DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Scott M.; Callstrom, Matthew R.; Knudsen, Bruce
This study was designed to determine the tumorigenicity of the AS30D HCC cell line following orthotopic injection into rat liver and preliminarily characterize the tumor model by both magnetic resonance imaging (MRI) and ultrasound (US) as well as histopathology and immunohistochemistry.MaterialsAS30D cell line in vitro proliferation was assessed by using MTT assay. Female rats (N = 5) underwent injection of the AS30D cell line into one site in the liver. Rats subsequently underwent MR imaging at days 7 and 14 to assess tumor establishment and volume. One rat underwent US of the liver at day 7. Rats were euthanized atmore » day 7 or 14 and livers were subjected to gross, histopathologic (H and E), and immunohistochemical (CD31) analysis to assess for tumor growth and neovascularization. AS30D cell line demonstrated an in vitro doubling time of 33.2 {+-} 5.3 h. MR imaging demonstrated hyperintense T2-weighted and hypointense T1-weighted lesions with tumor induction in five of five and three of three sites at days 7 and 14, respectively. The mean (SD) tumor volume was 126.1 {+-} 36.2 mm{sup 3} at day 7 (N = 5). US of the liver demonstrated a well-circumscribed, hypoechoic mass and comparison of tumor dimensions agreed well with MRI. Analysis of H and E- and CD31-stained sections demonstrated moderate-high grade epithelial tumors with minimal tumor necrosis and evidence of diffuse intratumoral and peritumoral neovascularization by day 7. AS30D HCC cell line is tumorigenic following orthotopic injection into rat liver and can be used to generate an early vascularizing, slower-growing rat HCC tumor model.« less
Selective cytotoxic effect of non-thermal micro-DBD plasma
NASA Astrophysics Data System (ADS)
Kwon, Byung-Su; Choi, Eun Ha; Chang, Boksoon; Choi, Jeong-Hyun; Kim, Kyung Sook; Park, Hun-Kuk
2016-10-01
Non-thermal plasma has been extensively researched as a new cancer treatment technology. We investigated the selective cytotoxic effects of non-thermal micro-dielectric barrier discharge (micro-DBD) plasma in cervical cancer cells. Two human cervical cancer cell lines (HeLa and SiHa) and one human fibroblast (HFB) cell line were treated with micro-DBD plasma. All cells underwent apoptotic death induced by plasma in a dose-dependent manner. The plasma showed selective inhibition of cell proliferation in cervical cancer cells compared to HFBs. The selective effects of the plasma were also observed between the different cervical cancer cell lines. Plasma treatment significantly inhibited the proliferation of SiHa cells in comparison to HeLa cells. The changes in gene expression were significant in the cervical cancer cells in comparison to HFBs. Among the cancer cells, apoptosis-related genes were significantly enriched in SiHa cells. These changes were consistent with the differential cytotoxic effects observed in different cell lines.
Establishment and characterization of a telomerase immortalized human gingival epithelial cell line.
Moffatt-Jauregui, C E; Robinson, B; de Moya, A V; Brockman, R D; Roman, A V; Cash, M N; Culp, D J; Lamont, R J
2013-12-01
Gingival keratinocytes are used in model systems to investigate the interaction between periodontal bacteria and the epithelium in the initial stages of the periodontal disease process. Primary gingival epithelial cells (GECs) have a finite lifespan in culture before they enter senescence and cease to replicate, while epithelial cells immortalized with viral proteins can exhibit chromosomal rearrangements. The aim of this study was to generate a telomerase immortalized human gingival epithelial cell line and compare its in vitro behaviour to that of human GECs. Human primary GECs were immortalized with a bmi1/hTERT combination to prevent cell cycle triggers of senescence and telomere shortening. The resultant cell-line, telomerase immortalized gingival keratinocytes (TIGKs), were compared to GECs for cell morphology, karyotype, growth and cytokeratin expression, and further characterized for replicative lifespan, expression of toll-like receptors and invasion by P. gingivalis. TIGKs showed morphologies, karyotype, proliferation rates and expression of characteristic cytokeratin proteins comparable to GECs. TIGKs underwent 36 passages without signs of senescence and expressed transcripts for toll-like receptors 1-6, 8 and 9. A subpopulation of cells underwent stratification after extended time in culture. The cytokeratin profiles of TIGK monolayers were consistent with basal cells. When allowed to stratify, cytokeratin profiles of TIGKs were consistent with suprabasal cells of the junctional epithelium. Further, TIGKs were comparable to GECs in previously reported levels and kinetics of invasion by wild-type P. gingivalis and an invasion defective ΔserB mutant. Results confirm bmi1/hTERT immortalization of primary GECs generated a robust cell line with similar characteristics to the parental cell type. TIGKs represent a valuable model system for the study of oral bacteria interactions with host gingival cells. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carrasco-Garcia, Estefania; Saceda, Miguel; Unidad de Investigacion, Hospital General Universitario de Elche, 03203 Elche
Signaling through the epidermal growth factor receptor (EGFR) is relevant in glioblastoma. We have determined the effects of the EGFR inhibitor AG1478 in glioblastoma cell lines and found that U87 and LN-229 cells were very sensitive to this drug, since their proliferation diminished and underwent a marked G{sub 1} arrest. T98 cells were a little more refractory to growth inhibition and A172 cells did not undergo a G{sub 1} arrest. This G{sub 1} arrest was associated with up-regulation of p27{sup kip1}, whose protein turnover was stabilized. EGFR autophosphorylation was blocked with AG1478 to the same extent in all the cellmore » lines. Other small-molecule EGFR tyrosine kinase inhibitors employed in the clinic, such as gefitinib, erlotinib and lapatinib, were able to abrogate proliferation of glioblastoma cell lines, which underwent a G{sub 1} arrest. However, the EGFR monoclonal antibody, cetuximab had no effect on cell proliferation and consistently, had no effect on cell cycle either. Similarly, cetuximab did not inhibit proliferation of U87 {Delta}EGFR cells or primary glioblastoma cell cultures, whereas small-molecule EGFR inhibitors did. Activity of downstream signaling molecules of EGFR such as Akt and especially ERK1/2 was interrupted with EGFR tyrosine kinase inhibitors, whereas cetuximab treatment could not sustain this blockade over time. Small-molecule EGFR inhibitors were able to prevent phosphorylation of erbB3 and erbB4, whereas cetuximab only hindered EGFR phosphorylation, suggesting that EGFR tyrosine kinase inhibitors may mediate their anti-proliferative effects through other erbB family members. We can conclude that small-molecule EGFR inhibitors may be a therapeutic approach for the treatment of glioblastoma patients.« less
Necchi, Andrea; Miceli, Rosalba; Pedrazzoli, Paolo; Giannatempo, Patrizia; Secondino, Simona; Di Nicola, Massimo; Farè, Elena; Raggi, Daniele; Magni, Michele; Matteucci, Paola; Longoni, Paolo; Milanesi, Marco; Paternò, Emanuela; Ravagnani, Fernando; Arienti, Flavio; Nicolai, Nicola; Salvioni, Roberto; Carlo-Stella, Carmelo; Gianni, Alessandro M
2014-06-01
High-dose chemotherapy with tandem or triple carboplatin and etoposide course is currently the first curative choice for relapsing GCT. The collection of an adequate amount of hematopoietic (CD34(+)) stem cells is a priority. We analyzed data of patients who underwent HDCT at 2 referral institutions. Chemotherapy followed by myeloid growth factors was applied in all cases. Uni- and multivariable models were used to evaluate the association between 2 prespecified variables and mobilization parameters. Analyses included only the first mobilizing course of chemotherapy and mobilization failures. A total of 116 consecutive patients underwent a mobilization attempt from December 1995 to November 2012. Mobilizing regimens included cyclophosphamide (CTX) 7 gr/m(2) (n = 39), cisplatin, etoposide, and ifosfamide (PEI) (n = 42), paclitaxel, cisplatin, and gemcitabine (TPG) (n = 11), and mixed regimens (n = 24). Thirty-seven percent were treated in first-line, 50% (n = 58) in second-line, 9.5% (n = 11) and 3.4% (n = 4) in third- and fourth-line settings, respectively. Six patients did not undergo HDCT because they were poor mobilizers, 2 in first- and second-line (1.9%), and 4 beyond the second-line (26.7%). In the multivariable model, third-line or later setting was associated with a lower CD34(+) cell peak/μL (P = .028) and a lower total CD34(+)/kg collected (P = .008). The latter was also influenced by the type of mobilizing regimen (P < .001). A decline in significant mobilization parameters was found, primarily depending on the pretreatment load. Results lend support to the role of CD34(+) cell mobilization in the therapeutic algorithm of relapsing GCT, for whom multiple HDCT courses are still an option, and potentially a cure. Copyright © 2014 Elsevier Inc. All rights reserved.
Haverkos, Bradley M.; Huang, Ying; Elder, Patrick; O’Donnell, Lynn; Scholl, Diane; Whittaker, Becky; Vasu, Sumi; Penza, Sam; Andritsos, Leslie A.; Devine, Steven M.; Jaglowski, Samantha M.
2016-01-01
In an otherwise eligible patient with relapsed lymphoma, inadequate mobilization of peripheral blood stem cells is a limiting factor to proceeding with an autologous hematopoietic cell transplantation (auto-HCT). Multiple strategies have been used to mobilize an adequate number of hematopoietic stem cells (HSCs) with no obvious front-line strategy. We report a single institutional experience mobilizing HSCs using four different approaches in lymphoma patients. We prospectively collected mobilization outcomes on patients planning to undergo auto-HCT at Ohio State University. We report results of first mobilization attempt for all relapsed or refractory lymphoma patients between 2008–2014. We identified 255 lymphoma patients who underwent mobilization for planned auto-HCT. The 255 lymphoma patients underwent the following front line mobilization strategies: 95 (37%) GCSF alone, 38 (15%) chemomobilization (GCSF+chemotherapy), 97 (38%) preemptive day 4 plerixafor, and 25 (10%) rescue day 5 plerixafor. As expected, there were significant differences between cohorts including age, comorbid indices, histology, and amount of prior chemotherapy. After controlling for differences between groups, the odds of collecting 2×106/kg HSCs on the first day of collection and 5×106/kg HSCs in total was highest in the cohort undergoing chemomobilization. In conclusion, our experience highlights the effectiveness of chemomobilization. PMID:28067870
Ganapathy-Kanniappan, Shanmugasundaram; Geschwind, Jean-Francois H; Kunjithapatham, Rani; Buijs, Manon; Syed, Labiq H; Rao, Pramod P; Ota, Shinichi; Kwak, Byung Kook; Loffroy, Romaric; Vali, Mustafa
2010-03-01
Autophagy, a cellular response to stress, plays a role in resistance to chemotherapy in cancer cells. Resistance renders systemic chemotherapy generally ineffective against human hepatocellular carcinoma (HCC). Recently, we reported that the pyruvate analog 3-bromopyruvate (3-BrPA) promoted tumor cell death by targeting GAPDH. In continuance, we investigated the intracellular response of two human HCC cell lines (Hep3B and SK-Hep1) that differ in their status of key apoptotic regulators, p53 and Fas. 3-BrPA treatment induced endoplasmic reticulum (ER) stress, translation inhibition and apoptosis based on Western blot and qPCR, pulse labeling, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and active caspase-3 in both the cell lines. However, electron microscopy revealed that 3-BrPA treated SK-Hep1 cells underwent classical apoptotic cell death while Hep3B cells initially responded with the protective autophagy that failed to prevent eventual apoptosis. 3-BrPA treatment promotes apoptosis in human HCC cell lines, irrespective of the intracellular response.
Seeding arterial prostheses with vascular endothelium. The nature of the lining.
Herring, M B; Dilley, R; Jersild, R A; Boxer, L; Gardner, A; Glover, J
1979-01-01
Arterial prostheses seeded with autogenous vascular endothelium demonstrate a well-organized, cellular, inner lining. To determine the nature of the lining cells, six animals underwent replacement of the infrarenal aorta with Dacron prostheses. During the preparation of three such grafts, endothelium was scraped from the saphenous vein with a steel wool pledget, suspended in chilled Sack's solution, and mixed with blood used to preclot the graft. This suspension was omitted from the three control grafts. After six weeks, the grafts were removed, rinsed and examined. Fluorescent Factor VIII related antigen (F VIII-RA) strongly stained the lining cells. Silver nitrate Haütchen and electron microscopy preparations revealed a lining pattern characteristic of vascular endothelium. Endothelial cell-specific Weibel-Palade bodies were identified in the lining cell cytoplasm. Masson's trichrome staining revealed a relatively collagen-poor connective tissue within the seeded fabric. Transmission electron microscopy disclosed vascular smooth muscle cells between the seeded graft fabric and the lining cells. Vasa vasorum, arising from the outer capsule, penetrated the fabric to supply the inner capsules of the seeded grafts. It is concluded that the cells lining seeded canine arterial prostheses are true vascular endothelium supported by vascular smooth muscle cells, that the lining contains minimal connective tissue, and that vasa vasorum develop. Unseeded control grafts lacked these features. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8. Fig. 9. Fig. 10. PMID:464684
Calcagno, Danielle Queiroz; Takeno, Sylvia Santomi; Gigek, Carolina Oliveira; Leal, Mariana Ferreira; Wisnieski, Fernanda; Chen, Elizabeth Suchi; Araújo, Taíssa Maíra Thomaz; Lima, Eleonidas Moura; Melaragno, Maria Isabel; Demachki, Samia; Assumpção, Paulo Pimentel; Burbano, Rommel Rodriguez; Smith, Marília Cardoso
2016-01-01
AIM To identify common copy number alterations on gastric cancer cell lines. METHODS Four gastric cancer cell lines (ACP02, ACP03, AGP01 and PG100) underwent chromosomal comparative genome hybridization and array comparative genome hybridization. We also confirmed the results by fluorescence in situ hybridization analysis using the bacterial artificial chromosome clone and quantitative real time PCR analysis. RESULTS The amplification of 9p13.3 was detected in all cell lines by both methodologies. An increase in the copy number of 9p13.3 was also confirmed by fluorescence in situ hybridization analysis. Moreover, the interleukin 11 receptor alpha (IL11RA) and maternal embryonic leucine zipper kinase (MELK) genes, which are present in the 9p13.3 amplicon, revealed gains of the MELK gene in all the cell lines studied. Additionally, a gain in the copy number of IL11RA and MELK was observed in 19.1% (13/68) and 55.9% (38/68) of primary gastric adenocarcinoma samples, respectively. CONCLUSION The characterization of a small gain region at 9p13.3 in gastric cancer cell lines and primary gastric adenocarcinoma samples has revealed MELK as a candidate target gene that is possibly related to the development of gastric cancer. PMID:27920471
Amendola, R; Martinez, R; Negroni, A; Venturelli, D; Tanno, B; Calabretta, B; Raschellà, G
2001-01-01
Nm23 gene family has been associated with metastasis suppression and differentiation. We studied DR-nm23 during neuroblastoma cells differentiation. DR-nm23 expression increased after retinoic acid induction of differentiation in human cell lines SK-N-SH and LAN-5. In several cell lines, overexpression of DR-nm23 was associated with more differentiated phenotypes. SK-N-SH cells increased vimentin expression, increased deposition of collagen type IV, modulated integrin expression, and underwent growth arrest; the murine neuroblastoma cell line N1E-115 showed neurite outgrowth and a striking enhancement of beta1 integrin expression. Up-regulation of beta1 integrin was specifically responsible for the increase in the adhesion to collagen type I-coated plates. Finally, cells overexpressing DR-nm23 were unable to growth in soft agar. In conclusion, DR-nm23 expression is directly involved in differentiation of neuroblastoma cells, and its ability to affects the adhesion to extracellular substrates and to inhibit growth in soft agar suggests an involvement in the metastatic potential of neuroblastoma.
Manca, Antonella; Sini, Maria Cristina; Izzo, Francesco; Ascierto, Paolo A; Tatangelo, Fabiana; Botti, Gerardo; Gentilcore, Giusy; Capone, Marilena; Mozzillo, Nicola; Rozzo, Carla; Cossu, Antonio; Tanda, Francesco; Palmieri, Giuseppe
2011-06-01
Arginine deiminase (ADI), an arginine-degrading enzyme, has been used in the treatment of tumours sensitive to arginine deprivation, such as malignant melanoma (MM) and hepatocellular carcinoma (HCC). Endogenous production of arginine is mainly dependent on activity of ornithine transcarbamylase (OTC) and argininosuccinate synthetase (ASS) enzymes. We evaluated the effect of ADI treatment on OTC and ASS expression in a series of melanoma cell lines. Twenty-five primary melanoma cell lines and normal fibroblasts as controls underwent cell proliferation assays and Western blot analyses in the presence or absence of ADI. Tissue sections from primary MMs (N = 20) and HCCs (N = 20) were investigated by immunohistochemistry for ASS expression. Overall, 21/25 (84%) MM cell lines presented a cell growth inhibition by ADI treatment; none of them presented constitutive detectable levels of the ASS protein. However, 7/21 (33%) ADI-sensitive melanoma cell lines presented markedly increased expression levels of the ASS protein following ADI treatment, with a significantly higher IC50 median value. Growth was not inhibited and the IC50 was not reached among the remaining 4/25 (16%) MM cell lines; all of them showed constitutive ASS expression. The OTC protein was found expressed in all melanoma cell lines before and after the ADI treatment. Lack of ASS immunostaining was observed in all analyzed in vivo specimens. Our findings suggest that response to ADI treatment in melanoma is significantly correlated with the ability of cells to express ASS either constitutively at basal level (inducing drug resistance) or after the treatment (reducing sensitivity to ADI).
Larson, Jennifer L.; Somji, Seema; Zhou, Xu Dong; Sens, Mary Ann; Garrett, Scott H.; Sens, Donald A.; Dunlevy, Jane R.
2010-01-01
The expression of beclin-1 in normal human bladder and in Cd+2 and As+3 exposed and transformed urothelial cells (UROtsa) was examined in this study. It was shown using a combination of real time PCR, western analysis and immunohistochemistry that beclin-1 was expressed in the urothelial cells of the normal bladder. It was also demonstrated that the parental UROtsa cell line expressed beclin-1 mRNA and protein at levels similar to that of the in situ urothelium. The level of beclin-1 expression underwent only modest alterations when the UROtsa cells were malignantly transformed by Cd+2 or As+3 or when the parental cells were exposed acutely to Cd+2 or As+3. While there were instances of significant alterations at individual time points and within cell line-to-cell line comparisons there was no evidence of a dose response relationship or correlations to the phenotypic properties of the cell lines. Similar results were obtained for the expression of the Atg-5, Atg-7, Atg-12 and LC3B autophagy-related proteins. The findings provide initial evidence for beclin-1 expression in normal bladder and that large alterations in the expression of beclin-1 and associated proteins do not occur when human urothelial cells are malignantly transformed with, or exposed to, either Cd+2 or As+3. PMID:20206246
[Diagnosis and surgical treatment of Castleman's disease].
Ma, Shi-hong; Liu, Qin-jiang; Zhang, You-cheng; Yang, Rong
2011-04-26
To explore the clinical features and surgical treatment of tumors associated with Castleman's disease (CD). The clinical profiles of 19 patients with neck giant lymph node hyperplasia were analyzed retrospectively. There were 8 males and 11 females with a median age of 40 years old (range: 7 - 74). The tumor locations were neck (n = 12), neck & mediastinal cavity (n = 2), axillary fossa (n = 2), retroperitoneal area (n = 2) and abdominal cavity (n = 1). Eighteen of them underwent surgical resection of tumor or lymph nodes. All were diagnosed as CD by pathological examinations. There were 16 localized CD (LCD) including hyaline vascular type (HV type, n = 11), mixed type (mix type, n = 4) and plasma cell type-Hodgkin's disease (n = 1). Among 3 multicentric CD (MCD), there were 2 case of plasma cell type (PC type) and 1 case of mixed type (mix type). Long-term survival was achieved in 19 cases among which 1 case of plasma cell type MCD survived for 5 years and underwent a second operation and postoperative chemotherapy of CVP (cyclophosphamide, vincristine & prednisone) regimen for 3 cycles due to recurrence in 2 years and 1 case of plasma cell type LCD-Hodgkin's disease survived for 15 months and underwent a second operation and postoperative chemotherapy of ABVD (adriamycin, bleomycin, vinblastine & dacarbazine)regimen for 6 cycles due to recurrence in 6 months. One case of plasma cell type MCD in abdominal cavity on chemotherapy of CHOP (cyclophosphamide, hydroxydaunorubicin, vincristine & prednisone) regimen for 6 cycles was discharged after a successful management of intestinal obstruction. The major clinical symptom of CD is a gradually enlarging painless mass. Surgical resection of tumor remains the first-line treatment for localized CD and the prognosis is excellent. Multicentric and plasma cell type CDs are prone to recurrence and transformation to lymphoma. And their first-line therapeutic should encompass multi-modality regimens of surgery and adjuvant chemotherapy. However, the clinical prognosis is still poor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moosavi, Mohammad Amin; Yazdanparast, Razieh
2008-07-01
Despite the depth of knowledge concerning the pathogenesis of acute myeloblastic leukemia (AML), long-term survival remains unresolved. Therefore, new agents that act more selectively and more potently are required. In that line, we have recently characterized a novel diterpene ester, called 3-hydrogenkwadaphnin (3-HK), with capability to induce both differentiation and apoptosis in various leukemia cell lines. These effects of 3-HK were mediated through inhibition of inosine 5'-monophosphate dehydrogenase, a selective up-regulated enzyme in cancerous cells, especially leukemia. However, it remains elusive to understand how cells display different fates in response to 3-HK. Here, we report the distinct molecular signaling pathwaysmore » involved in forcing of 3-HK-treated U937 cells to undergo differentiation and apoptosis. After 3-HK (15 nM) treatment, a portion of U937 cells adhered to the culture plates and showed macrophage criteria while others remained in suspension and underwent apoptosis. The differentiated cells arrested in G{sub 0}/G{sub 1} phase of cell cycle and showed early activation of ERK1/2 pathway (3 h) along with ERK-dependent p21{sup Cip/WAF1} (p21) up-regulation and expression of p27{sup Kip1} and Bcl-2. In contrast, the suspension cells underwent apoptosis through Fas/FasL and mitochondrial pathways. The occurrence of apoptosis in these cells were accompanied with caspase-8-mediated p21 cleavage and delayed activation (24 h) of JNK1/2 and p38 MAPK. Taken together, these results suggest that distinct signaling pathways play a pivotal role in fates of drug-treated leukemia cells, thus this may pave some novel therapeutical utilities.« less
NASA Technical Reports Server (NTRS)
Myers, Tereance A.; Nickerson, Cheryl A.; Kaushal, Deepak; Ott, C. Mark; HonerzuBentrup, Kerstin; Ramamurthy, Rajee; Nelman-Gonzales, Mayra; Pierson, Duane L.; Philipp, Mario T.
2008-01-01
Studies of neuronal dysfunction in the central nervous system (CNS) are frequently limited by the failure of primary neurons to propagate in vitro. Neuronal cell lines can be substituted for primary cells but they often misrepresent normal conditions. We hypothesized that a dimensional (3-D) cell culture system would drive the phenotype of transformed neurons closer to that of untransformed cells. In our studies comparing 3-D versus 2-dimensional (2-D) culture, neuronal SH-SY5Y (SY) cells underwent distinct morphological changes combined with a significant drop in their rate of cell division. Expression of the proto-oncogene N-myc and the RNA binding protein HuD was decreased in 3-D culture as compared to standard 2-D conditions. We observed a decline in the anti-apoptotic protein Bcl-2 in 3-D culture, coupled with increased expression of the pro-apoptotic proteins Bax and Bak. Moreover, thapsigargin (TG)-induced apoptosis was enhanced in the 3-D cells. Microarray analysis demonstrated significantly differing mRNA levels for over 700 genes in the cells of each culture type. These results indicate that a 3-D culture approach narrows the phenotypic gap between neuronal cell lines and primary neurons. The resulting cells may readily be used for in vitro research of neuronal pathogenesis.
Cho, Hyun-Il; Hong, Young Seon; Lee, Myung Ah; Kim, Eun-Kyung; Yoon, Sung-Hee; Kim, Chun-Choo; Kim, Tai-Gyu
2006-01-01
Angiocentric lymphoma, known as natural killer (NK)/T-cell non-Hodgkin's lymphoma, has been reported to be associated with the Epstein-Barr virus (EBV). We performed adoptive transfer of EBV-specific polyclonal T-cell lines in 3 patients with extranodal NK/T-cell lymphoma, nasal type, and evaluated the treatment for safety, immunologic reconstitution, and clinical outcomes. The tissue samples collected from the 3 patients were confirmed by polymerase chain reaction analysis to be EBV positive. In the cases of the first and second patients, EBV-transformed B-lymphoblastoid cell lines (LCLs) and T-cell lines were generated from peripheral lymphocytes of HLA-matched sibling donors. The third patient's T-cell lines were induced with autologous lymphocytes. Polyclonal T-cell infusion was carried out after high-dose radiotherapy because active relapsed disease remained in all of the patients. The first patient received 4 weekly infusions of 2 3 10(7) cells/m(2), and the second and third patients underwent treatment with 2 cycles of infusions of the same dosage. All T-cell lines showed >60% NK activity, cytotoxic T-lymphocyte (CTL) responses of >40% against autologous LCLs, and no CTL activity against patient-derived lymphoblasts. The level of cytotoxicity increased substantially in all patients after cell infusion. The 2 patients who received T-cell therapy twice had stabilized disease for more than 3 years. These safe treatments exhibited no severe inflammatory response, and no serious toxicity developed during T-cell therapy. Our findings demonstrate that adoptively transferred cells may provide reconstitution of EBV-specific CTL responses in patients with active relapsed angiocentric lymphoma. These results provide a rationale for the immunotherapy of angiocentric lymphoma.
The causes of genetic male sterility in 3 soybaen lines.
Rubaihayo, P R; Gumisiriza, G
1978-11-01
The cause of male sterility in 3 soybean lines, TGM 103-1, N-69-2774 and TGM 242-4 was studied. In TGM 103-1, which was both male and female sterile, two different abnormalities were associated with sterility. Precocious movement of a few chromosomes at the metaphase I stage resulted into the production of non-functional pollen while cells which underwent apparent normal meiotic division had disintergration of the tapetal cell wall immediately after the free microspore stage leading to the starvation and subsequent death of the developing microspores. In lines N-69-2774 and TGM 242-4, both of which were partially sterile, male sterility resulted from a failure of cytokinesis after the telophase II stage. Meiosis proceeded normally but the 4 microspores after telophase II failed to separate into pollen grains and degenerated thereafter.
[Clinicopathologic characteristics of hemangiopericytoma/solitary fibrous tumor with giant cells].
Wang, Hai-yan; Fan, Qin-he; Gong, Qi-xing; Wang, Zheng
2009-03-01
To study the pathological characteristics, diagnosis and differential diagnoses of hemangiopericytoma-solitary fibrous tumor with giant cells. Pathological characteristics of seven cases of orbital and extraorbital hemangiopericytoma-solitary fibrous tumors with giant cells were evaluated by HE and immunohistochemistry (EnVision method). Two cases were located in the orbit, one of which had recurred. Five cases were located in the extraorbital regions. Histologically, the tumors were well-circumscribed and composed of non-atypical, round to spindle cells with collagen deposition in the stroma. The tumors had prominent vasculatures and in areas, pseudovascular spaces lined by multinucleated giant cells lining which were also present in the stroma. Immunohistochemically, both neoplastic cells and multinucleate giant cells expressed CD34. Seven patients underwent tumor excision and were well and without tumor recurrence upon the clinical follow-up. Hemangiopericytoma-solitary fibrous tumor with giant cells is an intermediate soft tissue tumor. It typically involves the orbital or extraorbital regions. Histologically, the tumor should be distinguished from giant cell fibroblastoma, pleomorphic hyalinzing angiectatic tumor of soft part and angiomatoid fibrous histiocytoma.
Patient-specific 3D microfluidic tissue model for multiple myeloma.
Zhang, Wenting; Lee, Woo Y; Siegel, David S; Tolias, Peter; Zilberberg, Jenny
2014-08-01
In vitro culturing of primary multiple myeloma cells (MMC) has been a major challenge as this plasma cell malignancy depends on the bone marrow environment for its survival. Using a microfluidic platform to emulate the dynamic physiology of the bone marrow microenvironment, we report here a new approach for culturing difficult to preserve primary human MMC. The system uses a three-dimensional ossified tissue to mimic the tumor niche and recapitulate interactions between bone marrow cells and osteoblasts (OSB). To this end, the human fetal OSB cell line hFOB 1.19 was cultured in an eight-chamber microfluidic culture device to facilitate the seeding of mononuclear cells from bone marrow aspirates from three multiple myeloma patients. Optical microscopy, used for real-time monitoring of mononuclear cell interactions with the ossified tissue, confirmed that these are drawn toward the OSB layer. After 3 weeks, cocultures were characterized by flow cytometry to evaluate the amount of expansion of primary MMC (with CD138(+) and CD38(+)CD56(+) phenotypes) in this system. For each of the three patients analyzed, bone marrow mononuclear cells underwent, on an average, 2 to 5 expansions; CD38(+)CD56(+) cells underwent 1 to 3 expansions and CD138(+) cells underwent 2.5 to 4.6 expansions. This approach is expected to provide a new avenue that can facilitate: (1) testing of personalized therapeutics for multiple myeloma patients; (2) evaluation of new drugs without the need for costly animal models; and (3) studying the biology of multiple myeloma, and in particular, the mechanisms responsible for drug resistance and relapse.
Expression and clinical significance of PIWIL2 in hilar cholangiocarcinoma tissues and cell lines.
Chen, Y J; Xiong, X F; Wen, S Q; Tian, L; Cheng, W L; Qi, Y Q
2015-06-26
The objective of this study was to explore the relationship between PIWI-like protein 2 (PIWIL2) and clinicopathological charac-teristics and prognosis after radical resection. To accomplish this, we analyzed PIWIL2 expression in hilar cholangiocarcinoma tissues and cell lines. PIWIL2 expression was detected by immunohistochemistry in 41 hilar cholangiocarcinoma samples and 10 control tissues. Western blotting and immunocytofluorescence were used to investigate PIWIL2 expression in the cholangiocarcinoma cell line QBC939 and the bile duct epithelial cell line HIBEpic. Univariate and multivariate surviv-al analyses were performed using the Kaplan-Meier method for hilar cholangiocarcinoma patients who underwent radical resection. PIWIL2 expression was significantly higher in the hilar cholangiocarcinoma tissues and QBC939 cells than in control tissues and HIBEpic cells, respectively (P < 0.05). Poorly and moderately differentiated cholan-giocarcinoma tissues had significantly higher PIWIL2 expression than well-differentiated tissues (P < 0.05). Univariate analysis demonstrated that high PIWIL2 expression was associated with shorter survival time after radical resection (P < 0.05). Multivariate analysis showed that PI-WIL2 expression was an independent prognostic factor after radical re-section of hilar cholangiocarcinoma (P < 0.05). PIWIL2 expression was also associated with tumor-node-metastasis stage and differentiation. PIWIL2 was an independent prognostic factor after radical resection of hilar cholangiocarcinoma.
Squamous cell carcinoma arising within a maxillary odontogenic keratocyst: A rare occurrence
Jalali, Elnaz; Ferneini, Elie M.; Rengasamy, Kandasamy
2017-01-01
Squamous cell carcinoma (SCC) arising within the lining of an odontogenic keratocyst (OKC) is a rare occurrence. Although potentially locally destructive, OKC is a benign odontogenic process that typically presents with clinical and radiographic features characteristic of a benign intraosseous neoplasm. We present the clinical and radiographic features of a maxillary mass that demonstrated SCC arising from the lining of an OKC. Although the initial clinical and radiographic presentation suggested an infection or malignant neoplasm, biopsies revealed an infiltrative well-differentiated SCC contiguous with and arising from the focus of a pre-existing OKC. The patient subsequently underwent a type II hemi-maxillectomy with neoadjuvant chemoradiation. This report discusses the clinical and radiographic features associated with intraosseous malignancies, especially those arising from an otherwise benign odontogenic lesion. While the majority of OKCs are benign, the current report illustrates the potential for carcinomatous transformation within the lining of an OKC. PMID:28680851
Milovancev, Milan; Hilgart-Martiszus, Ian; McNamara, Michael J; Goodall, Cheri P; Seguin, Bernard; Bracha, Shay; Wickramasekara, Samanthi I
2013-06-13
Osteosarcoma (OSA) is the most common primary bone tumor of dogs and carries a poor prognosis despite aggressive treatment. An improved understanding of the biology of OSA is critically needed to allow for development of novel diagnostic, prognostic, and therapeutic tools. The surface-exposed proteome (SEP) of a cancerous cell includes a multifarious array of proteins critical to cellular processes such as proliferation, migration, adhesion, and inter-cellular communication. The specific aim of this study was to define a SEP profile of two validated canine OSA cell lines and a normal canine osteoblast cell line utilizing a biotinylation/streptavidin system to selectively label, purify, and identify surface-exposed proteins by mass spectrometry (MS) analysis. Additionally, we sought to validate a subset of our MS-based observations via quantitative real-time PCR, Western blot and semi-quantitative immunocytochemistry. Our hypothesis was that MS would detect differences in the SEP composition between the OSA and the normal osteoblast cells. Shotgun MS identified 133 putative surface proteins when output from all samples were combined, with good consistency between biological replicates. Eleven of the MS-detected proteins underwent analysis of gene expression by PCR, all of which were actively transcribed, but varied in expression level. Western blot of whole cell lysates from all three cell lines was effective for Thrombospondin-1, CYR61 and CD44, and indicated that all three proteins were present in each cell line. Semi-quantitative immunofluorescence indicated that CD44 was expressed at much higher levels on the surface of the OSA than the normal osteoblast cell lines. The results of the present study identified numerous differences, and similarities, in the SEP of canine OSA cell lines and normal canine osteoblasts. The PCR, Western blot, and immunocytochemistry results, for the subset of proteins evaluated, were generally supportive of the mass spectrometry data. These methods may be applied to other cell lines, or other biological materials, to highlight unique and previously unrecognized differences between samples. While this study yielded data that may prove useful for OSA researchers and clinicians, further refinements of the described techniques are expected to yield greater accuracy and produce a more thorough SEP analysis.
Fluorescent Probes of the Apoptolidins and their Utility in Cellular Localization Studies
DeGuire, Sean M.; Earl, David C.; Du, Yu; Crews, Brenda A.; Jacobs, Aaron T.; Ustione, Alessandro; Daniel, Cristina; Chong, Katherine; Marnett, Lawrence J.; Piston, David W.; Bachmann, Brian O.; Sulikowski, Gary A.
2014-01-01
Apoptolidin A has been described as among the top 0.1% most cell selective cytotoxic agents to be evaluated in the NCI 60 cell line panel. The molecular structure of apoptolidin A consists of a 20-membered macrolide with mono- and disaccharide moieties located at C9 and C27, respectively. In contrast to apoptolidin A, the aglycone (apoptolidinone) shows no cytotoxicity (>10 μM) when evaluated against several tumor cell lines. Apoptolidin H, the C27 deglycosylated analog of apoptolidin A, was produced by targeted glycosyl transferase gene deletion and displayed sub-micromolar activity against H292 lung carcinoma cells. Selective esterification of the C2′ hydroxyl group of apoptolidins A and H with 5-azidopentanoic acid afforded azido functionalized derivatives of potency equal to their parent macrolide. Azido apoptolidins readily underwent strain-promoted alkyne azido cycloaddition (SPAAC) reactions to provide access to fluorescent and biotin functionalized probes. Microscopy studies demonstrate apoptolidins A and H localize in the mitochondria of H292 human lung carcinoma cells. PMID:25430909
Lin, Yi-Chia; Lin, Ji-Fan; Wen, Sheng-I; Yang, Shan-Che; Tsai, Te-Fu; Chen, Hung-En; Chou, Kuang-Yu; Hwang, Thomas I-Sheng
2017-05-01
Chloroquine (CQ) and hydroxychloroquine (HCQ), two antimalarial drugs, are suggested to have potential anticancer properties. in the present study, we investigated the effects of CQ and HCQ on cell growth of bladder cancer with emphasis on autophagy inhibition and apoptosis induction in vitro. The results showed that CQ and HCQ inhibited the proliferation of multiple human bladder cell lines (including RT4, 5637, and T24) in a time- and dose-dependent fashion, especially in advanced bladder cancer cell lines (5637 and T24) compared to immortalized uroepithelial cells (SV-Huc-1) or other reference cancer cell lines (PC3 and MCF-7). We found that 24-hour treatment of CQ or HCQ significantly decreased the clonogenic formation in 5637 and T24 cells compared to SV-Huc-1. As human bladder cancer tumor exhibits high basal level of autophagic activities, we detected the autophagic flux in cells treated with CQ and HCQ, showing an alternation in LC3 flux in CQ- or HCQ-treated cells. Moreover, bladder cancer cells treated with CQ and HCQ underwent apoptosis, resulting in increased caspase 3/7 activities, increased level of cleaved poly(ADP-ribose) polymerase (PARP), caspase 3, and DNA fragmentation. Given these results, targeting autophagy with CQ and HCQ represents an effective cancer therapeutic strategy against human bladder cancer. Copyright © 2017. Published by Elsevier Taiwan.
Antitumor effects of interleukin-18 gene-modified hepatocyte cell line on implanted liver carcinoma.
Leng, Jianhang; Zhang, Lihuang; Yao, Hangping; Cao, Xuetao
2003-10-01
To investigate the antitumor effects of intrasplenically transplanted interleukin-18 (IL-18) gene-modified hepatocytes on murine implanted liver carcinoma. Embryonic murine hepatocyte cell line (BNL-CL2) was transfected with a recombinant adenovirus encoding IL-18 and used as delivery cells for IL-18 gene transfer. Two cell lines, BNL-LacZ and BNL-CL2, were used as controls. One week after intrasplenic injection of C26 cells (colon carcinoma line), tumor-bearing syngeneic mice underwent the intrasplenic transplantation of IL-18 gene-modified hepatocyte cell line and were divided into treatment group (BNL IL-18) and control groups (BNL-LacZ and BNL-CL2). Two weeks later, the serum levels of IL-18, interferon-gamma (IFN-gamma), tumor necrosis factor-alpha (TNF-alpha) and nitric oxide (NO) in the implanted liver carcinoma-bearing mice were assayed, the cytotoxicity of murine splenic cytotoxic T-lymphocytes (CTLs) was measured, and the morphology of the hepatic tumors was studied to evaluate the antitumor effects of the approach. In the treatment group, the serum levels of IL-18, IFN-gamma, TNF-alpha and NO increased significantly. The splenic CTL activity increased markedly (P < 0.01), accompanied by a substantial decrease in tumor volume and the percentage of tumor area and prolonged survival of liver carcinomo-being mice. In vivo IL-18 expression by ex vivo manipulated cells with IL-18 recombinant adenovirus is able to exert potent antitumor effects by inducing a predominantly T-cell-helper type 1 (Th1) immune response. Intrasplenic transplantation of adenovirus-mediated IL-18 gene-modified hepatocytes could be used as a targeting treatment for implanted liver carcinoma.
Harada, Masako; Pokrovskaja-Tamm, Katja; Söderhäll, Stefan; Heyman, Mats; Grander, Dan; Corcoran, Martin
2012-10-01
Analysis of the microRNA transcriptome following dexa- methasone treatment of the acute lymphocytic leukemia (ALL) cell line RS4;11 showed a global down-regulation of microRNA levels. MIR17HG was rapidly down-regulated following treatment, with chromatin immunoprecipitation (ChIP) analysis demonstrating the promoter to be a direct target of glucocorticoid (GC)-transcriptional repression and revealing the miR17-92 cluster as a prime target for dexamethasone-induced repression. The loss of miR17 family expression and concomitant increases in the miR17 target Bim occurred in an additional ALL cell line SUP-B15 but not in the dexamethasone-resistant REH. Alteration of miR17 levels through up-regulation or inhibition resulted in an decrease and increase, respectively, in Bim protein levels and dexamethasone-induced cell death. Primary ex vivo ALL cells that underwent apoptosis induced by dexamethasone also down-regulated miR17 levels. Thus, down-regulation of miR17 plays an important role in glucocorticoid-induced cell death suggesting that targeting miR17 may improve the current ALL combination therapy.
Flavopiridol sensitivity of cancer cells isolated from ascites and pleural fluids.
Richard, Christina; Matthews, Donald; Duivenvoorden, Wilhelmina; Yau, Jonathan; Wright, Paul S; Th'ng, John P H
2005-05-01
We examined the efficacy of flavopiridol, a cyclin-dependent kinase inhibitor that is undergoing clinical trials, on primary cancer cells isolated from the ascites or pleural fluids of patients with metastatic cancers. Metastasized cancer cells were isolated from the pleural fluids (n = 20) or ascites (n = 15) of patients, most of whom were refractory to chemotherapy. These primary cancer cells were used within 2 weeks of isolation without selecting for proliferative capacities. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability assay was used to characterize the response of these cancer cells to commonly used chemotherapeutic agents, and their response to flavopiridol was compared with rapidly dividing cultured cell lines. The primary cancer cells displayed phenotypes that were different from established cell lines; they had very low replication rates, dividing every 1 to 2 weeks, and underwent replicative senescence within five passages. These primary tumor cells retained their resistance to chemotherapeutic drugs exhibited by the respective patients but did not show cross-resistance to other agents. However, these cancer cells showed sensitivity to flavopiridol with an average LD50 of 50 nmol/L (range, 21.5-69 nmol/L), similar to the LD50 in established cell lines. Because senescent cells also showed similar sensitivity to flavopiridol, it suggests that the mechanism of action is not dependent on the activity of cyclin-dependent kinases that regulate the progression of the cell cycle. Using cancer cells isolated from the ascites or pleural fluids, this study shows the potential of flavopiridol against cancer cells that have developed resistance to conventional chemotherapeutic agents.
de la Rubia, Javier; Bladé, Joan; Lahuerta, Juan-José; Ribera, Josep M; Martínez, Rafael; Alegre, Adrián; García-Laraña, José; Fernández, Pascual; Sureda, Anna; de Arriba, Felipe; Carrera, Dolores; Besalduch, Joan; García Boyero, Raimundo; Palomera Bernal, Luis; Hernández, Miguel T; García, Paz Ribas; Pérez-Calvo, Javier; Alcalá, Antonio; Casado, Luis Felipe; San Miguel, Jesús
2006-05-01
Although alkylating agents are clearly beneficial in multiple myeloma (MM), their deleterious effect on bone marrow hematopoietic progenitor cells usually precludes their use as front-line therapy in patients scheduled to undergo autologous stem cell transplantation (ASCT). We analyzed the impact of first-line chemotherapy with alkylating agents on stem cell collection in MM patients. Seven hundred and eighty-nine patients included in the Spanish multicenter protocol GEM-2000 underwent mobilization therapy after four courses of alternating VBMCP/VBAD chemotherapy. The mobilization regimens consisted of standard or high-dose granulocyte colony-stimulating factor (G-CSF) in 551 (70%) patients, and chemotherapy and G-CSF in 206 (26%) patients. The CD34+ cell yield was lower than 4x10(6)/kg in 388 patients (49%), and equal or greater than 4x10(6)/kg in 401 patients (51%). Multivariate analysis indicated that advanced age (p<0.0001) and longer interval between diagnosis and mobilization (p=0.012) were the two variables associated with a lower CD34+ cell yield. Significant differences in CD34+ cell yield were not observed between the mobilization regimens. Of the 789 patients included in the protocol, 726 (92%) underwent the planned ASCT, whereas 25 (3%) patients did not because of the low number of CD34+ cells collected. Following ASCT, 0.5x10(9) neutrophils/L could be recovered after 11 days (median time; range, 5-71 days) and 20x10(9) platelets/L could be recovered after 12 days (median time; range, 6-69 days). A short-course of therapy with alkylating agents according to the GEM-2000 protocol was associated with an appropriate CD34+ cell collection, and allowed the planned ASCT to be performed in the majority of MM patients.
2013-01-01
Background Osteosarcoma (OSA) is the most common primary bone tumor of dogs and carries a poor prognosis despite aggressive treatment. An improved understanding of the biology of OSA is critically needed to allow for development of novel diagnostic, prognostic, and therapeutic tools. The surface-exposed proteome (SEP) of a cancerous cell includes a multifarious array of proteins critical to cellular processes such as proliferation, migration, adhesion, and inter-cellular communication. The specific aim of this study was to define a SEP profile of two validated canine OSA cell lines and a normal canine osteoblast cell line utilizing a biotinylation/streptavidin system to selectively label, purify, and identify surface-exposed proteins by mass spectrometry (MS) analysis. Additionally, we sought to validate a subset of our MS-based observations via quantitative real-time PCR, Western blot and semi-quantitative immunocytochemistry. Our hypothesis was that MS would detect differences in the SEP composition between the OSA and the normal osteoblast cells. Results Shotgun MS identified 133 putative surface proteins when output from all samples were combined, with good consistency between biological replicates. Eleven of the MS-detected proteins underwent analysis of gene expression by PCR, all of which were actively transcribed, but varied in expression level. Western blot of whole cell lysates from all three cell lines was effective for Thrombospondin-1, CYR61 and CD44, and indicated that all three proteins were present in each cell line. Semi-quantitative immunofluorescence indicated that CD44 was expressed at much higher levels on the surface of the OSA than the normal osteoblast cell lines. Conclusions The results of the present study identified numerous differences, and similarities, in the SEP of canine OSA cell lines and normal canine osteoblasts. The PCR, Western blot, and immunocytochemistry results, for the subset of proteins evaluated, were generally supportive of the mass spectrometry data. These methods may be applied to other cell lines, or other biological materials, to highlight unique and previously unrecognized differences between samples. While this study yielded data that may prove useful for OSA researchers and clinicians, further refinements of the described techniques are expected to yield greater accuracy and produce a more thorough SEP analysis. PMID:23758893
Thymol Elicits HCT-116 Colorectal Carcinoma Cell Death Through Induction of Oxidative Stress.
Chauhan, Anil Kumar; Bahuguna, Ashutosh; Paul, Souren; Kang, Sun Chul
2018-02-07
Colon cancer is one of the most deadly and common carcinomas occurring worldwide and there have been many attempts to treat this cancer. The present work was designed in order to evaluate thymol as a potent drug against colon cancer. Cytotoxicity of thymol at different concentrations was evaluated against a human colon carcinoma cell line (HCT-116 cells). Fluorescent staining was carried out to evaluate the level of ROS as well as mitochondrial and DNA fragmentation and immunoblot analysis were performed to confirm apoptosis and mitoptosis. Results of the study demonstrated that thymol efficiently created an oxidative stress environment inside HCT-116 cells, a colorectal carcinoma cell line, through induction of ROS production along with intense damage to DNA and mitochondria, as observed through Hoechst and rhodamine 123 staining, respectively. Moreover, expression of PARP-1, p-JNK, cytochrome-C and caspase-3 proteins was up-regulated, suggesting HCT-116 cells underwent mitoptotic cell death. Therefore, thymol could be used as a potent drug against colon cancer due to its lower toxicity and prevalence in natural medicinal plants. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
NASA Astrophysics Data System (ADS)
Zhao, Y. L.; Piao, C. Q.; Hei, T. K.
Previous studies from this laboratory have identified a number of causally linked genes including the novel tumor suppressor Betaig-h3 that were differentially expressed in radiation induced tumorigenic BEP2D cells. To extend these studies using a genomically more stable bronchial cell line, we show here that ectopic expression of the catalytic subunit of telomerase (hTERT) in primary human small airway epithelial (SAE) cells resulted in the generation of several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal. Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings. The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice. These cells show no alteration in the p53 gene but a decrease in p16 expression. Exponentially growing SAEh cells were exposed to graded doses of 1 GeV/nucleon of 56Fe ions accelerated at the Brookhaven National Laboratory. Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation. Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium. These findings indicate that hTERT-immortalized cells, being diploid and chromosomal stable, should be a useful model in assessing mechanism of radiation carcinogenesis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Guoli; Yao, Guangmin; Zhan, Guanqun
We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis.more » NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes. - Highlights: • N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid. • NMHC exhibits potent anti-neoplastic activity. • NMHC leads to cell cycle arrest, apoptotic death and decreased metabolism. • NMHC down-regulates the AKT signaling pathway.« less
Adamson, Amy L; Le, Brandi T; Siedenburg, Brian D
2014-06-11
Epstein-Barr virus is a human herpesvirus that infects a majority of the human population. Primary infection of Epstein-Barr virus (EBV) causes the syndrome infectious mononucleosis. This virus is also associated with several cancers, including Burkitt's lymphoma, post-transplant lymphoproliferative disorder and nasopharyngeal carcinoma. As all herpesvirus family members, EBV initially replicates lytically to produce abundant virus particles, then enters a latent state to remain within the host indefinitely. Through a genetic screen in Drosophila, we determined that reduction of Drosophila Tor activity altered EBV immediate-early protein function. To further investigate this finding, we inhibited mTOR in EBV-positive cells and investigated subsequent changes to lytic replication via Western blotting, flow cytometry, and quantitative PCR. The student T-test was used to evaluate significance. mTOR, the human homolog of Drosophila Tor, is an important protein at the center of a major signaling pathway that controls many aspects of cell biology. As the EBV immediate-early genes are responsible for EBV lytic replication, we examined the effect of inhibition of mTORC1 on EBV lytic replication in human EBV-positive cell lines. We determined that treatment of cells with rapamycin, which is an inhibitor of mTORC1 activity, led to a reduction in the ability of B cell lines to undergo lytic replication. In contrast, EBV-positive epithelial cell lines underwent higher levels of lytic replication when treated with rapamycin. Overall, the responses of EBV-positive cell lines vary when treated with mTOR inhibitors, and this may be important when considering such inhibitors as anti-cancer therapeutic agents.
Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng
2015-01-01
We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P < 0.05) attachment, outgrowth formation and primary colonization in both 2× and 3× aggregated cloned embryos (62.8, 42.6 and 12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P < 0.05) in those derived from TSA-treated 3× blastocysts (36.7 and 26.7%) than from the non-treated aggregated group (23.1 and 11.5%). These cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state.
Siriboon, Chawalit; Lin, Yu-Hsuan; Kere, Michel; Chen, Chun-Da; Chen, Lih-Ren; Chen, Chien-Hong; Tu, Ching-Fu; Lo, Neng-Wen; Ju, Jyh-Cherng
2015-01-01
We attempted to isolate ES cell lines using inner cell masses from high-quality cloned porcine blastocysts. After being seeded onto feeders, embryos had better (P < 0.05) attachment, outgrowth formation and primary colonization in both 2× and 3× aggregated cloned embryos (62.8, 42.6 and12.8% vs. 76.2, 55.2 and 26.2%, respectively) compared to the non-aggregated group (41.6, 23.4 and 3.9%). Effects of feeder types (STO vs. MEF) and serum sources (FBS vs. KSR) on extraction of cloned embryo-derived porcine ES cells were examined. More (17.1%) ntES cell lines over Passage 3 were generated in the MEF/KSR group. However, ntES cells cultured in KSR-supplemented medium had a low proliferation rate with defective morphology, and eventually underwent differentiation or apoptosis subsequently. Approximately 26.1, 22.7 and 35.7% of primary colonies were formed after plating embryos in DMEM, DMEM/F12 and α-MEM media, respectively. Survival rates of ntES cells cultured in α-MEM, DMEM and DMEM/F12 were 16.7, 4.3 and 6.8%, respectively (P > 0.05). We further examined the beneficial effect of TSA treatment of 3× aggregated cloned embryos on establishment of ntES cell lines. Primary colony numbers and survival rates of ntES cells beyond passage 3 were higher (P < 0.05) in those derived from TSA-treated 3× blastocysts (36.7 and 26.7%) than from the non-treated aggregated group (23.1 and 11.5%). These cells, remaining undifferentiated over 25 passages, had alkaline phosphatase activity and expressed ES specific markers Oct4, Nanog, Sox2, and Rex01. Moreover, these ntES cells successfully differentiated into embryoid bodies (EBs) that expressed specific genes of all three germ layers after being cultured in LIF-free medium. In conclusion, we have successfully derived putative porcine ntES cells with high efficiency from quality cloned embryos produced by embryo aggregation, and optimized the ES cell culture system suitable for establishing and maintaining ntES cell lines in undifferentiated state. PMID:25680105
Comparison of tumor biology of two distinct cell sub-populations in lung cancer stem cells.
Wang, Jianyu; Sun, Zhiwei; Liu, Yongli; Kong, Liangsheng; Zhou, Shixia; Tang, Junlin; Xing, Hongmei Rosie
2017-11-14
Characterization of the stem-like properties of cancer stem cells (CSCs) remain indirect and qualitative, especially the ability of CSCs to undergo asymmetric cell division for self renewal and differentiation, a unique property of cells of stem origin. It is partly due to the lack of stable cellular models of CSCs. In this study, we developed a new approach for CSC isolation and purification to derive a CSC-enriched cell line (LLC-SE). By conducting five consecutive rounds of single cell cloning using the LLC-SE cell line, we obtained two distinct sub-population of cells within the Lewis lung cancer CSCs that employed largely symmetric division for self-renewal (LLC-SD) or underwent asymmetric division for differentiation (LLC-ASD). LLC-SD and LLC-ASD cell lines could be stably passaged in culture and be distinguished by cell morphology, stem cell marker, spheroid formation and subcutaneous tumor initiation efficiency, as well as orthotopic lung tumor growth, progression and survival. The ability LLC-ASD cells to undergo asymmetric division was visualized and quantified by the asymmetric segregation of labeled BrdU and NUMB to one of the two daughter cells in anaphase cell division. The more stem-like LLC-SD cells exhibited higher capacity for tumorigenesis and progression and shorter survival. As few as 10 LLC-SD could initiate subcutaneous tumor growth when transplanted to the athymic mice. Collectively, these observations suggest that the SD-type of cells appear to be on the top of the hierarchical order of the CSCs. Furthermore, they have lead to generated cellular models of CSC self-renewal for future mechanistic investigations.
Characteristics of a Virus Isolated from a Feline Fibrosarcoma
McKissick, G. E.; Lamont, P. H.
1970-01-01
A virus was isolated from a radioresistant feline fibrosarcoma. It induced multi-nucleated giant-cell formation and lysis in a cell line derived from a canine fibro-sarcoma, which was used to characterize the virus. End-point titrations in these cells required 28 days. The virus was sensitive to ether and heat and was destroyed at pH 3. Replication was not inhibited by 5-bromodeoxyuridine. Electron microscopy revealed assembly by a budding process from the plasma membrane of infected cells. The average diameter of the virion was 106 nm. Intracisternal particles with an average diameter of 45 nm were present within infected cells. In two instances secondary monolayers of feline renal cells underwent morphological transformation after inoculation of the virus. The two strains of transformed cells are now in continuous culture and do not yield infectious virus. Images PMID:4194169
Head and neck cancer stem cells: the effect of HPV--an in vitro and mouse study.
Tang, Alice L; Owen, John H; Hauff, Samantha J; Park, Jung Je; Papagerakis, Silvana; Bradford, Carol R; Carey, Thomas E; Prince, Mark E
2013-08-01
To determine if the behavior of cancer stem cells (CSCs) is affected by human papillomavirus (HPV) status. An in vitro and in vivo analysis of HPV and CSCs. University laboratory. We isolated CSCs from HPV-positive and HPV-negative cell lines. Two HPV-negative cell lines underwent lentiviral transduction of E6/E7. Chemoresistence was determined using colony formation assays. Native HPV-positive and HPV E6/E7-transduced cells were compared for lung colonization after tail vein injection in NOD/SCID mice. The proportion of CSC is not significantly different in HPV-positive or HPV-negative head and neck squamous cell carcinoma (HNSCC) cell lines. The HNSCC CSCs are more resistant to cisplatin than the non-CSCs, but there were no significant differences between HPV-positive and HPV-negative cells. The HPV-negative cancer cells yielded low colony formation after cell sorting. After transduction with HPV E6/E7, increased colony formation was observed in both CSCs and non-CSCs. Results from tail vein injections yielded no differences in development of lung colonies between HPV E6/E7-transduced cells and nontransduced cells. Human papillomavirus status does not correlate with the proportion of CSCs present in HNSCC. The HPV-positive cells and those transduced with HPV E6/E7 have a greater clonogenicity than HPV-negative cells. The HNSCC CSCs are more resistant to cisplatin than non-CSCs. This suggests that common chemotherapeutic agents may shrink tumor bulk by eliminating non-CSCs, whereas CSCs have mechanisms that facilitate evasion of cell death. Human papillomavirus status does not affect CSC response to cisplatin therapy, suggesting that other factors explain the better outcomes for patients with HPV-positive cancer.
Kotake, Mie; Miura, Yosuke; Imai, Hisao; Mori, Keita; Sakurai, Reiko; Kaira, Kyoichi; Tomizawa, Yoshio; Minato, Koichi; Saito, Ryusei; Hisada, Takeshi
2017-01-01
In patients with non-small-cell lung cancer (NSCLC), the effects of second-line chemotherapy on overall survival (OS) might be confounded by subsequent therapies. Therefore, using individual-level data, we aimed to determine the relationships between progression-free survival (PFS) and post-progression survival (PPS) with OS in patients with advanced NSCLC treated with docetaxel monotherapy as second-line chemotherapy. Between April 2002 and December 2014, data from 86 patients with advanced NSCLC who underwent second-line docetaxel monotherapy following first-line treatment with platinum combination chemotherapy were analyzed. The relationships of PFS and PPS with OS were analyzed at the individual level. Spearman rank correlation and linear regression analyses showed that PPS was strongly associated with OS (r = 0.86, p < 0.05, R2 = 0.93), whereas PFS was moderately correlated with OS (r = 0.50, p < 0.05, R2 = 0.21). Performance status at the end of second-line treatment and the number of regimens after progression beyond second-line chemotherapy were significantly associated with PPS (p < 0.05). In patients with advanced NSCLC with unknown oncogenic driver mutations undergoing docetaxel monotherapy as second-line chemotherapy, when compared with PFS, PPS had a stronger association with OS. This finding suggests that subsequent treatment after disease progression following second-line docetaxel monotherapy has a significant influence on OS. © 2017 S. Karger AG, Basel.
Manson, Margaret M.
2013-01-01
The chemopreventive agent curcumin has anti-proliferative effects in many tumour types, but characterization of cell cycle arrest, particularly with physiologically relevant concentrations, is still incomplete. Following oral ingestion, the highest concentrations of curcumin are achievable in the gut. Although it has been established that curcumin induces arrest at the G2/M stage of the cell cycle in colorectal cancer lines, it is not clear whether arrest occurs at the G2/M transition or in mitosis. To elucidate the precise stage of arrest, we performed a direct comparison of the levels of curcumin-induced G2/M boundary and mitotic arrest in eight colorectal cancer lines (Caco-2, DLD-1, HCA-7, HCT116p53+/+, HCT116p53–/–, HCT116p21–/–, HT-29 and SW480). Flow cytometry confirmed that these lines underwent G2/M arrest following treatment for 12h with clinically relevant concentrations of curcumin (5–10 μM). In all eight lines, the majority of this arrest occurred at the G2/M transition, with a proportion of cells arresting in mitosis. Examination of the mitotic index using fluorescence microscopy showed that the HCT116 and Caco-2 lines exhibited the highest levels of curcumin-induced mitotic arrest. Image analysis revealed impaired mitotic progression in all lines, exemplified by mitotic spindle abnormalities and defects in chromosomal congression. Pre-treatment with inhibitors of the DNA damage signalling pathway abrogated curcumin-induced mitotic arrest, but had little effect at the G2/M boundary. Moreover, pH2A.X staining seen in mitotic, but not interphase, cells suggests that this aberrant mitosis results in DNA damage. PMID:23125222
Aluri, Rajendra; Saxena, Sonashree; Joshi, Dheeraj Chandra; Jayakannan, Manickam
2018-06-11
Multistimuli-responsive l-tyrosine-based amphiphilic poly(ester-urethane) nanocarriers were designed and developed for the first time to administer anticancer drugs in cancer tissue environments via thermoresponsiveness and lysosomal enzymatic biodegradation from a single polymer platform. For this purpose, multifunctional l-tyrosine monomer was tailor-made with a PEGylated side chain at the phenolic position along with urethane and carboxylic ester functionalities. Under melt dual ester-urethane polycondensation, the tyrosine monomer reacted with diols to produce high molecular weight amphiphilic poly(ester-urethane)s. The polymers produced 100 ± 10 nm spherical nanoparticles in aqueous medium, and they exhibited thermoresponsiveness followed by phase transition from clear solution into a turbid solution in heating/cooling cycles. Variable temperature transmittance, dynamic light scattering, and 1 H NMR studies revealed that the polymer chains underwent reversible phase transition from coil-to-expanded chain conformation for exhibiting the thermoresponsive behavior. The lower critical solution temperature of the nanocarriers was found to correspond to cancer tissue temperature (at 42-44 °C), which was explored as an extracellular trigger (stimuli-1) for drug delivery through the disassembly process. The ester bond in the poly(ester-urethane) backbones readily underwent enzymatic biodegradation in the lysosomal compartments that served as intracellular stimuli (stimuli-2) to deliver drugs. Doxorubicin (DOX) and camptothecin (CPT) drug-loaded polymer nanocarriers were tested for cellular uptake and cytotoxicity studies in the normal WT-MEF cell line and cervical (HeLa) and breast (MCF7) cancer cell lines. In vitro drug release studies revealed that the polymer nanoparticles were stable under physiological conditions (37 °C, pH 7.4) and they exclusively underwent disassembly at cancer tissue temperature (at 42 °C) and biodegradation by lysosomal-esterase enzyme to deliver 90% of DOX and CPT. Drug-loaded polymer nanoparticles exhibited better cytotoxic effects than their corresponding free drugs. Live cell confocal microscopy imaging experiments with lysosomal tracker confirmed the endocytosis of the polymer nanoparticles and their biodegradation in the lysosomal compartments in cancer cells. The increment in the drug content in the cells incubated at 42 °C compared to 37 °C supported the enhanced drug uptake by the cancer cells under thermoresponsive stimuli. The present work creates a new platform for the l-amino acid multiple-responsive polymer nanocarrier platform for drug delivery, and the proof-of-concept was successfully demonstrated for l-tyrosine polymers in cervical and breast cancer cells.
Schaeffer, Daneen; Somarelli, Jason A.; Hanna, Gabi; Palmer, Gregory M.
2014-01-01
Metastatic dissemination requires carcinoma cells to detach from the primary tumor and invade through the basement membrane. To acquire these characteristics, epithelial tumor cells undergo epithelial-to-mesenchymal transitions (EMT), whereby cells lose polarity and E-cadherin-mediated cell-cell adhesion. Post-EMT cells have also been shown, or assumed, to be more migratory; however, there have been contradictory reports on an immortalized human mammary epithelial cell line (HMLE) that underwent EMT. In the context of carcinoma-associated EMT, it is not yet clear whether the change in migration and invasion must be positively correlated during EMT or whether enhanced migration is a necessary consequence of having undergone EMT. Here, we report that pre-EMT rat prostate cancer (PC) and HMLE cells are more migratory than their post-EMT counterparts. To determine a mechanism for increased epithelial cell migration, gene expression analysis was performed and revealed an increase in epidermal growth factor receptor (EGFR) expression in pre-EMT cells. Indeed, inhibition of EGFR in PC epithelial cells slowed migration. Importantly, while post-EMT PC and HMLE cell lines are less migratory, both remain invasive in vitro and, for PC cells, in vivo. Our study demonstrates that enhanced migration is not a phenotypic requirement of EMT, and migration and invasion can be uncoupled during carcinoma-associated EMT. PMID:25002532
Impact of location on outcome after penetrating colon injuries.
Sharpe, John P; Magnotti, Louis J; Weinberg, Jordan A; Zarzaur, Ben L; Shahan, Charles P; Parks, Nancy A; Fabian, Timothy C; Croce, Martin A
2012-12-01
Most studies examining suture line failure after penetrating colon injuries have focused on right- versus left-sided injuries. In our institution, operative decisions (resection plus anastomosis vs. diversion) are based on a defined management algorithm regardless of injury location. The purpose of this study was to evaluate the effect of injury location on outcomes after penetrating colon injuries. Consecutive patients with full thickness penetrating colon injuries for 13 years were stratified by age, injury location and mechanism, and severity of shock. According to the algorithm, patients with nondestructive injuries underwent primary repair. Destructive wounds underwent resection plus anastomosis in the absence of comorbidities or large preoperative or intraoperative transfusion requirements (>6 U of packed red blood cells); otherwise, they were diverted. Injury location was defined as ascending, transverse, descending (including splenic flexure), and sigmoid. Multivariable logistic regression was performed to determine whether injury location was an independent predictor of either morbidity or mortality. Four hundred sixty-nine patients were identified: 314 (67%) underwent primary repair and 155 (33%) underwent resection. Most injuries involved the transverse colon (39%), followed by the ascending colon (26%), the descending colon (21%), and the sigmoid colon (14%). Overall, there were 13 suture line failures (3%) and 72 abscesses (15%). Most suture line failures involved injuries to the descending colon (p = 0.06), whereas most abscesses followed injuries to the ascending colon (p = 0.37). Multivariable logistic regression failed to identify injury location as an independent predictor of either morbidity or mortality after adjusting for 24-hour transfusions, base excess, shock index, injury mechanism, and operative management. Injury location did not affect morbidity or mortality after penetrating colon injuries. Nondestructive injuries should be primarily repaired. For destructive injuries, operative decisions based on a defined algorithm rather than injury location achieves an acceptably low morbidity and mortality rate and simplifies management. Prognostic study, level III.
Podocytes populate cellular crescents in a murine model of inflammatory glomerulonephritis.
Moeller, Marcus J; Soofi, Abdulsalaam; Hartmann, Inge; Le Hir, Michel; Wiggins, Roger; Kriz, Wilhelm; Holzman, Lawrence B
2004-01-01
Cellular crescents are a defining histologic finding in many forms of inflammatory glomerulonephritis. Despite numerous studies, the origin of glomerular crescents remains unresolved. A genetic cell lineage-mapping study with a novel transgenic mouse model was performed to investigate whether visceral glomerular epithelial cells, termed podocytes, are precursors of cells that populate cellular crescents. The podocyte-specific 2.5P-Cre mouse line was crossed with the ROSA26 reporter line, resulting in irreversible constitutive expression of beta-galactosidase in doubly transgenic 2.5P-Cre/ROSA26 mice. In these mice, crescentic glomerulonephritis was induced with a previously described rabbit anti-glomerular basement membrane antiserum nephritis approach. Interestingly, beta-galactosidase-positive cells derived from podocytes adhered to the parietal basement membrane and populated glomerular crescents during the early phases of cellular crescent formation, accounting for at least one-fourth of the total cell mass. In cellular crescents, the proliferation marker Ki-67 was expressed in beta-galactosidase-positive and beta-galactosidase-negative cells, indicating that both cell types contributed to the formation of cellular crescents through proliferation in situ. Podocyte-specific antigens, including WT-1, synaptopodin, nephrin, and podocin, were not expressed by any cells in glomerular crescents, suggesting that podocytes underwent profound phenotypic changes in this nephritis model.
Gonzalez, Yanira; Aryal, Baikuntha; Chehab, Leena; Rao, V. Ashutosh
2014-01-01
The interplay between oxidative stress and autophagy is critical for determining the fate of cancer cells exposed to redox-active and cytotoxic chemotherapeutic agents. Mitoquinone (MitoQ), a mitochondrially-targeted redox-active ubiquinone conjugate, selectively kills breast cancer cells over healthy mammary epithelial cells. We reported previously that MitoQ, although a derivative of the antioxidant ubiquinone, can generate excess ROS and trigger the Keap1-Nrf2 antioxidant response in the MDA-MB-231 cell line. Following MitoQ treatment, a greater number of cells underwent autophagy than apoptosis. However, the relationship between MitoQ-induced oxidative stress and autophagy as a primary cellular response was unclear. In this report, we demonstrate that MitoQ induces autophagy related gene 7 (Atg7)-dependent, yet Beclin-1-independent, autophagy marked by an increase in LC3-II. Both the ATG7-deficient human MDA-MB-231 cells and Atg7-knockout mouse embryonic fibroblasts exhibited lower levels of autophagy following MitoQ treatment than their respective wild-type counterparts. Increased apoptosis was confirmed in these autophagy-deficient isogenic cell line pairs, indicating that autophagy was attempted for survival in wild type cell lines. Furthermore, we observed higher levels of ROS in Atg7-deficient cells, as measured by hydroethidine oxidation. In Atg7-deficient cells, redox-sensitive Keap1 degradation was decreased, suggesting autophagy- and Atg7-dependent degradation of Keap1. Conversely, downregulation of Keap1 decreased autophagy levels, increased Nrf2 activation, upregulated cytoprotective antioxidant gene expression, and caused accumulation of p62, suggesting a feedback loop between ROS-regulated Keap1-Nrf2 and Atg7-regulated autophagy. Our data indicate that excessive ROS causes the upregulation of autophagy, and autophagy acts as an antioxidant feedback response triggered by cytotoxic levels of MitoQ. PMID:24681637
Gonzalez, Yanira; Aryal, Baikuntha; Chehab, Leena; Rao, V Ashutosh
2014-03-30
The interplay between oxidative stress and autophagy is critical for determining the fate of cancer cells exposed to redox-active and cytotoxic chemotherapeutic agents. Mitoquinone (MitoQ), a mitochondrially-targeted redox-active ubiquinone conjugate, selectively kills breast cancer cells over healthy mammary epithelial cells. We reported previously that MitoQ, although a derivative of the antioxidant ubiquinone, can generate excess ROS and trigger the Keap1-Nrf2 antioxidant response in the MDA-MB-231 cell line. Following MitoQ treatment, a greater number of cells underwent autophagy than apoptosis. However, the relationship between MitoQ-induced oxidative stress and autophagy as a primary cellular response was unclear. In this report, we demonstrate that MitoQ induces autophagy related gene 7 (Atg7)-dependent, yet Beclin-1-independent, autophagy marked by an increase in LC3-II. Both the ATG7-deficient human MDA-MB-231 cells and Atg7-knockout mouse embryonic fibroblasts exhibited lower levels of autophagy following MitoQ treatment than their respective wild-type counterparts. Increased apoptosis was confirmed in these autophagy-deficient isogenic cell line pairs, indicating that autophagy was attempted for survival in wild type cell lines. Furthermore, we observed higher levels of ROS in Atg7-deficient cells, as measured by hydroethidine oxidation. In Atg7-deficient cells, redox-sensitive Keap1 degradation was decreased, suggesting autophagy- and Atg7-dependent degradation of Keap1. Conversely, downregulation of Keap1 decreased autophagy levels, increased Nrf2 activation, upregulated cytoprotective antioxidant gene expression, and caused accumulation of p62, suggesting a feedback loop between ROS-regulated Keap1-Nrf2 and Atg7-regulated autophagy. Our data indicate that excessive ROS causes the upregulation of autophagy, and autophagy acts as an antioxidant feedback response triggered by cytotoxic levels of MitoQ.
Ganger, Anita; Vanathi, M.; Mohanty, Sujata; Tandon, Radhika
2015-01-01
Purpose. To compare the long-term clinical outcomes of cultivated limbal epithelial transplantation (CLET) in children and adults with limbal stem cell deficiency. Design. Retrospective case series. Methods. Case records of patients with limbal stem cell deficiency (LSCD) who underwent CLET from April 2004 to December 2014 were studied. Outcome measures were compared in terms of anatomical success and visual improvement. Parameters for total anatomical success were avascular, epithelized, and clinically stable corneal surface without conjunctivalization, whereas partial anatomical success was considered when mild vascularization (sparing centre of cornea) and mild conjunctivalization were noted along with complete epithelization. Results. A total of 62 cases underwent the CLET procedure: 38 (61.3%) were children and 24 (38.7%) were adults. Patients with unilateral LSCD (33 children and 21 adults) had autografts and those with bilateral LSCD (5 children and 3 adults) had allografts. Amongst the 54 autografts partial and total anatomical success were noted in 21.2% and 66.6% children, respectively, and 19.0% and 80.9% in adults, respectively (p value 0.23). Visual improvement of 1 line and ≥2 lines was seen in 57.5% and 21.2% children, respectively, and 38% and 38% in adults, respectively (p value 0.31). Conclusion. Cultivated limbal epithelial transplantation gives good long-term results in patients with LSCD and the outcomes are comparable in children and adults. PMID:26770973
Walz, Jenna A; Mace, Charles R
2018-06-05
Immunophenotyping is typically achieved using flow cytometry, but any influence a biomarker may have on adhesion or surface recognition cannot be determined concurrently. In this manuscript, we demonstrate the utility of lateral microscopy for correlating cell surface biomarker expression levels with quantitative descriptions of cell morphology. With our imaging system, we observed single cells from two T cell lines and two B cell lines adhere to antibody-coated substrates and quantified this adhesion using contact angle measurements. We found that SUP-T1 and CEM CD4+ cells, both of which express similar levels of CD4, experienced average changes in contact angle that were not statistically different from one another on surfaces coated in anti-CD4. However, MAVER-1 and BJAB K20 cells, both of which express different levels of CD20, underwent average changes in contact angle that were significantly different from one another on surfaces coated in anti-CD20. Our results indicate that changes in cell contact angles on antibody-coated substrates reflect the expression levels of corresponding antigens on the surfaces of cells as determined by flow cytometry. Our lateral microscopy approach offers a more reproducible and quantitative alternative to evaluate adhesion compared to commonly used wash assays and can be extended to many additional immunophenotyping applications to identify cells of interest within heterogeneous populations.
Characterization of a mast cell line that lacks the extracellular domain of membrane c-kit.
Mekori, Y A; Oh, C K; Dastych, J; Goff, J P; Adachi, S; Bianchine, P J; Worobec, A; Semere, T; Pierce, J H; Metcalfe, D D
1997-04-01
Expression of the c-kit proto-oncogene receptor on mast cells is essential for their normal proliferation and maturation as well as for several biological responses such as chemotaxis and attachment. In the present study we report that the interleukin-3 (IL-3)-dependent mast cell line CFTL-15 lacks the extracellular domain of the c-kit receptor. This observation was made after noting that the c-kit ligand stem cell factor (SCF) could not prevent IL-3 deprivation-induced mast cell apoptosis and that CFTL-15 cells did not proliferate in response to SCF. Flow cytometric analysis employing monoclonal anti-c-kit antibodies, and immunogold labelling with analysis by electron microscopy, subsequently showed a diminished expression of c-kit on CFTL-15 cells. There was no identifiable message for the extracellular domain of c-kit in these cells, as determined by reverse transcriptase-polymerase chain reaction (RT-PCR). These previously unrecognized properties of the CFTL-15 mast cell line allowed the examination of other biological consequences of the lack of c-kit on mast cells. Analysing the ability of these cells to adhere to surface-bound fibronectin, it was found that addition of SCF did not increase their adhesion to this substrate, in opposition to what is reported with other mast cells. Similarly, CFTL-15 mast cells did not adhere to fibroblasts, which is known to require c-kit expression. Also, there was no protein tyrosine phosphorylation in these cells in response to SCF. CFTL-15 cells underwent apoptosis on removal of IL-3 coincident with a decrease in endogenous Bcl-2 mRNA. Overexpression of Bcl-2 cDNA prolonged survival of Bcl-2-transfected CFTL-15 cells upon withdrawal of IL-3. Thus, the CFTL-15 cell line that lacks surface c-kit is not able to proliferate in response to SCF, undergoes apoptosis in the presence of SCF, and does not adhere to fibroblasts. These results confirm earlier studies on the functional consequences of c-kit and provide a novel experimental model for further investigation.
Characterization of a mast cell line that lacks the extracellular domain of membrane c-kit.
Mekori, Y A; Oh, C K; Dastych, J; Goff, J P; Adachi, S; Bianchine, P J; Worobec, A; Semere, T; Pierce, J H; Metcalfe, D D
1997-01-01
Expression of the c-kit proto-oncogene receptor on mast cells is essential for their normal proliferation and maturation as well as for several biological responses such as chemotaxis and attachment. In the present study we report that the interleukin-3 (IL-3)-dependent mast cell line CFTL-15 lacks the extracellular domain of the c-kit receptor. This observation was made after noting that the c-kit ligand stem cell factor (SCF) could not prevent IL-3 deprivation-induced mast cell apoptosis and that CFTL-15 cells did not proliferate in response to SCF. Flow cytometric analysis employing monoclonal anti-c-kit antibodies, and immunogold labelling with analysis by electron microscopy, subsequently showed a diminished expression of c-kit on CFTL-15 cells. There was no identifiable message for the extracellular domain of c-kit in these cells, as determined by reverse transcriptase-polymerase chain reaction (RT-PCR). These previously unrecognized properties of the CFTL-15 mast cell line allowed the examination of other biological consequences of the lack of c-kit on mast cells. Analysing the ability of these cells to adhere to surface-bound fibronectin, it was found that addition of SCF did not increase their adhesion to this substrate, in opposition to what is reported with other mast cells. Similarly, CFTL-15 mast cells did not adhere to fibroblasts, which is known to require c-kit expression. Also, there was no protein tyrosine phosphorylation in these cells in response to SCF. CFTL-15 cells underwent apoptosis on removal of IL-3 coincident with a decrease in endogenous Bcl-2 mRNA. Overexpression of Bcl-2 cDNA prolonged survival of Bcl-2-transfected CFTL-15 cells upon withdrawal of IL-3. Thus, the CFTL-15 cell line that lacks surface c-kit is not able to proliferate in response to SCF, undergoes apoptosis in the presence of SCF, and does not adhere to fibroblasts. These results confirm earlier studies on the functional consequences of c-kit and provide a novel experimental model for further investigation. Images Figure 4 Figure 6 Figure 7 Figure 8 PMID:9176104
Combined radiation and p53 gene therapy of malignant glioma cells.
Badie, B; Goh, C S; Klaver, J; Herweijer, H; Boothman, D A
1999-01-01
More than half of malignant gliomas reportedly have alterations in the p53 tumor suppressor gene. Because p53 plays a key role in the cellular response to DNA-damaging agents, we investigated the role of p53 gene therapy before ionizing radiation in cultured human glioma cells containing normal or mutated p53. Three established human glioma cell lines expressing the wild-type (U87 MG, p53wt) or mutant (A172 and U373 MG, p53mut) p53 gene were transduced by recombinant adenoviral vectors bearing human p53 (Adp53) and Escherichia coli beta-galactosidase genes (AdLacZ, control virus) before radiation (0-20 Gy). Changes in p53, p21, and Bax expression were studied by Western immunoblotting, whereas cell cycle alterations and apoptosis were investigated by flow cytometry and nuclear staining. Survival was assessed by clonogenic assays. Within 48 hours of Adp53 exposure, all three cell lines demonstrated p53 expression at a viral multiplicity of infection of 100. p21, which is a p53-inducible downstream effector gene, was overexpressed, and cells were arrested in the G1 phase. Bax expression, which is thought to play a role in p53-induced apoptosis, did not change with either radiation or Adp53. Apoptosis and survival after p53 gene therapy varied. U87 MG (p53wt) cells showed minimal apoptosis after Adp53, irradiation, or combined treatments. U373 MG (p53mut) cells underwent massive apoptosis and died within 48 hours of Adp53 treatment, independent of irradiation. Surprisingly, A172 (p53mut) cells demonstrated minimal apoptosis after Adp53 exposure; however, unlike U373 MG cells, apoptosis increased with radiation dose. Survival of all three cell lines was reduced dramatically after >10 Gy. Although Adp53 transduction significantly reduced the survival of U373 MG cells and inhibited A172 growth, it had no effect on the U87 MG cell line. Transduction with AdLacZ did not affect apoptosis or cell cycle progression and only minimally affected survival in all cell lines. We conclude that responses to p53 gene therapy are variable among gliomas and most likely depend upon both cellular p53 status and as yet ill-defined downstream pathways involving activation of cell cycle regulatory and apoptotic genes.
Takahashi, Naoto; Kashimura, Hirotaka; Nimura, Hiroshi; Watanabe, Atsushi; Yano, Kentaro; Aoki, Hiroaki; Koyama, Tomoki; Sasaki, Toshiyuki; Shida, Atsuo; Mitsumori, Norio; Aoki, Teruaki; Kashiwagi, Hideyuki; Yanaga, Katsuhiko
2012-01-01
Although proximal gastrectomy has become a procedure of choice for patients' early cancer in the upper third of stomach, no clinical guide for optimal gastric resection in order to avoid postoperative jejunal ulcer is available. The aim of this study was to investigate whether determining the distribution of parietal and chief cells of the stomach using Congo red test is clinically relevant. The F-line was defined as a boundary line between fundic and intermediate area of the stomach according to the pathological findings in 29 patients who underwent total gastrectomy for early gastric cancer, whereas the f-line was regarded as a boundary line between intermediate and pyloric area. In the additional 6 patients undergoing vagus-preserving proximal gastrectomy with jejunal pouch interposition, endoscopic Congo red test was preoperatively performed to determine the F-f-line. The distances from the pyloric ring to f-line on the lesser and greater curvatures were variable. Long-term outcomes of proximal gastrectomy guided by preoperative endoscopic Congo red test were favorable. It is suggested that preoperative endoscopic Congo red test is useful to determine the appropriate cutting line in order to avoid postoperative jejunal ulcer after proximal gastrectomy.
Farooq, Umar; Maurer, Matthew J; Thompson, Carrie A; Thanarajasingam, Gita; Inwards, David J; Micallef, Ivana; Macon, William; Syrbu, Sergei; Lin, Tasha; Lin, Yi; Ansell, Stephen M; Nowakowski, Grzegorz S; Habermann, Thomas M; Cerhan, James R; Link, Brian K
2017-10-01
This study aimed to describe the patterns of care and outcomes of diffuse large B cell lymphoma (DLBCL) after failure of front line anthracycline-based immunochemotherapy (IC). Patients with newly diagnosed lymphoma were prospectively enrolled in Molecular Epidemiology Resource (MER) of the University of Iowa/Mayo Clinic Lymphoma Specialized Program of Research Excellzence. All DLBCL and primary mediastinal B-cell lymphoma (PMBL) patients treated with front-line anthracycline-based IC were followed for relapse. Patients with relapse on follow-up and subsequently retreated were included in this analysis. 1039 patients received anthracycline-based IC between 2002 and 2012, of which 244 relapsed and were subsequently retreated. Across all therapies, overall survival at 4 years (OS4) from relapse was 28% and 103 patients ultimately underwent autologous haematopoietic cell transplant (autoHCT) with OS4 from autoHCT of 51%. Patients relapsing after 12 months from initial diagnosis had OS4 of 47% but those with a transient or no response to initial therapy had OS4 of only 13%. Outcomes of relapsed or refractory DLBCL differ substantially when categorized by response to initial therapy, timing of relapse and opportunity to undergo autoHCT. The design and interpretation of uncontrolled trials should account for this heterogeneity in patients with relapsed DLBCL. © 2017 John Wiley & Sons Ltd.
Okoshi, Kae; Mizumoto, Masaki; Kinoshita, Koichi
2017-12-21
The canal of Nuck is an embryological vestige of the processus vaginalis, and presents a potential site for endometriosis seeding. Hydroceles in this region are a rare cause of inguinal swelling in females. In addition, endometriosis localized to the canal of Nuck is exceedingly rare. A 44-year-old Japanese woman presented with a painful mass overlying her right pubis. She underwent surgery to completely excise the mass. During surgery, division of the external oblique aponeurosis revealed a cyst that occupied the inguinal canal and it adhered to the transverse fascia, inguinal ligament, and pubic bone. The cyst was dissected from the round ligament, and the defect in the internal inguinal ring was repaired and reinforced with mesh. On macroscopic examination, the cyst had a heterogeneous fibrous aspect with dark brown inclusions. Microscopic examination revealed that the cyst was tortuous, lined by mesothelial-like cells, and accompanied by partial subcapsular hemorrhage. Endometrium-like tissue was observed in the cystic wall. Immunohistochemical staining for podoplanin confirmed the mesothelial origin of the cyst-lining cells. The epithelial cells and stromal cells were positive for estrogen receptors. In this case of an endometriosis-associated hydrocele of the canal of Nuck, the mesothelial origin of the cyst-lining cells and endometriosis were confirmed by positive immunohistochemical staining for podoplanin and estrogen receptors, respectively. We determined that hydrocele resection and reinforcement of the anterior inguinal canal wall (if necessary) are appropriate treatments for this condition.
Couvelard, Anne; Bourgoin, Pierre; Gratio, Valérie; Cros, Jérôme; Rebours, Vinciane; Sauvanet, Alain; Bedossa, Pierre; Paradis, Valérie; Ruszniewski, Philippe; Couvineau, Alain; Voisin, Thierry
2018-01-01
Pancreatic ductal adenocarcinoma (PDAC) is still the poorest prognostic tumor of the digestive system. We investigated the antitumoral role of orexin-A and almorexant in PDAC. We analyzed the orexin receptor type 1 (OX1R) expression by immunohistochemistry in human normal pancreas, PDAC and its precursor dysplastic intraepithelial lesions. We used PDAC-derived cell lines and fresh tissue slices to study the apoptotic role of hypocretin-1/orexin-A and almorexant in vitro and ex vivo. We analyzed in vivo the hypocretin-1/orexin-A and almorexant effect on tumor growth in mice xenografted with PDAC cell lines expressing, or not, OX1R. Ninety-six percent of PDAC expressed OX1R, while adjacent normal exocrine pancreas did not. OX1R was expressed in pre-cancerous lesions. In vitro, under hypocretin-1/orexin-A and almorexant, the OX1R-positive AsPC-1 cells underwent apoptosis, abolished by the tyrosine phosphatase SHP2 inhibitor, NSC-87877, whereas the OX1R-negative HPAF-II cell line did not. These effects were mediated by phosphorylation of OX1R and recruitment of SHP2. Ex vivo, caspase-3 positive tumor cells were significantly higher in fresh tumour slices treated 48h with hypocretin-1/orexin-A, as compared to control, whereas cellular proliferation, assessed by Ki-67 index, was not modified. In vivo, when AsPC-1 cells or patient-derived cells were xenografted in nude mice, hypocretin-1/orexin-A or almorexant, administrated both starting the day of cell line inoculation or after tumoral development, strongly slowed tumor growth. Hypocretin-1/orexin-A and almorexant induce, through OX1R, the inhibition of PDAC cellular growth by apoptosis. Hypocretins/orexins and almorexant might be powerful candidates for the treatment of PDAC. PMID:29467942
Palisoul, Marguerite L; Quinn, Jeanne M; Schepers, Emily; Hagemann, Ian S; Guo, Lei; Reger, Kelsey; Hagemann, Andrea R; McCourt, Carolyn K; Thaker, Premal H; Powell, Matthew A; Mutch, David G; Fuh, Katherine C
2017-12-01
Uterine serous cancer (USC) is aggressive, and the majority of recurrent cases are chemoresistant. Because the receptor tyrosine kinase AXL promotes invasion and metastasis of USC and is implicated in chemoresistance in other cancers, we assessed the role of AXL in paclitaxel resistance in USC, determined the mechanism of action, and sought to restore chemosensitivity by inhibiting AXL in vitro and in vivo We used short hairpin RNAs and BGB324 to knock down and inhibit AXL. We assessed sensitivity of USC cell lines to paclitaxel and measured paclitaxel intracellular accumulation in vitro in the presence or absence of AXL. We also examined the role of the epithelial-mesenchymal transition (EMT) in AXL-mediated paclitaxel resistance. Finally, we treated USC xenografts with paclitaxel, BGB324, or paclitaxel plus BGB324 and monitored tumor burden. AXL expression was higher in chemoresistant USC patient tumors and cell lines than in chemosensitive tumors and cell lines. Knockdown or inhibition of AXL increased sensitivity of USC cell lines to paclitaxel in vitro and increased cellular accumulation of paclitaxel. AXL promoted chemoresistance even in cells that underwent the EMT in vitro Finally, in vivo studies of combination treatment with BGB324 and paclitaxel showed a greater than 51% decrease in tumor volume after 2 weeks of treatment when compared with no treatment or single-agent treatments ( P < 0.001). Our results show that AXL expression mediates chemoresistance independent of EMT and prevents accumulation of paclitaxel. This study supports the continued investigation of AXL as a clinical target, particularly in chemoresistant USC. Mol Cancer Ther; 16(12); 2881-91. ©2017 AACR . ©2017 American Association for Cancer Research.
Alotaibi, Moureq; Sharma, Khushboo; Saleh, Tareq; Povirk, Lawrence F.; Hendrickson, Eric A.; Gewirtz, David A.
2016-01-01
Radiotherapy continues to be a primary modality in the treatment of cancer. DNA damage induced by radiation can promote apoptosis as well as both autophagy and senescence, where autophagy and senescence can theoretically function to prolong tumor survival. A primary aim of this work was to investigate the hypothesis that autophagy and/or senescence could be permissive for DNA repair, thereby facilitating tumor cell recovery from radiation-induced growth arrest and/or cell death. In addition, studies were designed to elucidate the involvement of autophagy and senescence in radiation sensitization by PARP inhibitors and the re-emergence of a proliferating tumor cell population. In the context of this work, the relationship between radiation-induced autophagy and senescence was also determined. Studies were performed using DNA repair proficient HCT116 colon carcinoma cells and a repair deficient Ligase IV (−/−) isogenic cell line. Irradiation promoted a parallel induction of autophagy and senescence that was strongly correlated with the extent of persistent H2AX phosphorylation in both cell lines; however inhibition of autophagy failed to suppress senescence, indicating that the two responses were dissociable. Irradiation resulted in a transient arrest in the HCT116 cells while arrest was prolonged in the Ligase IV (−/−) cells; however, both cell lines ultimately recovered proliferative function, which may reflect maintenance of DNA repair capacity. The PARP inhibitors (Olaparib) and (Niraparib) increased the extent of persistent DNA damage induced by radiation as well as the extent of both autophagy and senescence; neither cell line underwent significant apoptosis by radiation alone or in the presence of the PARP inhibitors. Inhibition of autophagy failed to attenuate radiation sensitization, indicating that autophagy was not involved in the action of the PARP inhibitors. As with radiation alone, despite sensitization by PARP inhibition, proliferative recovery was evident within a period of 10–20 days. While inhibition of DNA repair via PARP inhibition may initially sensitize tumor cells to radiation via the promotion of senescence, this strategy does not appear to interfere with proliferative recovery, which could ultimately contribute to disease recurrence. PMID:26934368
Hartford, Suzanne A; Luo, Yunhai; Southard, Teresa L; Min, Irene M; Lis, John T; Schimenti, John C
2011-10-25
Effective DNA replication is critical to the health and reproductive success of organisms. The six MCM2-7 proteins, which form the replicative helicase, are essential for high-fidelity replication of the genome. Many eukaryotes have a divergent paralog, MCM9, that was reported to be essential for loading MCM2-7 onto replication origins in the Xenopus oocyte extract system. To address the in vivo role of mammalian MCM9, we created and analyzed the phenotypes of mice with various mutations in Mcm9 and an intronic DNA replication-related gene Asf1a. Ablation of Mcm9 was compatible with cell proliferation and mouse viability, showing that it is nonessential for MCM2-7 loading or DNA replication. Mcm9 mutants underwent p53-independent embryonic germ-cell depletion in both sexes, with males also exhibiting defective spermatogonial stem-cell renewal. MCM9-deficient cells had elevated genomic instability and defective cell cycle reentry following replication stress, and mutant animals were prone to sex-specific cancers, most notably hepatocellular carcinoma in males. The phenotypes of mutant mice and cells suggest that MCM9 evolved a specialized but nonessential role in DNA replication or replication-linked quality-control mechanisms that are especially important for germ-line stem cells, and also for tumor suppression and genome maintenance in the soma.
NASA Astrophysics Data System (ADS)
Zhao, Y.; Shao, G.; Piao, C.; Hei, T.
Carcinogenesis is a multi-stage process with sequences of genetic events governing the phenotypic expression of a series of transformation steps leading to the development of metastatic cancer Previous studies from this laboratory have identified a 7 fold down- regulation of the novel tumor suppressor Big-h3 among radiation induced tumorigenic BEP2D cells Furthermore ectopic re-expression of this gene suppresses tumorigenic phenotype and promotes the sensitivity of these tumor cells to etoposide-induced apoptosis To extend these studies using a genomically more stable bronchial cell line we ectopically expresses the catalytic subunit of telomerase hTERT in primary human small airway epithelial SAE cells and generated several clonal cell lines that have been continuously in culture for more than 250 population doublings and are considered immortal Comparably-treated control SAE cells infected with only the viral vector senesced after less than 10 population doublings The immortalized clones demonstrated anchorage dependent growth and are non-tumorigenic in nude mice These cells show no alteration in the p53 gene but a decrease in p16 expression Exponentially growing SAEh cells were exposed to graded doses of 1 GeV nucleon of 56 Fe ions accelerated at the Brookhaven National Laboratory Irradiated cells underwent gradual phenotypic alterations after extensive in vitro cultivation Transformed cells developed through a series of successive steps before becoming anchorage independent in semisolid medium These findings indicate
Erenpreisa, Jekaterina; Salmina, Kristine; Huna, Anda; Kosmacek, Elizabeth A; Cragg, Mark S; Ianzini, Fiorenza; Anisimov, Alim P
2011-07-01
'Neosis' describes the process whereby p53 function-deficient tumour cells undergo self-renewal after genotoxic damage apparently via senescing ETCs (endopolyploid tumour cells). We previously reported that autophagic digestion and extrusion of DNA occurs in ETC and subsequently revealed that self-renewal transcription factors are also activated under these conditions. Here, we further studied this phenomenon in a range of cell lines after genotoxic damage induced by gamma irradiation, ETO (etoposide) or PXT (paclitaxel) treatment. These experiments revealed that chromatin degradation by autophagy was compatible with continuing mitotic activity in ETC. While the actively polyploidizing primary ETC produced early after genotoxic insult activated self-renewal factors throughout the polygenome, the secondary ETC restored after failed multipolar mitosis underwent subnuclei differentiation. As such, only a subset of subnuclei continued to express OCT4 and NANOG, while those lacking these factors stopped DNA replication and underwent degradation and elimination through autophagy. The surviving subnuclei sequestered nascent cytoplasm to form subcells, while being retained within the confines of the old ETC. Finally, the preformed paradiploid subcells became released from their linking chromosome bridges through autophagy and subsequently began cell divisions. These data show that 'neotic' ETC resulting from genotoxically damaged p53 function-deficient tumour cells develop through a heteronuclear system differentiating the polyploid genome into rejuvenated 'viable' subcells (which provide mitotically propagating paradiploid descendents) and subnuclei, which become degraded and eliminated by autophagy. The whole process reduces aneuploidy in descendants of ETC.
Non-canonical features of the Golgi apparatus in bipolar epithelial neural stem cells
Taverna, Elena; Mora-Bermúdez, Felipe; Strzyz, Paulina J.; Florio, Marta; Icha, Jaroslav; Haffner, Christiane; Norden, Caren; Wilsch-Bräuninger, Michaela; Huttner, Wieland B.
2016-01-01
Apical radial glia (aRG), the stem cells in developing neocortex, are unique bipolar epithelial cells, extending an apical process to the ventricle and a basal process to the basal lamina. Here, we report novel features of the Golgi apparatus, a central organelle for cell polarity, in mouse aRGs. The Golgi was confined to the apical process but not associated with apical centrosome(s). In contrast, in aRG-derived, delaminating basal progenitors that lose apical polarity, the Golgi became pericentrosomal. The aRG Golgi underwent evolutionarily conserved, accordion-like compression and extension concomitant with cell cycle-dependent nuclear migration. Importantly, in line with endoplasmic reticulum but not Golgi being present in the aRG basal process, its plasma membrane contained glycans lacking Golgi processing, consistent with direct ER-to-cell surface membrane traffic. Our study reveals hitherto unknown complexity of neural stem cell polarity, differential Golgi contribution to their specific architecture, and fundamental Golgi re-organization upon cell fate change. PMID:26879757
Nguyen-Khuong, Terry; White, Melanie Y; Hung, Tzong-Tyng; Seeto, Shona; Thomas, Melissa L; Fitzgerald, Anna M; Martucci, Carlos E; Luk, Sharon; Pang, Shiu-Fu; Russell, Pamela J; Walsh, Bradley J
2009-04-01
Bladder cancer (BLCa) is a severe urological cancer of both men and women that commonly recurs and once invasive, is difficult to treat. MINA-05 (CK Life Sciences Int'l, Hong Kong) is a derivative of complex botanical extracts, shown to reduce cellular proliferation of bladder and prostate carcinomas. We tested the effects of MINA-05 against human BLCa cell sublines, B8, B8-RSP-GCK, B8-RSP-LN and C3, from a transitional cell carcinoma, grade IV, to determine the molecular targets of treatment by observing the cellular protein profile. Cells were acclimatised for 48 h then treated for 72 h with concentrations of MINA-05 reflecting 1/2 IC(50), IC(50) and 2 x IC(50) (n = 3) or with vehicle, (0.5% DMSO). Dose-dependant changes in protein abundance were detected and characterised using 2-dimensional electrophoresis and MS. We identified 10 proteins that underwent changes in abundance, pI and/or molecular mass in response to treatment. MINA-05 was shown to influence proteins across numerous functional classes including cytoskeletal proteins, energy metabolism proteins, protein degradation proteins and tumour suppressors, suggesting a global impact on these cell lines. This study implies that the ability of MINA-05 to retard cellular proliferation is attributed to its ability to alter cell cycling, metabolism, protein degradation and the cancer cell environment.
Mobilization of peripheral blood stem cells in CLL patients after front-line fludarabine treatment.
Lysak, D; Koza, V; Steinerova, K; Jindra, P; Vozobulova, V; Schutzova, M
2005-07-01
Autologous peripheral blood stem cell transplantation is performed in an increasing number of chronic lymphocytic leukaemia (CLL) patients who are in the first remission following fludarabine treatment. There are contradictory data about the adverse impact of fludarabine on stem cell harvest. We analysed retrospectively mobilization results in 56 poor-risk CLL patients (median age: 56 years) who underwent first-line treatment with fludarabine and cyclophosphamide. The mobilization, consisting of cyclophosphamide 3 g/m(2) and granulocyte colony-stimulating factor (G-CSF) 10 microg/kg per day, was performed with a median of 77 days following the last fludarabine course. The target yield was >or=2.0x10(6) CD34+ cells/kg. The procedure was successful in 23 (41%) patients. A median of 3.3x10(6) CD34+ cells/kg was collected per patient. The successful mobilization was associated with a longer interval from the last chemotherapy (>2 months). The mobilization result was not influenced by the number of fludarabine cycles. No correlation was found in other parameters such as disease stage at diagnosis, disease status at stimulation or age. The poorly mobilized patients had significantly lower prestimulation blood counts (platelets, WBC and haemoglobin). Our data show that fludarabine does not generally prevent the stem cell mobilization; nevertheless, mechanisms related to the impact of fludarabine on stem cell harvest must be further investigated.
Role of Bunyamwera Orthobunyavirus NSs protein in infection of mosquito cells.
Szemiel, Agnieszka M; Failloux, Anna-Bella; Elliott, Richard M
2012-01-01
Bunyamwera orthobunyavirus is both the prototype and study model of the Bunyaviridae family. The viral NSs protein seems to contribute to the different outcomes of infection in mammalian and mosquito cell lines. However, only limited information is available on the growth of Bunyamwera virus in cultured mosquito cells other than the Aedes albopictus C6/36 line. To determine potential functions of the NSs protein in mosquito cells, replication of wild-type virus and a recombinant NSs deletion mutant was compared in Ae. albopictus C6/36, C7-10 and U4.4 cells, and in Ae. aegypti Ae cells by monitoring N protein production and virus yields at various times post infection. Both viruses established persistent infections, with the exception of NSs deletion mutant in U4.4 cells. The NSs protein was nonessential for growth in C6/36 and C7-10 cells, but was important for productive replication in U4.4 and Ae cells. Fluorescence microscopy studies using recombinant viruses expressing green fluorescent protein allowed observation of three stages of infection, early, acute and late, during which infected cells underwent morphological changes. In the absence of NSs, these changes were less pronounced. An RNAi response efficiently reduced virus replication in U4.4 cells transfected with virus specific dsRNA, but not in C6/36 or C7/10 cells. Lastly, Ae. aegypti mosquitoes were exposed to blood-meal containing either wild-type or NSs deletion virus, and at various times post-feeding, infection and disseminated infection rates were measured. Compared to wild-type virus, infection rates by the mutant virus were lower and more variable. If the NSs deletion virus was able to establish infection, it was detected in salivary glands at 6 days post-infection, 3 days later than wild-type virus. Bunyamwera virus NSs is required for efficient replication in certain mosquito cell lines and in Ae. aegypti mosquitoes.
Surveillance imaging in mantle cell lymphoma in first remission lacks clinical utility.
Guidot, Daniel M; Switchenko, Jeffrey M; Nastoupil, Loretta J; Koff, Jean L; Blum, Kristie A; Maly, Joseph; Flowers, Christopher R; Cohen, Jonathon B
2018-04-01
Mantle cell lymphoma (MCL) is a heterogeneous disease with high relapse rates. Limited data guide the use of surveillance imaging following treatment. We constructed a retrospective cohort from two academic institutions of patients with MCL who completed first-line therapy and underwent follow-up for relapse, analyzing the effect of surveillance imaging on survival. Of 217 patients, 102 had documented relapse, with 38 (37%) diagnosed by surveillance imaging and 64 (63%) by other methods. Relapse diagnosis by surveillance imaging had no significant advantage in overall survival from diagnosis date (hazard ratio [HR] = 0.80, p = .39) or relapse date (HR = 0.72, p = .22). Of 801 surveillance images, PET/CT had a positive predictive value (PPV) of 24% and number needed-to-scan/treat (NNT) of 51 to detect one relapse, and CT had a PPV of 49% and NNT of 24. For MCL after first-line therapy, relapse detection by surveillance imaging was not associated with improved survival and lacks clinical benefit.
HES6 reverses nuclear reprogramming of insulin-producing cells following cell fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ball, Andrew J.; Abrahamsson, Annelie E.; Tyrberg, Bjoern
2007-04-06
To examine the mechanism by which growth-stimulated pancreatic {beta}-cells dedifferentiate, somatic cell fusions were performed between MIN6, a highly differentiated mouse insulinoma, and {beta}lox5, a cell line derived from human {beta}-cells which progressively dedifferentiated in culture. MIN6/{beta}lox5 somatic cells hybrids underwent silencing of insulin expression and a marked decline in PDX1, NeuroD, and MafA, indicating that {beta}lox5 expresses a dominant transacting factor(s) that represses {beta}-cell differentiation. Expression of Hes1, which inhibits endocrine differentiation was higher in hybrid cells than in parental MIN6 cells. Hes6, a repressor of Hes1, was highly expressed in primary {beta}-cells as well as MIN6, but wasmore » repressed in hybrids. Hes6 overexpression using a retroviral vector led to a decrease in Hes1 levels, an increase in {beta}-cell transcription factors and partial restoration of insulin expression. We conclude that the balance of Notch activators and inhibitors may play an important role in maintaining the {beta}-cell differentiated state.« less
2013-01-01
Background Bioactive molecules have received increasing attention due to their nutraceutical attributes and anticancer, antioxidant, antiproliferative and apoptosis-inducing properties. This study aimed to investigate the biological properties of carotenoids extracted from Archaea. Methods Halophilic Archaea strains were isolated from the brine of a local crystallizer pond (TS7) of a solar saltern at Sfax, Tunisia. The most carotenoid-producing strain (M8) was investigated on heptoma cell line (HepG2), and its viability was assessed by the MTT-test. The cells were incubated with different sub-lethal extract rates, with carotenoid concentrations ranging from 0.2 to 1.5 μM. Antioxidant activity was evaluated through exposing the cells to sub-lethal extract concentrations for 24 hours and then to oxidative stress induced by 60 μM arachidonic acid and 50 μM H2O2. Results Compared to non-treated cells, bacterial carotenoid extracts inhibited HepG2 cell viability (50%). A time and dose effect was observed, with cell viability undergoing a significant (P < 0.05) decrease with extract concentration. After exposure to oxidative stress, control cells underwent a significant (P < 0.05) decrease in viability as compared to the non-treated cells. Conclusions The bacterial extracts under investigation were noted to exhibit the strongest free radical scavenging activity with high carotenoid concentrations. The carotenoid extract also showed significant antiproliferative activity against HepG2 human cancer cell lines. PMID:24090008
Conforti, Paola; Camnasio, Stefano; Mutti, Cesare; Valenza, Marta; Thompson, Morgan; Fossale, Elisa; Zeitlin, Scott; MacDonald, Marcy E; Zuccato, Chiara; Cattaneo, Elena
2013-02-01
Huntington's disease (HD) is a neurodegenerative disorder that affects muscle coordination and diminishes cognitive abilities. The genetic basis of the disease is an expansion of CAG repeats in the Huntingtin (Htt) gene. Here we aimed to generate a series of mouse neural stem (NS) cell lines that carried varying numbers of CAG repeats in the mouse Htt gene (Hdh CAG knock-in NS cells) or that had Hdh null alleles (Hdh knock-out NS cells). Towards this end, Hdh CAG knock-in mouse ES cell lines that carried an Htt gene with 20, 50, 111, or 140 CAG repeats or that were Htt null were neuralized and converted into self-renewing NS cells. The resulting NS cell lines were immunopositive for the neural stem cell markers NESTIN, SOX2, and BLBP and had similar proliferative rates and cell cycle distributions. After 14 days in vitro, wild-type NS cells gave rise to cultures composed of 70% MAP2(+) neurons and 30% GFAP(+) astrocytes. In contrast, NS cells with expanded CAG repeats underwent neuronal cell death, with only 38%±15% of the MAP2(+) cells remaining at the end of the differentiation period. Cell death was verified by increased caspase 3/7 activity on day 14 of the neuronal differentiation protocol. Interestingly, Hdh knock-out NS cells treated using the same neuronal differentiation protocol showed a dramatic increase in the number of GFAP(+) cells on day 14 (61%±20% versus 24%±10% in controls), and a massive decrease of MAP2(+) neurons (30%±11% versus 64%±17% in controls). Both Hdh CAG knock-in NS cells and Hdh knock-out NS cells showed reduced levels of Bdnf mRNA during neuronal differentiation, in agreement with data obtained previously in HD mouse models and in post-mortem brain samples from HD patients. We concluded that Hdh CAG knock-in and Hdh knock-out NS cells have potential as tools for investigating the roles of normal and mutant HTT in differentiated neurons and glial cells of the brain. Copyright © 2012 Elsevier Inc. All rights reserved.
Lidocaine Stimulates the Function of Natural Killer Cells in Different Experimental Settings.
Cata, Juan P; Ramirez, Maria F; Velasquez, Jose F; Di, A I; Popat, Keyuri U; Gottumukkala, Vijaya; Black, Dahlia M; Lewis, Valerae O; Vauthey, Jean N
2017-09-01
One of the functions of natural killer (NK) cells is to eliminate cancer cells. The cytolytic activity of NK cells is tightly regulated by inhibitory and activation receptors located in the surface membrane. Lidocaine stimulates the function of NK cells at clinically relevant concentrations. It remains unknown whether this effect of lidocaine has an impact on the expression of surface receptors of NK cells, can uniformly stimulate across different cancer cell lines, and enhances the function of cells obtained during oncological surgery. NK cells from healthy donors and 43 patients who had undergone surgery for cancer were isolated. The function of NK cells was measured by lactate dehydrogenase release assay. NK cells were incubated with clinically relevant concentrations of lidocaine. By flow cytometry, we determined the impact of lidocaine on the expression of galactosylgalactosylxylosylprotein3-beta-glucuronosytranferase 1, marker of cell maturation (CD57), killer cell lectin like receptor A, inhibitory (NKG2A) receptors and killer cell lectin like receptor D, activation (NKG2D) receptors of NK cells. Differences in expression at p<0.05 were considered statistically significant. Lidocaine increased the expression of NKG2D receptors and stimulated the function of NK cells against ovarian, pancreatic and ovarian cancer cell lines. Lidocaine also increased the cytolytic activity of NK cells from patients who underwent oncological surgery, except for those who had orthopedic procedures. Lidocaine showed an important stimulatory activity on NK cells. Our findings suggest that lidocaine might be used perioperatively to minimize the impact of surgery on NK cells. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Kojima, Takahiro; Kawai, Koji; Tsuchiya, Kunihiko; Abe, Takashige; Shinohara, Nobuo; Tanaka, Toshiaki; Masumori, Naoya; Yamada, Shigeyuki; Arai, Yoichi; Narita, Shintaro; Tsuchiya, Norihiko; Habuchi, Tomonori; Nishiyama, Hiroyuki
2015-10-01
To clarify the significance of the International Germ Cell Cancer Collaborative Group classification in the 2000s, especially in intermediate- and poor-prognosis testicular germ cell tumor in Japan. We retrospectively analyzed 117 patients with intermediate- and poor-prognosis testicular non-seminomatous germ cell tumor treated at five university hospitals in Japan between 2000 and 2010. Data collected included age, levels of tumor markers, spread to non-pulmonary visceral metastases, treatment details and survival. The median follow-up period of all patients was 57 months. A total of 50 patients (43%) were classified as having intermediate prognosis, and 67 patients (57%) as poor prognosis according to the International Germ Cell Cancer Collaborative Group classification. As first-line chemotherapy, 92 patients (79%) received bleomycin, etoposide and cisplatin. Of all patients, 74 patients (63%) received second-line chemotherapy. The most commonly used second-line chemotherapy regimens were a combination of taxanes, ifosfamide and platinum in 49 cases (66%). Overall, 33 patients (28%) received third-line chemotherapy. A total of 88 patients (75%) underwent post-chemotherapy surgery. The 5-year overall survival for intermediate (n = 50) and poor prognosis (n = 67) was 89% and 83% (P = 0.21), respectively. In poor prognosis patients, patients with two or more risk factors (any of high lactic dehydrogenase, alpha-fetoprotein and human chorionic gonadotropin levels, and presence of non-pulmonary visceral metastases) had significantly worse survival than those with only one risk factor (71% and 91%, respectively, P = 0.01). The 5-year overall survivals of poor-prognosis testicular non-seminomatous germ cell tumor patients reached 83%. Further stratification of poor-prognosis patients based on a number of risk factors has the potential to further identify those with poorer prognosis. © 2015 The Japanese Urological Association.
Chabchoub, Elyes; Rodríguez, Laura; Galán, Enrique; Mansilla, Elena; Martínez‐Fernandez, Maria Luisa; Martínez‐Frías, Maria Luisa; Fryns, Jean‐Pierre; Vermeesch, Joris Robert
2007-01-01
Background Broken chromosomes must acquire new telomeric “caps” to be structurally stable. Chromosome healing can be mediated either by telomerase through neo‐telomere synthesis or by telomere capture. Aim To unravel the mechanism(s) generating complex chromosomal mosaicisms and healing broken chromosomes. Methods G banding, array comparative genomic hybridization (aCGH), fluorescence in‐situ hybridisation (FISH) and short tandem repeat analysis (STR) was performed on a girl presenting with mental retardation, facial dysmorphism, urogenital malformations and limb anomalies carrying a complex chromosomal mosaicism. Results & discussion The karyotype showed a de novo chromosome rearrangement with two cell lines: one cell line with a deletion 9pter and one cell line carrying an inverted duplication 9p and a non‐reciprocal translocation 5pter fragment. aCGH, FISH and STR analysis enabled the deduction of the most likely sequence of events generating this complex mosaic. During embryogenesis, a double‐strand break occurred on the paternal chromosome 9. Following mitotic separation of both broken sister chromatids, one acquired a telomere vianeo‐telomere formation, while the other generated a dicentric chromosome which underwent breakage during anaphase, giving rise to the del inv dup(9) that was subsequently healed by chromosome 5 telomere capture. Conclusion Broken chromosomes can coincidently be rescued by both telomere capture and neo‐telomere synthesis. PMID:17172463
Angiopellosis as an Alternative Mechanism of Cell Extravasation.
Allen, Tyler A; Gracieux, David; Talib, Maliha; Tokarz, Debra A; Hensley, M Taylor; Cores, Jhon; Vandergriff, Adam; Tang, Junnan; de Andrade, James B M; Dinh, Phuong-Uyen; Yoder, Jeffrey A; Cheng, Ke
2017-01-01
Stem cells possess the ability to home in and travel to damaged tissue when injected intravenously. For the cells to exert their therapeutic effect, they must cross the blood vessel wall and enter the surrounding tissues. The mechanism of extravasation injected stem cells employ for exit has yet to be characterized. Using intravital microscopy and a transgenic zebrafish line Tg(fli1a:egpf) with GFP-expressing vasculature, we documented the detailed extravasation processes in vivo for injected stem cells in comparison to white blood cells (WBCs). While WBCs left the blood vessels by the standard diapedesis process, injected cardiac and mesenchymal stem cells underwent a distinct method of extravasation that was markedly different from diapedesis. Here, the vascular wall undergoes an extensive remodeling to allow the cell to exit the lumen, while the injected cell remains distinctively passive in activity. We termed this process Angio-pello-sis, which represents an alternative mechanism of cell extravasation to the prevailing theory of diapedesis. Stem Cells 2017;35:170-180 Video Highlight: https://youtu.be/i5EI-ZvhBps. © 2016 AlphaMed Press.
Marti, Josep; Trivedi, Anshu; D'Alessandro, Valentina; Roayaie, Sasan; Rosen, Ally; Arnon, Ronen; Thung, Swan
2015-04-01
This is a case report of an asymptomatic 4-year-old girl who was found to have a nodule at the lateral left lobe of the liver. She underwent transabdominal liver ultrasound and abdominal MRI that showed calcification and intense arterial enhancement but they failed to clearly exclude malignancy. The patient underwent an unremarkable laparoscopic wedge liver resection of the lesion because of its location and size. Pathological examination showed features compatible with a benign telangiectatic hyperplastic nodule with vascular malformation and calcification. CD34 immunostained the proliferative vascular lining cells while CK7 and CK19 highlighted the normal bile ducts present within the lesion. The diagnosis of a telangiectatic hyperplastic nodule associated with vascular malformation has been scarcely reported in children and our case shows for the first time that it can also present with calcifications.
Österroos, A; Kashif, M; Haglund, C; Blom, K; Höglund, M; Andersson, C; Gustafsson, M G; Eriksson, A; Larsson, R
2016-10-15
Cytogenetic lesions often alter kinase signaling in acute myeloid leukemia (AML) and the addition of kinase inhibitors to the treatment arsenal is of interest. We have screened a kinase inhibitor library and performed combination testing to find promising drug-combinations for synergistic killing of AML cells. Cytotoxicity of 160 compounds in the library InhibitorSelect™ 384-Well Protein Kinase Inhibitor I was measured using the fluorometric microculture cytotoxicity assay (FMCA) in three AML cell lines. The 15 most potent substances were evaluated for dose-response. The 6 most cytotoxic compounds underwent combination synergy analysis based on the FMCA readouts after either simultaneous or sequential drug addition in AML cell lines. The 4 combinations showing the highest level of synergy were evaluated in 5 primary AML samples. Synergistic calculations were performed using the combination interaction analysis package COMBIA, written in R, using the Bliss independence model. Based on obtained results, an iterative combination search was performed using the therapeutic algorithmic combinatorial screen (TACS) algorithm. Of 160 substances, cell survival was ⩽50% at <0.5μM for Cdk/Crk inhibitor, KP372-1, synthetic fascaplysin, herbimycin A, PDGF receptor tyrosine kinase inhibitor IV and reference-drug cytarabine. KP372-1, synthetic fascaplysin or herbimycin A obtained synergy when combined with cytarabine in AML cell lines MV4-11 and HL-60. KP372-1 added 24h before cytarabine gave similar results in patient cells. The iterative search gave further improved synergy between cytarabine and KP372-1. In conclusion, our in vitro studies suggest that combining KP372-1 and cytarabine is a potent and synergistic drug combination in AML. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Schatten, H.; Lewis, M. L.; Chakrabarti, A.
2001-01-01
The cytoskeleton is a complex network of fibers that is sensitive to environmental factors including microgravity and altered gravitational forces. Cellular functions such as transport of cell organelles depend on cytoskeletal integrity; regulation of cytoskeletal activity plays a role in cell maintenance, cell division, and apoptosis. Here we report cytoskeletal and mitochondria alterations in cultured human lymphocyte (Jurkat) cells after exposure to spaceflight and in insect cells of Drosophila melanogaster (Schneider S-1) after exposure to conditions created by clinostat rotation. Jurkat cells were flown on the space shuttle in Biorack cassettes while Schneider S-1 cells were exposed to altered gravity forces as produced by clinostat rotation. The effects of both treatments were similar in the different cell types. Fifty percent of cells displayed effects on the microtubule network in both cell lines. Under these experimental conditions mitochondria clustering and morphological alterations of mitochondrial cristae was observed to various degrees after 4 and 48 hours of culture. Jurkat cells underwent cell divisions during exposure to spaceflight but a large number of apoptotic cells was also observed. Similar results were obtained in Schneider S-1 cells cultured under clinostat rotation. Both cell lines displayed mitochondria abnormalities and mitochondria clustering toward one side of the cells which is interpreted to be the result of microtubule disruption and failure of mitochondria transport along microtubules. The number of mitochondria was increased in cells exposed to altered gravity while cristae morphology was severely affected indicating altered mitochondria function. These results show that spaceflight as well as altered gravity produced by clinostat rotation affects microtubule and mitochondria organization and results in increases in apoptosis. Grant numbers: NAG 10-0224, NAG2-985. c 2001. Elsevier Science Ltd. All rights reserved.
Costa, Patricia Marçal da; Ferreira, Paulo Michel Pinheiro; Bolzani, Vanderlan da Silva; Furlan, Maysa; de Freitas Formenton Macedo Dos Santos, Vânia Aparecida; Corsino, Joaquim; de Moraes, Manoel Odorico; Costa-Lotufo, Letícia Veras; Montenegro, Raquel Carvalho; Pessoa, Cláudia
2008-06-01
Pristimerin has been shown to be cytotoxic to several cancer cell lines. In the present work, the cytotoxicity of pristimerin was evaluated in human tumor cell lines and in human peripheral blood mononuclear cells (PBMC). This work also examined the effects of pristimerin (0.4; 0.8 and 1.7 microM) in HL-60 cells, after 6, 12 and 24h of exposure. Pristimerin reduced the number of viable cells and increased number of non-viable cells in a concentration-dependent manner by tripan blue test showing morphological changes consistent with apoptosis. Nevertheless, pristimerin was not selective to cancer cells, since it inhibited PBMC proliferation with an IC50 of 0.88 microM. DNA synthesis inhibition assessed by 5-bromo-2'-deoxyuridine (BrdU) incorporation in HL-60 cells was 70% and 83% for the concentrations of 0.4 and 0.8 microM, respectively. Pristimerin (10 and 20 microM) was not able to inhibit topoisomerase I. In AO/EB (acridine orange/ethidium bromide) staining, all tested concentrations reduced the number of HL-60 viable cells, with the occurrence of necrosis and apoptosis in a concentration-dependent manner, results in agreement with trypan blue exclusion findings. The analysis of membrane integrity and internucleosomal DNA fragmentation by flow cytometry in the presence of pristimerin indicated that treated cells underwent apoptosis. The present data point to the importance of pristimerin as representative of an emerging class of potential anticancer chemicals, exhibiting an antiproliferative effect by inhibiting DNA synthesis and triggering apoptosis.
Polymer-Based Reconstruction of the Inferior Vena Cava in Rat: Stem Cells or RGD Peptide?
Pontailler, Margaux; Illangakoon, Eranka; Williams, Gareth R.; Marijon, Camille; Bellamy, Valérie; Balvay, Daniel; Autret, Gwenhael; Vanneaux, Valérie; Larghero, Jérôme; Planat-Benard, Valérie; Perier, Marie-Cécile; Bruneval, Patrick; Menasché, Philippe
2015-01-01
As part of a program targeted at developing a resorbable valved tube for replacement of the right ventricular outflow tract, we compared three biopolymers (polyurethane [PU], polyhydroxyalkanoate (the poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxyvalerate) [PHBVV]), and polydioxanone [PDO]) and two biofunctionalization techniques (using adipose-derived stem cells [ADSCs] or the arginine-glycine-aspartate [RGD] peptide) in a rat model of partial inferior vena cava (IVC) replacement. Fifty-three Wistar rats first underwent partial replacement of the IVC with an acellular electrospun PDO, PU, or PHBVV patch, and 31 nude rats subsequently underwent the same procedure using a PDO patch biofunctionalized either by ADSC or RGD. Results were assessed both in vitro (proliferation and survival of ADSC seeded onto the different materials) and in vivo by magnetic resonance imaging (MRI), histology, immunohistochemistry [against markers of vascular cells (von Willebrand factor [vWF], smooth muscle actin [SMA]), and macrophages ([ED1 and ED2] immunostaining)], and enzyme-linked immunosorbent assay (ELISA; for the expression of various cytokines and inducible NO synthase). PDO showed the best in vitro properties. Six weeks after implantation, MRI did not detect significant luminal changes in any group. All biopolymers were evenly lined by vWF-positive cells, but only PDO and PHBVV showed a continuous layer of SMA-positive cells at 3 months. PU patches resulted in a marked granulomatous inflammatory reaction. The ADSC and RGD biofunctionalization yielded similar outcomes. These data confirm the good biocompatibility of PDO and support the concept that appropriately peptide-functionalized polymers may be successfully substituted for cell-loaded materials. PMID:25611092
Reversible Block of Mouse Neural Stem Cell Differentiation in the Absence of Dicer and MicroRNAs
Sansom, Stephen N.; Alsiö, Jessica M.; Kaneda, Masahiro; Smith, James; O'Carroll, Donal; Tarakhovsky, Alexander; Livesey, Frederick J.
2010-01-01
Background To investigate the functions of Dicer and microRNAs in neural stem (NS) cell self-renewal and neurogenesis, we established neural stem cell lines from the embryonic mouse Dicer-null cerebral cortex, producing neural stem cell lines that lacked all microRNAs. Principal Findings Dicer-null NS cells underwent normal self-renewal and could be maintained in vitro indefinitely, but had subtly altered cell cycle kinetics and abnormal heterochromatin organisation. In the absence of all microRNAs, Dicer-null NS cells were incapable of generating either glial or neuronal progeny and exhibited a marked dependency on exogenous EGF for survival. Dicer-null NS cells assumed complex differences in mRNA and protein expression under self-renewing conditions, upregulating transcripts indicative of self-renewing NS cells and expressing genes characteristic of differentiating neurons and glia. Underlining the growth-factor dependency of Dicer-null NS cells, many regulators of apoptosis were enriched in expression in these cells. Dicer-null NS cells initiate some of the same gene expression changes as wild-type cells under astrocyte differentiating conditions, but also show aberrant expression of large sets of genes and ultimately fail to complete the differentiation programme. Acute replacement of Dicer restored their ability to differentiate to both neurons and glia. Conclusions The block in differentiation due to loss of Dicer and microRNAs is reversible and the significantly altered phenotype of Dicer-null NS cells does not constitute a permanent transformation. We conclude that Dicer and microRNAs function in this system to maintain the neural stem cell phenotype and to facilitate the completion of differentiation. PMID:20976144
Restoration of C/EBPα in dedifferentiated liposarcoma induces G2/M cell cycle arrest and apoptosis
Wu, Yuhsin V.; Okada, Tomoyo; DeCarolis, Penelope; Socci, Nicholas; O’Connor, Rachael; Geha, Rula C.; Somberg, C. Joy; Antonescu, Cristina; Singer, Samuel
2012-01-01
Well differentiated liposarcoma (WDLS) and dedifferentiated liposarcoma (DDLS) represent the most common biological group of liposarcoma, and there is a pressing need to develop targeted therapies for patients with advanced disease. To identify potential therapeutic targets, we sought to identify differences in the adipogenic pathways between DDLS, WDLS, and normal adipose tissue. In a microarray analysis of DDLS (n=84), WDLS (n=79), and normal fat (n=23), C/EBPα, a transcription factor involved in cell cycle regulation and differentiation, was underexpressed in DDLS compared to both WDLS and normal fat (15.2 fold and 27.8 fold, respectively). In normal adipose-derived stem cells, C/EBPα expression was strongly induced when cells were cultured in differentiation media, but in three DDLS cell lines, this induction was nearly absent. We restored C/EBPα expression in one of the cell lines (DDLS8817) by transfection of an inducible C/EBα expression vector. Inducing C/EBPα expression reduced proliferation and caused cells to accumulate in G2/M. Under differentiation conditions, the cell proliferation was reduced further, and 66% of the DDLS cells containing the inducible C/EBPα expression vector underwent apoptosis as demonstrated by annexin V staining. These cells in differentiation conditions expressed early adipocyte-specific mRNAs such as LPL and FABP4, but they failed to accumulate intracellular lipid droplets, a characteristic of mature adipocytes. These results demonstrate that loss of C/EBPα is an important factor in suppressing apoptosis and maintaining the dedifferentiated state in DDLS. Restoring C/EBPα may be a useful therapeutic approach for dedifferentiated liposarcomas. PMID:22170698
Woods, M; Houslay, M D
1991-02-01
Atriopeptin caused dose- (EC50 ca. 2 x 10(-8) M) and time-dependent increases in the intracellular concentration of cyclic GMP in the MDCK kidney epithelial cell line; an effect potentiated by the phosphodiesterase inhibitor, IBMX. The atriopeptin-catalysed increase in cyclic GMP was transient and reached a maximum some 10-20 min after challenge of cells with atriopeptin. The basis for the transience of this increase was shown to be due to the desensitization of guanylate cyclase coupled with extrusion of cyclic GMP from the cells and the degradation of cyclic GMP by phosphodiesterase activity. Atriopeptin-catalysed extrusion of cyclic GMP was time- and dose-(EC50 ca. 1.5 x 10(-8) M) dependent and was inhibited by probenecid but not by high external cyclic GMP concentrations. The extrusion process underwent apparent desensitization as did guanylate cyclase with similar half lives (T1/2 of ca. 20 min). Desensitization was dose-dependent upon atriopeptin and did not appear to be mediated by elevated cyclic GMP concentrations as pre-incubation with 8-bromo cyclic GMP did not cause desensitization and the half-times for desensitization were similar whether or not IBMX was present. The majority of the cyclic nucleotide phosphodiesterase activity was found in the cytosol fraction of the cells and could be separated into two cyclic AMP specific forms and two cyclic GMP preferring forms.
Sufit, Alexandra; Lee-Sherick, Alisa B.; DeRyckere, Deborah; Rupji, Manali; Dwivedi, Bhakti; Varella-Garcia, Marileila; Pierce, Angela M.; Kowalski, Jeanne; Wang, Xiaodong; Frye, Stephen V.; Earp, H. Shelton
2016-01-01
Background MER receptor tyrosine kinase (MERTK) is expressed in a variety of malignancies, including glioblastoma multiforme (GBM). Our previous work demonstrated that inhibition of MERTK using RNA interference induced cell death and chemosensitivity in GBM cells, implicating MERTK as a potential therapeutic target. Here we investigate whether a novel MERTK-selective small molecule tyrosine kinase inhibitor, UNC2025, has similar anti-tumor effects in GBM cell lines. Methods Correlations between expression of GAS6, a MERTK ligand, and prognosis were determined using data from the TCGA database. GBM cell lines (A172, SF188, U251) were treated in vitro with increasing doses of UNC2025 (50-400nM). Cell count and viability were determined by trypan blue exclusion. Cell cycle profiles and induction of apoptosis were assessed by flow cytometric analysis after BrdU or Po-Pro-1/propidium iodide staining, respectively. Polyploidy was detected by propidium iodide staining and metaphase spread. Cellular senescence was determined by β-galactosidase staining and senescence-associated secretory cytokine analysis. Results Decreased overall survival significantly correlated with high levels of GAS6 expression in GBM, highlighting the importance of TAM kinase signaling in GBM tumorigenesis and/or therapy resistance and providing strong rationale for targeting these pathways in the clinic. All three GBM cell lines exhibited dose dependent reductions in cell number and colony formation (>90% at 200nM) after treatment with UNC2025. Cell cycle analysis demonstrated accumulation of cells in the G2/M phase and development of polyploidy. After extended exposure, 60–80% of cells underwent apoptosis. The majority of surviving cells (65–95%) were senescent and did not recover after drug removal. Thus, UNC2025 mediates anti-tumor activity in GBM by multiple mechanisms. Conclusions The findings described here provide further evidence of oncogenic roles for MERTK in GBM, demonstrate the importance of kinase activity for MERTK tumorigenicity and validate UNC2025, a novel MERTK inhibitor, as a potential therapeutic agent for treatment of GBM. PMID:27783662
Gibbons, Don L.; Lin, Wei; Creighton, Chad J.; Rizvi, Zain H.; Gregory, Philip A.; Goodall, Gregory J.; Thilaganathan, Nishan; Du, Liqin; Zhang, Yiqun; Pertsemlidis, Alexander; Kurie, Jonathan M.
2009-01-01
Metastatic disease is a primary cause of cancer-related death, and factors governing tumor cell metastasis have not been fully elucidated. Here, we address this question by using tumor cell lines derived from mice that develop metastatic lung adenocarcinoma owing to expression of mutant K-ras and p53. Despite having widespread somatic genetic alterations, the metastasis-prone tumor cells retained a marked plasticity. They transited reversibly between epithelial and mesenchymal states, forming highly polarized epithelial spheres in three-dimensional culture that underwent epithelial-to-mesenchymal transition (EMT) following treatment with transforming growth factor-β or injection into syngeneic mice. This transition was entirely dependent on the microRNA (miR)-200 family, which decreased during EMT. Forced expression of miR-200 abrogated the capacity of these tumor cells to undergo EMT, invade, and metastasize, and conferred transcriptional features of metastasis-incompetent tumor cells. We conclude that tumor cell metastasis is regulated by miR-200 expression, which changes in response to contextual extracellular cues. PMID:19759262
Villa, Adolfo; Arnold, Roman; Sánchez, Pedro L; Gimeno, Federico; Ramos, Benigno; Cantero, Teresa; Fernández, Maria Eugenia; Sanz, Ricardo; Gutiérrez, Oliver; Mota, Pedro; García-Frade, Javier; San Román, José Alberto; Fernández-Avilés, Francisco
2009-06-15
The aims of this study were to assess the safety of drug-eluting stent (DES) use and to compare the incidence of in-stent restenosis (ISR) and neointimal hyperplasia formation according to the type of stent implanted (DES vs bare-metal stents [BMS]) in patients who underwent intracoronary bone marrow mononuclear cell transplantation after acute ST elevation myocardial infarction. Fifty-nine patients with successfully revascularized ST elevation myocardial infarction (37 using BMS and 22 using DES) underwent paired angiographic examinations at baseline and 6 to 9 months after the intracoronary injection of 91 million +/- 56 million autologous bone marrow mononuclear cells. A subgroup of 30 patients also underwent serial intravascular ultrasound examinations. Off-line angiographic assessment showed 4 cases of binary ISR, primarily in BMS (3 cases), and no major adverse cardiac events were associated with stent type (mean follow-up period 41 +/- 10 months). At follow-up, angiographic late luminal loss was significantly lower in patients with DES than in those patients with BMS (0.35 +/- 0.66 vs 0.71 +/- 0.38 mm, p = 0.011). Multivariate analysis identified the use of DES (beta = -0.32, 95% confidence interval [CI] -0.57 to -0.26, p = 0.03) and a smaller baseline reference vessel diameter (beta = 0.29, 95% CI 0.04 to 0.54, p = 0.02) as independent predictors of lower late loss. Moreover, intravascular ultrasound showed a significant reduction of in-stent neointimal hyperplasia formation related to DES use compared with BMS use (Delta neointimal hyperplasia volume 5.4 mm(3) [95% CI 2.7 to 28.1] vs 35.9 mm(3) [95% CI 22.0 to 43.6], p = 0.035). In conclusion, these findings suggest that the use of DES is safe and may prevent ISR and neointimal hyperplasia formation in patients who undergo intracoronary bone marrow mononuclear cell transplantation after a successfully revascularized ST elevation myocardial infarction.
Sukhotnik, Igor; Coran, Arnold G; Pollak, Yulia; Kuhnreich, Eviatar; Berkowitz, Drora; Saxena, Amulya K
2017-09-01
Notch signaling is thought to act to drive cell versification in the lining of the small intestine. The purpose of the present study was to evaluate the role of the Notch signaling pathway in stem cell differentiation in the late stages of intestinal adaptation after massive small bowel resection in a rat. Male Sprague-Dawley rats were randomly assigned to one of two experimental groups of eight rats each: Sham rats underwent bowel transection and reanastomosis, while SBS rats underwent 75% small bowel resection. Rats were euthanized on day 14 Illumina's Digital Gene Expression (DGE) analysis was used to determine Notch signaling gene expression profiling. Notch-related gene and protein expression was determined using real-time PCR, Western blot analysis, and immunohistochemistry. From seven investigated Notch-related (by DGE analysis) genes, six genes were upregulated in SBS vs. control animals with a relative change in gene expression level of 20% or more. A significant upregulation of Notch signaling-related genes in resected animals was accompanied by a significant increase in Notch-1 protein levels (Western blot analysis) and a significant increase in the number of Notch1 and Hes1 (target gene)-positive cells (immunohistochemistry) compared with sham animals. Evaluation of cell differentiation has shown a strong increase in total number of absorptive cells (unchanged secretory cells) compared with control rats. In conclusion, 2 wk after bowel resection in rats, stimulated Notch signaling directs the crypt cell population toward absorptive progenitors. NEW & NOTEWORTHY This study provides novel insight into the mechanisms of cell proliferation following massive small bowel resection. We show that 2 wk after bowel resection in rats, enhanced stem cell activity was associated with stimulated Notch signaling pathway. We demonstrate that activated Notch signaling cascade directs the crypt cell population toward absorptive progenitors. Copyright © 2017 the American Physiological Society.
Restoration of C/EBPα in dedifferentiated liposarcoma induces G2/M cell cycle arrest and apoptosis.
Wu, Yuhsin V; Okada, Tomoyo; DeCarolis, Penelope; Socci, Nicholas; O'Connor, Rachael; Geha, Rula C; Joy Somberg, C; Antonescu, Cristina; Singer, Samuel
2012-04-01
Well-differentiated liposarcoma (WDLS) and dedifferentiated liposarcoma (DDLS) represent the most common biological group of liposarcoma, and there is a pressing need to develop targeted therapies for patients with advanced disease. To identify potential therapeutic targets, we sought to identify differences in the adipogenic pathways between DDLS, WDLS, and normal adipose tissue. In a microarray analysis of DDLS (n = 84), WDLS (n = 79), and normal fat (n = 23), C/EBPα, a transcription factor involved in cell cycle regulation and differentiation, was underexpressed in DDLS when compared to both WDLS and normal fat (15.2- and 27.8-fold, respectively). In normal adipose-derived stem cells, C/EBPα expression was strongly induced when cells were cultured in differentiation media, but in three DDLS cell lines, this induction was nearly absent. We restored C/EBPα expression in one of the cell lines (DDLS8817) by transfection of an inducible C/EBPα expression vector. Inducing C/EBPα expression reduced proliferation and caused cells to accumulate in G2/M. Under differentiation conditions, the cell proliferation was reduced further, and 66% of the DDLS cells containing the inducible C/EBPα expression vector underwent apoptosis as demonstrated by annexin V staining. These cells in differentiation conditions expressed early adipocyte-specific mRNAs such as LPL and FABP4, but they failed to accumulate intracellular lipid droplets, a characteristic of mature adipocytes. These results demonstrate that loss of C/EBPα is an important factor in suppressing apoptosis and maintaining the dedifferentiated state in DDLS. Restoring C/EBPα may be a useful therapeutic approach for DDLS. Copyright © 2011 Wiley Periodicals, Inc.
Min, Jin Hong; Park, Kyung Hye; Choi, Hong Lak; Park, Jung Soo; Lee, Ji Han; Kim, Hoon; Lee, Byung Kook; Lee, Dong Hun; Lee, Taek Gu
2017-12-01
A suture line placed with the same direction as the relaxed skin tension line leads to good healing, but a suture line with over 30 degrees of angle from the relaxed skin tension line leads to longer healing time and more prominent scarring. W-plasty is widely used to change the direction of the scar or to divide it into several split scars. In this study, we applied W-plasty to patients with facial lacerations in the emergency department. From June 2012 to December 2014, 35 patients underwent simple repair or W-plasty for facial lacerations. Patients in the simple repair group underwent resection following a thermal margin, and the W-plasty group was resected within a pre-designed margin of W-shaped laceration. We assessed prognosis using the Stony Brook Scar Evaluation Scale (SBSES) after 10 days (short-term) and six months (long-term), respectively, following suture removal. Among 35 patients, 15 (42.9%) underwent simple debridement and 20 (57.1%) underwent W-plasty. In the W-plasty group, there was no difference between short-term and long-term follow-up showing high SBSES, but in the simple debridement group, long-term follow-up SBSES significantly decreased. W-plasty SBSES was higher than simple debridement at short-term as well as long-term follow-up. We experienced good results of direct W-plasty application at six-month long-term follow-up. Therefore, W-plasty application is more effective in reducing scar appearance than a simple debridement method for facial laceration patients with an angle of 30 degrees or more to the relaxed skin tension line. Copyright © 2017 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cleaver, J.E.; Thomas, G.H.; Park, S.D.
1979-01-01
Human cells (normal and xeroderma pigmentosum variant) irradiated with ultraviolet light and pulse-labelled with (/sup 3/H)thymidine underwent transient decline and recovery of molecular weights of newly synthesized DNA and rates of (/sup 3/H)thymidine incorporation. The ability to synthesize normal-sized DNA recovered more rapidly in both cell types than thymidine incorporation. During recovery cells steadily increased in their ability to replicate normal-sized DNA on damaged templates. The molecular weight versus time curves fitted exponential functions with similar rate constants in normal and heterozygous xeroderma pigmentosum cells, but with a slower rate in two xeroderma pigmentosum variant cell lines. Caffeine added duringmore » the post-irradiation period eliminated the recovery of molecular weights in xeroderma pigmentosum variant but not in normal cells. The recovery of the ability to synthesize normal-sized DNA represents a combination of a number of cellular regulatory processes, some of which are constitutive, and one of which is altered in the xeroderma pigmentosum variant such that recovery becomes slow and caffeine sensitive.« less
Ishikawa, F; Ushida, K; Mori, K; Shibanuma, M
2015-01-22
Anchorage dependence of cellular growth and survival prevents inappropriate cell growth or survival in ectopic environments, and serves as a potential barrier to metastasis of cancer cells. Therefore, obtaining a better understanding of anchorage-dependent responses in normal cells is the first step to understand and impede anchorage independence of growth and survival in cancer cells and finally to eradicate cancer cells during metastasis. Anoikis, a type of apoptosis specifically induced by lack of appropriate cell-extracellular matrix adhesion, has been established as the dominant response of normal epithelial cells to anchorage loss. For example, under detached conditions, the untransformed mammary epithelial cell (MEC) line MCF-10 A, which exhibits myoepithelial characteristics, underwent anoikis dependent on classical ERK signaling. On the other hand, recent studies have revealed a variety of phenotypes resulting in cell death modalities distinct from anoikis, such as autophagy, necrosis, and cornification, in detached epithelial cells. In the present study, we characterized detachment-induced cell death (DICD) in primary human MECs immortalized with hTERT ((Tert)HMECs), which are bipotent progenitor-like cells with a differentiating phenotype to luminal cells. In contrast to MCF-10 A cells, apoptosis was not observed in detached (Tert)HMECs; instead, non-apoptotic cell death marked by features of entosis, cornification, and necrosis was observed along with downregulation of focal adhesion kinase (FAK) signaling. Cell death was overcome by anchorage-independent activities of FAK but not PI3K/AKT, SRC, and MEK/ERK, suggesting critical roles of atypical FAK signaling pathways in the regulation of non-apoptotic cell death. Further analysis revealed an important role of TRAIL (tumor necrosis factor (TNF)-related apoptosis-inducing ligand) as a mediator of FAK signaling in regulation of entosis and necrosis and a role of p38 MAPK in the induction of necrosis. Overall, the present study highlighted outstanding cell subtype or differentiation stage specificity in cell death phenotypes induced upon anchorage loss in human MECs.
Curcumin Sensitizes Silymarin to Exert Synergistic Anticancer Activity in Colon Cancer Cells.
Montgomery, Amanda; Adeyeni, Temitope; San, KayKay; Heuertz, Rita M; Ezekiel, Uthayashanker R
2016-01-01
We studied combinatorial interactions of two phytochemicals, curcumin and silymarin, in their action against cancer cell proliferation. Curcumin is the major component of the spice turmeric. Silymarin is a bioactive component of milk thistle used as a protective supplement against liver disease. We studied antiproliferative effects of curcumin alone, silymarin alone and combinations of curcumin and silymarin using colon cancer cell lines (DLD-1, HCT116, LoVo). Curcumin inhibited colon cancer cell proliferation in a concentration-dependent manner, whereas silymarin showed significant inhibition only at the highest concentrations assessed. We found synergistic effects when colon cancer cells were treated with curcumin and silymarin together. The combination treatment led to inhibition of colon cancer cell proliferation and increased apoptosis compared to single compound treated cells. Combination treated cells exhibited marked cell rounding and membrane blebbing of apoptotic cells. Curcumin treated cells showed 3-fold more caspase3/7 activity whereas combination treated cells showed 5-fold more activity compared to control and silymarin treated cells. When DLD-1 cells were pre-exposed to curcumin, followed by treatment with silymarin, the cells underwent a high amount of cell death. The pre-exposure studies indicated curcumin sensitization of silymarin effect. Our results indicate that combinatorial treatments using phytochemicals are effective against colorectal cancer.
Yavuz, Serkan; Çetin, Aysu; Akdemir, Atilla; Doyduk, Doğukan; Dişli, Ali; Çelik Turgut, Gurbet; Şen, Alaattin; Yıldırır, Yılmaz
2017-11-01
Cladribine (2-CdA) is used as an anti-cancer drug but is currently studied as a potential treatment for use in relapsing-remitting multiple sclerosis (MS). In this study, we computer designed, synthesized, and characterized two novel derivatives of 2-CdA, K1-5d and K2-4c, and investigated their underlying mechanism of beneficial effect using the CCRF-CEM and RAJI cell lines. For this purpose, we first determined their effect on MS and DNA damage and repair-related gene expression profiles using custom arrays along with 2-CdA treatment at non-toxic doses. Then, we determined whether cells underwent apoptosis after treatment with 2-CdA, K1-5d, and K2-4c in CCRF-CEM and RAJI cells, using the DNA fragmentation assay. It was found that both derivatives modulated the expression of the pathway-related genes that are important in inflammatory signaling, apoptosis, ATM/ATR, double-strand break repair, and the cell cycle. Furthermore, 2-CdA, K1-5d, and K2-4c significantly activated apoptosis in both cell lines. In summary, our data demonstrate that although both derivatives act as anti-inflammatory and apoptotic agents, inducing the accumulation of DNA strand breaks and activating the ultimate tumor suppressor p53 in T and B lymphocytes, the K1-5d derivative has shown more promising activities for further studies. © 2017 Deutsche Pharmazeutische Gesellschaft.
Musiani, Daniele; Konda, John David; Pavan, Simona; Torchiaro, Erica; Sassi, Francesco; Noghero, Alessio; Erriquez, Jessica; Perera, Timothy; Olivero, Martina; Di Renzo, Maria Flavia
2014-09-01
The tyrosine kinase encoded by the MET oncogene is activated by gene mutation or amplification in tumors, which in most instances maintain addiction, i.e., dependency, to MET activation. This makes MET an attractive candidate for targeted therapies. Here we show that, in 3/3 MET-addicted human gastric cancer cell lines, MET kinase inhibition resulted in a 3- to 4-fold increased expression of the antiapoptotic small heat-shock protein of 27 kDa (HSP27, HSPB1). HSP27 increase depended on the inhibition of the MEK/ERK pathway and on heat-shock factor 1 (HSF1) and hypoxia-inducible factor-1α (HIF-1α) regulation. Importantly, HSP27-silenced MET-addicted cells underwent 2- and 3-fold more apoptosis following MET inhibition in vitro and in vivo, respectively. Likewise, in human cancer cells susceptible to epidermal growth factor receptor (EGFR) inhibition, EGFR inhibitors induced HSP27 expression and were strengthened by HSP27 suppression. In control cell lines that were not affected by drugs targeting MET or EGFR, these drugs did not induce HSP27 increase. Therefore, in cancer therapies targeting the MET pathway, the induction of HSP27 might limit the efficacy of anti-MET agents. As HSP27 increase also impairs the effectiveness of EGFR inhibitors and is known to protect cells from chemotherapeutics, the induction of HSP27 by targeted agents might strongly affect the success of combination treatments. © FASEB.
Hosogoe, Shogo; Hatakeyama, Shingo; Kusaka, Ayumu; Hamano, Itsuto; Tanaka, Yoshimi; Hagiwara, Kazuhisa; Hirai, Hideaki; Morohashi, Satoko; Kijima, Hiroshi; Yamamoto, Hayato; Tobisawa, Yuki; Yoneyama, Tohru; Yoneyama, Takahiro; Hashimoto, Yasuhiro; Koie, Takuya; Ohyama, Chikara
2017-07-25
A quantitative tumor response evaluation to molecular-targeting agents in advanced renal cell carcinoma (RCC) is debatable. We aimed to evaluate the relationship between radiologic tumor response and pathological response in patients with advanced RCC who underwent presurgical therapy. Of 34 patients, 31 underwent scheduled radical nephrectomy. Presurgical therapy agents included axitinib (n = 26), everolimus (n = 3), sunitinib (n = 1), and axitinib followed by temsirolimus (n = 1). The major presurgical treatment-related adverse event was grade 2 or 3 hypertension (44%). The median radiologic tumor response by RECIST, Choi, and CMER were -19%, -24%, and -49%, respectively. Among the radiologic tumor response tests, CMER showed a higher association with tumor necrosis in surgical specimens than others. Ki67/MIB1 status was significantly decreased in surgical specimens than in biopsy specimens. The magnitude of the slope of the regression line associated with the tumor necrosis percentage was greater in CMER than in Choi and RECIST. Between March 2012 and December 2016, we prospectively enrolled 34 locally advanced and/or metastatic RCC who underwent presurgical molecular-targeting therapy followed by radical nephrectomy. Primary endpoint was comparison of radiologic tumor response among Response Evaluation Criteria in Solid Tumors (RECIST), Choi, and contrast media enhancement reduction (CMER). Secondary endpoint included pathological downstaging, treatment related adverse events, postoperative complications, Ki67/MIB1 status, and tumor necrosis. CMER may predict tumor response after presurgical molecular-targeting therapy. Larger prospective studies are needed to develop an optimal tumor response evaluation for molecular-targeting therapy.
Wang, Dongqing; Zhu, Haitao; Liu, Yanfang; Liu, Qing; Xie, Xiaodong; Zhou, Yuepeng; Zhang, Lirong; Zhu, Yan; Zhang, Zhijian; Su, Zhaoliang
2014-01-01
Cancer stem cells (CSCs) or cancer-initiating cells (CICs) play an important role in tumor initiation, progression, metastasis, chemoresistance, and recurrence. It is important to construct an effective method to identify and isolate CSCs for biotherapy of cancer. During the past years, many researchers had paid more attention to it; however, this method was still on seeking. Therefore, compared to the former methods that were used to isolate the cancer stem cell, in the present study, we tried to use modified transwell system to isolate and enrich CSCs from human pancreatic cancer cell lines (Panc-1). Our results clearly showed that the lower chamber cells in modified transwell system were easily forming spheres; furthermore, these spheres expressed high levels of stem cell markers (CD133/CD44/CD24/Oct-4/ESA) and exhibited chemoresistance, underwent epithelial-to-mesenchymal transition (EMT), and possessed the properties of self-renewal in vitro and tumorigenicity in vivo. Therefore, we speculated that modified transwell assay system, as a rapid and effective method, can be used to isolate and enrich CSCs.
Dörsam, Bastian; Göder, Anja; Seiwert, Nina; Kaina, Bernd; Fahrer, Jörg
2015-10-01
Alpha-lipoic acid (LA), which plays a pivotal role in mitochondrial energy metabolism, is an endogenous dithiol compound with an array of antioxidative functions. It has been shown that LA triggers cell death in tumor cell lines, whereas non-transformed cells are hardly affected. In the present study, we analyzed the cytotoxicity of LA on colorectal cancer (CRC) cells differing in their p53 status and investigated a putative synergistic effect with the anticancer drug 5-fluorouracil (5-FU). We show that LA induces a dose-dependent decrease in cell viability, which was independent of the p53 status as attested in isogenic p53-proficient and p53-deficient cell lines. This effect was largely attributable to cell death induction as revealed by Annexin-V/PI staining. LA-treated HCT116 cells underwent caspase-dependent and caspase-independent cell death, which was blocked by the pan-caspase inhibitor zVAD and the RIP-kinase inhibitor Necrostatin-1, respectively. In CaCO-2 and HT29 cells, LA induced caspase-dependent cell demise via activation of caspase-9, caspase-3 and caspase-7 with subsequent PARP-1 cleavage as demonstrated by immunoblot analysis, activity assays and pan-caspase inhibition. Interestingly, LA treatment did neither activate p53 nor induced genotoxic effects as shown by lack of DNA strand breaks and phosphorylation of histone 2AX. Finally, we provide evidence that LA increases the cytotoxic effect induced by the anticancer drug 5-FU as revealed by significantly enhanced cell death rates in HCT116 and CaCO-2 cells. Collectively, these findings demonstrate that LA induces CRC cell death independent of their p53 status and potentiates the cytotoxicity of 5-FU without causing DNA damage on its own, which makes it a candidate for tumor therapy.
Economou, Mario A; Andersson, Sandra; Vasilcanu, Diana; All-Ericsson, Charlotta; Menu, Eline; Girnita, Ada; Girnita, Leonard; Axelson, Magnus; Seregard, Stefan; Larsson, Olle
2008-06-01
The cyclolignan picropodophyllin (PPP) efficiently blocks the activity of insulinlike growth factor-1 receptor (IGF-1R) and inhibits the growth of uveal melanoma cells in vitro and in vivo. In this study, the authors investigated the efficiency of orally administered PPP on the growth of uveal melanoma xenografts. In addition, they focused on the effect of PPP on vascular endothelial growth factor (VEGF) in vivo and evaluated its effects in combination with other established antitumor agents in vitro. Four different uveal melanoma cell lines (OCM-1, OCM-3, OCM-8, 92-1) were treated with PPP alone and in combination with imatinib mesylate, cisplatin, 5-fluorouracil, and doxorubicin. Cell viability was determined by XTT assay. SCID mice that underwent xenografting with uveal melanoma cells were used to determine antitumor efficacy of oral PPP in vivo. Five mice were used per group. Tumor samples obtained from the in vivo experiments were analyzed for VEGF and IGF-1R expression by Western blotting. PPP was found to be superior to the other antitumor agents in killing uveal melanoma cells in all four cell lines (IC50 < 0.05 microM). Oral PPP inhibited uveal melanoma growth in vivo in OCM-3 (P = 0.03) and OCM-8 (P = 0.01) xenografts and was well tolerated by the animals. PPP decreased VEGF expression in the OCM-1 (P = 0.006) and OCM-8 (P = 0.01) tumors. Oral PPP was well tolerated in vivo, caused total growth inhibition of uveal melanoma xenografts, and decreased VEGF levels in the tumors.
Vallejo, Abbe N.; Miller, Norman W.
1991-01-01
This work was undertaken to investigate whether or not antigen processing and presentation are important in channel catfish in vitro secondary immune responses elicited with structurally defined proteins, namely, pigeon heart cytochrome C (pCytC), hen egg lysozyme, and horse myoglobin. The use of in vitro antigen-pulsed and fixed B cells or monocytes as antigen presenting cells (APC) resulted in autologous peripheral blood leukocytes (PBL) responding with vigorous proliferation and antibody production in vitro. In addition, several long-term catfish monocyte lines have been found to function as efficient APC with autologous but not allogeneic responders. Subsequent separation of the responding PBL into sIg- (T-cell-enriched) and B (sIg+) cell subsets showed that both underwent proliferative responses to antigen-pulsed and fixed APC. Moreover, allogeneic cells used as APC were found to induce only strong mixed leukocyte reactions without specific in vitro antibody production. Initial attempts at identifying the immunogenic region(s) of the protein antigens for catfish indicated there are two such regions for pCytC, namely, peptides 66-80 and 81-104. PMID:1668258
Immunological response induced by cryoablation against murine H22 hepatoma cell line in vivo.
Yang, Xueling; Li, Xiaoli; Guo, Zhi; Si, Tongguo; Yu, Haipeng; Xing, Wenge
2018-02-01
To describe immunological consequences induced by cryoablation against H22 cells in vivo. Adult BALB/c mice underwent subcutaneous implantation of H22 cells. All of them were assigned into three groups randomly: group A (false surgery), group B (cryoablation) and group C (cryoablation plus Freund's adjuvant). Animals were sacrificed 1, 2 and 3 weeks after treatment. Serum IFN-γ and IL-4, Th1/Th2 in spleens and cytotoxicity were detected. Compared with that of group A, (1) INF-γ of group B was higher, but IL-4 was lower; cryoablation plus Freund's adjuvant enhanced these effects. (2) Th1/Th2 rose significantly in both group B and group C. (3) Strong cytolytic activity against H22 cells of group B and group C was found on day 7, 14 and 21. Our study showed a marked shift toward Th1 and IFN-γ expression after cryoablation, with an immuno-stimulatory effect against murine H22 hepatoma Cell. Copyright © 2017. Published by Elsevier Inc.
Monnet, Isabelle; Audigier-Valette, Clarisse; Girard, Nicolas; Vergnenègre, Alain; Molinier, Olivier; Souquet, Pierre Jean; Blanchon, François; Bonnetain, Franck; Taguieva-Pioger, Naila; Lamour, Corinne; Wislez, Marie
2016-08-01
Erlotinib, an inhibitor of tyrosine kinase activity of the epidermal growth factor receptor, is effective in non-small cell lung cancer (NSCLC). Data on erlotinib use in squamous NSCLC are limited. This observational study aimed at evaluating the efficacy and safety of second-line erlotinib in patients with stage IIIB/IV squamous NSCLC in a real-life setting. Patients with predominantly squamous stage IIIB/IV NSCLC, who failed first-line platinum-based therapy, were recruited and followed-up for 12 months. Patients underwent visits each trimester. Data were derived from case report forms, and functional assessment of cancer therapy-lung (FACT-L) questionnaires. A total of 152 patients were enrolled; the majority were males (90%) and mean age was 67.7 years. All patients had squamous (97%) or predominantly squamous (3%) NSCLC, of stage IIIB (21%) or IV (79%). Median progression free survival (PFS) and overall survival were 3 and 5.8 months, respectively. Disease progression was observed in the majority of the patients, mostly due to progression of primary tumour and/or metastatic sites, and led to death in 91/107 of patients. Of the 107 deaths reported, none were due to erlotinib. FACT-L questionnaires were interpretable up to the first visit and were in line with PFS data, showing a relatively good quality of life up to Month 3 (mean total score=78.8). No new or unexpected safety issues were reported. The results of this real-life cohort study like those of previous phase III/IV subgroups study analyses indicate that erlotinib is a valuable option for second-line treatment of stage IIIB/IV squamous NSCLC. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Outcomes in Lung Cancer: 9-Year Experience From a Tertiary Cancer Center in India
Murali, Aditya Navile; Ganesan, Trivadi S.; Rajendranath, Rejiv; Ganesan, Prasanth; Selvaluxmy, Ganesarajah; Swaminathan, Rajaraman; Sundersingh, Shirley; Krishnamurthy, Arvind; Sagar, Tenali Gnana
2017-01-01
Purpose Lung cancer is the most common cause of cancer mortality in the world. There are limited studies on survival outcomes of lung cancer in developing countries such as India. This study analyzed the outcomes of patients with lung cancer who underwent treatment at Cancer Institute (WIA), Chennai, India, between 2006 and 2015 to determine survival outcomes and identify prognostic factors. Patients and Methods In all, 678 patients with lung cancer underwent treatment. Median age was 58 years, and 91% of patients had non–small-cell lung cancer (NSCLC). Testing for epidermal growth factor receptor mutation was performed in 132 of 347 patients and 61 (46%) were positive. Results Median progression-free survival was 6.9 months and overall survival (OS) was 7.6 months for patients with NSCLC. Median progression-free survival was 6 months and OS was 7.2 months for patients with small-cell lung cancer. On multivariable analysis, the factors found to be significantly associated with inferior OS in NSCLC included nonadenocarcinoma histology, performance status more than 2, and stage. In small-cell lung cancer, younger age and earlier stage at presentation showed significantly better survival. Conclusion Our study highlights the challenges faced in treating lung cancer in India. Although median survival in advanced-stage lung cancer is still poor, strategies such as personalized medicine and use of second-line and maintenance chemotherapy may significantly improve the survival in patients with advanced-stage lung cancer in developing countries. PMID:29094084
Polyploidization on SK-N-MC human neuroblastoma cells infected with herpes simplex virus 1.
Karalyan, Zaven; Izmailyan, Roza; Karalova, Elena; Abroyan, Liana; Hakobyan, Lina; Avetisyan, Aida; Semerjyan, Zara
2016-01-01
Polyploidization is one of the most dramatic changes occurring within cell genome owing to various reasons including under many viral infections. We examined the impact of herpes simplex virus-1 (HSV-1) on SK-N-MC human neuroblastoma cell line. The infected cells were followed from 6 hours up to 96 hours post infection (hpi). A large number of polyploid cells with giant nuclei was observed under the influence of HSV-1 at 24 hpi with the DNA content of 32c to 64c or more, in comparison with control SK-N-MC cells that were characterized by relatively moderate values of ploidy, i.e. 8с to 16с (where 1c is the haploid amount of nuclear DNA found in normal diploid populations in G0/G1). After 48-96 hpi, the population of polyploid cells with giant nuclei decreased to the benchmark level. The SK-NMC cells infected with HSV-1 for 24 hours were stained with gallocyanine and monitored for cytological features. The infected cells underwent virus induced cellcell and nuclei fusion with the formation of dense nuclei syncytium. The metabolic activity of HSV-1 infected cells was higher in both nuclei and nucleoli when compared to control cells.
Acevedo-Duncan, M; Pearlman, J; Zachariah, B
2001-02-01
We assessed the radiosensitivity of the grade III human glioma cell line U-373MG by investigating the effects of radiation and the specific protein kinase C inhibitor, calphostin C on the cell cycle and cell proliferation. Irradiated glioma U-373MG cells progressed through G1-S and underwent an arrest in G2-M phase. The radiosensitivity of U-373MG cells to graded doses of either photons or electrons was determine by microculture tetrazolium assay. The data was fitted to the linear-quadratic model. The proliferation curves demonstrated that U-373MG cells appear to be highly radiation resistant since 8 Gy was required to achieve 50% cell mortality. Compared to radiation alone, exposure to calphostin C (250 nM) 1 h prior to radiation decreased the proliferation of U-373MG by 76% and calphostin C provoked a weakly synergistic effect in concert with radiation. Depending on the time of application following radiation, calphostin C produced an additive or less than additive effect on cell proliferation. We postulate that the enhanced radiosensitivity observed when cells are exposed to calphostin C prior to radiation may be due to direct or indirect inhibition of protein kinase C isozymes required for cell cycle progression.
Flow cytometric and morphological analyses of Pinus pinaster somatic embryogenesis.
Marum, Liliana; Loureiro, João; Rodriguez, Eleazar; Santos, Conceição; Oliveira, M Margarida; Miguel, Célia
2009-09-25
An approach combining morphological profiling and flow cytometric analysis was used to assess genetic stability during the several steps of somatic embryogenesis in Pinus pinaster. Embryogenic cell lines of P. pinaster were established from immature zygotic embryos excised from seeds obtained from open-pollinated trees. During the maturation stage, phenotype of somatic embryos was characterized as being either normal or abnormal. Based upon the prevalent morphological traits, different types of abnormal embryos underwent further classification and quantification. Nuclear DNA content of maritime pine using the zygotic embryos was estimated to be 57.04 pg/2C, using propidium iodide flow cytometry. According to the same methodology, no significant differences (P< or =0.01) in DNA ploidy were detected among the most frequently observed abnormal phenotypes, embryogenic cell lines, zygotic and normal somatic embryos, and somatic embryogenesis-derived plantlets. Although the differences in DNA ploidy level do not exclude the occurrence of a low level of aneuploidy, the results obtained point to the absence of major changes in ploidy level during the somatic embryogenesis process of this economically important species. Therefore, our primary goal of true-to-typeness was assured at this level.
The evolving role of targeted drugs in the treatment of Hodgkin lymphoma.
Eichenauer, Dennis A; Engert, Andreas
2017-09-01
Hodgkin lymphoma (HL) is a B-cell-derived malignancy mostly affecting young adults. More than 80% of patients are cured after stage-adapted first-line treatment with chemotherapy and/or radiotherapy. About 50% of patients with disease recurrence achieve long-term remission with second-line treatment consisting of high-dose chemotherapy and autologous stem cell transplantation. However, HL treatment is often associated with acute toxicity and in part life-threatening late effects. Implementing targeted drugs may reduce toxicity and potentially further optimize efficacy. In recent years, the CD30-directed antibody-drug conjugate brentuximab vedotin (BV) and anti-PD-1 antibodies, nivolumab and pembrolizumab, underwent extensive evaluation in HL. They have exhibited encouraging single agent activity and a favorable toxicity profile in patients with multiple relapses. Therefore, they are currently under investigation in different additional indications. Areas covered: This article gives an overview over clinical trials evaluating targeted drugs either as single agent or as part of combination therapies in HL patients. Expert commentary: A multitude of targeted drugs are investigated in HL. Promising data have particularly emerged from studies with BV and anti-PD-1 antibodies. However, mature data needed for final conclusions are still pending.
Ali, N; Adil, S N; Shaikh, M U
2014-02-01
Bloodstream infections (BSIs) and central line infections remain among the major causes of morbidity and mortality in transplant recipients because of prolonged neutropenia and mucosal damage. The objective of this study was to determine the frequency and outcome of bacterial and fungal isolates from patients undergoing allogeneic hematopoietic stem cell transplant. This study was conducted at the Aga Khan University and Hospital's bone marrow transplant unit. All patients who underwent an allogeneic stem cell transplant with matched sibling/parent donor were included. The study period ranged from April 2004 to December 2012. Transplantation was performed according to institutional protocols. All patients were admitted in single rooms with positive pressure and high-efficiency particulate air filters. Ciprofloxacin, fluconazole, and valaciclovir were used for standard prophylaxis, which was started at the time of conditioning. All blood cultures were obtained at clinical suspicion of systemic infection, mainly documented as fever (temperature of >38.5°C). BSIs and line infections were defined as isolation of bacterial or fungal pathogen from at least one blood/central line culture. In total, 101 of 108 patients developed febrile neutropenia. In the 101 patients, 245 documented febrile episodes occurred. There were 40 culture-positive episodes and 205 culture-negative episodes. Of these 40 culture-positive episodes, 22 patients had bloodstream isolates and 18 had central line isolates. The median ± standard deviation time of febrile neutropenia was day 7 ± 2 days (range: day -3 to day +13). The most common bloodstream isolate was Escherichia coli (n = 9) followed by Staphylococcus epidermidis (n = 5). One patient developed Fusarium infection. In central line infections, S. epidermidis was the most common organism (n = 8). In 2 patients with central venous catheters, Candida albicans was the isolate. Transplant-related mortality from sepsis occurred in 9.2%. E.coli was mainly responsible for BSI, while gram-positive organisms dominated catheter-related febrile episodes. Transplant-related mortality due to sepsis was 9%. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
The Onion Sign in neovascular age-related macular degeneration represents cholesterol crystals
Pang, Claudine E.; Messinger, Jeffrey D.; Zanzottera, Emma C.; Freund, K. Bailey; Curcio, Christine A.
2015-01-01
Purpose To investigate the frequency, natural evolution and histological correlates of layered, hyperreflective, sub-retinal pigment epithelium (sub-RPE) lines, known as the Onion Sign, in neovascular age-related macular degeneration (nvAMD). Design Retrospective observational cohort study; an experimental laboratory study. Participants Two hundred thirty eyes of 150 consecutive patients with nvAMD; 40 human donor eyes with clinical and histopathologic diagnosis of nvAMD. Methods Spectral-domain optical coherence tomography (SD-OCT), near-infrared reflectance (nIR), color fundus images and medical charts were reviewed. Donor eyes underwent multimodal ex vivo imaging including SD-OCT before processing for high-resolution histology. Main Outcome Measures Presence of layered, hyperreflective sub-RPE lines, qualitative analysis of their change in appearance over time with SD-OCT, histological correlates of these lines, and associated findings within surrounding tissues. Results Sixteen of 230 eyes of patients (7.0%) and 2 of 40 donor eyes (5.0%) with nvAMD had layered, hyperreflective sub-RPE lines on SD-OCT imaging. These appeared as refractile, yellow-gray exudates on color imaging and hyperreflective lesions on nIR. In all 16 eyes, the Onion Sign persisted in follow-up for up to 5 years, with fluctuations in the abundance of lines and associated with intraretinal hyperreflective foci. Patients with the Onion Sign were disproportionately taking cholesterol-lowering medications (p = 0.025). Histology of 2 donor eyes revealed that hyperreflective lines correlated with clefts created by extraction of cholesterol crystals during tissue processing. Fluid surrounding crystals contained lipid yet was distinct from oily drusen. Intraretinal hyperreflective foci correlated with intraretinal RPE and lipid-filled cells of probable monocyte origin. Conclusion Persistent and dynamic, the Onion Sign represents sub-RPE cholesterol crystal precipitation in aqueous environment. The frequency of the Onion Sign in nvAMD in a referral practice and a pathology archive is 5–7%. Associations include use of cholesterol-lowering medication and intraretinal hyperreflective foci attributable to RPE cells and lipid-filled cells of monocyte origin. PMID:26298717
Wallis, M Chad; Oottamasathien, Siam; Wicher, Chris; Hadley, David; Snow, Brent W; Cartwright, Patrick C
2013-12-01
Several methods have been described for immobilization of the pelvis following bladder exstrophy closure, which can be challenging to manage. We hypothesized that immobilization can be significantly simplified using a modified mermaid wrap with padded Velcro® straps around the thigh and lower leg. We retrospectively reviewed all patients who underwent bladder exstrophy closure in the newborn period at our institution from 1990 through 2010. Patients with cloacal exstrophy and those who underwent delayed closure due to other medical conditions were excluded. We collected data on closure technique, length of stay and complications of the primary closure as outcomes. A total of 20 boys and 7 girls underwent closure of classic bladder exstrophy. Followup ranged from 2 to 22 years. Seven boys underwent complete primary repair and 13 underwent staged repair. All patients had the legs stabilized with a modified wrap technique using 2 lengths of Velcro straps lined with self-adhering open cell foam pads for 3 weeks. Complications of exstrophy closure included bladder dehiscence in 1 patient (4%) and incisional hernia in 2 (7%). Following complete primary repair urethrocutaneous fistula developed in 2 patients and urethral stricture in 2. Average length of stay for patients without significant prematurity was 15 days. Padded Velcro strap immobilization simplifies postoperative care, provides secure fixation, decreases length of stay, and enables parents to hold and bond with the child shortly after repair. We advocate this simplified technique, which can be applied with a rate of complications that is comparable to other procedures. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
Applicability of an established management algorithm for colon injuries following blunt trauma.
Sharpe, John P; Magnotti, Louis J; Weinberg, Jordan A; Shahan, Charles P; Cullinan, Darren R; Fabian, Timothy C; Croce, Martin A
2013-02-01
Operative management at our institution for all colon injuries have followed a defined algorithm (ALG) based on risk factors originally identified for penetrating injuries. The purpose of this study was to evaluate the applicability of the ALG to blunt colon injuries. Patients with blunt colon injuries during 13 years were identified. As per the ALG, nondestructive (ND) injuries are treated with primary repair. Patients with destructive wounds (serosal tear of ≥50% colon circumference, mesenteric devascularization, and perforations) and concomitant risk factors (transfusion of >6 U packed red blood cells and/or presence of significant comorbidities) are diverted, while patients with no risk factors undergo resection plus anastomosis (RA). Outcomes included suture line failure (SLF), abscess, and mortality. Stratification analysis was performed to determine additional risk factors in the management of blunt colon injuries. A total 151 patients were identified: 76 with destructive injuries and 75 with ND injuries. Of those with destructive injuries, 44 (59%) underwent RA and 29 (39%) underwent diversion. All ND injuries underwent primary repair. Adherence to the ALG was 95%: three patients with destructive injuries underwent primary repair, and five patients with risk factors underwent RA. There were three SLFs (2%) (one involved deviation from the ALG) and eight abscesses (5%). Colon-related mortality was 2.1%. Stratification analysis based on mesenteric involvement, degree of shock, and need for abbreviated laparotomy failed to identify additional risk factors for SLF following RA for blunt colon injuries. Adherence to an ALG, originally defined for penetrating colon injuries, simplified the management of blunt colon injuries. ND injuries should be primarily repaired. For destructive wounds, management based on a defined ALG achieves an acceptably low morbidity and mortality rate. Prognostic/epidemiologic study, level III; therapeutic study, level IV.
2014-01-01
Background Epithelial-to-mesenchymal transition (EMT) is a key step of the progression of tumor cell metastasis. Recent work has demonstrated some miRNAs play critical roles in EMT. In this study, we focused on the roles of miR-300 in regulating EMT. Methods The expression levels of miR-300 were examined in epithelial carcinoma cells that underwent an EMT using quantitative reverse transcription-PCR. The role of miR-300 in EMT was investigated by transfection of the miR-300 mimic or inhibitor in natural epithelial-mesenchymal phenotype cell line pairs and in transforming growth factor (TGF) beta-induced EMT cell models. A luciferase reporter assay and a rescue experiment were conducted to confirm the target gene of miR-300. The efficacy of miR-300 against tumor invasion and metastasis was evaluated both in vitro and in vivo. Correlation analysis between miR-300 expression and the expression levels of its target gene, as well as tumor metastasis was performed in specimens from patients with head and neck squamous cell carcinoma (HNSCC). Results MiR-300 was found down-regulated in the HNSCC cells and breast cancer cells that underwent EMT. Ectopic expression of miR-300 effectively blocked TGF-beta-induced EMT and reversed the phenotype of EMT in HN-12 and MDA-MB-231 cells, but inhibition of miR-300 in the epithelial phenotype cells, HN-4 and MCF-7 cells, could induce EMT. The luciferase reporter assay and the rescue assay results showed that miR-300 directly targets the 3′UTR of Twist. Enforced miR-300 expression suppressed cell invasion in vitro and experimental metastasis in vivo. Clinically, miR-300 expression was found inversely correlated with Twist expression and reduced miR-300 was associated with metastasis in patient specimens. Conclusions Down-regulation of miR-300 is required for EMT initiation and maintenance. MiR-300 may negatively regulate EMT by direct targeting Twist and therefore inhibit cancer cell invasion and metastasis, which implicates miR-300 as an attractive candidate for cancer therapy. PMID:24885626
Yu, Jingshuang; Xie, Furong; Bao, Xin; Chen, Wantao; Xu, Qin
2014-05-24
Epithelial-to-mesenchymal transition (EMT) is a key step of the progression of tumor cell metastasis. Recent work has demonstrated some miRNAs play critical roles in EMT. In this study, we focused on the roles of miR-300 in regulating EMT. The expression levels of miR-300 were examined in epithelial carcinoma cells that underwent an EMT using quantitative reverse transcription-PCR. The role of miR-300 in EMT was investigated by transfection of the miR-300 mimic or inhibitor in natural epithelial-mesenchymal phenotype cell line pairs and in transforming growth factor (TGF) beta-induced EMT cell models. A luciferase reporter assay and a rescue experiment were conducted to confirm the target gene of miR-300. The efficacy of miR-300 against tumor invasion and metastasis was evaluated both in vitro and in vivo. Correlation analysis between miR-300 expression and the expression levels of its target gene, as well as tumor metastasis was performed in specimens from patients with head and neck squamous cell carcinoma (HNSCC). MiR-300 was found down-regulated in the HNSCC cells and breast cancer cells that underwent EMT. Ectopic expression of miR-300 effectively blocked TGF-beta-induced EMT and reversed the phenotype of EMT in HN-12 and MDA-MB-231 cells, but inhibition of miR-300 in the epithelial phenotype cells, HN-4 and MCF-7 cells, could induce EMT. The luciferase reporter assay and the rescue assay results showed that miR-300 directly targets the 3'UTR of Twist. Enforced miR-300 expression suppressed cell invasion in vitro and experimental metastasis in vivo. Clinically, miR-300 expression was found inversely correlated with Twist expression and reduced miR-300 was associated with metastasis in patient specimens. Down-regulation of miR-300 is required for EMT initiation and maintenance. MiR-300 may negatively regulate EMT by direct targeting Twist and therefore inhibit cancer cell invasion and metastasis, which implicates miR-300 as an attractive candidate for cancer therapy.
Cytotoxic effect of sanguiin H-6 on MCF-7 and MDA-MB-231 human breast carcinoma cells.
Park, Eun-Ji; Lee, Dahae; Baek, Seon-Eun; Kim, Ki Hyun; Kang, Ki Sung; Jang, Tae Su; Lee, Hye Lim; Song, Ji Hoon; Yoo, Jeong-Eun
2017-09-15
Sanguiin H-6 is a dimer of casuarictin linked by a bond between the gallic acid residue and one of the hexahydroxydiphenic acid units. It is an effective compound extracted from Rubus coreanus. It has an anticancer effect against several human cancer cells; however, its effect on breast cancer cells has not been clearly demonstrated. Thus, we aimed to investigate the anticancer effect and mechanism of action of sanguiin H-6 against two human breast carcinoma cell lines (MCF-7 and MDA-MB-231). We found that sanguiin H-6 significantly reduced cell viability in a concentration-dependent manner. It also increased the rates at which MCF-7 and MDA-MB-231 cells underwent apoptosis. Furthermore, sanguiin H-6 induced the cleavage of caspase-8, caspase-3, and poly(ADP-ribose) polymerase, which resulted in apoptosis. However, cleavage of caspase-9 was only detectable in MCF-7 cells. In addition, sanguiin H-6 increased the ratio of Bax to Bcl-2 in both MCF-7 and MDA-MB-231 cells. These findings suggest that sanguiin H-6 is a potent therapeutic agent against breast cancer cells. In addition, it exerts its anticancer effect in an estrogen-receptor-independent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.
Executive Function Is Associated With Off-Line Motor Learning in People With Chronic Stroke.
Al-Dughmi, Mayis; Al-Sharman, Alham; Stevens, Suzanne; Siengsukon, Catherine F
2017-04-01
Sleep has been shown to promote off-line motor learning in individuals following stroke. Executive function ability has been shown to be a predictor of participation in rehabilitation and motor recovery following stroke. The purpose of this study was to explore the association between executive function and off-line motor learning in individuals with chronic stroke compared with healthy control participants. Seventeen individuals with chronic stroke (>6 months poststroke) and 9 healthy adults were included in the study. Participants underwent 3 consecutive nights of polysomnography, practiced a continuous tracking task the morning of the third day, and underwent a retention test the morning after the third night. Participants underwent testing on 4 executive function tests after the continuous tracking task retention test. Participants with stroke showed a significant positive correlation between the off-line motor learning score and performance on the Trail-Making Test from Delis-Kaplan Executive Function System (r = 0.652; P = 0.005), while the healthy control participants did not. Regression analysis showed that the Trail-Making Test-Delis-Kaplan Executive Function System is a significant predictor of off-line motor learning (P = 0.008). This is the first study to demonstrate that better performance on an executive function test of attention and set-shifting predicts a higher magnitude of off-line motor learning in individuals with chronic stroke. This emphasizes the need to consider attention and set-shifting abilities of individuals following stroke as these abilities are associated with motor learning. This in turn could affect learning of activities of daily living and impact functional recovery following stroke.Video Abstract available for more insights from the authors (see Video, Supplemental Digital Content 1, http://links.lww.com/JNPT/A166).
Giant mediastinal haemangiopericytoma: an uncommon case.
Agrawal, D; Lahiri, T K; Lakhotia, S; Singh, Deepak
2014-01-01
Haemangiopericytoma is a rare soft tissue tumour characterised by tightly packed tumour cells situated around thin walled endothelial lined vascular channels, ranging from capillary sized vessels to large gaping sinusoidal spaces. The tumour cells are surrounded by reticulin and are negative for muscle, nerve and epithelial markers. The diagnosis of extra-pulmonary intra-thoracic, extra-pleural mediastinal mass is difficult. It constitutes only 6% of all primary tumours and cysts of the mediastinum. We report the rare occurrence of primary intra-thoracic, extra-pulmonary mediastinal haemangiopericytoma of mesenchymal origin with perivascular localisation. The patient underwent right postero-lateral thoracotomy and post-operatively received chemotherapy with adriamycin (60 mg/m2) on day 1 and ifosfamide (1.5 g/m2) on day 1 to 3. Thirty-seven months after the operation, the patient has been well with evidence of a single recurrence in the left lower lobe.
Annunziata, Marta; Grande, Cristina; Scarlatti, Francesca; Deltetto, Francesco; Delpiano, Elena; Camanni, Marco; Ghigo, Ezio; Granata, Riccarda
2010-08-01
To determine the effect of the GHRH antagonist JV-1-36 on proliferation and survival of primary ectopic human endometriotic stromal cells (ESCs) and the T HESC cell line. Prospective laboratory study. University hospital. 22 women with endometriosis (aged 34.8+/-5.7 years) undergoing therapeutic laparoscopy. Eutopic (n=10) and ectopic (n=22) endometrial tissues were collected from women who underwent therapeutic laparoscopic surgery for endometriosis (stage III/IV). Expression of GHRH, GHRH receptor (GHRH-R) and GHRH-R splice variant (SV) 1 mRNA was determined by reverse-transcription polymerase chain reaction (RT-PCR). The ESC proliferation was assessed by 5-bromo-2-deoxyuridine incorporation, cell survival by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) and Trypan blue assay. The T HESC survival was evaluated by MTT, cyclic adenosine monophosphate (cAMP) levels by ELISA, extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylation by Western blot, and insulin-like growth factor (IGF)-2 mRNA by real-time PCR. The ESCs and T HESCs, but not normal endometrial tissues, expressed GHRH-R mRNA; SV1 mRNA was determined in normal endometrial tissues, ESCs, and T HESCs; GHRH mRNAwas found in T HESCs; JV-1-36 inhibited ESC proliferation and ESC and T HESC survival. In T HESCs, JV-1-36 reduced cAMP production and ERK1/2 phosphorylation but had no effect on IGF-2 mRNA expression. The GHRH antagonist JV-1-36 inhibits endometriotic cell proliferation and survival, suggesting that GHRH antagonist may represent promising tools for treatment of endometriosis. Copyright (c) 2010 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
A true orthotopic gastric cancer murine model using electrocoagulation.
Bhullar, Jasneet Singh; Makarawo, Tafadzwa; Subhas, Gokulakkrishna; Alomari, Ahmed; Silberberg, Boris; Tilak, Jacqueline; Decker, Milessa; Mittal, Vijay K
2013-07-01
Orthotopic mouse models of human gastric cancer represent an important in vivo tool for testing chemotherapeutic agents and for studying intraluminal factors. Currently, orthotopic mouse models of gastric cancer require an operative procedure involving either injection or implantation of tumor cells in stomach layers. The resultant tumor does not grow from the stomach's mucosal surface, so it does not mimic the human disease process. A low-dose gastric mucosal coagulation was done transorally in the body of stomach using a specially designed polyethylene catheter in 16 female severe combined immunodeficient mice. This was followed by the instillation of SNU-16 human gastric cancer tumor cells (1 × 10(6) cells). Five mice each were euthanized at 1 and 2 months, and 6 mice were euthanized at 3 months. Three control mice underwent electrocoagulation alone and 3 mice underwent cell line instillation alone. Tumors were detected in 11 of 16 experimental mice, but not in the control mice. Tumors were noted in mice at 1 month. Over time, there was an increase in tumor growth and metastasis to lymph nodes and surrounding organs. Histopathologic evaluation showed that the tumors grew from the gastric mucosa. Our model is easy to create and overcomes the limitations of the existing models, as the tumor arises from the stomach's mucosal layer and mimics the human disease in terms of morphology and biologic behavior. This is the first report of a true orthotopic gastric cancer murine model. This model opens new doors for additional studies that were not possible earlier. Copyright © 2013 American College of Surgeons. Published by Elsevier Inc. All rights reserved.
Cell fusion as the formation mechanism of unreduced gametes in the gynogenetic diploid hybrid fish.
Wang, Jing; Liu, Qingfeng; Luo, Kaikun; Chen, Xuan; Xiao, Jun; Zhang, Chun; Tao, Min; Zhao, Rurong; Liu, Shaojun
2016-08-17
The gynogenetic diploid hybrid clone line (GDH) derived from red crucian carp (♀ RCC) × common carp (♂ CC) possesses the unusual reproductive trait of producing unreduced diploid eggs. To identify the mechanism underlying this phenomenon, we examined the structure, in vivo developmental process and in vitro dynamic development of the GDH gonad. In summary, compared with RCC and CC, GDH showed certain special straits. First, a high frequency (84.7%) of germ cell fusion occurred in gonadal tissue culture in vitro as observed by time-lapse microscopy. Second, microstructural and ultrastructural observation showed numerous binucleated and multinucleated germ cells in the gonad, providing evidence of germ cell fusion in vivo. By contrast, in the diploid RCC and CC ovaries, neither cell fusion nor multinucleated cells were observed during the development of gonads. Third, the ovary of GDH remained at stage I for 10 months, whereas those of RCC and CC remained at that stage for 2 months, indicating that the GDH germ cells underwent abnormal development before meiosis. This report is the first to demonstrate that cell fusion facilitates the formation of unreduced gametes in vertebrates, which is a valuable finding for both evolutionary biology and reproductive biology.
2013-01-01
Background There is growing evidence indicating the insulin-like growth factor 1 receptor (IGF-1R) plays a critical role in the progression of human colorectal carcinomas. IGF-1R is an attractive drug target for the treatment of colon cancer. Picropodophyllin (PPP), of the cyclolignan family, has recently been identified as an IGF-1R inhibitor. The aim of this study is to determine the therapeutic response and mechanism after colorectal carcinoma treatment with PPP. Methods Seven colorectal carcinoma cell lines were treated with PPP. Following treatment, cells were analyzed for growth by a cell viability assay, sub-G1 apoptosis by flow cytometry, caspase cleavage and activation of AKT and extracellular signal-regulated kinase (ERK) by western blot analysis. To examine the in vivo therapeutic efficacy of PPP, mice implanted with human colorectal carcinoma xenografts underwent PPP treatment. Results PPP treatment blocked the phosphorylation of IGF-1R, AKT and ERK and inhibited the growth of TP53 wild-type but not mutated colorectal carcinoma cell lines. The treatment of PPP also induced apoptosis in TP53 wild-type cells as evident by the presence of sub-G1 cells and the cleavage of caspase-9, caspase-3, DNA fragmentation factor-45 (DFF45), poly (ADP-ribose) polymerase (PARP), and X-linked inhibitor of apoptosis protein (XIAP). The loss of BAD phosphorylation in the PPP-treated TP53 wild type cells further suggested that the treatment induced apoptosis through the BAD-mediated mitochondrial pathway. In contrast, PPP treatment failed to induce the phosphorylation of AKT and ERK and caspase cleavage in TP53 mutated colorectal carcinoma cell lines. Finally, PPP treatment suppressed the growth of xenografts derived from TP53 wild type but not mutated colorectal carcinoma cells. Conclusions We report the association of TP53 mutations with the resistance of treatment of colorectal carcinoma cells in culture and in a xenograft mouse model with the IGF-1R inhibitor PPP. TP53 mutations often occur in colorectal carcinomas and could be used as a biomarker to predict the resistance of colorectal carcinomas to the treatment by this IGF-1R inhibitor. PMID:24182354
Auclin, Edouard; Bourillon, Camille; De Maio, Eleonora; By, Marie Agnes; Seddik, Sofiane; Fournier, Laure; Auvray, Marie; Dautruche, Antoine; Vano, Yann-Alexandre; Thibault, Constance; Joly, Florence; Brunereau, Laurent; Gomez-Roca, Carlos; Chevreau, Christine; Elaidi, Reza; Oudard, Stéphane
2017-06-01
The objective of the study was to assess the prognostic role of skeletal muscle index (SMI) in metastatic renal cell carcinoma (mRCC) patients treated with everolimus, and its effect of on everolimus-induced toxicity. Consecutive mRCC patients treated with everolimus between February 2007 and November 2014 underwent computed tomography scans at a single center performed by the same radiologist. SMI was assessed before everolimus treatment using the L3 cross-sectional area. Overall survival (OS) was analyzed according to SMI value. Results were adjusted using the International Metastatic Database Consortium (IMDC) prognostic group, body mass index (BMI), and/or number of previous tyrosine kinase inhibitor lines (NPL). One hundred twenty-four mRCC patients (mean age, 60.21 years) were treated with everolimus as second- or third-line (82.3%) or > third-line (17.7%) therapy. Most patients (87.9%) had clear cell carcinoma. IMDC prognostic group was "favorable" (32.3%), "intermediate" (50%), or "poor" (17.7%). Median SMI was 40.75. OS was longer in patients from the highest versus lowest SMI tercile: 21.9 versus 10 months (P = .002). Continuous SMI at baseline was not significantly associated with OS after adjustment for IMDC prognostic group, BMI, or NPL but the highest versus lowest SMI tercile was an independent prognostic factor in multivariate analysis (P = .025). There was no difference in everolimus toxicity between SMI tercile groups. SMI was an independent prognostic factor for mRCC patients treated with everolimus. Whether this provides additional prognostic value to IMDC criteria needs to be confirmed in a larger cohort. SMI does not seem to be predictive of everolimus-induced toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.
Nozawa, Yoshihiro; Oka, Yuka; Oosugi, Jun; Takemura, Shinichi
2018-05-01
Novel treatment strategies such as immunotherapy are being evaluated to further improve the outcomes of colorectal cancer patients. To our knowledge, this is the first report to show both the successful treatment of pulmonary squamous cell carcinoma (SCC) with pembrolizumab alongside histological and immunohistochemical findings of resected colon cancer under immunotherapy for lung cancer. This patient was a 70-year-old man who presented with a right lung tumor and simultaneous adenocarcinoma of the sigmoid colon. Biopsy examination revealed squamous cell carcinoma in the right lung and adenocarcinoma of the sigmoid colon. The patient underwent successful pembrolizumab treatment as first-line immunotherapy for lung cancer, as demonstrated by computed tomography, and the sigmoid colon tumor was excised during an immunotherapy-free window. No unusual tumor growth in the right lung or abnormal abdominal signs was observed during the 9-month follow-up. Microscopically, the resected colon cancer specimen was characterized by numerous lymphoid cells in the partial stroma, with a large number of infiltrating lymphocytes consisting of CD3+, CD8+ T cells. In summary, this case demonstrates how immunotherapy affects PD-L1-negative colon cancer and indicates future treatment prospects.
Durdagi, Serdar; Aksoydan, Busecan; Erol, Ismail; Kantarcioglu, Isik; Ergun, Yavuz; Bulut, Gulay; Acar, Melih; Avsar, Timucin; Liapakis, George; Karageorgos, Vlasios; Salmas, Ramin E; Sergi, Barış; Alkhatib, Sara; Turan, Gizem; Yigit, Berfu Nur; Cantasir, Kutay; Kurt, Bahar; Kilic, Turker
2018-02-10
AT1 antagonists is the most recent drug class of molecules against hypertension and they mediate their actions through blocking detrimental effects of angiotensin II (A-II) when acts on type I (AT1) A-II receptor. The effects of AT1 antagonists are not limited to cardiovascular diseases. AT1 receptor blockers may be used as potential anti-cancer agents - due to the inhibition of cell proliferation stimulated by A-II. Therefore, AT1 receptors and the A-II biosynthesis mechanisms are targets for the development of new synthetic drugs and therapeutic treatment of various cardiovascular and other diseases. In this work, multi-scale molecular modeling approaches were performed and it is found that oxazolone and imidazolone derivatives reveal similar/better interaction energy profiles compared to the FDA approved sartan molecules at the binding site of the AT1 receptor. In silico-guided designed hit molecules were then synthesized and tested for their binding affinities to human AT1 receptor in radioligand binding studies, using [ 125 I-Sar 1 -Ile 8 ] AngII. Among the compounds tested, 19d and 9j molecules bound to receptor in a dose response manner and with relatively high affinities. Next, cytotoxicity and wound healing assays were performed for these hit molecules. Since hit molecule 19d led to deceleration of cell motility in all three cell lines (NIH3T3, A549, and H358) tested in this study, this molecule is investigated in further tests. In two cell lines (HUVEC and MCF-7) tested, 19d induced G2/M cell cycle arrest in a concentration dependent manner. Adherent cells detached from the plates and underwent cell death possibly due to apoptosis at 19d concentrations that induced cell cycle arrest. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Hai-Ying; Kang, Jin-Dan; Li, Suo
2014-02-21
Highlights: • Rhesus monkey cells were electroporated with a plasmid containing mRFP1, and an mRFP1-expressing cell line was generated. • For the first time, mRFP1-expressing rhesus monkey cells were used as donor cells for iSCNT. • The effect of VPA on the development of embryos cloned using iSCNT was determined. - Abstract: Interspecies somatic cell nuclear transfer (iSCNT) is a promising method to clone endangered animals from which oocytes are difficult to obtain. Monomeric red fluorescent protein 1 (mRFP1) is an excellent selection marker for transgenically modified cloned embryos during somatic cell nuclear transfer (SCNT). In this study, mRFP-expressing rhesusmore » monkey cells or porcine cells were transferred into enucleated porcine oocytes to generate iSCNT and SCNT embryos, respectively. The development of these embryos was studied in vitro. The percentage of embryos that underwent cleavage did not significantly differ between iSCNT and SCNT embryos (P > 0.05; 71.53% vs. 80.30%). However, significantly fewer iSCNT embryos than SCNT embryos reached the blastocyst stage (2.04% vs. 10.19%, P < 0.05). Valproic acid was used in an attempt to increase the percentage of iSCNT embryos that developed to the blastocyst stage. However, the percentages of embryos that underwent cleavage and reached the blastocyst stage were similar between untreated iSCNT embryos and iSCNT embryos treated with 2 mM valproic acid for 24 h (72.12% vs. 70.83% and 2.67% vs. 2.35%, respectively). These data suggest that porcine-rhesus monkey interspecies embryos can be generated that efficiently express mRFP1. However, a significantly lower proportion of iSCNT embryos than SCNT embryos reach the blastocyst stage. Valproic acid does not increase the percentage of porcine-rhesus monkey iSCNT embryos that reach the blastocyst stage. The mechanisms underling nuclear reprogramming and epigenetic modifications in iSCNT need to be investigated further.« less
Basic anatomy and tumor biology of the RPS6KA6 gene that encodes the p90 ribosomal S6 kinase-4
Sun, Yuan; Cao, Shousong; Yang, Min; Wu, Sihong; Wang, Zhe; Lin, Xiukun; Song, Xiangrang; Liao, D.J.
2012-01-01
The RPS6KA6 gene encodes the p90 ribosomal S6 kinase-4 (RSK4) that is still largely uncharacterized. In this study we identified a new RSK4 transcription initiation site and several alternative splice sites with a 5’RACE approach. The resulting mRNA variants encompass four possible first start codons. The first 15 nucleotides (nt) of exon 22 in mouse and the penultimate exon in both human (exon 21) and mouse (exon 24) RSK4 underwent alternative splicing, although the penultimate exon deleted variant appeared mainly in cell clines, but not in most normal tissues. Demethylation agent 5-azacytidine inhibited the deletion of the penultimate exon whereas two indolocarbazole-derived inhibitors of cyclin dependent kinase 4 or 6 induced deletion of the first 39 nt from exon 21 of human RSK4. In all human cancer cell lines studied, the 90-kD wild type RSK4 was sparse but, surprisingly, several isoforms at or smaller than 72-kD were expressed as detected by seven different antibodies. On immunoblots, each of these smaller isoforms often appeared as a duplet or triplet and the levels of these isoforms varied greatly among different cell lines and culture conditions. Cyclin D1 inhibited RSK4 expression and serum starvation enhanced the inhibition, whereas c-Myc and RSK4 inhibited cyclin D1. The effects of RSK4 on cell growth, cell death and chemoresponse depended on the mRNA variant or the protein isoform expressed, on the specificity of the cell lines, as well as on the anchorage-dependent or -independent growth conditions and the in vivo situation. Moreover, we also observed that even a given cDNA might be expressed to multiple proteins; therefore, when using a cDNA, one needs to exclude this possibility before attribution of the biological results from the cDNA to the anticipated protein. Collectively, our results suggest that whether RSK4 is oncogenic or tumor suppressive depends on many factors. PMID:22614021
Finck, Marlène; Ponce, Frédérique; Guilbaud, Laurent; Chervier, Cindy; Floch, Franck; Cadoré, Jean-Luc; Chuzel, Thomas; Hugonnard, Marine
2015-02-01
There are no evidence-based guidelines as to whether computed tomography (CT) or endoscopy should be selected as the first-line procedure when a nasal tumor is suspected in a dog or a cat and only one examination can be performed. Computed tomography and rhinoscopic features of 17 dogs and 5 cats with a histopathologically or cytologically confirmed nasal tumor were retrospectively reviewed. The level of suspicion for nasal neoplasia after CT and/or rhinoscopy was compared to the definitive diagnosis. Twelve animals underwent CT, 14 underwent rhinoscopy, and 4 both examinations. Of the 12 CT examinations performed, 11 (92%) resulted in the conclusion that a nasal tumor was the most likely diagnosis compared with 9/14 (64%) for rhinoscopies. Computed tomography appeared to be more reliable than rhinoscopy for detecting nasal tumors and should therefore be considered as the first-line procedure.
Finck, Marlène; Ponce, Frédérique; Guilbaud, Laurent; Chervier, Cindy; Floch, Franck; Cadoré, Jean-Luc; Chuzel, Thomas; Hugonnard, Marine
2015-01-01
There are no evidence-based guidelines as to whether computed tomography (CT) or endoscopy should be selected as the first-line procedure when a nasal tumor is suspected in a dog or a cat and only one examination can be performed. Computed tomography and rhinoscopic features of 17 dogs and 5 cats with a histopathologically or cytologically confirmed nasal tumor were retrospectively reviewed. The level of suspicion for nasal neoplasia after CT and/or rhinoscopy was compared to the definitive diagnosis. Twelve animals underwent CT, 14 underwent rhinoscopy, and 4 both examinations. Of the 12 CT examinations performed, 11 (92%) resulted in the conclusion that a nasal tumor was the most likely diagnosis compared with 9/14 (64%) for rhinoscopies. Computed tomography appeared to be more reliable than rhinoscopy for detecting nasal tumors and should therefore be considered as the first-line procedure. PMID:25694669
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fournier, Marcia V.; Martin, Katherine J.; Kenny, Paraic A.
To understand how non-malignant human mammary epithelial cells (HMEC) transit from a disorganized proliferating to an organized growth arrested state, and to relate this process to the changes that occur in breast cancer, we studied gene expression changes in non-malignant HMEC grown in three-dimensional cultures, and in a previously published panel of microarray data for 295 breast cancer samples. We hypothesized that the gene expression pattern of organized and growth arrested mammary acini would share similarities with breast tumors with good prognoses. Using Affymetrix HG-U133A microarrays, we analyzed the expression of 22,283 gene transcripts in two HMEC cell lines, 184more » (finite life span) and HMT3522 S1 (immortal non-malignant), on successive days post-seeding in a laminin-rich extracellular matrix assay. Both HMECs underwent growth arrest in G0/G1 and differentiated into polarized acini between days 5 and 7. We identified gene expression changes with the same temporal pattern in both lines. We show that genes that are significantly lower in the organized, growth arrested HMEC than in their proliferating counterparts can be used to classify breast cancer patients into poor and good prognosis groups with high accuracy. This study represents a novel unsupervised approach to identifying breast cancer markers that may be of use clinically.« less
Wilk, Christian Matthias; Heinzler, Niklas; Boquoi, Amelie; Cadeddu, Ron-Patrick; Strapatsas, Tobias; Dienst, Ariane; Majidi, Fatemeh; Deenen, René; Bruns, Ingmar; Schroeder, Thomas; Köhrer, Karl; Haas, Rainer; Kobbe, Guido; Fenk, Roland
2016-11-15
New drugs for the treatment of multiple myeloma (MM) comprise immunomodulatory substances such as lenalidomide and related compounds. While lenalidomide has found its way into first-line treatment as well as into relapse therapy, little is known about lenalidomide effects on normal hematopoietic stem and progenitor cells (HSPCs). In this study, we investigated whether HSPCs are influenced by lenalidomide on a phenotypic, functional and gene expression level. For that purpose, samples from patients with MM were obtained who underwent equivalent first-line treatment including induction therapy, cytotoxic stem cell mobilization and high-dose melphalan therapy followed by autologous blood stem cell transplantation and a subsequent uniform lenalidomide consolidation treatment within a prospective clinical trial. We found that after six months of lenalidomide therapy, the number of CD34(+) HSPCs decreased. Additionally, lenalidomide affects the numerical composition of hematopoietic cells in the bone marrow while it does not affect long-term HSPC proliferation in vitro. We found a significant amplification of fetal hemoglobin (HbF) expression on a transcriptional level and can confirm a stimulated erythropoiesis on a phenotypic level. These effects were accompanied by silencing of the TGF-β signaling pathway on the gene expression and protein level that is known to be amplified in active MM. However, these pleiotropic effects gave no evidence for mutagenic potential. In conclusion, lenalidomide does not exert long-term effects on proliferation of HSPCs but instead promotes erythropoiesis by shifting hemoglobin expression toward HbF and by silencing the TGF-β signaling pathway. © 2016 UICC.
Notch3 as a novel therapeutic target in metastatic medullary thyroid cancer.
Lou, Irene; Odorico, Scott; Yu, Xiao-Min; Harrison, April; Jaskula-Sztul, Renata; Chen, Herbert
2018-01-01
Medullary thyroid cancer portends poor survival once liver metastasis occurs. We hypothesize that Notch3 overexpression in medullary thyroid cancer liver metastasis will decrease proliferation and growth of the tumor. TT cells were modified genetically to overexpress Notch3 in the presence of doxycycline, creating the TT-Notch3 cell line. Mice were injected intrasplenically with either TT-Notch3 or control vector TT-TRE cells. Each cell line had 3 treatment groups: control with 12 weeks of standard chow, early DOX with doxycycline chow at day 0 and for 70 days thereafter, and late DOX with doxycycline chow at 8 weeks. Each animal underwent micro-computed tomography to evaluate for tumor formation and tumor quantification was performed. Animals were killed at 12 weeks, and the harvested liver was stained with Ki-67, hematoxylin and eosin, and Notch3. Induction of Notch3 did not prevent formation of medullary thyroid cancer liver metastases as all mice in the early DOX group developed tumors. However, induction of Notch after medullary thyroid cancer liver tumor formation decreased tumor size, as seen on micro-computed tomography scans (late DOX group). This translated to a 37-fold decrease in tumor volume (P = .001). Notch3 overexpression also resulted in decreased Ki-67 index (P = .038). Moreover, Notch3 induction led to increased areas of neutrophil infiltration and necrosis on hematoxylin and eosin staining of the tumors CONCLUSION: Notch3 overexpression demonstrates an antiproliferative effect on established metastatic medullary thyroid cancer liver tumors and is a potential therapeutic target in treatment. Copyright © 2017 Elsevier Inc. All rights reserved.
Musiani, Daniele; Konda, John David; Pavan, Simona; Torchiaro, Erica; Sassi, Francesco; Noghero, Alessio; Erriquez, Jessica; Perera, Timothy; Olivero, Martina; Di Renzo, Maria Flavia
2014-01-01
The tyrosine kinase encoded by the MET oncogene is activated by gene mutation or amplification in tumors, which in most instances maintain addiction, i.e., dependency, to MET activation. This makes MET an attractive candidate for targeted therapies. Here we show that, in 3/3 MET-addicted human gastric cancer cell lines, MET kinase inhibition resulted in a 3- to 4-fold increased expression of the antiapoptotic small heat-shock protein of 27 kDa (HSP27, HSPB1). HSP27 increase depended on the inhibition of the MEK/ERK pathway and on heat-shock factor 1 (HSF1) and hypoxia-inducible factor-1α (HIF-1α) regulation. Importantly, HSP27-silenced MET-addicted cells underwent 2- and 3-fold more apoptosis following MET inhibition in vitro and in vivo, respectively. Likewise, in human cancer cells susceptible to epidermal growth factor receptor (EGFR) inhibition, EGFR inhibitors induced HSP27 expression and were strengthened by HSP27 suppression. In control cell lines that were not affected by drugs targeting MET or EGFR, these drugs did not induce HSP27 increase. Therefore, in cancer therapies targeting the MET pathway, the induction of HSP27 might limit the efficacy of anti-MET agents. As HSP27 increase also impairs the effectiveness of EGFR inhibitors and is known to protect cells from chemotherapeutics, the induction of HSP27 by targeted agents might strongly affect the success of combination treatments.—Musiani, D., Konda, J. D., Pavan, S., Torchiaro, E., Sassi, F., Noghero, A., Erriquez, J., Perera, T., Olivero, M., Di Renzo, M. F. Heat-shock protein 27 (HSP27, HSPB1) is up-regulated by MET kinase inhibitors and confers resistance to MET-targeted therapy. PMID:24903273
Srivastava, Pallavi; Sarma, Asitikantha
2018-01-01
High linear energy transfer (LET) radiation or heavy ion such as carbon ion radiation is used as a method for advanced radiotherapy in the treatment of cancer. It has many advantages over the conventional photon based radiotherapy using Co-60 gamma or high energy X-rays from a Linear Accelerator. However, charged particle therapy is very costly. One way to reduce the cost as well as irradiation effects on normal cells is to reduce the dose of radiation by enhancing the radiation sensitivity through the use of a radiomodulator. PNKP (polynucleotide kinase/phosphatase) is an enzyme which plays important role in the non-homologous end joining (NHEJ) DNA repair pathway. It is expected that inhibition of PNKP activity may enhance the efficacy of the charged particle irradiation in the radioresistant prostate cancer cell line PC-3. To test this hypothesis, we investigated cellular radiosensitivity by clonogenic cell survival assay in PC-3 cells.12Carbon ion beam of62 MeVenergy (equivalent 5.16 MeV/nucleon) and with an entrance LET of 287 kev/μm was used for the present study. Apoptotic parameters such as nuclear fragmentation and caspase-3 activity were measured by DAPI staining, nuclear ladder assay and colorimetric caspase-3method. Cell cycle arrest was determined by FACS analysis. Cell death was enhanced when carbon ion irradiation is combined with PNKPi (PNKP inhibitor) to treat cells as compared to that seen for PNKPi untreated cells. A low concentration (10μM) of PNKPi effectively radiosensitized the PC-3 cells in terms of reduction of dose in achieving the same survival fraction. PC-3 cells underwent significant apoptosis and cell cycle arrest too was enhanced at G2/M phase when carbon ion irradiation was combined with PNKPi treatment. Our findings suggest that combined treatment of carbon ion irradiation and PNKP inhibition could enhance cellular radiosensitivity in a radioresistant prostate cancer cell line PC-3. The synergistic effect of PNKPi and carbon ion irradiation could be used as a promising method for carbon-ion therapy in radioresistant cells. PMID:29320576
Response to apatinib in chemotherapy-failed advanced spindle cell breast carcinoma.
Zhou, Na; Liu, Congmin; Hou, Helei; Zhang, Chuantao; Liu, Dong; Wang, Guanqun; Liu, Kewei; Zhu, Jingjuan; Lv, Hongying; Li, Tianjun; Zhang, Xiaochun
2016-11-01
Spindle cell carcinoma of the breast is a rare subtype of metaplastic carcinoma, and no effective chemotherapy special for metaplastic carcinoma exists until now. As spindle cell carcinomas of the breast are typically "Triple Negative", endocrine therapy and molecular therapy targeted to Her2 might not be favorable, resulting in poor prognosis. Apatinib is currently being tested in patients with breast or lung cancers. Here we report a successful case using Apatinib to treat spindle cell carcinoma of breast.A 52- year- old woman presented with a gradually enlarged lump in left breast, which was revealed to be a triple-negative spindle cell carcinoma, underwent a modified radical mastectomy. After the first line chemotherapy with Cyclophosphamide and Epirubicin, multiple metastases in bilateral lung and left anterior thoracic wall appeared. After disease progressed with therapy of Bevacizumab combined with Albumin-bound Paclitaxel and Cisplatin, we treated the patient with Apatinib according to her VEGFR expression, which showed nearly complete response and controllable and tolerated side effects. Next-generation sequencing analysis of the tumor specimen and real time ctDNA was performed to observe the mutated gene numbers matched with therapeutic effect. The present case can help to provide a new and effective therapy strategy to treat advanced spindle cell carcinoma.
Response to apatinib in chemotherapy-failed advanced spindle cell breast carcinoma
Zhou, Na; Liu, Congmin; Hou, Helei; Zhang, Chuantao; Liu, Dong; Wang, Guanqun; Liu, Kewei; Zhu, Jingjuan; Lv, Hongying; Li, Tianjun; Zhang, Xiaochun
2016-01-01
Spindle cell carcinoma of the breast is a rare subtype of metaplastic carcinoma, and no effective chemotherapy special for metaplastic carcinoma exists until now. As spindle cell carcinomas of the breast are typically “Triple Negative”, endocrine therapy and molecular therapy targeted to Her2 might not be favorable, resulting in poor prognosis. Apatinib is currently being tested in patients with breast or lung cancers. Here we report a successful case using Apatinib to treat spindle cell carcinoma of breast. A 52- year- old woman presented with a gradually enlarged lump in left breast, which was revealed to be a triple-negative spindle cell carcinoma, underwent a modified radical mastectomy. After the first line chemotherapy with Cyclophosphamide and Epirubicin, multiple metastases in bilateral lung and left anterior thoracic wall appeared. After disease progressed with therapy of Bevacizumab combined with Albumin-bound Paclitaxel and Cisplatin, we treated the patient with Apatinib according to her VEGFR expression, which showed nearly complete response and controllable and tolerated side effects. Next-generation sequencing analysis of the tumor specimen and real time ctDNA was performed to observe the mutated gene numbers matched with therapeutic effect. The present case can help to provide a new and effective therapy strategy to treat advanced spindle cell carcinoma. PMID:27738308
S-Fms signalobody enhances myeloid cell growth and migration.
Kawahara, Masahiro; Hitomi, Azusa; Nagamune, Teruyuki
2014-07-01
Since receptor tyrosine kinases (RTKs) control various cell fates in many types of cells, mimicry of RTK functions is promising for artificial control of cell fates. We have previously developed single-chain Fv (scFv)/receptor chimeras named signalobodies that can mimic receptor signaling in response to a specific antigen. While the RTK-based signalobodies enabled us to control cell growth and migration, further extension of applicability in another cell type would underlie the impact of the RTK-based signalobodies. In this study, we applied the scFv-c-Fms (S-Fms) signalobody in a murine myeloid progenitor cell line, FDC-P1. S-Fms transduced a fluorescein-conjugated BSA (BSA-FL)-dependent growth signal and activated downstream signaling molecules including MEK, ERK, Akt, and STAT3, which are major constituents of Ras/MAPK, PI3K/Akt, and JAK/STAT signaling pathways. In addition, S-Fms transduced a migration signal as demonstrated by the transwell-based migration assay. Direct real-time observation of the cells further confirmed that FDC/S-Fms cells underwent directional cell migration toward a positive gradient of BSA-FL. These results demonstrated the utility of the S-Fms signalobody for controlling growth and migration of myeloid cells. Further extension of our approach includes economical large-scale production of practically relevant blood cells as well as artificial control of cell migration for tissue regeneration and immune response. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chung, Heesung; Jung, Hyejung; Jho, Eek-Hoon; Multhaupt, Hinke A B; Couchman, John R; Oh, Eok-Soo
2018-06-14
In human skin, melanocytes and their neighboring keratinocytes have a close functional interrelationship. Keratinocytes, which represent the prevalent cell type of human skin, regulate melanocytes through various mechanisms. Here, we use a keratinocyte and melanoma co-culture system to show for the first time that keratinocytes regulate the cell surface expression of N-cadherin through cell-cell contact. Compared to mono-cultured human melanoma A375 cells, which expressed high levels of N-cadherin, those co-cultured with the HaCaT human keratinocyte cell line showed reduced levels of N-cadherin. This reduction was most evident in areas of A375 cells that underwent cell-cell contact with the HaCaT cells, whereas HaCaT cell-derived extracellular matrix and conditioned medium both failed to reduce N-cadherin levels. The intracellular level of calcium in co-cultured A375 cells was lower than that in mono-cultured A375 cells, and treatment with a cell-permeant calcium chelator (BAPTA) reduced the N-cadherin level of mono-cultured A375 cells. Furthermore, co-culture with HaCaT cells reduced the expression levels of transient receptor potential cation channel (TRPC) 1, -3 and -6 in A375 cells, and siRNA-mediated multi-depletion of TRPC1, -3 and -6 reduced the N-cadherin level in these cells. Taken together, these data suggest that keratinocytes negatively regulate the N-cadherin levels of melanoma cells via cell-to-cell contact-mediated calcium regulation. Copyright © 2018. Published by Elsevier Inc.
Begum, M; Katabuchi, H; Tashiro, H; Suenaga, Y; Okamura, H
2002-01-01
Hemangiopericytoma is an uncommon vascular tumor. Primary or metastatic hemangiopericytoma of the ovary is extremely rare. A 48-year-old Japanese woman had a tumor in the neck. Simultaneously, a solid ovarian tumor was detected. She had received treatment for intracranial hemangiopericytoma 17 years previously. For the ovarian tumor, she underwent a total abdominal hysterectomy and bilateral salpingo-oophorectomy. The left ovarian tumor weighed 1510 g and its cut surface was solid without areas of hemorrhage or necrosis. It was microscopically composed of tightly packed tumor cells outside of many vascular vessels. One or two mitotic figures were counted per 10 high power fields. Immunohistochemically, vimentin was expressed but factor-VIII-related antigen, CD 31, and CD 34 were not expressed in the tumor cells. Electron microscopy showed that the tumor cells were grown outside of the endothelium-lined vascular spaces. A discontinuous external basal lamina was also observed. We present a case of metastatic malignant hemangiopericytoma of the ovary from a primary intracranial hemangiopericytoma with a long interval of 17 years.
Mitsuuchi, Y; Powell, D R; Gallo, J M
2006-02-09
A second generation genetically-engineered cell-based drug delivery system, referred to as apoptotic-induced drug delivery (AIDD), was developed using endothelial cells (ECs) that undergo apoptosis upon binding of vascular endothelial growth factor (VEGF) to a Flk-1:Fas fusion protein (FF). This new AIDD was redesigned using mouse brain derived ECs, bEnd3 cells, and an adenovirus vector in order to enhance and control the expression of FF. The FF was tagged with a HA epitope (FFHA) and designed to be coexpressed with green fluorescence protein (GFP) by the regulation of cytomegalovirus promoters in the adenovirus vector. bEnd3 cells showed favorable coexpression of FFHA and GFP consistent with the multiplicity of infection of the adenovirus. Immunofluorescence analysis demonstrated that FFHA was localized at the plasma membrane, whereas GFP was predominantly located in the cytoplasm of ECs. Cell death was induced by VEGF, but not by platelet derived growth factor or fibroblast growth factor in a dose-dependent manner (range 2-20 ng/ml), and revealed caspase-dependent apoptotic profiles. The FFHA expressing bEnd3 cells underwent apoptosis when cocultured with a glioma cell (SF188V+) line able to overexpress VEGF. The combined data indicated that the FFHA adenovirus system can induce apoptotic signaling in ECs in response to VEGF, and thus, is an instrumental modification to the development of AIDD.
Prerequisite for successful surgical outcome in urothelium lined seromuscular colocystoplasty.
Jung, Hyun Jin; Lee, Hyeyoung; Im, Young Jae; Lee, Yong Seung; Hong, Chang Hee; Han, Sang Won
2012-04-01
Urothelium lined seromuscular colocystoplasty is an ideal method of augmentation cystoplasty that avoids various complications caused by the use of gastrointestinal segments. We reviewed the long-term outcomes using this technique at a single institution. We retrospectively analyzed 34 patients who underwent urothelium lined seromuscular colocystoplasty between January 1996 and December 2007. A total of 33 patients, excluding 1 who had previously undergone artificial urinary sphincter implantation, were included in the study. Changes in urodynamic parameters, duration of anticholinergic use, incontinence and surgical complications were analyzed. Mean±SD age at surgery was 10.0±5.7 years (range 3.0 to 26.0) and duration of followup was 6.0±2.3 years (2.7 to 13.4). A total of 17 patients (51.5%) underwent simultaneous anti-incontinence surgery and urothelium lined seromuscular colocystoplasty. Mean bladder capacity increased by a factor of 2.96 and mean percentage of expected bladder capacity for age increased by a factor of 1.96 postoperatively. Of patients who underwent anti-incontinence surgery 4 of 10 whose abdominal leak point pressure was less than 40 cm H2O required additional surgery, whereas none whose abdominal leak point pressure was 40 to 60 cm H2O required reoperation. Two of 16 patients who did not undergo anti-incontinence surgery eventually required continence surgery. A total of 13 patients (39.4%) were able to discontinue anticholinergics at 47.3 months postoperatively. There were no bladder perforations, bowel obstructions or metabolic abnormalities. Urothelium lined seromuscular colocystoplasty can be primarily considered in patients without prior bladder mucosal injury. Constant high bladder outlet pressure to facilitate adhesion of bladder mucosa and seromuscular patch is critical for the best results. We recommend abdominal leak point pressure 60 cm H2O or less as an indication for simultaneous anti-incontinence surgery and urothelium lined seromuscular colocystoplasty. Copyright © 2012 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.
2014-01-01
Background Cell lines have been widely used in biomedical research. The community-based Cell Line Ontology (CLO) is a member of the OBO Foundry library that covers the domain of cell lines. Since its publication two years ago, significant updates have been made, including new groups joining the CLO consortium, new cell line cells, upper level alignment with the Cell Ontology (CL) and the Ontology for Biomedical Investigation, and logical extensions. Construction and content Collaboration among the CLO, CL, and OBI has established consensus definitions of cell line-specific terms such as ‘cell line’, ‘cell line cell’, ‘cell line culturing’, and ‘mortal’ vs. ‘immortal cell line cell’. A cell line is a genetically stable cultured cell population that contains individual cell line cells. The hierarchical structure of the CLO is built based on the hierarchy of the in vivo cell types defined in CL and tissue types (from which cell line cells are derived) defined in the UBERON cross-species anatomy ontology. The new hierarchical structure makes it easier to browse, query, and perform automated classification. We have recently added classes representing more than 2,000 cell line cells from the RIKEN BRC Cell Bank to CLO. Overall, the CLO now contains ~38,000 classes of specific cell line cells derived from over 200 in vivo cell types from various organisms. Utility and discussion The CLO has been applied to different biomedical research studies. Example case studies include annotation and analysis of EBI ArrayExpress data, bioassays, and host-vaccine/pathogen interaction. CLO’s utility goes beyond a catalogue of cell line types. The alignment of the CLO with related ontologies combined with the use of ontological reasoners will support sophisticated inferencing to advance translational informatics development. PMID:25852852
Human mesenchymal stromal cells are mechanosensitive to vibration stimuli.
Kim, I S; Song, Y M; Lee, B; Hwang, S J
2012-12-01
Low-magnitude high-frequency (LMHF) vibrations have the ability to stimulate bone formation and reduce bone loss. However, the anabolic mechanisms that are mediated by vibration in human bone cells at the cellular level remain unclear. We hypothesized that human mesenchymal stromal cells (hMSCs) display direct osteoblastic responses to LMHF vibration signals. Daily exposure to vibrations increased the proliferation of hMSCs, with the highest efficiency occurring at a peak acceleration of 0.3 g and vibrations at 30 to 40 Hz. Specifically, these conditions promoted osteoblast differentiation through an increase in alkaline phosphatase activity and in vitro matrix mineralization. The effect of vibration on the expression of osteogenesis-related factors differed depending on culture method. hMSCs that underwent vibration in a monolayer culture did not exhibit any changes in the expressions of these genes, while cells in three-dimensional culture showed increased expression of type I collagen, osteoprotegerin, or VEGF, and VEGF induction appeared in 2 different hMSC lines. These results are among the first to demonstrate a dose-response effect upon LMHF stimulation, thereby demonstrating that hMSCs are mechanosensitive to LMHF vibration signals such that they could facilitate the osteogenic process.
Hagopian, Thomas M; Ghareeb, Paul A; Arslanian, Brian H; Moosavi, Benjamin L; Carlson, Grant W
2015-01-01
Extravasation is a rare but serious complication of vasopressor administration. A 60-year-old female who underwent ascending and hemiarch repair of the aorta along with aortic valve replacement developed extensive right breast and chest wall necrosis after vasopressor extravasation from an internal jugular vein central line. The patient underwent a total mastectomy due to deep tissue necrosis detected by laser-assisted indocyanine green dye angiography, and eventually required omental flap reconstruction to obtain adequate sternal coverage. This case represents a previously unreported complication of internal jugular central line extravasation of vasopressors with resultant breast and chest wall necrosis, and highlights the utility of the omentum in chest wall reconstruction. © 2015 Wiley Periodicals, Inc.
Thyroid cell lines in research on goitrogenesis.
Gerber, H; Peter, H J; Asmis, L; Studer, H
1991-12-01
Thyroid cell lines have contributed a lot to the understanding of goitrogenesis. The cell lines mostly used in thyroid research are briefly discussed, namely the rat thyroid cell lines FRTL and FRTL-5, the porcine thyroid cell lines PORTHOS and ARTHOS, The sheep thyroid cell lines OVNIS 5H and 6H, the cat thyroid cell lines PETCAT 1 to 4 and ROMCAT, and the human thyroid cell lines FTC-133 and HTh 74. Chinese hamster ovary (CHO) cells and COS-7 cells, stably transfected with TSH receptor cDNA and expressing a functional TSH receptor, are discussed as examples for non-thyroidal cells, transfected with thyroid genes.
NASA Astrophysics Data System (ADS)
Sinha, Rileen; Winer, Andrew G.; Chevinsky, Michael; Jakubowski, Christopher; Chen, Ying-Bei; Dong, Yiyu; Tickoo, Satish K.; Reuter, Victor E.; Russo, Paul; Coleman, Jonathan A.; Sander, Chris; Hsieh, James J.; Hakimi, A. Ari
2017-05-01
The utility of cancer cell lines is affected by the similarity to endogenous tumour cells. Here we compare genomic data from 65 kidney-derived cell lines from the Cancer Cell Line Encyclopedia and the COSMIC Cell Lines Project to three renal cancer subtypes from The Cancer Genome Atlas: clear cell renal cell carcinoma (ccRCC, also known as kidney renal clear cell carcinoma), papillary (pRCC, also known as kidney papillary) and chromophobe (chRCC, also known as kidney chromophobe) renal cell carcinoma. Clustering copy number alterations shows that most cell lines resemble ccRCC, a few (including some often used as models of ccRCC) resemble pRCC, and none resemble chRCC. Human ccRCC tumours clustering with cell lines display clinical and genomic features of more aggressive disease, suggesting that cell lines best represent aggressive tumours. We stratify mutations and copy number alterations for important kidney cancer genes by the consistency between databases, and classify cell lines into established gene expression-based indolent and aggressive subtypes. Our results could aid investigators in analysing appropriate renal cancer cell lines.
Almquist, Daniel; Khanal, Nabin; Smith, Lynette; Ganti, Apar Kishor
2018-05-01
Preoperative pulmonary function tests (PFTs) predict operative morbidity and mortality after resection in lung cancer. However, the impact of preoperative PFTs on overall outcomes in surgically-resected stage I and II non-small cell lung cancer (NSCLC) has not been well studied. This is a retrospective study of 149 patients who underwent surgical resection as first-line treatment for stage I and II NSCLC at a single center between 2003 and 2014. PFTs [forced expiratory volume in 1 sec (FEV1), Diffusing Capacity (DLCO)], both absolute values and percent predicted values were categorized into quartiles. The Kaplan-Meier method and Cox regression analysis were used to determine whether PFTs predicted for overall survival (OS). Logistic regression was used to estimate the risk of postoperative complications and length of stay (LOS) greater than 10 days based on the results of PFTs. The median age of the cohort was 68 years. The cohort was predominantly males (98.6%), current or ex-smokers (98%), with stage I NSCLC (82.76%). The majority of patients underwent a lobectomy (n=121, 81.21%). The predominant tumor histology was adenocarcinoma (n=70, 47%) followed by squamous cell carcinoma (n=61, 41%). The median follow-up of surviving patients was 53.2 months. DLCO was found to be a significant predictor of OS (HR=0.93, 95% CI=0.87-0.99; p=0.03) on univariate analysis. Although PFTs did not predict for postoperative complications, worse PFTs were significant predictors of length of stay >10 days. Preoperative PFTs did not predict for survival from resected early-stage NSCLC, but did predict for prolonged hospital stay following surgery. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Fredenburgh, Laura E.; Velandia, Margarita M. Suarez; Ma, Jun; Olszak, Torsten; Cernadas, Manuela; Englert, Joshua A.; Chung, Su Wol; Liu, Xiaoli; Begay, Cynthia; Padera, Robert F.; Blumberg, Richard S.; Walsh, Stephen R.; Baron, Rebecca M.; Perrella, Mark A.
2011-01-01
Sepsis remains the leading cause of death in critically ill patients despite modern advances in critical care. Intestinal barrier dysfunction may lead to secondary bacterial translocation and the development of the multiple organ dysfunction syndrome during sepsis. Cyclooxygenase-2 (COX-2) is highly upregulated in the intestine during sepsis and we hypothesized that it may be critical in the maintenance of intestinal epithelial barrier function during peritonitis-induced polymicrobial sepsis. COX-2−/− and COX-2+/+ BALB/c mice underwent cecal ligation and puncture (CLP) or sham surgery. Mice chimeric for COX-2 were derived by bone marrow transplantation and underwent CLP. C2BBe1 cells, an intestinal epithelial cell line, were treated with the COX-2 inhibitor NS-398, PGD2, or vehicle and stimulated with cytokines. COX-2−/− mice developed exaggerated bacteremia and increased mortality compared with COX-2+/+ mice following CLP. Mice chimeric for COX-2 exhibited the recipient phenotype suggesting that epithelial COX-2 expression in the ileum attenuates bacteremia following CLP. Absence of COX-2 significantly increased epithelial permeability of the ileum and reduced expression of the tight junction proteins zonula occludens-1 (ZO-1), occludin, and claudin-1 in the ileum following CLP. Furthermore, PGD2 attenuated cytokine-induced hyperpermeability and ZO-1 downregulation in NS-398-treated C2BBe1 cells. Our findings reveal that absence of COX-2 is associated with enhanced intestinal epithelial permeability and leads to exaggerated bacterial translocation and increased mortality during peritonitis-induced sepsis. Taken together, our results suggest that epithelial expression of COX-2 in the ileum is a critical modulator of tight junction protein expression and intestinal barrier function during sepsis. PMID:21967897
Hao, Meihua; Yuan, Feng; Jin, Chenchen; Zhou, Zehong; Cao, Qi; Xu, Ling; Wang, Guanlei; Huang, Hui; Yang, Dongzi; Xie, Meiqing; Zhao, Xiaomiao
2016-10-01
Polycystic ovary syndrome (PCOS) progression involves abnormal insulin signaling. SH2 domain-containing adaptor protein (Lnk) may be an important regulator of the insulin signaling pathway. We investigated whether Lnk was involved in insulin resistance (IR). Thirty-seven women due to receive laparoscopic surgery from June 2011 to February 2012 were included from the gynecologic department of the Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University. Samples of polycystic and normal ovary tissues were examined by immunohistochemistry. Ovarian cell lines underwent insulin stimulation and Lnk overexpression. Expressed Lnk underwent coimmunoprecipitation tests with green fluorescent protein-labeled insulin receptor and His-tagged insulin receptor substrate 1 (IRS1), and their colocalization in HEK293T cells was examined. Ovarian tissues from PCOS patients with IR exhibited higher expression of Lnk than ovaries from normal control subjects and PCOS patients without IR; mainly in follicular granulosa cells, the follicular fluid and plasma of oocytes in secondary follicles, and atretic follicles. Lnk was coimmunoprecipitated with insulin receptor and IRS1. Lnk and insulin receptor/IRS1 locations overlapped around the nucleus. IR, protein kinase B (Akt), and ERK1/2 activities were inhibited by Lnk overexpression and inhibited further after insulin stimulation, whereas IRS1 serine activity was increased. Insulin receptor (Tyr1150/1151), Akt (Thr308), and ERK1/2 (Thr202/Tyr204) phosphorylation was decreased, whereas IRS1 (Ser307) phosphorylation was increased with Lnk overexpression. In conclusion, Lnk inhibits the phosphatidylinositol 3 kinase-AKT and MAPK-ERK signaling response to insulin. Higher expression of Lnk in PCOS suggests that Lnk probably plays a role in the development of IR.
Hao, Meihua; Yuan, Feng; Jin, Chenchen; Zhou, Zehong; Cao, Qi; Xu, Ling; Wang, Guanlei; Huang, Hui
2016-01-01
Polycystic ovary syndrome (PCOS) progression involves abnormal insulin signaling. SH2 domain-containing adaptor protein (Lnk) may be an important regulator of the insulin signaling pathway. We investigated whether Lnk was involved in insulin resistance (IR). Thirty-seven women due to receive laparoscopic surgery from June 2011 to February 2012 were included from the gynecologic department of the Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University. Samples of polycystic and normal ovary tissues were examined by immunohistochemistry. Ovarian cell lines underwent insulin stimulation and Lnk overexpression. Expressed Lnk underwent coimmunoprecipitation tests with green fluorescent protein-labeled insulin receptor and His-tagged insulin receptor substrate 1 (IRS1), and their colocalization in HEK293T cells was examined. Ovarian tissues from PCOS patients with IR exhibited higher expression of Lnk than ovaries from normal control subjects and PCOS patients without IR; mainly in follicular granulosa cells, the follicular fluid and plasma of oocytes in secondary follicles, and atretic follicles. Lnk was coimmunoprecipitated with insulin receptor and IRS1. Lnk and insulin receptor/IRS1 locations overlapped around the nucleus. IR, protein kinase B (Akt), and ERK1/2 activities were inhibited by Lnk overexpression and inhibited further after insulin stimulation, whereas IRS1 serine activity was increased. Insulin receptor (Tyr1150/1151), Akt (Thr308), and ERK1/2 (Thr202/Tyr204) phosphorylation was decreased, whereas IRS1 (Ser307) phosphorylation was increased with Lnk overexpression. In conclusion, Lnk inhibits the phosphatidylinositol 3 kinase-AKT and MAPK-ERK signaling response to insulin. Higher expression of Lnk in PCOS suggests that Lnk probably plays a role in the development of IR. PMID:27459314
Yang, Guanghua; Si-Tayeb, Karim; Corbineau, Sébastien; Vernet, Rémi; Gayon, Régis; Dianat, Noushin; Martinet, Clémence; Clay, Denis; Goulinet-Mainot, Sylvie; Tachdjian, Gérard; Tachdjian, Gérard; Burks, Deborah; Vallier, Ludovic; Bouillé, Pascale; Dubart-Kupperschmitt, Anne; Weber, Anne
2013-07-19
Human pluripotent stem cells (hPSCs) hold great promise for applications in regenerative medicine. However, the safety of cell therapy using differentiated hPSC derivatives must be improved through methods that will permit the transplantation of homogenous populations of a specific cell type. To date, purification of progenitors and mature cells generated from either embryonic or induced pluripotent stem cells remains challenging with use of conventional methods. We used lentivectors encoding green fluorescent protein (GFP) driven by the liver-specific apoliprotein A-II (APOA-II) promoter to purify human hepatic progenitors. We evaluated both integrating and integration-defective lentivectors in combination with an HIV integrase inhibitor. A human embryonic stem cell line was differentiated into hepatic progenitors using a chemically defined protocol. Subsequently, cells were transduced and sorted at day 16 of differentiation to obtain a cell population enriched in hepatic progenitor cells. After sorting, more than 99% of these APOA-II-GFP-positive cells expressed hepatoblast markers such as α-fetoprotein and cytokeratin 19. When further cultured for 16 days, these cells underwent differentiation into more mature cells and exhibited hepatocyte properties such as albumin secretion. Moreover, they were devoid of vector DNA integration. We have developed an effective strategy to purify human hepatic cells from cultures of differentiating hPSCs, producing a novel tool that could be used not only for cell therapy but also for in vitro applications such as drug screening. The present strategy should also be suitable for the purification of a broad range of cell types derived from either pluripotent or adult stem cells.
Evaluating cell lines as tumour models by comparison of genomic profiles
Domcke, Silvia; Sinha, Rileen; Levine, Douglas A.; Sander, Chris; Schultz, Nikolaus
2013-01-01
Cancer cell lines are frequently used as in vitro tumour models. Recent molecular profiles of hundreds of cell lines from The Cancer Cell Line Encyclopedia and thousands of tumour samples from the Cancer Genome Atlas now allow a systematic genomic comparison of cell lines and tumours. Here we analyse a panel of 47 ovarian cancer cell lines and identify those that have the highest genetic similarity to ovarian tumours. Our comparison of copy-number changes, mutations and mRNA expression profiles reveals pronounced differences in molecular profiles between commonly used ovarian cancer cell lines and high-grade serous ovarian cancer tumour samples. We identify several rarely used cell lines that more closely resemble cognate tumour profiles than commonly used cell lines, and we propose these lines as the most suitable models of ovarian cancer. Our results indicate that the gap between cell lines and tumours can be bridged by genomically informed choices of cell line models for all tumour types. PMID:23839242
Warthin-Like Papillary Carcinoma of the Thyroid Gland: Case Report and Review of the Literature
Paliogiannis, Panagiotis; Attene, Federico; Trogu, Federica; Trignano, Mario
2012-01-01
We present a case of Warthin-like papillary thyroid carcinoma in a 22-year-old woman and a review of the literature on the topic. The patient had the occasional discovery of a hypoechoic thyroid nodule of approximately 18 mm, characterized by irregular margins, hyperechoic spots, rich intra- and perilesional vascularization, and a suspicious enlarged right laterocervical lymph node. Fine-needle aspiration was performed for both lesions and the diagnosis of papillary thyroid carcinoma without lymph node involvement was made. The patient underwent thyroidectomy and central neck lymphadenectomy without complications. Histopathological examination suggested a Warthin-like papillary carcinoma of the thyroid gland, with all the removed lymph nodes being free of disease. The patient subsequently underwent iodine ablative therapy and she remains free of disease one year after surgery. Warthin-like papillary thyroid carcinoma is a recently described variant of papillary thyroid cancer that is frequently associated with lymphocytic thyroiditis. Morphologically, it resembles Warthin tumors of the salivary glands, with T and B lymphocytes infiltrating the stalks of papillae lined with oncocytic cells. Surgical and postoperative management is identical to that of classic differentiated thyroid cancer, while prognosis seems to be favourable. PMID:23243533
Warthin-like papillary carcinoma of the thyroid gland: case report and review of the literature.
Paliogiannis, Panagiotis; Attene, Federico; Trogu, Federica; Trignano, Mario
2012-01-01
We present a case of Warthin-like papillary thyroid carcinoma in a 22-year-old woman and a review of the literature on the topic. The patient had the occasional discovery of a hypoechoic thyroid nodule of approximately 18 mm, characterized by irregular margins, hyperechoic spots, rich intra- and perilesional vascularization, and a suspicious enlarged right laterocervical lymph node. Fine-needle aspiration was performed for both lesions and the diagnosis of papillary thyroid carcinoma without lymph node involvement was made. The patient underwent thyroidectomy and central neck lymphadenectomy without complications. Histopathological examination suggested a Warthin-like papillary carcinoma of the thyroid gland, with all the removed lymph nodes being free of disease. The patient subsequently underwent iodine ablative therapy and she remains free of disease one year after surgery. Warthin-like papillary thyroid carcinoma is a recently described variant of papillary thyroid cancer that is frequently associated with lymphocytic thyroiditis. Morphologically, it resembles Warthin tumors of the salivary glands, with T and B lymphocytes infiltrating the stalks of papillae lined with oncocytic cells. Surgical and postoperative management is identical to that of classic differentiated thyroid cancer, while prognosis seems to be favourable.
Continuous hematopoietic cell lines as model systems for leukemia-lymphoma research.
Drexler, H G; Matsuo, A Y; MacLeod, R A
2000-11-01
Along with other improvements, the advent of continuous human leukemia-lymphoma (LL) cell lines as a rich resource of abundant, accessible and manipulable living cells has contributed significantly to a better understanding of the pathophysiology of hematopoietic tumors. The first LL cell lines, Burkitt's lymphoma-derived lines, were established in 1963. Since then, more than 1000 cell lines have been described, although not all of them in full detail. The major advantages of continuous cell lines is the unlimited supply and worldwide availability of identical cell material, and the infinite viable storability in liquid nitrogen. LL cell lines are characterized generally by monoclonal origin and differentiation arrest, sustained proliferation in vitro under preservation of most cellular features, and specific genetic alterations. The most practical classification of LL cell lines assigns them to one of the physiologically occurring cell lineages, based on their immunophenotype, genotype and functional features. Truly malignant cell lines must be discerned from Epstein-Barr virus (EBV)-immortalized normal cells, using various distinguishing parameters. However, the picture is not quite so straightforward, as some types of LL cell lines are indeed EBV+, and some EBV+ normal cell lines carry also genetic aberrations and may mimic malignancy-associated features. Apart from EBV and human T-cell leukemia virus in some lines, the majority of wild-type LL cell lines are virus-negative. The efficiency of cell line establishment is rather low and the deliberate establishment of new LL cell lines remains by and large an unpredictable random process. Difficulties in establishing continuous cell lines may be caused by the inappropriate selection of nutrients and growth factors for these cells. Clearly, a generally suitable microenvironment for hematopoietic cells, either malignant or normal, cannot yet be created in vitro. The characterization and publication of new LL cell lines should provide important and informative core data, attesting to their scientific significance. Large percentages of LL cell lines are contaminated with mycoplasma (about 30%) or are cross-contaminated with other cell lines (about 15-20%). Solutions to these problems are sensitive detection, effective elimination and rigorous prevention of mycoplasma infection, and proper, regular authentication of cell lines. The underlying cause, however, appears to be negligent cell culture practice. The willingness of investigators to make their LL cell lines available to others is all too often limited. There is a need in the scientific community for clean and authenticated high-quality LL cell lines to which every scientist has access. These are offered by various institutionalized public cell line banks. It has been argued that LL cell lines are genetically unstable (both cytogenetically and molecular genetically). For instance, cell lines are supposed to acquire numerical and structural chromosomal alterations and various types of mutations (e.g. point mutations) in vitro. We present evidence that while nearly 100% of all LL cell lines indeed carry genetic alterations, these alterations appear to be stable rather than unstable. As an example of the practical utility of LL cell lines, the recent advances in studies of classical and molecular cytogenetics, which in large part were made possible by cell lines, are highlighted. A list of the most useful, robust and publicly available reference cell lines that may be used for a variety of experimental purposes is proposed. Clearly, by opening new avenues for investigation, studies of LL cell lines have provided seminal insights into the biology of hematopoietic neoplasia. Over a period of nearly four decades, these initially rather exotic cell cultures, known only to a few specialists, have become ubiquitous powerful research tools that are available to every investigator.
Barkla, D H; Tutton, P M
1983-10-01
Normal and DMH-treated male rats aged 18-20 weeks underwent surgical transection and anastomosis of the transverse colon. Animals were subsequently killed at intervals of 14, 30 and 72 days. Three hours prior to sacrifice animals were injected with vinblastine sulphate and mitotic indices were subsequently estimated in histological sections. Possible differences between experimental and control groups were tested using a Student's t-test. The results show that the accumulated mitotic indices in normal and DMH-treated colon are statistically similar. The results also show that transection and anastomosis stimulates cell division in both normal and DMH-treated colon and that the increase is of greater amplitude and more prolonged duration in the DMH-treated rats. Carcinomas developed close to the line of anastomosis in DMH-treated but not in control rats. The results support the hypothesis that non-specific injury to hyperplastic colonic epithelium promotes carcinogenesis.
Reprogramming MHC specificity by CRISPR-Cas9-assisted cassette exchange
Kelton, William; Waindok, Ann Cathrin; Pesch, Theresa; Pogson, Mark; Ford, Kyle; Parola, Cristina; Reddy, Sai T.
2017-01-01
The development of programmable nucleases has enabled the application of new genome engineering strategies for cellular immunotherapy. While targeted nucleases have mostly been used to knock-out or knock-in genes in immune cells, the scarless exchange of entire immunogenomic alleles would be of great interest. In particular, reprogramming the polymorphic MHC locus could enable the creation of matched donors for allogeneic cellular transplantation. Here we show a proof-of-concept for reprogramming MHC-specificity by performing CRISPR-Cas9-assisted cassette exchange. Using murine antigen presenting cell lines (RAW264.7 macrophages), we demonstrate that the generation of Cas9-induced double-stranded breaks flanking the native MHC-I H2-Kd locus led to exchange of an orthogonal H2-Kb allele. MHC surface expression allowed for easy selection of reprogrammed cells by flow cytometry, thus obviating the need for additional selection markers. MHC-reprogrammed cells were fully functional as they could present H2-Kd-restricted peptide and activate cognate T cells. Finally, we investigated the role of various donor template formats on exchange efficiency, discovering that templates that underwent in situ linearization resulted in the highest MHC-reprogramming efficiency. These findings highlight a potential new approach for the correcting of MHC mismatches in cellular transplantation. PMID:28374766
Ong, Edison; Xie, Jiangan; Ni, Zhaohui; Liu, Qingping; Sarntivijai, Sirarat; Lin, Yu; Cooper, Daniel; Terryn, Raymond; Stathias, Vasileios; Chung, Caty; Schürer, Stephan; He, Yongqun
2017-12-21
Aiming to understand cellular responses to different perturbations, the NIH Common Fund Library of Integrated Network-based Cellular Signatures (LINCS) program involves many institutes and laboratories working on over a thousand cell lines. The community-based Cell Line Ontology (CLO) is selected as the default ontology for LINCS cell line representation and integration. CLO has consistently represented all 1097 LINCS cell lines and included information extracted from the LINCS Data Portal and ChEMBL. Using MCF 10A cell line cells as an example, we demonstrated how to ontologically model LINCS cellular signatures such as their non-tumorigenic epithelial cell type, three-dimensional growth, latrunculin-A-induced actin depolymerization and apoptosis, and cell line transfection. A CLO subset view of LINCS cell lines, named LINCS-CLOview, was generated to support systematic LINCS cell line analysis and queries. In summary, LINCS cell lines are currently associated with 43 cell types, 131 tissues and organs, and 121 cancer types. The LINCS-CLO view information can be queried using SPARQL scripts. CLO was used to support ontological representation, integration, and analysis of over a thousand LINCS cell line cells and their cellular responses.
Terterov, Dimitry; Leung, Philemon Ho-Yan; Twells, Laurie K.; Gregory, Deborah M.; Smith, Chris; Boone, Darrell; Pace, David
2017-01-01
Background Although laparoscopic sleeve gastrectomy (LSG) has been shown to be a safe and effective treatment for severe obesity (body mass index ≥ 35), staple line leaks remain a major complication and account for a substantial portion of the procedure’s morbidity and mortality. Many centres performing LSG routinely obtain contrast studies on postoperative day 1 for early detection of staple line leaks. We examined the usefulness of Gastrografin swallow as an early detection test for staple line leaks on postoperative day 1 after LSG as well as the associated costs. Methods We conducted a retrospective review of a prospectively collected database that included 200 patients who underwent LSG for severe obesity between 2011 and 2014. Primary outcome measures were the incidence of staple line leaks and the results of Gastrografin swallow tests. We obtained imaging costs from appropriate hospital departments. Results Gastrografin swallow was obtained on postoperative day 1 for all 200 patients who underwent LSG. Three patients (1.5%) were found to have staple line leaks. Gastrograffin swallows yielded 1 true positive result and 2 false negatives. The false negatives were subsequently diagnosed on computed tomography (CT) scan. The sensitivity of Gastrografin swallow in this study was 33%. For 200 patients, the total direct cost of the Gastrografin swallows was $35 000. Conclusion The use of routine upper gastrointestinal contrast studies for early detection of staple line leaks has low sensitivity and is costly. We recommend selective use of CT instead. PMID:28742012
Terterov, Dimitry; Leung, Philemon Ho-Yan; Twells, Laurie K; Gregory, Deborah M; Smith, Chris; Boone, Darrell; Pace, David
2017-09-01
Although laparoscopic sleeve gastrectomy (LSG) has been shown to be a safe and effective treatment for severe obesity (body mass index ≥ 35), staple line leaks remain a major complication and account for a substantial portion of the procedure's morbidity and mortality. Many centres performing LSG routinely obtain contrast studies on postoperative day 1 for early detection of staple line leaks. We examined the usefulness of Gastrografin swallow as an early detection test for staple line leaks on postoperative day 1 after LSG as well as the associated costs. We conducted a retrospective review of a prospectively collected database that included 200 patients who underwent LSG for severe obesity between 2011 and 2014. Primary outcome measures were the incidence of staple line leaks and the results of Gastrografin swallow tests. We obtained imaging costs from appropriate hospital departments. Gastrografin swallow was obtained on postoperative day 1 for all 200 patients who underwent LSG. Three patients (1.5%) were found to have staple line leaks. Gastrograffin swallows yielded 1 true positive result and 2 false negatives. The false negatives were subsequently diagnosed on computed tomography (CT) scan. The sensitivity of Gastrografin swallow in this study was 33%. For 200 patients, the total direct cost of the Gastrografin swallows was $35 000. The use of routine upper gastrointestinal contrast studies for early detection of staple line leaks has low sensitivity and is costly. We recommend selective use of CT instead.
Uchio-Yamada, Kozue; Kasai, Fumio; Ozawa, Midori; Kohara, Arihiro
2017-03-01
Misidentification or cross-contamination of cell lines can cause serious issues. Human cell lines have been authenticated by short tandem repeat profiling; however, mouse cell lines have not been adequately assessed. In this study, mouse cell lines registered with the JCRB cell bank were examined by simple sequence length polymorphism (SSLP) analysis to identify their strains. Based on comparisons with 7 major inbred strains, our results revealed their strains in 80 of 90 cell lines. However, 12 of the 80 cell lines (15%) were found to differ from registered information. Of them, 4 cell lines originated from the same mouse, which had been generated through mating between two different inbred strains. The genotype of the mouse sample had not been examined after the backcross, leading to strain misidentification in those cell lines. Although 8 other cell lines had been established as sublines of a BALB/c cell line, their SSLP profiles are similar to a Swiss cell line. This affects differences in genotypes between inbred and outbred strains. Because the use of inbred samples and interbreeding between strains are not involved in human materials, our results suggest that the cause and influence of misidentification in mouse cell lines are different from those in human.
Pal, Arnab; Srivastava, Tapasya; Sharma, Manish K; Mehndiratta, Mohit; Das, Prerna; Sinha, Subrata; Chattopadhyay, Parthaprasad
2010-11-01
Hypoxia is an integral part of tumorigenesis and contributes extensively to the neoplastic phenotype including drug resistance and genomic instability. It has also been reported that hypoxia results in global demethylation. Because a majority of the cytosine-phosphate-guanine (CpG) islands are found within the repeat elements of DNA, and are usually methylated under normoxic conditions, we suggested that retrotransposable Alu or short interspersed nuclear elements (SINEs) which show altered methylation and associated changes of gene expression during hypoxia, could be associated with genomic instability. U87MG glioblastoma cells were cultured in 0.1% O₂ for 6 weeks and compared with cells cultured in 21% O₂ for the same duration. Real-time PCR analysis showed a significant increase in SINE and reverse transcriptase coding long interspersed nuclear element (LINE) transcripts during hypoxia. Sequencing of bisulphite treated DNA as well as the Combined Bisulfite Restriction Analysis (COBRA) assay showed that the SINE loci studied underwent significant hypomethylation though there was patchy hypermethylation at a few sites. The inter-alu PCR profile of DNA from cells cultured under 6-week hypoxia, its 4-week revert back to normoxia and 6-week normoxia showed several changes in the band pattern indicating increased alu mediated genomic alteration. Our results show that aberrant methylation leading to increased transcription of SINE and reverse transcriptase associated LINE elements could lead to increased genomic instability in hypoxia. This might be a cause of genetic heterogeneity in tumours especially in variegated hypoxic environment and lead to a development of foci of more aggressive tumour cells. © 2009 The Authors Journal compilation © 2010 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.
Sarvepalli, Kavitha; Nath, Utpal
2011-08-01
Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.
Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research.
Irtenkauf, Susan M; Sobiechowski, Susan; Hasselbach, Laura A; Nelson, Kevin K; Transou, Andrea D; Carlton, Enoch T; Mikkelsen, Tom; deCarvalho, Ana C
2017-08-01
Glioblastoma is an aggressive primary brain tumor predominantly localized to the cerebral cortex. We developed a panel of patient-derived mouse orthotopic xenografts (PDOX) for preclinical drug studies by implanting cancer stem cells (CSC) cultured from fresh surgical specimens intracranially into 8-wk-old female athymic nude mice. Here we optimize the glioblastoma PDOX model by assessing the effect of implantation location on tumor growth, survival, and histologic characteristics. To trace the distribution of intracranial injections, toluidine blue dye was injected at 4 locations with defined mediolateral, anterioposterior, and dorsoventral coordinates within the cerebral cortex. Glioblastoma CSC from 4 patients and a glioblastoma nonstem-cell line were then implanted by using the same coordinates for evaluation of tumor location, growth rate, and morphologic and histologic features. Dye injections into one of the defined locations resulted in dye dissemination throughout the ventricles, whereas tumor cell implantation at the same location resulted in a much higher percentage of small multifocal ventricular tumors than did the other 3 locations tested. Ventricular tumors were associated with a lower tumor growth rate, as measured by in vivo bioluminescence imaging, and decreased survival in 4 of 5 cell lines. In addition, tissue oxygenation, vasculature, and the expression of astrocytic markers were altered in ventricular tumors compared with nonventricular tumors. Based on this information, we identified an optimal implantation location that avoided the ventricles and favored cortical tumor growth. To assess the effects of stress from oral drug administration, mice that underwent daily gavage were compared with stress-positive and -negative control groups. Oral gavage procedures did not significantly affect the survival of the implanted mice or physiologic measurements of stress. Our findings document the importance of optimization of the implantation site for preclinical mouse models of glioblastoma.
Optimization of Glioblastoma Mouse Orthotopic Xenograft Models for Translational Research
Irtenkauf, Susan M; Sobiechowski, Susan; Hasselbach, Laura A; Nelson, Kevin K; Transou, Andrea D; Carlton, Enoch T; Mikkelsen, Tom; deCarvalho, Ana C
2017-01-01
Glioblastoma is an aggressive primary brain tumor predominantly localized to the cerebral cortex. We developed a panel of patient-derived mouse orthotopic xenografts (PDOX) for preclinical drug studies by implanting cancer stem cells (CSC) cultured from fresh surgical specimens intracranially into 8-wk-old female athymic nude mice. Here we optimize the glioblastoma PDOX model by assessing the effect of implantation location on tumor growth, survival, and histologic characteristics. To trace the distribution of intracranial injections, toluidine blue dye was injected at 4 locations with defined mediolateral, anterioposterior, and dorsoventral coordinates within the cerebral cortex. Glioblastoma CSC from 4 patients and a glioblastoma nonstem-cell line were then implanted by using the same coordinates for evaluation of tumor location, growth rate, and morphologic and histologic features. Dye injections into one of the defined locations resulted in dye dissemination throughout the ventricles, whereas tumor cell implantation at the same location resulted in a much higher percentage of small multifocal ventricular tumors than did the other 3 locations tested. Ventricular tumors were associated with a lower tumor growth rate, as measured by in vivo bioluminescence imaging, and decreased survival in 4 of 5 cell lines. In addition, tissue oxygenation, vasculature, and the expression of astrocytic markers were altered in ventricular tumors compared with nonventricular tumors. Based on this information, we identified an optimal implantation location that avoided the ventricles and favored cortical tumor growth. To assess the effects of stress from oral drug administration, mice that underwent daily gavage were compared with stress-positive and ‑negative control groups. Oral gavage procedures did not significantly affect the survival of the implanted mice or physiologic measurements of stress. Our findings document the importance of optimization of the implantation site for preclinical mouse models of glioblastoma. PMID:28830577
Fenske, Timothy S.; Zhang, Mei-Jie; Carreras, Jeanette; Ayala, Ernesto; Burns, Linda J.; Cashen, Amanda; Costa, Luciano J.; Freytes, César O.; Gale, Robert P.; Hamadani, Mehdi; Holmberg, Leona A.; Inwards, David J.; Lazarus, Hillard M.; Maziarz, Richard T.; Munker, Reinhold; Perales, Miguel-Angel; Rizzieri, David A.; Schouten, Harry C.; Smith, Sonali M.; Waller, Edmund K.; Wirk, Baldeep M.; Laport, Ginna G.; Maloney, David G.; Montoto, Silvia; Hari, Parameswaran N.
2014-01-01
Purpose To examine the outcomes of patients with chemotherapy-sensitive mantle-cell lymphoma (MCL) following a first hematopoietic stem-cell transplantation (HCT), comparing outcomes with autologous (auto) versus reduced-intensity conditioning allogeneic (RIC allo) HCT and with transplantation applied at different times in the disease course. Patients and Methods In all, 519 patients who received transplantations between 1996 and 2007 and were reported to the Center for International Blood and Marrow Transplant Research were analyzed. The early transplantation cohort was defined as those patients in first partial or complete remission with no more than two lines of chemotherapy. The late transplantation cohort was defined as all the remaining patients. Results Auto-HCT and RIC allo-HCT resulted in similar overall survival from transplantation for both the early (at 5 years: 61% auto-HCT v 62% RIC allo-HCT; P = .951) and late cohorts (at 5 years: 44% auto-HCT v 31% RIC allo-HCT; P = .202). In both early and late transplantation cohorts, progression/relapse was lower and nonrelapse mortality was higher in the allo-HCT group. Overall survival and progression-free survival were highest in patients who underwent auto-HCT in first complete response. Multivariate analysis of survival from diagnosis identified a survival benefit favoring early HCT for both auto-HCT and RIC allo-HCT. Conclusion For patients with chemotherapy-sensitive MCL, the optimal timing for HCT is early in the disease course. Outcomes are particularly favorable for patients undergoing auto-HCT in first complete remission. For those unable to achieve complete remission after two lines of chemotherapy or those with relapsed disease, either auto-HCT or RIC allo-HCT may be effective, although the chance for long-term remission and survival is lower. PMID:24344210
Fenske, Timothy S; Zhang, Mei-Jie; Carreras, Jeanette; Ayala, Ernesto; Burns, Linda J; Cashen, Amanda; Costa, Luciano J; Freytes, César O; Gale, Robert P; Hamadani, Mehdi; Holmberg, Leona A; Inwards, David J; Lazarus, Hillard M; Maziarz, Richard T; Munker, Reinhold; Perales, Miguel-Angel; Rizzieri, David A; Schouten, Harry C; Smith, Sonali M; Waller, Edmund K; Wirk, Baldeep M; Laport, Ginna G; Maloney, David G; Montoto, Silvia; Hari, Parameswaran N
2014-02-01
To examine the outcomes of patients with chemotherapy-sensitive mantle-cell lymphoma (MCL) following a first hematopoietic stem-cell transplantation (HCT), comparing outcomes with autologous (auto) versus reduced-intensity conditioning allogeneic (RIC allo) HCT and with transplantation applied at different times in the disease course. In all, 519 patients who received transplantations between 1996 and 2007 and were reported to the Center for International Blood and Marrow Transplant Research were analyzed. The early transplantation cohort was defined as those patients in first partial or complete remission with no more than two lines of chemotherapy. The late transplantation cohort was defined as all the remaining patients. Auto-HCT and RIC allo-HCT resulted in similar overall survival from transplantation for both the early (at 5 years: 61% auto-HCT v 62% RIC allo-HCT; P = .951) and late cohorts (at 5 years: 44% auto-HCT v 31% RIC allo-HCT; P = .202). In both early and late transplantation cohorts, progression/relapse was lower and nonrelapse mortality was higher in the allo-HCT group. Overall survival and progression-free survival were highest in patients who underwent auto-HCT in first complete response. Multivariate analysis of survival from diagnosis identified a survival benefit favoring early HCT for both auto-HCT and RIC allo-HCT. For patients with chemotherapy-sensitive MCL, the optimal timing for HCT is early in the disease course. Outcomes are particularly favorable for patients undergoing auto-HCT in first complete remission. For those unable to achieve complete remission after two lines of chemotherapy or those with relapsed disease, either auto-HCT or RIC allo-HCT may be effective, although the chance for long-term remission and survival is lower.
Tracheal replacement in rabbits with a new composite silicone-metallic prosthesis.
Dodge-Khatami, Ali; Niessen, Hans W M; Koole, Leo H; Klein, Marloes G; van Gulik, Thomas M; de Mol, Bas A J M
2003-09-01
A new composite silicone-metallic prosthesis was tested, studying the potential for respiratory epithelial covering over the biocompatible inner lining, in a rabbit survival model. Seven New Zealand White rabbits underwent near-total excision of their trachea and implantation of a sterile prosthesis. After 2 months, they were sacrificed and the prostheses were retrieved. Specimens were fixed and histologically examined for tissue reaction around the prosthesis, at the anastomotic lines, and particularly for the presence or absence of epithelialization of the inner lumen over the biocompatible surface. All rabbits survived the operation. At 2 months, the outer layer of the prosthesis was consistently covered with fibrosis and neutrophils. The inner layer showed necrotic cells and scant re-epithelialization over the biocompatible lining, up to 5 mm beyond the anastomosis, with no evidence of organized respiratory epithelium in the middle sections. The new prosthesis is a viable temporary solution for airway replacement in rabbits. Granulation tissue was not observed at the anastomosis, and re-epithelialization did occur, but failed to achieve full-length luminal covering. The potential for granulation tissue does not yet make this an ideal long-term solution. Improvements in prosthesis design or biocompatibility are required, and need to be re-evaluated before applicability for chronic use.
Establishment and characterization of three immortal bovine muscular epithelial cell lines.
Jin, Xun; Lee, Joong-Seob; Kwak, Sungwook; Lee, Soo-Yeon; Jung, Ji-Eun; Kim, Tae-Kyung; Xu, Chenxiong; Hong, Zhongshan; Li, Zhehu; Kim, Sun-Myung; Pian, Xumin; Lee, Dong-Hee; Yoon, Jong-Taek; You, Seungkwon; Choi, Yun-Jaie; Kim, Huunggee
2006-02-28
We have established three immortal bovine muscular epithelial (BME) cell lines, one spontaneously immortalized (BMES), the second SV40LT-mediated (BMEV) and the third hTERT-mediated (BMET). The morphology of the three immortal cell lines was similar to that of early passage primary BME cells. Each of the immortal cell lines made cytokeratin, a typical epithelial marker. BMET grew faster than the other immortal lines and the BME cells, in 10% FBS-DMEM medium, whereas neither the primary cells nor the three immortal cell lines grew in 0.5% FBS-DMEM. The primary BME cells and the immortal cell lines, with the exception of BMES, made increasing amounts of p53 protein when treated with doxorubicin, a DNA damaging agent. On the other hand, almost half of the cells in populations of the three immortal cell lines may lack p16(INK4a) regulatory function, compared to primary BME cells that were growth arrested by enforced expression of p16(INK4a). In soft-agar assays, the primary cells and immortal cell lines proved to be less transformed in phenotype than HeLa cells. The three immortal epithelial-type cell lines reported here are the first cell lines established from muscle tissue of bovine or other species.
GursesCila, Hacer E; Acar, Muradiye; Barut, Furkan B; Gunduz, Mehmet; Grenman, Reidar; Gunduz, Esra
2016-12-01
Recent studies have shown that cancer stem cells are resistant to chemotherapy. The aim of this study was to compare RIF1 gene expression in head and neck, pancreatic cancer and glioma cell lines and the cancer stem cells isolated from these cell lines. UT-SCC-74 from Turku University and UT-SCC-74B primary tumor metastasis and neck cancer cell lines, YKG-1 glioma cancer cell line from RIKEN, pancreatic cancer cell lines and ASPC-1 cells from ATCC were grown in cell culture. To isolate cancer stem cells, ALDH-1 for UT-SCC-74 and UT-SCC-74B cell line, CD-133 for YKG-1 cell line and CD-24 for ASPC-1 cell line, were used as markers of cancer stem cells. RNA isolation was performed for both cancer lines and cancer stem cells. RNAs were converted to cDNA. RIF1 gene expression was performed by qRT-PCR analysis. RIF1 gene expression was compared with cancer cell lines and cancer stem cells isolated from these cell lines. The possible effect of RIF1 gene was evaluated. In the pancreatic cells, RIF1 gene expression in the stem cell-positive cell line was 256 time that seen in the stem cell-negative cell line. Considering the importance of RIF1 in NHEJ and of NHEJ in pancreatic cancer, RIF1 may be one of the genes that plays an important role in the diagnoses and therapeutic treatment of pancreatic cancer. The results of head and neck and brain cancers are inconclusive and further studies are required to elucidate the connection between RIF1 gene and these other types of cancers.
Mix-ups and mycoplasma: the enemies within.
Drexler, Hans G; Uphoff, Cord C; Dirks, Willy G; MacLeod, Roderick A F
2002-04-01
Human leukemia-lymphoma (LL) cell lines represent important tools for experimental research. Among the various problems associated with cell lines, the two most common concern contaminations: (1) cross-contamination with unrelated cells and (2) contamination with microorganisms, in particular mycoplasma. The bad news is that about one-third of the cell lines are either cross-contaminated or mycoplasma-infected or both. The good news is that there are means to recognize and overcome these problems. In cases where, during attempts to establish new LL cell lines, primary LL cultures are cross-contaminated with continuous cell lines, intended new cell lines simply cannot be established ("early" cross-contamination). In cases of "late" cross-contamination of existing LL cell lines where the intrusive cells have a growth advantage, the original ("uncontaminated") cell lines may still be available elsewhere. DNA fingerprinting and cytogenetic analysis appear to be the most suitable approaches to detect cross-contaminations and to authenticate LL cell lines. A different but related aspect of "false" LL cell lines is the frequent misclassification of cell lines whereby the actual cell type of the cell line does not correspond to the purported model character of the cell line. Mycoplasma infection can have a multitude of effects on the eukaryotic cells which, due to the variety of infecting mycoplasma species and many other contributing parameters, cannot be predicted, rendering resulting data questionable at best. Practical procedures for the detection and elimination of mycoplasma contamination have been developed. Diagnostic and preventive strategies in order to hem the alarming increase in "false" and mycoplasma-positive LL cell lines are recommended.
Takenaka, Tomoyoshi; Yamazaki, Koji; Miura, Naoko; Harada, Naohiko; Takeo, Sadanori
2017-12-01
We reported a case of relapsing immune-related colitis (initially caused by nivolumab) following osimertinib therapy for lung adenocarcinoma. A 45-year-old female who had never smoked was diagnosed with adenocarcinoma of the lung and underwent surgical resection. Four years after surgical resection, she was diagnosed with recurrent disease and was eventually treated with nivolumab as third-line therapy. One month after the completion of nivolumab therapy, the patient reported abdominal pain and frequent diarrhea. We diagnosed immune-related colitis and started oral prednisolone. However, the steroid therapy was ineffective, so the patient was administered infliximab and an increased dose of prednisolone. Her symptoms subsequently resolved, and her mucosal lesions improved. Six months after the last administration of nivolumab, osimertinib was initiated as fourth-line therapy, but 3 days later, the patient developed blood in the stool and frequent diarrhea. Osimertinib treatment was discontinued, given the possibility that it had reactivated the patient's immune-related colitis. We subsequently re-administered oral prednisolone (2 mg/kg/day), and the colitis resolved within a few weeks.
USDA-ARS?s Scientific Manuscript database
The adaptation to feeder-independent growth of a pig embryonic stem cell-derived pancreatic cell line is described. The parental PICM-31 cell line, previously characterized as an exocrine pancreas cell line, was colony-cloned two times in succession resulting in the subclonal cell line, PICM-31A1. P...
2013-10-01
cell lines, such as cervix cancer cell line (HeLa) and breast cancer cell line (MDA-MB-231), were also employed. The experiments with other cell lines...breast cancer cell line (MDA-MB- 231), and cervix cancer cell line (HeLa). Different from our hypothesis, prostate cancer cell lines did not present...Radiotherapy Using Gold and Luminescent Nanoparticles in an Orthotopic Human Prostate Cancer Rat Model PRINCIPAL INVESTIGATOR: Kwang Song
[The factors involved in invasive ability of endometrial carcinoma cells].
Mori, Y; Mizuuchi, H; Sato, K; Okamura, N; Kudo, R
1994-06-01
The in vitro invasive ability, the expression of cell adhesion molecule E-cadherin, activity of matrix metalloproteinase (MMP) and K-ras point mutation were investigated in eight human endometrial carcinoma cell lines. 1) In vitro invasive abilities of endometrial carcinoma cell lines depend on the degree of cell differentiation and the origin of cell lines. A poorly-differentiated carcinoma cell line (NUE-1) and a cell line derived from metastatic lymph node (SNG-M) were more invasive than moderately-(HEC-1A, HEC-1BE) and well-differentiated (HEC-6, Ishikawa) cell lines. 2) Immunohistochemically, less or non-invasive cell lines expressed E-cadherin strongly, whereas a highly invasive cell line (NUE-1) expressed E-cadherin weakly. 3) When cultured on Matrigel-coated dishes, the tumor cells derived from moderately- and well-differentiated carcinoma aggregated with each other and did not invade Matrigel in the invasion assay. The aggregated cells expressed E-cadherin more strongly when cultured on Matrigel. 4) 72-kD gelatinase (MMP-2) was secreted in serum-free conditioned medium of all cell lines. In an invasive cell line (NUE-1,SNG-M), the activity of MMP-2 was stronger than in other cell lines. And the activity of 92-kDa gelatinase (MMP-9) was detected in most invasive cell line (NUE-1). 5) Point mutation of K-ras codon 12 was detected in four of eight (50%) cell lines by the PCR-RFLP method. The changes in the DNA sequence were identified, but K-ras point mutation was not correlated with in vitro invasiveness of the tumor cells.
McDermott, Martina; Eustace, Alex J.; Busschots, Steven; Breen, Laura; Crown, John; Clynes, Martin; O’Donovan, Norma; Stordal, Britta
2014-01-01
The development of a drug-resistant cell line can take from 3 to 18 months. However, little is published on the methodology of this development process. This article will discuss key decisions to be made prior to starting resistant cell line development; the choice of parent cell line, dose of selecting agent, treatment interval, and optimizing the dose of drug for the parent cell line. Clinically relevant drug-resistant cell lines are developed by mimicking the conditions cancer patients experience during chemotherapy and cell lines display between two- and eight-fold resistance compared to their parental cell line. Doses of drug administered are low, and a pulsed treatment strategy is often used where the cells recover in drug-free media. High-level laboratory models are developed with the aim of understanding potential mechanisms of resistance to chemotherapy agents. Doses of drug are higher and escalated over time. It is common to have difficulty developing stable clinically relevant drug-resistant cell lines. A comparative selection strategy of multiple cell lines or multiple chemotherapeutic agents mitigates this risk and gives insight into which agents or type of cell line develops resistance easily. Successful selection strategies from our research are presented. Pulsed-selection produced platinum or taxane-resistant large cell lung cancer (H1299 and H460) and temozolomide-resistant melanoma (Malme-3M and HT144) cell lines. Continuous selection produced a lapatinib-resistant breast cancer cell line (HCC1954). Techniques for maintaining drug-resistant cell lines are outlined including; maintaining cells with chemotherapy, pulse treating with chemotherapy, or returning to master drug-resistant stocks. The heterogeneity of drug-resistant models produced from the same parent cell line with the same chemotherapy agent is explored with reference to P-glycoprotein. Heterogeneity in drug-resistant cell lines reflects the heterogeneity that can occur in clinical drug resistance. PMID:24639951
Song, Yan; Jiang, Kui; Su, Shuai; Wang, Bangmao; Chen, Guangxia
2018-01-01
The current study aimed to summarize the clinical manifestations and identify the epigenetic mechanisms of gastric mucosa associated lymphoid tissue (MALT) lymphoma, as well as evaluate the long-term effects of Helicobacter pylori (H. pylori) eradication. A total of 122 patients with marginal zone B-cell lymphoma of primary gastric MALT lymphoma were enrolled in the present study. The clinical manifestations of gastric MALT lymphoma, including symptoms, H. pylori state and endoscopic type, were summarized. The response to therapy was evaluated in patients that underwent H. pylori eradication. Survival analysis was estimated using the Kaplan-Meier method. The expression of microRNA-383 (miR-383) in tumor tissues and cell lines was determined using reverse transcription quantitative polymerase chain reaction. Furthermore, bioinformatic analyses, luciferase reporter assays. and western blot analysis identified zinc finger E-box binding homeobox 2 (ZEB2) as a direct target gene of miR-383. An MTT assay was used to examine the function of miR-383 and ZEB2 in MALT lymphoma. The clinical symptoms of patients with gastric MALT lymphoma were non-specific and included epigastric pain, abdominal discomfort and bleeding. The majority of endoscopic types were classified as ulcer, erosion and mucosa edema. The H. pylori infection rate was 79.5% (97/122) and a total of 47 patients underwent eradication therapy. Lymphoma remission was achieved in 93.6% (44/47) of patients and complete remission (CR) was achieved in 74.4% (35/47). The median follow-up time was 38 months (range, 10–132 months) and the median time taken to achieve CR was 4 months (range, 3–7 months). The estimated 3-year survival rate was 90.3% and the 5-year survival rate was 76.2%. Therefore, it was determined that patients with stage I or II gastric MALT lymphoma are able to undergo H. pylori eradication as a first-line treatment and that the survival rate of patients undergoing this treatment is high. Furthermore, it was determined that the mechanism by which miR-383 and ZEB2 contribute to MALT lymphoma progression is by the targeting of ZEB2 by miR-383, which inhibits the proliferation of cancer cells. PMID:29387204
Wu, Yuxuan; Zhou, Hai; Fan, Xiaoying; Zhang, Ying; Zhang, Man; Wang, Yinghua; Xie, Zhenfei; Bai, Meizhu; Yin, Qi; Liang, Dan; Tang, Wei; Liao, Jiaoyang; Zhou, Chikai; Liu, Wujuan; Zhu, Ping; Guo, Hongshan; Pan, Hong; Wu, Chunlian; Shi, Huijuan; Wu, Ligang; Tang, Fuchou; Li, Jinsong
2015-01-01
Spermatogonial stem cells (SSCs) can produce numerous male gametes after transplantation into recipient testes, presenting a valuable approach for gene therapy and continuous production of gene-modified animals. However, successful genetic manipulation of SSCs has been limited, partially due to complexity and low efficiency of currently available genetic editing techniques. Here, we show that efficient genetic modifications can be introduced into SSCs using the CRISPR-Cas9 system. We used the CRISPR-Cas9 system to mutate an EGFP transgene or the endogenous Crygc gene in SCCs. The mutated SSCs underwent spermatogenesis after transplantation into the seminiferous tubules of infertile mouse testes. Round spermatids were generated and, after injection into mature oocytes, supported the production of heterozygous offspring displaying the corresponding mutant phenotypes. Furthermore, a disease-causing mutation in Crygc (Crygc(-/-)) that pre-existed in SSCs could be readily repaired by CRISPR-Cas9-induced nonhomologous end joining (NHEJ) or homology-directed repair (HDR), resulting in SSC lines carrying the corrected gene with no evidence of off-target modifications as shown by whole-genome sequencing. Fertilization using round spermatids generated from these lines gave rise to offspring with the corrected phenotype at an efficiency of 100%. Our results demonstrate efficient gene editing in mouse SSCs by the CRISPR-Cas9 system, and provide the proof of principle of curing a genetic disease via gene correction in SSCs.
Tsutsui, Takeki; Kumakura, Shin-Ichi; Tamura, Yukiko; Tsutsui, Takeo W; Sekiguchi, Mizuki; Higuchi, Tokihiro; Barrett, J Carl
2003-05-01
Five immortal cell lines derived from a Li-Fraumeni syndrome patient (MDAH 087) with a germline mutant p53 allele were characterized with respect to telomere length and genomic instability. The remaining wild-type p53 allele is lost in the cell lines. Telomerase activity was undetectable in all immortal cell lines. Five subclones of each cell line and five re-subclones of each of the subclones also showed undetectable telomerase activity. All five immortal cell lines exhibited variability in the mean length of terminal restriction fragments (TRFs). Subclones of each cell line, and re-subclones of the subclones also showed TRF variability, indicating that the variability is owing to clonal heterogeneity. Chromosome aberrations were observed at high frequencies in these cell lines including the subclones and re-subclones, and the principal types of aberrations were breaks, double minute chromosomes and dicentric chromosomes. In addition, minisatellite instability detected by DNA fingerprints was observed in the immortal cell lines. However, all of the cell lines were negative for microsatellite instability. As minisatellite sequences are considered recombinogenic in mammalian cells, these results suggest that recombination rates can be increased in these cell lines. Tumor-derived human cell lines, HT1080 cells and HeLa cells that also lack p53 function, exhibited little genomic instability involving chromosomal and minisatellite instabilities, indicating that chromosomal and minisatellite instabilities observed in the immortal cell lines lacking telomerase activity could not result from loss of p53 function.
Liu, Qiong; Chen, Jing; Wang, Xu; Yu, Liang; Hu, Li-hong; Shen, Xu
2010-01-01
Aim: To investigate the effects of the natural product Withagulatin A on hepatic stellate cell (HSC) viability and type I procollagen production. The potential mechanism underlying the pharmacological actions was also explored. Methods: The effect of Withagulatin A on cell viability was evaluated in HSC and LX-2 cells using a sulforhodamine B (SRB) assay. Cell cycle distribution was analyzed using flow cytometry. Type I procollagen gene expression was determined using real-time PCR. Regulation of signaling molecules by Withagulatin A was detected using Western blotting. Results: Primary rat HSCs and the human hepatic stellate cell line LX-2 treated with Withagulatin A (0.625-20 μmol/L) underwent a dose-dependent decrease in cell viability, which was associated with S phase arrest and the induction of cell apoptosis. In addition, the natural product decreased phosphorylation of the Akt/mTOR/p70S6K pathway that controls cell proliferation and survival. Furthermore, Withagulatin A (1, 2 μmol/L) inhibited transforming growth factor-β (TGF-β) stimulated type I procollagen gene expression, which was attributable to the suppression of TGF-β stimulated Smad2 and Smad3 phosphorylation. Conclusion: Our results demonstrated that Withagulatin A potently inhibited HSC viability and type I procollagen production, thereby implying that this natural product has potential use in the development of anti-fibrogenic reagents for the treatment of hepatic fibrosis. PMID:20644552
Lee, Suk Kyoo; Lee, Gyun Min
2003-06-30
Apoptosis-resistant dihydrofolate reductase-deficient CHO cell line (dhfr(-) CHO-bcl2) was developed by introduction of the bcl-2 gene into the dhfr(-) CHO cell line (DUKX-B11, ATCC CRL-9096) and subsequent selection of clones stably overexpressing Bcl-2 in the absence of selection pressure. When the dhfr(-) CHO-bcl2 cell line was used as a host cell line for development of a recombinant CHO (rCHO) cell line expressing a humanized antibody, it displayed stable expression of the bcl-2 gene during rCHO cell line development and no detrimental effect of Bcl-2 overexpression on specific antibody productivity. Taken together, the results obtained demonstrate that the use of an apoptosis-resistant dhfr(-) CHO cell line as the host cell line saves the effort of establishing an apoptosis-resistant rCHO cell line and expedites the development process of apoptosis-resistant rCHO cells producing therapeutic proteins. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 82: 872-876, 2003.
NASA Astrophysics Data System (ADS)
Dadgar, Sina; Rodríguez Troncoso, Joel; Rajaram, Narasimhan
2018-02-01
Currently, anatomical assessment of tumor volume performed several weeks after completion of treatment is the clinical standard to determine whether a cancer patient has responded to a treatment. However, functional changes within the tumor could potentially provide information regarding treatment resistance or response much earlier than anatomical changes. We have used diffuse reflectance spectroscopy to assess the short and long-term re-oxygenation kinetics of a human head and neck squamous cell carcinoma xenografts in response to radiation therapy. First, we injected UM-SCC-22B cell line into the flank of 50 mice to grow xenografts. Once the tumor volume reached 200 mm3 (designated as Day 1), the mice were distributed into radiation and control groups. Members of radiation group underwent a clinical dose of radiation of 2 Gy/day on Days 1, 4, 7, and 10 for a cumulative dose of 8 Gy. DRS spectra of these tumors were collected for 14 days during and after therapy, and the collected spectra of each tumor were converted to its optical properties using a lookup table-base inverse model. We found statistically significant differences in tumor growth rate between two groups which is in indication of the sensitivity of this cell line to radiation. We further acquired significantly different contents of hemoglobin and scattering magnitude and size in two groups. The scattering has previously been associated with necrosis. We furthermore found significantly different time-dependent changes in vascular oxygenation and tumor hemoglobin concentration in post-radiation days.
Leukemia-lymphoma cell lines as model systems for hematopoietic research.
Drexler, Hans G; MacLeod, Roderick A F
2003-01-01
Continuous human leukemia-lymphoma (LL) cell lines comprise a rich self-renewing resource of accessible and manipulable living cells which has illuminated the pathophysiology of hematopoietic tumors as well as basic cell biology. The major key advantages of continuous cell lines are the unlimited supply and worldwide availability of identical cell material and their cryopreservation. LL cell lines are characterized generally by monoclonal origin and differentiation arrest, sustained proliferation in vitro with preservation of most cellular features, and specific genetic alterations. The most practical classification of LL cell lines assigns them to one of the physiologically occurring cell lineages, based on their immunophenotype, genotype and functional features. Truly malignant cell lines may be distinguished from Epstein-Barr virus (EBV)-immortalized normal cells, using various operational and conceptual parameters. The characterization and publication of new LL cell lines provides important and informative core data which, by opening new avenues for investigation, have become ubiquitous powerful research tools that are available to every investigator by reference cell repositories. There is a need in the scientific community for clean and authenticated LL cell lines to which every scientist has access as offered by these institutionalized public cell line banks. A list of the most useful, robust and freely available reference cell lines is proposed in this review. Clearly, studies of LL cell lines have provided seminal insights into the biology of hematopoietic neoplasia.
Formation of the spinal network in zebrafish determined by domain-specific pax genes.
Ikenaga, Takanori; Urban, Jason M; Gebhart, Nichole; Hatta, Kohei; Kawakami, Koichi; Ono, Fumihito
2011-06-01
In the formation of the spinal network, various transcription factors interact to develop specific cell types. By using a gene trap technique, we established a stable line of zebrafish in which the red fluorescent protein (RFP) was inserted into the pax8 gene. RFP insertion marked putative pax8-lineage cells with fluorescence and inhibited pax8 expression in homozygous embryos. Pax8 homozygous embryos displayed defects in the otic vesicle, as previously reported in studies with morpholinos. The pax8 homozygous embryos survived to adulthood, in contrast to mammalian counterparts that die prematurely. RFP is expressed in the dorsal spinal cord. Examination of the axon morphology revealed that RFP(+) neurons include commissural bifurcating longitudinal (CoBL) interneurons, but other inhibitory neurons such as commissural local (CoLo) interneurons and circumferential ascending (CiA) interneurons do not express RFP. We examined the effect of inhibiting pax2a/pax8 expression on interneuron development. In pax8 homozygous fish, the RFP(+) cells underwent differentiation similar to that of pax8 heterozygous fish, and the swimming behavior remained intact. In contrast, the RFP(+) cells of pax2a/pax8 double mutants displayed altered cell fates. CoBLs were not observed. Instead, RFP(+) cells exhibited axons descending ipsilaterally, a morphology resembling that of V2a/V2b interneurons. Copyright © 2010 Wiley-Liss, Inc.
Wang, La; Song, Juan; Bao, Xi-Yan; Chen, Peng; Yi, Hua-Shan; Pan, Min-Hui; Lu, Cheng
2016-10-15
The identification and analysis of the caspases is essential to research into apoptosis in lepidoptera insects. The domesticated silkworm, Bombyx mori, is the model system for lepidopterans. In this study, we cloned and characterized a B. mori Dredd gene, BmDredd, the proposed insect homologue of human caspase-8, which encoded a polypeptide of 543 amino acids. BmDredd possesses a long N-terminal prodomain, a p20 domain, and a p10 domain. When transiently expressed in Escherichia coli cells, BmDredd underwent spontaneous cleavage and exhibited high proteolytic activity for caspase-8 substrate but relatively low for caspase-3 or -9 substrate. In addition, BmDredd induced apoptosis when transiently expressed in BmN-SWU1 cells, an ovarian cell line of B. mori. Moreover, after the treatment of Emodin, a novel apoptosis inducer, endogenous BmDredd expression level, the caspase-8 activity and the apoptotic rate increased notably in BmN-SWU1 cells. When BmDredd was subjected to interference in BmN-SWU1 cells and Emodin treatment, BmDredd expression levels decreased and the apoptotic rate also decreased significantly. These results suggest BmDredd is the homologue of human caspase-8 and plays a role in Emodin-induced apoptosis in BmN-SWU1 cells of B. mori. Copyright © 2016 Elsevier B.V. All rights reserved.
[Establishment of human embryonic stem cell lines and their therapeutic application].
Suemori, Hirofumi
2004-03-01
Embryonic stem (ES) cell lines are pluripotent stem cell lines that can be propagated indefinitely in culture, retaining their potency to differentiate into every type of cell and tissue in the body. ES cell lines were first established from mouse blastocysts, and have been used for research in developmental biology. ES cells have been proven to be very valuable in the genetic modification of the mouse, especially in producing knockout mice. Since establishment of human ES cell lines was reported, their use in cell replacement therapies has been enthusiastically expected. There have been reports of the differentiation of several useful cell types from human ES cell lines, and clinical use of functional tissues and cells from human ES cells is anticipated. In Japan, there have also been many demands for the use of human ES cells in basic and pre-clinical research. We obtained governmental permission to establish human ES cell lines in April 2002 and started research using donated frozen embryos in January 2003. We successfully established three ES cell line from three blastocysts. These cell lines will be distributed at cost to researchers who have governmental permission to use human ES cells.
Chandipura virus growth kinetics in vertebrate cell lines, insect cell lines & embryonated eggs.
Jadi, R S; Sudeep, A B; Kumar, Satyendra; Arankalle, V A; Mishra, A C
2010-08-01
Since not much information on Chandipura virus is available, an attempt was made to study the growth kinetics of the virus in certain vertebrate, invertebrate cell lines and embryonated chicken eggs. Comparative study of Chandipura virus (CHPV) growth kinetics in three vertebrate cell lines [Vero E6, Rhabdo myosarcoma (RD), Porcine stable kidney (PS) cell lines], two insect cell lines [Aedes aegypti (AA) and Phlebotomus papatasi (PP-9) cell lines] and embryonated pathogen free chicken eggs was conducted, by tissue culture infective dose 50 per cent (TCID(50)) and indirect immunofluorescence assay (IFA). All the cell lines and embryonated egg supported the growth of CHPV and yielded high virus titre. The vertebrate cell lines showed distinct cytopathic effect (CPE) within 4-6 h post infection (PI), while no CPE was observed in insect cell lines. PP-9 cell line was the most sensitive system to CHPV as viral antigen could be detected at 1 h PI by IFA. Our results demonstrated that all the systems were susceptible to CHPV and achieved high yield of virus. However, the PP-9 cell line had an edge over the others due to its high sensitivity to the virus which might be useful for detection and isolation of the virus during epidemics.
McMurtry, Vanity; Saavedra, Joseph E; Nieves-Alicea, René; Simeone, Ann-Marie; Keefer, Larry K; Tari, Ana M
2011-04-01
Targeted therapy with reduced side effects is a major goal in cancer research. We investigated the effects of JS-K, a nitric oxide (NO) prodrug designed to release high levels of NO when suitably activated, on human breast cancer cell lines, on non-transformed human MCF-10A mammary cells, and on normal human mammary epithelial cells (HMECs). Cell viability assay, flow cytometry, electron microscopy, and Western blot analysis were used to study the effects of JS-K on breast cancer and on mammary epithelial cells. After a 3-day incubation, the IC50s of JS-K against the breast cancer cells ranged from 0.8 to 3 µM. However, JS-K decreased the viability of the MCF-10A cells by only 20% at 10-µM concentration, and HMECs were unaffected by 10 µM JS-K. Flow cytometry indicated that JS-K increased the percentages of breast cancer cells under-going apoptosis. Interestingly, flow cytometry indicated that JS-K increased acidic vesicle organelle formation in breast cancer cells, suggesting that JS-K induced autophagy in breast cancer cells. Electron microscopy confirmed that JS-K-treated breast cancer cells underwent autophagic cell death. Western blot analysis showed that JS-K induced the expression of microtubule light chain 3-II, another autophagy marker, in breast cancer cells. However, JS-K did not induce apoptosis or autophagy in normal human mammary epithelial cells. These data indicate that JS-K selectively induces programmed cell death in breast cancer cells while sparing normal mammary epithelial cells under the same conditions. The selective anti-tumor activity of JS-K warrants its further investigation in breast tumors.
Liu, Wai-Nam; Leung, Kwok-Nam
2014-11-01
Conjugated linolenic acids (CLNAs) are a group of naturally occurring positional and geometrical isomers of the C18 polyunsaturated essential fatty acid, linolenic acid (LNA), with three conjugated double bonds (C18:3). Although previous research has demonstrated the growth-inhibitory effects of CLNA on a wide variety of cancer cell lines in vitro, their action mechanisms and therapeutic potential on human myeloid leukemia cells remain poorly understood. In the present study, we found that jacaric acid (8Z,10E,12Z-octadecatrienoic acid), a CLNA isomer which is present in jacaranda seed oil, inhibited the in vitro growth of human eosinophilic leukemia EoL-1 cells in a time- and concentration-dependent manner. Mechanistic studies showed that jacaric acid triggered cell cycle arrest of EoL-1 cells at the G0/G1 phase and induced apoptosis of the EoL-1 cells, as measured by the Cell Death Detection ELISAPLUS kit, Annexin V assay and JC-1 dye staining. Notably, the jacaric acid-treated EoL-1 cells also underwent differentiation as revealed by morphological and phenotypic analysis. Collectively, our results demonstrated the capability of jacaric acid to inhibit the growth of EoL-1 cells in vitro through triggering cell cycle arrest and by inducing apoptosis and differentiation of the leukemia cells. Therefore, jacaric acid might be developed as a potential candidate for the treatment of certain forms of myeloid leukemia with minimal toxicity and few side effects.
Lim, Jeong-Ae; Oh, Chung-Sik; Yoon, Tae-Gyoon; Lee, Ji Yeon; Lee, Seung-Hyun; Yoo, Young-Bum; Yang, Jung-Hyun; Kim, Seong-Hyop
2018-02-07
To clarify the effect of anaesthetic agents on cancer immunity, we evaluated the effects of propofol and sevoflurane on natural killer (NK) cell, cytotoxic T lymphocyte (CTL) counts and apoptosis rate in breast cancer and immune cells co-cultures from patients who underwent breast cancer surgery. Venous blood samples were collected after inducing anaesthesia and at 1 and 24 h postoperatively in patients who had undergone breast cancer surgery. The patients were allocated randomly to the propofol- or sevoflurane-based anaesthesia groups. We counted and detected apoptosis in cancer cell, NK cell and CTL of patients with breast cancer by co-culture with a breast cancer cell line in both groups. We also evaluated changes in the cytokines tumour necrosis factor-alpha, interleukin (IL)-6 and IL-10 during the perioperative period. Forty-four patients were included in the final analysis. No difference in NK cell count, CTL count or apoptosis rate was detected between the groups. Furthermore, the number of breast cancer cells undergoing apoptosis in the breast cancer cell co-cultures was not different between the groups. No changes in cytokines were detected between the groups. Although basic science studies have suggested the potential benefits of propofol over a volatile agent during cancer surgery, propofol was not superior to sevoflurane, on the aspects of NK and CTL cells counts with apoptosis rate including breast cancer cell, during anaesthesia for breast cancer surgery in a clinical environment. NCT02758249 on February 26, 2016.
Tamaru, Yuzuru; Oka, Shiro; Tanaka, Shinji; Hiraga, Yuko; Kunihiro, Masaki; Nagata, Shinji; Furudoi, Akira; Ninomiya, Yuki; Asayama, Naoki; Shigita, Kenjiro; Nishiyama, Soki; Hayashi, Nana; Chayama, Kazuaki
2016-10-01
The lower rectum close to the dentate line has distinct characteristics, making endoscopic submucosal dissection (ESD) of tumors challenging. We assessed clinical outcomes of ESD for such patients with hemorrhoids. Sixty-four patients (mean age, 68 years) underwent ESD for anorectal tumors close to the dentate line. We divided patients into those with (Group A, 45 patients) and without hemorrhoids (Group B, 19 patients). We examined en bloc and histological en bloc resection rates, procedure time, complication rates, and postoperative prognosis after ESD. The mean tumor size was 43 mm. Histologic diagnoses were adenoma (42 %, 27/64), carcinoma in situ (44 %, 28/64), and T1 carcinoma (14 %, 9/64). There was no significant difference in en bloc resection (93 %, 42/45 vs. 95 %, 18/19) or postoperative bleeding rates (16 %, 7/45 vs. 11 %, 2/19) between Groups A and B, respectively. The mean procedural durations were 120 and 124 min, respectively, in Groups A and B. No perforations occurred. There was no significant difference in postoperative anal pain rate between Groups A (18 %, 8/45) and B (16 %, 3/19), and it resolved within a few days in all cases. There was one case of stricture in Group B. Two patients with T1 carcinoma underwent additional surgery, one underwent chemotherapy, and five had no additional treatment. No recurrence occurred during the follow-up period of 38 months. ESD is safe and effective for anorectal tumors close to the dentate line in patients with hemorrhoids.
Drexler, H G; Matsuo, Y
2000-05-01
Malignancies involving natural killer (NK) cells are rare disorders. The complexity of NK cell-involving disorders has only recently been appreciated. Modern classifications discern immature (precursor) from mature NK cell leukemias-lymphomas. Continuous NK leukemia-lymphoma cell lines represent important model systems to study these neoplasms. While there are a number of putative NK cell lines which are, however, either not characterized, not immortalized, non-malignant, non-NK, or plain false cell lines, six bona fide malignant NK cell lines have been established and are sufficiently well characterized: HANK1, KHYG-1, NK-92, NKL, NK-YS and YT. Except for YT which was derived from a not further defined acute lymphoblastic lymphoma, these cell lines were established from patients with various NK cell malignancies. Five of the six cell lines are constitutively interleukin-2-dependent. Their immunoprofile is remarkably similar: CD1-, CD2+, surface CD3 (but cytoplasmic CD3epsilon+), CD4-, CD5-, CD7+, CD8-, CD16-, CD56+, CD57-, TCRalphabeta-, TCRgammadelta-, negative for B cell and myelomonocytic markers. The immunoglobulin heavy chain and T cell receptor genes are all in germline configuration. All six lines show complex chromosomal alterations, with both numerical and structural aberrations, attesting to their malignant and monoclonal nature. Functionally, these cells which contain azurophilic granules in their cytoplasm are nearly universally positive in NK activity assays. Three of five cell lines are Epstein-Barr virus-positive (type II latency). The composite data on these six cell lines allow for the operational definition of a typical malignant NK cell line profile. NK leukemia-lymphoma cell lines will prove invaluable for studies of normal and malignant NK cell biology.
Shi, Cheng; Shen, Huan; Jiang, Wei; Song, Zhi-Hua; Wang, Cheng-Yan; Wei, Li-Hui
2011-04-01
Human embryonic stem cells have prospective uses in regenerative medicine and drug screening. Every human embryonic stem cell line has its own genetic background, which determines its specific ability for differentiation as well as susceptibility to drugs. It is necessary to compile many human embryonic stem cell lines with various backgrounds for future clinical use, especially in China due to its large population. This study contributes to isolating new Chinese human embryonic stem cell lines with clarified directly differentiation ability. Donated embryos that exceeded clinical use in our in vitro fertilization-embryo transfer (IVF-ET) center were collected to establish human embryonic stem cells lines with informed consent. The classic growth factors of basic fibroblast growth factor (bFGF) and recombinant human leukaemia inhibitory factor (hLIF) for culturing embryonic stem cells were used to capture the stem cells from the plated embryos. Mechanical and enzymetic methods were used to propagate the newly established human embryonic stem cells line. The new cell line was checked for pluripotent characteristics with detecting the expression of stemness genes and observing spontaneous differentiation both in vitro and in vivo. Finally similar step-wise protocols from definitive endoderm to target specific cells were used to check the cell line's ability to directly differentiate into pancreatic and hepatic cells. We generated a new Chinese human embryonic stem cells line, CH1. This cell line showed the same characteristics as other reported Chinese human embryonic stem cells lines: normal morphology, karyotype and pluripotency in vitro and in vivo. The CH1 cells could be directly differentiated towards pancreatic and hepatic cells with equal efficiency compared to the H1 cell line. This newly established Chinese cell line, CH1, which is pluripotent and has high potential to differentiate into pancreatic and hepatic cells, will provide a useful tool for embryo development research, along with clinical treatments for diabetes and some hepatic diseases.
Alvarez, J D; Anderson, S J; Loh, D Y
1995-08-01
Transcriptional activation of rearranging Ag receptor gene segments has been hypothesized to regulate their accessibility to V(D)J recombination. We analyzed the role of a functional promoter in the rearrangement of the murine TCR beta-chain locus using two transgenic minilocus constructs. These miniloci each contain an unrearranged V beta 8.3 gene. One has a wild-type V beta 8.3 gene, but the other has a V beta 8.3 gene with a promoter mutation that was previously shown to abrogate transcription in tissue culture. FACS analysis of thymus and lymph node cells from transgenic mouse lines showed that only the lines with the wild-type V beta 8.3 gene promoter express an 8.3 TCR beta-chain. Consistent with the protein expression data, V beta 8.3 gene transcripts were found only in the transgenic lines with the wild-type promoter. Using a quantitative PCR-based assay, it was shown that both types of transgenic lines recombine the V beta 8.3 gene at similar levels. Rearrangement of the transgenes was normal with respect to thymic development and junctional reading frame. Interestingly, both types of miniloci also underwent allelic exclusion in that recombination was blocked by the expression of a rearranged TCR beta-chain transgene. We conclude that a functional V beta gene promoter is not necessary for proper V(D)J recombination to occur.
Ma, Nan; Yang, Di; Okamura, Hirohiko; Teramachi, Jumpei; Hasegawa, Tomokazu; Qiu, Lihong; Haneji, Tatsuji
2017-01-01
Periapical lesions are characterized by the destruction of periapical bone, and occur as a result of local inflammatory responses to root canal infection by microorganisms including Porphyromonas endodontalis (P. endodontalis). P. endodontalis and its primary virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical lesions and alveolar bone loss. Interleukin-23 (IL-23) is critical in the initiation and progression of periodontal disease via effects on peripheral bone metabolism. The present study investigated the expression of IL-23 in tissue where a periapical lesion was present, and the effect of P. endodontalis LPS on the expression of IL-23 in periodontal ligament (PDL) cells. Reverse transcription- quantitative polymerase chain reaction and immunohistochemistry revealed increased levels of IL-23 expression in tissue with periapical lesions compared with healthy PDL tissue. Treatment with P. endodontalis LPS increased the expression of IL-23 in the SH-9 human PDL cell line. BAY11-7082, a nuclear factor κB inhibitor, suppressed P. endodontalis LPS-induced IL-23 expression in SH-9 cells. Treatment of RAW264.7 cells with conditioned medium from P. endodontalis LPS-treated SH-9 cells promoted osteoclastogenesis. By contrast, RAW264.7 cells treated with conditioned medium from IL-23-knockdown SH-9 cells underwent reduced levels of osteoclastogenesis. The results of the present study indicated that the expression of IL-23 in PDL cells induced by P. endodontalis LPS treatment may be involved in the progression of periapical lesions via stimulation of the osteoclastogenesis process. PMID:28000855
Orciani, Monia; Lazzarini, Raffaella; Scartozzi, Mario; Bolletta, Elisa; Mattioli-Belmonte, Monica; Scalise, Alessandro; Di Benedetto, Giovanni; Di Primio, Roberto
2013-12-01
Breast implants are widely used and at times might cause inflammation as a foreign body, followed by fibrous capsule formation around the implant. In cancer, the inflamed stroma is essential for preservation of the tumor. Mesenchymal stem cells can be recruited to sites of inflammation, and their role in cancer development is debated. The authors assessed the effects of inflammation caused by breast implants' effects on tumor. Mesenchymal stem cells were isolated from the fibrous capsules of women who underwent a second operation after 1 year (presenting inflammation) or after 20 years (not presenting inflammation) since initial surgery. After characterization, cells were co-cultured with MCF7, a breast cancer cell line. The expression of genes involved in oncogenesis, proliferation, and epithelial-to-mesenchymal transition was investigated, followed by Western blot analyses. After co-culture with mesenchymal stem cells from the inflamed capsule, MCF7 induced a dose- and time-dependent increase in proliferation. Polymerase chain reaction analyses revealed a dysregulation of genes involved in oncogenesis, proliferation, and epithelial-to-mesenchymal transition. The subsequent evaluation by Western blot did not confirm these results, showing only a modest decrease in the expression of E-cadherin after co-culture with mesenchymal stem cells (both derived from inflamed or control capsules). These data indicate that inflammation caused by breast implants partially affects proliferation of MCF7 but does not influence key mechanisms of tumor development.
77 FR 5489 - Identification of Human Cell Lines Project
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-03
...-01] Identification of Human Cell Lines Project AGENCY: National Institute of Standards and Technology... cell line samples as part of the Identification of Human Cell Lines Project. All data and corresponding... cell lines accepted on the NIST Applied Genetics Group Web site at http://www.nist.gov/mml/biochemical...
TaGS5-3A, a grain size gene selected during wheat improvement for larger kernel and yield.
Ma, Lin; Li, Tian; Hao, Chenyang; Wang, Yuquan; Chen, Xinhong; Zhang, Xueyong
2016-05-01
Grain size is a dominant component of grain weight in cereals. Earlier studies have shown that OsGS5 plays a major role in regulating both grain size and weight in rice via promotion of cell division. In this study, we isolated TaGS5 homoeologues in wheat and mapped them on chromosomes 3A, 3B and 3D. Temporal and spatial expression analysis showed that TaGS5 homoeologues were preferentially expressed in young spikes and developing grains. Two alleles of TaGS5-3A, TaGS5-3A-T and TaGS5-3A-G were identified in wheat accessions, and a functional marker was developed to discriminate them. Association analysis revealed that TaGS5-3A-T was significantly correlated with larger grain size and higher thousand kernel weight. Biochemical assays showed that TaGS5-3A-T possesses a higher enzymatic activity than TaGS5-3A-G. Transgenic rice lines overexpressing TaGS5-3A-T also exhibited larger grain size and higher thousand kernel weight than TaGS5-3A-G lines, and the transcript levels of cell cycle-related genes in TaGS5-3A-T lines were higher than those in TaGS5-3A-G lines. Furthermore, systematic evolution analysis in diploid, tetraploid and hexaploid wheat showed that TaGS5-3A underwent strong artificial selection during wheat polyploidization events and the frequency changes of two alleles demonstrated that TaGS5-3A-T was favoured in global modern wheat cultivars. These results suggest that TaGS5-3A is a positive regulator of grain size and its favoured allele TaGS5-3A-T exhibits a larger potential application in wheat high-yield breeding. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.
Parameswaran, V; Ishaq Ahmed, V P; Shukla, Ravi; Bhonde, R R; Sahul Hameed, A S
2007-01-01
Two new cell lines, SIMH and SIGE, were derived from the heart of milkfish (Chanos chanos), a euryhaline teleost, and from the eye of grouper (Epinephelus coioides), respectively. These cell lines were maintained in Leibovitz's L-15 supplemented with 20% fetal bovine serum (FBS). The SIMH cell line was subcultured more than 50 times over a period of 210 days and SIGE cell line has been subcultured 100 times over a period of 1 1/2 years. The SIMH cell line consists predominantly of fibroblastic-like cells. The SIGE cell line consists predominantly of epithelial cells. Both the cell lines were able to grow at temperatures between 25 and 32 degrees C with an optimum temperature of 28 degrees C. The growth rate of these cells increased as the proportion of FBS increased from 2% to 20% at 28 degrees C with optimum growth at the concentrations of 15% or 20% FBS. Seven marine fish viruses were tested to determine the susceptibility of these cell lines. The SIGE cell line was found to be susceptible to nodavirus, MABV NC-1 and Y6, and the infection was confirmed by cytopathic effect (CPE) and reverse transcriptase-polymerase chain reaction. When these cells were transfected with pEGFP-N1 vector DNA, significant fluorescent signals were observed, suggesting that these cell lines can be a useful tool for transgenic and genetic manipulation studies. Further, these cell lines are characterized by immunocytochemistry using confocal laser scanning microscopy (CFLSM).
Korch, Christopher; Hall, Erin M.; Dirks, Wilhelm G.; Ewing, Margaret; Faries, Mark; Varella‐Garcia, Marileila; Robinson, Steven; Storts, Douglas; Turner, Jacqueline A.; Wang, Ying; Burnett, Edward C.; Healy, Lyn; Kniss, Douglas; Neve, Richard M.; Nims, Raymond W.; Reid, Yvonne A.; Robinson, William A.
2017-01-01
A variety of analytical approaches have indicated that melanoma cell line UCLA‐SO‐M14 (M14) and breast carcinoma cell line MDA‐MB‐435 originate from a common donor. This indicates that at some point in the past, one of these cell lines became misidentified, meaning that it ceased to correspond to the reported donor and instead became falsely identified (through cross‐contamination or other means) as a cell line from a different donor. Initial studies concluded that MDA‐MB‐435 was the misidentified cell line and M14 was the authentic cell line, although contradictory evidence has been published, resulting in further confusion. To address this question, we obtained early samples of the melanoma cell line (M14), a lymphoblastoid cell line from the same donor (ML14), and donor serum preserved at the originator's institution. M14 samples were cryopreserved in December 1975, before MDA‐MB‐435 cells were established in culture. Through a series of molecular characterizations, including short tandem repeat (STR) profiling and cytogenetic analysis, we demonstrated that later samples of M14 and MDA‐MB‐435 correspond to samples of M14 frozen in 1975, to the lymphoblastoid cell line ML14, and to the melanoma donor's STR profile, sex and blood type. This work demonstrates conclusively that M14 is the authentic cell line and MDA‐MB‐435 is misidentified. With clear provenance information and authentication testing of early samples, it is possible to resolve debates regarding the origins of problematic cell lines that are widely used in cancer research. PMID:28940260
Povey, Jane F; O'Malley, Christopher J; Root, Tracy; Martin, Elaine B; Montague, Gary A; Feary, Marc; Trim, Carol; Lang, Dietmar A; Alldread, Richard; Racher, Andrew J; Smales, C Mark
2014-08-20
Despite many advances in the generation of high producing recombinant mammalian cell lines over the last few decades, cell line selection and development is often slowed by the inability to predict a cell line's phenotypic characteristics (e.g. growth or recombinant protein productivity) at larger scale (large volume bioreactors) using data from early cell line construction at small culture scale. Here we describe the development of an intact cell MALDI-ToF mass spectrometry fingerprinting method for mammalian cells early in the cell line construction process whereby the resulting mass spectrometry data are used to predict the phenotype of mammalian cell lines at larger culture scale using a Partial Least Squares Discriminant Analysis (PLS-DA) model. Using MALDI-ToF mass spectrometry, a library of mass spectrometry fingerprints was generated for individual cell lines at the 96 deep well plate stage of cell line development. The growth and productivity of these cell lines were evaluated in a 10L bioreactor model of Lonza's large-scale (up to 20,000L) fed-batch cell culture processes. Using the mass spectrometry information at the 96 deep well plate stage and phenotype information at the 10L bioreactor scale a PLS-DA model was developed to predict the productivity of unknown cell lines at the 10L scale based upon their MALDI-ToF fingerprint at the 96 deep well plate scale. This approach provides the basis for the very early prediction of cell lines' performance in cGMP manufacturing-scale bioreactors and the foundation for methods and models for predicting other mammalian cell phenotypes from rapid, intact-cell mass spectrometry based measurements. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Medina, D.; Oborn, C.J.; Li, M.L.
1987-09-01
The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appearedmore » to represent myoepithelial cells. The cell lines were examined for expression of {beta}-casein mRNA in the presence or absence of prolactin. The inducibility of {beta}-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types.« less
Adventitious viruses in insect cell lines used for recombinant protein expression.
Geisler, Christoph; Jarvis, Donald L
2018-04-01
Insect cells are widely used for recombinant protein expression, typically as hosts for recombinant baculovirus vectors, but also for plasmid-mediated transient transfection or stable genetic transformation. Insect cells are used to express proteins for research, as well as to manufacture biologicals for human and veterinary medicine. Recently, several insect cell lines used for recombinant protein expression were found to be persistently infected with adventitious viruses. This has raised questions about how these infections might affect research performed using those cell lines. Furthermore, these findings raised serious concerns about the safety of biologicals produced using those cell lines. In response, new insect cell lines lacking adventitious viruses have been isolated for use as improved research tools and safer biological manufacturing platforms. Here, we review the scientific and patent literature on adventitious viruses found in insect cell lines, affected cell lines, and new virus-free cell lines. Copyright © 2017 Elsevier Inc. All rights reserved.
Effects of curcumin on stem-like cells in human esophageal squamous carcinoma cell lines.
Almanaa, Taghreed N; Geusz, Michael E; Jamasbi, Roudabeh J
2012-10-24
Many cancers contain cell subpopulations that display characteristics of stem cells. Because these cancer stem cells (CSCs) appear to provide resistance to chemo-radiation therapy, development of therapeutic agents that target CSCs is essential. Curcumin is a phytochemical agent that is currently used in clinical trials to test its effectiveness against cancer. However, the effect of curcumin on CSCs is not well established. The current study evaluated curcumin-induced cell death in six cancer cell lines derived from human esophageal squamous cell carcinomas. Moreover, these cell lines and the ones established from cells that survived curcumin treatments were characterized. Cell loss was assayed after TE-1, TE-8, KY-5, KY-10, YES-1, and YES-2 cells were exposed to 20-80 μM curcumin for 30 hrs. Cell lines surviving 40 or 60 μM curcumin were established from these six original lines. The stem cell markers aldehyde dehydrogenase-1A1 (ALDH1A1) and CD44 as well as NF-κB were used to compare CSC-like subpopulations within and among the original lines as well as the curcumin-surviving lines. YES-2 was tested for tumorsphere-forming capabilities. Finally, the surviving lines were treated with 40 and 60 μM curcumin to determine whether their sensitivity was different from the original lines. The cell loss after curcumin treatment increased in a dose-dependent manner in all cell lines. The percentage of cells remaining after 60 μM curcumin treatment varied from 10.9% to 36.3% across the six lines. The cell lines were heterogeneous with respect to ALDH1A1, NF-κB and CD44 expression. KY-5 and YES-1 were the least sensitive and had the highest number of stem-like cells whereas TE-1 had the lowest. The curcumin-surviving lines showed a significant loss in the high staining ALDH1A1 and CD44 cell populations. Tumorspheres formed from YES-2 but were small and rare in the YES-2 surviving line. The curcumin-surviving lines showed a small but significant decrease in sensitivity to curcumin when compared with the original lines. Our results suggest that curcumin not only eliminates cancer cells but also targets CSCs. Therefore, curcumin may be an effective compound for treating esophageal and possibly other cancers in which CSCs can cause tumor recurrence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gestl, Erin E., E-mail: egestl@wcupa.edu; Anne Boettger, S., E-mail: aboettger@wcupa.edu
2012-06-29
Highlights: Black-Right-Pointing-Pointer Eight human colorectal cell lines were evaluated for p53 and mortalin localization. Black-Right-Pointing-Pointer Six cell lines displayed cytoplasmic sequestration of the tumor suppressor p53. Black-Right-Pointing-Pointer Direct interaction between mortalin and p53 was shown in five cell lines. Black-Right-Pointing-Pointer Cell lines positive for p53 sequestration yielded elevated p53 expression levels. Black-Right-Pointing-Pointer This study yields the first evidence of cytoplasmic sequestration p53 by mortalin. -- Abstract: While it is known that cytoplasmic retention of p53 occurs in many solid tumors, the mechanisms responsible for this retention have not been positively identified. Since heatshock proteins like mortalin have been associated withmore » p53 inactivation in other tumors, the current study sought to characterize this potential interaction in never before examined colorectal adenocarcinoma cell lines. Six cell lines, one with 3 different fractions, were examined to determine expression of p53 and mortalin and characterize their cellular localization. Most of these cell lines displayed punctate p53 and mortalin localization in the cell cytoplasm with the exception of HCT-8 and HCT116 379.2 cells, where p53 was not detected. Nuclear p53 was only observed in HCT-116 40-16, LS123, and HT-29 cell lines. Mortalin was only localized in the cytoplasm in all cell lines. Co-immunoprecipitation and immunohistochemistry revealed that p53 and mortalin were bound and co-localized in the cytoplasmic fraction of four cell lines, HCT-116 (40-16 and 386; parental and heterozygous fractions respectively of the same cell line), HT-29, LS123 and LoVo, implying that p53 nuclear function is limited in those cell lines by being restricted to the cytoplasm. Mortalin gene expression levels were higher than gene expression levels of p53 in all cell lines. Cell lines with cytoplasmic sequestration of p53, however, also displayed elevated p53 gene expression levels compared to cell lines without p53 sequestration. Our data reveal the characteristic cytoplasmic sequestration of p53 by the heat shock protein mortalin in human colorectal adenocarcinoma cell lines, as is the case for other cancers, such as glioblastomas and hepatocellular carcinomas.« less
Development of a new canine osteosarcoma cell line.
Séguin, B; Zwerdling, T; McCallan, J L; DeCock, H E V; Dewe, L L; Naydan, D K; Young, A E; Bannasch, D L; Foreman, O; Kent, M S
2006-12-01
Establishing a canine osteosarcoma (OSA) cell line can be useful to develop in vivo and in vitro models of OSA. The goal of this study was to develop, characterize and authenticate a new canine OSA cell line and a clone. A cell line and a clone were developed with standard cell culture techniques from a naturally occurring OSA in a dog. The clonal cell line induced a tumour after injection in RAG 1-deficient mouse. Histology was consistent with OSA. The original tumour from the dog and the tumour induced in the mouse were both reactive with vimentin and osteonectin (ON). The parent cell line and clonal cell line were reactive with ON, osteocalcin and alkaline phosphatase. Loss of heterozygosity was found in the same three microsatellite markers in the parent and clonal cell lines, and the tumour tissue grown in the mouse.
Bock, Christoph; Kiskinis, Evangelos; Verstappen, Griet; Gu, Hongcang; Boulting, Gabriella; Smith, Zachary D.; Ziller, Michael; Croft, Gist F.; Amoroso, Mackenzie W.; Oakley, Derek H.; Gnirke, Andreas; Eggan, Kevin; Meissner, Alexander
2011-01-01
SUMMARY The developmental potential of human pluripotent stem cells suggests that they can produce disease-relevant cell types for biomedical research. However, substantial variation has been reported among pluripotent cell lines, which could affect their utility and clinical safety. Such cell-line-specific differences must be better understood before one can confidently use embryonic stem (ES) or induced pluripotent stem (iPS) cells in translational research. Toward this goal we have established genome-wide reference maps of DNA methylation and gene expression for 20 previously derived human ES lines and 12 human iPS cell lines, and we have measured the in vitro differentiation propensity of these cell lines. This resource enabled us to assess the epigenetic and transcriptional similarity of ES and iPS cells and to predict the differentiation efficiency of individual cell lines. The combination of assays yields a scorecard for quick and comprehensive characterization of pluripotent cell lines. PMID:21295703
Ceppi, Francesco; Rivers, Julie; Annesley, Colleen; Pinto, Navin; Park, Julie R; Lindgren, Catherine; Mgebroff, Stephanie; Linn, Naomi; Delaney, Meghan; Gardner, Rebecca A
2018-06-01
The first step in the production of chimeric antigen receptor T cells is the collection of autologous T cells using apheresis technology. The procedure is technically challenging, because patients often have low leukocyte counts and are heavily pretreated with multiple lines of chemotherapy, marrow transplantation, and/or radiotherapy. Here, we report our experience of collecting T lymphocytes for chimeric antigen receptor T-cell manufacturing in pediatric and young adult patients with leukemia, non-Hodgkin lymphoma, or neuroblastoma. Apheresis procedures were performed on a COBE Spectra machine using the mononuclear cell program, with a collection target of 1 × 10 9 total mononuclear cells per kilogram. Data were collected regarding preapheresis and postapheresis blood counts, apheresis parameters, products, and adverse events. Ninety-nine patients (ages 1.3-25.7 years) and 102 apheresis events were available for analysis. Patients underwent apheresis at a variety of absolute lymphocyte cell counts, with a median absolute lymphocyte count of 944 cells/μL (range, 142-6944 cells/μL). Twenty-two patients (21.6%) had absolute lymphocyte counts less than 500 cells/μL. The mononuclear cell target was obtained in 100% of all apheresis harvests, and chimeric antigen receptor T-cell production was possible from the majority of collections (94%). Mononuclear cell collection efficiency was 65.4%, and T-lymphocyte collection efficiency was 83.4%. Ten patients (9.8%) presented with minor adverse events during the 102 apheresis procedures, with one exception of a severe allergy. Mononuclear cell apheresis for chimeric antigen receptor T-cell therapy is well tolerated and safe, and it is possible to obtain an adequate quantity of CD3+ lymphocytes for chimeric antigen receptor T-cell manufacturing in heavily pretreated patients who have low lymphocyte counts. © 2018 AABB.
Cancer stem cell-like cells from a single cell of oral squamous carcinoma cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Felthaus, O.; Department of Oral and Maxillofacial Surgery, University of Regensburg; Ettl, T.
2011-04-01
Research highlights: {yields} Four oral squamous cancer cell lines (OSCCL) were analyzed for cancer stem cells (CSCs). {yields} Single cell derived colonies of OSCCL express CSC-marker CD133 differentially. {yields} Monoclonal cell lines showed reduced sensitivity for Paclitaxel. {yields} In situ CD133{sup +} cells are slow cycling (Ki67-) indicating a reduced drug sensitivity. {yields} CD133{sup +} and CSC-like cells can be obtained from single colony forming cells of OSCCL. -- Abstract: Resistance of oral squamous cell carcinomas (OSCC) to conventional chemotherapy or radiation therapy might be due to cancer stem cells (CSCs). The development of novel anticancer drugs requires a simplemore » method for the enrichment of CSCs. CSCs can be enriched from OSCC cell lines, for example, after cultivation in serum-free cell culture medium (SFM). In our study, we analyzed four OSCC cell lines for the presence of CSCs. CSC-like cells could not be enriched with SFM. However, cell lines obtained from holoclone colonies showed CSC-like properties such as a reduced rate of cell proliferation and a reduced sensitivity to Paclitaxel in comparison to cells from the parental lineage. Moreover, these cell lines differentially expressed the CSC-marker CD133, which is also upregulated in OSCC tissues. Interestingly, CD133{sup +} cells in OSCC tissues expressed little to no Ki67, the cell proliferation marker that also indicates reduced drug sensitivity. Our study shows a method for the isolation of CSC-like cell lines from OSCC cell lines. These CSC-like cell lines could be new targets for the development of anticancer drugs under in vitro conditions.« less
Gardell, Alison M.; Qin, Qin; Rice, Robert H.; Li, Johnathan; Kültz, Dietmar
2014-01-01
Fish cell cultures are becoming more widely used models for investigating molecular mechanisms of physiological response to environmental challenge. In this study, we derived two immortalized Mozambique tilapia (Oreochromis mossambicus) cell lines from brain (OmB) and lip epithelium (OmL), and compared them to a previously immortalized bulbus arteriosus (TmB) cell line. The OmB and OmL cell lines were generated without or with Rho-associated kinase (ROCK) inhibitor/3T3 feeder layer supplementation. Although both approaches were successful, ROCK inhibitor/feeder layer supplementation was found to offer the advantages of selecting for epithelial-like cell type and decreasing time to immortalization. After immortalization (≥ passage 5), we characterized the proteomes of the newly derived cell lines (OmB and OmL) using LCMS and identified several unique cell markers for each line. Subsequently, osmotolerance for each of the three cell lines following acute exposure to elevated sodium chloride was evaluated. The acute maximum osmotolerance of these tilapia cell lines (>700 mOsm/kg) was markedly higher than that of any other known vertebrate cell line, but was significantly higher in the epithelial-like OmL cell line. To validate the physiological relevance of these tilapia cell lines, we quantified the effects of acute hyperosmotic challenge (450 mOsm/kg and 700 mOsm/kg) on the transcriptional regulation of two enzymes involved in biosynthesis of the compatible organic osmolyte, myo-inositol. Both enzymes were found to be robustly upregulated in all three tilapia cell lines. Therefore, the newly established tilapia cells lines represent valuable tools for studying molecular mechanisms involved in the osmotic stress response of euryhaline fish. PMID:24797371
HIV integration sites in latently infected cell lines: evidence of ongoing replication.
Symons, Jori; Chopra, Abha; Malatinkova, Eva; De Spiegelaere, Ward; Leary, Shay; Cooper, Don; Abana, Chike O; Rhodes, Ajantha; Rezaei, Simin D; Vandekerckhove, Linos; Mallal, Simon; Lewin, Sharon R; Cameron, Paul U
2017-01-13
Assessing the location and frequency of HIV integration sites in latently infected cells can potentially inform our understanding of how HIV persists during combination antiretroviral therapy. We developed a novel high throughput sequencing method to evaluate HIV integration sites in latently infected cell lines to determine whether there was virus replication or clonal expansion in these cell lines observed as multiple integration events at the same position. We modified a previously reported method using random DNA shearing and PCR to allow for high throughput robotic processing to identify the site and frequency of HIV integration in latently infected cell lines. Latently infected cell lines infected with intact virus demonstrated multiple distinct HIV integration sites (28 different sites in U1, 110 in ACH-2 and 117 in J1.1 per 150,000 cells). In contrast, cell lines infected with replication-incompetent viruses (J-Lat cells) demonstrated single integration sites. Following in vitro passaging of the ACH-2 cell line, we observed a significant increase in the frequency of unique HIV integration sites and there were multiple mutations and large deletions in the proviral DNA. When the ACH-2 cell line was cultured with the integrase inhibitor raltegravir, there was a significant decrease in the number of unique HIV integration sites and a transient increase in the frequency of 2-LTR circles consistent with virus replication in these cells. Cell lines latently infected with intact HIV demonstrated multiple unique HIV integration sites indicating that these cell lines are not clonal and in the ACH-2 cell line there was evidence of low level virus replication. These findings have implications for the use of latently infected cell lines as models of HIV latency and for the use of these cells as standards.
Corral-Vázquez, C; Aguilar-Quesada, R; Catalina, P; Lucena-Aguilar, G; Ligero, G; Miranda, B; Carrillo-Ávila, J A
2017-06-01
Establishment of continuous cell lines from human normal and tumor tissues is an extended and useful methodology for molecular characterization of cancer pathophysiology and drug development in research laboratories. The exchange of these cell lines between different labs is a common practice that can compromise assays reliability due to contamination with microorganism such as mycoplasma or cells from different flasks that compromise experiment reproducibility and reliability. Great proportions of cell lines are contaminated with mycoplasma and/or are replaced by cells derived for a different origin during processing or distribution process. The scientific community has underestimated this problem and thousand of research experiment has been done with cell lines that are incorrectly identified and wrong scientific conclusions have been published. Regular contamination and authentication tests are necessary in order to avoid negative consequences of widespread misidentified and contaminated cell lines. Cell banks generate, store and distribute cell lines for research, being mandatory a consistent and continuous quality program. Methods implementation for guaranteeing both, the absence of mycoplasma and authentication in the supplied cell lines, has been performed in the Andalusian Health System Biobank. Specifically, precise results were obtained using real time PCR detection for mycoplasma and 10 STRs identification by capillary electrophoresis for cell line authentication. Advantages and disadvantages of these protocols are discussed.
Uveal Melanoma Cell Lines: Where do they come from? (An American Ophthalmological Society Thesis).
Jager, Martine J; Magner, J Antonio Bermudez; Ksander, Bruce R; Dubovy, Sander R
2016-08-01
To determine whether some of the most often used uveal melanoma cell lines resemble their original tumor. Analysis of the literature, patient charts, histopathology, mutations, chromosome status, HLA type, and expression of melanocyte markers on cell lines and their primary tumors. We examined five cell lines and the primary tumors from which they were derived. Four of the five examined primary tumors were unusual: one occupied the orbit, two were recurrences after prior irradiation, and one developed in an eye with a nevus of Ota. One cell line did not contain the GNA11 mutation, but it was present in the primary tumor. Three of the primary tumors had monosomy 3 (two of these lacked BAP1 expression); however, all five cell lines showed disomy 3 and BAP1 expression. All of the cell lines had gain of 8q. Two cell lines lacked expression of melanocyte markers, although these were present in the corresponding primary tumor. All cell lines could be traced back to their original uveal melanoma. Four of the five primary tumors were unusual. Cell lines often differed from their primary tumor in chromosome status and melanocyte markers. However, their specific chromosome aberrations and capacity to continue proliferation characterize them as uveal melanoma cell lines.
Uveal Melanoma Cell Lines: Where do they come from? (An American Ophthalmological Society Thesis)
Jager, Martine J.; Magner, J. Antonio Bermudez; Ksander, Bruce R.; Dubovy, Sander R.
2016-01-01
Purpose To determine whether some of the most often used uveal melanoma cell lines resemble their original tumor. Methods Analysis of the literature, patient charts, histopathology, mutations, chromosome status, HLA type, and expression of melanocyte markers on cell lines and their primary tumors. We examined five cell lines and the primary tumors from which they were derived. Results Four of the five examined primary tumors were unusual: one occupied the orbit, two were recurrences after prior irradiation, and one developed in an eye with a nevus of Ota. One cell line did not contain the GNA11 mutation, but it was present in the primary tumor. Three of the primary tumors had monosomy 3 (two of these lacked BAP1 expression); however, all five cell lines showed disomy 3 and BAP1 expression. All of the cell lines had gain of 8q. Two cell lines lacked expression of melanocyte markers, although these were present in the corresponding primary tumor. Conclusions All cell lines could be traced back to their original uveal melanoma. Four of the five primary tumors were unusual. Cell lines often differed from their primary tumor in chromosome status and melanocyte markers. However, their specific chromosome aberrations and capacity to continue proliferation characterize them as uveal melanoma cell lines. PMID:28018010
Lee, Kheun Byeol; Kim, Kye-Ryung; Huh, Tae-Lin; Lee, You Mie
2008-12-01
Tumor hypoxia is a main obstacle for radiation therapy. To investigate whether exposure to a proton beam can overcome radioresistance in hypoxic tumor cells, three kinds of cancer cells, Lewis lung carcinoma (LLC) cells, hepatoma HepG2 and Molt-4 leukemia cells, were treated with a proton beam (35 MeV, 1, 2, 5, 10 Gy) in the presence or absence of hypoxia. Cell death rates were determined 72 h after irradiation. Hypoxic cells exposed to the proton beam underwent a typical apoptotic program, showing condensed nuclei, fragmented DNA ladders, and poly-ADP-ribose polymerase (PARP) cleavage. Fluorescence-activated cell sorter analysis revealed a significant increase in Annexin-V-positive cells. Cells treated with the proton beam and hypoxia displayed increased expression of p53, p21 and Bax, but decreased levels of phospho-Rb, Bcl-2 and XIAP, as well as activated caspase-9 and -3. The proton beam with hypoxia induced cell death in wild-type HCT116 cells, but not in a p53 knockout cell line, demonstrating a requirement for p53. As reactive oxygen species (ROS) were also significantly increased, apoptosis could also be abolished by treatment with the anti-oxidant N-acetyl cysteine (NAC). P38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) were activated by the treatment, and their respective DN mutants restored the cell death induced by either proton therapy alone or with hypoxia. In conclusion, proton beam treatment did not differently regulate cancer cell apoptosis either in normoxic or hypoxic conditions via a p53-dependent mechanism and by the activation of p38/JNK MAPK pathways through ROS.
Frattini, M G; Lim, H B; Laimins, L A
1996-01-01
Human papillomavirus (HPV) types 16, 18, 31, and 51 are the etiologic agents of many anogenital cancers including those of the cervix. These "high risk" HPVs specifically target genital squamous epithelia, and their lytic life cycle is closely linked to epithelial differentiation. We have developed a genetic assay for HPV functions during pathogenesis using recircularized cloned HPV 31 genomes that were transfected together with a drug resistance marker into monolayer cultures of normal human foreskin keratinocytes, the natural host cell. After drug selection, cell lines were isolated that stably maintained HPV 31 DNA as episomes and underwent terminal differentiation when grown in organotypic raft cultures. In differentiated rafts, the expression of late viral genes, amplification of viral DNA, and production of viral particles were detected in suprabasal cells. This demonstrated the ability to synthesize HPV 31 virions from transfected DNA templates and allowed an examination of HPV functions during the vegetative viral life cycle. We then used this system to investigate whether an episomal genome was required for the induction of late viral gene expression. When an HPV 31 genome (31E1*) containing a missense mutation in the E1 open reading frame was transfected into normal human keratinocytes, the mutant viral sequences were found to integrate into the host cell chromosomal DNA with both early and late regions intact. While high levels of early viral gene transcription were observed, no late gene expression was detected in rafts of cell lines containing the mutant viral genome despite evidence of terminal differentiation. Therefore, the induction of late viral gene expression required that the viral genomes be maintained as extrachromosomal elements, and terminal differentiation alone was not sufficient. These studies provide the basis for a detailed examination of HPV functions during viral pathogenesis. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:8610168
Different toxic effects of YTX in tumor K-562 and lymphoblastoid cell lines
Fernández-Araujo, Andrea; Sánchez, Jon A.; Alfonso, Amparo; Vieytes, Mercedes R.; Botana, Luis M.
2015-01-01
Yessotoxin (YTX) modulates cellular phosphodiesterases (PDEs). In this regard, opposite effects had been described in the tumor model K-562 cell line and fresh human lymphocytes in terms of cell viability, cyclic adenosine 3',5'-cyclic monophosphate (cAMP) production and protein expression after YTX treatment. Studies in depth of the pathways activated by YTX in K-562 cell line, have demonstrated the activation of two different cell death types, apoptosis, and autophagy after 24 and 48 h of treatment, respectively. Furthermore, the key role of type 4A PDE (PDE4A) in both pathways activated by YTX was demonstrated. Therefore, taking into account the differences between cellular lines and fresh cells, a study of cell death pathways activated by YTX in a non-tumor cell line with mitotic activity, was performed. The cellular model used was the lymphoblastoid cell line that represents a non-tumor model with normal apoptotic and mitotic machinery. In this context, cell viability and cell proliferation, expression of proteins involved in cell death activated by YTX and mitochondrial mass, were studied after the incubation with the toxin. Opposite to the tumor model, no cell death activation was observed in lymphoblastoid cell line in the presence of YTX. In this sense, variations in apoptosis hallmarks were not detected in the lymphoblastoid cell line after YTX incubation, whereas this type I of programmed cell death was observed in K-562 cells. On the other hand, autophagy cell death was triggered in this cellular line, while other autophagic process is suggested in lymphoblastoid cells. These YTX effects are related to PDE4A in both cellular lines. In addition, while cell death is triggered in K-562 cells after YTX treatment, in lymphoblastoid cells the toxin stops cellular proliferation. These results point to YTX as a specific toxic compound of tumor cells, since in the non-tumor lymphoblastoid cell line, no cell death hallmarks are observed. PMID:26136685
Lung Cancer Cell Lines as Tools for Biomedical Discovery and Research
Girard, Luc; Lockwood, William W.; Lam, Wan L.; Minna, John D.
2010-01-01
Lung cancer cell lines have made a substantial contribution to lung cancer translational research and biomedical discovery. A systematic approach to initiating and characterizing cell lines from small cell and non–small cell lung carcinomas has led to the current collection of more than 200 lung cancer cell lines, a number that exceeds those for other common epithelial cancers combined. The ready availability and widespread dissemination of the lines to investigators worldwide have resulted in more than 9000 citations, including multiple examples of important biomedical discoveries. The high (but not perfect) genomic similarities between lung cancer cell lines and the lung tumor type from which they were derived provide evidence of the relevance of their use. However, major problems including misidentification or cell line contamination remain. Ongoing studies and new approaches are expected to reveal the full potential of the lung cancer cell line panel. PMID:20679594
von Erichsen, J; Hecht, W; Löhberg-Gruene, C; Reinacher, M
2012-07-01
The purpose of the study was to evaluate clonality and presence of numerical chromosomal and centrosomal aberrations in 5 established feline fibrosarcoma cell lines and in a fetal dermal fibroblast cell line as a control. The clonality of all cell lines was examined using limited-dilution cloning. The number of chromosomes was counted in metaphase spreads. The immunocytochemical analysis of centrosome numbers was performed by indirect immunofluorescence using a monoclonal antibody that targets γ-tubulin, a well-characterized component of centrosomes. Monoclonal cell populations could be established from all cell lines. In all feline fibrosarcoma cell lines, the number of chromosomes deviated abnormally from the normal feline chromosome number of 2n = 38, ranging from 19 to 155 chromosomes per cell. Centrosome hyperamplification was observed in all 5 feline fibrosarcoma cell lines with a proportion of cells (5.7 to 15.2%) having more than 2 centrosomes. In the control cell line, only 0.6% of the cells had more than 2 centrosomes. In conclusion, the examinations revealed that centrosome hyperamplification occurs in feline fibrosarcoma cell lines. The feline fibrosarcoma cell lines possessed 10 to 25 times as many cells with centrosome hyperamplification as the control cell line. These observations suggest an association of numerical centrosome aberrations with karyotype instability by increasing the frequency of chromosome missegregation. The results of this study may be helpful for further characterization of feline fibrosarcomas and may contribute to the knowledge of cytogenetic factors that may be important for the pathogenesis of feline fibrosarcomas.
Davoodi, Jamshid; Kelly, John; Gendron, Nathalie H; MacKenzie, Alex E
2007-06-01
Simpson-Golabi-Behmel syndrome (SGBS) is an X-linked condition shown to be the result of deletions of the glypican-3 (GPC3) gene. GPC3 is a proteoglycan localized to the cell membrane via a glycosylphosphatidyl-inositol (GPI) anchor. To further elucidate the GPC3 function(s), we have screened various cell lines for proteins that interact with GPC3, resulting in the isolation of a 115 kDa protein, identified as CD26. The interaction occurred with both the glycosylated and unglycosylated forms of GPC3 and led to the inhibition of CD26 peptidase activity. Moreover, introduction of CD26 into Cos-1 cells was accompanied by the up-regulation of cell growth, while inclusion of recombinant GPC3 in the media reduced the growth of CD26 transfected Cos-1 cells, drastically. Furthermore, HepG2 C3A cells containing CD26 underwent apoptosis in the presence of recombinant GPC3 in both concentration and time-dependant manner. In light of the fact that inhibition of CD26 reduces the rate of cell proliferation, we propose that a number of physical findings observed in SGBS patients may be a consequence of a direct interaction of GPC3 with CD26. Furthermore, GPC3 without the GPI anchor is capable of inducing apoptosis indicating that neither the GPI anchor nor the membrane attachment is required for apoptosis induction.
Premanathan, Mariappan; Radhakrishnan, Srinivasan; Kulangiappar, Kumarasamy; Singaravelu, Ganesan; Thirumalaiarasu, Velayutham; Sivakumar, Thangavel; Kathiresan, Kandasamy
2012-01-01
Background & objectives: Derivatives of isatin are known to have cytotoxicity against human carcinoma cell lines. This compound therefore, has a potential to be used as a chemotherapeutic agent against cancer. This study was done to investigate the antioxidant and anticancer activities of isatin, extracted from flower of a folklore medicinal plant Couroupita guianensis against human promylocytic leukemia (HL60) cells. Methods: Active fractions demonstrating anticancer and antioxidant activities were isolated from the extracts of shade-dried flowers of C. guianensis by bioassay guided fractionation. The free radical scavenging activity was determined using lipid peroxidation assay. Cytotoxicity against human promylocytic leukemia HL60 cells was determined by MTT assay. Apoptotic activity was analyzed by DNA fragmentation and flowcytometry. Results: Isatin isolated from the active fraction showed antioxidant activity with the EC50 value of 72.80 μg/ml. It also exhibited cytotoxicity against human promylocytic leukemia HL60 cells in dose-dependant manner with the CC50 value of 2.94 μg/ml. The isatin-treated cells underwent apoptosis and DNA fragmentation. Apoptosis was confirmed by the FACS analysis using FITC-annexin V markers. Interpretation & conclusions: Isatin showed antioxidant activity and was cytotoxic to the HL60 cells due to induction of apoptosis. The isatin can be further evaluated to be used as a prophylactic agent to prevent the free radical-induced cancer and as a chemotherapeutic agent to kill the cancer cells. PMID:23287130
Attempt to develop taste bud models in three-dimensional culture.
Nishiyama, Miyako; Yuki, Saori; Fukano, Chiharu; Sako, Hideyuki; Miyamoto, Takenori; Tomooka, Yasuhiro
2011-09-01
Taste buds are the end organs of taste located in the gustatory papillae, which occur on the surface of the oral cavity. The goal of the present study was to establish a culture model mimicking the lingual taste bud of the mouse. To this end, three cell lines were employed: taste bud-derived cell lines (TBD cell lines), a lingual epithelial cell-derived cell line (20A cell line), and a mesenchymal cell-derived cell line (TMD cell line). TBD cells embedded in collagen gel formed three-dimensional clusters, which had an internal cavity equipped with a tight junction-like structure, a microvilluslike structure, and a laminin-positive layer surrounding the cluster. The cells with this epitheliumlike morphology expressed marker proteins of taste cells: gustducin and NCAM. TBD cells formed a monolayer on collagen gel when they were co-cultured with TMD cells. TBD, 20A, and TMD cell lines were maintained in a triple cell co-culture, in which TBD cells were pre-seeded as aggregates or in suspension on the collagen gel containing TMD cells, and 20A cells were laid over the TBD cells. TBD cells in the triple cell co-culture expressed NCAM. This result suggests that co-cultured TBD cells exhibited a characteristic of Type III taste cells. The culture model would be useful to study morphogenesis and functions of the gustatory organ.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blattmann, Claudia, E-mail: claudia.blattmann@med.uni-heidelberg.d; Oertel, Susanne; Ehemann, Volker
2010-09-01
Purpose: Histone deacetylase inhibitors (HDACIs) can enhance the sensitivity of cells to photon radiation treatment (XRT) by altering numerous molecular pathways. We investigated the effect of pan-HDACIs such as suberoylanilide hydroxamic acid (SAHA) on radiation response in two osteosarcoma (OS) and two rhabdomyosarcoma (RMS) cell lines. Methods and Materials: Clonogenic survival, cell cycle analysis, and apoptosis were examined in OS (KHOS-24OS, SAOS2) and RMS (A-204, RD) cell lines treated with HDACI and HDACI plus XRT, respectively. Protein expression was investigated via immunoblot analysis, and cell cycle analysis and measurement of apoptosis were performed using flow cytometry. Results: SAHA induced anmore » inhibition of cell proliferation and clonogenic survival in OS and RMS cell lines and led to a significant radiosensitization of all tumor cell lines. Other HDACI such as M344 and valproate showed similar effects as investigated in one OS cell line. Furthermore, SAHA significantly increased radiation-induced apoptosis in the OS cell lines, whereas in the RMS cell lines radiation-induced apoptosis was insignificant with and without SAHA. In all investigated sarcoma cell lines, SAHA attenuated radiation-induced DNA repair protein expression (Rad51, Ku80). Conclusion: Our results show that HDACIs enhance radiation action in OS and RMS cell lines. Inhibition of DNA repair, as well as increased apoptosis induction after exposure to HDACIs, can be mechanisms of radiosensitization by HDACIs.« less
Generation of genome-modified Drosophila cell lines using SwAP.
Franz, Alexandra; Brunner, Erich; Basler, Konrad
2017-10-02
The ease of generating genetically modified animals and cell lines has been markedly increased by the recent development of the versatile CRISPR/Cas9 tool. However, while the isolation of isogenic cell populations is usually straightforward for mammalian cell lines, the generation of clonal Drosophila cell lines has remained a longstanding challenge, hampered by the difficulty of getting Drosophila cells to grow at low densities. Here, we describe a highly efficient workflow to generate clonal Cas9-engineered Drosophila cell lines using a combination of cell pools, limiting dilution in conditioned medium and PCR with allele-specific primers, enabling the efficient selection of a clonal cell line with a suitable mutation profile. We validate the protocol by documenting the isolation, selection and verification of eight independently Cas9-edited armadillo mutant Drosophila cell lines. Our method provides a powerful and simple workflow that improves the utility of Drosophila cells for genetic studies with CRISPR/Cas9.
Santoso, D; Thornburg, R
2000-08-01
We have selected 143 independent Nicotiana plumbaginifolia cell lines that survive in the presence of 5-fluoroorotic acid. These lines show several diverse phenotypes. The majority of these cell lines showed reduced levels of UMP synthase. However, one particular phenotype, which represents 14% of the total independent lines (20 cell lines), showed an unexpected, high level of UMP synthase and was therefore analyzed in detail. The selected cell lines showed no differences with wild-type cells with respect to uptake of orotic acid, affinity of UMP synthase for its substrates, or UMP synthase gene-copy number. Alternative detoxification mechanisms were also excluded. The elevated enzyme activity was correlated with elevated UMP synthase protein levels as well as elevated UMP synthase mRNA levels. In contrast to wild-type cell lines, the fluoroorotic acid-selected cell lines did not respond to thymine or to other biochemicals that affect thymine levels. In addition, there was also a concomitant up-regulation of aspartate transcarbamoylase, however, dihydroorotase and dihydroorotate dehydrogenase are not up-regulated in these cell lines.
Santoso, Djoko; Thornburg, Robert
2000-01-01
We have selected 143 independent Nicotiana plumbaginifolia cell lines that survive in the presence of 5-fluoroorotic acid. These lines show several diverse phenotypes. The majority of these cell lines showed reduced levels of UMP synthase. However, one particular phenotype, which represents 14% of the total independent lines (20 cell lines), showed an unexpected, high level of UMP synthase and was therefore analyzed in detail. The selected cell lines showed no differences with wild-type cells with respect to uptake of orotic acid, affinity of UMP synthase for its substrates, or UMP synthase gene-copy number. Alternative detoxification mechanisms were also excluded. The elevated enzyme activity was correlated with elevated UMP synthase protein levels as well as elevated UMP synthase mRNA levels. In contrast to wild-type cell lines, the fluoroorotic acid-selected cell lines did not respond to thymine or to other biochemicals that affect thymine levels. In addition, there was also a concomitant up-regulation of aspartate transcarbamoylase, however, dihydroorotase and dihydroorotate dehydrogenase are not up-regulated in these cell lines. PMID:10938367
Yu, Sungryul; Kim, Taemook; Yoo, Kyung Hyun; Kang, Keunsoo
2017-05-06
Cell lines are often used as in vitro tools to mimic certain types of in vivo system; several cell lines, including MCF-7 and T47D, have been widely used in breast cancer studies without investigating the cell lines' characteristics. In this study, we compared the genome-wide binding profiles of ERα, PR, and P300, and the gene expression changes between MCF-7 and T47D cell lines that represent the luminal A subtype of breast cancer. Surprisingly, several thousand genes were differentially expressed under estrogenic condition. In addition, ERα, PR, and P300 binding to regulatory elements showed distinct genomic landscapes between MCF-7 and T47D cell lines in the same hormonal states. In particular, the T47D cell line was markedly susceptible to progesterone, whereas the MCF-7 cell line did not respond to progesterone in the presence of estrogen. Consistently, changes in the expression level of the PR-target gene, STAT5A, were only observed in the T47D cell line, not the MCF-7 cell line, when treated with progesterone. Overall, the results highlight the importance of selecting appropriate cell lines for breast cancer studies and suggest that T47D cell lines can be an ideal experimental model to elucidate the progesterone-specific effects of a luminal A subtype of breast cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
Kashyap, Smita; Singh, Nitesh; Surnar, Bapurao; Jayakannan, Manickam
2016-01-11
Dual responsive polymer nanoscaffolds for administering anticancer drugs both at the tumor site and intracellular compartments are made for improving treatment in cancers. The present work reports the design and development of new thermo- and enzyme-responsive amphiphilic copolymer core-shell nanoparticles for doxorubicin delivery at extracellular and intracellular compartments, respectively. A hydrophobic acrylate monomer was tailor-made from 3-pentadecylphenol (PDP, a natural resource) and copolymerized with oligoethylene glycol acrylate (as a hydrophilic monomer) to make new classes of thermo and enzyme dual responsive polymeric amphiphiles. Both radical and reversible addition-fragmentation chain transfer (RAFT) methodologies were adapted for making the amphiphilic copolymers. These amphiphilic copolymers were self-assembled to produce spherical core-shell nanoparticles in water. Upon heating, the core-shell nanoparticles underwent segregation to produce larger sized aggregates above the lower critical solution temperature (LCST). The dual responsive polymer scaffold was found to be capable of loading water insoluble drug, such as doxorubicin (DOX), and fluorescent probe-like Nile Red. The drug release kinetics revealed that DOX was preserved in the core-shell assemblies at normal body temperature (below LCST, ≤ 37 °C). At closer to cancer tissue temperature (above LCST, ∼43 °C), the polymeric scaffold underwent burst release to deliver 90% of loaded drugs within 2 h. At the intracellular environment (pH 7.4, 37 °C) in the presence of esterase enzyme, the amphiphilic copolymer ruptured in a slow and controlled manner to release >95% of the drugs in 12 h. Thus, both burst release of cargo at the tumor microenvironment and control delivery at intracellular compartments were accomplished in a single polymer scaffold. Cytotoxicity assays of the nascent and DOX-loaded polymer were carried out in breast cancer (MCF-7) and cervical cancer (HeLa) cells. Among the two cell lines, the DOX-loaded polymers showed enhanced killing in breast cancer cells. Furthermore, the cellular uptake of the DOX was studied by confocal and fluorescence microscopes. The present investigation opens a new enzyme and thermal-responsive polymer scaffold approach for DOX delivery in cancer cells.
Kniss, Douglas A; Summerfield, Taryn L
2014-08-01
Continuous cell lines are used frequently in reproductive biology research to study problems in early pregnancy events and parturition. It has been recognized for 50 years that many mammalian cell lines contain inter- or intraspecies contaminations with other cells. However, most investigators do not routinely test their culture systems for cross-contamination. The most frequent contributor to cross-contamination of cell lines is the HeLa cell isolated from an aggressive cervical adenocarcinoma. We report on the discovery of HeLa cell contamination of the human endometrial epithelial cell line HES isolated in our laboratory. Short tandem repeat analysis of 9 unique genetic loci demonstrated molecular identity between HES and HeLa cells. In addition, we verified that WISH cells, isolated originally from human amnion epithelium, were also contaminated with HeLa cells. Inasmuch as our laboratory did not culture HeLa cells at the time of HES cell derivations, the source of contamination was the WISH cell line. These data highlight the need for continued diligence in authenticating cell lines used in reproductive biology research. © The Author(s) 2014.
2011-01-01
Background Fatty acid binding proteins (FABP) play an important role in carcinogenesis. Modified FABP expression patterns were described for prostate, bladder and for renal cell carcinoma. Studies on metabolic relationships and interactions in permanent cell lines allow a deeper insight into molecular processes. The aim of this study is therefore a systematic overview on mRNA and protein expressions of seven FABPs in frequently used urological cell lines. Methods Nine cell lines of renal carcinomas, seven of urinary bladder carcinomas, and five of prostate carcinomas were investigated. Quantitative RT-qPCR and western blotting were used to determine different FABPs. In addition, 46 paired cancerous and noncancerous tissue samples from nephrectomy specimen with renal cell carcinomas were investigated regarding the ileum FABP mRNA expression level and associated with survival outcome. Results General characteristics of all urological carcinoma cell lines were the expression of E-and IL-FABP on mRNA and protein level, while the expressions differed between the cell lines. The protein expression was not always congruent with the mRNA expression. Renal cell carcinoma cell lines showed expressions of L-, H- and B-FABP mRNA in addition to the general FABP expression in five out of the eight investigated cell lines. In bladder cancer cell lines, we additionally found the expression of A-FABP mRNA in six cell lines, while H-FABP was present only in three cell lines. In prostate cancer cell lines, a strong reduction of A- and E- FABP mRNA was observed. The expression of B-FABP mRNA and protein was observed only in the 22 RV-1 cells. IL-FABP mRNA was over-expressed in renal tumour tissue. The IL-FABP ratio was identified as an independent indicator of survival outcome. Conclusions Distinctly different FABP expression patterns were observed not only between the cell lines derived from the three cancer types, but also between the cell lines from the same cancer. The FABP patterns in the cell lines do not always reflect the real situation in the tumours. These facts have to be considered in functional studies concerning the different FABPs. PMID:21767383
Differential developmental ability of embryos cloned from tissue-specific stem cells.
Inoue, Kimiko; Noda, Shinichi; Ogonuki, Narumi; Miki, Hiromi; Inoue, Shinichi; Katayama, Kazufumi; Mekada, Kazuyuki; Miyoshi, Hiroyuki; Ogura, Atsuo
2007-05-01
Although cloning animals by somatic cell nuclear transfer is generally inefficient, the use of certain nuclear donor cell types may significantly improve or deteriorate outcomes. We evaluated whether two multipotent stem cell lines produced in vitro--neural stem cells (NSCs) and mesenchymal stem cells (MSCs)--could serve as nuclear donors for nuclear transfer cloning. Most (76%) NSC-derived embryos survived the two-cell-to-four-cell transition, the stage when the major zygotic gene activation occurs. Consistent with this observation, the expression patterns of zygotically active genes were better in NSC-derived embryos than in fibroblast clone embryos, which arrested at the two-cell stage more frequently. Embryo transfer experiments demonstrated that at least some of these NSC embryos had the ability to develop to term fetuses (1.6%, 3/189). In contrast, embryos reconstructed using MSCs showed a low rate of in vitro development and never underwent implantation in vivo. Chromosomal analysis of the donor MSCs revealed very frequent aneuploidy, which probably impaired the potential for development of their derived clones. This is the first demonstration that tissue-specific multipotent stem cells produced in vitro can serve as donors of nuclei for cloning mice; however, these cells may be prone to chromosomal aberrations, leading to high embryonic death rates. We found previously that hematopoietic stem cells (HSCs) are very inefficient donor cells because of their failure to activate the genes essential for embryonic development. Taken together, our data led us to conclude that tissue-specific stem cells in mice, namely NSCs, MSCs, and HSCs, exhibited marked variations in the ability to produce cloned offspring and that this ability varies according to both the epigenetic and genetic status of the original genomes. Disclosure of potential conflicts of interest is found at the end of this article.
Madhusudana, Shampur Narayan; Sundaramoorthy, Subha; Ullas, Padinjaremattatthil Thankappan
2010-12-01
A confirmatory rabies diagnosis can be achieved by rapid virus isolation in cell culture using brain tissue from the suspect animal. Several cell lines have been used for this purpose and the murine neuroblastoma cell line Neuro-2a has been found to be the most sensitive. The human embryonic kidney cell line HEK-293 is known to express several neuronal proteins and is believed to be of neuronal origin. We hypothesized that this cell line could be susceptible to rabies virus, which is highly neurotropic. First we tested the sensitivity of HEK-293 cells to the laboratory strain, challenge virus standard (CVS). We then tested 120 brain samples from different animals and humans suspected to have died of rabies by fluorescent antibody test (FAT). Both FAT-positive and FAT-negative brains were tested for virus isolation using Neuro-2a, BHK-21, and HEK-293 cell lines and also by mouse inoculation. There was 100% correlation between FAT, virus isolation in Neuro-2a and HEK-293 cells, and mouse inoculation. However, the rate of virus isolation in the BHK-21 cell line was only 28% when compared to the other cell lines. The sensitivity of HEK-293 to CVS strain of virus was similar to that of Neuro-2a. We conclude that the HEK-293 cell line is as sensitive as the Neuro-2a cell line for the rapid isolation of rabies virus and may serve as an alternative cell line for rabies diagnosis and future research. Copyright © 2010 International Society for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Liu, Jun; Luo, Yan; Zheng, Liming; Liu, Qingqing; Yang, Zhongcai; Wang, Yongsheng; Su, Jianmin; Quan, Fusheng; Zhang, Yong
2013-10-01
This study was performed to qualify goat fetal fibroblast (GFF) cell lines for genetic modification and somatic cell nuclear transfer (SCNT) to produce human lysozyme (hLYZ) transgenic goats. Nine GFF cell lines were established from different fetuses, and the proliferative lifespan and chromosomal stability were analyzed. The results suggested that cell lines with a longer lifespan had stable chromosomes compared with those of cells lines with a shorter lifespan. According to the proliferative lifespan, we divided GFF cell lines into two groups: cell lines with a long lifespan (GFF1/2/7/8/9; group L) and cell lines with a short lifespan (GFF3/4/5/6; group S). Next, a hLYZ expression vector was introduced into these cell lines by electroporation. The efficiencies of colony formation, expansion in culture, and the quality of transgenic clonal cell lines were significant higher in group L than those in group S. The mean fusion rate and blastocyst rate in group L were higher than those in group S (80.3 ± 1.7 vs. 65.1 ± 4.2 % and 19.5 ± 0.6 vs. 15.1 ± 1.1 %, respectively, P < 0.05). After transferring cloned embryos into the oviducts of recipient goats, three live kids were born. PCR and Southern blot analyses confirmed integration of the transgene in cloned goats. In conclusion, the lifespan of GFF cell lines has a major effect on the efficiency to produce transgenic cloned goats. Therefore, the proliferative lifespan of primary cells may be used as a criterion to characterize the quality of cell lines for genetic modification and SCNT.
PET-CT–Guided Surveillance of Head and Neck Cancers
Patients with advanced squamous cell carcinoma of the head and neck who underwent PET-CT–guided surveillance had fewer operations but similar overall survival rates to those of patients who underwent planned neck dissection.
[The cord blood bank at the Instituto Mexicano del Seguro Social].
Peñaflor-Juárez, Karina; Guillén-Chan, Sonia Marilyn; Romero-Juárez, Yanín; Luna-Bautista, Fernando; Franco-Gutiérrez, Elizabeth; Arellano-Ocampo, Jesús Salvador; Ibáñez-Sánchez, Rocío; de Lourdes Domínguez-Contreras, María; Guerra-Márquez, Angel
2015-01-01
Hematopoietic stem cells have been used for over 50 years in the treatment of diverse diseases. Umbilical cord blood (UCB) has proved to be a viable source of hematopoietic stem cells for transplantation purposes. The aim was to report the contribution of the umbilical cord blood bank over the past 9 years, in the treatment of various diseases. Since 2005 the number of units of blood from the umbilical cord and their use for transplantation in diverse disease were analyzed. A selection of volunteer pregnant women in labor was performed. Umbilical cord blood was obtained from them, which underwent processing, cryopreservation and validation, as well as compatibility test before using for transplantation. Ten thousand and ninety nine candidates to donation were assessed, from whom 2481 unit of UCB were collected. Of these, 893 unit were processed and cryopreserved for transplantation. In 65% of cases there was histocompatibility between the cord cell and the receptors. Transplantation was done in 87 patients, 67% had hematologic neoplasias, who have received 140 units of UCB in 102 transplants. This Bank of UCB ranks second in the world in productivity according to the rate of utility of units in transplantation (3.3%). Our bank of UCB has been able to develop a cell line (hematopoietic stem cells) with international quality standards and has been beneficial for patients served by our institution with need of a transplant mainly in hemato-oncologic patients.
Kuo, Fang-Ying; Huang, Hsuan-Ying; Chen, Chao-Long; Eng, Hock-Liew; Huang, Chao-Cheng
2017-09-01
A recurrent YAP1-TFE3 gene fusion has been identified in WWTR1-CAMTA1-negative epithelioid hemangioendotheliomas arising in soft tissue, bone, and lung, but not in liver. We present the first case of TFE3-rearranged hepatic epithelioid hemangioendothelioma in a 39-year-old Taiwanese woman. Computed tomography scan revealed multifocal, ill-defined nodules involving both hepatic lobes. She then underwent deceased donor liver transplantation. Histologically, the tumors in the liver explant showed a biphasic growth pattern. One component was composed of dilated and well-formed blood vessels lined by epithelioid cells with abundant eosinophilic cytoplasm, mimicking an alveolar pattern, whereas the other component was composed of cords and single cells, featuring intracytoplasmic vacuoles, separated by a myxoid stroma. The tumor cells showed vesicular nuclei and small indistinct nucleoli with mild to moderate cytologic atypia. Most tumor cells showed factor VIII, CD34, CD31, and TFE3 positivity in immunohistochemical study. Fluorescence in situ hybridization analysis for the tumor cells exhibited TFE3 gene rearrangement. The patient is currently alive, and no post-operative tumor recurrence developed during a 13-year follow-up. Awareness of this rare vasoformative variant and identification of the gene rearrangement would be helpful on differential diagnosis with other high-grade carcinoma and angiosarcoma of liver. © 2017 APMIS. Published by John Wiley & Sons Ltd.
[Establishment of Z-HL16C cell line.].
Chen, J P; Li, J; Zhao, S L; Tian, J Y; Ye, F
2006-09-01
To establish and study the nature and the application of Z-HL16C cell line. The cell line was continuously passed, frozen stored and recovered. Its application was expanded and the cell type was identified. The cell line had an epithelial-cell-like shape, the size appeared uniform, the cell boundary was distinct. It has been continuously passed, frozen stored and recovered for ten years. Its recovery rate was about 90%. It has been proved to be sensitive to the tested viruses which were enteroviruses (Polio, Cox, Echo), influenza viruses, parainfluenzaviruses, adenoviruses, measles virus. This cell line has been identified as a cancerization cell. The cell line Z-HL16C has been stably established, it has a broad spectrum in sensitivity for culturing viruses.
Development and characterization of a cell line WAF from freshwater shark Wallago attu.
Dubey, Akhilesh; Goswami, Mukunda; Yadav, Kamalendra; Sharma, Bhagwati S
2014-02-01
A new epithelial cell line, WAF was developed from caudal fin of freshwater shark, Wallago attu. The cell line was optimally maintained at 28 °C in Leibovitz-15 (L-15) medium supplemented with 20 % fetal bovine serum. The cell line was characterized by various cytogenetic and molecular markers. The cytogenetic analysis revealed a diploid count of 86 chromosomes at different passages. The origin of the cell lines was confirmed by the amplification of 547 and 654 bp sequences of 16S rRNA and cytochrome oxidase subunit I genes of mitochondrial DNA, respectively. WAF cells were characterized for their growth characteristics at different temperature and serum concentration. Epithelial morphology of the cell line was confirmed using immunocytochemistry. Further cell plating efficiency, transfection efficiency and viability of cryopreserved WAF cells was also determined. Cytotoxicity and genotoxicity assessment of cadmium salts on WAF cells by MTT, NR and comet assay illustrated the utility of this cell line as an in vitro model for aquatic toxicological studies. The cell line will be further useful for studying oxidative stress markers against aquatic pollutants.
Characterization of a Merkel Cell Polyomavirus-Positive Merkel Cell Carcinoma Cell Line CVG-1.
Velásquez, Celestino; Amako, Yutaka; Harold, Alexis; Toptan, Tuna; Chang, Yuan; Shuda, Masahiro
2018-01-01
Merkel cell polyomavirus (MCV) plays a causal role in ∼80% of Merkel cell carcinomas (MCC). MCV is clonally integrated into the MCC tumor genome, which results in persistent expression of large T (LT) and small T (sT) antigen oncoproteins encoded by the early locus. In MCV-positive MCC tumors, LT is truncated by premature stop codons or deletions that lead to loss of the C-terminal origin binding (OBD) and helicase domains important for replication. The N-terminal Rb binding domain remains intact. MCV-positive cell lines derived from MCC explants have been valuable tools to study the molecular mechanism of MCV-induced Merkel cell carcinogenesis. Although all cell lines have integrated MCV and express truncated LT antigens, the molecular sizes of the LT proteins differ between cell lines. The copy number of integrated viral genome also varies across cell lines, leading to significantly different levels of viral protein expression. Nevertheless, these cell lines share phenotypic similarities in cell morphology, growth characteristics, and neuroendocrine marker expression. Several low-passage MCV-positive MCC cell lines have been established since the identification of MCV. We describe a new MCV-positive MCV cell line, CVG-1, with features distinct from previously reported cell lines. CVG-1 tumor cells grow in more discohesive clusters in loose round cell suspension, and individual cells show dramatic size heterogeneity. It is the first cell line to encode an MCV sT polymorphism resulting in a unique leucine (L) to proline (P) substitution mutation at amino acid 144. CVG-1 possesses a LT truncation pattern near identical to that of MKL-1 cells differing by the last two C-terminal amino acids and also shows an LT protein expression level similar to MKL-1. Viral T antigen knockdown reveals that, like other MCV-positive MCC cell lines, CVG-1 requires T antigen expression for cell proliferation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamo, Maria Pilar; Zapata, Marta; Frey, Teryl K.
Congenital infection with rubella virus (RUB) leads to persistent infection and congenital defects and we showed previously that primary human fetal fibroblasts did not undergo apoptosis when infected with RUB, which could promote fetal virus persistence [Adamo, P., Asis, L., Silveyra, P., Cuffini, C., Pedranti, M., Zapata, M., 2004. Rubella virus does not induce apoptosis in primary human embryo fibroblasts cultures: a possible way of viral persistence in congenital infection. Viral Immunol. 17, 87-100]. To extend this observation, gene chip analysis was performed on a line of primary human fetal fibroblasts (10 weeks gestation) and a line of human adultmore » lung fibroblasts (which underwent apoptosis in response to RUB infection) to compare gene expression in infected and uninfected cells. A total of 632 and 516 genes were upregulated or downregulated in the infected fetal and adult cells respectively in comparison to uninfected cells, however only 52 genes were regulated in both cell types. Although the regulated genes were different, across functional gene categories the patterns of gene regulation were similar. In general, regulation of pro- and anti-apoptotic genes following infection appeared to favor apoptosis in the adult cells and lack of apoptosis in the fetal cells, however there was a greater relative expression of anti-apoptotic genes and reduced expression of pro-apoptotic genes in uninfected fetal cells versus uninfected adult cells and thus the lack of apoptosis in fetal cells following RUB infection was also due to the prevailing background of gene expression that is antagonistic to apoptosis. In support of this hypothesis, it was found that of a battery of five chemicals known to induce apoptosis, two induced apoptosis in the adult cells, but not in fetal cells, and two induced apoptosis more rapidly in the adult cells than in fetal cells (the fifth did not induce apoptosis in either). A robust interferon-stimulated gene response was induced following infection of both fetal and adult cells and many of the genes upregulated in both cell types were those involved in establishment of an antiviral state; this is the first demonstration of an interferon response at this early stage of human embryonic development. In both fetal and adult cells, interferon controlled but did not eliminate virus spread and apoptosis was not induced in infected fetal cells in the absence of interferon. In addition to the interferon response, chemokines were induced in both infected fetal and adult cells. Thus, it is possible that fetal damage following congenital RUB infection, which involves cell proliferation and differentiation, could be due to induction of the innate immune response as well as frank virus infection.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, K.; Chubb, C.; Huberman, E.
High resolution two dimensional get electrophoresis (2DE) and database analysis was used to establish protein expression patterns for cultured normal human mammary epithelial cells and thirteen breast cancer cell lines. The Human Breast Epithelial Cell database contains the 2DE protein patterns, including relative protein abundances, for each cell line, plus a composite pattern that contains all the common and specifically expressed proteins from all the cell lines. Significant differences in protein expression, both qualitative and quantitative, were observed not only between normal cells and tumor cells, but also among the tumor cell lines. Eight percent of the consistently detected proteinsmore » were found in significantly (P < 0.001) variable levels among the cell lines. Using a combination of immunostaining, comigration with purified protein, subcellular fractionation, and amino-terminal protein sequencing, we identified a subset of the differentially expressed proteins. These identified proteins include the cytoskeletal proteins actin, tubulin, vimentin, and cytokeratins. The cell lines can be classified into four distinct groups based on their intermediate filament protein profile. We also identified heat shock proteins; hsp27, hsp60, and hsp70 varied in abundance and in some cases in the relative phosphorylation levels among the cell lines. Finally, we identified IMP dehydrogenase in each of the cell lines, and found the levels of this enzyme in the tumor cell lines elevated 2- to 20-fold relative to the levels in normal cells.« less
Derivation and characterization of a pig embryonic stem cell-derived exocrine pancreatic cell line
USDA-ARS?s Scientific Manuscript database
The establishment and initial characterization of a pig embryonic stem cell-derived pancreatic cell line, PICM-31, and a colony-cloned derivative cell line, PICM-31A, is described. The cell lines were propagated for several months at split ratios of 1:3 or 1:5 at each passage on STO feeder cells af...
ASADA, Hajime; TOMIYASU, Hirotaka; GOTO-KOSHINO, Yuko; FUJINO, Yasuhito; OHNO, Koichi; TSUJIMOTO, Hajime
2015-01-01
Canine histiocytic sarcoma (HS) is an aggressive tumor type originating from histiocytic cell lineages. This disease is characterized by poor response to chemotherapy and short survival time. Therefore, it is of critical importance to identify and develop effective antitumor drugs against HS. The objectives of this study were to examine the drug sensitivities of 10 antitumor drugs. Using a real-time RT-PCR system, the mRNA expression levels of 16 genes related to drug resistance in 4 canine HS cell lines established from dogs with disseminated HS were determined and compared to 2 canine lymphoma cell lines (B-cell and T-cell). These 4 canine HS cell lines showed sensitivities toward microtubule inhibitors (vincristine, vinblastine and paclitaxel), comparable to those in the canine B-cell lymphoma cell line. Moreover, it was shown that P-gp in the HS cell lines used in this study did not have enough function to efflux its substrate. Sensitivities to melphalan, nimustine, methotrexate, cytarabine, doxorubicin and etoposide were lower in the 4 HS cell lines than in the 2 canine lymphoma cell lines. The data obtained in this study using cultured cell lines could prove helpful in the developing of advanced and effective chemotherapies for treating dogs that are suffering from HS. PMID:25715778
Asada, Hajime; Tomiyasu, Hirotaka; Goto-Koshino, Yuko; Fujino, Yasuhito; Ohno, Koichi; Tsujimoto, Hajime
2015-06-01
Canine histiocytic sarcoma (HS) is an aggressive tumor type originating from histiocytic cell lineages. This disease is characterized by poor response to chemotherapy and short survival time. Therefore, it is of critical importance to identify and develop effective antitumor drugs against HS. The objectives of this study were to examine the drug sensitivities of 10 antitumor drugs. Using a real-time RT-PCR system, the mRNA expression levels of 16 genes related to drug resistance in 4 canine HS cell lines established from dogs with disseminated HS were determined and compared to 2 canine lymphoma cell lines (B-cell and T-cell). These 4 canine HS cell lines showed sensitivities toward microtubule inhibitors (vincristine, vinblastine and paclitaxel), comparable to those in the canine B-cell lymphoma cell line. Moreover, it was shown that P-gp in the HS cell lines used in this study did not have enough function to efflux its substrate. Sensitivities to melphalan, nimustine, methotrexate, cytarabine, doxorubicin and etoposide were lower in the 4 HS cell lines than in the 2 canine lymphoma cell lines. The data obtained in this study using cultured cell lines could prove helpful in the developing of advanced and effective chemotherapies for treating dogs that are suffering from HS.
Sestili, Simona; Labopin, Myriam; Ruggeri, Annalisa; Velardi, Andrea; Ciceri, Fabio; Maertens, Johan; Kanz, Lothar; Aversa, Franco; Lewalle, Philippe; Bunjes, Donald; Mohty, Mohamad; Nagler, Arnon
2018-05-15
T-cell-depleted, haploidentical transplantations (haplos) are commonly offered to patients who have high-risk, acute leukemia in the absence of a human leukocyte antigen (HLA) full-matched donor. To determine the effect of transplantation period, the authors divided 308 adults with de novo, acute leukemia who underwent T-cell-depleted haplo from 2005 to 2015 into 2 groups, according the year in which they underwent transplantation (2005-2011 [n = 191] and 2012-2015 [n = 117]). The median age was 41 years in patients who underwent transplantation before 2012 and 46 years in those who underwent transplantation after 2012 (P = .04). Most patients had acute myeloid leukemia (75% vs 69%; P = .26) and were in first complete remission (CR1) (55% vs 64%; P = .12) at the time of transplantation. The cumulative incidence of grade 2, 3, and 4 acute graft-versus-host disease (GvHD) and chronic GvHD were not different between the 2 groups (acute GvHD: 20% vs 22% cumulative incidence in patients who underwent haplo before and after 2012, respectively [P = .67]; chronic GvHD: 19% vs 11% cumulative incidence, respectively; P = .12]. The 2-year relapse incidence was 20%, the nonrelapse mortality (NRM) rate was 48%, and no difference was observed over time (21% vs 19% [P = .72] and 54% vs 38% [P = .11] for patients who underwent haplo before and after 2012, respectively). The main cause of NRM was infection. Haplo after 2012 (hazard ratio [HR], 0.57; P = .01), younger age (HR, 0.82; P = .02), and receipt of a reduced-intensity conditioning (RIC) regimen (HR, 0.53; P = .01) were independently associated with lower NRM. The 2-year overall survival rate was 36% and improved after 2012 (29% vs 47% before 2012; P = .02); and it was higher for patients who underwent transplantation in CR1 (41% vs 29%; P = .01). In multivariate analysis, haplo after 2012 (HR, 0.54; P = .003) and receipt of a RIC regimen (HR, 0.54; P = .005) were independently associated with better overall survival. Similarly, leukemia-free survival and GvHD-free/relapse-free survival (GRFS) improved over time: the leukemia-free survival rate was 31% (25% vs 43% in the groups who underwent transplantation before and after 2012, respectively; P = .05), and the GRFS rate was 24% (19% vs 34%, respectively; P = .09). In addition, leukemia-free survival and GRFS improved among patients who received a RIC regimen. The outcome of patients with acute leukemia who underwent T-cell-depleted haplo has improved over time. Cancer 2018;124:2142-50. © 2018 American Cancer Society. © 2018 American Cancer Society.
Aberrant expression of NKL homeobox gene HLX in Hodgkin lymphoma.
Nagel, Stefan; Pommerenke, Claudia; Meyer, Corinna; Kaufmann, Maren; MacLeod, Roderick A F; Drexler, Hans G
2018-03-06
NKL homeobox genes are basic regulators of cell and tissue differentiation, many acting as oncogenes in T-cell leukemia. Recently, we described an hematopoietic NKL-code comprising six particular NKL homeobox genes expressed in hematopoietic stem cells and lymphoid progenitors, unmasking their physiological roles in the development of these cell types. Hodgkin lymphoma (HL) is a B-cell malignancy showing aberrant activity of several developmental genes resulting in disturbed B-cell differentiation. To examine potential concordances in abnormal lymphoid differentiation of T- and B-cell malignancies we analyzed the expression of the hematopoietic NKL-code associated genes in HL, comprising HHEX, HLX, MSX1, NKX2-3, NKX3-1 and NKX6-3. Our approach revealed aberrant HLX activity in 8 % of classical HL patients and additionally in HL cell line L-540. Accordingly, to identify upstream regulators and downstream target genes of HLX we used L-540 cells as a model and performed chromosome and genome analyses, comparative expression profiling and functional assays via knockdown and overexpression experiments therein. These investigations excluded chromosomal rearrangements of the HLX locus at 1q41 and demonstrated that STAT3 operated directly as transcriptional activator of the HLX gene. Moreover, subcellular analyses showed highly enriched STAT3 protein in the nucleus of L-540 cells which underwent cytoplasmic translocation by repressing deacetylation. Finally, HLX inhibited transcription of B-cell differentiation factors MSX1, BCL11A and SPIB and of pro-apoptotic factor BCL2L11/BIM, thereby suppressing Etoposide-induced cell death. Collectively, we propose that aberrantly expressed NKL homeobox gene HLX is part of a pathological gene network in HL, driving deregulated B-cell differentiation and survival.
Choi, Eun-Jeong; Kim, Gun-Hee
2013-10-01
The aim of the present study was to investigate antioxidant and the anticancerigen activity of a methanol extract from Artemisia princeps var. orientalis (APME), a well-known traditional herbal medicine in Asia, in hepatocellular cancer cells. To evaluate the antioxidant activity of APME, reactive oxygen species (ROS) and the antioxidant enzymes, superoxide dismutase (SOD) and catalase were investigated in HepG2 cells exposed to APME (5, 100, and 200 µg/mL) for 72 h. Then, to evaluate the anticancer activity of APME, we investigated the proliferation and apoptosis induction of HepG2 and Hep3B cells exposed to APME (1-200 µg/mL) for 24, 48, and 72 h. APME dose-dependently reduced the generation of ROS in the presence of H2O2 compared with control cells. Furthermore, it increased catalase and SOD activity. Moreover, APME inhibited cell proliferation in a dose- and time-dependent manner, but at concentrations lower than 100 µg/mL, the inhibition was less dose-dependent than time-dependent. HepG2 and Hep3B cells exposed to 5, 100, and 200 µg/mL APME for 72 h underwent cell cycle arrest and apoptosis. Exposure to APME resulted in a significant increase in the number of cells in G1 phase and a decrease in the G2/M phase cell population. In addition, APME induced P53 expression of HepG2 cells in a dose-dependent manner, and played a role in the downregulation of Bcl-2 and upregulation of Bax in both HepG2 and Hep3B cells. These results indicate the potential role of APME as an antioxidant and anticancerigen agent in hepatocarcinoma cell lines.
Phuchareon, Janyaporn; Ohta, Yoshihito; Woo, Jonathan M.; Eisele, David W.; Tetsu, Osamu
2009-01-01
Adenoid cystic carcinoma (ACC) is the second most common malignant neoplasm of the salivary glands. Most patients survive more than 5 years after surgery and postoperative radiation therapy. The 10 year survival rate, however, drops to 40%, due to locoregional recurrences and distant metastases. Improving long-term survival in ACC requires the development of more effective systemic therapies based on a better understanding of the biologic behavior of ACC. Much preclinical research in this field involves the use of cultured cells and, to date, several ACC cell lines have been established. Authentication of these cell lines, however, has not been reported. We performed DNA fingerprint analysis on six ACC cell lines using short tandem repeat (STR) examinations and found that all six cell lines had been contaminated with other cells. ACC2, ACC3, and ACCM were determined to be cervical cancer cells (HeLa cells), whereas the ACCS cell line was composed of T24 urinary bladder cancer cells. ACCNS and CAC2 cells were contaminated with cells derived from non-human mammalian species: the cells labeled ACCNS were mouse cells and the CAC2 cells were rat cells. These observations suggest that future studies using ACC cell lines should include cell line authentication to avoid the use of contaminated or non-human cells. PMID:19557180
Continuous human cell lines and method of making same
Stampfer, Martha R.
1989-01-01
Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo[a]pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors.
Zhu, Bing; Guo, Zhili; Jin, Muzi; Bai, Yujuan; Yang, Wenliang; Hui, Lihua
2018-05-01
To establish a dermal sheath cell line, a dermal papilla cell line and a outer root sheath cell line from Cashmere goat and clarify the similarities and differences among them. We established a dermal sheath cell line, a dermal papilla cell line and a outer root sheath cell line from the pelage skin hair follicles of Cashmere goat. The growth rate of dermal sheath cells was intermediate between that of dermal papilla cells and outer root sheath cells. Immunofluorescence experiments and reverse transcription-polymerase chain reaction analysis showed that at both the transcriptional and translational levels, the dermal sheath cells were alpha-smooth muscle actin (α-SMA) + /cytokeratin 13 + , while the dermal papilla cells were α-SMA + /cytokeratin 13 - and the outer root sheath cells were α-SMA - /cytokeratin 13 + . Patterns of cytokeratin 13 expression could distinguish the dermal sheath cells from the dermal papilla cells. These results suggest that cytokeratin 13 could serve as a novel biomarker for dermal sheath cells of Cashmere goat, and should prove useful for researchers investigating dermal stem cells or interaction of different types of cells during hair cycle.
Lapointe, Jason F; Dunphy, Gary B; Giannoulis, Paschalis; Mandato, Craig A; Nardi, James B; Gharib, Osama H; Niven, Donald F
2011-11-01
The innate non-self response systems of the deciduous tree pest, the forest tent caterpillar, Malacosoma disstria has been documented by us in terms of in vitro and in vivo reactions towards the Gram-positive nonpathogenic bacterium, Bacillus subtilis and Gram-negative pathogenic microbe, Xenorhabdus nematophila and their respective surface antigens, lipopoteichoic acids (LTA) and lipopolysaccharides (LPS). These studies, often conducted in whole and diluted hemolymph, preclude examination of plasma-free cellular (hemocyte) responses. Plasma-free hemocytes as primary cultures are difficult to obtain. The floating cell line Md66 and attached cell line Md108 from M. disstria hemocytes were examined as a model for plasma-free M. disstria hemocyte non-self responses. Herein, it was established that although both lines differed from each other and from the primary hemocyte cultures of M. disstria in growth parameters, cell composition and sizes both cell lines displayed granular cell-like (GL) cells and plasmatocyte-like (PL) cells according to morphological criteria and to some extent antigenic similarities based on labeling with anti-Chrysodeixis includens hemocyte monoclonal antibodies. Hemocyte-specific neuroglian-like protein was detected on cells of both cell lines and in the primary hemocyte cultures albeit with staining patterns differing according to culture and cell types, confluency levels and cell-cell adhesion. Both cell lines bound B. subtilis and X. nematophila, the reaction extent varying with the cell line and its cell types. LPS damaged both cell types in the two cell lines whereas LTA enhanced the adhesion of Md66 GL cells to flask surfaces followed by PL cell adhesion. PL cells of both lines, like the primary cultures, phagocytosed FITC-labeled B. subtilis; only Md108 GL cells phagocytosed B. subtilis. In either case phagocytosis was always less in frequency and intensity than the primary cultures. Proteins released from the cell lines differed in pattern and magnitude but contained bacterial binding proteins that enhanced differential bacterial adhesion to both cell types in both cell lines: the GL cells both cultures, and those of granular cells in primary cultures, were more involved than the primary plasmatocytes and PL cells. Only Md66 cells possessed lysozyme and both cell types of both lines contained phenoloxidase. Neither enzyme type was released during early phase reaction with the bacteria. LPS inhibited phenoloxidase activity. The similarities and differences between the lines and primary cultures make Md66 and Md108 useful for the systematic examination of plasma-free cellular non-self reactions. Copyright © 2011 Elsevier Inc. All rights reserved.
2010-01-01
Blocking oncogenic signaling induced by the BRAFV600E mutation is a promising approach for melanoma treatment. We tested the anti-tumor effects of a specific inhibitor of Raf protein kinases, PLX4032/RG7204, in melanoma cell lines. PLX4032 decreased signaling through the MAPK pathway only in cell lines with the BRAFV600E mutation. Seven out of 10 BRAFV600E mutant cell lines displayed sensitivity based on cell viability assays and three were resistant at concentrations up to 10 μM. Among the sensitive cell lines, four were highly sensitive with IC50 values below 1 μM, and three were moderately sensitive with IC50 values between 1 and 10 μM. There was evidence of MAPK pathway inhibition and cell cycle arrest in both sensitive and resistant cell lines. Genomic analysis by sequencing, genotyping of close to 400 oncogeninc mutations by mass spectrometry, and SNP arrays demonstrated no major differences in BRAF locus amplification or in other oncogenic events between sensitive and resistant cell lines. However, metabolic tracer uptake studies demonstrated that sensitive cell lines had a more profound inhibition of FDG uptake upon exposure to PLX4032 than resistant cell lines. In conclusion, BRAFV600E mutant melanoma cell lines displayed a range of sensitivities to PLX4032 and metabolic imaging using PET probes can be used to assess sensitivity. PMID:20406486
Molecular characterization of breast cancer cell lines through multiple omic approaches.
Smith, Shari E; Mellor, Paul; Ward, Alison K; Kendall, Stephanie; McDonald, Megan; Vizeacoumar, Frederick S; Vizeacoumar, Franco J; Napper, Scott; Anderson, Deborah H
2017-06-05
Breast cancer cell lines are frequently used as model systems to study the cellular properties and biology of breast cancer. Our objective was to characterize a large, commonly employed panel of breast cancer cell lines obtained from the American Type Culture Collection (ATCC 30-4500 K) to enable researchers to make more informed decisions in selecting cell lines for specific studies. Information about these cell lines was obtained from a wide variety of sources. In addition, new information about cellular pathways that are activated within each cell line was generated. We determined key protein expression data using immunoblot analyses. In addition, two analyses on serum-starved cells were carried out to identify cellular proteins and pathways that are activated in these cells. These analyses were performed using a commercial PathScan array and a novel and more extensive phosphopeptide-based kinome analysis that queries 1290 phosphorylation events in major signaling pathways. Data about this panel of breast cancer cell lines was also accessed from several online sources, compiled and summarized for the following areas: molecular classification, mRNA expression, mutational status of key proteins and other possible cancer-associated mutations, and the tumorigenic and metastatic capacity in mouse xenograft models of breast cancer. The cell lines that were characterized included 10 estrogen receptor (ER)-positive, 12 human epidermal growth factor receptor 2 (HER2)-amplified and 18 triple negative breast cancer cell lines, in addition to 4 non-tumorigenic breast cell lines. Within each subtype, there was significant genetic heterogeneity that could impact both the selection of model cell lines and the interpretation of the results obtained. To capture the net activation of key signaling pathways as a result of these mutational combinations, profiled pathway activation status was examined. This provided further clarity for which cell lines were particularly deregulated in common or unique ways. These two new kinase or "Kin-OMIC" analyses add another dimension of important data about these frequently used breast cancer cell lines. This will assist researchers in selecting the most appropriate cell lines to use for breast cancer studies and provide context for the interpretation of the emerging results.
Development and characterization of two cell lines PDF and PDH from Puntius denisonii (Day 1865).
Lakra, Wazir S; Goswami, M; Yadav, Kamalendra; Gopalakrishnan, A; Patiyal, R S; Singh, M
2011-02-01
The Puntius denisonii colloquially and more popularly referred to as Miss Kerala is a subtropical fish belonging to the genus Puntius (Barb) and family Cyprinidae. Two cell lines PDF and PDH were developed from the caudal fin and heart of P. denisonii, respectively. The cell lines were optimally maintained at 26°C in Leibovitz-15 medium supplemented with 10% fetal bovine serum. A diploid count of 50 chromosomes at passage 50 was observed in both the cell lines. The high growth potential of the cell lines was reflected from the cell doubling time of 28 and 30 h of PDF and PDH cell lines, respectively. The viability of the PDF and PDH cell lines was 70% and 76%, respectively, after 4 mo of storage in liquid nitrogen (-196°C). The origin of the cell lines was confirmed by the amplification of 653 bp fragments of cytochrome oxidase subunit I of mitochondrial DNA genes.
Marshall, Marianne E.; Hinz, Trista K.; Kono, Scott A.; Singleton, Katherine R.; Bichon, Brady; Ware, Kathryn E.; Marek, Lindsay; Frederick, Barbara A.; Raben, David; Heasley, Lynn E.
2011-01-01
Purpose We previously reported that a fibroblast growth factor (FGF) receptor (FGFR) signaling pathway drives growth of lung cancer cell lines of squamous and large cell histologies. Herein, we explored FGFR dependency in cell lines derived from the tobacco-related malignancy, head and neck squamous cell carcinoma (HNSCC). Experimental Design FGF and FGFR mRNA and protein expression was assessed in nine HNSCC cell lines. Dependence on secreted FGF2 for cell growth was tested with FP-1039, an FGFR1-Fc fusion protein. FGFR and EGFR-dependence was defined by sensitivity to multiple inhibitors selective for FGFRs or EGFR. Results FGF2 was expressed in eight of the nine HNSCC cell lines examined. Also, FGFR2 and FGFR3 were frequently expressed while only two lines expressed FGFR1. FP-1039 inhibited growth of HNSCC cell lines expressing FGF2, identifying FGF2 as an autocrine growth factor. FGFR inhibitors selectively reduced in vitro growth and ERK signaling in three HNSCC cell lines while three distinct lines exhibited responsiveness to both EGFR and FGFR inhibitors. Combinations of these drugs yielded additive growth inhibition. Finally, three cell lines were highly sensitive to EGFR TKIs with no contribution from FGFR pathways. Conclusions FGFR signaling was dominant or co-dominant with EGFR in six HNSCC lines while three lines exhibited little or no role for FGFRs and were highly EGFR-dependent. Thus, the HNSCC cell lines can be divided into subsets defined by sensitivity to EGFR and FGFR-specific TKIs. FGFR inhibitors may represent novel therapeutics to deploy alone or in combination with EGFR inhibitors in HNSCC. PMID:21673064
Diversity of miRNAs, siRNAs, and piRNAs across 25 Drosophila cell lines
Wen, Jiayu; Mohammed, Jaaved; Bortolamiol-Becet, Diane; Tsai, Harrison; Robine, Nicolas; Westholm, Jakub O.; Ladewig, Erik; Dai, Qi; Okamura, Katsutomo; Flynt, Alex S.; Zhang, Dayu; Andrews, Justen; Cherbas, Lucy; Kaufman, Thomas C.; Cherbas, Peter; Siepel, Adam; Lai, Eric C.
2014-01-01
We expanded the knowledge base for Drosophila cell line transcriptomes by deeply sequencing their small RNAs. In total, we analyzed more than 1 billion raw reads from 53 libraries across 25 cell lines. We verify reproducibility of biological replicate data sets, determine common and distinct aspects of miRNA expression across cell lines, and infer the global impact of miRNAs on cell line transcriptomes. We next characterize their commonalities and differences in endo-siRNA populations. Interestingly, most cell lines exhibit enhanced TE-siRNA production relative to tissues, suggesting this as a common aspect of cell immortalization. We also broadly extend annotations of cis-NAT-siRNA loci, identifying ones with common expression across diverse cells and tissues, as well as cell-restricted loci. Finally, we characterize small RNAs in a set of ovary-derived cell lines, including somatic cells (OSS and OSC) and a mixed germline/somatic cell population (fGS/OSS) that exhibits ping-pong piRNA signatures. Collectively, the ovary data reveal new genic piRNA loci, including unusual configurations of piRNA-generating regions. Together with the companion analysis of mRNAs described in a previous study, these small RNA data provide comprehensive information on the transcriptional landscape of diverse Drosophila cell lines. These data should encourage broader usage of fly cell lines, beyond the few that are presently in common usage. PMID:24985917
Molluscan cells in culture: primary cell cultures and cell lines
Yoshino, T. P.; Bickham, U.; Bayne, C. J.
2013-01-01
In vitro cell culture systems from molluscs have significantly contributed to our basic understanding of complex physiological processes occurring within or between tissue-specific cells, yielding information unattainable using intact animal models. In vitro cultures of neuronal cells from gastropods show how simplified cell models can inform our understanding of complex networks in intact organisms. Primary cell cultures from marine and freshwater bivalve and gastropod species are used as biomonitors for environmental contaminants, as models for gene transfer technologies, and for studies of innate immunity and neoplastic disease. Despite efforts to isolate proliferative cell lines from molluscs, the snail Biomphalaria glabrata Say, 1818 embryonic (Bge) cell line is the only existing cell line originating from any molluscan species. Taking an organ systems approach, this review summarizes efforts to establish molluscan cell cultures and describes the varied applications of primary cell cultures in research. Because of the unique status of the Bge cell line, an account is presented of the establishment of this cell line, and of how these cells have contributed to our understanding of snail host-parasite interactions. Finally, we detail the difficulties commonly encountered in efforts to establish cell lines from molluscs and discuss how these difficulties might be overcome. PMID:24198436
The use of human tumour cell lines in the discovery of new cancer chemotherapeutic drugs.
Baguley, Bruce C; Marshall, Elaine S
2008-02-01
Human tumour cell lines have played a major role in anticancer drug discovery, but cell lines may model only some aspects of tumour behaviour in cancer patients. Growing evidence supports a theory that stem cells with self-renewing properties sustain tumours. This review considers the extent to which a deeper understanding of the origin and properties of tumour cell lines might lead to new strategies for anticancer drug discovery. Recent literature on normal and tumour stem cells is reviewed and placed in the context of a discussion on the derivation and properties of tumour cell lines. Early-passage cell lines may model the more rapidly proliferating cells in human tumours and, thus, retain some of the properties of tumour stem cells. The effects of anticancer drugs on cell lines should be considered not only with regards to the induction of apoptosis, but also to the induction of senescence or other pathways that lead to host immune and inflammatory responses.
Replication of Heliothis virescens ascovirus in insect cell lines.
Asgari, S
2006-09-01
Ascoviruses (AVs) infect larvae of various insect pests belonging to the family Noctuidae. The result of AV infection in the hosts is cleavage of infected cells into vesicles, a unique feature of AV infection. Since insect cell lines facilitate the study of virus life cycles, attempts were made to analyze Heliothis virescens AV (HvAV3e) infection in several cell lines and compare cell pathology to larval infection. In this study, replication and cytopathological effects of HvAV3e on four different cell lines were investigated. HvAV3e replication was confirmed in three noctuid cell lines from Spodoptera frugiperda (Sf9) and Helicoverpa zea (BCIRL-Hz-AM1 and FB33). However, the virus did not replicate in the non-noctuid insect cell line from Pieris rapae (Pieridae). Despite replication of the virus in the three permissive cell lines, the cytopathological effects of the virus were significantly different from that of larval infection.
Acevedo, Gonzalo R.; Longhi, Silvia A.; Bunying, Alcinette; Sabri, Nazila; Atienza, Augusto; Zago, María P.; Santos, Radleigh
2017-01-01
The discovery of T cell epitopes is essential not only for gaining knowledge about host response to infectious disease but also for the development of immune-intervention strategies. In Chagas disease, given the size and complexity of the Trypanosoma cruzi proteome and its interaction with the host’s immune system, the fine specificity of T cells has not been extensively studied yet, and this is particularly true for the CD4+ T cell compartment. The aim of the present work was to optimize a protocol for the generation of parasite-specific memory T cell lines, representative of their in vivo precursor populations and capable of responding to parasite antigens after long-term culture. Accordingly, peripheral blood mononuclear cells (PBMC) from both chronic asymptomatic and cardiac patients, and from non-infected individuals, underwent different in vitro culture and stimulation conditions. Subsequently, cells were tested for their capacity to respond against T. cruzi lysate by measuring [3H]-thymidine incorporation and interferon-γ and GM-CSF secretion. Results allowed us to adjust initial T. cruzi lysate incubation time as well as the number of expansions with phytohemagglutinin (PHA) and irradiated allogeneic PBMC prior to specificity evaluation. Moreover, our data demonstrated that parasite specific T cells displayed a clear and strong activation by using T. cruzi lysate pulsed, Epstein-Barr virus (EBV)-transformed human B lymphocytes (B-LCL), as autologous antigen presenting cells. Under these culture conditions, we generated a clone from an asymptomatic patient’s memory CD4+ T cells which responded against epimastigote and trypomastigote protein lysate. Our results describe a culture method for isolating T. cruzi specific T cell clones from patients with Chagas disease, which enable the acquisition of information on functionality and specificity of individual T cells. PMID:28552984
Acevedo, Gonzalo R; Longhi, Silvia A; Bunying, Alcinette; Sabri, Nazila; Atienza, Augusto; Zago, María P; Santos, Radleigh; Judkowski, Valeria A; Pinilla, Clemencia; Gómez, Karina A
2017-01-01
The discovery of T cell epitopes is essential not only for gaining knowledge about host response to infectious disease but also for the development of immune-intervention strategies. In Chagas disease, given the size and complexity of the Trypanosoma cruzi proteome and its interaction with the host's immune system, the fine specificity of T cells has not been extensively studied yet, and this is particularly true for the CD4+ T cell compartment. The aim of the present work was to optimize a protocol for the generation of parasite-specific memory T cell lines, representative of their in vivo precursor populations and capable of responding to parasite antigens after long-term culture. Accordingly, peripheral blood mononuclear cells (PBMC) from both chronic asymptomatic and cardiac patients, and from non-infected individuals, underwent different in vitro culture and stimulation conditions. Subsequently, cells were tested for their capacity to respond against T. cruzi lysate by measuring [3H]-thymidine incorporation and interferon-γ and GM-CSF secretion. Results allowed us to adjust initial T. cruzi lysate incubation time as well as the number of expansions with phytohemagglutinin (PHA) and irradiated allogeneic PBMC prior to specificity evaluation. Moreover, our data demonstrated that parasite specific T cells displayed a clear and strong activation by using T. cruzi lysate pulsed, Epstein-Barr virus (EBV)-transformed human B lymphocytes (B-LCL), as autologous antigen presenting cells. Under these culture conditions, we generated a clone from an asymptomatic patient's memory CD4+ T cells which responded against epimastigote and trypomastigote protein lysate. Our results describe a culture method for isolating T. cruzi specific T cell clones from patients with Chagas disease, which enable the acquisition of information on functionality and specificity of individual T cells.
2005-10-01
neuroblastoma cell line , P19 and a human neuroblastoma cell line SH - SY5Y (data not shown). Effect of trichostatin A on...mouse neuroblastoma P19 cell line and a human neuroblastoma cell line SH - SY5Y . More experiments are needed to prove the potential of AChE expression in...treatment of nerve agent exposure. MATERIALS AND METHODS Neuronal cell lines and
Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara
2009-01-01
The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines. PMID:18927105
Romano, Paolo; Manniello, Assunta; Aresu, Ottavia; Armento, Massimiliano; Cesaro, Michela; Parodi, Barbara
2009-01-01
The Cell Line Data Base (CLDB) is a well-known reference information source on human and animal cell lines including information on more than 6000 cell lines. Main biological features are coded according to controlled vocabularies derived from international lists and taxonomies. HyperCLDB (http://bioinformatics.istge.it/hypercldb/) is a hypertext version of CLDB that improves data accessibility by also allowing information retrieval through web spiders. Access to HyperCLDB is provided through indexes of biological characteristics and navigation in the hypertext is granted by many internal links. HyperCLDB also includes links to external resources. Recently, an interest was raised for a reference nomenclature for cell lines and CLDB was seen as an authoritative system. Furthermore, to overcome the cell line misidentification problem, molecular authentication methods, such as fingerprinting, single-locus short tandem repeat (STR) profile and single nucleotide polymorphisms validation, were proposed. Since this data is distributed, a reference portal on authentication of human cell lines is needed. We present here the architecture and contents of CLDB, its recent enhancements and perspectives. We also present a new related database, the Cell Line Integrated Molecular Authentication (CLIMA) database (http://bioinformatics.istge.it/clima/), that allows to link authentication data to actual cell lines.
An extremely rare case of small-cell lung cancer harboring variant 2 of the EML4-ALK fusion gene.
Toyokawa, Gouji; Takenoyama, Mitsuhiro; Taguchi, Kenichi; Toyozawa, Ryo; Inamasu, Eiko; Kojo, Miyako; Shiraishi, Yoshimasa; Morodomi, Yosuke; Takenaka, Tomoyoshi; Hirai, Fumihiko; Yamaguchi, Masafumi; Seto, Takashi; Shimokawa, Mototsugu; Ichinose, Yukito
2013-09-01
Anaplastic lymphoma kinase (ALK) fuses echinoderm microtubule-associated protein-like 4 (EML4) to acquire a transforming activity in lung adenocarcinomas. However, the presence of an EML4-ALK fusion gene in other lung cancer histologies is an extremely rare phenomenon. A 43-year-old female was referred to our department due to dyspnea on effort and left back pain. Computed tomography (CT) showed a large mass in the upper lobe of the left lung and a massive left pleural effusion, while a CT-guided needle biopsy confirmed a diagnosis of small-cell lung cancer (SCLC). Surprisingly, the tumor was genetically considered to harbor the EML4-ALK fusion gene (variant 2). Although the patient underwent two regimens of cytotoxic chemotherapy for SCLC, she died approximately seven months after the administration of first-line chemotherapy. Our analysis of 30 consecutive patients with SCLC for EML4-ALK revealed that two patients, including the current patient and a patient we previously reported, harbored the EML4-ALK fusion gene. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Generating mammalian stable cell lines by electroporation.
A Longo, Patti; Kavran, Jennifer M; Kim, Min-Sung; Leahy, Daniel J
2013-01-01
Expression of functional, recombinant mammalian proteins often requires expression in mammalian cells (see Single Cell Cloning of a Stable Mammalian Cell Line). If the expressed protein needs to be made frequently, it can be best to generate a stable cell line instead of performing repeated transient transfections into mammalian cells. Here, we describe a method to generate stable cell lines via electroporation followed by selection steps. This protocol will be limited to the CHO dhfr-Urlaub et al. (1983) and LEC1 cell lines, which in our experience perform the best with this method. Copyright © 2013 Elsevier Inc. All rights reserved.
2007-11-01
cells ( gray fill), cells preincubated with PBS and infected with virus (solid line), and cells preincubated with recombinant knob protein and incubated...U118-hCAR-tailless cells (b). Gray line¼ cells alone, solid line¼ cells+Ad5Luc1-CK1, dashed line¼ cells+Ad5Luc1. Figure 5 Ad5Luc1-CK1CAR-independent...line, whereas U118MG-hCAR-tailless stably expresses the extracellular domain of human CAR. Cells were infected with Ad5Luc1 ( gray bar) and Ad5-r1 (black
Yamaura, Takumi; Ezaki, Junji; Okabe, Naoyuki; Takagi, Hironori; Ozaki, Yuki; Inoue, Takuya; Watanabe, Yuzuru; Fukuhara, Mitsuro; Muto, Satoshi; Matsumura, Yuki; Hasegawa, Takeo; Hoshino, Mika; Osugi, Jun; Shio, Yutaka; Waguri, Satoshi; Tamura, Hirosumi; Imai, Jun-Ichi; Ito, Emi; Yanagisawa, Yuka; Honma, Reiko; Watanabe, Shinya; Suzuki, Hiroyuki
2018-02-01
Lung adenocarcinoma (ADC) patients with tumors that harbor no targetable driver gene mutation, such as epidermal growth factor receptor ( EGFR ) gene mutations, have unfavorable prognosis, and thus, novel therapeutic targets are required. Family with sequence similarity 83, member B ( FAM83B ) is a biomarker for squamous cell lung cancer. FAM83B has also recently been shown to serve an important role in the EGFR signaling pathway. In the present study, the molecular and clinical impact of FAM83B in lung ADC was investigated. Matched tumor and adjacent normal tissue samples were obtained from 216 patients who underwent complete lung resection for primary lung ADC and were examined for FAM83B expression using cDNA microarray analysis. The associations between FAM83B expression and clinicopathological parameters, including patient survival, were examined. FAM83B was highly expressed in tumors from males, smokers and in tumors with wild-type EGFR . Multivariate analyses further confirmed that wild-type EGFR tumors were significantly positively associated with FAM83B expression. In survival analysis, FAM83B expression was associated with poor outcomes in disease-free survival and overall survival, particularly when stratified against tumors with wild-type EGFR . Furthermore, FAM83B knockdown was performed to investigate its phenotypic effect on lung ADC cell lines. Gene silencing by FAM83B RNA interference induced growth suppression in the HLC-1 and H1975 lung ADC cell lines. FAM83B may be involved in lung ADC tumor proliferation and can be a predictor of poor survival. FAM83B is also a potential novel therapeutic target for ADC with wild-type EGFR .
Human Rhabdomyosarcoma Cell Lines for Rhabdomyosarcoma Research: Utility and Pitfalls
Hinson, Ashley R. P.; Jones, Rosanne; Crose, Lisa E. S.; Belyea, Brian C.; Barr, Frederic G.; Linardic, Corinne M.
2013-01-01
Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood and adolescence. Despite intergroup clinical trials conducted in Europe and North America, outcomes for high risk patients with this disease have not significantly improved in the last several decades, and survival of metastatic or relapsed disease remains extremely poor. Accrual into new clinical trials is slow and difficult, so in vitro cell-line research and in vivo xenograft models present an attractive alternative for preclinical research for this cancer type. Currently, 30 commonly used human RMS cell lines exist, with differing origins, karyotypes, histologies, and methods of validation. Selecting an appropriate cell line for RMS research has important implications for outcomes. There are also potential pitfalls in using certain cell lines including contamination with murine stromal cells, cross-contamination between cell lines, discordance between the cell line and its associated original tumor, imposter cell lines, and nomenclature errors that result in the circulation of two or more presumed unique cell lines that are actually from the same origin. These pitfalls can be avoided by testing for species-specific isoenzymes, microarray analysis, assays for subtype-specific fusion products, and short tandem repeat analysis. PMID:23882450
Zhao, Mei; Sano, Daisuke; Pickering, Curtis R.; Jasser, Samar A.; Henderson, Ying C.; Clayman, Gary L.; Sturgis, Erich M.; Ow, Thomas J.; Lotan, Reuben; Carey, Thomas E.; Sacks, Peter G.; Grandis, Jennifer R.; Sidransky, David; Heldin, Nils Erik; Myers, Jeffrey N.
2011-01-01
Purpose Human cell lines are useful for studying cancer biology and pre-clinically modeling cancer therapy, but can be misidentified and cross contamination is unfortunately common. The purpose of this study was to develop a panel of validated head and neck cell lines representing the spectrum of tissue sites and histologies that could be used for studying the molecular, genetic, and phenotypic diversity of head and neck cancer. Methods A panel of 122 clinically and phenotypically diverse head and neck cell lines from head and neck squamous cell carcinoma (HNSCC), thyroid cancer, cutaneous squamous cell carcinoma, adenoid cystic carcinoma, oral leukoplakia, immortalized primary keratinocytes, and normal epithelium, was assembled from the collections of several individuals and institutions. Authenticity was verified by performing short tandem repeat (STR) analysis. Human papillomavirus (HPV) status and cell morphology were also determined. Results Eighty-five of the 122 cell lines had unique genetic profiles. HPV-16 DNA was detected in 2 cell lines. These 85 cell lines included cell lines from the major head and neck primary tumor sites, and close examination demonstrates a wide range of in vitro phenotypes. Conclusion This panel of 85 genomically validated head and neck cell lines represents a valuable resource for the head and neck cancer research community that can help advance understanding of the disease by providing a standard reference for cell lines that can be utilized for biological as well as preclinical studies. PMID:21868764
Fukai, Katsuhiko; Morioka, Kazuki; Yamada, Manabu; Nishi, Tatsuya; Yoshida, Kazuo; Kitano, Rie; Yamazoe, Reiko; Kanno, Toru
2015-07-01
The fetal goat tongue cell line ZZ-R 127 and the fetal porcine kidney cell line LFBK-α(v)β(6) have been reported to have high sensitivity to various Foot-and-mouth disease virus (FMDV) strains. The suitability of ZZ-R 127 cells for FMDV isolation not only from epithelial suspensions but also from other clinical samples has already been confirmed in a previous study. However, to our knowledge, the suitability of LFBK-α(v)β(6) cells has not been evaluated using clinical samples other than epithelial materials. In addition, both cell lines have never been compared, in terms of use for FMDV isolation, under the same conditions. Therefore, in the current study, the virus isolation rates of both cell lines were compared using clinical samples collected from animals infected experimentally with FMDV. Viruses were successfully isolated from clinical samples other than epithelial suspensions for both cell lines. The virus isolation rates for the 2 cell lines were not significantly different. The Cohen kappa coefficients between the virus isolation results for both cell lines were significantly high. Taken together, these results confirmed the suitability of LFBK-α(v)β(6) cells for FMDV isolation from clinical samples other than epithelial suspensions. The levels of susceptibility of both cell lines to FMDV isolation were also confirmed to be almost the same. © 2015 The Author(s).
Yu, Channing; Mannan, Aristotle M.; Yvone, Griselda Metta; Ross, Kenneth N.; Zhang, Yan-Ling; Marton, Melissa A.; Taylor, Bradley R.; Crenshaw, Andrew; Gould, Joshua Z.; Tamayo, Pablo; Weir, Barbara A.; Tsherniak, Aviad; Wong, Bang; Garraway, Levi A.; Shamji, Alykhan F.; Palmer, Michelle A.; Foley, Michael A.; Winckler, Wendy; Schreiber, Stuart L.; Kung, Andrew L.; Golub, Todd R.
2016-01-01
Hundreds of genetically characterized cell lines are available for the discovery of genotype-specific cancer vulnerabilities. However, screening large numbers of compounds against large numbers of cell lines is currently impractical, and such experiments are often difficult to control1-4. Here, we report a method called PRISM that allows pooled screening of mixtures of cancer cell lines by labeling each cell line with 24-nucleotide barcodes. PRISM displayed the expected patterns of cell killing seen in conventional (unpooled) assays. In a screen of 102 cell lines across 8,400 compounds, PRISM led to the identification of BRD-7880 as a potent and highly specific inhibitor of aurora kinases B and C. Cell line pools also efficiently formed tumors as xenografts, and PRISM recapitulated the expected pattern of erlotinib sensitivity in vivo. PMID:26928769
Soni, Pankaj; Pradhan, Pravata K; Swaminathan, T R; Sood, Neeraj
2018-06-01
A cell line, designated as PHF, has been established from caudal fin of Pangasianodon hypophthalmus. The cell line was developed using explant method and PHF cells have been subcultured for more than 72 passages over a period of 14 months. The cells were able to grow at temperatures between 24 and 32° C, with an optimum temperature of 28° C. The growth rate of PHF cells was directly proportional to FBS concentration, with optimum growth observed at 20% FBS concentration. On the basis of immunophenotyping assay, PHF cells were confirmed to be of epithelial type. Karyotyping of PHF cells revealed diploid number of chromosomes (2n = 60) at 39th and 65th passage, which indicated that the developed cell line is chromosomally stable. The origin of the cell line was confirmed by amplification and sequencing of cytochrome oxidase c subunit I and 16S rRNA genes. The cell line was tested for Mycoplasma contamination and found to be negative. The cells were successfully transfected with GFP reporter gene suggesting that the developed cell line could be utilized for gene expression studies in future. The cell line could be successfully employed for evaluating the cytotoxicity of heavy metals, namely mercuric chloride and sodium arsenite suggesting that PHF cell line can be potential surrogate for whole fish for studying the cytotoxicity of water soluble compounds. The result of virus susceptibility to tilapia lake virus (TiLV) revealed that PHF cells were refractory to TiLV virus. The newly established cell line would be a useful tool for investigating disease outbreaks particularly of viral etiology, transgenic as well as cytotoxicity studies. Copyright © 2018 Elsevier B.V. All rights reserved.
de Sá Rodrigues, L C; Holmes, K E; Thompson, V; Newton, M A; Stein, T J
2017-03-01
An increased serum alkaline phosphatase concentration is known to be associated with a negative prognosis in canine and human osteosarcoma. To expand upon previous studies regarding the biological relevance of increased serum alkaline phosphatase as a negative prognostic factor, xenogeneic heterotopic transplants were performed using six canine primary osteosarcoma cell lines generated from patients with differing serum alkaline phosphatase concentrations (three normal and three increased). Three of the six cell lines were capable of generating tumours and tumour formation was independent of the serum alkaline phosphatase status of the cell line. Microarray analysis identified 379 genes as being differentially expressed between the tumourigenic and non-tumourigenic cell lines. Frizzled-6 was upregulated to the greatest extent (7.78-fold) in tumourigenic cell lines compared with non-tumourigenic cell lines. Frizzled-6, a co-receptor for Wnt ligands has been associated with enhanced tumour-initiating cells and poor prognosis for other tumours. The increased expression of frizzled-6 was confirmed by quantitative reverse transcription polymerase chain reaction (QPCR) and Western blot analysis. Additionally, the tumourigenic cell lines also had an increase in the percentage of side population cells compared with non-tumourigenic cell lines (5.89% versus 1.58%, respectively). There were no differences in tumourigenicity, frizzled-6 or percentage of side population cells noted between osteosarcoma cell lines generated from patients of differing serum alkaline phosphatase concentration. However, to our knowledge this is the first study to identified frizzled-6 as a possible marker of osteosarcoma cell populations with enhanced tumourigenicity and side population cells. Future work will focus on defining the role of frizzled-6 in osteosarcoma tumourigenesis and tumour-initiating cells. © 2015 John Wiley & Sons Ltd.
The transcriptional diversity of 25 Drosophila cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cherbas, Lucy; Willingham, Aarron; Zhang, Dayu
2010-12-22
Drosophila melanogaster cell lines are important resources for cell biologists. In this article, we catalog the expression of exons, genes, and unannotated transcriptional signals for 25 lines. Unannotated transcription is substantial (typically 19% of euchromatic signal). Conservatively, we identify 1405 novel transcribed regions; 684 of these appear to be new exons of neighboring, often distant, genes. Sixty-four percent of genes are expressed detectably in at least one line, but only 21% are detected in all lines. Each cell line expresses, on average, 5885 genes, including a common set of 3109. Expression levels vary over several orders of magnitude. Major signalingmore » pathways are well represented: most differentiation pathways are ‘‘off’’ and survival/growth pathways ‘‘on.’’ Roughly 50% of the genes expressed by each line are not part of the common set, and these show considerable individuality. Thirty-one percent are expressed at a higher level in at least one cell line than in any single developmental stage, suggesting that each line is enriched for genes characteristic of small sets of cells. Most remarkable is that imaginal disc-derived lines can generally be assigned, on the basis of expression, to small territories within developing discs. These mappings reveal unexpected stability of even fine-grained spatial determination. No two cell lines show identical transcription factor expression. We conclude that each line has retained features of an individual founder cell superimposed on a common ‘‘cell line‘‘ gene expression pattern. We report the transcriptional profiles of 25 Drosophila melanogaster cell lines, principally by whole-genome tiling microarray analysis of total RNA, carried out as part of the modENCODE project. The data produced in this study add to our knowledge of the cell lines and of the Drosophila transcriptome in several ways. We summarize the expression of previously annotated genes in each of the 25 lines with emphasis on what those patterns reveal about the origins of the lines and the stability of spatial expression patterns. In addition, we offer an initial analysis of previously unannotated transcripts in the cell lines.« less
BHD Tumor Cell Line and Renal Cell Carcinoma Line | NCI Technology Transfer Center | TTC
Scientists at the National Cancer Institute have developed a novel renal cell carcinoma (RCC) cell line designated UOK257, which was derived from the surgical kidney tissue of a patient with hereditary Birt-Hogg-Dube''''(BHD) syndrome and companion cell line UOK257-2 in which FLCN expression has been restored by lentivirus infection. The NCI Urologic Oncology Branch seeks parties interested in licensing or collaborative research to co-develop, evaluate, or commercialize kidney cancer tumor cell lines.
Macrophage cell lines derived from major histocompatibility complex II-negative mice
NASA Technical Reports Server (NTRS)
Beharka, A. A.; Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)
1998-01-01
Two bone-marrow-derived macrophage cell lines, C2D and C2Dt, were isolated from major histocompatibility class II negative knock-out mice. The C2D cell line was stabilized by continuous culture in colony-stimulating factor-1 and the C2Dt cell line was transformed with SV40 virus large T antigen. These cells exhibited phenotypic properties of macrophages including morphology and expression of Mac 1 and Mac 2 cell surface molecules. These cells also had comparable growth to the bone-marrow-derived macrophage cell line B6MP102. These new cell lines were not spontaneously cytotoxic and were only capable of modest killing of F5b tumor cells when stimulated with LPS and interferon-gamma, but not when stimulated with LPS alone or with staphylococcal exotoxin. C2D and C2Dt cells phagocytosed labeled Staphylococcus aureus similarly to B6MP102 cells but less well than C2D peritoneal macrophages. These cell lines secreted interleukin-6, but not tumor necrosis factor or nitric oxide in response to LPS or staphlococcal enterotoxins A or B C2D(t) cells were tumorigenic in C2D and C57BL/6J mice but C2D cells were not. These data suggest that macrophage cell lines can be established from bone marrow cells of major histocompatibility complex II-negative mice.
Franco, Marco E; Sutherland, Grace E; Lavado, Ramon
2018-04-01
The use of fish cell cultures has proven to be an effective tool in the study of environmental and aquatic toxicology. Valuable information can be obtained from comparisons between cell lines from different species and organs. In the present study, specific chemicals were used and biomarkers (e.g. 7-Ethoxyresorufin-O-deethylase (EROD) activity and reactive oxygen species (ROS)) were measured to assess the metabolic capabilities and cytotoxicity of the fish hepatic cell lines Hepa-E1 and RTH-149, and the fish gill cell lines RTgill-W1 and G1B. These cell lines were exposed to β-naphthoflavone (BNF) and benzo[a]pyrene (BaP), the pharmaceutical tamoxifen (TMX), and the organic peroxide tert-butylhydroperoxide (tBHP). Cytotoxicity in gill cell lines was significantly higher than in hepatic cells, with BNF and TMX being the most toxic compounds. CYP1-like associated activity, measured through EROD activity, was only detected in hepatic cells; Hepa-E1 cells showed the highest activity after exposure to both BNF and BaP. Significantly higher levels of CYP3A-like activity were also observed in Hepa-E1 cells exposed to TMX, while gill cell lines presented the lowest levels. Measurements of ROS and antioxidant enzymes indicated that peroxide levels were higher in gill cell lines in general. However, levels of superoxide were significantly higher in RTH-149 cells, where no distinctive increase of superoxide-related antioxidants was observed. The present study demonstrates the importance of selecting adequate cell lines in measuring specific metabolic parameters and provides strong evidence for the fish hepatocarcinoma Hepa-E1 cells to be an excellent alternative in assessing metabolism of xenobiotics, and in expanding the applicability of fish cell lines for in vitro studies. Copyright © 2018 Elsevier Inc. All rights reserved.
Yan, Zhongshu; Liao, Guoqing
2005-01-01
Background Rectovaginal fistula is uncommon after lower anterior resection for rectal cancer. The most leading cause of this complication is involvement of the posterior wall of the vagina into the staple line when firing the circular stapler. Case presentation A 50-year-old women underwent resection for obstructed carcinoma of the sigmoid colon with Hartmann procedure. Four months later she underwent restorative surgery with circular stapler. Following which she developed rectovaginal fistula. A transvaginal repair was performed but stool passing from vagina not per rectum. Laporotomy revealed colovaginal anastomosis, which was corrected accordingly. Patient had an uneventful recovery. Conclusion Inadvertent formation of colovaginal anastomosis associated with a rectovaginal fistula is a rare complication caused by the operator's error. The present case again highlights the importance of ensuring that the posterior wall of vagina is away from the staple line. PMID:16285887
Singh, Ankita; Kildegaard, Helene F; Andersen, Mikael R
2018-05-15
Chinese hamster ovary (CHO) cell lines can fold, assemble and modify proteins post-translationally to produce human-like proteins; as a consequence, it is the single most common expression systems for industrial production of recombinant therapeutic proteins. A thorough knowledge of cultivation conditions of different CHO cell lines has been developed over the last decade, but comprehending gene or pathway-specific distinctions between CHO cell lines at transcriptome level remains a challenge. To address these challenges, we compiled a compendium of 23 RNA-Seq studies from public and in-house data on CHO cell lines, i.e. CHO-S, CHO-K1 and DG44. Significantly differentially expressed (DE) genes particularly related to subcellular structure and macromolecular categories were used to identify differences between the cell lines. A R-based web application was developed specifically for CHO cell lines to further visualize expression values across different cell lines, and make available the normalized full CHO data set graphically as a CHO research community resource. This study quantitatively categorizes CHO cell lines based on patterns at transcriptomic level and detects gene and pathway specific key distinctions among sibling cell lines. Studies such as this can be used to select desired characteristics across various CHO cell lines. Furthermore, the availability of the data as an internet-based application can be applied to broad range of CHO engineering applications. This article is protected by copyright. All rights reserved.
Muller, Ryan Y; Hammond, Ming C; Rio, Donald C; Lee, Yeon J
2015-12-01
The Encyclopedia of DNA Elements (ENCODE) Project aims to identify all functional sequence elements in the human genome sequence by use of high-throughput DNA/cDNA sequencing approaches. To aid the standardization, comparison, and integration of data sets produced from different technologies and platforms, the ENCODE Consortium selected several standard human cell lines to be used by the ENCODE Projects. The Tier 1 ENCODE cell lines include GM12878, K562, and H1 human embryonic stem cell lines. GM12878 is a lymphoblastoid cell line, transformed with the Epstein-Barr virus, that was selected by the International HapMap Project for whole genome and transcriptome sequencing by use of the Illumina platform. K562 is an immortalized myelogenous leukemia cell line. The GM12878 cell line is attractive for the ENCODE Projects, as it offers potential synergy with the International HapMap Project. Despite the vast amount of sequencing data available on the GM12878 cell line through the ENCODE Project, including transcriptome, chromatin immunoprecipitation-sequencing for histone marks, and transcription factors, no small interfering siRNA-mediated knockdown studies have been performed in the GM12878 cell line, as cationic lipid-mediated transfection methods are inefficient for lymphoid cell lines. Here, we present an efficient and reproducible method for transfection of a variety of siRNAs into the GM12878 and K562 cell lines, which subsequently results in targeted protein depletion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demaison, C.; Chastagner, P.; Theze, J.
1994-01-18
Monoclonal anti-DNA antibodies bearing a lupus nephritis-associated idiotype were derived from five patients with systemic lupus erythematosus (SLE). Genes encoding their heavy (H)-chain variable (V[sub H]) regions were cloned and sequenced. When compared with their closest V[sub h] germ-line gene relatives, these sequences exhibit a number of silent (S) and replacement (R) substitutions. The ratios of R/S mutations were much higher in the complementarity-determining regions (CDRs) of the antibodies than in the framework regions. Molecular amplification of genomic V[sub H] genes and Southern hybridization with somatic CDR2-specific oligonucleotide probes showed that the configuration of the V[sub H] genes corresponding tomore » V[sub H] sequences in the nephritogenic antibodies is not present in the patient's own germ-line DNA, implying that the B-cell clones underwent somatic mutation in vivo. These findings, together with the characteristics of the diversity and junctional gene elements utilized to form the antibody, indicate that these autoantibodies have been driven through somatic selection processes reminiscent of those that govern antibody responses triggered by exogenous stimuli.« less
Lörinc, Ester; Mellblom, Lennart; Öberg, Stefan
2015-12-01
To characterize the immunophenotypic relationship between the squamous and the glandular compartments in the oesophagus of patients with columnar-lined oesophagus (CLO). Eight tissue blocks from three oesophageal resection specimens from patients who underwent oesophagectomy for adenocarcinoma of the oesophagus were selected for immunohistochemical analysis. The markers of intestinal differentiation [CK20, CDX2 and MUC2] were all expressed in the expected pattern, solely in the glandular compartment of the resection specimens. CK4, CK17 and lysozyme were expressed in both the glandular and the squamous compartments. In addition, CK17 expression was found on both the squamous and glandular margins of the squamocolumnar transformation zones and in the submucosal gland (SMG) intraglandular and excretory ducts. There is an immunophenotypic relationship between the squamous and the glandular compartments of the CLO, with expression of lysozyme, CK4 and CK17 in both squamous and columnar cells. These overlapping immunophenotypes indicate similar differentiation paths, and link the SMG unit with the columnar metaplasia and the neosquamous islands in CLO. Our findings support the theory of a cellular origin of CLO and neosquamous islands from the SMG unit. © 2015 John Wiley & Sons Ltd.
Kume, Osamu; Teshima, Yasushi; Abe, Ichitaro; Ikebe, Yuki; Oniki, Takahiro; Kondo, Hidekazu; Saito, Shotaro; Fukui, Akira; Yufu, Kunio; Miura, Masahiro; Shimada, Tatsuo; Takahashi, Naohiko
Monocyte chemoattractant protein-1 (MCP-1)-mediated inflammatory mechanisms have been shown to play a crucial role in atrial fibrosis induced by pressure overload. In the present study, we investigated whether left atrial endothelial cells would quickly respond structurally and functionally to pressure overload to trigger atrial fibrosis and fibrillation. Six-week-old male Sprague-Dawley rats underwent suprarenal abdominal aortic constriction (AAC) or a sham operation. By day 3 after surgery, macrophages were observed to infiltrate into the endocardium. The expression of MCP-1 and E-selectin in atrial endothelium and the expression of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and ED1 in left atrial tissue were enhanced. Atrial endothelial cells were irregularly hypertrophied with the disarrangement of lines of cells by scanning electron microscopy. Various-sized gap formations appeared along the border in atrial endothelial cells, and several macrophages were located just in the endothelial gap. Along with the development of heterogeneous interstitial fibrosis, interatrial conduction time was prolonged and the inducibility of atrial fibrillation by programmed extrastimuli was increased in the AAC rats compared to the sham-operated rats. Atrial endothelium responds rapidly to pressure overload by expressing adhesion molecules and MCP-1, which induce macrophage infiltration into the atrial tissues. These processes could be an initial step in the development of atrial remodeling for atrial fibrillation. Copyright © 2016 Elsevier Inc. All rights reserved.
Bao, Wei; Qiu, Haifeng; Yang, Tingting; Luo, Xin; Zhang, Huijuan; Wan, Xiaoping
2013-01-01
Mechanisms governing the metastasis of endometrial carcinoma (EC) are poorly defined. Recent data support a role for the cell surface receptor tyrosine kinase TrkB in the progression of several human tumors. Here we present evidence for a direct role of TrkB in human EC. Immunohistochemical analysis revealed that TrkB and its secreted ligand, brain-derived neurotrophic factor (BDNF), are more highly expressed in EC than in normal endometrium. High TrkB levels correlated with lymph node metastasis (p<0.05) and lymphovascular space involvement (p<0.05) in EC. Depletion of TrkB by stable shRNA-mediated knockdown decreased the migratory and invasive capacity of cancer cell lines in vitro and resulted in anoikis in suspended cells. Conversely, exogenous expression of TrkB increased cell migration and invasion and promoted anoikis resistance in suspension culture. Furthermore, over-expression of TrkB or stimulation by BDNF resulted in altered the expression of molecular mediators of the epithelial-to-mesenchymal transition (EMT). RNA interference (RNAi)-mediated depletion of the downstream regulator, Twist, blocked TrkB-induced EMT-like transformation. The use of in vivo models revealed decreased peritoneal dissemination in TrkB-depleted EC cells. Additionally, TrkB-depleted EC cells underwent mesenchymal-to-epithelial transition and anoikis in vivo. Our data support a novel function for TrkB in promoting EMT and resistance to anoikis. Thus, TrkB may constitute a potential therapeutic target in human EC. PMID:23936232
Rahman, Masmudur M.; Liu, Jia; Chan, Winnie M.; Rothenburg, Stefan; McFadden, Grant
2013-01-01
Myxoma virus (MYXV)-encoded protein M029 is a member of the poxvirus E3 family of dsRNA-binding proteins that antagonize the cellular interferon signaling pathways. In order to investigate additional functions of M029, we have constructed a series of targeted M029-minus (vMyx-M029KO and vMyx-M029ID) and V5-tagged M029 MYXV. We found that M029 plays a pivotal role in determining the cellular tropism of MYXV in all mammalian cells tested. The M029-minus viruses were able to replicate only in engineered cell lines that stably express a complementing protein, such as vaccinia E3, but underwent abortive or abated infection in all other tested mammalian cell lines. The M029-minus viruses were dramatically attenuated in susceptible host European rabbits and caused no observable signs of myxomatosis. Using V5-tagged M029 virus, we observed that M029 expressed as an early viral protein is localized in both the nuclear and cytosolic compartments in virus-infected cells, and is also incorporated into virions. Using proteomic approaches, we have identified Protein Kinase R (PKR) and RNA helicase A (RHA)/DHX9 as two cellular binding partners of M029 protein. In virus-infected cells, M029 interacts with PKR in a dsRNA-dependent manner, while binding with DHX9 was not dependent on dsRNA. Significantly, PKR knockdown in human cells rescued the replication defect of the M029-knockout viruses. Unexpectedly, this rescue of M029-minus virus replication by PKR depletion could then be reversed by RHA/DHX9 knockdown in human monocytic THP1 cells. This indicates that M029 not only inhibits generic PKR anti-viral pathways, but also binds and conscripts RHA/DHX9 as a pro-viral effector to promote virus replication in THP1 cells. Thus, M029 is a critical host range and virulence factor for MYXV that is required for replication in all mammalian cells by antagonizing PKR-mediated anti-viral functions, and also conscripts pro-viral RHA/DHX9 to promote viral replication specifically in myeloid cells. PMID:23853588
Continuous human cell lines and method of making same
Stampfer, M.R.
1985-07-01
Substantially genetically stable continuous human cell lines derived from normal human mammary epithelial cells (HMEC) and processes for making and using the same. In a preferred embodiment, the cell lines are derived by treating normal human mammary epithelial tissue with a chemical carcinogen such as benzo(a)pyrene. The novel cell lines serve as useful substrates for elucidating the potential effects of a number of toxins, carcinogens and mutagens as well as of the addition of exogenous genetic material. The autogenic parent cells from which the cell lines are derived serve as convenient control samples for testing. The cell lines are not neoplastically transformed, although they have acquired several properties which distinguish them from their normal progenitors. 2 tabs.
Frequent mutations in the p53 tumor suppressor gene in human leukemia T-cell lines.
Cheng, J; Haas, M
1990-01-01
Human T-cell leukemia and T-cell acute lymphoblastic leukemia cell lines were studied for alterations in the p53 tumor suppressor gene. Southern blot analysis of 10 leukemic T-cell lines revealed no gross genomic deletions or rearrangements. Reverse transcription-polymerase chain reaction analysis of p53 mRNA indicated that all 10 lines produced p53 mRNA of normal size. By direct sequencing of polymerase chain reaction-amplified cDNA, we detected 11 missense and nonsense point mutations in 5 of the 10 leukemic T-cell lines studied. The mutations are primarily located in the evolutionarily highly conserved regions of the p53 gene. One of the five cell lines in which a mutation was detected possesses a homozygous point mutation in both p53 alleles, while the other four cell lines harbor from two to four different point mutations. An allelic study of two of the lines (CEM, A3/Kawa) shows that the two missense mutations found in each line are located on separate alleles, thus both alleles of the p53 gene may have been functionally inactivated by two different point mutations. Since cultured leukemic T-cell lines represent a late, fully tumorigenic stage of leukemic T cells, mutation of both (or more) alleles of the p53 gene may reflect the selection of cells possessing an increasingly tumorigenic phenotype, whether the selection took place in vivo or in vitro. Previously, we have shown that the HSB-2 T-cell acute lymphoblastic leukemia cell line had lost both alleles of the retinoblastoma tumor suppressor gene. Taken together, our data show that at least 6 of 10 leukemic T-cell lines examined may have lost the normal function of a known tumor suppressor gene, suggesting that this class of genes serves a critical role in the generation of fully tumorigenic leukemic T cells. Images PMID:2144611
Ma, Nan; Yang, Di; Okamura, Hirohiko; Teramachi, Jumpei; Hasegawa, Tomokazu; Qiu, Lihong; Haneji, Tatsuji
2017-02-01
Periapical lesions are characterized by the destruction of periapical bone, and occur as a result of local inflammatory responses to root canal infection by microorganisms including Porphyromonas endodontalis (P. endodontalis). P. endodontalis and its primary virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical lesions and alveolar bone loss. Interleukin‑23 (IL‑23) is critical in the initiation and progression of periodontal disease via effects on peripheral bone metabolism. The present study investigated the expression of IL‑23 in tissue where a periapical lesion was present, and the effect of P. endodontalis LPS on the expression of IL‑23 in periodontal ligament (PDL) cells. Reverse transcription‑ quantitative polymerase chain reaction and immunohistochemistry revealed increased levels of IL‑23 expression in tissue with periapical lesions compared with healthy PDL tissue. Treatment with P. endodontalis LPS increased the expression of IL‑23 in the SH‑9 human PDL cell line. BAY11‑7082, a nuclear factor κB inhibitor, suppressed P. endodontalis LPS‑induced IL‑23 expression in SH‑9 cells. Treatment of RAW264.7 cells with conditioned medium from P. endodontalis LPS‑treated SH‑9 cells promoted osteoclastogenesis. By contrast, RAW264.7 cells treated with conditioned medium from IL‑23‑knockdown SH‑9 cells underwent reduced levels of osteoclastogenesis. The results of the present study indicated that the expression of IL‑23 in PDL cells induced by P. endodontalis LPS treatment may be involved in the progression of periapical lesions via stimulation of the osteoclastogenesis process.
Miyashita, Kazuya; Kitajima, Kenji; Goyama, Susumu; Kitamura, Toshio; Hara, Takahiko
2018-01-15
T cell acute lymphoblastic leukemia (T-ALL) is a malignant cancer with poor prognosis. The transcriptional co-factor LIM domain only 2 (LMO2) and its target gene HHEX are essential for self-renewal of T cell precursors and T-ALL etiology. LMO2 directly associates with LDB1 in a large DNA-containing nuclear complex and controls the transcription of T-ALL-related genes. Recently, we reported that overexpression of the LIM-homeodomain transcription factor, Lhx2, results in liberation of the Lmo2 protein from the Lmo2-Ldb1 complex, followed by ubiquitin proteasome mediated degradation. Here, we found that proliferation of five human T-ALL-derived cell lines, including CCRF-CEM, was significantly suppressed by retroviral overexpression of Lhx2. The majority of Lhx2-transduced CCRF-CEM cells arrested in G 0 phase and subsequently underwent apoptosis. Expression of LMO2 protein as well as HHEX, ERG, HES1 and MYC genes was repressed in CCRF-CEM cells by transduction with Lhx2. Lhx2-mediated growth inhibition was partially rescued by simultaneous overexpression of Lmo2; however, both the C-terminal LIM domain and the homeodomain of Lhx2 were required for its growth-suppressive activity. These data indicate that Lhx2 is capable of blocking proliferation of T-ALL-derived cells by both LMO2-dependent and -independent means. We propose Lhx2 as a new molecular tool for anti-T-ALL drug development. Copyright © 2017 Elsevier Inc. All rights reserved.
Ostrowski, K; Dziedzic-Goclawska, A; Strojny, P; Grzesik, W; Kieler, J; Christensen, B; Mareel, M
1986-01-01
The rationale of the present investigation is the observations made by many authors of changes in the molecular structure of the cell surface during the multistep process of malignant transformation. These changes may influence cell-matrix and cell-cell interactions and thereby cause changes in cell adhesiveness and cell shape. The aim of the present work was to investigate whether the development of various grades of transformation in vivo and in vitro of human urothelial cells is accompanied by significant changes in cell shape as measured by Fourier analysis. The following transformation grades (TGr) have been defined (Christensen et al. 1984; Kieler 1984): TGr I = nonmalignant, mortal cell lines that grow independently of fibroblasts and have a prolonged life span. TGr II = nonmalignant cell lines with an infinite life span. TGr III = malignant and immortal cell lines that grow invasively in co-cultures with embryonic chick heart fragments and possess tumorigenic properties after s.c. injection into nude mice. Comparisons of 4 pairs of cell lines were performed; each pair was of the same origin. Two pairs--each including a TGr I cell line (Hu 961b and Hu 1703S) compared to a TGr III cell line (Hu 961a or Hu 1703He)--were derived from two transitional cell carcinomas (TCC) containing a heterogeneous cell population. Two additional cell lines classified as TGr II (HCV-29 and Hu 609) were compared to two TGr III sublines (HCV-29T and Hu 609T, respectively) which arose by "spontaneous" transformation during propagation in vitro of the respective maternal TGr II-cell lines.(ABSTRACT TRUNCATED AT 250 WORDS)
Mycoplasma Infection Alters Cancer Stem Cell Properties in Vitro.
Gedye, Craig; Cardwell, Tracy; Dimopoulos, Nektaria; Tan, Bee Shin; Jackson, Heather; Svobodová, Suzanne; Anaka, Matthew; Behren, Andreas; Maher, Christopher; Hofmann, Oliver; Hide, Winston; Caballero, Otavia; Davis, Ian D; Cebon, Jonathan
2016-02-01
Cancer cell lines can be useful to model cancer stem cells. Infection with Mycoplasma species is an insidious problem in mammalian cell culture. While investigating stem-like properties in early passage melanoma cell lines, we noted poorly reproducible results from an aliquot of a cell line that was later found to be infected with Mycoplasma hyorhinis. Deliberate infection of other early passage melanoma cell lines aliquots induced variable and unpredictable effects on expression of putative cancer stem cell markers, clonogenicity, proliferation and global gene expression. Cell lines established in stem cell media (SCM) were equally susceptible. Mycoplasma status is rarely reported in publications using cultured cells to study the cancer stem cell hypothesis. Our work highlights the importance of surveillance for Mycoplasma infection while using any cultured cells to interrogate tumor heterogeneity.
Marion, Marie-Jeanne; Hantz, Olivier; Durantel, David
2010-01-01
Liver progenitor cells may play an important role in carcinogenesis in vivo and represent therefore useful cellular materials for in vitro studies. The HepaRG cell line, which is a human bipotent progenitor cell line capable to differentiate toward two different cell phenotypes (i.e., biliary-like and hepatocyte-like cells), has been established from a liver tumor associated with chronic hepatitis C. This cell line represents a valuable alternative to ex vivo cultivated primary human hepatocytes (PHH), as HepaRG cells share some features and properties with adult hepatocytes. The cell line is particularly useful to evaluate drugs and perform drug metabolism studies, as many detoxifying enzymes are expressed and functional. It is also an interesting tool to study some aspect of progenitor biology (e.g., differentiation process), carcinogenesis, and the infection by some pathogens for which the cell line is permissive (e.g., HBV infection). Overall, this chapter gives a concise overview of the biological properties and potential applications of this cell line.
[Expression of Chemokine receptor CXCR6 and its significance in breast cancer cell lines].
Cheng, Hao; Chen, Nian-yong
2014-05-01
To detect the expression of Chemokine receptor CXCR6 in invasive breast cancer cell lines and normal mammary epithelial cell line, and assess the relationship between CXCR6 expression and malignant behavior of breast cancer cells. Expression level of CXCR6 in different invasive breast cancer cell lines (SK-BR-3, MCF-7, MDA-MB-231) and normal mammary epithelial cell line (MCF-10A)was detected by real time reverse transcription-polymerase chain reaction (real time-PCR) and Western blot. Lentivirus was employed to interfere CXCR6 expression in MDA-MB-231. MTT assay and transwell chamber were used to study proliferative and invasive ability of those cells respectively. Vascular enothelial growth factor (VEGF) expression was detected to study the role of CXCR6 in angiogenesis. At both mRNA level and protein level, normal mammary epithelial cell line MCF-10A showed the weakest CXCR6 expression. The breast cancer cell lines expressed CXCR6 in different levels, the expression level of CXCR6 in highly invasive cell line MDA-MB-231 was significantly higher than that in two low-invasive cell lines SK-BR-3 and MCF-7 (P < 0.05). Silencing CXCR6 gene by Lentivirus-mediated RNA interference in MDA-MB-231 inhibited its proliferation ability, invasion ability and angiogenesis ability in vitro (P < 0.05). Different invasive breast cancer cell lines express CXCR6 at different levels, positively correlated with its invasive ability.
Cytogenetics of small cell carcinoma of the lung.
Wurster-Hill, D H; Cannizzaro, L A; Pettengill, O S; Sorenson, G D; Cate, C C; Maurer, L H
1984-12-01
Nineteen cell lines derived from various malignant tissues of 15 patients with small cell carcinoma of the lung (SCCL) have been studied. The results showed heterogeneity in all cell lines, with no one consistent abnormality among them. Cell lines from 11 of the patients had minute and double minute chromosomes, and cell lines from 2 patients had abnormally banding regions, designated as ABRs, as distinguished from homogeneously staining regions (HSRs). The latter 2 and several of the former cell lines were derived from specimens taken before the patients were placed on therapy. All but 2 of the cell lines had a constant marker load, consisting of 24%-35% of the complement. Some markers remained stable through months and years of culture life, while other markers came and went. Chromosomes #1, #6 and #11 were most frequently involved in marker formation in the cell lines, and these were compared to similar markers in direct bone marrow preparations. Chromosome #1 markers were of variable structure, whereas #6 and #11 most often took the form of 6q- and 11p+ markers, with breakpoints most frequently at 6q23-25 and 11p11-12. A 3p- marker was found in a minority of cell lines. All of these markers were also found in direct marrow preparations from some patients with SCCL. Nonmonoclonal tumors arose from inoculation of bimodal cell lines into nude mice, but population selection by undetermined mechanism was evident. Cytogenetic parameters showed no positive correlation with hormone production by these cell lines.
Zwollo, Patty; Ray, Jocelyn C; Sestito, Michael; Kiernan, Elizabeth; Wiens, Gregory D; Kaattari, Steve; StJacques, Brittany; Epp, Lidia
2015-01-01
Bacterial cold water disease (BCWD) is a chronic disease of rainbow trout, and is caused by the Gram-negative bacterium Flavobacterium psychrophilum (Fp), a common aquaculture pathogen. The National Center for Cool and Cold Water Aquaculture has bred two genetic lines of rainbow trout: a line of Fp-resistant trout (ARS-Fp-R or R-line trout) and a line of susceptible trout (ARS-Fp-S, or S-line). Little is known about how phenotypic selection alters immune response parameters or how such changes relate to genetic disease resistance. Herein, we quantify interindividual variation in the distribution and abundance of B cell populations (B cell signatures) and examine differences between genetic lines of naive animals. There are limited trout-specific cell surface markers currently available to resolve B cell subpopulations and thus we developed an alternative approach based on detection of differentially expressed transcription factors and intracellular cytokines. B cell signatures were compared between R-line and S-line trout by flow cytometry using antibodies against transcription factors early B cell factor-1 (EBF1) and paired domain box protein Pax5, the pro-inflammatory cytokine IL-1β, and the immunoglobulin heavy chain mu. R-line trout had higher percentages of EBF(+) B myeloid/ progenitor and pre-B cells in PBL, anterior and posterior kidney tissues compared to S-line trout. The opposite pattern was detected in more mature B cell populations: R-line trout had lower percentages of both IgM(+) mature B cells and IgM-secreting cells in anterior kidney and PBL compared to S-line trout. In vitro LPS-activation studies of PBL and spleen cell cultures revealed no significant induction differences between R-line and S-line trout. Together, our findings suggest that selective resistance to BCWD may be associated with shifts in naive animal developmental lineage commitment that result in decreased B lymphopoiesis and increased myelopoiesis in BCWD resistant trout relative to susceptible trout. Copyright © 2014 Elsevier Ltd. All rights reserved.
Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves.
Malek, Sri Nurestri Abdul; Shin, Sim Kae; Wahab, Norhanom Abdul; Yaacob, Hashim
2009-05-06
Dihydroactinidiolide (1) and a mixture of sterols [campesterol (2), stigmasterol (3) and beta-sitosterol (4)], together with the previously isolated individual compounds beta-sitosterol (4), 2,4-di-tert-butylphenol (5), alpha-tocopherol (6), phytol (7) were isolated from the active ethyl acetate fraction of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Cytotoxic activities of the above mentioned compounds against five human carcinoma cell lines, namely the human nasopharyngeal epidermoid carcinoma cell line (KB), human cervical carcinoma cell line (CasKi), human colon carcinoma cell line (HCT 116), human hormone-dependent breast carcinoma cell line (MCF7) and human lung carcinoma cell line (A549); and non-cancer human fibroblast cell line (MRC-5) were investigated. Compound 5 possessed very remarkable cytotoxic activity against KB cells, with an IC(50 )value of 0.81microg/mL. This is the first report on the cytotoxic activities of the compounds isolated from Pereskia bleo.
Liu, Yonghong; Liu, Yuanyuan; Wu, Jiaming; Roizman, Bernard; Zhou, Grace Guoying
2018-04-03
Analyses of the levels of mRNAs encoding IFIT1, IFI16, RIG-1, MDA5, CXCL10, LGP2, PUM1, LSD1, STING, and IFNβ in cell lines from which the gene encoding LGP2, LSD1, PML, HDAC4, IFI16, PUM1, STING, MDA5, IRF3, or HDAC 1 had been knocked out, as well as the ability of these cell lines to support the replication of HSV-1, revealed the following: ( i ) Cell lines lacking the gene encoding LGP2, PML, or HDAC4 (cluster 1) exhibited increased levels of expression of partially overlapping gene networks. Concurrently, these cell lines produced from 5 fold to 12 fold lower yields of HSV-1 than the parental cells. ( ii ) Cell lines lacking the genes encoding STING, LSD1, MDA5, IRF3, or HDAC 1 (cluster 2) exhibited decreased levels of mRNAs of partially overlapping gene networks. Concurrently, these cell lines produced virus yields that did not differ from those produced by the parental cell line. The genes up-regulated in cell lines forming cluster 1, overlapped in part with genes down-regulated in cluster 2. The key conclusions are that gene knockouts and subsequent selection for growth causes changes in expression of multiple genes, and hence the phenotype of the cell lines cannot be ascribed to a single gene; the patterns of gene expression may be shared by multiple knockouts; and the enhanced immunity to viral replication by cluster 1 knockout cell lines but not by cluster 2 cell lines suggests that in parental cells, the expression of innate resistance to infection is specifically repressed.
Comparative study of the photodynamic effect in tumor and nontumor animal cell lines
NASA Astrophysics Data System (ADS)
Stoykova, Elena V.; Alexandrova, R.; Shurulinkov, Stanislav; Sabotinov, O.; Minchev, Georgi
2004-09-01
In this study we evaluate the cytotoxicity of two photosensitisers with absorption peaks in the green and red part of the spectrum on animal cell lines. The cytotoxicity assessment was performed for a tumor cell line LSCC-SF-Mc29, obtained from a transplantable chicken hepatoma induced by the myelocytomatosis virus Mc29, a tumor line LSR-SF-SR, obtained from a transplantable sarcoma in rat induced by Rous sarcoma virus strain Schmidt-Ruppin and for normal mouse and bovine cell lines. Up to now the effect of the photodynamic therapy on virus-induced cancers has not been clarified. The cells were treated with 5,10,15,20 - tetra (4-sulfophenyl) porphyrin with main absorption peak at 519 nm and a dye activated with a red light. The cells were seeded in 96-well plates at 2 x 104 cells/well. The cells were exposed to irradiation from a pulsed CuBr vapor laser at 510.6 nm and 578.2 nm and exposure rate 50 mW/cm2, from an Ar-ion laser at 514 nm and 1 mW/cm2 and to 655 nm-irradiation from a semiconductor laser at 10 mW/cm2. The biological activity of the tested compounds was measured by the neutral red uptake cytotoxicity test. The light dose-response curves and light exposures that ensure 50% drop in the treated cells viability in comparison with the cells grown in non-modified medium were obtained for each cell line. The cytotoxic effect of both photosensitisers is most distinguished for the tumor line LSCC-SF-Mc29. The 2-4 times higher viability of the normal cell lines in comparison with the tumor lines is established. The bovine cell lines are more vulnerable than the mouse lines.
Hamid, Sharifah; Lim, Kue Peng; Zain, Rosnah Binti; Ismail, Siti Mazlipah; Lau, Shin Hin; Mustafa, Wan Mahadzir Wan; Abraham, M Thomas; Nam, Noor Akmar; Teo, Soo-Hwang; Cheong, Sok Ching
2007-03-01
We have established 3 cell lines ORL-48, -115 and -136 from surgically resected specimens obtained from untreated primary human oral squamous cell carcinomas of the oral cavity. The in vitro growth characteristics, epithelial origin, in vitro anchorage independency, human papilloma-virus (HPV) infection, microsatellite instability status, karyotype and the status of various cell cycle regulators and gatekeepers of these cell lines were investigated. All 3 cell lines grew as monolayers with doubling times ranging between 26.4 and 40.8 h and were immortal. Karyotyping confirmed that these cell lines were of human origin with multiple random losses and gains of entire chromosomes and regions of chromosomes. Immunohistochemistry staining of cytokeratins confirmed the epithelial origin of these cell lines, and the low degree of anchorage independency expressed by these cell lines suggests non-transformed phenotypes. Genetic analysis identified mutations in the p53 gene in all cell lines and hypermethylation of p16INK4a in ORL-48 and -136. Analysis of MDM2 and EGFR expression indicated MDM2 overexpression in ORL-48 and EGFR overexpression in ORL-136 in comparison to the protein levels in normal oral keratinocytes. Analysis of the BAT-26 polyadenine repeat sequence and MLH-1 and MSH-2 repair enzymes demonstrated that all 3 cell lines were microsatellite stable. The role of HPV in driving carcinogenesis in these tumours was negated by the absence of HPV. Finally, analysis of the tissues from which these cell lines were derived indicated that the cell lines were genetically representative of the tumours, and, therefore, are useful tools in the understanding of the molecular changes associated with oral cancers.
Bio-Physicochemical Interactions of Engineered Nanomaterials in In Vitro Cell Culture Model
2012-08-14
viz. human hepatocarcinoma cell line (Hep G2), human adinocarcinoma cell line (A549), human embryonic kidney cell line (HEK 293), human neuroblastoma...Glutamine, 1% Na-Pyruvate and 10 ml/L antibiotic solution at 37oC under a humidified atmosphere of 5% CO2/95% air. Human hepatocarcinoma cell line
9 CFR 113.52 - Requirements for cell lines used for production of biologics.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Requirements for cell lines used for... STANDARD REQUIREMENTS Ingredient Requirements § 113.52 Requirements for cell lines used for production of... cell line used to prepare a biological product shall be tested as prescribed in this section. A cell...
9 CFR 113.52 - Requirements for cell lines used for production of biologics.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Requirements for cell lines used for... STANDARD REQUIREMENTS Ingredient Requirements § 113.52 Requirements for cell lines used for production of... cell line used to prepare a biological product shall be tested as prescribed in this section. A cell...
9 CFR 113.52 - Requirements for cell lines used for production of biologics.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Requirements for cell lines used for... STANDARD REQUIREMENTS Ingredient Requirements § 113.52 Requirements for cell lines used for production of... cell line used to prepare a biological product shall be tested as prescribed in this section. A cell...
9 CFR 113.52 - Requirements for cell lines used for production of biologics.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Requirements for cell lines used for... STANDARD REQUIREMENTS Ingredient Requirements § 113.52 Requirements for cell lines used for production of... cell line used to prepare a biological product shall be tested as prescribed in this section. A cell...
9 CFR 113.52 - Requirements for cell lines used for production of biologics.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Requirements for cell lines used for... STANDARD REQUIREMENTS Ingredient Requirements § 113.52 Requirements for cell lines used for production of... cell line used to prepare a biological product shall be tested as prescribed in this section. A cell...
Goswami, M; Sharma, B S; Tripathi, A K; Yadav, Kamalendra; Bahuguna, S N; Nagpure, N S; Lakra, W S; Jena, J K
2012-05-25
Puntius (Tor) chelynoides, commonly known as dark mahseer, is a commercially important coldwater fish species which inhabits fast-flowing hill-streams of India and Nepal. Cell culture systems were developed from eye, fin, heart and swim bladder tissues of P. chelynoides using explant method. The cell culture system developed from eye has been maintained towards a continuous cell line designated as PCE. The cells were grown in 25cm(2) tissue culture flasks with Leibovitz' L-15 media supplemented with 20 % fetal bovine serum (FBS) at 24°C. The PCE cell line consists of predominantly fibroblast-like cells and showed high plating efficiency. The monolayer formed from the fin and heart explants were comprised of epithelial as well as fibroblast-like cells, a prominent and rhythmic heartbeat was also observed in heart explants. Monolayer formed from swim bladder explants showed the morphology of fibroblast-like cells. All the cells from different tissues are able to grow at an optimum temperature of 24°C and growth rate increased as the FBS concentration increased. The PCE cell line was characterized using amplification of mitochondrial cytochrome oxidase subunit I (COI) & 16S rRNA genes which confirmed that the cell line originated from P. chelynoides. Cytogenetic analysis of PCE cell line and cells from fin revealed a diploid count of 100 chromosomes. Upon transfection with pEGFP-C1 plasmid, bright fluorescent signals were observed, suggesting that this cell line can be used for transgenic and genetic manipulation studies. Further, genotoxicity assessment of PCE cells illustrated the utility of this cell line as an in vitro model for aquatic toxicological studies. The PCE cell line was successfully cryopreserved and revived at different passage levels. The cell line and culture systems are being maintained to develop continuous cell lines for further studies. Copyright © 2012 Elsevier B.V. All rights reserved.
Subclones in B-lymphoma cell lines: isogenic models for the study of gene regulation
Quentmeier, Hilmar; Pommerenke, Claudia; Ammerpohl, Ole; Geffers, Robert; Hauer, Vivien; MacLeod, Roderick AF; Nagel, Stefan; Romani, Julia; Rosati, Emanuela; Rosén, Anders; Uphoff, Cord C; Zaborski, Margarete; Drexler, Hans G
2016-01-01
Genetic heterogeneity though common in tumors has been rarely documented in cell lines. To examine how often B-lymphoma cell lines are comprised of subclones, we performed immunoglobulin (IG) heavy chain hypermutation analysis. Revealing that subclones are not rare in B-cell lymphoma cell lines, 6/49 IG hypermutated cell lines (12%) consisted of subclones with individual IG mutations. Subclones were also identified in 2/284 leukemia/lymphoma cell lines exhibiting bimodal CD marker expression. We successfully isolated 10 subclones from four cell lines (HG3, SU-DHL-5, TMD-8, U-2932). Whole exome sequencing was performed to molecularly characterize these subclones. We describe in detail the clonal structure of cell line HG3, derived from chronic lymphocytic leukemia. HG3 consists of three subclones each bearing clone-specific aberrations, gene expression and DNA methylation patterns. While donor patient leukemic cells were CD5+, two of three HG3 subclones had independently lost this marker. CD5 on HG3 cells was regulated by epigenetic/transcriptional mechanisms rather than by alternative splicing as reported hitherto. In conclusion, we show that the presence of subclones in cell lines carrying individual mutations and characterized by sets of differentially expressed genes is not uncommon. We show also that these subclones can be useful isogenic models for regulatory and functional studies. PMID:27566572
The Cellosaurus, a Cell-Line Knowledge Resource
Bairoch, Amos
2018-01-01
The Cellosaurus is a knowledge resource on cell lines. It aims to describe all cell lines used in biomedical research. Its scope encompasses both vertebrates and invertebrates. Currently, information for >100,000 cell lines is provided. For each cell line, it provides a wealth of information, cross-references, and literature citations. The Cellosaurus is available on the ExPASy server (https://web.expasy.org/cellosaurus/) and can be downloaded in a variety of formats. Among its many uses, the Cellosaurus is a key resource to help researchers identify potentially contaminated/misidentified cell lines, thus contributing to improving the quality of research in the life sciences. PMID:29805321
Expression and rearrangement of the ROS1 gene in human glioblastoma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birchmeier, C.; Sharma, S.; Wigler, M.
1987-12-01
The human ROS1 gene, which possibly encodes a growth factor receptor, was found to be expressed in human tumor cell lines. In a survey of 45 different human cell lines, the authors found ROS1 to be expressed in glioblastoma-derived cell lines at high levels and not to be expressed at all, or expressed at very low levels, in the remaining cell lines. The ROS1 gene was present in normal copy numbers in all cell lines that expressed the gene. However, in one particular glioblastoma line, they detected a potentially activating mutation at the ROS1 locus.
Hoshino, Keita; Isawa, Haruhiko; Kuwata, Ryusei; Tajima, Shigeru; Takasaki, Tomohiko; Iwabuchi, Kikuo; Sawabe, Kyoko; Kobayashi, Mutsuo; Sasaki, Toshinori
2015-08-01
Armigeres subalbatus (Coquillett) is a medically important mosquito and a model species for immunology research. We successfully established two cell lines from the neonate larvae of A. subalbatus using two different media. To our knowledge, this is the first report of an established Armigeres mosquito cell line. The cell lines, designated as Ar-3 and Ar-13, consist of adherent and diploid cells with compact colonies. Both these cell lines grow slowly after passage at a split ratio of 1:5 and a population doubling time of 2.7 and 3.0 d, respectively. Random amplified polymorphic DNA polymerase chain reaction (RAPD-PCR) was used to confirm that these lines correspond to the species of origin and are clearly distinct from seven other insect cell lines. Furthermore, reverse-transcription PCR was used to demonstrate that the Ar-3 cell line is susceptible to the Japanese encephalitis virus and two insect flaviviruses associated with Culex and Aedes mosquitoes but relatively insensitive to dengue virus. These data indicate that the newly established cell lines are cellular models of A. subalbatus as well as beneficial tools for the propagation of viruses associated with the Armigeres mosquito.
Deleterious CHEK2 1100delC and L303X mutants identified among 38 human breast cancer cell lines.
Wasielewski, Marijke; Hanifi-Moghaddam, Pejman; Hollestelle, Antoinette; Merajver, Sofia D; van den Ouweland, Ans; Klijn, Jan G M; Ethier, Stephen P; Schutte, Mieke
2009-01-01
The CHEK2 protein plays a major role in the regulation of DNA damage response pathways. Mutations in the CHEK2 gene, in particular 1100delC, have been associated with increased cancer risks, but the precise function of CHEK2 mutations in carcinogenesis is not known. Human cancer cell lines with CHEK2 mutations are therefore of main interest. Here, we have sequenced 38 breast cancer cell lines for mutations in the CHEK2 gene and identified two cell lines with deleterious CHEK2 mutations. Cell line UACC812 has a nonsense truncating mutation in the CHEK2 kinase domain (L303X) and cell line SUM102PT has the well-known oncogenic CHEK2 1100delC founder mutation. Immunohistochemical analysis revealed that the two CHEK2 mutant cell lines expressed neither CHEK2 nor P-Thr(68) CHEK2 proteins, implying abrogation of normal CHEK2 DNA repair functions. Cell lines UACC812 and SUM102PT thus are the first human CHEK2 null cell lines reported and should therefore be a major help in further unraveling the function of CHEK2 mutations in carcinogenesis.
1996-08-01
J-4030 TITLE: The In Vivo DNA Binding Properties of Wild-Type and Mutant p53 Proteins in Mammary Cell Lines During the Course of Cell Cycle PRINCIPAL...The In Vivo DNA Binding Properties of 5. FUNDING NUMBERS Wild-Type and Mutant p53 Proteins in Mammary Cell Lines DAMD17-94-J-4030 During the Course of...ABSTRACT (Maximum 200 Using a pair of murine cell lines, one lacking p53 and a derivative cell line containing temperature sensitive p53 val 135
Ando, Shotaro; Kawada, Jun-Ichi; Watanabe, Takahiro; Suzuki, Michio; Sato, Yoshitaka; Torii, Yuka; Asai, Masato; Goshima, Fumi; Murata, Takayuki; Shimizu, Norio; Ito, Yoshinori; Kimura, Hiroshi
2016-11-22
Epstein-Barr virus (EBV) infects not only B cells, but also T cells and natural killer (NK) cells, and is associated with T or NK cell lymphoma. These lymphoid malignancies are refractory to conventional chemotherapy. We examined the activation of the JAK3/STAT5 pathway in EBV-positive and -negative B, T and NK cell lines and in cell samples from patients with EBV-associated T cell lymphoma. We then evaluated the antitumor effects of the selective JAK3 inhibitor, tofacitinib, against these cell lines in vitro and in a murine xenograft model. We found that all EBV-positive T and NK cell lines and patient samples tested displayed activation of the JAK3/STAT5 pathway. Treatment of these cell lines with tofacitinib reduced the levels of phospho-STAT5, suppressed proliferation, induced G1 cell-cycle arrest and decreased EBV LMP1 and EBNA1 expression. An EBV-negative NK cell line was also sensitive to tofacitinib, whereas an EBV-infected NK cell line was more sensitive to tofacitinib than its parental line. Tofacitinib significantly inhibited the growth of established tumors in NOG mice. These findings suggest that tofacitinib may represent a useful therapeutic agent for patients with EBV-associated T and NK cell lymphoma.
HuH-7 reference genome profile: complex karyotype composed of massive loss of heterozygosity.
Kasai, Fumio; Hirayama, Noriko; Ozawa, Midori; Satoh, Motonobu; Kohara, Arihiro
2018-05-17
Human cell lines represent a valuable resource as in vitro experimental models. A hepatoma cell line, HuH-7 (JCRB0403), has been used extensively in various research fields and a number of studies using this line have been published continuously since it was established in 1982. However, an accurate genome profile, which can be served as a reliable reference, has not been available. In this study, we performed M-FISH, SNP microarray and amplicon sequencing to characterize the cell line. Single cell analysis of metaphases revealed a high level of heterogeneity with a mode of 60 chromosomes. Cytogenetic results demonstrated chromosome abnormalities involving every chromosome in addition to a massive loss of heterozygosity, which accounts for 55.3% of the genome, consistent with the homozygous variants seen in the sequence analysis. We provide empirical data that the HuH-7 cell line is composed of highly heterogeneous cell populations, suggesting that besides cell line authentication, the quality of cell lines needs to be taken into consideration in the future use of tumor cell lines.
Hollingsworth, M A; Strawhecker, J M; Caffrey, T C; Mack, D R
1994-04-15
We examined the steady-state expression levels of mRNA for the MUC1, MUC2, MUC3 and MUC4 gene products in 12 pancreatic tumor cell lines, 6 colon tumor cell lines, and one ileocecal tumor cell line. The results showed that 10 of 12 pancreatic tumor cell lines expressed MUC1 mRNA and that 7 of these 12 lines also expressed relatively high levels of MUC4 mRNA. In contrast, MUC2 mRNA was expressed at only low levels and MUC3 was not detected in the pancreatic tumor cell lines. All 7 intestinal tumor cell lines examined expressed MUC2, and 5 of 7 expressed MUC3; however only one expressed significant levels of MUC1 and 2 expressed low levels of MUC4 mRNA. This report of high levels of MUC4 mRNA expression by pancreatic tumor cells raises the possibility that mucin carbohydrate epitopes defined by antibodies such as DuPan 2 may be expressed on a second mucin core protein produced by pancreatic tumor cells.
Reeve, J. G.; Xiong, J.; Morgan, J.; Bleehen, N. M.
1996-01-01
As a first step towards elucidating the potential role(s) of bcl-2 and bcl-2-related genes in lung tumorigenesis and therapeutic responsiveness, the expression of these genes has been examined in a panel of lung cancer cell lines derived from untreated and treated patients, and in cell lines selected in vitro for multidrug resistance. Bcl-2 was hyperexpressed in 15 of 16 small-cell lung cancer (SCLC) cell lines and two of five non-small-cell lung cancer (NSCLC) lines compared with normal lung and brain, and hyperexpression was not chemotherapy related. Bcl-x was hyperexpressed in the majority of SCLC and NSCLC cell lines as compared with normal tissues, and all lung tumour lines preferentially expressed bcl-x1-mRNA, the splice variant form that inhibits apoptosis. Bax gene transcripts were hyperexpressed in most SCLC and NSCLC cell lines examined compared with normal adult tissues. Mutant p53 gene expression was detected in the majority of the cell lines and no relationship between p53 gene expression and the expression of either bcl-2, bcl-x or bax was observed. No changes in bcl-2, bcl-x and bax gene expression were observed in multidrug-resistant cell lines compared with their drug-sensitive counterparts. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 PMID:8630278
Zheng, Yuan; Wang, Na; Xie, Ming-Shu; Sha, Zhen-Xia; Chen, Song-Lin
2012-12-01
A new cell line (TSHKC) derived from half-smooth tongue sole (Cynoglossus semilaevis) head kidney was developed. The cell line was subcultured for 40 passages over a period of 360 days. The cell line was optimally maintained in minimum essential medium supplemented with HEPES, antibiotics, fetal bovine serum, 2-Mercaptoethanol (2-Me), sodium pyruvate and basic fibroblast growth factor. The suitable growth temperature for TSHKC cells was 24 °C, and microscopically, TSHKC cells were composed of fibroblast-like cells. Chromosome analysis revealed that the TSHKC cell line had a normal diploid karyotype with 2n = 42, contained the heterogametic W chromosome. The TSHKC cell line was found to be susceptible to lymphocystis disease virus. The fluorescent signals were observed in TSHKC when the cells were transfected with green fluorescent protein and red fluorescent protein reporter plasmids.
Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment.
Eguchi, Takanori; Sogawa, Chiharu; Okusha, Yuka; Uchibe, Kenta; Iinuma, Ryosuke; Ono, Kisho; Nakano, Keisuke; Murakami, Jun; Itoh, Manabu; Arai, Kazuya; Fujiwara, Toshifumi; Namba, Yuri; Murata, Yoshiki; Ohyama, Kazumi; Shimomura, Manami; Okamura, Hirohiko; Takigawa, Masaharu; Nakatsura, Tetsuya; Kozaki, Ken-Ichi; Okamoto, Kuniaki; Calderwood, Stuart K
2018-01-01
Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression.
Organoids with cancer stem cell-like properties secrete exosomes and HSP90 in a 3D nanoenvironment
Okusha, Yuka; Uchibe, Kenta; Iinuma, Ryosuke; Ono, Kisho; Nakano, Keisuke; Murakami, Jun; Itoh, Manabu; Arai, Kazuya; Fujiwara, Toshifumi; Namba, Yuri; Murata, Yoshiki; Ohyama, Kazumi; Shimomura, Manami; Okamura, Hirohiko; Takigawa, Masaharu; Nakatsura, Tetsuya; Kozaki, Ken-ichi; Okamoto, Kuniaki; Calderwood, Stuart K.
2018-01-01
Ability to form cellular aggregations such as tumorspheres and spheroids have been used as a morphological marker of malignant cancer cells and in particular cancer stem cells (CSC). However, the common definition of the types of cellular aggregation formed by cancer cells has not been available. We examined morphologies of 67 cell lines cultured on three dimensional morphology enhancing NanoCulture Plates (NCP) and classified the types of cellular aggregates that form. Among the 67 cell lines, 49 cell lines formed spheres or spheroids, 8 cell lines formed grape-like aggregation (GLA), 8 cell lines formed other types of aggregation, and 3 cell lines formed monolayer sheets. Seven GLA-forming cell lines were derived from adenocarcinoma among the 8 lines. A neuroendocrine adenocarcinoma cell line PC-3 formed asymmetric GLA with ductal structures on the NCPs and rapidly growing asymmetric tumors that metastasized to lymph nodes in immunocompromised mice. In contrast, another adenocarcinoma cell line DU-145 formed spheroids in vitro and spheroid-like tumors in vivo that did not metastasize to lymph nodes until day 50 after transplantation. Culture in the 3D nanoenvironment and in a defined stem cell medium enabled the neuroendocrine adenocarcinoma cells to form slowly growing large organoids that expressed multiple stem cell markers, neuroendocrine markers, intercellular adhesion molecules, and oncogenes in vitro. In contrast, the more commonly used 2D serum-contained environment reduced intercellular adhesion and induced mesenchymal transition and promoted rapid growth of the cells. In addition, the 3D stemness nanoenvironment promoted secretion of HSP90 and EpCAM-exosomes, a marker of CSC phenotype, from the neuroendocrine organoids. These findings indicate that the NCP-based 3D environment enables cells to form stem cell tumoroids with multipotency and model more accurately the in vivo tumor status at the levels of morphology and gene expression. PMID:29415026
NASA Astrophysics Data System (ADS)
Armitage, Mark
Ionizing radiation can have several different effects on cells, some are almost instantaneous such as the generation of DNA damage, other cellular responses take a matter of minutes or hours - DNA repair protein induction/activation, and others may take months or even years to be manifested - carcinogenesis. Human epithelial cell lines derived from both normal, non-neoplastic tissues and from a malignant source were cultured in order to examine several effects of ionizing radiation on such cell types. Cells not from a malignant source were previously immortalized by viral infection or by transfection with viral sequences. Simian virus 40 immortalised uroepithelial cells (SV-HUC) were found to be approximately a factor of two fold more radioresistant than cells of malignant origin (T24) in terms of unrepaired clastogenic damage i.e. assessment of micronuclei levels following irradiation. SV-HUC lines unlike T24 cells are non-tumourigenic when inoculated into nude athymic mice. SV-HUC lines proved very resistant to full oncogenic transformation using radiation and chemical carcinogens. However, morphological alterations and decreased anchorage dependant growth was observed in post carcinogen treated cells after appropriate cell culture conditions were utilized. The progression from this phenotype to a fully tumourigenic one was not recorded in this study. The ability of ionizing radiation to induce increased levels of the nuclear phosphoprotein p53 was also assessed using several different cell lines. SV- HUC and T24 cell lines failed to exhibit any increased p53 stabilization following irradiation. One cell line, a human papilloma virus transformed line (HPV) did show an approximate two fold increase of the wild type p53 protein after treatment with radiation. Only the cell line HPV showed any cell cycle delay, resulting in accumulation of cells in the G2/M compartment in post irradiation cell cycle analysis. The status of p53 was also assessed i.e. wild type or mutant conformation in all the above cells lines and two other control lines HOS (a human osteosarcoma cell line) and H Tori-3 (SV40 immortalised thyroid epithelial cells).
Genetic heterogeneity of RPMI-8402, a T-acute lymphoblastic leukemia cell line
STOCZYNSKA-FIDELUS, EWELINA; PIASKOWSKI, SYLWESTER; PAWLOWSKA, ROZA; SZYBKA, MALGORZATA; PECIAK, JOANNA; HULAS-BIGOSZEWSKA, KRYSTYNA; WINIECKA-KLIMEK, MARTA; RIESKE, PIOTR
2016-01-01
Thorough examination of genetic heterogeneity of cell lines is uncommon. In order to address this issue, the present study analyzed the genetic heterogeneity of RPMI-8402, a T-acute lymphoblastic leukemia (T-ALL) cell line. For this purpose, traditional techniques such as fluorescence in situ hybridization and immunocytochemistry were used, in addition to more advanced techniques, including cell sorting, Sanger sequencing and massive parallel sequencing. The results indicated that the RPMI-8402 cell line consists of several genetically different cell subpopulations. Furthermore, massive parallel sequencing of RPMI-8402 provided insight into the evolution of T-ALL carcinogenesis, since this cell line exhibited the genetic heterogeneity typical of T-ALL. Therefore, the use of cell lines for drug testing in future studies may aid the progress of anticancer drug research. PMID:26870252
Velleman, Sandra G; Clark, Daniel L; Tonniges, Jeffrey R
2018-09-01
Posthatch skeletal muscle growth requires myogenic satellite cells and the dynamic expression of cell membrane-associated proteins. The membrane associated heparan sulfate proteoglycans, syndecan-4 and glypican-1, link the satellite cell niche to the intracellular environment. Sydnecan-4 and glypican-1 are differentially expressed with age in turkey satellite cells and their over-expression impacts both satellite cell proliferation and differentiation, but their effect on satellite cells from lines with different growth potentials is not known. The objective of the current study was to determine if syndecan-4 and glypican-1 regulation of satellite cell proliferation and differentiation is affected by age and growth selection. Pectoralis major satellite cells isolated at 1 d, 7 and 16-wk of age from a Randombred Control 2 (RBC2) line and a 16-wk body weight (F) line selected from the RBC2 line turkeys were studied. Syndecan-4 and glypican-1 expression was knocked down in both lines. The F-line cells proliferated faster than RBC2 line cells regardless of age, while differentiation tended to be greater in RBC2 line cells than F-line cells at each age. Syndecan-4 knockdown decreased proliferation at 7- and 16-wk but not 1 d cells, and increased differentiation at 1 d and 7 wk but not 16 wk cells. Glypican-1 knockdown differentially affected proliferation depending on cell age, whereas differentiation was decreased for 7- and 16-wk but not 1 d cells. These data suggest syndecan-4 and glypican-1 differentially affected satellite cell function in an age-dependent manner, but had little impact on differences in proliferation and differentiation due to growth selection. Copyright © 2018. Published by Elsevier Inc.
BINDING OF SOLUBLE IMMUNE COMPLEXES TO HUMAN LYMPHOBLASTOID CELLS
Theofilopoulos, Argyrios N.; Dixon, Frank J.; Bokisch, Viktor A.
1974-01-01
In the present work we studied the expression of membrane-bound Ig (MBIg) as well as receptors for IgG Fc and complement on nine human lymphoblastoid cell lines. When MBIg and receptors for IgG Fc were compared, four categories of cell lines could be distinguished: (a) cell lines having both MBIg and receptors for IgG Fc, (b) cell lines having MBIg but lacking receptors for IgG Fc, (c) cell lines lacking MBIg but having receptors for IgG Fc, and (d) cell lines lacking both MBIg and receptors for IgG Fc. Two types of receptors for complement could be detected on the cell lines studied, one for C3-C3b and one for C3d. When sensitized red cells carrying C3b or C3d were used for rosette tests, three categories of cell lines could be distinguished: (a) cell lines having receptors for C3b and C3d, (b) cell lines having receptors only for C3d and (c) cell lines lacking both receptors. However, when a more sensitive immunofluorescent method was used instead of the rosette technique, it was found that cell lines unable to form rosettes with EAC1423bhu were able to bind soluble C3 or C3b which indicated the presence of these receptors on the cell surface. Inhibition experiments showed that receptors for C3-C3b and receptors for C3d are distinct and that receptors for C3-C3b and C3d are different from receptors for IgG Fc. A cell line (Raji) without MBIg but with receptors for IgG Fc, C3-C3b, and C3d was selected for use in studying the binding mechanism of soluble immune complexes to cell surface membrane. Aggregated human gamma globulin was used in place of immune complexes. Immune complexes containing complement bind to Raji cells only via receptors for complement, namely receptors for C3-C3b and C3d. Binding of immune complexes containing complement to cells is much greater than that of complexes without complement. Immune complexes bound to cells via receptors for complement can be partially released from the cell surface by addition of normal human serum as well as isolated human C3 or C3b. We postulate that such release is due to competition of immune complex bound C3b and free C3 or C3b for the receptors on Raji cells. PMID:4139225
History of leukemia-lymphoma cell lines.
Drexler, Hans G; Macleod, Roderick A F
2010-08-01
We outline the near 50-year history of leukemia-lymphoma (LL) cell lines - a key model system in biomedicine. Due to the detailed documentation of their oncogenomic and transcriptional alterations via recent advances in molecular medicine, LL cell lines may be fitted to parent tumors with a degree of precision unattainable in other cancers. We have surveyed the corpus of published LL cell lines and found 637 examples that meet minimum standards of authentication and characterization. Alarmingly, the rate of establishment of new LL cell lines has plummeted over the last decade. Although the main hematopoietic developmental cell types are represented by cell lines, some LL categories stubbornly resist establishment in vitro. The advent of engineering techniques for immortalizing primary human cells that maintain differentiation means the time is ripe for renewed search for in vitro models from un(der)represented hematologic entities. Given their manifold applications in biomedicine, there is little doubt that LL-derived cell lines will continue to play a vital part well into the next half-century as well. © 2010 The Authors. Human Cell © 2010 Japan Human Cell Society.
Molecular characterization of immortalized normal and dysplastic oral cell lines.
Dickman, Christopher T D; Towle, Rebecca; Saini, Rajan; Garnis, Cathie
2015-05-01
Cell lines have been developed for modeling cancer and cancer progression. The molecular background of these cell lines is often unknown to those using them to model disease behaviors. As molecular alterations are the ultimate drivers of cell phenotypes, having an understanding of the molecular make-up of these systems is critical for understanding the disease biology modeled. Six immortalized normal, one immortalized dysplasia, one self-immortalized dysplasia, and two primary normal cell lines derived from oral tissues were analyzed for DNA copy number changes and changes in both mRNA and miRNA expression using SMRT-v.2 genome-wide tiling comparative genomic hybridization arrays, Agilent Whole Genome 4x44k expression arrays, and Exiqon V2.M-RT-PCR microRNA Human panels. DNA copy number alterations were detected in both normal and dysplastic immortalized cell lines-as well as in the single non-immortalized dysplastic cell line. These lines were found to have changes in expression of genes related to cell cycle control as well as alterations in miRNAs that are deregulated in clinical oral squamous cell carcinoma tissues. Immortal lines-whether normal or dysplastic-had increased disruption in expression relative to primary lines. All data are available as a public resource. Molecular profiling experiments have identified DNA, mRNA, and miRNA alterations for a panel of normal and dysplastic oral tissue cell lines. These data are a valuable resource to those modeling diseases of the oral mucosa, and give insight into the selection of model cell lines and the interpretation of data from those lines. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Gupta, Sudheer; Chaudhary, Kumardeep; Kumar, Rahul; Gautam, Ankur; Nanda, Jagpreet Singh; Dhanda, Sandeep Kumar; Brahmachari, Samir Kumar; Raghava, Gajendra P. S.
2016-01-01
In this study, we investigated drug profile of 24 anticancer drugs tested against a large number of cell lines in order to understand the relation between drug resistance and altered genomic features of a cancer cell line. We detected frequent mutations, high expression and high copy number variations of certain genes in both drug resistant cell lines and sensitive cell lines. It was observed that a few drugs, like Panobinostat, are effective against almost all types of cell lines, whereas certain drugs are effective against only a limited type of cell lines. Tissue-specific preference of drugs was also seen where a drug is more effective against cell lines belonging to a specific tissue. Genomic features based models have been developed for each anticancer drug and achieved average correlation between predicted and actual growth inhibition of cell lines in the range of 0.43 to 0.78. We hope, our study will throw light in the field of personalized medicine, particularly in designing patient-specific anticancer drugs. In order to serve the scientific community, a webserver, CancerDP, has been developed for predicting priority/potency of an anticancer drug against a cancer cell line using its genomic features (http://crdd.osdd.net/raghava/cancerdp/). PMID:27030518
Fan, F; Bellister, S; Lu, J; Ye, X; Boulbes, D R; Tozzi, F; Sceusi, E; Kopetz, S; Tian, F; Xia, L; Zhou, Y; Bhattacharya, R; Ellis, L M
2015-02-03
Isolation of colorectal cancer (CRC) cell populations enriched for cancer stem cells (CSCs) may facilitate target identification. There is no consensus regarding the best methods for isolating CRC stem cells (CRC-SCs). We determined the suitability of various cellular models and various stem cell markers for the isolation of CRC-SCs. Established human CRC cell lines, established CRC cell lines passaged through mice, patient-derived xenograft (PDX)-derived cells, early passage/newly established cell lines, and cells directly from clinical specimens were studied. Cells were FAC-sorted for the CRC-SC markers CD44, CD133, and aldehyde dehydrogenase (ALDH). Sphere formation and in vivo tumorigenicity studies were used to validate CRC-SC enrichment. None of the markers studied in established cell lines, grown either in vitro or in vivo, consistently enriched for CRC-SCs. In the three other cellular models, CD44 and CD133 did not reliably enrich for stemness. In contrast, freshly isolated PDX-derived cells or early passage/newly established CRC cell lines with high ALDH activity formed spheres in vitro and enhanced tumorigenicity in vivo, whereas cells with low ALDH activity did not. PDX-derived cells, early passages/newly established CRC cell lines and cells from clinical specimen with high ALDH activity can be used to identify CRC-SC-enriched populations. Established CRC cell lines should not be used to isolate CSCs.
Ding, Kuan-Fu; Petricoin, Emanuel F; Finlay, Darren; Yin, Hongwei; Hendricks, William P D; Sereduk, Chris; Kiefer, Jeffrey; Sekulic, Aleksandar; LoRusso, Patricia M; Vuori, Kristiina; Trent, Jeffrey M; Schork, Nicholas J
2018-01-12
Cancer cell lines are often used in high throughput drug screens (HTS) to explore the relationship between cell line characteristics and responsiveness to different therapies. Many current analysis methods infer relationships by focusing on one aspect of cell line drug-specific dose-response curves (DRCs), the concentration causing 50% inhibition of a phenotypic endpoint (IC 50 ). Such methods may overlook DRC features and do not simultaneously leverage information about drug response patterns across cell lines, potentially increasing false positive and negative rates in drug response associations. We consider the application of two methods, each rooted in nonlinear mixed effects (NLME) models, that test the relationship relationships between estimated cell line DRCs and factors that might mitigate response. Both methods leverage estimation and testing techniques that consider the simultaneous analysis of different cell lines to draw inferences about any one cell line. One of the methods is designed to provide an omnibus test of the differences between cell line DRCs that is not focused on any one aspect of the DRC (such as the IC 50 value). We simulated different settings and compared the different methods on the simulated data. We also compared the proposed methods against traditional IC 50 -based methods using 40 melanoma cell lines whose transcriptomes, proteomes, and, importantly, BRAF and related mutation profiles were available. Ultimately, we find that the NLME-based methods are more robust, powerful and, for the omnibus test, more flexible, than traditional methods. Their application to the melanoma cell lines reveals insights into factors that may be clinically useful.
SW044248, identified through a screen for chemicals that are selectively toxic for NSCLC cell lines, was found to rapidly inhibit macromolecular synthesis in sensitive, but not in insensitive cells. SW044248 killed approximately 15% of a panel of 74 NSCLC cell lines and was non-toxic to immortalized human bronchial cell lines.
He, Shan; Li, Yangyang; Chen, Yang; Zhu, Yue; Zhang, Xinyu; Xia, Xiaoli; Sun, Huaichang
2016-08-01
Pigs are the most economically important livestock, but pig cell lines useful for physiological studies and/or vaccine development are limited. Although several pig cell lines have been generated by oncogene transformation or human telomerase reverse transcriptase (TERT) immortalization, these cell lines contain viral sequences and/or antibiotic resistance genes. In this study, we established a new method for generating pig cell lines using the Sleeping Beauty (SB) transposon-mediated ectopic expression of porcine telomerase reverse transcriptase (pTERT). The performance of the new method was confirmed by generating a pig fibroblast cell (PFC) line. After transfection of primary PFCs with the SB transposon system, one cell clone containing the pTERT expression cassette was selected by dilution cloning and passed for different generations. After passage for more than 40 generations, the cell line retained stable expression of ectopic pTERT and continuous growth potential. Further characterization showed that the cell line kept the fibroblast morphology, growth curve, population doubling time, cloning efficiency, marker gene expression pattern, cell cycle distribution and anchorage-dependent growth property of the primary cells. These data suggest that the new method established is useful for generating pig cell lines without viral sequence and antibiotic resistant gene.
Establishment and characterization of five immortalized human scalp dermal papilla cell lines.
Kwack, Mi Hee; Yang, Jung Min; Won, Gong Hee; Kim, Moon Kyu; Kim, Jung Chul; Sung, Young Kwan
2018-02-05
Dermal papilla (DP) regulates the growth and cycling of hair follicles. Cultured DP cells are useful for the study of their role in relation to hair growth and regeneration. However, cultivation of human DP cells is tedious and difficult. In addition, cultured DP cells possess a relatively short replicative life span, requiring immortalized human DP cell lines. We previously established an immortalized human DP cell line, SV40T-hTERT-DPC, by introducing human telomerase reverse transcriptase (hTERT) gene into the transformed cell line, SV40T-DPC. In this study, we co-transfected the simian virus 40 large T antigen (SV40T-Ag) and hTERT into DP cells from scalp hair follicles from a male with androgenetic alopecia and established five immortalized DP cell lines and named KNU-101, KNU-102, KNU-103, KNU-201 and KNU-202. We then evaluated tumorigenicity, expression of DP markers, responses to androgen, Wnt3a and BMP4, and expression of DP signature genes. These cell lines displayed early passage morphology and maintained responses to androgen, Wnt and BMP. Furthermore, these cell lines expressed DP markers and DP signature genes. KNU cell lines established in this study are potentially useful sources for hair research. Copyright © 2018 Elsevier Inc. All rights reserved.
76 FR 42678 - Submission for OMB Review; Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-19
... collection). Burden Hours: 250. Number of Respondents: 100 (15 cell line limit). Average Hours per Response: 2 hours and 30 minutes (10 minutes/cell line x 15 cell lines). Needs and Uses: The NIST Biochemical...: National Institute of Standards and Technology (NIST) Title: Identification of Human Cell Lines Project...
Arul, Melanie; Roslani, April Camilla; Cheah, Swee Hung
2017-05-01
Tumor heterogeneity may give rise to differential responses to chemotherapy drugs. Therefore, unraveling tumor heterogeneity has an implication for biomarker discovery and cancer therapeutics. To test this phenomenon, we investigated the differential responses of three secondary colorectal cancer cell lines of different origins (HCT116, HT29, and SW620 cells) and four novel primary cell lines obtained from different colorectal cancer patients to 5-fluorouracil (5-FU) and oxaliplatin (L-OHP) and explored the differences in gene expression among the primary cell lines in response to exposure to cytotoxic drugs. Cells were exposed to different doses of 5-FU and L-OHP separately or in combinations of equitoxic drug or equimolar drug ratios (median effect of Chou-Talalay principle). Cell viability was assessed using MTT assay and the respective IC 50 values were determined. Changes in gene expression in primary cell lines after exposure to the same drug doses were compared using real-time PCR array. The sensitivities (IC 50 ) of different cell lines, both secondary and primary, to 5-FU and L-OHP were significantly different, whether in monotherapy or combined treatment. Primary cell lines needed higher doses to reach IC 50 . There were variations in gene expression among the primary cell lines of different chemosensitivities to the challenge of the same combined dose of 5-FU and L-OHP. The results confirm the heterogeneous nature of colorectal cancer cells from different patient tumors. Studies using primary cancer cells established from patient's tumors rather than secondary cell lines will more closely reflect the actual character of the disease.
Korch, Christopher; Spillman, Monique A; Jackson, Twila A; Jacobsen, Britta M; Murphy, Susan K; Lessey, Bruce A; Jordan, V Craig; Bradford, Andrew P
2012-10-01
Cell lines derived from human ovarian and endometrial cancers, and their immortalized non-malignant counterparts, are critical tools to investigate and characterize molecular mechanisms underlying gynecologic tumorigenesis, and facilitate development of novel therapeutics. To determine the extent of misidentification, contamination and redundancy, with evident consequences for the validity of research based upon these models, we undertook a systematic analysis and cataloging of endometrial and ovarian cell lines. Profiling of cell lines by analysis of DNA microsatellite short tandem repeats (STR), p53 nucleotide polymorphisms and microsatellite instability was performed. Fifty-one ovarian cancer lines were profiled with ten found to be redundant and five (A2008, OV2008, C13, SK-OV-4 and SK-OV-6) identified as cervical cancer cells. Ten endometrial cell lines were analyzed, with RL-92, HEC-1A, HEC-1B, HEC-50, KLE, and AN3CA all exhibiting unique, uncontaminated STR profiles. Multiple variants of Ishikawa and ECC-1 endometrial cancer cell lines were genotyped and analyzed by sequencing of mutations in the p53 gene. The profile of ECC-1 cells did not match the EnCa-101 tumor, from which it was reportedly derived, and all ECC-1 isolates were genotyped as Ishikawa cells, MCF-7 breast cancer cells, or a combination thereof. Two normal, immortalized endometrial epithelial cell lines, HES cells and the hTERT-EEC line, were identified as HeLa cervical carcinoma and MCF-7 breast cancer cells, respectively. Results demonstrate significant misidentification, duplication, and loss of integrity of endometrial and ovarian cancer cell lines. Authentication by STR DNA profiling is a simple and economical method to verify and validate studies undertaken with these models. Copyright © 2012 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Netchareonsirisuk, Ponsawan; Puthong, Songchan; Dubas, Stephan; Palaga, Tanapat; Komolpis, Kittinan
2016-11-01
Silver nanoparticles (AgNPs) are among the most widely used nanomaterials in medical and consumer products. However, safety in the uses of AgNPs is still controversial. The toxicity of AgNPs toward various cell types has been reported to depend on the surface properties of the nanoparticles. In this study, the effect of AgNPs with the average size of 5-15 nm on the viability of the CCD-986SK human normal skin fibroblast cell line and A375 human malignant melanoma cell line was evaluated. Comparative toxicity studies, based on MTT assay, were performed by using either sodium alginate or poly (4-styrenesulfonic acid-co-maleic acid) sodium salt (PSSMA) as capping agent in the nanoparticle preparation. The cytotoxicity tests revealed that AgNO3 alone was highly toxic to both cell types while both alginate and PSSMA alone were not toxic. AgNPs capped with alginate were selectively toxic to the cancer cell line but not to the normal cell line while AgNPs capped with PSSMA were toxic to both cancer and normal cell lines. Judging from the 50 % inhibition concentration (IC50), it was found that the cancer cell line was more sensitive to AgNPs than the normal cell line. Study on the mode of cell death by annexin V and propidium iodide staining revealed that AgNPs induced more apoptotic cell death (84-90 %) than necrosis (8-12 %) in the skin cancer cell line. These results suggest that the toxicity of AgNPs depended on the type of capping agent and the type of cell line.
Hematopoietic Cancer Cell Lines Can Support Replication of Sabin Poliovirus Type 1
van Eikenhorst, Gerco; de Gruijl, Tanja D.; van der Pol, Leo A.; Bakker, Wilfried A. M.
2015-01-01
Viral vaccines can be produced in adherent or in suspension cells. The objective of this work was to screen human suspension cell lines for the capacity to support viral replication. As the first step, it was investigated whether poliovirus can replicate in such cell lines. Sabin poliovirus type 1 was serially passaged on five human cell lines, HL60, K562, KG1, THP-1, and U937. Sabin type 1 was capable of efficiently replicating in three cell lines (K562, KG1, and U937), yielding high viral titers after replication. Expression of CD155, the poliovirus receptor, did not explain susceptibility to replication, since all cell lines expressed CD155. Furthermore, we showed that passaged virus replicated more efficiently than parental virus in KG1 cells, yielding higher virus titers in the supernatant early after infection. Infection of cell lines at an MOI of 0.01 resulted in high viral titers in the supernatant at day 4. Infection of K562 with passaged Sabin type 1 in a bioreactor system yielded high viral titers in the supernatant. Altogether, these data suggest that K562, KG1, and U937 cell lines are useful for propagation of poliovirus. PMID:25815312
Cho, Hang Joo; Kim, Sin Young; Kim, Kee Hwan; Kang, Won Kyung; Kim, Ji Il; Oh, Seong Tack; Kim, Jeong Soo; An, Chang Hyeok
2009-05-21
The overall level of chromatin compaction is an important mechanism of radiosensitivity, and modification of DNA methylation and histone deacetylation may increase radiosensitivity by altering chromatin compaction. In this study, we investigated the effect of a demethylating agent, a histone deacetylase(HDAC) inhibitor, and the two agents combined on radiosensitivity in human colon and breast cancer cell lines. In this study, we used RKO colorectal cancer cell line and MCF-7 breast cancer cell lines and normal colon cell lines. On each of the cell lines, we used three different agents: the HDAC inhibitor sodium butyrate(SB), the demethylating agent 5-Aza-2'-deoxycytidine(5-aza-DC), and radiation. We then estimated the percentage of the cell survival using the XTT method and experimented to determine if there was an augmentation in the therapeutic effect by using different combinations of the two or three of the treatment methods. After treatment of each cell lines with 5-aza-DC, SB and 6 grays of radiation, we observed that the survival fraction was lower after the treatment with 5-aza-DC or SB than with radiation alone in RKO and MCF-7 cell lines(p < 0.001). The survival fraction was lowest when the two agents, 5-aza-DC and SB were combined with radiation in both RKO and MCF-cell lines. In conclusion, 5-aza-DC and SB can enhance radiosensitivity in both MCF-7 and RKO cell lines. The combination effect of a demethylating agent and an HDAC inhibitor is more effective than that of single agent treatment in both breast and colon cancer cell lines.
[The characters and specific features of new human embryonic stem cells lines].
Krylova, T A; Kol'tsova, A M; Zenin, V V; Gordeeva, O F; Musorina, A S; Goriachaia, T S; Shlykova, S A; Kamenetskaia, Iu K; Pinaev, G P; Polianskaia, G G
2009-01-01
Four continuous human embryonic stem cell lines (SC1, SC2, SC3 and SC4), derived from the blastocysts has been described. The cell lines were cultivated on mitotically inactivated human feeder cells. The cell lines SC1 and SC2 have passed through 150 population doublings and the cell lines SC3 and SC4 -- near 120 populations doublings, which exceeds Hayflick limit sufficiently. These cell lines maintain high activity of alkaline phosphatase, expression of transcription factor OCT-4 and cell surface antigens (SSEA-4, TRA-1-60 and TRA-1-81), confirming their ESC status and human specificity. Immunofluorescent detection of antigens, characteristic of ectoderm, endoderm and mesoderm confirms the ability of these cells to retain their pluripotency under in vitro condition. PCR analysis revealed expression of six genes specific for pluripotent cells (OCT-4, NANOG, DPPA3/STELLA, TDGF/CRIPTO and LEFTYA). Correlation between the level of proliferative activity and the character of DNA-bound fluorescent staining was found. Fluorescent dyes, Hoechst 33342 and PI, produced diffuse staining of the nuclei in slowly proliferating cells of the SC1 and SC2 lines. In contrast, in actively proliferating cells of the SC3 and SC4 lines, the clear staining of the nuclei was observed. Upon changing the cultivation condition, proliferative activity of SC3 and SC4 lines decreased and became similar to that of SC1 and SC2 lines. The character of the fluorescent staining of all these lines was also shown to be similar. These results show that quality of the fluorescent staining with Hoechst 33342 and PI reflects the level of proliferation. Possible causes and mechanisms of this feature of human ESC are discussed.
Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives
Dumont, Jennifer; Euwart, Don; Mei, Baisong; Estes, Scott; Kshirsagar, Rashmi
2016-01-01
Abstract Biotherapeutic proteins represent a mainstay of treatment for a multitude of conditions, for example, autoimmune disorders, hematologic disorders, hormonal dysregulation, cancers, infectious diseases and genetic disorders. The technologies behind their production have changed substantially since biotherapeutic proteins were first approved in the 1980s. Although most biotherapeutic proteins developed to date have been produced using the mammalian Chinese hamster ovary and murine myeloma (NS0, Sp2/0) cell lines, there has been a recent shift toward the use of human cell lines. One of the most important advantages of using human cell lines for protein production is the greater likelihood that the resulting recombinant protein will bear post-translational modifications (PTMs) that are consistent with those seen on endogenous human proteins. Although other mammalian cell lines can produce PTMs similar to human cells, they also produce non-human PTMs, such as galactose-α1,3-galactose and N-glycolylneuraminic acid, which are potentially immunogenic. In addition, human cell lines are grown easily in a serum-free suspension culture, reproduce rapidly and have efficient protein production. A possible disadvantage of using human cell lines is the potential for human-specific viral contamination, although this risk can be mitigated with multiple viral inactivation or clearance steps. In addition, while human cell lines are currently widely used for biopharmaceutical research, vaccine production and production of some licensed protein therapeutics, there is a relative paucity of clinical experience with human cell lines because they have only recently begun to be used for the manufacture of proteins (compared with other types of cell lines). With additional research investment, human cell lines may be further optimized for routine commercial production of a broader range of biotherapeutic proteins. PMID:26383226
Griegel, S; Hong, C; Frötschl, R; Hülser, D F; Greger, V; Horsthemke, B; Rajewsky, M F
1990-07-15
Retinoblastoma (RB), an intraocular childhood tumor occurring in a hereditary (mostly bilateral) or non-hereditary (unilateral) form, is associated with the inactivation of both alleles of a putative tumor suppressor gene (RB-I) located on chromosome 13q14. Both the process of RB development and the biological characteristics of RB cells are as yet poorly understood. We have established 7 new RBL lines (RBL13, RBL14, RBL18 and RBL30, derived from unilateral RB; and RBL7, RBL15 and RBL20, derived from bilateral RB). Southern blot analyses of restriction fragment length polymorphisms in DNA samples from 6 cell lines revealed loss of constitutional heterozygosity at one or several polymorphic loci on chromosome 13 in 4 cases. Gross deletions involving the RB-I locus and amplification of the N-myc gene were not detected in any of the RBL lines. The phenotypic properties of the RBL lines were analyzed in comparison with cells from the original RB tumors, with 4 RB lines established by others (RB383, RB355, RB247C3 and Y79) and with the adenovirus-EIA-transformed human retinoblast line HER-Xhol-CC2. It was found that RB tumors consist of phenotypically heterogeneous cell subpopulations with varying nutrient requirements and differentiation potential in vitro. All cell lines showed the typical characteristics of established ("immortalized") cells. In some cases, cells from original RB tumors or cell lines were able to form colonies when cell aggregates of 2-10 cells were suspended in semi-solid agar medium; however, anchorage-independent colonies never developed from single cells. Cell lines RBL13, RBL18, RB247C3, RB355, RB383 and Y79 were tested for invasion into embryonic chick heart fragments in vitro and found to be non-invasive. None of the RBL or RB lines were tumorigenic in nu/nu (T-) mice. Y79 cells (propagated in culture for many years) exhibited properties distinctly different from those of the other cell lines, and thus cannot be considered phenotypically representative of RB cells.
Douglas, Wade G.; Wang, Yangping; Gibbs, John F.; Tracy, Erin; Kuvshinoff, Boris; Huntoon, Kristin; Baumann, Heinz
2008-01-01
Background Hepatocellular carcinomas (HCC) associated with inflammation that undergo radiofrequency ablation (RFA) appear to have poorer local control rates. Little is known of how mediators of inflammation influence HCC cellular thermotolerance which in part is mediated by heat shock protein 70 (HSP 70). This study determines how inflammatory mediators effect cellular thermotolerance and provides insight into how associated inflammation may impact HCC RFA local control rates. Methods HepG2 cell lines were cultured in control medium (CM) or CM containing conditioned medium of endotoxin-activated macrophage (CMM). Serial dilutions of CMM established microenvironments approximating low, medium and high CMM. All groups underwent a heat shock challenge (HSC) at 45° C for 10 minutes. Western blot, northern blot, densometric analysis, along with Thymidine and clonagenic assays determined how inflammation influenced multiple biologic endpoints. Results Cells cultured in low CMM, expressed significantly more HSP 70 RNA and protein compared to control cells after HSC. The cells also had a higher proliferative and survival rate after HSC compared to control cells. Medium CMM cultured cells had no significant difference in HSP 70 RNA and protein production or proliferation and survival rates after HSC, compared to CM cultured cells. AT high CMM the inhibitory effects of inflammatory mediators prevailed, all the measured endpoints were significantly less compared to CM cultured cells. Conclusions This study demonstrates that inflammation can alter the responsiveness of HCC cells to a HSC in a dose dependent manner. This study supports the clinical observation that HCC associated with chronic inflammation have worse RFA local control rates. PMID:18262552
DNA Methylation as an Epigenetic Factor in the Development and Progression of Polycythemia Vera
2008-10-01
vera and idiopathic myelofibrosis. Pathol Biol ( Paris ). 2001;49:164-166. 2. Spivak JL. Diagnosis of the myeloproliferative disorders: resolving...leukemia cell lines with different cellular origin (myeloid cell lines KG1, KG1a, HEL, K562, and TF1; T lymphoid cell lines CEM and JTAg; and B lymphoid...in the cell lines of lymphoid origin versus myeloid leukemia cell lines and a GM-CSF- Services Email this article to a friend Download to
Kinoshita, Shigeru; Kawasaki, Satoshi; Kitazawa, Koji; Shinomiya, Katsuhiko
2012-01-01
Purpose: To report the establishment of a human conjunctival epithelial cell line lacking the functional tumor-associated calcium signal transducer 2 (TACSTD2) gene to be used as an in vitro model of gelatinous drop-like corneal dystrophy (GDLD), a rare disease in which the corneal epithelial barrier function is significantly compromized by the loss of function mutation of the TACSTD2 gene. Methods: A small piece of conjunctival tissue was obtained from a GDLD patient. The conjunctival epithelial cells were enzymatically separated and dissociated from the tissue and immortalized by the lentiviral introduction of the SV40 large T antigen and human telomerase reverse transcriptase (hTERT) genes. Population doubling, protein expression, and transepithelial resistance (TER) analyses were performed to assess the appropriateness of the established cell line as an in vitro model for GDLD. Results: The life span of the established cell line was found to be significantly elongated compared to nontransfected conjunctival epithelial cells. The SV40 large T antigen and hTERT genes were stably expressed in the established cell line. The protein expression level of the tight junction–related proteins was significantly low compared to the immortalized normal conjunctival epithelial cell line. TER of the established cell line was found to be significantly low compared to the immortalized normal conjunctival epithelial cell line. Conclusions: Our conjunctival epithelial cell line was successfully immortalized and well mimicked several features of GDLD corneas. This cell line may be useful for the elucidation of the pathogenesis of GDLD and for the development of novel treatments for GDLD. PMID:23818740
Establishment and proteomic characterization of a novel synovial sarcoma cell line, NCC-SS2-C1.
Oyama, Rieko; Kito, Fusako; Sakumoto, Marimu; Shiozawa, Kumiko; Toki, Shunichi; Endo, Makoto; Yoshida, Akihiko; Kawai, Akira; Kondo, Tadashi
2018-05-01
Synovial sarcoma is an aggressive mesenchymal tumor, characterized by the presence of unique transfusion gene, SS18-SSX. Cell lines enable researchers to investigate the molecular backgrounds of disease and the significance of SS18-SSX in relevant cellular contexts. We report the establishment and proteomic characterization of a novel synovial sarcoma cell line. Primary tissue culture was performed using tumor tissue of synovial sarcoma. The established cell line was authenticated by assessing its DNA microsatellite short tandem repeat analysis and characterized by in vitro assay. Proteomic study was achieved by mass spectrometry, and the results were analyzed by treemap. The cell line NCC-SS2-C1 was established from a primary tumor tissue of a synovial sarcoma patient. The cell line has grown well for 11 mo and has been subcultured more than 15 times. The established cells were authenticated by assessing their short tandem repeat pattern comparing with that of original tumor tissue. The cells showed polygonal in shape and formed spheroid when seeded on the low-attachment dish. Proteomic analysis revealed the molecular pathways which are unique to the original tumor tissue or the established cell line. In conclusion, a novel synovial sarcoma cell line NCC-SS2-C1 was successfully established from the primary tumor tissue. The cell line has characteristic transfusion SS18-SSX and poses aggressive in vitro growth and capability of spheroid formation. Thus, NCC-SS2-C1 cell line will be a useful tool for investigation of the mechanisms of disease and the biological role of fusion gene.
2014-12-08
Cancer Survivor; Chronic Myeloproliferative Disorders; Leukemia; Lymphoma; Multiple Myeloma and Plasma Cell Neoplasm; Myelodysplastic Syndromes; Myelodysplastic/Myeloproliferative Neoplasms; Neuroblastoma; Testicular Germ Cell Tumor
Anticancer drugs are synergistic with freezing in induction of apoptosis in HCC cells.
Yuan, FangJun; Zhou, Wenbo; Zhang, Jifa; Zhang, Zhiyun; Zou, Can; Huang, Ling; Zhang, YouShun; Dai, Zongqing
2008-08-01
Cryotherapy has been shown to be an important therapeutic alternative to surgery in the treatment of hepatocellular carcinoma (HCC). Here, the influence of cryo-chemotherapy on HCC was examined in vitro using the human HCC cell line Bel-7402, a drug-resistant HCC cell line originating from Bel-7402 cells (Bel-7402/R), as well as two control cell lines, the HCC cell line SMMC-7721 and a colorectal tumor cell line HIC-251. Cells were treated with either exposure to different freezing temperatures (ranging from -15 to -80 degrees C for 20 min), exposure to sub-lethal concentrations of anticancer chemotherapy drugs or a combination of cryotherapy and chemotherapy. Cell viability and apoptosis under each condition were investigated. We found that the combined treatment resulted in increases in both cell death and apoptosis compared to either treatment alone. The increased level of apoptosis observed in Bel-7402 cells after cryo-chemotherapy was inhibited in the presence of caspase inhibitors. Furthermore, Bax expression was increased 2- to 3-fold in cells exposed to the combination treatment compared with cells treated by freezing or drugs alone. In contrast, Bcl-2 levels remained constant. Although Bel-7402/R cells originated from the Bel-7402 cell line, they were more sensitive to the freezing procedure than the parental cell line. The level of Bax expression in Bel-7402/R cells was also higher than that observed in the parental cell line. In addition, we found that Bel-7402/R cells had lower levels of survivin mRNA than the parental Bel-7402 cells, in both untreated and treated cells. In conclusion, our data show that in HCC cells, apoptosis induced by cryotherapy can be synergistically enhanced using anticancer drugs.
Zhang, Lei; Sato, Eiji; Amagasaki, Kenichi; Nakao, Atsuhito; Naganuma, Hirofumi
2006-07-01
Malignant glioma cells secrete and activate transforming growth factor-beta (TGFbeta) and are resistant to growth inhibition by that factor. Nevertheless, the mechanism underlying this effect remains poorly understood. In this study, the mechanism of the resistance to growth inhibition induced by TGFbeta was investigated. The authors examined the expression of downstream components of the TGFbeta receptor, including Smad2, Smad3, Smad4, and Smad7, and the effect of TGFbeta1 treatment on the phosphorylation of Smad2 and the nuclear translocation of Smad2 and Smad3 by using 10 glioma cell lines and the A549 cell line, which is sensitive to TGFbeta-mediated growth inhibition. The expression of two transcriptional corepressor proteins, SnoN and Ski, and the effect of TGFbeta1 treatment on the expression of the SnoN protein and the cell cycle regulators p21, p15, cyclin-dependent kinase-4 (CDK4), and cyclin D1 were also examined. Expression of the Smad2 and Smad3 proteins was lower in the glioma cell lines than in the A549 cell line and in normal astrocytes. In particular, Smad3 expression was low or very low in nine of the 10 malignant glioma cell lines. Expression of Smad4 was low in four glioma cell lines, and expression of the Smad7 protein was similar when compared with protein expression in the A549 cell line and in normal astrocytes. The levels of Smad2 phosphorylation after TGFbeta1 treatment were lower in glioma cell lines than in the A549 cell line, except for one glioma cell line. Seven of the 10 glioma cell lines exhibited lower levels of nuclear translocation of Smad2 and Smad3, and two cell lines that expressed very low levels of Smad3 protein showed no nuclear translocation. All glioma cell lines expressed the SnoN protein and its expression was unaltered by treatment with TGFbeta1. Three glioma cell lines expressed high levels of the Ski protein. The expression of the p21(cip1), p15(INK4B), CDK4, and cyclin D1 proteins was not altered by TGFbeta1, treatment, except in one cell line that displayed a slight increase in p21 protein. Overall, the expression of the Smad2 and Smad3 proteins was low in the glioma cell lines, the phosphorylation and nuclear translocation of Smad2 and Smad3 were impaired, and the TGFbeta receptor signal did not affect the expression of the SnoN, p21, p15, cyclin D1, and CDK4 proteins. These results suggest that the ability to resist TGFbeta-mediated growth inhibition in malignant glioma cells is due to abnormalities in the TGFbeta signaling pathway.
Mhatre, Pravin N.; Narkhede, Hemraj R.; Pawar, P. Amol; Mhatre, P. Jyoti; Kumar, Das Dhanjit
2016-01-01
CONTEXT: Host of vaginoplasty techniques have been described. None has been successful in developing normal vagina. Laparoscopic peritoneal vaginoplasty (LPV) is performed in Mayer–Rokitansky–Küster–Hauser syndrome (MRKHS) culminating in normal vagina. AIMS: This study aims to confirm normal development of neovagina by anatomical and functional parameters of histology, cytology, and ultrasonography (USG) in LPV. To identify peritoneal progenitor cell by OCT4/SOX2 markers. To demonstrate the metaplastic conversion of peritoneum to neovagina and the progenitor cell concentration, distribution pattern. SETTINGS AND DESIGN: This is prospective experimental study, conducted at teaching hospital and private hospital. SUBJECTS AND METHODS: Fifteen women of MRKHS underwent LPV followed by histology, cytology, two-/three-dimensional USG of neovagina. Four women underwent peritoneal biopsy for identification of progenitor cells with OCT4/SOX2 markers. One patient underwent serial biopsies for 4 weeks for histology and progenitor cell immunohistochemistry. RESULTS: Normal vaginal histology and cytology were apparent. USG of neovagina showed normal appearance and blood flow. Two peritoneal samples confirmed the presence of progenitor cells. Serial biopsies demonstrated the epithelial change from single to multilayer with stromal compaction and neoangiogenesis. The progenitor cells concentration and different distribution patterns were described using SOX2/OCT4 markers. CONCLUSIONS: We have shown successful peritoneal metaplastic conversion to normal vagina in LPV. The progenitor cell was identified in normal peritoneum using SOX2/OCT4 markers. The progenitor cell concentration and pattern were demonstrated at various stages of neovaginal development. PMID:28216908
Bruserud, Oystein; Tronstad, Karl Johan; Berge, Rolf
2005-06-01
Experimental in vitro models including well-characterised cell lines can be used to identify possible new therapeutic targets for the treatment of osteosarcoma. Culture media including inactivated serum is often recommended for in vitro culture of osteosarcoma cells, but the serum component then represents a nonstandardised parameter including a wide range of unidentified mediators. To improve the standardisation we have investigated whether serum-free culture media can be used in experimental in vitro studies of osteosarcoma cell lines. The seven osteosarcoma cell lines Cal72, SJSA-1, Saos-2, SK-ES-1, U2OS, 143.98.2, and KHOS-32IH were cultured in vitro in various serum-free media and media supplemented with 10% heat-inactivated fetal calf serum (FCS). Although proliferation often was relatively low in serum-free media (X-vivo 10, X-vivo 15, X-vivo 20, Stem Span SFEM), some cell lines (Cal72, KHOS-32IH, Saos-2) showed proliferation comparable with the recommended FCS-containing media even when using serum-free conditions. The optimal serum-free medium then varied between cell lines. We also compared 6 different FCS-containing media (including Stem Span with 10% FCS) and the optimal FCS-containing medium varied between cell lines. However, all cell lines proliferated well in Stem Span with FCS, and this medium was regarded as optimal for four of the lines. FCS could not be replaced by fatty acids or low density lipoprotein when testing the Stem Span medium. The release of a wide range of soluble mediators showed only minor differences when using serum-free and FCS-containing media (including Stem Span with and without FCS), and serum-free Stem Span could also be used for in vitro studies of mitogen-stimulated T cell activation in the presence of accessory osteosarcoma cells. The use of Stem Span with 10% FCS allowed the release of a wide range of chemokines by osteosarcoma cell lines (Cal72, SJSA-1), and the chemokine release profile was very similar to the fibroblast lines Hs27 and HFL1. Serum-free culture media can be used for in vitro studies of several osteosarcoma cell lines, but the optimal medium varies between cell lines and thus depends on: (i) the cell lines to be investigated/compared; (ii) the functional characteristic that is evaluated (proliferation, cytokine release); and (iii) whether coculture experiments are included.
Tumor-associated down-regulation of 15-lipoxygenase-1 is reversed by celecoxib in colorectal cancer.
Heslin, Martin J; Hawkins, Ashley; Boedefeld, William; Arnoletti, J Pablo; Frolov, Andrey; Soong, Richie; Urist, Marshall M; Bland, Kirby I
2005-06-01
To evaluate the role of celecoxib on 15-lipoxygenase-1 (15-LOX-1) expression, protein levels, and rates of apoptosis in colorectal cancer cell lines. Also, to evaluate the expression of 15-LOX-1 in human normal mucosa, adenoma, and carcinoma with correlation to overall survival. The function of 15-LOX-1 is to maintain normal rates of apoptosis (programmed cell death). Decreased apoptosis is one mechanism of cancer growth and dissemination. It is our hypothesis that expression of 15-LOX-1 is reduced in human colorectal cancer (CRC) and the administration of celecoxib can reverse this process and induce apoptosis. Effect of celecoxib in cell culture: The effect of 40 micromol/L celecoxib was compared with untreated controls in tissue culture utilizing HT-29 and DLD-1 CRC cell lines. Expression of 15-LOX-1 protein was measured by immunoblot. Induction of apoptosis was evaluated by annexin V staining. All data are presented as mean +/- SEM, with significance defined as P < 0.05. 15-LOX-1 in human CRC: From February 1998 to January 2002, 126 patients underwent surgical resection of either colorectal adenomas (n = 24) or carcinomas (n = 102), or both (n = 25). Tissue was macrodissected, snap frozen, and stored at -80 degrees C. After tissue processing, RNA was extracted and gene expression of 15-LOX-1 was quantified utilizing ABI prism real-time quantitative RT-PCR. Significance evaluated by the Wilcoxon signed rank test. Effect of celecoxib in cell culture: After 72 hours of treatment with celecoxib, immunoblot demonstrated a 1.5- to 2-fold increase in 15-LOX-1 protein expression in HT-29 and DLD-1 cells, respectively. Celecoxib produced greater than a 2-fold increase in the rate of apoptosis compared with control cells in both cell lines (P < 0.05). 15-LOX-1 in human CRC: The mean age of the patients was 62 +/- 1 years; 78% were white and 48% were female. The mean size of the polyps and cancers were 3.0 +/- 0.4 and 5.0 +/- 0.1 cm, respectively. Expression of 15-LOX-1 relative to S9 was 30 in normal mucosa and significantly down-regulated to 11 in adenomas and 16 in carcinomas (P < 0.05). 15-LOX-1 gene expression is significantly reduced in both human colorectal adenomas and carcinomas and associated with decreased survival. Administration of celecoxib restores 15-LOX-1 protein expression and induces apoptosis. Down-regulation of 15-LOX-1 is an early event in the adenoma to carcinoma sequence, and reversal with celecoxib may represent one mechanism for chemoprevention of polyps or treatment of carcinomas.
Islam, M Q; Ringe, J; Reichmann, E; Migotti, R; Sittinger, M; da S Meirelles, L; Nardi, N B; Magnusson, P; Islam, K
2006-10-01
Bone marrow mesenchymal stem cells (MSC) integrate into various organs and contribute to the regeneration of diverse tissues. However, the mechanistic basis of the plasticity of MSC is not fully understood. The change of cell fate has been suggested to occur through cell fusion. We have generated hybrid cell lines by polyethylene-glycol-mediated cell fusion of primary porcine MSC with the immortal murine fibroblast cell line F7, a derivative of the GM05267 cell line. The hybrid cell lines display fibroblastic morphology and proliferate like immortal cells. They contain tetraploid to hexaploid porcine chromosomes accompanied by hypo-diploid murine chromosomes. Interestingly, many hybrid cell lines also express high levels of tissue-nonspecific alkaline phosphatase, which is considered to be a marker of undifferentiated embryonic stem cells. All tested hybrid cell lines retain osteogenic differentiation, a few of them also retain adipogenic potential, but none retain chondrogenic differentiation. Conditioned media from hybrid cells enhance the proliferation of both early-passage and late-passage porcine MSC, indicating that the hybrid cells secrete diffusible growth stimulatory factors. Murine F7 cells thus have the unique property of generating immortal cell hybrids containing unusually high numbers of chromosomes derived from normal cells. These hybrid cells can be employed in various studies to improve our understanding of regenerative biology. This is the first report, to our knowledge, describing the generation of experimentally induced cell hybrids by using normal primary MSC.
Lung cancer cell lines: Useless artifacts or invaluable tools for medical science?
Gazdar, Adi F.; Gao, Boning; Minna, John D.
2011-01-01
Multiple cell lines (estimated at 300–400) have been established from human small cell (SCLC) and non-small cell lung cancers (NSCLC). These cell lines have been widely dispersed to and used by the scientific community worldwide, with over 8000 citations resulting from their study. However, there remains considerable skepticism on the part of the scientific community as to the validity of research resulting from their use. These questions center around the genomic instability of cultured cells, lack of differentiation of cultured cells and absence of stromal–vascular–inflammatory cell compartments. In this report we discuss the advantages and disadvantages of the use of cell lines, address the issues of instability and lack of differentiation. Perhaps the most important finding is that every important, recurrent genetic and epigenetic change including gene mutations, deletions, amplifications, translocations and methylation-induced gene silencing found in tumors has been identified in cell lines and vice versa. These “driver mutations” represented in cell lines offer opportunities for biological characterization and application to translational research. Another potential shortcoming of cell lines is the difficulty of studying multistage pathogenesis in vitro.To overcome this problem, we have developed cultures from central and peripheral airways that serve as models for the multistage pathogenesis of tumors arising in these two very different compartments. Finally the issue of cell line contamination must be addressed and safeguarded against. A full understanding of the advantages and shortcomings of cell lines is required for the investigator to derive the maximum benefit from their use. PMID:20079948
Low-dose non-targeted radiation effects in human esophageal adenocarcinoma cell lines.
Hanu, Christine; Wong, Raimond; Sur, Ranjan K; Hayward, Joseph E; Seymour, Colin; Mothersill, Carmel
2017-02-01
To investigate non-targeted radiation effects in esophageal adenocarcinoma cell lines (OE19 and OE33) using human keratinocyte and colorectal cancer cell reporters following γ-ray exposure. Both clonogenic assays and ratiometric calcium endpoints were used to check for the occurrence of bystander signals in reporter cells. We report data suggesting that γ-irradiation increases cell killing over the expected linear quadratic (LQ) model levels in the OE19 cell line exposed to doses below 1 Gy, i.e. which may be suggestive to be a low hyper-radiosensitive (HRS) response to direct irradiation. Both EAC cell lines (OE19 and OE33) have the ability to produce bystander signals when irradiated cell conditioned medium (ICCM) is placed onto human keratinocyte reporters, but do not seem to be capable of responding to bystander signals when placed on their autologous reporters. Further work with human keratinocyte reporter models showed statistically significant intracellular calcium fluxes following exposure of the reporters to ICCM harvested from both EAC cell lines exposed to 0.5 Gy. These experiments suggest that the OE19 and OE33 cell lines produce bystander signals in human keratinocyte reporter cells. However, the radiosensitivity of the EAC cell lines used in this study cannot be enhanced by the bystander response since both cell lines could not respond to bystander signals.
Hirabayashi, Masumi; Goto, Teppei; Tamura, Chihiro; Sanbo, Makoto; Hara, Hiromasa; Hochi, Shinichi
2014-03-07
This study was designed to investigate whether supplementation of 2i medium with leukemia inhibitory factor (LIF) and/or forskolin would support establishment of germline-competent rat embryonic stem (ES) cell lines. Due to the higher likelihood of outgrowth rates, supplementation of forskolin with or without LIF contributed to the higher establishment efficiency of ES cell lines in the WDB strain. Germline transmission competency of the chimeric rats was not influenced by the profile of ES cell lines until their establishment. When the LIF/forskolin-supplemented 2i medium was used, the rat strain used as the blastocyst donor, such as the WI strain, was a possible factor negatively influencing the establishment efficiency of ES cell lines. Once ES cell lines were established, all lines were found to be germline-competent by a progeny test in chimeric rats. In conclusion, both LIF and forskolin are not essential but can play a beneficial role in the establishment of "genuine" rat ES cell lines.
THE NEOPLASTIC POTENTIALITIES OF MOUSE EMBRYO TISSUES
Smith, William E.
1947-01-01
Epithelial tumors have been readily obtained by the implantation of embryo stomach tissue together with olive oil containing methylcholanthrene (with or without Scharlach R) in adult mice of homologous strain. The implanted tissue from the squamous portion of the stomach rapidly encysted the oil, and benign and malignant papillomas and squamous cell carcinomas soon arose from the stratified squamous lining of the cysts. Bits of the glandular portion of the stomach also formed cysts, but the gland cells underwent metaplasia in response to the carcinogen, altering first to transitional epithelium and then to a stratified squamous layer. So swiftly did these changes take place that nearly all of the tumors took origin from epithelium that had already become stratified and squamous, and the growths themselves were of this type. A single transitional cell carcinoma and an adenoacanthoma were procured, but no adenocarcinomas; nor did any benign papillomas develop, though they often resulted from the action of methylcholanthrene on the squamous portion of the embryo stomach. Search failed to disclose any distinctive precancerous changes in the gastric tissue. Five of the cancers were transplanted and they grew in every host. No tumors arose from any of the numerous control implants. Those consisting of glandular tissue formed cysts lined partly with columnar epithelium secreting mucus and partly with tubular glands equipped with chief and parietal cells in good condition. Pepsin and rennin were found in the fluid contained in these cysts, but no free hydrochloric acid. The enzymes were present also when the cysts contained methylcholanthrene and the glands had not yet been wholly replaced by metaplastic epithelium. The tumors appeared months sooner than when methylcholanthrene is injected into the stomach of adult animals or given by mouth; some of them were well established after 5 or 6 weeks. They arose regularly when the requisite experimental conditions were provided. The utilization of transplanted embryo tissue provides a means whereby gastric tumors free from bacterial infection can be procured swiftly and easily. PMID:19871629
Cellular characteristics of primary and immortal canine embryonic fibroblast cells.
You, Seungkwon; Moon, Jai-Hee; Kim, Tae-Kyung; Kim, Sung-Chan; Kim, Jai-Woo; Yoon, Du-Hak; Kwak, Sungwook; Hong, Ki-Chang; Choi, Yun-Jaie; Kim, Hyunggee
2004-08-31
Using normal canine embryonic fibroblasts (CaEF) that were shown to be senescent at passages 7th-9th, we established two spontaneously immortalized CaEF cell lines (designated CGFR-Ca-1 and -2) from normal senescent CaEF cells, and an immortal CaEF cell line by exogenous introduction of a catalytic telomerase subunit (designated CGFR-Ca-3). Immortal CGFR- Ca-1, -2 and -3 cell lines grew faster than primary CaEF counterpart in the presence of either 0.1% or 10% FBS. Cell cycle analysis demonstrated that all three immortal CaEF cell lines contained a significantly high proportion of S-phase cells compared to primary CaEF cells. CGFR-Ca-1 and -3 cell lines showed a loss of p53 mRNA and protein expression leading to inactivation of p53 regulatory function, while the CGFR-Ca-2 cell line was found to have the inactive mutant p53. Unlike the CGFR-Ca-3 cell line that down-regulated p16INK4a mRNA due to its promoter methylation but had an intact p16INK4a regulatory function, CGFR-Ca-1 and -2 cell lines expressed p16INK4a mRNA but had a functionally inactive p16INK4a regulatory pathway as judged by the lack of obvious differences in cell growth and phenotype when reconstituted with wild-type p16INK4a. All CGFR-Ca-1, -2 and -3 cell lines were shown to be untransformed but immortal as determined by anchorage-dependent assay, while these cell lines were fully transformed when overexpressed oncogenic H-rasG12V. Taken together, similar to the nature of murine embryo fibroblasts, the present study suggests that normal primary CaEF cells have relatively short in vitro lifespans and should be spontaneously immortalized at high frequency.
B7-H4 as a Target for Breast Cancer Immunotherapy
2012-06-01
lymphoma and leukemia cell lines. CEM, Karpas 299, and TLBR -1, cell lines derived from acute T-cell lymphoblastic leukemia, large cell anaplastic...Accomplishments Generation of human B7-H4-Fc fusion protein (antigen). Discovery of a B7-H4 receptor on CEM, Karpas 299, and TLBR -1 cell lines...CEM Karpas 299 TLBR -1 Jurkat B7-H4R Figure 3. B7-H4 binding to human T-cell lymphoma cell lines. Red
Novel Tissue Protective Agents for the Treatment of Acute Radiation-induced BMF
2013-03-01
induced apoptosis in the following hematopoietic cell lines: HL-60, NB-4 cells, 32Dc13 and EML cell line. Experimental design and methods: HL-60, a...et al., 1999). EML Cell line (ATCC CRL-11691), a bone marrow cell line obtained by immortalizing bone marrow cells from male BDF1 mice with a...Membrane preparations were made from HL-60, NB-4, 32Dc13 and EML cells attempts were made to co-immunoprecipitate the CD131 molecule with EPOR in
Fallah, S; Karimi, A; Panahi, G; Gerayesh Nejad, S; Fadaei, R; Seifi, M
2016-03-31
The mechanistic basis for the biological properties of Morus alba flavonoid extract (MFE) and chemotherapy drug of doxorubicin on human colon cancer HT-29 cell line death are unknown. The effect of doxorubicin and flavonoid extract on colon cancer HT-29 cell line death and identification of APC gene expression and PARP concentration of HT-29 cell line were investigated. The results showed that flavonoid extract and doxorubicin induce a dose dependent cell death in HT-29 cell line. MFE and doxorubicin exert a cytotoxic effect on human colon cancer HT-29 cell line by probably promoting or induction of apoptosis.
Norris, J S; Kohler, P O
1978-01-01
Two hamster cell lines have been isolated from androgen target tissue. The DDT1 cells derived from ductus deferens tissue exhibit a growth response to androgens, while the HVP cells derived from ventral prostate are androgen unresponsive. Both cell lines contain androgen receptors, that are similar when compared by kinetic methods, sedimentation velocity, chromatographic procedures or nuclear translocation ability. The forms of the high salt extracted nuclear receptors are indistinguishable chromatographically. Therefore, we postulate that the lesion preventing androgen induced growth in the HVP cell line is subseqent to nuclear translocation of the steroid receptor complex.
The costs of using unauthenticated, over-passaged cell lines: how much more data do we need?
Hughes, Peyton; Marshall, Damian; Reid, Yvonne; Parkes, Helen; Gelber, Cohava
2007-11-01
Increasing data demonstrate that cellular cross-contamination, misidentified cell lines, and the use of cultures at high-passage levels contribute to the generation of erroneous and misleading results as well as wasted research funds. Contamination of cell lines by other lines has been recognized and documented back to the 1950s. Based on submissions to major cell repositories in the last decade, it is estimated that between 18% and 36% of cell lines may be contaminated or misidentified. More recently, problems surrounding practices of over-subculturing cells are being identified. As a result of selective pressures and genetic drift, cell lines, when kept in culture too long, exhibit reduced or altered key functions and often no longer represent reliable models of their original source material. A review of papers showing significant experimental variances between low- and high-passage cell culture numbers, as well as contaminated lines, makes a strong case for using verified, tested cell lines at low- or defined passage numbers. In the absence of cell culture guidelines, mandates from the National Institutes of Health (NIH) and other funding agencies or journal requirements, it becomes the responsibility of the scientific community to perform due diligence to ensure the integrity of cell cultures used in research.
MS-HRM assay identifies high levels of epigenetic heterogeneity in human immortalized cell lines.
Putnik, Milica; Wojdacz, Tomasz K; Pournara, Angeliki; Vahter, Marie; Wallberg, Annika E
2015-04-15
Immortalized cell lines are widely used in genetic and epigenetic studies, from exploration of basic molecular pathways to evaluation of disease-specific cellular properties. They are also used in biotechnology, e.g., in drug toxicity tests and vaccine production. Cellular and genetic uniformity is the main feature of immortalized cell lines and it has been particularly advantageous in functional genomic research, which has in recent years been expanded to include epigenetic mechanisms of gene expression regulation. Using the MS-HRM technique, we demonstrated heterogeneity in locus-specific methylation patterns in different cell cultures of four human cell lines: HEK293, HEK293T, LCL and DU145. Our results show that some human immortalized cell lines consist of cells that differ in the methylation status of specific loci, i.e., that they are epigenetically heterogeneous. We show that even two cultures of the same cell line obtained from different laboratories can differ in the methylation status of the specific loci. The results indicated that epigenetic uniformity of the cell lines cannot be assumed in experiments which utilize cell cultures and that the methylation status of the specific loci in the immortalized cell lines should be re-characterized and carefully profiled before epigenetic studies are performed. Copyright © 2015 Elsevier B.V. All rights reserved.
Parodi, Silvio; Billi, Giovanna; Oliva, Cristina; Venturing, Marco; Noviello, Elvira; Conte, PierFranco
1992-01-01
The cytotoxic activity of human recombinant tumor necrosis factor (rHuTNF) (from 0.01 to 10000 U/ml) was assayed on six human ovarian cancer cell lines and one human cervical carcinoma cell line using a crystal violet assay. rHuTNF was cytotoxic to four cell lines (A2780, A2774, SW626, PAD, while 3 cell lines (IGROV1, SKOV3, Mel80) were marginally sensitive to its activity. However, under the same experimental conditions rHuTNF markedly enhanced the cytotoxicity of mitoxantrone, a chemotherapeutic drug targeted at DNA topoisomerase II, in six cell lines. The potentiation of mitoxantrone cytotoxicity was not caused by increased drug accumulation after rHuTNF treatment. No significant increase in cytotoxicity to Me180 cell line was seen when rHuTNF was added to mitoxantrone. PMID:1517145
Local Failure in Resected N1 Lung Cancer: Implications for Adjuvant Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Higgins, Kristin A., E-mail: kristin.higgins@duke.edu; Chino, Junzo P.; Berry, Mark
2012-06-01
Purpose: To evaluate actuarial rates of local failure in patients with pathologic N1 non-small-cell lung cancer and to identify clinical and pathologic factors associated with an increased risk of local failure after resection. Methods and Materials: All patients who underwent surgery for non-small-cell lung cancer with pathologically confirmed N1 disease at Duke University Medical Center from 1995-2008 were identified. Patients receiving any preoperative therapy or postoperative radiotherapy or with positive surgical margins were excluded. Local failure was defined as disease recurrence within the ipsilateral hilum, mediastinum, or bronchial stump/staple line. Actuarial rates of local failure were calculated with the Kaplan-Meiermore » method. A Cox multivariate analysis was used to identify factors independently associated with a higher risk of local recurrence. Results: Among 1,559 patients who underwent surgery during the time interval, 198 met the inclusion criteria. Of these patients, 50 (25%) received adjuvant chemotherapy. Actuarial (5-year) rates of local failure, distant failure, and overall survival were 40%, 55%, and 33%, respectively. On multivariate analysis, factors associated with an increased risk of local failure included a video-assisted thoracoscopic surgery approach (hazard ratio [HR], 2.5; p = 0.01), visceral pleural invasion (HR, 2.1; p = 0.04), and increasing number of positive N1 lymph nodes (HR, 1.3 per involved lymph node; p = 0.02). Chemotherapy was associated with a trend toward decreased risk of local failure that was not statistically significant (HR, 0.61; p = 0.2). Conclusions: Actuarial rates of local failure in pN1 disease are high. Further investigation of conformal postoperative radiotherapy may be warranted.« less
Cell lines derived from the squash bug, Anasa tristis (Coreidae: Hemiptera).
Goodman, Cynthia L; Ringbauer, Joseph A; Li, Yao-Fa; Lincoln, Tamra Reall; Stanley, David
2017-05-01
The squash bug, Anasa tristis, is a pest of cucurbits that exerts direct damage on crops and is a vector of plant pathogens. We established cell lines from this insect to serve as tools for basic biology, including virology and immunology, as well as applied studies, such as insecticide development programs. We initiated 15 cell cultures, using nine media or combinations of media. The media yielding the best results were a modification of Kimura's medium and a combination of two commercially available cell culture media (EX-CELL 420 and L15). We designated the two cell lines as BCIRL-AtE-CLG11 and BCIRL-AtE-CLG15. From the AtE-CLG15 line, we isolated two sub-lines, A and B. Of these, the most consistently replicating line was AtE-CLG15A. We determined the doubling time of this line (190 h) and its mean cell diameter (14.5 ± 0.7 μm). We characterized the AtE-CLG15A line using DAF-PCR. The BCIRL-AtE-CLG15A cell line is now available for researchers world-wide.
Infection studies of nontarget mammalian cell lines with Bombyx mori macula-like virus.
Innami, Katsuhisa; Aizawa, Takahiro; Tsukui, Toshihiro; Katsuma, Susumu; Imanishi, Shigeo; Kawasaki, Hideki; Iwanaga, Masashi
2016-03-01
Bombyx mori-derived cell lines are generally used for Bombyx mori nucleopolyhedrovirus (BmNPV)-based baculovirus expression vector system (BEVS). However, almost all of the B. mori-derived cell lines are persistently infected with Bombyx mori macula-like virus (BmMLV). In this study, nontarget mammalian cell lines were exposed to BmMLV, and their susceptibility was investigated. Real-time PCR showed that viral RNA in virus-inoculated nine mammalian cell lines decreased sharply at 7 days postinfection. Also, there was no significant effect on cell viability of mammalian cells after inoculation with BmMLV. These findings indicate that mammalian cell lines used in this study are not permissive to BmMLV, and BmMLV contamination might not affect the safety aspect of BmNPV-based BEVS. Copyright © 2015 Elsevier B.V. All rights reserved.
Carbone, Antonino; Cesarman, Ethel; Gloghini, Annunziata; Drexler, Hans G.
2013-01-01
Primary effusion lymphoma (PEL) is a very rare subgroup of B-cell lymphomas presenting as pleural, peritoneal and pericardial neoplastic effusions in the absence of a solid tumor mass or recognizable nodal involvement. There is strong evidence that Kaposi’s sarcoma associated herpesvirus (KSHV) is a causal agent of PEL. PEL tumor cells are latently infected by KSHV with consistent expression of several viral proteins and microRNAs that can affect cellular proliferation, differentiation and survival. The most relevant data on pathogenesis and biology of KSHV have been provided by studies on PEL derived cell lines. Fourteen continuous cell lines have been established from the malignant effusions of patients with AIDS-and non-AIDS-associated PEL. These KSHV+ EBV+/− cell lines are wellcharacterized, authenticated and mostly available from public biological ressource centers. The PEL cell lines display unique features and are clearly distinct from other lymphoma cell lines. PEL cell lines represent an indispensable tool for the understanding of KSHV biology and its impact on the clinical manifestation of PEL. Studies on PEL cell lines have shown that a number of viral genes, expressed during latency or lytic life cycle, have effects on cell binding, proliferation, angiogenesis and inflammation. Also PEL cell lines are important model systems for the study of the pathology of PEL including the lack of invasive or destructive growth patterns and the peculiar propensity of PEL to involve body cavity surfaces. PMID:20051807
Establishment and characterization of the NCC-SS1-C1 synovial sarcoma cell line.
Kito, Fusako; Oyama, Rieko; Takai, Yoko; Sakumoto, Marimu; Shiozawa, Kumiko; Qiao, Zhiwei; Uehara, Takenori; Yoshida, Akihiko; Kawai, Akira; Kondo, Tadashi
2018-04-01
Synovial sarcoma is an aggressive mesenchymal malignancy characterized by unique gene fusions. Tissue culture cells are essential tools for further understanding tumorigenesis and anti-cancer drug development; however, only a limited number of well-characterized synovial sarcoma cell lines exist. Thus, the objective of this study was to establish a patient-derived synovial sarcoma cell line. We established a synovial sarcoma cell line from tumor tissue isolated from a 72-year-old female patient. Prepared cells were analyzed for the presence of gene fusions by fluorescence in situ hybridization, RT-PCR, and karyotyping. In addition, the resulting cell line was characterized by viability, short tandem repeat, colony and spheroid formation, and invasion analyses. Differences in gene enrichment between the primary tumor and cell line were examined by mass spectrometric protein expression profiling and KEGG pathway analysis. Our analyses revealed that the primary tumor and NCC-SS1-C1 cell line harbored the SS18-SSX1 fusion gene typical of synovial sarcoma and similar proteomics profiles. In vitro analyses also confirmed that the established cell line harbored invasive, colony-forming, and spheroid-forming potentials. Moreover, drug screening with chemotherapeutic agents and tyrosine kinase inhibitors revealed that doxorubicin, a subset of tyrosine kinase inhibitors, and several molecular targeting drugs markedly decreased NCC-SS1-C1 cell viability. Results from the present study support that the NCC-SS1-C1 cell line will be an effective tool for sarcoma research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sheard, Michael A., E-mail: msheard@chla.usc.edu; Ghent, Matthew V., E-mail: mattghent@gmail.com; Cabral, Daniel J., E-mail: dcabral14@gmail.com
2015-05-15
Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival,more » expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.« less
Kuo, Wen-Ling; Ueng, Shir-Hwa; Wu, Chun-Hsing; Lee, Li-Yu; Lee, Yun-Shien; Yu, Ming-Chin; Chen, Shin-Cheh; Yu, Chi-Chang; Tsai, Chi-Neu
2018-04-01
The research of carcinogenetic mechanisms of breast cancer in different ethnic backgrounds is an interesting field, as clinical features of breast cancers vary among races. High premenopausal incidence is distinctive in East-Asian breast cancer. However, human cell lines derived from Asian primary breast tumor are rare. To provide alternative cell line models with a relevant genetic background, we aimed to establish breast cancer cell lines from Taiwanese patients of Han-Chinese ethnicity. Fresh tissue from mammary tumors were digested into organoids, plated and grown in basal serum-free medium of human mammary epithelial cells (HuMEC) with supplements. Cells were further enriched by positive selection with CD326 (epithelial cell adhesion molecule; EpCAM)-coated micro-magnetic beads. Two breast cancer cell lines derived from premenopausal women were successfully established by this method, and named Chang-Gung Breast Cancer 01 (CGBC 01) and 02 (CGBC 02). These two cell lines had a similar phenotype with weak expression of estrogen receptor (ER), progesterone receptor (PR), and without amplification of receptor tyrosine protein kinase erbB-2 (HER2/neu). Genome-wide Single Nucleotide Polymorphism (SNP) array showed multiple copy number alterations in both cell lines. Based on gene expression profiles, CGBC 01 and 02 were clustered into basal-like subtype with reference to the breast cancer cell line gene expression database. The tumorigenicity of both cell lines was extremely low in both anchorage-independence assay and transplantation into the mammary fat pads of nude mice. CGBC 01 and CGBC 02 are low tumorigenic breast cancer cell lines, established from Han-Chinese premenopausal breast cancer patients, which serve as in vitro models in studying the biological features of Asian breast cancer.
Guilhot, S.; Miller, T.; Cornman, G.; Isom, H. C.
1996-01-01
Three well differentiated SV40-immortalized rat hepatocyte cell lines, CWSV1, CWSV2, and CWSV14, and Hepatitis B Virus (HBV)-producing cell lines derived from them were examined for sensitivity to tumor necrosis factor (TNF)-alpha. CWSV1, CWSV2, and CWSV14 cells were co-transfected with a DNA construct containing a dimer of the HBV genome and the neo gene and selected in G418 to generate stable cell lines. Characterization of these cell lines indicated that they contain integrated HBV DNA, contain low molecular weight HBV DNA compatible with the presence of HBV replication intermediates, express HBV transcripts, and produce HBV proteins. The viability of CWSV1, CWSV2, and CWSV2 cells was not significantly altered when they were treated with TNF-alpha at concentrations as high as 20,000 U/ml. The HBV-expressing CWSV1 cell line, SV1di36, and the HBV-expressing CWSV14 cell line, SV14di208, were also not killed when treated with TNF-alpha. However, the HBV-expressing CWSV2 cell line, SV2di366, was extensively killed when treated with TNF-alpha at concentrations ranging from 200 to 20,000 U/ml. Analysis of several different HBV-producing CWSV2 cell lines indicated that TNF-alpha killing depended upon the level of HBV expression. The TNF-alpha-induced cell killing in high HBV-producing CWSV2 cell lines was accompanied by the presence of an oligonucleosomal DNA ladder characteristic of apoptosis. Images Figure 2 Figure 3 Figure 4 Figure 6 Figure 9 Figure 10 Figure 11 PMID:8774135
Parton, Angela; Bayne, Christopher J.; Barnes, David W.
2010-01-01
Elasmobranchs are the most commonly used experimental models among the jawed, cartilaginous fish (Chondrichthyes). Previously we developed cell lines from embryos of two elasmobranchs, Squalus acanthias the spiny dogfish shark (SAE line), and Leucoraja erinacea the little skate (LEE-1 line). From these lines cDNA libraries were derived and expressed sequence tags (ESTs) generated. From the SAE cell line 4303 unique transcripts were identified, with 1848 of these representing unknown sequences (showing no BLASTX identification). From the LEE-1 cell line, 3660 unique transcripts were identified, and unknown, unique sequences totaled 1333. Gene Ontology (GO) annotation showed that GO assignments for the two cell lines were in general similar. These results suggest that the procedures used to derive the cell lines led to isolation of cell types of the same general embryonic origin from both species. The LEE-1 transcripts included GO categories “envelope” and “oxidoreductase activity” but the SAE transcripts did not. GO analysis of SAE transcripts identified the category “anatomical structure formation” that was not present in LEE-1 cells. Increased organelle compartments may exist within LEE-1 cells compared to SAE cells, and the higher oxidoreductase activity in LEE-1 cells may indicate a role for these cells in responses associated with innate immunity or in steroidogenesis. These EST libraries from elasmobranch cell lines provide information for assembly of genomic sequences and are useful in revealing gene diversity, new genes and molecular markers, as well as in providing means for elucidation of full-length cDNAs and probes for gene array analyses. This is the first study of this type with members of the Chondrichthyes. PMID:20471924
Parton, Angela; Bayne, Christopher J; Barnes, David W
2010-09-01
Elasmobranchs are the most commonly used experimental models among the jawed, cartilaginous fish (Chondrichthyes). Previously we developed cell lines from embryos of two elasmobranchs, Squalus acanthias the spiny dogfish shark (SAE line), and Leucoraja erinacea the little skate (LEE-1 line). From these lines cDNA libraries were derived and expressed sequence tags (ESTs) generated. From the SAE cell line 4303 unique transcripts were identified, with 1848 of these representing unknown sequences (showing no BLASTX identification). From the LEE-1 cell line, 3660 unique transcripts were identified, and unknown, unique sequences totaled 1333. Gene Ontology (GO) annotation showed that GO assignments for the two cell lines were in general similar. These results suggest that the procedures used to derive the cell lines led to isolation of cell types of the same general embryonic origin from both species. The LEE-1 transcripts included GO categories "envelope" and "oxidoreductase activity" but the SAE transcripts did not. GO analysis of SAE transcripts identified the category "anatomical structure formation" that was not present in LEE-1 cells. Increased organelle compartments may exist within LEE-1 cells compared to SAE cells, and the higher oxidoreductase activity in LEE-1 cells may indicate a role for these cells in responses associated with innate immunity or in steroidogenesis. These EST libraries from elasmobranch cell lines provide information for assembly of genomic sequences and are useful in revealing gene diversity, new genes and molecular markers, as well as in providing means for elucidation of full-length cDNAs and probes for gene array analyses. This is the first study of this type with members of the Chondrichthyes. Copyright 2010 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-24
... Collection; Comment Request; Identification of Human Cell Lines Project AGENCY: National Institute of... by short tandem repeat (STR) profiling up to 1500 human cell line samples as part of the Identification of Human Cell Lines Project. All data and corresponding information will be posted in a publically...
Onan, Burak; Yeniterzi, Mehmet; Onan, Ismihan Selen; Ersoy, Burak; Gonca, Suheyla; Gelenli, Elif; Solakoglu, Seyhun; Bakir, Ihsan
2014-10-01
The internal thoracic artery (ITA) is typically harvested from the chest wall by means of conventional electrocautery. We investigated the effects of electrocautery on endothelial-cell and vessel-wall morphology at the ultrastructural level during ITA harvesting. Internal thoracic artery specimens from 20 patients who underwent elective coronary artery bypass grafting were investigated in 2 groups. The ITA grafts were sharply dissected with use of a scalpel and clips in the control group (n=10) and were harvested by means of electrocautery in the study group (n=10). Each sample was evaluated for intimal, elastic-tissue, muscular-layer, and adventitial changes. Free flow was measured intraoperatively. Light microscopic examinations were performed after hematoxylin-eosin and Masson's trichrome staining. Transmission electron microscopy was used to evaluate ultrastructural changes in the endothelial cells and vessel walls of each ITA. In the sharp-dissection group, the endothelial surfaces were lined with normal amounts of original endothelium, endothelial cells were distinctly attached to the basal lamina, cytoplasmic organelles were evident, and intercellular junctional complexes were intact. Conversely, in the electrocautery group, the morphologic integrity of endothelial cells was distorted, with some cell separations and splits, contracted cells, numerous large cytoplasmic vacuoles, and no visible cytoplasmic organelles. The subendothelial layer exhibited disintegration. Free ITA flow was higher in the sharp-dissection group (P=0.04). The integrity of endothelial cells can be better preserved when the ITA is mobilized by means of sharp dissection, rather than solely by electrocautery; we recommend a combined approach.
Onan, Burak; Yeniterzi, Mehmet; Onan, Ismihan Selen; Ersoy, Burak; Gonca, Suheyla; Gelenli, Elif; Solakoglu, Seyhun
2014-01-01
The internal thoracic artery (ITA) is typically harvested from the chest wall by means of conventional electrocautery. We investigated the effects of electrocautery on endothelial-cell and vessel-wall morphology at the ultrastructural level during ITA harvesting. Internal thoracic artery specimens from 20 patients who underwent elective coronary artery bypass grafting were investigated in 2 groups. The ITA grafts were sharply dissected with use of a scalpel and clips in the control group (n=10) and were harvested by means of electrocautery in the study group (n=10). Each sample was evaluated for intimal, elastic-tissue, muscular-layer, and adventitial changes. Free flow was measured intraoperatively. Light microscopic examinations were performed after hematoxylin-eosin and Masson's trichrome staining. Transmission electron microscopy was used to evaluate ultrastructural changes in the endothelial cells and vessel walls of each ITA. In the sharp-dissection group, the endothelial surfaces were lined with normal amounts of original endothelium, endothelial cells were distinctly attached to the basal lamina, cytoplasmic organelles were evident, and intercellular junctional complexes were intact. Conversely, in the electrocautery group, the morphologic integrity of endothelial cells was distorted, with some cell separations and splits, contracted cells, numerous large cytoplasmic vacuoles, and no visible cytoplasmic organelles. The subendothelial layer exhibited disintegration. Free ITA flow was higher in the sharp-dissection group (P=0.04). The integrity of endothelial cells can be better preserved when the ITA is mobilized by means of sharp dissection, rather than solely by electrocautery; we recommend a combined approach. PMID:25425979
Radiation sensitivity of Merkel cell carcinoma cell lines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, J.H.; Ramsay, J.R.; Birrell, G.W.
1995-07-30
Merkel cell carcinoma (MCC), being a small cell carcinoma, would be expected to be sensitive to radiation. Clinical analysis of patients at our center, especially those with macroscopic disease, would suggest the response is quite variable. We have recently established a number of MCC cell lines from patients prior to radiotherapy, and for the first time are in a position to determine their sensitivity under controlled conditions. Some of the MCC lines grew as suspension cultures and could not be single cell cloned; therefore, it was not possible to use clonogenic survival for all cell lines. A tetrazolium based (MTT)more » assay was used for these lines, to estimate cell growth after {gamma} irradiation. Control experiments were conducted on lymphoblastoid cell lines (LCL) and the adherent MCC line, MCC13, to demonstrate that the two assays were comparable under the conditions used. We have examined cell lines from MCC, small cell lung cancer (SCLC), malignant melanomas, Epstein Barr virus (EBV) transformed lymphocytes (LCL), and skin fibroblasts for their sensitivity to {gamma} irradiation using both clonogenic cell survival and MTT assays. The results show that the tumor cell lines have a range of sensitivities, with melanoma being more resistant (surviving fraction at 2 Gy (SF2) 0.57 and 0.56) than the small cell carcinoma lines, MCC (SF2 range 0.21-0.45, mean SF2 0.30, n = 8) and SCLC (SF2 0.31). Fibroblasts were the most sensitive (SF2 0.13-0.20, mean 0.16, n = 5). The MTT assay, when compared to clonogenic assay for the MCC13 adherent line and the LCL, gave comparable results under the conditions used. Both assays gave a range of SF2 values for the MCC cell lines, suggesting that these cancers would give a heterogeneous response in vivo. The results with the two derivative clones of MCC14 (SF2 for MCC14/1 0.38, MCC14/2 0.45) would further suggest that some of them may develop resistance during clonogenic evolution. 25 refs., 3 figs., 1 tab.« less
Ando, Shotaro; Kawada, Jun-ichi; Watanabe, Takahiro; Suzuki, Michio; Sato, Yoshitaka; Torii, Yuka; Asai, Masato; Goshima, Fumi; Murata, Takayuki; Shimizu, Norio; Ito, Yoshinori; Kimura, Hiroshi
2016-01-01
Epstein-Barr virus (EBV) infects not only B cells, but also T cells and natural killer (NK) cells, and is associated with T or NK cell lymphoma. These lymphoid malignancies are refractory to conventional chemotherapy. We examined the activation of the JAK3/STAT5 pathway in EBV-positive and -negative B, T and NK cell lines and in cell samples from patients with EBV-associated T cell lymphoma. We then evaluated the antitumor effects of the selective JAK3 inhibitor, tofacitinib, against these cell lines in vitro and in a murine xenograft model. We found that all EBV-positive T and NK cell lines and patient samples tested displayed activation of the JAK3/STAT5 pathway. Treatment of these cell lines with tofacitinib reduced the levels of phospho-STAT5, suppressed proliferation, induced G1 cell-cycle arrest and decreased EBV LMP1 and EBNA1 expression. An EBV-negative NK cell line was also sensitive to tofacitinib, whereas an EBV-infected NK cell line was more sensitive to tofacitinib than its parental line. Tofacitinib significantly inhibited the growth of established tumors in NOG mice. These findings suggest that tofacitinib may represent a useful therapeutic agent for patients with EBV-associated T and NK cell lymphoma. PMID:27732937
Stamatoullas, A; Brice, P; Gueye, M S; Mareschal, S; Chevallier, P; Bouabdallah, R; Nguyenquoc, S; Francois, S; Turlure, P; Ceballos, P; Monjanel, H; Bourhis, J-H; Guillerm, G; Mohty, M; Biron, P; Cornillon, J; Belhadj, K; Bonmati, C; Dilhuydy, M-S; Huynh, A; Bernard, M; Chrétien, M-L; Peffault de Latour, R; Tilly, H
2016-07-01
This report retrospectively analyzed the outcome of 91 patients aged 60 years or older with refractory/relapsed (R/R) classical Hodgkin's lymphoma (cHL) who underwent autologous stem cell transplantation (ASCT) between 1992 and 2013 and were reported to the French Society of Bone Marrow Transplantation and Cell Therapies registry. The median age at transplant was 63 years. The majority of patients exhibited disease chemosensitivity to salvage treatment (57 complete responses, 30 partial responses, 1 progressive disease and 3 unknown). The most frequent conditioning regimen consisted of BCNU, cytarabine, etoposide, melphalan (BEAM) chemotherapy (93%). With a median follow-up of 54 months, 5-year estimates of overall survival (OS) and progression free survival (PFS) for the entire group were 67 and 54%, respectively. Despite the missing data, in univariate analysis, the number of salvage chemotherapy lines (1-2 versus ⩾3) significantly influenced the OS, unlike the other prognostic factors (stage III-IV at relapse, disease status before ASCT and negative positron emission tomography (PET) scan) encountered in younger patients. In spite of its limitations, this retrospective study with a long-term follow-up suggests that ASCT is a valid treatment option for chemosensitive R/R cHL in selected elderly patients, with an acceptable rate of toxicity.
Suzuki, Kazuya; Oguma, Keisuke; Sentsui, Hiroshi
2017-01-20
We attempted to prepare a cell line that produces maedi/visna virus (MVV) and is free of contamination by other viruses and mycoplasmas. Three cell lines, which originated from a sheep, goat and bat, were infected with MVV and passaged approximately every 5 days. The cultured cells were then subjected to polymerase chain reaction analysis for MVV provirus. As a result, a cell line persistently infected with MVV was established from ZZ-R cells, which originated from the fetal goat tongue. The 50-fold concentrated culture fluid formed a precipitation line against reference antiserum.
Assessment and outcome of 496 penetrating gastrointestinal warfare injuries.
Saghafinia, M; Nafissi, N; Motamedi, M R K; Motamedi, M H K; Hashemzade, M; Hayati, Z; Panahi, F
2010-03-01
The abdominal viscera are among the most vulnerable organs of the body to penetrating trauma. Proper management of such trauma in war victims at the first-line hospital where these victims are first seen is of paramount importance. We reviewed medical records of war victims suffering small bowel and colorectal injuries treated at first, second and third-line hospitals during the Iraq-Iran War (1980-88) to assess surgical outcomes. The medical records of 496 Iranian war victims suffering penetrating gastrointestinal (GI) injuries treated at first, second and third-line (tertiary) hospitals, a total of 19 centres, were reviewed. Laparotomy had been performed at the 1st line hospitals for all patients who had an acute abdomen, whose wounds violated the peritoneum or whose abdominal radiographs showed air or shrapnel in the abdominal cavity. Stable patients were transferred from first-line to second-line or from second line to tertiary hospitals postoperatively. The treatments, complications and patient outcomes were documented and analyzed. There were 496 patients; 145, 220 and 131 victims underwent laparotomy for GI injuries at first, second and third-line hospitals respectively. The small intestine and colon respectively were the most prevalent abdominal organs damaged. Those first treated for GI injuries at front-line hospitals (145 victims) had more serious conditions and could not be transferred prior to surgery and presented a higher prevalence of complications and mortality. Overall mortality from GI surgery was 3.6% (18 patients). Eleven patients (7.5%) whose first GI operation was performed at frontline hospitals and 7 patients (3.2%) who underwent their first surgical operation at second-line hospitals died. The most common reason for these deaths was complications relating to the gastrointestinal operation such as anastomotic leak. Six missed injuries were seen at the frontline and one at second line hospitals. There were no deaths at the 3rd line hospitals. Penetrating abdominal injuries were common in Iranian victims of war often causing multiple organ injuries. The colon and small intestine were the more commonly injured organs and carried the most postoperative complications. Mortality at 1st line hospitals was more than double that of 2nd line hospitals; the complication rate was also greater as was the number of missed injuries. Adherence to the standard surgical protocols, prompt evaluation, proper triage and management are factors which may lower patient morbidity and complications.
Ultrasound-guided core needle biopsy of cervical lymph nodes in the diagnosis of toxoplasmosis.
Cho, Woojin; Kim, Min Kyung; Sim, Jung Suk
2017-05-01
Our study investigates whether the histopathological features of toxoplasmic lymphadenitis (TL), specifically noncaseating microgranuloma and follicular hyperplasia, can be obtained by sonographic-guided core needle biopsy (CNB) of cervical lymph nodes. Thirty-two patients seen from June 2014 to March 2015 were positive for toxoplasma immunoglobulin M antibody. Among those patients, 21 underwent CNB of a cervical lymph node and were enrolled in this study. The pathologic findings were reviewed. Twenty-nine lymph nodes in 21 patients were sampled. Eighteen of the 21 (86%) patients had a microgranuloma without caseating necrosis or giant cells, and all 21 (100%) patients had follicular hyperplasia. The histologic findings of TL were detected by sonographic-guided CNB, which can be used as part of the first line of investigation in patients with unexplained cervical adenopathy. © 2016 Wiley Periodicals, Inc. J Clin Ultrasound 45:192-196, 2017. © 2016 Wiley Periodicals, Inc.
Martín-Núñez, G M; Cabrera-Mulero, A; Alcaide-Torres, J; García-Fuentes, E; Tinahones, F J; Morcillo, S
2017-03-01
Bariatric surgery (BS) is proposed as a highly effective therapy for reducing weight and improving obesity-related co-morbidities. The molecular mechanisms involved in the metabolic improvement after BS are not completely resolved. Epigenetic modifications could have an important role. The aim of this study was to evaluate the effect of different BS procedures (Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy) on global DNA methylation (long interspersed nucleotide element 1 [LINE-1]) in a group of nondiabetic and diabetic severely obese patients. University hospital, Spain. This study included 60 patients (30 nondiabetic and 30 diabetic severely obese patients) undergoing BS: 31 patients underwent Roux-en-Y gastric bypass and 29 underwent laparoscopic sleeve gastrectomy. Before and 6 months post-BS, anthropometric data, blood pressure, and metabolic parameters were determined. LINE-1 DNA methylation was quantified by pyrosequencing. We used the methylation levels of tumor necrosis factor-α as a control gene promoter. There were no differences between LINE-1 methylation levels at baseline and at 6 months after surgery (66.3±1.6 versus 66.2±2.06). Likewise, there was no statistically significant difference on LINE-1 methylation levels when we stratified according to metabolic status (diabetic versus nondiabetic), nor was there regarding the BS procedure. A strong correlation was shown between LINE-1 methylation levels and weight at baseline both in diabetic and nondiabetic obese patients (r = .486; P<.001). Tumor necrosis factor-α methylation levels increased significantly after BS in the group of diabetic obese patients. After BS, global LINE-1 methylation is not modified in the short term. More studies are required to determine if LINE-1 is a stable epigenetic marker, or, on the contrary, if it is susceptible to modification by external factors such as changes in lifestyle or a surgical intervention. Copyright © 2017 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.
Wang, Lan; Yin, Jie; Wang, Xuefei; Shao, Miaomiao; Duan, Fangfang; Wu, Weicheng; Peng, Peike; Jin, Jing; Tang, Yue; Ruan, Yuanyuan; Sun, Yihong; Gu, Jianxin
2016-05-01
C-type lectin-like receptor 2 (CLEC2) is a transmembrane receptor expressed on platelets and several hematopoietic cells. CLEC2 regulates platelet aggregation and the immune response. We investigated its expression and function in normal and transformed gastric epithelial cells from human tissues. We performed tissue microarray analyses of gastric carcinoma samples collected from 96 patients who underwent surgery at Zhongshan Hospital of Fudan University in Shanghai, China and performed real-time polymerase chain reaction assays from an independent group of 60 patients; matched nontumor gastric mucosa tissues were used as the control. Full-length and mutant forms of CLEC2 were expressed in gastric cancer cell line (MGC80-3), or CLEC2 protein was knocked down using small-hairpin RNAs in gastric cancer cell lines (NCI-N87 and AGS). CLEC2 signaling was stimulated by incubation of cells with recombinant human podoplanin or an antibody agonist of CLEC2; cell migration and invasion were assessed by transwell and wound-healing assays. Immunoblot, immunofluorescence microscopy, and real-time polymerase chain reaction assays were used to measure expression of markers of the epithelial to mesenchymal transition and activation of signaling pathways. Immunoprecipitation experiments were performed with an antibody against spleen tyrosine kinase (SYK). Cells were injected into lateral tail vein of BALB/C nude mice; some mice were also given injections of the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. Lung and liver tissues were collected and analyzed for metastases. Levels of CLEC2 were higher in nontumor gastric mucosa (control) than in gastric tumor samples. Levels of CLEC2 protein in gastric tumor tissues correlated with depth of tumor invasion, metastasis to lymph node, tumor TNM stage, and 5-year survival of patients. Activation of CLEC2 in gastric cancer cells reduced their invasive activities in vitro and expression of epithelial to mesenchymal transition markers; these tumor-suppressive effects of CLEC2 required SYK. CLEC2 and SYK interacted physically, and SYK maintained the stability of CLEC2 in cells. AGS cells with CLEC2 knockdown had increased levels of phosphorylated AKT and glycogen synthase kinase-3 beta, increased expression of Snail, reduced levels of E-cadherin, and formed more metastases in mice than AGS cells that expressed CLEC2; these knockdown changes were prevented by the PI3K inhibitor LY294002. Activation of CLEC2 in AGS cells reduced protein and messenger RNA levels of PI3K subunits p85 and p110; this effect was blocked by SYK inhibitor R406. Levels of CLEC2 and SYK proteins and messenger RNAs correlated in gastric tumor samples. CLEC2 suppresses metastasis of gastric cancer cells injected into mice, and prevents activation of AKT and glycogen synthase kinase-3 beta signaling, as well as invasiveness and expression of epithelial to mesenchymal transition markers in gastric cancer cell lines. CLEC2 prevents expression of PI3K subunits, in a SYK-dependent manner. Copyright © 2016 AGA Institute. Published by Elsevier Inc. All rights reserved.
Establishment of stable cell line for inducing KAP1 protein expression.
Liu, Xiaoyan; Khan, Md Asaduzzaman; Cheng, Jingliang; Wei, Chunli; Zhang, Lianmei; Fu, Junjiang
2015-06-01
Generation of the stable cell lines is a highly efficient tool in functional studies of certain genes or proteins, where the particular genes or proteins are inducibly expressed. The KRAB-associated protein-1 (KAP1) is an important transcription regulatory protein, which is investigated in several molecular biological studies. In this study, we have aimed to generate a stable cell line for inducing KAP1 expression. The recombinant plasmid pcDNA5/FRT/TO-KAP1 was constructed at first, which was then transfected into Flp-In™T-REx™-HEK293 cells to establish an inducible pcDNA5/FRT/TO-KAP1-HEK293 cell line. The Western blot analysis showed that the protein level of KAP1 is over-expressed in the established stable cell line by doxycycline induction, both dose and time dependently. Thus we have successfully established stable pcDNA5/FRT/TO-KAP1-HEK293 cell line, which can express KAP1 inducibly. This inducible cell line might be very useful for KAP1 functional studies.
Vishwanathan, Nandita; Bandyopadhyay, Arpan; Fu, Hsu-Yuan; Johnson, Kathryn C; Springer, Nathan M; Hu, Wei-Shou
2017-08-01
Chinese Hamster Ovary (CHO) cells are aneuploid in nature. The genome of recombinant protein producing CHO cell lines continuously undergoes changes in its structure and organization. We analyzed nine cell lines, including parental cell lines, using a comparative genomic hybridization (CGH) array focused on gene-containing regions. The comparison of CGH with copy-number estimates from sequencing data showed good correlation. Hierarchical clustering of the gene copy number variation data from CGH data revealed the lineage relationships between the cell lines. On analyzing the clones of a clonal population, some regions with altered genomic copy number status were identified indicating genomic changes during passaging. A CGH array is thus an effective tool in quantifying genomic alterations in industrial cell lines and can provide insights into the changes in the genomic structure during cell line derivation and long term culture. Biotechnol. Bioeng. 2017;114: 1903-1908. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Analysing intracellular deformation of polymer capsules using structured illumination microscopy
NASA Astrophysics Data System (ADS)
Chen, Xi; Cui, Jiwei; Sun, Huanli; Müllner, Markus; Yan, Yan; Noi, Ka Fung; Ping, Yuan; Caruso, Frank
2016-06-01
Understanding the behaviour of therapeutic carriers is important in elucidating their mechanism of action and how they are processed inside cells. Herein we examine the intracellular deformation of layer-by-layer assembled polymer capsules using super-resolution structured illumination microscopy (SIM). Spherical- and cylindrical-shaped capsules were studied in three different cell lines, namely HeLa (human epithelial cell line), RAW264.7 (mouse macrophage cell line) and differentiated THP-1 (human monocyte-derived macrophage cell line). We observed that the deformation of capsules was dependent on cell line, but independent of capsule shape. This suggests that the mechanical forces, which induce capsule deformation during cell uptake, vary between cell lines, indicating that the capsules are exposed to higher mechanical forces in HeLa cells, followed by RAW264.7 and then differentiated THP-1 cells. Our study demonstrates the use of super-resolution SIM in analysing intracellular capsule deformation, offering important insights into the cellular processing of drug carriers in cells and providing fundamental knowledge of intracellular mechanobiology. Furthermore, this study may aid in the design of novel drug carriers that are sensitive to deformation for enhanced drug release properties.Understanding the behaviour of therapeutic carriers is important in elucidating their mechanism of action and how they are processed inside cells. Herein we examine the intracellular deformation of layer-by-layer assembled polymer capsules using super-resolution structured illumination microscopy (SIM). Spherical- and cylindrical-shaped capsules were studied in three different cell lines, namely HeLa (human epithelial cell line), RAW264.7 (mouse macrophage cell line) and differentiated THP-1 (human monocyte-derived macrophage cell line). We observed that the deformation of capsules was dependent on cell line, but independent of capsule shape. This suggests that the mechanical forces, which induce capsule deformation during cell uptake, vary between cell lines, indicating that the capsules are exposed to higher mechanical forces in HeLa cells, followed by RAW264.7 and then differentiated THP-1 cells. Our study demonstrates the use of super-resolution SIM in analysing intracellular capsule deformation, offering important insights into the cellular processing of drug carriers in cells and providing fundamental knowledge of intracellular mechanobiology. Furthermore, this study may aid in the design of novel drug carriers that are sensitive to deformation for enhanced drug release properties. Electronic supplementary information (ESI) available: Additional figures. See DOI: 10.1039/c6nr02151d
Lu, Y.; Nerurkar, V.R.; Aguirre, A.A.; Work, Thierry M.; Balazs, G.H.; Yanagihara, R.
1999-01-01
Thirteen cell lines were established and characterized from brain, kidney, lung, spleen, heart, liver, gall bladder, urinary bladder, pancreas, testis, skin, and periorbital and tumor tissues of an immature male green turtle (Chelonia mydas) with fibropapillomas. Cell lines were optimally maintained at 30A? C in RPMI 1640 medium supplemented with 10% fetal bovine serum. Propagation of the turtle cell lines was serum dependent, and plating efficiencies ranged from 13 to 37%. The cell lines, which have been subcultivated more than 20 times, had a doubling time of approximately 30 to 36 h. When tested for their sensitivity to several fish viruses, most of the cell lines were susceptible to a rhabdovirus, spring viremia carp virus, but refractory to channel catfish virus (a herpesvirus), infectious pancreatic necrosis virus (a birnavirus), and two other fish rhabdoviruses, infectious hematopoietic necrosis virus and viral hemorrhagic septicemia virus. During in vitro subcultivation, tumor-like cell aggregates appeared in cell lines derived from lungs, testis, and periorbital and tumor tissues, and small, naked intranuclear virus particles were detected by thin-section electron microscopy. These cell lines are currently being used in attempts to isolate the putative etiologic virus of green turtle fibropapilloma.
Rungsiwiwut, Ruttachuk; Numchaisrika, Pranee; Ahnonkitpanit, Vichuda; Isarasena, Nipan; Virutamasen, Pramuan
2012-01-01
Abstract Human embryonic stem (hES) cells are considered to be a potential source for the therapy of human diseases, drug screening, and the study of developmental biology. In the present study, we successfully derived hES cell lines from blastocysts developed from frozen and fresh embryos. Seventeen- to eighteen-year-old frozen embryos were thawed, cultured to the blastocyst stage, and induced to form hES cells using human foreskin fibroblasts. The Chula2.hES cell line and the Chula4.hES and Chula5.hES cell lines were derived from blastocysts developed from frozen and fresh embryos, respectively. The cell lines expressed pluripotent markers, including alkaline phosphatase (AP), Oct3/4, stage-specific embryonic antigen (SSEA)-4, and tumor recognition antigen (TRA)-1-60 and TRA-1-81 as detected with immunocytochemistry. The real-time polymerase chain reaction (RT-PCR) results showed that the cell lines expressed pluripotent genes, including OCT3/4, SOX2, NANOG, UTF, LIN28, REX1, NODAL, and E-Cadherin. In addition, the telomerase activities of the cell lines were higher than in the fibroblast cells. Moreover, the cell lines differentiated into all three germ layers both in vitro and in vivo. The cell lines had distinct identities, as revealed with DNA fingerprinting, and maintained their normal karyotype after a long-term culture. This study is the first to report the successful derivation of hES cell lines in Thailand and that frozen embryos maintained their pluripotency similar to fresh embryos, as shown by the success of hES cell derivation, even after years of cryopreservation. Therefore, embryos from prolonged cryopreservation could be an alternative source for embryonic stem cell research. PMID:23514952
Copy number abnormality of acute lymphoblastic leukemia cell lines based on their genetic subtypes.
Tomoyasu, Chihiro; Imamura, Toshihiko; Tomii, Toshihiro; Yano, Mio; Asai, Daisuke; Goto, Hiroaki; Shimada, Akira; Sanada, Masashi; Iwamoto, Shotaro; Takita, Junko; Minegishi, Masayoshi; Inukai, Takeshi; Sugita, Kanji; Hosoi, Hajime
2018-05-21
In this study, we performed genetic analysis of 83 B cell precursor acute lymphoblastic leukemia (B-ALL) cell lines. First, we performed multiplex ligation-dependent probe amplification analysis to identify copy number abnormalities (CNAs) in eight genes associated with B-ALL according to genetic subtype. In Ph + B-ALL cell lines, the frequencies of IKZF1, CDKN2A/2B, BTG1, and PAX5 deletion were significantly higher than those in Ph - B-ALL cell lines. The frequency of CDKN2A/2B deletion in KMT2A rearranged cell lines was significantly lower than that in non-KMT2A rearranged cell lines. These findings suggest that CNAs are correlated with genetic subtype in B-ALL cell lines. In addition, we determined that three B-other ALL cell lines had IKZF1 deletions (YCUB-5, KOPN49, and KOPN75); we therefore performed comprehensive genetic analysis of these cell lines. YCUB-5, KOPN49, and KOPN75 had P2RY8-CRLF2, IgH-CRLF2, and PAX5-ETV6 fusions, respectively. Moreover, targeted capture sequencing revealed that YCUB-5 had JAK2 R683I and KRAS G12D, and KOPN49 had JAK2 R683G and KRAS G13D mutations. These data may contribute to progress in the field of leukemia research.
Muff, Roman; Rath, Prisni; Ram Kumar, Ram Mohan; Husmann, Knut; Born, Walter; Baudis, Michael; Fuchs, Bruno
2015-01-01
Osteosarcoma is a rare but highly malignant cancer of the bone. As a consequence, the number of established cell lines used for experimental in vitro and in vivo osteosarcoma research is limited and the value of these cell lines relies on their stability during culture. Here we investigated the stability in gene expression by microarray analysis and array genomic hybridization of three low metastatic cell lines and derivatives thereof with increased metastatic potential using cells of different passages. The osteosarcoma cell lines showed altered gene expression during in vitro culture, and it was more pronounced in two metastatic cell lines compared to the respective parental cells. Chromosomal instability contributed in part to the altered gene expression in SAOS and LM5 cells with low and high metastatic potential. To identify metastasis-relevant genes in a background of passage-dependent altered gene expression, genes involved in "Pathways in cancer" that were consistently regulated under all passage comparisons were evaluated. Genes belonging to "Hedgehog signaling pathway" and "Wnt signaling pathway" were significantly up-regulated, and IHH, WNT10B and TCF7 were found up-regulated in all three metastatic compared to the parental cell lines. Considerable instability during culture in terms of gene expression and chromosomal aberrations was observed in osteosarcoma cell lines. The use of cells from different passages and a search for genes consistently regulated in early and late passages allows the analysis of metastasis-relevant genes despite the observed instability in gene expression in osteosarcoma cell lines during culture.
van Wenum, Martien; Adam, Aziza A A; Hakvoort, Theodorus B M; Hendriks, Erik J; Shevchenko, Valery; van Gulik, Thomas M; Chamuleau, Robert A F M; Hoekstra, Ruurdtje
2016-01-01
Recently, the first clinical trials on Bioartificial Livers (BALs) loaded with a proliferative human hepatocyte cell source have started. There are two cell lines that are currently in an advanced state of BAL development; HepaRG and HepG2/C3A. In this study we aimed to compare both cell lines on applicability in BALs and to identify possible strategies for further improvement. We tested both cell lines in monolayer- and BAL cultures on growth characteristics, hepatic differentiation, nitrogen-, carbohydrate-, amino acid- and xenobiotic metabolism. Interestingly, both cell lines adapted the hepatocyte phenotype more closely when cultured in BALs; e.g. monolayer cultures produced lactate, while BAL cultures showed diminished lactate production (C3A) or conversion to elimination (HepaRG), and urea cycle activity increased upon BAL culturing in both cell lines. HepaRG-BALs outperformed C3A-BALs on xenobiotic metabolism, ammonia elimination and lactate elimination, while protein synthesis was comparable. In BAL cultures of both cell lines ammonia elimination correlated positively with glutamine production and glutamate consumption, suggesting ammonia elimination was mainly driven by the balance between glutaminase and glutamine synthetase activity. Both cell lines lacked significant urea cycle activity and both required multiple culture weeks before reaching optimal differentiation in BALs. In conclusion, culturing in BALs enhanced hepatic functionality of both cell lines and from these, the HepaRG cells are the most promising proliferative cell source for BAL application.
Stewart, Delisha A; Winnike, Jason H; McRitchie, Susan L; Clark, Robert F; Pathmasiri, Wimal W; Sumner, Susan J
2016-09-02
To date, no targeted therapies are available to treat triple negative breast cancer (TNBC), while other breast cancer subtypes are responsive to current therapeutic treatment. Metabolomics was conducted to reveal differences in two hormone receptor-negative TNBC cell lines and two hormone receptor-positive Luminal A cell lines. Studies were conducted in the presence and absence of paclitaxel (Taxol). TNBC cell lines had higher levels of amino acids, branched-chain amino acids, nucleotides, and nucleotide sugars and lower levels of proliferation-related metabolites like choline compared with Luminal A cell lines. In the presence of paclitaxel, each cell line showed unique metabolic responses, with some similarities by type. For example, in the Luminal A cell lines, levels of lactate and creatine decreased while certain choline metabolites and myo-inositol increased with paclitaxel. In the TNBC cell lines levels of glutamine, glutamate, and glutathione increased, whereas lysine, proline, and valine decreased in the presence of drug. Profiling secreted inflammatory cytokines in the conditioned media demonstrated a greater response to paclitaxel in the hormone-positive Luminal cells compared with a secretion profile that suggested greater drug resistance in the TNBC cells. The most significant differences distinguishing the cell types based on pathway enrichment analyses were related to amino acid, lipid and carbohydrate metabolism pathways, whereas several biological pathways were differentiated between the cell lines following treatment.
Han, Fei; Zhang, Long; Zhang, Suxia; Zhou, Hong; Yi, Xianghua
2015-01-01
Warthin-Like tumor of the thyroid is a recently described rare variant of papillary thyroid cancer. The distinct histological feature of this variant is papillary architecture lining oncocytic epithelial cells with nuclear characteristics of papillary carcinoma, accompanied by prominent lymphocytic infiltration in the papillary stalks. Here, we present a case of occult Warthin-like papillary thyroid carcinoma, 0.5-cm in maximum dimension, underwent left thyroid lobectomy in a 65 years old Chinese woman. In this case, there was no extrathyroid extension, vascular invasion and lymphatic metastasis, as well as no complication of lymphocytic thyroiditis. Immunohistochemistry staining revealed that the tumor cells were positive for Leu-M1, HBME-1, 34βE12, and MIB-1 labeling index was low. RET/PTC expression was absent in tumor cells. Furthermore, activated point mutations of BRAF V600E and V600K were concurrently detected by DNA sequencing. Further studies are needed to elucidate the prevalence and role of BRAF(V600K) mutation in papillary thyroid carcinoma, and long-term follow-up for the patient is needed to clarify the biological behavior of this variant with dual BRAF mutations.
Han, Fei; Zhang, Long; Zhang, Suxia; Zhou, Hong; Yi, Xianghua
2015-01-01
Warthin-Like tumor of the thyroid is a recently described rare variant of papillary thyroid cancer. The distinct histological feature of this variant is papillary architecture lining oncocytic epithelial cells with nuclear characteristics of papillary carcinoma, accompanied by prominent lymphocytic infiltration in the papillary stalks. Here, we present a case of occult Warthin-like papillary thyroid carcinoma, 0.5-cm in maximum dimension, underwent left thyroid lobectomy in a 65 years old Chinese woman. In this case, there was no extrathyroid extension, vascular invasion and lymphatic metastasis, as well as no complication of lymphocytic thyroiditis. Immunohistochemistry staining revealed that the tumor cells were positive for Leu-M1, HBME-1, 34βE12, and MIB-1 labeling index was low. RET/PTC expression was absent in tumor cells. Furthermore, activated point mutations of BRAF V600E and V600K were concurrently detected by DNA sequencing. Further studies are needed to elucidate the prevalence and role of BRAFV600K mutation in papillary thyroid carcinoma, and long-term follow-up for the patient is needed to clarify the biological behavior of this variant with dual BRAF mutations. PMID:26191315
Zhou, Mi; Feng, Mei; Fu, Ling-Ling; Ji, Lin-Dan; Zhao, Jin-Shun; Xu, Jin
2016-11-01
Tributyltin (TBT) is one of the most widely used organotin biocides, which has severe endocrine-disrupting effects on marine species and mammals. Given that TBT accumulates at higher levels in the liver than in any other organ, and it acts mainly as a hepatotoxic agent, it is important to clearly delineate the hepatotoxicity of TBT. However, most of the available studies on TBT have focused on observations at the cellular level, while studies at the level of genes and proteins are limited; therefore, the molecular mechanisms of TBT-induced hepatotoxicity remains largely unclear. In the present study, we applied a toxicogenomic approach to investigate the effects of TBT on gene expression in the human normal liver cell line HL7702. Gene expression profiling identified the apoptotic pathway as the major cause of hepatotoxicity induced by TBT. Flow cytometry assays confirmed that medium- and high-dose TBT treatments significantly increased the number of apoptotic cells, and more cells underwent late apoptosis in the high-dose TBT group. The genes encoding heat shock proteins (HSPs), kinases and tumor necrosis factor receptors mediated TBT-induced apoptosis. These findings revealed novel molecular mechanisms of TBT-induced hepatotoxicity, and the current microarray data may also provide clues for future studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
Fucoidan Does Not Exert Anti-Tumorigenic Effects on Uveal Melanoma Cell Lines
Dithmer, Michaela; Kirsch, Anna-Maria; Richert, Elisabeth; Fuchs, Sabine; Wang, Fanlu; Schmidt, Harald; Coupland, Sarah E.; Roider, Johann; Klettner, Alexa
2017-01-01
Background. The polysaccharide fucoidan is widely investigated as an anti-cancer agent. Here, we tested the effect of fucoidan on uveal melanoma cell lines. Methods. The effect of 100 µM fucoidan was investigated on five cell lines (92.1, Mel270 OMM1, OMM2.3, OMM2.5) and of 1 µg/mL–1 mg/mL fucoidan in two cell lines (OMM1, OMM2.3). Cell proliferation and viability were investigated with a WST-1 assay, migration in a wound healing (scratch) assay. Vascular Endothelial Growth Factor (VEGF) was measured in ELISA. Angiogenesis was evaluated in co-cultures with endothelial cells. Cell toxicity was induced by hydrogen-peroxide. Protein expression (Akt, ERK1/2, Bcl-2, Bax) was investigated in Western blot. Results. Fucoidan increased proliferation in two and reduced it in one cell line. Migration was reduced in three cell lines. The effect of fucoidan on VEGF was cell type and concentration dependent. In endothelial co-culture with 92.1, fucoidan significantly increased tubular structures. Moreover, fucoidan significantly protected all tested uveal melanoma cell lines from hydrogen-peroxide induced cell death. Under oxidative stress, fucoidan did not alter the expression of Bcl-2, Bax or ERK1/2, while inducing Akt expression in 92.1 cells but not in any other cell line. Conclusion. Fucoidan did not show anti-tumorigenic effects but displayed protective and pro-angiogenic properties, rendering fucoidan unsuitable as a potential new drug for the treatment of uveal melanoma. PMID:28640204
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galán-Malo, Patricia; Vela, Laura; Gonzalo, Oscar
Microtubule poisons and other anti-mitotic drugs induce tumor death but the molecular events linking mitotic arrest to cell death are still not fully understood. We have analyzed cell fate after mitotic arrest produced by the microtubule-destabilizing drug vincristine in a panel of human tumor cell lines showing different response to vincristine. In Jurkat, RPMI 8226 and HeLa cells, apoptosis was triggered shortly after vincristine-induced mitotic arrest. However, A549 cells, which express a great amount of Bcl-x{sub L} and undetectable amounts of Bak, underwent mitotic slippage prior to cell death. However, when Bcl-x{sub L} gene was silenced in A549 cells, vincristinemore » induced apoptosis during mitotic arrest. Another different behavior was found in MiaPaca2 cells, where vincristine caused death by mitotic catastrophe that switched to apoptosis when cyclin B1 degradation was prevented by proteasome inhibition. Overexpression of Bcl-x{sub L} or silencing Bax and Bak expression delayed the onset of apoptosis in Jurkat and RPMI 8226 cells, enabling mitotic slippage and endoreduplication. In HeLa cells, overexpression of Bcl-x{sub L} switched cell death from apoptosis to mitotic catastrophe. Mcl-1 offered limited protection to vincristine-induced cell death and Mcl-1 degradation was not essential for vincristine-induced death. All these results, taken together, indicate that the Bcl-x{sub L}/Bak ratio and the ability to degrade cyclin B1 determine cell fate after mitotic arrest in the different tumor cell types. Highlights: ► Vincristine induces cell death by apoptosis or mitotic catastrophe. ► Apoptosis-proficient cells die by apoptosis during mitosis upon vincristine treatment. ► p53wt apoptosis-deficient cells undergo apoptosis from a G1-like tetraploid state. ► p53mt apoptosis-deficient cells can survive and divide giving rise to 8N cells.« less
NASA Astrophysics Data System (ADS)
Lazar, Daniel C.; Cho, Edward H.; Luttgen, Madelyn S.; Metzner, Thomas J.; Loressa Uson, Maria; Torrey, Melissa; Gross, Mitchell E.; Kuhn, Peter
2012-02-01
Many important experiments in cancer research are initiated with cell line data analysis due to the ease of accessibility and utilization. Recently, the ability to capture and characterize circulating tumor cells (CTCs) has become more prevalent in the research setting. This ability to detect, isolate and analyze CTCs allows us to directly compare specific protein expression levels found in patient CTCs to cell lines. In this study, we use immunocytochemistry to compare the protein expression levels of total cytokeratin (CK) and androgen receptor (AR) in CTCs and cell lines from patients with prostate cancer to determine what translational insights might be gained through the use of cell line data. A non-enrichment CTC detection assay enables us to compare cytometric features and relative expression levels of CK and AR by indirect immunofluorescence from prostate cancer patients against the prostate cancer cell line LNCaP. We measured physical characteristics of these two groups and observed significant differences in cell size, fluorescence intensity and nuclear to cytoplasmic ratio. We hope that these experiments will initiate a foundation to allow cell line data to be compared against characteristics of primary cells from patients.
Harati, K; Behr, B; Daigeler, A; Hirsch, T; Jacobsen, F; Renner, M; Harati, A; Wallner, C; Lehnhardt, M; Becerikli, M
2017-01-01
The cytostatic effects of the polyphenol curcumin and Viscum album extract (VAE) were assessed in soft-tissue sarcoma (STS) cells. Eight human STS cell lines were used: fibrosarcoma (HT1080), liposarcoma (SW872, T778, MLS-402), synovial sarcoma (SW982, SYO1, 1273), and malignant fibrous histiocytoma (U2197). Primary human fibroblasts served as control cells. Cell proliferation, viability, and cell index (CI) were analyzed by BrdU assay, MTT assay, and real-time cell analysis (RTCA). As indicated by BrdU and MTT, curcumin significantly decreased the cell proliferation of five cell lines (HT1080, SW872, SYO1, 1273, and U2197) and the viability of two cell lines (SW872 and SW982). VAE led to significant decreases of proliferation in eight cell lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, 1293, and U2197) and reduced viability in seven STS lines (HT1080, SW872, T778, MLS-402, SW982, SYO1, and 1273). As indicated by RTCA for 160 h, curcumin decreased the CI of all synovial sarcoma cell lines as well as T778 and HT1080. VAE diminished the CI in most of the synovial sarcoma (SW982, SYO1) and liposarcoma (SW872, T778) cell lines as well as HT1080. Primary fibroblasts were not affected adversely by the two compounds in RTCA. Curcumin and VAE can inhibit the proliferation and viability of STS cells.
Torres-Atencio, Ivonne; Ainsua-Enrich, Erola; de Mora, Fernando; Picado, César; Martín, Margarita
2014-01-01
Background Mast cells play a critical role in allergic and inflammatory diseases, including exercise-induced bronchoconstriction (EIB) in asthma. The mechanism underlying EIB is probably related to increased airway fluid osmolarity that activates mast cells to the release inflammatory mediators. These mediators then act on bronchial smooth muscle to cause bronchoconstriction. In parallel, protective substances such as prostaglandin E2 (PGE2) are probably also released and could explain the refractory period observed in patients with EIB. Objective This study aimed to evaluate the protective effect of PGE2 on osmotically activated mast cells, as a model of exercise-induced bronchoconstriction. Methods We used LAD2, HMC-1, CD34-positive, and human lung mast cell lines. Cells underwent a mannitol challenge, and the effects of PGE2 and prostanoid receptor (EP) antagonists for EP1–4 were assayed on the activated mast cells. Beta-hexosaminidase release, protein phosphorylation, and calcium mobilization were assessed. Results Mannitol both induced mast cell degranulation and activated phosphatidyl inositide 3-kinase and mitogen-activated protein kinase (MAPK) pathways, thereby causing de novo eicosanoid and cytokine synthesis. The addition of PGE2 significantly reduced mannitol-induced degranulation through EP2 and EP4 receptors, as measured by beta-hexosaminidase release, and consequently calcium influx. Extracellular-signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 phosphorylation were diminished when compared with mannitol activation alone. Conclusions Our data show a protective role for the PGE2 receptors EP2 and EP4 following osmotic changes, through the reduction of human mast cell activity caused by calcium influx impairment and MAP kinase inhibition. PMID:25329458
RAD18 mediates resistance to ionizing radiation in human glioma cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Chen; Wang, Hongwei; Cheng, Hongbin
Highlights: • RAD18 is an important mediator of the IR-induced resistance in glioma cell lines. • RAD18 overexpression confers resistance to IR-mediated apoptosis. • The elevated expression of RAD18 is associated with recurrent GBM who underwent IR therapy. - Abstract: Radioresistance remains a major challenge in the treatment of glioblastoma multiforme (GBM). RAD18 a central regulator of translesion DNA synthesis (TLS), has been shown to play an important role in regulating genomic stability and DNA damage response. In the present study, we investigate the relationship between RAD18 and resistance to ionizing radiation (IR) and examined the expression levels of RAD18more » in primary and recurrent GBM specimens. Our results showed that RAD18 is an important mediator of the IR-induced resistance in GBM. The expression level of RAD18 in glioma cells correlates with their resistance to IR. Ectopic expression of RAD18 in RAD18-low A172 glioma cells confers significant resistance to IR treatment. Conversely, depletion of endogenous RAD18 in RAD18-high glioma cells sensitized these cells to IR treatment. Moreover, RAD18 overexpression confers resistance to IR-mediated apoptosis in RAD18-low A172 glioma cells, whereas cells deficient in RAD18 exhibit increased apoptosis induced by IR. Furthermore, knockdown of RAD18 in RAD18-high glioma cells disrupts HR-mediated repair, resulting in increased accumulation of DSB. In addition, clinical data indicated that RAD18 was significantly higher in recurrent GBM samples that were exposed to IR compared with the corresponding primary GBM samples. Collectively, our findings reveal that RAD18 may serve as a key mediator of the IR response and may function as a potential target for circumventing IR resistance in human GBM.« less
Seim, Inge; Jeffery, Penny L; de Amorim, Laura; Walpole, Carina M; Fung, Jenny; Whiteside, Eliza J; Lourie, Rohan; Herington, Adrian C; Chopin, Lisa K
2013-07-23
Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P < 0.05) in the PC3 prostate cancer cell line, however, ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific. The expression of GOAT in prostate cancer supports the hypothesis that the ghrelin axis has autocrine/paracrine roles. We propose that the RWPE-1 prostate cell line and the PC3 prostate cancer cell line may be useful for investigating GOAT regulation and function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smeets, M.F.M.A.; Mooren, E.H.M.; Abdel-Wahab, A.H.A.
1994-11-01
The goal of these experiments was to investigate further the relationship between DNA double-strand breaks and cell killing in human tumor cells, first by comparing different cell lines, and second by radiomodification studies. Field-inversion gel electrophoresis was used to quantify double-strand breaks. Two subclones of the radioresistant human squamous cell carcinoma line SQ20B (SQD9 and SQG6) were compared. These subclones differed in DNA index by a factor of 1.7 but showed the same resistance to radiation as cells of the parental cell line. It was found that, although induction of DSBs was not significantly different in the two cell lines,more » the t{sub 1/2} of the fast component of repair was significantly shorter for SQD9 cells, leading to greater overall repair which was not reflected in increased survival. Caffeine and cysteamine were tested as modifiers of radiosensitivity, using the radioresistant SQ20B line and the radiosensitive SCC61 cell line. No effect of caffeine was seen when the drug was present only during irradiation. Postirradiation incubations with caffeine, however, resulted in a dose reduction factor greater than 2.0 in cell survival for both cell lines. In contrast, induction of DSBs was reduced by caffeine, and no effect on DSB repair was observed. Cysteamine led to a dose protection factor greater than 1.8 in cell survival in both cell lines. A reduction in induced DSBs was found at high doses corresponding approximately with the increase in cell survival. Over the same (low) dose range, however, the correlation between DSB induction and cell killing was poor. These data indicate that DSB induction does not correlate well with cell killing either for different cell lines, for radiochemical modification (cysteamine) or for some other types of modification (caffeine). 31 refs., 8 figs.« less
LINE-1 Cultured Cell Retrotransposition Assay
Kopera, Huira C.; Larson, Peter A.; Moldovan, John B.; Richardson, Sandra R.; Liu, Ying; Moran, John V.
2016-01-01
Summary The Long INterspersed Element-1 (LINE-1 or L1) retrotransposition assay has facilitated the discovery and characterization of active (i.e., retrotransposition-competent) LINE-1 sequences from mammalian genomes. In this assay, an engineered LINE-1 containing a retrotransposition reporter cassette is transiently transfected into a cultured cell line. Expression of the reporter cassette, which occurs only after a successful round of retrotransposition, allows the detection and quantification of the LINE-1 retrotransposition efficiency. This assay has yielded insight into the mechanism of LINE-1 retrotransposition. It also has provided a greater understanding of how the cell regulates LINE-1 retrotransposition and how LINE-1 retrotransposition impacts the structure of mammalian genomes. Below, we provide a brief introduction to LINE-1 biology and then detail how the LINE-1 retrotransposition assay is performed in cultured mammalian cells. PMID:26895052
The identification of somatic genetic alterations that confer sensitivity to pharmacologic inhibitors has led to new cancer therapies. To identify mutations that confer an exceptional dependency, shRNA-based loss-of-function data were analyzed from a dataset of numerous cell lines to reveal genes that are essential in a small subset of cancer cell lines. Once these cell lines were determined, detailed genomic characterization from these cell lines was utilized to ascertain the genomic aberrations that led to this extreme dependency.
O’Meally, Denis; Quinn, Alexander E.; Sarre, Stephen D.; Georges, Arthur; Marshall Graves, Jennifer A.
2009-01-01
Primary cell lines were established from cultures of tail and toe clips of five species of Australian dragon lizards: Tympanocryptis pinguicolla, Tympanocryptis sp., Ctenophorus fordi, Amphibolurus norrisi and Pogona vitticeps. The start of exponential cell growth ranged from 1 to 5 weeks. Cultures from all specimens had fibroblastic morphology. Cell lines were propagated continuously up to ten passages, cryopreserved and recovered successfully. We found no reduction in cell viability after short term (<6 months) storage at −80 °C. Mitotic metaphase chromosomes were harvested from these cell lines and used in differential staining, banding and fluorescent in situ hybridisation. Cell lines maintained normal diploidy in all species. This study reports a simple non-invasive method for establishing primary cell lines from Australian dragon lizards without sacrifice. The method is likely to be applicable to a range of species. Such cell lines provide a virtually unlimited source of material for cytogenetic, evolutionary and genomic studies. PMID:19199067
Wan, Q; Xu, D; Li, Z
2001-07-01
To establish a cell line of human ovarian cancer, and study its characterization. The cell line was established by the cultivation of subsides walls, and kept by freezing. The morphology was observed by microscope and electromicroscope. The authors studied its growth and propagation, the agglutination test of phytohemagglutinin (PHA), the chromosome analysis, heterotransplanting, immuno-histochemistry staining, the analysis of hormone, the pollution examination and the test of sensitivity to virus etc. A new human ovarian carcinoma cell line, designated ovarian mucinous cystadenocarcinoma 685 (OMC685), was established from mucinous cystadenocarcinoma. This cell line had subcultured to 91 generations, and some had been frozen for 8 years and revived, still grew well. This cell line possessed the feature of glandular epithelium cancer cell. The cells grew exuberantly, and the agglutinating test of PHA was positive. Karyotype was subtriploid with distortion. Heterotransplantations, alcian blue periobic acid-schiff (AbPAS), mucicarmine, alcian blue stainings, estradiol (E2) and progesterone were all positive. Without being polluted, it was sensitive to polivirus-I, adenovirus 7 and measles virus. OMC685 is a distinct human ovarian tumous cell line.
Delayed Cell Cycle Progression and Apoptosis Induced by Hemicellulase-Treated Agaricus blazei
Kasai, Hirotake
2007-01-01
We examined the effects of hemicellulase-treated Agaricus blazei (AB fraction H, ABH) on growth of several tumor cell lines. ABH inhibited the proliferation of some cell lines without cytotoxic effects. It markedly prolonged the S phase of the cell cycle. ABH also induced mitochondria-mediated apoptosis in different cell lines. However, it had no impact on the growth of other cell lines. ABH induced strong activation of p38 mitogen-activated protein kinase (MAPK) in the cells in which it evoked apoptosis. On the other hand, ABH showed only a weak p38 activation effect in those cell lines in which it delayed cell cycle progression with little induction of apoptosis. However, p38 MAPK-specific inhibitor inhibited both ABH-induced effects, and ABH also caused apoptosis in the latter cells under conditions of high p38 MAPK activity induced by combined treatment with TNF-α. These results indicate that the responsiveness of p38 MAPK to ABH, which differs between cell lines, determines subsequent cellular responses on cell growth. PMID:17342245
Féraud, Olivier; Valogne, Yannick; Melkus, Michael W.; Zhang, Yanyan; Oudrhiri, Noufissa; Haddad, Rima; Daury, Aurélie; Rocher, Corinne; Larbi, Aniya; Duquesnoy, Philippe; Divers, Dominique; Gobbo, Emilie; Brunet de la Grange, Philippe; Louache, Fawzia; Bennaceur-Griscelli, Annelise; Mitjavila-Garcia, Maria Teresa
2016-01-01
Hematopoiesis generated from human embryonic stem cells (ES) and induced pluripotent stem cells (iPS) are unprecedented resources for cell therapy. We compared hematopoietic differentiation potentials from ES and iPS cell lines originated from various donors and derived them using integrative and non-integrative vectors. Significant differences in differentiation toward hematopoietic lineage were observed among ES and iPS. The ability of engraftment of iPS or ES-derived cells in NOG mice varied among the lines with low levels of chimerism. iPS generated from ES cell-derived mesenchymal stem cells (MSC) reproduce a similar hematopoietic outcome compared to their parental ES cell line. We were not able to identify any specific hematopoietic transcription factors that allow to distinguish between good versus poor hematopoiesis in undifferentiated ES or iPS cell lines. There is a relatively unpredictable variation in hematopoietic differentiation between ES and iPS cell lines that could not be predicted based on phenotype or gene expression of the undifferentiated cells. These results demonstrate the influence of genetic background in variation of hematopoietic potential rather than the reprogramming process. PMID:26938212
GS-Nitroxide (JP4-039)-Mediated Radioprotection of Human Fanconi Anemia Cell Lines
Bernard, Mark E.; Kim, Hyun; Berhane, Hebist; Epperly, Michael W.; Franicola, Darcy; Zhang, Xichen; Houghton, Frank; Shields, Donna; Wang, Hong; Bakkenist, Christopher J.; Frantz, Marie-Celine; Forbeck, Erin M.; Goff, Julie P.; Wipf, Peter; Greenberger, Joel S.
2011-01-01
Fanconi anemia (FA) is an inherited disorder characterized by defective DNA repair and cellular sensitivity to DNA crosslinking agents. Clinically, FA is associated with high risk for marrow failure, leukemia and head and neck squamous cell carcinoma (HNSCC). Radiosensitivity in FA patients compromises the use of total-body irradiation for hematopoietic stem cell transplantation and radiation therapy for HNSCC. A radioprotector for the surrounding tissue would therefore be very valuable during radiotherapy for HNSCC. Clonogenic radiation survival curves were determined for pre- or postirradiation treatment with the parent nitroxide Tempol or JP4-039 in cells of four FA patient-derived cell lines and two transgene-corrected subclonal lines. FancG–/– (PD326) and FancD2–/– (PD20F) patient lines were more sensitive to the DNA crosslinking agent mitomycin C (MMC) than their transgene-restored subclonal cell lines (both P < 0.0001). FancD2–/– cells were more radiosensitive than the transgene restored subclonal cell line (ñ = 2.0 ± 0.7 and 4.7 ± 2.2, respectively, P = 0.03). In contrast, FancG–/– cells were radioresistant relative to the transgene-restored subclonal cell line (ñ = 9.4 ± 1.5 and 2.2 ± 05, respectively, P = 0.001). DNA strand breaks measured by the comet assay correlated with radiosensitivity. Cell lines from a Fanc-C and Fanc-A patients showed radiosensitivity similar to that of Fanc-D2–/– cells. A fluorophore-tagged JP4-039 (BODIPY-FL) analog targeted the mitochondria of the cell lines. Preirradiation or postirradiation treatment with JP4-039 at a lower concentration than Tempol significantly increased the radioresistance and stabilized the antioxidant stores of all cell lines. Tempol increased the toxicity of MMC in FancD2–/– cells. These data provide support for the potential clinical use of JP4-039 for normal tissue radioprotection during chemoradiotherapy in FA patients. PMID:21939290
GS-nitroxide (JP4-039)-mediated radioprotection of human Fanconi anemia cell lines.
Bernard, Mark E; Kim, Hyun; Berhane, Hebist; Epperly, Michael W; Franicola, Darcy; Zhang, Xichen; Houghton, Frank; Shields, Donna; Wang, Hong; Bakkenist, Christopher J; Frantz, Marie-Celine; Forbeck, Erin M; Goff, Julie P; Wipf, Peter; Greenberger, Joel S
2011-11-01
Fanconi anemia (FA) is an inherited disorder characterized by defective DNA repair and cellular sensitivity to DNA crosslinking agents. Clinically, FA is associated with high risk for marrow failure, leukemia and head and neck squamous cell carcinoma (HNSCC). Radiosensitivity in FA patients compromises the use of total-body irradiation for hematopoietic stem cell transplantation and radiation therapy for HNSCC. A radioprotector for the surrounding tissue would therefore be very valuable during radiotherapy for HNSCC. Clonogenic radiation survival curves were determined for pre- or postirradiation treatment with the parent nitroxide Tempol or JP4-039 in cells of four FA patient-derived cell lines and two transgene-corrected subclonal lines. FancG(-/-) (PD326) and FancD2(-/-) (PD20F) patient lines were more sensitive to the DNA crosslinking agent mitomycin C (MMC) than their transgene-restored subclonal cell lines (both P < 0.0001). FancD2(-/-) cells were more radiosensitive than the transgene restored subclonal cell line (ñ = 2.0 ± 0.7 and 4.7 ± 2.2, respectively, P = 0.03). In contrast, FancG(-/-) cells were radioresistant relative to the transgene-restored subclonal cell line (ñ = 9.4 ± 1.5 and 2.2 ± 05, respectively, P = 0.001). DNA strand breaks measured by the comet assay correlated with radiosensitivity. Cell lines from a Fanc-C and Fanc-A patients showed radiosensitivity similar to that of Fanc-D2(-/-) cells. A fluorophore-tagged JP4-039 (BODIPY-FL) analog targeted the mitochondria of the cell lines. Preirradiation or postirradiation treatment with JP4-039 at a lower concentration than Tempol significantly increased the radioresistance and stabilized the antioxidant stores of all cell lines. Tempol increased the toxicity of MMC in FancD2(-/-) cells. These data provide support for the potential clinical use of JP4-039 for normal tissue radioprotection during chemoradiotherapy in FA patients.
Rossbach, Bella; Hildebrand, Laura; El-Ahmad, Linda; Stachelscheid, Harald; Reinke, Petra; Kurtz, Andreas
2017-05-01
We have generated a human induced pluripotent stem cell (iPSC) line derived from urinary cells of a 28year old healthy female donor. The cells were reprogrammed using a non-integrating viral vector and have shown full differentiation potential. Together with the iPSC line, the donor provided blood cells for the study of immunological effects of the iPSC line and its derivatives in autologous and allogeneic settings. The line is available and registered in the human pluripotent stem cell registry as BCRTi005-A. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Rossbach, Bella; Hildebrand, Laura; El-Ahmad, Linda; Stachelscheid, Harald; Reinke, Petra; Kurtz, Andreas
2016-03-01
We have generated a human induced pluripotent stem cell (iPSC) line derived from urinary cells of a 30 year old healthy female donor. The cells were reprogrammed using a non-integrating viral vector and have shown full differentiation potential. Together with the iPSC-line, the donor provided blood cells for the study of immunological effects of the iPSC line and its derivatives in autologous and allogeneic settings. The line is available and registered in the human pluripotent stem cell registry as BCRTi004-A. Copyright © 2016 University of Texas at Austin Dell Medical School. Published by Elsevier B.V. All rights reserved.
Characterization and differentiation of human embryonic stem cells.
Carpenter, M K; Rosler, E; Rao, M S
2003-01-01
Cell replacement therapies have been limited by the availability of sufficient quantities of cells for transplantation. Human ES (hES) cell lines have recently been generated by several laboratories. When maintained for over 1 year in vitro, they remain karyotypically and phenotypically stable and may therefore provide an excellent source material for cell therapies. Currently, data is available for 26 hES cell lines. Although limited characterization has been performed on most of these lines, there are remarkable similarities in expression of markers. hES cell lines derived in different laboratories show similar expression profiles of surface markers, including SSEA-4, Tra-1-60, and Tra-1-81. In addition, markers associated with pluripotent cells such as OCT-4 are expressed at in all cell lines tested. These cells express high levels of telomerase and appear to have indefinite growth potential. The generation of the large quantities of cells necessary for cell replacement therapies will require a cell population which is stable over long term culture. We have characterized the properties of multiple hES cell lines that have been maintained in culture for extended periods. Quantitative analyses demonstrate that all of the cell lines examined show consistent marker expression and retain a normal karyotype after long-term culture. hES cells have been differentiated into the derivatives of all three germ layers. Specifically this includes cardiomyocytes, neural cells, hepatocyte-like cells, endothelial cells and hematopoietic progenitor cells. These data demonstrating the karyotypic and phenotypic stability of hES cells and their extensive differentiative capacity indicate that they may be an appropriate source of cells for multiple regenerative medicine applications.
Kubin, M; Chow, J M; Trinchieri, G
1994-04-01
Natural killer cell-stimulatory factor or interleukin-12 (NKSF/IL-12) was originally identified and purified from the conditioned medium of Epstein-Barr virus (EBV)-transformed B-cell lines. Phorbol diesters were observed to be potent stimulators of NKSF/IL-12 production from the B-cell lines. Although monocytes were found to be the major producers of NKSF/IL-12 in peripheral blood (PB) in response to lipopolysaccharide (LPS) or to Staphylococcus aureus, several myeloid leukemia cell lines tested did not produce detectable NKSF/IL-12 either constitutively or upon stimulation with phorbol diesters. However, three lines, ML-3, HL-60, and THP-1, responded to LPS with significant levels of NKSF/IL-12 production, whereas S aureus was effective only on THP-1 cells. When the cell lines were preincubated with compounds known to induce them to differentiate, production of tumor necrosis factor alpha (TNF alpha) and IL-1 beta was in most cases maximal in cells with differentiated characteristics, whereas NKSF/IL-12 production in response to LPS in all three producing cell lines was significantly enhanced only by pretreatment with dimethylsulfoxide (DMSO) for 24 hours, or by costimulation with interferon gamma (IFN gamma). The efficiency of DMSO enhancement of NKSF/IL-12 production decreased after 2 to 5 days of incubation, when the cells acquired differentiated characteristics. Unlike DMSO, IFN gamma enhanced NKSF/IL-12 production, and IL-10 and dexamethasone inhibited it in cell lines and PB mononuclear cells stimulated by either LPS or S aureus. The ability of the cell lines to respond to these mediators of possibly physiologically relevant function provides a tissue-culture model for studying their mechanism of action.
Hsiao, Yen-Ling; Hsieh, Tai-Zu; Liou, Chian-Jiun; Cheng, Yeong-Hsiang; Lin, Chung-Tien; Chang, Chi-Yao; Lai, Yu-Shen
2014-09-30
Canine mammary tumors (CMTs) are the most common type of cancer found in female dogs. Establishment and evaluation of tumor cell lines can facilitate investigations of the biological mechanisms of cancer. Different cell models are used to investigate genetic, epigenetic, and cellular pathways, cancer progression, and cancer therapeutics. Establishment of new cell models will greatly facilitate research in this field. In the present study, we established and characterized two new CMT cell lines derived from a single CMT. We established two cell lines from a single malignant CMT specimen: DTK-E and DTK-SME. Morphologically, the DTK-E cells were large, flat, and epithelial-like, whereas DTK-SME cells were round and epithelial-like. Doubling times were 24 h for DTK-E and 18 h for DTK-SME. On western blots, both cell lines expressed cytokeratin AE1, vimentin, cytokeratin 7 (CK7), and heat shock protein 27 (HSP27). Moreover, investigation of chemoresistance revealed that DTK-SME was more resistant to doxorubicin-induced apoptosis than DTK-E was. After xenotransplantation, both DTK-E and DTK-SME tumors appeared within 14 days, but the average size of DTK-SME tumors was greater than that of DTK-E tumors after 56 days. We established two new cell lines from a single CMT, which exhibit significant diversity in cell morphology, protein marker expression, tumorigenicity, and chemoresistance. The results of this study revealed that the DTK-SME cell line was more resistant to doxorubicin-induced apoptosis and exhibited higher tumorigenicity in vivo than the DTK-E cell line. We anticipate that the two novel CMT cell lines established in this study will be useful for investigating the tumorigenesis of mammary carcinomas and for screening anticancer drugs.
Zhou, Yizhou; Shaw, David; Lam, Cynthia; Tsukuda, Joni; Yim, Mandy; Tang, Danming; Louie, Salina; Laird, Michael W; Snedecor, Brad; Misaghi, Shahram
2017-09-23
Establishing that a cell line was derived from a single cell progenitor and defined as clonally-derived for the production of clinical and commercial therapeutic protein drugs has been the subject of increased emphasis in cell line development (CLD). Several regulatory agencies have expressed that the prospective probability of clonality for CHO cell lines is assumed to follow the Poisson distribution based on the input cell count. The probability of obtaining monoclonal progenitors based on the Poisson distribution of all cells suggests that one round of limiting dilution may not be sufficient to assure the resulting cell lines are clonally-derived. We experimentally analyzed clonal derivatives originating from single cell cloning (SCC) via one round of limiting dilution, following our standard legacy cell line development practice. Two cell populations with stably integrated DNA spacers were mixed and subjected to SCC via limiting dilution. Cells were cultured in the presence of selection agent, screened, and ranked based on product titer. Post-SCC, the growing cell lines were screened by PCR analysis for the presence of identifying spacers. We observed that the percentage of nonclonal populations was below 9%, which is considerably lower than the determined probability based on the Poisson distribution of all cells. These results were further confirmed using fluorescence imaging of clonal derivatives originating from SCC via limiting dilution of mixed cell populations expressing GFP or RFP. Our results demonstrate that in the presence of selection agent, the Poisson distribution of all cells clearly underestimates the probability of obtaining clonally-derived cell lines. © 2017 American Institute of Chemical Engineers Biotechnol. Prog., 2017. © 2017 American Institute of Chemical Engineers.
[Establishment of fibroblast cell line and its biological characteristics in Matou goat].
Li, Tianda; Liu, Chousheng; Wang, Zhigang; Zhang, Liping; Sun, Xiuzhu; Zhao, Junjin; Meng, Fei; Luo, Guihe; Zhu, Jinqing
2008-12-01
Taking Matou goat ear margin as the study material, we succeeded in established a fibroblast cell line by the method of explant culture directly. Observations on morphology, dynamic growth, determination of viability, analysis of karyotype, test of microorganism and other characteristics were detected. Results showed: Population Doubling Time (PDT) of cells was approximately 36 h; Cell viability was 96.7% after thawing; The status of cell After passage was constant; Analysis of chromosomal karyotyps indicated that diploid (2n=60) account for 98% in the cell line. Every index in the cell line met all the standard quality controls of ATCC in USA. The established of Matou goat ear fibroblast cell line has not only important genetic resources preserved at the cell level, but also valuable material for genome, postgenome and somatic cell nuclear transfer research.
Authentication of the R06E Fruit Bat Cell Line
Jordan, Ingo; Munster, Vincent J.; Sandig, Volker
2012-01-01
Fruit bats and insectivorous bats are believed to provide a natural reservoir for a wide variety of infectious diseases. Several lines of evidence, including the successful isolation of infectious viruses, indicate that Marburg virus and Ravn virus have found a major reservoir in colonies of the Egyptian rousette (Rousettus aegyptiacus). To facilitate molecular studies on virus-reservoir host interactions and isolation of viruses from environmental samples, we established cell lines from primary cells of this animal. The cell lines were given to several laboratories until we realized that a contamination with Vero cells in one of the cultures had occurred. Here we describe a general diagnostic procedure for identification of cross-species contamination with the focus on Vero and Rousettus cell lines, and summarize newly discovered properties of the cell lines that may pertain to pathogen discovery. PMID:22754654
Quevedo, Carla; Perassolo, María; Alechine, Eugenia; Corach, Daniel; Giulietti, Ana María; Talou, Julián Rodriguez
2010-07-01
A Morinda citrifolia cell line was obtained by overexpresion of 1-deoxy-D: -xylulose 5-phosphate synthase (DXS) from Catharanthus roseus, a key enzyme of the metabolic pathway of anthraquinones (AQs). This cell line increased AQs production by about 24% compared to the control cell line. This transgenic cell line which carries dxs cDNA isolated from Catharanthus roseus, was achieved by direct transformation of cell suspension cultures of M. citrifolia using a hypervirulent Agrobacterium tumefaciens strain. The effects of the overexpression of the dxs gene also resulted in increased levels of dxs mRNA transcripts and DXS activity compared to the control cell line. In addition, total phenolics and phenylalanine ammonia-lyase activity were evaluated and were significantly higher in the transgenic line than in controls.
Authentication of the R06E fruit bat cell line.
Jordan, Ingo; Munster, Vincent J; Sandig, Volker
2012-05-01
Fruit bats and insectivorous bats are believed to provide a natural reservoir for a wide variety of infectious diseases. Several lines of evidence, including the successful isolation of infectious viruses, indicate that Marburg virus and Ravn virus have found a major reservoir in colonies of the Egyptian rousette (Rousettus aegyptiacus). To facilitate molecular studies on virus-reservoir host interactions and isolation of viruses from environmental samples, we established cell lines from primary cells of this animal. The cell lines were given to several laboratories until we realized that a contamination with Vero cells in one of the cultures had occurred. Here we describe a general diagnostic procedure for identification of cross-species contamination with the focus on Vero and Rousettus cell lines, and summarize newly discovered properties of the cell lines that may pertain to pathogen discovery.
[Effects of ezrin silencing on pancreatic cancer cell line Panc-1].
Meng, Yun-xiao; Yu, Shuang-ni; Lu, Zhao-hui; Chen, Jie
2012-12-01
To explore the effects of ezrin silencing on pancreatic cancer cell line Panc-1. Pancreatic cancer cell line Panc-1 was transfected with ezrin silencing plasmid. The proliferation and the cell cycle status were determined by CCK-8 assay and flow cytometry analysis, respectively. Cellular membrane protrusions/microvilli formation were visualized by scanning election microscopy. Colony formation assay was used to determine the cell anchor-independent growth ability in vitro. Trans-filter migration and invasion assays were performed with 8 µm pore inserts in a 24-well BioCoat chamber with/without Matrigel. Ezrin silencing decreased cellular protrusions/microvilli formation, anchorage-independent growth, cell migration and invasion, but had no effects on cell proliferation in vitro and cell cycle, in pancreatic cancer cell line Panc-1. Ezrin expression affects the cellular protrusions/microvilli formation, anchorage-independent growth, cell migration and invasion in pancreatic cancer cell line Panc-1.
Schneider, Karolin; Bol, Vanesa; Grégoire, Vincent
2017-09-01
Clinical studies indicate that patients with HPV/p16-associated head & neck squamous cell carcinoma (HNSCC) represent a subgroup with a better prognosis and improved response to conventional radiotherapy. Involvement of immune-based factors has been hypothesized. In the present study, we investigated radiation-induced differences in release of damage associated molecular patterns (DAMPs), cytokines and activation of dendritic cells (DCs) in HPV-positive and negative HNSCC cancer cell lines. Calreticulin (CRT) exposure was detected on cancer cell surface. ATP, HMGB1 and cytokines were measured in culture supernatants. Maturation marker CD83 surface exposure was determined on DCs after co-incubation with irradiated tumor cells. There was no increase in DAMPs and cytokine profiles after radiation treatment and no difference between HPV+ and HPV- cell lines. The HPV/p16-positive SCC90 cells showed a trend for increased total CRT, HMGB1, and number of cytokines compared to all other cell lines. None of the irradiated cancer cell lines could affect DC maturation. Radiation treatment did not increase immunogenicity of HNSCC cell lines assessed by membrane CRT, ATP, HMGB1, cytokines production, and by activation of immature DCs. There was no difference between HPV-positive and HPV-negative cell lines. Copyright © 2017 Elsevier B.V. All rights reserved.
Berndt, Benjamin; Haverkampf, Sonja; Reith, Georg; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S; Dittmar, Thomas
2013-01-01
The biological phenomenon of cell fusion has been linked to tumor progression because several data provided evidence that fusion of tumor cells and normal cells gave rise to hybrid cell lines exhibiting novel properties, such as increased metastatogenic capacity and an enhanced drug resistance. Here we investigated M13HS hybrid cell lines, derived from spontaneous fusion events between M13SV1-EGFP-Neo breast epithelial cells exhibiting stem cell characteristics and HS578T-Hyg breast cancer cells, concerning CCL21/CCR7 signaling. Western Blot analysis showed that all cell lines varied in their CCR7 expression levels as well as differed in the induction and kinetics of CCR7 specific signal transduction cascades. Flow cytometry-based calcium measurements revealed that a CCL21 induced calcium influx was solely detected in M13HS hybrid cell lines. Cell migration demonstrated that only M13HS hybrid cell lines, but not parental derivatives, responded to CCL21 stimulation with an increased migratory activity. Knockdown of CCR7 expression by siRNA completely abrogated the CCL21 induced migration of hybrid cell lines indicating the necessity of CCL21/CCR7 signaling. Because the CCL21/CCR7 axis has been linked to metastatic spreading of breast cancer to lymph nodes we conclude from our data that cell fusion could be a mechanism explaining the origin of metastatic cancer (hybrid) cells.
Reith, Georg; Keil, Silvia; Niggemann, Bernd; Zänker, Kurt S.; Dittmar, Thomas
2013-01-01
The biological phenomenon of cell fusion has been linked to tumor progression because several data provided evidence that fusion of tumor cells and normal cells gave rise to hybrid cell lines exhibiting novel properties, such as increased metastatogenic capacity and an enhanced drug resistance. Here we investigated M13HS hybrid cell lines, derived from spontaneous fusion events between M13SV1-EGFP-Neo breast epithelial cells exhibiting stem cell characteristics and HS578T-Hyg breast cancer cells, concerning CCL21/CCR7 signaling. Western Blot analysis showed that all cell lines varied in their CCR7 expression levels as well as differed in the induction and kinetics of CCR7 specific signal transduction cascades. Flow cytometry-based calcium measurements revealed that a CCL21 induced calcium influx was solely detected in M13HS hybrid cell lines. Cell migration demonstrated that only M13HS hybrid cell lines, but not parental derivatives, responded to CCL21 stimulation with an increased migratory activity. Knockdown of CCR7 expression by siRNA completely abrogated the CCL21 induced migration of hybrid cell lines indicating the necessity of CCL21/CCR7 signaling. Because the CCL21/CCR7 axis has been linked to metastatic spreading of breast cancer to lymph nodes we conclude from our data that cell fusion could be a mechanism explaining the origin of metastatic cancer (hybrid) cells. PMID:23667660
There and Back Again: Development and Regeneration of the Zebrafish Lateral Line System
Thomas, Eric D.; Cruz, Ivan A.; Hailey, Dale W.; Raible, David W.
2014-01-01
The zebrafish lateral line is a sensory system used to detect changes in water flow. It is comprised of clusters of mechanosensory hair cells called neuromasts. The lateral line is initially established by a migratory group of cells, called a primordium, that deposits neuromasts at stereotyped locations along the surface of the fish. Wnt, FGF, and Notch signaling are all important regulators of various aspects of lateral line development, from primordium migration to hair cell specification. As zebrafish age, the organization of the lateral line becomes more complex in order to accommodate the fish’s increased size. This expansion is regulated by many of the same factors involved in the initial development. Furthermore, unlike mammalian hair cells, lateral line hair cells have the capacity to regenerate after damage. New hair cells arise from the proliferation and differentiation of surrounding support cells, and the molecular and cellular pathways regulating this are beginning to be elucidated. All in all, the zebrafish lateral line has proven to be an excellent model in which to study a diverse array of processes, including collective cell migration, cell polarity, cell fate, and regeneration. PMID:25330982
Qin, Sharon Q; Kusuma, Gina D; Al-Sowayan, Batla; Pace, Rishika A; Isenmann, Sandra; Pertile, Mark D; Gronthos, Stan; Abumaree, Mohamed H; Brennecke, Shaun P; Kalionis, Bill
2016-03-01
Human placental mesenchymal stem/stromal cells (MSC) are an attractive source of MSC with great therapeutic potential. However, primary MSC are difficult to study in vitro due to their limited lifespan and patient-to-patient variation. Fetal and maternal MSC were prepared from cells of the chorionic and basal plates of the placenta, respectively. Fetal and maternal MSC were transduced with the human telomerase reverse transcriptase (hTERT). Conventional stem cell assays assessed the MSC characteristics of the cell lines. Functional assays for cell proliferation, cell migration and ability to form colonies in soft agar were used to assess the whether transduced cells retained properties of primary MSC. Fetal chorionic and maternal MSC were successfully transduced with hTERT to create the cell lines CMSC29 and DMSC23 respectively. The lifespans of CMSC29 and DMSC23 were extended in cell culture. Both cell lines retained important MSC characteristics including cell surface marker expression and multipotent differentiation potential. Neither of the cell lines was tumourigenic in vitro. Gene expression differences were observed between CMSC29 and DMSC23 cells and their corresponding parent, primary MSC. Both cell lines show similar migration potential to their corresponding primary, parent MSC. The data show that transduced MSC retained important functional properties of the primary MSC. There were gene expression and functional differences between cell lines CMSC29 and DMSC23 that reflect their different tissue microenvironments of the parent, primary MSC. CMSC29 and DMSC23 cell lines could be useful tools for optimisation and functional studies of MSC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Benavent Acero, Fernando R; Perera Negrin, Yasser; Alonso, Daniel F; Perea, Silvio E; Gomez, Daniel E; Farina, Hernán G
2014-06-02
CIGB-300 is a cyclic synthetic peptide that induces apoptosis in malignant cells, elicits antitumor activity in cancer animal models, and shows tumor reduction signs when assayed in first-in-human phase I trial in patients with cervical tumors. CIGB-300 impairs phosphorylation by casein kinase 2 through targeting the substrate's phosphoacceptor domain. CIGB-300 was linked to the cell penetrating peptide Tat to facilitate the delivery into cells. Previously, we showed that CIGB-300 had a differential antiproliferative behavior in different tumor cell lines. In this work, we studied differential antiproliferative behavior in terms of cellular uptake, intracellular transportation, and degradation in tumor cell lines with dissimilar sensitivity to CIGB-300. The internalization of CIGB-300 was studied in different malignant cell lines. We found that the cell membrane heparan sulfate proteoglycans act as main receptors for extracellular CIGB-300 uptake. The most sensitive tumor cell lines showed higher intracellular incorporation of CIGB-300 in comparison to less sensitive cell lines. Furthermore, CIGB-300 uptake is time- and concentration-dependent in all studied cell lines. It was shown that CIGB-300 has the ability to penetrate cells mainly by direct membrane translocation. However, a minor proportion of the peptide uses an energy-dependent endocytic pathway mechanism to gain access into cells. CIGB-300 is internalized and transported into cells preferentially by caveolae-mediated endocytosis. Lysosomes are involved in CIGB-300 degradation; highly sensitive cell lines showed degradation at earlier times compared to low sensitive cells. Altogether, our data suggests a mechanism of internalization, vesicular transportation, and degradation for CIGB-300 in tumor cells.
Developing global regression models for metabolite concentration prediction regardless of cell line.
André, Silvère; Lagresle, Sylvain; Da Sliva, Anthony; Heimendinger, Pierre; Hannas, Zahia; Calvosa, Éric; Duponchel, Ludovic
2017-11-01
Following the Process Analytical Technology (PAT) of the Food and Drug Administration (FDA), drug manufacturers are encouraged to develop innovative techniques in order to monitor and understand their processes in a better way. Within this framework, it has been demonstrated that Raman spectroscopy coupled with chemometric tools allow to predict critical parameters of mammalian cell cultures in-line and in real time. However, the development of robust and predictive regression models clearly requires many batches in order to take into account inter-batch variability and enhance models accuracy. Nevertheless, this heavy procedure has to be repeated for every new line of cell culture involving many resources. This is why we propose in this paper to develop global regression models taking into account different cell lines. Such models are finally transferred to any culture of the cells involved. This article first demonstrates the feasibility of developing regression models, not only for mammalian cell lines (CHO and HeLa cell cultures), but also for insect cell lines (Sf9 cell cultures). Then global regression models are generated, based on CHO cells, HeLa cells, and Sf9 cells. Finally, these models are evaluated considering a fourth cell line(HEK cells). In addition to suitable predictions of glucose and lactate concentration of HEK cell cultures, we expose that by adding a single HEK-cell culture to the calibration set, the predictive ability of the regression models are substantially increased. In this way, we demonstrate that using global models, it is not necessary to consider many cultures of a new cell line in order to obtain accurate models. Biotechnol. Bioeng. 2017;114: 2550-2559. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Wu, Fei; Lin, Yun; Cui, Peng; Li, Hongyun; Zhang, Lechao; Sun, Zeqiang; Huang, Shengliang; Li, Shun; Huang, Shiming; Zhao, Qingli; Liu, Qingyong
2018-06-01
At least to date, no effective treatment for advanced castration-resistant prostate cancer (CRPC) has been established. Recent studies indicated that cell division cycle 20 homolog (Cdc20) overexpression is associated with poor prognosis in patients with castration-resistant prostate cancer. However, the mechanism of Cdc20 in the development of docetaxel resistance in CRPC remains elusive. In this study, the transcription of Cdc20 was confirmed in three independent CRPC cell lines derived from different tissues, including LNCaP, PC3, and DU145. Docetaxel resistant (DR) cell lines were generated within the background of DU145 and PC3. The protein levels of Cdc20 and the biological phenotype were detected in both wild-type and DR cell lines. To further explore the mechanism of Cdc20 overexpression, stable cell lines with Cdc20 or Bcl-2 interacting mediator of cell death (Bim) deprivation were generated and examined for biological parameters. In addition, a specific Cdc20 inhibitor was used in DR cell lines to explore the potential solution for docetaxel resistant CRPC. Here, we identified Cdc20 is overexpressed in docetaxel resistant CRPC cell lines, including LNCaP, PC3, and DU145. We also reported that DR cell lines, which mimic the recurrent prostate cancer cells after docetaxel treatment, have higher levels of Cdc20 protein compared with the CRPC cell lines. Interestingly, the protein levels of Bim, an E3 ligase substrate of Cdc20, were decreased in DR cell lines compared with the wild-type, while the mRNA levels were similar. More importantly, in DR cell lines, the biological phenotype induced by Cdc20 deletion could be significantly reversed by the additional knockdown of Bim. As a result, docetaxel resistant prostate cancer cells treated with the pharmacological Cdc20 inhibitor became sensitive to docetaxel treatment. In conclusion, our data collectively demonstrated that Cdc20 overexpression facilitates the docetaxel resistant of the CRPC cell lines in a Bim-dependent manner. Furthermore, additionally targeting Cdc20 might be a promising solution for the treatment of the CRPC with docetaxel resistance.
Binder, Zev A; Wilson, Kelli M; Salmasi, Vafi; Orr, Brent A; Eberhart, Charles G; Siu, I-Mei; Lim, Michael; Weingart, Jon D; Quinones-Hinojosa, Alfredo; Bettegowda, Chetan; Kassam, Amin B; Olivi, Alessandro; Brem, Henry; Riggins, Gregory J; Gallia, Gary L
2016-01-01
Human tumor cell lines form the basis of the majority of present day laboratory cancer research. These models are vital to studying the molecular biology of tumors and preclinical testing of new therapies. When compared to traditional adherent cell lines, suspension cell lines recapitulate the genetic profiles and histologic features of glioblastoma multiforme (GBM) with higher fidelity. Using a modified neural stem cell culture technique, here we report the characterization of GBM cell lines including GBM variants. Tumor tissue samples were obtained intra-operatively and cultured in neural stem cell conditions containing growth factors. Tumor lines were characterized in vitro using differentiation assays followed by immunostaining for lineage-specific markers. In vivo tumor formation was assayed by orthotopic injection in nude mice. Genetic uniqueness was confirmed via short tandem repeat (STR) DNA profiling. Thirteen oncosphere lines derived from GBM and GBM variants, including a GBM with PNET features and a GBM with oligodendroglioma component, were established. All unique lines showed distinct genetic profiles by STR profiling. The lines assayed demonstrated a range of in vitro growth rates. Multipotency was confirmed using in vitro differentiation. Tumor formation demonstrated histologic features consistent with high grade gliomas, including invasion, necrosis, abnormal vascularization, and high mitotic rate. Xenografts derived from the GBM variants maintained histopathological features of the primary tumors. We have generated and characterized GBM suspension lines derived from patients with GBMs and GBM variants. These oncosphere cell lines will expand the resources available for preclinical study.
Qu, Jiagui; Rizak, Joshua D; Fan, Yaodong; Guo, Xiaoxuan; Li, Jiejing; Huma, Tanzeel; Ma, Yuanye
2014-07-01
This paper outlines the establishment of a new and stable cell line, designated GBM-HSF, from a malignant glioblastoma multiforme (GBM) removed from a 65-year-old Chinese woman. This cell line has been grown for 1 year without disruption and has been passaged over 50 times. The cells were adherently cultured in RPMI-1640 media with 10% fetal bovine serum supplementation. Cells displayed spindle and polygonal morphology, and displayed multi-layered growth without evidence of contact inhibition. The cell line had a high growth rate with a doubling time of 51 h. The cells were able to grow without adhering to the culture plates, and 4.5% of the total cells formed colonies in soft agar. The cell line has also been found to form tumors in nude mice and to be of a highly invasive nature. The cells were also partially characterized with RT-PCR. The RT-PCR revealed that Nestin, β-tubulin III, Map2, Klf4, Oct4, Sox2, Nanog, and CD26 were positively transcribed, whereas GFAP, Rex1, and CD133 were negatively transcribed in this cell line. These results suggest that the GBM-HSF cell line will provide a good model to study the properties of cancer stem cells and metastasis. It will also facilitate more detailed molecular and cellular studies of GBM cell division and pathology.
Cole, Sara L.; Dagg, Rebecca A.; Lau, Loretta M. S.; Duncan, Emma L.; Moy, Elsa L.; Reddel, Roger R.
2012-01-01
Alternative Lengthening of Telomeres (ALT) is a non-telomerase mechanism of telomere lengthening that occurs in about 10% of cancers overall and is particularly common in astrocytic brain tumors and specific types of sarcomas. Somatic cell hybridization analyses have previously shown that normal telomerase-negative fibroblasts and telomerase-positive immortalized cell lines contain repressors of ALT activity, indicating that activation of ALT results from loss of one or more unidentified repressors. More recently, ATRX or DAXX was shown to be mutated both in tumors with telomere lengths suggestive of ALT activity and in ALT cell lines. Here, an ALT cell line was separately fused to each of four telomerase-positive cell lines, and four or five independent hybrid lines from each fusion were examined for expression of ATRX and DAXX and for telomere lengthening mechanism. The hybrid lines expressed either telomerase or ALT, with the other mechanism being repressed. DAXX was expressed normally in all parental cell lines and in all of the hybrids. ATRX was expressed normally in each of the four telomerase-positive parental cell lines and in every telomerase-positive hybrid line, and was abnormal in the ALT parental cells and in all but one of the ALT hybrids. This correlation between ALT activity and loss of ATRX expression is consistent with ATRX being a repressor of ALT. PMID:23185534
Sternberg, Hal; Kidd, Jennifer; Murai, James T; Jiang, Jianjie; Rinon, Ariel; Erickson, Isaac E; Funk, Walter D; Wang, Qian; Chapman, Karen B; Vangsness, C Thomas; West, Michael D
2013-03-01
The transcriptomes of seven diverse clonal human embryonic progenitor cell lines with chondrogenic potential were compared with that of bone marrow-derived mesenchymal stem cells (MSCs). The cell lines 4D20.8, 7PEND24, 7SMOO32, E15, MEL2, SK11 and SM30 were compared with MSCs using immunohistochemical methods, gene expression microarrays and quantitative real-time PCR. In the undifferentiated progenitor state, each line displayed unique combinations of site-specific markers, including AJAP1, ALDH1A2, BMP5, BARX1, HAND2, HOXB2, LHX1, LHX8, PITX1, TBX15 and ZIC2, but none of the lines expressed the MSC marker CD74. The lines showed diverse responses when differentiated in the presence of combinations of TGF-β3, BMP2, 4, 6 and 7 and GDF5, with the lines 4D20.8, SK11, SM30 and MEL2 showing osteogenic markers in some differentiation conditions. The line 7PEND24 showed evidence of regenerating articular cartilage and, in some conditions, markers of tendon differentiation. The scalability of site-specific clonal human embryonic stem cell-derived embryonic progenitor cell lines may provide novel models for the study of differentiation and methods for preparing purified and identified cells types for use in therapy.
Identification of a Novel Rhabdovirus in Spodoptera frugiperda Cell Lines
Ma, Hailun; Galvin, Teresa A.; Glasner, Dustin R.; Shaheduzzaman, Syed
2014-01-01
ABSTRACT The Sf9 cell line, derived from Spodoptera frugiperda, is used as a cell substrate for biological products, and no viruses have been reported in this cell line after extensive testing. We used degenerate PCR assays and massively parallel sequencing (MPS) to identify a novel RNA virus belonging to the order Mononegavirales in Sf9 cells. Sequence analysis of the assembled virus genome showed the presence of five open reading frames (ORFs) corresponding to the genes for the N, P, M, G, and L proteins in other rhabdoviruses and an unknown ORF of 111 amino acids located between the G- and L-protein genes. BLAST searches indicated that the S. frugiperda rhabdovirus (Sf-rhabdovirus) was related in a limited region of the L-protein gene to Taastrup virus, a newly discovered member of the Mononegavirales from a leafhopper (Hemiptera), and also to plant rhabdoviruses, particularly in the genus Cytorhabdovirus. Phylogenetic analysis of sequences in the L-protein gene indicated that Sf-rhabdovirus is a novel virus that branched with Taastrup virus. Rhabdovirus morphology was confirmed by transmission electron microscopy of filtered supernatant samples from Sf9 cells. Infectivity studies indicated potential transient infection by Sf-rhabdovirus in other insect cell lines, but there was no evidence of entry or virus replication in human cell lines. Sf-rhabdovirus sequences were also found in the Sf21 parental cell line of Sf9 cells but not in other insect cell lines, such as BT1-TN-5B1-4 (Tn5; High Five) cells and Schneider's Drosophila line 2 [D.Mel.(2); SL2] cells, indicating a species-specific infection. The results indicate that conventional methods may be complemented by state-of-the-art technologies with extensive bioinformatics analysis for identification of novel viruses. IMPORTANCE The Spodoptera frugiperda Sf9 cell line is used as a cell substrate for the development and manufacture of biological products. Extensive testing has not previously identified any viruses in this cell line. This paper reports on the identification and characterization of a novel rhabdovirus in Sf9 cells. This was accomplished through the use of next-generation sequencing platforms, de novo assembly tools, and extensive bioinformatics analysis. Rhabdovirus identification was further confirmed by transmission electron microscopy. Infectivity studies showed the lack of replication of Sf-rhabdovirus in human cell lines. The overall study highlights the use of a combinatorial testing approach including conventional methods and new technologies for evaluation of cell lines for unexpected viruses and use of comprehensive bioinformatics strategies for obtaining confident next-generation sequencing results. PMID:24672045
Dobbelaere, D A; Prospero, T D; Roditi, I J; Kelke, C; Baumann, I; Eichhorn, M; Williams, R O; Ahmed, J S; Baldwin, C L; Clevers, H
1990-01-01
The Tac antigen component of the bovine interleukin-2 receptor was expressed as a Cro-beta-galactosidase fusion protein in Escherichia coli and used to raise antibodies in rabbits. These antibodies were used for flow cytofluorimetric analysis to investigate the expression of Tac antigen in a variety of Theileria parva-infected cell lines and also in three Theileria annulata-infected cell lines. Cells expressing Tac antigen on their surface were found in all T. parva-infected cell lines tested whether these were of T- or B-cell origin. T cells expressing Tac antigen could be CD4- CD8-, CD4+ CD8-, CD4- CD8+, or CD4+ CD8+. Tac antigen expression was observed both in cultures which had been maintained in the laboratory for several years and in transformed cell lines which had recently been established by infection of lymphocytes in vitro with T. parva. Northern (RNA) blot analysis demonstrated Tac antigen transcripts in RNA isolated from all T. parva-infected cell lines. Three T. annulata-infected cell lines which were not of T-cell origin were also tested. Two of them expressed Tac antigen on their surface. Abundant Tac antigen mRNA was detected in these T. annulata-infected cell lines, but only trace amounts were demonstrated in the third cell line, which contained very few Tac antigen-expressing cells. In all cell lines tested, whether cloned or uncloned, a proportion of the cells did not express detectable levels of Tac antigen on their surface. This was also the case for a number of other leukocyte surface markers. In addition, we showed that the interleukin-2 receptors were biologically functional, because addition of recombinant interleukin-2 to cultures stimulated cell proliferation. Recombinant interleukin-2 treatment also resulted in increased amounts of steady-state Tac antigen mRNA. The relevance of interleukin-2 receptor expression on Theileria-infected cells is discussed. Images PMID:1979317
Zhang, Lin; Inniss, Mara C; Han, Shu; Moffat, Mark; Jones, Heather; Zhang, Baohong; Cox, Wendy L; Rance, James R; Young, Robert J
2015-01-01
To meet product quality and cost parameters for therapeutic monoclonal antibody (mAb) production, cell lines are required to have excellent growth, stability, and productivity characteristics. In particular, cell line generation stability is critical to the success of a program, especially where high cell line generation numbers are required for large in-market supply. However, a typical process for developing such cell lines is laborious, lengthy, and costly. In this study, we applied a FLP/FRT recombinase-mediated cassette exchange (RMCE) system to build a site-specific integration (SSI) system for mAb expression in the commercially relevant CHOK1SV cell line. Using a vector with a FRT-flanked mAb expression cassette, we generated a clonal cell line with good productivity, long-term production stability, and low mAb gene-copy number indicating the vector was located in a 'hot-spot.' A SSI host cell line was made by removing the mAb genes from the 'hot-spot' by RMCE, creating a 'landing pad' containing two recombination cassettes that allow targeting of one or two copies of recombinant genes. Cell lines made from this host exhibited excellent growth and productivity profiles, and stability for at least 100 generations in the absence of selection agents. Importantly, while clones containing two copies had higher productivity than single copy clones, both were stable over many generations. Taken together, this study suggests the use of FLP-based RMCE to develop SSI host cells for mAb production in CHOK1SV offers significant savings in both resources and overall cell line development time, leading to a shortened 'time-to-clinic' for therapeutic mAbs. © 2015 American Institute of Chemical Engineers.
Wang, Min-Cong; Liang, Xuan; Liu, Zhi-Yan; Cui, Jie; Liu, Ying; Jing, Li; Jiang, Li-Li; Ma, Jie-Qun; Han, Li-Li; Guo, Qian-Qian; Yang, Cheng-Cheng; Wang, Jing; Wu, Tao; Nan, Ke-Jun; Yao, Yu
2015-01-01
The concurrent administration of chemotherapy and epidermal growth factor receptor‑tyrosine kinase inhibitors (EGFR‑TKIs) has previously produced a negative interaction and failed to confer a survival benefit to non‑small cell lung cancer (NSCLC) patients compared with first‑line cytotoxic chemotherapy. The present study aimed to investigate the optimal schedule of the combined treatment of cisplatin/paclitaxel and icotinib in NSCLC cell lines and clarify the underlying mechanisms. HCC827, H1975, H1299 and A549 human NSCLC cell lines with wild‑type and mutant EGFR genes were used as in vitro models to define the differential effects of various schedules of cisplatin/paclitaxel with icotinib treatments on cell growth, proliferation, cell cycle distribution, apoptosis, and EGFR signaling pathway. Sequence‑dependent antiproliferative effects differed among the four NSCLC cell lines, and were not associated with EGFR mutation, constitutive expression levels of EGFR or downstream signaling molecules. The antiproliferative effect of cisplatin plus paclitaxel followed by icotinib was superior to that of cisplatin or paclitaxel followed by icotinib in the HCC827, H1975, H1299 and A549 cell lines, and induced more cell apoptosis and G0/G1 phase arrest. Cisplatin and paclitaxel significantly increased the expression of EGFR phosphorylation in the HCC827 cell line. However, only paclitaxel increased the expression of EGFR phosphorylation in the H1975 cell line. Cisplatin/paclitaxel followed by icotinib influenced the expression of p‑EGFR and p‑AKT, although the expression of p‑ERK1/2 remained unchanged. The results suggest that the optimal schedule of the combined treatment of cisplatin/paclitaxel and icotinib differed among the NSCLC cell lines. The results also provide molecular evidence to support clinical treatment strategies for NSCLC patients.
Purification of Recombinant Ebola Virus Glycoprotein and VP40 from a Human Cell Line
2017-01-01
from a human cell line. Plasmids coding for the expression of these proteins were transiently transfected into human embryonic kidney cells 293 and...protein expression. Expi293F cells were derived from the line of human embryonic kidney cells 293 (i.e., HEK293 cells), and they were grown in a
9 CFR 113.55 - Detection of extraneous agents in Master Seed Virus.
Code of Federal Regulations, 2010 CFR
2010-01-01
... MSV that is found unsatisfactory by any prescribed test. (a) At least a 1.0 ml aliquot per cell... monkey kidney) cell line; (2) Embryonic cells, neonatal cells, or a cell line of the species for which...) and (a)(2) of this section. Cell lines used shall have been found satisfactory when tested as...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, Pamela D.; Sakwe, Amos; Koumangoye, Rainelli
2014-02-15
This study was performed to identify the potential role of Alpha-2 Heremans Schmid Glycoprotein (AHSG) in Head and Neck Squamous Cell Carcinoma (HNSCC) tumorigenesis using an HNSCC cell line model. HNSCC cell lines are unique among cancer cell lines, in that they produce endogenous AHSG and do not rely, solely, on AHSG derived from serum. To produce our model, we performed a stable transfection to down-regulate AHSG in the HNSCC cell line SQ20B, resulting in three SQ20B sublines, AH50 with 50% AHSG production, AH20 with 20% AHSG production and EV which is the empty vector control expressing wild-type levels ofmore » AHSG. Utilizing these sublines, we examined the effect of AHSG depletion on cellular adhesion, proliferation, migration and invasion in a serum-free environment. We demonstrated that sublines EV and AH50 adhered to plastic and laminin significantly faster than the AH20 cell line, supporting the previously reported role of exogenous AHSG in cell adhesion. As for proliferative potential, EV had the greatest amount of proliferation with AH50 proliferation significantly diminished. AH20 cells did not proliferate at all. Depletion of AHSG also diminished cellular migration and invasion. TGF-β was examined to determine whether levels of the TGF-β binding AHSG influenced the effect of TGF-β on cell signaling and proliferation. Whereas higher levels of AHSG blunted TGF-β influenced SMAD and ERK signaling, it did not clearly affect proliferation, suggesting that AHSG influences on adhesion, proliferation, invasion and migration are primarily due to its role in adhesion and cell spreading. The previously reported role of AHSG in potentiating metastasis via protecting MMP-9 from autolysis was also supported in this cell line based model system of endogenous AHSG production in HNSCC. Together, these data show that endogenously produced AHSG in an HNSCC cell line, promotes in vitro cellular properties identified as having a role in tumorigenesis. Highlights: • Head and neck squamous cell carcinoma cell lines synthesize and secret AHSG. • AHSG depleted cell lines are significantly inhibited in their ability to proliferate, adhere, migrate, invade and protect MMP-9. • Human AHSG and bovine fetuin-A are functionally equivalent in regards to growth promotion of cancer cell lines.« less
Yang, Cao; Choy, Edwin; Hornicek, Francis J.; Wood, Kirkham B; Schwab, Joseph H; Liu, Xianzhe; Mankin, Henry; Duan, Zhenfeng
2013-01-01
The anti-tumor activity of histone deacetylase inhibitors (HDACI) on multi-drug resistant sarcoma cell lines has never been previously described. Four multidrug resistant sarcoma cell lines treated with HDACI PCI-24781 resulted in dose-dependent accumulation of acetylated histones, p21 and PARP cleavage products. Growth of these cell lines was inhibited by PCI-24781 at IC50 of 0.43 to 2.7. When we looked for synergy of PCI-24781 with chemotherapeutic agents, we found that PCI-24781 reverses drug resistance in all four multidrug resistant sarcoma cell lines and synergizes with chemotherapeutic agents to enhance caspase-3/7 activity. Expression of RAD51 (a marker for DNA double-strand break repair) was inhibited and the expression of GADD45α (a marker for growth arrest and DNA-damage) was induced by PCI-24781 in multidrug resistant sarcoma cell lines. In conclusion, HDACI PCI-24781 synergizes with chemotherapeutic drugs to induce apoptosis and reverses drug resistance in multidrug resistant sarcoma cell lines. PMID:21508354
Chen, Jieping; Yao, Kai; Li, Zaishang; Deng, Chuangzhong; Wang, Liangjiao; Yu, Xingsu; Liang, Peili; Xie, Qiankun; Chen, Peng; Qin, Zike; Ye, Yunlin; Liu, Zhuowei; Zhou, Fangjian; Zhang, Zhenfeng; Han, Hui
2016-08-09
To establish penile cancer (PeCa) cell lines for the study of molecular mechanisms of carcinogenesis and testing therapeutic reagents. We successfully established two PeCa cell lines from fresh tumor tissues from 21 cases. One cell line named Penl1 was isolated from a lymph node metastasis (LNM) of penile squamous cell carcinoma (PeSCC), usual type and comprehensively characterized here. Our in-depth characterization analysis of the Penl1 cell line included morphology, tumorigenicity, genetic characteristics, protein expression, biology, and chemosensitivity. Penl1 was authenticated by single tandem repeat (STR) DNA typing. Comparative histomorphology, genetic characteristics, and protein expression patterns revealed essential similarities between the cell line and its corresponding LNM. In-depth characterization analysis of Penl1 cell line revealed tumorigenicity in immunodeficient mice, negative human papilloma virus (HPV) and mycoplasma infection, TP53 mutations and sensitivity to cisplatin and epirubicin. STR DNA typing did not match any cell lines within three international cell banks. The limitation of this study is that one patient cannot represent the complete heterogeneity of PeCa, especially primary tumor. We established and characterized an HPV-negative and moderately differentiated PeCa cell model with a TP53 missense mutation from a PeSCC, usual type patient. A preliminarily study of carcinogenesis and chemosensitivity suggests that this cell model carries a tumor suppressor gene mutation and is sensitive to chemotherapy drugs.
Li, Zaishang; Deng, Chuangzhong; Wang, Liangjiao; Yu, Xingsu; Liang, Peili; Xie, Qiankun; Chen, Peng; Qin, Zike; Ye, Yunlin; Liu, Zhuowei; Zhou, Fangjian; Zhang, Zhenfeng; Han, Hui
2016-01-01
Purpose To establish penile cancer (PeCa) cell lines for the study of molecular mechanisms of carcinogenesis and testing therapeutic reagents. Materials and Methods We successfully established two PeCa cell lines from fresh tumor tissues from 21 cases. One cell line named Penl1 was isolated from a lymph node metastasis (LNM) of penile squamous cell carcinoma (PeSCC), usual type and comprehensively characterized here. Our in-depth characterization analysis of the Penl1 cell line included morphology, tumorigenicity, genetic characteristics, protein expression, biology, and chemosensitivity. Penl1 was authenticated by single tandem repeat (STR) DNA typing. Results Comparative histomorphology, genetic characteristics, and protein expression patterns revealed essential similarities between the cell line and its corresponding LNM. In-depth characterization analysis of Penl1 cell line revealed tumorigenicity in immunodeficient mice, negative human papilloma virus (HPV) and mycoplasma infection, TP53 mutations and sensitivity to cisplatin and epirubicin. STR DNA typing did not match any cell lines within three international cell banks. The limitation of this study is that one patient cannot represent the complete heterogeneity of PeCa, especially primary tumor. Conclusions We established and characterized an HPV-negative and moderately differentiated PeCa cell model with a TP53 missense mutation from a PeSCC, usual type patient. A preliminarily study of carcinogenesis and chemosensitivity suggests that this cell model carries a tumor suppressor gene mutation and is sensitive to chemotherapy drugs. PMID:27351128
Upile, Tahwinder; Jerjes, Waseem; Kafas, Panagiotis; Singh, Sandeep U; Sudhoff, Holger; Mahil, Jaspal; Sandison, Ann; Hopper, Colin
2009-01-01
Background Although much has been published for the development of cell lines, these were lab based and developed for scientific technical staff. Objective of review We present a simple and successful protocol for the development of cell lines and tissue harvesting for the clinical scientist. We also discuss the ethical implications of tissue retention and present a generic consent form. Conclusion The advantages of hospital-based cell line creation are numerous. We can be more certain that cell lines are developed from the particular tissues of interest and accurate anatomical and appropriate clinico-pathological control tissues are also harvested. We can also be certain of less cell line cross contamination. PMID:19344501
Duan, Qiaonan; Wang, Zichen; Fernandez, Nicolas F; Rouillard, Andrew D; Tan, Christopher M; Benes, Cyril H; Ma'ayan, Avi
2014-11-15
Recently, several high profile studies collected cell viability data from panels of cancer cell lines treated with many drugs applied at different concentrations. Such drug sensitivity data for cancer cell lines provide suggestive treatments for different types and subtypes of cancer. Visualization of these datasets can reveal patterns that may not be obvious by examining the data without such efforts. Here we introduce Drug/Cell-line Browser (DCB), an online interactive HTML5 data visualization tool for interacting with three of the recently published datasets of cancer cell lines/drug-viability studies. DCB uses clustering and canvas visualization of the drugs and the cell lines, as well as a bar graph that summarizes drug effectiveness for the tissue of origin or the cancer subtypes for single or multiple drugs. DCB can help in understanding drug response patterns and prioritizing drug/cancer cell line interactions by tissue of origin or cancer subtype. DCB is an open source Web-based tool that is freely available at: http://www.maayanlab.net/LINCS/DCB CONTACT: avi.maayan@mssm.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Eady, J. J.; Peacock, J. H.; McMillan, T. J.
1992-01-01
DNA repair processes play an important role in the determination of radiation response in both normal and tumour cells. We have investigated one aspect of DNA repair in a number of human cell lines of varying radiosensitivity using the adenovirus 5 host cell reactivation assay (HCR). In this technique, gamma-irradiated virions are used to infect cells and the ability of the cellular repair systems to process this damage is assayed by a convenient immunoperoxidase method recognising viral structural antigen expression on the cell membrane 48 h after infection. Reduced HCR was exhibited by radioresistant HeLa cells and by a radiosensitive neuroblastoma cell line, HX142. In contrast, an ataxia telangiectasia cell line, AT5 BIVA, did not show reduced HCR. On the basis of these results we can make no general conclusions about the relevance of HCR to cellular radiosensitivity. We have extended these studies to determine whether our cell lines exhibited enhanced viral reactivation (ER) following a small priming dose of gamma-radiation given to the cells before viral infection. No evidence for this phenomenon was found either in normal or tumour cell lines. PMID:1637659
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishikawa, Jun; Kaisho, Tsuneyasu; Tomizawa, Hitoshi
1995-04-10
Bone marrow stromal cells regulate B-cell growth and development through their surface molecules and cytokines. In this study, we generated a mAb, RS38, that recognized a novel human membrane protein, BST-2, expressed on bone marrow stromal cell lines and synovial cell lines. We cloned a cDNA encoding BST-2 from a rheumatoid arthritis-derived synovial cell line. BST-2 is a 30- to 36-kDa type II transmembrane protein, consisting of 180 amino acids. The BST-2 gene (HGMW-approved symbol BST2) is located on chromosome 19p13.2. BST-2 is expressed not only on certain bone marrow stromal cell lines but also on various normal tissues, althoughmore » its expression pattern is different from that of another bone marrow stromal cell surface molecule, BST-1. BST-2 surface expression on fibroblast cell lines facilitated the stromal cell-dependent growth of a murine bone marrow-derived pre-B-cell line, DW34. The results suggest that BST-2 may be involved in pre-B-cell growth. 45 refs., 7 figs., 2 tabs.« less
Mohamed, Yehia S; Dunnion, Debbie; Teobald, Iryna; Walewska, Renata; Browning, Michael J
2012-10-12
Fusions of dendritic cells (DCs) and tumour cells have been shown to induce protective immunity to tumour challenge in animal models, and to represent a promising approach to cancer immunotherapy. The broader clinical application of this approach, however, is potentially constrained by the lack of replicative capacity and limited standardisation of fusion cell preparations. We show here that fusion of ex vivo tumour cells isolated from patients with a range of haematological malignancies with the human B-lymphoblastoid cell line (LCL), HMy2, followed by chemical selection of the hybridomas, generated stable, self-replicating human hybrid cell lines that grew continuously in tissue culture, and survived freeze/thawing cycles. The hybrid cell lines expressed HLA class I and class II molecules, and the major T-cell costimulatory molecules, CD80 and CD86. All but two of 14 hybrid cell lines generated expressed tumour-associated antigens that were not expressed by HMy2 cells, and were therefore derived from the parent tumour cells. The hybrid cell lines stimulated allogeneic T-cell proliferative responses and interferon-gamma release in vitro to a considerably greater degree than their respective parent tumour cells. The enhanced T-cell stimulation was inhibited by CTLA4-Ig fusion protein, and by blocking antibodies to MHC class I and class II molecules. Finally, all of five LCL/tumour hybrid cell lines tested induced tumour antigen-specific cytotoxic T-cell responses in vitro in PBL from healthy, HLA-A2+ individuals, as detected by HLA-A2-peptide pentamer staining and cellular cytotoxicity. These data show that stable hybrid cell lines, with enhanced immunostimulatory properties and potential for therapeutic vaccination, can be generated by in vitro fusion and chemical selection of B-LCL and ex vivo haematological tumour cells. Copyright © 2012 Elsevier Ltd. All rights reserved.
Uchida, Mona; Saeki, Kohei; Maeda, Shingo; Tamahara, Satoshi; Yonezawa, Tomohiro; Matsuki, Naoaki
2016-10-01
Apoptosis inhibitor of macrophage (AIM) is initially reported to protect macrophages from apoptosis. In this study, we determined the effect of AIM on the macrophage-derived tumor, histiocytic sarcoma cell lines (HS) of dogs. Five HS and five other tumor cell lines were used. When recombinant canine AIM was applied to non-serum culture media, cell numbers of all the HS and two of other tumor cell lines decreased dose-dependently. The DNA fragmentation, TUNEL staining and flow cytometry tests revealed that AIM induced both of apoptosis and cell cycle arrest in the HS. Although AIM is known as an apoptosis inhibitor, these results suggest that a high dose of AIM could have an opposite function in HS and some tumor cell lines.
Polymer encapsulated dopaminergic cell lines as "alternative neural grafts".
Jaeger, C B; Greene, L A; Tresco, P A; Winn, S R; Aebischer, P
1990-01-01
Our preliminary findings (Jaeger et al., 1988; Aebischer et al., 1989; Tresco et al., 1989) and the studies in progress show that encapsulated dopaminergic cell lines survive enclosure within a semi-permeable membrane. The encapsulated cells remained viable for extended time periods when maintained in vitro. Moreover, encapsulated PC12 and T28 cells have the potential to survive following their implantation into the forebrain of rats. Cell lines are essentially "immortal" because they continue to divide indefinitely. This property allows perpetual "self-renewal" of a given cell population. However, the capacity of continuous uncontrolled cell division may also lead to tumor formation. This in fact is the case for unencapsulated PC12 cell implants placed into the brain of young Sprague Dawley rats (Jaeger, 1985). Cell line encapsulation has the potential to prevent tumor growth (Jaeger et al., 1988). Survival for 6 months in vitro suggests that encapsulation does not preclude long-term maintenance of an homogeneous cell line like PC12 cells. The presence of mitotic figures in the capsules further supports the likelihood of propagation and self renewal of the encapsulated population. Another significant property of cell lines is that they consist of a single, genetically homogeneous cell type. They do not require specific synaptic interactions for their survival. In the case of PC12 and T28 lines, the cells synthesize and release neurotransmitters. Our data show that PC12 and T28 cells continue to release dopamine spontaneously and to express specific transmitters and enzymes following encapsulation. Thus, cell lines such as these may constitute relatively simple "neural implants" exerting their function via humoral release.(ABSTRACT TRUNCATED AT 250 WORDS)
Frequent biphasic cellular responses of permanent fish cell cultures to deoxynivalenol (DON)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pietsch, Constanze, E-mail: constanze.pietsch@unibas.ch; Bucheli, Thomas D.; Wettstein, Felix E.
Contamination of animal feed with mycotoxins is a major problem for fish feed mainly due to usage of contaminated ingredients for production and inappropriate storage of feed. The use of cereals for fish food production further increases the risk of a potential contamination. Potential contaminants include the mycotoxin deoxynivalenol (DON) which is synthesized by globally distributed fungi of the genus Fusarium. The toxicity of DON is well recognized in mammals. In this study, we confirm cytotoxic effects of DON in established permanent fish cell lines. We demonstrate that DON is capable of influencing the metabolic activity and cell viability inmore » fish cells as determined by different assays to indicate possible cellular targets of this toxin. Evaluation of cell viability by measurement of membrane integrity, mitochondrial activity and lysosomal function after 24 h of exposure of fish cell lines to DON at a concentration range of 0-3000 ng ml{sup -1} shows a biphasic effect on cells although differences in sensitivity occur. The cell lines derived from rainbow trout are particularly sensitive to DON. The focus of this study lies, furthermore, on the effects of DON at different concentrations on production of reactive oxygen species (ROS) in the different fish cell lines. The results show that DON mainly reduces ROS production in all cell lines that were used. Thus, our comparative investigations reveal that the fish cell lines show distinct species-related endpoint sensitivities that also depend on the type of tissue from which the cells were derived and the severity of exposure. - Highlights: > DON uptake by cells is not extensive. > All fish cell lines are sensitive to DON. > DON is most cytotoxic to rainbow trout cells. > Biphasic cellular responses were frequently observed. > Our results are similar to studies on mammalian cell lines.« less
Takimoto, T; Sato, H; Ogura, H
1986-01-01
The appearance of Epstein-Barr virus (EBV)-associated nuclear antigen (EBNA) and induction of EBV-induced early antigen (EA) in human umbilical cord blood lymphocytes (HUCLs) and two EBV genome-negative Burkitt's lymphoma (BL) lines (BJAB and Ramos) were studied by infection with EBVs prepared from three different cell lines: marmoset cell line (B95-8) derived from infections mononucleosis, BL-derived cell line (P3HR-1) and human epithelial hybrid cell line (NPC-KT) derived from nasopharyngeal carcinoma. B95-8 virus can transform HUCLs but cannot superinfect Raji cells. P3HR-1 virus can transform HUCLs cells but cannot transform HUCLs. NPC-KT virus can transform HUCLs and can superinfect Raji cells. We have examined the time sequence of EBNA appearance and EA induction in HUCLs, BJAB cells and Ramos cells, in order to determine if three different strains of EBV differ in their abilities to infect their cells. We found that all three strains of EBV can induce EBNA in HUCLs, BJAB cells and Ramos cells. On the other hand, we found that P3HR-1 virus and NPC-KT virus can induce EA in BJAB cells and Ramos cells, but B95-8 virus cannot induce EA in their cells.
Double Aneuploidy Detected by Cell-Free DNA Testing and Confirmed by Fetal Tissue Analysis.
Echague, Charlene G; Petersen, Scott M
2016-06-01
Double aneuploidies account for 0.21-2.8% of spontaneous abortions resulting from chromosomal abnormalities. Rarely, cell-free DNA testing detects multiple aneuploidies; however, to discern among maternal, placental, and fetal origin, further evaluation is required. A 49-year-old woman, gravida 5 para 0, underwent cell-free DNA testing at 11 4/7 weeks of gestation, which revealed a fetus that was high risk for trisomies 18 and 21. On ultrasonography at 14 weeks of gestation, she was diagnosed with a missed abortion and underwent surgical management. Fetal and placental tissues were sent for analysis and were positive for trisomies 18 and 21, confirming the results of cell-free DNA testing. Our case highlights the ability of cell-free DNA testing to recognize a double aneuploidy confirmed by fetal tissue analysis.
Parkes, Christina; Kamal, Areege; Valentijn, Anthony J; Alnafakh, Rafah; Gross, Stephane R; Barraclough, Roger; Moss, Diana; Kirwan, John; Hapangama, Dharani K
2018-01-01
Translational endometrial cancer (EC) research benefits from an in vitro experimental approach using EC cell lines. We demonstrated the steps that are required to examine estrogen-induced proliferative response, a simple yet important research question pertinent to EC, and devised a pragmatic methodological workflow for using EC cell lines in experimental models. Comprehensive review of all commercially available EC cell lines was carried out, and Ishikawa cell line was selected to study the estrogen responsiveness with HEC1A, RL95-2, and MFE280 cell lines as comparators where appropriate, examining relevant differential molecular (steroid receptors) and functional (phenotype, anchorage-independent growth, hormone responsiveness, migration, invasion, and chemosensitivity) characteristics in 2-dimensional and 3-dimensional cultures in vitro using immunocytochemistry, immunofluorescence, quantitative polymerase chain reaction, and Western blotting. In vivo tumor, formation, and chemosensitivity were also assessed in a chick chorioallantoic membrane model. Short tandem repeat analysis authenticated the purchased cell lines, whereas gifted cells deviated significantly from the published profile. We demonstrate the importance of prior assessment of the suitability of each cell line for the chosen in vitro experimental technique. Prior establishment of baseline, nonenriched conditions was required to induce a proliferative response to estrogen. The chorioallantoic membrane model was a suitable in vivo multicellular animal model for EC for producing rapid and reproducible data. We have developed a methodological guide for EC researchers when using endometrial cell lines to answer important translational research questions (exemplified by estrogen-responsive cell proliferation) to facilitate robust data, while saving time and resources.
Flow Line, Durafill VS, and Dycal toxicity to dental pulp cells: effects of growth factors
Furey, Alyssa; Hjelmhaug, Julie; Lobner, Doug
2010-01-01
Introduction The objective was to determine the effects of growth factor treatment on dental pulp cell sensitivity to toxicity of two composite restoration materials, Flow Line and Durafill VS, and a calcium hydroxide pulp capping material, Dycal. Methods Toxicity of the dental materials to cultures of primary dental pulp cells was determined by the MTT metabolism assay. The ability of six different growth factors to influence the toxicity was tested. Results A 24 hour exposure to either Flow Line or Durafill VS caused approximately 40% cell death, while Dycal exposure caused approximately 80% cell death. The toxicity of Flow Line and Durafill VS was mediated by oxidative stress. Four of the growth factors tested (BMP-2, BMP-7, EGF, and TGF-β) decreased the basal MTT values while making the cells resistant to Flow Line and Durafill VS toxicity, except BMP-2 which made the cells more sensitive to Flow Line. Treatment with FGF-2 caused no change in basal MTT metabolism, prevented the toxicity of Durafill VS, but increased the toxicity of Flow Line. Treatment with IGF-I increased basal MTT metabolism and made the cells resistant to Flow Line and Durafill VS toxicity. None of the growth factors made the cells resistant to Dycal toxicity. Conclusions The results indicate that growth factors can be used to alter the sensitivity of dental pulp cells to commonly used restoration materials. The growth factors BMP-7, EGF, TGF-β, and IGF-I provided the best profile of effects, making the cells resistant to both Flow Line and Durafill VS toxicity. PMID:20630288
Culture of human cell lines by a pathogen-inactivated human platelet lysate.
Fazzina, R; Iudicone, P; Mariotti, A; Fioravanti, D; Procoli, A; Cicchetti, E; Scambia, G; Bonanno, G; Pierelli, L
2016-08-01
Alternatives to the use of fetal bovine serum (FBS) have been investigated to ensure xeno-free growth condition. In this study we evaluated the efficacy of human platelet lysate (PL) as a substitute of FBS for the in vitro culture of some human cell lines. PL was obtained by pools of pathogen inactivated human donor platelet (PLT) concentrates. Human leukemia cell lines (KG-1, K562, JURKAT, HL-60) and epithelial tumor cell lines (HeLa and MCF-7) were cultured with either FBS or PL. Changes in cell proliferation, viability, morphology, surface markers and cell cycle were evaluated for each cell line. Functional characteristics were analysed by drug sensitivity test and cytotoxicity assay. Our results demonstrated that PL can support growth and expansion of all cell lines, although the cells cultured in presence of PL experienced a less massive proliferation compared to those grown with FBS. We found a comparable percentage of viable specific marker-expressing cells in both conditions, confirming lineage fidelity in all cultures. Functionality assays showed that cells in both FBS- and PL-supported cultures maintained their normal responsiveness to adriamycin and NK cell-mediated lysis. Our findings indicate that PL is a feasible serum substitute for supporting growth and propagation of haematopoietic and epithelial cell lines with many advantages from a perspective of process standardization, ethicality and product safety.
Gudjonsson, Thorarinn; Villadsen, René; Nielsen, Helga Lind; Rønnov-Jessen, Lone; Bissell, Mina J.; Petersen, Ole William
2002-01-01
The epithelial compartment of the human breast comprises two distinct lineages: the luminal epithelial and the myoepithelial lineage. We have shown previously that a subset of the luminal epithelial cells could convert to myoepithelial cells in culture signifying the possible existence of a progenitor cell. We therefore set out to identify and isolate the putative precursor in the luminal epithelial compartment. Using cell surface markers and immunomagnetic sorting, we isolated two luminal epithelial cell populations from primary cultures of reduction mammoplasties. The major population coexpresses sialomucin (MUC+) and epithelial-specific antigen (ESA+) whereas the minor population has a suprabasal position and expresses epithelial specific antigen but no sialomucin (MUC−/ESA+). Two cell lines were further established by transduction of the E6/E7 genes from human papilloma virus type 16. Both cell lines maintained a luminal epithelial phenotype as evidenced by expression of the tight junction proteins, claudin-1 and occludin, and by generation of a high transepithelial electrical resistance on semipermeable filters. Whereas in clonal cultures, the MUC+/ESA+ epithelial cell line was luminal epithelial restricted in its differentiation repertoire, the suprabasal-derived MUC−/ESA+ epithelial cell line was able to generate itself as well as MUC+/ESA+ epithelial cells and Thy-1+/α-smooth muscle actin+ (ASMA+) myoepithelial cells. The MUC−/ESA+ epithelial cell line further differed from the MUC+/ESA+ epithelial cell line by the expression of keratin K19, a feature of a subpopulation of epithelial cells in terminal duct lobular units in vivo. Within a reconstituted basement membrane, the MUC+/ESA+ epithelial cell line formed acinus-like spheres. In contrast, the MUC−/ESA+ epithelial cell line formed elaborate branching structures resembling uncultured terminal duct lobular units both by morphology and marker expression. Similar structures were obtained by inoculating the extracellular matrix-embedded cells subcutaneously in nude mice. Thus, MUC−/ESA+ epithelial cells within the luminal epithelial lineage may function as precursor cells of terminal duct lobular units in the human breast. PMID:11914275
Establishment of an immortal chicken embryo liver-derived cell line.
Lee, Jeongyoon; Foster, Douglas N; Bottje, Walter G; Jang, Hyeon-Min; Chandra, Yohanna G; Gentles, Lauren E; Kong, Byung-Whi
2013-06-01
A continuously growing immortal cell substrate can be used for virus propagation, diagnostic purposes, and vaccine production. The aim of this study was to develop an immortal chicken cell line for efficient propagation of avian infectious viruses. From the various chicken embryo cells that were tested for life span extension, an immortalized chicken embryo liver (CEL) cell line, named CEL-im, was derived spontaneously without either oncogenic viruses or carcinogenic chemical treatment. Currently, CEL-im cells are growing 0.8 to 1.1 population doublings per day and have reached 120 passages. The CEL-im cell line is permissive for poultry infectious viruses, including avian metapneumovirus (AMPV), Marek's disease virus serotype 1 (MDV-1), and infectious laryngotracheitis virus. The CEL-im cells produced high AMPV titer (>10(5) pfu/mL), whereas very low titers (~10 pfu/mL) for MDV-1 and infectious laryngotracheitis virus were produced. To identify genetic alterations in the immortal CEL-im cell line, telomerase activity and mRNA expression for major cell cycle regulatory genes were determined during the immortalizing process. The CEL-im cell line has negative telomerase activity, and when compared with the primary passage 2 CEL cell counterpart, mRNA expression of tumor suppressor protein p53, mouse double minute 2 (Mdm2), cyclin dependent kinase (CDK) inhibitor p21 (p21(WAF)), and CDK inhibitor p16 (p16(INK4)) were downregulated in the CEL-im cell line, whereas retinoblastoma (Rb), transcription factor E2F, member 1 (E2F-1), and alternative reading frame of p16(INK4) (ARF) were upregulated. These results are similar to genetic alterations found previously in immortal chicken embryo fibroblast (CEF) cell lines that showed efficient propagation of MDV-1. Therefore, this newly established CEL-im cell line can serve as an alternative cell substrate for the propagation of poultry viruses, such as AMPV.
Oshima, Yukiko; Tanaka, Harunari; Murakami, Hiroki; Ito, Yuichi; Furuya, Tomomi; Kondo, Eisaku; Kodera, Yasuhiro; Nakanishi, Hayao
2014-01-01
Trastuzumab (Tmab) resistance is a major clinical problem to be resolved in patients with HER2-positive gastric cancers. However, in contrast to the situation for HER2-positive breast cancer lines, the Tmab-resistant gastric cancer preclinical models that are needed to develop a new therapy to overcome this problem are not yet available. We developed three new cell lines from HER2 gene-amplified gastric cancer cell lines (GLM-1, GLM-4, NCI N-87) by a new in vivo selection method consisting of the repeated culture of small residual peritoneal metastasis but not subcutaneous tumor after Tmab treatment. We then evaluated the anti-tumor efficacy of lapatinib for these Tmab-resistant cells. We successfully isolated two Tmab-resistant cell lines (GLM1-HerR2(3), GLM4-HerR2) among the three tested cell lines. These resistant cells differed from the parental cells in their flat morphology and rapid growth in vitro, but HER2, P95HER2 expression, and Tmab binding were essentially the same for the parental and resistant cells. MUC4 expression was up- or downregulated depending on the cell line. These resistant cells were still sensitive to lapatinib, similar to the parental cells, in vitro. This growth inhibition of the Tmab-resistant cells by lapatinib was due to both G1 cell-cycle arrest and apoptosis induction via effective blockade of the PI3K/Akt and MAPK pathways. A preclinical study confirmed that the Tmab-resistant tumors are significantly susceptible to lapatinib. These results suggest that lapatinib has antitumor activity against the Tmab-resistant gastric cancer cell lines, and that these cell lines are useful for understanding the mechanism of Tmab resistance and for developing a new molecular therapy for Tmab-resistant HER2-positive gastric cancers.
Huang, Chen-Song; Zhai, Jing-Ming; Zhu, Xiao-Xu; Cai, Jian-Peng; Chen, Wei; Li, Jian-Hui; Yin, Xiao-Yu
2017-12-01
Our previous study found that B cell translocation gene 2 (BTG2) was hyper-methylated and down-regulated in side population (SP) cells of hepatocellular carcinoma (HCC) cell line. However, its clinical significances and biological impacts on HCC SP cells remained unclear. To investigate the prognostic value of BTG2 gene in HCC and its influences on cancer stem cells (CSCs)-like traits of HCC cell line SP cells. BTG2 expression in human HCC and adjacent non-cancerous tissues was detected by immunohistochemical staining and quantitative real-time PCR, and also obtained from GEO and TCGA data. Its prognostic values were assessed. Its biological influences on HCC cell line SP cells were evaluated using cell viability, cell cycle, plate clone-forming assay, and chemoresistance in vitro and tumorigenicity in vivo. BTG2 expression was significantly suppressed in human HCC compared to adjacent non-cancerous tissues. BTG2 expression was correlated with TNM stage, tumor size and vascular invasion. Lower expression of BTG2 was associated with poorer overall survival and disease-free survival. In vitro, overexpression of BTG2 substantially suppressed cell proliferation and accumulation of HCC cell line SP cells in G0/G1 phase. Colony formation ability was markedly suppressed by BTG2 overexpression. Moreover, sensitivity of HCC cell line SP cells to 5-fluorouracil was substantially increased by overexpression of BTG2. Furthermore, tumorigenicity of HCC cell line SP cells transfected with BTG2 plasmids was significantly reduced in vivo. BTG2 gene could regulate the CSC-like traits of HCC cell line SP cells, and it represented as a molecular prognostic marker for HCC.
Reina, J; Ballesteros, F; Mari, M; Munar, M
2001-01-01
Aims—To compare prospectively the efficacy of the Vero, LLC-MK2, MDCK, Hep-2, and MRC-5 cell lines in the isolation of the mumps virus from clinical samples by means of the shell vial method. Methods—During an epidemic outbreak of parotiditis 48 clinical samples (saliva swabs and CSF) were studied. Two vials of the Vero, LLC-MK2, MDCK, MRC-5, and Hep-2 cell lines were inoculated with 0.2 ml of the samples by the shell vial assay. The vials were incubated at 36°C for two and five days. The vials were then fixed with acetone at -20°C for 10 minutes and stained by a monoclonal antibody against mumps virus by means of an indirect immunofluorescence assay. Results—The mumps virus was isolated from 36 samples. The Vero and LLC-MK2 cell lines showed a 100% isolation capacity, MDCK showed 77.7%, MRC-5 showed 44.4%, and Hep-2 showed 22.2%. The Vero and LLC-MK2 lines were significantly different to the other cell lines (p < 0.001). The sensitivity for the Vero and LLC-MK2 lines at two and five days of incubation was identical (100%). The values obtained in the study of the quantitative isolation capacity (positive isolation with > 5 infectious foci) were 94.4% for Vero, 97.2% for LLC-MK2, 5.5% for MDCK, 5.5% for Hep-2, and 0% for MRC-5. Conclusions—The Vero and LLC-MK2 cell lines are equally efficient at two and five days incubation for the isolation of the mumps virus from clinical samples, and the use of the shell vial method considerably shortens the time of aetiological diagnosis with higher specificity. Key Words: mumps virus • Vero cell line • LLC-MK2 cell line • MDCK cell line • Hep-2 cell line • MRC-5 cell line • isolation • shell vial PMID:11729211
2010-01-01
Introduction Normal and neoplastic breast tissues are comprised of heterogeneous populations of epithelial cells exhibiting various degrees of maturation and differentiation. While cultured cell lines have been derived from both normal and malignant tissues, it remains unclear to what extent they retain similar levels of differentiation and heterogeneity as that found within breast tissues. Methods We used 12 reduction mammoplasty tissues, 15 primary breast cancer tissues, and 20 human breast epithelial cell lines (16 cancer lines, 4 normal lines) to perform flow cytometry for CD44, CD24, epithelial cell adhesion molecule (EpCAM), and CD49f expression, as well as immunohistochemistry, and in vivo tumor xenograft formation studies to extensively analyze the molecular and cellular characteristics of breast epithelial cell lineages. Results Human breast tissues contain four distinguishable epithelial differentiation states (two luminal phenotypes and two basal phenotypes) that differ on the basis of CD24, EpCAM and CD49f expression. Primary human breast cancer tissues also contain these four cellular states, but in altered proportions compared to normal tissues. In contrast, cultured cancer cell lines are enriched for rare basal and mesenchymal epithelial phenotypes, which are normally present in small numbers within human tissues. Similarly, cultured normal human mammary epithelial cell lines are enriched for rare basal and mesenchymal phenotypes that represent a minor fraction of cells within reduction mammoplasty tissues. Furthermore, although normal human mammary epithelial cell lines exhibit features of bi-potent progenitor cells they are unable to differentiate into mature luminal breast epithelial cells under standard culture conditions. Conclusions As a group breast cancer cell lines represent the heterogeneity of human breast tumors, but individually they exhibit increased lineage-restricted profiles that fall short of truly representing the intratumoral heterogeneity of individual breast tumors. Additionally, normal human mammary epithelial cell lines fail to retain much of the cellular diversity found in human breast tissues and are enriched for differentiation states that are a minority in breast tissues, although they do exhibit features of bi-potent basal progenitor cells. These findings suggest that collections of cell lines representing multiple cell types can be used to model the cellular heterogeneity of tissues. PMID:20964822
Fan, Weiwei; Lin, Chun Shi; Potluri, Prasanth; Procaccio, Vincent; Wallace, Douglas C.
2012-01-01
The role of mitochondrial DNA (mtDNA) mutations and mtDNA recombination in cancer cell proliferation and developmental biology remains controversial. While analyzing the mtDNAs of several mouse L cell lines, we discovered that every cell line harbored multiple mtDNA mutants. These included four missense mutations, two frameshift mutations, and one tRNA homopolymer expansion. The LA9 cell lines lacked wild-type mtDNAs but harbored a heteroplasmic mixture of mtDNAs, each with a different combination of these variants. We isolated each of the mtDNAs in a separate cybrid cell line. This permitted determination of the linkage phase of each mtDNA and its physiological characteristics. All of the polypeptide mutations inhibited their oxidative phosphorylation (OXPHOS) complexes. However, they also increased mitochondrial reactive oxygen species (ROS) production, and the level of ROS production was proportional to the cellular proliferation rate. By comparing the mtDNA haplotypes of the different cell lines, we were able to reconstruct the mtDNA mutational history of the L–L929 cell line. This revealed that every heteroplasmic L-cell line harbored a mtDNA that had been generated by intracellular mtDNA homologous recombination. Therefore, deleterious mtDNA mutations that increase ROS production can provide a proliferative advantage to cancer or stem cells, and optimal combinations of mutant loci can be generated through recombination. PMID:22345519
Pérez-Campo, Flor M; May, Tobias; Zauers, Jeannette; Sañudo, Carolina; Delgado-Calle, Jesús; Arozamena, Jana; Berciano, María T; Lafarga, Miguel; Riancho, José A
2017-03-01
Different model systems using osteoblastic cell lines have been developed to help understand the process of bone formation. Here, we report the establishment of two human osteoblastic cell lines obtained from primary cultures upon transduction of immortalizing genes. The resulting cell lines had no major differences to their parental lines in their gene expression profiles. Similar to primary osteoblastic cells, osteocalcin transcription increased following 1,25-dihydroxyvitamin D 3 treatment and the immortalized cells formed a mineralized matrix, as detected by Alizarin Red staining. Moreover, these human cell lines responded by upregulating ALPL gene expression after treatment with the demethylating agent 5-aza-2'-deoxycytidine (AzadC), as shown before for primary osteoblasts. We further demonstrate that these cell lines can differentiate in vivo, using a hydroxyapatite/tricalcium phosphate composite as a scaffold, to produce bone matrix. More importantly, we show that these cells respond to demethylating treatment, as shown by the increase in SOST mRNA levels, the gene encoding sclerostin, upon treatment of the recipient mice with AzadC. This also confirms, in vivo, the role of DNA methylation in the regulation of SOST expression previously shown in vitro. Altogether our results show that these immortalized cell lines constitute a particularly useful model system to obtain further insight into bone homeostasis, and particularly into the epigenetic mechanisms regulating sclerostin production.
Valentín-Acevedo, Aníbal; Sinquett, Frank L.; Covey, Lori R.
2011-01-01
LMP1-mediated activation of nuclear factor of kappaB (NF-κB) is critical for the ligand independent proliferation and cell survival of in vitro EBV-transformed lymphoblastoid cell lines (LCLs). Previous experiments revealed that a majority of LMP1-dependent responses are regulated by NF-κB. However, the extent that individual NF-κB family members are required for these responses, in particular, c-Rel, whose expression is restricted to mature hematopoietic cells, remains unclear. Here we report that low c-Rel expression in LCLs derived from a patient with hyper-IgM syndrome (Pt1), resulted in defects in proliferation and cell survival. In contrast to studies that associated loss of NF-κB with increased apoptosis, Pt1 LCLs failed to initiate apoptosis and alternatively underwent autophagy and necrotic cell death. Whereas the proliferation defect appeared linked to a c-Rel-associated decrease in c-myc expression, identified pro-survival and pro-apoptotic targets were expressed at or near control levels consistent with the absence of apoptosis. Ultrastructural examination of Pt1 LCLs revealed a high level of cellular and ER stress that was further supported by gene expression profiling showing the upregulation of several genes involved in stress and inflammation. Apoptosis-independent cell death was accompanied by increased expression of the inflammatory marker, caspase-4. Using gene overexpression and siRNA knockdown we demonstrated that levels of c-Rel directly modulated expression of caspase-4 as well as other ER stress genes. Overall, these findings reveal the importance of c-Rel in maintaining LCL viability and that decreased expression results in ER stress and a default response leading to necrotic cell death. PMID:21984918
Nakai, Yasushi; Tatsumi, Yoshihiro; Miyake, Makito; Anai, Satoshi; Kuwada, Masaomi; Onishi, Sayuri; Chihara, Yoshitomo; Tanaka, Nobumichi; Hirao, Yoshihiko; Fujimoto, Kiyohide
2016-03-01
The mechanism underlying the increased levels of protoporphyrin IX in bladder cancer remains unclear. Here, we focus on proteins associated with protoporphyrin IX accumulation in bladder cancer cells and investigate the protein that plays a key role in increased protoporphyrin IX accumulation in bladder cancer cells. Western blotting was used to determine the expression of peptide transporter 1, hydroxymethylbilane synthase, ferrochelatase, ATP-binding cassette 2, and heme oxygenase-1 in bladder cancer cell line cells. We evaluated the correlation between the expression of each protein and accumulated protoporphyrin IX in these cells using Pearson's correlation analysis. Immunohistochemistry was used to estimate the expression of the same five proteins in samples from 75 patients who underwent transurethral resection of bladder tumors. The correlation between the expression of each protein in cells from resected bladder specimens and accumulated protoporphyrin IX in bladder cancer cells in voided urine was evaluated using Pearson's correlation analysis. The expression of ferrochelatase showed a significant negative correlation with protoporphyrin IX accumulation in vitro (p=0.04). The expression of peptide transporter 1 (p<0.01, R=0.39), heme oxygenase-1 (p<0.01, R=0.33), and ferrochelatase (p<0.01, R=0.75) in resected bladder specimens by immunohistochemistry was correlated with protoporphyrin IX accumulation in bladder cancer cells in voided urine. On multivariate analysis, the expression of ferrochelatase (p=0.03) was significant factors to predict positive 5-aminolevulinic acid-induced fluorescent cytology. The expression of ferrochelatase has a strong correlation in protoporphyrin IX accumulation with photodynamic detection of bladder cancer. Copyright © 2015 Elsevier B.V. All rights reserved.
Leandro, Fernanda Z; Martins, Júlia; Fontes, Aparecida M; Tedesco, Antonio C
2017-06-01
This paper evaluates how effectively chloroaluminum phthalocyanine (ClAlPc) entrapped in colloidal nanocarriers, such as nanocapsule (NC) and nanoemulsion (NE), induces photodamage in human prostate cancer cells (LNCaP) during photodynamic therapy (PDT). The MTT cell viability assay showed that both ClAlPc-NC and ClAlPc-NE induced phototoxicity and efficiently killed LNCaP cells at low ClAlPc-NC and ClAlPc-NE concentrations (0.3μgmL -1 ) as well as under low light doses of 4Jcm -2 and 7Jcm -2 , respectively, upon PDT with a 670-nm diode laser line. Confocal imaging studies indicated that ClAlPc-NC and ClAlPc-NE were preferentially localized in the perinuclear region of LNCaP cells both in the dark and upon irradiation with laser light. After PDT treatment, ClAlPc-NC-treated LNCaP cells exhibited a higher green fluorescence signal, possibly due to the larger shrinkage of the actin cytoskeleton, compared to ClAlPc-NE-treated LNCaP cells. Additionally, ClAlPc-NC or ClAlPc-NE and mitochondria showed a relatively high co-localization level. The cellular morphology did not change in the dark, but confocal micrographs recorded after PDT revealed that LNCaP cells treated with ClAlPc-NC or ClAlPc-NE underwent morphological alterations. Our preliminary in vitro studies reinforced the hypothesis that biocompatible theranostic ClAlPc-loaded nanocarriers could act as an attractive photosensitizer system in PDT and could serve as an interesting molecular probe for the early diagnosis of prostate cancer and other carcinomas. Copyright © 2017 Elsevier B.V. All rights reserved.
Lim, Yun-Sung; Lee, Jin-Choon; Lee, Yoon Se; Wang, Soo-Geun
2012-01-01
Objectives Mesenchymal stem cells (MSCs) play an important role in the development and growth of tumor cells. However, the effect of human MSCs on the growth of human tumors is not well understood. The purpose of this study is to confirm the growth effect of palatine tonsil-derived MSCs (TD-MSCs) on head and neck squamous cell carcinoma (HNSCC) cell lines and to elucidate the mechanism of their action. Methods TD-MSCs were isolated from patient with chronic tonsillitis and tonsillar hypertrophy. Two human HNSCC cell lines (PNUH-12 and SNU-899) were studied and cocultured with isolated palatine tonsil-derived MSC. The growth inhibitory effect of MSCs on HNSCC cell lines was tested through methylthiazolyldiphenyl-tetrazolium (MTT) assay. The apoptosis induction effect of MSCs on cell lines was assessed with flow cytometry and reverse transcriptase (RT)-PCR. Results Palatine tonsil-derived MSCs exhibited a growth inhibitory effect on both cell lines. Cell cycle analysis showed an accumulation of tumor cells predominantly in G0/G1 phase with an increase in concentration of TD-MSCs, which was confirmed by increased mRNA expression of cell cycle negative regulator p21. Apoptosis of tumor cells increased significantly as concentration of cocultured TD-MSCs increased. Additionally, mRNA expression of caspase 3 was upregulated with increased concentration of TD-MSCs. Conclusion TD-MSCs have a potential growth inhibitory effect on HNSCC cell lines in vitro by inducing apoptotic cell death and G1 phase arrest of cell lines. PMID:22737289
Molecular characterization of a strong candidate region for schizophrenia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karayiorgou, M.; Housman, D.E.; Morrow, B.
Two lines of evidence point to a region on chromosome 22 as potentially involved in the etiology of schizophrenia: First, our own linkage data and second, observations that a greater than expected number of cases with the VCF (velo-cardio-facial) syndrome, a developmental syndrome due to microdeletions of the same genetic region, develop psychotic illness during adolescence. On the molecular genetic level, we are testing the hypothesis that the partial phenotypic overlap between schizophrenia and VCF may be due to overlapping genetic abnormalities. To that end, we have generated somatic cell hybrids from an initial group of nine VCF patients overmore » the age of 15 who underwent psychiatric evaluation. Three were assigned a DSM-III-R diagnosis of schizophrenia. Several hybrid cell lines were generated from each patient carrying either the deleted chromosome, or the intact chromosome, or both. We have analyzed these hybrids and the extent of their chromosome 22 deletions with 41 markers so far (21 polymorphic microsatellite markers and 20 STSs). One of these markers is COMT (catechol-O-methyltransferase) that could be considered a candidate for schizophrenia. We are searching for potential molecular genetic differences between the subgroup of VCF patients that do develop schizophrenia and the subgroup that do not. Our initial efforts concentrate on the possibility of correlation between the extent of the deletion and the schizophrenic phenotype. Results from our analysis so far will be presented. Our goal is to narrow and define more accurately the region potentially involved in the etiology of schizophrenia and successfully identify any gene(s) that may play a role.« less
McLaughlin, Eamon J; Miller, Lauren; Shin, Thuzar M; Sobanko, Joseph F; Cannady, Steven B; Miller, Christopher J; Newman, Jason G
Immunosuppressed solid organ transplant recipients (SOTRs) have an increased risk of developing cutaneous squamous cell carcinomas (cSCCs) with metastatic potential. This study sought to determine the rate of regional lymph node involvement in a large cohort of solid organ transplant patients with cutaneous head and neck squamous cell carcinoma. A retrospective chart review was performed on solid organ transplant patients with head and neck cutaneous squamous cell carcinoma treated at a tertiary academic medical center from 2005 to 2015. 130 solid organ transplant patients underwent resection of 383 head and neck cutaneous squamous cell carcinomas. The average age of the patient was 63. Seven patients (5%) developed regional lymph node metastases (3 parotid, 4 cervical lymph nodes). The mean time from primary tumor resection to diagnosis of regional lymphatic disease was 6.7months. Six of these patients underwent definitive surgical resection followed by adjuvant radiation; one patient underwent definitive chemoradiation. 6 of the 7 patients died of disease progression with a mean survival of 15months. The average follow up time was 3years (minimum 6months). Solid organ transplant recipients with cutaneous squamous cell carcinoma of the head and neck develop regional lymph node metastasis at a rate of 5%. Regional lymph node metastasis in this population has a poor prognosis and requires aggressive management and surveillance. Copyright © 2017 Elsevier Inc. All rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-28
... Comment Request: Request for Human Embryonic Stem Cell Line To Be Approved for Use in NIH Funded Research... Embryonic Stem Cell Line to be Approved for Use in NIH Funded Research. OMB No. 0925-0601-- Expiration Date... cell lines be approved for use in NIH funded research. Applicants may submit applications at any time...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-29
...; 30-Day Comment Request: Request for Human Embryonic Stem Cell Line To Be Approved for Use in NIH... Embryonic Stem Cell Line to be Approved for Use in NIH-Funded Research, 0925-0601, Expiration Date 04/30... Information Collection: The form is used by applicants to request that human embryonic stem cell lines be...
Sun, Changhong; Fan, Yu; Li, Juan; Wang, Gancheng; Zhang, Hanshuo; Xi, Jianzhong Jeff
2015-02-01
Transcription activator-like effectors (TALEs) are becoming powerful DNA-targeting tools in a variety of mammalian cells and model organisms. However, generating a stable cell line with specific gene mutations in a simple and rapid manner remains a challenging task. Here, we report a new method to efficiently produce monoclonal cells using integrated TALE nuclease technology and a series of high-throughput cell cloning approaches. Following this method, we obtained three mTOR mutant 293T cell lines within 2 months, which included one homozygous mutant line. © 2014 Society for Laboratory Automation and Screening.
Overcoming CRPC Treatment Resistance via Novel Dual AKR1C3 Targeting
2017-10-01
We therefore characterized another drug resistant line from C4-2B cells, C4-2B AbiR cells. C4-2B AbiR cells were resistant to Abi acetate in a...Testosterone level in C4-2B AbiR cell was 12 pg/50 million cells, similar to that in C4-2B MDVR or LNCaP-AKR1C3 cells. With the single drug resistant...cell lines on hand, we tested for their cross- resistance to Enza and Abi. While the parental line was sensitive to both drugs , the resistant lines
Delayed luminescence to monitor programmed cell death induced by berberine on thyroid cancer cells
NASA Astrophysics Data System (ADS)
Scordino, Agata; Campisi, Agata; Grasso, Rosaria; Bonfanti, Roberta; Gulino, Marisa; Iauk, Liliana; Parenti, Rosalba; Musumeci, Francesco
2014-11-01
Correlation between apoptosis and UVA-induced ultraweak photon emission delayed luminescence (DL) from tumor thyroid cell lines was investigated. In particular, the effects of berberine, an alkaloid that has been reported to have anticancer activities, on two cancer cell lines were studied. The FTC-133 and 8305C cell lines, as representative of follicular and anaplastic thyroid human cancer, respectively, were chosen. The results show that berberine is able to arrest cell cycle and activate apoptotic pathway as shown in both cell lines by deoxyribonucleic acid fragmentation, caspase-3 cleavage, p53 and p27 protein overexpression. In parallel, changes in DL spectral components after berberine treatment support the hypothesis that DL from human cells originates mainly from mitochondria, since berberine acts especially at the mitochondrial level. The decrease of DL blue component for both cell lines could be related to the decrease of intra-mitochondrial nicotinamide adenine dinucleotide and may be a hallmark of induced apoptosis. In contrast, the response in the red spectral range is different for the two cell lines and may be ascribed to a different iron homeostasis.
Cheng, T-C; Lai, Y-S; Lin, I-Y; Wu, C-P; Chang, S-L; Chen, T-I; Su, M-S
2010-02-01
Establishment and characterization of two cobia, Rachycentron canadum, cell lines derived from cobia brain (CB) and cobia fin (CF) are described. Caudal fin and brain from juvenile cobia were dissociated for 30 and 10 min, respectively, in phosphate-buffered saline containing 0.25% trypsin at 25 degrees C. The optimal culture condition for both dissociated cells (primary cell culture) was at 28 degrees C in Leibovitz-15 medium containing 10% foetal bovine serum. The cells have been sub-cultured at a ratio of 1:2 for more than 160 passages over a period of 3 years. Origin of the cultured cells was verified by comparison of their sequences of mitochondrial cytochrome oxidase subunit I genes (cox I) with the cox 1 sequence from cobia muscle tissue. The cell lines showed polyploidy. No mycoplasma contamination was detected. Susceptibility to grouper iridovirus was observed for the CB cell line but not the CF cell line. Both cell lines expressed green fluorescent protein after being transfected with green fluorescent reporter gene driven by the cytomegalovirus promoter.
Induction of oncogene addiction shift to NF-{kappa}B by camptothecin in solid tumor cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Togano, Tomiteru; Sasaki, Masataka; Watanabe, Mariko
2009-12-04
The biological basis of the resistance of solid tumor cells to chemotherapy is not well understood. While addressing this problem, we found that gastric cancer cell line St-4/CPT, lung cancer cell line A549/CPT, and colon cancer cell line HT-29/CPT, all of which are resistant to camptothecin (CPT), showed strong and constitutive nuclear factor (NF)-{kappa}B activity driven by I{kappa}B kinase compared with their parental cell lines St-4, A549, and HT-29. A new NF-{kappa}B inhibitor, dehydroxymethylepoxyquinomicin (DHMEQ), reduced viability and induced apoptosis in St-4/CPT, A549/CPT, and HT-29/CPT cell lines, while their parental cell lines were resistant to DHMEQ. The results in thismore » study present an example of the shift in signals that support the survival of solid tumor cells to NF-{kappa}B during the acquisition of resistance to CPT. The results also indicate that solid tumor cells that become resistant to chemotherapy may be more easily treated by NF-{kappa}B inhibitors.« less
Zhang, Lu; Aerziguli, Tursun; Guzalnur, Abliz
2012-04-01
To establish a uterine cervical carcinoma cell line of Uyghur ethnical background and to evaluate the related biological characteristics for future biomedical investigations of diseases in the Uyghur population. Poorly-differentiated squamous cell carcinoma specimens of Uyghur patients were obtained and cultured in vitro by enzymatic digestion method, followed by continuous passaging to reach a stable growth determined by cell viability and growth curve. Morphological study, cell cycling and chromosomal analysis were performed. Tumorigenesis study was conducted by inoculation of nude mice. Biomarker (CK17, CD44, Ki-67, CK14 and vimentin) expression was detected by immunofluorescence and immunocytochemical techniques. A cervical carcinoma cell line was successfully established and maintained for 12 months through 70 passages. The cell line had a stable growth with a population doubling time of 51.9 h. Flask method and double agar-agar assay showed that the cell line had colony-forming rates of 32.5% and 15.6%, respectively. Ultrastructural evaluation demonstrated numerous cell surface protrusions or microvilli, a large number of rod-shape structures in cytoplasm, typical desmosomes and nuclear atypia. Chromosomal analysis revealed human karyotype with the number of chromosomes per cell varying from 32 - 97 with a majority of 54 - 86 (60.3%). Xenogeneic tumors formed in nude mice showed histological structures identical to those of the primary tumor. The cells had high expression of CK17, CD44, Ki-67 and vimentin but no CK14 expression. A cervical carcinoma cell line from a female Uyghur patient is successfully established. The cell line has the characteristics of human cervical squamous cell carcinoma, and it is stable with maintaining the characteristic biological and morphological features in vitro for more than 12 months, therefore, qualified as a stable cell line for further biomedical research.
Characteristics of bovine inner cell mass-derived cell lines and their fate in chimeric conceptuses.
Furusawa, Tadashi; Ohkoshi, Katsuhiro; Kimura, Koji; Matsuyama, Shuichi; Akagi, Satoshi; Kaneda, Masahiro; Ikeda, Mitsumi; Hosoe, Misa; Kizaki, Keiichiro; Tokunaga, Tomoyuki
2013-08-01
Bovine embryonic stem (ES) cells have the potential to provide significant benefits in a range of agricultural and biomedical applications. Here, we employed a combination of conventional methods using glycogen synthase kinase 3 and mitogen-activated protein kinase inhibitors to establish ES cell lines from in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT) bovine embryos. Five male cell lines were established from IVF embryos, and two female and three male cell lines from SCNT blastocysts; we named these lines bovine ES cell-like cells (bESLCs). The lines exhibited dome-shaped colonies, stained positively for alkaline phosphatase, and expressed pluripotent stem cell markers such as POU5F1, SOX2, and SSEA-1. The expression levels of these markers, especially for NANOG, varied among the cell lines. A DNA methylation assay showed the POU5F1 promoter region was hypomethylated compared to fibroblast cells. An in vitro differentiation assay showed that endoderm and ectoderm marker genes, but not mesoderm markers, were upregulated in differentiating bESLCs. To examine bESLCs in later embryonic stages, we created 22 chimeric blastocysts with a male bESLC line carrying a GFP marker gene and transferred these to a recipient cow. Four chimeric embryos were subsequently retrieved on Day 13 and retransferred to two recipient cows. One living fetus was obtained at Day 62. GFP signals were not identified in fetal cells by fluorescence microscopy; however, genomic PCR analysis detected the GFP gene in major organs. Clusters of GFP-positive cells were observed in amniotic membranes, suggesting that bESLCs can be categorized as a novel type of ICM-derived cells that can potentially differentiate into epiblast and hypoblast lineages.
A systems analysis of the chemosensitivity of breast cancer cells to the polyamine analogue PG-11047
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuo, Wen-Lin; Das, Debopriya; Ziyad, Safiyyah
2009-11-14
Polyamines regulate important cellular functions and polyamine dysregulation frequently occurs in cancer. The objective of this study was to use a systems approach to study the relative effects of PG-11047, a polyamine analogue, across breast cancer cells derived from different patients and to identify genetic markers associated with differential cytotoxicity. A panel of 48 breast cell lines that mirror many transcriptional and genomic features present in primary human breast tumours were used to study the antiproliferative activity of PG-11047. Sensitive cell lines were further examined for cell cycle distribution and apoptotic response. Cell line responses, quantified by the GI50 (dosemore » required for 50% relative growth inhibition) were correlated with the omic profiles of the cell lines to identify markers that predict response and cellular functions associated with drug sensitivity. The concentrations of PG-11047 needed to inhibit growth of members of the panel of breast cell lines varied over a wide range, with basal-like cell lines being inhibited at lower concentrations than the luminal cell lines. Sensitive cell lines showed a significant decrease in S phase fraction at doses that produced little apoptosis. Correlation of the GI50 values with the omic profiles of the cell lines identified genomic, transcriptional and proteomic variables associated with response. A 13-gene transcriptional marker set was developed as a predictor of response to PG-11047 that warrants clinical evaluation. Analyses of the pathways, networks and genes associated with response to PG-11047 suggest that response may be influenced by interferon signaling and differential inhibition of aspects of motility and epithelial to mesenchymal transition.« less
Characterization of endogenous calcium responses in neuronal cell lines.
Vetter, Irina; Lewis, Richard J
2010-03-15
An increasing number of putative therapeutic targets have been identified in recent years for the treatment of neuronal pathophysiologies including pain, epilepsy, stroke and schizophrenia. Many of these targets signal through calcium (Ca(2+)), either by directly facilitating Ca(2+) influx through an ion channel, or through activation of G proteins that couple to intracellular Ca(2+) stores or voltage-gated Ca(2+) channels. Immortalized neuronal cell lines are widely used models to study neuropharmacology. However, systematic pharmacological characterization of the receptors and ion channels expressed in these cell lines is lacking. In this study, we systematically assessed endogenous Ca(2+) signaling in response to addition of agonists at potential therapeutic targets in a range of cell lines of neuronal origin (ND7/23, SH-SY5Y, 50B11, F11 and Neuro2A cells) as well as HEK293 cells, a cell line commonly used for over-expression of receptors and ion channels. This study revealed a remarkable diversity of endogenous Ca(2+) responses in these cell lines, with one or more cell lines responding to addition of trypsin, bradykinin, ATP, nicotine, acetylcholine, histamine and neurotensin. Subtype specificity of these responses was inferred from agonist potency and the effect of receptor subtype specific antagonist. Surprisingly, HEK293 and SH-SY5Y cells responded to the largest number of agonists with potential roles in neuronal signaling. These findings have implications for the heterologous expression of neuronal receptors and ion channels in these cell lines, and highlight the potential of neuron-derived cell lines for the study of a range of endogenously expressed receptors and ion channels that signal through Ca(2+). Crown Copyright 2009. Published by Elsevier Inc. All rights reserved.
Optimization of a cAMP response element signal pathway reporter system.
Shan, Qiang; Storm, Daniel R
2010-08-15
A sensitive cAMP response element (CRE) reporter system is essential for studying the cAMP/protein kinase A/cAMP response element binding protein signal pathway. Here we have tested a few CRE promoters and found one with high sensitivity to external stimuli. Using this optimal CRE promoter and the enhanced green fluorescent protein as the reporter, we have established a CRE reporter cell line. This cell line can be used to study the signal pathway by fluorescent microscope, fluorescence-activated cell analysis and luciferase assay. This cell line's sensitivity to forskolin, using the technique of fluorescence-activated cell sorting, was increased to approximately seven times that of its parental HEK 293 cell line, which is currently the most commonly used cell line in the field for the signal pathway study. Therefore, this newly created cell line is potentially useful for studying the signal pathway's modulators, which generally have weaker effect than its mediators. Our research has also established a general procedure for optimizing transcription-based reporter cell lines, which might be useful in performing the same task when studying many other transcription-based signal pathways. (c) 2010 Elsevier B.V. All rights reserved.
Immortalized Human Hepatic Cell Lines for In Vitro Testing and Research Purposes.
Ramboer, Eva; Vanhaecke, Tamara; Rogiers, Vera; Vinken, Mathieu
2015-01-01
The ubiquitous shortage of primary human hepatocytes has urged the scientific community to search for alternative cell sources, such as immortalized hepatic cell lines. Over the years, several human hepatic cell lines have been produced, whether or not using a combination of viral oncogenes and human telomerase reverse transcriptase protein. Conditional approaches for hepatocyte immortalization have also been established and allow generation of growth-controlled cell lines. A variety of immortalized human hepatocytes have already proven useful as tools for liver-based in vitro testing and fundamental research purposes. The present chapter describes currently applied immortalization strategies and provides an overview of the actually available immortalized human hepatic cell lines and their in vitro applications.
Nocarova, Eva; Fischer, Lukas
2009-04-22
Phenotypic characterization of transgenic cell lines, frequently used in plant biology studies, is complicated because transgene expression in individual cells is often heterogeneous and unstable. To identify the sources and to reduce this heterogeneity, we transformed tobacco (Nicotiana tabacum L.) BY-2 cells with a gene encoding green fluorescent protein (GFP) using Agrobacterium tumefaciens, and then introduced a simple cloning procedure to generate cell lines derived from the individual transformed cells. Expression of the transgene was monitored by analysing GFP fluorescence in the cloned lines and also in lines obtained directly after transformation. The majority ( approximately 90%) of suspension culture lines derived from calli that were obtained directly from transformation consisted of cells with various levels of GFP fluorescence. In contrast, nearly 50% of lines generated by cloning cells from the primary heterogeneous suspensions consisted of cells with homogenous GFP fluorescence. The rest of the lines exhibited "permanent heterogeneity" that could not be resolved by cloning. The extent of fluorescence heterogeneity often varied, even among genetically identical clones derived from the primary transformed lines. In contrast, the offspring of subsequent cloning of the cloned lines was uniform, showing GFP fluorescence intensity and heterogeneity that corresponded to the original clone. The results demonstrate that, besides genetic heterogeneity detected in some lines, the primary lines often contained a mixture of epigenetically different cells that could be separated by cloning. This indicates that a single integration event frequently results in various heritable expression patterns, which are probably accidental and become stabilized in the offspring of the primary transformed cells early after the integration event. Because heterogeneity in transgene expression has proven to be a serious problem, it is highly advisable to use transgenes tagged with a visual marker for BY-2 transformation. The cloning procedure can be used not only for efficient reduction of expression heterogeneity of such transgenes, but also as a useful tool for studies of transgene expression and other purposes.
Slusser-Nore, Andrea; Larson-Casey, Jennifer L; Zhang, Ruowen; Zhou, Xu Dong; Somji, Seema; Garrett, Scott H; Sens, Donald A; Dunlevy, Jane R
2016-01-01
This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As(+3)) and cadmium (Cd(+2))-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd(+2)-and As(+3)-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice. Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As(+3)-and Cd(+2)-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF). Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres. It was shown that the As(+3)-and Cd(+2)-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As(+3)-and Cd(+2)-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells. Tumor initiating cells isolated from SPARC-transfected As(+3)-and Cd(+2)-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA.
Talbot, N C; Caperna, T J; Garrett, W M
2013-01-01
Totipotent embryonic stem cell lines have not been established from ungulates; however, we have developed a somatic stem cell line from the in vitro culture of pig epiblast cells. The cell line, ARS-PICM-19, was isolated via colony cloning and was found to spontaneously differentiate into hepatic parenchymal epithelial cell types, namely hepatocytes and bile duct cells. Hepatocytes form as monolayers and bile duct cells as 3-dimensional bile ductules. Transmission electron microscopy revealed that the ductules were composed of radially arranged, monociliated cells with their cilia projecting into the lumen of the ductule whereas hepatocytes were arranged in monolayers with lateral canalicular structures containing numerous microvilli and connected by tight junctions and desmosomes. Extensive Golgi and rough endoplasmic reticulum networks were also present, indicative of active protein synthesis. Analysis of conditioned medium by 2-dimensional electrophoresis and mass spectrometry indicated a spectrum of serum-protein secretion by the hepatocytes. The PICM-19 cell line maintains a range of inducible cytochrome P450 activities and, most notably, is the only nontransformed cell line that synthesizes urea in response to ammonia challenge. The PICM-19 cell line has been used for several biomedical- and agricultural-related purposes, such as the in vitro replication of hepatitis E virus, a zoonotic virus of pigs, and a spaceflight experiment to evaluate somatic stem cell differentiation and liver cell function in microgravity. The cell line was also evaluated as a platform for toxicity testing and has been used in a commercial artificial liver rescue device bioreactor. A PICM-19 subclone, PICM-19H, which only differentiates into hepatocytes, was isolated and methods are currently under development to grow PICM-19 cells without feeder cells. Feeder-cell-independent growth will facilitate the study of mesenchymal-parenchymal interactions that influence the divergent differentiation of the PICM-19 cells, enhance our ability to genetically modify the cells, and provide a better model system to investigate porcine hepatic metabolism.
Slusser-Nore, Andrea; Larson-Casey, Jennifer L.; Zhang, Ruowen; Zhou, Xu Dong; Somji, Seema; Garrett, Scott H.; Sens, Donald A.; Dunlevy, Jane R.
2016-01-01
Background This laboratory previously analyzed the expression of SPARC in the parental UROtsa cells, their arsenite (As+3) and cadmium (Cd+2)-transformed cell lines, and tumor transplants generated from the transformed cells. It was demonstrated that SPARC expression was down-regulated to background levels in Cd+2-and As+3-transformed UROtsa cells and tumor transplants compared to parental cells. In the present study, the transformed cell lines were stably transfected with a SPARC expression vector to determine the effect of SPARC expression on the ability of the cells to form tumors in immune-compromised mice. Methods Real time PCR, western blotting, immunohistochemistry, and immunofluorescence were used to define the expression of SPARC in the As+3-and Cd+2-transformed cell lines, and urospheres isolated from these cell lines, following their stable transfection with an expression vector containing the SPARC open reading frame (ORF). Transplantation of the cultured cells into immune-compromised mice by subcutaneous injection was used to assess the effect of SPARC expression on tumors generated from the above cell lines and urospheres. Results It was shown that the As+3-and Cd+2-transformed UROtsa cells could undergo stable transfection with a SPARC expression vector and that the transfected cells expressed both SPARC mRNA and secreted protein. Tumors formed from these SPARC-transfected cells were shown to have no expression of SPARC. Urospheres isolated from cultures of the SPARC-transfected As+3-and Cd+2-transformed cell lines were shown to have only background expression of SPARC. Urospheres from both the non-transfected and SPARC-transfected cell lines were tumorigenic and thus fit the definition for a population of tumor initiating cells. Conclusions Tumor initiating cells isolated from SPARC-transfected As+3-and Cd+2-transformed cell lines have an inherent mechanism to suppress the expression of SPARC mRNA. PMID:26783756
Immortalized Human Schwann Cell Lines Derived From Tumors of Schwannomatosis Patients.
Ostrow, Kimberly Laskie; Donaldson, Katelyn; Blakeley, Jaishri; Belzberg, Allan; Hoke, Ahmet
2015-01-01
Schwannomatosis, a rare form of neurofibromatosis, is characterized predominantly by multiple, often painful, schwannomas throughout the peripheral nervous system. The current standard of care for schwannomatosis is surgical resection. A major obstacle to schwannomatosis research is the lack of robust tumor cell lines. There is a great need for mechanistic and drug discovery studies of schwannomatosis, yet appropriate tools are not currently available. Schwannomatosis tumors are difficult to grow in culture as they survive only a few passages before senescence. Our lab has extensive experience in establishing primary and immortalized human Schwann cell cultures from normal tissue that retain their phenotypes after immortalization. Therefore we took on the challenge of creating immortalized human Schwann cell lines derived from tumors from schwannomatosis patients. We have established and fully characterized 2 schwannomatosis cell lines from 2 separate patients using SV40 virus large T antigen. One patient reported pain and the other did not. The schwannomatosis cell lines were stained with S100B antibodies to confirm Schwann cell identity. The schwannomatosis cells also expressed the Schwann cell markers, p75NTR, S100B, and NGF after multiple passages. Cell morphology was retained following multiple passaging and freeze/ thaw cycles. Gene expression microarray analysis was used to compare the cell lines with their respective parent tumors. No differences in key genes were detected, with the exception that several cell cycle regulators were upregulated in the schwannomatosis cell lines when compared to their parent tumors. This upregulation was apparently a product of cell culturing, as the schwannomatosis cells exhibited the same expression pattern of cell cycle regulatory genes as normal primary human Schwann cells. Cell growth was also similar between normal primary and immortalized tumor cells in culture. Accurate cell lines derived directly from human tumors will serve as invaluable tools for advancing schwannomatosis research, including drug screening.
Immortalized Human Schwann Cell Lines Derived From Tumors of Schwannomatosis Patients
Ostrow, Kimberly Laskie; Donaldson, Katelyn; Blakeley, Jaishri; Belzberg, Allan; Hoke, Ahmet
2015-01-01
Schwannomatosis, a rare form of neurofibromatosis, is characterized predominantly by multiple, often painful, schwannomas throughout the peripheral nervous system. The current standard of care for schwannomatosis is surgical resection. A major obstacle to schwannomatosis research is the lack of robust tumor cell lines. There is a great need for mechanistic and drug discovery studies of schwannomatosis, yet appropriate tools are not currently available. Schwannomatosis tumors are difficult to grow in culture as they survive only a few passages before senescence. Our lab has extensive experience in establishing primary and immortalized human Schwann cell cultures from normal tissue that retain their phenotypes after immortalization. Therefore we took on the challenge of creating immortalized human Schwann cell lines derived from tumors from schwannomatosis patients. We have established and fully characterized 2 schwannomatosis cell lines from 2 separate patients using SV40 virus large T antigen. One patient reported pain and the other did not. The schwannomatosis cell lines were stained with S100B antibodies to confirm Schwann cell identity. The schwannomatosis cells also expressed the Schwann cell markers, p75NTR, S100B, and NGF after multiple passages. Cell morphology was retained following multiple passaging and freeze/ thaw cycles. Gene expression microarray analysis was used to compare the cell lines with their respective parent tumors. No differences in key genes were detected, with the exception that several cell cycle regulators were upregulated in the schwannomatosis cell lines when compared to their parent tumors. This upregulation was apparently a product of cell culturing, as the schwannomatosis cells exhibited the same expression pattern of cell cycle regulatory genes as normal primary human Schwann cells. Cell growth was also similar between normal primary and immortalized tumor cells in culture. Accurate cell lines derived directly from human tumors will serve as invaluable tools for advancing schwannomatosis research, including drug screening. PMID:26657314
2013-01-01
Background Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. Methods We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. Results We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P < 0.05) in the PC3 prostate cancer cell line, however, ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. Conclusions This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific. The expression of GOAT in prostate cancer supports the hypothesis that the ghrelin axis has autocrine/paracrine roles. We propose that the RWPE-1 prostate cell line and the PC3 prostate cancer cell line may be useful for investigating GOAT regulation and function. PMID:23879975
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopalan, Vinod; Smith, Robert A.; Lam, Alfred K.-Y., E-mail: a.lam@griffith.edu.au
miR-498 is a non-coding RNA located intergenically in 19q13.41. Due to its predicted targeting of several genes involved in control of cellular growth, we examined the expression of miR-498 in colon cancer cell lines and a large cohort of patients with colorectal adenocarcinoma. Two colon cancer cancer cell lines (SW480 and SW48) and one normal colonic epithelial cell line (FHC) were recruited. The expression of miR-498 was tested in these cell lines by using quantitative real-time polymerase chain reaction (qRT-PCR). Tissues from 80 patients with surgical resection of colorectum (60 adenocarcinomas and 20 non-neoplastic tissues) were tested for miR-498 expressionmore » by qRT-PCR. In addition, an exogenous miR-498 (mimic) was used to detect the miRNA's effects on cell proliferation and cell cycle events in SW480 using MTT calorimetric assay and flow cytometry respectively. The colon cancer cell lines showed reduced expression of miR-498 compared to a normal colonic epithelial cell line. Mimic driven over expression of miR-498 in the SW480 cell line resulted in reduced cell proliferation and increased proportions of G2-M phase cells. In tissues, miR-498 expression was too low to be detected in all colorectal adenocarcinoma compared to non-neoplastic tissues. This suggests that the down regulation of miR-498 in colorectal cancer tissues and the direct suppressive cellular effect noted in cancer cell lines implies that miR-498 has some direct or indirect role in the pathogenesis of colorectal adenocarcinomas. - Highlights: • miR-498 is a non-coding RNA located in 19q13.41. • Colon cancer cell lines showed reduced expression of miR-498. • Mimic driven over expression of miR-498 in colon cancer cells resulted in lower cell proliferation. • miR-498 expression was down regulated in all colorectal adenocarcinoma tissues.« less
Kaewphan, Suwisa; Van Landeghem, Sofie; Ohta, Tomoko; Van de Peer, Yves; Ginter, Filip; Pyysalo, Sampo
2016-01-01
Motivation: The recognition and normalization of cell line names in text is an important task in biomedical text mining research, facilitating for instance the identification of synthetically lethal genes from the literature. While several tools have previously been developed to address cell line recognition, it is unclear whether available systems can perform sufficiently well in realistic and broad-coverage applications such as extracting synthetically lethal genes from the cancer literature. In this study, we revisit the cell line name recognition task, evaluating both available systems and newly introduced methods on various resources to obtain a reliable tagger not tied to any specific subdomain. In support of this task, we introduce two text collections manually annotated for cell line names: the broad-coverage corpus Gellus and CLL, a focused target domain corpus. Results: We find that the best performance is achieved using NERsuite, a machine learning system based on Conditional Random Fields, trained on the Gellus corpus and supported with a dictionary of cell line names. The system achieves an F-score of 88.46% on the test set of Gellus and 85.98% on the independently annotated CLL corpus. It was further applied at large scale to 24 302 102 unannotated articles, resulting in the identification of 5 181 342 cell line mentions, normalized to 11 755 unique cell line database identifiers. Availability and implementation: The manually annotated datasets, the cell line dictionary, derived corpora, NERsuite models and the results of the large-scale run on unannotated texts are available under open licenses at http://turkunlp.github.io/Cell-line-recognition/. Contact: sukaew@utu.fi PMID:26428294
Pediatric Glioblastoma Therapies Based on Patient-Derived Stem Cell Resources
2012-09-01
cells, to evaluate whether pediatric tumor will have fundamental different responses to the new therapeutic regimes. Since glioma stem cell lines have...glioma stem cell lines and has begun molecular and phenotypic characterization of these lines. This characterization has included analysis of gene
Long-term adaptation of breast tumor cell lines to high concentrations of nitric oxide.
Vesper, Benjamin J; Elseth, Kim M; Tarjan, Gabor; Haines, G Kenneth; Radosevich, James A
2010-08-01
Nitric oxide (NO), a free radical, has been implicated in the biology of human cancers, including breast cancer, yet it is still unclear how NO affects tumor development and propagation. We herein gradually adapted four human breast adenocarcinoma cell lines (BT-20, Hs578T, T-47D, and MCF-7) to increasing concentrations of the NO donor DETA-NONOate up to 600 muM. The resulting model system consisted of a set of fully adapted high nitric oxide ("HNO") cell lines that are biologically different from the "parent" cell lines from which they originated. Although each of the four parent and HNO cell lines had identical morphologic appearance, the HNO cells grew faster than their corresponding parent cells and were resistant to both nitrogen- and oxygen-based free radicals. These cell lines serve as a novel tool to study the role of NO in breast cancer progression and potentially can be used to predict the therapeutic response leading to more efficient therapeutic regimens.
Escherichia coli STb toxin induces apoptosis in intestinal epithelial cell lines.
Syed, H Claudia; Dubreuil, J Daniel
2012-09-01
A previous study conducted in our laboratory demonstrated that cells having internalized Escherichia coli STb toxin display apoptotic-like morphology. We therefore investigated if STb could induce programmed cell death in both a human and an animal intestinal epithelial cell lines. HRT-18 (Human Colon Tumor) and IEC-18 (Rat Ileum Epithelial Cells) cell lines were used. As STb is frequently tested in a rat model, the IEC-18 cell line was most relevant to our work. The cell lines were treated with various amounts of purified STb (nanomole range) for a period of 24 h after which cells were harvested and examined for apoptotic characteristics. Caspase-9, the initiator of mitochondrion-mediated apoptosis, and caspase-3, an effector of caspase-9, were both activated following STb intoxication of HRT-18 and IEC-18 cells whereas caspase-8, the initiator caspase of the extrinsic pathway, was not activated. For both cell lines, agarose gel electrophoresis of the cell DNA content reveals laddering of DNA, resulting from DNA fragmentation, a characteristic of apoptosis. Hoechst 33342-stained DNA of STb-treated cell lines, observed using fluorescence microscopy, revealed condensation and fragmentation of the nuclei. Apoptotic indexes calculated from fragmented nuclei of Hoechst 33342-stained DNA for HRT-18 and IEC-18 cells showed an STb dose-dependent response. Overall, these data indicate that STb toxin induces a mitochondrion-mediated caspase-dependent apoptotic pathway. Copyright © 2012 Elsevier Ltd. All rights reserved.
Mayr, Christian; Wagner, Andrej; Neureiter, Daniel; Pichler, Martin; Jakab, Martin; Illig, Romana; Berr, Frieder; Kiesslich, Tobias
2015-06-23
The green tea catechin epigallocatechin gallate (EGCG) was shown to effectively inhibit tumor growth in various types of cancer including biliary tract cancer (BTC). For most BTC patients only palliative therapy is possible, leading to a median survival of about one year. Chemoresistance is a major problem that contributes to the high mortality rates of BTC. The aim of this study was to investigate the cytotoxic effect of EGCG alone or in combination with cisplatin on eight BTC cell lines and to investigate the cellular anti-cancer mechanisms of EGCG. The effect of EGCG treatment alone or in combination with the standard chemotherapeutic cisplatin on cell viability was analyzed in eight BTC cell lines. Additionally, we analyzed the effects of EGCG on caspase activity, cell cycle distribution and gene expression in the BTC cell line TFK-1. EGCG significantly reduced cell viability in all eight BTC cell lines (p < 0.05 or p < 0.01, respectively, for most cell lines and EGCG concentrations > 5 μM). Combined EGCG and cisplatin treatment showed a synergistic cytotoxic effect in five cell lines and an antagonistic effect in two cell lines. Furthermore, EGCG reduced the mRNA levels of various cell cycle-related genes, while increasing the expression of the cell cycle inhibitor p21 and the apoptosis-related death receptor 5 (p < 0.05). This observation was accompanied by an increase in caspase activity and cells in the sub-G1 phase of the cell cycle, indicating induction of apoptosis. EGCG also induced a down-regulation of expression of stem cell-related genes and genes that are associated with an aggressive clinical character of the tumor, such as cd133 and abcg2. EGCG shows various anti-cancer effects in BTC cell lines and might therefore be a potential anticancer drug for future studies in BTC. Additionally, EGCG displays a synergistic cytotoxic effect with cisplatin in most tested BTC cell lines. Graphical abstract Summary illustration.
Ait-Mohamed, Ouardia; Battisti, Valentine; Joliot, Véronique; Fritsch, Lauriane; Pontis, Julien; Medjkane, Souhila; Redeuilh, Catherine; Lamouri, Aazdine; Fahy, Christine; Rholam, Mohamed; Atmani, Djebbar; Ait-Si-Ali, Slimane
2011-01-01
Plants are an invaluable source of potential new anti-cancer drugs. Here, we investigated the cytotoxic activity of the acetonic extract of Buxus sempervirens on five breast cancer cell lines, MCF7, MCF10CA1a and T47D, three aggressive triple positive breast cancer cell lines, and BT-20 and MDA-MB-435, which are triple negative breast cancer cell lines. As a control, MCF10A, a spontaneously immortalized but non-tumoral cell line has been used. The acetonic extract of Buxus sempervirens showed cytotoxic activity towards all the five studied breast cancer cell lines with an IC50 ranging from 7.74 µg/ml to 12.5 µg/ml. Most importantly, the plant extract was less toxic towards MCF10A with an IC50 of 19.24 µg/ml. Fluorescence-activated cell sorting (FACS) analysis showed that the plant extract induced cell death and cell cycle arrest in G0/G1 phase in MCF7, T47D, MCF10CA1a and BT-20 cell lines, concomitant to cyclin D1 downregulation. Application of MCF7 and MCF10CA1a respective IC50 did not show such effects on the control cell line MCF10A. Propidium iodide/Annexin V double staining revealed a pre-apoptotic cell population with extract-treated MCF10CA1a, T47D and BT-20 cells. Transmission electron microscopy analyses indicated the occurrence of autophagy in MCF7 and MCF10CA1a cell lines. Immunofluorescence and Western blot assays confirmed the processing of microtubule-associated protein LC3 in the treated cancer cells. Moreover, we have demonstrated the upregulation of Beclin-1 in these cell lines and downregulation of Survivin and p21. Also, Caspase-3 detection in treated BT-20 and T47D confirmed the occurrence of apoptosis in these cells. Our findings indicate that Buxus sempervirens extract exhibit promising anti-cancer activity by triggering both autophagic cell death and apoptosis, suggesting that this plant may contain potential anti-cancer agents for single or combinatory cancer therapy against breast cancer. PMID:21935420
A Standard Nomenclature for Referencing and Authentication of Pluripotent Stem Cells.
Kurtz, Andreas; Seltmann, Stefanie; Bairoch, Amos; Bittner, Marie-Sophie; Bruce, Kevin; Capes-Davis, Amanda; Clarke, Laura; Crook, Jeremy M; Daheron, Laurence; Dewender, Johannes; Faulconbridge, Adam; Fujibuchi, Wataru; Gutteridge, Alexander; Hei, Derek J; Kim, Yong-Ou; Kim, Jung-Hyun; Kokocinski, Anja Kolb-; Lekschas, Fritz; Lomax, Geoffrey P; Loring, Jeanne F; Ludwig, Tenneille; Mah, Nancy; Matsui, Tohru; Müller, Robert; Parkinson, Helen; Sheldon, Michael; Smith, Kelly; Stachelscheid, Harald; Stacey, Glyn; Streeter, Ian; Veiga, Anna; Xu, Ren-He
2018-01-09
Unambiguous cell line authentication is essential to avoid loss of association between data and cells. The risk for loss of references increases with the rapidity that new human pluripotent stem cell (hPSC) lines are generated, exchanged, and implemented. Ideally, a single name should be used as a generally applied reference for each cell line to access and unify cell-related information across publications, cell banks, cell registries, and databases and to ensure scientific reproducibility. We discuss the needs and requirements for such a unique identifier and implement a standard nomenclature for hPSCs, which can be automatically generated and registered by the human pluripotent stem cell registry (hPSCreg). To avoid ambiguities in PSC-line referencing, we strongly urge publishers to demand registration and use of the standard name when publishing research based on hPSC lines. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Peroxisomal abnormalities in the immortalized human hepatocyte (IHH) cell line.
Klouwer, Femke C C; Koster, Janet; Ferdinandusse, Sacha; Waterham, Hans R
2017-04-01
The immortalized human hepatocyte (IHH) cell line is increasingly used for studies related to liver metabolism, including hepatic glucose, lipid, lipoprotein and triglyceride metabolism, and the effect of therapeutic interventions. To determine whether the IHH cell line is a good model to investigate hepatic peroxisomal metabolism, we measured several peroxisomal parameters in IHH cells and, for comparison, HepG2 cells and primary skin fibroblasts. This revealed a marked plasmalogen deficiency and a deficient fatty acid α-oxidation in the IHH cells, due to a defect of PEX7, a cytosolic receptor protein required for peroxisomal import of a subset of peroxisomal proteins. These abnormalities have consequences for the lipid homeostasis of these cells and thus should be taken into account for the interpretation of data previously generated by using this cell line and when considering using this cell line for future research.
Dorr, Casey R; Remmel, Rory P; Muthusamy, Amutha; Fisher, James; Moriarity, Branden S; Yasuda, Kazuto; Wu, Baolin; Guan, Weihua; Schuetz, Erin G; Oetting, William S; Jacobson, Pamala A; Israni, Ajay K
2017-08-01
Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 engineering of the CYP3A5 *3 locus (rs776746) in human liver cell line HuH-7 ( CYP3A5 *3/*3 ) has led to three CYP3A5 *1 cell lines by deletion of the exon 3B splice junction or point mutation. Cell lines CYP3A5 *1/*3 sd (single deletion), CYP3A5 *1/*1 dd (double deletion), or CYP3A5 *1/*3 pm (point mutation) expressed the CYP3A5 *1 mRNA and had elevated CYP3A5 mRNA ( P < 0.0005 for all engineered cell lines) and protein expression compared with HuH-7. In metabolism assays, HuH-7 had less tacrolimus (all P < 0.05) or midazolam (MDZ) (all P < 0.005) disappearance than all engineered cell lines. HuH-7 had less 1-OH MDZ (all P < 0.0005) or 4-OH (all P < 0.005) production in metabolism assays than all bioengineered cell lines. We confirmed CYP3A5 metabolic activity with the CYP3A4 selective inhibitor CYP3CIDE. This is the first report of genomic CYP3A5 bioengineering in human cell lines with drug metabolism analysis. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.
Development and characterization of a cell line TTCF from endangered mahseer Tor tor (Ham.).
Yadav, K; Lakra, W S; Sharma, J; Goswami, M; Singh, Akhilesh
2012-08-01
Tor tor is an important game and food fish of India with a distribution throughout Asia from the trans-Himalayan region to the Mekong River basin to Malaysia, Pakistan, Bangladesh and Indonesia. A new cell line named TTCF was developed from the caudal fin of T. tor for the first time. The cell line was optimally maintained at 28°C in Leibovitz-15 (L-15) medium supplemented with 20% fetal bovine serum (FBS). The propagation of TTCF cells showed a high plating efficiency of 63.00%. The cytogenetic analysis revealed a diploid count of 100 chromosomes at passage 15, 30, 45 and 60 passages. The viability of the TTCF cell line was found to be 72% after 6 months of cryopreservation in liquid nitrogen (-196°C). The origin of the cell lines was confirmed by the amplification of 578- and 655-bp sequences of 16S rRNA and cytochrome oxidase subunit I (COI) genes of mitochondrial DNA (mtDNA) respectively. TTCF cells were successfully transfected with green fluorescent protein (GFP) reporter plasmids. Further, immunocytochemistry studies confirm its fibroblastic morphology of cells. Genotoxicity assessment of H₂O₂ in TTCF cell line revealed the utility of TTCF cell line as in vitro model for aquatic toxicological studies.
Somji, Seema; Zhou, Xu Dong; Mehus, Aaron; Sens, Mary Ann; Garrett, Scott H.; Lutz, Krista L.; Dunlevy, Jane R.; Zheng, Yun; Sens, Donald. A.
2009-01-01
This laboratory has shown that a human urothelial cell line (UROtsa) transformed by cadmium (Cd+2) produced subcutaneous tumor heterotransplants that resemble human transitional cell carcinoma (TCC). In the present study, additional Cd+2 transformed cell lines were isolated to determine if independent exposures of the cell line to Cd+2 would result in malignantly transformed cell lines possessing similar phenotypic properties. Seven independent isolates were isolated and assessed for their doubling times, morphology, ability to heterotransplant subcutaneously and in the peritoneal cavity of nude mice and for the expression keratin 7. The 7 cell lines all displayed an epithelial morphology with no evidence of squamous differentiation. Doubling times were variable among the isolates, being significantly reduced or similar to the parental cells. All 7 isolates were able to form subcutaneous tumor heterotransplants with a TCC morphology and all heterotransplants displayed areas of squamous differentiation of the transitional cells. The degree of squamous differentiation varied among the isolates. In contrast to subcutaneous tumor formation, only 1 isolate of the Cd+2 transformed cells (UTCd#1) was able to effectively colonize multiple sites within the peritoneal cavity. An analysis of keratin 7 expression showed no correlation with squamous differentiation for the subcutaneous heterotransplants generated from the 7 cell lines. Keratin 7 was expressed in 6 of the 7 cell lines and their subcutaneous tumor heterotransplants. Keratin 7 was not expressed in the cell line that was able to form tumors within the peritoneal cavity. These results show that individual isolates of Cd+2 transformed cells have both similarities and differences in their phenotype. PMID:19921857
2012-01-01
Background Chondrosarcoma is the second most common primary sarcoma of bone. High-grade conventional chondrosarcoma and dedifferentiated chondrosarcoma have a poor outcome. In pre-clinical research aiming at the identification of novel treatment targets, the need for representative cell lines and model systems is high, but availability is scarce. Methods We developed and characterized three cell lines, derived from conventional grade III chondrosarcoma (L835), and dedifferentiated chondrosarcoma (L2975 and L3252) of bone. Proliferation and migration were studied and we used COBRA-FISH and array-CGH for karyotyping and genotyping. Immunohistochemistry for p16 and p53 was performed as well as TP53 and IDH mutation analysis. Cells were injected into nude mice to establish their tumorigenic potential. Results We show that the three cell lines have distinct migrative properties, L2975 had the highest migration rate and showed tumorigenic potential in mice. All cell lines showed chromosomal rearrangements with complex karyotypes and genotypic aberrations were conserved throughout late passaging of the cell lines. All cell lines showed loss of CDKN2A, while TP53 was wild type for exons 5–8. L835 has an IDH1 R132C mutation, L2975 an IDH2 R172W mutation and L3252 is IDH wild type. Conclusions Based on the stable culturing properties of these cell lines and their genotypic profile resembling the original tumors, these cell lines should provide useful functional models to further characterize chondrosarcoma and to evaluate new treatment strategies. PMID:22928481