuFF. The results of the assay measurements are found in the table on the following page along with the results from the scoping assay performed in 2006. All uncertainties in this table (as well as the rest of the report) are reported at 1σ. Summing the assay results and treating MDAs as M 238Pu= 0 ± MDA, the total holdup in the East Cell Line was 240 ± 40 grams. This result is 100 grams lower than the previous estimate, a 0.55σ difference. The uncertainty in the Pu-238 holdup is also reduced substantially relative to the 2006 scoping assay. However, the current assay results are in agreement with the 2006 scoping assay results due to the large uncertainty associated with the 2006 scoping assays. The current assay results support the conclusion that the 2006 results bound the Pu-238 mass in Cells 1-5. These results should be considered preliminary since additional measurements of the East Cell line are scheduled for 2017 and 2018. Those measurements will provide detailed information about the distribution of Pu-238 in the cells to be used to refine the results of the current assay.« less

  15. TRIM29 Overexpression Promotes Proliferation and Survival of Bladder Cancer Cells through NF-κB Signaling.

    PubMed

    Tan, Shu-Tao; Liu, Sheng-Ye; Wu, Bin

    2016-10-01

    TRIM29 overexpression has been reported in several human malignancies and showed correlation with cancer cell malignancy. The aim of the current study is to examine its clinical significance and biological roles in human bladder cancer tissues and cell lines. A total of 102 cases of bladder cancer tissues were examined for TRIM29 expression by immunohistochemistry. siRNA and plasmid transfection were performed in 5637 and BIU-87 cell lines. Cell Counting Kit-8, flow cytometry, western blot, and real-time polymerase chain reaction were performed to examine its biological roles and mechanism in bladder cancer cells. We found that TRIM29 overexpression showed correlation with invading depth (p=0.0087). Knockdown of TRIM29 expression in bladder cancer cell line 5637 inhibited cell growth rate and cell cycle transition while its overexpression in BIU-87 cells accelerated cell proliferation and cell cycle progression. TRIM29 overexpression also inhibited cell apoptosis induced by cisplatin. In addition, we demonstrated that TRIM29 depletion decreased while its overexpression led to upregulated expression of cyclin D1, cyclin E, and Bcl-2. We also showed that TRIM29 knockdown inhibited protein kinase C (PKC) and nuclear factor κB (NF-κB) signaling while its overexpression stimulated the PKC and NF-κB pathways. BAY 11-7082 (NF-κB inhibitor) partly attenuated the effect of TRIM29 on expression of cyclin and Bcl-2. Treatment with PKC inhibitor staurosporine resulted in ameliorated TRIM29 induced activation of NF-κB. The current study demonstrated that TRIM29 upregulates cyclin and Bcl family proteins level to facilitate malignant cell growth and inhibit drug-induced apoptosis in bladder cancer, possibly through PKC-NF-κB signaling pathways.

  16. The JAK/STAT pathway is involved in the upregulation of PD-L1 expression in pancreatic cancer cell lines.

    PubMed

    Doi, Toshifumi; Ishikawa, Takeshi; Okayama, Tetsuya; Oka, Kaname; Mizushima, Katsura; Yasuda, Tomoyo; Sakamoto, Naoyuki; Katada, Kazuhiro; Kamada, Kazuhiro; Uchiyama, Kazuhiko; Handa, Osamu; Takagi, Tomohisa; Naito, Yuji; Itoh, Yoshito

    2017-03-01

    Although improvements in the chemotherapy modalities for pancreatic cancer have been realized, pancreatic cancer remains one of the most lethal malignancies. New-generation cancer immunotherapy methods, such as blocking of the PD-1/PD-L1 pathway, are consistently being investigated to improve the survival of pancreatic cancer patients. In the present study, we evaluated the influence of anticancer agents 5-fluorouracil, gemcitabine and paclitaxel on PD-L1 expression in human pancreatic cancer cell lines MIA PaCa-2 and AsPC-1 and in murine pancreatic cancer cell line Pan02. Additionally, we analyzed the molecular mechanisms that facilitated the regulation of PD-L1 expression in these cell lines. We observed that when AsPC-1, MIA PaCa-2 and Pan02 cells were stimulated by 5-fluorouracil, gemcitabine or paclitaxel, PD-L1 surface protein expression was enhanced. Similarly, the mRNA level of PD-L1 was upregulated in the AsPC-1 and Pan02 cells when stimulated by each of the three anticancer agents. The phosphorylation of STAT1 and an increase in total STAT1 were also observed in the AsPC-1 cells when stimulated by each anticancer agent. In response to JAK2 inhibitor treatment, PD-L1 upregulation induced by the anticancer agents was reduced in a dose-dependent manner. These results suggest that i) the JAK2/STAT1 pathway is involved in the anticancer agent-mediated PD-L1 transcription; and ii) the anticancer agents altered the tumor immune response which may induce tumor immune escape. These findings can have an influence on the design of treatments that combine chemotherapy and immunotherapy.

  17. Comparative proteomics as a tool for identifying specific alterations within interferon response pathways in human glioblastoma multiforme cells

    PubMed Central

    Lobas, Anna A; Solovyeva, Elizaveta M; Sidorenko, Alena S; Gorshkov, Vladimir; Kjeldsen, Frank; Bubis, Julia A; Ivanov, Mark V; Ilina, Irina Y; Moshkovskii, Sergei A; Chumakov, Peter M; Gorshkov, Mikhail V

    2018-01-01

    An acquisition of increased sensitivity of cancer cells to viruses is a common outcome of malignant progression that justifies the development of oncolytic viruses as anticancer therapeutics. Studying molecular changes that underlie the sensitivity to viruses would help to identify cases where oncolytic virus therapy would be most effective. We quantified changes in protein abundances in two glioblastoma multiforme (GBM) cell lines that differ in the ability to induce resistance to vesicular stomatitis virus (VSV) infection in response to type I interferon (IFN) treatment. In IFN-treated samples we observed an up-regulation of protein products of some IFN-regulated genes (IRGs). In total, the proteome analysis revealed up to 20% more proteins encoded by IRGs in the glioblastoma cell line, which develops resistance to VSV infection after pre-treatment with IFN. In both cell lines protein-protein interaction and signaling pathway analyses have revealed a significant stimulation of processes related to type I IFN signaling and defense responses to viruses. However, we observed a deficiency in STAT2 protein in the VSV-sensitive cell line that suggests a de-regulation of the JAK/STAT/IRF9 signaling. The study has shown that the up-regulation of IRG proteins induced by the IFNα treatment of GBM cells can be detected at the proteome level. Similar analyses could be applied for revealing functional alterations within the antiviral mechanisms in glioblastoma samples, accompanying by acquisition of sensitivity to oncolytic viruses. The approach can be useful for discovering the biomarkers that predict a potential sensitivity of individual glioblastoma tumors to oncolytic virus therapy. PMID:29416731

  18. Alterations of p53 in tumorigenic human bronchial epithelial cells correlate with metastatic potential

    NASA Technical Reports Server (NTRS)

    Piao, C. Q.; Willey, J. C.; Hei, T. K.; Hall, E. J. (Principal Investigator)

    1999-01-01

    The cellular and molecular mechanisms of radiation-induced lung cancer are not known. In the present study, alterations of p53 in tumorigenic human papillomavirus-immortalized human bronchial epithelial (BEP2D) cells induced by a single low dose of either alpha-particles or 1 GeV/nucleon (56)Fe were analyzed by PCR-single-stranded conformation polymorphism (SSCP) coupled with sequencing analysis and immunoprecipitation assay. A total of nine primary and four secondary tumor cell lines, three of which were metastatic, together with the parental BEP2D and primary human bronchial epithelial (NHBE) cells were studied. The immunoprecipitation assay showed overexpression of mutant p53 proteins in all the tumor lines but not in NHBE and BEP2D cells. PCR-SSCP and sequencing analysis found band shifts and gene mutations in all four of the secondary tumors. A G-->T transversion in codon 139 in exon 5 that replaced Lys with Asn was detected in two tumor lines. One mutation each, involving a G-->T transversion in codon 215 in exon 6 (Ser-->lle) and a G-->A transition in codon 373 in exon 8 (Arg-->His), was identified in the remaining two secondary tumors. These results suggest that p53 alterations correlate with tumorigenesis in the BEP2D cell model and that mutations in the p53 gene may be indicative of metastatic potential.

  19. In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells.

    PubMed

    Fernández, Dolores; García-Gómez, Concepción; Babín, Mar

    2013-05-01

    Zinc oxide nanoparticles (ZnO-NPs) are inevitably released into the environment and are potentially dangerous for aquatic life. However, the potential mechanisms of cytotoxicity of zinc nanoparticles remain unclear. Studying the toxicity of ZnO-NPs with In vitro systems will help to determine their interactions with cellular biomolecules. The aim of this study was to evaluate the cytotoxic potentials of ZnO-NPs in established fish cell lines (RTG-2, RTH-149 and RTL-W1) and compare them with those of bulk ZnO and Zn(2+) ions. Membrane function (CFDA-AM assay), mitochondrial function (MTT assay), cell growth (KBP assay), cellular stress (β-galactosidase assay), reductase enzyme activity (AB assay), reactive oxygen species (ROS), total glutathione cellular content (tGSH assay) and glutathione S-transferase (GST) activities were assessed for all cell lines. ZnO-NPs cytotoxicity was greater than those of bulk ZnO and Zn(2+). ZnO-NPs induced oxidative stress is dependent on their dose. Low cost tests, such as CFDA-AM, ROS, GST activity and tGSH cell content test that use fish cell lines, may be used to detect oxidative stress and redox status changes. Particle dissolution of the ZnO-NPs did not appear to play an important role in the observed toxicity in this study. Published by Elsevier B.V.

  20. Redox Signaling and Bioenergetics Influence Lung Cancer Cell Line Sensitivity to the Isoflavone ME-344.

    PubMed

    Manevich, Yefim; Reyes, Leticia; Britten, Carolyn D; Townsend, Danyelle M; Tew, Kenneth D

    2016-08-01

    ME-344 [(3R,4S)-3,4-bis(4-hydroxyphenyl)-8-methyl-3,4-dihydro-2H-chromen-7-ol] is a second-generation derivative natural product isoflavone presently under clinical development. ME-344 effects were compared in lung cancer cell lines that are either intrinsically sensitive or resistant to the drug and in primary immortalized human lung embryonic fibroblasts (IHLEF). Cytotoxicity at low micromolar concentrations occurred only in sensitive cell lines, causing redox stress, decreased mitochondrial ATP production, and subsequent disruption of mitochondrial function. In a dose-dependent manner the drug caused instantaneous and pronounced inhibition of oxygen consumption rates (OCR) in drug-sensitive cells (quantitatively significantly less in drug-resistant cells). This was consistent with targeting of mitochondria by ME-344, with specific effects on the respiratory chain (resistance correlated with higher glycolytic indexes). OCR inhibition did not occur in primary IHLEF. ME-344 increased extracellular acidification rates in drug-resistant cells (significantly less in drug-sensitive cells), implying that ME-344 targets mitochondrial proton pumps. Only in drug-sensitive cells did ME-344 dose-dependently increase the intracellular generation of reactive oxygen species and cause oxidation of total (mainly glutathione) and protein thiols and the concomitant immediate increases in NADPH levels. We conclude that ME-344 causes complex, redox-specific, and mitochondria-targeted effects in lung cancer cells, which differ in extent from normal cells, correlate with drug sensitivity, and provide indications of a beneficial in vitro therapeutic index. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  1. Folic acid induces cell type-specific changes in the transcriptome of breast cancer cell lines: a proof-of-concept study.

    PubMed

    Price, R Jordan; Lillycrop, Karen A; Burdge, Graham C

    2016-01-01

    The effect of folic acid (FA) on breast cancer (BC) risk is uncertain. We hypothesised that this uncertainty may be due, in part, to differential effects of FA between BC cells with different phenotypes. To test this we investigated the effect of treatment with FA concentrations within the range of unmetabolised FA reported in humans on the expression of the transcriptome of non-transformed (MCF10A) and cancerous (MCF7 and Hs578T) BC cells. The total number of transcripts altered was: MCF10A, seventy-five (seventy up-regulated); MCF7, twenty-four (fourteen up-regulated); and Hs578T, 328 (156 up-regulated). Only the cancer-associated gene TAGLN was altered by FA in all three cell lines. In MCF10A and Hs578T cells, FA treatment decreased pathways associated with apoptosis, cell death and senescence, but increased those associated with cell proliferation. The folate transporters SLC19A1, SLC46A1 and FOLR1 were differentially expressed between cell lines tested. However, the level of expression was not altered by FA treatment. These findings suggest that physiological concentrations of FA can induce cell type-specific changes in gene regulation in a manner that is consistent with proliferative phenotype. This has implications for understanding the role of FA in BC risk. In addition, these findings support the suggestion that differences in gene expression induced by FA may involve differential activities of folate transporters. Together these findings indicate the need for further studies of the effect of FA on BC.

  2. Skin Mast Cell Promotion in Random Skin Flaps in Rats using Bone Marrow Mesenchymal Stem Cells and Amniotic Membrane

    PubMed

    Chehelcheraghi, Farzaneh; Abbaszadeh, Abolfazl; Tavafi, Magid

    2018-03-06

    Skin flap procedures are employed in plastic surgery, but failure can lead to necrosis of the flap. Studies have used bone marrow mesenchymal stem cells (BM-MSCs) to improve flap viability. BM-MSCs and acellular amniotic membrane (AAM) have been introduced as alternatives. The objective of this study was to evaluate the effect of BM-MSCs and AAM on mast cells of random skin flaps (RSF) in rats. RSFs (80 × 30 mm) were created on 40 rats that were randomly assigned to one of four groups, including (I) AAM, (II) BM-MSCs, (III) BM-MSCs/AAM, and (IV) saline (control). Transplantation was carried out during the procedure (zero day). Flap necrosis was observed on day 7, and skin samples were collected from the transition line of the flap to evaluate the total number and types of mast cells. The development and the total number of mast cells were related to the development of capillaries. The results of one-way ANOVA indicated that there was no statistically significant difference between the mean numbers of mast cell types for different study groups. However, the difference between the total number of mast cells in the study groups was statistically significant (p = 0.001). The present study suggests that the use of AAM/BM-MSCs can improve the total number of mast cells and accelerate the growth of capillaries at the transient site in RSFs in rats.

  3. 40 CFR 60.581 - Definitions and symbols.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... image consisting of minute cells or indentations, specifically engraved or etched into the cylinder's...=the concentration of VOC in each gas stream (j) for the time period exiting the emission control... plant records, in kilograms. Mdj=the total mass of each dilution solvent (j) added at the print line in...

  4. 40 CFR 60.581 - Definitions and symbols.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... image consisting of minute cells or indentations, specifically engraved or etched into the cylinder's...=the concentration of VOC in each gas stream (j) for the time period exiting the emission control... plant records, in kilograms. Mdj=the total mass of each dilution solvent (j) added at the print line in...

  5. 40 CFR 60.581 - Definitions and symbols.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... image consisting of minute cells or indentations, specifically engraved or etched into the cylinder's...=the concentration of VOC in each gas stream (j) for the time period exiting the emission control... plant records, in kilograms. Mdj=the total mass of each dilution solvent (j) added at the print line in...

  6. 40 CFR 60.581 - Definitions and symbols.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... image consisting of minute cells or indentations, specifically engraved or etched into the cylinder's...=the concentration of VOC in each gas stream (j) for the time period exiting the emission control... plant records, in kilograms. Mdj=the total mass of each dilution solvent (j) added at the print line in...

  7. Suppression of AKT Potentiates Synergistic Cytotoxicity of Apigenin with TRAIL in Anaplastic Thyroid Carcinoma Cells.

    PubMed

    Kim, Si Hyoung; Kang, Jun Goo; Kim, Chul Sik; Ihm, Sung-Hee; Choi, Moon Gi; Yoo, Hyung Joon; Lee, Seong Jin

    2015-12-01

    We studied the effect of apigenin in combination with tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) on cell survival and the influence of AKT inhibition on the combined effect of apigenin with TRAIL in anaplastic thyroid carcinoma (ATC) cells. The human 8505C and CAL62 ATC cell lines were used. Apigenin in combination with TRAIL, compared to apigenin alone, reduced cell viability and Bcl2 protein levels, elevated the percentage of dead cells, as well as the protein levels of cleaved PARP and phospho-ERK1/2. The protein levels of Bcl-xL, Bax, Bid, total ERK1/2, and total and phospho-AKT were unchanged. Administration of wortmannin further reduced cell viability, and elevated the percentage of dead cells, cytotoxic activity and cleaved PARP protein levels. Apigenin synergizes with TRAIL through regulation of Bcl2 family proteins in inducing cytotoxicity, and suppression of AKT potentiates synergistic cytotoxicity of apigenin with TRAIL in ATC cells. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Integrated Proteomic Profiling of Cell Line Conditioned Media and Pancreatic Juice for the Identification of Pancreatic Cancer Biomarkers

    PubMed Central

    Makawita, Shalini; Smith, Chris; Batruch, Ihor; Zheng, Yingye; Rückert, Felix; Grützmann, Robert; Pilarsky, Christian; Gallinger, Steven; Diamandis, Eleftherios P.

    2011-01-01

    Pancreatic cancer is one of the leading causes of cancer-related deaths, for which serological biomarkers are urgently needed. Most discovery-phase studies focus on the use of one biological source for analysis. The present study details the combined mining of pancreatic cancer-related cell line conditioned media and pancreatic juice for identification of putative diagnostic leads. Using strong cation exchange chromatography, followed by LC-MS/MS on an LTQ-Orbitrap mass spectrometer, we extensively characterized the proteomes of conditioned media from six pancreatic cancer cell lines (BxPc3, MIA-PaCa2, PANC1, CAPAN1, CFPAC1, and SU.86.86), the normal human pancreatic ductal epithelial cell line HPDE, and two pools of six pancreatic juice samples from ductal adenocarcinoma patients. All samples were analyzed in triplicate. Between 1261 and 2171 proteins were identified with two or more peptides in each of the cell lines, and an average of 521 proteins were identified in the pancreatic juice pools. In total, 3479 nonredundant proteins were identified with high confidence, of which ∼40% were extracellular or cell membrane-bound based on Genome Ontology classifications. Three strategies were employed for identification of candidate biomarkers: (1) examination of differential protein expression between the cancer and normal cell lines using label-free protein quantification, (2) integrative analysis, focusing on the overlap of proteins among the multiple biological fluids, and (3) tissue specificity analysis through mining of publically available databases. Preliminary verification of anterior gradient homolog 2, syncollin, olfactomedin-4, polymeric immunoglobulin receptor, and collagen alpha-1(VI) chain in plasma samples from pancreatic cancer patients and healthy controls using ELISA, showed a significant increase (p < 0.01) of these proteins in plasma from pancreatic cancer patients. The combination of these five proteins showed an improved area under the receiver operating characteristic curve to CA19.9 alone. Further validation of these proteins is warranted, as is the investigation of the remaining group of candidates. PMID:21653254

  9. Detection of Virus-Specific CD8+ T Cells With Cross-Reactivity Against Alloantigens: Potency and Flaws of Present Experimental Methods

    PubMed Central

    van den Heuvel, Heleen; Heutinck, Kirstin M.; van der Meer-Prins, Ellen P.M.W.; Yong, Si La; Claas, Frans H.J.; ten Berge, Ineke J.M.

    2015-01-01

    Background Virus-specific T cells have the intrinsic capacity to cross-react against allogeneic HLA antigens, a phenomenon known as heterologous immunity. In transplantation, these cells may contribute to the alloimmune response and negatively impact graft outcome. This study describes the various techniques that can be used to detect heterologous immune responses of virus-specific CD8+ T cells against allogeneic HLA antigens. The strengths and weaknesses of the different approaches are discussed and illustrated by experimental data. Methods Mixed-lymphocyte reactions (MLRs) were performed to detect allo-HLA cross-reactivity of virus-specific CD8+ T cells in total peripheral blood mononuclear cells. T-cell lines and clones were generated to confirm allo-HLA cross-reactivity by IFNγ production and cytotoxicity. In addition, the conventional MLR protocol was adjusted by introducing a 3-day resting phase and subsequent short restimulation with alloantigen or viral peptide, whereupon the expression of IFNγ, IL-2, CD107a, and CD137 was determined. Results The accuracy of conventional MLR is challenged by potential bystander activation. T-cell lines and clones can circumvent this issue, yet their generation is laborious and time-consuming. Using the adjusted MLR and restimulation protocol, we found that only truly cross-reactive T cells responded to re-encounter of alloantigen and viral peptide, whereas bystander-activated cells did not. Conclusions The introduction of a restimulation phase improved the accuracy of the MLR as a screening tool for the detection of allo-HLA cross-reactivity by virus-specific CD8+ T cells at bulk level. For detailed characterization of cross-reactive cells, T-cell lines and clones remain the golden standard. PMID:27500209

  10. Loss of PTEN as a Predictive Biomarker of Response to Lithium Chloride, A Potential Targeted Treatment for Breast Cancer

    DTIC Science & Technology

    2012-06-01

    infected cells, we were unable to produce HCC712 and HCC1187 cell lines with knocked out PTEN. We hypothesize that this is due to the high level of...Growth Factor Receptor in MCF-10A human breast epithelial cells. Western blot demonstrating levels of total EGFR in parental MCF-10A, and three stably...overexpression of EGFR. We performed western blot analyses to determine the degree of MAPK and PI3K pathway activation by comparing relative levels of

  11. A Rapid Filter Insert-based 3D Culture System for Primary Prostate Cell Differentiation

    PubMed Central

    Tricoli, Lucas; Berry, Deborah L.; Albanese, Chris

    2018-01-01

    Conditionally reprogrammed cells (CRCs) provide a sustainable method for primary cell culture and the ability to develop extensive “living biobanks” of patient derived cell lines. For many types of epithelial cells, various three dimensional (3D) culture approaches have been described that support an improved differentiated state. While CRCs retain their lineage commitment to the tissue from which they are isolated, they fail to express many of the differentiation markers associated with the tissue of origin when grown under normal two dimensional (2D) culture conditions. To enhance the application of patient-derived CRCs for prostate cancer research, a 3D culture format has been defined that enables a rapid (2 weeks total) luminal cell differentiation in both normal and tumor-derived prostate epithelial cells. Herein, a filter insert-based format is described for the culturing and differentiation of both normal and malignant prostate CRCs. A detailed description of the procedures required for cell collection and processing for immunohistochemical and immunofluorescent staining are provided. Collectively the 3D culture format described, combined with the primary CRC lines, provides an important medium- to high- throughput model system for biospecimen-based prostate research. PMID:28287583

  12. Vitamin D enhances omega-3 polyunsaturated fatty acids-induced apoptosis in breast cancer cells.

    PubMed

    Yang, Jing; Zhu, Shenglong; Lin, Guangxiao; Song, Ci; He, Zhao

    2017-08-01

    Breast cancer is a leading type of cancer in women and generally classified into three subtypes of ER + /PR + , HER2 + and triple negative. Both omega-3 polyunsaturated fatty acids and vitamin D 3 play positive role in the reduction of breast cancer incidence. However, whether combination of omega-3 polyunsaturated fatty acids and vitamin D 3 has stronger protective effect on breast carcinogenesis still remains unknown. In this study, we show that the combination of ω-3 free fatty acids (ω-3 FFAs) and 1α, 25-dihydroxy-vitamin D 3 (VD 3 ) dramatically enhances cell apoptosis among three subtypes of breast cancer cell lines. Bcl-2 and total PARP protein levels are decreased in combined treatment MCF-7 and SK-BR-3 cells. Caspase signals play a vital role in cell apoptosis induced by combination. Moreover, Raf-MAPK signaling pathway is involved in the apoptosis induction by combination of ω-3 FFAs+VD 3 . These results demonstrate that the induction of cell apoptosis by combined treatment is dependent on different signaling pathways in three subtypes of breast cancer cell lines. © 2017 International Federation for Cell Biology.

  13. E5 can be expressed in anal cancer and leads to epidermal growth factor receptor-induced invasion in a human papillomavirus 16-transformed anal epithelial cell line.

    PubMed

    Wechsler, Erin Isaacson; Tugizov, Sharof; Herrera, Rossana; Da Costa, Maria; Palefsky, Joel M

    2018-05-01

    We detected the first human papillomavirus (HPV)-16-immortalized anal epithelial cell line, known as AKC2 cells to establish an in vitro model of HPV-16-induced anal carcinogenesis. Consistent with detection of E6, E7 and E5 expression in anal cancer biopsies, AKC2 cells expressed high levels of all three HPV oncogenes. Also, similar to findings in anal cancer biopsies, epidermal growth factor receptor (EGFR) was overexpressed in AKC2 cells. AKC2 cells exhibited a poorly differentiated and invasive phenotype in three-dimensional raft culture and inhibition of EGFR function abrogated AKC2 invasion. Reducing E5 expression using E5-targeted siRNAs in AKC2 cells led to knockdown of E5 expression, but also HPV-16 E2, E6 and E7 expression. AKC2 cells treated with E5-targeted siRNA had reduced levels of total and phosphorylated EGFR, and reduced invasion. Rescue of E6/E7 expression with simultaneous E5 knockdown confirmed that E5 plays a key role in EGFR overexpression and EGFR-induced invasion.

  14. Epirubicin plus paclitaxel regimen as second-line treatment of patients with small-cell lung cancer.

    PubMed

    Pasello, Giulia; Carli, Paolo; Canova, Fabio; Bonanno, Laura; Polo, Valentina; Zago, Giulia; Urso, Loredana; Conte, Pierfranco; Favaretto, Adolfo

    2015-04-01

    Most patients with small cell lung cancer (SCLC) experience relapse within one year after first-line treatment. The aim of this study was to describe activity and safety of second-line with epirubicin at 70 mg/m(2) followed by paclitaxel at 135 mg/m(2) on day 1 every three weeks for a maximum of six cycles. This is a retrospective review of all patients with SCLC evaluated for second-line treatment between 2003 and 2013 at our Institution. Sixty-eight patients received the study regimen of epirubicin with paclitaxel. We observed partial response in 19 (30%), stable disease in 22 (34%) and total early failure rate in 23 (36%) patients. Median progression free and overall survival were 21.8 and 26.5 weeks, respectively. Haematological toxicities were as follows: grade 3-4 leukopenia and neutropenia in 18 (31%) and 30 (22%) of patients, respectively; grade 3 anaemia and grade 4 thrombocytopenia were reported in 2 (3%) and 5 (9%) of patients, respectively. Epirubicin with paclitaxel is an active and tolerable second-line regimen in patients with SCLC. Copyright© 2015 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  15. Design, manufacturing and measurement of a PV miniconcentrator for front point-contact silicon solar cells

    NASA Astrophysics Data System (ADS)

    Pérez, D.; Miñano, J. C.; Benítez, P.; Muñoz, F.; Mohedano, R.

    2005-08-01

    A novel photovoltaic concentrator has been developed in the framework of the European project "High efficiency silicon solar cells concentrator". In this project, front-contacted silicon solar cell have also been designed and manufactured by the project leader (the French LETI). This silicon cell concept is potentially capable to perform well (24% efficiency has been predicted) for much higher concentration levels than the back-contacted cells (and, of course, than the two-side contacted cells). The concentrator is formed by one lens of squared contour with flat entry surface and large-facet Fresnel exit surface, and a secondary that encapsulates the solar cell. On the contrary to the conventional Fresnel lens plus nonimaging secondary concentrators, the primary and secondary are designed simultaneously, leading to better concentration-acceptance angle product without compromise with the compactness. The grid lines in the front-contacted cells are aluminium prisms (which contact the p+ and n+ emitters, alternatively), acting as a linear cone concentrator that concentrates Cg =1.52× in the cross sectional dimension of the prisms. The secondary concentrator has a refractive rotational symmetric top surface that is crossed with two linear flow-line TIR mirror. Then, in the cross section normal to the aluminium prisms, the secondary provides a 2D concentration of Cg =12×, while in the cross section parallel to the prisms it provides a 2D concentration of Cg =24.16× as the grid lines in this dimension. Therefore, the cell is rectangular (1:2.08 aspect ratio), being the grid lines parallel to the shorter rectangle side. The total 3D geometrical concentration is 24.16×(12×1.52) = 455× for the square aperture and rectangular cell, and gets a design acceptance angle α=+/-1.8 degrees. Injection moulded prototypes are have been manufactured and measured, proving an optical efficiency of 79%. Computer modelling of the concentrator performance will also be presented.

  16. MicroRNA-145 Inhibits Cell Migration and Invasion and Regulates Epithelial-Mesenchymal Transition (EMT) by Targeting Connective Tissue Growth Factor (CTGF) in Esophageal Squamous Cell Carcinoma.

    PubMed

    Han, Qiang; Zhang, Hua-Yong; Zhong, Bei-Long; Wang, Xiao-Jing; Zhang, Bing; Chen, Hua

    2016-10-23

    BACKGROUND This study investigated the mechanism of miR-145 in targeting connective tissue growth factor (CTGF), which affects the proliferation, migration, invasion, and epithelial-mesenchymal transition (EMT) of ESCC cells. MATERIAL AND METHODS A total of 50 ESCC tissues and their corresponding normal adjacent esophageal tissue samples were collected. Then, miR-145 expression in both ESCC clinical specimens and cell lines was detected using quantitative real-time PCR. CTGF protein was detected using immunohistochemistry. Dual luciferase reporter gene assay was employed to assess the effect of miR-145 on the 3'UTR luciferase activity of CTGF. Eca109 cells were transfected with miR-145 mimics and CTGF siRNA, respectively, and changes in cellular proliferation, migration, and invasion were detected via MTT assay, wound-healing assay, and Transwell assay, respectively. Western blotting assay was used to detect the expression of marker genes related to EMT. RESULTS MiR-145 was significantly down-regulated in ESCC tissues and cell lines compared with normal tissues and cell lines (P<0.05). We found significantly more positively expressed CTGF protein in ESCC tissues was than in normal adjacent esophageal tissues (P<0.01). Dual luciferase reporter gene assay showed that miR-145 can specifically bind with the 3'UTR of CTGF and significantly inhibit the luciferase activity by 55% (P<0.01). Up-regulation of miR-145 or down-regulation of CTGF can suppress the proliferation, migration, invasion, and EMT process of ESCC cells. CONCLUSIONS MiR-145 was significantly down-regulated in ESCC tissues and cell lines, while the protein expression of CTGF exhibited the opposite trend. MiR-145 inhibited the proliferation, migration, invasiveness, and the EMT process of ESCC cells through targeted regulation of CTGF expression.

  17. Identification and pharmacological characterization of native, functional human urotensin-II receptors in rhabdomyosarcoma cell lines

    PubMed Central

    Douglas, Stephen A; Naselsky, Diane; Ao, Zhaohui; Disa, Jyoti; Herold, Christopher L; Lynch, Frank; Aiyar, Nambi V

    2004-01-01

    In an effort to identify endogenous, native mammalian urotensin-II (U-II) receptors (UT), a diverse range of human, primate and rodent cell lines (49 in total) were screened for the presence of detectable [125I]hU-II binding sites. UT mRNA (Northern blot, PCR) and protein (immunocytochemistry) were evident in human skeletal muscle tissue and cells. [125I]hU-II bound to a homogenous population of high-affinity, saturable (Kd 67.0±11.8 pM, Bmax 9687±843 sites cell−1) receptors in the skeletal muscle (rhabdomyosarcoma) cell line SJRH30. Radiolabel was characteristically slow to dissociate (⩽15% dissociation 90 min). A lower density of high-affinity U-II binding sites was also evident in the rhabdomyosarcoma cell line TE671 (1667±165 sites cell−1, Kd 74±8 pM). Consistent with the profile recorded in human recombinant UT-HEK293 cells, [125I]hU-II binding to SJRH30 cells was selectively displaced by both mammalian and fish U-II isopeptides (Kis 0.5±0.1–1.2±0.3 nM) and related analogues (hU-II[4-11]>[Cys5,10]Acm hU-II; Kis 0.4±0.1 and 864±193 nM, respectively). U-II receptor activation was functionally coupled to phospholipase C-mediated [Ca2+]i mobilization (EC50 6.9±2.2 nM) in SJRH30 cells. The present study is the first to identify the presence of ‘endogenous' U-II receptors in SJRH30 and TE671 cells. SJRH30 cells, in particular, might prove to be of utility for (a) investigating the pharmacological properties of hU-II and related small molecule antagonists at native human UT and (b) delineating the role of this neuropeptide in the (patho)physiological regulation of mammalian neuromuscular function. PMID:15210573

  18. CLO: The cell line ontology

    PubMed Central

    2014-01-01

    Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development. PMID:25852852

  19. Alteration in Auxin Homeostasis and Signaling by Overexpression Of PINOID Kinase Causes Leaf Growth Defects in Arabidopsis thaliana

    PubMed Central

    Saini, Kumud; Markakis, Marios N.; Zdanio, Malgorzata; Balcerowicz, Daria M.; Beeckman, Tom; De Veylder, Lieven; Prinsen, Els; Beemster, Gerrit T. S.; Vissenberg, Kris

    2017-01-01

    In plants many developmental processes are regulated by auxin and its directional transport. PINOID (PID) kinase helps to regulate this transport by influencing polar recruitment of PIN efflux proteins on the cellular membranes. We investigated how altered auxin levels affect leaf growth in Arabidopsis thaliana. Arabidopsis mutants and transgenic plants with altered PID expression levels were used to study the effect on auxin distribution and leaf development. Single knockouts showed small pleiotropic growth defects. Contrastingly, several leaf phenotypes related to changes in auxin concentrations and transcriptional activity were observed in PID overexpression (PIDOE) lines. Unlike in the knockout lines, the leaves of PIDOE lines showed an elevation in total indole-3-acetic acid (IAA). Accordingly, enhanced DR5-visualized auxin responses were detected, especially along the leaf margins. Kinematic analysis revealed that ectopic expression of PID negatively affects cell proliferation and expansion rates, yielding reduced cell numbers and small-sized cells in the PIDOE leaves. We used PIDOE lines as a tool to study auxin dose effects on leaf development and demonstrate that auxin, above a certain threshold, has a negative affect on leaf growth. RNA sequencing further showed how subtle PIDOE-related changes in auxin levels lead to transcriptional reprogramming of cellular processes. PMID:28659952

  20. Stable transformation of a mosquito cell line results in extraordinarily high copy numbers of the plasmid.

    PubMed Central

    Monroe, T J; Muhlmann-Diaz, M C; Kovach, M J; Carlson, J O; Bedford, J S; Beaty, B J

    1992-01-01

    Stable incorporation of high copy numbers (greater than 10,000 per cell) of a plasmid vector containing a gene conferring resistance to the antibiotic hygromycin was achieved in a cell line derived from the Aedes albopictus mosquito. Plasmid sequences were readily observed by ethidium bromide staining of cellular DNA after restriction endonuclease digestion and agarose gel electrophoresis. The plasmid was demonstrated by in situ hybridization to be present in large arrays integrated in metaphase chromosomes and in minute and double-minute replicating elements. In one subclone, approximately 60,000 copies of the plasmid were organized in a large array that resembles a chromosome, morphologically and in the segregation of its chromatids during anaphase. The original as well as modified versions of the plasmid were rescued by transformation of Escherichia coli using total cellular DNA. Southern blot analyses of recovered plasmids indicate the presence of mosquito-derived sequences. Images PMID:1631052

  1. The role of oxidative stress in the development of cisplatin resistance in epithelial ovarian cancer.

    PubMed

    Belotte, Jimmy; Fletcher, Nicole M; Awonuga, Awoniyi O; Alexis, Mitchell; Abu-Soud, Husam M; Saed, Mohammed G; Diamond, Michael P; Saed, Ghassan M

    2014-04-01

    To investigate the role of oxidative stress in the development of cisplatin resistance in epithelial ovarian cancer (EOC). Two parent EOC cell lines (MDAH-2774 and SKOV-3) and their chemoresistant counterparts (cisplatin, 50 µmol/L) were used. Total RNA was extracted and subjected to real-time reverse transcriptase polymerase chain reaction to evaluate the expression of glutathione reductase (GSR) and inducible nitric oxide synthase (iNOS), as well as nitrate/nitrite levels. Analysis of variance was used for main effects and Tukey for post hoc analysis at P < .05 for statistical significance. Both cisplatin resistant cell lines displayed a significant decrease in GSR messenger RNA (mRNA) levels and activity (P < .01). As compared to sensitive controls, nitrate/nitrite levels were significantly higher in SKOV-3 cisplatin resistant cells while iNOS mRNA levels were significantly higher in MDAH-2774 cisplatin resistant cells (P < .05). Our data suggest that the development of cisplatin resistance tilts the balance toward a pro-oxidant state in EOC.

  2. Manipulating the mitochondria activity in human hepatic cell line Huh7 by low-power laser irradiation

    PubMed Central

    Lynnyk, Anna; Lunova, Mariia; Jirsa, Milan; Egorova, Daria; Kulikov, Andrei; Kubinová, Šárka; Lunov, Oleg; Dejneka, Alexandr

    2018-01-01

    Low-power laser irradiation of red light has been recognized as a promising tool across a vast variety of biomedical applications. However, deep understanding of the molecular mechanisms behind laser-induced cellular effects remains a significant challenge. Here, we investigated mechanisms involved in the death process in human hepatic cell line Huh7 at a laser irradiation. We decoupled distinct cell death pathways targeted by laser irradiations of different powers. Our data demonstrate that high dose laser irradiation exhibited the highest levels of total reactive oxygen species production, leading to cyclophilin D-related necrosis via the mitochondrial permeability transition. On the contrary, low dose laser irradiation resulted in the nuclear accumulation of superoxide and apoptosis execution. Our findings offer a novel insight into laser-induced cellular responses, and reveal distinct cell death pathways triggered by laser irradiation. The observed link between mitochondria depolarization and triggering ROS could be a fundamental phenomenon in laser-induced cellular responses. PMID:29541521

  3. Protective effect of vanilloids against tert-butyl hydroperoxide-induced oxidative stress in vero cells culture.

    PubMed

    Rosa, Antonella; Atzeri, Angela; Deiana, Monica; Melis, M Paola; Incani, Alessandra; Corona, Giulia; Loru, Debora; Appendino, Giovanni; Dessì, M Assunta

    2008-05-28

    This study investigated the effect of synthetic capsiate, a simplified analogue of capsiate, and vanillyl alcohol on the oxidative stress induced by tert-butyl hydroperoxide (TBH) in a line of fibroblasts derived from monkey kidney (Vero cells). In response to the TBH-mediated oxidative stress, a reduction of the levels of total unsaturated fatty acids and cholesterol was observed, and a rise in the concentrations of conjugated dienes fatty acids hydroperoxides and 7-ketocholesterol. Pretreatment with both synthetic capsiate and vanillyl alcohol preserved Vero cells from oxidative damage and showed a remarkable protective effect on the reduction of the levels of total unsaturated fatty acids and cholesterol, inhibiting the increase of MDA, conjugated dienes fatty acids hydroperoxides, and 7-ketocholesterol. Both compounds were effective against peroxidation of cell membrane lipids induced by TBH, with synthetic capsiate essentially acting as a pro-drug of vanillyl alcohol, its hydrophilic hydrolytic derivative.

  4. Application of bacterial artificial chromosome array-based comparative genomic hybridization and spectral karyotyping to the analysis of glioblastoma multiforme.

    PubMed

    Cowell, John K; Matsui, Sei-Ichi; Wang, Yong D; LaDuca, Jeffrey; Conroy, Jeffrey; McQuaid, Devin; Nowak, Norma J

    2004-05-01

    Identification of genetic losses and gains is valuable in analysis of brain tumors. Locus-by-locus analyses have revealed correlations between prognosis and response to chemotherapy and loss or gain of specific genes and loci. These approaches are labor intensive and do not provide a global view of the genetic changes within the tumor cells. Bacterial artificial chromosome (BAC) arrays, which cover the genome with an average resolution of less than 1 MbP, allow defining the sum total of these genetic changes in a single comparative genomic hybridization (CGH) experiment. These changes are directly overlaid on the human genome sequence, thus providing the extent of the amplification or deletion, reflected by a megabase position, and gene content of the abnormal region. Although this array-based CGH approach (CGHa) seems to detect the extent of the genetic changes in tumors reliably, it has not been robustly tested. We compared genetic changes in four newly derived, early-passage glioma cell lines, using spectral karyotyping (SKY) and CGHa. Chromosome changes seen in cell lines under SKY analysis were also detected with CGHa. In addition, CGHa detected cryptic genetic gains and losses and resolved the nature of subtle marker chromosomes that could not be resolved with SKY, thus providing distinct advantages over previous technologies. There was remarkable general concordance between the CGHa results comparing the cell lines to the original tumor, except that the magnitude of the changes seen in the tumor sample was generally suppressed compared with the cell lines, a consequence of normal cells contaminating the tumor sample. CGHa revealed changes in cell lines that were not present in the original tumors and vice versa, even when analyzed at the earliest passage possible, which highlights the adaptation of the cells to in vitro culture. CGHa proved to be highly accurate and efficient for identifying genetic changes in tumor cells. This approach can accurately identify subtle, novel genetic abnormalities in tumors directly linked to the human genome sequence. CGHa far surpasses the resolution and information provided by conventional metaphase CGH, without relying on in vitro culture of tumors for metaphase spreads.

  5. Identification and Characteristics of microRNAs from Army Worm, Spodoptera frugiperda Cell Line Sf21

    PubMed Central

    Kakumani, Pavan Kumar; Chinnappan, Mahendran; Singh, Ashok K.; Malhotra, Pawan; Mukherjee, Sunil K.; Bhatnagar, Raj K.

    2015-01-01

    microRNAs play important regulatory role in all intrinsic cellular functions. Amongst lepidopteran insects, miRNAs from only Bombyx mori have been studied extensively with a little focus on Spodoptera sp. In the present study, we identified a total of 226 miRNAs from Spodoptera frugiperda cell line Sf21. Of the total, 116 miRNAs were well conserved within other insects, like B. mori, Drosophila melanogaster and Tribolium castenum while the remaining 110 miRNAs were identified as novel based on comparative analysis with the insect miRNA data set. Landscape distribution analysis based on Sf21 genome assembly revealed clustering of few novel miRNAs. A total of 5 miRNA clusters were identified and the largest one encodes 5 miRNA genes. In addition, 12 miRNAs were validated using northern blot analysis and putative functional role assignment for 6 Sf miRNAs was investigated by examining their relative abundance at different developmental stages of Spodoptera litura and body parts of 6th instar larvae. Further, we identified a total of 809 potential target genes with GO terms for selected miRNAs, involved in different metabolic and signalling pathways of the insect. The newly identified miRNAs greatly enrich the repertoire of insect miRNAs and analysis of expression profiles reveal their involvement at various steps of biochemical pathways of the army worm. PMID:25693181

  6. Identification and characteristics of microRNAs from army worm, Spodoptera frugiperda cell line Sf21.

    PubMed

    Kakumani, Pavan Kumar; Chinnappan, Mahendran; Singh, Ashok K; Malhotra, Pawan; Mukherjee, Sunil K; Bhatnagar, Raj K

    2015-01-01

    microRNAs play important regulatory role in all intrinsic cellular functions. Amongst lepidopteran insects, miRNAs from only Bombyx mori have been studied extensively with a little focus on Spodoptera sp. In the present study, we identified a total of 226 miRNAs from Spodoptera frugiperda cell line Sf21. Of the total, 116 miRNAs were well conserved within other insects, like B. mori, Drosophila melanogaster and Tribolium castenum while the remaining 110 miRNAs were identified as novel based on comparative analysis with the insect miRNA data set. Landscape distribution analysis based on Sf21 genome assembly revealed clustering of few novel miRNAs. A total of 5 miRNA clusters were identified and the largest one encodes 5 miRNA genes. In addition, 12 miRNAs were validated using northern blot analysis and putative functional role assignment for 6 Sf miRNAs was investigated by examining their relative abundance at different developmental stages of Spodoptera litura and body parts of 6th instar larvae. Further, we identified a total of 809 potential target genes with GO terms for selected miRNAs, involved in different metabolic and signalling pathways of the insect. The newly identified miRNAs greatly enrich the repertoire of insect miRNAs and analysis of expression profiles reveal their involvement at various steps of biochemical pathways of the army worm.

  7. Metabolic signature of breast cancer cell line MCF-7: profiling of modified nucleosides via LC-IT MS coupling.

    PubMed

    Bullinger, Dino; Neubauer, Hans; Fehm, Tanja; Laufer, Stefan; Gleiter, Christoph H; Kammerer, Bernd

    2007-11-29

    Cancer, like other diseases accompanied by strong metabolic disorders, shows characteristic effects on cell turnover rate, activity of modifying enzymes and DNA/RNA modifications, resulting also in elevated amounts of excreted modified nucleosides. For a better understanding of the impaired RNA metabolism in breast cancer cells, we screened these metabolites in the cell culture supernatants of the breast cancer cell line MCF-7 and compared it to the human mammary epithelial cells MCF-10A. The nucleosides were isolated and analyzed via 2D-chromatographic techniques: In the first dimension by cis-diol specific boronate affinity extraction and subsequently by reversed phase chromatography coupled to an ion trap mass spectrometer. Besides the determination of ribonucleosides, additional compounds with cis-diol structure, deriving from cross-linked biochemical pathways, like purine-, histidine- and polyamine metabolism were detected. In total, 36 metabolites were identified by comparison of fragmentation patterns and retention time. Relation to the internal standard isoguanosine yielded normalized area ratios for each identified compound and enabled a semi-quantitative metabolic signature of both analyzed cell lines.13 of the identified 26 modified ribonucleosides were elevated in the cell culture supernatants of MCF-7 cells, with 5-methyluridine, N2,N2,7-trimethylguanosine, N6-methyl-N6-threonylcarbamoyladenosine and 3-(3-aminocarboxypropyl)-uridine showing the most significant differences. 1-ribosylimidazole-4-acetic acid, a histamine metabolite, was solely found in the supernatants of MCF-10A cells, whereas 1-ribosyl-4-carboxamido-5-aminoimidazole and S-adenosylmethionine occurred only in supernatants of MCF-7 cells. The obtained results are discussed against the background of pathological changes in cell metabolism, resulting in new perspectives for modified nucleosides and related metabolites as possible biomedical markers for breast carcinoma in vivo.

  8. RuvBL2 Is Involved in Histone Deacetylase Inhibitor PCI-24781-Induced Cell Death in SK-N-DZ Neuroblastoma Cells

    PubMed Central

    Zhan, Qinglei; Tsai, Sauna; Lu, Yonghai; Wang, Chunmei; Kwan, Yiuwa; Ngai, Saiming

    2013-01-01

    Neuroblastoma is the second most common solid tumor diagnosed during infancy. The survival rate among children with high-risk neuroblastoma is less than 40%, highlighting the urgent needs for new treatment strategies. PCI-24781 is a novel hydroxamic acid-based histone deacetylase (HDAC) inhibitor that has high efficacy and safety for cancer treatment. However, the underlying mechanisms of PCI-24781 are not clearly elucidated in neuroblastoma cells. In the present study, we demonstrated that PCI-24781 treatment significantly inhibited tumor growth at very low doses in neuroblastoma cells SK-N-DZ, not in normal cell line HS-68. However, PCI-24781 caused the accumulation of acetylated histone H3 both in SK-N-DZ and HS-68 cell line. Treatment of SK-N-DZ with PCI-24781 also induced cell cycle arrest in G2/M phase and activated apoptosis signaling pathways via the up-regulation of DR4, p21, p53 and caspase 3. Further proteomic analysis revealed differential protein expression profiles between non-treated and PCI-24781 treated SK-N-DZ cells. Totally 42 differentially expressed proteins were identified by MALDI-TOF MS system. Western blotting confirmed the expression level of five candidate proteins including prohibitin, hHR23a, RuvBL2, TRAP1 and PDCD6IP. Selective knockdown of RuvBL2 rescued cells from PCI-24781-induced cell death, implying that RuvBL2 might play an important role in anti-tumor activity of PCI-24781 in SK-N-DZ cells. The present results provide a new insight into the potential mechanism of PCI-24781 in SK-N-DZ cell line. PMID:23977108

  9. The effects of diazinon and cypermethrin on the differentiation of neuronal and glial cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flaskos, J.; Harris, W.; Sachana, M.

    2007-03-15

    Diazinon and cypermethrin are pesticides extensively used in sheep dipping. Diazinon is a known anti-cholinesterase, but there is limited information regarding its molecular mechanism of action. This paper describes the effects of diazinon and cypermethrin at a morphological and molecular level on differentiating mouse N2a neuroblastoma and rat C6 glioma cell lines. Concentrations up to 10 {mu}M of both compounds and their mixture had no effect on the viability of either cell line, as determined by methyl blue tetrazolium reduction and total protein assays. Microscopic analysis revealed that 1 {mu}M and 10 {mu}M diazinon but not cypermethrin inhibited the outgrowthmore » of axon-like processes in N2a cells after a 24-h exposure but neither compound affected process outgrowth by differentiating C6 cells at these concentrations. Under these conditions, 10 {mu}M diazinon inhibited AChE slightly compared to the control after a 4-h exposure but not after 24 h. Western blotting analysis showed that morphological changes were associated with reduced cross-reactivity with antibodies that recognize the neurofilament heavy chain (NFH), microtubule associated protein MAP 1B and HSP-70 compared to control cell extracts, whereas reactivity with anti-{alpha}-tubulin antibodies was unchanged. Aggregation of NFH was observed in cell bodies of diazinon-treated N2a cells, as determined by indirect immunofluorescence staining. These data demonstrate that diazinon specifically targets neurite outgrowth in neuronal cells and that this effect is associated with disruption of axonal cytoskeleton proteins, whereas cypermethrin has no effect on the same parameters.« less

  10. Thyroid cell lines in research on goitrogenesis.

    PubMed

    Gerber, H; Peter, H J; Asmis, L; Studer, H

    1991-12-01

    Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.

  11. Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection

    NASA Astrophysics Data System (ADS)

    Sinha, Rileen; Winer, Andrew G.; Chevinsky, Michael; Jakubowski, Christopher; Chen, Ying-Bei; Dong, Yiyu; Tickoo, Satish K.; Reuter, Victor E.; Russo, Paul; Coleman, Jonathan A.; Sander, Chris; Hsieh, James J.; Hakimi, A. Ari

    2017-05-01

    The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe (chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number alterations shows that most cell lines resemble ccRCC, a few (including some often used as models of ccRCC) resemble pRCC, and none resemble chRCC. Human ccRCC tumours clustering with cell lines display clinical and genomic features of more aggressive disease, suggesting that cell lines best represent aggressive tumours. We stratify mutations and copy number alterations for important kidney cancer genes by the consistency between databases, and classify cell lines into established gene expression-based indolent and aggressive subtypes. Our results could aid investigators in analysing appropriate renal cancer cell lines.

  12. Nuclear thioredoxin-1 is required to suppress cisplatin-mediated apoptosis of MCF-7 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Xiao-Ping; Liu, Shou; Tang, Wen-Xin

    2007-09-21

    Different cell line with increased thioredoxin-1 (Trx-1) showed a decreased or increased sensitivity to cell killing by cisplatin. Recently, several studies found that the subcellular localization of Trx-1 is closely associated with its functions. In this study, we explored the association of the nuclear Trx-1 with the cisplatin-mediated apoptosis of breast cancer cells MCF-7. Firstly, we found that higher total Trx-1 accompanied by no change of nuclear Trx-1 can not influence apoptosis induced by cisplatin in MCF-7 cells transferred with Trx-1 cDNA. Secondly, higher nuclear Trx-1 accompanied by no change of total Trx-1 can protect cells from apoptosis induced bymore » cisplatin. Thirdly, high nuclear Trx-1 involves in the cisplatin-resistance in cisplatin-resistive cells. Meanwhile, we found that the mRNA level of p53 is closely correlated with the level of nuclear Trx-1. In summary, we concluded that the nuclear Trx-1 is required to resist apoptosis of MCF-7 cells induced by cisplatin, probably through up-regulating the anti-apoptotic gene, p53.« less

  13. Kinetics of ROS generation induced by polycyclic aromatic hydrocarbons and organic extracts from ambient air particulate matter in model human lung cell lines.

    PubMed

    Libalova, Helena; Milcova, Alena; Cervena, Tereza; Vrbova, Kristyna; Rossnerova, Andrea; Novakova, Zuzana; Topinka, Jan; Rossner, Pavel

    2018-03-01

    Polycyclic aromatic hydrocarbons (PAHs) associated with particulate matter (PM) may induce oxidative damage via reactive oxygen species (ROS) generation. However, the kinetics of ROS production and the link with antioxidant response induction has not been well studied. To elucidate the differences in oxidative potential of individual PAH compounds and extractable organic matter (EOM) from PM containing various PAH mixtures, we studied ROS formation and antioxidant response [total antioxidant capacity (TAC) and expression of HMOX1 and TXNRD1] in human alveolar basal epithelial cells (A549 cells) and human embryonic lung fibroblasts (HEL12469 cells). We treated the cells with three concentrations of model PAHs (benzo[a]pyrene, B[a]P; 3-nitrobenzanthrone, 3-NBA) and EOM from PM <2.5 μm (PM2.5). ROS levels were evaluated at 8 time intervals (30 min-24 h). In both cell lines, B[a]P treatment was associated with a time-dependent decrease of ROS levels. This trend was more pronounced in HEL12469 cells and was accompanied by increased TAC. A similar response was observed upon 3-NBA treatment in HEL12469 cells. In A549 cells, however, this compound significantly increased superoxide levels. This response was accompanied by the decrease of TAC as well as HMOX1 and TXNRD1 expression. In both cell lines, a short-time exposure to EOMs tended to increase ROS levels, while a marked decrease was observed after longer treatment periods. This was accompanied by the induction of HMOX1 and TXNRD1 expression in HEL12469 cells and increased TAC in A549 cells. In summary, our data indicate that in the studied cell lines B[a]P and EOMs caused a time-dependent decrease of intracellular ROS levels, probably due to the activation of the antioxidant response. This response was not detected in A549 cells following 3-NBA treatment, which acted as a strong superoxide inducer. Pro-oxidant properties of EOMs are limited to short-time exposure periods. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. An intergenic non-coding rRNA correlated with expression of the rRNA and frequency of an rRNA single nucleotide polymorphism in lung cancer cells.

    PubMed

    Shiao, Yih-Horng; Lupascu, Sorin T; Gu, Yuhan D; Kasprzak, Wojciech; Hwang, Christopher J; Fields, Janet R; Leighty, Robert M; Quiñones, Octavio; Shapiro, Bruce A; Alvord, W Gregory; Anderson, Lucy M

    2009-10-19

    Ribosomal RNA (rRNA) is a central regulator of cell growth and may control cancer development. A cis noncoding rRNA (nc-rRNA) upstream from the 45S rRNA transcription start site has recently been implicated in control of rRNA transcription in mouse fibroblasts. We investigated whether a similar nc-rRNA might be expressed in human cancer epithelial cells, and related to any genomic characteristics. Using quantitative rRNA measurement, we demonstrated that a nc-rRNA is transcribed in human lung epithelial and lung cancer cells, starting from approximately -1000 nucleotides upstream of the rRNA transcription start site (+1) and extending at least to +203. This nc-rRNA was significantly more abundant in the majority of lung cancer cell lines, relative to a nontransformed lung epithelial cell line. Its abundance correlated negatively with total 45S rRNA in 12 of 13 cell lines (P = 0.014). During sequence analysis from -388 to +306, we observed diverse, frequent intercopy single nucleotide polymorphisms (SNPs) in rRNA, with a frequency greater than predicted by chance at 12 sites. A SNP at +139 (U/C) in the 5' leader sequence varied among the cell lines and correlated negatively with level of the nc-rRNA (P = 0.014). Modelling of the secondary structure of the rRNA 5'-leader sequence indicated a small increase in structural stability due to the +139 U/C SNP and a minor shift in local configuration occurrences. The results demonstrate occurrence of a sense nc-rRNA in human lung epithelial and cancer cells, and imply a role in regulation of the rRNA gene, which may be affected by a +139 SNP in the 5' leader sequence of the primary rRNA transcript.

  15. Evaluating cell lines as tumour models by comparison of genomic profiles

    PubMed Central

    Domcke, Silvia; Sinha, Rileen; Levine, Douglas A.; Sander, Chris; Schultz, Nikolaus

    2013-01-01

    Cancer cell lines are frequently used as in vitro tumour models. Recent molecular profiles of hundreds of cell lines from The Cancer Cell Line Encyclopedia and thousands of tumour samples from the Cancer Genome Atlas now allow a systematic genomic comparison of cell lines and tumours. Here we analyse a panel of 47 ovarian cancer cell lines and identify those that have the highest genetic similarity to ovarian tumours. Our comparison of copy-number changes, mutations and mRNA expression profiles reveals pronounced differences in molecular profiles between commonly used ovarian cancer cell lines and high-grade serous ovarian cancer tumour samples. We identify several rarely used cell lines that more closely resemble cognate tumour profiles than commonly used cell lines, and we propose these lines as the most suitable models of ovarian cancer. Our results indicate that the gap between cell lines and tumours can be bridged by genomically informed choices of cell line models for all tumour types. PMID:23839242

  16. Real-life effectiveness of erlotinib as second-line treatment of stage IIIB/IV squamous non-small cell lung cancer: Results of the PEPiTA observational study.

    PubMed

    Monnet, Isabelle; Audigier-Valette, Clarisse; Girard, Nicolas; Vergnenègre, Alain; Molinier, Olivier; Souquet, Pierre Jean; Blanchon, François; Bonnetain, Franck; Taguieva-Pioger, Naila; Lamour, Corinne; Wislez, Marie

    2016-08-01

    Erlotinib, an inhibitor of tyrosine kinase activity of the epidermal growth factor receptor, is effective in non-small cell lung cancer (NSCLC). Data on erlotinib use in squamous NSCLC are limited. This observational study aimed at evaluating the efficacy and safety of second-line erlotinib in patients with stage IIIB/IV squamous NSCLC in a real-life setting. Patients with predominantly squamous stage IIIB/IV NSCLC, who failed first-line platinum-based therapy, were recruited and followed-up for 12 months. Patients underwent visits each trimester. Data were derived from case report forms, and functional assessment of cancer therapy-lung (FACT-L) questionnaires. A total of 152 patients were enrolled; the majority were males (90%) and mean age was 67.7 years. All patients had squamous (97%) or predominantly squamous (3%) NSCLC, of stage IIIB (21%) or IV (79%). Median progression free survival (PFS) and overall survival were 3 and 5.8 months, respectively. Disease progression was observed in the majority of the patients, mostly due to progression of primary tumour and/or metastatic sites, and led to death in 91/107 of patients. Of the 107 deaths reported, none were due to erlotinib. FACT-L questionnaires were interpretable up to the first visit and were in line with PFS data, showing a relatively good quality of life up to Month 3 (mean total score=78.8). No new or unexpected safety issues were reported. The results of this real-life cohort study like those of previous phase III/IV subgroups study analyses indicate that erlotinib is a valuable option for second-line treatment of stage IIIB/IV squamous NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Vascular endothelial cells minimize the total force on their nuclei.

    PubMed Central

    Hazel, A L; Pedley, T J

    2000-01-01

    The vascular endothelium is a cellular monolayer that lines the arterial walls. It plays a vital role in the initiation and development of atherosclerosis, an occlusive arterial disease responsible for 50% of deaths in the Western world. The focal nature of the disease suggests that hemodynamic forces are an important factor in its pathogenesis. This has led to the investigation of the effects of mechanical forces on the endothelial cells themselves. It has been found that endothelial cells do respond to stresses induced by the flowing blood; in particular, they elongate and align with an imposed flow direction. In this paper, we calculate the distribution of force exerted on a three-dimensional hump, representing the raised cell nucleus, by a uniform shear flow. It is found that, for a nonaxisymmetric ellipsoidal hump, the least total force is experienced when the hump is aligned with the flow. Furthermore, for a hump of fixed volume, there is a specific aspect ratio combination that results in the least total force upon the hump, (0.38:2.2:1.0; height:length:width). This is approximately the same as the average aspect ratio taken up by the cell nuclei in vivo (0.27:2.23:1.0). It is possible, therefore, that the cells respond to the flow in such a way as to minimize the total force on their nuclei. PMID:10620272

  18. Ganoderma lucidum total triterpenes induce apoptosis in MCF-7 cells and attenuate DMBA induced mammary and skin carcinomas in experimental animals.

    PubMed

    Smina, T P; Nitha, B; Devasagayam, T P A; Janardhanan, K K

    2017-01-01

    Ganoderma lucidum total triterpenes were evaluated for its apoptosis-inducing and anti-cancer activities. Cytotoxicity and pro-apoptotic effect of total triterpenes were evaluated in human breast adenocarcinoma (MCF-7) cell line using MTT assay and DNA fragmentation analysis. Total triterpenes induced apoptosis in MCF-7 cells by down-regulating the levels of cyclin D1, Bcl-2, Bcl-xL and also by up-regulating the levels of Bax and caspase-9. Anti-carcinogenicity of total triterpenes was analysed using dimethyl benz [a] anthracene (DMBA) induced skin papilloma and mammary adenocarcinoma in Swiss albino mice and Wistar rats respectively. Topical application of 5mg, 10mg and 20mg total triterpenes reduced the incidence of skin papilloma by 62.5, 37.5 and 12.5% respectively. Incidence of the mammary tumour was also reduced significantly by 33.33, 66.67 and 16.67% in 10, 50 and 100mg/kg b.wt. total triterpenes treated animals respectively. Total triterpenes were also found to reduce the average number of tumours per animal and extended the tumour latency period in both the models. The results indicate the potential cytotoxicity and anti-cancerous activity of total triterpenes, there by opens up a path to the development of a safe and successive chemo preventive agent of natural origin. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Wogonin induces apoptosis in RPMI 8226, a human myeloma cell line, by downregulating phospho-Akt and overexpressing Bax.

    PubMed

    Zhang, Meng; Liu, Li-Ping; Chen, Yuling; Tian, Xiao-ying; Qin, Jian; Wang, Dongmei; Li, Zhi; Mo, Sui-Lin

    2013-01-17

    Wogonin is one of the major constituents derived from Scutellaria Baicalensis, which has been reported to inhibit cell growth and/or induce apoptosis in various cancer cell lines. We aim to investigate the anticancer effects and associated mechanisms of wogonin on human multiple myeloma cell line in vitro. Effects of wogonin on the proliferation, cell cycle progression, and apoptosis of human myeloma cells were examined in vitro. The proteins associated with the biological effects of wogonin were analyzed by immunoblotting and immunocytochemical staining. In addition, the binding mode of wogonin within crystal structure of Akt1 protein was also evaluated by molecular docking analysis using the CDOCKER algorithm in Discovery Studio. Myeloma cell growth was attenuated by wogonin (70.4-352.0 μM) in a concentration-dependent manner. Cell cycle progression analysis and TUNEL assay showed that apoptosis was enhanced in wogonin-treated cells. Increased apoptosis was accompanied by decreased level of total-PARP, the arisen of PARP cleavage, significantly increased level of Bax protein and decreased level of Bcl-2 protein. Akt activity was suppressed and phosphorylation of Ser 473 residue was decreased in the wogonin-treated cells. Molecular docking analysis revealed wogonin could be stably docked into the ligand binding domain of Akt1 protein, and presented unique features of binding to Akt1, which indicated detailed interaction between wogonin and Akt signaling pathway. As wogonin was effective in vitro in promotion of apoptosis of myeloma cell by Akt-modulated, Bax and Bcl-2 related intrinsic apoptotic pathway, wogonin may be a potential therapeutic agent against multiple myeloma. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells.

    PubMed

    Su, Huafang; Lin, Fuqiang; Deng, Xia; Shen, Lanxiao; Fang, Ya; Fei, Zhenghua; Zhao, Lihao; Zhang, Xuebang; Pan, Huanle; Xie, Deyao; Jin, Xiance; Xie, Congying

    2016-07-28

    Acquired radioresistance during radiotherapy is considered as the most important reason for local tumor recurrence or treatment failure. Circular RNAs (circRNAs) have recently been identified as microRNA sponges and involve in various biological processes. The purpose of this study is to investigate the role of circRNAs in the radioresistance of esophageal cancer. Total RNA was isolated from human parental cell line KYSE-150 and self-established radioresistant esophageal cancer cell line KYSE-150R, and hybridized to Arraystar Human circRNA Array. Quantitative real-time PCR was used to confirm the circRNA expression profiles obtained from the microarray data. Bioinformatic tools including gene ontology (GO) analysis, KEGG pathway analysis and network analysis were done for further assessment. Among the detected candidate 3752 circRNA genes, significant upregulation of 57 circRNAs and downregulation of 17 circRNAs in human radioresistant esophageal cancer cell line KYSE-150R were observed compared with the parental cell line KYSE-150 (fold change ≥2.0 and P < 0.05). There were 9 out of these candidate circRNAs were validated by real-time PCR. GO analysis revealed that numerous target genes, including most microRNAs were involved in the biological processes. There were more than 400 target genes enrichment on Wnt signaling pathway. CircRNA_001059 and circRNA_000167 were the two largest nodes in circRNA/microRNA co-expression network. Our study revealed a comprehensive expression and functional profile of differentially expressed circRNAs in radioresistant esophageal cancer cells, indicating possible involvement of these dysregulated circRNAs in the development of radiation resistance.

  1. Isolation, structural determination, and evaluation of the biological activity of 20(S)-25-methoxyl-dammarane-3beta, 12beta, 20-triol [20(S)-25-OCH3-PPD], a novel natural product from Panax notoginseng.

    PubMed

    Zhao, Y; Wang, W; Han, L; Rayburn, E R; Hill, D L; Wang, H; Zhang, R

    2007-01-01

    Ginseng has been used extensively for medicinal purposes, with suggested utility for indications as diverse as diabetes, cardiovascular disease and cancer. Herein we report the discovery and characterization of 20(S)-25-OCH3-PPD, a ginsenoside that inhibits growth and survival of cancer cells. The novel dammarane triterpene sapogenin (C31H56O4; molecular weight 492) was isolated from the total hydrolyzed saponins extracted from the leaves of Panax notoginseng using conventional and reverse-phase silica gel chromatography. Based on physicochemical characteristics and NMR data, the compound was identified as 20(S)-25-OCH3-PPD. The biological activities of 20(S)-25-OCH3-PPD and its known analogs, 20(S)-PPD and Rg3, were evaluated in 12 human cancer cell lines. In all cell lines, the order of cytotoxicity of the test compounds was 20(S)-25-OCH3-PPD > 20(S)-PPD > Rg3. 20(S)-25-OCH3-PPD also induced apoptosis and cell cycle arrest in the G1 phase, and inhibited proliferation in breast cancer cell lines, demonstrating its potent biological effects. In regard to cytotoxicity, the IC50 values of 20(S)-25-OCH3-PPD for most cell lines were in the lower microM range, a 5-15-fold greater cytotoxicity relative to 20(S)-PPD and a 10-100-fold increase over Rg3. These findings suggest a structure-activity relationship among dammarane-type sapogenins. The data presented here may provide a basis for the future development of 20(S)-25-OCH3-PPD as a novel anti-cancer agent.

  2. Antibacterial, Anticancer and Neuroprotective Activities of Rare Actinobacteria from Mangrove Forest Soils.

    PubMed

    Azman, Adzzie-Shazleen; Othman, Iekhsan; Fang, Chee-Mun; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2017-06-01

    Mangrove is a complex ecosystem that contains diverse microbial communities, including rare actinobacteria with great potential to produce bioactive compounds. To date, bioactive compounds extracted from mangrove rare actinobacteria have demonstrated diverse biological activities. The discovery of three novel rare actinobacteria by polyphasic approach, namely Microbacterium mangrovi MUSC 115 T , Sinomonas humi MUSC 117 T and Monashia flava MUSC 78 T from mangrove soils at Tanjung Lumpur, Peninsular Malaysia have led to the screening on antibacterial, anticancer and neuroprotective activities. A total of ten different panels of bacteria such as Methicillin-resistant Staphylococcus aureus (MRSA) ATCC 43300, ATCC 70069, Pseudomonas aeruginosa NRBC 112582 and others were selected for antibacterial screening. Three different neuroprotective models (hypoxia, oxidative stress, dementia) were done using SHSY5Y neuronal cells while two human cancer cells lines, namely human colon cancer cell lines (HT-29) and human cervical carcinoma cell lines (Ca Ski) were utilized for anticancer activity. The result revealed that all extracts exhibited bacteriostatic effects on the bacteria tested. On the other hand, the neuroprotective studies demonstrated M. mangrovi MUSC 115 T extract exhibited significant neuroprotective properties in oxidative stress and dementia model while the extract of strain M. flava MUSC 78 T was able to protect the SHSY5Y neuronal cells in hypoxia model. Furthermore, the extracts of M. mangrovi MUSC 115 T and M. flava MUSC 78 T exhibited anticancer effect against Ca Ski cell line. The chemical analysis of the extracts through GC-MS revealed that the majority of the compounds present in all extracts are heterocyclic organic compound that could explain for the observed bioactivities. Therefore, the results obtained in this study suggested that rare actinobacteria discovered from mangrove environment could be potential sources of antibacterial, anticancer and neuroprotective agents.

  3. Continuous hematopoietic cell lines as model systems for leukemia-lymphoma research.

    PubMed

    Drexler, H G; Matsuo, A Y; MacLeod, R A

    2000-11-01

    Along with other improvements, the advent of continuous human leukemia-lymphoma (LL) cell lines as a rich resource of abundant, accessible and manipulable living cells has contributed significantly to a better understanding of the pathophysiology of hematopoietic tumors. The first LL cell lines, Burkitt's lymphoma-derived lines, were established in 1963. Since then, more than 1000 cell lines have been described, although not all of them in full detail. The major advantages of continuous cell lines is the unlimited supply and worldwide availability of identical cell material, and the infinite viable storability in liquid nitrogen. LL cell lines are characterized generally by monoclonal origin and differentiation arrest, sustained proliferation in vitro under preservation of most cellular features, and specific genetic alterations. The most practical classification of LL cell lines assigns them to one of the physiologically occurring cell lineages, based on their immunophenotype, genotype and functional features. Truly malignant cell lines must be discerned from Epstein-Barr virus (EBV)-immortalized normal cells, using various distinguishing parameters. However, the picture is not quite so straightforward, as some types of LL cell lines are indeed EBV+, and some EBV+ normal cell lines carry also genetic aberrations and may mimic malignancy-associated features. Apart from EBV and human T-cell leukemia virus in some lines, the majority of wild-type LL cell lines are virus-negative. The efficiency of cell line establishment is rather low and the deliberate establishment of new LL cell lines remains by and large an unpredictable random process. Difficulties in establishing continuous cell lines may be caused by the inappropriate selection of nutrients and growth factors for these cells. Clearly, a generally suitable microenvironment for hematopoietic cells, either malignant or normal, cannot yet be created in vitro. The characterization and publication of new LL cell lines should provide important and informative core data, attesting to their scientific significance. Large percentages of LL cell lines are contaminated with mycoplasma (about 30%) or are cross-contaminated with other cell lines (about 15-20%). Solutions to these problems are sensitive detection, effective elimination and rigorous prevention of mycoplasma infection, and proper, regular authentication of cell lines. The underlying cause, however, appears to be negligent cell culture practice. The willingness of investigators to make their LL cell lines available to others is all too often limited. There is a need in the scientific community for clean and authenticated high-quality LL cell lines to which every scientist has access. These are offered by various institutionalized public cell line banks. It has been argued that LL cell lines are genetically unstable (both cytogenetically and molecular genetically). For instance, cell lines are supposed to acquire numerical and structural chromosomal alterations and various types of mutations (e.g. point mutations) in vitro. We present evidence that while nearly 100% of all LL cell lines indeed carry genetic alterations, these alterations appear to be stable rather than unstable. As an example of the practical utility of LL cell lines, the recent advances in studies of classical and molecular cytogenetics, which in large part were made possible by cell lines, are highlighted. A list of the most useful, robust and publicly available reference cell lines that may be used for a variety of experimental purposes is proposed. Clearly, by opening new avenues for investigation, studies of LL cell lines have provided seminal insights into the biology of hematopoietic neoplasia. Over a period of nearly four decades, these initially rather exotic cell cultures, known only to a few specialists, have become ubiquitous powerful research tools that are available to every investigator.

  4. Numerical simulation of surfactant-enhanced remediation using UTCHEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeze, G.A.; Fountain, J.C.; Pope, G.A.

    1995-12-31

    The UTCHEM multiphase compositional simulator was used to model the migration and surfactant-enhanced remediation of perchloroethylene (PCE) in a test cell at Canadian Forces Base Borden, Ontario. A line of five injection wells was installed on one side of the test cell and a line of five withdrawal wells was installed on the opposite side of the cell. The injection and withdrawal wells penetrated the entire depth of the sand aquifer. A total of 231 liters of PCE was injected into a shallow well in the center of the test cell. Prior to surfactant flushing, 47 liters of free-phase PCE,more » which flowed into the injection and withdrawal wells over a two week period, was removed using a small-diameter plastic tube and a peristaltic pump. One to two months of water flooding (pump-and-treat), using the injection-withdrawal well system, flushed an additional 12 liters of PCE. Following the water flooding, an aqueous surfactant solution of 1% nonyl phenol ethoxylate and 1% phosphate ester of the nonyl phenol ethoxylate was circulated through the test cell via the injection-withdrawal wells. Between November 11, 1990 and May 29, 1991, a total of 130,000 liters of surfactant solution were recirculated through the test cell, during which time 62 liters of PCE were recovered. This paper describes preliminary scoping simulations of the surfactant flushing process at the Borden test site to demonstrate the capability of UTCHEM to model surfactant-enhanced remediation of a non-aqueous-phase liquid (NAPL). A discussion of efforts to simulate PCE migration is also presented.« less

  5. Suppression of intestinal carcinogenesis in Apc-mutant mice by limonin.

    PubMed

    Shimizu, Satomi; Miyamoto, Shingo; Fujii, Gen; Nakanishi, Ruri; Onuma, Wakana; Ozaki, Yoshihiko; Fujimoto, Kyoko; Yano, Tomohiro; Mutoh, Michihiro

    2015-07-01

    Limonoids in citrus fruits are known to possess multiple biological functions, such as anti-proliferative functions in human cancer cell lines. Therefore, we aimed to investigate the suppressive effect of limonin on intestinal polyp development in Apc-mutant Min mice. Five-week-old female Min mice were fed a basal diet or a diet containing 250 or 500 ppm limonin for 8 weeks. The total number of polyps in mice treated with 500 ppm limonin decreased to 74% of the untreated control value. Neoplastic cell proliferation in the polyp parts was assessed by counting PCNA positive cells, and a tendency of reduction was obtained by limonin treatment. Moreover, expression levels of c-Myc and MCP-1 mRNA in the polyp part were reduced by administration of limonin. We finally confirmed the effects of limonin on β-catenin signaling, and found limonin significantly inhibited T-cell factor/lymphocyte enhancer factor-dependent transcriptional activity in a dose-dependent manner in the Caco-2 human colon cancer cell line. Our results suggest that limonin might be a candidate chemopreventive agent against intestinal carcinogenesis.

  6. In vitro antioxidant and antiproliferative activities of six international basil cultivars.

    PubMed

    Elansary, Hosam O; Mahmoud, Eman A

    2015-01-01

    The total phenolic, flavonoid and tannin contents in leaves extracts of Ocimum basilicum (OB) (Lamiaceae) international cultivars, as well as their overall antioxidant activities using DPPH and linoleic acid assays, were investigated. Furthermore, the antiproliferative and cytotoxic activities against line HeLa, MCF-7, Jurkat, HT-29, T24, MIAPaCa-2 cancer cells and one normal human cell line HEK-293 were examined. DPPH and linoleic acid assays ranged from 75.8% to 93.3% and from 74.5% to 97.1%; respectively. O. b. 'purple ruffle', O. b. 'dark opale', O. b. 'genovese', O. b. 'anise', O. b. 'bush green' and O. b. L. (OBL) varied in their antiproliferative and cytotoxic activities, influenced cell cycle progression and stimulated apoptosis in most cancer cells. OBL exhibited the highest antioxidant and antiproliferative activities. OB extracts not only improve taste but also have certain anticancer activity against diverse cancer cells due to the presence of compounds such as rosmarinic acid, chicoric acid and caftaric acid. Thus, OB represents a potent source of anticancer materials.

  7. Immunohistochemical Analysis of P63 Expression in Odontogenic Lesions

    PubMed Central

    Atarbashi Moghadam, Saede; Atarbashi Moghadam, Fazele; Eini, Ebrahim

    2013-01-01

    P63 may have a role in tumorigenesis and cytodifferentiation of odontogenic lesions. We investigated the immunohistochemical expression of P63 in a total of 30 cases of odontogenic cysts and tumors. The percentage of positive cells was calculated in the lining of odontogenic cysts and islands of ameloblastoma. P63 expression was evident in all types of odontogenic lesions. P63 was expressed throughout the lining epithelium of odontogenic keratocyst except surface parakeratinized layer. In addition, calcifying odontogenic cyst showed P63 expression in all layers. In almost all radicular and dentigerous cysts, the basal and parabasal layers were immunoreactive. Peripheral cells of ameloblastoma expressed P63; however, stellate reticulum had weaker immunostaining. No significant difference in P63 expression was observed between studied lesions (P = 0.86). Expression of P63 in odontogenic lesions suggests that this protein is important in differentiation and proliferation of odontogenic epithelial cells. However, it seems that it could not be a useful marker to differentiate between aggressive and nonaggressive lesions. P63 also represents a progenitor or basal cell marker, and it is not expressed in mature differentiated cells. PMID:24350278

  8. Uncertainties of the Intensity of the 1130 nm Band of Water Vapor

    NASA Technical Reports Server (NTRS)

    Giver, L. P.; Pilewskie, P.; Gore, W. J.; Chackerian, C., Jr.; Varanasi, P.; Bergstrom, R.; Freedman, R. S.

    2001-01-01

    Belmiloud, et al have recently suggested that the HITRAN line intensities in the 1130 nm water vapor band are much too weak. Giver, et at corrected unit conversion errors to make the HITRAN intensities compatible with the original measurements of Mandin, et al, but Belmiloud, et al believe that many of those line intensity measurements were too weak, and they propose the total intensity of the 1130 nm water vapor band is 38% stronger than the sum of the HITRAN line intensities in this region. We have made independent assessments of this proposal using 2 spectra obtained with the Ames 25 meter base path White cell. The first was made using the moderate resolution (8 nm) solar spectral flux radiometer (SSFR) flight instrument with a White cell absorbing path of 506 meters and 10 torr water vapor pressure. Modeling this spectrum using the HITRAN linelist gives a reasonable match, and the model is not compatible when the HITRAN line intensities are increased by 38%. The second spectrum was obtained with a White cell path of 1106 meters and 12 torr water vapor pressure, using a Bomem FTIR with near Doppler width resolution. This spectrum is useful for measuring intensities of isolated weak lines to compare with the measurements of Mandin, et al. Unfortunately, as Belmiloud et al point out, at these conditions the strong lines are much too saturated for good intensity measurements. Our measurements of the weak lines are in reasonable agreement with those of Mandin, et al. Neither of our spectra supports the proposal of Belmiloud et al for a general 38% increase of the absorption intensity in the 1130 nm water vapor band.

  9. Ontological representation, integration, and analysis of LINCS cell line cells and their cellular responses.

    PubMed

    Ong, Edison; Xie, Jiangan; Ni, Zhaohui; Liu, Qingping; Sarntivijai, Sirarat; Lin, Yu; Cooper, Daniel; Terryn, Raymond; Stathias, Vasileios; Chung, Caty; Schürer, Stephan; He, Yongqun

    2017-12-21

    Aiming to understand cellular responses to different perturbations, the NIH Common Fund Library of Integrated Network-based Cellular Signatures (LINCS) program involves many institutes and laboratories working on over a thousand cell lines. The community-based Cell Line Ontology (CLO) is selected as the default ontology for LINCS cell line representation and integration. CLO has consistently represented all 1097 LINCS cell lines and included information extracted from the LINCS Data Portal and ChEMBL. Using MCF 10A cell line cells as an example, we demonstrated how to ontologically model LINCS cellular signatures such as their non-tumorigenic epithelial cell type, three-dimensional growth, latrunculin-A-induced actin depolymerization and apoptosis, and cell line transfection. A CLO subset view of LINCS cell lines, named LINCS-CLOview, was generated to support systematic LINCS cell line analysis and queries. In summary, LINCS cell lines are currently associated with 43 cell types, 131 tissues and organs, and 121 cancer types. The LINCS-CLO view information can be queried using SPARQL scripts. CLO was used to support ontological representation, integration, and analysis of over a thousand LINCS cell line cells and their cellular responses.

  10. Endoscopic Submucosal Dissection of Rectal Cancer Close to the Dentate Line Accompanied by Mucosal Prolapse Syndrome

    PubMed Central

    Nakamura, Kenji; Ishii, Naoki; Suzuki, Koyu; Fukuda, Katsuyuki

    2018-01-01

    A 37-year-old man presented to our hospital for early rectal cancer accompanied by mucosal prolapse syndrome. Biopsy confirmed an adenocarcinoma, and endoscopic ultrasonography indicated proximity to the dentate line but no submucosal invasion. The tumor was removed en bloc via endoscopic submucosal dissection without complications, and its margin was free of tumor cells. The total procedure duration was 37 minutes, and the resected specimen measured 23 × 13 mm. There was no recurrence during the 3-year observation period. Although close to the dentate line and accompanied by mucosal prolapse syndrome, a rectal cancer lesion was safely resected en bloc using endoscopic submucosal dissection. PMID:29430468

  11. Closely related glycosylation patterns of recombinant human IL-2 expressed in a CHO cell line and natural IL-2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vita, N.; Magazin, M.; Marchese, E.

    We report here the study of the glycosylation pattern of human recombinant (r) IL2 expressed in a Chinese hamster ovary (CHO) cell line. The human rIL2 secreted by this high-producing recombinant CHO cell line was metabolically radiolabelled with (35S)-methionine, or with (3H)-glucosamine and (3H)-galactose, purified to homogeneity, and then characterized. The electrophoretic analysis of the (35S)-methionine-labelled proteins present in the culture medium of the CHO cell line showed that the rIL2 represents approximately 12% of the total secreted proteins. Furthermore, pulse-chase experiments showed that the glycosylated rIL2 is synthesized and secreted within 30 min. The point of attachment and themore » structure of the carbohydrate moiety of the rIL2 was determined by: amino-terminal sequencing and fingerprint analysis of the 3H-labelled rIL2, mass spectroscopy of the amino-terminal tryptic octapeptide, and carbohydrate analysis after enzymatic (Vibrio cholerae neuraminidase and Aspergillus oryzae beta-galactosidase) or sulfuric acid hydrolysis. The results indicate that the recombinant protein possesses a sugar moiety O-linked to the threonine residue at position 3 of the polypeptide chain, and that sialic acid, galactose and N-acetyl galactosamine are components of this carbohydrate moiety. Taken together these results suggest that the recombinant molecule is identical to natural IL2.« less

  12. Generation of a novel TRAIL mutant by proline to arginine substitution based on codon bias and its antitumor effects.

    PubMed

    Zhu, Aijing; Wang, Xiuyun; Huang, Min; Chen, Chen; Yan, Juan; Xu, Qi; Wei, Lijia; Huang, Xianzhou; Zhu, Hong; Yi, Cheng

    2017-10-01

    TNF ligand superfamily member 10 (TRAIL) is a member of the tumor necrosis factor superfamily. The present study was performed in an effort to increase the expression of soluble (s)TRAIL by rebuilding the gene sequence of TRAIL. Three principles based on the codon bias of Escherichia coli were put forward to design the rebuild strategy. Relying on these three principles, a P7R mutation near the N‑terminal region of sTRAIL, named TRAIL‑Mu, was designed. TRAIL‑Mu was subsequently cloned into the PTWIN1 plasmid and expressed in E. coli BL21 (DE3). Using a high‑level expression system and a three‑step purification method, soluble TRAIL‑Mu protein reached ~90% of total cellular protein and purity was >95%, demonstrating success in overcoming inclusion body formation. The cytotoxic effect of TRAIL‑Mu was evaluated by sulforhodamine B assay in the MD‑MB‑231, A549, NCI‑H460 and L02 cell lines. The results demonstrated that TRAIL‑Mu exerted stronger antitumor effects on TRAIL‑sensitive tumor cell lines, and was able to partially reverse the resistance of a TRAIL‑resistant tumor cell line. In addition, TRAIL‑Mu exhibited no notable biological effects in a normal liver cell line. The novel TRAIL variant generated in the present study may be useful for the mass production of this important protein for therapeutic purposes.

  13. Screening of antiproliferative effect of aqueous extracts of plant foods consumed in México on the breast cancer cell line MCF-7.

    PubMed

    García-Solís, Pablo; Yahia, Elhadi M; Morales-Tlalpan, Verónica; Díaz-Muñoz, Mauricio

    2009-01-01

    We evaluated the antiproliferative effect of aqueous extracts of 14 plant foods consumed in Mexico on the breast cancer cell line MCF-7. The plant foods used were avocado, black sapote, guava, mango, prickly pear cactus stems (called nopal in Mexico, cooked and raw), papaya, pineapple, four different cultivars of prickly pear fruit, grapes and tomato. β-Carotene, total phenolics and gallic acid contents and the antioxidant capacity, measured by the ferric reducing/antioxidant power and the 2,2-diphenyl-1,1-picrylhydrazyl radical scavenging assays, were analyzed in each aqueous extract. Only the papaya extract had a significant antiproliferative effect measured with the methylthiazolydiphenyl-tetrazolium bromide assay. We did not notice a relationship between the total phenolic content and the antioxidant capacity with antiproliferative effect. It is suggested that each extract of plant food has a unique combination of the quantity and quality of phytochemicals that could determine its biological activity. Besides, papaya represents a very interesting fruit to explore its antineoplastic activities.

  14. Mapping analysis of scaffold/matrix attachment regions (s/MARs) from two different mammalian cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pilus, Nur Shazwani Mohd; Ahmad, Azrin; Yusof, Nurul Yuziana Mohd

    Scaffold/matrix attachment regions (S/MARs) are potential element that can be integrated into expression vector to increase expression of recombinant protein. Many studies on S/MAR have been done but none has revealed the distribution of S/MAR in a genome. In this study, we have isolated S/MAR sequences from HEK293 and Chinese hamster ovary cell lines (CHO DG44) using two different methods utilizing 2 M NaCl and lithium-3,5-diiodosalicylate (LIS). The isolated S/MARs were sequenced using Next Generation Sequencing (NGS) platform. Based on reference mapping analysis against human genome database, a total of 8,994,856 and 8,412,672 contigs of S/MAR sequences were retrieved frommore » 2M NaCl and LIS extraction of HEK293 respectively. On the other hand, reference mapping analysis of S/MAR derived from CHO DG44 against our own CHO DG44 database have generated a total of 7,204,348 and 4,672,913 contigs from 2 M NaCl and LIS extraction method respectively.« less

  15. Incorrect strain information for mouse cell lines: sequential influence of misidentification on sublines.

    PubMed

    Uchio-Yamada, Kozue; Kasai, Fumio; Ozawa, Midori; Kohara, Arihiro

    2017-03-01

    Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains. Based on comparisons with 7 major inbred strains, our results revealed their strains in 80 of 90 cell lines. However, 12 of the 80 cell lines (15%) were found to differ from registered information. Of them, 4 cell lines originated from the same mouse, which had been generated through mating between two different inbred strains. The genotype of the mouse sample had not been examined after the backcross, leading to strain misidentification in those cell lines. Although 8 other cell lines had been established as sublines of a BALB/c cell line, their SSLP profiles are similar to a Swiss cell line. This affects differences in genotypes between inbred and outbred strains. Because the use of inbred samples and interbreeding between strains are not involved in human materials, our results suggest that the cause and influence of misidentification in mouse cell lines are different from those in human.

  16. Oestradiol reduces Liver Receptor Homolog-1 mRNA transcript stability in breast cancer cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lazarus, Kyren A.; Environmental and Biotechnology Centre, Swinburne University, Hawthorn, Victoria 3122; Zhao, Zhe

    2013-08-30

    Highlights: •LRH-1 is an orphan nuclear receptor that regulates tumor proliferation. •In breast cancer, high mRNA expression is associated with ER+ status. •In ER−ve cells, despite very low mRNA, we found abundant LRH-1 protein. •Our data show distinctly different LRH-1 protein isoforms in ER− and ER+ breast cancer cells. •This is due to differences in LRH-1 mRNA and protein stability rates. -- Abstract: The expression of orphan nuclear receptor Liver Receptor Homolog-1 (LRH-1) is elevated in breast cancer and promotes proliferation, migration and invasion in vitro. LRH-1 expression is regulated by oestrogen (E{sub 2}), with LRH-1 mRNA transcript levels highermore » in oestrogen receptor α (ERα) positive (ER+) breast cancer cells compared to ER− cells. However, the presence of LRH-1 protein in ER− cells suggests discordance between mRNA transcript levels and protein expression. To understand this, we investigated the impact of mRNA and protein stability in determining LRH-1 protein levels in breast cancer cells. LRH-1 transcript levels were significantly higher in ER+ versus ER− breast cancer cells lines; however LRH-1 protein was expressed at similar levels. We found LRH-1 mRNA and protein was more stable in ER− compared to ER+ cell lines. The tumor-specific LRH-1 variant isoform, LRH-1v4, which is highly responsive to E{sub 2}, showed increased mRNA stability in ER− versus ER+ cells. In addition, in MCF-7 and T47-D cell lines, LRH-1 total mRNA stability was reduced with E{sub 2} treatment, this effect mediated by ERα. Our data demonstrates that in ER− cells, increased mRNA and protein stability contribute to the abundant protein expression levels. Expression and immunolocalisation of LRH-1 in ER− cells as well as ER− tumors suggests a possible role in the development of ER− tumors. The modulation of LRH-1 bioactivity may therefore be beneficial as a treatment option in both ER− and ER+ breast cancer.« less

  17. A single center’s experience using four different front line mobilization strategies in lymphoma patients planned to undergo autologous hematopoietic cell transplantation

    PubMed Central

    Haverkos, Bradley M.; Huang, Ying; Elder, Patrick; O’Donnell, Lynn; Scholl, Diane; Whittaker, Becky; Vasu, Sumi; Penza, Sam; Andritsos, Leslie A.; Devine, Steven M.; Jaglowski, Samantha M.

    2016-01-01

    In an otherwise eligible patient with relapsed lymphoma, inadequate mobilization of peripheral blood stem cells is a limiting factor to proceeding with an autologous hematopoietic cell transplantation (auto-HCT). Multiple strategies have been used to mobilize an adequate number of hematopoietic stem cells (HSCs) with no obvious front-line strategy. We report a single institutional experience mobilizing HSCs using four different approaches in lymphoma patients. We prospectively collected mobilization outcomes on patients planning to undergo auto-HCT at Ohio State University. We report results of first mobilization attempt for all relapsed or refractory lymphoma patients between 2008–2014. We identified 255 lymphoma patients who underwent mobilization for planned auto-HCT. The 255 lymphoma patients underwent the following front line mobilization strategies: 95 (37%) GCSF alone, 38 (15%) chemomobilization (GCSF+chemotherapy), 97 (38%) preemptive day 4 plerixafor, and 25 (10%) rescue day 5 plerixafor. As expected, there were significant differences between cohorts including age, comorbid indices, histology, and amount of prior chemotherapy. After controlling for differences between groups, the odds of collecting 2×106/kg HSCs on the first day of collection and 5×106/kg HSCs in total was highest in the cohort undergoing chemomobilization. In conclusion, our experience highlights the effectiveness of chemomobilization. PMID:28067870

  18. The Effects of Petroselinum Crispum on Estrogen Receptor-positive Benign and Malignant Mammary Cells (MCF12A/MCF7).

    PubMed

    Schröder, Lennard; Koch, Julian; Mahner, Sven; Kost, Bernd P; Hofmann, Simone; Jeschke, Udo; Haumann, Jens; Schmedt, Julian; Richter, Dagmar Ulrike

    2017-01-01

    Phytoestrogens have controversial effects on hormone-dependent tumors. Herein we investigated the effects of parsley root extract (PCE) on DNA synthesis performance, metabolic activity and cytotoxicity in malignant and benign breast cells. The PCE was prepared and analyzed by mass spectrometry. MCF7 and MCF12A cells were incubated with various concentrations of PCE and analyzed for DNA synthesis performance, metabolic activity and cytotoxicity by BrdU proliferation, MTT and LDH assays, respectively. PCE was found to contain a substantial ratio of lignans. At a concentration range of 0.01 μg/ml-100 μg/ml the LDH assay analysis showed no significant cytotoxicity of PCE in both cell lines. However, at 500 μg/ml PCE's cytotoxicity was well over 70% of total cell population in both cell lines. According to the BrdU proliferation assay analysis, PCE demonstrated significant DNA synthesis inhibition of up to 80% at concentrations of 10, 50, 100 and 500 μg/ml in both cell lines. Based on the MTT assay analysis, only at a concentration of 500 μg/ml, PCE demonstrated a statistically significant inhibition of cellular metabolic activity of 63% in MCF7 and 75% in MCF12A of their respective normal capacity. PCE showed antiproliferative effects in MCF7 and MCF12A cells. Further investigation is required to determine whether this effect can be solely attributed to its phytoestrogens. Copyright© 2017 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  19. Hsp70- and p53-reponses after heat treatment and/or X-irradiation mediate the susceptibility of hematopoietic cells to undergo apoptosis.

    PubMed

    Nijhuis, E H A; Poot, A A; Feijen, J; Vermes, I

    2008-02-01

    The effect of heat treatment in combination with X-irradiation was examined with regard to expression of p53, a tumor suppressor gene product, and Hsp70, a heat-shock protein, in association with the occurrence of programmed cell death (apoptosis). Three hematopoietic cell lines (HSB2, HL60 and Kasumi-1), which differ in p53 status, were exposed to 42.5 degrees C during one hour and/or X-radiation (total dose 8 Gy). After exposure, both mRNA and protein expression levels of Hsp70 and p53 were investigated by real-time PCR (polymerase chain reaction) and Western blotting. Apoptosis was simultaneously analyzed by observation of cell morphology as well as flowcytometric determination of Annexin V binding to phosphatidylserine and propidium iodide exclusion. Both HL60 and HSB2 cell lines with a low p53 status and a quick response to heat treatment with Hsp70 over-expression are less susceptible to heat-induced apoptosis compared to Kasumi-1 cells with wild-type p53 protein and no Hsp70 response. The combination of first applying X-irradiation followed by heat treatment resulted in the most effective induction of apoptosis due to impairment of the Hsp70 response in all three cell lines. These results indicate that the Hsp70 response and p53 status mediate the susceptibility of hematopoietic cells to undergo heat-induced apoptosis. Therefore, these parameters can be used as markers to predict the effectiveness of hyperthermia in cancer treatment.

  20. Silencing FLI or targeting CD13/ANPEP lead to dephosphorylation of EPHA2, a mediator of BRAF inhibitor resistance, and induce growth arrest or apoptosis in melanoma cells.

    PubMed

    Azimi, Alireza; Tuominen, Rainer; Costa Svedman, Fernanda; Caramuta, Stefano; Pernemalm, Maria; Frostvik Stolt, Marianne; Kanter, Lena; Kharaziha, Pedram; Lehtiö, Janne; Hertzman Johansson, Carolina; Höiom, Veronica; Hansson, Johan; Egyhazi Brage, Suzanne

    2017-08-31

    A majority of patients with BRAF-mutated metastatic melanoma respond to therapy with BRAF inhibitors (BRAFi), but relapses are common owing to acquired resistance. To unravel BRAFi resistance mechanisms we have performed gene expression and mass spectrometry based proteome profiling of the sensitive parental A375 BRAF V600E-mutated human melanoma cell line and of daughter cell lines with induced BRAFi resistance. Increased expression of two novel resistance candidates, aminopeptidase-N (CD13/ANPEP) and ETS transcription factor FLI1 was observed in the BRAFi-resistant daughter cell lines. In addition, increased levels of the previously reported resistance mediators, receptor tyrosine kinase ephrine receptor A2 (EPHA2) and the hepatocyte growth factor receptor MET were also identified. The expression of these proteins was assessed in matched tumor samples from melanoma patients obtained before BRAFi and after disease progression. MET was overexpressed in all progression samples while the expression of the other candidates varied between the individual patients. Targeting CD13/ANPEP by a blocking antibody induced apoptosis in both parental A375- and BRAFi-resistant daughter cells as well as in melanoma cells with intrinsic BRAFi resistance and led to dephosphorylation of EPHA2 on S897, previously demonstrated to cause inhibition of the migratory capacity. AKT and RSK, both reported to induce EPHA2 S897 phosphorylation, were also dephosphorylated after inhibition of CD13/ANPEP. FLI1 silencing also caused decreases in EPHA2 S897 phosphorylation and in total MET protein expression. In addition, silencing of FLI1 sensitized the resistant cells to BRAFi. Furthermore, we show that BRAFi in combination with the multi kinase inhibitor dasatinib can abrogate BRAFi resistance and decrease both EPHA2 S897 phosphorylation and total FLI1 protein expression. This is the first report presenting CD13/ANPEP and FLI1 as important mediators of resistance to BRAF inhibition with potential as drug targets in BRAFi refractory melanoma.

  1. Establishment and characterization of three immortal bovine muscular epithelial cell lines.

    PubMed

    Jin, Xun; Lee, Joong-Seob; Kwak, Sungwook; Lee, Soo-Yeon; Jung, Ji-Eun; Kim, Tae-Kyung; Xu, Chenxiong; Hong, Zhongshan; Li, Zhehu; Kim, Sun-Myung; Pian, Xumin; Lee, Dong-Hee; Yoon, Jong-Taek; You, Seungkwon; Choi, Yun-Jaie; Kim, Huunggee

    2006-02-28

    We have established three immortal bovine muscular epithelial (BME) cell lines, one spontaneously immortalized (BMES), the second SV40LT-mediated (BMEV) and the third hTERT-mediated (BMET). The morphology of the three immortal cell lines was similar to that of early passage primary BME cells. Each of the immortal cell lines made cytokeratin, a typical epithelial marker. BMET grew faster than the other immortal lines and the BME cells, in 10% FBS-DMEM medium, whereas neither the primary cells nor the three immortal cell lines grew in 0.5% FBS-DMEM. The primary BME cells and the immortal cell lines, with the exception of BMES, made increasing amounts of p53 protein when treated with doxorubicin, a DNA damaging agent. On the other hand, almost half of the cells in populations of the three immortal cell lines may lack p16(INK4a) regulatory function, compared to primary BME cells that were growth arrested by enforced expression of p16(INK4a). In soft-agar assays, the primary cells and immortal cell lines proved to be less transformed in phenotype than HeLa cells. The three immortal epithelial-type cell lines reported here are the first cell lines established from muscle tissue of bovine or other species.

  2. Investigation of the expression of RIF1 gene on head and neck, pancreatic and brain cancer and cancer stem cells.

    PubMed

    GursesCila, Hacer E; Acar, Muradiye; Barut, Furkan B; Gunduz, Mehmet; Grenman, Reidar; Gunduz, Esra

    2016-12-01

    Recent studies have shown that cancer stem cells are resistant to chemotherapy. The aim of this study was to compare RIF1 gene expression in head and neck, pancreatic cancer and glioma cell lines and the cancer stem cells isolated from these cell lines. UT-SCC-74 from Turku University and UT-SCC-74B primary tumor metastasis and neck cancer cell lines, YKG-1 glioma cancer cell line from RIKEN, pancreatic cancer cell lines and ASPC-1 cells from ATCC were grown in cell culture. To isolate cancer stem cells, ALDH-1 for UT-SCC-74 and UT-SCC-74B cell line, CD-133 for YKG-1 cell line and CD-24 for ASPC-1 cell line, were used as markers of cancer stem cells. RNA isolation was performed for both cancer lines and cancer stem cells. RNAs were converted to cDNA. RIF1 gene expression was performed by qRT-PCR analysis. RIF1 gene expression was compared with cancer cell lines and cancer stem cells isolated from these cell lines. The possible effect of RIF1 gene was evaluated. In the pancreatic cells, RIF1 gene expression in the stem cell-positive cell line was 256 time that seen in the stem cell-negative cell line. Considering the importance of RIF1 in NHEJ and of NHEJ in pancreatic cancer, RIF1 may be one of the genes that plays an important role in the diagnoses and therapeutic treatment of pancreatic cancer. The results of head and neck and brain cancers are inconclusive and further studies are required to elucidate the connection between RIF1 gene and these other types of cancers.

  3. Mix-ups and mycoplasma: the enemies within.

    PubMed

    Drexler, Hans G; Uphoff, Cord C; Dirks, Willy G; MacLeod, Roderick A F

    2002-04-01

    Human leukemia-lymphoma (LL) cell lines represent important tools for experimental research. Among the various problems associated with cell lines, the two most common concern contaminations: (1) cross-contamination with unrelated cells and (2) contamination with microorganisms, in particular mycoplasma. The bad news is that about one-third of the cell lines are either cross-contaminated or mycoplasma-infected or both. The good news is that there are means to recognize and overcome these problems. In cases where, during attempts to establish new LL cell lines, primary LL cultures are cross-contaminated with continuous cell lines, intended new cell lines simply cannot be established ("early" cross-contamination). In cases of "late" cross-contamination of existing LL cell lines where the intrusive cells have a growth advantage, the original ("uncontaminated") cell lines may still be available elsewhere. DNA fingerprinting and cytogenetic analysis appear to be the most suitable approaches to detect cross-contaminations and to authenticate LL cell lines. A different but related aspect of "false" LL cell lines is the frequent misclassification of cell lines whereby the actual cell type of the cell line does not correspond to the purported model character of the cell line. Mycoplasma infection can have a multitude of effects on the eukaryotic cells which, due to the variety of infecting mycoplasma species and many other contributing parameters, cannot be predicted, rendering resulting data questionable at best. Practical procedures for the detection and elimination of mycoplasma contamination have been developed. Diagnostic and preventive strategies in order to hem the alarming increase in "false" and mycoplasma-positive LL cell lines are recommended.

  4. Establishment of pregnancy after the transfer of nuclear transfer embryos produced from the fusion of argali (Ovis ammon) nuclei into domestic sheep (Ovis aries) enucleated oocytes.

    PubMed

    White, K L; Bunch, T D; Mitalipov, S; Reed, W A

    1999-01-01

    Cloning mammalian species from cell lines of adult animals has been demonstrated. Aside from its importance for cloning multiple copies of genetically valuable livestock, cloning now has the potential to salvage endangered or even extinct species. The aim of this study was to investigate the effect of the bovine and domestic (Ovis aries) ovine oocyte cytoplasm on the nucleus of an established cell line from an endangered argali wild sheep (Ovis ammon) after nuclear transplantation. A fibroblast cell line was established from skin biopsies from an adult argali ram from the People's Republic of China. Early karyotype analysis of cells between 3-6 passages revealed a normal diploid chromosome number of 56. The argali karyotype consisted of 2 pairs of biarmed and 25 pairs of acrocentric autosomes, a large acrocentric and minute biarmed Y. Bovine ovaries were collected from a local abattoir, oocytes aspirated, and immediately placed in maturation medium consisting of M-199 containing 10% fetal bovine serum, 100 IU/mL penicillin, 100 microg/mL streptomycin, 0.5 microg/mL follicle-stimulating hormone (FSH), 5.0 microg/mL luetinizing hormone (LH) and 1.0 microg/mL estradiol. Ovine (O. aries) oocytes were collected at surgery 25 hours postonset of estrus from the oviducts of superovulated donor animals. All cultures were carried out at 39 degrees C in a humidified atmosphere of 5% CO2 and air. In vitro matured MII bovine oocytes were enucleated 16-20 hours after onset of maturation and ovine oocytes within 2-3 hours after collection. Enucleation was confirmed using Hoechst 33342 and UV light. The donor argali cells were synchronized in G0-G1 phase by culturing in Dulbecco's modified Eagle's medium (DMEM) plus 0.5% fetal bovine serum for 5-10 days. Fusion of nuclear donor cell to an enucleated oocyte (cytoplast) to produce nuclear transfer (NT) embryos was induced by 2 electric pulses of 1.4 kV/cm for 30 microsc. Fused NT embryos were activated after 24 hours of maturation by exposure to ionomycin (5 microM, 4 minutes) followed by incubation in 6-dimethylaminopurine (0.2 mM, 4 hours) and cultured in microdrops of CR1aa medium. From a total of 166 constructed nuclear donor cell-bovine cytoplasm NT couples, 128 (77%) successfully fused, 100 (78%) developed to 8-16 cell stage, and 2 (1.56%) developed to the blastocyst stage. The presence of argali nuclei in 8-16 cell stage embryo clones was confirmed after observation of Hoechst 33342 stained embryos under UV light and chromosome analysis of metaphase spreads from blastomeres. A total of 127 constructed nuclear donor cell-ovine cytoplasm NT couples were produced, 101 (80%) successfully fused, 81 (80% of fused) developed to the 16- to 32-cell stage. A total of 28 hybrid (argali-sheep) and 21 sheep-sheep NT embryos were transferred into 6 recipients and 4 recipients, respectively. Two of these recipients, 1 carrying argali-sheep and 1 sheep-sheep, were confirmed pregnant at 49 days by ultrasound, but both pregnancies terminated by 59 days. The results of this study demonstrate the possibility of using xenogenic oocytes to produce early-stage embryos and pregnancies from an established fibroblast cell line of an endangered species.

  5. Potential for Cell-Transplant Therapy with Human Neuronal Precursors to Treat Neuropathic Pain in Models of PNS and CNS Injury: Comparison of hNT2.17 and hNT2.19 Cell Lines

    DTIC Science & Technology

    2012-01-01

    conditions (mean of 471.16 pmoles per 10 million cells) during a period of 15 minutes was able to account for about 18% and more than 30...of 85.64 pmoles per 10 million cells) during a period of 15 minutes was able to account for about 15% andmore than 17%, respectively, of the total...least one common explanation for the changes in intraspinal bio- chemistry to account for the chronic pain that they produce, 22 Pain Research and

  6. Total synthesis and structure-activity investigation of the marine natural product neopeltolide.

    PubMed

    Custar, Daniel W; Zabawa, Thomas P; Hines, John; Crews, Craig M; Scheidt, Karl A

    2009-09-02

    The total synthesis and biological evaluation of neopeltolide and analogs are reported. The key bond-forming step utilizes a Lewis acid-catalyzed intramolecular macrocyclization that installs the tetrahydropyran ring and macrocycle simultaneously. Independent of each other, neither the macrolide nor the oxazole side chain substituents of neopeltolide can inhibit the growth of cancer cell lines. The biological data of the analogs indicate that alterations to either the ester side chain or the stereochemistry of the macrolide result in a loss of biological activity.

  7. Functional Characteristics of Tumor Associated Protein Spot14 and Interacting Proteins in Mouse Mammary Epithelial and Breast Cancer Cell Lines

    DTIC Science & Technology

    2012-03-01

    enhanced accumulation of total lipids evaluated by Bodipy staining and NMR analysis. A major finding in this report is that glycolytic and lipogenic enzyme...total lipid component using NMR Metabolomics showed significant increases in the quantity of intracellular (CH2)n and (CH3) acyl chains (i.e. fatty...Mass Spectrometry (GC-MS) methods were developed. GC-MS differs from NMR analysis of lipid fractions in that GC-MS distinguishes between fatty acids

  8. Feeder-cell-independent culture of the pig-embryonic-stem-cell-derived exocrine pancreatic cell line, PICM-31

    USDA-ARS?s Scientific Manuscript database

    The adaptation to feeder-independent growth of a pig embryonic stem cell-derived pancreatic cell line is described. The parental PICM-31 cell line, previously characterized as an exocrine pancreas cell line, was colony-cloned two times in succession resulting in the subclonal cell line, PICM-31A1. P...

  9. LC/ESI-MS/MS profiling of Ulmus parvifolia extracts and evaluation of its anti-inflammatory, cytotoxic, and antioxidant activities.

    PubMed

    Mina, Suzan A; Melek, Farouk R; Adeeb, Rania M; Hagag, Eman G

    2016-11-01

    In this study, a comparative liquid chromatography/mass spectroscopy (LC/ESI-MS/MS) profiling of different fractions of Ulmus parvifolia leaves and stems was performed. Identification of compounds was based on comparing the mass spectrometric information obtained including m/z values and individual compound fragmentation pattern to tandem mass spectral library search and literature data. Eleven compounds were tentatively identified in the different analyzed fractions. One of the major constituents of this plant was isolated and identified as Icariside E4 [dihydro-dehydro-diconiferyl alcohol-4-O-α-L-rhamnopyranoside] (5). The evaluation of anti-inflammatory activity of the total methanolic extract using nitric oxide inhibition on LPS-stimulated RAW 264.7 cells model strong anti-inflammatory activity with 17.5% inhibition of nitric oxide production versus 10% inhibition for dexamethasone. The cytotoxic activity of the methanolic extract and Icariside E4 was evaluated against four types of human cell lines using MTT assay. Icariside E4 showed cytotoxic effect against Hep-G2, MCF-7, and CACO-2 cell lines compared to a negligible activity for the total extract. The same extract showed a moderate antioxidant activity with SC50=362.5 μg/mL.

  10. Curcumin derivative WZ35 efficiently suppresses colon cancer progression through inducing ROS production and ER stress-dependent apoptosis.

    PubMed

    Zhang, Junru; Feng, Zhiguo; Wang, Chunhua; Zhou, Huiping; Liu, Weidong; Kanchana, Karvannan; Dai, Xuanxuan; Zou, Peng; Gu, Junlian; Cai, Lu; Liang, Guang

    2017-01-01

    Colon cancer is characterized by its fast progression and poor prognosis, and novel agents of treating colon cancer are urgently needed. WZ35, a synthetic curcumin derivative, has been reported to exhibit promising antitumor activity. Here, we investigated the in vitro and in vivo activities of WZ35 and explored the underlying mechanisms in colon cancer cell lines. WZ35 treatment significantly decreased the cell viability associated with G2/M cell cycle arrest and apoptosis induction in colon cancer cell lines. We also show that WZ35 is highly effective in inhibiting tumor growth in a CT26 xenograft mouse model. Mechanistically, WZ35 treatment significantly induced reactive oxygen species (ROS) generation and endoplasmic reticulum (ER) stress in CT26 cells. Abrogation of ROS production by N-acetylcysteine (NAC) co-treatment almost totally reversed the WZ35-induced cell apoptosis and ER stress activation. Inhibition of p-PERK by GSK2606414 can significantly reverse WZ35-induced cell apoptosis in CT26 cells. Taken together, the curcumin derivative WZ35 exhibited anti-tumor effects in colon cancer cells both in vitro and in vivo, via a ROS-ER stress-mediated mechanism. These findings indicate that activating ROS generation could be an important strategy for the treatment of colon cancers.

  11. Anti-cancer Parasporin Toxins of New Bacillus thuringiensis Against Human Colon (HCT-116) and Blood (CCRF-CEM) Cancer Cell Lines.

    PubMed

    Moazamian, Elham; Bahador, Nima; Azarpira, Negar; Rasouli, Manoochehr

    2018-04-23

    Bacillus thuringiensis is one of the most important microorganisms used against cancer cell lines in latest studies all over the world. This study aims to perform the isolation, molecular identification, and to identify novel B. thuringiensis strains that specifically targeting human cancer cell-killing activities in Iran. A total of 88 B. thuringiensis isolates were recovered from Iran. Upon the treatment of the non-hemolytic crystal proteins by proteinase K, five isolates belonging to three biotypes, thuringiensis, kurstaki and sotto of B. thuringiensis are found to have different cytotoxicity toward HCT-116 and CCRF-CEM cell lines. Digested inclusions of the isolates consisted of one major poly peptide of 34-kDa, as estimated by sodium dodecyl-sulfate polyacrylamide gel electrophoresis. The structure, molecular identification, and functionality of five isolates inclusion proteins have shown to be closely like to parasporin-2 but their size of activated protein is not similar to this parasporin. It is unclear that discovered damaging proteins are parasporin-2. This 34-kD protein exhibited varying degrees of cytocidal activity toward human colon and blood cancer cells and caused cell swelling and the formation of blebs in the surface of the cells or alteration in cytoskeleton. The soil in the humid and temperate climates of Iran is a good reservoir for parasporin producing B. thuringiensis. The isolated B. thuringiensis strains exhibit specific and different cytocidal activities against human colon and blood cancer cells. Parasporin is a novel cytotoxic protein to human cancer cells produced by B. thuringiensis and these toxins appeared to attack an identical target on human cancer cells.

  12. Radiosensitization by inhibiting STAT1 in renal cell carcinoma.

    PubMed

    Hui, Zhouguang; Tretiakova, Maria; Zhang, Zhongfa; Li, Yan; Wang, Xiaozhen; Zhu, Julie Xiaohong; Gao, Yuanhong; Mai, Weiyuan; Furge, Kyle; Qian, Chao-Nan; Amato, Robert; Butler, E Brian; Teh, Bin Tean; Teh, Bin S

    2009-01-01

    Renal cell carcinoma (RCC) has been historically regarded as a radioresistant malignancy, but the molecular mechanism underlying its radioresistance is not understood. This study investigated the role of signal transducer and activator of transcription 1 (STAT1), a transcription factor downstream of the interferon-signaling pathway, in radioresistant RCC. The expressions of STAT1 and STAT3 in 164 human clear cell RCC samples, 47 papillary RCC samples, and 15 normal kidney tissue samples were examined by microarray expression profiling and immunohistochemistry. Western blotting was performed to evaluate the total and phosphorylated STAT1 expression in CRL-1932 (786-O) (human clear cell RCC), SKRC-39 (human papillary RCC), CCL-116 (human fibroblast), and CRL-1441 (G-401) (human Wilms tumor). STAT1 was reduced or inhibited by fludarabine and siRNA, respectively, and the effects on radiation-induced cell death were investigated using clonogenic assays. STAT1 expression, but not STAT3 expression, was significantly greater in human RCC samples (p = 1.5 x 10(-8) for clear cell; and p = 3.6 x 10(-4) for papillary). Similarly, the expression of STAT1 was relatively greater in the two RCC cell lines. STAT1 expression was reduced by both fludarabine and siRNA, significantly increasing the radiosensitivity in both RCC cell lines. This is the first study reporting the overexpression of STAT1 in human clear cell and papillary RCC tissues. Radiosensitization in RCC cell lines was observed by a reduction or inhibition of STAT1 signaling, using fludarabine or siRNA. Our data suggest that STAT1 may play a key role in RCC radioresistance and manipulation of this pathway may enhance the efficacy of radiotherapy.

  13. Mutation spectrum of MSH3-deficient HHUA/chr.2 cells reflects in vivo activity of the MSH3 gene product in mismatch repair.

    PubMed

    Tauchi, H; Komatsu, K; Ishizaki, K; Yatagai, F; Kato, T

    2000-02-14

    The endometrial tumor cell line HHUA carries mutations in two mismatch repair (MMR) genes MSH3 and MSH6. We have established an MSH3-deficient HHUA/chr.2 cell line by introducing human chromosome 2, which carries wild-type MSH6 and MSH2 genes, to HHUA cells. Introduction of chromosome 2 to HHUA cells partially restored G:G MMR activity to the cell extract and reduced the frequency of mutation at the hypoxanthine-guanine phosphoribosyltransferase (hprt*) locus to about 3% that of the parental HHUA cells, which is five-fold the frequency in MMR-proficient cells, indicating that the residual mutator activity in HHUA/chr.2 is due to an MSH3-deficiency in these cells. The spectrum of mutations occurring at the HPRT locus of HHUA/chr.2 was determined with 71 spontaneous 6TG(r) clones. Base substitutions and +/-1 bp frameshifts were the major mutational events constituting, respectively, 54% and 42% of the total mutations, and more than 70% of them occurred at A:T sites. A possible explanation for the apparent bias of mutations to A:T sites in HHUA/chr.2 is haploinsufficiency of the MSH6 gene on the transferred chromosome 2. Comparison of the mutation spectra of HHUA/chr.2 with that of the MSH6-deficient HCT-15 cell line [S. Ohzeki, A. Tachibana, K. Tatsumi, T. Kato, Carcinogenesis 18 (1997) 1127-1133.] suggests that in vivo the MutSalpha (MSH2:MSH6) efficiently repairs both mismatch and unpaired extrahelical bases, whereas MutSbeta (MSH2:MSH3) efficiently repairs extrahelical bases and repairs mismatch bases to a limited extent.

  14. Cytomegalovirus infection of the BS-1 human stroma cell line: effect on murine hemopoiesis.

    PubMed

    Steinberg, H N; Anderson, J; Lim, B; Chatis, P A

    1993-10-01

    BS-1, a stromal cell line derived from human bone marrow, can support the growth of murine erythroid (BFU-E), granulocyte-macrophage (CFU-GM), and megakaryocyte (CFU-M) progenitor cells in a short term in vitro coculture system. Exposure of BS-1 cells to cytomegalovirus (CMV) for 3 hr prior to coculture results in a marked reduction in the stroma cell's ability to support murine hemopoiesis. CMV's effect on the BS-1 cell's hematopoietic support function is dependent on the multiplicity of infection with total suppression of BFU-E observed at a 1:1 ratio of virus to bone marrow cells. A 50% loss in the ability of BS-1 cells to support BFU-E is observed at a 0.1:1 ratio. No effect of CMV is observed with further log dilutions of virus. CMV infection of BS-1 cells affects its support of erythroid progenitor cell growth to a greater extent than its influence on the development of granulocyte-macrophage colonies. Antibody to CMV or heat inactivation of the virus reverses the inhibitory affect on BS-1 cells. The results suggest that CMV can infect a cell that constitutes one of the cellular elements of the normal bone marrow microenvironment causing a decrease in the stroma's ability to support the growth and development of normal progenitor cells.

  15. Two-dimensional particle-in-cell plasma source ion implantation of a prolate spheroid target

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Sen; Han, Hong-Ying; Peng, Xiao-Qing; Chang, Ye; Wang, De-Zhen

    2010-03-01

    A two-dimensional particle-in-cell simulation is used to study the time-dependent evolution of the sheath surrounding a prolate spheroid target during a high voltage pulse in plasma source ion implantation. Our study shows that the potential contour lines pack more closely in the plasma sheath near the vertex of the major axis, i.e. where a thinner sheath is formed, and a non-uniform total ion dose distribution is incident along the surface of the prolate spheroid target due to the focusing of ions by the potential structure. Ion focusing takes place not only at the vertex of the major axis, where dense potential contour lines exist, but also at the vertex of the minor axis, where sparse contour lines exist. This results in two peaks of the received ion dose, locating at the vertices of the major and minor axes of the prolate spheroid target, and an ion dose valley, staying always between the vertices, rather than at the vertex of the minor axis.

  16. Phenolic profile and antioxidant activity from peels and seeds of melon (Cucumis melo L. var. reticulatus) and their antiproliferative effect in cancer cells.

    PubMed

    Rolim, P M; Fidelis, G P; Padilha, C E A; Santos, E S; Rocha, H A O; Macedo, G R

    2018-03-01

    Melon (Cucumis melo L.) has high economic value and in recent years, its production has increased; however, part of the fruit is wasted. Usually, inedible parts such as peel and seeds are discarded during processing and consumption. Extracts of melon residues were prepared and their phenolic compounds, antioxidants and antiproliferative activities were evaluated. Total phenolic compounds were found in hydroethanolic, hydromethanolic, and aqueous extracts, especially for melon peel (1.016 mg gallic acid equivalent/100 g). Flavonoids total content found for melon peel aqueous extract was 262 µg of catechin equivalent (CA)/100 g. In all extracts of melon peel significant amounts of gallic acid, catechin, and eugenol were found. For total antioxidant capacity, reported as ascorbic acid equivalent, the hydroethanolic and hydromethanolic extracts in peels and hydromethanolic in seeds were 89, 74, and 83 mg/g, respectively. Different extracts of melon showed iron and copper ions chelating activity at different concentrations, especially melon peel aqueous extract, reaching values of 61% for iron and 84% for copper. The hydroethanolic extract of melon peel presented a significant ability for hydroxyl radicals scavenging (68%). To assess the antiproliferative potential in human cancer cell lines, such as kidney carcinoma, colorectal carcinoma, cervical adenocarcinoma and cervical carcinoma, MTT assay was performed. The proliferation was inhibited by 20-85% at extracts concentrations of 0.1-1.0 mg/mL in all cancer cell lines. The results suggest that melon residues extracts display a high antioxidant activity in in vitro assays and have effective biological activity against the growth of human tumor cells.

  17. Phenolic profile and antioxidant activity from peels and seeds of melon (Cucumis melo L. var. reticulatus) and their antiproliferative effect in cancer cells

    PubMed Central

    Rolim, P.M.; Fidelis, G.P.; Padilha, C.E.A.; Santos, E.S.; Rocha, H.A.O.; Macedo, G.R.

    2018-01-01

    Melon (Cucumis melo L.) has high economic value and in recent years, its production has increased; however, part of the fruit is wasted. Usually, inedible parts such as peel and seeds are discarded during processing and consumption. Extracts of melon residues were prepared and their phenolic compounds, antioxidants and antiproliferative activities were evaluated. Total phenolic compounds were found in hydroethanolic, hydromethanolic, and aqueous extracts, especially for melon peel (1.016 mg gallic acid equivalent/100 g). Flavonoids total content found for melon peel aqueous extract was 262 µg of catechin equivalent (CA)/100 g. In all extracts of melon peel significant amounts of gallic acid, catechin, and eugenol were found. For total antioxidant capacity, reported as ascorbic acid equivalent, the hydroethanolic and hydromethanolic extracts in peels and hydromethanolic in seeds were 89, 74, and 83 mg/g, respectively. Different extracts of melon showed iron and copper ions chelating activity at different concentrations, especially melon peel aqueous extract, reaching values of 61% for iron and 84% for copper. The hydroethanolic extract of melon peel presented a significant ability for hydroxyl radicals scavenging (68%). To assess the antiproliferative potential in human cancer cell lines, such as kidney carcinoma, colorectal carcinoma, cervical adenocarcinoma and cervical carcinoma, MTT assay was performed. The proliferation was inhibited by 20–85% at extracts concentrations of 0.1–1.0 mg/mL in all cancer cell lines. The results suggest that melon residues extracts display a high antioxidant activity in in vitro assays and have effective biological activity against the growth of human tumor cells. PMID:29513789

  18. Molecularly Targeted Dose-Enhancement Radiotherapy Using Gold and Luminescent Nanoparticles in an Orthotopic Human Prostate Cancer Rat Model

    DTIC Science & Technology

    2013-10-01

    cell lines, such as cervix cancer cell line (HeLa) and breast cancer cell line (MDA-MB-231), were also employed. The experiments with other cell lines...breast cancer cell line (MDA-MB- 231), and cervix cancer cell line (HeLa). Different from our hypothesis, prostate cancer cell lines did not present...Radiotherapy Using Gold and Luminescent Nanoparticles in an Orthotopic Human Prostate Cancer Rat Model PRINCIPAL INVESTIGATOR: Kwang Song

  19. [The factors involved in invasive ability of endometrial carcinoma cells].

    PubMed

    Mori, Y; Mizuuchi, H; Sato, K; Okamura, N; Kudo, R

    1994-06-01

    The in vitro invasive ability, the expression of cell adhesion molecule E-cadherin, activity of matrix metalloproteinase (MMP) and K-ras point mutation were investigated in eight human endometrial carcinoma cell lines. 1) In vitro invasive abilities of endometrial carcinoma cell lines depend on the degree of cell differentiation and the origin of cell lines. A poorly-differentiated carcinoma cell line (NUE-1) and a cell line derived from metastatic lymph node (SNG-M) were more invasive than moderately-(HEC-1A, HEC-1BE) and well-differentiated (HEC-6, Ishikawa) cell lines. 2) Immunohistochemically, less or non-invasive cell lines expressed E-cadherin strongly, whereas a highly invasive cell line (NUE-1) expressed E-cadherin weakly. 3) When cultured on Matrigel-coated dishes, the tumor cells derived from moderately- and well-differentiated carcinoma aggregated with each other and did not invade Matrigel in the invasion assay. The aggregated cells expressed E-cadherin more strongly when cultured on Matrigel. 4) 72-kD gelatinase (MMP-2) was secreted in serum-free conditioned medium of all cell lines. In an invasive cell line (NUE-1,SNG-M), the activity of MMP-2 was stronger than in other cell lines. And the activity of 92-kDa gelatinase (MMP-9) was detected in most invasive cell line (NUE-1). 5) Point mutation of K-ras codon 12 was detected in four of eight (50%) cell lines by the PCR-RFLP method. The changes in the DNA sequence were identified, but K-ras point mutation was not correlated with in vitro invasiveness of the tumor cells.

  20. Antioxidant and Antiproliferative Potential of Fruiting Bodies of the Wild-Growing King Bolete Mushroom, Boletus edulis (Agaricomycetes), from Western Serbia.

    PubMed

    Novakovic, Aleksandra; Karaman, Maja; Kaisarevic, Sonja; Radusin, Tanja; Llic, Nebojsa

    2017-01-01

    The aim of this work was to study the bioactivity of crude aqueous and ethanolic extracts of Boletus edulis prepared from caps and stipes of wild-growing basidiocarps collected from the Prijepolje region (western Serbia). The bioactivity screening included antioxidant (2,2-diphenyl-l-picrylhydrazyl [DPPH], nitric oxide, super-oxide anion*, and hydroxyl radicals and ferric-reducing antioxidant power) and antiproliferative MTT assays (human breast MCF-7 cancer cell line). In addition, all extracts were primarily characterized by ultraviolet/visible spectrophotometry to determine total phenolic and flavonoid contents. The highest anti-DPPH and anti-hydroxyl radical activity were observed in aqueous B. edulis extract from the caps (half maximal inhibitory concentration [IC50] = 50.97 μg/ mL and 2.05 μg/mL, respectively), whereas the highest anti-nitric oxide radical activity was observed in aqueous B. edulis extract from the stipes (IC50 = 10.74 μg/mL). The ethanolic extract obtained from the mushroom stipe showed higher anti-superoxide anion radical activity (IC50 = 9.84 μg/mL) and ferric-reducing antioxidant power (22.14 mg ascorbic acid equivalents/g dry weight) compared with aqueous extracts. Total phenolic content for all extracts was similar but total flavonoid content was significantly higher in the aqueous B. edulis extract from the caps (4.5 mg quercetin equivalents/g dry weight). All crude extracts showed activity against the MCF-7 cell line, with the ethanolic extract of B. edulis prepared from stipes (IC50 = 56 μg/mL) being the most potent. This is, to our knowledge, the first report of the antiproliferative effects of crude aqueous and ethanolic extracts prepared from caps and stipes of wild-growing basidiocarps of B. edulis on the human breast MCF-7 cancer cell line.

  1. Synthesis of Bioactive Chlorogenic Acid-Silica Hybrid Materials via the Sol–Gel Route and Evaluation of Their Biocompatibility

    PubMed Central

    Pacifico, Severina

    2017-01-01

    Natural phenol compounds are gaining a great deal of attention because of their potential use as prophylactic and therapeutic agents in many diseases, as well as in applied science for their preventing role in oxidation deterioration. With the aim to synthetize new phenol-based materials, the sol–gel method was used to embed different content of the phenolic antioxidant chlorogenic acid (CGA) within silica matrices to obtain organic-inorganic hybrid materials. Fourier transform infrared (FTIR) measurements were used to characterize the prepared materials. The new materials were screened for their bioactivity and antioxidant potential. To this latter purpose, direct DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2′-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) methods were applied: radical scavenging capability appeared strongly dependent on the phenol amount in investigated hybrids, and became pronounced, mainly toward the ABTS radical cation, when materials with CGA content equal to 15 wt% and 20 wt% were analyzed. The in vitro biocompatibility of the synthetized materials was estimated by using the MTT assay towards fibroblast NIH 3T3 cells, human keratinocyte HaCaT cells, and the neuroblastoma SH-SY5Y cell line. As cell viability and morphology of tested cell lines seemed to be unaffected by new materials, the attenuated total reflectance (ATR)-FTIR method was applied to deeply measure the effects of the hybrids in the three different cell lines. PMID:28773198

  2. Pharmacological evaluation of phytochemicals from South Indian Black Turmeric (Curcuma caesia Roxb.) to target cancer apoptosis.

    PubMed

    Mukunthan, K S; Satyan, R S; Patel, T N

    2017-09-14

    Curcuma caesia Roxb. (Black turmeric), a perennial herb of the family Zingiberaceae is indigenous to India. C. caesia is used as a spice, food preservative and coloring agent commonly in the Indian subcontinent. Functional parametric pharmacological evaluations like drug ability and toxicity profile of this endangered species is poorly documented. In our present study, among all the extracts of dried C. caesia rhizome viz- hexane, ethyl acetate, methanol and water tested for free radical scavenging capacity by total antioxidant activity (TAO) method, Hexane Rhizome Extract (HRE) was found to possess remarkable activity (1200mg ascorbic acid equivalent/100g). In MTT assay across three cancer cell lines and a control cell line, HRE exhibited a dose-dependent inhibition only in cancer cells, with notable activity in HepG2 cell lines (IC50: 0976µg/mL). Further, western blotting and flow cytometry experiments proved that HRE induces cell arrest at G2/M phase along with cellular apoptosis as suggestive by multiple-point mitochondrial mediated intrinsic pathway of Programmed Cell Death (PCD). Gas Chromatography-Mass Spectrophotometry (GC-MS) analysis of HRE suggested twenty compounds that when docked in silico with Tubulin (1SA0) and Epidermal Growth Factor Receptor/ EGFR (1XKK) showed very intimate binding with the original ligands. Our results provided significant evidence of the toxicity mechanisms of HRE that may be beneficial for more rational applications of drug discovery for slowing down cancer progression. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  3. Synthesis of Bioactive Chlorogenic Acid-Silica Hybrid Materials via the Sol-Gel Route and Evaluation of Their Biocompatibility.

    PubMed

    Catauro, Michelina; Pacifico, Severina

    2017-07-21

    Natural phenol compounds are gaining a great deal of attention because of their potential use as prophylactic and therapeutic agents in many diseases, as well as in applied science for their preventing role in oxidation deterioration. With the aim to synthetize new phenol-based materials, the sol-gel method was used to embed different content of the phenolic antioxidant chlorogenic acid (CGA) within silica matrices to obtain organic-inorganic hybrid materials. Fourier transform infrared (FTIR) measurements were used to characterize the prepared materials. The new materials were screened for their bioactivity and antioxidant potential. To this latter purpose, direct DPPH (2,2-diphenyl-1-picrylhydrazyl) and ABTS (2,2'-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) methods were applied: radical scavenging capability appeared strongly dependent on the phenol amount in investigated hybrids, and became pronounced, mainly toward the ABTS radical cation, when materials with CGA content equal to 15 wt% and 20 wt% were analyzed. The in vitro biocompatibility of the synthetized materials was estimated by using the MTT assay towards fibroblast NIH 3T3 cells, human keratinocyte HaCaT cells, and the neuroblastoma SH-SY5Y cell line. As cell viability and morphology of tested cell lines seemed to be unaffected by new materials, the attenuated total reflectance (ATR)-FTIR method was applied to deeply measure the effects of the hybrids in the three different cell lines.

  4. Chrysin enhances doxorubicin-induced cytotoxicity in human lung epithelial cancer cell lines: The role of glutathione

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brechbuhl, Heather M.; Kachadourian, Remy; Min, Elysia

    We hypothesized that flavonoid-induced glutathione (GSH) efflux through multi-drug resistance proteins (MRPs) and subsequent intracellular GSH depletion is a viable mechanism to sensitize cancer cells to chemotherapies. This concept was demonstrated using chrysin (5–25 μM) induced GSH efflux in human non-small cell lung cancer lines exposed to the chemotherapeutic agent, doxorubicin (DOX). Treatment with chrysin resulted in significant and sustained intracellular GSH depletion and the GSH enzyme network in the four cancer cell types was predictive of the severity of chrysin induced intracellular GSH depletion. Gene expression data indicated a positive correlation between basal MRP1, MRP3 and MRP5 expression andmore » total GSH efflux before and after chrysin exposure. Co-treating the cells for 72 h with chrysin (5–30 μM) and DOX (0.025–3.0 μM) significantly enhanced the sensitivity of the cells to DOX as compared to 72-hour DOX alone treatment in all four cell lines. The maximum decrease in the IC{sub 50} values of cells treated with DOX alone compared to co-treatment with chrysin and DOX was 43% in A549 cells, 47% in H157 and H1975 cells and 78% in H460 cells. Chrysin worked synergistically with DOX to induce cancer cell death. This approach could allow for use of lower concentrations and/or sensitize cancer cells to drugs that are typically resistant to therapy. -- Graphical abstract: Possible mechanisms by which chrysin enhances doxorubicin-induced toxicity in cancer cells. Highlights: ► Chyrsin sustains a significant depletion of GSH levels in lung cancer cells. ► Chyrsin synergistically potentiates doxorubicin-induced cancer cell cytotoxicity. ► Cancer cell sensitivity correlated with GSH and MRP gene network expression. ► This approach could allow for lower side effects and targeting resistant tumors.« less

  5. In vitro Development of Chemotherapy and Targeted Therapy Drug-Resistant Cancer Cell Lines: A Practical Guide with Case Studies

    PubMed Central

    McDermott, Martina; Eustace, Alex J.; Busschots, Steven; Breen, Laura; Crown, John; Clynes, Martin; O’Donovan, Norma; Stordal, Britta

    2014-01-01

    The development of a drug-resistant cell line can take from 3 to 18 months. However, little is published on the methodology of this development process. This article will discuss key decisions to be made prior to starting resistant cell line development; the choice of parent cell line, dose of selecting agent, treatment interval, and optimizing the dose of drug for the parent cell line. Clinically relevant drug-resistant cell lines are developed by mimicking the conditions cancer patients experience during chemotherapy and cell lines display between two- and eight-fold resistance compared to their parental cell line. Doses of drug administered are low, and a pulsed treatment strategy is often used where the cells recover in drug-free media. High-level laboratory models are developed with the aim of understanding potential mechanisms of resistance to chemotherapy agents. Doses of drug are higher and escalated over time. It is common to have difficulty developing stable clinically relevant drug-resistant cell lines. A comparative selection strategy of multiple cell lines or multiple chemotherapeutic agents mitigates this risk and gives insight into which agents or type of cell line develops resistance easily. Successful selection strategies from our research are presented. Pulsed-selection produced platinum or taxane-resistant large cell lung cancer (H1299 and H460) and temozolomide-resistant melanoma (Malme-3M and HT144) cell lines. Continuous selection produced a lapatinib-resistant breast cancer cell line (HCC1954). Techniques for maintaining drug-resistant cell lines are outlined including; maintaining cells with chemotherapy, pulse treating with chemotherapy, or returning to master drug-resistant stocks. The heterogeneity of drug-resistant models produced from the same parent cell line with the same chemotherapy agent is explored with reference to P-glycoprotein. Heterogeneity in drug-resistant cell lines reflects the heterogeneity that can occur in clinical drug resistance. PMID:24639951

  6. Integration sites of Epstein-Barr virus genome on chromosomes of human lymphoblastoid cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wuu, K.D.; Chen, Y.J.; Wang-Wuu, S.

    1994-09-01

    Epstein-Barr virus (EBV) is the pathogen of infectious mononucleosis. The viral genome is present in more than 95% of the African cases of Burkitt lymphoma and it is usually maintained in episomal form in the tumor cells. Viral integration has been described only for Nanalwa which is a Burkitt lymphoma cell line lacking episomes. In order to examine the role of EBV in the immortalization of human Blymphocytes, we investigated whether the EBV integration into the human genome is essential. If the integration does occur, we would like to know whether the integration is randomly distributed or whether the viralmore » DNA integrates preferentially at certain sites. Fourteen in vitro immortalized human lymphoblastoid cell lines (LCLs) were examined by fluorescence in situ hybridization (FISH) with a biotinylated EBV BamHI w DNA fragment as probe. The episomal form of EBV DNA was found in all cells of these cell lines, while only about 65% of the cells have the integrated viral DNA. This might suggest that integration is not a pre-requisite for cell immortalization. Although all chromosomes, except Y, have been found with integrated viral genome, chromsomes 1 and 5 are the most frequent EBV DNA carrier (p<0.05). Nine chromosome bands, namely, 1p31, 1q31, 2q32, 3q13, 3q26, 5q14, 6q24, 7q31 and 12q21, are preferential targets for EBV integration (p<0.001). Eighty percent of the total 938 EBV hybridization signals were found to be at G-band-positive area. This suggests that the mechanism of EBV integration might be different from that of the retroviruses, which specifically integrate to G-band-negative areas. Thus, we conclude that the integration of EBV to host genome is non-random and it may have something to do with the structure of chromosome and DNA sequences.« less

  7. Role of GGAP/PIKE-A in prostate cancer progression

    DTIC Science & Technology

    2009-05-01

    linking alterations of GGAP2 activity to neo- plastic transformation. The GGAP2 locus at 12q13.3 is amplified in glioblastoma cell lines, primary glioma ...prostate cancer tissue lysates . Protein (1.5 mg of total) was incubated with anti-GGAP2 rabbit antibody and protein A agarose beads for 4 h before the...agarose pull-down assay. Purified proteins or cell lysates expressing wild-type and mutant GGAP2 were equilibrated in GTP binding buffer [20 mmol/L Tris

  8. The SDF1-CXCR4 Axis Functions through p38-MAPK Signaling to Drive Breast Cancer Progression and Metastasis

    DTIC Science & Technology

    2008-09-01

    with breast cancer cells (MCF7 cell line) could induce proliferation and lead to hormone independent tumors in vivo. Upon analysis of these tumors by...1-0694 4.B MCS induce gene expression of ER mediated genes. Endpoint tumors from above studies were harvested for use in Real-time PCR analysis ...Total RNA was isolated from tumors, reverse transcribed into cDNA and subjected to real-time PCR analysis for quantification. A. Real time PCR results

  9. Dual-Color Fluorescence Imaging to Monitor CYP3A4 and CYP3A7 Expression in Human Hepatic Carcinoma HepG2 and HepaRG Cells

    PubMed Central

    Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako

    2014-01-01

    Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps. PMID:25101946

  10. Dual-color fluorescence imaging to monitor CYP3A4 and CYP3A7 expression in human hepatic carcinoma HepG2 and HepaRG cells.

    PubMed

    Tsuji, Saori; Kawamura, Fumihiko; Kubiura, Musashi; Hayashi, Ayaka; Ohbayashi, Tetsuya; Kazuki, Yasuhiro; Chesné, Christophe; Oshimura, Mitsuo; Tada, Masako

    2014-01-01

    Human adult hepatocytes expressing CYP3A4, a major cytochrome P450 enzyme, are required for cell-based assays to evaluate the potential risk of drug-drug interactions caused by transcriptional induction of P450 enzymes in early-phase drug discovery and development. However, CYP3A7 is preferentially expressed in premature hepatoblasts and major hepatic carcinoma cell lines. The human hepatocellular carcinoma cell line HepaRG possesses a high self-renewal capacity and can differentiate into hepatic cells similar to human adult hepatocytes in vitro. Transgenic HepaRG cells, in which the expression of fluorescent reporters is regulated by 35 kb regulatory elements of CYP3A4, have a distinct advantage over human hepatocytes isolated by collagenase perfusion, which are unstable in culture. Thus, we created transgenic HepaRG and HepG2 cells by replacing the protein-coding regions of human CYP3A4 and CYP3A7 with enhanced green fluorescent protein (EGFP) and DsRed reporters, respectively, in a bacterial artificial chromosome vector that included whole regulatory elements. The intensity of DsRed fluorescence was initially high during the proliferation of transgenic HepaRG cells. However, most EGFP-positive cells were derived from those in which DsRed fluorescence was extinguished. Comparative analyses in these transgenic clones showed that changes in the total fluorescence intensity of EGFP reflected fold changes in the mRNA level of endogenous CYP3A4. Moreover, CYP3A4 induction was monitored by the increase in EGFP fluorescence. Thus, this assay provides a real-time evaluation system for quality assurance of hepatic differentiation into CYP3A4-expressing cells, unfavourable CYP3A4 induction, and fluorescence-activated cell sorting-mediated enrichment of CYP3A4-expressing hepatocytes based on the total fluorescence intensities of fluorescent reporters, without the need for many time-consuming steps.

  11. Immortal, telomerase-negative cell lines derived from a Li-Fraumeni syndrome patient exhibit telomere length variability and chromosomal and minisatellite instabilities.

    PubMed

    Tsutsui, Takeki; Kumakura, Shin-Ichi; Tamura, Yukiko; Tsutsui, Takeo W; Sekiguchi, Mizuki; Higuchi, Tokihiro; Barrett, J Carl

    2003-05-01

    Five immortal cell lines derived from a Li-Fraumeni syndrome patient (MDAH 087) with a germline mutant p53 allele were characterized with respect to telomere length and genomic instability. The remaining wild-type p53 allele is lost in the cell lines. Telomerase activity was undetectable in all immortal cell lines. Five subclones of each cell line and five re-subclones of each of the subclones also showed undetectable telomerase activity. All five immortal cell lines exhibited variability in the mean length of terminal restriction fragments (TRFs). Subclones of each cell line, and re-subclones of the subclones also showed TRF variability, indicating that the variability is owing to clonal heterogeneity. Chromosome aberrations were observed at high frequencies in these cell lines including the subclones and re-subclones, and the principal types of aberrations were breaks, double minute chromosomes and dicentric chromosomes. In addition, minisatellite instability detected by DNA fingerprints was observed in the immortal cell lines. However, all of the cell lines were negative for microsatellite instability. As minisatellite sequences are considered recombinogenic in mammalian cells, these results suggest that recombination rates can be increased in these cell lines. Tumor-derived human cell lines, HT1080 cells and HeLa cells that also lack p53 function, exhibited little genomic instability involving chromosomal and minisatellite instabilities, indicating that chromosomal and minisatellite instabilities observed in the immortal cell lines lacking telomerase activity could not result from loss of p53 function.

  12. Development of apoptosis-resistant dihydrofolate reductase-deficient Chinese hamster ovary cell line.

    PubMed

    Lee, Suk Kyoo; Lee, Gyun Min

    2003-06-30

    Apoptosis-resistant dihydrofolate reductase-deficient CHO cell line (dhfr(-) CHO-bcl2) was developed by introduction of the bcl-2 gene into the dhfr(-) CHO cell line (DUKX-B11, ATCC CRL-9096) and subsequent selection of clones stably overexpressing Bcl-2 in the absence of selection pressure. When the dhfr(-) CHO-bcl2 cell line was used as a host cell line for development of a recombinant CHO (rCHO) cell line expressing a humanized antibody, it displayed stable expression of the bcl-2 gene during rCHO cell line development and no detrimental effect of Bcl-2 overexpression on specific antibody productivity. Taken together, the results obtained demonstrate that the use of an apoptosis-resistant dhfr(-) CHO cell line as the host cell line saves the effort of establishing an apoptosis-resistant rCHO cell line and expedites the development process of apoptosis-resistant rCHO cells producing therapeutic proteins. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 82: 872-876, 2003.

  13. Comparison of test methods to screen for residual chemical contamination on medical device surfaces.

    PubMed

    Kulkarni, Prachi; Shoff, Megan; Lucas, Anne

    2012-01-01

    Reprocessing medical devices involves several steps including cleaning and disinfection or sterilization. Chemical residuals can occur at various stages of reprocessing. These residues could interfere with device function and potentially harm patients. These solutions are composed of a combination of various chemicals and their residues are highly diluted post rinsing, therefore, it is difficult to find a sensitive and rapid method to detect toxicity due to chemical residues. This study focused on (1) finding the levels of residues that are cytotoxic using two mammalian cell lines and Daphnia magna, and (2) evaluating two test methods, Total Organic Carbon (TOC) and the Luminescent Bacteria Test (LBT), to measure residual chemicals levels. The two mammalian cell lines were equal in their cytotoxicity responses. However, Daphnia were more sensitive to some chemical residue than the two mammalian cell lines. TOC and LBT were able to detect the presence of residue well below the levels that were determined to cause mammalian cytotoxicity. LBT was more sensitive for some chemicals and TOC for others, both in solution and in simulated cleaning and rinsing for the limited number of solutions tested in this study.

  14. Immunoblotting validation of research antibodies generated against HS1-associated protein X-1 in the human neutrophil model cell line PLB-985.

    PubMed

    Cavnar, Peter; Inman, Kristina

    2015-01-01

    HS1-associated protein X-1 (Hax1) is a 35 kDa protein that is ubiquitously expressed. Hax1 is an anti-apoptotic protein with additional roles in cell motility, and autosomal recessive loss of Hax1 results in Kostmann syndrome, a form of severe congenital neutropenia. Because of the important role of Hax1 in neutrophils we demonstrate here validation of two commercially available research antibodies directed against human Hax1 in the human myeloid leukemia cell line PLB-985 cells. We show that both the mouse anti-Hax1 monoclonal IgG directed against amino acids 10-148 of Hax1 and a rabbit anti-Hax1 polyclonal IgG antibody directed against full-length Hax1 reliably and consistently detect Hax1 during immunoblotting of three different PLB-985 cell densities. Using shRNA mediated Hax1 knockdown, we demonstrate the specificity of both Hax1 antibodies. In addition, our results suggest that the rabbit anti-Hax1 polyclonal antibody provides a stronger intensity in detecting Hax1 protein, with detection in as few as 0.1 x 10 (6) cells in 6 total replicates we have performed.

  15. Leukemia-lymphoma cell lines as model systems for hematopoietic research.

    PubMed

    Drexler, Hans G; MacLeod, Roderick A F

    2003-01-01

    Continuous human leukemia-lymphoma (LL) cell lines comprise a rich self-renewing resource of accessible and manipulable living cells which has illuminated the pathophysiology of hematopoietic tumors as well as basic cell biology. The major key advantages of continuous cell lines are the unlimited supply and worldwide availability of identical cell material and their cryopreservation. LL cell lines are characterized generally by monoclonal origin and differentiation arrest, sustained proliferation in vitro with preservation of most cellular features, and specific genetic alterations. The most practical classification of LL cell lines assigns them to one of the physiologically occurring cell lineages, based on their immunophenotype, genotype and functional features. Truly malignant cell lines may be distinguished from Epstein-Barr virus (EBV)-immortalized normal cells, using various operational and conceptual parameters. The characterization and publication of new LL cell lines provides important and informative core data which, by opening new avenues for investigation, have become ubiquitous powerful research tools that are available to every investigator by reference cell repositories. There is a need in the scientific community for clean and authenticated LL cell lines to which every scientist has access as offered by these institutionalized public cell line banks. A list of the most useful, robust and freely available reference cell lines is proposed in this review. Clearly, studies of LL cell lines have provided seminal insights into the biology of hematopoietic neoplasia.

  16. Cell Culture System for Analysis of Genetic Heterogeneity Within Hepatocellular Carcinomas and Response to Pharmacologic Agents.

    PubMed

    Gao, Qiang; Wang, Zhi-Chao; Duan, Meng; Lin, Yi-Hui; Zhou, Xue-Ya; Worthley, Daniel L; Wang, Xiao-Ying; Niu, Gang; Xia, Yuchao; Deng, Minghua; Liu, Long-Zi; Shi, Jie-Yi; Yang, Liu-Xiao; Zhang, Shu; Ding, Zhen-Bin; Zhou, Jian; Liang, Chun-Min; Cao, Ya; Xiong, Lei; Xi, Ruibin; Shi, Yong-Yong; Fan, Jia

    2017-01-01

    No targeted therapies have been found to be effective against hepatocellular carcinoma (HCC), possibly due to the large degree of intratumor heterogeneity. We performed genetic analyses of different regions of HCCs to evaluate levels of intratumor heterogeneity and associate alterations with responses to different pharmacologic agents. We obtained samples of HCCs (associated with hepatitis B virus infection) from 10 patients undergoing curative resection, before adjuvant therapy, at hospitals in China. We collected 4-9 spatially distinct samples from each tumor (55 regions total), performed histologic analyses, isolated cancer cells, and carried them low-passage culture. We performed whole-exome sequencing, copy-number analysis, and high-throughput screening of the cultured primary cancer cells. We tested responses of an additional 105 liver cancer cell lines to a fibroblast growth factor receptor (FGFR) 4 inhibitor. We identified a total of 3670 non-silent mutations (3192 missense, 94 splice-site variants, and 222 insertions or deletions) in the tumor samples. We observed considerable intratumor heterogeneity and branched evolution in all 10 tumors; the mean percentage of heterogeneous mutations in each tumor was 39.7% (range, 12.9%-68.5%). We found significant mutation shifts toward C>T and C>G substitutions in branches of phylogenetic trees among samples from each tumor (P < .0001). Of note, 14 of the 26 oncogenic alterations (53.8%) varied among subclones that mapped to different branches. Genetic alterations that can be targeted by existing pharmacologic agents (such as those in FGF19, DDR2, PDGFRA, and TOP1) were identified in intratumor subregions from 4 HCCs and were associated with sensitivity to these agents. However, cells from the remaining subregions, which did not have these alterations, were not sensitive to these drugs. High-throughput screening identified pharmacologic agents to which these cells were sensitive, however. Overexpression of FGF19 correlated with sensitivity of cells to an inhibitor of FGFR 4; this observation was validated in 105 liver cancer cell lines (P = .0024). By analyzing genetic alterations in different tumor regions of 10 HCCs, we observed extensive intratumor heterogeneity. Our patient-derived cell line-based model, integrating genetic and pharmacologic data from multiregional cancer samples, provides a platform to elucidate how intratumor heterogeneity affects sensitivity to different therapeutic agents. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  17. MUC4 down-regulation reverses chemoresistance of pancreatic cancer stem/progenitor cells and their progenies.

    PubMed

    Mimeault, Murielle; Johansson, Sonny L; Senapati, Shantibhusan; Momi, Navneet; Chakraborty, Subhankar; Batra, Surinder K

    2010-09-01

    The present study was undertaken to estimate the therapeutic benefit to down-regulate the MUC4 mucin for reversing chemoresistance of pancreatic cancer (PC) stem/progenitor cells and their progenies. The results have revealed that MUC4 mucin is overexpressed in CD133(+) and CD133(-) pancreatic cells (PCs) detected in patient's adenocarcinoma tissues while no significant expression was seen in normal pancreatic tissues. The gain- and loss-of-function analyses have indicated that the overexpression of MUC4 in PC lines is associated with a higher resistance to the anti-proliferative, anti-invasive and apoptotic effects induced by gemcitabine. Importantly, the treatment of the MUC4-overexpressing CD18/HPAF-Src cells with gemcitabine resulted in an enrichment of the side population (SP) cells expressing CD133 while the total PC cells including non-SP cells detected in MUC4 knockdown CD18/HPAF-shMUC4 cells were responsive to the cytotoxic effects induced by gemcitabine. These data suggest that the MUC4 down-regulation may constitute a potential therapeutic strategy for improving the efficacy of gemcitabine to eradicate the total PC cell mass, and thereby preventing disease relapse. Copyright 2010 Elsevier Ireland Ltd. All rights reserved.

  18. A diagnostic microdosing approach to investigate platinum sensitivity in non-small cell lung cancer

    DOE PAGES

    Wang, Si-Si; Zimmermann, Maike; Zhang, Hongyong; ...

    2017-04-24

    The platinum-based drugs cisplatin, carboplatin and oxaliplatin are often used for chemotherapy, but drug resistance is common. The prediction of resistance to these drugs via genomics is a challenging problem since hundreds of genes are involved. A possible alternative is to use mass spectrometry to determine the propensity for cells to form drug-DNA adducts—the pharmacodynamic drug-target complex for this class of drugs. In this paper, the feasibility of predictive diagnostic microdosing was assessed in non-small cell lung cancer (NSCLC) cell culture and a pilot clinical trial. Accelerator mass spectrometry (AMS) was used to quantify [ 14C]carboplatin-DNA monoadduct levels in themore » cell lines induced by microdoses and therapeutic doses of carboplatin, followed by correlation with carboplatin IC 50 values for each cell line. The adduct levels in cell culture experiments were linearly proportional to dose (R 2 = 0.95, p < 0.0001) and correlated with IC 50 across all cell lines for microdose and therapeutically relevant carboplatin concentrations (p = 0.02 and p = 0.01, respectively). A pilot microdosing clinical trial was conducted to define protocols and gather preliminary data. Plasma pharmacokinetics (PK) and [ 14C]carboplatin-DNA adducts in white blood cells and tumor tissues from six NSCLC patients were quantified via AMS. The blood plasma half-life of [ 14C]carboplatin administered as a microdose was consistent with the known PK of therapeutic dosing. The optimal [ 14C]carboplatin formulation for the microdose was 10 7 dpm/kg of body weight and 1% of the therapeutic dose for the total mass of carboplatin. No microdose-associated toxicity was observed in the patients. Finally, additional accruals are required to significantly correlate adduct levels with response.« less

  19. A diagnostic microdosing approach to investigate platinum sensitivity in non-small cell lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Si-Si; Zimmermann, Maike; Zhang, Hongyong

    The platinum-based drugs cisplatin, carboplatin and oxaliplatin are often used for chemotherapy, but drug resistance is common. The prediction of resistance to these drugs via genomics is a challenging problem since hundreds of genes are involved. A possible alternative is to use mass spectrometry to determine the propensity for cells to form drug-DNA adducts—the pharmacodynamic drug-target complex for this class of drugs. In this paper, the feasibility of predictive diagnostic microdosing was assessed in non-small cell lung cancer (NSCLC) cell culture and a pilot clinical trial. Accelerator mass spectrometry (AMS) was used to quantify [ 14C]carboplatin-DNA monoadduct levels in themore » cell lines induced by microdoses and therapeutic doses of carboplatin, followed by correlation with carboplatin IC 50 values for each cell line. The adduct levels in cell culture experiments were linearly proportional to dose (R 2 = 0.95, p < 0.0001) and correlated with IC 50 across all cell lines for microdose and therapeutically relevant carboplatin concentrations (p = 0.02 and p = 0.01, respectively). A pilot microdosing clinical trial was conducted to define protocols and gather preliminary data. Plasma pharmacokinetics (PK) and [ 14C]carboplatin-DNA adducts in white blood cells and tumor tissues from six NSCLC patients were quantified via AMS. The blood plasma half-life of [ 14C]carboplatin administered as a microdose was consistent with the known PK of therapeutic dosing. The optimal [ 14C]carboplatin formulation for the microdose was 10 7 dpm/kg of body weight and 1% of the therapeutic dose for the total mass of carboplatin. No microdose-associated toxicity was observed in the patients. Finally, additional accruals are required to significantly correlate adduct levels with response.« less

  20. Alternative cell lines to improve the rescue of infectious human astrovirus from a cDNA clone.

    PubMed

    Velázquez-Moctezuma, Rodrigo; Baños-Lara, Ma del Rocío; Acevedo, Yunuén; Méndez, Ernesto

    2012-02-01

    A reverse genetics system for human astrovirus (HAstV) was established previously; however, it has not been exploited mainly because cells used for virus packaging are not permissive, requiring several rounds of replication to obtain acceptable infectious virus. In this work, in the search for alternative permissive cell lines to be used as packaging cells, Hek-293 and Huh7.5.1 were tested. Given that HAstV infection in Hek-293 showed differences with that in Caco-2, the gold standard for HAstV growth but scarcely transfectable, and it was more similar to that observed in the hepatoma Huh7.5.1 cell line, these last cells were further used to transfect viral RNA. Virus titers near to 10(8) infectious particles per ml (ffu/ml) were obtained at 16-20 h after transfection with RNA from infected cells. However, virus titers close to 10(6) ffu/ml were obtained by using in vitro transcribed RNA from a cDNA HAstV-1 clone. In contrast, virus recovery in BHK-21, reported previously as the packaging cells, from this RNA was of about 10(4) ffu/ml, two logarithms less than in Huh7.5.1. Apparently, the 5'-end modification of the viral RNA determined its specific infectivity, since virus recovery was abolished when the total RNA was treated with proteinase-K, probably by removing a protein-linked genome protein, but it increased when capping of the in vitro transcribed RNA was more efficient. Thus, an alternative and more efficient reverse genetics system for HAstV was established by using Huh7.5.1 cells. Copyright © 2011. Published by Elsevier B.V.

  1. Metabolic rescue in pluripotent cells from patients with mtDNA disease.

    PubMed

    Ma, Hong; Folmes, Clifford D L; Wu, Jun; Morey, Robert; Mora-Castilla, Sergio; Ocampo, Alejandro; Ma, Li; Poulton, Joanna; Wang, Xinjian; Ahmed, Riffat; Kang, Eunju; Lee, Yeonmi; Hayama, Tomonari; Li, Ying; Van Dyken, Crystal; Gutierrez, Nuria Marti; Tippner-Hedges, Rebecca; Koski, Amy; Mitalipov, Nargiz; Amato, Paula; Wolf, Don P; Huang, Taosheng; Terzic, Andre; Laurent, Louise C; Izpisua Belmonte, Juan Carlos; Mitalipov, Shoukhrat

    2015-08-13

    Mitochondria have a major role in energy production via oxidative phosphorylation, which is dependent on the expression of critical genes encoded by mitochondrial (mt)DNA. Mutations in mtDNA can cause fatal or severely debilitating disorders with limited treatment options. Clinical manifestations vary based on mutation type and heteroplasmy (that is, the relative levels of mutant and wild-type mtDNA within each cell). Here we generated genetically corrected pluripotent stem cells (PSCs) from patients with mtDNA disease. Multiple induced pluripotent stem (iPS) cell lines were derived from patients with common heteroplasmic mutations including 3243A>G, causing mitochondrial encephalomyopathy and stroke-like episodes (MELAS), and 8993T>G and 13513G>A, implicated in Leigh syndrome. Isogenic MELAS and Leigh syndrome iPS cell lines were generated containing exclusively wild-type or mutant mtDNA through spontaneous segregation of heteroplasmic mtDNA in proliferating fibroblasts. Furthermore, somatic cell nuclear transfer (SCNT) enabled replacement of mutant mtDNA from homoplasmic 8993T>G fibroblasts to generate corrected Leigh-NT1 PSCs. Although Leigh-NT1 PSCs contained donor oocyte wild-type mtDNA (human haplotype D4a) that differed from Leigh syndrome patient haplotype (F1a) at a total of 47 nucleotide sites, Leigh-NT1 cells displayed transcriptomic profiles similar to those in embryo-derived PSCs carrying wild-type mtDNA, indicative of normal nuclear-to-mitochondrial interactions. Moreover, genetically rescued patient PSCs displayed normal metabolic function compared to impaired oxygen consumption and ATP production observed in mutant cells. We conclude that both reprogramming approaches offer complementary strategies for derivation of PSCs containing exclusively wild-type mtDNA, through spontaneous segregation of heteroplasmic mtDNA in individual iPS cell lines or mitochondrial replacement by SCNT in homoplasmic mtDNA-based disease.

  2. Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis.

    PubMed

    Moeller, Marcus J; Soofi, Abdulsalaam; Hartmann, Inge; Le Hir, Michel; Wiggins, Roger; Kriz, Wilhelm; Holzman, Lawrence B

    2004-01-01

    Cellular crescents are a defining histologic finding in many forms of inflammatory glomerulonephritis. Despite numerous studies, the origin of glomerular crescents remains unresolved. A genetic cell lineage-mapping study with a novel transgenic mouse model was performed to investigate whether visceral glomerular epithelial cells, termed podocytes, are precursors of cells that populate cellular crescents. The podocyte-specific 2.5P-Cre mouse line was crossed with the ROSA26 reporter line, resulting in irreversible constitutive expression of beta-galactosidase in doubly transgenic 2.5P-Cre/ROSA26 mice. In these mice, crescentic glomerulonephritis was induced with a previously described rabbit anti-glomerular basement membrane antiserum nephritis approach. Interestingly, beta-galactosidase-positive cells derived from podocytes adhered to the parietal basement membrane and populated glomerular crescents during the early phases of cellular crescent formation, accounting for at least one-fourth of the total cell mass. In cellular crescents, the proliferation marker Ki-67 was expressed in beta-galactosidase-positive and beta-galactosidase-negative cells, indicating that both cell types contributed to the formation of cellular crescents through proliferation in situ. Podocyte-specific antigens, including WT-1, synaptopodin, nephrin, and podocin, were not expressed by any cells in glomerular crescents, suggesting that podocytes underwent profound phenotypic changes in this nephritis model.

  3. Increased expression of annexin I and thioredoxin detected by two-dimensional gel electrophoresis of drug resistant human stomach cancer cells.

    PubMed

    Sinha, P; Hütter, G; Köttgen, E; Dietel, M; Schadendorf, D; Lage, H

    1998-11-18

    The therapy of advanced cancer using chemotherapy alone or in combination with radiation or hyperthermia yields an overall response rate of about 20-50%. This success is often marred by the development of resistance to cytostatic drugs. Our aim was to study the global analysis of protein expression in the development of chemoresistance in vitro. We therefore used a cell culture model derived from the gastric carcinoma cell line EPG 85-257P. A classical multidrug-resistant subline EPG85-257RDB selected to daunorubicin and an atypical multidrug-resistant cell variant EPG85-257RNOV selected to mitoxantrone, were analysed using two-dimensional electrophoresis in immobilized pH-gradients (pH 4.0-8.0) in the first dimension and linear polyacrylamide gels (12%) in the second dimension. After staining with coomassie brilliant blue, image analysis was performed using the PDQuest system. Spots of interest were isolated using preparative two-dimensional electrophoresis and subjected to microsequencing. A total of 241 spots from the EPG85-257RDB-standard and 289 spots from the EPG85-257RNOV-standard could be matched to the EPG85-257P-standard. Microsequencing after enzymatic hydrolysis in gel, mass spectrometric data and sequencing of the peptides after their fractionation using microbore HPLC identified that two proteins annexin I and thioredoxin were overexpressed in chemoresistant cell lines. Annexin I was present in both the classical and the atypical multidrug-resistant cells. Thioredoxin was found to be overexpressed only in the atypical multidrug-resistant cell line.

  4. Expression of Ki-67 in odontogenic cysts: A comparative study between odontogenic keratocysts, radicular cysts and dentigerous cysts.

    PubMed

    Modi, Tapan G; Chalishazar, Monali; Kumar, Malay

    2018-01-01

    Odontogenic cysts are the most common cysts of the jaws and are formed from the remnants of the odontogenic apparatus. Among these odontogenic cysts, radicular cysts (RCs) (about 60% of all diagnosed jaw cysts), dentigerous cysts (DCs) (16.6% of all jaw cysts) and odontogenic keratocysts (OKCs) (11.2% of all developmental odontogenic cysts) are the most common. The behavior of any lesion is generally reflected by its growth potential. Growth potential is determined by measuring the cell proliferative activity. The cell proliferative activity is measured by various methods among which immunohistochemistry (IHC) is the commonly used technique. Most of the IHC studies on cell proliferation have been based on antibodies such as Ki-67 and proliferating cell nuclear antigen. In the present study, the total sample size comprised of 45 cases of odontogenic cysts, with 15 cases each of OKC, RC and DC. Here, an attempt is made to study immunohistochemical (streptavidin-biotin detection system HRP-DAB) method to assess the expression of Ki-67 in different layers of the epithelial lining of OKCs, RCs and DCs. Ki-67 positive cells were highest in epithelium of OKC as compared to DC and RC. The increased Ki-67 labeling index and its expression in suprabasal cell layers of epithelial lining in OKC and its correlation with suprabasal cell layers of epithelial lining in DC and RC could contribute toward its clinically aggressive behavior. OKC is of more significance to the oral pathologist and oral surgeon because of its specific histopathological features, high recurrence rate and aggressive behavior.

  5. MicroRNA-137 Contributes to Dampened Tumorigenesis in Human Gastric Cancer by Targeting AKT2

    PubMed Central

    Wu, Liping; Chen, Jingtao; Ding, Chunsheng; Wei, Shutang; Zhu, Yanhong; Yang, Wenyi; Zhang, Xiaoyang; Wei, Xuejv; Han, Dazheng

    2015-01-01

    MiRNAs play important roles in tumorigenesis. This study focused on exploring the effects and regulation mechanism of miRNA-137 on the biological behaviors of gastric cancer. Total RNA was extracted from tissues of 100 patients with gastric cancer and from four gastric cancer cell lines. Expression of miR-137 was detected by real-time PCR from 100 patients. The effects of miR-137 overexpression on gastric cancer cells’ proliferation, apoptosis, migration and invasion ability were investigated in vitro and in vivo. The target gene of miR-137 was predicted by Targetscan on line software, screened by dual luciferase reporter gene assay and demonstrated by western blot. As a result, the expression of miR-137 was significant reduced in gastric cancer cell line HGC-27, HGC-803, SGC-7901 and MKN-45 as well as in gastric cancer tissues compared with GES-1 cell or matched adjacent non-neoplastic tissues (p<0.001). The re-introduction of miR-137 into gastric cancer cells was able to inhibit cell proliferation, migration and invasion. The in vivo experiments demonstrated that the miR-137 overexpression can reduce the gastric cancer cell proliferation and metastasis. Bioinformatic and western blot analysis indicated that the miR-137 acted as tumor suppressor roles on gastric cancer cells through targeting AKT2 and further affecting the Bad and GSK-3β. In conclusion, the miR-137 which is frequently down-regulated in gastric cancer is potentially involved in gastric cancer tumorigenesis and metastasis by regulating AKT2 related signal pathways. PMID:26102366

  6. [Establishment of human embryonic stem cell lines and their therapeutic application].

    PubMed

    Suemori, Hirofumi

    2004-03-01

    Embryonic stem (ES) cell lines are pluripotent stem cell lines that can be propagated indefinitely in culture, retaining their potency to differentiate into every type of cell and tissue in the body. ES cell lines were first established from mouse blastocysts, and have been used for research in developmental biology. ES cells have been proven to be very valuable in the genetic modification of the mouse, especially in producing knockout mice. Since establishment of human ES cell lines was reported, their use in cell replacement therapies has been enthusiastically expected. There have been reports of the differentiation of several useful cell types from human ES cell lines, and clinical use of functional tissues and cells from human ES cells is anticipated. In Japan, there have also been many demands for the use of human ES cells in basic and pre-clinical research. We obtained governmental permission to establish human ES cell lines in April 2002 and started research using donated frozen embryos in January 2003. We successfully established three ES cell line from three blastocysts. These cell lines will be distributed at cost to researchers who have governmental permission to use human ES cells.

  7. Granzyme B of cytotoxic T cells induces extramitochondrial reactive oxygen species production via caspase-dependent NADPH oxidase activation.

    PubMed

    Aguiló, Juan I; Anel, Alberto; Catalán, Elena; Sebastián, Alvaro; Acín-Pérez, Rebeca; Naval, Javier; Wallich, Reinhard; Simon, Markus M; Pardo, Julián

    2010-07-01

    Induction of reactive oxygen species (ROS) is a hallmark of granzyme B (gzmB)-mediated pro-apoptotic processes and target cell death. However, it is unclear to what extent the generated ROS derive from mitochondrial and/or extra-mitochondrial sources. To clarify this point, we have produced a mutant EL4 cell line, termed EL4-rho(0), which lacks mitochondrial DNA, associated with a decreased mitochondrial membrane potential and a defective ROS production through the electron transport chain of oxidative phosphorylation. When incubated with either recombinant gzmB plus streptolysin or ex vivo gzmB(+) cytotoxic T cells, EL4-rho(0) cells showed phosphatydylserine translocation, caspase 3 activation, Bak conformational change, cytochrome c release and apoptotic morphology comparable to EL4 cells. Moreover, EL4-rho(0) cells produced ROS at levels similar to EL4 under these conditions. GzmB-mediated ROS production was almost totally abolished in both cell lines by the pan-caspase inhibitor, Z-VAD-fmk. However, addition of apocynin, a specific inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, led to a significant reduction of ROS production and cell death only in EL4-rho(0) but not EL4 cells. These data suggest that gzmB-induced cell death is accompanied by a caspase-dependent pathway of extra-mitochondrial ROS production, most probably through activation of NADPH oxidase.

  8. Chandipura virus growth kinetics in vertebrate cell lines, insect cell lines & embryonated eggs.

    PubMed

    Jadi, R S; Sudeep, A B; Kumar, Satyendra; Arankalle, V A; Mishra, A C

    2010-08-01

    Since not much information on Chandipura virus is available, an attempt was made to study the growth kinetics of the virus in certain vertebrate, invertebrate cell lines and embryonated chicken eggs. Comparative study of Chandipura virus (CHPV) growth kinetics in three vertebrate cell lines [Vero E6, Rhabdo myosarcoma (RD), Porcine stable kidney (PS) cell lines], two insect cell lines [Aedes aegypti (AA) and Phlebotomus papatasi (PP-9) cell lines] and embryonated pathogen free chicken eggs was conducted, by tissue culture infective dose 50 per cent (TCID(50)) and indirect immunofluorescence assay (IFA). All the cell lines and embryonated egg supported the growth of CHPV and yielded high virus titre. The vertebrate cell lines showed distinct cytopathic effect (CPE) within 4-6 h post infection (PI), while no CPE was observed in insect cell lines. PP-9 cell line was the most sensitive system to CHPV as viral antigen could be detected at 1 h PI by IFA. Our results demonstrated that all the systems were susceptible to CHPV and achieved high yield of virus. However, the PP-9 cell line had an edge over the others due to its high sensitivity to the virus which might be useful for detection and isolation of the virus during epidemics.

  9. Uptake and subcellular distribution of [3H]arachidonic acid in murine fibrosarcoma cells measured by electron microscope autoradiography

    PubMed Central

    1985-01-01

    We have used quantitative electron microscope autoradiography to study uptake and distribution of arachidonate in HSDM1C1 murine fibrosarcoma cells and in EPU-1B, a mutant HSDM1C1 line defective in high affinity arachidonate uptake. Cells were labeled with [3H]arachidonate for 15 min, 40 min, 2 h, or 24 h. Label was found almost exclusively in cellular phospholipids; 92-96% of incorporated radioactivity was retained in cells during fixation and tissue processing. All incorporated radioactivity was found to be associated with cellular membranes. Endoplasmic reticulum (ER) contained the bulk of [3H]arachidonate at all time points in both cell types, while mitochondria, which contain a large portion of cellular membrane, were labeled slowly and to substantially lower specific activity. Plasma membrane (PM) also labeled slowly, achieving a specific activity only one-sixth that of ER at 15 min in HSDM1C1 cells (6% of total label) and one-third of ER in EPU-1B (10% of total label). Nuclear membrane (NM) exhibited the highest specific activity of labeling at 15 min in HSDM1C1 cells (twice that of ER) but was not preferentially labeled in the mutant. Over 24 h, PM label intensity increased to that of ER in both cell lines. However, NM activity diminished in HSDM1C1 cells by 24 h to a small fraction of that in ER. In response to agonists, HSDM1C1 cells release labeled arachidonate for eicosanoid synthesis most readily when they have been labeled for short times. Our results therefore suggest that NM and ER, sites of cyclooxygenase in murine fibroblasts, are probably sources for release of [3H]arachidonate, whereas PM and mitochondria are unlikely to be major sources of eicosanoid precursors. PMID:3926781

  10. Malignant hematopoietic cell lines: in vitro models for the study of natural killer cell leukemia-lymphoma.

    PubMed

    Drexler, H G; Matsuo, Y

    2000-05-01

    Malignancies involving natural killer (NK) cells are rare disorders. The complexity of NK cell-involving disorders has only recently been appreciated. Modern classifications discern immature (precursor) from mature NK cell leukemias-lymphomas. Continuous NK leukemia-lymphoma cell lines represent important model systems to study these neoplasms. While there are a number of putative NK cell lines which are, however, either not characterized, not immortalized, non-malignant, non-NK, or plain false cell lines, six bona fide malignant NK cell lines have been established and are sufficiently well characterized: HANK1, KHYG-1, NK-92, NKL, NK-YS and YT. Except for YT which was derived from a not further defined acute lymphoblastic lymphoma, these cell lines were established from patients with various NK cell malignancies. Five of the six cell lines are constitutively interleukin-2-dependent. Their immunoprofile is remarkably similar: CD1-, CD2+, surface CD3 (but cytoplasmic CD3epsilon+), CD4-, CD5-, CD7+, CD8-, CD16-, CD56+, CD57-, TCRalphabeta-, TCRgammadelta-, negative for B cell and myelomonocytic markers. The immunoglobulin heavy chain and T cell receptor genes are all in germline configuration. All six lines show complex chromosomal alterations, with both numerical and structural aberrations, attesting to their malignant and monoclonal nature. Functionally, these cells which contain azurophilic granules in their cytoplasm are nearly universally positive in NK activity assays. Three of five cell lines are Epstein-Barr virus-positive (type II latency). The composite data on these six cell lines allow for the operational definition of a typical malignant NK cell line profile. NK leukemia-lymphoma cell lines will prove invaluable for studies of normal and malignant NK cell biology.

  11. Derivation and characterization of Chinese human embryonic stem cell line with high potential to differentiate into pancreatic and hepatic cells.

    PubMed

    Shi, Cheng; Shen, Huan; Jiang, Wei; Song, Zhi-Hua; Wang, Cheng-Yan; Wei, Li-Hui

    2011-04-01

    Human embryonic stem cells have prospective uses in regenerative medicine and drug screening. Every human embryonic stem cell line has its own genetic background, which determines its specific ability for differentiation as well as susceptibility to drugs. It is necessary to compile many human embryonic stem cell lines with various backgrounds for future clinical use, especially in China due to its large population. This study contributes to isolating new Chinese human embryonic stem cell lines with clarified directly differentiation ability. Donated embryos that exceeded clinical use in our in vitro fertilization-embryo transfer (IVF-ET) center were collected to establish human embryonic stem cells lines with informed consent. The classic growth factors of basic fibroblast growth factor (bFGF) and recombinant human leukaemia inhibitory factor (hLIF) for culturing embryonic stem cells were used to capture the stem cells from the plated embryos. Mechanical and enzymetic methods were used to propagate the newly established human embryonic stem cells line. The new cell line was checked for pluripotent characteristics with detecting the expression of stemness genes and observing spontaneous differentiation both in vitro and in vivo. Finally similar step-wise protocols from definitive endoderm to target specific cells were used to check the cell line's ability to directly differentiate into pancreatic and hepatic cells. We generated a new Chinese human embryonic stem cells line, CH1. This cell line showed the same characteristics as other reported Chinese human embryonic stem cells lines: normal morphology, karyotype and pluripotency in vitro and in vivo. The CH1 cells could be directly differentiated towards pancreatic and hepatic cells with equal efficiency compared to the H1 cell line. This newly established Chinese cell line, CH1, which is pluripotent and has high potential to differentiate into pancreatic and hepatic cells, will provide a useful tool for embryo development research, along with clinical treatments for diabetes and some hepatic diseases.

  12. Total absorption cross sections of several gases of aeronomic interest at 584 A.

    NASA Technical Reports Server (NTRS)

    Starr, W. L.; Loewenstein, M.

    1972-01-01

    Total photoabsorption cross sections have been measured at 584.3 A for N2, O2, Ar, CO2, CO, NO, N2O, NH3, CH4, H2, and H2S. A monochromator was used to isolate the He I 584 line produced in a helium resonance lamp, and thin aluminum filters were used as absorption cell windows, thereby eliminating possible errors associated with the use of undispersed radiation or windowless cells. Sources of error are examined, and limits of uncertainty are given. Previous relevant cross-sectional measurements and possible error sources are reviewed. Wall adsorption as a source of error in cross-sectional measurements has not previously been considered and is discussed briefly.

  13. Hybridization of downregulated-COMT transgenic switchgrass lines with field-selected switchgrass for improved biomass traits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baxter, Holly L.; Alexander, Lisa W.; Mazarei, Mitra

    Transgenic switchgrass (Panicum virgatum L.) has been produced for improved cell walls for biofuels. For instance, downregulated caffeic acid 3-O-methyltransferase (COMT) switchgrass produced significantly more biomass and biofuel than the non-transgenic progenitor line. In this present study we sought to further improve biomass characteristics by crossing the downregulated COMT T 1 lines with high-yielding switchgrass accessions in two genetic backgrounds ('Alamo' and 'Kanlow'). Crosses and T 2 progeny analyses were made under greenhouse conditions to assess maternal effects, plant morphology and yield, and cell wall traits. Female parent type influenced morphology, but had no effect on cell wall traits. Tmore » 2 hybrids produced with T 1 COMT-downregulated switchgrass as the female parent were taller, produced more tillers, and produced 63% more biomass compared with those produced using the field selected accession as the female parent. Transgene status (presence or absence of transgene) influenced both growth and cell wall traits. T 2 transgenic hybrids were 7% shorter 80 days after sowing and produced 43% less biomass than non-transgenic null-segregant hybrids. Cell wall-related differences included lower lignin content, reduced syringyl-to-guaiacyl (S/G) lignin monomer ratio, and a 12% increase in total sugar release in the T 2 transgenic hybrids compared to non-transgenic null segregants. This is the first study to evaluate the feasibility of transferring the low-recalcitrance traits associated with a transgenic switchgrass line into high-yielding field varieties in an attempt to improve growth-related traits. Lastly, our results provide insights into the possible improvement of switchgrass productivity via biotechnology paired with plant breeding.« less

  14. Hybridization of downregulated-COMT transgenic switchgrass lines with field-selected switchgrass for improved biomass traits

    DOE PAGES

    Baxter, Holly L.; Alexander, Lisa W.; Mazarei, Mitra; ...

    2016-01-21

    Transgenic switchgrass (Panicum virgatum L.) has been produced for improved cell walls for biofuels. For instance, downregulated caffeic acid 3-O-methyltransferase (COMT) switchgrass produced significantly more biomass and biofuel than the non-transgenic progenitor line. In this present study we sought to further improve biomass characteristics by crossing the downregulated COMT T 1 lines with high-yielding switchgrass accessions in two genetic backgrounds ('Alamo' and 'Kanlow'). Crosses and T 2 progeny analyses were made under greenhouse conditions to assess maternal effects, plant morphology and yield, and cell wall traits. Female parent type influenced morphology, but had no effect on cell wall traits. Tmore » 2 hybrids produced with T 1 COMT-downregulated switchgrass as the female parent were taller, produced more tillers, and produced 63% more biomass compared with those produced using the field selected accession as the female parent. Transgene status (presence or absence of transgene) influenced both growth and cell wall traits. T 2 transgenic hybrids were 7% shorter 80 days after sowing and produced 43% less biomass than non-transgenic null-segregant hybrids. Cell wall-related differences included lower lignin content, reduced syringyl-to-guaiacyl (S/G) lignin monomer ratio, and a 12% increase in total sugar release in the T 2 transgenic hybrids compared to non-transgenic null segregants. This is the first study to evaluate the feasibility of transferring the low-recalcitrance traits associated with a transgenic switchgrass line into high-yielding field varieties in an attempt to improve growth-related traits. Lastly, our results provide insights into the possible improvement of switchgrass productivity via biotechnology paired with plant breeding.« less

  15. 77 FR 5489 - Identification of Human Cell Lines Project

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-03

    ...-01] Identification of Human Cell Lines Project AGENCY: National Institute of Standards and Technology... cell line samples as part of the Identification of Human Cell Lines Project. All data and corresponding... cell lines accepted on the NIST Applied Genetics Group Web site at http://www.nist.gov/mml/biochemical...

  16. Characteristics of CD8+ T cell subsets in Chinese patients with chronic HIV infection during initial ART.

    PubMed

    Jiao, Yanmei; Hua, Wei; Zhang, Tong; Zhang, Yonghong; Ji, Yunxia; Zhang, Hongwei; Wu, Hao

    2011-03-25

    CD8+ T cells may play an important role in protecting against HIV. However, the changes of CD8+ T cell subsets during early period of ART have not been fully studied. Twenty-one asymptomatic treatment-naive HIV-infected patients with CD4 T+ cells less than 350 cells/μl were enrolled in the study. Naïve, central memory(CM), effective memory(EM) and terminally differentiated effector (EMRA) CD8+ cell subsets and their activation and proliferation subsets were evaluated in blood samples collected at base line, and week 2, 4, 8 and 12 of ART. The total CD8+ T cells declined and the Naïve and CM subsets had a tendency of increase. Activation levels of all CD8+ T cell subsets except EMRA subset decreased after ART. However, proliferation levels of total CD8+ T cells, EMRA, EM and CM subsets increased at the first 4 weeks of ART, then decreased. Proliferation level of the naïve cells decreased after ART. The changes of CD8+ T cell subsets during initial ART are complex. Our results display a complete phenotypical picture of CD8+ cell subsets during initial ART and provide insights for understanding of immune status during ART.

  17. Characteristics of CD8+ T cell subsets in Chinese patients with chronic HIV infection during initial ART

    PubMed Central

    2011-01-01

    Background CD8+ T cells may play an important role in protecting against HIV. However, the changes of CD8+ T cell subsets during early period of ART have not been fully studied. Methods Twenty-one asymptomatic treatment-naive HIV-infected patients with CD4 T+ cells less than 350 cells/μl were enrolled in the study. Naïve, central memory(CM), effective memory(EM) and terminally differentiated effector (EMRA) CD8+ cell subsets and their activation and proliferation subsets were evaluated in blood samples collected at base line, and week 2, 4, 8 and 12 of ART. Results The total CD8+ T cells declined and the Naïve and CM subsets had a tendency of increase. Activation levels of all CD8+ T cell subsets except EMRA subset decreased after ART. However, proliferation levels of total CD8+ T cells, EMRA, EM and CM subsets increased at the first 4 weeks of ART, then decreased. Proliferation level of the naïve cells decreased after ART. Conclusion The changes of CD8+ T cell subsets during initial ART are complex. Our results display a complete phenotypical picture of CD8+ cell subsets during initial ART and provide insights for understanding of immune status during ART. PMID:21435275

  18. Plasma membrane organization and dynamics is probe and cell line dependent.

    PubMed

    Huang, Shuangru; Lim, Shi Ying; Gupta, Anjali; Bag, Nirmalya; Wohland, Thorsten

    2017-09-01

    The action and interaction of membrane receptor proteins take place within the plasma membrane. The plasma membrane, however, is not a passive matrix. It rather takes an active role and regulates receptor distribution and function by its composition and the interaction of its lipid components with embedded and surrounding proteins. Furthermore, it is not a homogenous fluid but contains lipid and protein domains of various sizes and characteristic lifetimes which are important in regulating receptor function and signaling. The precise lateral organization of the plasma membrane, the differences between the inner and outer leaflet, and the influence of the cytoskeleton are still debated. Furthermore, there is a lack of comparisons of the organization and dynamics of the plasma membrane of different cell types. Therefore, we used four different specific membrane markers to test the lateral organization, the differences between the inner and outer membrane leaflet, and the influence of the cytoskeleton of up to five different cell lines, including Chinese hamster ovary (CHO-K1), Human cervical carcinoma (HeLa), neuroblastoma (SH-SY5Y), fibroblast (WI-38) and rat basophilic leukemia (RBL-2H3) cells by Imaging Total Internal Reflection (ITIR)-Fluorescence Correlation Spectroscopy (FCS). We measure diffusion in the temperature range of 298-310K to measure the Arrhenius activation energy (E Arr ) of diffusion and apply the FCS diffusion law to obtain information on the spatial organization of the probe molecules on the various cell membranes. Our results show clear differences of the FCS diffusion law and E Arr for the different probes in dependence of their localization. These differences are similar in the outer and inner leaflet of the membrane. However, these values can differ significantly between different cell lines raising the question how molecular plasma membrane events measured in different cell lines can be compared. This article is part of a Special Issue entitled: Interactions between membrane receptors in cellular membranes edited by Kalina Hristova. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Development and characterization of two new cell lines from milkfish (Chanos chanos) and grouper (Epinephelus coioides) for virus isolation.

    PubMed

    Parameswaran, V; Ishaq Ahmed, V P; Shukla, Ravi; Bhonde, R R; Sahul Hameed, A S

    2007-01-01

    Two new cell lines, SIMH and SIGE, were derived from the heart of milkfish (Chanos chanos), a euryhaline teleost, and from the eye of grouper (Epinephelus coioides), respectively. These cell lines were maintained in Leibovitz's L-15 supplemented with 20% fetal bovine serum (FBS). The SIMH cell line was subcultured more than 50 times over a period of 210 days and SIGE cell line has been subcultured 100 times over a period of 1 1/2 years. The SIMH cell line consists predominantly of fibroblastic-like cells. The SIGE cell line consists predominantly of epithelial cells. Both the cell lines were able to grow at temperatures between 25 and 32 degrees C with an optimum temperature of 28 degrees C. The growth rate of these cells increased as the proportion of FBS increased from 2% to 20% at 28 degrees C with optimum growth at the concentrations of 15% or 20% FBS. Seven marine fish viruses were tested to determine the susceptibility of these cell lines. The SIGE cell line was found to be susceptible to nodavirus, MABV NC-1 and Y6, and the infection was confirmed by cytopathic effect (CPE) and reverse transcriptase-polymerase chain reaction. When these cells were transfected with pEGFP-N1 vector DNA, significant fluorescent signals were observed, suggesting that these cell lines can be a useful tool for transgenic and genetic manipulation studies. Further, these cell lines are characterized by immunocytochemistry using confocal laser scanning microscopy (CFLSM).

  20. Implication of NADPH Oxidases in the Early Inflammation Process Generated by Cystic Fibrosis Cells

    PubMed Central

    Pongnimitprasert, Nushjira; Hurtado, Margarita; Lamari, Foudil; El Benna, Jamel; Dupuy, Corinne; Fay, Michèle; Foglietti, Marie-José; Bernard, Maguy; Gougerot-Pocidalo, Marie-Anne; Braut-Boucher, Françoise

    2012-01-01

    In cystic fibrosis (CF) patients, pulmonary inflammation is a major cause of morbidity and mortality. The aim of this study was to further investigate whether oxidative stress could be involved in the early inflammatory process associated with CF pathogenesis. We used a model of CFTR defective epithelial cell line (IB3-1) and its reconstituted CFTR control (S9) cell line cultured in various ionic conditions. This study showed that IB3-1 and S9 cells expressed the NADPH oxidases (NOXs) DUOX1/2 and NOX2 at the same level. Nevertheless, several parameters participating in oxidative stress (increased ROS production and apoptosis, decreased total thiol content) were observed in IB3-1 cells cultured in hypertonic environment as compared to S9 cells and were inhibited by diphenyleneiodonium (DPI), a well-known inhibitor of NOXs; besides, increased production of the proinflammatory cytokines IL-6 and IL-8 by IB3-1 cells was also inhibited by DPI as compared to S9 cells. Furthermore, calcium ionophore (A23187), which upregulates DUOX and NOX2 activities, strongly induced oxidative stress and IL-8 and IL-6 overexpression in IB3-1 cells. All these events were suppressed by DPI, supporting the involvement of NOXs in the oxidative stress, which can upregulate proinflammatory cytokine production by the airway CFTR-deficient cells and trigger early pulmonary inflammation in CF patients. PMID:24049649

  1. Effects of the peroxisome proliferator clofibric acid on superoxide dismutase expression in the human HepG2 hepatoma cell line.

    PubMed

    Bécuwe, P; Bianchi, A; Keller, J M; Dauça, M

    1999-09-15

    We examined the effects of clofibric acid, a peroxisome proliferator, on the production of superoxide radicals, on the levels of malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE), and on the expression of superoxide dismutases (SODs) in the human HepG2 hepatoma cell line. To this end, HepG2 cells were treated for 1 or 5 days with 0.25, 0.50, or 0.75 mM clofibric acid. The production of superoxide radicals was only enhanced in HepG2 cells exposed for 5 days to the different clofibric acid concentrations. However, this overproduction of superoxide radicals was not accompanied by increased rates of lipid peroxidation, as the MDA and 4-HNE levels did not change significantly. Manganese (Mn) SOD activity was increased when HepG2 cells were treated for 1 day with 0.50 or 0.75 mM clofibric acid. For this duration of treatment, no change was observed in total SOD and copper/zinc (Cu/Zn) SOD activities. For a 5-day treatment, total SOD and MnSOD activities as well as the enzyme apoprotein and MnSOD mRNA levels increased whatever the clofibric acid concentration used. This transcriptional induction of the MnSOD gene was correlated with an activation of the activator protein-1 transcription factor for 1 and 5 days of treatment, but was independent of nuclear factor-kappa B and of peroxisome proliferator-activated receptor. On the other hand, the PP exerted very little effect if any on Cu,ZnSOD expression. In contrast to rodent data, PP treatment of human hepatoma cells induces MnSOD expression.

  2. RNA recognition by a human antibody against brain cytoplasmic 200 RNA

    PubMed Central

    Jung, Euihan; Lee, Jungmin; Hong, Hyo Jeong; Park, Insoo; Lee, Younghoon

    2014-01-01

    Diverse functional RNAs participate in a wide range of cellular processes. The RNA structure is critical for function, either on its own or as a complex form with proteins and other ligands. Therefore, analysis of the RNA conformation in cells is essential for understanding their functional mechanisms. However, no appropriate methods have been established as yet. Here, we developed an efficient strategy for panning and affinity maturation of anti-RNA human monoclonal antibodies from a naïve antigen binding fragment (Fab) combinatorial phage library. Brain cytoplasmic 200 (BC200) RNA, which is also highly expressed in some tumors, was used as an RNA antigen. We identified MabBC200-A3 as the optimal binding antibody. Mutagenesis and SELEX experiments showed that the antibody recognized a domain of BC200 in a structure- and sequence-dependent manner. Various breast cancer cell lines were further examined for BC200 RNA expression using conventional hybridization and immunoanalysis with MabBC200-A3 to see whether the antibody specifically recognizes BC200 RNA among the total purified RNAs. The amounts of antibody-recognizable BC200 RNA were consistent with hybridization signals among the cell lines. Furthermore, the antibody was able to discriminate BC200 RNA from other RNAs, supporting the utility of this antibody as a specific RNA structure-recognizing probe. Intriguingly, however, when permeabilized cells were subjected to immunoanalysis instead of purified total RNA, the amount of antibody-recognizable RNA was not correlated with the cellular level of BC200 RNA, indicating that BC200 RNA exists as two distinct forms (antibody-recognizable and nonrecognizable) in breast cancer cells and that their distribution depends on the cell type. Our results clearly demonstrate that anti-RNA antibodies provide an effective novel tool for detecting and analyzing RNA conformation. PMID:24759090

  3. Authentication of M14 melanoma cell line proves misidentification of MDA‐MB‐435 breast cancer cell line

    PubMed Central

    Korch, Christopher; Hall, Erin M.; Dirks, Wilhelm G.; Ewing, Margaret; Faries, Mark; Varella‐Garcia, Marileila; Robinson, Steven; Storts, Douglas; Turner, Jacqueline A.; Wang, Ying; Burnett, Edward C.; Healy, Lyn; Kniss, Douglas; Neve, Richard M.; Nims, Raymond W.; Reid, Yvonne A.; Robinson, William A.

    2017-01-01

    A variety of analytical approaches have indicated that melanoma cell line UCLA‐SO‐M14 (M14) and breast carcinoma cell line MDA‐MB‐435 originate from a common donor. This indicates that at some point in the past, one of these cell lines became misidentified, meaning that it ceased to correspond to the reported donor and instead became falsely identified (through cross‐contamination or other means) as a cell line from a different donor. Initial studies concluded that MDA‐MB‐435 was the misidentified cell line and M14 was the authentic cell line, although contradictory evidence has been published, resulting in further confusion. To address this question, we obtained early samples of the melanoma cell line (M14), a lymphoblastoid cell line from the same donor (ML14), and donor serum preserved at the originator's institution. M14 samples were cryopreserved in December 1975, before MDA‐MB‐435 cells were established in culture. Through a series of molecular characterizations, including short tandem repeat (STR) profiling and cytogenetic analysis, we demonstrated that later samples of M14 and MDA‐MB‐435 correspond to samples of M14 frozen in 1975, to the lymphoblastoid cell line ML14, and to the melanoma donor's STR profile, sex and blood type. This work demonstrates conclusively that M14 is the authentic cell line and MDA‐MB‐435 is misidentified. With clear provenance information and authentication testing of early samples, it is possible to resolve debates regarding the origins of problematic cell lines that are widely used in cancer research. PMID:28940260

  4. Microarray data re-annotation reveals specific lncRNAs and their potential functions in non-small cell lung cancer subtypes.

    PubMed

    Zhou, Dongbo; Xie, Mingxuan; He, Baimei; Gao, Ying; Yu, Qiao; He, Bixiu; Chen, Qiong

    2017-10-01

    Non‑small‑cell lung cancer (NSCLC) is a leading cause of cancer mortality worldwide. The most common subtypes of NSCLC are adenocarcinoma (AC) and squamous cell carcinoma (SCC). However, the pathophysiological mechanisms contributing to AC and SCC are still largely unknown, especially the roles of long non‑coding RNAs (lncRNAs). The present study identified differentially expressed lncRNAs between lung AC and SCC by re‑annotation of NSCLC microarray data analysis profiling. The potential functions of lncRNAs were predicted by using coding‑non‑coding gene co‑expressing network. Reverse transcription-quantitative polymerase chain reaction (RT‑qPCR) was used to investigate lncRNA expression levels in AC cell lines (A549 and L78), SCC cell lines (H226 and H520) and normal cells (NL‑20). Western blotting analysis was used to investigate the protein expression levels in these cell lines. A total of 65 lncRNAs were differentially expressed between AC and SCC including 28 lncRNAs that were downregulated in SCC subtypes compared with those in AC ones, and 37 upregulated lncRNAs in SCC subtypes compared with AC subtypes. Three lncRNAs, sex determining region Y‑box 2 overlapping transcript (SOX2‑OT), NCBP2 antisense RNA 2 (NCBP2‑AS2) and ubiquitin like with PHD and ring finger domains 1 (UHRF1), were predicted to be associated with lung cancer; RT‑qPCR confirmed that SOX2‑OT and NCBP2‑AS2 were associated with lung cancer. Finally, western blot assays demonstrated that there was no difference in β‑catenin and glycogen synthase kinase 3β (GSK‑3β) expression in cancer cells compared with NL‑20, but increased phosphorylated (p‑)β‑catenin and p‑GSK‑3β was detected in lung cancer cell lines compared with NL‑20, particularly in A549 cells. Although these results require further experimental verification, the analysis of lncRNA signatures between AC and SCC has provided insights into the regulatory mechanism of NSCLC development.

  5. Pretreatment red blood cell total folate is associated with response to pemetrexed in stage IV non-squamous non-small-cell lung cancer

    PubMed Central

    Bagley, Stephen J.; Vitale, Steven; Zhang, Suhong; Aggarwal, Charu; Evans, Tracey L.; Alley, Evan W.; Cohen, Roger B.; Langer, Corey J.; Blair, Ian A.; Vachani, Anil; Whitehead, Alexander S.

    2016-01-01

    Objectives Pemetrexed inhibits folate-dependent enzymes involved in pyrimidine and purine synthesis. Prior studies of genetic variation in these enzymes as predictors of pemetrexed efficacy have yielded inconsistent results. We investigated whether red blood cell (RBC) total folate, a phenotypic rather than genotypic marker of cellular folate status, was associated with response to pemetrexed-based chemotherapy in advanced non-squamous non-small-cell lung cancer (NSCLC). Materials and methods We conducted a prospective cohort study of patients with stage IV non-squamous NSCLC receiving first-line chemotherapy containing pemetrexed. Pretreatment RBC total folate was quantified using liquid chromatography/mass spectrometry. We then compared objective response rate (ORR) between patients with RBC total folate concentrations above and below an optimal cut-off value determined from the receiver operating characteristic (ROC) curve. A logistic regression model was used to adjust for age, sex, and use of bevacizumab. Results The ORR was 62% (32 of 52 patients). ROC analysis was used to establish that a RBC total folate cutoff value of 364.6 nM optimally discriminated between pemetrexed responders and non-responders. Patients with RBC total folate below 364.5 nM had an ORR of 27%, compared to 71% in patients with RBC total folate above this value (p=0.01). This difference persisted after adjusting for age, sex, and use of bevacizumab (OR 0.07, 95% CI 0.01 - 0.57, p=0.01). Conclusions Low pretreatment RBC total folate is associated with inferior response to pemetrexed-based chemotherapy in stage IV non-squamous NSCLC. Larger, multicenter studies are needed to validate RBC total folate as a predictive marker of pemetrexed response. PMID:27863923

  6. Pretreatment Red Blood Cell Total Folate Concentration Is Associated With Response to Pemetrexed in Stage IV Nonsquamous Non-Small-cell Lung Cancer.

    PubMed

    Bagley, Stephen J; Vitale, Steven; Zhang, Suhong; Aggarwal, Charu; Evans, Tracey L; Alley, Evan W; Cohen, Roger B; Langer, Corey J; Blair, Ian A; Vachani, Anil; Whitehead, Alexander S

    2017-03-01

    Pemetrexed inhibits folate-dependent enzymes involved in pyrimidine and purine synthesis. Previous studies of genetic variation in these enzymes as predictors of pemetrexed efficacy have yielded inconsistent results. We investigated whether red blood cell (RBC) total folate, a phenotypic rather than genotypic, marker of cellular folate status was associated with the response to pemetrexed-based chemotherapy in advanced nonsquamous non-small-cell lung cancer (NSCLC). We conducted a prospective cohort study of patients with stage IV nonsquamous NSCLC receiving first-line chemotherapy containing pemetrexed. The pretreatment RBC total folate level was quantified using liquid chromatography mass spectrometry. We then compared the objective response rate (ORR) between patients with RBC total folate concentrations greater than and less than an optimal cutoff value determined from the receiver operating characteristic curve. A logistic regression model was used to adjust for age, sex, and the use of bevacizumab. The ORR was 62% (32 of 52 patients). Receiver operating characteristic analysis was used to establish that a RBC total folate cutoff value of 364.6 nM optimally discriminated between pemetrexed responders and nonresponders. Patients with RBC total folate < 364.5 nM had an ORR of 27% compared with 71% for patients with RBC total folate > 364.5 nM (P = .01). This difference persisted after adjusting for age, sex, and the use of bevacizumab (odds ratio, 0.07; 95% confidence interval, 0.01-0.57; P = .01). A low pretreatment RBC total folate was associated with an inferior response to pemetrexed-based chemotherapy in stage IV nonsquamous NSCLC. Larger, multicenter studies are needed to validate RBC total folate as a predictive marker of pemetrexed response. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Rapid high-throughput characterisation, classification and selection of recombinant mammalian cell line phenotypes using intact cell MALDI-ToF mass spectrometry fingerprinting and PLS-DA modelling.

    PubMed

    Povey, Jane F; O'Malley, Christopher J; Root, Tracy; Martin, Elaine B; Montague, Gary A; Feary, Marc; Trim, Carol; Lang, Dietmar A; Alldread, Richard; Racher, Andrew J; Smales, C Mark

    2014-08-20

    Despite many advances in the generation of high producing recombinant mammalian cell lines over the last few decades, cell line selection and development is often slowed by the inability to predict a cell line's phenotypic characteristics (e.g. growth or recombinant protein productivity) at larger scale (large volume bioreactors) using data from early cell line construction at small culture scale. Here we describe the development of an intact cell MALDI-ToF mass spectrometry fingerprinting method for mammalian cells early in the cell line construction process whereby the resulting mass spectrometry data are used to predict the phenotype of mammalian cell lines at larger culture scale using a Partial Least Squares Discriminant Analysis (PLS-DA) model. Using MALDI-ToF mass spectrometry, a library of mass spectrometry fingerprints was generated for individual cell lines at the 96 deep well plate stage of cell line development. The growth and productivity of these cell lines were evaluated in a 10L bioreactor model of Lonza's large-scale (up to 20,000L) fed-batch cell culture processes. Using the mass spectrometry information at the 96 deep well plate stage and phenotype information at the 10L bioreactor scale a PLS-DA model was developed to predict the productivity of unknown cell lines at the 10L scale based upon their MALDI-ToF fingerprint at the 96 deep well plate scale. This approach provides the basis for the very early prediction of cell lines' performance in cGMP manufacturing-scale bioreactors and the foundation for methods and models for predicting other mammalian cell phenotypes from rapid, intact-cell mass spectrometry based measurements. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, D.; Oborn, C.J.; Li, M.L.

    1987-09-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appearedmore » to represent myoepithelial cells. The cell lines were examined for expression of {beta}-casein mRNA in the presence or absence of prolactin. The inducibility of {beta}-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types.« less

  9. Mutation Screening of 1,237 Cancer Genes across Six Model Cell Lines of Basal-Like Breast Cancer.

    PubMed

    Olsson, Eleonor; Winter, Christof; George, Anthony; Chen, Yilun; Törngren, Therese; Bendahl, Pär-Ola; Borg, Åke; Gruvberger-Saal, Sofia K; Saal, Lao H

    2015-01-01

    Basal-like breast cancer is an aggressive subtype generally characterized as poor prognosis and lacking the expression of the three most important clinical biomarkers, estrogen receptor, progesterone receptor, and HER2. Cell lines serve as useful model systems to study cancer biology in vitro and in vivo. We performed mutational profiling of six basal-like breast cancer cell lines (HCC38, HCC1143, HCC1187, HCC1395, HCC1954, and HCC1937) and their matched normal lymphocyte DNA using targeted capture and next-generation sequencing of 1,237 cancer-associated genes, including all exons, UTRs and upstream flanking regions. In total, 658 somatic variants were identified, of which 378 were non-silent (average 63 per cell line, range 37-146) and 315 were novel (not present in the Catalogue of Somatic Mutations in Cancer database; COSMIC). 125 novel mutations were confirmed by Sanger sequencing (59 exonic, 48 3'UTR and 10 5'UTR, 1 splicing), with a validation rate of 94% of high confidence variants. Of 36 mutations previously reported for these cell lines but not detected in our exome data, 36% could not be detected by Sanger sequencing. The base replacements C/G>A/T, C/G>G/C, C/G>T/A and A/T>G/C were significantly more frequent in the coding regions compared to the non-coding regions (OR 3.2, 95% CI 2.0-5.3, P<0.0001; OR 4.3, 95% CI 2.9-6.6, P<0.0001; OR 2.4, 95% CI 1.8-3.1, P<0.0001; OR 1.8, 95% CI 1.2-2.7, P = 0.024, respectively). The single nucleotide variants within the context of T[C]T/A[G]A and T[C]A/T[G]A were more frequent in the coding than in the non-coding regions (OR 3.7, 95% CI 2.2-6.1, P<0.0001; OR 3.8, 95% CI 2.0-7.2, P = 0.001, respectively). Copy number estimations were derived from the targeted regions and correlated well to Affymetrix SNP array copy number data (Pearson correlation 0.82 to 0.96 for all compared cell lines; P<0.0001). These mutation calls across 1,237 cancer-associated genes and identification of novel variants will aid in the design and interpretation of biological experiments using these six basal-like breast cancer cell lines.

  10. Fourier transform spectroscopy of the nu3 band of the N3 radical

    NASA Technical Reports Server (NTRS)

    Brazier, C. R.; Bernath, P. F.; Burkholder, James B.; Howard, Carleton J.

    1988-01-01

    The nu3 transitions of N3 radicals produced by HN3-Cl reactions in a multipass cell (effective path length 100 m) are investigated experimentally using a Fourier-transform spectrometer with maximum resolution 0.004/cm. A total of 176 rotation-vibration lines are listed in a table and used, in combination with published data on 240 optical lines (Douglas and Jones, 1965), to determine the nu3 molecular constants. The lower-than-expected value of the nu3 fundamental frequency (1644.6784/cm) is attributed to the vibronic interaction discussed by Kawaguchi et al. (1981).

  11. Adventitious viruses in insect cell lines used for recombinant protein expression.

    PubMed

    Geisler, Christoph; Jarvis, Donald L

    2018-04-01

    Insect cells are widely used for recombinant protein expression, typically as hosts for recombinant baculovirus vectors, but also for plasmid-mediated transient transfection or stable genetic transformation. Insect cells are used to express proteins for research, as well as to manufacture biologicals for human and veterinary medicine. Recently, several insect cell lines used for recombinant protein expression were found to be persistently infected with adventitious viruses. This has raised questions about how these infections might affect research performed using those cell lines. Furthermore, these findings raised serious concerns about the safety of biologicals produced using those cell lines. In response, new insect cell lines lacking adventitious viruses have been isolated for use as improved research tools and safer biological manufacturing platforms. Here, we review the scientific and patent literature on adventitious viruses found in insect cell lines, affected cell lines, and new virus-free cell lines. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. SKLB060 Reversibly Binds to Colchicine Site of Tubulin and Possesses Efficacy in Multidrug-Resistant Cell Lines.

    PubMed

    Yan, Wei; Yang, Tao; Yang, Jianhong; Wang, Taijin; Yu, Yamei; Wang, Yuxi; Chen, Qiang; Bai, Peng; Li, Dan; Ye, Haoyu; Qiu, Qiang; Zhou, Yongzhao; Hu, Yiguo; Yang, Shengyong; Wei, Yuquan; Li, Weimin; Chen, Lijuan

    2018-05-22

    Many tubulin inhibitors are in clinical use as anti-cancer drugs. In our previous study, a novel series of 4-substituted coumarins derivatives were identified as novel tubulin inhibitors. Here, we report the anti-cancer activity and underlying mechanism of one of the 4-substituted coumarins derivatives (SKLB060). The anti-cancer activity of SKLB060 was tested on 13 different cancer cell lines and four xenograft cancer models. Immunofluorescence staining, cell cycle analysis, and tubulin polymerization assay were employed to study the inhibition of tubulin. N, N '-Ethylenebis(iodoacetamide) assay was used to measure binding to the colchicine site. Wound-healing migration and tube formation assays were performed on human umbilical vascular endothelial cells to study anti-vascular activity (the ability to inhibit blood vessel growth). Mitotic block reversibility and structural biology assays were used to investigate the SKLB060-tubulin bound model. SKLB060 inhibited tubulin polymerization and subsequently induced G2/M cell cycle arrest and apoptosis in cancer cells. SKLB060 bound to the colchicine site of β-tubulin and showed antivascular activity in vitro. Moreover, SKLB060 induced reversible cell cycle arrest and reversible inhibition of tubulin polymerization. A mitotic block reversibility assay showed that the effects of SKLB060 have greater reversibility than those of colcemid (a reversible tubulin inhibitor), indicating that SKLB060 binds to tubulin in a totally reversible manner. The crystal structures of SKLB060-tubulin complexes confirmed that SKLB060 binds to the colchicine site, and the natural coumarin ring in SKLB060 enables reversible binding. These results reveal that SKLB060 is a powerful and reversible microtubule inhibitor that binds to the colchicine site and is effective in multidrug-resistant cell lines. © 2018 The Author(s). Published by S. Karger AG, Basel.

  13. Analysis of the genomic response of human prostate cancer cells to histone deacetylase inhibitors.

    PubMed

    Kortenhorst, Madeleine S Q; Wissing, Michel D; Rodríguez, Ronald; Kachhap, Sushant K; Jans, Judith J M; Van der Groep, Petra; Verheul, Henk M W; Gupta, Anuj; Aiyetan, Paul O; van der Wall, Elsken; Carducci, Michael A; Van Diest, Paul J; Marchionni, Luigi

    2013-09-01

    Histone deacetylases (HDACs) have emerged as important targets for cancer treatment. HDAC-inhibitors (HDACis) are well tolerated in patients and have been approved for the treatment of patients with cutaneous T-cell lymphoma (CTCL). To improve the clinical benefit of HDACis in solid tumors, combination strategies with HDACis could be employed. In this study, we applied Analysis of Functional Annotation (AFA) to provide a comprehensive list of genes and pathways affected upon HDACi-treatment in prostate cancer cells. This approach provides an unbiased and objective approach to high throughput data mining. By performing AFA on gene expression data from prostate cancer cell lines DU-145 (an HDACi-sensitive cell line) and PC3 (a relatively HDACi-resistant cell line) treated with HDACis valproic acid or vorinostat, we identified biological processes that are affected by HDACis and are therefore potential treatment targets for combination therapy. Our analysis revealed that HDAC-inhibition resulted among others in upregulation of major histocompatibility complex (MHC) genes and deregulation of the mitotic spindle checkpoint by downregulation of genes involved in mitosis. These findings were confirmed by AFA on publicly available data sets from HDACi-treated prostate cancer cells. In total, we analyzed 375 microarrays with HDACi treated and non-treated (control) prostate cancer cells. All results from this extensive analysis are provided as an online research source (available at the journal's website and at http://luigimarchionni.org/HDACIs.html). By publishing this data, we aim to enhance our understanding of the cellular changes after HDAC-inhibition, and to identify novel potential combination strategies with HDACis for the treatment of prostate cancer patients.

  14. Analysis of the genomic response of human prostate cancer cells to histone deacetylase inhibitors

    PubMed Central

    Kortenhorst, Madeleine SQ; Wissing, Michel D; Rodriguez, Ronald; Kachhap, Sushant K; Jans, Judith JM; Van der Groep, Petra; Verheul, Henk MW; Gupta, Anuj; Aiyetan, Paul O; van der Wall, Elsken; Carducci, Michael A; Van Diest, Paul J; Marchionni, Luigi

    2013-01-01

    Histone deacetylases (HDACs) have emerged as important targets for cancer treatment. HDAC-inhibitors (HDACis) are well tolerated in patients and have been approved for the treatment of patients with cutaneous T-cell lymphoma (CTCL). To improve the clinical benefit of HDACis in solid tumors, combination strategies with HDACis could be employed. In this study, we applied Analysis of Functional Annotation (AFA) to provide a comprehensive list of genes and pathways affected upon HDACi-treatment in prostate cancer cells. This approach provides an unbiased and objective approach to high throughput data mining. By performing AFA on gene expression data from prostate cancer cell lines DU-145 (an HDACi-sensitive cell line) and PC3 (a relatively HDACi-resistant cell line) treated with HDACis valproic acid or vorinostat, we identified biological processes that are affected by HDACis and are therefore potential treatment targets for combination therapy. Our analysis revealed that HDAC-inhibition resulted among others in upregulation of major histocompatibility complex (MHC) genes and deregulation of the mitotic spindle checkpoint by downregulation of genes involved in mitosis. These findings were confirmed by AFA on publicly available data sets from HDACi-treated prostate cancer cells. In total, we analyzed 375 microarrays with HDACi treated and non-treated (control) prostate cancer cells. All results from this extensive analysis are provided as an online research source (available at the journal’s website and at http://luigimarchionni.org/HDACIs.html). By publishing this data, we aim to enhance our understanding of the cellular changes after HDAC-inhibition, and to identify novel potential combination strategies with HDACis for the treatment of prostate cancer patients. PMID:23880963

  15. Effects of curcumin on stem-like cells in human esophageal squamous carcinoma cell lines.

    PubMed

    Almanaa, Taghreed N; Geusz, Michael E; Jamasbi, Roudabeh J

    2012-10-24

    Many cancers contain cell subpopulations that display characteristics of stem cells. Because these cancer stem cells (CSCs) appear to provide resistance to chemo-radiation therapy, development of therapeutic agents that target CSCs is essential. Curcumin is a phytochemical agent that is currently used in clinical trials to test its effectiveness against cancer. However, the effect of curcumin on CSCs is not well established. The current study evaluated curcumin-induced cell death in six cancer cell lines derived from human esophageal squamous cell carcinomas. Moreover, these cell lines and the ones established from cells that survived curcumin treatments were characterized. Cell loss was assayed after TE-1, TE-8, KY-5, KY-10, YES-1, and YES-2 cells were exposed to 20-80 μM curcumin for 30 hrs. Cell lines surviving 40 or 60 μM curcumin were established from these six original lines. The stem cell markers aldehyde dehydrogenase-1A1 (ALDH1A1) and CD44 as well as NF-κB were used to compare CSC-like subpopulations within and among the original lines as well as the curcumin-surviving lines. YES-2 was tested for tumorsphere-forming capabilities. Finally, the surviving lines were treated with 40 and 60 μM curcumin to determine whether their sensitivity was different from the original lines. The cell loss after curcumin treatment increased in a dose-dependent manner in all cell lines. The percentage of cells remaining after 60 μM curcumin treatment varied from 10.9% to 36.3% across the six lines. The cell lines were heterogeneous with respect to ALDH1A1, NF-κB and CD44 expression. KY-5 and YES-1 were the least sensitive and had the highest number of stem-like cells whereas TE-1 had the lowest. The curcumin-surviving lines showed a significant loss in the high staining ALDH1A1 and CD44 cell populations. Tumorspheres formed from YES-2 but were small and rare in the YES-2 surviving line. The curcumin-surviving lines showed a small but significant decrease in sensitivity to curcumin when compared with the original lines. Our results suggest that curcumin not only eliminates cancer cells but also targets CSCs. Therefore, curcumin may be an effective compound for treating esophageal and possibly other cancers in which CSCs can cause tumor recurrence.

  16. Cytoplasmic sequestration of the tumor suppressor p53 by a heat shock protein 70 family member, mortalin, in human colorectal adenocarcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gestl, Erin E., E-mail: egestl@wcupa.edu; Anne Boettger, S., E-mail: aboettger@wcupa.edu

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Eight human colorectal cell lines were evaluated for p53 and mortalin localization. Black-Right-Pointing-Pointer Six cell lines displayed cytoplasmic sequestration of the tumor suppressor p53. Black-Right-Pointing-Pointer Direct interaction between mortalin and p53 was shown in five cell lines. Black-Right-Pointing-Pointer Cell lines positive for p53 sequestration yielded elevated p53 expression levels. Black-Right-Pointing-Pointer This study yields the first evidence of cytoplasmic sequestration p53 by mortalin. -- Abstract: While it is known that cytoplasmic retention of p53 occurs in many solid tumors, the mechanisms responsible for this retention have not been positively identified. Since heatshock proteins like mortalin have been associated withmore » p53 inactivation in other tumors, the current study sought to characterize this potential interaction in never before examined colorectal adenocarcinoma cell lines. Six cell lines, one with 3 different fractions, were examined to determine expression of p53 and mortalin and characterize their cellular localization. Most of these cell lines displayed punctate p53 and mortalin localization in the cell cytoplasm with the exception of HCT-8 and HCT116 379.2 cells, where p53 was not detected. Nuclear p53 was only observed in HCT-116 40-16, LS123, and HT-29 cell lines. Mortalin was only localized in the cytoplasm in all cell lines. Co-immunoprecipitation and immunohistochemistry revealed that p53 and mortalin were bound and co-localized in the cytoplasmic fraction of four cell lines, HCT-116 (40-16 and 386; parental and heterozygous fractions respectively of the same cell line), HT-29, LS123 and LoVo, implying that p53 nuclear function is limited in those cell lines by being restricted to the cytoplasm. Mortalin gene expression levels were higher than gene expression levels of p53 in all cell lines. Cell lines with cytoplasmic sequestration of p53, however, also displayed elevated p53 gene expression levels compared to cell lines without p53 sequestration. Our data reveal the characteristic cytoplasmic sequestration of p53 by the heat shock protein mortalin in human colorectal adenocarcinoma cell lines, as is the case for other cancers, such as glioblastomas and hepatocellular carcinomas.« less

  17. Neurotensin-induced Erk1/2 phosphorylation and growth of human colonic cancer cells are independent from growth factors receptors activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Massa, Fabienne; Tormo, Aurelie; Beraud-Dufour, Sophie

    2011-10-14

    Highlights: {yields} We compare intracellular pathways of NT and EGF in HT29 cells. {yields} NT does not transactivate EGFR. {yields} Transactivation of EGFR is not a general rule in cancer cell growth. -- Abstract: Neurotensin (NT) promotes the proliferation of human colonic cancer cells by undefined mechanisms. We already demonstrated that, in the human colon adenocarcinoma cell line HT29, the effects of NT were mediated by a complex formed between the NT receptor-1 (NTSR1) and-3 (NTSR3). Here we examined cellular mechanisms that led to NT-induced MAP kinase phosphorylation and growth factors receptors transactivation in colonic cancer cells and proliferation inmore » HT29 cells. With the aim to identify upstream signaling involved in NT-elicited MAP kinase activation, we found that the stimulatory effects of the peptide were totally independent from the activation of the epidermal growth factor receptor (EGFR) both in the HT29 and the HCT116 cells. NT was unable to promote phosphorylation of EGFR and to compete with EGF for its binding to the receptor. Pharmacological approaches allowed us to differentiate EGF and NT signaling in HT29 cells since only NT activation of Erk1/2 was shown to be sensitive to PKC inhibitors and since only NT increased the intracellular level of calcium. We also observed that NT was not able to transactivate Insulin-like growth factor receptor. Our findings indicate that, in the HT29 and HCT116 cell lines, NT stimulates MAP kinase phosphorylation and cell growth by a pathway which does not involve EGF system but rather NT receptors which transduce their own intracellular effectors. These results indicate that depending on the cell line used, blocking EGFR is not the general rule to inhibit NT-induced cancer cell proliferation.« less

  18. Development of a new canine osteosarcoma cell line.

    PubMed

    Séguin, B; Zwerdling, T; McCallan, J L; DeCock, H E V; Dewe, L L; Naydan, D K; Young, A E; Bannasch, D L; Foreman, O; Kent, M S

    2006-12-01

    Establishing a canine osteosarcoma (OSA) cell line can be useful to develop in vivo and in vitro models of OSA. The goal of this study was to develop, characterize and authenticate a new canine OSA cell line and a clone. A cell line and a clone were developed with standard cell culture techniques from a naturally occurring OSA in a dog. The clonal cell line induced a tumour after injection in RAG 1-deficient mouse. Histology was consistent with OSA. The original tumour from the dog and the tumour induced in the mouse were both reactive with vimentin and osteonectin (ON). The parent cell line and clonal cell line were reactive with ON, osteocalcin and alkaline phosphatase. Loss of heterozygosity was found in the same three microsatellite markers in the parent and clonal cell lines, and the tumour tissue grown in the mouse.

  19. Reference Maps of Human ES and iPS Cell Variation Enable High-Throughput Characterization of Pluripotent Cell Lines

    PubMed Central

    Bock, Christoph; Kiskinis, Evangelos; Verstappen, Griet; Gu, Hongcang; Boulting, Gabriella; Smith, Zachary D.; Ziller, Michael; Croft, Gist F.; Amoroso, Mackenzie W.; Oakley, Derek H.; Gnirke, Andreas; Eggan, Kevin; Meissner, Alexander

    2011-01-01

    SUMMARY The developmental potential of human pluripotent stem cells suggests that they can produce disease-relevant cell types for biomedical research. However, substantial variation has been reported among pluripotent cell lines, which could affect their utility and clinical safety. Such cell-line-specific differences must be better understood before one can confidently use embryonic stem (ES) or induced pluripotent stem (iPS) cells in translational research. Toward this goal we have established genome-wide reference maps of DNA methylation and gene expression for 20 previously derived human ES lines and 12 human iPS cell lines, and we have measured the in vitro differentiation propensity of these cell lines. This resource enabled us to assess the epigenetic and transcriptional similarity of ES and iPS cells and to predict the differentiation efficiency of individual cell lines. The combination of assays yields a scorecard for quick and comprehensive characterization of pluripotent cell lines. PMID:21295703

  20. Polish Natural Bee Honeys Are Anti-Proliferative and Anti-Metastatic Agents in Human Glioblastoma multiforme U87MG Cell Line

    PubMed Central

    Moskwa, Justyna; Borawska, Maria H.; Markiewicz-Zukowska, Renata; Puscion-Jakubik, Anna; Naliwajko, Sylwia K.; Socha, Katarzyna; Soroczynska, Jolanta

    2014-01-01

    Honey has been used as food and a traditional medicament since ancient times. However, recently many scientists have been concentrating on the anti-oxidant, anti-proliferative, anti-inflammatory and other properties of honey. In this study, we investigated for the first time an anticancer effect of different honeys from Poland on tumor cell line - glioblastoma multiforme U87MG. Anti-proliferative activity of honeys and its interferences with temozolomide were determined by a cytotoxicity test and DNA binding by [H3]-thymidine incorporation. A gelatin zymography was used to conduct an evaluation of metalloproteinases (MMP-2 and MMP-9) expression in U87MG treatment with honey samples. The honeys were previously tested qualitatively (diastase activity, total phenolic content, lead and cadmium content). The data demonstrated that the examined honeys have a potent anti-proliferative effect on U87MG cell line in a time- and dose-dependent manner, being effective at concentrations as low as 0.5% (multifloral light honey - viability 53% after 72 h of incubation). We observed that after 48 h, combining honey with temozolomide showed a significantly higher inhibitory effect than the samples of honey alone. We observed a strong inhibition of MMP-2 and MMP-9 for the tested honeys (from 20 to 56% and from 5 to 58% compared to control, respectively). Our results suggest that Polish honeys have an anti-proliferative and anti-metastatic effect on U87MG cell line. Therefore, natural bee honey can be considered as a promising adjuvant treatment for brain tumors. PMID:24594866

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maneckjee, R.; Minna, J.D.

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptidesmore » ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.« less

  2. Treatment patterns and cost-effectiveness of first line treatment of advanced non-squamous non-small cell lung cancer in Medicare patients.

    PubMed

    Gilden, Daniel M; Kubisiak, Joanna M; Pohl, Gerhardt M; Ball, Daniel E; Gilden, David E; John, William J; Wetmore, Stewart; Winfree, Katherine B

    2017-02-01

    To assess the cost-effectiveness of first-line pemetrexed/platinum and other commonly administered regimens in a representative US elderly population with advanced non-squamous non-small cell lung cancer (NSCLC). This study utilized the Surveillance Epidemiology and End Results (SEER) cancer registry linked to Medicare claims records. The study population included all SEER-Medicare patients diagnosed in 2008-2009 with advanced non-squamous NSCLC (stages IIIB-IV) as their only primary cancer and who started chemotherapy within 90 days of diagnosis. The study evaluated the four most commonly observed first-line regimens: paclitaxel/carboplatin, platinum monotherapy, pemetrexed/platinum, and paclitaxel/carboplatin/bevacizumab. Overall survival and total healthcare cost comparisons as well as incremental cost-effectiveness ratios (ICERs) were calculated for pemetrexed/platinum vs each of the other three. Unstratified analyses and analyses stratified by initial disease stage were conducted. The final study population consisted of 2,461 patients. Greater administrative censorship of pemetrexed recipients at the end of the study period disproportionately reduced the observed mean survival for pemetrexed/platinum recipients. The disease stage-stratified ICER analysis found that the pemetrexed/platinum incurred total Medicare costs of $536,424 and $283,560 per observed additional year of life relative to platinum monotherapy and paclitaxel/carboplatin, respectively. The pemetrexed/platinum vs triplet comparator analysis indicated that pemetrexed/platinum was associated with considerably lower total Medicare costs, with no appreciable survival difference. Limitations included differential censorship of the study regimen recipients and differential administration of radiotherapy. Pemetrexed/platinum yielded either improved survival at increased cost or similar survival at reduced cost relative to comparator regimens in the treatment of advanced non-squamous NSCLC. Limitations in the study methodology suggest that the observed pemetrexed survival benefit was likely conservative.

  3. Radiation-hardened microwave communications system

    NASA Astrophysics Data System (ADS)

    Smith, S. F.; Bible, D. W.; Crutcher, R. I.; Hannah, J. H.; Moore, J. A.; Nowlin, C. H.; Vandermolen, R. I.; Chagnot, D.; Leroy, A.

    1993-03-01

    To develop a wireless communication system to meet the stringent requirements for a nuclear hot cell and similar environments, including control of advanced servomanipulators, a microwave signal transmission system development program was established to produce a demonstration prototype for the Consolidated Fuel Reprocessing Program at Oak Ridge National Laboratory (ORNL). Proof-of-principle tests in a partially metal lined enclosure at ORNL successfully demonstrated the feasibility of directed microwave signal transmission techniques for remote systems applications. The potential for much more severe radio-frequency (RF) multipath propagation conditions in fully metal lined cells led to a programmatic decision to conduct additional testing in more typical hot-cell environments at other sites. Again, the test results were excellent. Based on the designs of the earlier systems, an advanced microwave signal transmission system configuration was subsequently developed that, in highly reflective environments, will support both high-performance video channels and high baud-rate digital data links at total gamma dose tolerance levels exceeding 10(exp 7) rads and at elevated ambient temperatures.

  4. Analysis and functional annotation of expressed sequence tags from the fall armyworm Spodoptera frugiperda

    PubMed Central

    Deng, Youping; Dong, Yinghua; Thodima, Venkata; Clem, Rollie J; Passarelli, A Lorena

    2006-01-01

    Background Little is known about the genome sequences of lepidopteran insects, although this group of insects has been studied extensively in the fields of endocrinology, development, immunity, and pathogen-host interactions. In addition, cell lines derived from Spodoptera frugiperda and other lepidopteran insects are routinely used for baculovirus foreign gene expression. This study reports the results of an expressed sequence tag (EST) sequencing project in cells from the lepidopteran insect S. frugiperda, the fall armyworm. Results We have constructed an EST database using two cDNA libraries from the S. frugiperda-derived cell line, SF-21. The database consists of 2,367 ESTs which were assembled into 244 contigs and 951 singlets for a total of 1,195 unique sequences. Conclusion S. frugiperda is an agriculturally important pest insect and genomic information will be instrumental for establishing initial transcriptional profiling and gene function studies, and for obtaining information about genes manipulated during infections by insect pathogens such as baculoviruses. PMID:17052344

  5. Glioma Invasiveness Responds Variably to Irradiation in a Co-Culture Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakamura, Jean L.; Haas-Kogan, Daphne A.; Department of Neurological Surgery, University of California-San Francisco, San Francisco, CA

    2007-11-01

    Purpose: We developed a co-culture system to quantitate the growth and invasion of human malignant gliomas into a background of confluent normal human astrocytes, then used this assay to assess independently the effects of irradiating both cell types on glioma invasion. Methods and Materials: Enhanced green fluorescent protein (EGFP)-labeled immortalized human astrocytes, human malignant glioma cells, or transformed human astrocytes were focally plated onto a confluent layer of normal human astrocytes, and the invasiveness of EGFP-labeled cells was scored after 96 h. To address the consequences of irradiation on glioma invasion, the invasiveness of irradiated glioma cell lines and irradiatedmore » astrocytic backgrounds was assessed. Fluorescence-activated cell sorting was used to quantitate the total number of EGFP-labeled cells. Results: Growth in the co-culture assay consistently reflected transformation states of the plated cells. Immortalized, but untransformed human astrocytes failed even to establish growth on confluent normal human astrocytes. In contrast, all malignant human glioma cell lines and transformed human astrocytes demonstrated various degrees of infiltration into the astrocytic bed. Irradiation failed to alter the invasiveness of U87, A172, and U373. A 1-Gy dose slightly reduced the invasiveness of U251 MG by 75% (p < 0.05 by one-way analysis of variance and post hoc Neuman-Keuls), without reducing total cell numbers. Independently irradiating the human astrocytic bed did not alter the invasiveness of nonirradiated U251, whereas the matrix metalloproteinase (MMP) inhibitor GM6001 reduced U251 invasiveness in the co-culture assay. Conclusions: Growth in the co-culture assay reflects the transformation status and provides a useful in vitro model for assessing invasiveness. Human glioma invasiveness in the co-culture model responds variably to single low-dose fractions. MMP activity promotes invasiveness in the co-culture model. Reduced invasiveness in irradiated U251 appears to be mediated by MMP-independent mechanisms.« less

  6. Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felthaus, O.; Department of Oral and Maxillofacial Surgery, University of Regensburg; Ettl, T.

    2011-04-01

    Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simplemore » method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.« less

  7. Derivation and Osmotolerance Characterization of Three Immortalized Tilapia (Oreochromis mossambicus) Cell Lines

    PubMed Central

    Gardell, Alison M.; Qin, Qin; Rice, Robert H.; Li, Johnathan; Kültz, Dietmar

    2014-01-01

    Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus) cell lines from brain (OmB) and lip epithelium (OmL), and compared them to a previously immortalized bulbus arteriosus (TmB) cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK) inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (≥ passage 5), we characterized the proteomes of the newly derived cell lines (OmB and OmL) using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg) was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg) on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish. PMID:24797371

  8. HIV integration sites in latently infected cell lines: evidence of ongoing replication.

    PubMed

    Symons, Jori; Chopra, Abha; Malatinkova, Eva; De Spiegelaere, Ward; Leary, Shay; Cooper, Don; Abana, Chike O; Rhodes, Ajantha; Rezaei, Simin D; Vandekerckhove, Linos; Mallal, Simon; Lewin, Sharon R; Cameron, Paul U

    2017-01-13

    Assessing the location and frequency of HIV integration sites in latently infected cells can potentially inform our understanding of how HIV persists during combination antiretroviral therapy. We developed a novel high throughput sequencing method to evaluate HIV integration sites in latently infected cell lines to determine whether there was virus replication or clonal expansion in these cell lines observed as multiple integration events at the same position. We modified a previously reported method using random DNA shearing and PCR to allow for high throughput robotic processing to identify the site and frequency of HIV integration in latently infected cell lines. Latently infected cell lines infected with intact virus demonstrated multiple distinct HIV integration sites (28 different sites in U1, 110 in ACH-2 and 117 in J1.1 per 150,000 cells). In contrast, cell lines infected with replication-incompetent viruses (J-Lat cells) demonstrated single integration sites. Following in vitro passaging of the ACH-2 cell line, we observed a significant increase in the frequency of unique HIV integration sites and there were multiple mutations and large deletions in the proviral DNA. When the ACH-2 cell line was cultured with the integrase inhibitor raltegravir, there was a significant decrease in the number of unique HIV integration sites and a transient increase in the frequency of 2-LTR circles consistent with virus replication in these cells. Cell lines latently infected with intact HIV demonstrated multiple unique HIV integration sites indicating that these cell lines are not clonal and in the ACH-2 cell line there was evidence of low level virus replication. These findings have implications for the use of latently infected cell lines as models of HIV latency and for the use of these cells as standards.

  9. Mistletoe lectin is not the only cytotoxic component in fermented preparations of Viscum album from white fir (Abies pectinata)

    PubMed Central

    Eggenschwiler, Jenny; von Balthazar, Leopold; Stritt, Bianca; Pruntsch, Doreen; Ramos, Mac; Urech, Konrad; Rist, Lukas; Simões-Wüst, A Paula; Viviani, Angelika

    2007-01-01

    Background Preparations of mistletoe (Viscum album) are the form of cancer treatment that is most frequently used in the complementary medicine. Previous work has shown that these preparations are able to exert cytotoxic effects on carcinoma cells, the extent of which might be influenced by the host tree species and by the content of mistletoe lectin. Methods Using colorimetric assays, we have now compared the cytotoxic effects of Viscum album preparations (VAPs) obtained from mistletoe growing on oak (Quercus robur and Q. petraea, VAP-Qu), apple tree (Malus domestica,, VAP-M), pine (Pinus sylvestris, VAP-P) or white fir (Abies pectinata, VAP-A), on the in vitro growth of breast and bladder carcinoma cell lines. While MFM-223, KPL-1, MCF-7 and HCC-1937 were the breast carcinoma cell lines chosen, the panel of tested bladder carcinoma cells comprised the T-24, TCC-SUP, UM-UC-3 and J-82 cell lines. Results Each of the VAPs inhibited cell growth, but the extent of this inhibition differed with the preparation and with the cell line. The concentrations of VAP-Qu, VAP-M and VAP-A which led to a 50 % reduction of cell growth (IC50) varied between 0.6 and 0.03 mg/ml. Higher concentrations of VAP-P were required to obtain a comparable effect. Purified mistletoe lectin I (MLI) led to an inhibition of breast carcinoma cell growth at concentrations lower than those of VAPs, but the sensitivity towards purified MLI did not parallel that towards VAPs. Bladder carcinoma cells were in most cases more sensitive to VAPs treatment than breast carcinoma cells. The total mistletoe lectin content was very high in VAP-Qu (54 ng/mg extract), intermediate in VAP-M (25 ng/mg extract), and very low in VAP-P (1.3 ng/mg extract) and in VAP-A (1 ng/mg extract). As to be expected from the low content of mistletoe lectin, VAP-P led to relatively weak cytotoxic effects. Most remarkably, however, the lectin-poor VAP-A revealed a cytotoxic effect comparable to, or even stronger than, that of the lectin-rich VAP-Qu, on all tested bladder and breast carcinoma cell lines. Conclusion The results suggest the existence of cytotoxic components other than mistletoe lectin in VAP-A and reveal an unexpected potential of this preparation for the treatment of breast and bladder cancer. PMID:17493268

  10. Cell lines authentication and mycoplasma detection as minimun quality control of cell lines in biobanking.

    PubMed

    Corral-Vázquez, C; Aguilar-Quesada, R; Catalina, P; Lucena-Aguilar, G; Ligero, G; Miranda, B; Carrillo-Ávila, J A

    2017-06-01

    Establishment of continuous cell lines from human normal and tumor tissues is an extended and useful methodology for molecular characterization of cancer pathophysiology and drug development in research laboratories. The exchange of these cell lines between different labs is a common practice that can compromise assays reliability due to contamination with microorganism such as mycoplasma or cells from different flasks that compromise experiment reproducibility and reliability. Great proportions of cell lines are contaminated with mycoplasma and/or are replaced by cells derived for a different origin during processing or distribution process. The scientific community has underestimated this problem and thousand of research experiment has been done with cell lines that are incorrectly identified and wrong scientific conclusions have been published. Regular contamination and authentication tests are necessary in order to avoid negative consequences of widespread misidentified and contaminated cell lines. Cell banks generate, store and distribute cell lines for research, being mandatory a consistent and continuous quality program. Methods implementation for guaranteeing both, the absence of mycoplasma and authentication in the supplied cell lines, has been performed in the Andalusian Health System Biobank. Specifically, precise results were obtained using real time PCR detection for mycoplasma and 10 STRs identification by capillary electrophoresis for cell line authentication. Advantages and disadvantages of these protocols are discussed.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harkema, J.R.; Hotchkiss, J.A.; Griffith, W.C.

    The present study was designed to examine the effects of long-term ozone exposure on nasal epithelia and intraepithelial mucosubstances (IM) throughout the nasal airways of F344/N rats. Animals were exposed to 0 (controls). 0. 12. 0.5, or 1.0 ppm ozone. 6 h/day, 5 days/wk. for 20 mo. Rats were killed 1 wk after the end of the exposure. and nasal tissues were processed for light and electron microscopy. Standard morphometric techniques were used to determine epithelial cell densities and the amounts of IM in the surface epithelium lining the nasal airways. No mucous cells or IM were present in themore » epithelia lining the nasal lateral meatus and maxillary sinus of rats exposed to 0 or 0.12 ppm ozone. In contrast, rats exposed to 0.5 or 1.0 ppm ozone had marked mucous cell metaplasia (MCM) with numerous mucous cells and conspicuous amounts of IM in the surface epithelium lining these upper airways. Ozone-induced increases in total epithelial cells (i.e., epithelial hyperplasia) were present only in rats exposed to 1.0 ppm. The results of this study indicate that rats chronically exposed to 1.0 or 0.5 ppm, but not 0. 121 ppm. ozone can develop marked MCM with significant increases in IM in both proximal and distal nasal airways. The epithelial chances observed throughout the nasal passages of ozone-exposed rats may be adaptive responses in an attempt to protect the upper and lower respiratory tract from further ozone-induced injury.« less

  12. Downregulation of STARD8 in gastric cancer and its involvement in gastric cancer progression

    PubMed Central

    Ma, Jinguo; Chen, Jing; Zhi, Yu; Li, Zhenhua; Dai, Dongqiu

    2018-01-01

    Objective Rho-GTPases play a pivotal role in a wide variety of signal transduction pathways and are associated with a great number of human carcinomas. STARD8, which is a Rho-GTPase-activating protein, has been proposed as a tumor suppressor gene, but its role in gastric cancer remains elusive. In this study, we investigate the expression of STARD8 in gastric cancer and its association with gastric cancer progression. Materials and methods One normal gastric mucosa cell line for example GES1 and six human gastric cancer cell lines such as AGS, MGC803, MKN45, SGC7901, HGC27 and BGC823 were utilized to analyze STARD8 mRNA and protein levels by reverse transcription polymerase chain reaction (RT-PCR) and Western blot. A total of 70 paired gastric tissues including corresponding nonmalignant gastric tissues and cancer tissues were utilized to analyze the protein expression of STARD8 using immunohistochemistry, and the correlation between STARD8 level and clinicopathological features was also evaluated. Results STARD8 was found to be downregulated in primary gastric cancer cells and tissues compared with the normal gastric mucosa cell line, GES1, and corresponding nonmalignant gastric tissues, while its decreased expression was significantly associated with TNM stage, lymph node metastasis and differentiation (p<0.05). Conclusion There is significantly decreased expression of STARD8 in gastric cancer cells and tissues, and its expression may contribute to gastric tumorigenesis. PMID:29849465

  13. Short communication: High incubation temperature in bovine mammary epithelial cells reduced the activity of the mTOR signaling pathway.

    PubMed

    Kaufman, J D; Kassube, K R; Almeida, R A; Ríus, A G

    2018-05-02

    Hyperthermia alters utilization of AA in protein synthesis and cell-signaling activity in bovine mammary cells. Essential AA and insulin regulate translation of proteins by controlling the activity of mammalian target of rapamycin (mTOR) signaling pathway. The objectives of this study were to evaluate (1) the effects of incubation temperature on the mTOR signaling pathway and transcription of AA transporters in a bovine mammary alveolar cell line (MAC-T) and (2) the combined effects of incubation temperature and insulin on the mTOR signaling pathway in this cell line. Cells were cultured in medium with 10% fetal bovine serum at 37°C and 5% CO 2 . In experiment 1, cells were subjected to 37°C (control) or 41.5°C (high incubation temperature; HT) for 12 h. In experiment 2, cells were assigned to 1 of 4 treatments as a 2 × 2 factorial arrangement, including 2 cell culture temperatures (control and HT) and absence or presence of 1.0 μg/mL of insulin. Proteins were harvested and separated by gel electrophoresis. In experiment 1, gene expression of AA transporters (SLC1A1, SLC1A5, SLC3A2, SLC7A1, SLC7A5, and SLC36A1) were evaluated, and changes of ≥2 fold were deemed significantly different. In experiments 1 and 2, immunoblotting was used to identify total and site-specific phosphorylated forms of protein kinase B (Akt1; Ser473), p70 S6 kinase (S6K1; Thr389), ribosomal protein S6 (rpS6; Ser235/236), and eukaryotic elongation factor 2 (eEF2; Thr56). Phosphorylated and total forms of Akt1, S6K1, rpS6, and eEF2 were quantified and expressed as the ratio of phosphorylated to total protein. In experiment 1, HT resulted in a ≥2-fold increase expression of SLC1A1 and SLC3A2. High incubation temperature reduced the phosphorylated to total ratio of Akt1 and rpS6 and increased the phosphorylated to total ratio of eEF2. In experiment 2, we found no temperature by insulin interactions on phosphorylation state of the protein factors of interest. High incubation temperature reduced the phosphorylated to total ratio of Akt1. The addition of insulin increased the phosphorylated to total ratio of Akt1, S6K1, and rpS6. In summary, HT reduced the activity of the mTOR signaling pathway and increased the expression of AA transporters. High incubation temperature possibly reduced protein translation by reducing the mTOR signaling pathway activity in an effort to adapt to thermal stress. These results may help explain the direct effect of elevated temperature on AA metabolism and protein translation in heat-stressed animals. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Novel immortal human cell lines reveal subpopulations in the nucleus pulposus

    PubMed Central

    2014-01-01

    Introduction Relatively little is known about cellular subpopulations in the mature nucleus pulposus (NP). Detailed understanding of the ontogenetic, cellular and molecular characteristics of functional intervertebral disc (IVD) cell populations is pivotal to the successful development of cell replacement therapies and IVD regeneration. In this study, we aimed to investigate whether phenotypically distinct clonal cell lines representing different subpopulations in the human NP could be generated using immortalization strategies. Methods Nondegenerate healthy disc material (age range, 8 to 15 years) was obtained as surplus surgical material. Early passage NP monolayer cell cultures were initially characterized using a recently established NP marker set. NP cells were immortalized by simian virus 40 large T antigen (SV40LTag) and human telomerase reverse transcriptase expression. Immortalized cells were clonally expanded and characterized based on collagen type I, collagen type II, α1 (COL2A1), and SRY-box 9 (SOX9) protein expression profiles, as well as on expression of a subset of established in vivo NP cell lineage markers. Results A total of 54 immortal clones were generated. Profiling of a set of novel NP markers (CD24, CA12, PAX1, PTN, FOXF1 and KRT19 mRNA) in a representative set of subclones substantiated successful immortalization of multiple cellular subpopulations from primary isolates and confirmed their NP origin and/or phenotype. We were able to identify two predominant clonal NP subtypes based on their morphological characteristics and their ability to induce SOX9 and COL2A1 under conventional differentiation conditions. In addition, cluster of differentiation 24 (CD24)–negative NP responder clones formed spheroid structures in various culture systems, suggesting the preservation of a more immature phenotype compared to CD24-positive nonresponder clones. Conclusions Here we report the generation of clonal NP cell lines from nondegenerate human IVD tissue and present a detailed characterization of NP cellular subpopulations. Differential cell surface marker expression and divergent responses to differentiation conditions suggest that the NP subtypes may correspond to distinct maturation stages and represent distinct NP cell subpopulations. Hence, we provide evidence that the immortalization strategy that we applied is capable of detecting cell heterogeneity in the NP. Our cell lines yield novel insights into NP biology and provide promising new tools for studies of IVD development, cell function and disease. PMID:24972717

  15. Novel immortal human cell lines reveal subpopulations in the nucleus pulposus.

    PubMed

    van den Akker, Guus G H; Surtel, Don A M; Cremers, Andy; Rodrigues-Pinto, Ricardo; Richardson, Stephen M; Hoyland, Judith A; van Rhijn, Lodewijk W; Welting, Tim J M; Voncken, Jan Willem

    2014-06-27

    Relatively little is known about cellular subpopulations in the mature nucleus pulposus (NP). Detailed understanding of the ontogenetic, cellular and molecular characteristics of functional intervertebral disc (IVD) cell populations is pivotal to the successful development of cell replacement therapies and IVD regeneration. In this study, we aimed to investigate whether phenotypically distinct clonal cell lines representing different subpopulations in the human NP could be generated using immortalization strategies. Nondegenerate healthy disc material (age range, 8 to 15 years) was obtained as surplus surgical material. Early passage NP monolayer cell cultures were initially characterized using a recently established NP marker set. NP cells were immortalized by simian virus 40 large T antigen (SV40LTag) and human telomerase reverse transcriptase expression. Immortalized cells were clonally expanded and characterized based on collagen type I, collagen type II, α1 (COL2A1), and SRY-box 9 (SOX9) protein expression profiles, as well as on expression of a subset of established in vivo NP cell lineage markers. A total of 54 immortal clones were generated. Profiling of a set of novel NP markers (CD24, CA12, PAX1, PTN, FOXF1 and KRT19 mRNA) in a representative set of subclones substantiated successful immortalization of multiple cellular subpopulations from primary isolates and confirmed their NP origin and/or phenotype. We were able to identify two predominant clonal NP subtypes based on their morphological characteristics and their ability to induce SOX9 and COL2A1 under conventional differentiation conditions. In addition, cluster of differentiation 24 (CD24)-negative NP responder clones formed spheroid structures in various culture systems, suggesting the preservation of a more immature phenotype compared to CD24-positive nonresponder clones. Here we report the generation of clonal NP cell lines from nondegenerate human IVD tissue and present a detailed characterization of NP cellular subpopulations. Differential cell surface marker expression and divergent responses to differentiation conditions suggest that the NP subtypes may correspond to distinct maturation stages and represent distinct NP cell subpopulations. Hence, we provide evidence that the immortalization strategy that we applied is capable of detecting cell heterogeneity in the NP. Our cell lines yield novel insights into NP biology and provide promising new tools for studies of IVD development, cell function and disease.

  16. Uveal Melanoma Cell Lines: Where do they come from? (An American Ophthalmological Society Thesis).

    PubMed

    Jager, Martine J; Magner, J Antonio Bermudez; Ksander, Bruce R; Dubovy, Sander R

    2016-08-01

    To determine whether some of the most often used uveal melanoma cell lines resemble their original tumor. Analysis of the literature, patient charts, histopathology, mutations, chromosome status, HLA type, and expression of melanocyte markers on cell lines and their primary tumors. We examined five cell lines and the primary tumors from which they were derived. Four of the five examined primary tumors were unusual: one occupied the orbit, two were recurrences after prior irradiation, and one developed in an eye with a nevus of Ota. One cell line did not contain the GNA11 mutation, but it was present in the primary tumor. Three of the primary tumors had monosomy 3 (two of these lacked BAP1 expression); however, all five cell lines showed disomy 3 and BAP1 expression. All of the cell lines had gain of 8q. Two cell lines lacked expression of melanocyte markers, although these were present in the corresponding primary tumor. All cell lines could be traced back to their original uveal melanoma. Four of the five primary tumors were unusual. Cell lines often differed from their primary tumor in chromosome status and melanocyte markers. However, their specific chromosome aberrations and capacity to continue proliferation characterize them as uveal melanoma cell lines.

  17. Uveal Melanoma Cell Lines: Where do they come from? (An American Ophthalmological Society Thesis)

    PubMed Central

    Jager, Martine J.; Magner, J. Antonio Bermudez; Ksander, Bruce R.; Dubovy, Sander R.

    2016-01-01

    Purpose To determine whether some of the most often used uveal melanoma cell lines resemble their original tumor. Methods Analysis of the literature, patient charts, histopathology, mutations, chromosome status, HLA type, and expression of melanocyte markers on cell lines and their primary tumors. We examined five cell lines and the primary tumors from which they were derived. Results Four of the five examined primary tumors were unusual: one occupied the orbit, two were recurrences after prior irradiation, and one developed in an eye with a nevus of Ota. One cell line did not contain the GNA11 mutation, but it was present in the primary tumor. Three of the primary tumors had monosomy 3 (two of these lacked BAP1 expression); however, all five cell lines showed disomy 3 and BAP1 expression. All of the cell lines had gain of 8q. Two cell lines lacked expression of melanocyte markers, although these were present in the corresponding primary tumor. Conclusions All cell lines could be traced back to their original uveal melanoma. Four of the five primary tumors were unusual. Cell lines often differed from their primary tumor in chromosome status and melanocyte markers. However, their specific chromosome aberrations and capacity to continue proliferation characterize them as uveal melanoma cell lines. PMID:28018010

  18. Ultrasound assisted simultaneous reduction and direct functionalization of graphene oxide with thermal and cytotoxicity profile.

    PubMed

    Maktedar, Shrikant S; Avashthi, Gopal; Singh, Man

    2017-01-01

    The new sonochemical approach for simultaneous reduction and direct functionalization of graphene oxide (GrO) has been developed. The GrO was functionalized with 2-Aminobenzoxazole (2-ABOZ) in twenty min with complete deletion of hazardous steps. The significance of ultrasound was exemplified with the comparative conventional methods. The newly prepared f-(2-ABOZ)GrO was extensively characterized with near edge X-ray absorption fine structure (NEXAFS) spectroscopy, 13 C solid state NMR, XPS, XRD, HRTEM, SAED, AFM, Raman, UV-vis, FTIR and TGA. The thermal stability of f-(2-ABOZ)GrO was confirmed with total percentage weight loss in TGA. The biological activity of f-(2-ABOZ)GrO was explored with MCF-7 and Vero cell lines. The inherent cytotoxicity was evaluated with SRB assay at 10, 20, 40 and 80μgmL -1 . The estimated cell viabilities were >78% with f-(2-ABOZ) GrO. A high cytocompatibility of f-(2-ABOZ)GrO was ensured with in vitro evaluation on living cell lines, and low toxicity of f-(2-ABOZ)GrO was confirmed its excellent biocompatibility. The morphological effect on Vero cell line evidently supports the formation of biocompatible f-(2-ABOZ)GrO. Therefore, f-(2-ABOZ)GrO was emerged as an advanced functional material for thermally stable biocompatible coatings. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Rescue of Targeted Regions of Mammalian Chromosomes by in Vivo Recombination in Yeast

    PubMed Central

    Kouprina, Natalya; Kawamoto, Kensaku; Barrett, J. Carl; Larionov, Vladimir; Koi, Minoru

    1998-01-01

    In contrast to other animal cell lines, the chicken pre-B cell lymphoma line, DT40, exhibits a high level of homologous recombination, which can be exploited to generate site-specific alterations in defined target genes or regions. In addition, the ability to generate human/chicken monochromosomal hybrids in the DT40 cell line opens a way for specific targeting of human genes. Here we describe a new strategy for direct isolation of a human chromosomal region that is based on targeting of the chromosome with a vector containing a yeast selectable marker, centromere, and an ARS element. This procedure allows rescue of the targeted region by transfection of total genomic DNA into yeast spheroplasts. Selection for the yeast marker results in isolation of chromosome sequences in the form of large circular yeast artificial chromosomes (YACs) up to 170 kb in size containing the targeted region. These YACs are generated by homologous recombination in yeast between common repeated sequences in the targeted chromosomal fragment. Alternatively, the targeted region can be rescued as a linear YACs when a YAC fragmentation vector is included in the yeast transformation mixture. Because the entire isolation procedure of the chromosomal region, once a target insertion is obtained, can be accomplished in ∼1 week, the new method greatly expands the utility of the homologous recombinationproficient DT40 chicken cell system. PMID:9647640

  20. Analysis on flexible manufacturing system layout using arena simulation software

    NASA Astrophysics Data System (ADS)

    Fadzly, M. K.; Saad, Mohd Sazli; Shayfull, Z.

    2017-09-01

    Flexible manufacturing system (FMS) was defined as highly automated group technology machine cell, consisting of a group of processing stations interconnected by an automated material handling and storage system, and controlled by an integrated computer system. FMS can produce parts or products are in the mid-volume, mid-variety production range. The layout system in FMS is an important criterion to design the FMS system to produce a part or product. This facility layout of an FMS involves the positioning of cells within given boundaries, so as to minimize the total projected travel time between cells. Defining the layout includes specifying the spatial coordinates of each cell, its orientation in either a horizontal or vertical position, and the location of its load or unloads point. There are many types of FMS layout such as In-line, loop ladder and robot centered cell layout. The research is concentrating on the design and optimization FMS layout. The final conclusion can be summarized that the objective to design and optimisation of FMS layout for this study is successful because the FMS In-line layout is the best layout based on effective time and cost using ARENA simulation software.

  1. Cytotoxic effects and apoptosis induction of enrofloxacin in hepatic cell line of grass carp (Ctenopharyngodon idellus).

    PubMed

    Liu, Bo; Cui, Yanting; Brown, Paul B; Ge, Xianping; Xie, Jun; Xu, Pao

    2015-12-01

    We determined the effect of enrofloxacin on the lactate dehydrogenase (LDH) release, reactive oxygen species (ROS), superoxide dismutase (SOD), total antioxidant capacity (T-AOC), malondialdehyde (MDA), mitochondria membrane potential (ΔΨm) and apoptosis in the hepatic cell line of grass carp (Ctenopharyngodon idellus). Cultured cells were treated with different concentrations of enrofloxacin (12.5-200 ug/mL) for 24 h. We found that the cytotoxic effect of enrofloxacin was mediated by apoptosis, and that this apoptosis occurred in a dose-dependent manner. The doses of 50,100 and 200 μg/mL enrofloxacin increased the LDH release and MDA concentration, induced cell apoptosis and reduced the ΔΨm compared to the control. The highest dose of 200 ug/mL enrofloxacin also significantly induced apoptosis accompanied by ΔΨm disruption and ROS generation and significantly reduced T-AOC and increased MDA concentration compared to the control. Our results suggest that the dose of 200 ug/mL enrofloxacin exerts its cytotoxic effect and produced ROS via apoptosis by affecting the mitochondria of the hepatic cells of grass carp. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Impact of fractionation on out-of-field survival and DNA damage responses following exposure to intensity modulated radiation fields

    NASA Astrophysics Data System (ADS)

    Ghita, Mihaela; Coffey, Caroline B.; Butterworth, Karl T.; McMahon, Stephen J.; Schettino, Giuseppe; Prise, Kevin M.

    2016-01-01

    To limit toxicity to normal tissues adjacent to the target tumour volume, radiotherapy is delivered using fractionated regimes whereby the total prescribed dose is given as a series of sequential smaller doses separated by specific time intervals. The impact of fractionation on out-of-field survival and DNA damage responses was determined in AGO-1522 primary human fibroblasts and MCF-7 breast tumour cells using uniform and modulated exposures delivered using a 225 kVp x-ray source. Responses to fractionated schedules (two equal fractions delivered with time intervals from 4 h to 48 h) were compared to those following acute exposures. Cell survival and DNA damage repair measurements indicate that cellular responses to fractionated non-uniform exposures differ from those seen in uniform exposures for the investigated cell lines. Specifically, there is a consistent lack of repair observed in the out-of-field populations during intervals between fractions, confirming the importance of cell signalling to out-of-field responses in a fractionated radiation schedule, and this needs to be confirmed for a wider range of cell lines and conditions.

  3. Different toxic effects of YTX in tumor K-562 and lymphoblastoid cell lines

    PubMed Central

    Fernández-Araujo, Andrea; Sánchez, Jon A.; Alfonso, Amparo; Vieytes, Mercedes R.; Botana, Luis M.

    2015-01-01

    Yessotoxin (YTX) modulates cellular phosphodiesterases (PDEs). In this regard, opposite effects had been described in the tumor model K-562 cell line and fresh human lymphocytes in terms of cell viability, cyclic adenosine 3',5'-cyclic monophosphate (cAMP) production and protein expression after YTX treatment. Studies in depth of the pathways activated by YTX in K-562 cell line, have demonstrated the activation of two different cell death types, apoptosis, and autophagy after 24 and 48 h of treatment, respectively. Furthermore, the key role of type 4A PDE (PDE4A) in both pathways activated by YTX was demonstrated. Therefore, taking into account the differences between cellular lines and fresh cells, a study of cell death pathways activated by YTX in a non-tumor cell line with mitotic activity, was performed. The cellular model used was the lymphoblastoid cell line that represents a non-tumor model with normal apoptotic and mitotic machinery. In this context, cell viability and cell proliferation, expression of proteins involved in cell death activated by YTX and mitochondrial mass, were studied after the incubation with the toxin. Opposite to the tumor model, no cell death activation was observed in lymphoblastoid cell line in the presence of YTX. In this sense, variations in apoptosis hallmarks were not detected in the lymphoblastoid cell line after YTX incubation, whereas this type I of programmed cell death was observed in K-562 cells. On the other hand, autophagy cell death was triggered in this cellular line, while other autophagic process is suggested in lymphoblastoid cells. These YTX effects are related to PDE4A in both cellular lines. In addition, while cell death is triggered in K-562 cells after YTX treatment, in lymphoblastoid cells the toxin stops cellular proliferation. These results point to YTX as a specific toxic compound of tumor cells, since in the non-tumor lymphoblastoid cell line, no cell death hallmarks are observed. PMID:26136685

  4. Lung Cancer Cell Lines as Tools for Biomedical Discovery and Research

    PubMed Central

    Girard, Luc; Lockwood, William W.; Lam, Wan L.; Minna, John D.

    2010-01-01

    Lung cancer cell lines have made a substantial contribution to lung cancer translational research and biomedical discovery. A systematic approach to initiating and characterizing cell lines from small cell and non–small cell lung carcinomas has led to the current collection of more than 200 lung cancer cell lines, a number that exceeds those for other common epithelial cancers combined. The ready availability and widespread dissemination of the lines to investigators worldwide have resulted in more than 9000 citations, including multiple examples of important biomedical discoveries. The high (but not perfect) genomic similarities between lung cancer cell lines and the lung tumor type from which they were derived provide evidence of the relevance of their use. However, major problems including misidentification or cell line contamination remain. Ongoing studies and new approaches are expected to reveal the full potential of the lung cancer cell line panel. PMID:20679594

  5. HepG2 human hepatocarcinomas cells sensitization by endogenous porphyrins

    NASA Astrophysics Data System (ADS)

    Vonarx-Coinsmann, Veronique; Foultier, Marie-Therese; de Brito, Leonor X.; Morlet, Laurent; Patrice, Thierry

    1995-03-01

    We assessed the ability of the human hepatocarcinoma cell line HepG2 to synthesize PpIX in vitro from exogenous ALA and analyzed ALA-induced toxicity and phototoxicity on this cell line. ALA induced a slight dose-dependent dark toxicity, with 79 and 66% cell survival respectively for ALA 50 and 100 mg/ml after 3-h incubation. Whereas the same treatment followed by laser irradiation (l equals 632 nm, 25 J/sq cm) induced dose-dependent phototoxicity, with 54 and 19% cell survival 24 h after PDT. Whatever the incubation time with ALA, a 3-h delay before light exposure was found optimal to reach a maximal phototoxicity. Photoproducts induced by porphyrin light irradiation absorbed light in the red spectral region at longer wavelengths than did the original porphyrins. The possible enhancement of PDT effects after ALA HepG2 cell incubation was investigated by irradiating cells successively with red light (l equals 632 nm) and light (l equals 650 nm). Total fluence was kept constant at 25 J/sq cm. Phototoxicity was lower when cells were irradiated for increased periods of l equals 650 nm light than with l equals 632 nm light alone. Any photoproducts involved had either a short life or were poorly photoreactive. HepG2 cells, synthesizing enzymes and precursors of endogenous porphyrin synthesis, represent a good in vitro model for experiments using ALA-PpIX-PDT.

  6. Cell lines derived from feline fibrosarcoma display unstable chromosomal aneuploidy and additionally centrosome number aberrations.

    PubMed

    von Erichsen, J; Hecht, W; Löhberg-Gruene, C; Reinacher, M

    2012-07-01

    The purpose of the study was to evaluate clonality and presence of numerical chromosomal and centrosomal aberrations in 5 established feline fibrosarcoma cell lines and in a fetal dermal fibroblast cell line as a control. The clonality of all cell lines was examined using limited-dilution cloning. The number of chromosomes was counted in metaphase spreads. The immunocytochemical analysis of centrosome numbers was performed by indirect immunofluorescence using a monoclonal antibody that targets γ-tubulin, a well-characterized component of centrosomes. Monoclonal cell populations could be established from all cell lines. In all feline fibrosarcoma cell lines, the number of chromosomes deviated abnormally from the normal feline chromosome number of 2n = 38, ranging from 19 to 155 chromosomes per cell. Centrosome hyperamplification was observed in all 5 feline fibrosarcoma cell lines with a proportion of cells (5.7 to 15.2%) having more than 2 centrosomes. In the control cell line, only 0.6% of the cells had more than 2 centrosomes. In conclusion, the examinations revealed that centrosome hyperamplification occurs in feline fibrosarcoma cell lines. The feline fibrosarcoma cell lines possessed 10 to 25 times as many cells with centrosome hyperamplification as the control cell line. These observations suggest an association of numerical centrosome aberrations with karyotype instability by increasing the frequency of chromosome missegregation. The results of this study may be helpful for further characterization of feline fibrosarcomas and may contribute to the knowledge of cytogenetic factors that may be important for the pathogenesis of feline fibrosarcomas.

  7. AXL is a logical molecular target in head and neck squamous cell carcinoma

    PubMed Central

    Brand, Toni M.; Iida, Mari; Stein, Andrew P.; Corrigan, Kelsey L.; Braverman, Cara M.; Coan, John; Pearson, Hannah E.; Bahrar, Harsh; Fowler, Tyler L.; Bednarz, Bryan P.; Saha, Sandeep; Yang, David; Gill, Parkash S.; Lingen, Mark W.; Saloura, Vassiliki; Villaflor, Victoria M.; Salgia, Ravi; Kimple, Randall J.; Wheeler, Deric L.

    2016-01-01

    Purpose Head and neck squamous cell carcinoma (HNSCC) represents the eighth most common malignancy worldwide. Standard of care treatments for HNSCC patients include surgery, radiation and chemotherapy. Additionally, the anti-epidermal growth factor receptor (EGFR) monoclonal antibody cetuximab is often used in combination with these treatment modalities. Despite clinical success with these therapeutics, HNSCC remains a difficult to treat malignancy. Thus, identification of new molecular targets is critical. Experimental Design In the current study, the receptor tyrosine kinase AXL was investigated as a molecular target in HNSCC using established cell lines, HNSCC patient derived xenografts (PDXs), and human tumors. HNSCC dependency on AXL was evaluated with both anti-AXL siRNAs and the small molecule AXL inhibitor R428. Furthermore, AXL inhibition was evaluated with standard of care treatment regimes used in HNSCC. Results AXL was found to be highly overexpressed in several models of HNSCC, where AXL was significantly associated with higher pathologic grade, presence of distant metastases and shorter relapse free survival in patients with HNSCC. Further investigations indicated that HNSCC cells were reliant on AXL for cellular proliferation, migration, and invasion. Additionally, targeting AXL increased HNSCC cell line sensitivity to chemotherapy, cetuximab, and radiation. Moreover, radiation resistant HNSCC cell line xenografts and PDXs expressed elevated levels of both total and activated AXL, indicating a role for AXL in radiation resistance. Conclusion Collectively, this study provides evidence for the role of AXL in HNSCC pathogenesis and supports further pre-clinical and clinical evaluation of anti-AXL therapeutics for the treatment of patients with HNSCC. PMID:25767293

  8. Total Synthesis and Structure-Activity Investigation of the Marine Natural Product Neopeltolide

    PubMed Central

    Custar, Daniel W.; Zabawa, Thomas P.; Hines, John; Crews, Craig M.; Scheidt, Karl A.

    2009-01-01

    The total synthesis and biological evaluation of neopeltolide and analogs are reported. The key bond-forming step utilizes a Lewis acid-catalyzed intramolecular macrocyclization that installs the tetrahydropyran ring and macrocycle simultaneously. Independent of each other, neither the macrolide nor the oxazole side chain substituents of neopeltolide can inhibit the growth of cancer cell lines. The biological data of the analogs indicate that alterations to either the ester side chain or the stereochemistry of the macrolide result in a loss of biological activity. PMID:19663512

  9. Attempt to develop taste bud models in three-dimensional culture.

    PubMed

    Nishiyama, Miyako; Yuki, Saori; Fukano, Chiharu; Sako, Hideyuki; Miyamoto, Takenori; Tomooka, Yasuhiro

    2011-09-01

    Taste buds are the end organs of taste located in the gustatory papillae, which occur on the surface of the oral cavity. The goal of the present study was to establish a culture model mimicking the lingual taste bud of the mouse. To this end, three cell lines were employed: taste bud-derived cell lines (TBD cell lines), a lingual epithelial cell-derived cell line (20A cell line), and a mesenchymal cell-derived cell line (TMD cell line). TBD cells embedded in collagen gel formed three-dimensional clusters, which had an internal cavity equipped with a tight junction-like structure, a microvilluslike structure, and a laminin-positive layer surrounding the cluster. The cells with this epitheliumlike morphology expressed marker proteins of taste cells: gustducin and NCAM. TBD cells formed a monolayer on collagen gel when they were co-cultured with TMD cells. TBD, 20A, and TMD cell lines were maintained in a triple cell co-culture, in which TBD cells were pre-seeded as aggregates or in suspension on the collagen gel containing TMD cells, and 20A cells were laid over the TBD cells. TBD cells in the triple cell co-culture expressed NCAM. This result suggests that co-cultured TBD cells exhibited a characteristic of Type III taste cells. The culture model would be useful to study morphogenesis and functions of the gustatory organ.

  10. Enhancement of Radiation Response in Osteosarcoma and Rhabomyosarcoma Cell Lines by Histone Deacetylase Inhibition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blattmann, Claudia, E-mail: claudia.blattmann@med.uni-heidelberg.d; Oertel, Susanne; Ehemann, Volker

    2010-09-01

    Purpose: Histone deacetylase inhibitors (HDACIs) can enhance the sensitivity of cells to photon radiation treatment (XRT) by altering numerous molecular pathways. We investigated the effect of pan-HDACIs such as suberoylanilide hydroxamic acid (SAHA) on radiation response in two osteosarcoma (OS) and two rhabdomyosarcoma (RMS) cell lines. Methods and Materials: Clonogenic survival, cell cycle analysis, and apoptosis were examined in OS (KHOS-24OS, SAOS2) and RMS (A-204, RD) cell lines treated with HDACI and HDACI plus XRT, respectively. Protein expression was investigated via immunoblot analysis, and cell cycle analysis and measurement of apoptosis were performed using flow cytometry. Results: SAHA induced anmore » inhibition of cell proliferation and clonogenic survival in OS and RMS cell lines and led to a significant radiosensitization of all tumor cell lines. Other HDACI such as M344 and valproate showed similar effects as investigated in one OS cell line. Furthermore, SAHA significantly increased radiation-induced apoptosis in the OS cell lines, whereas in the RMS cell lines radiation-induced apoptosis was insignificant with and without SAHA. In all investigated sarcoma cell lines, SAHA attenuated radiation-induced DNA repair protein expression (Rad51, Ku80). Conclusion: Our results show that HDACIs enhance radiation action in OS and RMS cell lines. Inhibition of DNA repair, as well as increased apoptosis induction after exposure to HDACIs, can be mechanisms of radiosensitization by HDACIs.« less

  11. Long-Term Outcomes of Cultivated Limbal Epithelial Transplantation: Evaluation and Comparison of Results in Children and Adults

    PubMed Central

    Ganger, Anita; Vanathi, M.; Mohanty, Sujata; Tandon, Radhika

    2015-01-01

    Purpose. To compare the long-term clinical outcomes of cultivated limbal epithelial transplantation (CLET) in children and adults with limbal stem cell deficiency. Design. Retrospective case series. Methods. Case records of patients with limbal stem cell deficiency (LSCD) who underwent CLET from April 2004 to December 2014 were studied. Outcome measures were compared in terms of anatomical success and visual improvement. Parameters for total anatomical success were avascular, epithelized, and clinically stable corneal surface without conjunctivalization, whereas partial anatomical success was considered when mild vascularization (sparing centre of cornea) and mild conjunctivalization were noted along with complete epithelization. Results. A total of 62 cases underwent the CLET procedure: 38 (61.3%) were children and 24 (38.7%) were adults. Patients with unilateral LSCD (33 children and 21 adults) had autografts and those with bilateral LSCD (5 children and 3 adults) had allografts. Amongst the 54 autografts partial and total anatomical success were noted in 21.2% and 66.6% children, respectively, and 19.0% and 80.9% in adults, respectively (p value 0.23). Visual improvement of 1 line and ≥2 lines was seen in 57.5% and 21.2% children, respectively, and 38% and 38% in adults, respectively (p value 0.31). Conclusion. Cultivated limbal epithelial transplantation gives good long-term results in patients with LSCD and the outcomes are comparable in children and adults. PMID:26770973

  12. Generation of genome-modified Drosophila cell lines using SwAP.

    PubMed

    Franz, Alexandra; Brunner, Erich; Basler, Konrad

    2017-10-02

    The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.

  13. The T47D cell line is an ideal experimental model to elucidate the progesterone-specific effects of a luminal A subtype of breast cancer.

    PubMed

    Yu, Sungryul; Kim, Taemook; Yoo, Kyung Hyun; Kang, Keunsoo

    2017-05-06

    Cell lines are often used as in vitro tools to mimic certain types of in vivo system; several cell lines, including MCF-7 and T47D, have been widely used in breast cancer studies without investigating the cell lines' characteristics. In this study, we compared the genome-wide binding profiles of ERα, PR, and P300, and the gene expression changes between MCF-7 and T47D cell lines that represent the luminal A subtype of breast cancer. Surprisingly, several thousand genes were differentially expressed under estrogenic condition. In addition, ERα, PR, and P300 binding to regulatory elements showed distinct genomic landscapes between MCF-7 and T47D cell lines in the same hormonal states. In particular, the T47D cell line was markedly susceptible to progesterone, whereas the MCF-7 cell line did not respond to progesterone in the presence of estrogen. Consistently, changes in the expression level of the PR-target gene, STAT5A, were only observed in the T47D cell line, not the MCF-7 cell line, when treated with progesterone. Overall, the results highlight the importance of selecting appropriate cell lines for breast cancer studies and suggest that T47D cell lines can be an ideal experimental model to elucidate the progesterone-specific effects of a luminal A subtype of breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Discovery of HeLa Cell Contamination in HES Cells: Call for Cell Line Authentication in Reproductive Biology Research.

    PubMed

    Kniss, Douglas A; Summerfield, Taryn L

    2014-08-01

    Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research. © The Author(s) 2014.

  15. Fatty acid binding proteins (FABPs) in prostate, bladder and kidney cancer cell lines and the use of IL-FABP as survival predictor in patients with renal cell carcinoma

    PubMed Central

    2011-01-01

    Background Fatty acid binding proteins (FABP) play an important role in carcinogenesis. Modified FABP expression patterns were described for prostate, bladder and for renal cell carcinoma. Studies on metabolic relationships and interactions in permanent cell lines allow a deeper insight into molecular processes. The aim of this study is therefore a systematic overview on mRNA and protein expressions of seven FABPs in frequently used urological cell lines. Methods Nine cell lines of renal carcinomas, seven of urinary bladder carcinomas, and five of prostate carcinomas were investigated. Quantitative RT-qPCR and western blotting were used to determine different FABPs. In addition, 46 paired cancerous and noncancerous tissue samples from nephrectomy specimen with renal cell carcinomas were investigated regarding the ileum FABP mRNA expression level and associated with survival outcome. Results General characteristics of all urological carcinoma cell lines were the expression of E-and IL-FABP on mRNA and protein level, while the expressions differed between the cell lines. The protein expression was not always congruent with the mRNA expression. Renal cell carcinoma cell lines showed expressions of L-, H- and B-FABP mRNA in addition to the general FABP expression in five out of the eight investigated cell lines. In bladder cancer cell lines, we additionally found the expression of A-FABP mRNA in six cell lines, while H-FABP was present only in three cell lines. In prostate cancer cell lines, a strong reduction of A- and E- FABP mRNA was observed. The expression of B-FABP mRNA and protein was observed only in the 22 RV-1 cells. IL-FABP mRNA was over-expressed in renal tumour tissue. The IL-FABP ratio was identified as an independent indicator of survival outcome. Conclusions Distinctly different FABP expression patterns were observed not only between the cell lines derived from the three cancer types, but also between the cell lines from the same cancer. The FABP patterns in the cell lines do not always reflect the real situation in the tumours. These facts have to be considered in functional studies concerning the different FABPs. PMID:21767383

  16. Utility of human embryonic kidney cell line HEK-293 for rapid isolation of fixed and street rabies viruses: comparison with Neuro-2a and BHK-21 cell lines.

    PubMed

    Madhusudana, Shampur Narayan; Sundaramoorthy, Subha; Ullas, Padinjaremattatthil Thankappan

    2010-12-01

    A confirmatory rabies diagnosis can be achieved by rapid virus isolation in cell culture using brain tissue from the suspect animal. Several cell lines have been used for this purpose and the murine neuroblastoma cell line Neuro-2a has been found to be the most sensitive. The human embryonic kidney cell line HEK-293 is known to express several neuronal proteins and is believed to be of neuronal origin. We hypothesized that this cell line could be susceptible to rabies virus, which is highly neurotropic. First we tested the sensitivity of HEK-293 cells to the laboratory strain, challenge virus standard (CVS). We then tested 120 brain samples from different animals and humans suspected to have died of rabies by fluorescent antibody test (FAT). Both FAT-positive and FAT-negative brains were tested for virus isolation using Neuro-2a, BHK-21, and HEK-293 cell lines and also by mouse inoculation. There was 100% correlation between FAT, virus isolation in Neuro-2a and HEK-293 cells, and mouse inoculation. However, the rate of virus isolation in the BHK-21 cell line was only 28% when compared to the other cell lines. The sensitivity of HEK-293 to CVS strain of virus was similar to that of Neuro-2a. We conclude that the HEK-293 cell line is as sensitive as the Neuro-2a cell line for the rapid isolation of rabies virus and may serve as an alternative cell line for rabies diagnosis and future research. Copyright © 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.

  17. Establishment and characterization of fetal fibroblast cell lines for generating human lysozyme transgenic goats by somatic cell nuclear transfer.

    PubMed

    Liu, Jun; Luo, Yan; Zheng, Liming; Liu, Qingqing; Yang, Zhongcai; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Zhang, Yong

    2013-10-01

    This study was performed to qualify goat fetal fibroblast (GFF) cell lines for genetic modification and somatic cell nuclear transfer (SCNT) to produce human lysozyme (hLYZ) transgenic goats. Nine GFF cell lines were established from different fetuses, and the proliferative lifespan and chromosomal stability were analyzed. The results suggested that cell lines with a longer lifespan had stable chromosomes compared with those of cells lines with a shorter lifespan. According to the proliferative lifespan, we divided GFF cell lines into two groups: cell lines with a long lifespan (GFF1/2/7/8/9; group L) and cell lines with a short lifespan (GFF3/4/5/6; group S). Next, a hLYZ expression vector was introduced into these cell lines by electroporation. The efficiencies of colony formation, expansion in culture, and the quality of transgenic clonal cell lines were significant higher in group L than those in group S. The mean fusion rate and blastocyst rate in group L were higher than those in group S (80.3 ± 1.7 vs. 65.1 ± 4.2 % and 19.5 ± 0.6 vs. 15.1 ± 1.1 %, respectively, P < 0.05). After transferring cloned embryos into the oviducts of recipient goats, three live kids were born. PCR and Southern blot analyses confirmed integration of the transgene in cloned goats. In conclusion, the lifespan of GFF cell lines has a major effect on the efficiency to produce transgenic cloned goats. Therefore, the proliferative lifespan of primary cells may be used as a criterion to characterize the quality of cell lines for genetic modification and SCNT.

  18. Cytotoxic and bioactive properties of different color tulip flowers and degradation kinetic of tulip flower anthocyanins.

    PubMed

    Sagdic, Osman; Ekici, Lutfiye; Ozturk, Ismet; Tekinay, Turgay; Polat, Busra; Tastemur, Bilge; Bayram, Okan; Senturk, Berna

    2013-08-01

    This study was conducted to determine the potential use of anthocyanin-based extracts (ABEs) of wasted tulip flowers as food/drug colorants. For this aim, wasted tulip flowers were samples and analyzed for their bioactive properties and cytotoxicity. Total phenolic contents of the extracts of the claret red (126.55 mg of gallic acid equivalent (GAE)/g dry extract) and orange-red (113.76 mg GAE/g dry extract) flowers were the higher than those of the other tulip flowers. Total anthocyanin levels of the violet, orange-red, claret red and pink tulip flower extracts were determined as 265.04, 236.49, 839.08 and 404.45 mg pelargonidin 3-glucoside/kg dry extract, respectively and these levels were higher than those of the other flowers. The extracts were more effective for the inhibition of Listeria monocytogenes, Staphylococcus aureus and Yersinia enterocolitica compared to other tested bacteria. Additionally, the cytotoxic effects of five different tulip flower extracts on human breast adenocarcinoma (MCF-7) cell line were investigated. The results showed that the orange red, pink and violet extracts had no cytotoxic activity against MCF-7 cell lines while yellow and claret red extracts appeared to be toxic for the cells. Overall, the extracts of tulip flowers with different colors possess remarkable bioactive and cytotoxic properties. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities.

    PubMed

    Maciel, Laércio Galvão; do Carmo, Mariana Araújo Vieira; Azevedo, Luciana; Daguer, Heitor; Molognoni, Luciano; de Almeida, Mereci Mendes; Granato, Daniel; Rosso, Neiva Deliberali

    2018-03-01

    Hibiscus sabdariffa calyx is a rich source of anthocyanins and other bioactive compounds but no study reported the effects of experimental conditions on the extraction of these chemical compounds. Therefore, the effects of time and extraction temperature on the bioactive compounds and antioxidant activity of Hibiscus sabdariffa calyx were evaluated. In addition, the effects of copigmentation and pH on the stability of anthocyanins were assessed and the cytotoxic effects (LC 50 , IC 50 , and GC 50 ) of the extracts were determined in relation to tumor cell lines - Caco-2, HepG-2, HCT8, and A549. The temperature significantly influenced the total anthocyanins and flavonoids contents. The interaction between time/temperature influenced the total phenolic content and ascorbic acid. The t 1/2 and the percentage of colour retention decreased markedly at temperatures above 80 °C. Variations in pH conserved the antioxidant activity of the anthocyanins, and the protonation-deprotonation process of the extract was reversible. The treatment of cells with purified anthocyanin extract or crude extracts at 5-800 μg mL -1 did not show significant cytotoxic effects on the cell lines, corroborating the chemical antioxidant effect of the extracts (DPPH assay). Cyanidin-3-glucoside, delphinidin-3-sambubioside, delphinidin-3-glucoside, and cyanidin-3-sambubioside were identified in the extracts by LC-ESI-MS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Anatolian honey is not only sweet but can also protect from breast cancer: Elixir for women from artemis to present.

    PubMed

    Seyhan, Mehmet Fatih; Yılmaz, Eren; Timirci-Kahraman, Özlem; Saygılı, Neslihan; Kısakesen, Halil İbrahim; Eronat, Allison Pınar; Ceviz, Ayşe Begüm; Bilgiç Gazioğlu, Sema; Yılmaz-Aydoğan, Hülya; Öztürk, Oğuz

    2017-09-01

    Natural products with bioactive components are widely studied on various cancer cell lines for their possible cytotoxic effects, recently. Among these products, honey stands out as a valuable bee product containing many active phenolic compounds and flavonoids. Numerous types of multifloral honey and honeydew honey are produced in Turkey owing to its abundant vegetation. Therefore, in this study, we investigated the cytotoxic effects of particular tree-originated honeys from chestnut, cedar, pine, and multifloral honey on cell lines representing different types of the most common cancer of women, breast cancer, MCF7, SKBR3, and MDAMB-231, and fibrocystic breast epithelial cell line, MCF10A as a control. All honey samples were analyzed biochemically. The dose- (1, 2.5, 5, 7.5, and 10 µg/mL) and time (24th, 48th, and 72nd hours)-dependent effects of ethanol/water solutions of the honey samples were scrutinized. Cell viability/cytotoxicity was evaluated by the water soluble tetrazolium Salt-1 (WST-1) method. Apoptotic status was detected by Annexin V-PI assay using FACSCalibur. The statistical analysis was performed using GraphPad Prism 6 and the clustering data analysis with the R programming language. The biochemical analyses of the honey samples showed that the tree-originated honey samples contained more total phenolic compounds than the multifloral honey. Phenolic content of the honey types increases in order of multifloral, pine, cedar, and chestnut, respectively, which is compatible with their cytotoxic affectivity and dark color. In addition, the antioxidant capacity of the studied honey types was observed to increase in order of multifloral < pine < cedar ≅ chestnut. According to the WST-1 data, chestnut honey induced cytotoxicity over 50% on all the cell lines, including the control MCF10A cells, even with low doses (honey concentrations starting from 1 µg/mL) (P < 0.0001). Similarly, Cedar honey was observed to be the second most effective honey in this study. Cedar honey, with the dose of 1 µg/mL, was detected statistically highly significant on MCF10A, MCF7, and SKBR3. In contrast, pine honey showed dramatically significant cytotoxicity only on the MDAMB 231 cells with a 1 µg/mL dose at the same time point (P = 0.018). While pine honey caused an anticancer effect on the MCF-7 and SKBR3 cancer cell lines with a 2.5-5 µg/mL dose (P < 0.0001), like cedar and chestnut honeys, it increased the viability of the MCF10A control cells with the doses of 2.5-5 µg/mL. It only showed cytotoxicity with higher doses (10 µg/mL) on the MCF10A cell line (P < 0.0001). Moreover, we have observed that the multifloral and artificial honey samples were mostly ineffective or increased cell viability with the doses of 1-5 µg/mL. Apoptotic effects of the other honey samples on the MCF-7 cell line were found as chestnut> pine> cedar> multifloral in the Annexin V-propidium iodide (PI) analysis. Chestnut, cedar, and pine honey displayed a remarkably cytotoxic effect on breast cancer cell lines, MCF7, SKBR3, and even on the most aggressive MDAMB 231, representing the triple negative breast cancer, which lacks of targeted anticancer therapy. The chestnut and cedar honeys stand out to be the most cytotoxic on all cell lines, while pine honey was found to be the least toxic on control cells with appropriate toxicity on the cancer cells. © 2017 IUBMB Life, 69(9):677-688, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  1. Genome-wide differential gene expression in immortalized DF-1 chicken embryo fibroblast cell line

    PubMed Central

    2011-01-01

    Background When compared to primary chicken embryo fibroblast (CEF) cells, the immortal DF-1 CEF line exhibits enhanced growth rates and susceptibility to oxidative stress. Although genes responsible for cell cycle regulation and antioxidant functions have been identified, the genome-wide transcription profile of immortal DF-1 CEF cells has not been previously reported. Global gene expression in primary CEF and DF-1 cells was performed using a 4X44K chicken oligo microarray. Results A total of 3876 differentially expressed genes were identified with a 2 fold level cutoff that included 1706 up-regulated and 2170 down-regulated genes in DF-1 cells. Network and functional analyses using Ingenuity Pathways Analysis (IPA, Ingenuity® Systems, http://www.ingenuity.com) revealed that 902 of 3876 differentially expressed genes were classified into a number of functional groups including cellular growth and proliferation, cell cycle, cellular movement, cancer, genetic disorders, and cell death. Also, the top 5 gene networks with intermolecular connections were identified. Bioinformatic analyses suggested that DF-1 cells were characterized by enhanced molecular mechanisms for cell cycle progression and proliferation, suppressing cell death pathways, altered cellular morphogenesis, and accelerated capacity for molecule transport. Key molecules for these functions include E2F1, BRCA1, SRC, CASP3, and the peroxidases. Conclusions The global gene expression profiles provide insight into the cellular mechanisms that regulate the unique characteristics observed in immortal DF-1 CEF cells. PMID:22111699

  2. [Establishment of Z-HL16C cell line.].

    PubMed

    Chen, J P; Li, J; Zhao, S L; Tian, J Y; Ye, F

    2006-09-01

    To establish and study the nature and the application of Z-HL16C cell line. The cell line was continuously passed, frozen stored and recovered. Its application was expanded and the cell type was identified. The cell line had an epithelial-cell-like shape, the size appeared uniform, the cell boundary was distinct. It has been continuously passed, frozen stored and recovered for ten years. Its recovery rate was about 90%. It has been proved to be sensitive to the tested viruses which were enteroviruses (Polio, Cox, Echo), influenza viruses, parainfluenzaviruses, adenoviruses, measles virus. This cell line has been identified as a cancerization cell. The cell line Z-HL16C has been stably established, it has a broad spectrum in sensitivity for culturing viruses.

  3. Development and characterization of a cell line WAF from freshwater shark Wallago attu.

    PubMed

    Dubey, Akhilesh; Goswami, Mukunda; Yadav, Kamalendra; Sharma, Bhagwati S

    2014-02-01

    A new epithelial cell line, WAF was developed from caudal fin of freshwater shark, Wallago attu. The cell line was optimally maintained at 28 °C in Leibovitz-15 (L-15) medium supplemented with 20 % fetal bovine serum. The cell line was characterized by various cytogenetic and molecular markers. The cytogenetic analysis revealed a diploid count of 86 chromosomes at different passages. The origin of the cell lines was confirmed by the amplification of 547 and 654 bp sequences of 16S rRNA and cytochrome oxidase subunit I genes of mitochondrial DNA, respectively. WAF cells were characterized for their growth characteristics at different temperature and serum concentration. Epithelial morphology of the cell line was confirmed using immunocytochemistry. Further cell plating efficiency, transfection efficiency and viability of cryopreserved WAF cells was also determined. Cytotoxicity and genotoxicity assessment of cadmium salts on WAF cells by MTT, NR and comet assay illustrated the utility of this cell line as an in vitro model for aquatic toxicological studies. The cell line will be further useful for studying oxidative stress markers against aquatic pollutants.

  4. Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1.

    PubMed

    Velásquez, Celestino; Amako, Yutaka; Harold, Alexis; Toptan, Tuna; Chang, Yuan; Shuda, Masahiro

    2018-01-01

    Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.

  5. Analysis of differential protein expression in normal and neoplastic human breast epithelial cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, K.; Chubb, C.; Huberman, E.

    High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteinsmore » were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.« less

  6. Derivation and characterization of a pig embryonic stem cell-derived exocrine pancreatic cell line

    USDA-ARS?s Scientific Manuscript database

    The establishment and initial characterization of a pig embryonic stem cell-derived pancreatic cell line, PICM-31, and a colony-cloned derivative cell line, PICM-31A, is described. The cell lines were propagated for several months at split ratios of 1:3 or 1:5 at each passage on STO feeder cells af...

  7. Comparison of in vitro methods for carboxylesterase activity determination in immortalized cells representative of the intestine, liver and kidney.

    PubMed

    Lamego, Joana; Ferreira, Pedro; Alves, Márcia; Matias, Ana; Simplício, Ana Luisa

    2015-08-01

    Herein we compare the fluorimetric determination of total and specific carboxylesterase activity in immortalized human derived living cells and in cell lysates. The cell lines chosen are representative of metabolism occurring in the intestine (Caco-2 and HT-29), kidney (HEK-293T) and liver (Hep G2). Caco-2 and HT-29, as cells prone to differentiation, were tested along the differentiation time. For evaluation of both methods when distinguishing activity of different carboxylesterases, HEK-293T transfected with the human carboxylestarase-2 (hCES2) were also tested. Application to Caco-2 or HT-29 cells demonstrated higher activity detected in cell lysates than in cell monolayers. The difference is most striking when comparing the methods at different stages of Caco-2 and HT-29 cell maturation, highlighting substrate accessibility as a limiting step in the in vivo hydrolysis rates (possibly limited by plasma and Endoplasmic Reticulum membrane permeability) with increasing relevance as the cells differentiate. Application to Hep G2 or to hCES2 transfected and non-transfected HEK-293T cells, demonstrated a tendency for higher sensitivity in living cell suspensions than that obtained with the cell lysates which indicates the importance of cell environment in the maintenance of enzyme activity. However, quantification of hCES2 activity relative to total esterase, or to total carboxylesterase activity, was not significantly different in any case. The results herein presented help to clarify which method is best suited for evaluation of carboxylesterase activity in vitro depending on the final goal of the study. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Proteomic Signatures of Acquired Letrozole Resistance in Breast Cancer: Suppressed Estrogen Signaling and Increased Cell Motility and Invasiveness*

    PubMed Central

    Tilghman, Syreeta L.; Townley, Ian; Zhong, Qiu; Carriere, Patrick P.; Zou, Jin; Llopis, Shawn D.; Preyan, Lynez C.; Williams, Christopher C.; Skripnikova, Elena; Bratton, Melyssa R.; Zhang, Qiang; Wang, Guangdi

    2013-01-01

    Aromatase inhibitors, such as letrozole, have become the first-line treatment for postmenopausal women with estrogen-dependent breast cancer. However, acquired resistance remains a major clinical obstacle. Previous studies demonstrated constitutive activation of the MAPK signaling, overexpression of HER2, and down-regulation of aromatase and ERα in letrozole-resistant breast cancer cells. Given the complex signaling network involved in letrozole-refractory breast cancer and the lack of effective treatment for hormone resistance, further investigation of aromatase inhibitor resistance by a novel systems biology approach may reveal previously unconsidered molecular changes that could be utilized as therapeutic targets. This study was undertaken to characterize for the first time global proteomic alterations occurring in a letrozole-resistant cell line. A quantitative proteomic analysis of the whole cell lysates of LTLT-Ca (resistant) versus AC-1 cells (sensitive) was performed to identify significant protein expression changes. A total of 1743 proteins were identified and quantified, of which 411 were significantly up-regulated and 452 significantly down-regulated (p < 0.05, fold change > 1.20). Bioinformatics analysis revealed that acquired letrozole resistance is associated with a hormone-independent, more aggressive phenotype. LTLT-Ca cells exhibited 84% and 138% increase in migration and invasion compared with the control cells. The ROCK inhibitor partially abrogated the enhanced migration and invasion of the letrozole-resistant cells. Flow cytometric analyses also demonstrated an increase in vimentin and twist expression in letrozole-resistance cells, suggesting an onset of epithelial to mesenchymal transition (EMT). Moreover, targeted gene expression arrays confirmed a 28-fold and sixfold up-regulation of EGFR and HER2, respectively, whereas ERα and pS2 were dramatically reduced by 28-fold and 1100-fold, respectively. Taken together, our study revealed global proteomic signatures of a letrozole-resistant cell line associated with hormone independence, enhanced cell motility, EMT and the potential values of several altered proteins as novel prognostic markers or therapeutic targets for letrozole resistant breast cancer. PMID:23704778

  9. Expression of Ki-67 in odontogenic cysts: A comparative study between odontogenic keratocysts, radicular cysts and dentigerous cysts

    PubMed Central

    Modi, Tapan G; Chalishazar, Monali; Kumar, Malay

    2018-01-01

    Introduction and Objectives: Odontogenic cysts are the most common cysts of the jaws and are formed from the remnants of the odontogenic apparatus. Among these odontogenic cysts, radicular cysts (RCs) (about 60% of all diagnosed jaw cysts), dentigerous cysts (DCs) (16.6% of all jaw cysts) and odontogenic keratocysts (OKCs) (11.2% of all developmental odontogenic cysts) are the most common. The behavior of any lesion is generally reflected by its growth potential. Growth potential is determined by measuring the cell proliferative activity. The cell proliferative activity is measured by various methods among which immunohistochemistry (IHC) is the commonly used technique. Most of the IHC studies on cell proliferation have been based on antibodies such as Ki-67 and proliferating cell nuclear antigen. Materials and Method: In the present study, the total sample size comprised of 45 cases of odontogenic cysts, with 15 cases each of OKC, RC and DC. Here, an attempt is made to study immunohistochemical (streptavidin-biotin detection system HRP-DAB) method to assess the expression of Ki-67 in different layers of the epithelial lining of OKCs, RCs and DCs. Observations and Results: Ki-67 positive cells were highest in epithelium of OKC as compared to DC and RC. Conclusion: The increased Ki-67 labeling index and its expression in suprabasal cell layers of epithelial lining in OKC and its correlation with suprabasal cell layers of epithelial lining in DC and RC could contribute toward its clinically aggressive behavior. OKC is of more significance to the oral pathologist and oral surgeon because of its specific histopathological features, high recurrence rate and aggressive behavior. PMID:29731577

  10. Temozolomide does not influence the transcription or activity of matrix metalloproteinases 9 and 2 in glioma cell lines.

    PubMed

    Suzuki, Yuta; Fujioka, Kouki; Ikeda, Keiichi; Murayama, Yuichi; Manome, Yoshinobu

    2017-07-01

    Glioblastoma multiforme (GBM) is a treatment-resistant malignancy with poor prognosis. Temozolomide (TMZ) is widely used as a first-line drug for GBM. Although this improves patient prognosis, it does not completely eradicate the tumour. Even after total surgical resection, GBM can exhibit uncontrollable invasiveness at the tumour margins owing to activation of matrix metalloproteinases (MMPs) such as MMP-2 and -9; these degrade collagen IV in the basement membrane, which normally prevents cancer invasion. TMZ induces DNA damage and activates transcription factors including c-jun, c-fos, nuclear factor-κβ, and early growth response protein-1, which have putative binding sites on the MMP-9 promoter. TMZ may therefore enhance tumour invasion by stimulating MMP-9 transcription and enzymatic activity. To test this hypothesis, we investigated MMP-2 and -9 mRNA transcription and activity in GBM cell lines treated with TMZ. Human A172 GBM cells were exposed to TMZ (25% and 50% inhibitory concentrations) for 24 or 48h; cell cycle distribution and mRNA levels of MMP-2 and -9 were evaluated using flow cytometry and semi-quantitative reverse transcription PCR, respectively. MMP-2 and -9 enzymatic activities were assessed using gelatin zymography in human A172 and U373 MG GBM cells exposed to TMZ under the same conditions. TMZ altered A172 cell cycle distribution, but not MMP-2 or -9 mRNA levels. TMZ did not affect MMP-2 or -9 enzymatic activities in A172 or U373 MG cells. These findings indicated that TMZ is therefore unlikely to promote GBM invasiveness. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Functional and molecular evidence for expression of the renin angiotensin system and ADAM17-mediated ACE2 shedding in COS7 cells

    PubMed Central

    Grobe, Nadja; Di Fulvio, Mauricio; Kashkari, Nada; Chodavarapu, Harshita; Somineni, Hari K.; Singh, Richa

    2015-01-01

    The renin angiotensin system (RAS) plays a vital role in the regulation of the cardiovascular and renal functions. COS7 is a robust and easily transfectable cell line derived from the kidney of the African green monkey, Cercopithecus aethiops. The aims of this study were to 1) demonstrate the presence of an endogenous and functional RAS in COS7, and 2) investigate the role of a disintegrin and metalloproteinase-17 (ADAM17) in the ectodomain shedding of angiotensin converting enzyme-2 (ACE2). Reverse transcription coupled to gene-specific polymerase chain reaction demonstrated expression of ACE, ACE2, angiotensin II type 1 receptor (AT1R), and renin at the transcript levels in total RNA cell extracts. Western blot and immunohistochemistry identified ACE (60 kDa), ACE2 (75 kDa), AT1R (43 kDa), renin (41 kDa), and ADAM17 (130 kDa) in COS7. At the functional level, a sensitive and selective mass spectrometric approach detected endogenous renin, ACE, and ACE2 activities. ANG-(1–7) formation (m/z 899) from the natural substrate ANG II (m/z 1,046) was detected in lysates and media. COS7 cells stably expressing shRNA constructs directed against endogenous ADAM17 showed reduced ACE2 shedding into the media. This is the first study demonstrating endogenous expression of the RAS and ADAM17 in the widely used COS7 cell line and its utility to study ectodomain shedding of ACE2 mediated by ADAM17 in vitro. The transfectable nature of this cell line makes it an attractive cell model for studying the molecular, functional, and pharmacological properties of the renal RAS. PMID:25740155

  12. Evaluation of the drug sensitivity and expression of 16 drug resistance-related genes in canine histiocytic sarcoma cell lines

    PubMed Central

    ASADA, Hajime; TOMIYASU, Hirotaka; GOTO-KOSHINO, Yuko; FUJINO, Yasuhito; OHNO, Koichi; TSUJIMOTO, Hajime

    2015-01-01

    Canine histiocytic sarcoma (HS) is an aggressive tumor type originating from histiocytic cell lineages. This disease is characterized by poor response to chemotherapy and short survival time. Therefore, it is of critical importance to identify and develop effective antitumor drugs against HS. The objectives of this study were to examine the drug sensitivities of 10 antitumor drugs. Using a real-time RT-PCR system, the mRNA expression levels of 16 genes related to drug resistance in 4 canine HS cell lines established from dogs with disseminated HS were determined and compared to 2 canine lymphoma cell lines (B-cell and T-cell). These 4 canine HS cell lines showed sensitivities toward microtubule inhibitors (vincristine, vinblastine and paclitaxel), comparable to those in the canine B-cell lymphoma cell line. Moreover, it was shown that P-gp in the HS cell lines used in this study did not have enough function to efflux its substrate. Sensitivities to melphalan, nimustine, methotrexate, cytarabine, doxorubicin and etoposide were lower in the 4 HS cell lines than in the 2 canine lymphoma cell lines. The data obtained in this study using cultured cell lines could prove helpful in the developing of advanced and effective chemotherapies for treating dogs that are suffering from HS. PMID:25715778

  13. Evaluation of the drug sensitivity and expression of 16 drug resistance-related genes in canine histiocytic sarcoma cell lines.

    PubMed

    Asada, Hajime; Tomiyasu, Hirotaka; Goto-Koshino, Yuko; Fujino, Yasuhito; Ohno, Koichi; Tsujimoto, Hajime

    2015-06-01

    Canine histiocytic sarcoma (HS) is an aggressive tumor type originating from histiocytic cell lineages. This disease is characterized by poor response to chemotherapy and short survival time. Therefore, it is of critical importance to identify and develop effective antitumor drugs against HS. The objectives of this study were to examine the drug sensitivities of 10 antitumor drugs. Using a real-time RT-PCR system, the mRNA expression levels of 16 genes related to drug resistance in 4 canine HS cell lines established from dogs with disseminated HS were determined and compared to 2 canine lymphoma cell lines (B-cell and T-cell). These 4 canine HS cell lines showed sensitivities toward microtubule inhibitors (vincristine, vinblastine and paclitaxel), comparable to those in the canine B-cell lymphoma cell line. Moreover, it was shown that P-gp in the HS cell lines used in this study did not have enough function to efflux its substrate. Sensitivities to melphalan, nimustine, methotrexate, cytarabine, doxorubicin and etoposide were lower in the 4 HS cell lines than in the 2 canine lymphoma cell lines. The data obtained in this study using cultured cell lines could prove helpful in the developing of advanced and effective chemotherapies for treating dogs that are suffering from HS.

  14. The analysis of novel microRNA mimic sequences in cancer cells reveals lack of specificity in stem-loop RT-qPCR-based microRNA detection.

    PubMed

    Winata, Patrick; Williams, Marissa; McGowan, Eileen; Nassif, Najah; van Zandwijk, Nico; Reid, Glen

    2017-11-17

    MicroRNAs are frequently downregulated in cancer, and restoring expression has tumour suppressive activity in tumour cells. Our recent phase I clinical trial investigated microRNA-based therapy in patients with malignant pleural mesothelioma. Treatment with TargomiRs, microRNA mimics with novel sequence packaged in EGFR antibody-targeted bacterial minicells, revealed clear signs of clinical activity. In order to detect delivery of microRNA mimics to tumour cells in future clinical trials, we tested hydrolysis probe-based assays specific for the sequence of the novel mimics in transfected mesothelioma cell lines using RT-qPCR. The custom assays efficiently and specifically amplified the consensus mimics. However, we found that these assays gave a signal when total RNA from untransfected and control mimic-transfected cells were used as templates. Further investigation revealed that the reverse transcription step using stem-loop primers appeared to introduce substantial non-specific amplification with either total RNA or synthetic RNA templates. This suggests that reverse transcription using stem-loop primers suffers from an intrinsic lack of specificity for the detection of highly similar microRNAs in the same family, especially when analysing total RNA. These results suggest that RT-qPCR is unlikely to be an effective means to detect delivery of microRNA mimic-based drugs to tumour cells in patients.

  15. Manipulation of Strawberry Fruit Softening by Antisense Expression of a Pectate Lyase Gene1

    PubMed Central

    Jiménez-Bermúdez, Silvia; Redondo-Nevado, José; Muñoz-Blanco, Juan; Caballero, José L.; López-Aranda, José M.; Valpuesta, Victoriano; Pliego-Alfaro, Fernando; Quesada, Miguel A.; Mercado, José A.

    2002-01-01

    Strawberry (Fragaria × ananassa, Duch., cv Chandler) is a soft fruit with a short postharvest life, mainly due to a rapid lost of firm texture. To control the strawberry fruit softening, we obtained transgenic plants that incorporate an antisense sequence of a strawberry pectate lyase gene under the control of the 35S promoter. Forty-one independent transgenic lines (Apel lines) were obtained, propagated in the greenhouse for agronomical analysis, and compared with control plants, non-transformed plants, and transgenic lines transformed with the pGUSINT plasmid. Total yield was significantly reduced in 33 of the 41 Apel lines. At the stage of full ripen, no differences in color, size, shape, and weight were observed between Apel and control fruit. However, in most of the Apel lines, ripened fruits were significantly firmer than controls. Six Apel lines were selected for further analysis. In all these lines, the pectate lyase gene expression in ripened fruit was 30% lower than in control, being totally suppressed in three of them. Cell wall material isolated from ripened Apel fruit showed a lower degree of in vitro swelling and a lower amount of ionically bound pectins than control fruit. An analysis of firmness at three different stages of fruit development (green, white, and red) showed that the highest reduction of softening in Apel fruit occurred during the transition from the white to the red stage. The postharvest softening of Apel fruit was also diminished. Our results indicate that pectate lyase gene is an excellent candidate for biotechnological improvement of fruit softening in strawberry. PMID:11842178

  16. Genetic Profiling Reveals Cross-Contamination and Misidentification of 6 Adenoid Cystic Carcinoma Cell Lines: ACC2, ACC3, ACCM, ACCNS, ACCS and CAC2

    PubMed Central

    Phuchareon, Janyaporn; Ohta, Yoshihito; Woo, Jonathan M.; Eisele, David W.; Tetsu, Osamu

    2009-01-01

    Adenoid cystic carcinoma (ACC) is the second most common malignant neoplasm of the salivary glands. Most patients survive more than 5 years after surgery and postoperative radiation therapy. The 10 year survival rate, however, drops to 40%, due to locoregional recurrences and distant metastases. Improving long-term survival in ACC requires the development of more effective systemic therapies based on a better understanding of the biologic behavior of ACC. Much preclinical research in this field involves the use of cultured cells and, to date, several ACC cell lines have been established. Authentication of these cell lines, however, has not been reported. We performed DNA fingerprint analysis on six ACC cell lines using short tandem repeat (STR) examinations and found that all six cell lines had been contaminated with other cells. ACC2, ACC3, and ACCM were determined to be cervical cancer cells (HeLa cells), whereas the ACCS cell line was composed of T24 urinary bladder cancer cells. ACCNS and CAC2 cells were contaminated with cells derived from non-human mammalian species: the cells labeled ACCNS were mouse cells and the CAC2 cells were rat cells. These observations suggest that future studies using ACC cell lines should include cell line authentication to avoid the use of contaminated or non-human cells. PMID:19557180

  17. miR-504 mediated down-regulation of nuclear respiratory factor 1 leads to radio-resistance in nasopharyngeal carcinoma

    PubMed Central

    Zhao, Luqing; Tang, Min; Hu, Zheyu; Yan, Bin; Pi, Weiwei; Li, Zhi; Zhang, Jing; Zhang, Liqin; Jiang, Wuzhong; Li, Guo; Qiu, Yuanzheng; Hu, Fang; Liu, Feng; Lu, Jingchen; Chen, Xue; Xiao, Lanbo; Xu, Zhijie; Tao, Yongguang; Yang, Lifang; Bode, Ann M.; Dong, Zigang; Zhou, Jian; Fan, Jia; Sun, Lunquan; Cao, Ya

    2015-01-01

    microRNAs (miRNAs) are involved in the various processes of DNA damage repair and play crucial roles in regulating response of tumors to radiation therapy. Here, we used nasopharyngeal carcinoma (NPC) radio-resistant cell lines as models and found that the expression of miR-504 was significantly up-regulated. In contrast, the expression of nuclear respiratory factor 1 (NRF1) and other mitochondrial metabolism factors, including mitochondrial transcription factor A (TFAM) and oxidative phosphorylation (OXPHOS) complex III were down-regulated in these cell lines. At the same time, the Seahorse cell mitochondrial stress test results indicated that the mitochondrial respiratory capacity was impaired in NPC radio-resistant cell lines and in a miR-504 over-expressing cell line. We also conducted dual luciferase reporter assays and verified that miR-504 could directly target NRF1. Additionally, miR-504 could down-regulate the expression of TFAM and OXPHOS complexes I, III, and IV and impaired the mitochondrial respiratory function of NPC cells. Furthermore, serum from NPC patients showed that miR-504 was up-regulated during different weeks of radiotherapy and correlated with tumor, lymph nodes and metastasis (TNM) stages and total tumor volume. The radio-therapeutic effect at three months after radiotherapy was evaluated. Results indicated that patients with high expression of miR-504 exhibited a relatively lower therapeutic effect ratio of complete response (CR), but a higher ratio of partial response (PR), compared to patients with low expression of miR-504. Taken together, these results demonstrated that miR-504 affected the radio-resistance of NPC by down-regulating the expression of NRF1 and disturbing mitochondrial respiratory function. Thus, miR-504 might become a promising biomarker of NPC radio-resistance and targeting miR-504 might improve tumor radiation response. PMID:26201446

  18. Health and reproductive profiles of malaria antigen-producing transgenic goats derived by somatic cell nuclear transfer.

    PubMed

    Behboodi, E; Ayres, S L; Memili, E; O'Coin, M; Chen, L H; Reggio, B C; Landry, A M; Gavin, W G; Meade, H M; Godke, R A; Echelard, Y

    2005-01-01

    Nuclear transfer (NT) using transfected primary cells is an efficient approach for the generation of transgenic goats. However, reprogramming abnormalities associated with this process might result in compromised animals. We examined the health, reproductive performance, and milk production of four transgenic does derived from somatic cell NT. Goats were derived from two fetal cell lines, each transfected with a transgene expressing a different version of the MSP-1(42) malaria antigen, either glycosylated or non-glycosylated. Two female kids were produced per cell line. Health and growth of these NT animals were monitored and compared with four age-matched control does. There were no differences in birth and weaning weights between NT and control animals. The NT does were bred and produced a total of nine kids. The control does delivered five kids. The NT does expressing the glycosylated antigen lactated only briefly, probably as a result of over-expression of the MSP-1(42) protein. However, NT does expressing the non-glycosylated antigen had normal milk yields and produced the recombinant protein. These data demonstrated that the production of healthy transgenic founder goats by somatic cell NT is readily achievable and that these animals can be used successfully for the production of a candidate Malaria vaccine.

  19. Production of interleukin-10 by human bronchogenic carcinoma.

    PubMed Central

    Smith, D. R.; Kunkel, S. L.; Burdick, M. D.; Wilke, C. A.; Orringer, M. B.; Whyte, R. I.; Strieter, R. M.

    1994-01-01

    Interleukin-10 (IL-10) is a recently characterized cytokine with suppressive activity against various aspects of the cellular immune response. Our laboratory has previously demonstrated that another anti-inflammatory cytokine, IL-1 receptor antagonist (IRAP) is produced and secreted by human bronchogenic carcinomas. We speculated that tumor production of IRAP may mitigate host responses and confer increased tumor viability. In this study, we investigated the capacity of human bronchogenic tumors to produce IL-10 as another possible mechanism to attenuate host defenses. We found increased levels of antigenic IL-10 in tissue homogenates of human bronchogenic carcinomas compared with normal lung tissue (13.69 +/- 2.87 versus 5.84 +/- 0.84 ng/mg total protein). Immunohistochemical staining of tumors illustrate primary localization of antigenic IL-10 to individual tumor cells. Analysis of supernatants of several unstimulated human bronchogenic cell lines in vitro demonstrated the ability of tumor cells to constitutively produce IL-10. Functional studies of mononuclear cells, cultured in the presence of conditioned medium from a bronchogenic cell line, demonstrated their increased tumor necrosis factor and IL-6 production with the addition of neutralizing antibodies to IL-10. These findings demonstrate that human bronchogenic carcinomas elaborate functional IL-10, which may significantly impair immune effector cell function and enable the tumor to evade host defenses. Images Figure 1 Figure 2 PMID:8030748

  20. Continuous human cell lines and method of making same

    DOEpatents

    Stampfer, Martha R.

    1989-01-01

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo[a]pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors.

  1. Establishment of dermal sheath cell line from Cashmere goat and characterizing cytokeratin 13 as its novel biomarker.

    PubMed

    Zhu, Bing; Guo, Zhili; Jin, Muzi; Bai, Yujuan; Yang, Wenliang; Hui, Lihua

    2018-05-01

    To establish a dermal sheath cell line, a dermal papilla cell line and a outer root sheath cell line from Cashmere goat and clarify the similarities and differences among them. We established a dermal sheath cell line, a dermal papilla cell line and a outer root sheath cell line from the pelage skin hair follicles of Cashmere goat. The growth rate of dermal sheath cells was intermediate between that of dermal papilla cells and outer root sheath cells. Immunofluorescence experiments and reverse transcription-polymerase chain reaction analysis showed that at both the transcriptional and translational levels, the dermal sheath cells were alpha-smooth muscle actin (α-SMA) + /cytokeratin 13 + , while the dermal papilla cells were α-SMA + /cytokeratin 13 - and the outer root sheath cells were α-SMA - /cytokeratin 13 + . Patterns of cytokeratin 13 expression could distinguish the dermal sheath cells from the dermal papilla cells. These results suggest that cytokeratin 13 could serve as a novel biomarker for dermal sheath cells of Cashmere goat, and should prove useful for researchers investigating dermal stem cells or interaction of different types of cells during hair cycle.

  2. Differential protective effects of immune lymphoid cells against transplanted line Ib leukemia and immune polioencephalomyelitis. [X radiation, mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duffey, P.S.; Lukasewycz, O.A.; Olson, D.S.

    1978-12-01

    The capacity of immune cells obtained from the major lymphoid compartments to protect C58 mice from transplanted line Ib leukemia, and from an age-dependent autoimmune CNS disease (immune polioencephalomyelitis = IPE) elicited by immunizing old C58 mice with inactivated Ib cells was quantified. Cells used for comparative adoptive protection tests were harvested from the major lymphoid compartments 14 to 15 days after young C58 mice were immunized with inactivated Ib cell preparations. Regression curves were plotted from survival data and the log/sub 10/PD/sub 50/ values were determined. Immune spleen (ISC) and peritoneal cells (IPEC) were significantly more protective against transplantedmore » Ib cells than immune lymph node (ILNC), thymic (ITC), and marrow cells (IMC). In contrast, IPEC and IMC were not protective against IPE and ITC were only marginally protective. ILNC afforded significant protection to transplantable leukemia but were only marginally protective to IPE. When ISC were treated with anti-thy 1.2 serum and complement, protection against transplanted leukemia and IPE was reduced > 99%. When donors of immune lymphoid cells were treated with 12.5 mg of cortisone acetate daily for 2 days before lymphoid cells were harvested, protection against transplanted Ib cells by ISC was reduced by approximately 90% whereas protection against IPE was totally eliminated. Considered together, these results indicate that the protective mechanisms to transplantable leukemia and IPE differ significantly in the same indicator mouse strain.« less

  3. Proteins that interact with calgranulin B in the human colon cancer cell line HCT-116.

    PubMed

    Myung, Jae Kyung; Yeo, Seung-Gu; Kim, Kyung Hee; Baek, Kwang-Soo; Shin, Daye; Kim, Jong Heon; Cho, Jae Youl; Yoo, Byong Chul

    2017-01-24

    Calgranulin B is released from immune cells and can be internalized into colon cancer cells to prevent proliferation. The present study aimed to identify proteins that interact with calgranulin B to suppress the proliferation of colon cancer cells, and to obtain information on the underlying anti-tumor mechanism(s) of calgranulin B. Calgranulin B expression was induced in colon cancer cell line HCT-116 by infection with calgranulin B-FLAG expressing lentivirus, and it led to a significant suppression of cell proliferation. Proteins that interacted with calgranulin B were obtained by immunoprecipitation using whole homogenate of lentivirus-infected HCT-116 cells which expressing calgranulin B-FLAG, and identified using liquid chromatography-mass spectrometry/mass spectrometry analysis. A total of 454 proteins were identified that potentially interact with calgranulin B, and most identified proteins were associated with RNA processing, post-transcriptional modifications and the EIF2 signaling pathway. Direct interaction of calgranulin B with flotillin-1, dynein intermediate chain 1, and CD59 glycoprotein has been confirmed, and the molecules N-myc proto-oncogene protein, rapamycin-insensitive companion of mTOR, and myc proto-oncogene protein were shown to regulate calgranulin B-interacting proteins. Our results provide new insight and useful information to explain the possible mechanism(s) underlying the role of calgranulin B as an anti-tumor effector in colon cancer cells.

  4. Long Term Exposure to Polyphenols of Artichoke (Cynara scolymus L.) Exerts Induction of Senescence Driven Growth Arrest in the MDA-MB231 Human Breast Cancer Cell Line.

    PubMed

    Mileo, Anna Maria; Di Venere, Donato; Abbruzzese, Claudia; Miccadei, Stefania

    2015-01-01

    Polyphenolic extracts from the edible part of artichoke (Cynara scolymus L.) have been shown to be potential chemopreventive and anticancer dietary compounds. High doses of polyphenolic extracts (AEs) induce apoptosis and decrease the invasive potential of the human breast cancer cell line, MDA-MB231. However, the molecular mechanism underlying AEs antiproliferative effects is not completely understood. We demonstrate that chronic and low doses of AEs treatment at sublethal concentrations suppress human breast cancer cell growth via a caspases-independent mechanism. Furthermore, AEs exposure induces a significant increase of senescence-associated β-galactosidase (SA-β-gal) staining and upregulation of tumour suppressor genes, p16(INK4a) and p21(Cip1/Waf1) in MDA-MB231 cells. AEs treatment leads to epigenetic alterations in cancer cells, modulating DNA hypomethylation and lysine acetylation levels in total proteins. Cell growth arrest correlates with increased reactive oxygen species (ROS) production in AEs treated breast cancer cells. Inhibition of ROS generation by N-acetylcysteine (NAC) attenuates the antiproliferative effect. These findings demonstrate that chronic AEs treatment inhibits breast cancer cell growth via the induction of premature senescence through epigenetic and ROS-mediated mechanisms. Our results suggest that artichoke polyphenols could be a promising dietary tool either in cancer chemoprevention or/and in cancer treatment as a nonconventional, adjuvant therapy.

  5. Long Term Exposure to Polyphenols of Artichoke (Cynara scolymus L.) Exerts Induction of Senescence Driven Growth Arrest in the MDA-MB231 Human Breast Cancer Cell Line

    PubMed Central

    Di Venere, Donato

    2015-01-01

    Polyphenolic extracts from the edible part of artichoke (Cynara scolymus L.) have been shown to be potential chemopreventive and anticancer dietary compounds. High doses of polyphenolic extracts (AEs) induce apoptosis and decrease the invasive potential of the human breast cancer cell line, MDA-MB231. However, the molecular mechanism underlying AEs antiproliferative effects is not completely understood. We demonstrate that chronic and low doses of AEs treatment at sublethal concentrations suppress human breast cancer cell growth via a caspases-independent mechanism. Furthermore, AEs exposure induces a significant increase of senescence-associated β-galactosidase (SA-β-gal) staining and upregulation of tumour suppressor genes, p16INK4a and p21Cip1/Waf1 in MDA-MB231 cells. AEs treatment leads to epigenetic alterations in cancer cells, modulating DNA hypomethylation and lysine acetylation levels in total proteins. Cell growth arrest correlates with increased reactive oxygen species (ROS) production in AEs treated breast cancer cells. Inhibition of ROS generation by N-acetylcysteine (NAC) attenuates the antiproliferative effect. These findings demonstrate that chronic AEs treatment inhibits breast cancer cell growth via the induction of premature senescence through epigenetic and ROS-mediated mechanisms. Our results suggest that artichoke polyphenols could be a promising dietary tool either in cancer chemoprevention or/and in cancer treatment as a nonconventional, adjuvant therapy. PMID:26180585

  6. A combination of HPLC and automated data analysis for monitoring the efficiency of high-pressure homogenization.

    PubMed

    Eggenreich, Britta; Rajamanickam, Vignesh; Wurm, David Johannes; Fricke, Jens; Herwig, Christoph; Spadiut, Oliver

    2017-08-01

    Cell disruption is a key unit operation to make valuable, intracellular target products accessible for further downstream unit operations. Independent of the applied cell disruption method, each cell disruption process must be evaluated with respect to disruption efficiency and potential product loss. Current state-of-the-art methods, like measuring the total amount of released protein and plating-out assays, are usually time-delayed and involve manual intervention making them error-prone. An automated method to monitor cell disruption efficiency at-line is not available to date. In the current study we implemented a methodology, which we had originally developed to monitor E. coli cell integrity during bioreactor cultivations, to automatically monitor and evaluate cell disruption of a recombinant E. coli strain by high-pressure homogenization. We compared our tool with a library of state-of-the-art methods, analyzed the effect of freezing the biomass before high-pressure homogenization and finally investigated this unit operation in more detail by a multivariate approach. A combination of HPLC and automated data analysis describes a valuable, novel tool to monitor and evaluate cell disruption processes. Our methodology, which can be used both in upstream (USP) and downstream processing (DSP), describes a valuable tool to evaluate cell disruption processes as it can be implemented at-line, gives results within minutes after sampling and does not need manual intervention.

  7. Cell lines, Md108 and Md66, from the hemocytes of Malacosoma disstria (Lepidoptera) display aspects of plasma-free innate non-self activities.

    PubMed

    Lapointe, Jason F; Dunphy, Gary B; Giannoulis, Paschalis; Mandato, Craig A; Nardi, James B; Gharib, Osama H; Niven, Donald F

    2011-11-01

    The innate non-self response systems of the deciduous tree pest, the forest tent caterpillar, Malacosoma disstria has been documented by us in terms of in vitro and in vivo reactions towards the Gram-positive nonpathogenic bacterium, Bacillus subtilis and Gram-negative pathogenic microbe, Xenorhabdus nematophila and their respective surface antigens, lipopoteichoic acids (LTA) and lipopolysaccharides (LPS). These studies, often conducted in whole and diluted hemolymph, preclude examination of plasma-free cellular (hemocyte) responses. Plasma-free hemocytes as primary cultures are difficult to obtain. The floating cell line Md66 and attached cell line Md108 from M. disstria hemocytes were examined as a model for plasma-free M. disstria hemocyte non-self responses. Herein, it was established that although both lines differed from each other and from the primary hemocyte cultures of M. disstria in growth parameters, cell composition and sizes both cell lines displayed granular cell-like (GL) cells and plasmatocyte-like (PL) cells according to morphological criteria and to some extent antigenic similarities based on labeling with anti-Chrysodeixis includens hemocyte monoclonal antibodies. Hemocyte-specific neuroglian-like protein was detected on cells of both cell lines and in the primary hemocyte cultures albeit with staining patterns differing according to culture and cell types, confluency levels and cell-cell adhesion. Both cell lines bound B. subtilis and X. nematophila, the reaction extent varying with the cell line and its cell types. LPS damaged both cell types in the two cell lines whereas LTA enhanced the adhesion of Md66 GL cells to flask surfaces followed by PL cell adhesion. PL cells of both lines, like the primary cultures, phagocytosed FITC-labeled B. subtilis; only Md108 GL cells phagocytosed B. subtilis. In either case phagocytosis was always less in frequency and intensity than the primary cultures. Proteins released from the cell lines differed in pattern and magnitude but contained bacterial binding proteins that enhanced differential bacterial adhesion to both cell types in both cell lines: the GL cells both cultures, and those of granular cells in primary cultures, were more involved than the primary plasmatocytes and PL cells. Only Md66 cells possessed lysozyme and both cell types of both lines contained phenoloxidase. Neither enzyme type was released during early phase reaction with the bacteria. LPS inhibited phenoloxidase activity. The similarities and differences between the lines and primary cultures make Md66 and Md108 useful for the systematic examination of plasma-free cellular non-self reactions. Copyright © 2011 Elsevier Inc. All rights reserved.

  8. Cell oxidation-reduction imbalance after modulated radiofrequency radiation.

    PubMed

    Marjanovic, Ana Marija; Pavicic, Ivan; Trosic, Ivancica

    2015-01-01

    Aim of this study was to evaluate an influence of modulated radiofrequency field (RF) of 1800 MHz, strength of 30 V/m on oxidation-reduction processes within the cell. The assigned RF field was generated within Gigahertz Transversal Electromagnetic Mode cell equipped by signal generator, modulator, and amplifier. Cell line V79, was irradiated for 10, 30, and 60 min, specific absorption rate was calculated to be 1.6 W/kg. Cell metabolic activity and viability was determined by MTT assay. In order to define total protein content, colorimetric method was used. Concentration of oxidised proteins was evaluated by enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) marked with fluorescent probe 2',7'-dichlorofluorescin diacetate were measured by means of plate reader device. In comparison with control cell samples, metabolic activity and total protein content in exposed cells did not differ significantly. Concentrations of carbonyl derivates, a product of protein oxidation, insignificantly but continuously increase with duration of exposure. In exposed samples, ROS level significantly (p < 0.05) increased after 10 min of exposure. Decrease in ROS level was observed after 30-min treatment indicating antioxidant defence mechanism activation. In conclusion, under the given laboratory conditions, modulated RF radiation might cause impairment in cell oxidation-reduction equilibrium within the growing cells.

  9. Combination treatment with 6-mercaptopurine and allopurinol in HepG2 and HEK293 cells - Effects on gene expression levels and thiopurine metabolism.

    PubMed

    Haglund, Sofie; Vikingsson, Svante; Almer, Sven; Söderman, Jan

    2017-01-01

    Combination treatment with low-dose thiopurine and allopurinol (AP) has successfully been used in patients with inflammatory bowel disease with a so called skewed thiopurine metabolite profile. In red blood cells in vivo, it reduces the concentration of methylated metabolites and increases the concentration of the phosphorylated ones, which is associated with improved therapeutic efficacy. This study aimed to investigate the largely unknown mechanism of AP on thiopurine metabolism in cells with an active thiopurine metabolic pathway using HepG2 and HEK293 cells. Cells were treated with 6-mercaptopurine (6MP) and AP or its metabolite oxypurinol. The expression of genes known to be associated with thiopurine metabolism, and the concentration of thiopurine metabolites were analyzed. Gene expression levels were only affected by AP in the presence of 6MP. The addition of AP to 6MP affected the expression of in total 19 genes in the two cell lines. In both cell lines the expression of the transporter SLC29A2 was reduced by the combined treatment. Six regulated genes in HepG2 cells and 8 regulated genes in HEK293 cells were connected to networks with 18 and 35 genes, respectively, present at known susceptibility loci for inflammatory bowel disease, when analyzed using a protein-protein interaction database. The genes identified as regulated as well as the disease associated interacting genes represent new candidates for further investigation in the context of combination therapy with thiopurines and AP. However, no differences in absolute metabolite concentrations were observed between 6MP+AP or 6MP+oxypurinol vs. 6MP alone in either of the two cell lines. In conclusion; the effect of AP on gene expression levels requires the presence of 6MP, at least in vitro. Previously described AP-effects on metabolite concentrations observed in red blood cells in vivo could not be reproduced in our cell lines in vitro. AP's effects in relation to thiopurine metabolism are complex. The network-identified susceptibility genes represented biological processes mainly associated with purine nucleotide biosynthetic processes, lymphocyte proliferation, NF-KB activation, JAK-STAT signaling, and apoptotic signaling at oxidative stress.

  10. Combination treatment with 6-mercaptopurine and allopurinol in HepG2 and HEK293 cells – Effects on gene expression levels and thiopurine metabolism

    PubMed Central

    Haglund, Sofie; Vikingsson, Svante; Almer, Sven; Söderman, Jan

    2017-01-01

    Combination treatment with low-dose thiopurine and allopurinol (AP) has successfully been used in patients with inflammatory bowel disease with a so called skewed thiopurine metabolite profile. In red blood cells in vivo, it reduces the concentration of methylated metabolites and increases the concentration of the phosphorylated ones, which is associated with improved therapeutic efficacy. This study aimed to investigate the largely unknown mechanism of AP on thiopurine metabolism in cells with an active thiopurine metabolic pathway using HepG2 and HEK293 cells. Cells were treated with 6-mercaptopurine (6MP) and AP or its metabolite oxypurinol. The expression of genes known to be associated with thiopurine metabolism, and the concentration of thiopurine metabolites were analyzed. Gene expression levels were only affected by AP in the presence of 6MP. The addition of AP to 6MP affected the expression of in total 19 genes in the two cell lines. In both cell lines the expression of the transporter SLC29A2 was reduced by the combined treatment. Six regulated genes in HepG2 cells and 8 regulated genes in HEK293 cells were connected to networks with 18 and 35 genes, respectively, present at known susceptibility loci for inflammatory bowel disease, when analyzed using a protein-protein interaction database. The genes identified as regulated as well as the disease associated interacting genes represent new candidates for further investigation in the context of combination therapy with thiopurines and AP. However, no differences in absolute metabolite concentrations were observed between 6MP+AP or 6MP+oxypurinol vs. 6MP alone in either of the two cell lines. In conclusion; the effect of AP on gene expression levels requires the presence of 6MP, at least in vitro. Previously described AP-effects on metabolite concentrations observed in red blood cells in vivo could not be reproduced in our cell lines in vitro. AP’s effects in relation to thiopurine metabolism are complex. The network-identified susceptibility genes represented biological processes mainly associated with purine nucleotide biosynthetic processes, lymphocyte proliferation, NF-KB activation, JAK-STAT signaling, and apoptotic signaling at oxidative stress. PMID:28278299

  11. Differential sensitivity of melanoma cell lines with BRAFV600E mutation to the specific Raf inhibitor PLX4032

    PubMed Central

    2010-01-01

    Blocking oncogenic signaling induced by the BRAFV600E mutation is a promising approach for melanoma treatment. We tested the anti-tumor effects of a specific inhibitor of Raf protein kinases, PLX4032/RG7204, in melanoma cell lines. PLX4032 decreased signaling through the MAPK pathway only in cell lines with the BRAFV600E mutation. Seven out of 10 BRAFV600E mutant cell lines displayed sensitivity based on cell viability assays and three were resistant at concentrations up to 10 μM. Among the sensitive cell lines, four were highly sensitive with IC50 values below 1 μM, and three were moderately sensitive with IC50 values between 1 and 10 μM. There was evidence of MAPK pathway inhibition and cell cycle arrest in both sensitive and resistant cell lines. Genomic analysis by sequencing, genotyping of close to 400 oncogeninc mutations by mass spectrometry, and SNP arrays demonstrated no major differences in BRAF locus amplification or in other oncogenic events between sensitive and resistant cell lines. However, metabolic tracer uptake studies demonstrated that sensitive cell lines had a more profound inhibition of FDG uptake upon exposure to PLX4032 than resistant cell lines. In conclusion, BRAFV600E mutant melanoma cell lines displayed a range of sensitivities to PLX4032 and metabolic imaging using PET probes can be used to assess sensitivity. PMID:20406486

  12. Molecular characterization of breast cancer cell lines through multiple omic approaches.

    PubMed

    Smith, Shari E; Mellor, Paul; Ward, Alison K; Kendall, Stephanie; McDonald, Megan; Vizeacoumar, Frederick S; Vizeacoumar, Franco J; Napper, Scott; Anderson, Deborah H

    2017-06-05

    Breast cancer cell lines are frequently used as model systems to study the cellular properties and biology of breast cancer. Our objective was to characterize a large, commonly employed panel of breast cancer cell lines obtained from the American Type Culture Collection (ATCC 30-4500 K) to enable researchers to make more informed decisions in selecting cell lines for specific studies. Information about these cell lines was obtained from a wide variety of sources. In addition, new information about cellular pathways that are activated within each cell line was generated. We determined key protein expression data using immunoblot analyses. In addition, two analyses on serum-starved cells were carried out to identify cellular proteins and pathways that are activated in these cells. These analyses were performed using a commercial PathScan array and a novel and more extensive phosphopeptide-based kinome analysis that queries 1290 phosphorylation events in major signaling pathways. Data about this panel of breast cancer cell lines was also accessed from several online sources, compiled and summarized for the following areas: molecular classification, mRNA expression, mutational status of key proteins and other possible cancer-associated mutations, and the tumorigenic and metastatic capacity in mouse xenograft models of breast cancer. The cell lines that were characterized included 10 estrogen receptor (ER)-positive, 12 human epidermal growth factor receptor 2 (HER2)-amplified and 18 triple negative breast cancer cell lines, in addition to 4 non-tumorigenic breast cell lines. Within each subtype, there was significant genetic heterogeneity that could impact both the selection of model cell lines and the interpretation of the results obtained. To capture the net activation of key signaling pathways as a result of these mutational combinations, profiled pathway activation status was examined. This provided further clarity for which cell lines were particularly deregulated in common or unique ways. These two new kinase or "Kin-OMIC" analyses add another dimension of important data about these frequently used breast cancer cell lines. This will assist researchers in selecting the most appropriate cell lines to use for breast cancer studies and provide context for the interpretation of the emerging results.

  13. Development and characterization of two cell lines PDF and PDH from Puntius denisonii (Day 1865).

    PubMed

    Lakra, Wazir S; Goswami, M; Yadav, Kamalendra; Gopalakrishnan, A; Patiyal, R S; Singh, M

    2011-02-01

    The Puntius denisonii colloquially and more popularly referred to as Miss Kerala is a subtropical fish belonging to the genus Puntius (Barb) and family Cyprinidae. Two cell lines PDF and PDH were developed from the caudal fin and heart of P. denisonii, respectively. The cell lines were optimally maintained at 26°C in Leibovitz-15 medium supplemented with 10% fetal bovine serum. A diploid count of 50 chromosomes at passage 50 was observed in both the cell lines. The high growth potential of the cell lines was reflected from the cell doubling time of 28 and 30 h of PDF and PDH cell lines, respectively. The viability of the PDF and PDH cell lines was 70% and 76%, respectively, after 4 mo of storage in liquid nitrogen (-196°C). The origin of the cell lines was confirmed by the amplification of 653 bp fragments of cytochrome oxidase subunit I of mitochondrial DNA genes.

  14. Fibroblast Growth Factor Receptors Are Components of Autocrine Signaling Networks in Head and Neck Squamous Cell Carcinoma Cells

    PubMed Central

    Marshall, Marianne E.; Hinz, Trista K.; Kono, Scott A.; Singleton, Katherine R.; Bichon, Brady; Ware, Kathryn E.; Marek, Lindsay; Frederick, Barbara A.; Raben, David; Heasley, Lynn E.

    2011-01-01

    Purpose We previously reported that a fibroblast growth factor (FGF) receptor (FGFR) signaling pathway drives growth of lung cancer cell lines of squamous and large cell histologies. Herein, we explored FGFR dependency in cell lines derived from the tobacco-related malignancy, head and neck squamous cell carcinoma (HNSCC). Experimental Design FGF and FGFR mRNA and protein expression was assessed in nine HNSCC cell lines. Dependence on secreted FGF2 for cell growth was tested with FP-1039, an FGFR1-Fc fusion protein. FGFR and EGFR-dependence was defined by sensitivity to multiple inhibitors selective for FGFRs or EGFR. Results FGF2 was expressed in eight of the nine HNSCC cell lines examined. Also, FGFR2 and FGFR3 were frequently expressed while only two lines expressed FGFR1. FP-1039 inhibited growth of HNSCC cell lines expressing FGF2, identifying FGF2 as an autocrine growth factor. FGFR inhibitors selectively reduced in vitro growth and ERK signaling in three HNSCC cell lines while three distinct lines exhibited responsiveness to both EGFR and FGFR inhibitors. Combinations of these drugs yielded additive growth inhibition. Finally, three cell lines were highly sensitive to EGFR TKIs with no contribution from FGFR pathways. Conclusions FGFR signaling was dominant or co-dominant with EGFR in six HNSCC lines while three lines exhibited little or no role for FGFRs and were highly EGFR-dependent. Thus, the HNSCC cell lines can be divided into subsets defined by sensitivity to EGFR and FGFR-specific TKIs. FGFR inhibitors may represent novel therapeutics to deploy alone or in combination with EGFR inhibitors in HNSCC. PMID:21673064

  15. Second-Line Therapy of Small-Cell Lung Cancer: Topotecan Compared to a Combination Treatment with Adriamycin, Cyclophosphamide And Vincristine (ACO) - a Single Center Experience

    PubMed Central

    Hagmann, Raphael; Hess, Viviane; Zippelius, Alfred; Rothschild, Sacha I.

    2015-01-01

    Background: Randomized trials established topotecan and the combination of adriamycin, cyclophosphamide and vincristine (ACO) as second-line therapy options for small-cell lung cancer. We retrospectively evaluated the outcome of SCLC patients undergoing second-line chemotherapy. Patients and Methods: 92 consecutive patients with a diagnosis of SCLC between 2000 and 2010 were analyzed. Results: 86 patients (93.5%) were evaluable for outcome analysis. All patients diagnosed with limited disease (LD) SCLC received platinum-based chemotherapy as first-line treatment. 69 patients (98.6%) diagnosed with extensive disease (ED) SCLC received first-line palliative chemotherapy. In the total cohort, the median overall survival (OS) was 10.3 months (19.2 months and 9.2 months for LD-SCLC and ED-SCLC, respectively). 42 patients received second-line therapy (ACO in 47.6% and topotecan in 31.0% of patients, respectively). Eight patients (19.0%) were re-challenged with platinum/etoposide. Neither the overall response rate (52.9% vs. 22.2%; p=0.128) nor progression-free survival (2.4 vs. 2.4 months; p=0.794) or OS (5.5 vs. 5.0 months; p=0.997) were significantly different between ACO and topotecan. ACO-treated patients showed a trend towards a longer duration of inpatient care. Conclusion: We showed similar outcomes as reported in clinical trials. Second-line combination chemotherapy with ACO did not show superiority to intravenous topotecan, but was associated with a clinically relevant longer hospitalization time. PMID:26516363

  16. Molluscan cells in culture: primary cell cultures and cell lines

    PubMed Central

    Yoshino, T. P.; Bickham, U.; Bayne, C. J.

    2013-01-01

    In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436

  17. Absorption line studies of reflection from horizontally inhomogeneous layers. [in cloudy planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Appleby, J. F.; Van Blerkom, D. J.

    1975-01-01

    The article details an inhomogeneous reflecting layer (IRFL) model designed to survey absorption line behavior from a Squires-like cloud cover (which is characterized by convection cell structure). Computational problems and procedures are discussed in detail. The results show trends usually opposite to those predicted by a simple reflecting layer model. Per cent equivalent width variations for the tower model are usually somewhat greater for weak than for relatively strong absorption lines, with differences of a factor of about two or three. IRFL equivalent width variations do not differ drastically as a function of geometry when the total volume of absorbing gas is held constant. The IRFL results are in many instances consistent with observed equivalent width variations of Jupiter, Saturn, and Venus.

  18. The use of human tumour cell lines in the discovery of new cancer chemotherapeutic drugs.

    PubMed

    Baguley, Bruce C; Marshall, Elaine S

    2008-02-01

    Human tumour cell lines have played a major role in anticancer drug discovery, but cell lines may model only some aspects of tumour behaviour in cancer patients. Growing evidence supports a theory that stem cells with self-renewing properties sustain tumours. This review considers the extent to which a deeper understanding of the origin and properties of tumour cell lines might lead to new strategies for anticancer drug discovery. Recent literature on normal and tumour stem cells is reviewed and placed in the context of a discussion on the derivation and properties of tumour cell lines. Early-passage cell lines may model the more rapidly proliferating cells in human tumours and, thus, retain some of the properties of tumour stem cells. The effects of anticancer drugs on cell lines should be considered not only with regards to the induction of apoptosis, but also to the induction of senescence or other pathways that lead to host immune and inflammatory responses.

  19. Replication of Heliothis virescens ascovirus in insect cell lines.

    PubMed

    Asgari, S

    2006-09-01

    Ascoviruses (AVs) infect larvae of various insect pests belonging to the family Noctuidae. The result of AV infection in the hosts is cleavage of infected cells into vesicles, a unique feature of AV infection. Since insect cell lines facilitate the study of virus life cycles, attempts were made to analyze Heliothis virescens AV (HvAV3e) infection in several cell lines and compare cell pathology to larval infection. In this study, replication and cytopathological effects of HvAV3e on four different cell lines were investigated. HvAV3e replication was confirmed in three noctuid cell lines from Spodoptera frugiperda (Sf9) and Helicoverpa zea (BCIRL-Hz-AM1 and FB33). However, the virus did not replicate in the non-noctuid insect cell line from Pieris rapae (Pieridae). Despite replication of the virus in the three permissive cell lines, the cytopathological effects of the virus were significantly different from that of larval infection.

  20. Preoperative determination of appropriate cutting line for proximal gastrectomy to avoid postoperative jejunal ulcer.

    PubMed

    Takahashi, Naoto; Kashimura, Hirotaka; Nimura, Hiroshi; Watanabe, Atsushi; Yano, Kentaro; Aoki, Hiroaki; Koyama, Tomoki; Sasaki, Toshiyuki; Shida, Atsuo; Mitsumori, Norio; Aoki, Teruaki; Kashiwagi, Hideyuki; Yanaga, Katsuhiko

    2012-01-01

    Although proximal gastrectomy has become a procedure of choice for patients' early cancer in the upper third of stomach, no clinical guide for optimal gastric resection in order to avoid postoperative jejunal ulcer is available. The aim of this study was to investigate whether determining the distribution of parietal and chief cells of the stomach using Congo red test is clinically relevant. The F-line was defined as a boundary line between fundic and intermediate area of the stomach according to the pathological findings in 29 patients who underwent total gastrectomy for early gastric cancer, whereas the f-line was regarded as a boundary line between intermediate and pyloric area. In the additional 6 patients undergoing vagus-preserving proximal gastrectomy with jejunal pouch interposition, endoscopic Congo red test was preoperatively performed to determine the F-f-line. The distances from the pyloric ring to f-line on the lesser and greater curvatures were variable. Long-term outcomes of proximal gastrectomy guided by preoperative endoscopic Congo red test were favorable. It is suggested that preoperative endoscopic Congo red test is useful to determine the appropriate cutting line in order to avoid postoperative jejunal ulcer after proximal gastrectomy.

  1. Transcriptional Inducers of Acetylcholinesterase Expression as Novel Antidotes for Protection Against Chemical Warfare Agents

    DTIC Science & Technology

    2005-10-01

    neuroblastoma cell line , P19 and a human neuroblastoma cell line SH - SY5Y (data not shown). Effect of trichostatin A on...mouse neuroblastoma P19 cell line and a human neuroblastoma cell line SH - SY5Y . More experiments are needed to prove the potential of AChE expression in...treatment of nerve agent exposure. MATERIALS AND METHODS Neuronal cell lines and

  2. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines

    PubMed Central

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines. PMID:18927105

  3. Cell Line Data Base: structure and recent improvements towards molecular authentication of human cell lines.

    PubMed

    Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara

    2009-01-01

    The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.

  4. Generating mammalian stable cell lines by electroporation.

    PubMed

    A Longo, Patti; Kavran, Jennifer M; Kim, Min-Sung; Leahy, Daniel J

    2013-01-01

    Expression of functional, recombinant mammalian proteins often requires expression in mammalian cells (see Single Cell Cloning of a Stable Mammalian Cell Line). If the expressed protein needs to be made frequently, it can be best to generate a stable cell line instead of performing repeated transient transfections into mammalian cells. Here, we describe a method to generate stable cell lines via electroporation followed by selection steps. This protocol will be limited to the CHO dhfr-Urlaub et al. (1983) and LEC1 cell lines, which in our experience perform the best with this method. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. A Double Selection Approach to Achieve Specific Expression of Toxin Genes for Ovarian Cancer Gene Therapy

    DTIC Science & Technology

    2007-11-01

    cells ( gray fill), cells preincubated with PBS and infected with virus (solid line), and cells preincubated with recombinant knob protein and incubated...U118-hCAR-tailless cells (b). Gray line¼ cells alone, solid line¼ cells+Ad5Luc1-CK1, dashed line¼ cells+Ad5Luc1. Figure 5 Ad5Luc1-CK1CAR-independent...line, whereas U118MG-hCAR-tailless stably expresses the extracellular domain of human CAR. Cells were infected with Ad5Luc1 ( gray bar) and Ad5-r1 (black

  6. Empirical gradient threshold technique for automated segmentation across image modalities and cell lines.

    PubMed

    Chalfoun, J; Majurski, M; Peskin, A; Breen, C; Bajcsy, P; Brady, M

    2015-10-01

    New microscopy technologies are enabling image acquisition of terabyte-sized data sets consisting of hundreds of thousands of images. In order to retrieve and analyze the biological information in these large data sets, segmentation is needed to detect the regions containing cells or cell colonies. Our work with hundreds of large images (each 21,000×21,000 pixels) requires a segmentation method that: (1) yields high segmentation accuracy, (2) is applicable to multiple cell lines with various densities of cells and cell colonies, and several imaging modalities, (3) can process large data sets in a timely manner, (4) has a low memory footprint and (5) has a small number of user-set parameters that do not require adjustment during the segmentation of large image sets. None of the currently available segmentation methods meet all these requirements. Segmentation based on image gradient thresholding is fast and has a low memory footprint. However, existing techniques that automate the selection of the gradient image threshold do not work across image modalities, multiple cell lines, and a wide range of foreground/background densities (requirement 2) and all failed the requirement for robust parameters that do not require re-adjustment with time (requirement 5). We present a novel and empirically derived image gradient threshold selection method for separating foreground and background pixels in an image that meets all the requirements listed above. We quantify the difference between our approach and existing ones in terms of accuracy, execution speed, memory usage and number of adjustable parameters on a reference data set. This reference data set consists of 501 validation images with manually determined segmentations and image sizes ranging from 0.36 Megapixels to 850 Megapixels. It includes four different cell lines and two image modalities: phase contrast and fluorescent. Our new technique, called Empirical Gradient Threshold (EGT), is derived from this reference data set with a 10-fold cross-validation method. EGT segments cells or colonies with resulting Dice accuracy index measurements above 0.92 for all cross-validation data sets. EGT results has also been visually verified on a much larger data set that includes bright field and Differential Interference Contrast (DIC) images, 16 cell lines and 61 time-sequence data sets, for a total of 17,479 images. This method is implemented as an open-source plugin to ImageJ as well as a standalone executable that can be downloaded from the following link: https://isg.nist.gov/. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  7. Human Rhabdomyosarcoma Cell Lines for Rhabdomyosarcoma Research: Utility and Pitfalls

    PubMed Central

    Hinson, Ashley R. P.; Jones, Rosanne; Crose, Lisa E. S.; Belyea, Brian C.; Barr, Frederic G.; Linardic, Corinne M.

    2013-01-01

    Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell-line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis. PMID:23882450

  8. Polyphenol-rich apple (Malus domestica L.) peel extract attenuates arsenic trioxide induced cardiotoxicity in H9c2 cells via its antioxidant activity.

    PubMed

    Vineetha, Vadavanath Prabhakaran; Girija, Seetharaman; Soumya, Rema Sreenivasan; Raghu, Kozhiparambil Gopalan

    2014-03-01

    Evidences suggest that apple peel has a wide range of polyphenols having antioxidant activity and its consumption has been linked with improved health benefits. Arsenic trioxide (ATO) is a very effective drug for the treatment of acute promyelocytic leukemia (APL) but it leads to cardiotoxicity mediated through alterations in various cardiac ion channels and by increasing the intracellular calcium level and reactive oxygen species (ROS). The aim of the present investigation was to study the effect of methanolic extract of apple peel (APME) and aqueous extract of apple peel (APAE) on ATO (5 μM) induced toxicity in the H9c2 cardiac myoblast cell line. We estimated the cellular status of innate antioxidant enzymes, level of ROS, mitochondrial superoxide, glutathione and intracellular calcium with ATO and apple peel extracts. Prior to the cell line based study, we had evaluated the antioxidant potential of apple peel extract by 1,1-diphenyl-2-picrylhydrazyl (DPPH), total reducing power (TRP), superoxide anion and hydroxyl radical scavenging activity, in addition to quantifying total phenolic and flavonoid content. Both the extracts showed considerable antioxidant activity in cell-free chemical assays. In addition, both APME and APAE prevented the alteration in antioxidant status induced by ATO in H9c2 cells. Significant differential alterations had been observed in the activity of lactate dehydrogenase, superoxide dismutase, catalase, glutathione, glutathione peroxidase, thioredoxin reductase, xanthine oxidase, calcium overload and caspase 3 activity with ATO. The overall result revealed the protective property of polyphenol-rich apple peel extract against ATO induced cardiac toxicity via its antioxidant activity.

  9. Antiproliferative and phytochemical analyses of leaf extracts of ten Apocynaceae species

    PubMed Central

    Wong, Siu Kuin; Lim, Yau Yan; Abdullah, Noor Rain; Nordin, Fariza Juliana

    2011-01-01

    Background: The anticancer properties of Apocynaceae species are well known in barks and roots but less so in leaves. Materials and Methods: In this study, leaf extracts of 10 Apocynaceae species were assessed for antiproliferative (APF) activities using the sulforhodamine B assay. Their extracts were also analyzed for total alkaloid content (TAC), total phenolic content (TPC), and radical scavenging activity (RSA) using the Dragendorff precipitation, Folin–Ciocalteu, and 1,1-diphenyl-2-picrylhydrazyl (DPPH) assays, respectively. Results: Leaf extracts of Alstonia angustiloba, Calotropis gigantea, Catharanthus roseus, Nerium oleander, Plumeria obtusa, and Vallaris glabra displayed positive APF activities. Extracts of Allamanda cathartica, Cerbera odollam, Dyera costulata, and Kopsia fruticosa did not show any APF activity. Dichloromethane (DCM) extract of C. gigantea, and DCM and DCM:MeOH extracts of V. glabra showed strong APF activities against all six human cancer cell lines. Against breast cancer cells of MCF-7 and MDA-MB-231, DCM extracts of C. gigantea and N. oleander were stronger than or comparable to standard drugs of xanthorrhizol, curcumin, and tamoxifen. All four extracts of N. oleander were effective against MCF-7 cells. Extracts of Kopsia fruticosa had the highest TAC while those of Dyera costulata had the highest TPC and RSA. Extracts of C. gigantea and V. glabra inhibited the growth of all six cancer cell lines while all extracts of N. oleander were effective against MCF-7 cells. Conclusion: Extracts of C. gigantea, V. glabra, and N. oleander therefore showed great promise as potential candidates for anticancer drugs. The wide-spectrum APF activities of these three species are reported for the first time and their bioactive compounds warrant further investigation. PMID:21772753

  10. In vitro antiproliferative, apoptotic and antioxidant activities of punicalagin, ellagic acid and a total pomegranate tannin extract are enhanced in combination with other polyphenols as found in pomegranate juice.

    PubMed

    Seeram, Navindra P; Adams, Lynn S; Henning, Susanne M; Niu, Yantao; Zhang, Yanjun; Nair, Muraleedharan G; Heber, David

    2005-06-01

    Pomegranate (Punica granatum L.) fruits are widely consumed as juice (PJ). The potent antioxidant and anti-atherosclerotic activities of PJ are attributed to its polyphenols including punicalagin, the major fruit ellagitannin, and ellagic acid (EA). Punicalagin is the major antioxidant polyphenol ingredient in PJ. Punicalagin, EA, a standardized total pomegranate tannin (TPT) extract and PJ were evaluated for in vitro antiproliferative, apoptotic and antioxidant activities. Punicalagin, EA and TPT were evaluated for antiproliferative activity at 12.5-100 microg/ml on human oral (KB, CAL27), colon (HT-29, HCT116, SW480, SW620) and prostate (RWPE-1, 22Rv1) tumor cells. Punicalagin, EA and TPT were evaluated at 100 microg/ml concentrations for apoptotic effects and at 10 microg/ml concentrations for antioxidant properties. However, to evaluate the synergistic and/or additive contributions from other PJ phytochemicals, PJ was tested at concentrations normalized to deliver equivalent amounts of punicalagin (w/w). Apoptotic effects were evaluated against the HT-29 and HCT116 colon cancer cell lines. Antioxidant effects were evaluated using inhibition of lipid peroxidation and Trolox equivalent antioxidant capacity (TEAC) assays. Pomegranate juice showed greatest antiproliferative activity against all cell lines by inhibiting proliferation from 30% to 100%. At 100 microg/ml, PJ, EA, punicalagin and TPT induced apoptosis in HT-29 colon cells. However, in the HCT116 colon cells, EA, punicalagin and TPT but not PJ induced apoptosis. The trend in antioxidant activity was PJ>TPT>punicalagin>EA. The superior bioactivity of PJ compared to its purified polyphenols illustrated the multifactorial effects and chemical synergy of the action of multiple compounds compared to single purified active ingredients.

  11. Assembly And Initial Characterization Of A Panel Of 85 Genomically Validated Cell Lines From Diverse Head And Neck Tumor Sites

    PubMed Central

    Zhao, Mei; Sano, Daisuke; Pickering, Curtis R.; Jasser, Samar A.; Henderson, Ying C.; Clayman, Gary L.; Sturgis, Erich M.; Ow, Thomas J.; Lotan, Reuben; Carey, Thomas E.; Sacks, Peter G.; Grandis, Jennifer R.; Sidransky, David; Heldin, Nils Erik; Myers, Jeffrey N.

    2011-01-01

    Purpose Human cell lines are useful for studying cancer biology and pre-clinically modeling cancer therapy, but can be misidentified and cross contamination is unfortunately common. The purpose of this study was to develop a panel of validated head and neck cell lines representing the spectrum of tissue sites and histologies that could be used for studying the molecular, genetic, and phenotypic diversity of head and neck cancer. Methods A panel of 122 clinically and phenotypically diverse head and neck cell lines from head and neck squamous cell carcinoma (HNSCC), thyroid cancer, cutaneous squamous cell carcinoma, adenoid cystic carcinoma, oral leukoplakia, immortalized primary keratinocytes, and normal epithelium, was assembled from the collections of several individuals and institutions. Authenticity was verified by performing short tandem repeat (STR) analysis. Human papillomavirus (HPV) status and cell morphology were also determined. Results Eighty-five of the 122 cell lines had unique genetic profiles. HPV-16 DNA was detected in 2 cell lines. These 85 cell lines included cell lines from the major head and neck primary tumor sites, and close examination demonstrates a wide range of in vitro phenotypes. Conclusion This panel of 85 genomically validated head and neck cell lines represents a valuable resource for the head and neck cancer research community that can help advance understanding of the disease by providing a standard reference for cell lines that can be utilized for biological as well as preclinical studies. PMID:21868764

  12. Comparative performance of fetal goat tongue cell line ZZ-R 127 and fetal porcine kidney cell line LFBK-αvβ6 for Foot-and-mouth disease virus isolation.

    PubMed

    Fukai, Katsuhiko; Morioka, Kazuki; Yamada, Manabu; Nishi, Tatsuya; Yoshida, Kazuo; Kitano, Rie; Yamazoe, Reiko; Kanno, Toru

    2015-07-01

    The fetal goat tongue cell line ZZ-R 127 and the fetal porcine kidney cell line LFBK-α(v)β(6) have been reported to have high sensitivity to various Foot-and-mouth disease virus (FMDV) strains. The suitability of ZZ-R 127 cells for FMDV isolation not only from epithelial suspensions but also from other clinical samples has already been confirmed in a previous study. However, to our knowledge, the suitability of LFBK-α(v)β(6) cells has not been evaluated using clinical samples other than epithelial materials. In addition, both cell lines have never been compared, in terms of use for FMDV isolation, under the same conditions. Therefore, in the current study, the virus isolation rates of both cell lines were compared using clinical samples collected from animals infected experimentally with FMDV. Viruses were successfully isolated from clinical samples other than epithelial suspensions for both cell lines. The virus isolation rates for the 2 cell lines were not significantly different. The Cohen kappa coefficients between the virus isolation results for both cell lines were significantly high. Taken together, these results confirmed the suitability of LFBK-α(v)β(6) cells for FMDV isolation from clinical samples other than epithelial suspensions. The levels of susceptibility of both cell lines to FMDV isolation were also confirmed to be almost the same. © 2015 The Author(s).

  13. High-throughput identification of genotype-specific cancer vulnerabilities in mixtures of barcoded tumor cell lines

    PubMed Central

    Yu, Channing; Mannan, Aristotle M.; Yvone, Griselda Metta; Ross, Kenneth N.; Zhang, Yan-Ling; Marton, Melissa A.; Taylor, Bradley R.; Crenshaw, Andrew; Gould, Joshua Z.; Tamayo, Pablo; Weir, Barbara A.; Tsherniak, Aviad; Wong, Bang; Garraway, Levi A.; Shamji, Alykhan F.; Palmer, Michelle A.; Foley, Michael A.; Winckler, Wendy; Schreiber, Stuart L.; Kung, Andrew L.; Golub, Todd R.

    2016-01-01

    Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control1-4. Here, we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes. PRISM displayed the expected patterns of cell killing seen in conventional (unpooled) assays. In a screen of 102 cell lines across 8,400 compounds, PRISM led to the identification of BRD-7880 as a potent and highly specific inhibitor of aurora kinases B and C. Cell line pools also efficiently formed tumors as xenografts, and PRISM recapitulated the expected pattern of erlotinib sensitivity in vivo. PMID:26928769

  14. Algerian Propolis Potentiates Doxorubicin Mediated Anticancer Effect against Human Pancreatic PANC-1 Cancer Cell Line through Cell Cycle Arrest, Apoptosis Induction and P-Glycoprotein Inhibition.

    PubMed

    Rouibah, Hassiba; Mesbah, Lahouel; Kebsa, Wided; Zihlif, Malek; Ahram, Mamoun; Aburmeleih, Bachaer; Mostafa, Ibtihal; El Amir, Hemzeh

    2018-01-10

    Pancreatic cancer is one of the most aggressive and lethal cancer, with poor prognosis and high resistant to current chemotherapeutic agents. Therefore, new therapeutic strategies and targets are underscored. Propolis has been reported to exhibit a broad spectrum of biological activities including anticancer activity. This study was carried out to assess the possible efficacy of Algerian propolis on the antitumor effect of doxorubicin on human pancreatic cancer cell line (PANC-1). Modifications in cell viability, apoptosis and cell cycle progression, Pgp activity and intracellular accumulation of DOX were monitored to study the synergistic effect of Algerian propolis on the antitumor effects of DOX in PANC-1 cell line. Both propolis and its combination with doxorubicin inhibited cell growth in a dose-dependent manner by inducing cell cycle arrest and apoptosis. In the presence of 100 µg/ml of propolis, the IC50 of DOX against PANC-1 cells decreased by 10.9-fold. Propolis combined with DOX increased after 48h, the number of cells in the G0G1 phase with dramatical increase in sub-G1 phase to reach 47% of total cells, corresponding to an increase of senescence or apoptotic state of the cells. Dead cell assay with annexinV/PI staining demonstrated that propolis and propolis-DOX treatment resulted in a remarkable induction of apoptosis as detected by flow cytometry. It was interesting to note that propolis at its 5IC50 was found as the most potent inducer of apoptosis. Our finding revealed that induced apoptosis in our conditions was caspase-3 and caspase-9 dependent. Flow cytometry showed that propolis increased the accumulation of doxorubicin within PANC-1 cells. Moreover, fluorescent intensity detection revealed that propolis remarkably increased the retention of rhodamine-123, 7-fold compared to 3-fold of verapamil, the most effective P-gp inhibitor. In conclusion, propolis sensitize pancreatic cancer cells to DOX via enhancing the intracellular retention of DOX due to blocking the efflux activity of P-gp pump, inducing cell cycle arrest and increasing apoptosis, finding that improuve the synergism of antitumor effect of Algerian propolis and DOX in pancreatic cancer cell line. Therefore, Algerian propolis may be an effective agent in a combined treatment with doxorubicin for increased therapeutic efficacy against pancreatic cancer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Development, characterization and application of a new epithelial cell line from caudal fin of Pangasianodon hypophthalmus (Sauvage 1878).

    PubMed

    Soni, Pankaj; Pradhan, Pravata K; Swaminathan, T R; Sood, Neeraj

    2018-06-01

    A cell line, designated as PHF, has been established from caudal fin of Pangasianodon hypophthalmus. The cell line was developed using explant method and PHF cells have been subcultured for more than 72 passages over a period of 14 months. The cells were able to grow at temperatures between 24 and 32° C, with an optimum temperature of 28° C. The growth rate of PHF cells was directly proportional to FBS concentration, with optimum growth observed at 20% FBS concentration. On the basis of immunophenotyping assay, PHF cells were confirmed to be of epithelial type. Karyotyping of PHF cells revealed diploid number of chromosomes (2n = 60) at 39th and 65th passage, which indicated that the developed cell line is chromosomally stable. The origin of the cell line was confirmed by amplification and sequencing of cytochrome oxidase c subunit I and 16S rRNA genes. The cell line was tested for Mycoplasma contamination and found to be negative. The cells were successfully transfected with GFP reporter gene suggesting that the developed cell line could be utilized for gene expression studies in future. The cell line could be successfully employed for evaluating the cytotoxicity of heavy metals, namely mercuric chloride and sodium arsenite suggesting that PHF cell line can be potential surrogate for whole fish for studying the cytotoxicity of water soluble compounds. The result of virus susceptibility to tilapia lake virus (TiLV) revealed that PHF cells were refractory to TiLV virus. The newly established cell line would be a useful tool for investigating disease outbreaks particularly of viral etiology, transgenic as well as cytotoxicity studies. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Tumourigenic canine osteosarcoma cell lines associated with frizzled-6 up-regulation and enhanced side population cell frequency.

    PubMed

    de Sá Rodrigues, L C; Holmes, K E; Thompson, V; Newton, M A; Stein, T J

    2017-03-01

    An increased serum alkaline phosphatase concentration is known to be associated with a negative prognosis in canine and human osteosarcoma. To expand upon previous studies regarding the biological relevance of increased serum alkaline phosphatase as a negative prognostic factor, xenogeneic heterotopic transplants were performed using six canine primary osteosarcoma cell lines generated from patients with differing serum alkaline phosphatase concentrations (three normal and three increased). Three of the six cell lines were capable of generating tumours and tumour formation was independent of the serum alkaline phosphatase status of the cell line. Microarray analysis identified 379 genes as being differentially expressed between the tumourigenic and non-tumourigenic cell lines. Frizzled-6 was upregulated to the greatest extent (7.78-fold) in tumourigenic cell lines compared with non-tumourigenic cell lines. Frizzled-6, a co-receptor for Wnt ligands has been associated with enhanced tumour-initiating cells and poor prognosis for other tumours. The increased expression of frizzled-6 was confirmed by quantitative reverse transcription polymerase chain reaction (QPCR) and Western blot analysis. Additionally, the tumourigenic cell lines also had an increase in the percentage of side population cells compared with non-tumourigenic cell lines (5.89% versus 1.58%, respectively). There were no differences in tumourigenicity, frizzled-6 or percentage of side population cells noted between osteosarcoma cell lines generated from patients of differing serum alkaline phosphatase concentration. However, to our knowledge this is the first study to identified frizzled-6 as a possible marker of osteosarcoma cell populations with enhanced tumourigenicity and side population cells. Future work will focus on defining the role of frizzled-6 in osteosarcoma tumourigenesis and tumour-initiating cells. © 2015 John Wiley & Sons Ltd.

  17. BHD Tumor Cell Line and Renal Cell Carcinoma Line | NCI Technology Transfer Center | TTC

    Cancer.gov

    Scientists at the National Cancer Institute  have developed a novel renal cell carcinoma (RCC) cell line designated UOK257, which was derived from the surgical kidney tissue of a patient with hereditary Birt-Hogg-Dube''''(BHD) syndrome and companion cell line UOK257-2 in which FLCN expression has been restored by lentivirus infection. The NCI Urologic Oncology Branch seeks parties interested in licensing or collaborative research to co-develop, evaluate, or commercialize kidney cancer tumor cell lines.

  18. Macrophage cell lines derived from major histocompatibility complex II-negative mice

    NASA Technical Reports Server (NTRS)

    Beharka, A. A.; Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Two bone-marrow-derived macrophage cell lines, C2D and C2Dt, were isolated from major histocompatibility class II negative knock-out mice. The C2D cell line was stabilized by continuous culture in colony-stimulating factor-1 and the C2Dt cell line was transformed with SV40 virus large T antigen. These cells exhibited phenotypic properties of macrophages including morphology and expression of Mac 1 and Mac 2 cell surface molecules. These cells also had comparable growth to the bone-marrow-derived macrophage cell line B6MP102. These new cell lines were not spontaneously cytotoxic and were only capable of modest killing of F5b tumor cells when stimulated with LPS and interferon-gamma, but not when stimulated with LPS alone or with staphylococcal exotoxin. C2D and C2Dt cells phagocytosed labeled Staphylococcus aureus similarly to B6MP102 cells but less well than C2D peritoneal macrophages. These cell lines secreted interleukin-6, but not tumor necrosis factor or nitric oxide in response to LPS or staphlococcal enterotoxins A or B C2D(t) cells were tumorigenic in C2D and C57BL/6J mice but C2D cells were not. These data suggest that macrophage cell lines can be established from bone marrow cells of major histocompatibility complex II-negative mice.

  19. Somatic mutations in the transcriptional corepressor gene BCORL1 in adult acute myelogenous leukemia.

    PubMed

    Li, Meng; Collins, Roxane; Jiao, Yuchen; Ouillette, Peter; Bixby, Dale; Erba, Harry; Vogelstein, Bert; Kinzler, Kenneth W; Papadopoulos, Nickolas; Malek, Sami N

    2011-11-24

    To further our understanding of the genetic basis of acute myelogenous leukemia (AML), we determined the coding exon sequences of ∼ 18 000 protein-encoding genes in 8 patients with secondary AML. Here we report the discovery of novel somatic mutations in the transcriptional corepressor gene BCORL1 that is located on the X-chromosome. Analysis of BCORL1 in an unselected cohort of 173 AML patients identified a total of 10 mutated cases (6%) with BCORL1 mutations, whereas analysis of 19 AML cell lines uncovered 4 (21%) BCORL1 mutated cell lines. The majority (87%) of the mutations in BCORL1 were predicted to inactivate the gene product as a result of nonsense mutations, splice site mutation, or out-of-frame insertions or deletions. These results indicate that BCORL1 by genetic criteria is a novel candidate tumor suppressor gene, joining the growing list of genes recurrently mutated in AML.

  20. Assessing the germplasm of Laminaria (phaeophyceae) with random amplified polymorphic DNA (RAPD) method

    NASA Astrophysics Data System (ADS)

    He, Yingjun; Zou, Yuping; Wang, Xiaodong; Zheng, Zhiguo; Zhang, Daming; Duan, Delin

    2003-06-01

    Eighteen gametophytes including L. japonica, L. ochotensis and L. longissima, were verified with random amplified polymorphic DNA (RAPD) technique. Eighteen ten-base primers were chosen from 100 primers selected for final amplification test. Among the total of 205 bands amplified, 181 (88.3%) were polymorphic. The genetic distance among different strains ranged from 0.072 to 0.391. The dendrogram constructed by unweighted pair-group method with arithmetic (UPGMA) method showed that the female and male gametophytes of the same cell lines could be grouped in pairs respectively. It indicated that RAPD analysis could be used not only to distinguish different strains of Laminaria, but also to distinguish male and female gametophyte within the same cell lines. There is ambiguous systematic relationship if judged merely by the present data. It seems that the use of RAPD marker is limited to elucidation of the phylogenetic relationship among the species of Laminaria.

  1. Isolation, biology and chemistry of the disorazoles: new anti-cancer macrodiolides

    PubMed Central

    Hopkins, Chad D.; Wipf, Peter

    2009-01-01

    The disorazoles comprise a family of 29 closely related macrocyclic polyketides isolated in 1994 from the fermentation broth of the gliding myxobacterium Sorangium cellulosum. Disorazoles A1, E and C1 have shown exceptional biological activities toward inhibiting the proliferation of human cancer cell lines in picomolar and nanomolar concentrations through the disruption of microtubule polymerization. This review gives a brief introduction describing the biosynthesis and the significance of the disorazoles as a new class of microtubulin disruptors. Another portion of the review focuses on the biology of the disorazoles, specifically disorazole A1 and C1, and their antiproliferative efficacy against animal and human tumor cell lines, as well as the available SAR data. The majority of the discussion addresses synthetic efforts, including partial syntheses of various disorazoles and a summary of the total synthesis of disorazole C1. PMID:19387496

  2. Xenobiotic metabolism in the fish hepatic cell lines Hepa-E1 and RTH-149, and the gill cell lines RTgill-W1 and G1B: Biomarkers of CYP450 activity and oxidative stress.

    PubMed

    Franco, Marco E; Sutherland, Grace E; Lavado, Ramon

    2018-04-01

    The use of fish cell cultures has proven to be an effective tool in the study of environmental and aquatic toxicology. Valuable information can be obtained from comparisons between cell lines from different species and organs. In the present study, specific chemicals were used and biomarkers (e.g. 7-Ethoxyresorufin-O-deethylase (EROD) activity and reactive oxygen species (ROS)) were measured to assess the metabolic capabilities and cytotoxicity of the fish hepatic cell lines Hepa-E1 and RTH-149, and the fish gill cell lines RTgill-W1 and G1B. These cell lines were exposed to β-naphthoflavone (BNF) and benzo[a]pyrene (BaP), the pharmaceutical tamoxifen (TMX), and the organic peroxide tert-butylhydroperoxide (tBHP). Cytotoxicity in gill cell lines was significantly higher than in hepatic cells, with BNF and TMX being the most toxic compounds. CYP1-like associated activity, measured through EROD activity, was only detected in hepatic cells; Hepa-E1 cells showed the highest activity after exposure to both BNF and BaP. Significantly higher levels of CYP3A-like activity were also observed in Hepa-E1 cells exposed to TMX, while gill cell lines presented the lowest levels. Measurements of ROS and antioxidant enzymes indicated that peroxide levels were higher in gill cell lines in general. However, levels of superoxide were significantly higher in RTH-149 cells, where no distinctive increase of superoxide-related antioxidants was observed. The present study demonstrates the importance of selecting adequate cell lines in measuring specific metabolic parameters and provides strong evidence for the fish hepatocarcinoma Hepa-E1 cells to be an excellent alternative in assessing metabolism of xenobiotics, and in expanding the applicability of fish cell lines for in vitro studies. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. An Online Compendium of CHO RNA-Seq Data Allows Identification of CHO Cell Line-specific Transcriptomic Signatures.

    PubMed

    Singh, Ankita; Kildegaard, Helene F; Andersen, Mikael R

    2018-05-15

    Chinese hamster ovary (CHO) cell lines can fold, assemble and modify proteins post-translationally to produce human-like proteins; as a consequence, it is the single most common expression systems for industrial production of recombinant therapeutic proteins. A thorough knowledge of cultivation conditions of different CHO cell lines has been developed over the last decade, but comprehending gene or pathway-specific distinctions between CHO cell lines at transcriptome level remains a challenge. To address these challenges, we compiled a compendium of 23 RNA-Seq studies from public and in-house data on CHO cell lines, i.e. CHO-S, CHO-K1 and DG44. Significantly differentially expressed (DE) genes particularly related to subcellular structure and macromolecular categories were used to identify differences between the cell lines. A R-based web application was developed specifically for CHO cell lines to further visualize expression values across different cell lines, and make available the normalized full CHO data set graphically as a CHO research community resource. This study quantitatively categorizes CHO cell lines based on patterns at transcriptomic level and detects gene and pathway specific key distinctions among sibling cell lines. Studies such as this can be used to select desired characteristics across various CHO cell lines. Furthermore, the availability of the data as an internet-based application can be applied to broad range of CHO engineering applications. This article is protected by copyright. All rights reserved.

  4. An Efficient Method for Electroporation of Small Interfering RNAs into ENCODE Project Tier 1 GM12878 and K562 Cell Lines.

    PubMed

    Muller, Ryan Y; Hammond, Ming C; Rio, Donald C; Lee, Yeon J

    2015-12-01

    The Encyclopedia of DNA Elements (ENCODE) Project aims to identify all functional sequence elements in the human genome sequence by use of high-throughput DNA/cDNA sequencing approaches. To aid the standardization, comparison, and integration of data sets produced from different technologies and platforms, the ENCODE Consortium selected several standard human cell lines to be used by the ENCODE Projects. The Tier 1 ENCODE cell lines include GM12878, K562, and H1 human embryonic stem cell lines. GM12878 is a lymphoblastoid cell line, transformed with the Epstein-Barr virus, that was selected by the International HapMap Project for whole genome and transcriptome sequencing by use of the Illumina platform. K562 is an immortalized myelogenous leukemia cell line. The GM12878 cell line is attractive for the ENCODE Projects, as it offers potential synergy with the International HapMap Project. Despite the vast amount of sequencing data available on the GM12878 cell line through the ENCODE Project, including transcriptome, chromatin immunoprecipitation-sequencing for histone marks, and transcription factors, no small interfering siRNA-mediated knockdown studies have been performed in the GM12878 cell line, as cationic lipid-mediated transfection methods are inefficient for lymphoid cell lines. Here, we present an efficient and reproducible method for transfection of a variety of siRNAs into the GM12878 and K562 cell lines, which subsequently results in targeted protein depletion.

  5. Enumerating Hematopoietic Stem and Progenitor Cells in Zebrafish Embryos.

    PubMed

    Esain, Virginie; Cortes, Mauricio; North, Trista E

    2016-01-01

    Over the past 20 years, zebrafish have proven to be a valuable model to dissect the signaling pathways involved in hematopoiesis, including Hematopoietic Stem and Progenitor Cell (HSPC) formation and homeostasis. Despite tremendous efforts to generate the tools necessary to characterize HSPCs in vitro and in vivo the zebrafish community still lacks standardized methods to quantify HSPCs across laboratories. Here, we describe three methods used routinely in our lab, and in others, to reliably enumerate HSPCs in zebrafish embryos: large-scale live imaging of transgenic reporter lines, Fluorescence-Activated Cell Sorting (FACS), and in vitro cell culture. While live imaging and FACS analysis allows enumeration of total or site-specific HSPCs, the cell culture assay provides the unique opportunity to test the functional potential of isolated HSPCs, similar to those employed in mammals.

  6. [Loss of total 5-methylcytosine from the genome during cell culture aging coincides with the Hayflick limit].

    PubMed

    Mazin, A L

    1993-01-01

    Analyzing the data about the age-related 5-methylcytosine (5mC) loss from DNA of cell cultures, the following conclusions have been made: 1. The rate of 5mC loss from DNA does not depend on the cell donor age; it remains constant during the logarithmic phase of cell growth, and may vary significantly in different cell lines. 2. The rate is inversely proportional to their Hayflick limit and to the species lifespan of cell donors. 3. In immortal cell lines the 5mC content in DNA is stable or increases with aging. 4. Hayflick limit estimations coincide with or are lower than the number of cell population doublings that corresponds to all 5mC loss from cell genome. A simple and fast method has been proposed for Hayflick limit prognostication by analysis of the rate of DNA hypomethylation. It may be used for early diagnosis of precrisis and immortal cell lines. Evidence has been obtained that age-dependent 5mC loss from DNA is the result of accumulating 5mC-->T+C substitutions that occur during DNA methylation in every cell division. The loss of all genomic 5mC residues during the lifespan may correspond to accumulation of about 3 x 10(6) 5mC-->T transitions or, on average, one mutation per gene. This may be one of the main reasons of the "catastrophe of errors" and cessation of cell proliferation. It is calculated that the rate of 5mC-->T transitions in normal cells may be 2.3 x 10(-5) per site in each cell doubling in human, 6 x 10(-5) in hamster, and 4.6 x 10(-4) in mouse. DNA methylation as a generator of mutations may be a "counter" of cell divisions and thus be one of the molecular mechanisms of the Hayflick phenomenon. The conclusion is made that the DNA methylation system may be considered as a genetically programmed mechanism for accumulating mutations during cell aging.

  7. Continuous human cell lines and method of making same

    DOEpatents

    Stampfer, M.R.

    1985-07-01

    Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo(a)pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors. 2 tabs.

  8. Antisense Down-Regulation of the FaPG1 Gene Reveals an Unexpected Central Role for Polygalacturonase in Strawberry Fruit Softening1[W

    PubMed Central

    Quesada, Miguel A.; Blanco-Portales, Rosario; Posé, Sara; García-Gago, Juan A.; Jiménez-Bermúdez, Silvia; Muñoz-Serrano, Andrés; Caballero, José L.; Pliego-Alfaro, Fernando; Mercado, José A.; Muñoz-Blanco, Juan

    2009-01-01

    The strawberry (Fragaria × ananassa ‘Chandler’) fruit undergoes a fast softening during ripening. Polygalacturonase (PG) activity is low during this process, but two ripening-related PG genes, FaPG1 and FaPG2, have been cloned. Both genes were up-regulated during fruit ripening and were also negatively regulated by auxin. To further assess the role of FaPG1 on strawberry softening, transgenic plants containing an antisense sequence of this gene under the control of the 35S promoter (APG lines) were obtained. Sixteen out of 30 independent transgenic lines showed fruit yields similar to those of the control. Several quality parameters were measured in ripe fruits from these 16 lines. Fruit weight was slightly reduced in four lines, and most of them showed an increase in soluble solid content. Half of these lines yielded fruits significantly firmer than did the control. Four APG lines were selected, their ripened fruits being on average 163% firmer than the control. The postharvest softening of APG fruits was also diminished. Ripened fruits from the four selected lines showed a 90% to 95% decrease in FaPG1 transcript abundance, whereas the level of FaPG2 was not significantly altered. Total PG activity was reduced in three of these lines when compared with control fruits. Cell wall extracts from APG fruits showed a reduction in pectin solubilization and an increase in pectins covalently bound to the cell wall. A comparative transcriptomic analysis of gene expression between the ripened receptacle of the control and those of the APG fruits (comprising 1,250 receptacle expressed sequence tags) did not show any statistically significant change. These results indicate that FaPG1 plays a central role in strawberry softening. PMID:19395408

  9. Novel Single-Cell Analysis Platform Based on a Solid-State Zinc-Coadsorbed Carbon Quantum Dots Electrochemiluminescence Probe for the Evaluation of CD44 Expression on Breast Cancer Cells.

    PubMed

    Qiu, Youyi; Zhou, Bin; Yang, Xiaojuan; Long, Dongping; Hao, Yan; Yang, Peihui

    2017-05-24

    A novel single-cell analysis platform was fabricated using solid-state zinc-coadsorbed carbon quantum dot (ZnCQDs) nanocomposites as an electrochemiluminescence (ECL) probe for the detection of breast cancer cells and evaluation of the CD44 expression level. Solid-state ZnCQDs nanocomposite probes were constructed through the attachment of ZnCQDs to gold nanoparticles and then the loading of magnetic beads to amplify the ECL signal, exhibiting a remarkable 120-fold enhancement of the ECL intensity. Hyaluronic acid (HA)-functionalized solid-state probes were used to label a single breast cancer cell by the specific recognition of HA with CD44 on the cell surface, revealing more stable, sensitive, and effective tagging in comparison with the water-soluble CQDs. This strategy exhibited a good analytical performance for the analysis of MDA-MB-231 and MCF-7 single cells with linear range from 1 to 18 and from 1 to 12 cells, respectively. Furthermore, this single-cell analysis platform was used for evaluation of the CD44 expression level of these two cell lines, in which the MDA-MB-231 cells revealed a 2.8-5.2-fold higher CD44 expression level. A total of 20 single cells were analyzed individually, and the distributions of the ECL intensity revealed larger variations, indicating the high cellular heterogeneity of the CD44 expression level on the same cell line. The as-proposed single-cell analysis platform might provide a novel protocol to effectively study the individual cellular function and cellular heterogeneity.

  10. Ras proteins have multiple functions in vegetative cells of Dictyostelium.

    PubMed

    Bolourani, Parvin; Spiegelman, George; Weeks, Gerald

    2010-11-01

    During the aggregation of Dictyostelium cells, signaling through RasG is more important in regulating cyclic AMP (cAMP) chemotaxis, whereas signaling through RasC is more important in regulating the cAMP relay. However, RasC is capable of substituting for RasG for chemotaxis, since rasG⁻ cells are only partially deficient in chemotaxis, whereas rasC⁻/rasG⁻ cells are totally incapable of chemotaxis. In this study we have examined the possible functional overlap between RasG and RasC in vegetative cells by comparing the vegetative cell properties of rasG⁻, rasC⁻, and rasC⁻/rasG⁻ cells. In addition, since RasD, a protein not normally found in vegetative cells, is expressed in vegetative rasG⁻ and rasC⁻/rasG⁻ cells and appears to partially compensate for the absence of RasG, we have also examined the possible functional overlap between RasG and RasD by comparing the properties of rasG⁻ and rasC⁻/rasG⁻ cells with those of the mutant cells expressing higher levels of RasD. The results of these two lines of investigation show that RasD is capable of totally substituting for RasG for cytokinesis and growth in suspension, whereas RasC is without effect. In contrast, for chemotaxis to folate, RasC is capable of partially substituting for RasG, but RasD is totally without effect. Finally, neither RasC nor RasD is able to substitute for the role that RasG plays in regulating actin distribution and random motility. These specificity studies therefore delineate three distinct and none-overlapping functions for RasG in vegetative cells.

  11. Frequent mutations in the p53 tumor suppressor gene in human leukemia T-cell lines.

    PubMed Central

    Cheng, J; Haas, M

    1990-01-01

    Human T-cell leukemia and T-cell acute lymphoblastic leukemia cell lines were studied for alterations in the p53 tumor suppressor gene. Southern blot analysis of 10 leukemic T-cell lines revealed no gross genomic deletions or rearrangements. Reverse transcription-polymerase chain reaction analysis of p53 mRNA indicated that all 10 lines produced p53 mRNA of normal size. By direct sequencing of polymerase chain reaction-amplified cDNA, we detected 11 missense and nonsense point mutations in 5 of the 10 leukemic T-cell lines studied. The mutations are primarily located in the evolutionarily highly conserved regions of the p53 gene. One of the five cell lines in which a mutation was detected possesses a homozygous point mutation in both p53 alleles, while the other four cell lines harbor from two to four different point mutations. An allelic study of two of the lines (CEM, A3/Kawa) shows that the two missense mutations found in each line are located on separate alleles, thus both alleles of the p53 gene may have been functionally inactivated by two different point mutations. Since cultured leukemic T-cell lines represent a late, fully tumorigenic stage of leukemic T cells, mutation of both (or more) alleles of the p53 gene may reflect the selection of cells possessing an increasingly tumorigenic phenotype, whether the selection took place in vivo or in vitro. Previously, we have shown that the HSB-2 T-cell acute lymphoblastic leukemia cell line had lost both alleles of the retinoblastoma tumor suppressor gene. Taken together, our data show that at least 6 of 10 leukemic T-cell lines examined may have lost the normal function of a known tumor suppressor gene, suggesting that this class of genes serves a critical role in the generation of fully tumorigenic leukemic T cells. Images PMID:2144611

  12. LED (660 nm) and laser (670 nm) use on skin flap viability: angiogenesis and mast cells on transition line.

    PubMed

    Nishioka, Michele A; Pinfildi, Carlos E; Sheliga, Tatiana Rodrigues; Arias, Victor E; Gomes, Heitor C; Ferreira, Lydia M

    2012-09-01

    Skin flap procedures are commonly used in plastic surgery. Failures can follow, leading to the necrosis of the flap. Therefore, many studies use LLLT to improve flap viability. Currently, the LED has been introduced as an alternative to LLLT. The objective of this study was to evaluate the effect of LLLT and LED on the viability of random skin flaps in rats. Forty-eight rats were divided into four groups, and a random skin flap (10 × 4 cm) was performed in all animals. Group 1 was the sham group; group 2 was submitted to LLLT 660 nm, 0.14 J; group 3 with LED 630 nm, 2.49 J, and group 4 with LLLT 660 nm, with 2.49 J. Irradiation was applied after surgery and repeated on the four subsequent days. On the 7th postoperative day, the percentage of flap necrosis was calculated and skin samples were collected from the viable area and from the transition line of the flap to evaluate blood vessels and mast cells. The percentage of necrosis was significantly lower in groups 3 and 4 compared to groups 1 and 2. Concerning blood vessels and mast cell numbers, only the animals in group 3 showed significant increase compared to group 1 in the skin sample of the transition line. LED and LLLT with the same total energies were effective in increasing viability of random skin flaps. LED was more effective in increasing the number of mast cells and blood vessels in the transition line of random skin flaps.

  13. Elevating vitamin C content via overexpression of myo-inositol oxygenase and l-gulono-1,4-lactone oxidase in Arabidopsis leads to enhanced biomass and tolerance to abiotic stresses.

    PubMed

    Lisko, Katherine A; Torres, Raquel; Harris, Rodney S; Belisle, Melinda; Vaughan, Martha M; Jullian, Berangère; Chevone, Boris I; Mendes, Pedro; Nessler, Craig L; Lorence, Argelia

    2013-12-01

    l-Ascorbic acid (vitamin C) is an abundant metabolite in plant cells and tissues. Ascorbate functions as an antioxidant, as an enzyme cofactor, and plays essential roles in multiple physiological processes including photosynthesis, photoprotection, control of cell cycle and cell elongation, and modulation of flowering time, gene regulation, and senescence. The importance of this key molecule in regulating whole plant morphology, cell structure, and plant development has been clearly established via characterization of low vitamin C mutants of Arabidopsis , potato, tobacco, tomato, and rice. However, the consequences of elevating ascorbate content in plant growth and development are poorly understood. Here we demonstrate that Arabidopsis lines over-expressing a myo -inositol oxygenase or an l-gulono-1,4-lactone oxidase, containing elevated ascorbate, display enhanced growth and biomass accumulation of both aerial and root tissues. To our knowledge this is the first study demonstrating such a marked positive effect in plant growth in lines engineered to contain elevated vitamin C content. In addition, we present evidence showing that these lines are tolerant to a wide range of abiotic stresses including salt, cold, and heat. Total ascorbate content of the transgenic lines remained higher than those of controls under the abiotic stresses tested. Interestingly, exposure to pyrene, a polycyclic aromatic hydrocarbon and known inducer of oxidative stress in plants, leads to stunted growth of the aerial tissue, reduction in the number of root hairs, and inhibition of leaf expansion in wild type plants, while these symptoms are less severe in the over-expressers. Our results indicate the potential of this metabolic engineering strategy to develop crops with enhanced biomass, abiotic stress tolerance, and phytoremediation capabilities.

  14. Fourier analysis of the cell shape of paired human urothelial cell lines of the same origin but of different grades of transformation.

    PubMed

    Ostrowski, K; Dziedzic-Goclawska, A; Strojny, P; Grzesik, W; Kieler, J; Christensen, B; Mareel, M

    1986-01-01

    The rationale of the present investigation is the observations made by many authors of changes in the molecular structure of the cell surface during the multistep process of malignant transformation. These changes may influence cell-matrix and cell-cell interactions and thereby cause changes in cell adhesiveness and cell shape. The aim of the present work was to investigate whether the development of various grades of transformation in vivo and in vitro of human urothelial cells is accompanied by significant changes in cell shape as measured by Fourier analysis. The following transformation grades (TGr) have been defined (Christensen et al. 1984; Kieler 1984): TGr I = nonmalignant, mortal cell lines that grow independently of fibroblasts and have a prolonged life span. TGr II = nonmalignant cell lines with an infinite life span. TGr III = malignant and immortal cell lines that grow invasively in co-cultures with embryonic chick heart fragments and possess tumorigenic properties after s.c. injection into nude mice. Comparisons of 4 pairs of cell lines were performed; each pair was of the same origin. Two pairs--each including a TGr I cell line (Hu 961b and Hu 1703S) compared to a TGr III cell line (Hu 961a or Hu 1703He)--were derived from two transitional cell carcinomas (TCC) containing a heterogeneous cell population. Two additional cell lines classified as TGr II (HCV-29 and Hu 609) were compared to two TGr III sublines (HCV-29T and Hu 609T, respectively) which arose by "spontaneous" transformation during propagation in vitro of the respective maternal TGr II-cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuncharin, Yanin; Sangphech, Naunpun; Kueanjinda, Patipark

    The Notch signaling pathway plays important roles in tumorigenesis in a context-dependent manner. In human cervical cancer, alterations in Notch signaling have been reported, and both tumor-suppressing and tumor-promoting roles of Notch signaling have been proposed; however, the precise molecular mechanisms governing these roles in cervical cancer remain controversial. MAML is a transcriptional co-activator originally identified by its role in Notch signaling. Recent evidence suggests that it also plays a role in other signaling pathways, such as the p53 and {beta}-catenin pathways. MAML is required for stable formation of Notch transcriptional complexes at the promoters of Notch target genes. Chromosomalmore » translocations affecting MAML have been shown to promote tumorigenesis. In this study, we used a truncated dominant-negative MAML1 (DN-MAML) to investigate the role of MAML in HPV-positive cervical cancer cell lines. Three human cervical cancer cell lines (HeLa, SiHa and CaSki) expressed all Notch receptors and the Notch target genes Hes1 and MAML1. Among these 3 cell lines, constitutive appearance of cleaved Notch1 was found only in CaSki cells, which suggests that Notch1 is constitutively activated in this cell line. Gamma secretase inhibitor (GSI) treatment, which suppresses Notch receptor activation, completely abrogated this form of Notch1 but had no effect on cell viability. Overexpression of DN-MAML by retroviral transduction in CaSki cells resulted in significant decreases in the mRNA levels of Hes1 and Notch1 but had no effects on the levels of MAML1, p53 or HPV E6/E7. DN-MAML expression induced increased viability of CaSki cells without any effect on cell cycle progression or cell proliferation. In addition, clonogenic assay experiments revealed that overexpression of DN-MAML resulted in increased colony formation compared to the overexpression of the control vector. When the status of the NF-{kappa}B pathway was investigated, CaSki cells overexpressing DN-MAML exhibited loss of phospho-I{kappa}B{alpha}, decreased total I{kappa}B{alpha} and nuclear localization of NF-{kappa}B p65, which suggests that the NF-{kappa}B pathway is hyperactivated. Furthermore, increased level of cleaved Notch1 was detected when DN-MAML was expressed. When DN-MAML-overexpressing cells were treated with GSI, significantly decreased cell viability was observed, indicating that inhibition of Notch signaling using GSI treatment and DN-MAML expression negatively affects cell viability. Taken together, targeting Notch signaling using DN-MAML and GSI treatment may present a novel method to control cell viability in cervical cancer cells.« less

  16. Mycoplasma Infection Alters Cancer Stem Cell Properties in Vitro.

    PubMed

    Gedye, Craig; Cardwell, Tracy; Dimopoulos, Nektaria; Tan, Bee Shin; Jackson, Heather; Svobodová, Suzanne; Anaka, Matthew; Behren, Andreas; Maher, Christopher; Hofmann, Oliver; Hide, Winston; Caballero, Otavia; Davis, Ian D; Cebon, Jonathan

    2016-02-01

    Cancer cell lines can be useful to model cancer stem cells. Infection with Mycoplasma species is an insidious problem in mammalian cell culture. While investigating stem-like properties in early passage melanoma cell lines, we noted poorly reproducible results from an aliquot of a cell line that was later found to be infected with Mycoplasma hyorhinis. Deliberate infection of other early passage melanoma cell lines aliquots induced variable and unpredictable effects on expression of putative cancer stem cell markers, clonogenicity, proliferation and global gene expression. Cell lines established in stem cell media (SCM) were equally susceptible. Mycoplasma status is rarely reported in publications using cultured cells to study the cancer stem cell hypothesis. Our work highlights the importance of surveillance for Mycoplasma infection while using any cultured cells to interrogate tumor heterogeneity.

  17. The HepaRG cell line: biological properties and relevance as a tool for cell biology, drug metabolism, and virology studies.

    PubMed

    Marion, Marie-Jeanne; Hantz, Olivier; Durantel, David

    2010-01-01

    Liver progenitor cells may play an important role in carcinogenesis in vivo and represent therefore useful cellular materials for in vitro studies. The HepaRG cell line, which is a human bipotent progenitor cell line capable to differentiate toward two different cell phenotypes (i.e., biliary-like and hepatocyte-like cells), has been established from a liver tumor associated with chronic hepatitis C. This cell line represents a valuable alternative to ex vivo cultivated primary human hepatocytes (PHH), as HepaRG cells share some features and properties with adult hepatocytes. The cell line is particularly useful to evaluate drugs and perform drug metabolism studies, as many detoxifying enzymes are expressed and functional. It is also an interesting tool to study some aspect of progenitor biology (e.g., differentiation process), carcinogenesis, and the infection by some pathogens for which the cell line is permissive (e.g., HBV infection). Overall, this chapter gives a concise overview of the biological properties and potential applications of this cell line.

  18. [Expression of Chemokine receptor CXCR6 and its significance in breast cancer cell lines].

    PubMed

    Cheng, Hao; Chen, Nian-yong

    2014-05-01

    To detect the expression of Chemokine receptor CXCR6 in invasive breast cancer cell lines and normal mammary epithelial cell line, and assess the relationship between CXCR6 expression and malignant behavior of breast cancer cells. Expression level of CXCR6 in different invasive breast cancer cell lines (SK-BR-3, MCF-7, MDA-MB-231) and normal mammary epithelial cell line (MCF-10A)was detected by real time reverse transcription-polymerase chain reaction (real time-PCR) and Western blot. Lentivirus was employed to interfere CXCR6 expression in MDA-MB-231. MTT assay and transwell chamber were used to study proliferative and invasive ability of those cells respectively. Vascular enothelial growth factor (VEGF) expression was detected to study the role of CXCR6 in angiogenesis. At both mRNA level and protein level, normal mammary epithelial cell line MCF-10A showed the weakest CXCR6 expression. The breast cancer cell lines expressed CXCR6 in different levels, the expression level of CXCR6 in highly invasive cell line MDA-MB-231 was significantly higher than that in two low-invasive cell lines SK-BR-3 and MCF-7 (P < 0.05). Silencing CXCR6 gene by Lentivirus-mediated RNA interference in MDA-MB-231 inhibited its proliferation ability, invasion ability and angiogenesis ability in vitro (P < 0.05). Different invasive breast cancer cell lines express CXCR6 at different levels, positively correlated with its invasive ability.

  19. Cytogenetics of small cell carcinoma of the lung.

    PubMed

    Wurster-Hill, D H; Cannizzaro, L A; Pettengill, O S; Sorenson, G D; Cate, C C; Maurer, L H

    1984-12-01

    Nineteen cell lines derived from various malignant tissues of 15 patients with small cell carcinoma of the lung (SCCL) have been studied. The results showed heterogeneity in all cell lines, with no one consistent abnormality among them. Cell lines from 11 of the patients had minute and double minute chromosomes, and cell lines from 2 patients had abnormally banding regions, designated as ABRs, as distinguished from homogeneously staining regions (HSRs). The latter 2 and several of the former cell lines were derived from specimens taken before the patients were placed on therapy. All but 2 of the cell lines had a constant marker load, consisting of 24%-35% of the complement. Some markers remained stable through months and years of culture life, while other markers came and went. Chromosomes #1, #6 and #11 were most frequently involved in marker formation in the cell lines, and these were compared to similar markers in direct bone marrow preparations. Chromosome #1 markers were of variable structure, whereas #6 and #11 most often took the form of 6q- and 11p+ markers, with breakpoints most frequently at 6q23-25 and 11p11-12. A 3p- marker was found in a minority of cell lines. All of these markers were also found in direct marrow preparations from some patients with SCCL. Nonmonoclonal tumors arose from inoculation of bimodal cell lines into nude mice, but population selection by undetermined mechanism was evident. Cytogenetic parameters showed no positive correlation with hormone production by these cell lines.

  20. B cell signatures of BCWD-resistant and susceptible lines of rainbow trout: a shift towards more EBF-expressing progenitors and fewer mature B cells in resistant animals.

    PubMed

    Zwollo, Patty; Ray, Jocelyn C; Sestito, Michael; Kiernan, Elizabeth; Wiens, Gregory D; Kaattari, Steve; StJacques, Brittany; Epp, Lidia

    2015-01-01

    Bacterial cold water disease (BCWD) is a chronic disease of rainbow trout, and is caused by the Gram-negative bacterium Flavobacterium psychrophilum (Fp), a common aquaculture pathogen. The National Center for Cool and Cold Water Aquaculture has bred two genetic lines of rainbow trout: a line of Fp-resistant trout (ARS-Fp-R or R-line trout) and a line of susceptible trout (ARS-Fp-S, or S-line). Little is known about how phenotypic selection alters immune response parameters or how such changes relate to genetic disease resistance. Herein, we quantify interindividual variation in the distribution and abundance of B cell populations (B cell signatures) and examine differences between genetic lines of naive animals. There are limited trout-specific cell surface markers currently available to resolve B cell subpopulations and thus we developed an alternative approach based on detection of differentially expressed transcription factors and intracellular cytokines. B cell signatures were compared between R-line and S-line trout by flow cytometry using antibodies against transcription factors early B cell factor-1 (EBF1) and paired domain box protein Pax5, the pro-inflammatory cytokine IL-1β, and the immunoglobulin heavy chain mu. R-line trout had higher percentages of EBF(+) B myeloid/ progenitor and pre-B cells in PBL, anterior and posterior kidney tissues compared to S-line trout. The opposite pattern was detected in more mature B cell populations: R-line trout had lower percentages of both IgM(+) mature B cells and IgM-secreting cells in anterior kidney and PBL compared to S-line trout. In vitro LPS-activation studies of PBL and spleen cell cultures revealed no significant induction differences between R-line and S-line trout. Together, our findings suggest that selective resistance to BCWD may be associated with shifts in naive animal developmental lineage commitment that result in decreased B lymphopoiesis and increased myelopoiesis in BCWD resistant trout relative to susceptible trout. Copyright © 2014 Elsevier Ltd. All rights reserved.

Top