Wang, Hsiang-Yu; Bhunia, Arun K; Lu, Chang
2006-12-15
Interest in electrical lysis of biological cells on a microfludic platform has increased because it allows for the rapid recovery of intracellular contents without introducing lytic agents. In this study we demonstrated a simple microfluidic flow-through device which lysed Escherichia coli cells under a continuous dc voltage. The E. coli cells had previously been modified to express green fluorescent protein (GFP). In our design, the cell lysis only happened in a defined section of a microfluidic channel due to the local field amplification by geometric modification. The geometric modification also effectively decreased the required voltage for lysis by several folds. We found that local field strength of 1000-1500 V/cm was required for nearly 100% cell death. This threshold field strength was considerably lower than the value reported in the literature, possibly due to the longer duration of the field [Lee, S.W., Tai, Y.C., 1999. Sens. Actuators A: Phys. 73, 74-79]. Cell lysis was detected by both plate count and fluorescence spectroscopy. The cell membrane was completely disintegrated in the lysis section of the microfluidic device, when the field strength was higher than 2000 V/cm. The devices were fabricated using low-cost soft lithography with channel widths considerably larger than the cell size to avoid clogging and ensure stable performance. Our tool will be ideal for high throughput processing of bacterial cells for chemical analysis of intracellular contents such as DNA and proteins. The application of continuous dc voltage greatly simplified the instrumentation compared to devices using electrical pulses for similar purposes. In principle, the same approach can also be applied for lysis of mammalian cells and electroporative transfection.
Cell stimulus and lysis in a microfluidic device with segmented gas-liquid flow.
El-Ali, Jamil; Gaudet, Suzanne; Günther, Axel; Sorger, Peter K; Jensen, Klavs F
2005-06-01
We describe a microfluidic device with rapid stimulus and lysis of mammalian cells for resolving fast transient responses in cell signaling networks. The device uses segmented gas-liquid flow to enhance mixing and has integrated thermoelectric heaters and coolers to control the temperature during cell stimulus and lysis. Potential negative effects of segmented flow on cell responses are investigated in three different cell types, with no morphological changes and no activation of the cell stress-sensitive mitogen activated protein kinases observed. Jurkat E6-1 cells are stimulated in the device using alpha-CD3, and the resulting activations of ERK and JNK are presented for different time points. Stimulation of cells performed on chip results in pathway activation identical to that of conventionally treated cells under the same conditions.
Microfluidic device for acoustic cell lysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branch, Darren W.; Cooley, Erika Jane; Smith, Gennifer Tanabe
2015-08-04
A microfluidic acoustic-based cell lysing device that can be integrated with on-chip nucleic acid extraction. Using a bulk acoustic wave (BAW) transducer array, acoustic waves can be coupled into microfluidic cartridges resulting in the lysis of cells contained therein by localized acoustic pressure. Cellular materials can then be extracted from the lysed cells. For example, nucleic acids can be extracted from the lysate using silica-based sol-gel filled microchannels, nucleic acid binding magnetic beads, or Nafion-coated electrodes. Integration of cell lysis and nucleic acid extraction on-chip enables a small, portable system that allows for rapid analysis in the field.
Shahini, Mehdi; Yeow, John T W
2011-08-12
We report on the enhancement of electrical cell lysis using carbon nanotubes (CNTs). Electrical cell lysis systems are widely utilized in microchips as they are well suited to integration into lab-on-a-chip devices. However, cell lysis based on electrical mechanisms has high voltage requirements. Here, we demonstrate that by incorporating CNTs into microfluidic electrolysis systems, the required voltage for lysis is reduced by half and the lysis throughput at low voltages is improved by ten times, compared to non-CNT microchips. In our experiment, E. coli cells are lysed while passing through an electric field in a microchannel. Based on the lightning rod effect, the electric field strengthened at the tip of the CNTs enhances cell lysis at lower voltage and higher throughput. This approach enables easy integration of cell lysis with other on-chip high-throughput sample-preparation processes.
Gross, Bethany C; Anderson, Kari B; Meisel, Jayda E; McNitt, Megan I; Spence, Dana M
2015-06-16
This paper describes the design and fabrication of a polyjet-based three-dimensional (3D)-printed fluidic device where poly(dimethylsiloxane) (PDMS) or polystyrene (PS) were used to coat the sides of a fluidic channel within the device to promote adhesion of an immobilized cell layer. The device was designed using computer-aided design software and converted into an .STL file prior to printing. The rigid, transparent material used in the printing process provides an optically transparent path to visualize endothelial cell adherence and supports integration of removable electrodes for electrical cell lysis in a specified portion of the channel (1 mm width × 0.8 mm height × 2 mm length). Through manipulation of channel geometry, a low-voltage power source (500 V max) was used to selectively lyse adhered endothelial cells in a tapered region of the channel. Cell viability was maintained on the device over a 5 day period (98% viable), though cell coverage decreased after day 4 with static media delivery. Optimal lysis potentials were obtained for the two fabricated device geometries, and selective cell clearance was achieved with cell lysis efficiencies of 94 and 96%. The bottleneck of unknown surface properties from proprietary resin use in fabricating 3D-printed materials is overcome through techniques to incorporate PDMS and PS.
A light-controlled cell lysis system in bacteria.
Wang, Geyi; Lu, Xin; Zhu, Yisha; Zhang, Wei; Liu, Jiahui; Wu, Yankang; Yu, Liyang; Sun, Dongchang; Cheng, Feng
2018-05-08
Intracellular products (e.g., insulin), which are obtained through cell lysis, take up a big share of the biotech industry. It is often time-consuming, laborious, and environment-unfriendly to disrupt bacterial cells with traditional methods. In this study, we developed a molecular device for controlling cell lysis with light. We showed that intracellular expression of a single lysin protein was sufficient for efficient bacterial cell lysis. By placing the lysin-encoding gene under the control of an improved light-controlled system, we successfully controlled cell lysis by switching on/off light: OD 600 of the Escherichia coli cell culture was decreased by twofold when the light-controlled system was activated under dark condition. We anticipate that our work would not only pave the way for cell lysis through a convenient biological way in fermentation industry, but also provide a paradigm for applying the light-controlled system in other fields of biotech industry.
Single-Cell RT-PCR in Microfluidic Droplets with Integrated Chemical Lysis.
Kim, Samuel C; Clark, Iain C; Shahi, Payam; Abate, Adam R
2018-01-16
Droplet microfluidics can identify and sort cells using digital reverse transcription polymerase chain reaction (RT-PCR) signals from individual cells. However, current methods require multiple microfabricated devices for enzymatic cell lysis and PCR reagent addition, making the process complex and prone to failure. Here, we describe a new approach that integrates all components into a single device. The method enables controlled exposure of isolated single cells to a high pH buffer, which lyses cells and inactivates reaction inhibitors but can be instantly neutralized with RT-PCR buffer. Using our chemical lysis approach, we distinguish individual cells' gene expression with data quality equivalent to more complex two-step workflows. Our system accepts cells and produces droplets ready for amplification, making single-cell droplet RT-PCR faster and more reliable.
Lab-on-a-chip technologies for proteomic analysis from isolated cells.
Sedgwick, H; Caron, F; Monaghan, P B; Kolch, W; Cooper, J M
2008-10-06
Lab-on-a-chip systems offer a versatile environment in which low numbers of cells and molecules can be manipulated, captured, detected and analysed. We describe here a microfluidic device that allows the isolation, electroporation and lysis of single cells. A431 human epithelial carcinoma cells, expressing a green fluorescent protein-labelled actin, were trapped by dielectrophoresis within an integrated lab-on-a-chip device containing saw-tooth microelectrodes. Using these same trapping electrodes, on-chip electroporation was performed, resulting in cell lysis. Protein release was monitored by confocal fluorescence microscopy.
Lab-on-a-chip technologies for proteomic analysis from isolated cells
Sedgwick, H.; Caron, F.; Monaghan, P.B.; Kolch, W.; Cooper, J.M.
2008-01-01
Lab-on-a-chip systems offer a versatile environment in which low numbers of cells and molecules can be manipulated, captured, detected and analysed. We describe here a microfluidic device that allows the isolation, electroporation and lysis of single cells. A431 human epithelial carcinoma cells, expressing a green fluorescent protein-labelled actin, were trapped by dielectrophoresis within an integrated lab-on-a-chip device containing saw-tooth microelectrodes. Using these same trapping electrodes, on-chip electroporation was performed, resulting in cell lysis. Protein release was monitored by confocal fluorescence microscopy. PMID:18534931
All-in-One Nanowire-Decorated Multifunctional Membrane for Rapid Cell Lysis and Direct DNA Isolation
2015-01-01
This paper describes a handheld device that uses an all-in-one membrane for continuous mechanical cell lysis and rapid DNA isolation without the assistance of power sources, lysis reagents, and routine centrifugation. This nanowire-decorated multifunctional membrane was fabricated to isolate DNA by selective adsorption to silica surface immediately after disruption of nucleus membranes by ultrasharp tips of nanowires for a rapid cell lysis, and it can be directly assembled with commercial syringe filter holders. The membrane was fabricated by photoelectrochemical etching to create microchannel arrays followed by hydrothermal synthesis of nanowires and deposition of silica. The proposed membrane successfully purifies high-quality DNA within 5 min, whereas a commercial purification kit needs more than an hour. PMID:25420232
Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification
NASA Astrophysics Data System (ADS)
Lee, Chia-Yen; Lee, Gwo-Bin; Lin, Jr-Lung; Huang, Fu-Chun; Liao, Chia-Sheng
2005-06-01
The present paper reports a fully automated microfluidic system for the DNA amplification process by integrating an electroosmotic pump, an active micromixer and an on-chip temperature control system. In this DNA amplification process, the cell lysis is initially performed in a micro cell lysis reactor. Extracted DNA samples, primers and reagents are then driven electroosmotically into a mixing region where they are mixed by the active micromixer. The homogeneous mixture is then thermally cycled in a micro-PCR (polymerase chain reaction) chamber to perform DNA amplification. Experimental results show that the proposed device can successfully automate the sample pretreatment operation for DNA amplification, thereby delivering significant time and effort savings. The new microfluidic system, which facilitates cell lysis, sample driving/mixing and DNA amplification, could provide a significant contribution to ongoing efforts to miniaturize bio-analysis systems by utilizing a simple fabrication process and cheap materials.
Microchip-based cell lysis and DNA extraction from sperm cells for application to forensic analysis.
Bienvenue, Joan M; Duncalf, Natalie; Marchiarullo, Daniel; Ferrance, Jerome P; Landers, James P
2006-03-01
The current backlog of casework is among the most significant challenges facing crime laboratories at this time. While the development of next-generation microchip-based technology for expedited forensic casework analysis offers one solution to this problem, this will require the adaptation of manual, large-volume, benchtop chemistry to small volume microfluidic devices. Analysis of evidentiary materials from rape kits where semen or sperm cells are commonly found represents a unique set of challenges for on-chip cell lysis and DNA extraction that must be addressed for successful application. The work presented here details the development of a microdevice capable of DNA extraction directly from sperm cells for application to the analysis of sexual assault evidence. A variety of chemical lysing agents are assessed for inclusion in the extraction protocol and a method for DNA purification from sperm cells is described. Suitability of the extracted DNA for short tandem repeat (STR) analysis is assessed and genetic profiles shown. Finally, on-chip cell lysis methods are evaluated, with results from fluorescence visualization of cell rupture and DNA extraction from an integrated cell lysis and purification with subsequent STR amplification presented. A method for on-chip cell lysis and DNA purification is described, with considerations toward inclusion in an integrated microdevice capable of both differential cell sorting and DNA extraction. The results of this work demonstrate the feasibility of incorporating microchip-based cell lysis and DNA extraction into forensic casework analysis.
Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates
NASA Technical Reports Server (NTRS)
Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.
2006-01-01
Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell-lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a-Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two "control plates" are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (gladwater) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.
Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates
NASA Astrophysics Data System (ADS)
Jenkins, A.; Chen, C. P.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.
2006-04-01
Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a- Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two ''control plates'' are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (glass/water) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution.
Ultra-localized single cell electroporation using silicon nanowires.
Jokilaakso, Nima; Salm, Eric; Chen, Aaron; Millet, Larry; Guevara, Carlos Duarte; Dorvel, Brian; Reddy, Bobby; Karlstrom, Amelie Eriksson; Chen, Yu; Ji, Hongmiao; Chen, Yu; Sooryakumar, Ratnasingham; Bashir, Rashid
2013-02-07
Analysis of cell-to-cell variation can further the understanding of intracellular processes and the role of individual cell function within a larger cell population. The ability to precisely lyse single cells can be used to release cellular components to resolve cellular heterogeneity that might be obscured when whole populations are examined. We report a method to position and lyse individual cells on silicon nanowire and nanoribbon biological field effect transistors. In this study, HT-29 cancer cells were positioned on top of transistors by manipulating magnetic beads using external magnetic fields. Ultra-rapid cell lysis was subsequently performed by applying 600-900 mV(pp) at 10 MHz for as little as 2 ms across the transistor channel and the bulk substrate. We show that the fringing electric field at the device surface disrupts the cell membrane, leading to lysis from irreversible electroporation. This methodology allows rapid and simple single cell lysis and analysis with potential applications in medical diagnostics, proteome analysis and developmental biology studies.
Continuous nucleus extraction by optically-induced cell lysis on a batch-type microfluidic platform.
Huang, Shih-Hsuan; Hung, Lien-Yu; Lee, Gwo-Bin
2016-04-21
The extraction of a cell's nucleus is an essential technique required for a number of procedures, such as disease diagnosis, genetic replication, and animal cloning. However, existing nucleus extraction techniques are relatively inefficient and labor-intensive. Therefore, this study presents an innovative, microfluidics-based approach featuring optically-induced cell lysis (OICL) for nucleus extraction and collection in an automatic format. In comparison to previous micro-devices designed for nucleus extraction, the new OICL device designed herein is superior in terms of flexibility, selectivity, and efficiency. To facilitate this OICL module for continuous nucleus extraction, we further integrated an optically-induced dielectrophoresis (ODEP) module with the OICL device within the microfluidic chip. This on-chip integration circumvents the need for highly trained personnel and expensive, cumbersome equipment. Specifically, this microfluidic system automates four steps by 1) automatically focusing and transporting cells, 2) releasing the nuclei on the OICL module, 3) isolating the nuclei on the ODEP module, and 4) collecting the nuclei in the outlet chamber. The efficiency of cell membrane lysis and the ODEP nucleus separation was measured to be 78.04 ± 5.70% and 80.90 ± 5.98%, respectively, leading to an overall nucleus extraction efficiency of 58.21 ± 2.21%. These results demonstrate that this microfluidics-based system can successfully perform nucleus extraction, and the integrated platform is therefore promising in cell fusion technology with the goal of achieving genetic replication, or even animal cloning, in the near future.
Okochi, Mina; Tsuchiya, Hiroyoshi; Kumazawa, Fumitaka; Shikida, Mitsuhiro; Honda, Hiroyuki
2010-02-01
A droplet-based cell lysis and reverse transcription-polymerase chain reaction (PCR) were performed on-chip employing magnetic force-based-droplet-handling system. The actuation with a magnet offers a simple system for droplet manipulation; it does not need mechanical fluidic systems such as pumps and valves for handling solutions. It can be used as a powerful tool for various biochemical applications by moving and coalescing sample droplets using magnetic beads immersed in mineral oil. The droplet containing magnetic beads and the cells were manipulated with the magnet located underneath the channel, and coalesced with a droplet of lysis buffer. Using K562 cells as the leukemia model, the cell lysis, cDNA synthesis, and amplification of WT1 gene that is known as the prognostic factor for acute leukemia were successfully performed from a single cell. Copyright (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
A polymeric micro total analysis system for single-cell analysis
NASA Astrophysics Data System (ADS)
Lai, Hsuan-Hong
The advancement of microengineering has enabled the manipulation and analysis of single cells, which is critical in understanding the molecular mechanisms underlying the basic physiological functions from the point of view of modern biologists. Unfortunately, analysis of single cells remains challenging from a technical perspective, mainly because of the miniature nature of the cell and the high throughput requirements of the analysis. Lab-on-a-chip (LOC) emerges as a research field that shows great promise in this perspective. We have demonstrated a micro total analysis system (mu-TAS) combining chip-based electrophoretic separation, fluorescence detection, and a pulsed Nd:YAG laser cell lysis system, in a Poly(dimethylsiloxane) (PDMS) microfluidic analytical platform for the implementation of single-cell analysis. To accomplish the task, a polymeric microfluidic device was fabricated and UV graft polymerization surface modification techniques were used. To optimize the conditions for the surface treatment techniques, the modified surfaces of PDMS were characterized using AIR-IR spectrum and sessile water drop contact angle measurements, and in-channel surfaces were characterized by their electroosmotic flow mobility. Accurate single-cell analysis relies on rapid cell lysis and therefore an optical measure of fast cell lysis was implemented and optimized in a microscopic station. The influences of pulse energy and the location of the laser beam with respect to the cell in the microchannel were explored. The observation from the cell disruption experiments suggested that the cell lysis was enabled mainly via a thermo-mechanical instead of a plasma-mediated mechanism. Finally, after chip-based electrophoresis and a laser-induced fluorescence (LIF) detection system were incorporated with the laser lysis system in a microfluidic analytical station, a feasibility demonstration of single-cell analysis was implemented. The analytical platform exhibited the capability of fluidic transportation, optical lysis of single cells, separation, and analysis of the lysates by electrophoresis and LIF detection. In comparison with the control experiment, the migration times of the fluorescent signals for the cytosolic fluorophores were in good agreement with those for the standard fluorophores, which confirmed the feasibility of the analytical processes.
High temperature flow-through device for rapid solubilization and analysis
West, Jason A. A. [Castro Valley, CA; Hukari, Kyle W [San Ramon, CA; Patel, Kamlesh D [Dublin, CA; Peterson, Kenneth A [Albuquerque, NM; Renzi, Ronald F [Tracy, CA
2009-09-22
Devices and methods for thermally lysing of biological material, for example vegetative bacterial cells and bacterial spores, are provided. Hot solution methods for solubilizing bacterial spores are described. Systems for direct analysis are disclosed including thermal lysers coupled to sample preparation stations. Integrated systems capable of performing sample lysis, labeling and protein fingerprint analysis of biological material, for example, vegetative bacterial cells, bacterial spores and viruses are provided.
High temperature flow-through device for rapid solubilization and analysis
West, Jason A. A.; Hukari, Kyle W.; Patel, Kamlesh D.; Peterson, Kenneth A.; Renzi, Ronald F.
2013-04-23
Devices and methods for thermally lysing of biological material, for example vegetative bacterial cells and bacterial spores, are provided. Hot solution methods for solubilizing bacterial spores are described. Systems for direct analysis are disclosed including thermal lysers coupled to sample preparation stations. Integrated systems capable of performing sample lysis, labeling and protein fingerprint analysis of biological material, for example, vegetative bacterial cells, bacterial spores and viruses are provided.
Microsystem strategies for sample preparation in biological detection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
James, Conrad D.; Galambos, Paul C.; Bennett, Dawn Jonita
2005-03-01
The objective of this LDRD was to develop microdevice strategies for dealing with samples to be examined in biological detection systems. This includes three sub-components: namely, microdevice fabrication, sample delivery to the microdevice, and sample processing within the microdevice. The first component of this work focused on utilizing Sandia's surface micromachining technology to fabricate small volume (nanoliter) fluidic systems for processing small quantities of biological samples. The next component was to develop interfaces for the surface-micromachined silicon devices. We partnered with Micronics, a commercial company, to produce fluidic manifolds for sample delivery to our silicon devices. Pressure testing was completedmore » to examine the strength of the bond between the pressure-sensitive adhesive layer and the silicon chip. We are also pursuing several other methods, both in house and external, to develop polymer-based fluidic manifolds for packaging silicon-based microfluidic devices. The second component, sample processing, is divided into two sub-tasks: cell collection and cell lysis. Cell collection was achieved using dielectrophoresis, which employs AC fields to collect cells at energized microelectrodes, while rejecting non-cellular particles. Both live and dead Staph. aureus bacteria have been collected using RF frequency dielectrophoresis. Bacteria have been separated from polystyrene microspheres using frequency-shifting dielectrophoresis. Computational modeling was performed to optimize device separation performance, and to predict particle response to the dielectrophoretic traps. Cell lysis is continuing to be pursued using microactuators to mechanically disrupt cell membranes. Novel thermal actuators, which can generate larger forces than previously tested electrostatic actuators, have been incorporated with and tested with cell lysis devices. Significant cell membrane distortion has been observed, but more experiments need to be conducted to determine the effects of the observed distortion on membrane integrity and cell viability. Finally, we are using a commercial PCR DNA amplification system to determine the limits of detectable sample size, and to examine the amplification of DNA bound to microspheres. Our objective is to use microspheres as capture-and-carry chaperones for small molecules such as DNA and proteins, enabling the capture and concentration of the small molecules using dielectrophoresis. Current tests demonstrated amplification of DNA bound to micron-sized polystyrene microspheres using 20-50 microliter volume size reactions.« less
de la Rosa, Carlos; Prakash, Ranjit; Tilley, Peter A; Fox, Julie D; Kaler, Karan V i S
2007-01-01
An integrated microfluidic system for combined manipulation, pre-concentration, and lysis of samples containing Bordetella pertussis by dielectrophoresis and electroporation has been developed and implemented. The microfluidic device was able to pre-concentrate the amount of B. pertussis cells present in 200 microl of a B. pertussis suspension stock into a 20 microl volume. The device exhibited optimal sample pre-concentration of 6.7x at a stock value of 10(3) cfu/ml and at a flow rate of 250 microl/h. Electro-disruption experiments showed that on-chip-based electroporation is an effective solution for lysis of B. pertussis cells that is easily integrated with dielectrophoresis assisted pre-concentration procedures. Pulsed voltage applied, number of pulses, and presence of potassium chloride in a B. pertussis suspension showed a reduction in B. pertussis cell viability by electroporation; and transmission electron microscopy confirmed B. pertussis cell disruption by electroporation. Genetic amplification and detection of the pre-concentrated sample employing an integrated chip-based system demonstrated a complete chip approach for pathogen detection.
Eid, Charbel; Santiago, Juan G
2016-12-19
We present a new approach which enables lysis, extraction, and detection of inactivated Listeria monocytogenes cells from blood using isotachophoresis (ITP) and recombinase polymerase amplification (RPA). We use an ITP-compatible alkaline and proteinase K approach for rapid and effective lysis. We then perform ITP purification to separate bacterial DNA from whole blood contaminants using a microfluidic device that processes 25 μL sample volume. Lysis, mixing, dispensing, and on-chip ITP purification are completed in a total of less than 50 min. We transfer extracted DNA directly into RPA master mix for isothermal incubation and detection, an additional 25 min. We first validate our assay in the detection of purified genomic DNA spiked into whole blood, and demonstrate a limit of detection of 16.7 fg μL -1 genomic DNA, the equivalent of 5 × 10 3 cells per mL. We then show detection of chemically-inactivated L. monocytogenes cells spiked into whole blood, and demonstrate a limit of detection of 2 × 10 4 cells per mL. Lastly, we show preliminary experimental data demonstrating the feasibility of the integration of ITP purification with RPA detection on a microfluidic chip. Our results suggest that ITP purification is compatible with RPA detection, and has potential to extend the applicability of RPA to whole blood.
Droplet microfluidics for amplification-free genetic detection of single cells.
Rane, Tushar D; Zec, Helena C; Puleo, Chris; Lee, Abraham P; Wang, Tza-Huei
2012-09-21
In this article we present a novel droplet microfluidic chip enabling amplification-free detection of single pathogenic cells. The device streamlines multiple functionalities to carry out sample digitization, cell lysis, probe-target hybridization for subsequent fluorescent detection. A peptide nucleic acid fluorescence resonance energy transfer probe (PNA beacon) is used to detect 16S rRNA present in pathogenic cells. Initially the sensitivity and quantification abilities of the platform are tested using a synthetic target mimicking the actual expression level of 16S rRNA in single cells. The capability of the device to perform "sample-to-answer" pathogen detection of single cells is demonstrated using E. coli as a model pathogen.
Urea enhances cell lysis of Schizosaccharomyces pombe ura4 mutants.
Nishino, Kohei; Kushima, Misaki; Kaino, Tomohiro; Matsuo, Yasuhiro; Kawamukai, Makoto
2017-07-01
Cell lysis is induced in Schizosaccharomyces pombe ∆ura4 cells grown in YPD medium, which contains yeast extract, polypeptone, and glucose. To identify the medium components that induce cell lysis, we first tested various kinds of yeast extracts from different suppliers. Cell lysis of ∆ura4 cells on YE medium was observed when yeast extracts from OXOID, BD, Oriental, and Difco were used, but not when using yeast extract from Kyokuto. To determine which compounds induced cell lysis, we subjected yeast extract and polypeptone to GC-MS analysis. Ten kinds of compounds were detected in OXOID and BD yeast extracts, but not in Kyokuto yeast extract. Among them was urea, which was also present in polypeptone, and it clearly induced cell lysis. Deletion of the ure2 gene, which is responsible for utilizing urea, abolished the lytic effect of urea. The effect of urea was suppressed by deletion of pub1, and a similar phenotype was observed in the presence of polypeptone. Thus, urea is an inducer of cell lysis in S. pombe ∆ura4 cells.
Lab-on-a-Disc Platform for Automated Chemical Cell Lysis.
Seo, Moo-Jung; Yoo, Jae-Chern
2018-02-26
Chemical cell lysis is an interesting topic in the research to Lab-on-a-Disc (LOD) platforms on account of its perfect compatibility with the centrifugal spin column format. However, standard procedures followed in chemical cell lysis require sophisticated non-contact temperature control as well as the use of pressure resistant valves. These requirements pose a significant challenge thereby making the automation of chemical cell lysis on an LOD extremely difficult to achieve. In this study, an LOD capable of performing fully automated chemical cell lysis is proposed, where a combination of chemical and thermal methods has been used. It comprises a sample inlet, phase change material sheet (PCMS)-based temperature sensor, heating chamber, and pressure resistant valves. The PCMS melts and solidifies at a certain temperature and thus is capable of indicating whether the heating chamber has reached a specific temperature. Compared to conventional cell lysis systems, the proposed system offers advantages of reduced manual labor and a compact structure that can be readily integrated onto an LOD. Experiments using Salmonella typhimurium strains were conducted to confirm the performance of the proposed cell lysis system. The experimental results demonstrate that the proposed system has great potential in realizing chemical cell lysis on an LOD whilst achieving higher throughput in terms of purity and yield of DNA thereby providing a good alternative to conventional cell lysis systems.
Cell death and cell lysis are separable events during pyroptosis
DiPeso, Lucian; Ji, Daisy X; Vance, Russell E; Price, Jordan V
2017-01-01
Although much insight has been gained into the mechanisms by which activation of the inflammasome can trigger pyroptosis in mammalian cells, the precise kinetics of the end stages of pyroptosis have not been well characterized. Using time-lapse fluorescent imaging to analyze the kinetics of pyroptosis in individual murine macrophages, we observed distinct stages of cell death and cell lysis. Our data demonstrate that cell membrane permeability resulting from gasdermin D pore formation is coincident with the cessation of cell movement, loss of mitochondrial activity, and cell swelling, events that can be uncoupled from cell lysis. We propose a model of pyroptosis in which cell death can occur independently of cell lysis. The uncoupling of cell death from cell lysis may allow for better control of cytosolic contents upon activation of the inflammasome. PMID:29147575
Cabib, E; Silverman, S J; Shaw, J A
1992-01-01
Previous results [E. Cabib, A. Sburlati, B. Bowers & S. J. Silverman (1989) Journal of Cell Biology 108, 1665-1672] strongly suggested that the lysis observed in daughter cells of Saccharomyces cerevisiae defective in chitin synthase 1 (Chs1) was caused by a chitinase that partially degrades the chitin septum in the process of cell separation. Consequently, it was proposed that in wild-type cells, Chs1 acts as a repair enzyme by replenishing chitin during cytokinesis. The chitinase requirement for lysis has been confirmed in two different ways: (a) demethylallosamidin, a more powerful chitinase inhibitor than the previously used allosamidin, is also a much better protector against lysis and (b) disruption of the chitinase gene in chs1 cells eliminates lysis. Reintroduction of a normal chitinase gene, by transformation of those cells with a suitable plasmid, restores lysis. The percentage of lysed cells in strains lacking Chs1 was not increased by elevating the chitinase level with high-copy-number plasmids carrying the hydrolase gene. Furthermore, the degree of lysis varied in different chs1 strains; lysis was abolished in chs1 mutants containing the scs1 suppressor. These results indicate that, in addition to chitinase, lysis requires other gene products that may become limiting.
Salehi-Reyhani, Ali; Gesellchen, Frank; Mampallil, Dileep; Wilson, Rab; Reboud, Julien; Ces, Oscar; Willison, Keith R; Cooper, Jonathan M; Klug, David R
2015-02-17
We exploit the mechanical action of surface acoustic waves (SAW) to differentially lyse human cancer cells in a chemical-free manner. The extent to which cells were disrupted is reported for a range of SAW parameters, and we show that the presence of 10 μm polystyrene beads is required to fully rupture cells and their nuclei. We show that SAW is capable of subcellular fractionation through the chemical-free isolation of nuclei from whole cells. The concentration of protein was assessed in lysates with a sensitive microfluidic antibody capture (MAC) chip. An antibody-based sandwich assay in a microfluidic microarray format was used to detect unlabeled human tumor suppressor protein p53 in crude lysates, without any purification step, with single-molecule resolution. The results are digital, enabling sensitive quantification of proteins with a dynamic range >4 orders of magnitude. For the conditions used, the efficiency of SAW-induced mechanical lysis was determined to be 12.9% ± 0.7% of that for conventional detergent-based lysis in yielding detectable protein. A range of possible loss mechanisms that could lead to the drop in protein yield are discussed. Our results show that the methods described here are amenable to an integrated point-of-care device for the assessment of tumor protein expression in fine needle aspirate biopsies.
Ibrutinib-associated tumor lysis syndrome in a patient with mantle cell lymphoma: A case report.
Kaur, Varinder; Swami, Arjun
2017-04-01
Mantle cell lymphoma accounts for 5-7% of all non-Hodgkin's lymphomas. Under the current WHO classification, it is categorized as an indolent B cell lymphoma, but has an aggressive clinical course. New insights into leukemogenic molecular pathways of mantle cell lymphoma have uncovered unique therapeutic targets. Ibrutinib, a Bruton's tyrosine kinase inhibitor, is the newest drug in the arsenal that has shown promising efficacy in relapsed mantle cell lymphoma. Long-term studies have shown that grade 3 or 4 adverse events are infrequent. Asymptomatic lymphocytosis is frequently seen with ibrutinib use in mantle cell lymphoma; however, tumor lysis syndrome is an extremely rare complication. To date, only two patients with ibrutinib-associated tumor lysis syndrome in mantle cell lymphoma have been described in a long-term follow-up study. Both patients met laboratory criteria for tumor lysis syndrome, however, but did not develop clinical tumor lysis syndrome. We, here describe a patient with relapsed mantle cell lymphoma who developed clinical tumor lysis syndrome with ibrutinib monotherapy.
Young, Chao-Wang; Hsieh, Jia-Ling; Ay, Chyung
2012-01-01
This study adopted a microelectromechanical fabrication process to design a chip integrated with electroosmotic flow and dielectrophoresis force for single cell lysis. Human histiocytic lymphoma U937 cells were driven rapidly by electroosmotic flow and precisely moved to a specific area for cell lysis. By varying the frequency of AC power, 15 V AC at 1 MHz of frequency configuration achieved 100% cell lysing at the specific area. The integrated chip could successfully manipulate single cells to a specific position and lysis. The overall successful rate of cell tracking, positioning, and cell lysis is 80%. The average speed of cell driving was 17.74 μm/s. This technique will be developed for DNA extraction in biomolecular detection. It can simplify pre-treatment procedures for biotechnological analysis of samples. PMID:22736957
Young, Chao-Wang; Hsieh, Jia-Ling; Ay, Chyung
2012-01-01
This study adopted a microelectromechanical fabrication process to design a chip integrated with electroosmotic flow and dielectrophoresis force for single cell lysis. Human histiocytic lymphoma U937 cells were driven rapidly by electroosmotic flow and precisely moved to a specific area for cell lysis. By varying the frequency of AC power, 15 V AC at 1 MHz of frequency configuration achieved 100% cell lysing at the specific area. The integrated chip could successfully manipulate single cells to a specific position and lysis. The overall successful rate of cell tracking, positioning, and cell lysis is 80%. The average speed of cell driving was 17.74 μm/s. This technique will be developed for DNA extraction in biomolecular detection. It can simplify pre-treatment procedures for biotechnological analysis of samples.
Martz, Eric; Burakoff, Steven J.; Benacerraf, Baruj
1974-01-01
Specific lysis of tumor cells by thymus-derived lymphocytes from alloimmunized mice (T-effector specific lysis) was studied with target cells labeled with isotopes attached to both small (14C-labeled nicotinamide) and large (51Cr-labeled) molecules. The results confirm and extend previous reports that target cells release small molecules considerably earlier than large molecules during T-effector specific lysis. After interruption of T-effector specific lysis by specific antibody and complement directed against the killer cells, or by ethylenediaminetetraacetic acid, release of both isotopes continued, eventually reaching identical levels of specific release, the value of which represents the fraction of the target cell population which had been committed to die at the time these treatments were applied. On the other hand, release of both isotopes during T-effector specific lysis stops immediately when the cultures are cooled to 0°. Thus, while ethylenediaminetetraacetic acid or specific complement-mediated lysis of the killer cells merely prevents the initiation of any new damage to target cells, cooling to 0° also stops the lytic process in already-damaged target cells. The colloid osmotic phase of target cell lysis induced by specific antibody and complement was similarly stopped at 0° in tumor cells, but not in erythrocytes. Thus, in tumor target cells, both T-effector specific lysis and complement cause a sequential release of progressively larger molecules which can be immediately stopped at any point by cooling to 0°. PMID:4359327
Single-Cell Electric Lysis on an Electroosmotic-Driven Microfluidic Chip with Arrays of Microwells
Jen, Chun-Ping; Amstislavskaya, Tamara G.; Liu, Ya-Hui; Hsiao, Ju-Hsiu; Chen, Yu-Hung
2012-01-01
Accurate analysis at the single-cell level has become a highly attractive tool for investigating cellular content. An electroosmotic-driven microfluidic chip with arrays of 30-μm-diameter microwells was developed for single-cell electric lysis in the present study. The cellular occupancy in the microwells when the applied voltage was 5 V (82.4%) was slightly higher than that at an applied voltage of 10 V (81.8%). When the applied voltage was increased to 15 V, the cellular occupancy in the microwells dropped to 64.3%. More than 50% of the occupied microwells contain individual cells. The results of electric lysis experiments at the single-cell level indicate that the cells were gradually lysed as the DC voltage of 30 V was applied; the cell was fully lysed after 25 s. Single-cell electric lysis was demonstrated in the proposed microfluidic chip, which is suitable for high-throughput cell lysis. PMID:22969331
Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms
Turnbull, Lynne; Toyofuku, Masanori; Hynen, Amelia L.; Kurosawa, Masaharu; Pessi, Gabriella; Petty, Nicola K.; Osvath, Sarah R.; Cárcamo-Oyarce, Gerardo; Gloag, Erin S.; Shimoni, Raz; Omasits, Ulrich; Ito, Satoshi; Yap, Xinhui; Monahan, Leigh G.; Cavaliere, Rosalia; Ahrens, Christian H.; Charles, Ian G.; Nomura, Nobuhiko; Eberl, Leo; Whitchurch, Cynthia B.
2016-01-01
Many bacteria produce extracellular and surface-associated components such as membrane vesicles (MVs), extracellular DNA and moonlighting cytosolic proteins for which the biogenesis and export pathways are not fully understood. Here we show that the explosive cell lysis of a sub-population of cells accounts for the liberation of cytosolic content in Pseudomonas aeruginosa biofilms. Super-resolution microscopy reveals that explosive cell lysis also produces shattered membrane fragments that rapidly form MVs. A prophage endolysin encoded within the R- and F-pyocin gene cluster is essential for explosive cell lysis. Endolysin-deficient mutants are defective in MV production and biofilm development, consistent with a crucial role in the biogenesis of MVs and liberation of extracellular DNA and other biofilm matrix components. Our findings reveal that explosive cell lysis, mediated through the activity of a cryptic prophage endolysin, acts as a mechanism for the production of bacterial MVs. PMID:27075392
Bayne-Jones, Stanhope; Sandholzer, Leslie A.
1933-01-01
This paper contains the records of a motion photomicrographic investigation of the lysis of Bact. coli and B. megatherium by bacteriophage. The bacteria mixed with bacteriophage were grown on moist nutrient agar in small culture chambers on the stage of a microscope in an incubator maintained at 37°C. The apparatus used permitted continuous inspection of the preparations. Photographs were made at the rates of 2 and 30 per minute and at the rate of 8 per second during the terminal stage of lysis of Bact. coli. The accurately timed films were studied by rapid projection and by the projection of single frames. Measurements of dimensions of cells, calculations of volumes, information on generations, generation times and duration spans are presented in the tables. Similar information on normal cultures grown and photographed in the same way is furnished for comparison. Groups of serial photographs are reproduced in the plates to illustrate the special features observed. These observations seem to us to warrant the following conclusions: 1. Enlargement or swelling of the cells of Bact. coli usually, but not always, precedes lysis. Some of the enlargement is an expression of increase of cell substance and is not altogether due to imbibition of water. Cells of early generations of Bact. coli enlarge to greater absolute and relative proportions than cells of later generations. Enlargement does not occur before lysis in B. megatherium. 2. The terminal stage of lysis of Bact. coli is explosive, occupying ½ to ⅞ second. The terminal stage of lysis of B. megatherium is a slow disintegrative process, extending over 2–10 minutes. 3. Bacteriophage inhibits fission of some cells, but does not stop the reproduction of other cells in contact with it. The genealogical records of six generations of cells of Bact. coli and of two generations of cells of B. megatherium indicate that bacteriophage may be transmitted through parents to the offspring which ultimately undergo lysis. 4. Bacteriophage spreads by contact through a group of cells and also along paths determined by genetical relationships. 5. A large amount of cellular debris remains after the lysis of the cells in both of these species of bacteria. This residue of material is in the form of irregularly shaped masses and granules. This material is not in solution at the time of lysis and appears not to be digested or hydrolized. 6. Theories of the mechanism of lysis are discussed. It is suggested that reduction of surface tension of the cells may be an important factor in the mechanism of lysis. PMID:19870131
Micro Corona Ionizer as an Ozone Source for Bacterial Cell Lysis
NASA Astrophysics Data System (ADS)
Lee, Eun-Hee; Lim, Hyun Jeong; Chua, Beelee; Son, Ahjeong
2015-04-01
DNA extraction is a critical process of DNA assays including polymerase chain reaction (PCR), microarrays, molecular cloning, and DNA hybridization which has been well established and can be implemented by commercial kits. DNA extraction involves cell lysis, precipitation, and purification through the combination of physical and chemical processes. Cell lysis is essential to high DNA recovery yield which can be achieved via a variety of physical, chemical, and enzymatic methods. However, these methods were originally developed for bioassays that were labor intensive, time consuming, and vulnerable to contamination and inhibition. Here, we proposed to employ a micro corona ionizer as an ozone source to lyse bacterial cells. Ozone has been well known and used as a disinfectant which allows cell lysis and DNA extraction. Previously, we have shown that a micro corona ionizer is capable of generating a significant amount of ozone. In this study, we employed the micro corona ionizer for the bacterial cell lysis which consists of a 50 μm diameter cantilever wire as the discharge cathode and a 50 μm thick copper foil as anode. Applied voltages varied from 1900 to 2200 V with corresponding corona currents from 16 to 28 μA. The resultant ozone (concentration > 0.14 ppm) generated from the micro corona ionizer was bubbled into the sample via a miniature pump. We demonstrated the cell lysis of Pseudomonas putida as the target bacterium using the micro corona ionizer. At a flow rate of 38 ml/min and applied corona voltage of 2000 V, 98.5 ± 0.2% lysis (normalized to sonication result) was achieved after 10 min. In comparison, untreated and air-treated samples showed normalized % lysis of 11.9 ± 2.4 and 36.1 ± 1.7%, respectively. We also showed that the cell lysis efficiency could be significantly increased by increasing the flow rate and the applied corona voltage. By comparing the experimental results for continuous and pulsed treatment, we verified that the percentage of lysis is primarily determined by the total ozone treatment time.
Yu, Wen; Hallinen, Kelsey M.
2017-01-01
ABSTRACT Subinhibitory concentrations of antibiotics have been shown to enhance biofilm formation in multiple bacterial species. While antibiotic exposure has been associated with modulated expression of many biofilm-related genes, the mechanisms of drug-induced biofilm formation remain a focus of ongoing research efforts and may vary significantly across species. In this work, we investigate antibiotic-induced biofilm formation in Enterococcus faecalis, a leading cause of nosocomial infections. We show that biofilm formation is enhanced by subinhibitory concentrations of cell wall synthesis inhibitors but not by inhibitors of protein, DNA, folic acid, or RNA synthesis. Furthermore, enhanced biofilm is associated with increased cell lysis, increases in extracellular DNA (eDNA) levels, and increases in the density of living cells in the biofilm. In addition, we observe similar enhancement of biofilm formation when cells are treated with nonantibiotic surfactants that induce cell lysis. These findings suggest that antibiotic-induced biofilm formation is governed by a trade-off between drug toxicity and the beneficial effects of cell lysis. To understand this trade-off, we developed a simple mathematical model that predicts changes in antibiotic-induced biofilm formation due to external perturbations, and we verified these predictions experimentally. Specifically, we demonstrate that perturbations that reduce eDNA (DNase treatment) or decrease the number of living cells in the planktonic phase (a second antibiotic) decrease biofilm induction, while chemical inhibitors of cell lysis increase relative biofilm induction and shift the peak to higher antibiotic concentrations. Overall, our results offer experimental evidence linking cell wall synthesis inhibitors, cell lysis, increased eDNA levels, and biofilm formation in E. faecalis while also providing a predictive quantitative model that sheds light on the interplay between cell lysis and antibiotic efficacy in developing biofilms. PMID:29061740
Branavan, Manoharanehru; Mackay, Ruth E; Craw, Pascal; Naveenathayalan, Angel; Ahern, Jeremy C; Sivanesan, Tulasi; Hudson, Chris; Stead, Thomas; Kremer, Jessica; Garg, Neha; Baker, Mark; Sadiq, Syed T; Balachandran, Wamadeva
2016-08-01
This paper presents the design of a modular point of care test platform that integrates a proprietary sample collection device directly with a microfluidic cartridge. Cell lysis, within the cartridge, is conducted using a chemical method and nucleic acid purification is done on an activated cellulose membrane. The microfluidic device incorporates passive mixing of the lysis-binding buffers and sample using a serpentine channel. Results have shown extraction efficiencies for this new membrane of 69% and 57% compared to the commercial Qiagen extraction method of 85% and 59.4% for 0.1ng/µL and 100ng/µL salmon sperm DNA respectively spiked in phosphate buffered solution. Extraction experiments using the serpentine passive mixer cartridges incorporating lysis and nucleic acid purification showed extraction efficiency around 80% of the commercial Qiagen kit. Isothermal amplification was conducted using thermophillic helicase dependant amplification and recombinase polymerase amplification. A low cost benchtop real-time isothermal amplification platform has been developed capable of running six amplifications simultaneously. Results show that the platform is capable of detecting 1.32×10(6) of sample DNA through thermophillic helicase dependant amplification and 1×10(5) copy numbers Chlamydia trachomatis genomic DNA within 10min through recombinase polymerase nucleic acid amplification tests. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
[Tumour lysis syndrome in small-cell lung cancer].
Boshuizen, R C; Smit, A A J; Moons-Pasic, A; Bresser, P
2016-01-01
Small-cell lung cancer (SCLC) is a rapidly proliferating malignancy. Dramatic response to chemotherapy can therefore be expected. Unfortunately, tumour lysis prophylaxis is not mentioned in the current Dutch guidelines on SCLC treatment. A 64-year-old female was diagnosed with extensive SCLC and metastases. Shortly after diagnosis, chemotherapy was initiated. Based on Dutch guidelines, no tumour lysis prophylaxis was given. In addition to paraplegia, the patient also developed a clinical tumour lysis syndrome (TLS), and she passed away 5 days after start of treatment. Although tumour lysis prophylaxis is not mentioned in SCLC guidelines, tumour lysis in SCLC can occur as reported previously. Retrospectively, based on parameters applied to haematological malignancies, our patient was assessed as being at high risk of developing TLS.
Distinct single-cell morphological dynamics under beta-lactam antibiotics
Yao, Zhizhong; Kahne, Daniel; Kishony, Roy
2012-01-01
Summary The bacterial cell wall is conserved in prokaryotes, stabilizing cells against osmotic stress. Beta-lactams inhibit cell wall synthesis and induce lysis through a bulge-mediated mechanism; however, little is known about the formation dynamics and stability of these bulges. To capture processes of different timescales, we developed an imaging platform combining automated image analysis with live cell microscopy at high time resolution. Beta-lactam killing of Escherichia coli cells proceeded through four stages: elongation, bulge formation, bulge stagnation and lysis. Both the cell wall and outer membrane (OM) affect the observed dynamics; damaging the cell wall with different beta-lactams and compromising OM integrity cause different modes and rates of lysis. Our results show that the bulge formation dynamics is determined by how the cell wall is perturbed. The OM plays an independent role in stabilizing the bulge once it is formed. The stabilized bulge delays lysis, and allows recovery upon drug removal. PMID:23103254
NASA Astrophysics Data System (ADS)
Kim, Yoonji; Bu, Jiyoon; Cho, Young-Ho; Son, Il Tae; Kang, Sung-Bum
2017-02-01
Circulating tumor cells (CTCs) contain prognostic information of the tumor, since they shed from the primary tumor and invade into the bloodstream. Therefore, the viable isolation is necessary for a consequent analysis of CTCs. Here, we present a device for the viable isolation and efficient retrieval of CTCs using slanted slot filters, formed by a reversibly deformable membrane barrier. Conventional filters have difficulties in retrieving captured cells, since they easily clog the slots. Moreover, large stress concentration at the sharp edges of squared slots, causes cell lysis. In contrast, the present device shows over 94% of high retrieval efficiency, since the slots can be opened simply by relieving the pressure. Furthermore, the inflated membrane barrier naturally forms the slanted slots, thus reducing the cell damage. By using cancer cell lines, we verified that the present device successfully isolate targeted cells, even at an extremely low concentrations (~10 cells/0.1 ml). In the clinical study, 85.7% of patients initially showed CTC positive while the numbers generally decreased after the surgery. We have also proved that the number of CTCs were highly correlated with tumour invasiveness. Therefore, the present device has potential for use in cancer diagnosis, surgical validation, and invasiveness analysis.
Biomimetic postcapillary expansions for enhancing rare blood cell separation on a microfluidic chip†
Jain, Abhishek
2013-01-01
Blood cells naturally auto-segregate in postcapillary venules, with the erythrocytes (red blood cells, RBCs) aggregating near the axis of flow and the nucleated cells (NCs)—which include leukocytes, progenitor cells and, in cancer patients, circulating tumor cells—marginating toward the vessel wall. We have used this principle to design a microfluidic device that extracts nucleated cells (NCs) from whole blood. Fabricated using polydimethylsiloxane (PDMS) soft lithography, the biomimetic cell extraction device consists of rectangular microchannels that are 20–400 μm wide, 11 μm deep and up to 2 cm long. The key design feature is the use of repeated expansions/contractions of triangular geometry mimicking postcapillary venules, which enhance margination and optimize the extraction. The device operates on unprocessed whole blood and is able to extract 94 ± 4.5% of NCs with 45.75 ± 2.5-fold enrichment in concentration at a rate of 5 nl s−1. The device eliminates the need to preprocess blood via centrifugation or RBC lysis, and is ready to be implemented as the initial stage of lab-on-a-chip devices that require enriched nucleated cells. The potential downstream applications are numerous, encompassing all preclinical and clinical assays that operate on enriched NC populations and include on-chip flow cytometry PMID:21773633
Lee, Bongsoo; Holkenbrink, Carina; Treuner-Lange, Anke
2012-01-01
Myxococcus xanthus undergoes a starvation-induced multicellular developmental program during which cells partition into three known fates: (i) aggregation into fruiting bodies followed by differentiation into spores, (ii) lysis, or (iii) differentiation into nonaggregating persister-like cells, termed peripheral rods. As a first step to characterize cell fate segregation, we enumerated total, aggregating, and nonaggregating cells throughout the developmental program. We demonstrate that both cell lysis and cell aggregation begin with similar timing at approximately 24 h after induction of development. Examination of several known regulatory proteins in the separated aggregated and nonaggregated cell fractions revealed previously unknown heterogeneity in the accumulation patterns of proteins involved in type IV pilus (T4P)-mediated motility (PilC and PilA) and regulation of development (MrpC, FruA, and C-signal). As part of our characterization of the cell lysis fate, we set out to investigate the unorthodox MazF-MrpC toxin-antitoxin system which was previously proposed to induce programmed cell death (PCD). We demonstrate that deletion of mazF in two different wild-type M. xanthus laboratory strains does not significantly reduce developmental cell lysis, suggesting that MazF's role in promoting PCD is an adaption to the mutant background strain used previously. PMID:22493014
Attai, Hedieh; Rimbey, Jeanette; Smith, George P; Brown, Pamela J B
2017-12-01
To provide food security, innovative approaches to preventing plant disease are currently being explored. Here, we demonstrate that lytic bacteriophages and phage lysis proteins are effective at triggering lysis of the phytopathogen Agrobacterium tumefaciens Phages Atu_ph02 and Atu_ph03 were isolated from wastewater and induced lysis of C58-derived strains of A. tumefaciens The coinoculation of A. tumefaciens with phages on potato discs limited tumor formation. The genomes of Atu_ph02 and Atu_ph03 are nearly identical and are ∼42% identical to those of T7 supercluster phages. In silico attempts to find a canonical lysis cassette were unsuccessful; however, we found a putative p hage p eptidoglycan h ydrolase (PPH), which contains a C-terminal transmembrane domain. Remarkably, the endogenous expression of pph in the absence of additional phage genes causes a block in cell division and subsequent lysis of A. tumefaciens cells. When the presumed active site of the N -acetylmuramidase domain carries an inactivating mutation, PPH expression causes extensive cell branching due to a block in cell division but does not trigger rapid cell lysis. In contrast, the mutation of positively charged residues at the extreme C terminus of PPH causes more rapid cell lysis. Together, these results suggest that PPH causes a block in cell division and triggers cell lysis through two distinct activities. Finally, the potent killing activity of this single lysis protein can be modulated, suggesting that it could be engineered to be an effective enzybiotic. IMPORTANCE The characterization of bacteriophages such as Atu_ph02 and Atu_ph03, which infect plant pathogens such as Agrobacterium tumefaciens , may be the basis of new biocontrol strategies. First, cocktails of diverse bacteriophages could be used as a preventative measure to limit plant diseases caused by bacteria; a bacterial pathogen is unlikely to simultaneously develop resistances to multiple bacteriophage species. The specificity of bacteriophage treatment for the host is an asset in complex communities, such as in orchards where it would be detrimental to harm the symbiotic bacteria in the environment. Second, bacteriophages are potential sources of enzymes that efficiently lyse bacterial cells. These phage proteins may have a broad specificity, but since proteins do not replicate as phages do, their effect is highly localized, providing an alternative to traditional antibiotic treatments. Thus, studies of lytic bacteriophages that infect A. tumefaciens may provide insights for designing preventative strategies against bacterial pathogens. Copyright © 2017 American Society for Microbiology.
Donnell, Anna M; Lewis, Stephanie; Abraham, Sami; Subramanian, Kavitha; Figueroa, Julio Landero; Deepe, George S; Vonderheide, Anne P
2017-10-01
This work sought to assess optimal extraction conditions in the study of the metalloproteome of the dimorphic fungus Histoplasma capsulatum. One of the body's responses to H. capsulatum infection is sequestration of zinc within host macrophage (MØ), as reported by Vignesh et al. (Immunity 39:697-710, 2013) and Vignesh et al. (PLOS Pathog 9:E1003815, 2013). Thus, metalloproteins containing zinc were of greatest interest as it plays a critical role in survival of the fungus. One challenge in metalloproteomics is the preservation of the native structure of proteins to retain non-covalently bound metals. Many of the conventional cell lysis, separation, and identification techniques in proteomics are carried out under conditions that could lead to protein denaturation. Various cell lysis techniques were investigated in an effort to both maintain the metalloproteins during lysis and subsequent analysis while, at the same time, serving to be strong enough to break the cell wall, allowing access to cytosolic metalloproteins. The addition of 1% Triton x-100, a non-ionic detergent, to the lysis buffer was also studied. Seven lysis methods were considered and these included: Glass Homogenizer (H), Bead Beater (BB), Sonication Probe (SP), Vortex with 1% Triton x-100 (V, T), Vortex with no Triton x-100 (V, NT), Sonication Bath, Vortex, and 1% Triton x-100 (SB, V, T) and Sonication Bath, Vortex, and no Triton x-100 (SB, V, NT). A Qubit® Assay was used to compare total protein concentration and inductively coupled plasma-mass spectrometry (ICP-MS) was utilized for total metal analysis of cell lysates. Size exclusion chromatography coupled to ICP-MS (SEC-HPLC-ICP-MS) was used for separation of the metalloproteins in the cell lysate and the concentration of Zn over a wide molecular weight range was examined. Additional factors such as potential contamination sources were also considered. A cell lysis method involving vortexing H. capsulatum yeast cells with 500 μm glass beads in a 1% Triton x-100 lysis buffer (V, T) was found to be most advantageous to extract intact zinc metalloproteins as demonstrated by the highest Zn to protein ratio, 1.030 ng Zn/μg protein, and Zn distribution among high, mid, and low molecular weights suggesting the least amount of protein denaturation. Graphical abstract In this work, several cell lysis techniques and two lysis buffers were investigated to evaluate the preservation of the zinc metalloproteome of H. capsulatum while maintaining compatibility with the analytical techniques employed.
Attai, Hedieh; Rimbey, Jeanette; Smith, George P.
2017-01-01
ABSTRACT To provide food security, innovative approaches to preventing plant disease are currently being explored. Here, we demonstrate that lytic bacteriophages and phage lysis proteins are effective at triggering lysis of the phytopathogen Agrobacterium tumefaciens. Phages Atu_ph02 and Atu_ph03 were isolated from wastewater and induced lysis of C58-derived strains of A. tumefaciens. The coinoculation of A. tumefaciens with phages on potato discs limited tumor formation. The genomes of Atu_ph02 and Atu_ph03 are nearly identical and are ∼42% identical to those of T7 supercluster phages. In silico attempts to find a canonical lysis cassette were unsuccessful; however, we found a putative phage peptidoglycan hydrolase (PPH), which contains a C-terminal transmembrane domain. Remarkably, the endogenous expression of pph in the absence of additional phage genes causes a block in cell division and subsequent lysis of A. tumefaciens cells. When the presumed active site of the N-acetylmuramidase domain carries an inactivating mutation, PPH expression causes extensive cell branching due to a block in cell division but does not trigger rapid cell lysis. In contrast, the mutation of positively charged residues at the extreme C terminus of PPH causes more rapid cell lysis. Together, these results suggest that PPH causes a block in cell division and triggers cell lysis through two distinct activities. Finally, the potent killing activity of this single lysis protein can be modulated, suggesting that it could be engineered to be an effective enzybiotic. IMPORTANCE The characterization of bacteriophages such as Atu_ph02 and Atu_ph03, which infect plant pathogens such as Agrobacterium tumefaciens, may be the basis of new biocontrol strategies. First, cocktails of diverse bacteriophages could be used as a preventative measure to limit plant diseases caused by bacteria; a bacterial pathogen is unlikely to simultaneously develop resistances to multiple bacteriophage species. The specificity of bacteriophage treatment for the host is an asset in complex communities, such as in orchards where it would be detrimental to harm the symbiotic bacteria in the environment. Second, bacteriophages are potential sources of enzymes that efficiently lyse bacterial cells. These phage proteins may have a broad specificity, but since proteins do not replicate as phages do, their effect is highly localized, providing an alternative to traditional antibiotic treatments. Thus, studies of lytic bacteriophages that infect A. tumefaciens may provide insights for designing preventative strategies against bacterial pathogens. PMID:28970228
O'Mahony, Kevin; Freitag, Ruth; Hilbrig, Frank; Müller, Patrick; Schumacher, Ivo
2005-09-23
The paper addresses the question of how to achieve bacterial lysis in large-scale plasmid DNA production processes, where conventional alkaline lysis may become awkward to handle. Bacteria were grown in shaker flasks and a bioreactor. Suboptimal growth conditions were found advantageous for stable plasmid production at high copy numbers (up to 25mg/L could be achieved). Cells were harvested by filtration in the presence of a filter aid. A linear relationship between the biomass and the optimal filter aid concentration in terms of back pressure could be established. Bacteria-containing filter cakes were washed with isotonic buffer and lysis was achieved in situ by a two-step protocol calling for fragilisation of the cells followed by heat lysis in a suitable buffer. RNA and other soluble cell components where washed out of the cake during this step, while the plasmid DNA was retained. Afterwards a clear lysate containing relatively pure plasmid DNA could be eluted from the cake mostly as the desired supercoiled topoisomer, while cell debris and genomic DNA were retained. Lysis is, thus, integrated not only with cell capture but also with a significant degree of isolation/purification, as most impurities were considerably reduced during the procedure.
RECOVERY OF DNA FROM SOILS AND SEDIMENTS
Experiments were performed to evaluate the effectiveness of different methodological approaches for recovering DNA from soil and sediment bacterial communities; cell extraction followed by lysis and DNA recovery (cell extraction method) versus direct cell lysis and alkaline extra...
Cell lysis induced by membrane-damaging detergent saponins from Quillaja saponaria.
Berlowska, Joanna; Dudkiewicz, Marta; Kregiel, Dorota; Czyzowska, Agata; Witonska, Izabela
2015-01-01
This paper presents the results of a study to determine the effect of Quillaja saponaria saponins on the lysis of industrial yeast strains. Cell lysis induced by saponin from Q. saponaria combined with the plasmolysing effect of 5% NaCl for Saccharomyces cerevisiae, Kluyveromyces marxianus yeasts biomass was conducted at 50 °C for 24-48 h. Membrane permeability and integrity of the yeast cells were monitored using fluorescent techniques and concentrations of proteins, free amino nitrogen (FAN) and free amino acids in resulting lysates were analyzed. Protein release was significantly higher in the case of yeast cell lysis promoted with 0.008% Q. saponaria and 5% NaCl in comparison to plasmolysis triggered by NaCl only. Copyright © 2015 Elsevier Inc. All rights reserved.
Foladori, P; Velho, V F; Costa, R H R; Bruni, L; Quaranta, A; Andreottola, G
2015-05-01
In the Anaerobic Side-Stream Reactor (ASSR), part of the return sludge undergoes alternating aerobic and anaerobic conditions with the aim of reducing sludge production. In this paper, viability, enzymatic activity, death and lysis of bacterial cells exposed to aerobic and anaerobic conditions for 16 d were investigated at single-cell level by flow cytometry, with the objective of contributing to the understanding of the mechanisms of sludge reduction in the ASSR systems. Results indicated that total and viable bacteria did not decrease during the anaerobic phase, indicating that anaerobiosis at ambient temperature does not produce a significant cell lysis. Bacteria decay and lysis occurred principally under aerobic conditions. The aerobic decay rate of total bacteria (bTB) was considered as the rate of generation of lysed bacteria. Values of bTB of 0.07-0.11 d(-1) were measured in anaerobic + aerobic sequence. The enzymatic activity was not particularly affected by the transition from anaerobiosis to aerobiosis. Large solubilisation of COD and NH4(+) was observed only under anaerobic conditions, as a consequence of hydrolysis of organic matter, but not due to cell lysis. The observations supported the proposal of two independent mechanisms contributing equally to sludge reduction: (1) under anaerobic conditions: sludge hydrolysis of non-bacterial material, (2) under aerobic conditions: bacterial cell lysis and oxidation of released biodegradable compounds. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evidence that pulsed electric field treatment enhances the cell wall porosity of yeast cells.
Ganeva, Valentina; Galutzov, Bojidar; Teissie, Justin
2014-02-01
The application of rectangular electric pulses, with 0.1-2 ms duration and field intensity of 2.5-4.5 kV/cm, to yeast suspension mediates liberation of cytoplasmic proteins without cell lysis. The aim of this study was to evaluate the effect of pulsed electric field with similar parameters on cell wall porosity of different yeast species. We found that electrically treated cells become more susceptible to lyticase digestion. In dependence on the strain and the electrical conditions, cell lysis was obtained at 2-8 times lower enzyme concentration in comparison with control untreated cells. The increase of the maximal lysis rate was between two and nine times. Furthermore, when applied at low concentration (1 U/ml), the lyticase enhanced the rate of protein liberation from electropermeabilized cells without provoking cell lysis. Significant differences in the cell surface of control and electrically treated cells were revealed by scanning electron microscopy. Data presented in this study allow us to conclude that electric field pulses provoke not only plasma membrane permeabilization, but also changes in the cell wall structure, leading to increased wall porosity.
Phage-induced lysis enhances biofilm formation in Shewanella oneidensis MR-1
Gödeke, Julia; Paul, Kristina; Lassak, Jürgen; Thormann, Kai M
2011-01-01
Shewanella oneidensis MR-1 is capable of forming highly structured surface-attached communities. By DNase I treatment, we demonstrated that extracellular DNA (eDNA) serves as a structural component in all stages of biofilm formation under static and hydrodynamic conditions. We determined whether eDNA is released through cell lysis mediated by the three prophages LambdaSo, MuSo1 and MuSo2 that are harbored in the genome of S. oneidensis MR-1. Mutant analyses and infection studies revealed that all three prophages may individually lead to cell lysis. However, only LambdaSo and MuSo2 form infectious phage particles. Phage release and cell lysis already occur during early stages of static incubation. A mutant devoid of the prophages was significantly less prone to lysis in pure culture. In addition, the phage-less mutant was severely impaired in biofilm formation through all stages of development, and three-dimensional growth occurred independently of eDNA as a structural component. Thus, we suggest that in S. oneidensis MR-1 prophage-mediated lysis results in the release of crucial biofilm-promoting factors, in particular eDNA. PMID:20962878
Selective Blockade of Human Natural Killer Cells by a Monoclonal Antibody
NASA Astrophysics Data System (ADS)
Newman, Walter
1982-06-01
A murine monoclonal antibody, 13.1, which blocks human natural killer (NK) cell-mediated lysis, has been developed. Hybridoma 13.1 was derived by fusion of NS-1 cells with spleen cells from mice immunized with an enriched population of NK cells. Supernatants of growing hybridomas were screened for their ability to block NK cell-mediated lysis of K562 targets. Antibody 13.1 is an IgG1 with a single light chain type and it does not fix complement. The 13.1 antigen is expressed on all peripheral blood mononuclear cells, with an antigen density approximately 1/30th that of HLA antigen heavy chain. Pretreatment and washing experiments revealed that inhibition of cytotoxicity occurred at the effector cell level only. Significant blocking was achieved with nanogram quantities of antibody and was not due to toxic effects on NK cells. Likewise, controls with other antibodies of the same subclass demonstrated that blocking was not a consequence of mere binding to NK cells. When a panel of 17 NK cell-susceptible targets was tested, the lysis of only 5 of these was blocked, namely K562, HL-60, KG-1, Daudi, and HEL, a human erythroleukemic cell line. The lysis of 12 human B cell and T cell line targets was not inhibited. In addition to the demonstration that the 13.1 antigen is a crucial cell surface structure involved in NK lysis, a heterogeneity of target cell recognition has been revealed that argues for the proposition that individual NK cells have multiple recognitive capabilities.
Loftin, Keith A.; Meyer, Michael T.; Rubio, Fernando; Kamp, Lisa; Humphries, Edythe; Whereat, Ed
2008-01-01
A collaboration was developed between Abraxis, LLC, the State of Delaware Department of Natural Resources and Environmental Control Division of Water Resources Environmental Laboratory, the University of Delaware, and the United States Geological Survey to investigate the efficacy of the QuikLyse procedure developed by Abraxis, LLC as an alternative cell-lysis technique suitable for use with an existing liquid chromatography/tandem mass spectrometry research method developed at the United States Geological Survey Organic Geochemistry Research Laboratory to analyze cyanotoxins. A comparison of three sequential freeze/thaw cycles versus QuikLyse, a proprietary chemical lysis procedure was conducted on four water samples collected from Silver Lake in Dover, Delaware. Results from the Abraxis Microcystins-DM enzyme-linked immunosorbent assay and liquid chromatography/tandem mass spectrometry were tabulated as a function of the cell lysis technique. Stastical comparison of percent relative standard deviations showed no significant difference (alpha = 0.05) between both cell-lysis techniques when measured by enzyme-linked immunosorbent assay or liquid chromatography/tandem mass spectrometry for three of the four samples.
Electrical lysis: dynamics revisited and advances in On-chip operation.
Morshed, Bashir; Shams, Maitham; Mussivand, Tofy
2013-01-01
Electrical lysis (EL) is the process of breaking the cell membrane to expose the internal contents under an applied high electric field. Lysis is an important phenomenon for cellular analysis, medical treatment, and biofouling control. This paper aims to review, summarize, and analyze recent advancements on EL. Major databases including PubMed, Ei Engineering Village, IEEE Xplore, and Scholars Portal were searched using relevant keywords. More than 50 articles published in English since 1997 are cited in this article. EL has several key advantages compared to other lysis techniques such as chemical, mechanical, sonication, or laser, including rapid speed of operation, ability to control, miniaturization, low cost, and low power requirement. A variety of cell types have been investigated for including protoplasts, E. coli, yeasts, blood cells, and cancer cells. EL has been developed and applied for decontamination, cytology, genetics, single-cell analysis, cancer treatment, and other applications. On-chip EL is a promising technology for multiplexed automated implementation of cell-sample preparation and processing with micro- or nanoliter reagents.
Li, Sheng-Hong; Liao, Xuan; Zhou, Tian-En; Xiao, Li-Ling; Chen, Yuan-Wen; Wu, Fan; Wang, Jing-Ru; Cheng, Biao; Song, Jian-Xing; Liu, Hong-Wei
2017-01-01
The present study was conducted to compare 2 purification methods for isolation of human adipose-derived stromal vascular fraction or stem cells (ADSCs) based on red blood cell (RBC) lysis with 155 mM ammonium chloride (NH4Cl) and hypotonic sodium chloride (NaCl) solution, and try to develop a safe, convenient, and cost-effective purification method for clinical applications. Adipose-derived stem cells and RBC were harvested from the fatty and fluid portions of liposuction aspirates, respectively. The suitable concentration of hypotonic NaCl solution on RBC lysis for purification of ADSCs was developed by RBC osmotic fragility test and flow cytometry analysis. The effects of 155 mM NH4Cl or 0.3% NaCl solution on ADSCs proliferation and RBC lysis efficiency were examined by 3-(4, 5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide assay and lysis efficiency test, respectively. In addition, the adipogenic and osteogenic capabilities, phenotype and genetic stability of ADSCs were evaluated by oil red staining, alkaline phosphatase activity measurement, flow cytometry, and karyotype analysis, respectively. Sodium chloride solution in 0.3% concentration effectively removed RBCs and did not influence the survival of ADSCs in the 10-minute incubation time. The lysis efficiency did not differ significantly between 0.3% NaCl and 155 mM NH4Cl. Moreover, the adipogenic and osteogenic capabilities, surface marker expression and karyotype of the ADSCs were not affected by lysis solutions or by lysis per se. However, the proliferation capacity in the 0.3% NaCl group was superior to that in 155 mM NH4Cl group. Our data suggest that 0.3% NaCl solution is useful for isolating ADSCs from liposuction aspirate for clinical applications with safety, convenience, and cost-effect.
Pullagurla, Swathi R; Witek, Małgorzata A; Jackson, Joshua M; Lindell, Maria A M; Hupert, Mateusz L; Nesterova, Irina V; Baird, Alison E; Soper, Steven A
2014-04-15
We report the design and performance of a polymer microfluidic device that can affinity select multiple types of biological cells simultaneously with sufficient recovery and purity to allow for the expression profiling of mRNA isolated from these cells. The microfluidic device consisted of four independent selection beds with curvilinear channels that were 25 μm wide and 80 μm deep and were modified with antibodies targeting antigens specifically expressed by two different cell types. Bifurcated and Z-configured device geometries were evaluated for cell selection. As an example of the performance of these devices, CD4+ T-cells and neutrophils were selected from whole blood as these cells are known to express genes found in stroke-related expression profiles that can be used for the diagnosis of this disease. CD4+ T-cells and neutrophils were simultaneously isolated with purities >90% using affinity-based capture in cyclic olefin copolymer (COC) devices with a processing time of ∼3 min. In addition, sufficient quantities of the cells could be recovered from a 50 μL whole blood input to allow for reverse transcription-polymerase chain reaction (RT-PCR) following cell lysis. The expression of genes from isolated T-cells and neutrophils, such as S100A9, TCRB, and FPR1, was evaluated using RT-PCR. The modification and isolation procedures demonstrated here can also be used to analyze other cell types as well where multiple subsets must be interrogated.
Ribosomes in the sea: a window on taxon-specific lysis
NASA Astrophysics Data System (ADS)
Suttle, C.; Zhong, X.; Wirth, J.
2016-02-01
Microbes are estimated to comprise more than 90% of the biomass in the world's oceans, are major drivers of biogeochemical cycles, and have turnover rates ranging from hours to days. Despite the central role that microbes play in marine ecosystems, there is no robust method to evaluate taxon-specific mortality rates. Here, we report a method that employs extracellular free-ribosomes as a proxy to evaluate taxon-specific microbial lysis. The method was validated with laboratory cultures of the marine heterotrophic bacterium Vibrio natriegens strain PWH3a and the photoautotroph Synechococcus strain DC2, with and without grazers or viruses, to identify the origin and fate of the extracellular free-ribosomes. Our results showed both viral lysis and programmed-cell-death (PCD) contribute to free-ribosome production. Ribosomes were not released when cells were grazed, but grazers could consume free-ribosomes. We show that extracellular free-ribosomes can be used to evaluate microbial mortality caused by viral lysis and PCD. This approach was applied to environmental samples by examining the taxonomic composition and relative abundance of free 16S-ribosomes in seawater samples collected from the Strait of Georgia and Saanich Inlet, British Columbia, Canada. Based on the presence of free ribosomes, lysis was detected in 2198 out of 4013 prokaryotic taxa, representing 22 bacterial and three archaeal phyla. Of these, lysis of 140 taxa could be detected in all nine samples. Based on the ratio of free ribosomes to cellular ribosomes, some taxa associated with specific ecological niches appeared to be subject to high rates of lysis, including the genera Achromobacter, Chryseobacterium, Clostridium, Delftia, Ferruginibacter, Lactobacillus, Marinomonas, Massilia, Microbacterium, Ochrobactrum, Paenibacillus, Phyllobacterium, Pseudomonas, Rhodobacter, and Stenotrophomonas. Our results showed high-lysis coupled with low-abundance, suggesting that taxa in lower abundance are subject to higher relative rates of cell lysis, consistent with previous suggestions. The ability to estimate taxon-specific mortality as the result of cell lysis adds an important tool in our quest to explain the distribution and abundance of specific microbial taxa in nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tilden, A.B.; Cauda, R.; Grossi, C.E.
1986-06-01
Infection with varicella-zoster virus (VZV) rendered RAJI cells more susceptible to lysis by non-adherent blood lymphocytes. At an effector to target ratio of 80:1 the mean percentage of /sup 51/Cr release of VZV-infected RAJI cells was 41 +/- 12%, whereas that of uninfected RAJI cells was 15 +/- 6%. The increased susceptibility to lysis was associated with increased effector to target conjugate formation in immunofluorescence binding assays. The effector cells cytotoxic for VZV-infected RAJI cells were predominantly Leu-11a/sup +/ Leu-4/sup -/ granular lymphocytes as demonstrated by fluorescence-activated cell sorting. The effector cell active against VZV-infected RAJI cells appeared similar tomore » those active against herpes simplex virus (HSV)-infected cells, because in cold target competition experiments the lysis of /sup 51/Cr-labeled VZV-infected RAJI cells was efficiently inhibited by either unlabeled VZV-infected RAJI cells (mean 71% inhibition, 2:1 ratio unlabeled to labeled target) or HSV-infected RAJI cells (mean 69% inhibition) but not by uninfected RAJI cells (mean 10% inhibition). In contrast, competition experiments revealed donor heterogeneity in the overlap between effector cells for VZV- or HSV-infected RAJI vs K-562 cells.« less
Synchronized cycles of bacterial lysis for in vivo delivery
Prindle, Arthur; Skalak, Matt; Selimkhanov, Jangir; Allen, Kaitlin; Julio, Ellixis; Atolia, Eta; Tsimring, Lev S.; Bhatia, Sangeeta N.; Hasty, Jeff
2016-01-01
The pervasive view of bacteria as strictly pathogenic has given way to an appreciation of the widespread prevalence of beneficial microbes within the human body1–3. Given this milieu, it is perhaps inevitable that some bacteria would evolve to preferentially grow in environments that harbor disease and thus provide a natural platform for the development of engineered therapies4–6. Such therapies could benefit from bacteria that are programmed to limit bacterial growth while continually producing and releasing cytotoxic agents in situ7–10. Here, we engineer a clinically relevant bacterium to lyse synchronously at a threshold population density and to release genetically encoded cargo. Following quorum lysis, a small number of surviving bacteria reseed the growing population, thus leading to pulsatile delivery cycles. We use microfluidic devices to characterize the engineered lysis strain and we demonstrate its potential as a drug delivery platform via co-culture with human cancer cells in vitro. As a proof of principle, we track the bacterial population dynamics in ectopic syngeneic colorectal tumors in mice. The lysis strain exhibits pulsatile population dynamics in vivo, with mean bacterial luminescence that remained two orders of magnitude lower than an unmodified strain. Finally, guided by previous findings that certain bacteria can enhance the efficacy of standard therapies11, we orally administer the lysis strain, alone or in combination with a clinical chemotherapeutic, to a syngeneic transplantation model of hepatic colorectal metastases. We find that the combination of both circuit-engineered bacteria and chemotherapy leads to a notable reduction of tumor activity along with a marked survival benefit over either therapy alone. Our approach establishes a methodology for leveraging the tools of synthetic biology to exploit the natural propensity for certain bacteria to colonize disease sites. PMID:27437587
Microfluidic cell disruption system employing a magnetically actuated diaphragm.
Huh, Yun Suk; Choi, Jong Hyun; Huh, Kyoung Ae Kim; Kim, Kyoung Ae; Park, Tae Jung; Hong, Yeon Ki; Kim, Do Hyun; Hong, Won Hi; Lee, Sang Yup
2007-12-01
A microfluidic cell lysis chip equipped with a micromixer and SPE unit was developed and used for quantitative analysis of intracellular proteins. This miniaturized sample preparation system can be employed for any purpose where cell disruption is needed to obtain intracellular constituents for the subsequent analysis. This system comprises a magnetically actuated micromixer to disrupt cells, a hydrophobic valve to manipulate the cell lysate, and a packed porous polymerized monolith chamber for SPE and filtering debris from the cell lysate. Using recombinant Escherichia coli expressing intracellular enhanced green fluorescent protein (EGFP) and lipase as model bacteria, we optimized the cell disruption condition with respect to the lysis buffer composition, mixing time, and the frequency of the diaphragm in the micromixer, which was magnetically actuated by an external magnetic stirrer in the micromixer chamber. The lysed sample prepared under the optimal condition was purified by the packed SPE in the microfluidic chip. At a frequency of 1.96 Hz, the final cell lysis efficiency and relative fluorescence intensity of EGFP after the cell disruption process were greater than 90 and 94%, respectively. Thus, this microfluidic cell disruption chip can be used for the efficient lysis of cells for further analysis of intracellular contents in many applications.
Critical cell wall hole size for lysis in Gram-positive bacteria
NASA Astrophysics Data System (ADS)
Mitchell, Gabriel; Wiesenfeld, Kurt; Nelson, Daniel; Weitz, Joshua
2013-03-01
Gram-positive bacteria transport molecules necessary for their survival through holes in their cell wall. The holes in cell walls need to be large enough to let critical nutrients pass through. However, the cell wall must also function to prevent the bacteria's membrane from protruding through a large hole into the environment and lysing the cell. As such, we hypothesize that there exists a range of cell wall hole sizes that allow for molecule transport but prevent membrane protrusion. Here we develop and analyze a biophysical theory of the response of a Gram-positive cell's membrane to the formation of a hole in the cell wall. We predict a critical hole size in the range 15-24nm beyond which lysis occurs. To test our theory, we measured hole sizes in Streptococcus pyogenes cells undergoing enzymatic lysis via transmission electron microscopy. The measured hole sizes are in strong agreement with our theoretical prediction. Together, the theory and experiments provide a means to quantify the mechanisms of death of Gram-positive cells via enzymatically mediated lysis and provides insight into the range of cell wall hole sizes compatible with bacterial homeostasis.
A self-lysis pathway that enhances the virulence of a pathogenic bacterium.
McFarland, Kirsty A; Dolben, Emily L; LeRoux, Michele; Kambara, Tracy K; Ramsey, Kathryn M; Kirkpatrick, Robin L; Mougous, Joseph D; Hogan, Deborah A; Dove, Simon L
2015-07-07
In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of the alpA gene, which encodes a positive regulator that activates expression of the alpBCDE lysis cassette. Although this is lethal to the individual cell in which it occurs, we find it benefits the population as a whole during infection of a mammalian host. Thus, host and pathogen each may use PCD as a survival-promoting strategy. We suggest that activation of the Alp cell lysis pathway is a disease-enhancing response to bacterial DNA damage inflicted by the host immune system.
Juhas, Mario; Ajioka, James W
2017-11-01
The majority of the good DNA editing techniques have been developed in Escherichia coli; however, Bacillus subtilis is better host for a plethora of synthetic biology and biotechnology applications. Reliable and efficient systems for the transfer of synthetic DNA between E. coli and B. subtilis are therefore of the highest importance. Using synthetic biology approaches, such as streamlined lambda Red recombineering and Gibson Isothermal Assembly, we integrated genetic circuits pT7L123, Repr-ts-1 and pLT7pol encoding the lysis genes of bacteriophages MS2, ΦX174 and lambda, the thermosensitive repressor and the T7 RNA polymerase into the E. coli chromosome. In this system, T7 RNA polymerase regulated by the thermosensitive repressor drives the expression of the phage lysis genes. We showed that T7 RNA polymerase significantly increases efficiency of cell lysis and transfer of the plasmid and bacterial artificial chromosome-encoded DNA from the lysed E. coli into B. subtilis. The T7 RNA polymerase-driven inducible cell lysis system is suitable for the efficient cell lysis and transfer of the DNA engineered in E. coli to other naturally competent hosts, such as B. subtilis. © 2017 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Gill, Christina; van de Wijgert, Janneke H H M; Blow, Frances; Darby, Alistair C
2016-01-01
Recent studies on the vaginal microbiota have employed molecular techniques such as 16S rRNA gene sequencing to describe the bacterial community as a whole. These techniques require the lysis of bacterial cells to release DNA before purification and PCR amplification of the 16S rRNA gene. Currently, methods for the lysis of bacterial cells are not standardised and there is potential for introducing bias into the results if some bacterial species are lysed less efficiently than others. This study aimed to compare the results of vaginal microbiota profiling using four different pretreatment methods for the lysis of bacterial samples (30 min of lysis with lysozyme, 16 hours of lysis with lysozyme, 60 min of lysis with a mixture of lysozyme, mutanolysin and lysostaphin and 30 min of lysis with lysozyme followed by bead beating) prior to chemical and enzyme-based DNA extraction with a commercial kit. After extraction, DNA yield did not significantly differ between methods with the exception of lysis with lysozyme combined with bead beating which produced significantly lower yields when compared to lysis with the enzyme cocktail or 30 min lysis with lysozyme only. However, this did not result in a statistically significant difference in the observed alpha diversity of samples. The beta diversity (Bray-Curtis dissimilarity) between different lysis methods was statistically significantly different, but this difference was small compared to differences between samples, and did not affect the grouping of samples with similar vaginal bacterial community structure by hierarchical clustering. An understanding of how laboratory methods affect the results of microbiota studies is vital in order to accurately interpret the results and make valid comparisons between studies. Our results indicate that the choice of lysis method does not prevent the detection of effects relating to the type of vaginal bacterial community one of the main outcome measures of epidemiological studies. However, we recommend that the same method is used on all samples within a particular study.
Examination of laser microbeam cell lysis in a PDMS microfluidic channel using time-resolved imaging
Quinto-Su, Pedro A.; Lai, Hsuan-Hong; Yoon, Helen H.; Sims, Christopher E.; Allbritton, Nancy L.; Venugopalan, Vasan
2008-01-01
We use time-resolved imaging to examine the lysis dynamics of non-adherent BAF-3 cells within a microfluidic channel produced by the delivery of single highly-focused 540 ps duration laser pulses at λ = 532 nm. Time-resolved bright-field images reveal that the delivery of the pulsed laser microbeam results in the formation of a laser-induced plasma followed by shock wave emission and cavitation bubble formation. The confinement offered by the microfluidic channel constrains substantially the cavitation bubble expansion and results in significant deformation of the PDMS channel walls. To examine the cell lysis and dispersal of the cellular contents, we acquire time-resolved fluorescence images of the process in which the cells were loaded with a fluorescent dye. These fluorescence images reveal cell lysis to occur on the nanosecond to microsecond time scale by the plasma formation and cavitation bubble dynamics. Moreover, the time-resolved fluorescence images show that while the cellular contents are dispersed by the expansion of the laser-induced cavitation bubble, the flow associated with the bubble collapse subsequently re-localizes the cellular contents to a small region. This capacity of pulsed laser microbeam irradiation to achieve rapid cell lysis in microfluidic channels with minimal dilution of the cellular contents has important implications for their use in lab-on-a-chip applications. PMID:18305858
Cellular lysis of Streptococcus faecalis induced with triton X-100.
Cornett, J B; Shockman, G D
1978-01-01
Lysis of exponential-phase cultures of Streptococcus faecalis ATCC 9790 was induced by exposure to both anionic (sodium dodecyl sulfate) and nonionic (Triton X-100) surfactants. Lysis in response to sodium dodecyl sulfate was effective only over a limited range of concentrations, whereas Triton X-100-induced lysis occurred over a broad range of surfactant concentrations. The data presented indicate that the bacteriolytic response of growing cells to Triton X-100: (i) was related to the ratio of surfactant to cells and not the surfactant concentration per se; (ii) required the expression of the cellular autolytic enzyme system; and (iii) was most likely due to an effect of the surfactant on components of the autolytic system that are associated with the cytoplasmic membrane. The possibility that Triton X-100 may induce cellular lysis by releasing a lipid inhibitor of the cellular autolytic enzyme is discussed. PMID:97265
Microfluidic systems and methods of transport and lysis of cells and analysis of cell lysate
Culbertson, Christopher T.; Jacobson, Stephen C.; McClain, Maxine A.; Ramsey, J. Michael
2004-08-31
Microfluidic systems and methods are disclosed which are adapted to transport and lyse cellular components of a test sample for analysis. The disclosed microfluidic systems and methods, which employ an electric field to rupture the cell membrane, cause unusually rapid lysis, thereby minimizing continued cellular activity and resulting in greater accuracy of analysis of cell processes.
Microfluidic systems and methods for transport and lysis of cells and analysis of cell lysate
Culbertson, Christopher T [Oak Ridge, TN; Jacobson, Stephen C [Knoxville, TN; McClain, Maxine A [Knoxville, TN; Ramsey, J Michael [Knoxville, TN
2008-09-02
Microfluidic systems and methods are disclosed which are adapted to transport and lyse cellular components of a test sample for analysis. The disclosed microfluidic systems and methods, which employ an electric field to rupture the cell membrane, cause unusually rapid lysis, thereby minimizing continued cellular activity and resulting in greater accuracy of analysis of cell processes.
Roskopf, Claudia C.; Schiller, Christian B.; Braciak, Todd A.; Kobold, Sebastian; Schubert, Ingo A.; Fey, Georg H.; Hopfner, Karl-Peter; Oduncu, Fuat S.
2014-01-01
Triplebody 19-3-19, an antibody-derived protein, carries three single chain fragment variable domains in tandem in a single polypeptide chain. 19-3-19 binds CD19-bearing lymphoid cells via its two distal domains and primary T cells via its CD3-targeting central domain in an antigen-specific manner. Here, malignant B-lymphoid cell lines and primary cells from patients with B cell malignancies were used as targets in cytotoxicity tests with pre-stimulated allogeneic T cells as effectors. 19-3-19 mediated up to 95% specific lysis of CD19-positive tumor cells and, at picomolar EC50 doses, had similar cytolytic potency as the clinically successful agent BlinatumomabTM. 19-3-19 activated resting T cells from healthy unrelated donors and mediated specific lysis of both autologous and allogeneic CD19-positive cells. 19-3-19 led to the elimination of 70% of CD19-positive target cells even with resting T cells as effectors at an effector-to-target cell ratio of 1 : 10. The molecule is therefore capable of mediating serial lysis of target cells by a single T cell. These results highlight that central domains capable of engaging different immune effectors can be incorporated into the triplebody format to provide more individualized therapy tailored to a patient’s specific immune status. PMID:25115385
Three distinct cell phenotypes of induced-TNF cytotoxicity and their relationship to apoptosis
NASA Technical Reports Server (NTRS)
Woods, K. M.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)
1993-01-01
We have identified three distinct cell phenotypes with respect to the conditions under which cells became susceptible to TNF-mediated lysis. These conditions include: 1) treatment with the protein synthesis inhibitor, cycloheximide; 2) contact with activated macrophages, and 3) infection with vaccinia virus. Whereas vaccinia virus-infected 3T3 cells became sensitive to soluble TNF, F5b cells required contact with activated macrophages. We showed that the "macrophage-resistant" F5m cells did not become sensitive to TNF or to killing by activated macrophages after infection with vaccinia virus. Therefore, vaccinia infection does not sensitize all cells to TNF. We also determined the pathways of lysis for cells after sensitization. Whereas 3T3, LM929, and F5b cells were killed by the process of necrosis, F5m cells lysis was characterized by the release of low mol wt DNA fragments (apoptosis).
Methylselenium and Prostate Cancer Apoptosis
2007-02-01
adherent cells were collected by gentle trypsinization and were combined with the floaters for pelleting by centrifugation. After gentle lysis of the...Cancer Ther 2006;5(7). July 2006 trypsinization and were combined with the floaters for pelleting by centrifugation. After gentle lysis of the cells with
Ida, Chieri; Yamashita, Sachiko; Tsukada, Masaki; Sato, Teruaki; Eguchi, Takayuki; Tanaka, Masakazu; Ogata, Shin; Fujii, Takahiro; Nishi, Yoshisuke; Ikegami, Susumu; Moss, Joel; Miwa, Masanao
2016-02-01
PolyADP-ribosylation is mediated by poly(ADP-ribose) (PAR) polymerases (PARPs) and may be involved in various cellular events, including chromosomal stability, DNA repair, transcription, cell death, and differentiation. The physiological level of PAR is difficult to determine in intact cells because of the rapid synthesis of PAR by PARPs and the breakdown of PAR by PAR-degrading enzymes, including poly(ADP-ribose) glycohydrolase (PARG) and ADP-ribosylhydrolase 3. Artifactual synthesis and/or degradation of PAR likely occurs during lysis of cells in culture. We developed a sensitive enzyme-linked immunosorbent assay (ELISA) to measure the physiological levels of PAR in cultured cells. We immediately inactivated enzymes that catalyze the synthesis and degradation of PAR. We validated that trichloroacetic acid is suitable for inactivating PARPs, PARG, and other enzymes involved in metabolizing PAR in cultured cells during cell lysis. The PAR level in cells harvested with the standard radioimmunoprecipitation assay buffer was increased by 450-fold compared with trichloroacetic acid for lysis, presumably because of activation of PARPs by DNA damage that occurred during cell lysis. This ELISA can be used to analyze the biological functions of polyADP-ribosylation under various physiological conditions in cultured cells. Copyright © 2015 Elsevier Inc. All rights reserved.
Utilizing the algicidal activity of aminoclay as a practical treatment for toxic red tides
Lee, Young-Chul; Jin, EonSeon; Jung, Seung Won; Kim, Yeon-Mi; Chang, Kwang Suk; Yang, Ji-Won; Kim, Si-Wouk; Kim, Young-Ok; Shin, Hyun-Jae
2013-01-01
In recent decades, harmful algal blooms (HABs) – commonly known as red tides – have increasingly impacted human health, caused significant economic losses to fisheries and damaged coastal environments and ecosystems. Here, we demonstrate a method to control and suppress HABs through selective algal lysis. The approach harnesses the algicidal effects of aminoclays, which are comprised of a high density of primary amine groups covalently bonded by metal cation backbones. Positively charged colloidals of aminoclays induce cell lysis in HABs within several minutes exposure but have negligible impact on non-harmful phytoplankton, zooplankton and farmed fish. This selective lysis is due to the ammonium characteristics of the aminoclay and the electrostatic attraction between the clay nanoparticles and the algal cells. In contrast, yellow loess clay, a recognized treatment for HABs, causes algal flocs with little cell lysis. Thus, the aminoclay loading can be effective for the mitigation of HABs. PMID:23416422
Utilizing the algicidal activity of aminoclay as a practical treatment for toxic red tides.
Lee, Young-Chul; Jin, EonSeon; Jung, Seung Won; Kim, Yeon-Mi; Chang, Kwang Suk; Yang, Ji-Won; Kim, Si-Wouk; Kim, Young-Ok; Shin, Hyun-Jae
2013-01-01
In recent decades, harmful algal blooms (HABs) - commonly known as red tides - have increasingly impacted human health, caused significant economic losses to fisheries and damaged coastal environments and ecosystems. Here, we demonstrate a method to control and suppress HABs through selective algal lysis. The approach harnesses the algicidal effects of aminoclays, which are comprised of a high density of primary amine groups covalently bonded by metal cation backbones. Positively charged colloidals of aminoclays induce cell lysis in HABs within several minutes exposure but have negligible impact on non-harmful phytoplankton, zooplankton and farmed fish. This selective lysis is due to the ammonium characteristics of the aminoclay and the electrostatic attraction between the clay nanoparticles and the algal cells. In contrast, yellow loess clay, a recognized treatment for HABs, causes algal flocs with little cell lysis. Thus, the aminoclay loading can be effective for the mitigation of HABs.
A self-lysis pathway that enhances the virulence of a pathogenic bacterium
McFarland, Kirsty A.; Dolben, Emily L.; LeRoux, Michele; Kambara, Tracy K.; Ramsey, Kathryn M.; Kirkpatrick, Robin L.; Mougous, Joseph D.; Hogan, Deborah A.; Dove, Simon L.
2015-01-01
In mammalian cells, programmed cell death (PCD) plays important roles in development, in the removal of damaged cells, and in fighting bacterial infections. Although widespread among multicellular organisms, there are relatively few documented instances of PCD in bacteria. Here we describe a potential PCD pathway in Pseudomonas aeruginosa that enhances the ability of the bacterium to cause disease in a lung infection model. Activation of the system can occur in a subset of cells in response to DNA damage through cleavage of an essential transcription regulator we call AlpR. Cleavage of AlpR triggers a cell lysis program through de-repression of the alpA gene, which encodes a positive regulator that activates expression of the alpBCDE lysis cassette. Although this is lethal to the individual cell in which it occurs, we find it benefits the population as a whole during infection of a mammalian host. Thus, host and pathogen each may use PCD as a survival-promoting strategy. We suggest that activation of the Alp cell lysis pathway is a disease-enhancing response to bacterial DNA damage inflicted by the host immune system. PMID:26100878
Dielectrophoresis-Based Sample Handling in General-Purpose Programmable Diagnostic Instruments
Gascoyne, Peter R. C.; Vykoukal, Jody V.
2009-01-01
As the molecular origins of disease are better understood, the need for affordable, rapid, and automated technologies that enable microscale molecular diagnostics has become apparent. Widespread use of microsystems that perform sample preparation and molecular analysis could ensure that the benefits of new biomedical discoveries are realized by a maximum number of people, even those in environments lacking any infrastructure. While progress has been made in developing miniaturized diagnostic systems, samples are generally processed off-device using labor-intensive and time-consuming traditional sample preparation methods. We present the concept of an integrated programmable general-purpose sample analysis processor (GSAP) architecture where raw samples are routed to separation and analysis functional blocks contained within a single device. Several dielectrophoresis-based methods that could serve as the foundation for building GSAP functional blocks are reviewed including methods for cell and particle sorting, cell focusing, cell ac impedance analysis, cell lysis, and the manipulation of molecules and reagent droplets. PMID:19684877
Enzyme-mediated Nutrient Regeneration Following Lysis of Synechococcus WH7803
NASA Astrophysics Data System (ADS)
Mine, A. H.; Coleman, M.; Colman, A. S.
2016-02-01
Phosphate availability plays a pivotal role in limiting primary production in large regions of the oceans. In order to meet their metabolic needs, microbes use a variety of strategies to overcome phosphate stress. Expression of enzymes such as alkaline phosphatase (APase) allows cells to hydrolyze and use certain ambient dissolved organic phosphorus (DOP) compounds to meet their P demand. Cell lysis releases a range of nutrient forms and enzymes into the ambient environment and is an essential component of the microbial loop. Yet very few studies have attempted to characterize both the immediate and sustained nutrient remineralization linked to the milieu of organophosphorus compounds and enzymatic activity in lysate. We conducted experiments using Synechococcus WH7803 grown under nutrient replete and starved conditions to quantify the release of phosphate during viral lysis and lysis by lysozyme treatment. Dissolved inorganic and organic phosphorus concentrations and APase activity were monitored over time following lysis. We observed a significant initial release of orthophosphate that accompanies lysis. Following lysis, phosphate concentrations continue to rise for a period of hours to days as organophosphorus compounds continue to hydrolyze. Our observations suggest this is due to a combination of direct hydrolysis of DOP released during lysis, solubilization of POP followed by hydrolysis, and possibly polyphosphate decomposition. Size fractionated enzymatic assays suggest cellular debris associated enzymes and dissolved fractions are both important in DOP hydrolysis in the viral lysate, whereas particle associated APase activity dominates in the lysozyme treatments. Moreover, nutrient status prior to lysis has important controls on the initial nutrient release and subsequent regenerative flux. These findings underscore the significance of lysis and subsequent enzyme-mediated hydrolysis in nutrient regeneration and biogeochemical dynamics in marine ecosystems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goudeau, Danielle; Nath, Nandita; Ciobanu, Doina
Our approach to prokaryotic single-cell Whole Genome Amplification at the JGI continues to evolve. To increase both the quality and number of single-cell genomes produced, we explore all aspects of the process from cell sorting to sequencing. For example, we now utilize specialized reagents, acoustic liquid handling, and reduced reaction volumes eliminate non-target DNA contamination in WGA reactions. More specifically, we use a cleaner commercial WGA kit from Qiagen that employs a UV decontamination procedure initially developed at the JGI, and we use the Labcyte Echo for tip-less liquid transfer to set up 2uL reactions. Acoustic liquid handling also dramaticallymore » reduces reagent costs. In addition, we are exploring new cell lysis methods including treatment with Proteinase K, lysozyme, and other detergents, in order to complement standard alkaline lysis and allow for more efficient disruption of a wider range of cells. Incomplete lysis represents a major hurdle for WGA on some environmental samples, especially rhizosphere, peatland, and other soils. Finding effective lysis strategies that are also compatible with WGA is challenging, and we are currently assessing the impact of various strategies on genome recovery.« less
Development of a microfluidic device for cell concentration and blood cell-plasma separation.
Maria, M Sneha; Kumar, B S; Chandra, T S; Sen, A K
2015-12-01
This work presents design, fabrication and test of a microfluidic device which employs Fahraeus-Lindqvist and Zweifach-Fung effects for cell concentration and blood cell-plasma separation. The device design comprises a straight main channel with a series of branched channels placed symmetrically on both sides of the main channel. The design implements constrictions before each junction (branching point) in order to direct cells that would have migrated closer to the wall (naturally or after liquid extraction at a junction) towards the centre of the main channel. Theoretical and numerical analysis are performed for design of the microchannel network to ensure that a minimum flow rate ratio (of 2.5:1, main channel-to-side channels) is maintained at each junction and predict flow rate at the plasma outlet. The dimensions and location of the constrictions were determined using numerical simulations. The effect of presence of constrictions before the junctions was demonstrated by comparing the performances of the device with and without constrictions. To demonstrate the performance of the device, initial experiments were performed with polystyrene microbeads (10 and 15 μm size) and droplets. Finally, the device was used for concentration of HL60 cells and separation of plasma and cells in diluted blood samples. The cell concentration and blood-plasma purification efficiency was quantified using Haemocytometer and Fluorescence-Activated Cell Sorter (FACS). A seven-fold cell concentration was obtained with HL60 cells and a purification efficiency of 70 % and plasma recovery of 80 % was observed for diluted (1:20) blood sample. FACS was used to identify cell lysis and the cell viability was checked using Trypan Blue test which showed that more than 99 % cells are alive indicating the suitability of the device for practical use. The proposed device has potential to be used as a sample preparation module in lab on chip based diagnostic platforms.
Matter, A
1979-01-01
A study was carried out to determine the sequence of events of T-cell mediated target cell lysis in microcinematography and electron microscopy. Highly efficient cytotoxic T lymphocytes (CTL) were generated in vivo and in vitro using preimmunized spleen cells and purification procedures. Such CTL were highly specific. This specificity correlated well with the number of adhesions formed between CTL and targets and this criterion was used to study killer-target cell interaction. Microcinematography showed that target cell lysis at the single cell level, despite time variations, could be clearly separated into three phases: (a) a recognition phase, visible by random crawling of CTL over the target cell surface until firm contact was established; (b) a post-recognition phase, during which firm contact between CTL and target was maintained without gross modification of either cell; (c) a phase of target cell disintegration, mainly characterized by vigorous blebbing of the cell membrane resulting in a motionless carcass of the target cell but not in its total dissolution. Only later this carcass decayed and formed a necrotic ghost. Electron microscopic observations were put into sequence according to microcinematography. Post-recognition phase was characterized by a tight apposition of the membranes of CTL and target cell. No gap junctions could be observed. During target cell disintegration, profound cytoplasmic and nuclear changes occurred simultaneous with surface blebbing. Most noticeable were extensive internal vacuolization, mitochondrial swelling, nuclear pycnosis and dissolution of the nucleolus. These observations suggested that target cell lysis does not start with a surface phenomenon similar to complement lysis, but a process involving practically the whole cell simultaneously. It is conceivable, therefore, that the signal from the CTL is transmitted across the target cell, and that the switch to sudden cell death is manipulated deep inside the cell. Images Figure 3 Figures 4-7 Figures 8-11 Figure 12 Figures 13-14 Figure 15 PMID:312256
Gründling, Angelika; Gonzalez, Mark D; Higgins, Darren E
2003-11-01
In this study, we investigated the requirement of the Listeria monocytogenes broad-range phospholipase C (PC-PLC) during infection of human epithelial cells. L. monocytogenes is a facultative intracellular bacterial pathogen of humans and a variety of animal species. After entering a host cell, L. monocytogenes is initially surrounded by a membrane-bound vacuole. Bacteria promote their escape from this vacuole, grow within the host cell cytosol, and spread from cell to cell via actin-based motility. Most infection studies with L. monocytogenes have been performed with mouse cells or an in vivo mouse model of infection. In all mouse-derived cells tested, the pore-forming cytolysin listeriolysin O (LLO) is absolutely required for lysis of primary vacuoles formed during host cell entry. However, L. monocytogenes can escape from primary vacuoles in the absence of LLO during infection of human epithelial cell lines Henle 407, HEp-2, and HeLa. Previous studies have shown that the broad-range phospholipase C, PC-PLC, promotes lysis of Henle 407 cell primary vacuoles in the absence of LLO. Here, we have shown that PC-PLC is also required for lysis of HEp-2 and HeLa cell primary vacuoles in the absence of LLO expression. Furthermore, our results indicated that the amount of PC-PLC activity is critical for the efficiency of vacuolar lysis. In an LLO-negative derivative of L. monocytogenes strain 10403S, expression of PC-PLC has to increase before or upon entry into human epithelial cells, compared to expression in broth culture, to allow bacterial escape from primary vacuoles. Using a system for inducible PC-PLC expression in L. monocytogenes, we provide evidence that phospholipase activity can be increased by elevated expression of PC-PLC or Mpl, the enzyme required for proteolytic activation of PC-PLC. Lastly, by using the inducible PC-PLC expression system, we demonstrate that, in the absence of LLO, PC-PLC activity is not only required for lysis of primary vacuoles in human epithelial cells but is also necessary for efficient cell-to-cell spread. We speculate that the additional requirement for PC-PLC activity is for lysis of secondary double-membrane vacuoles formed during cell-to-cell spread.
Studies on the selective lysis and purification of Trypanosoma cruzi
1975-01-01
The mechanism by which culture forms of Trypanosoma cruzi are lysed by normal mammalian sera was examined. Lysis is restricted to the epimastigote form of the organism and is not dependent on the presence of agglutinins. Lysis is a complement-dependent process, the activity being generated by the alternate pathway. The selective lysis by serum was exploited to purify viable trypomastigotes by means of centrifugation in an albumin column. Essentially pure trypomastigote populations are now being employed in cell culture experiments. PMID:807672
Gill, Christina; Blow, Frances; Darby, Alistair C.
2016-01-01
Background Recent studies on the vaginal microbiota have employed molecular techniques such as 16S rRNA gene sequencing to describe the bacterial community as a whole. These techniques require the lysis of bacterial cells to release DNA before purification and PCR amplification of the 16S rRNA gene. Currently, methods for the lysis of bacterial cells are not standardised and there is potential for introducing bias into the results if some bacterial species are lysed less efficiently than others. This study aimed to compare the results of vaginal microbiota profiling using four different pretreatment methods for the lysis of bacterial samples (30 min of lysis with lysozyme, 16 hours of lysis with lysozyme, 60 min of lysis with a mixture of lysozyme, mutanolysin and lysostaphin and 30 min of lysis with lysozyme followed by bead beating) prior to chemical and enzyme-based DNA extraction with a commercial kit. Results After extraction, DNA yield did not significantly differ between methods with the exception of lysis with lysozyme combined with bead beating which produced significantly lower yields when compared to lysis with the enzyme cocktail or 30 min lysis with lysozyme only. However, this did not result in a statistically significant difference in the observed alpha diversity of samples. The beta diversity (Bray-Curtis dissimilarity) between different lysis methods was statistically significantly different, but this difference was small compared to differences between samples, and did not affect the grouping of samples with similar vaginal bacterial community structure by hierarchical clustering. Conclusions An understanding of how laboratory methods affect the results of microbiota studies is vital in order to accurately interpret the results and make valid comparisons between studies. Our results indicate that the choice of lysis method does not prevent the detection of effects relating to the type of vaginal bacterial community one of the main outcome measures of epidemiological studies. However, we recommend that the same method is used on all samples within a particular study. PMID:27643503
Grenga, Italia; Donahue, Renee N; Gargulak, Morgan L; Lepone, Lauren M; Roselli, Mario; Bilusic, Marijo; Schlom, Jeffrey
2018-03-01
Avelumab has recently been approved by the Food and Drug Administration for the therapy of Merkel cell carcinoma and urothelial carcinoma. M7824 is a novel first-in-class bifunctional fusion protein comprising a monoclonal antibody against programmed death-ligand 1 (PD-L1, avelumab), fused to the extracellular domain of human transforming growth factor beta (TGFβ) receptor 2, which functions as a TGFβ "trap." Advanced urothelial tumors have been shown to express TGFβ, which possesses immunosuppressive properties that promote cancer progression and metastasis. The rationale for a combined molecule is to block the PD-1/PD-L1 interaction between tumor cells and immune cell infiltrate and simultaneously reduce or eliminate TGFβ from the tumor microenvironment. In this study, we explored the effect of M7824 on invasive urothelial carcinoma cell lines. Human urothelial (transitional cell) carcinoma cell lines HTB-4, HTB-1, and HTB-5 were treated with M7824, M7824mut (M7824 that is mutated in the anti-PD-L1 portion of the molecule and thus does not bind PD-L1), anti-PD-L1 (avelumab), or IgG1 isotype control monoclonal antibody, and were assessed for gene expression, cell-surface phenotype, and sensitivity to lysis by TRAIL, antigen-specific cytotoxic T lymphocytes and natural killer cells. M7824 retains the ability to mediate antibody-dependent cellular cytotoxicity of tumor cells, although in some cases to a lesser extent than anti-PD-L1. However, compared to anti-PD-L1, M7824 increases (A) gene expression of molecules involved in T-cell trafficking in the tumor (e.g., CXCL11), (B) TRAIL-mediated tumor cell lysis, and (C) antigen-specific CD8 + T-cell-mediated lysis of tumor cells. These studies demonstrate the immunomodulatory properties of M7824 on both tumor cell phenotype and immune-mediated lysis. Compared to anti-PD-L1 or M7824mut, M7824 induces immunogenic modulation of urothelial carcinoma cell lines, rendering them more susceptible to immune-mediated recognition and lysis. These findings show the relevance of the dual blockade of PD-L1 and TGFβ in urothelial carcinoma cell lines and thus support the rationale for future clinical studies of M7824 in patients with urothelial cancer. Published by Elsevier Inc.
USDA-ARS?s Scientific Manuscript database
Current molecular methodologies, specifically DNA-based approaches, provide access to previously hidden soil biodiversity and are routinely employed in environmental studies of microbial ecology. Selection of cell lysis methodology is critical to community analyses due to the inability of any singul...
Hypercalcemia in tumor lysis syndrome.
Shah, Binay Kumar
2014-09-01
Tumor lysis syndrome (TLS) is characterized by hyperkalemia, hyperuricemia, hypocalcemia and hyperphosphatemia. This report describes a case of hypercalcemia in TLS in a patient with diffuse large B cell lymphoma.
Muthaiyan, A; Martin, E M; Natesan, S; Crandall, P G; Wilkinson, B J; Ricke, S C
2012-05-01
The objectives of this study were to evaluate the antistaphylococcal effect and elucidate the mechanism of action of orange essential oil against antibiotic-resistant Staphylococcus aureus strains. The inhibitory effect of commercial orange essential oil (EO) against six Staph. aureus strains was tested using disc diffusion and agar dilution methods. The mechanism of EO action on MRSA was analysed by transcriptional profiling. Morphological changes of EO-treated Staph. aureus were examined using transmission electron microscopy. Results showed that 0·1% of terpeneless cold-pressed Valencia orange oil (CPV) induced the cell wall stress stimulon consistent with the inhibition of cell wall synthesis. Transmission electron microscopic observation revealed cell lysis and suggested a cell wall lysis-related mechanism of CPV. CPV inhibits the growth of Staph. aureus, causes gene expression changes consistent with the inhibition of cell wall synthesis, and triggers cell lysis. Multiple antibiotics resistance is becoming a serious problem in the management of Staph. aureus infections. In this study, the altered expression of cell wall-associated genes and subsequent cell lysis in MRSA caused by CPV suggest that it may be a potential antimicrobial agent to control antibiotic-resistant Staph. aureus. © 2012 The Authors. Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Avelumab: combining immune checkpoint inhibition and antibody-dependent cytotoxicity.
Hamilton, Gerhard; Rath, Barbara
2017-04-01
Immune checkpoint inhibition holds great promise for selected tumors. The human monoclonal antibody (mAB) avelumab is directed to programmed death ligand-1 (PD-L1) and is supposed to inhibit the immunosuppressive PD-L1/PD-1 interaction and, furthermore, effect antibody-dependent cytotoxicity (ADCC) lysis of tumor cells. Areas covered: This article presents an overview of the current means to activate the antitumor immune defense by targeting PD-1 or PD-L1 with mABs and their possible role in ADCC-mediated tumor cell elimination. Expert opinion: Avelumab contains a Fc region which can bind cognate receptors on immune effector cells and induce ADCC-mediated tumor cell lysis, in contrast to other mABs directed to PD-1/PD-L1 which lack the ability to trigger ADCC due to belonging to the IgG4 subclass or possessing a mutated Fc region. Preclinical and clinical data indicate that avelumab can be safely administered to cancer patients with a toxicity profile comparable to other mABs and without lysis of PD-L1-positive activated immune cells. This antibody yielded durable responses in a phase II trial in advanced Merkel cell carcinoma patients. Tumor cell lysis by avelumab prevents cells from resorting to alternative checkpoints as shown by targeting PD-1 and the upregulation of TIM-3.
Liao, Tian; Kaufmann, Andreas M; Qian, Xu; Sangvatanakul, Voramon; Chen, Chao; Kube, Tina; Zhang, Guoyou; Albers, Andreas E
2013-01-01
To explore cancer stem cell susceptibility to a host's cytotoxic T lymphocyte (CTL)-mediated immune response. We compared the susceptibility of putative CSC generated from cancer cell lines to immunologic recognition and killing by alloantigen-specific CD8(+) CTL. CSC-enriched spheroid culture-derived cells (SDC) exhibited higher expression of ALDH, ICAM1 and of stem/progenitor cell markers on all 3 tumor cell lines investigated and lower MHC class I on the cervical cancer cell line as compared to their monolayer-derived cells (MDC). The expression of ICAM1 and MHCI was upregulated by IFN-γ treatment. CSC populations were less sensitive to MHC class I-restricted alloantigen-specific CD8(+) CTL lysis as compared to matched MDC. IFN-γ pretreatment resulted in over-proportionally enhanced lysis of SDC. Finally, the subset of ALDH(high) expressing SDC presented more sensitivity toward CD8(+) CTL killing than the ALDH(low) SDC. Tumor therapy resistance has been attributed to cancer stem cells (CSC). We show in vitro susceptibility of CSC to CTL-mediated lysis. Immunotherapy targeting of ALDH(+) CSC may therefore be a promising approach. Our results and method may be helpful for the development and optimization of adjuvants, as here exemplified for INF-γ, for CSC-targeted vaccines, independent of the availability of CSC-specific antigens.
Schellhorn, Melina; Haustein, Maria; Frank, Marcus; Linnebacher, Michael; Hinz, Burkhard
2015-11-17
The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study investigates the impact of celecoxib on the expression of intercellular adhesion molecule 1 (ICAM-1) and cancer cell lysis by lymphokine-activated killer (LAK) cells. Celecoxib, but not other structurally related selective COX-2 inhibitors (i.e., etoricoxib, rofecoxib, valdecoxib), was found to cause a substantial upregulation of ICAM-1 protein levels. Likewise, ICAM-1 mRNA expression was increased by celecoxib. Celecoxib enhanced the susceptibility of cancer cells to be lysed by LAK cells with the respective effect being reversed by a neutralizing ICAM-1 antibody. In addition, enhanced killing of celecoxib-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen 1 (LFA-1), suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. Finally, celecoxib elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate celecoxib-induced upregulation of ICAM-1 on lung cancer cells to be responsible for intercellular ICAM-1/LFA-1 crosslink that confers increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of celecoxib.
Frank, Marcus; Linnebacher, Michael; Hinz, Burkhard
2015-01-01
The antitumorigenic mechanism of the selective cyclooxygenase-2 (COX-2) inhibitor celecoxib is still a matter of debate. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study investigates the impact of celecoxib on the expression of intercellular adhesion molecule 1 (ICAM-1) and cancer cell lysis by lymphokine-activated killer (LAK) cells. Celecoxib, but not other structurally related selective COX-2 inhibitors (i.e., etoricoxib, rofecoxib, valdecoxib), was found to cause a substantial upregulation of ICAM-1 protein levels. Likewise, ICAM-1 mRNA expression was increased by celecoxib. Celecoxib enhanced the susceptibility of cancer cells to be lysed by LAK cells with the respective effect being reversed by a neutralizing ICAM-1 antibody. In addition, enhanced killing of celecoxib-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen 1 (LFA-1), suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. Finally, celecoxib elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate celecoxib-induced upregulation of ICAM-1 on lung cancer cells to be responsible for intercellular ICAM-1/LFA-1 crosslink that confers increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of celecoxib. PMID:26513172
Quantifying enzymatic lysis: estimating the combined effects of chemistry, physiology and physics.
Mitchell, Gabriel J; Nelson, Daniel C; Weitz, Joshua S
2010-10-04
The number of microbial pathogens resistant to antibiotics continues to increase even as the rate of discovery and approval of new antibiotic therapeutics steadily decreases. Many researchers have begun to investigate the therapeutic potential of naturally occurring lytic enzymes as an alternative to traditional antibiotics. However, direct characterization of lytic enzymes using techniques based on synthetic substrates is often difficult because lytic enzymes bind to the complex superstructure of intact cell walls. Here we present a new standard for the analysis of lytic enzymes based on turbidity assays which allow us to probe the dynamics of lysis without preparing a synthetic substrate. The challenge in the analysis of these assays is to infer the microscopic details of lysis from macroscopic turbidity data. We propose a model of enzymatic lysis that integrates the chemistry responsible for bond cleavage with the physical mechanisms leading to cell wall failure. We then present a solution to an inverse problem in which we estimate reaction rate constants and the heterogeneous susceptibility to lysis among target cells. We validate our model given simulated and experimental turbidity assays. The ability to estimate reaction rate constants for lytic enzymes will facilitate their biochemical characterization and development as antimicrobial therapeutics.
Sharif, Elham; Kiely, Janice; Wraith, Patrick; Luxton, Richard
2013-05-01
A novel, integrated lysis and immunoassay methodology and system for intracellular protein measurement are described. The method uses paramagnetic particles both as a lysis agent and assay label resulting in a rapid test requiring minimal operator intervention, the test being homogeneous and completed in less than 10 min. A design study highlights the critical features of the magnetic detection system used to quantify the paramagnetic particles and a novel frequency-locked loop-based magnetometer is presented. A study of paramagnetic particle enhanced lysis demonstrates that the technique is more than twice as efficient at releasing intracellular protein as ultrasonic lysis alone. Results are presented for measurements of intracellular prostate specific antigen in an LNCAP cell line. This model was selected to demonstrate the rapidity and efficiency of intracellular protein quantification. It was shown that, on average, LNCAP cells contained 0.43 fg of prostate specific antigen. This system promises an attractive solution for applications that require a rapid determination of intracellular proteins.
Tsuchido, T; Hiraoka, T; Takano, M; Shibasaki, I
1985-01-01
The addition of saturated C6, C8, C10, and C12 fatty acids appeared to lyse actively growing cells of Bacillus subtilis 168, as judged by a decrease in the optical density of the culture. Of these fatty acids, dodecanoic acid was the most effective, with 50% lysis occurring in about 30 min at a concentration of 0.5 mM. These conditions also decreased the amount of peptidoglycan estimated by the incorporated radioactivity of N-acetyl-D-[1-14C]glucosamine. At concentrations above 1 mM, however, bacterial lysis was not extensive. Dodecanoic acid did not affect autolysis of the cell wall. The lytic action of dodecanoic acid was greatly diminished in cells in which protein synthesis was inhibited and in an autolytic enzyme-deficient mutant. The results suggest that fatty acid-induced lysis of B. subtilis 168 is due to the induction of autolysis by an autolytic enzyme rather than massive solubilization of the cell membrane by the detergent-like action of the fatty acids. PMID:2858469
Kavitha, S; Rajesh Banu, J; Kumar, Gopalakrishnan; Kaliappan, S; Yeom, Ick Tae
2018-04-01
In this study, microwave irradiation has been employed to disintegrate the sludge biomass profitably by deagglomerating the sludge using a mechanical device, ultrasonicator. The outcomes of the study revealed that a specific energy input of 3.5 kJ/kg TS was found to be optimum for deagglomeration with limited cell lysis. A higher suspended solids (SS) reduction and biomass lysis efficiency of about 22.5% and 33.2% was achieved through ultrasonic assisted microwave disintegration (UMWD) when compared to microwave disintegration - MWD (15% and 20.9%). The results of biochemical methane potential (BMP) test were used to estimate biodegradability of samples. Among the samples subjected to BMP, UMWD showed better amenability towards anaerobic digestion with higher methane production potential of 0.3 L/g COD representing enhanced liquefaction potential of disaggregated sludge biomass. Economic analysis of the proposed method of sludge biomass pretreatment showed a net profit of 2.67 USD/Ton respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Lysis of Bacillus subtilis Cells by Glycerol and Sucrose Esters of Fatty Acids
Tsuchido, Tetsuaki; Ahn, Yung-Hoon; Takano, Mitsuo
1987-01-01
The lytic action of glycerol and sucrose esters of fatty acids with different carbon chain lengths on the exponentially growing cells of Bacillus subtilis 168 was investigated. Of each series of esters, glycerol dodecanoate and sucrose hexadecanoate were the most active. Lysis at 1 h after the addition of 0.1 mM glycerol dodecanoate or 20 μg of sucrose hexadecanoate per ml was 81 or 79%, respectively, as evaluated by the reduction in optical density. During this treatment a great loss of viability occurred that preceded lysis. The results that were obtained suggest that autolysis is induced by these esters. The esters caused morphological changes in the cells, but a seeming adaptation of the cells to esters was seen. Images PMID:16347300
Myers, Jeremy N.; Rekhadevi, Perumalla V.; Ramesh, Aramandla
2011-01-01
Lysis and extraction of cells are essential sample processing steps for investigations pertaining to metabolism of xenobiotics in cell culture studies. Of particular importance to these procedures are maintaining high lysis efficiency and analyte integrity as they influence the qualitative and quantitative distribution of drug and toxicant metabolites in the intra- and extracellular milieus. In this study we have compared the efficiency of different procedures viz. homogenization, sonication, bead beating, and molecular grinding resin treatment for disruption of HT-29 colon cells exposed to benzo(a)pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH) compound and a suspected colon carcinogen. Also, we have evaluated the efficiency of various procedures for extracting BaP parent compound/metabolites from colon cells and culture media prior to High Performance Liquid Chromatography (HPLC) analyses. The extraction procedures include solid phase extraction, solid-supported liquid- liquid extraction, liquid-liquid extraction, and homogeneous liquid- liquid extraction. Our findings showed that bead-beating in combination with detergent treatment of cell pellet coupled with liquid-liquid extraction yielded greater concentrations of BaP metabolites compared to the other methods employed. Our method optimization strategy revealed that disruption of HT-29 colon cells by a combination of mechanical and chemical lysis followed by liquid-liquid extraction is efficient and robust enough for analyzing BaP metabolites from cell culture studies. PMID:21865728
Khairnar, Krishna; Sanmukh, Swapnil; Chandekar, Rajshree; Paunikar, Waman
2014-07-01
The comet assay is the widely used method for in vitro toxicity testing which is also an alternative to the use of animal models for in vivo testing. Since, its inception in 1984 by Ostling and Johansson, it is being modified frequently for a wide range of application. In spite of its wide applicability, unfortunately there is no report of its application in bacteriophages research. In this study, a novel application of comet assay for the detection of bacteriophage mediated bacterial cell lysis was described. The conventional methods in bacteriophage research for studying bacterial lysis by bacteriophages are plaque assay method. It is time consuming, laborious and costly. The lytic activity of bacteriophage devours the bacterial cell which results in the release of bacterial genomic material that gets detected by ethidium bromide staining method by the comet assay protocol. The objective of this study was to compare efficacy of comet assay with different assay used to study phage mediated bacterial lysis. The assay was performed on culture isolates (N=80 studies), modified comet assay appear to have relatively higher sensitivity and specificity than other assay. The results of the study showed that the application of comet assay can be an economical, time saving and less laborious alternative to conventional plaque assay for the detection of bacteriophage mediated bacterial cell lysis. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kallmann, B.; Burkart, V.; Kolb, H.
1992-01-01
Previous studies have indicated that nitric oxide is involved in the lysis of pancreatic islet cells by inflammatory macrophages. Here the authors show that the incubation of islet cells with chemical NO-donors leads to cell lysis in a concentration and time dependent way. Islet cell death could be prevented by nicotinamide and 3-aminobenzamide, which are known to inhibit ADP-ribosylation, while several scavengers of oxygen radicals, N-acetylcysteine, dihydrolipoic acid, dimethylthiourea and citiolone, provided no protection.
Fully Integrated Microfluidic Device for Direct Sample-to-Answer Genetic Analysis
NASA Astrophysics Data System (ADS)
Liu, Robin H.; Grodzinski, Piotr
Integration of microfluidics technology with DNA microarrays enables building complete sample-to-answer systems that are useful in many applications such as clinic diagnostics. In this chapter, a fully integrated microfluidic device [1] that consists of microfluidic mixers, valves, pumps, channels, chambers, heaters, and a DNA microarray sensor to perform DNA analysis of complex biological sample solutions is present. This device can perform on-chip sample preparation (including magnetic bead-based cell capture, cell preconcentration and purification, and cell lysis) of complex biological sample solutions (such as whole blood), polymerase chain reaction, DNA hybridization, and electrochemical detection. A few novel microfluidic techniques were developed and employed. A micromix-ing technique based on a cavitation microstreaming principle was implemented to enhance target cell capture from whole blood samples using immunomagnetic beads. This technique was also employed to accelerate DNA hybridization reaction. Thermally actuated paraffin-based microvalves were developed to regulate flows. Electrochemical pumps and thermopneumatic pumps were integrated on the chip to provide pumping of liquid solutions. The device is completely self-contained: no external pressure sources, fluid storage, mechanical pumps, or valves are necessary for fluid manipulation, thus eliminating possible sample contamination and simplifying device operation. Pathogenic bacteria detection from ~mL whole blood samples and single-nucleotide polymorphism analysis directly from diluted blood were demonstrated. The device provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus has a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.
High-throughput microfluidic single-cell digital polymerase chain reaction.
White, A K; Heyries, K A; Doolin, C; Vaninsberghe, M; Hansen, C L
2013-08-06
Here we present an integrated microfluidic device for the high-throughput digital polymerase chain reaction (dPCR) analysis of single cells. This device allows for the parallel processing of single cells and executes all steps of analysis, including cell capture, washing, lysis, reverse transcription, and dPCR analysis. The cDNA from each single cell is distributed into a dedicated dPCR array consisting of 1020 chambers, each having a volume of 25 pL, using surface-tension-based sample partitioning. The high density of this dPCR format (118,900 chambers/cm(2)) allows the analysis of 200 single cells per run, for a total of 204,000 PCR reactions using a device footprint of 10 cm(2). Experiments using RNA dilutions show this device achieves shot-noise-limited performance in quantifying single molecules, with a dynamic range of 10(4). We performed over 1200 single-cell measurements, demonstrating the use of this platform in the absolute quantification of both high- and low-abundance mRNA transcripts, as well as micro-RNAs that are not easily measured using alternative hybridization methods. We further apply the specificity and sensitivity of single-cell dPCR to performing measurements of RNA editing events in single cells. High-throughput dPCR provides a new tool in the arsenal of single-cell analysis methods, with a unique combination of speed, precision, sensitivity, and specificity. We anticipate this approach will enable new studies where high-performance single-cell measurements are essential, including the analysis of transcriptional noise, allelic imbalance, and RNA processing.
Smyth, Mark J.; Krasovskis, Erika; Johnstone, Ricky W.
1998-01-01
Mouse cytotoxic T lymphocytes (CTL) reactive with a H-2Db-presented 9-mer peptide of the human papillomavirus type 16 protein E749-57 (RAHYNIVTF) were generated from the spleen cells of wild-type C57BL/6 (B6) or B6 perforin-deficient (B6.P0) mice. CD8+ B6 CTL displayed peptide-specific perforin- and Fas-mediated lysis of E7-transfected mouse RMA lymphoma cells (RMA-E7), while CD8+ CTL from B6.P0 mice lysed RMA-E7 cells via Fas ligand (FasL) exclusively. Rapid and efficient lysis of syngeneic bystander B6 blasts or RMA cells by either B6 or B6.P0 Ag-activated CTL was mediated by a FasL-Fas mechanism. Fas-resistant bystanders were not lysed, nor were allogeneic Fas-sensitive C3H/HeJ (H-2k) or BALB/c (H-2d) bystander blasts. Interestingly, however, phorbol myristate acetate-ionomycin preactivation of B6.P0 effectors enabled lysis of allogeneic H-2k and H-2d bystanders even in the absence of antigenic stimulation. Lysis of syngeneic bystander cells was always FasL-Fas dependent and required effector-bystander contact and, in particular, an interaction between CTL LFA-1 and bystander ICAM-1. Thus, in the context of major histocompatibility complex class I molecule-peptide ligation of the T-cell receptors of CD8+ CTL, neighboring bystander cells that are syngeneic and Fas sensitive and express the adhesion molecule ICAM-1 are potential targets of CTL attack. PMID:9621057
PHAGE FORMATION IN STAPHYLOCOCCUS MUSCAE CULTURES
Price, Winston H.
1948-01-01
1. The release of S. muscae phage in veal infusion medium is correlated with lysis of the host. 2. The release of the bacterial virus in Fildes' synthetic medium occurs in a step-wise manner before observable lysis of the cells occurs. This result has been confirmed by both turbidimetric readings and direct microscopic examination of the infected cells. PMID:18891146
Hydrophobic ionic liquids for quantitative bacterial cell lysis with subsequent DNA quantification.
Fuchs-Telka, Sabine; Fister, Susanne; Mester, Patrick-Julian; Wagner, Martin; Rossmanith, Peter
2017-02-01
DNA is one of the most frequently analyzed molecules in the life sciences. In this article we describe a simple and fast protocol for quantitative DNA isolation from bacteria based on hydrophobic ionic liquid supported cell lysis at elevated temperatures (120-150 °C) for subsequent PCR-based analysis. From a set of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide was identified as the most suitable for quantitative cell lysis and DNA extraction because of limited quantitative PCR inhibition by the aqueous eluate as well as no detectable DNA uptake. The newly developed method was able to efficiently lyse Gram-negative bacterial cells, whereas Gram-positive cells were protected by their thick cell wall. The performance of the final protocol resulted in quantitative DNA extraction efficiencies for Gram-negative bacteria similar to those obtained with a commercial kit, whereas the number of handling steps, and especially the time required, was dramatically reduced. Graphical Abstract After careful evaluation of five hydrophobic ionic liquids, 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([BMPyr + ][Ntf 2 - ]) was identified as the most suitable ionic liquid for quantitative cell lysis and DNA extraction. When used for Gram-negative bacteria, the protocol presented is simple and very fast and achieves DNA extraction efficiencies similar to those obtained with a commercial kit. ddH 2 O double-distilled water, qPCR quantitative PCR.
Immunogenicity of allogeneic mesenchymal stem cells
Schu, Sabine; Nosov, Mikhail; O'Flynn, Lisa; Shaw, Georgina; Treacy, Oliver; Barry, Frank; Murphy, Mary; O'Brien, Timothy; Ritter, Thomas
2012-01-01
Mesenchymal stem cells (MSCs) inhibit proliferation of allogeneic T cells and express low levels of major histocompatibility complex class I (MHCI), MHCII and vascular adhesion molecule-1 (VCAM-1). We investigated whether their immunosuppressive properties and low immunophenotype protect allogeneic rat MSCs against cytotoxic lysis in vitro and result in a reduced immune response in vivo. Rat MSCs were partially protected against alloantigen-specific cytotoxic T cells in vitro. However, after treatment with IFN-γ and IL-1β, MSCs upregulated MHCI, MHCII and VCAM-1, and cytotoxic lysis was significantly increased. In vivo, allogeneic T cells but not allogeneic MSCs induced upregulation of the activation markers CD25 and CD71 as well as downregulation of CD62L on CD4+ T cells from recipient rats. However, intravenous injection of allo-MSCs in rats led to the formation of alloantibodies with the capacity to facilitate complement-mediated lysis, although IgM levels were markedly decreased compared with animals that received T cells. The allo-MSC induced immune response was sufficient to lead to significantly reduced survival of subsequently injected allo-MSCs. Interestingly, no increased immunogenicity of IFN-γ stimulated allo-MSCs was observed in vivo. Both the loss of protection against cytotoxic lysis under inflammatory conditions and the induction of complement-activating antibodies will likely impact the utility of allogeneic MSCs for therapeutic applications. PMID:22151542
Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss
Newton, Joseph M.; Schofield, Desmond; Vlahopoulou, Joanna
2016-01-01
Monitoring the physical or chemical properties of cell broths to infer cell status is often challenging due to the complex nature of the broth. Key factors indicative of cell status include cell density, cell viability, product leakage, and DNA release to the fermentation broth. The rapid and accurate prediction of cell status for hosts with intracellular protein products can minimise product loss due to leakage at the onset of cell lysis in fermentation. This article reports the rheological examination of an industrially relevant E. coli fermentation producing antibody fragments (Fab'). Viscosity monitoring showed an increase in viscosity during the exponential phase in relation to the cell density increase, a relatively flat profile in the stationary phase, followed by a rapid increase which correlated well with product loss, DNA release and loss of cell viability. This phenomenon was observed over several fermentations that a 25% increase in broth viscosity (using induction‐point viscosity as a reference) indicated 10% product loss. Our results suggest that viscosity can accurately detect cell lysis and product leakage in postinduction cell cultures, and can identify cell lysis earlier than several other common fermentation monitoring techniques. This work demonstrates the utility of rapidly monitoring the physical properties of fermentation broths, and that viscosity monitoring has the potential to be a tool for process development to determine the optimal harvest time and minimise product loss. © 2016 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers, 32:1069–1076, 2016 PMID:27111912
Chemically synthesized silver nanoparticles as cell lysis agent for bacterial genomic DNA isolation
NASA Astrophysics Data System (ADS)
Goswami, Gunajit; Boruah, Himangshu; Gautom, Trishnamoni; Jyoti Hazarika, Dibya; Barooah, Madhumita; Boro, Robin Chandra
2017-12-01
Silver nanoparticles (AgNPs) have seen a recent spurt of use in varied fields of science. In this paper, we showed a novel application of AgNP as a promising microbial cell-lysis agent for genomic DNA isolation. We utilized chemically synthesized AgNPs for lysing bacterial cells to isolate their genomic DNA. The AgNPs efficiently lysed bacterial cells to yield good quality DNA that could be subsequently used for several molecular biology works.
Haustein, Maria; Ramer, Robert; Linnebacher, Michael; Manda, Katrin; Hinz, Burkhard
2014-11-15
Cannabinoids have been shown to promote the expression of the intercellular adhesion molecule 1 (ICAM-1) on lung cancer cells as part of their anti-invasive and antimetastatic action. Using lung cancer cell lines (A549, H460) and metastatic cells derived from a lung cancer patient, the present study addressed the impact of cannabinoid-induced ICAM-1 on cancer cell adhesion to lymphokine-activated killer (LAK) cells and LAK cell-mediated cytotoxicity. Cannabidiol (CBD), a non-psychoactive cannabinoid, enhanced the susceptibility of cancer cells to adhere to and subsequently be lysed by LAK cells, with both effects being reversed by a neutralizing ICAM-1 antibody. Increased cancer cell lysis by CBD was likewise abrogated when CBD-induced ICAM-1 expression was blocked by specific siRNA or by antagonists to cannabinoid receptors (CB1, CB2) and to transient receptor potential vanilloid 1. In addition, enhanced killing of CBD-treated cancer cells was reversed by preincubation of LAK cells with an antibody to lymphocyte function associated antigen-1 (LFA-1) suggesting intercellular ICAM-1/LFA-1 crosslink as crucial event within this process. ICAM-1-dependent pro-killing effects were further confirmed for the phytocannabinoid Δ(9)-tetrahydrocannabinol (THC) and R(+)-methanandamide (MA), a hydrolysis-stable endocannabinoid analogue. Finally, each cannabinoid elicited no significant increase of LAK cell-mediated lysis of non-tumor bronchial epithelial cells, BEAS-2B, associated with a far less pronounced (CBD, THC) or absent (MA) ICAM-1 induction as compared to cancer cells. Altogether, our data demonstrate cannabinoid-induced upregulation of ICAM-1 on lung cancer cells to be responsible for increased cancer cell lysis by LAK cells. These findings provide proof for a novel antitumorigenic mechanism of cannabinoids. Copyright © 2014 Elsevier Inc. All rights reserved.
Jochems, Caroline; Hodge, James W; Fantini, Massimo; Tsang, Kwong Y; Vandeveer, Amanda J; Gulley, James L; Schlom, Jeffrey
2017-08-01
NK-92 cells, and their derivative, designated aNK, were obtained from a patient with non-Hodgkin lymphoma. Prior clinical studies employing adoptively transferred irradiated aNK cells have provided evidence of clinical benefit and an acceptable safety profile. aNK cells have now been engineered to express IL-2 and the high affinity (ha) CD16 allele (designated haNK). Avelumab is a human IgG1 anti-PD-L1 monoclonal antibody, which has shown evidence of clinical activity in a range of human tumors. Prior in vitro studies have shown that avelumab has the ability to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) of human tumor cells when combined with NK cells. In the studies reported here, the ability of avelumab to enhance the lysis of a range of human carcinoma cells by irradiated haNK cells via the ADCC mechanism is demonstrated; this ADCC is shown to be inhibited by anti-CD16 blocking antibody and by concanamycin A, indicating the use of the granzyme/perforin pathway in tumor cell lysis. Studies also show that while NK cells have the ability to lyse aNK or haNK cells, the addition of NK cells to irradiated haNK cells does not inhibit haNK-mediated lysis of human tumor cells, with or without the addition of avelumab. Avelumab-mediated lysis of tumor cells by irradiated haNK cells is also shown to be similar to that of NK cells bearing the V/V Fc receptor high affinity allele. These studies thus provide the rationale for the clinical evaluation of the combined use of avelumab with that of irradiated adoptively transferred haNK cells. © 2017 UICC.
Kojima, H; Eshima, K; Takayama, H; Sitkovsky, M V
1997-09-15
Exquisite specificity toward Ag-bearing cells (cognate targets) is one of the most important properties of CD8+ CTL-mediated cytotoxicity. Using highly Ag-specific CD8+ CTL lines and clones, which spare noncognate, Ag-free targets, we found that in the presence of Ag-bearing targets the CTL acquire the ability to lyse noncognate target cells (bystanders). It is shown that the unexpectedly rapid and efficient lysis of bystanders by Ag-activated CTL is mediated by a Fas ligand (FasL)/Fas-based mechanism and does not depend on perforin. The CTL lysed Fas-expressing bystanders, but spared the Fas-negative or anti-Fas mAb-resistant bystander cells. Accordingly, the FasL-deficient gld/gld CTL did not kill bystanders, while perforin-deficient CTL did. Unlike anti-Fas mAb-induced cell death, the lysis of bystanders was not only FasL/Fas dependent but also required adhesion molecule LFA-1 on the surface of the activated CTL. Lysis of bystanders is viewed as acceptable "collateral" damage, but the persistent presence of activated CTL could result in immunopathologies involving functional Fas-expressing tissues.
Zhao, Zhe; Liu, Jinxin; Deng, Yiqin; Huang, Wen; Ren, Chunhua; Call, Douglas R.; Hu, Chaoqun
2018-01-01
ABSTRACT Vibrio alginolyticus is a Gram-negative bacterium that is an opportunistic pathogen of both marine animals and people. Its pathogenesis likely involves type III secretion system (T3SS) mediated induction of rapid apoptosis, cell rounding and osmotic lysis of infected eukaryotic cells. Herein, we report that effector proteins, Val1686 and Val1680 from V. alginolyticus, were responsible for T3SS-mediated death of fish cells. Val1686 is a Fic-domain containing protein that not only contributed to cell rounding by inhibiting Rho guanosine triphosphatases (GTPases), but was requisite for the induction of apoptosis because the deletion mutant (Δval1686) was severely weakened in its ability to induce cell rounding and apoptosis in fish cells. In addition, Val1686 alone was sufficient to induce cell rounding and apoptosis as evidenced by the transfection of Val1686 into fish cells. Importantly, the Fic-domain essential for cell rounding activity was equally important to activation of apoptosis of fish cells, indicating that apoptosis is a downstream event of Val1686-dependent GTPase inhibition. V. alginolyticus infection likely activates JNK and ERK pathways with sequential activation of caspases (caspase-8/-10, -9 and -3) and subsequent apoptosis. Val1680 contributed to T3SS-dependent lysis of fish cells in V. alginolyticus, but did not induce autophagy as has been reported for its homologue (VopQ) in V. parahaemolyticus. Together, Val1686 and Val1680 work together to induce apoptosis, cell rounding and cell lysis of V. alginolyticus-infected fish cells. These findings provide new insights into the mechanism of cell death caused by T3SS of V. alginolyticus. PMID:29252102
Snyder, Jamie C; Brumfield, Susan K; Peng, Nan; She, Qunxin; Young, Mark J
2011-07-01
Host cells infected by Sulfolobus turreted icosahedral virus (STIV) have been shown to produce unusual pyramid-like structures on the cell surface. These structures represent a virus-induced lysis mechanism that is present in Archaea and appears to be distinct from the holin/endolysin system described for DNA bacteriophages. This study investigated the STIV gene products required for pyramid formation in its host Sulfolobus solfataricus. Overexpression of STIV open reading frame (ORF) c92 in S. solfataricus alone is sufficient to produce the pyramid-like lysis structures in cells. Gene disruption of c92 within STIV demonstrates that c92 is an essential protein for virus replication. Immunolocalization of c92 shows that the protein is localized to the cellular membranes forming the pyramid-like structures.
Knyazev, Nickolay A; Samoilova, Kira A; Abrahamse, Heidi; Filatova, Natalia A
2016-09-01
This study evaluates the participation of immunological mechanisms of downregulation of murine hepatoma cells MH22a after direct exposure to polychromatic polarized light. Previous studies have shown that exposure to a combination of visible (VIS) and infrared (IR) light leads to decreased tumorigenicity of the murine hepatoma cells MH22a, which correlated with an increase in the amount of cells with reorganized cytoskeleton in the submembrane region. The mechanism of tumor inhibition and elimination has not been determined. Polychromatic light (480-3400 nm) has been used at doses of 4.8 and 9.6 J/cm(2) to determine the sensitivity of murine MH22a cells and human erythroleukemia cells K562 exposed to this light, to lysis by effector cells of innate immunity (NK cells), and enhancement of the glycocalyx of the studied tumor cells. This was determined using flow cytometry, the H(3)-uridine cytotoxic test followed by spectrophotometry. VIS-IR light increases the sensitivity of MH-22a cells at a dose 4.8 J/cm(2) and K562 cells at 9.6 J/cm(2). The enhancement of sensitivity of tumor cells to NK lysis changed their ability to absorb alcian blue, reflecting a change in the expression of the glycocalyx. Increasing the sensitivity of the murine tumor cells MH22a and human K562 irradiated VIS-IR light correlated with a change in the expression of their glycocalyx. The results of the present study demonstrate that the reduction of tumorigenicity of irradiated tumor cells is due to their sensitivity to lysis by NK cells of the immune system.
Mycoplasma agalactiae Induces Cytopathic Effects in Infected Cells Cultured In Vitro
Hegde, Shrilakshmi; Hegde, Shivanand Manjunath; Rosengarten, Renate; Chopra-Dewasthaly, Rohini
2016-01-01
Mycoplasma agalactiae is the etiological agent of the contagious agalactia syndrome in sheep and goats and causes significant economic losses worldwide. Yet the mechanism of pathogenesis is largely unknown. Even whole-genome sequence analysis of its pathogenic type strain did not lead to any conclusions regarding its virulence or pathogenicity factors. Although inflammation and tissue destruction at the local site of M. agalactiae infection are largely considered as effects of the host immune response, the direct effect of the agent on host cells is not completely understood. The aim of this study was to investigate the effect of M. agalactiae infection on the quality and viability of host cells in vitro. Changes in cell morphology including cell elongation, cytoplasm shrinkage and membrane blebbing were observed in infected HeLa cells. Chromatin condensation and increased caspase-3 cleavage in infected HeLa cells 48 h after infection suggests an apoptosis-like phenomenon in M. agalactiae-infected cells. In compliance with these results, decreased viability and cell lysis of M. agalactiae-infected HeLa cells was also observed. Measurement of the amount of LDH released after M. agalactiae infection revealed a time- and dose-dependent increase in HeLa cell lysis. A significant decrease in LDH released after gentamicin treatment of infected cells confirmed the major role of cytadherent M. agalactiae in inducing host cell lysis. This is the first study illustrating M. agalactiae’s induction of cytopathic effects in infected HeLa cells. Further detailed investigation of infected host tissue for apoptotic markers might demonstrate the association between M. agalactiae-induced host cell lysis and the tissue destruction observed during M. agalactiae natural infection. PMID:27662492
Bhardwaj, Sharonlin; Varma, Seema
2018-03-01
Tumor lysis syndrome is a serious and sometimes lethal complication of cancer treatment that is comprised of a set of metabolic disturbances along with clinical manifestations. Initiating chemotherapy in bulky, rapidly proliferating tumors causes rapid cell turnover that in turn releases metabolites into circulation that give rise to metabolic derangements that can be dangerous. This syndrome is usually seen in high-grade hematological malignancies. Less commonly, tumor lysis syndrome can present in solid tumors and even rarely in genitourinary tumors. In this report, the authors describe a specific case of tumor lysis syndrome in a patient with metastatic prostate cancer following treatment with docetaxel.
Palma-Guerrero, Javier; Zhao, Jiuhai; Gonçalves, A. Pedro; Starr, Trevor L.
2015-01-01
The molecular mechanisms of membrane merger during somatic cell fusion in eukaryotic species are poorly understood. In the filamentous fungus Neurospora crassa, somatic cell fusion occurs between genetically identical germinated asexual spores (germlings) and between hyphae to form the interconnected network characteristic of a filamentous fungal colony. In N. crassa, two proteins have been identified to function at the step of membrane fusion during somatic cell fusion: PRM1 and LFD-1. The absence of either one of these two proteins results in an increase of germling pairs arrested during cell fusion with tightly appressed plasma membranes and an increase in the frequency of cell lysis of adhered germlings. The level of cell lysis in ΔPrm1 or Δlfd-1 germlings is dependent on the extracellular calcium concentration. An available transcriptional profile data set was used to identify genes encoding predicted transmembrane proteins that showed reduced expression levels in germlings cultured in the absence of extracellular calcium. From these analyses, we identified a mutant (lfd-2, for late fusion defect-2) that showed a calcium-dependent cell lysis phenotype. lfd-2 encodes a protein with a Fringe domain and showed endoplasmic reticulum and Golgi membrane localization. The deletion of an additional gene predicted to encode a low-affinity calcium transporter, fig1, also resulted in a strain that showed a calcium-dependent cell lysis phenotype. Genetic analyses showed that LFD-2 and FIG1 likely function in separate pathways to regulate aspects of membrane merger and repair during cell fusion. PMID:25595444
USDA-ARS?s Scientific Manuscript database
RATIONALE: Analysis of bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) often relies upon sample preparation methods that result in cell lysis, e.g. bead-beating. However, Shiga toxin-producing Escherichia coli (STEC) can undergo bacteriophage...
Detecting cell lysis using viscosity monitoring in E. coli fermentation to prevent product loss.
Newton, Joseph M; Schofield, Desmond; Vlahopoulou, Joanna; Zhou, Yuhong
2016-07-08
Monitoring the physical or chemical properties of cell broths to infer cell status is often challenging due to the complex nature of the broth. Key factors indicative of cell status include cell density, cell viability, product leakage, and DNA release to the fermentation broth. The rapid and accurate prediction of cell status for hosts with intracellular protein products can minimise product loss due to leakage at the onset of cell lysis in fermentation. This article reports the rheological examination of an industrially relevant E. coli fermentation producing antibody fragments (Fab'). Viscosity monitoring showed an increase in viscosity during the exponential phase in relation to the cell density increase, a relatively flat profile in the stationary phase, followed by a rapid increase which correlated well with product loss, DNA release and loss of cell viability. This phenomenon was observed over several fermentations that a 25% increase in broth viscosity (using induction-point viscosity as a reference) indicated 10% product loss. Our results suggest that viscosity can accurately detect cell lysis and product leakage in postinduction cell cultures, and can identify cell lysis earlier than several other common fermentation monitoring techniques. This work demonstrates the utility of rapidly monitoring the physical properties of fermentation broths, and that viscosity monitoring has the potential to be a tool for process development to determine the optimal harvest time and minimise product loss. © 2016 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers, 32:1069-1076, 2016. © 2016 The Authors. Biotechnology Progress published by Wiley Periodicals, Inc. on behalf of American Institute of Chemical Engineers.
Stretching single fibrin fibers hampers their lysis.
Li, Wei; Lucioni, Tomas; Li, Rongzhong; Bonin, Keith; Cho, Samuel S; Guthold, Martin
2017-09-15
Blood clots, whose main structural component is a mesh of microscopic fibrin fibers, experience mechanical strain from blood flow, clot retraction and interactions with platelets and other cells. We developed a transparent, striated and highly stretchable substrate made from fugitive glue (a styrenic block copolymer) to investigate how mechanical strain affects lysis of single, suspended fibrin fibers. In this suspended fiber assay, lysis manifested itself by fiber elongation, thickening (disassembly), fraying and collapse. Stretching single fibrin fibers significantly hampered their lysis. This effect was seen in uncrosslinked and crosslinked fibers. Crosslinking (without stretching) also hampered single fiber lysis. Our data suggest that strain is a novel mechanosensitive factor that regulates blood clot dissolution (fibrinolysis) at the single fiber level. At the molecular level of single fibrin molecules, strain may distort, or hinder access to, plasmin cleavage sites and thereby hamper lysis. Fibrin fibers are the major structural component of a blood clot. We developed a highly stretchable substrate made from fugitive glue and a suspended fibrin fiber lysis assay to investigate the effect of stretching on single fibrin fibers lysis. The key findings from our experiments are: 1) Fibers thicken and elongate upon lysis; 2) stretching strongly reduces lysis; 3) this effect is more pronounced for uncrosslinked fibers; and 4) stretching fibers has a similar effect on reducing lysis as crosslinking fibers. At the molecular level, strain may distort plasmin cleavage sites, or restrict access to those sites. Our results suggest that strain may be a novel mechanobiological factor that regulates fibrinolysis. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
A novel toolbox for E. coli lysis monitoring.
Rajamanickam, Vignesh; Wurm, David; Slouka, Christoph; Herwig, Christoph; Spadiut, Oliver
2017-01-01
The bacterium Escherichia coli is a well-studied recombinant host organism with a plethora of applications in biotechnology. Highly valuable biopharmaceuticals, such as antibody fragments and growth factors, are currently being produced in E. coli. However, the high metabolic burden during recombinant protein production can lead to cell death, consequent lysis, and undesired product loss. Thus, fast and precise analyzers to monitor E. coli bioprocesses and to retrieve key process information, such as the optimal time point of harvest, are needed. However, such reliable monitoring tools are still scarce to date. In this study, we cultivated an E. coli strain producing a recombinant single-chain antibody fragment in the cytoplasm. In bioreactor cultivations, we purposely triggered cell lysis by pH ramps. We developed a novel toolbox using UV chromatograms as fingerprints and chemometric techniques to monitor these lysis events and used flow cytometry (FCM) as reference method to quantify viability offline. Summarizing, we were able to show that a novel toolbox comprising HPLC chromatogram fingerprinting and data science tools allowed the identification of E. coli lysis in a fast and reliable manner. We are convinced that this toolbox will not only facilitate E. coli bioprocess monitoring but will also allow enhanced process control in the future.
van Ravenswaay Claasen, H H; Eggermont, A M; Nooyen, Y A; Warnaar, S O; Fieuren, G J
1994-02-01
The bispecific antibodies (bs-mAbs) OV-TL 3/CD3 and OC/TR (MOv18/CD3) efficiently mediate ovarian tumor cell lysis by cytotoxic T cells and activated peripheral blood lymphocytes (PBL) in vitro. OV-TL 3/CD3 and OC/TR are reactive with tumor-associated antigens on ovarian carcinoma cells (OA3 and CA-MOv18, respectively), and CD3 on activated PBL, bridging both cells and simultaneously inducing activation of the effector cells. In a comparative study we investigated the therapeutic efficacy of OV-TL 3/CD3 and OC/TR by targeting activated PBL with the bs-mAbs against intraperitoneally growing NIH:OVCAR-3 human ovarian carcinoma cells. As they have good tumor localization characteristics, HPLC-purified bispecific F(ab')2 fragments were used to target highly active PHA and IL-2-stimulated PBL effector cells. The efficacy of OV-TL 3/CD3 was compared to OC/TR with respect to tumor-associated antigen (TAA) binding on NIH:OVCAR-3 ascites cells and NIH:OVCAR-3 tumor cell lysis in vitro. In this report we show that ip ovarian cancer-bearing nude mice treated with IL-2 and activated PBL coated with bispecific F(ab')2 had a significantly longer survival than the untreated mice. No significant difference in survival was found between the OC/TR or OV-TL 3/CD3 bispecific antibody, although MOv18 expression was higher on NIH:OVCAR-3 ascites cells and PBL targeted with OC/TR induced slightly higher tumor cell lysis in vitro. Thus, the therapeutic efficacy of these bs-mAbs in vivo could not be predicted by TAA expression or bs-mAb-mediated tumor cell lysis in vitro.
Lee, Su Jung; Ramesh, Rashmi; de Boor, Valerie; Gebler, Jan M; Silva, Richard C; Sattlegger, Evelyn
2017-09-01
The common method for liberating proteins from Saccharomyces cerevisiae cells involves mechanical cell disruption using glass beads and buffer containing inhibitors (protease, phosphatase and/or kinase inhibitors), followed by centrifugation to remove cell debris. This procedure requires the use of costly inhibitors and is laborious, in particular when many samples need to be processed. Also, enzymatic reactions can still occur during harvesting and cell breakage. As a result low-abundance and labile proteins may be degraded, and enzymes such as kinases and phosphatases may still modify proteins during and after cell lysis. We believe that our rapid sample preparation method helps overcome the above issues and offers the following advantages: (a) it is cost-effective, as no inhibitors and breaking buffer are needed; (b) cell breakage is fast (about 15 min) since it only involves a few steps; (c) the use of formaldehyde inactivates endogenous proteases prior to cell lysis, dramatically reducing the risk of protein degradation; (d) centrifugation steps only occur prior to cell lysis, circumventing the problem of losing protein complexes, in particular if cells were treated with formaldehyde intended to stabilize and capture large protein complexes; and (e) since formaldehyde has the potential to instantly terminate protein activity, this method also allows the study of enzymes in live cells, i.e. in their true physiological environment, such as the short-term effect of a drug on enzyme activity. Taken together, the rapid sample preparation procedure provides a more accurate snapshot of the cell's protein content at the time of harvesting. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Determination of the reactivity of cytotoxic immune cells with preimplantation mouse embryos
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ewoldsen, M.A.
1987-01-01
Cytotoxic immune cells were used in an assay, MELIA (mixed embryo leukocyte interaction assay) to test the ability of the cells to kill blastocyst stage embryos. The cytotoxic immune cells generated for use in this study, cytotoxic T lymphocytes (CTLs), natural killer (NK) cells, and lymphokine activated killer (LAK) cells were shown to have phenotypic and cytolytic characteristics similar to those reported by other investigators. The lysis of the blastocysts in the MELIA was determined by measuring the inhibition of blastocoel retention and/or by the inhibition of incorporation of tritiated thymidine (/sup 3/H-TdR) into embryonic DNA. Blastocysts which possess ormore » lack their zonae pellucidae were tested to determine whether the zona pellucida plays an immunoprotective role in preimplantation development. The results indicated that CTLs only lysed embryonic cells when the zona pellucida was absent, but NK and LAK cells lysed embryonic cells whether the zona pellucida was present or absent. The results suggest that the zona pellucida may protect the preimplantation mouse embryo from lysis by CTLs but what protects the embryo from lysis by NK and LAK cells is unclear.« less
Paganelli, Fernanda L; Willems, Rob J L; Jansen, Pamela; Hendrickx, Antoni; Zhang, Xinglin; Bonten, Marc J M; Leavis, Helen L
2013-04-16
Enterococcus faecium is an important multidrug-resistant nosocomial pathogen causing biofilm-mediated infections in patients with medical devices. Insight into E. faecium biofilm pathogenesis is pivotal for the development of new strategies to prevent and treat these infections. In several bacteria, a major autolysin is essential for extracellular DNA (eDNA) release in the biofilm matrix, contributing to biofilm attachment and stability. In this study, we identified and functionally characterized the major autolysin of E. faecium E1162 by a bioinformatic genome screen followed by insertional gene disruption of six putative autolysin genes. Insertional inactivation of locus tag EfmE1162_2692 resulted in resistance to lysis, reduced eDNA release, deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and significant chaining compared to that of the wild type. Therefore, locus tag EfmE1162_2692 was considered the major autolysin in E. faecium and renamed atlAEfm. In addition, AtlAEfm was implicated in cell surface exposure of Acm, a virulence factor in E. faecium, and thereby facilitates binding to collagen types I and IV. This is a novel feature of enterococcal autolysins not described previously. Furthermore, we identified (and localized) autolysin-independent DNA release in E. faecium that contributes to cell-cell interactions in the atlAEfm mutant and is important for cell separation. In conclusion, AtlAEfm is the major autolysin in E. faecium and contributes to biofilm stability and Acm localization, making AtlAEfm a promising target for treatment of E. faecium biofilm-mediated infections. IMPORTANCE Nosocomial infections caused by Enterococcus faecium have rapidly increased, and treatment options have become more limited. This is due not only to increasing resistance to antibiotics but also to biofilm-associated infections. DNA is released in biofilm matrix via cell lysis, caused by autolysin, and acts as a matrix stabilizer. In this study, we identified and characterized the major autolysin in E. faecium, which we designated AtlAEfm. atlAEfm disruption resulted in resistance to lysis, reduced extracellular DNA (eDNA), deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and chaining. Furthermore, AtlAEfm is associated with Acm cell surface localization, resulting in less binding to collagen types I and IV in the atlAEfm mutant. We also identified AtlAEfm-independent eDNA release that contributes to cell-cell interactions in the atlAEfm mutant. These findings indicate that AtlAEfm is important in biofilm and collagen binding in E. faecium, making AtlAEfm a promising target for treatment of E. faecium infections.
Fantini, Massimo; Heery, Christopher R.; Gulley, James L.; Tsang, Kwong Yok; Schlom, Jeffrey
2015-01-01
Several anti-PD1/PD-L1 monoclonal antibodies (MAb) are currently providing evidence of clinical benefit in subsets of cancer patients. The mode of action of these MAbs is to inhibit PD1 on immune cells interacting with PD-L1 on tumor cells. These MAbs are either designed or engineered to eliminate antibody-dependent cell-mediated cytotoxicity (ADCC), which, however, has been implicated as an important mechanism in several highly effective MAb-mediated cancer therapies. A fully human anti-PD-L1 MAb would potentially be able to block PD-L1/PD1 interactions and also mediate the ADCC lysis of tumor cells. MSB0010718C (designated avelumab) is a fully human IgG1 anti-PD-L1 MAb. The studies reported here demonstrate (a) the ability of avelumab to lyse a range of human tumor cells in the presence of PBMC or NK effectors; (b) IFNγ can enhance tumor cell PD-L1 expression and in some cases enhance ADCC tumor cell lysis; (c) purified NK cells are potent effectors for avelumab; (d) similar levels of avelumab-mediated ADCC lysis of tumor cells are seen using purified NK as effectors from either healthy donors or cancer patients; (e) very low levels of avelumab-mediated lysis are seen using whole PBMCs as targets; this finding complements results seen in analyses of PBMC subsets of patients receiving avelumab; and (f) the addition of IL12 to NK cells greatly enhances avelumab-mediated ADCC. These studies thus provide an additional mode of action for an anti-PD-L1 MAb and support the rationale for further studies to enhance avelumab-mediated ADCC activity. PMID:26014098
Boyerinas, Benjamin; Jochems, Caroline; Fantini, Massimo; Heery, Christopher R; Gulley, James L; Tsang, Kwong Yok; Schlom, Jeffrey
2015-10-01
Several anti-PD-1/PD-L1 monoclonal antibodies (mAb) are currently providing evidence of clinical benefit in subsets of cancer patients. The mode of action of these mAbs is to inhibit PD-1 on immune cells interacting with PD-L1 on tumor cells. These mAbs are either designed or engineered to eliminate antibody-dependent cell-mediated cytotoxicity (ADCC), which, however, has been implicated as an important mechanism in several highly effective mAb-mediated cancer therapies. A fully human anti-PD-L1 mAb would potentially be able to block PD-1/PD-L1 interactions and also mediate the ADCC lysis of tumor cells. MSB0010718C (designated avelumab) is a fully human IgG1 anti-PD-L1 mAb. The studies reported here demonstrate (i) the ability of avelumab to lyse a range of human tumor cells in the presence of PBMC or NK effectors; (ii) IFNγ can enhance tumor cell PD-L1 expression and, in some cases, enhance ADCC tumor cell lysis; (iii) purified NK cells are potent effectors for avelumab; (iv) similar levels of avelumab-mediated ADCC lysis of tumor cells are seen using purified NK as effectors from either healthy donors or cancer patients; (v) very low levels of avelumab-mediated lysis are seen using whole PBMCs as targets; this finding complements results seen in analyses of PBMC subsets of patients receiving avelumab; and (vi) the addition of IL12 to NK cells greatly enhances avelumab-mediated ADCC. These studies thus provide an additional mode of action for an anti-PD-L1 mAb and support the rationale for further studies to enhance avelumab-mediated ADCC activity. ©2015 American Association for Cancer Research.
Doi, Kentaro; Kuno, Shinichiro; Kobayashi, Akira; Hamabuchi, Takahisa; Kato, Harunosuke; Kinoshita, Kahori; Eto, Hitomi; Aoi, Noriyuki; Yoshimura, Kotaro
2014-03-01
Adipose-derived stem/progenitor cells (ASCs) are typically obtained from the lipoaspirates; however, a smaller number of ASCs can be isolated without enzymatic digestion from the infranatant liposuction aspirate fluid (LAF). We evaluated the effectiveness of an adherent column, currently used to isolate mesenchymal stromal cells from bone marrow, to isolate LAF cells. We applied peripheral blood (PB), PB mixed with cultured ASCs (PB-ASC), and LAF solution to the column and divided it into two fractions, the adherent (positive) and the non-adherent (negative) fractions. We compared this method with hypotonic hemolysis (lysis) for the red blood cell count, nucleated cells count and cell compositions as well as functional properties of isolated mesenchymal cells. The column effectively removed red blood cells, though the removal efficiency was slightly inferior to hemolysis. After column processing of PB-ASC, 60.5% of ASCs (53.2% by lysis) were selectively collected in the positive fraction, and the negative fraction contained almost no ASCs. After processing of LAF solution, nucleated cell yields were comparable between the column and hemolysis; however, subsequent adherent culture indicated that a higher average ASC yield was obtained from the column-positive samples than from the lysis samples, suggesting that the column method may be superior to hemolysis for obtaining viable ASCs. Mesenchymal differentiation and network formation assays showed no statistical differences in ASC functions between the lysis and column-positive samples. Our results suggest that a column with non-woven rayon and polyethylene fabrics is useful for isolating stromal vascular fraction cells from LAF solutions for clinical applications. Copyright © 2014 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.
Micro-sonicator for spore lysis
Miles, Robin R.; Belgrader, Phillip; Nasarabadi, Shanavaz L.
2000-01-01
A micro-sonicator for spore lysis. Using micromachining technology, the micro-sonicator uses ultrasonic excitation of spores to perform spore and cell lysis. The micro-sonicator comprises a container with a cavity therein for retaining the sample in an ultrasonic transmission medium, the cavity being closed by a silicon membrane to which an electrode and piezoelectric material are attached, with the electrode and piezoelectric material being electrically connected to an AC signal generator which causes the membrane to flex and vibrate at the frequency of the applied voltage.
De Voe, Irving W.; Oginsky, Evelyn L.
1969-01-01
The susceptibility of a marine bacterium, designated isolate c-A1, to lysis in distilled water and in salt solutions has been found to be a function of Na+ concentration. Optical densities of cells pre-exposed to 0.05 m MgCl2 were maintained in 1.0 m KCl, whereas those of cells pre-exposed to 1.0 m NaCl were not maintained at any KCl concentration tested. Cells transferred from MgCl2 to low concentrations of NaCl underwent more extensive lysis than did those transferred to distilled water. The degree of disruption of cells transferred to distilled water from mixtures of 0.05 m MgCl2 and NaCl (0 to 1.0 m) was dependent on the concentration of NaCl; similar results were obtained with LiCl, but not with KCl. In electron micrographs of thin sections, c-A1 cell envelopes consisted of two double-track layers which fractured and peeled apart on lysis after pre-exposure to NaCl-MgCl2 mixtures. Envelope eruptions or “hernias” occurred only in lysed cells pre-exposed to NaCl alone. No evidence for a functional lytic enzyme was found. Comparative studies on a terrestrial pseudomonad with a multilayered envelope indicated that preexposure to NaCl did not enhance the susceptibility of this cell to lysis in distilled water. The lytic susceptibility of the marine bacterium is considered to be the consequence of competition between specific monovalent cations and Mg++ for electrostatic interactions with components of the cell envelope of this organism. Images PMID:5788707
Nucleation of holin domains and holes optimizes lysis timing of E. coli by phage λ
NASA Astrophysics Data System (ADS)
Ryan, Gillian; Rutenberg, Andrew
2007-03-01
Holin proteins regulate the precise scheduling of Escherichia coli lysis during infection by bacteriophage λ. Inserted into the host bacterium's inner membrane during infection, holins aggregate to form rafts and then holes within those rafts. We present a two-stage nucleation model of holin action, with the nucleation of condensed holin domains followed by the nucleation of holes within these domains. Late nucleation of holin rafts leads to a weak dependence of lysis timing on host cell size, though both nucleation events contribute equally to timing errors. Our simulations recover the accurate scheduling observed experimentally, and also suggest that phage-λ lysis of E.coli is optimized.
Overexpression of the ADP (E3-11.6K) protein increases cell lysis and spread of adenovirus.
Doronin, Konstantin; Toth, Karoly; Kuppuswamy, Mohan; Krajcsi, Peter; Tollefson, Ann E; Wold, William S M
2003-01-20
Adenoviruses replicate in the nucleus and induce lytic cell death. We have shown previously that efficient cell lysis and release of adenovirus from infected cells requires an 11.6-kDa protein named Adenovirus Death Protein (ADP). The adp gene is located in the early E3 transcription unit, but the gene is expressed primarily at very late stages of infection. The putative function of ADP was discerned previously from the use of virus mutants that lack functional ADP. Here we describe two adenovirus mutants, named VRX-006 and VRX-007, that overexpress ADP. VRX-006 lacks all other genes in the E3 region, and VRX-007 lacks all other E3 genes except 12.5K. VRX-006 and VRX-007 display the phenotype predicted by the proposed function for ADP: they produce early cytopathic effect, early cell lysis, large plaques, and increased cell-to-cell spread. They grow as well in cultured cells as does adenovirus type 5. These results are consistent with the conclusion that ADP functions in adenovirus infections to promote virus release from cells at the culmination of infection.
Fishman, M; Costlow, M
1994-04-01
EL4 mouse thymoma cells sensitive to TNF-mediated lysis only in the presence of cycloheximide (S-EL4) or in the presence or absence of cycloheximide (N-EL4) were used in these experiments. Murine tumor cell line (S-EL4) sensitivity to TNF cytotoxicity is augmented when cycloheximide is added together with TNF or when cycloheximide is added 1 hr before or after TNF. No enhanced sensitivity is observed when target cells are incubated with cycloheximide 2-4 hr before or after the addition of TNF. In the absence of cycloheximide, S-EL4 cells preexposed to murine TNF are less susceptible to lysis by TNF and TNF receptor-conjugated TNF but are lysed by integral membrane TNF. TNF-induced hyposensitivity is partially reversed by actinomycin D or by culturing the preexposed cells for 4 hr prior to TNF lytic assay. TNF preincubation of N- and S-EL4 cells results in an immediate decrease in 125I-TNF binding due to TNF receptor occupancy. Recovery of TNF-R occupancy and TNF internalization were subsequently noted.
Li, Xiangtang; Zhao, Shulin; Hu, Hankun; Liu, Yi-Ming
2016-06-17
Capillary electrophoresis-based single cell analysis has become an essential approach in researches at the cellular level. However, automation of single cell analysis has been a challenge due to the difficulty to control the number of cells injected and the irreproducibility associated with cell aggregation. Herein we report the development of a new microfluidic platform deploying the double nano-electrode cell lysis technique for automated analysis of single cells with mass spectrometric detection. The proposed microfluidic chip features integration of a cell-sized high voltage zone for quick single cell lysis, a microfluidic channel for electrophoretic separation, and a nanoelectrospray emitter for ionization in MS detection. Built upon this platform, a microchip electrophoresis-mass spectrometric method (MCE-MS) has been developed for automated single cell analysis. In the method, cell introduction, cell lysis, and MCE-MS separation are computer controlled and integrated as a cycle into consecutive assays. Analysis of large numbers of individual PC-12 neuronal cells (both intact and exposed to 25mM KCl) was carried out to determine intracellular levels of dopamine (DA) and glutamic acid (Glu). It was found that DA content in PC-12 cells was higher than Glu content, and both varied from cell to cell. The ratio of intracellular DA to Glu was 4.20±0.8 (n=150). Interestingly, the ratio drastically decreased to 0.38±0.20 (n=150) after the cells are exposed to 25mM KCl for 8min, suggesting the cells released DA promptly and heavily while they released Glu at a much slower pace in response to KCl-induced depolarization. These results indicate that the proposed MCE-MS analytical platform may have a great potential in researches at the cellular level. Copyright © 2016 Elsevier B.V. All rights reserved.
Fei Cheng; Lin Hou; Keith Woeste; Zhengchun Shang; Xiaobang Peng; Peng Zhao; Shuoxin Zhang
2016-01-01
Humic substances in soil DNA samples can influence the assessment of microbial diversity and community composition. Using multiple steps during or after cell lysis adds expenses, is time-consuming, and causes DNA loss. A pretreatment of soil samples and a single step DNA extraction may improve experimental results. In order to optimize a protocol for obtaining high...
Lytic agents, cell permeability, and monolayer penetrability.
Salton, M R
1968-07-01
Cell lysis induced by lytic agents is the terminal phase of a series of events leading to membrane disorganization and breadkdown with the release of cellular macromolecules. Permeability changes following exposure to lytic systems may range from selective effects on ion fluxes to gross membrane damage and cell leakage. Lysis can be conceived as an interfacial phenomenon, and the action of surface-active agents on erythrocytes has provided a model in which to investigate relationships between hemolysis and chemical structure, ionic charge, surface tension lowering, and ability to penetrate monolayers of membrane lipid components. Evidence suggests that lysis follows the attainment of surface pressures exceeding a "critical collapse" level and could involve membrane cholesterol or phospholipid. Similarities of chemical composition of membranes from various cell types could account for lytic responses observed on interaction with surface-active agents. Cell membranes usually contain about 20-30 % lipid and 50-75 % protein. One or two major phospholipids are present in all cell membranes, but sterols are not detectable in bacterial membranes other than those of the Mycoplasma group. The rigid cell wall in bacteria has an important bearing on their response to treatment with lytic agents. Removal of the wall renders the protoplast membrane sensitive to rapid lysis with surfactants. Isolated membranes of erythrocytes and bacteria are rapidly dissociated by surface-active agents. Products of dissociation of bacterial membranes have uniform behavior in the ultracentrifuge (sedimentation coefficients 2-3S). Dissociation of membrane proteins from lipids and the isolation and characterization of these proteins will provide a basis for investigating the specificity of interaction of lytic agents with biomembranes.
Wang, Bi-Dar; Kuo, Tsong-Teh
2001-01-01
Some foreign proteins are produced in yeast in a cell cycle-dependent manner, but the cause of the cell cycle dependency is unknown. In this study, we found that Saccharomyces cerevisiae cells secreting high levels of mouse α-amylase have elongated buds and are delayed in cell cycle completion in mitosis. The delayed cell mitosis suggests that critical events during exit from mitosis might be disturbed. We found that the activities of PP2A (protein phosphatase 2A) and MPF (maturation-promoting factor) were reduced in α-amylase-oversecreting cells and that these cells showed a reduced level of assembly checkpoint protein Cdc55, compared to the accumulation in wild-type cells. MPF inactivation is due to inhibitory phosphorylation on Cdc28, as a cdc28 mutant which lacks an inhibitory phosphorylation site on Cdc28 prevents MPF inactivation and prevents the defective bud morphology induced by overproduction of α-amylase. Our data also suggest that high levels of α-amylase may downregulate PPH22, leading to cell lysis. In conclusion, overproduction of heterologous α-amylase in S. cerevisiae results in a negative regulation of PP2A, which causes mitotic delay and leads to cell lysis. PMID:11472949
Addison, Elena G; North, Janet; Bakhsh, Ismail; Marden, Chloe; Haq, Sumaira; Al-Sarraj, Samia; Malayeri, Reza; Wickremasinghe, R Gitendra; Davies, Jeffrey K; Lowdell, Mark W
2005-01-01
It has been previously shown that the subset of human natural killer (NK) cells which express CD8 in a homodimeric α/α form are more cytotoxic than their CD8– counterparts but the mechanisms behind this differential cytolytic activity remained unknown. Target cell lysis by CD8– NK cells is associated with high levels of effector cell apoptosis, which is in contrast to the significantly lower levels found in the CD8α+ cells after lysis of the same targets. We report that cross-linking of the CD8α chains on NK cells induces rapid rises in intracellular Ca2+ and increased expression of CD69 at the cell surface by initiating the influx of extracellular Ca2+ ions. We demonstrate that secretion of cytolytic enzymes initiates NK-cell apoptosis from which CD8α+ NK cells are protected by an influx of exogenous calcium following ligation of CD8 on the NK-cell surface. This ligation is through interaction with fellow NK cells in the cell conjugate and can occur when the target cells lack major histocompatibility complex (MHC) Class I expression. Protection from apoptosis is blocked by preincubation of the NK cells with anti-MHC Class I antibody. Thus, in contrast to the CD8– subset, CD8α+ NK cells are capable of sequential lysis of multiple target cells. PMID:16236125
HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells
Gornalusse, Germán G.; Hirata, Roli K.; Funk, Sarah; Riolobos, Laura; Lopes, Vanda S.; Manske, Gabriel; Prunkard, Donna; Colunga, Aric G.; Hanafi, Laïla-Aïcha; Clegg, Dennis O.; Turtle, Cameron; Russell, David W.
2017-01-01
Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this ‘missing self’ response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8+ T cells, do not bind anti-HLA antibodies, and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression. PMID:28504668
HLA-E-expressing pluripotent stem cells escape allogeneic responses and lysis by NK cells.
Gornalusse, Germán G; Hirata, Roli K; Funk, Sarah E; Riolobos, Laura; Lopes, Vanda S; Manske, Gabriel; Prunkard, Donna; Colunga, Aric G; Hanafi, Laïla-Aïcha; Clegg, Dennis O; Turtle, Cameron; Russell, David W
2017-08-01
Polymorphisms in the human leukocyte antigen (HLA) class I genes can cause the rejection of pluripotent stem cell (PSC)-derived products in allogeneic recipients. Disruption of the Beta-2 Microglobulin (B2M) gene eliminates surface expression of all class I molecules, but leaves the cells vulnerable to lysis by natural killer (NK) cells. Here we show that this 'missing-self' response can be prevented by forced expression of minimally polymorphic HLA-E molecules. We use adeno-associated virus (AAV)-mediated gene editing to knock in HLA-E genes at the B2M locus in human PSCs in a manner that confers inducible, regulated, surface expression of HLA-E single-chain dimers (fused to B2M) or trimers (fused to B2M and a peptide antigen), without surface expression of HLA-A, B or C. These HLA-engineered PSCs and their differentiated derivatives are not recognized as allogeneic by CD8 + T cells, do not bind anti-HLA antibodies and are resistant to NK-mediated lysis. Our approach provides a potential source of universal donor cells for applications where the differentiated derivatives lack HLA class II expression.
Carugo, Dario; Ankrett, Dyan N.; Glynne-Jones, Peter; Capretto, Lorenzo; Boltryk, Rosemary J.; Zhang, Xunli; Townsend, Paul A.; Hill, Martyn
2011-01-01
Sonoporation is a useful biophysical mechanism for facilitating the transmembrane delivery of therapeutic agents from the extracellular to the intracellular milieu. Conventionally, sonoporation is carried out in the presence of ultrasound contrast agents, which are known to greatly enhance transient poration of biological cell membranes. However, in vivo contrast agents have been observed to induce capillary rupture and haemorrhage due to endothelial cell damage and to greatly increase the potential for cell lysis in vitro. Here, we demonstrate sonoporation of cardiac myoblasts in the absence of contrast agent (CA-free sonoporation) using a low-cost ultrasound-microfluidic device. Within this device an ultrasonic standing wave was generated, allowing control over the position of the cells and the strength of the acoustic radiation forces. Real-time single-cell analysis and retrospective post-sonication analysis of insonated cardiac myoblasts showed that CA-free sonoporation induced transmembrane transfer of fluorescent probes (CMFDA and FITC-dextran) and that different mechanisms potentially contribute to membrane poration in the presence of an ultrasonic wave. Additionally, to the best of our knowledge, we have shown for the first time that sonoporation induces increased cell cytotoxicity as a consequence of CA-free ultrasound-facilitated uptake of pharmaceutical agents (doxorubicin, luteolin, and apigenin). The US-microfluidic device designed here provides an in vitro alternative to expensive and controversial in vivo models used for early stage drug discovery, and drug delivery programs and toxicity measurements. PMID:22662060
Thege, Fredrik I; Lannin, Timothy B; Saha, Trisha N; Tsai, Shannon; Kochman, Michael L; Hollingsworth, Michael A; Rhim, Andrew D; Kirby, Brian J
2014-05-21
We have developed and optimized a microfluidic device platform for the capture and analysis of circulating pancreatic cells (CPCs) and pancreatic circulating tumor cells (CTCs). Our platform uses parallel anti-EpCAM and cancer-specific mucin 1 (MUC1) immunocapture in a silicon microdevice. Using a combination of anti-EpCAM and anti-MUC1 capture in a single device, we are able to achieve efficient capture while extending immunocapture beyond single marker recognition. We also have detected a known oncogenic KRAS mutation in cells spiked in whole blood using immunocapture, RNA extraction, RT-PCR and Sanger sequencing. To allow for downstream single-cell genetic analysis, intact nuclei were released from captured cells by using targeted membrane lysis. We have developed a staining protocol for clinical samples, including standard CTC markers; DAPI, cytokeratin (CK) and CD45, and a novel marker of carcinogenesis in CPCs, mucin 4 (MUC4). We have also demonstrated a semi-automated approach to image analysis and CPC identification, suitable for clinical hypothesis generation. Initial results from immunocapture of a clinical pancreatic cancer patient sample show that parallel capture may capture more of the heterogeneity of the CPC population. With this platform, we aim to develop a diagnostic biomarker for early pancreatic carcinogenesis and patient risk stratification.
Reunov, Arkadiy; Reunov, Anatoliy; Pimenova, Evgenia; Reunova, Yulia; Menchinskaiya, Ekaterina; Lapshina, Larisa; Aminin, Dmitry
2018-06-05
An expression of calpain and caspase-1 as well as the concomitant ultrastructural alterations were investigated during necrosis of the mouse Ehrlich ascites carcinoma. The calpain expression was registered at 0 h and 1 h although caspase-1 did not induce any signals during these time periods. The rise of the cytoplasmic lytic zones contacted by calpain antibodies was identified as a morphologic event corresponding to the expression of calpain. Lytic zone's distribution followed by the appearance of the calpain/caspase-1 clusters assigned for lysis of the Golgi vesicles and ER. Also, the microapocrine secretion of the vesicles containing the calpain/caspase-1 clusters was detected. Further, the lysis of the plasma membrane occurred due to progression of intracellular lysis. Rupture of the plasma membrane resulted in the termination of secretion and dissemination of cell contents. The nuclei still had their normal shape. Nuclear lysis continued to rise with intranuclear lytic zones, of which the progression was accompanied with the presence of calpain/caspase-1 clusters. The data contribute to the concept of the initial role of calpain for tumor cell destruction, provide first evidence of the calpain/caspase-1 pathway in tumor cells, and highlight microapocrine secretion as a possible tumor cell death signalling mechanism. Copyright © 2018 Elsevier B.V. All rights reserved.
Validation of high-throughput single cell analysis methodology.
Devonshire, Alison S; Baradez, Marc-Olivier; Morley, Gary; Marshall, Damian; Foy, Carole A
2014-05-01
High-throughput quantitative polymerase chain reaction (qPCR) approaches enable profiling of multiple genes in single cells, bringing new insights to complex biological processes and offering opportunities for single cell-based monitoring of cancer cells and stem cell-based therapies. However, workflows with well-defined sources of variation are required for clinical diagnostics and testing of tissue-engineered products. In a study of neural stem cell lines, we investigated the performance of lysis, reverse transcription (RT), preamplification (PA), and nanofluidic qPCR steps at the single cell level in terms of efficiency, precision, and limit of detection. We compared protocols using a separate lysis buffer with cell capture directly in RT-PA reagent. The two methods were found to have similar lysis efficiencies, whereas the direct RT-PA approach showed improved precision. Digital PCR was used to relate preamplified template copy numbers to Cq values and reveal where low-quality signals may affect the analysis. We investigated the impact of calibration and data normalization strategies as a means of minimizing the impact of inter-experimental variation on gene expression values and found that both approaches can improve data comparability. This study provides validation and guidance for the application of high-throughput qPCR workflows for gene expression profiling of single cells. Copyright © 2014 Elsevier Inc. All rights reserved.
Friedman, Jay; Morisada, Megan; Sun, Lillian; Moore, Ellen C; Padget, Michelle; Hodge, James W; Schlom, Jeffrey; Gameiro, Sofia R; Allen, Clint T
2018-06-21
Natural killer (NK) cells recognize and lyse target tumor cells in an MHC-unrestricted fashion and complement antigen- and MHC-restricted killing by T-lymphocytes. NK cells and T-lymphocytes mediate early killing of targets through a common granzyme B-dependent mechanism. Tumor cell resistance to granzyme B and how this alters NK cell killing is not clearly defined. Tumor cell sensitivity to cultured murine KIL and human high affinity NK (haNK) cells in the presence or absence of AZD1775, a small molecule inhibitor of WEE1 kinase, was assessed via real time impedance analysis. Mechanisms of enhanced sensitivity to NK lysis were determined and in vivo validation via adoptive transfer of KIL cells into syngeneic mice was performed. Cultured murine KIL cells lyse murine oral cancer 2 (MOC2) cell targets more efficiently than freshly isolated peripheral murine NK cells. MOC2 sensitivity to granzyme B-dependent KIL cell lysis was enhanced by inhibition of WEE1 kinase, reversing G2/M cell cycle checkpoint activation and resulting in enhanced DNA damage and apoptosis. Treatment of MOC2 tumor-bearing wild-type C57BL/6 mice with AZD1775 and adoptively transferred KIL cells resulted in enhanced tumor growth control and survival over controls or either treatment alone. Validating these findings in human models, WEE1 kinase inhibition sensitized two human head and neck cancer cell lines to direct lysis by haNK cells. Further, WEE1 kinase inhibition sensitized these cell lines to antibody-dependent cell-mediated cytotoxicity when combined with the anti-PD-L1 IgG1 mAb Avelumab. Tumor cell resistance to granzyme B-induced cell death can be reversed through inhibition of WEE1 kinase as AZD1775 sensitized both murine and human head and neck cancer cells to NK lysis. These data provide the pre-clinical rationale for the combination of small molecules that reverse cell cycle checkpoint activation and NK cellular therapies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dannemann, B.R.; Morris, V.A.; Araujo, F.G.
1989-10-15
Because previous work has suggested that NK cells may be important in host resistance against the intracellular parasite Toxoplasma gondii we examined whether human NK cells and lymphokine-activated killer (LAK) cells have activity against trophozoites and cysts of this organism in vitro. A method to radiolabel Toxoplasma trophozoites with 51Cr was developed and direct cytotoxic activity was determined by using modifications of the standard 51Cr release assay. Viability of 51Cr-labeled trophozoites assessed by both methylene blue staining and trypan blue exclusion was greater than 90%. Significantly more 51Cr was released by anti-Toxoplasma antibody and C than by antibody in themore » absence of C. Incubation of trophozoites with freshly isolated human NK cells or NK cells activated with either rIL-2 or rIFN-alpha did not result in significant release of 51Cr (specific lysis was 0 to 2.3%). In contrast, the average specific lysis of radiolabeled trophozoites by LAK cells was significant. In a series of separate experiments, preincubation of radiolabeled trophozoites with heat-inactivated normal or Toxoplasma antibody-positive human serum increased the cytotoxicity of LAK cells from a mean specific lysis of 15% +/- 4.5 to 39% +/- 8.5, respectively, as assessed by 51Cr release. Because previous work has shown that radioisotope release from parasites may be nonspecific, separate experiments were performed to determine the cytotoxicity of LAK cells against antibody-coated trophozoites by using ethidium bromide-acridine orange staining to assess effector cell damage. LAK cells had a mean specific lysis of 51% against antibody-coated trophozoites by ethidium bromide-acridine orange staining. Preincubation with heat-inactivated Toxoplasma-antibody positive human serum did not increase activity of rIL-2-activated NK cells against 51CR-labeled trophozoites.« less
NASA Astrophysics Data System (ADS)
Hall, J. A.; Felnagle, E.; Fries, M.; Spearing, S.; Monaco, L.; Steele, A.
2006-12-01
A Modular Assay System for Solar System Exploration (MASSE) is being developed to include sample handling, pre-treatment, separation and analysis of biological target compounds by both DNA and protein microarrays. To better design sensitive and accurate initial upstream sample handling of the MASSE instrument, experiments investigating the sensitivity and potential extraction bias of commercially available DNA extraction kits between classes of environmentally relevant prokaryotes such as gram-negative bacteria ( Escherichia coli), gram-positive bacteria ( Bacillus megatarium), and Archaea ( Haloarcula marismortui) were performed. For extractions of both planktonic cultures and spiked Mars simulated regolith, FTA ® paper demonstrated the highest sensitivity, with detection as low as ˜1×10 1 cells and ˜3.3×10 2 cells, respectively. In addition to the highest sensitivity, custom modified application of FTA ® paper extraction protocol is the simplest in terms of incorporation into MASSE and displayed little bias in sensitivity with respect to prokaryotic cell type. The implementation of FTA paper for environmental microbiology investigations appears to be a viable and effective option potentially negating the need for other pre-concentration steps such as filtration and negating concerns regarding extraction efficiency of cells. In addition to investigations on useful technology for upstream sample handling in MASSE, we have also evaluated the potential for μTAS to be employed in the MASSE instrument by employing proprietary lab-on-a-chip development technology to investigate the potential for microfluidic cell lysis of different prokaryotic cells employing both chemical and biological lysis agents. Real-time bright-field microscopy and quantitative PMT detection indicated that that gram positive, gram negative and archaeal cells were effectively lyzed in a few seconds using the microfluidic chip protocol developed. This included employing a lysis buffer with components including lysozyme, Protease, Proteinase K, Tween-20 and TritonX-100. The effectiveness of antibiotics and other chemical lysis agents were also screened and demonstrated partial effectiveness on all three cell types. This work demonstrates a step wise approach to evaluating the efficacy and sensitivity of commercial macro-scale technology and state-of-the-art developmental microfluidic technology under consideration for incorporation into the remotely operated MASSE instrument currently under development at the Carnegie Institution of Washington.
Yang, Rui; Zhang, Jianjia; Feng, Min; Wu, Xiaofeng
2016-11-01
Bombyx mori nucleopolyhedrovirus orf58a (bm58a) and its homologues are highly conserved in genomes of all sequenced group I alphabaculoviruses and its function is still unknown. Transcriptional analysis revealed that bm58a is a very late gene initiated from a late transcriptional start motif TAAG. To examine its role in the virus, a bm58a knockout virus (vBmbm-58a-KO-PH-GFP) was generated through homologous recombination in Escherichia coli. Analysis of fluorescence microscopy, titration assays and electron microscopy examination showed that the deletion of bm58a did not affect viral replication and occlusion bodies formation in vitro, indicating that bm58a is not required for viral propagation. However, vBmbm-58a-KO-PH-GFP did not result in cell lysis when wild-type virus infected cells began to lyse, and the vBmbm-58a-KO-PH-GFP infected cells remained intact until 2 weeks post-infection. Quantification of polyhedra release from cells confirmed this observation. Accordingly, though deletion of bm58a did not reduce Bombyx mori nucleopolyhedrovirus infectivity in vivo in bioassays, it did significantly disrupt the larval liquefaction, reducing the level of polyhedra release from infected host. Immunofluorescence analysis demonstrated that Bm58a was predominantly localized on the cellular membrane at the late stage of infection, which may contribute to its function of facilitating cell lysis and larval liquefaction. Our results suggest that although bm58a is not essential for viral propagation as an auxiliary gene, it is a key factor of virus-induced cell lysis and larval liquefaction in vitro and in vivo.
TGF-Beta Antibody for Prostate Cancer: Role of ERK
2011-07-01
St. Louis, MO). rotein concentration was assayed and adjusted to 1 mg/mL ith the lysis/wash buffer. An aliquot of 600 L of cell lysates as precleared...kit. Precleared lysate was immunoprecip- ated by the crosslinked antibody and agarose mixture for over- ight on 4°C. Control agarose resin in the kit...was used as a egative control when western-blot analysis was conducted. estern Blot Analysis ell lysates were prepared by using cell lysis buffer
Microfluidic Devices for Forensic DNA Analysis: A Review.
Bruijns, Brigitte; van Asten, Arian; Tiggelaar, Roald; Gardeniers, Han
2016-08-05
Microfluidic devices may offer various advantages for forensic DNA analysis, such as reduced risk of contamination, shorter analysis time and direct application at the crime scene. Microfluidic chip technology has already proven to be functional and effective within medical applications, such as for point-of-care use. In the forensic field, one may expect microfluidic technology to become particularly relevant for the analysis of biological traces containing human DNA. This would require a number of consecutive steps, including sample work up, DNA amplification and detection, as well as secure storage of the sample. This article provides an extensive overview of microfluidic devices for cell lysis, DNA extraction and purification, DNA amplification and detection and analysis techniques for DNA. Topics to be discussed are polymerase chain reaction (PCR) on-chip, digital PCR (dPCR), isothermal amplification on-chip, chip materials, integrated devices and commercially available techniques. A critical overview of the opportunities and challenges of the use of chips is discussed, and developments made in forensic DNA analysis over the past 10-20 years with microfluidic systems are described. Areas in which further research is needed are indicated in a future outlook.
Interferences from blood collection tube components on clinical chemistry assays
Bowen, Raffick A.R.; Remaley, Alan T.
2014-01-01
Improper design or use of blood collection devices can adversely affect the accuracy of laboratory test results. Vascular access devices, such as catheters and needles, exert shear forces during blood flow, which creates a predisposition to cell lysis. Components from blood collection tubes, such as stoppers, lubricants, surfactants, and separator gels, can leach into specimens and/or adsorb analytes from a specimen; special tube additives may also alter analyte stability. Because of these interactions with blood specimens, blood collection devices are a potential source of pre-analytical error in laboratory testing. Accurate laboratory testing requires an understanding of the complex interactions between collection devices and blood specimens. Manufacturers, vendors, and clinical laboratorians must consider the pre-analytical challenges in laboratory testing. Although other authors have described the effects of endogenous substances on clinical assay results, the effects/impact of blood collection tube additives and components have not been well systematically described or explained. This review aims to identify and describe blood collection tube additives and their components and the strategies used to minimize their effects on clinical chemistry assays. PMID:24627713
Mkit: A Cell Migration Assay Based on Microfluidic Device and Smartphone
Yang, Ke; Wu, Jiandong; Peretz-Soroka, Hagit; Zhu, Ling; Li, Zhigang; Sang, Yaoshuo; Hipolito, Jolly; Zhang, Michael; Santos, Susy; Hillier, Craig; de Faria, Ricardo Lobato; Liu, Yong; Lin, Francis
2017-01-01
Mobile sensing based on the integration of microfluidic device and smartphone, so-called MS2 technology, has enabled many applications over recent years, and continues to stimulate growing interest in both research communities and industries. In particular, it has been envisioned that MS2 technology can be developed for various cell functional assays to enable basic research and clinical applications. Toward this direction, in this paper, we describe the development of a MS2-based cell functional assay for testing cell migration (the Mkit). The system is constructed as an integrated test kit, which includes microfluidic chips, a smartphone-based imaging platform, the phone apps for image capturing and data analysis, and a set of reagent and accessories for performing the cell migration assay. We demonstrated that the Mkit can effectively measure purified neutrophil and cancer cell chemotaxis. Furthermore, neutrophil chemotaxis can be tested from a drop of whole blood using the Mkit with red blood cell (RBC) lysis. The effects of chemoattractant dose and gradient profile on neutrophil chemotaxis were also tested using the Mkit. In addition to research applications, we demonstrated the effective use of the Mkit for on-site test at the hospital and for testing clinical samples from chronic obstructive pulmonary disease patient. Thus, this developed Mkit provides an easy and integrated experimental platform for cell migration related research and potential medical diagnostic applications. PMID:28772229
Fujii, Rika; Schlom, Jeffrey; Hodge, James W
2018-05-01
OBJECTIVE Chordoma is a rare bone tumor derived from the notochord and is resistant to conventional therapies such as chemotherapy, radiotherapy, and targeting therapeutics. Expression of epidermal growth factor receptor (EGFR) in a large proportion of chordoma specimens indicates a potential target for therapeutic intervention. In this study the authors investigated the potential role of the anti-EGFR antibody cetuximab in immunotherapy for chordoma. METHODS Since cetuximab is a monoclonal antibody of the IgG1 isotype, it has the potential to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) employing natural killer (NK) cells as effectors. Polymorphisms in the CD16 allele expressed on NK cells have been shown to influence the degree of ADCC of tumor cells, with the high-affinity valine (V)/V allele being responsible for more lysis than the V/phenylalanine (F) or FF allele. Unfortunately, however, only approximately 10% of the population expresses the VV allele on NK cells. An NK cell line, NK-92, has now been engineered to endogenously express IL-2 and the high-affinity CD16 allele. These irradiated high-affinity (ha)NK cells were analyzed for lysis of chordoma cells with and without cetuximab, and the levels of lysis observed in ADCC were compared with those of NK cells from donors expressing the VV, VF, and FF alleles. RESULTS Here the authors demonstrate for the first time 1) that cetuximab in combination with NK cells can mediate ADCC of chordoma cells; 2) the influence of the NK CD16 polymorphism in cetuximab-mediated ADCC for chordoma cell lysis; 3) that engineered haNK cells-that is, cells transduced to express the CD16 V158 FcγRIIIa receptor-bind cetuximab with similar affinity to normal NK cells expressing the high-affinity VV allele; and 4) that irradiated haNK cells induce ADCC with cetuximab in chordoma cells. CONCLUSIONS These studies provide rationale for the use of cetuximab in combination with irradiated haNK cells for therapy for chordoma.
Deisting, Wibke; Raum, Tobias; Kufer, Peter; Baeuerle, Patrick A.; Münz, Markus
2015-01-01
Background Bispecific T cell engager (BiTE®) are single-chain bispecific antibody constructs with dual specificity for CD3 on T cells and a surface antigen on target cells. They can elicit a polyclonal cytotoxic T cell response that is not restricted by T cell receptor (TCR) specificity, and surface expression of MHC class I/peptide antigen complexes. Using human EpCAM/CD3-bispecific BiTE® antibody construct AMG 110, we here assessed to what extent surface expression of PD-L1, cytoplasmic expression of indoleamine-2,3-deoxygenase type 1, Bcl-2 and serpin PI-9, and the presence of transforming growth factor beta (TGF-β), interleukin-10 (IL-10) and adenosine in culture medium can impact redirected lysis by AMG 110-engaged T cells. Methods The seven factors, which are all involved in inhibiting T cell functions by cancer cells, were tested with human EpCAM-expressing Chinese hamster ovary (CHO) target cells at levels that in most cases exceeded those observed in a number of human cancer cell lines. Co-culture experiments were used to determine the impact of the evasion mechanisms on EC50 values and amplitude of redirected lysis by AMG 110, and on BiTE®-induced proliferation of previously resting human peripheral T cells. Findings An inhibitory effect on redirected lysis by AMG 110-engaged T cells was seen upon overexpression of serpin PI-9, Bcl-2, TGF-βand PD-L1. An inhibitory effect on induction of T cell proliferation was only seen with CHO cells overexpressing IDO. In no case, a single evasion mechanism rendered target cells completely resistant to BiTE®-induced lysis, and even various combinations could not. Conclusions Our data suggest that diverse mechanisms employed by cancer cells to fend off T cells cannot inactivate AMG 110-engaged T cells, and that inhibitory effects observed in vitro may be overcome by increased concentrations of the BiTE® antibody construct. PMID:26510188
Microrespirometer chamber for determinations of viability in cell and organ cultures.
Gabridge, M G
1976-01-01
The effects of chemical, physical, and infectious cytotoxic agents on primary and cultured cells were evaluated by measurements of oxygen uptake for various time periods. A newly developed respirometer used a Clark oxygen electrode in a 1.0-ml chamber, with provisions for constant mixing and for temperature control of both the sample and electrode chambers. The device was unique because the electrode and instrumentation were provided by a clinical blood-gas analyzer. Oxygen uptake by blank controls was negligible, whereas cells and tissue consumed oxygen at rates of approximately 1 to 5 mul/h in a dose- and temperature-dependent fashion. Cyanide, heat, and freeze-thaw lysis reduced the oxygen uptake to less than 0.6 mul/mg per h. Infection of trachea organ cultures with Mycoplasma pneumoniae significantly reduced relative ciliary activity, tetrazolium reduction capacity, and oxygen consumption in a coordinated fashion. Images PMID:985826
Schraufstatter, I U; Hyslop, P A; Hinshaw, D B; Spragg, R G; Sklar, L A; Cochrane, C G
1986-01-01
H2O2, in concentrations achieved in the proximity of stimulated leukocytes, induces injury and lysis of target cells. This may be an important aspect of inflammatory injury of tissues. Cell lysis in two target cells, the murine macrophage-like tumor cell line P388D1 and human peripheral lymphocytes, was found to be associated with activation of poly(ADP-ribose) polymerase (EC 2.4.2.30), a nuclear enzyme. This enzyme is activated under various conditions of DNA damage. Poly(ADP-ribose) polymerase utilizes nicotinamide adenine dinucleotide (NAD) as substrate and has been previously shown to consume NAD during exposure of cells to oxidants that was associated with inhibition of glycolysis, a decrease in cellular ATP, and cell death. In the current studies, inhibition of poly(ADP-ribose) polymerase by 3-aminobenzamide, nicotinamide, or theophylline in cells exposed to lethal concentrations of H2O2 prevented the sequence of events that eventually led to cell lysis--i.e., the decrease in NAD, followed by depletion of ATP, influx of extracellular Ca2+, actin polymerization and, finally, cell death. DNA damage, the initial stimulus for poly(ADP-ribose) polymerase activation, occurred despite the inhibition of this enzyme. Cells exposed to oxidant in the presence of the poly(ADP-ribose) polymerase inhibitor 3-aminobenzamide failed to demonstrate repair of DNA strand breaks. PMID:2941760
Hyphal growth of phagocytosed Fusarium oxysporum causes cell lysis and death of murine macrophages.
Schäfer, Katja; Bain, Judith M; Di Pietro, Antonio; Gow, Neil A R; Erwig, Lars P
2014-01-01
Fusarium oxysporum is an important plant pathogen and an opportunistic pathogen of humans. Here we investigated phagocytosis of F. oxysporum by J774.1 murine cell line macrophages using live cell video microscopy. Macrophages avidly migrated towards F. oxysporum germlings and were rapidly engulfed after cell-cell contact was established. F. oxysporum germlings continued hyphal growth after engulfment by macrophages, leading to associated macrophage lysis and escape. Macrophage killing depended on the multiplicity of infection. After engulfment, F. oxysporum inhibited macrophages from completing mitosis, resulting in large daughter cells fused together by means of a F. oxysporum hypha. These results shed new light on the initial stages of Fusarium infection and the innate immune response of the mammalian host.
Hyphal Growth of Phagocytosed Fusarium oxysporum Causes Cell Lysis and Death of Murine Macrophages
Schäfer, Katja; Bain, Judith M.
2014-01-01
Fusarium oxysporum is an important plant pathogen and an opportunistic pathogen of humans. Here we investigated phagocytosis of F. oxysporum by J774.1 murine cell line macrophages using live cell video microscopy. Macrophages avidly migrated towards F. oxysporum germlings and were rapidly engulfed after cell-cell contact was established. F. oxysporum germlings continued hyphal growth after engulfment by macrophages, leading to associated macrophage lysis and escape. Macrophage killing depended on the multiplicity of infection. After engulfment, F. oxysporum inhibited macrophages from completing mitosis, resulting in large daughter cells fused together by means of a F. oxysporum hypha. These results shed new light on the initial stages of Fusarium infection and the innate immune response of the mammalian host. PMID:25025395
Electrosonic ejector microarray for drug and gene delivery.
Zarnitsyn, Vladimir G; Meacham, J Mark; Varady, Mark J; Hao, Chunhai; Degertekin, F Levent; Fedorov, Andrei G
2008-04-01
We report on development and experimental characterization of a novel cell manipulation device-the electrosonic ejector microarray-which establishes a pathway for drug and/or gene delivery with control of biophysical action on the length scale of an individual cell. The device comprises a piezoelectric transducer for ultrasound wave generation, a reservoir for storing the sample mixture and a set of acoustic horn structures that form a nozzle array for focused application of mechanical energy. The nozzles are micromachined in silicon or plastic using simple and economical batch fabrication processes. When the device is driven at a particular resonant frequency of the acoustic horn structures, the sample mixture of cells and desired transfection agents/molecules suspended in culture medium is ejected from orifices located at the nozzle tips. During sample ejection, focused mechanical forces (pressure and shear) are generated on a microsecond time scale (dictated by nozzle size/geometry and ejection velocity) resulting in identical "active" microenvironments for each ejected cell. This process enables a number of cellular bioeffects, from uptake of small molecules and gene delivery/transfection to cell lysis. Specifically, we demonstrate successful calcein uptake and transfection of DNA plasmid encoding green fluorescent protein (GFP) into human malignant glioma cells (cell line LN443) using electrosonic microarrays with 36, 45 and 50 mum diameter nozzle orifices and operating at ultrasound frequencies between 0.91 and 0.98 MHz. Our results suggest that efficacy and the extent of bioeffects are mainly controlled by nozzle orifice size and the localized intensity of the applied acoustic field.
Mashruwala, Ameya A; van de Guchte, Adriana; Boyd, Jeffrey M
2017-01-01
Biofilms are communities of microorganisms attached to a surface or each other. Biofilm-associated cells are the etiologic agents of recurrent Staphylococcus aureus infections. Infected human tissues are hypoxic or anoxic. S. aureus increases biofilm formation in response to hypoxia, but how this occurs is unknown. In the current study we report that oxygen influences biofilm formation in its capacity as a terminal electron acceptor for cellular respiration. Genetic, physiological, or chemical inhibition of respiratory processes elicited increased biofilm formation. Impaired respiration led to increased cell lysis via divergent regulation of two processes: increased expression of the AtlA murein hydrolase and decreased expression of wall-teichoic acids. The AltA-dependent release of cytosolic DNA contributed to increased biofilm formation. Further, cell lysis and biofilm formation were governed by the SrrAB two-component regulatory system. Data presented support a model wherein SrrAB-dependent biofilm formation occurs in response to the accumulation of reduced menaquinone. DOI: http://dx.doi.org/10.7554/eLife.23845.001 PMID:28221135
Mercer, Frances; Diala, Fitz Gerald I.; Chen, Yi-Pei; Molgora, Brenda M.; Ng, Shek Hang; Johnson, Patricia J.
2016-01-01
Trichomonas vaginalis (Tv) is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells. PMID:27529696
Mercer, Frances; Diala, Fitz Gerald I; Chen, Yi-Pei; Molgora, Brenda M; Ng, Shek Hang; Johnson, Patricia J
2016-08-01
Trichomonas vaginalis (Tv) is an extracellular protozoan parasite that causes the most common non-viral sexually transmitted infection: trichomoniasis. While acute symptoms in women may include vaginitis, infections are often asymptomatic, but can persist and are associated with medical complications including increased HIV susceptibility, infertility, pre-term labor, and higher incidence of cervical cancer. Heightened inflammation resulting from Tv infection could account for these complications. Effective cellular immune responses to Tv have not been characterized, and re-infection is common, suggesting a dysfunctional adaptive immune response. Using primary human leukocyte components, we have established an in vitro co-culture system to assess the interaction between Tv and the cells of the human immune system. We determined that in vitro, Tv is able to lyse T-cells and B-cells, showing a preference for B-cells. We also found that Tv lysis of lymphocytes was mediated by contact-dependent and soluble factors. Tv lysis of monocytes is far less efficient, and almost entirely contact-dependent. Interestingly, a common symbiont of Tv, Mycoplasma hominis, did not affect cytolytic activity of the parasite, but had a major impact on cytokine responses. M. hominis enabled more diverse inflammatory cytokine secretion in response to Tv and, of the cytokines tested, Tv strains cleared of M. hominis induced only IL-8 secretion from monocytes. The quality of the adaptive immune response to Tv is therefore likely influenced by Tv symbionts, commensals, and concomitant infections, and may be further complicated by direct parasite lysis of effector immune cells.
NASA Astrophysics Data System (ADS)
Tsai, Cheng-Han; Wu, Xuanye; Kuan, Da-Han; Zimmermann, Stefan; Zengerle, Roland; Koltay, Peter
2018-08-01
In order to culture and analyze individual living cells, microfluidic cultivation and manipulation of cells become an increasingly important topic. Such microfluidic systems allow for exploring the phenotypic differences between thousands of genetically identical cells or pharmacological tests in parallel, which is impossible to achieve by traditional macroscopic cell culture methods. Therefore, plenty of microfluidic systems and devices have been developed for cell biological studies like cell culture, cell sorting, and cell lysis in the past. However, these microfluidic systems are still limited by the external pressure sources which most of the time are large in size and have to be connected by fluidic tubing leading to complex and delicate systems. In order to provide a miniaturized, more robust actuation system a novel, compact and low power consumption digital hydraulic drive (DHD) has been developed that is intended for use in portable and automated microfluidic systems for various applications. The DHD considered in this work consists of a shape memory alloy (SMA) actuator and a pneumatic cylinder. The switching time of the digital modes (pressure ON versus OFF) can be adjusted from 1 s to min. Thus, the DHDs might have many applications for driving microfluidic devices. In this work, different implementations of DHDs are presented and their performance is characterized by experiments. In particular, it will be shown that DHDs can be used for microfluidic large-scale integration (mLSI) valve control (256 valves in parallel) as well as potentially for droplet-based microfluidic systems. As further application example, high-throughput mixing of cell cultures (96 wells in parallel) is demonstrated employing the DHD to drive a so-called ‘functional lid’ (FL), to enable a miniaturized micro bioreactor in a regular 96-well micro well plate.
Li, Hong; Ai, Hainan; Kang, Li; Sun, Xingfu; He, Qiang
2016-11-01
Measures for removal of toxic harmful algal blooms often cause lysis of algal cells and release of microcystins (MCs). In this study, Acinetobacter sp. CMDB-2 that exhibits distinct algal lysing activity and MCs degradation capability was isolated. The physiological response and morphological characteristics of toxin-producing Microcystis aeruginosa, the dynamics of intra- and extracellular MC-LR concentration were studied in an algal/bacterial cocultured system. The results demonstrated that Acinetobacter sp. CMDB-2 caused thorough decomposition of algal cells and impairment of photosynthesis within 24 h. Enhanced algal lysis and MC-LR release appeared with increasing bacterial density from 1 × 10 3 to 1 × 10 7 cells/mL; however, the MC-LR was reduced by nearly 94% within 14 h irrespective of bacterial density. Measurement of extracellular and intracellular MC-LR revealed that the toxin was decreased by 92% in bacterial cell incubated systems relative to control and bacterial cell-free filtrate systems. The results confirmed that the bacterial metabolite caused 92% lysis of Microcystis aeruginosa cells, whereas the bacterial cells were responsible for approximately 91% reduction of MC-LR. The joint efforts of the bacterium and its metabolite accomplished the sustainable removal of algae and MC-LR. This is the first report of a single bacterial strain that achieves these dual actions.
Shaw, Kirsty J; Joyce, Domino A; Docker, Peter T; Dyer, Charlotte E; Greenway, Gillian M; Greenman, John; Haswell, Stephen J
2011-02-07
Integrated DNA extraction and amplification have been carried out in a microfluidic device using electro-osmotic pumping (EOP) for fluidic control. All the necessary reagents for performing both DNA extraction and polymerase chain reaction (PCR) amplification were pre-loaded into the microfluidic device following encapsulation in agarose gel. Buccal cells were collected using OmniSwabs [Whatman™, UK] and manually added to a chaotropic binding/lysis solution pre-loaded into the microfluidic device. The released DNA was then adsorbed onto a silica monolith contained within the DNA extraction chamber and the microfluidic device sealed using polymer electrodes. The washing and elution steps for DNA extraction were carried out using EOP, resulting in transfer of the eluted DNA into the PCR chamber. Thermal cycling, achieved using a Peltier element, resulted in amplification of the Amelogenin locus as confirmed using conventional capillary gel electrophoresis. It was demonstrated that the PCR reagents could be stored in the microfluidic device for at least 8 weeks at 4 °C with no significant loss of activity. Such methodology lends itself to the production of 'ready-to-use' microfluidic devices containing all the necessary reagents for sample processing, with many obvious applications in forensics and clinical medicine.
Bacteria Interactions with Dying Diatoms
NASA Astrophysics Data System (ADS)
Smriga, S.; Juarez, G.; Fernandez, V.; Stocker, R.
2016-02-01
Dying phytoplankton are surrounded by microscale gradients of dissolved organic matter (DOM) that can attract bacteria. These 'phycospheres' may impact the trophic transfer of DOM in the marine microbial food web and enable the growth of bacterial populations, yet these effects remain poorly quantified particularly in relation to the physiological state of the phytoplankton. We dissected phycosphere interactions at unprecedented spatial and temporal resolution using the model diatom Thalassiosira weissflogii and the bacterium Marinobacter adhaerans. Diatom stress was stimulated by addition of polyunsaturated aldehyde (PUA) and both diatom and bacterial responses were captured via time-lapse fluorescence microscopy. We found that stressed diatoms underwent lysis 10-15 h after PUA treatment. Coordinated with the timing of this transition into phytodetritus, wild-type Marinobacter accumulated via chemotaxis near the diatoms immediately following lysis. In contrast, at lysis there was no accumulation of either a non-chemotactic or a non-motile mutant of Marinobacter, pointing to behavioral rather than demographic responses as drivers for the accumulation. Despite the lack of response, non-chemotactic as well as non-swimming bacterial cells that by chance attached to or were located near (<30 µm) stressed diatoms experienced more growth than cells further afield. Growth within the phycosphere was even greater after diatom lysis. Through quantification at the microscale, these results reveal that chemotaxis may precede rapid bacterial attachment to stressed and dying diatoms and may be integral to the microbial colonization of new phytodetritus during phytoplankton blooms and bloom collapses in coastal ecosystems. Even while chemotactic cells retain a growth advantage given their ability to sense and respond to lysis events, phycosphere DOM provides growth benefits to both motile and non-motile taxa that become attached to or happen to be co-located with new phytodetrital particles, thus likely influencing the composition of particle-attached microbial communities.
Pickering, R. J.; Wolfson, M. R.; Good, R. A.; Gewurz, H.
1969-01-01
The studies presented here indicate that activation of the complement (C′) system by a foreign protein will cause membrane injury and passive lysis of unsensitized erythrocytes present at the time of the reaction. These observations suggest that in addition to the classical antibody-C′-induced cytolysis, there are alternative pathways or mechanisms for activation and participation of the terminal C′ components in the production of cell membrane injury. We have shown that a substance derived from cobra venom and eluted from a single protein band on polyacrylamide can promote lysis of unsensitized autologous or heterologous erythrocytes in the presence of fresh guinea pig serum and that this lysis-inducing activity and C′-inhibiting activity appear to reside in the same fractions. The lytic activity is prevented by several agents known to impair classical C′3 activity, but is unaffected by certain procedures which interfere with the function of C′ components C′1 and C′2, a suggestion that this reaction involves chiefly C′3-C′9. Further, the cobra venom (CV) factor depletes C′ activity in cobra serum, and the CV factor (with its 5S serum cofactor) converts purified C′3 to its inactive form,1 indicating that the reaction of this complex with the complement system occurs without participation of antibody. Therefore, since the lysis-inducing and C′-inhibiting activity of the CV factor appear to result from similar interactions with the complement system, these observations suggest that cell membrane damage and cell lysis can be accomplished through activation of the complement system by a mechanism involving little or no participation of classical antibody or C′ components C′1, 4, or 2. Images PMID:4978744
Phenomenon of hot-cold hemolysis: chelator-induced lysis of sphingomyelinase-treated erythrocytes.
Smyth, C J; Möllby, R; Wadström, T
1975-01-01
Staphylococcus aureus produces a phospholipase C specific for sphingomyelin (beta-hemolysin). Erythrocytes with approximately 50% sphingomyelin in their membranes, e.g., from sheep, have been shown to have up to 60% of this phospholipid hydrolyzed by this enzyme at 37 C in isotonic buffered saline without hemolysis. Cooling of sphingomyelinase C-treated erythrocytes to 4 C causes complete lysis of the cells, a phenomenon known as hot-cold hemolysis. The addition of ethylenediaminetetraacetate (EDTA) to sheep erythrocytes preincubated with sphingomyelinase C was found to induce rapid hemolysis at 37 C. The treated cells became susceptible to chelator-induced hemolysis and to hot-cold hemolysis simultaneously, and the degree of lysis of both mechanisms increased equally with prolonged preincubation with sphingomyelinase C. Erythrocytes of species not readily susceptible to hot-cold hemolysis were equally insusceptible to chelator-induced lysis. Chelators of the EDTA series were the most effective, whereas chelators more specific for Ca2+, Zn2+, Fe2+, Cu2+, and Mg2+ were without effect. The rate of chelator-induced lysis was dependent on the preincubation period with beta-hemolysin and on the concentration of chelator added. The optimal concentration of EDTA was found to equal the amount of exogenously added Mg2+, a cation necessary for sphingomyelinase C activity. Hypotonicity increased the rate of chelator-induced hemolysis, whereas increasing the osmotic pressure to twice isotonic completely inhibited chelator-induced lysis. The data suggest that exogenously added and/or membrane-bound divalent cations are important for the stability of sphingomyelin-depleted membranes. The phenomenon of hot-cold hemolysis may be a consequence of the temperature dependence of divalent ion stabilization. Images PMID:333
Russo, Hana M.; Rathkey, Joseph; Boyd-Tressler, Andrea; Katsnelson, Michael A.; Abbott, Derek W.; Dubyak, George R.
2016-01-01
Canonical inflammasome activation induces a caspase-1/gasdermin D (Gsdmd) dependent lytic cell death called pyroptosis which promotes anti-microbial host defense but may contribute to sepsis. The nature of the caspase-1-dependent change in plasma membrane (PM) permeability during pyroptotic progression remains incompletely defined. We assayed propidium2+ (Pro2+) influx kinetics during NLRP3 or Pyrin inflammasome activation in murine bone marrow-derived macrophages (BMDM) as an indicator of this PM permeabilization. BMDM were characterized by rapid Pro2+ influx after initiation of NLRP3 or Pyrin inflammasomes by nigericin or C. difficile toxin B (TcdB), respectively. No Pro2+ uptake in response to nigericin or TcdB was observed in Caspase-1−/− or ASC−/− BMDM. The cytoprotectant glycine profoundly suppressed nigericin and TcdB-induced lysis but not Pro2+ influx. The absence of Gsdmd expression resulted in suppression of nigericin-stimulated Pro2+ influx and pyroptotic lysis. Extracellular La3+ and Gd3+ rapidly and reversibly blocked the induced Pro2+ influx and markedly delayed pyroptotic lysis without limiting upstream inflammasome assembly and caspase-1 activation. Thus, caspase-1 driven pyroptosis requires induction of initial pre-lytic pores in the PM that are dependent on Gsdmd expression. These PM pores also facilitated the efflux of cytosolic ATP and influx of extracellular Ca2+. Although lanthanides and Gsdmd deletion both suppressed PM pore activity and pyroptotic lysis, robust IL-1β release was observed in lanthanide-treated BMDM but not in Gsdmd-deficient cells. This suggests roles for Gsdmd in both passive IL-1β release secondary to pyroptotic lysis and in non-lytic/non-classical IL-1β export. PMID:27385778
Chauveau, Anne; Aucher, Anne; Eissmann, Philipp; Vivier, Eric; Davis, Daniel M.
2010-01-01
Membrane nanotubes are membranous tethers that physically link cell bodies over long distances. Here, we present evidence that nanotubes allow human natural killer (NK) cells to interact functionally with target cells over long distances. Nanotubes were formed when NK cells contacted target cells and moved apart. The frequency of nanotube formation was dependent on the number of receptor/ligand interactions and increased on NK cell activation. Most importantly, NK cell nanotubes contained a submicron scale junction where proteins accumulated, including DAP10, the signaling adaptor that associates with the activating receptor NKG2D, and MHC class I chain-related protein A (MICA), a cognate ligand for NKG2D, as occurs at close intercellular synapses between NK cells and target cells. Quantitative live-cell fluorescence imaging suggested that MICA accumulated at small nanotube synapses in sufficient numbers to trigger cell activation. In addition, tyrosine-phosphorylated proteins and Vav-1 accumulated at such junctions. Functionally, nanotubes could aid the lysis of distant target cells either directly or by moving target cells along the nanotube path into close contact for lysis via a conventional immune synapse. Target cells moving along the nanotube path were commonly polarized such that their uropods faced the direction of movement. This is the opposite polarization than for normal cell migration, implying that nanotubes can specifically drive target cell movement. Finally, target cells that remained connected to an NK cell by a nanotube were frequently lysed, whereas removing the nanotube using a micromanipulator reduced lysis of these target cells. PMID:20212116
Boyd, MA; Tennant, SM; Melendez, JH; Toema, D; Galen, JE; Geddes, CD; Levine, MM
2015-01-01
Aims Isolation of Salmonella Typhi from blood culture is the standard diagnostic for confirming typhoid fever but it is unavailable in many developing countries. We previously described a Microwave Accelerated Metal Enhanced Fluorescence (MAMEF)-based assay to detect Salmonella in medium. Attempts to detect Salmonella in blood were unsuccessful, presumably due to the interference of erythrocytes. The objective of this study was to evaluate various blood treatment methods that could be used prior to PCR, real-time PCR or MAMEF to increase sensitivity of detection of Salmonella. Methods and Results We tested ammonium chloride and erythrocyte lysis buffer, water, Lymphocyte Separation Medium, BD Vacutainer® CPT™ Tubes and dextran. Erythrocyte lysis buffer was the best isolation method as it is fast, inexpensive and works with either fresh or stored blood. The sensitivity of PCR- and real-time PCR detection of Salmonella in spiked blood was improved when whole blood was first lysed using erythrocyte lysis buffer prior to DNA extraction. Removal of erythrocytes and clotting factors also enabled reproducible lysis of Salmonella and fragmentation of DNA, which are necessary for MAMEF sensing. Conclusions Use of the erythrocyte lysis procedure prior to DNA extraction has enabled improved sensitivity of Salmonella detection by PCR and real-time PCR and has allowed lysis and fragmentation of Salmonella using microwave radiation (for future detection by MAMEF). Significance and Impact of the Study Adaptation of the blood lysis method represents a fundamental breakthrough that improves the sensitivity of DNA-based detection of Salmonella in blood. PMID:25630831
CTLs directed against HER2 specifically cross-react with HER3 and HER4.
Conrad, Heinke; Gebhard, Kerstin; Krönig, Holger; Neudorfer, Julia; Busch, Dirk H; Peschel, Christian; Bernhard, Helga
2008-06-15
The human epidermal growth factor receptor 2 (HER2) has been targeted as a breast cancer-associated Ag by T cell-based immunotherapeutical strategies such as cancer vaccines and adoptive T cell transfer. The prerequisite for a successful T cell-based therapy is the induction of T cells capable of recognizing the HER2-expressing tumor cells. In this study, we generated human cytotoxic T cell clones directed against the HER2(369-377) epitope known to be naturally presented with HLA-A*0201. Those HER2-reactive CTLs, which were also tumor lytic, exhibited a similar lysis pattern dividing the targets in lysable and nonlysable tumor cells. Several HER2-expressing tumor cells became susceptible to CTL-mediated lysis after IFN-gamma treatment and, in parallel, up-regulated molecules of the Ag-presenting machinery, indicating that the tumor itself also contributes to the success of CTL-mediated killing. Some of the HER2(369-377)-reactive T cells specifically cross-reacted with the corresponding peptides derived from the family members HER3 and/or HER4 due to a high sequence homology. The epitopes HER3(356-364) and HER4(361-369) were endogenously processed and contributed to the susceptibility of cell lysis by HER cross-reacting CTLs. The principle of "double" or "triple targeting" the HER Ags by cross-reacting T cells will impact the further development of T cell-based therapies.
Compton, Jonathan L.; Hellman, Amy N.; Venugopalan, Vasan
2013-01-01
Time-resolved imaging, fluorescence microscopy, and hydrodynamic modeling were used to examine cell lysis and molecular delivery produced by picosecond and nanosecond pulsed laser microbeam irradiation in adherent cell cultures. Pulsed laser microbeam radiation at λ = 532 nm was delivered to confluent monolayers of PtK2 cells via a 40×, 0.8 NA microscope objective. Using laser microbeam pulse durations of 180–1100 ps and pulse energies of 0.5–10.5 μJ, we examined the resulting plasma formation and cavitation bubble dynamics that lead to laser-induced cell lysis, necrosis, and molecular delivery. The cavitation bubble dynamics are imaged at times of 0.5 ns to 50 μs after the pulsed laser microbeam irradiation, and fluorescence assays assess the resulting cell viability and molecular delivery of 3 kDa dextran molecules. Reductions in both the threshold laser microbeam pulse energy for plasma formation and the cavitation bubble energy are observed with decreasing pulse duration. These energy reductions provide for increased precision of laser-based cellular manipulation including cell lysis, cell necrosis, and molecular delivery. Hydrodynamic analysis reveals critical values for the shear-stress impulse generated by the cavitation bubble dynamics governs the location and spatial extent of cell necrosis and molecular delivery independent of pulse duration and pulse energy. Specifically, cellular exposure to a shear-stress impulse J≳0.1 Pa s ensures cell lysis or necrosis, whereas exposures in the range of 0.035≲J≲0.1 Pa s preserve cell viability while also enabling molecular delivery of 3 kDa dextran. Exposure to shear-stress impulses of J≲0.035 Pa s leaves the cells unaffected. Hydrodynamic analysis of these data, combined with data from studies of 6 ns microbeam irradiation, demonstrates the primacy of shear-stress impulse in determining cellular outcome resulting from pulsed laser microbeam irradiation spanning a nearly two-orders-of-magnitude range of pulse energy and pulse duration. These results provide a mechanistic foundation and design strategy applicable to a broad range of laser-based cellular manipulation procedures. PMID:24209868
Membrane fusion during phage lysis.
Rajaure, Manoj; Berry, Joel; Kongari, Rohit; Cahill, Jesse; Young, Ry
2015-04-28
In general, phages cause lysis of the bacterial host to effect release of the progeny virions. Until recently, it was thought that degradation of the peptidoglycan (PG) was necessary and sufficient for osmotic bursting of the cell. Recently, we have shown that in Gram-negative hosts, phage lysis also requires the disruption of the outer membrane (OM). This is accomplished by spanins, which are phage-encoded proteins that connect the cytoplasmic membrane (inner membrane, IM) and the OM. The mechanism by which the spanins destroy the OM is unknown. Here we show that the spanins of the paradigm coliphage lambda mediate efficient membrane fusion. This supports the notion that the last step of lysis is the fusion of the IM and OM. Moreover, data are provided indicating that spanin-mediated fusion is regulated by the meshwork of the PG, thus coupling fusion to murein degradation by the phage endolysin. Because endolysin function requires the formation of μm-scale holes by the phage holin, the lysis pathway is seen to require dramatic dynamics on the part of the OM and IM, as well as destruction of the PG.
Nori, Deepthi V; McCord, Bruce R
2015-09-01
This study reports the development of a two-step protocol using pressure cycling technology (PCT) and alkaline lysis for differential extraction of DNA from mixtures of sperm and vaginal epithelial cells recovered from cotton swabs. In controlled experiments, in which equal quantities of sperm and female epithelial cells were added to cotton swabs, 5 min of pressure pulsing in the presence of 0.4 M NaOH resulted in 104 ± 6% recovery of female epithelial DNA present on the swab. Following the pressure treatment, exposing the swabs to a second 5-min alkaline treatment at 95 °C without pressure resulted in the selective recovery of 69 ± 6% of the sperm DNA. The recovery of the vaginal epithelia and sperm DNA was optimized by examining the effect of sodium hydroxide concentration, incubation temperature, and time. Following the alkaline lysis steps, the samples were neutralized with 2 M Tris (pH 7.5) and purified with phenol-chloroform-isoamyl alcohol to permit downstream analysis. The total processing time to remove both fractions from the swab was less than 20 min. Short tandem repeat (STR) analysis of these fractions obtained from PCT treatment and alkaline lysis generated clean profiles of female epithelial DNA and male sperm DNA for 1:1 mixtures of female and male cells and predominant male profiles for mixtures up to 5:1 female to male cells. By reducing the time and increasing the recovery of DNA from cotton swabs, this new method presents a novel and potentially useful procedure for forensic differential extractions.
Radiation-induced heat-labile sites that convert into DNA double-strand breaks
NASA Technical Reports Server (NTRS)
Rydberg, B.; Chatterjee, A. (Principal Investigator)
2000-01-01
The yield of DNA double-strand breaks (DSBs) in SV40 DNA irradiated in aqueous solution was found to increase by more than a factor of two as a result of postirradiation incubation of the DNA at 50 degrees C and pH 8.0 for 24 h. This is in agreement with data from studies performed at 37 degrees C that were published previously. Importantly, similar results were also obtained from irradiation of mammalian DNA in agarose plugs. These results suggest that heat-labile sites within locally multiply damaged sites are produced by radiation and are subsequently transformed into DSBs. Since incubation at 50 degrees C is typically employed for lysis of cells in commonly used pulsed-field gel assays for detection of DSBs in mammalian cells, the possibility that heat-labile sites are present in irradiated cells was also studied. An increase in the apparent number of DSBs as a function of lysis time at 50 degrees C was found with kinetics that was similar to that for irradiated DNA, although the magnitude of the increase was smaller. This suggests that heat-labile sites are also formed in the cell. If this is the case, a proportion of DSBs measured by the pulsed-field gel assays may occur during the lysis step and may not be present in the cell as breaks but as heat-labile sites. It is suggested that such sites consist mainly of heat-labile sugar lesions within locally multiply damaged sites. Comparing rejoining of DSBs measured with short and long lysis procedure indicates that the heat-labile sites are repaired with fast kinetics in comparison with repair of the bulk of DSBs.
Effects of Oleate Starvation in a Fatty Acid Auxotroph of Escherichia coli K-12
Henning, U.; Dennert, G.; Rehn, K.; Deppe, Gisela
1969-01-01
The effects of oleate starvation on an oleate auxotroph of Escherichia coli K-12 were investigated. Following removal of oleate from the mutant growing in a minimal glycerol-peptone medium, the cells stopped making deoxyribonucleic acid, ribonucleic acid, protein, and phospholipids; they began to die exponentially and finally lysed. During oleate starvation in minimal medium minus peptone, inhibition of macromolecular syntheses and death occurred; however, lysis did not follow. When growth ceased, no further dying was observed. It is shown that none of the early effects (inhibition of macromolecular syntheses and death) can be due to leakiness of the cells, induction of a prophage or a colicin, or lack of energy sources. The cause of inhibition of macromolecular syntheses remained unknown. Since the rate of death was the same as the generation time under different conditions, it appears that death is due to the defective synthesis of some cellular structure (quite possibly, cytoplasmic membrane) during phospholipid deficiency. Lysis was found to require protein synthesis; electron microscopy revealed a peculiar type of “lysis from within”; i.e., the shape of the cells did not change but fragmentation of the inner layer of the cell envelope occurred. The murein was found to be unaltered. Most likely, lysis was a consequence of the cell's attempt to synthesize cytoplasmic membrane with altered phospholipid composition or during phospholipid deficiency. Several membrane functions (respiration, adenosine triphosphate formation, permeability) existing before oleate removal were not lost during starvation. Therefore, general damage to the membrane did not occur, and it could be that most, if not all, described effects were due to defective de novo membrane synthesis. Images PMID:4891268
Cheng, Yu-Shen; Labavitch, John; VanderGheynst, Jean S
2015-05-01
Microalgae have been proposed as a potential feedstock for biofuel production; however, cell disruption is usually required for collection and utilization of cytoplasmic polysaccharides and lipids. Virus infection might be one approach to disrupt the cell wall. The concentration of yeast extract and presence of KNO3 in algae cultivation media were investigated to observe their effects on Chlorella variabilis NC64A physiology and composition and the subsequent effect on production of Chlorella virus and disruption of infected cells. Cytoplasmic starch accumulation increased from 5% to approximately 35% of the total dry weight when yeast extract decreased from 1 to 0.25 g L(-1). When cells were cultured with the lowest nitrogen levels, the total polysaccharide accounted for more than 50% of the cell wall, which was 1.7 times higher than the content in cells cultured with the highest nitrogen levels. The C/N ratio of the algal biomass decreased by a factor of approximately 2 when yeast extract increased from 0.25 to 1 g L(-1). After virus infection, cells with a low C/N ratio produced a 7.6 times higher burst size than cells with a high C/N ratio, suggesting that the nitrogen content in C. variabilis has a large influence on viral production and cell lysis. The results have implications on management of nitrogen for both the synthesis of products from algae and product recovery via viral lysis.
Requirement of Autolytic Activity for Bacteriocin-Induced Lysis
Martínez-Cuesta, M. Carmen; Kok, Jan; Herranz, Elisabet; Peláez, Carmen; Requena, Teresa; Buist, Girbe
2000-01-01
The bacteriocin produced by Lactococcus lactis IFPL105 is bactericidal against several Lactococcus and Lactobacillus strains. Addition of the bacteriocin to exponential-growth-phase cells resulted in all cases in bacteriolysis. The bacteriolytic response of the strains was not related to differences in sensitivity to the bacteriocin and was strongly reduced in the presence of autolysin inhibitors (Co2+ and sodium dodecyl sulfate). When L. lactis MG1363 and its derivative deficient in the production of the major autolysin AcmA (MG1363acmAΔ1) were incubated with the bacteriocin, the latter did not lyse and no intracellular proteins were released into the medium. Incubation of cell wall fragments of L. lactis MG1363, or of L. lactis MG1363acmAΔ1 to which extracellular AcmA was added, in the presence or absence of the bacteriocin had no effect on the speed of cell wall degradation. This result indicates that the bacteriocin does not degrade cell walls, nor does it directly activate the autolysin AcmA. The autolysin was also responsible for the observed lysis of L. lactis MG1363 cells during incubation with nisin or the mixture of lactococcins A, B, and M. The results presented here show that lysis of L. lactis after addition of the bacteriocins is caused by the resulting cell damage, which promotes uncontrolled degradation of the cell walls by AcmA. PMID:10919766
Nagy, M; Otremba, P; Krüger, C; Bergner-Greiner, S; Anders, P; Henske, B; Prinz, M; Roewer, L
2005-08-11
Automated procedures for forensic DNA analyses are essential not only for large-throughput sample preparation, but are also needed to avoid errors during routine sample preparation. The most critical stage in PCR-based forensic analysis is DNA isolation, which should yield as much highly purified DNA as possible. The extraction method used consists of pre-treatment of stains and samples, cell lysis using chaotropic reagents, binding of the DNA to silica-coated magnetic particles, followed by elution of the DNA. Our work focuses mainly on sample preparation, obtaining the maximum possible amount of biological material from forensic samples, and the following cell lysis, to create a simple standardized lysis protocol suitable for nearly all forensic material. After optimization and validation, the M-48 BioRobot((R)) workstation has been used for more than 20,000 routine lab samples. There has been no evidence of cross contamination. Resulting DNA from as small as three nuclear cells yield reliable complete STR amplification profiles. The DNA remains stable after 2 years of storage.
Mkit: A cell migration assay based on microfluidic device and smartphone.
Yang, Ke; Wu, Jiandong; Peretz-Soroka, Hagit; Zhu, Ling; Li, Zhigang; Sang, Yaoshuo; Hipolito, Jolly; Zhang, Michael; Santos, Susy; Hillier, Craig; de Faria, Ricardo Lobato; Liu, Yong; Lin, Francis
2018-01-15
Mobile sensing based on the integration of microfluidic device and smartphone, so-called MS 2 technology, has enabled many applications over recent years, and continues to stimulate growing interest in both research communities and industries. In particular, it has been envisioned that MS 2 technology can be developed for various cell functional assays to enable basic research and clinical applications. Toward this direction, in this paper, we describe the development of a MS 2 -based cell functional assay for testing cell migration (the M kit ). The system is constructed as an integrated test kit, which includes microfluidic chips, a smartphone-based imaging platform, the phone apps for image capturing and data analysis, and a set of reagent and accessories for performing the cell migration assay. We demonstrated that the M kit can effectively measure purified neutrophil and cancer cell chemotaxis. Furthermore, neutrophil chemotaxis can be tested from a drop of whole blood using the M kit with red blood cell (RBC) lysis. The effects of chemoattractant dose and gradient profile on neutrophil chemotaxis were also tested using the M kit . In addition to research applications, we demonstrated the effective use of the M kit for on-site test at the hospital and for testing clinical samples from chronic obstructive pulmonary disease patient. Thus, this developed M kit provides an easy and integrated experimental platform for cell migration related research and potential medical diagnostic applications. Copyright © 2017 Elsevier B.V. All rights reserved.
van Ostaijen-ten Dam, Monique M; Prins, Henk-Jan; Boerman, Gerharda H; Vervat, Carly; Pende, Daniela; Putter, Hein; Lankester, Arjan; van Tol, Maarten J D; Zwaginga, Jaap J; Schilham, Marco W
2016-01-01
Cell-based immunotherapy using donor-derived natural killer (NK) cells after allogeneic hematopoietic stem cell transplantation may be an attractive treatment of residual leukemia. This study aimed to optimize clinical grade production of a cytokine-activated NK-cell product. NK cells were isolated either by double depletion (CD3(-), CD19(-)) or by sequential depletion and enrichment (CD3(-,) CD56(+)) via CliniMACS from leukapheresis material and cultured in vitro with interleukin (IL)-2 or IL-15. Both NK cell isolation procedures yielded comparable recovery of NK cells and levels of T-cell contamination. After culture with cytokines, the CD3(-)CD56(+) procedure resulted in NK cells of higher purity, that is, less T cells and monocytes, higher viability, and a slightly higher yield than the CD3(-)CD19- procedure. CD69, NKp44, and NKG2A expression were higher on CD3(-)CD56(+) products, whereas lysis of Daudi cells was comparable. Five days of culture led to higher expression of CD69, NKp44, and NKp30 and lysis of K562 and Daudi cell lines. Although CD69 expression and lysis of Daudi cells were slightly higher in cultures with IL-2, T-cell contamination was lower with IL-15. Therefore, further experiments were performed with CD3(-)CD56(+) products cultured with IL-15. Cryopreservation of IL-15-activated NK cells resulted in a loss of cytotoxicity (>92%), whereas thawing of isolated, uncultured NK cells followed by culture with IL-15 yielded cells with about 43% of the original lytic activity. Five-day IL-15-activated NK cells lysed tumor target cell lines and primary leukemic blasts, providing the basis for NK cell–based immunotherapeutic strategies in a clinical setting.
Intracellular protein determination using droplet-based immunoassays.
Martino, Chiara; Zagnoni, Michele; Sandison, Mairi E; Chanasakulniyom, Mayuree; Pitt, Andrew R; Cooper, Jonathan M
2011-07-01
This paper describes the implementation of a sensitive, on-chip immunoassay for the analysis of intracellular proteins, developed using microdroplet technology. The system offers a number of analytical functionalities, enabling the lysis of low cell numbers, as well as protein detection and quantification, integrated within a single process flow. Cells were introduced into the device in suspension and were electrically lysed in situ. The cell lysate was subsequently encapsulated together with antibody-functionalized beads into stable, water-in-oil droplets, which were stored on-chip. The binding of intracellular proteins to the beads was monitored fluorescently. By analyzing many individual droplets and quantifying the data obtained against standard additions, we measured the level of two intracellular proteins, namely, HRas-mCitrine, expressed within HEK-293 cells, and actin-EGFP, expressed within MCF-7 cells. We determined the concentrations of these proteins over 5 orders of magnitude, from ~50 pM to 1 μM. The results from this semiautomated method were compared to those for determinations made using Western blots, and were found not only to be faster, but required a smaller number of cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, R.V.; Manning, L.S.; Davis, M.R.
1991-01-01
Recombinant human tumor necrosis factor (rHuTNF) was evaluated both for direct anti-tumor action against human malignant mesothelioma and for its capacity to augment the generation and lytic phases of lymphocyte-mediated cytotoxicity against this tumor. rHuTNF was directly toxic by MTT assay to one of two mesothelioma cell lines evaluated, but had no effect on susceptibility to subsequent lymphocyte-mediated lysis of either line. TNF alone was incapable of generating anti-mesothelioma lymphokine-activated killer cell (LAK) activity. Furthermore, it did not augment the degree or LAK activity produced by submaximal interleukin-2 (IL-2) concentrations nor did it augment lysis of mesothelioma cells by naturalmore » killer (NK) or LAK effector cells during the 4-hr 51chromium release cytolytic reaction. The studies also suggest that mesothelioma targets are less responsive to TNF plus submaximal IL-2 concentrations than the standard LAK sensitive target Daudi, raising the possibility that intermediate LAK sensitive tumors such as mesothelioma may require separate and specific evaluation in immunomodulation studies. This in vitro study indicates that use of low-dose rHuTNF and IL-2 is unlikely to be an effective substitute for high-dose IL-2 in generation and maintenance of LAK activity in adoptive immunotherapy for mesothelioma.« less
Chromatin- and temperature-dependent modulation of radiation-induced double-strand breaks.
Elmroth, K; Nygren, J; Stenerlöw, B; Hultborn, R
2003-10-01
To investigate the influence of chromatin organization and scavenging capacity in relation to irradiation temperature on the induction of double-strand breaks (DSB) in structures derived from human diploid fibroblasts. Agarose plugs with different chromatin structures (intact cells+/-wortmannin, permeabilized cells with condensed chromatin, nucleoids and DNA) were prepared and irradiated with X-rays at 2 or 37 degrees C and lysed using two different lysis protocols (new ice-cold lysis or standard lysis at 37 degrees C). Induction of DSB was determined by constant-field gel electrophoresis. The dose-modifying factor (DMF(temp)) for irradiation at 37 compared with 2 degrees C was 0.92 in intact cells (i.e. more DSB induced at 2 degrees C), but gradually increased to 1.5 in permeabilized cells, 2.2 in nucleoids and 2.6 in naked DNA, suggesting a role of chromatin organization for temperature modulation of DNA damage. In addition, DMF(temp) was influenced by the presence of 0.1 M DMSO or 30 mM glutathione, but not by post-irradiation temperature. The protective effect of low temperature was correlated to the indirect effects of ionizing radiation and was not dependent on post-irradiation temperature. Reasons for a dose modifying factor <1 in intact cells are discussed.
Early lysis of Lactobacillus helveticus CNRZ 303 in Swiss cheese is not prophage-related.
Deutsch, Stéphanie Marie; Neveu, Anthony; Guezenec, Stéphane; Ritzenthaler, Paul; Lortal, Sylvie
2003-03-15
Lactobacillus helveticus is mainly used as starter in Swiss-type cheeses. Often, lysogenic strains are eliminated because of the risk of early lysis and acidification failure due to phage expression. On the other hand, L. helveticus lysis was shown to positively influence cheese proteolysis during ripening. In order to better assess the relationship between lysis and lysogeny, a prophage-cured derivative of L. helveticus CNRZ 303 was isolated (LH 303-G11) and relysogenised (LH 303-G11R), as demonstrated by hybridisation using the whole phage DNA as probe. The growth, lysis in buffered solutions and lytic activities in zymogram using either Micrococcus luteus or L. helveticus as substrate were identical between the mother strain and its cured derivatives. Only morphological differences were observed by scanning electron microscopy: the cells of the cured derivative were shorter in length. The mother strain and its cured and relysogenised derivatives were assayed in triplicate in experimental Swiss cheeses (scale 1:100). No differences were noted during the cheese making: the three strains exhibited identical kinetics of acidification, leading to similar cheeses at day 1 in terms of gross composition and pH. Phages were detected only in the cheeses made with the mother strain and the relysogenised derivative. The lysis of L. helveticus, estimated by viability decrease and release of the intracellular marker D-lactate deshydrogenase, started early before brining and continued during the cold room ripening. No obvious differences of lysis extent were observed. These results demonstrated for the first time that, in the case of LH 303, the extensive lysis observed in cheese is mainly due to autolysin activity and not to prophage induction.
Okuda, Ken-Ichi; Nagahori, Ryuichi; Yamada, Satomi; Sugimoto, Shinya; Sato, Chikara; Sato, Mari; Iwase, Tadayuki; Hashimoto, Kazuhiro; Mizunoe, Yoshimitsu
2018-01-01
The present study aimed to understand the biofilm formation mechanism of Propionibacterium acnes by analyzing the components and structure of the biofilms. P. acnes strains were isolated from the surface of explanted cardiac pacemaker devices that exhibited no clinical signs of infection. Culture tests using a simple stamp culture method (pressing pacemakers against the surface of agar plates) revealed frequent P. acnes colonization on the surface of cardiac pacemaker devices. P . acnes was isolated from 7/31 devices, and the isolates were categorized by multilocus sequence typing into five different sequence types (STs): ST4 (JK18.2), ST53 (JK17.1), ST69 (JK12.2 and JK13.1), ST124 (JK5.3), ST125 (JK6.2), and unknown ST (JK19.3). An in vitro biofilm formation assay using microtiter plates demonstrated that 5/7 isolates formed biofilms. Inhibitory effects of DNase I and proteinase K on biofilm formation varied among isolates. In contrast, dispersin B showed no inhibitory activity against all isolates. Three-dimensional live/dead imaging of P. acnes biofilms with different biochemical properties using confocal laser microscopy demonstrated different distributions and proportions of living and dead cells. Additionally, it was suggested that extracellular DNA (eDNA) plays a role in the formation of biofilms containing living cells. Ultrastructural analysis of P. acnes biofilms using a transmission electron microscope and atmospheric scanning electron microscope revealed leakage of cytoplasmic components along with cell lysis and fibrous structures of eDNA connecting cells. In conclusion, the biochemical properties and structures of the biofilms differed among P. acnes isolates. These findings may provide clues for establishing countermeasures against biofilm-associated infection by P. acnes .
Okuda, Ken-ichi; Nagahori, Ryuichi; Yamada, Satomi; Sugimoto, Shinya; Sato, Chikara; Sato, Mari; Iwase, Tadayuki; Hashimoto, Kazuhiro; Mizunoe, Yoshimitsu
2018-01-01
The present study aimed to understand the biofilm formation mechanism of Propionibacterium acnes by analyzing the components and structure of the biofilms. P. acnes strains were isolated from the surface of explanted cardiac pacemaker devices that exhibited no clinical signs of infection. Culture tests using a simple stamp culture method (pressing pacemakers against the surface of agar plates) revealed frequent P. acnes colonization on the surface of cardiac pacemaker devices. P. acnes was isolated from 7/31 devices, and the isolates were categorized by multilocus sequence typing into five different sequence types (STs): ST4 (JK18.2), ST53 (JK17.1), ST69 (JK12.2 and JK13.1), ST124 (JK5.3), ST125 (JK6.2), and unknown ST (JK19.3). An in vitro biofilm formation assay using microtiter plates demonstrated that 5/7 isolates formed biofilms. Inhibitory effects of DNase I and proteinase K on biofilm formation varied among isolates. In contrast, dispersin B showed no inhibitory activity against all isolates. Three-dimensional live/dead imaging of P. acnes biofilms with different biochemical properties using confocal laser microscopy demonstrated different distributions and proportions of living and dead cells. Additionally, it was suggested that extracellular DNA (eDNA) plays a role in the formation of biofilms containing living cells. Ultrastructural analysis of P. acnes biofilms using a transmission electron microscope and atmospheric scanning electron microscope revealed leakage of cytoplasmic components along with cell lysis and fibrous structures of eDNA connecting cells. In conclusion, the biochemical properties and structures of the biofilms differed among P. acnes isolates. These findings may provide clues for establishing countermeasures against biofilm-associated infection by P. acnes. PMID:29491850
Wong, J T; Pinto, C E; Gifford, J D; Kurnick, J T; Kradin, R L
1989-11-15
To study the CD4+ and CD8+ tumor infiltrating lymphocytes (TIL) in the antitumor response, we propagated these subsets directly from tumor tissues with anti-CD3:anti-CD8 (CD3,8) and anti-CD3:anti-CD4 (CD3,4) bispecific mAb (BSMAB). CD3,8 BSMAB cause selective cytolysis of CD8+ lymphocytes by bridging the CD8 molecules of target lymphocytes to the CD3 molecular complex of cytolytic T lymphocytes with concurrent activation and proliferation of residual CD3+CD4+ T lymphocytes. Similarly, CD3,4 BSMAB cause selective lysis of CD4+ lymphocytes whereas concurrently activating the residual CD3+CD8+ T cells. Small tumor fragments from four malignant melanoma and three renal cell carcinoma patients were cultured in medium containing CD3,8 + IL-2, CD3,4 + IL-2, or IL-2 alone. CD3,8 led to selective propagation of the CD4+ TIL whereas CD3,4 led to selective propagation of the CD8+ TIL from each of the tumors. The phenotypes of the TIL subset cultures were generally stable when assayed over a 1 to 3 months period and after further expansion with anti-CD3 mAb or lectins. Specific 51Cr release of labeled target cells that were bridged to the CD3 molecular complexes of TIL suggested that both CD4+ and CD8+ TIL cultures have the capacity of mediating cytolysis via their Ti/CD3 TCR complexes. In addition, both CD4+ and CD8+ TIL cultures from most patients caused substantial (greater than 20%) lysis of the NK-sensitive K562 cell line. The majority of CD4+ but not CD8+ TIL cultures also produced substantial lysis of the NK-resistant Daudi cell line. Lysis of the autologous tumor by the TIL subsets was assessed in two patients with malignant melanoma. The CD8+ TIL from one tumor demonstrated cytotoxic activity against the autologous tumor but negligible lysis of allogeneic melanoma targets. In conclusion, immunocompetent CD4+ and CD8+ TIL subsets can be isolated and expanded directly from small tumor fragments of malignant melanoma and renal cell carcinoma using BSMAB. The resultant TIL subsets can be further expanded for detailed studies or for adoptive immunotherapy.
Microfluidic Devices for Forensic DNA Analysis: A Review
Bruijns, Brigitte; van Asten, Arian; Tiggelaar, Roald; Gardeniers, Han
2016-01-01
Microfluidic devices may offer various advantages for forensic DNA analysis, such as reduced risk of contamination, shorter analysis time and direct application at the crime scene. Microfluidic chip technology has already proven to be functional and effective within medical applications, such as for point-of-care use. In the forensic field, one may expect microfluidic technology to become particularly relevant for the analysis of biological traces containing human DNA. This would require a number of consecutive steps, including sample work up, DNA amplification and detection, as well as secure storage of the sample. This article provides an extensive overview of microfluidic devices for cell lysis, DNA extraction and purification, DNA amplification and detection and analysis techniques for DNA. Topics to be discussed are polymerase chain reaction (PCR) on-chip, digital PCR (dPCR), isothermal amplification on-chip, chip materials, integrated devices and commercially available techniques. A critical overview of the opportunities and challenges of the use of chips is discussed, and developments made in forensic DNA analysis over the past 10–20 years with microfluidic systems are described. Areas in which further research is needed are indicated in a future outlook. PMID:27527231
Integrated printed circuit board device for cell lysis and nucleic acid extraction.
Marshall, Lewis A; Wu, Liang Li; Babikian, Sarkis; Bachman, Mark; Santiago, Juan G
2012-11-06
Preparation of raw, untreated biological samples remains a major challenge in microfluidics. We present a novel microfluidic device based on the integration of printed circuit boards and an isotachophoresis assay for sample preparation of nucleic acids from biological samples. The device has integrated resistive heaters and temperature sensors as well as a 70 μm × 300 μm × 3.7 cm microfluidic channel connecting two 15 μL reservoirs. We demonstrated this device by extracting pathogenic nucleic acids from 1 μL dispensed volume of whole blood spiked with Plasmodium falciparum. We dispensed whole blood directly onto an on-chip reservoir, and the system's integrated heaters simultaneously lysed and mixed the sample. We used isotachophoresis to extract the nucleic acids into a secondary buffer via isotachophoresis. We analyzed the convective mixing action with micro particle image velocimetry (micro-PIV) and verified the purity and amount of extracted nucleic acids using off-chip quantitative polymerase chain reaction (PCR). We achieved a clinically relevant limit of detection of 500 parasites per microliter. The system has no moving parts, and the process is potentially compatible with a wide range of on-chip hybridization or amplification assays.
Droplet Microfluidics for Compartmentalized Cell Lysis and Extension of DNA from Single-Cells
NASA Astrophysics Data System (ADS)
Zimny, Philip; Juncker, David; Reisner, Walter
Current single cell DNA analysis methods suffer from (i) bias introduced by the need for molecular amplification and (ii) limited ability to sequence repetitive elements, resulting in (iii) an inability to obtain information regarding long range genomic features. Recent efforts to circumvent these limitations rely on techniques for sensing single molecules of DNA extracted from single-cells. Here we demonstrate a droplet microfluidic approach for encapsulation and biochemical processing of single-cells inside alginate microparticles. In our approach, single-cells are first packaged inside the alginate microparticles followed by cell lysis, DNA purification, and labeling steps performed off-chip inside this microparticle system. The alginate microparticles are then introduced inside a micro/nanofluidic system where the alginate is broken down via a chelating buffer, releasing long DNA molecules which are then extended inside nanofluidic channels for analysis via standard mapping protocols.
Langemann, Timo; Mayr, Ulrike Beate; Meitz, Andrea; Lubitz, Werner; Herwig, Christoph
2016-01-01
Flow cytometry (FCM) is a tool for the analysis of single-cell properties in a cell suspension. In this contribution, we present an improved FCM method for the assessment of E-lysis in Enterobacteriaceae. The result of the E-lysis process is empty bacterial envelopes-called bacterial ghosts (BGs)-that constitute potential products in the pharmaceutical field. BGs have reduced light scattering properties when compared with intact cells. In combination with viability information obtained from staining samples with the membrane potential-sensitive fluorescent dye bis-(1,3-dibutylarbituric acid) trimethine oxonol (DiBAC4(3)), the presented method allows to differentiate between populations of viable cells, dead cells, and BGs. Using a second fluorescent dye RH414 as a membrane marker, non-cellular background was excluded from the data which greatly improved the quality of the results. Using true volumetric absolute counting, the FCM data correlated well with cell count data obtained from colony-forming units (CFU) for viable populations. Applicability of the method to several Enterobacteriaceae (different Escherichia coli strains, Salmonella typhimurium, Shigella flexneri 2a) could be shown. The method was validated as a resilient process analytical technology (PAT) tool for the assessment of E-lysis and for particle counting during 20-l batch processes for the production of Escherichia coli Nissle 1917 BGs.
Method and Apparatus for Automated Isolation of Nucleic Acids from Small Cell Samples
NASA Technical Reports Server (NTRS)
Sundaram, Shivshankar; Prabhakarpandian, Balabhaskar; Pant, Kapil; Wang, Yi
2014-01-01
RNA isolation is a ubiquitous need, driven by current emphasis on microarrays and miniaturization. With commercial systems requiring 100,000 to 1,000,000 cells for successful isolation, there is a growing need for a small-footprint, easy-to-use device that can harvest nucleic acids from much smaller cell samples (1,000 to 10,000 cells). The process of extraction of RNA from cell cultures is a complex, multi-step one, and requires timed, asynchronous operations with multiple reagents/buffers. An added complexity is the fragility of RNA (subject to degradation) and its reactivity to surface. A novel, microfluidics-based, integrated cartridge has been developed that can fully automate the complex process of RNA isolation (lyse, capture, and elute RNA) from small cell culture samples. On-cartridge cell lysis is achieved using either reagents or high-strength electric fields made possible by the miniaturized format. Traditionally, silica-based, porous-membrane formats have been used for RNA capture, requiring slow perfusion for effective capture. In this design, high efficiency capture/elution are achieved using a microsphere-based "microfluidized" format. Electrokinetic phenomena are harnessed to actively mix microspheres with the cell lysate and capture/elution buffer, providing important advantages in extraction efficiency, processing time, and operational flexibility. Successful RNA isolation was demonstrated using both suspension (HL-60) and adherent (BHK-21) cells. Novel features associated with this development are twofold. First, novel designs that execute needed processes with improved speed and efficiency were developed. These primarily encompass electric-field-driven lysis of cells. The configurations include electrode-containing constructs, or an "electrode-less" chip design, which is easy to fabricate and mitigates fouling at the electrode surface; and the "fluidized" extraction format based on electrokinetically assisted mixing and contacting of microbeads in a shape-optimized chamber. A secondary proprietary feature is in the particular layout integrating these components to perform the desired operation of RNA isolation. Apart from a novel functional capability, advantages of the innovation include reduced or eliminated use of toxic reagents, and operator-independent extraction of RNA.
Zheng, Siyang; Lin, Henry; Liu, Jing-Quan; Balic, Marija; Datar, Ram; Cote, Richard J; Tai, Yu-Chong
2007-08-31
This paper presents development of a parylene membrane microfilter device for single stage capture and electrolysis of circulating tumor cells (CTCs) in human blood, and the potential of this device to allow genomic analysis. The presence and number of CTCs in blood has recently been demonstrated to provide significant prognostic information for patients with metastatic breast cancer. While finding as few as five CTCs in about 7.5mL of blood (i.e., 10(10) blood cells in) is clinically significant, detection of CTCs is currently difficult and time consuming. CTC enrichment is performed by either gradient centrifugation of CTC based on their buoyant density or magnetic separation of epithelial CTC, both of which are laborious procedures with variable efficiency, and CTC identification is typically done by trained pathologists through visual observation of stained cytokeratin-positive epithelial CTC. These processes may take hours, if not days. Work presented here provides a micro-electro-mechanical system (MEMS)-based option to make this process simpler, faster, better and cheaper. We exploited the size difference between CTCs and human blood cells to achieve the CTC capture on filter with approximately 90% recovery within 10 min, which is superior to current approaches. Following capture, we facilitated polymerase chain reaction (PCR)-based genomic analysis by performing on-membrane electrolysis with embedded electrodes reaching each of the individual 16,000 filtering pores. The biggest advantage for this on-membrane in situ cell lysis is the high efficiency since cells are immobilized, allowing their direct contact with electrodes. As a proof-of-principle, we show beta actin gene PCR, the same technology can be easily extended to real time PCR for CTC-specific transcript to allow molecular identification of CTC and their further characterization.
Susceptibility of pathogenic and nonpathogenic Naegleria ssp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whiteman, L.Y.
1988-01-01
The susceptibility of four species of Naegleria amoebae to complement-mediated lysis was determined. The amoebicidal activity of normal human serum (NHS) and normal guinea pig serum (NGPS) for Naegleria amoebae was measured by an in vitro cytotoxicity assay. Release of radioactivity from amoebae labeled with {sup 3}H-uridine and visual observation with a compound microscope were used as indices of lysis. Susceptibility or resistance to complement-mediated lysis in vitro correlated with the in vivo pathogenic potential. Nonpathogenic Naegleria amoebae were lysed at a faster rate and at higher cell concentrations than were pathogenic amoebae. Electrophoretic analysis of NHS incubated with pathogenicmore » or nonpathogenic Naegleria spp. demonstrated that amoebae activate the complement cascade resulting in the production of C3 and C5 complement cleavage products. Treatment with papain or trypsin for 1 h, but not with sialidase, increase the susceptibility of highly pathogenic, mouse-passaged N. fowleri to lysis. Treatment with actinomycin D, cycloheximide or various protease inhibitors for 4 h did not increase susceptibility to lysis. Neither a repair process involving de novo protein synthesis nor a complement-inactivating protease appear to account for the increase resistance of N. fowleri amoebae to complement-mediated lysis. A binding study with {sup 125}I radiolabeled C9 indicated that the terminal complement component does not remain stably bound to the membrane of pathogenic amoebae.« less
Keisam, Santosh; Romi, Wahengbam; Ahmed, Giasuddin; Jeyaram, Kumaraswamy
2016-09-27
Cultivation-independent investigation of microbial ecology is biased by the DNA extraction methods used. We aimed to quantify those biases by comparative analysis of the metagenome mined from four diverse naturally fermented foods (bamboo shoot, milk, fish, soybean) using eight different DNA extraction methods with different cell lysis principles. Our findings revealed that the enzymatic lysis yielded higher eubacterial and yeast metagenomic DNA from the food matrices compared to the widely used chemical and mechanical lysis principles. Further analysis of the bacterial community structure by Illumina MiSeq amplicon sequencing revealed a high recovery of lactic acid bacteria by the enzymatic lysis in all food types. However, Bacillaceae, Acetobacteraceae, Clostridiaceae and Proteobacteria were more abundantly recovered when mechanical and chemical lysis principles were applied. The biases generated due to the differential recovery of operational taxonomic units (OTUs) by different DNA extraction methods including DNA and PCR amplicons mix from different methods have been quantitatively demonstrated here. The different methods shared only 29.9-52.0% of the total OTUs recovered. Although similar comparative research has been performed on other ecological niches, this is the first in-depth investigation of quantifying the biases in metagenome mining from naturally fermented foods.
γ-Tocotrienol Protects against Mitochondrial Dysfunction and Renal Cell Death
Bakajsova, Diana; Hayes, Corey; Hauer-Jensen, Martin; Compadre, Cesar M.
2012-01-01
Oxidative stress is a major mechanism of a variety of renal diseases. Tocopherols and tocotrienols are well known antioxidants. This study aimed to determine whether γ-tocotrienol (GT3) protects against mitochondrial dysfunction and renal proximal tubular cell (RPTC) injury caused by oxidants. Primary cultures of RPTCs were injured by using tert-butyl hydroperoxide (TBHP) in the absence and presence of GT3 or α-tocopherol (AT). Reactive oxygen species (ROS) production increased 300% in TBHP-injured RPTCs. State 3 respiration, oligomycin-sensitive respiration, and respiratory control ratio (RCR) decreased 50, 63, and 47%, respectively. The number of RPTCs with polarized mitochondria decreased 54%. F0F1-ATPase activity and ATP content decreased 31 and 65%, respectively. Cell lysis increased from 3% in controls to 26 and 52% at 4 and 24 h, respectively, after TBHP exposure. GT3 blocked ROS production, ameliorated decreases in state 3 and oligomycin-sensitive respirations and F0F1-ATPase activity, and maintained RCR and mitochondrial membrane potential (ΔΨm) in injured RPTCs. GT3 maintained ATP content, blocked RPTC lysis at 4 h, and reduced it to 13% at 24 h after injury. Treatment with equivalent concentrations of AT did not block ROS production and cell lysis and moderately improved mitochondrial respiration and coupling. This is the first report demonstrating the protective effects of GT3 against RPTC injury by: 1) decreasing production of ROS, 2) improving mitochondrial respiration, coupling, ΔΨm, and F0F1-ATPase function, 3) maintaining ATP levels, and 4) preventing RPTC lysis. Our data suggest that GT3 is superior to AT in protecting RPTCs against oxidant injury and may prove therapeutically valuable for preventing renal injury associated with oxidative stress. PMID:22040679
Hemolysis by surfactants--A review.
Manaargadoo-Catin, Magalie; Ali-Cherif, Anaïs; Pougnas, Jean-Luc; Perrin, Catherine
2016-02-01
An overview of the use of surfactants for erythrocyte lysis and their cell membrane action mechanisms is given. Erythrocyte membrane characteristics and its association with the cell cytoskeleton are presented in order to complete understanding of the erythrocyte membrane distortion. Cell homeostasis disturbances caused by surfactants might induce changes starting from shape modification to cell lysis. Two main mechanisms are hypothesized in literature which are osmotic lysis and lysis by solubilization even if the boundary between them is not clearly defined. Another specific mechanism based on the formation of membrane pores is suggested in the particular case of saponins. The lytic potency of a surfactant is related to its affinity for the membrane and the modification of the lipid membrane curvature. This is to be related to the surfactant shape defined by its hydrophobic and hydrophilic moieties but also by experimental conditions. As a consequence, prediction of the hemolytic potency of a given surfactant is challenging. Several studies are focused on the relation between surfactant erythrolytic potency and their physico-chemical parameters such as the critical micellar concentration (CMC), the hydrophile-lipophile balance (HLB), the surfactant membrane/water partition coefficient (K) or the packing parameter (P). The CMC is one of the most important factors considered even if a lytic activity cut-off effect points out that the only consideration of CMC not enough predictive. The relation K.CMC must be considered in addition to the CMC to predict the surfactant lytic capacity within the same family of non ionic surfactant. Those surfactant structure/lytic activity studies demonstrate the requirement to take into account a combination of physico-chemical parameters to understand and foresee surfactant lytic potency. Copyright © 2015 Elsevier B.V. All rights reserved.
QUANTITATIVE STUDY OF ENDOLYSIN SYNTHESIS DURING REPRODUCTION OF LAMBDA PHAGES
Groman, Neal B.; Suzuki, Grace
1963-01-01
Groman, Neal B. (University of Washington, Seattle) and Grace Suzuki. Quantitative study of endolysin synthesis during reproduction of lambda phages. J. Bacteriol. 86:187–194. 1963.—Endolysin is presumed to be a phage-induced enzyme participating in lysis through its destructive action on the host cell wall. A method for assaying endolysin is described, which was utilized in studying endolysin synthesis at 37 and 44 C by induced strains of K-12 (λ), K-12 (λtem), and K-12 (λ112). In all cases, endolysin was detected prior to the appearance of mature, intracellular phage and was detected earlier at 44 C than at 37 C. It was synthesized at a linear rate, as was phage, and both syntheses terminated at the same time. Surprisingly, endolysin also accumulated under conditions in which induced K-12 (λ112) exhibited lysis inhibition. Under these conditions, endolysin concentration per induced cell was 2 to 2.5 times that produced by normally lysing K-12 (λ). Since alterations introduced into the lytic process by temperature, mutation, or both correlate well with the timing and rate of endolysin synthesis, the data tend to support the concept that endolysin determines the kinetics of the process. However, the accumulation of endolysin during lysis inhibition suggests the need for alternative hypotheses. One hypothesis is that although endolysin action is the key to lysis some preliminary steps are required to release the enzyme so that it may contact its substrate in the cell wall. A second hypothesis is that basically the lytic process involves an alteration in the permeability barrier of the cell and that lytic enzymes such as endolysin have evolved as an auxillary but dispensable mechanism to this process. PMID:14058940
Long-term evolution of viruses: A Janus-faced balance.
Nasir, Arshan; Kim, Kyung Mo; Caetano-Anollés, Gustavo
2017-08-01
The popular textbook image of viruses as noxious and selfish genetic parasites greatly underestimates the beneficial contributions of viruses to the biosphere. Given the crucial dependency of viruses to reproduce in an intracellular environment, viruses that engage in excessive killing (lysis) can drive their cellular hosts to extinction and will not survive. The lytic mode of virus propagation must, therefore, be tempered and balanced by non-lytic modes of virus latency and symbiosis. Here, we review recent bioinformatics and metagenomic studies to argue that viral endogenization and domestication may be more frequent mechanisms of virus persistence than lysis. We use a triangle diagram to explain the three major virus persistence strategies that explain the global scope of virus-cell interactions including lysis, latency and virus-cell symbiosis. This paradigm can help identify novel directions in virology research where scientists could artificially gain control over switching lytic and beneficial viral lifestyles. Also see the Video Abstract: http://youtu.be/GwXWz4N8o8. © 2017 WILEY Periodicals, Inc.
Kin cell lysis is a danger signal that activates antibacterial pathways of Pseudomonas aeruginosa
LeRoux, Michele; Kirkpatrick, Robin L; Montauti, Elena I; Tran, Bao Q; Peterson, S Brook; Harding, Brittany N; Whitney, John C; Russell, Alistair B; Traxler, Beth; Goo, Young Ah; Goodlett, David R; Wiggins, Paul A; Mougous, Joseph D
2015-01-01
The perception and response to cellular death is an important aspect of multicellular eukaryotic life. For example, damage-associated molecular patterns activate an inflammatory cascade that leads to removal of cellular debris and promotion of healing. We demonstrate that lysis of Pseudomonas aeruginosa cells triggers a program in the remaining population that confers fitness in interspecies co-culture. We find that this program, termed P. aeruginosa response to antagonism (PARA), involves rapid deployment of antibacterial factors and is mediated by the Gac/Rsm global regulatory pathway. Type VI secretion, and, unexpectedly, conjugative type IV secretion within competing bacteria, induce P. aeruginosa lysis and activate PARA, thus providing a mechanism for the enhanced capacity of P. aeruginosa to target bacteria that elaborate these factors. Our finding that bacteria sense damaged kin and respond via a widely distributed pathway to mount a complex response raises the possibility that danger sensing is an evolutionarily conserved process. DOI: http://dx.doi.org/10.7554/eLife.05701.001 PMID:25643398
Inertial-ordering-assisted droplet microfluidics for high-throughput single-cell RNA-sequencing.
Moon, Hui-Sung; Je, Kwanghwi; Min, Jae-Woong; Park, Donghyun; Han, Kyung-Yeon; Shin, Seung-Ho; Park, Woong-Yang; Yoo, Chang Eun; Kim, Shin-Hyun
2018-02-27
Single-cell RNA-seq reveals the cellular heterogeneity inherent in the population of cells, which is very important in many clinical and research applications. Recent advances in droplet microfluidics have achieved the automatic isolation, lysis, and labeling of single cells in droplet compartments without complex instrumentation. However, barcoding errors occurring in the cell encapsulation process because of the multiple-beads-in-droplet and insufficient throughput because of the low concentration of beads for avoiding multiple-beads-in-a-droplet remain important challenges for precise and efficient expression profiling of single cells. In this study, we developed a new droplet-based microfluidic platform that significantly improved the throughput while reducing barcoding errors through deterministic encapsulation of inertially ordered beads. Highly concentrated beads containing oligonucleotide barcodes were spontaneously ordered in a spiral channel by an inertial effect, which were in turn encapsulated in droplets one-by-one, while cells were simultaneously encapsulated in the droplets. The deterministic encapsulation of beads resulted in a high fraction of single-bead-in-a-droplet and rare multiple-beads-in-a-droplet although the bead concentration increased to 1000 μl -1 , which diminished barcoding errors and enabled accurate high-throughput barcoding. We successfully validated our device with single-cell RNA-seq. In addition, we found that multiple-beads-in-a-droplet, generated using a normal Drop-Seq device with a high concentration of beads, underestimated transcript numbers and overestimated cell numbers. This accurate high-throughput platform can expand the capability and practicality of Drop-Seq in single-cell analysis.
Advances in Candida detection platforms for clinical and point-of-care applications
Safavieh, Mohammadali; Coarsey, Chad; Esiobu, Nwadiuto; Memic, Adnan; Vyas, Jatin Mahesh; Shafiee, Hadi; Asghar, Waseem
2016-01-01
Invasive candidiasis remains one of the most serious community and healthcare-acquired infections worldwide. Conventional Candida detection methods based on blood and plate culture are time-consuming and require at least 2–4 days to identify various Candida species. Despite considerable advances for candidiasis detection, the development of simple, compact and portable point-of-care diagnostics for rapid and precise testing that automatically performs cell lysis, nucleic acid extraction, purification and detection still remains a challenge. Here, we systematically review most prominent conventional and nonconventional techniques for the detection of various Candida species, including Candida staining, blood culture, serological testing and nucleic acid-based analysis. We also discuss the most advanced lab on a chip devices for candida detection. PMID:27093473
Tsaloglou, Maria-Nefeli; Laouenan, Florian; Loukas, Christos-Moritz; Monsalve, Lisandro Gabriel; Thanner, Christine; Morgan, Hywel; Ruano-López, Jesus M; Mowlem, Matthew C
2013-01-21
Quantitation of specific RNA sequences is a useful technique in marine biology that can elucidate cell abundance, speciation and viability, especially for early detection of harmful algal blooms. We are thus developing an integrated microfluidic system for cell concentration and lysis, RNA extraction/purification and quantitative RNA detection for environmental applications. The portable system is based on a microfluidic cartridge, or "lab-card", using a low-cost injection moulded device, with a laminated lid. Here we present real-time isothermal RNA amplification using reagent master-mixes preserved on-chip in a gel at 4 °C for up to eight months. We demonstrate quantitation by reference to an internal control in a competitive assay with 500 cell equivalents of the toxic microalga Karenia brevis. Annealing of primers, amplification at 41 °C and real-time fluorescence detection of the internal control and target using sequence-specific molecular beacons were all performed on-chip.
Controlled vesicle deformation and lysis by single oscillating bubbles
NASA Astrophysics Data System (ADS)
Marmottant, Philippe; Hilgenfeldt, Sascha
2003-05-01
The ability of collapsing (cavitating) bubbles to focus and concentrate energy, forces and stresses is at the root of phenomena such as cavitation damage, sonochemistry or sonoluminescence. In a biomedical context, ultrasound-driven microbubbles have been used to enhance contrast in ultrasonic images. The observation of bubble-enhanced sonoporation-acoustically induced rupture of membranes-has also opened up intriguing possibilities for the therapeutic application of sonoporation as an alternative to cell-wall permeation techniques such as electroporation and particle guns. However, these pioneering experiments have not been able to pinpoint the mechanism by which the violently collapsing bubble opens pores or larger holes in membranes. Here we present an experiment in which gentle (linear) bubble oscillations are sufficient to achieve rupture of lipid membranes. In this regime, the bubble dynamics and the ensuing sonoporation can be accurately controlled. The use of microbubbles as focusing agents makes acoustics on the micrometre scale (microacoustics) a viable tool, with possible applications in cell manipulation and cell-wall permeation as well as in microfluidic devices.
Suppressor Analysis of the Fusogenic Lambda Spanins.
Cahill, Jesse; Rajaure, Manoj; Holt, Ashley; Moreland, Russell; O'Leary, Chandler; Kulkarni, Aneesha; Sloan, Jordan; Young, Ry
2017-07-15
The final step of lysis in phage λ infections of Escherichia coli is mediated by the spanins Rz and Rz1. These proteins form a complex that bridges the cell envelope and that has been proposed to cause fusion of the inner and outer membranes. Accordingly, mutations that block spanin function are found within coiled-coil domains and the proline-rich region, motifs essential in other fusion systems. To gain insight into spanin function, pseudorevertant alleles that restored plaque formation for lysis-defective mutants of Rz and Rz1 were selected. Most second-site suppressors clustered within a coiled-coil domain of Rz near the outer leaflet of the cytoplasmic membrane and were not allele specific. Suppressors largely encoded polar insertions within the hydrophobic core of the coiled-coil interface. Such suppressor changes resulted in decreased proteolytic stability of the Rz double mutants in vivo Unlike the wild type, in which lysis occurs while the cells retain a rod shape, revertant alleles with second-site suppressor mutations supported lysis events that were preceded by spherical cell formation. This suggests that destabilization of the membrane-proximal coiled coil restores function for defective spanin alleles by increasing the conformational freedom of the complex at the cost of its normal, all-or-nothing functionality. IMPORTANCE Caudovirales encode cell envelope-spanning proteins called spanins, which are thought to fuse the inner and outer membranes during phage lysis. Recent genetic analysis identified the functional domains of the lambda spanins, which are similar to class I viral fusion proteins. While the pre- and postfusion structures of model fusion systems have been well characterized, the intermediate structure(s) formed during the fusion reaction remains elusive. Genetic analysis would be expected to identify functional connections between intermediates. Since most membrane fusion systems are not genetically tractable, only few such investigations have been reported. Here, we report a suppressor analysis of lambda spanin function. To our knowledge this is the first suppression analysis of a class I-like complex and also the first such analysis of a prokaryote membrane fusion system. Copyright © 2017 American Society for Microbiology.
High Efficiency Molecular Delivery with Sequential Low-Energy Sonoporation Bursts
Song, Kang-Ho; Fan, Alexander C.; Brlansky, John T.; Trudeau, Tammy; Gutierrez-Hartmann, Arthur; Calvisi, Michael L.; Borden, Mark A.
2015-01-01
Microbubbles interact with ultrasound to induce transient microscopic pores in the cellular plasma membrane in a highly localized thermo-mechanical process called sonoporation. Theranostic applications of in vitro sonoporation include molecular delivery (e.g., transfection, drug loading and cell labeling), as well as molecular extraction for measuring intracellular biomarkers, such as proteins and mRNA. Prior research focusing mainly on the effects of acoustic forcing with polydisperse microbubbles has identified a “soft limit” of sonoporation efficiency at 50% when including dead and lysed cells. We show here that this limit can be exceeded with the judicious use of monodisperse microbubbles driven by a physiotherapy device (1.0 MHz, 2.0 W/cm2, 10% duty cycle). We first examined the effects of microbubble size and found that small-diameter microbubbles (2 µm) deliver more instantaneous power than larger microbubbles (4 & 6 µm). However, owing to rapid fragmentation and a short half-life (0.7 s for 2 µm; 13.3 s for 6 µm), they also deliver less energy over the sonoporation time. This translates to a higher ratio of FITC-dextran (70 kDa) uptake to cell death/lysis (4:1 for 2 µm; 1:2 for 6 µm) in suspended HeLa cells after a single sonoporation. Sequential sonoporations (up to four) were consequently employed to increase molecular delivery. Peak uptake was found to be 66.1 ± 1.2% (n=3) after two sonoporations when properly accounting for cell lysis (7.0 ± 5.6%) and death (17.9 ± 2.0%), thus overcoming the previously reported soft limit. Substitution of TRITC-dextran (70 kDa) on the second sonoporation confirmed the effects were multiplicative. Overall, this study demonstrates the possibility of utilizing monodisperse small-diameter microbubbles as a means to achieve multiple low-energy sonoporation bursts for efficient in vitro cellular uptake and sequential molecular delivery. PMID:26681986
Gmeiner, Christoph; Saadati, Amirhossein; Maresch, Daniel; Krasteva, Stanimira; Frank, Manuela; Altmann, Friedrich; Herwig, Christoph; Spadiut, Oliver
2015-01-08
Pichia pastoris is a prominent host for recombinant protein production, amongst other things due to its capability of glycosylation. However, N-linked glycans on recombinant proteins get hypermannosylated, causing problems in subsequent unit operations and medical applications. Hypermannosylation is triggered by an α-1,6-mannosyltransferase called OCH1. In a recent study, we knocked out OCH1 in a recombinant P. pastoris CBS7435 Mut(S) strain (Δoch1) expressing the biopharmaceutically relevant enzyme horseradish peroxidase. We characterized the strain in the controlled environment of a bioreactor in dynamic batch cultivations and identified the strain to be physiologically impaired. We faced cell cluster formation, cell lysis and uncontrollable foam formation.In the present study, we investigated the effects of the 3 process parameters temperature, pH and dissolved oxygen concentration on 1) cell physiology, 2) cell morphology, 3) cell lysis, 4) productivity and 5) product purity of the recombinant Δoch1 strain in a multivariate manner. Cultivation at 30°C resulted in low specific methanol uptake during adaptation and the risk of methanol accumulation during cultivation. Cell cluster formation was a function of the C-source rather than process parameters and went along with cell lysis. In terms of productivity and product purity a temperature of 20°C was highly beneficial. In summary, we determined cultivation conditions for a recombinant P. pastoris Δoch1 strain allowing high productivity and product purity.
Measuring kinetic drivers of pneumolysin pore structure.
Gilbert, Robert J C; Sonnen, Andreas F-P
2016-05-01
Most membrane attack complex-perforin/cholesterol-dependent cytolysin (MACPF/CDC) proteins are thought to form pores in target membranes by assembling into pre-pore oligomers before undergoing a pre-pore to pore transition. Assembly during pore formation is into both full rings of subunits and incomplete rings (arcs). The balance between arcs and full rings is determined by a mechanism dependent on protein concentration in which arc pores arise due to kinetic trapping of the pre-pore forms by the depletion of free protein subunits during oligomerization. Here we describe the use of a kinetic assay to study pore formation in red blood cells by the MACPF/CDC pneumolysin from Streptococcus pneumoniae. We show that cell lysis displays two kinds of dependence on protein concentration. At lower concentrations, it is dependent on the pre-pore to pore transition of arc oligomers, which we show to be a cooperative process. At higher concentrations, it is dependent on the amount of pneumolysin bound to the membrane and reflects the affinity of the protein for its receptor, cholesterol. A lag occurs before cell lysis begins; this is dependent on oligomerization of pneumolysin. Kinetic dissection of cell lysis by pneumolysin demonstrates the capacity of MACPF/CDCs to generate pore-forming oligomeric structures of variable size with, most likely, different functional roles in biology.
Park, Hyun Jung; Oh, Sung; Vinod, Nagarajan; Ji, Seongmi; Noh, Han Byul; Koo, Jung Mo; Lee, Su Hyeong; Kim, Sei Chang; Lee, Ki-Sung; Choi, Chang Won
2016-11-15
Acellular bacterial ghosts (BGs) are empty non-living bacterial cell envelopes, commonly generated by controlled expression of the cloned lysis gene E of bacteriophage PhiX174. In this study, Vibrio parahaemolyticus ghosts (VPGs) were generated by chemically-induced lysis and the method is based on minimum inhibitory concentration (MIC) of sodium hydroxide (NaOH), acetic acid, boric acid, citric acid, maleic acid, hydrochloric acid, and sulfuric acid. The MIC values of the respective chemicals were 3.125, 6.25, <50.0, 25.0, 6.25, 1.56, and 0.781 mg/mL. Except for boric acid, the lysis efficiency reached more than 99.99% at 5 min after treatment of all chemicals. Among those chemicals, NaOH-induced VPGs appeared completely DNA-free, which was confirmed by quantitative real-time PCR. Besides, lipopolysaccharides (LPS) extracted from the NaOH-induced VPGs showed no distinctive band on SDS-PAGE gel after silver staining. On the other hand, LPS extracted from wild-type bacterial cells, as well as the organic acids-induced VPGs showed triple major bands and LPS extracted from the inorganic acids-induced VPGs showed double bands. It suggests that some surface structures in LPS of the NaOH-induced VPGs may be lost, weakened, or modified by the MIC of NaOH. Nevertheless, Limulus amoebocyte lysate assay revealed that there is no significant difference in endotoxic activity between the NaOH-induced VPGs and wild-type bacterial cells. Macrophages exposed to the NaOH-induced VPGs at 0.5 × 10⁶ CFU/mL showed cell viability of 97.9%, however, the MIC of NaOH did not reduce the cytotoxic effect of wild-type bacterial cells. Like Escherichia coli LPS, the NaOH-induced VPGs are an excellent activator of pro-inflammatory cytokines (IL-1β and iNOS), anti-inflammatory cytokine (IL-10), and dual activities (IL-6) in the stimulated macrophage cells. On the other hand, the induction of TNF-α mRNA was remarkable in the macrophages exposed with wild-type cells. Scanning electron microscopy showed the formation of trans-membrane lysis tunnel structures in the NaOH-induced VPGs. SDS-PAGE and agarose gel electrophoresis also confirmed that cytoplasmic proteins and genomic DNA released from the VPGs to culture medium through the lysis tunnel structures. Taken together, all these data indicate that the NaOH-induced VPGs show the potency of a safe, economical, and effective inactivated bacterial vaccine candidate.
HLA-A11-mediated protection from NK cell-mediated lysis: role of HLA-A11-presented peptides.
Gavioli, R; Zhang, Q J; Masucci, M G
1996-08-01
The capacity of MHC class I to protect target cells from NK is well established, but the mechanism by which these molecules influence NK recognition and the physical properties associated with this function remain poorly defined. We have examined this issue using as a model the HLA-A11 allele. HLA-A11 expression correlated with reduced susceptibility to NK and interferon-activated cytotoxicity in transfected sublines of the A11-defective Burkitt's lymphoma WW2-BL and the HLA class I A,B-null C1R cell line. Protection was also achieved by transfection of HLA-A11 in the peptide processing mutant T2 cells line (T2/A11), despite a very low expression of the transfected product at the cell surface. Induction of surface HLA-A11 by culture of T2/A11 cells at 26 degrees C or in the presence of beta 2m did not affect lysis, whereas NK sensitivity was restored by culture in the presence of HLA-All-binding synthetic peptides derived from viral or cellular proteins. Acid treatment rendered T2/A11 and C1R/A11 cells sensitive to lysis, but protection was restored after preincubation with peptide preparations derived from surface stripping of T2/A11 cells. Similar peptide preparations from T2 cells had no effect. The results suggest that NK protection is mediated by HLA-A11 molecules carrying a particular set of peptides that are translocated to the site of MHC class I assembly in the ER in a TAP-independent fashion.
Serratia marcescens internalization and replication in human bladder epithelial cells
Hertle, Ralf; Schwarz, Heinz
2004-01-01
Background Serratia marcescens, a frequent agent of catheterization-associated bacteriuria, strongly adheres to human bladder epithelial cells in culture. The epithelium normally provides a barrier between lumal organisms and the interstitium; the tight adhesion of bacteria to the epithelial cells can lead to internalization and subsequent lysis. However, internalisation was not shown yet for S. marcescens strains. Methods Elektronmicroscopy and the common gentamycin protection assay was used to assess intracellular bacteria. Via site directed mutagenesis, an hemolytic negative isogenic Serratia strain was generated to point out the importance of hemolysin production. Results We identified an important bacterial factor mediating the internalization of S. marcescens, and lysis of epithelial cells, as the secreted cytolysin ShlA. Microtubule filaments and actin filaments were shown to be involved in internalization. However, cytolysis of eukaryotic cells by ShlA was an interfering factor, and therefore hemolytic-negative mutants were used in subsequent experiments. Isogenic hemolysin-negative mutant strains were still adhesive, but were no longer cytotoxic, did not disrupt the cell culture monolayer, and were no longer internalized by HEp-2 and RT112 bladder epithelial cells under the conditions used for the wild-type strain. After wild-type S. marcescens became intracellular, the infected epithelial cells were lysed by extended vacuolation induced by ShlA. In late stages of vacuolation, highly motile S. marcescens cells were observed in the vacuoles. S. marcescens was also able to replicate in cultured HEp-2 cells, and replication was not dependent on hemolysin production. Conclusion The results reported here showed that the pore-forming toxin ShlA triggers microtubule-dependent invasion and is the main factor inducing lysis of the epithelial cells to release the bacteria, and therefore plays a major role in the development of S. marcescens infections. PMID:15189566
Phage-based extraction of polyhydroxybutyrate (PHB) produced from synthetic crude glycerol.
Hand, Steven; Gill, Jason; Chu, Kung-Hui
2016-07-01
Polyhydroxybutyrate (PHB), a biodegradable plastic, is an attractive alternative to traditional petrochemical-derived plastics. However, its production is expensive due to high feedstock and extraction costs. As bacteriophages are natural predators to bacteria and specific to their hosts, bacteriophages offer a new and unique means to release PHB from bacteria via cell lysis. This study examined the feasibility of using bacteriophages as an effective bioextractant to release PHB produced by Pseudomonas oleovorans cultured with glycerol containing common impurities which are generated from biodiesel production. While bacteria in stationary growth are known to be immune to bacteriophages, a bacteriophage Ke14 - isolated from soil - could lyse the PHB-filled cells effectively when excess nutrients were provided to trigger cell regrowth. The short-term nutrient treatment facilitated cell lysis with a little expense of PHB depolymerization, offering a new way to release PHB from cells without energy/solvent input. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Yi; Chen, Zhenmin; Zhao, Ruili; Jin, Tingting; Zhang, Xiaoming; Chen, Xiangdong
2014-08-31
Bacillus subtilis is widely used in agriculture and industrial biotechnology; however, cell autolysis significantly decreases its yield in liquid cultures. Numerous factors mediate the lysis of B. subtilis, such as cannibalism factors, prophages, and peptidoglycan (PG) hydrolases. The aim of this work was to use molecular genetic techniques to develop a new strategy to prevent cell lysis and enhance biomass as well as the production of recombinant proteins. Five genes or genetic elements representing three different functional categories were studied as follows: lytC encoding PG hydrolases, the prophage genes xpf and yqxG-yqxH-cwlA (yGlA), and skfA and sdpC that encode cannibalism factors. Cell lysis was reduced and biomass was enhanced by deleting individually skfA, sdpC, xpf, and lytC. We constructed the multiple deletion mutant LM2531 (skfA sdpC lytC xpf) and found that after 4 h of culture, its biomass yield was significantly increased compared with that of prototypical B. subtilis 168 (wild-type) strain and that 15% and 92% of the cells were lysed in cultures of LM2531 and wild-type, respectively. Moreover, two expression vectors were constructed for producing recombinant proteins (β-galactosidase and nattokinase) under the control of the P43 promoter. Cultures of LM2531 and wild-type transformants produced 13741 U/ml and 7991 U/ml of intracellular β-galactosidase, respectively (1.72-fold increase). Further, the level of secreted nattokinase produced by strain LM2531 increased by 2.6-fold compared with wild-type (5226 IU/ml vs. 2028 IU/ml, respectively). Our novel, systematic multigene deletion approach designed to inhibit cell lysis significantly increased the biomass yield and the production of recombinant proteins by B. subtilis. These findings show promise for guiding efforts to manipulate the genomes of other B. subtilis strains that are used for industrial purposes.
Mixing alters the lytic activity of viruses in the dark ocean.
Winter, Christian; Köstner, Nicole; Kruspe, Carl-Philip; Urban, Damaris; Muck, Simone; Reinthaler, Thomas; Herndl, Gerhard J
2018-03-01
In aquatic habitats, viral lysis of prokaryotic cells lowers the overall efficiency of the microbial loop, by which dissolved organic carbon is transfered to higher trophic levels. Mixing of water masses in the dark ocean occurs on a global scale and may have far reaching consequences for the different prokaryotic and virus communities found in these waters by altering the environmental conditions these communities experience. We hypothesize that mixing of deep ocean water masses enhances the lytic activity of viruses infecting prokaryotes. To address this hypothesis, major deep-sea water masses of the Atlantic Ocean such as North Atlantic Deep Water, Mediterranean Sea Overflow Water, Antarctic Intermediate Water, and Antarctic Bottom Water were sampled at five locations. Prokaryotic cells from these samples were collected by filtration and subsequently incubated in virus-reduced water from either the same (control) or a different water mass (transplantation treatment). Additionally, mixtures of prokaryotes obtained from two different water masses were incubated in a mixture of virus-reduced water from the same water masses (control) or in virus-reduced water from the source water masses separately (mixing treatments). Pronounced differences in productivity-related parameters (prokaryotic leucine incorporation, prokaryotic and viral abundance) between water masses caused strong changes in viral lysis of prokaryotes. Often, mixing of water masses increased viral lysis of prokaryotes, indicating that lysogenic viruses were induced into the lytic cycle. Mixing-induced changes in viral lysis had a strong effect on the community composition of prokaryotes and viruses. Our data show that mixing of deep-sea water masses alters levels of viral lysis of prokaryotes and in many cases weakens the efficiency of the microbial loop by enhancing the recycling of organic carbon in the deep ocean. © 2018 by the Ecological Society of America.
NASA Astrophysics Data System (ADS)
Streets, Aaron M.; Cao, Chen; Zhang, Xiannian; Huang, Yanyi
2016-03-01
Phenotype classification of single cells reveals biological variation that is masked in ensemble measurement. This heterogeneity is found in gene and protein expression as well as in cell morphology. Many techniques are available to probe phenotypic heterogeneity at the single cell level, for example quantitative imaging and single-cell RNA sequencing, but it is difficult to perform multiple assays on the same single cell. In order to directly track correlation between morphology and gene expression at the single cell level, we developed a microfluidic platform for quantitative coherent Raman imaging and immediate RNA sequencing (RNA-Seq) of single cells. With this device we actively sort and trap cells for analysis with stimulated Raman scattering microscopy (SRS). The cells are then processed in parallel pipelines for lysis, and preparation of cDNA for high-throughput transcriptome sequencing. SRS microscopy offers three-dimensional imaging with chemical specificity for quantitative analysis of protein and lipid distribution in single cells. Meanwhile, the microfluidic platform facilitates single-cell manipulation, minimizes contamination, and furthermore, provides improved RNA-Seq detection sensitivity and measurement precision, which is necessary for differentiating biological variability from technical noise. By combining coherent Raman microscopy with RNA sequencing, we can better understand the relationship between cellular morphology and gene expression at the single-cell level.
Foladori, P; Tamburini, S; Bruni, L
2010-09-01
Technologies proposed in the last decades for the reduction of the sludge production in wastewater treatment plants and based on the mechanism of cell lysis-cryptic growth (physical, mechanical, thermal, chemical, oxidative treatments) have been widely investigated at lab-, pilot- and, in some cases, at full-scale but the effects on cellular lysis have not always been demonstrated in depth. The research presented in this paper aims to investigate how these sludge reduction technologies affect the integrity and permeabilization of bacterial cells in sludge using flow cytometry (FCM), which permits the rapid and statistically accurate quantification of intact, permeabilised or disrupted bacteria in the sludge using a double fluorescent DNA-staining instead of using conventional methods like plate counts and microscope. Physical/mechanical treatments (ultrasonication and high pressure homogenisation) caused moderate effects on cell integrity and caused significant cell disruption only at high specific energy levels. Conversely, thermal treatment caused significant damage of bacterial membranes even at moderate temperatures (45-55 °C). Ozonation significantly affected cell integrity, even at low ozone dosages, below 10 mgO(3)/gTSS, causing an increase of permeabilised and disrupted cells. At higher ozone dosages the compounds solubilised after cell lysis act as scavengers in the competition between soluble compounds and (particulate) bacterial cells. An original aspect of this paper, not yet reported in the literature, is the comparison of the effects of these sludge reduction technologies on bacterial cell integrity and permeabilization by converting pressure, temperature and ozone dosage to an equivalent value of specific energy. Among these technologies, comparison of the applied specific energy demonstrates that achieving the complete disruption of bacterial cells is not always economically advantageous because excessive energy levels may be required. Copyright © 2010 Elsevier Ltd. All rights reserved.
Tanaka, Yuetsu; Taylor, Graham P.; Bangham, Charles R. M.
2016-01-01
Human T cell lymphotropic virus-1 (HTLV-1) primarily infects CD4+ T cells, causing inflammatory disorders or a T cell malignancy in 5% to 10% of carriers. The cytotoxic T lymphocyte (CTL) response is a key factor that controls the viral load and thus the risk of disease. The ability to detect the viral protein Tax in primary cells has made it possible to estimate the rate at which Tax-expressing infected cells are eliminated by CTLs in persistently infected people. However, most HTLV-1-infected cells are Tax–at a given time, and their immunophenotype is poorly defined. Here, we aimed to identify a cell-surface molecule expressed by both Tax+ and Tax–HTLV-1-infected cells and use it to analyse the CTL response in fresh peripheral blood mononuclear cells. Cell adhesion molecule 1 (CADM1/TSLC1) was the best single marker of HTLV-1 infection, identifying HTLV-1-infected cells with greater sensitivity and specificity than CD25, CCR4 or ICAM-1. CADM1+CD4+ T cells carried a median of 65% of proviral copies in peripheral blood. In a cohort of 23 individuals, we quantified the rate of CTL-mediated killing of Tax+ and Tax−CADM1+ cells. We show that CADM1 expression is associated with enhanced susceptibility of infected cells to CTL lysis: despite the immunodominance of Tax in the CTL response, Tax+CADM1– cells were inefficiently lysed by CTLs. Upregulation of the CADM1 ligand CRTAM on CD8+ T cells correlated with efficient lysis of infected cells. Tax–CADM1+ cells were lysed at a very low rate by autologous CTLs, however, were efficiently killed when loaded with exogenous peptide antigen. High expression of CADM1 on most HTLV-1-infected cells in the face of enhanced CTL counterselection implies that CADM1 confers a strong benefit on the virus. PMID:27105228
Folate-conjugated immunoglobulin targets melanoma tumor cells for NK cell effector functions
Skinner, Cassandra C.; McMichael, Elizabeth L.; Jaime-Ramirez, Alena C.; Abrams, Zachary B.; Lee, Robert J.; Carson, William E.
2016-01-01
The folate receptor (FR) is over-expressed on the vascular side of cancerous cells including those of the breast, ovaries, testes, and cervix. We hypothesized that a folate-conjugated immunoglobulin (F-IgG) would bind to the FR that is over-expressed on melanoma tumor cells to target these cells for lysis by natural killer (NK) cells. Folate receptor expression was confirmed in the Mel-39 (human melanoma) cell line by flow cytometry and immunoblot analysis, using KB (human oral epithelial) and F01 (human melanoma) as a positive and negative control, respectively. FR-positive and negative cell lines were treated with F-IgG or control immunoglobulin G (C-IgG) in the presence or absence of cytokines in order to determine NK cell ability to lyse FR-positive cell lines. NK cell activation was significantly upregulated and lysis of Mel 39 tumor cells enhanced following treatment with F-IgG, as compared to C-IgG at all effector:target (E:T) ratios (p<0.01). This trend was further enhanced by NK cell stimulation with the activating cytokine interleukin-12 (IL-12). NK cell production of cytokines such as interferon-gamma (IFN-γ), macrophage inflammatory protein 1 alpha (MIP-1α), and regulated on activation normal T-cell expressed and secreted (RANTES) were also significantly increased in response to co-stimulation with IL-12 stimulation and F-IgG-coated Mel 39 target cells, as compared to controls (p<0.01). In contrast, F-IgG did not bind to the FR-negative cell line F01 and had no significant effect on NK cell lysis or cytokine production. This research indicates the potential use of F-IgG for its ability to induce an immune response from NK cells against FR-positive melanoma tumor cells which can be further enhanced by the addition of cytokines. PMID:27035691
Ultrastructure of Prototheca zopfii in bovine granulomatous mastitis.
Cheville, N F; McDonald, J; Richard, J
1984-05-01
Mammary glands from cows with protothecal mastitis were examined by light and electron microscopy at 6, 13, 20, and greater than 180 days after infection. With increasing time, there were increases in severity of granulomatous inflammation, number of endospores and sporangia, and ratio of degenerate to intact algae. Algae were found in macrophages but were not seen in neutrophils, epithelial cells, or myoepithelial cells. Macrophages containing algae were markedly enlarged, chiefly from reduplication of the Golgi complex and its associated vesicles. Intracellular algae were degenerate and consisted of intact cell wall profiles which contained membrane fragments but lacked nuclei and cytoplasmic organelles. Degenerate algae in vitro had thin cell walls and did not undergo internal lysis. Cell wall material of intracellular algae stained as an acidic, nonsulfated, carboxylated glycoprotein. These findings suggest that intracellular Prototheca zopfii degenerate by progressive lysis of internal organelles with persistence of cell wall glycans and that development of aberrant cell wall forms occurs as a defective response by host macrophages.
Electron Microscopy of Staphylococcus aureus Cell Wall Lysis
Virgilio, R.; González, C.; Muñoz, Nubia; Mendoza, Silvia
1966-01-01
Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Muñoz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018–2024. 1966.—A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents. Images PMID:5939482
Electron microscopy of Staphylococcus aureus cell wall lysis.
Virgilio, R; González, C; Muñoz, N; Mendoza, S
1966-05-01
Virgilio, Rafael (Escuela de Química y Farmacia, Universidad de Chile, Santiago, Chile), C. González, Nubia Muñoz, and Silvia Mendoza. Electron microscopy of Staphylococcus aureus cell wall lysis. J. Bacteriol. 91:2018-2024. 1966.-A crude suspension of Staphylococcus aureus cell walls (strain Cowan III) in buffer solution was shown by electron microscopy to lyse slightly after 16 hr, probably owing to the action of autolysin. The lysis was considerably faster and more intense after the addition of lysozyme. A remarkable reduction in thickness and rigidity of the cell walls, together with the appearance of many irregular protrusions in their outlines, was observed after 2 hr; after 16 hr, there remained only a few recognizable cell wall fragments but many residual particulate remnants. When autolysin was previously inactivated by trypsin, there was a complete inhibition of the lytic action of lysozyme; on the other hand, when autolysin was inactivated by heat and lysozyme was added, a distinct decrease in the thickness of the cell walls was observed, but there was no destruction of the walls. The lytic action of lysozyme, after treatment with hot 5% trichloroacetic acid, gave rise to a marked dissolution of the structure of the cell walls, which became lost against the background, without, however, showing ostensible alteration of wall outlines. From a morphological point of view, the lytic action of autolysin plus lysozyme was quite different from that of trichloroacetic acid plus lysozyme, as shown by electron micrographs, but in both cases it was very intense. This would suggest different mechanisms of action for these agents.
Injurious effects of wool and grain dusts on alveolar epithelial cells and macrophages in vitro.
Brown, D M; Donaldson, K
1991-01-01
Epidemiological studies of workers in wool textile mills have shown a direct relation between the concentration of wool dust in the air and respiratory symptoms. Injurious effects of wool dust on the bronchial epithelium could be important in causing inflammation and irritation. A pulmonary epithelial cell line in vitro was therefore used to study the toxic effects of wool dust. Cells of the A549 epithelial cell line were labelled with 51Cr and treated with whole wool dusts and extracts of wool, after which injury was assessed. Also, the effects of grain dust, which also causes a form of airway obstruction, were studied. The epithelial injury was assessed by measuring 51Cr release from cells as an indication of lysis, and by monitoring cells which had detached from the substratum. No significant injury to A549 cells was caused by culture with any of the dusts collected from the air but surface "ledge" dust caused significant lysis at some doses. Quartz, used as a toxic control dust, caused significant lysis at the highest concentration of 100 micrograms/well. To determine whether any injurious material was soluble the dusts were incubated in saline and extracts collected. No extracts caused significant injury to epithelial cells. A similar lack of toxicity was found when 51Cr labelled control alveolar macrophages were targets for injury. Significant release of radiolabel was evident when macrophages were exposed to quartz at concentrations of 10 and 20 micrograms/well, there being no significant injury with either wool or grain dusts. These data suggest that neither wool nor grain dust produce direct injury to epithelial cells, and further studies are necessary to explain inflammation leading to respiratory symptoms in wool and grain workers. PMID:2015211
Miniature acoustic wave lysis system and uses thereof
Branch, Darren W.; Vreeland, Erika Cooley; Smith, Gennifer Tanabe
2016-12-06
The present invention relates to an acoustic lysis system including a disposable cartridge that can be reversibly coupled to a platform having a small, high-frequency piezoelectric transducer array. In particular, the system releases viable DNA, RNA, and proteins from human or bacterial cells, without chemicals or additional processing, to enable high-speed sample preparation for clinical point-of-care medical diagnostics and use with nano/microfluidic cartridges. Also described herein are methods of making and using the system of the invention.
Hale, A H; Lyles, D S; Fan, D P
1980-02-01
We have investigated the minimal molecular requirements for elicitation of anti-Sendai virus cytotoxic T lymphocytes (CTL), and the minimal molecular requirements for the recognition and lysis processes associated with anti-Sendai virus CTL-target cell interactions. This report demonstrates a) that the hemagglutinin-neuraminidase and/or fusion glycoproteins of Sendai virus can elicit anti-Sendai virus CTL and b) that these glycoproteins and H-2 antigens must be within the same membrane lipid bilayer for effective elicitation of anti-Sendai-virus CTL and for effective recognition and lysis of target cells by anti-Sendai virus CTL.
Mayer, Melinda J.; Payne, John; Gasson, Michael J.; Narbad, Arjan
2010-01-01
The growth of Clostridium tyrobutyricum in developing cheese leads to spoilage and cheese blowing. Bacteriophages or their specific lytic enzymes may provide a biological control method for eliminating such undesirable organisms without affecting other microflora. We isolated the virulent bacteriophage φCTP1 belonging to the Siphoviridae and have shown that it is effective in causing lysis of sensitive strains. The double-stranded DNA genome of φCTP1 is 59,199 bp, and sequence analysis indicated that it has 86 open reading frames. orf29 was identified as the gene coding for the phage endolysin responsible for cell wall degradation prior to virion release. We cloned and expressed the ctp1l gene in E. coli and demonstrated that the partially purified protein induced lysis of C. tyrobutyricum cells and reduced viable counts both in buffer and in milk. The endolysin was inactive against a range of clostridial species but did show lysis of Clostridium sporogenes, another potential spoilage organism. Removal of the C-terminal portion of the endolysin completely abolished lytic activity. PMID:20581196
T lymphocyte mediated lysis of mitomycin C treated Tenon’s capsule fibroblasts
Crowston, J G; Chang, L H; Daniels, J T; Khaw, P T; Akbar, A N
2004-01-01
Aims: To evaluate the effect of T cell co-culture on mitomycin C treated and untreated Tenon’s capsule fibroblasts. Methods: IL-2 dependent allogeneic T cells were incubated over a monolayer of mitomycin C treated or control fibroblasts. Fibroblast numbers were evaluated by direct counts using phase contrast microscopy. To determine whether T cell mediated lysis was a consequence of MHC mismatch, co-culture experiments were repeated with autologous T cells. The effect of Fas receptor blockade was established by co-incubation with a Fas blocking (M3) antibody. Results: T cell co-culture resulted in a dramatic reduction in fibroblast survival compared to mitomycin C treatment alone (p = 0.032). T cell killing required fibroblast/lymphocyte cell to cell contact and was observed in both allogeneic and autologous co-culture experiments. Fas blocking antibodies did not significantly inhibit T cell killing (p = 0.39). Conclusion: T cells augment mitomycin C treated fibroblast death in vitro. Similar mechanisms may contribute to the cytotoxic effect of mitomycin C in vivo and account for the largely hypocellular drainage blebs that are observed clinically. PMID:14977777
T lymphocyte mediated lysis of mitomycin C treated Tenon's capsule fibroblasts.
Crowston, J G; Chang, L H; Daniels, J T; Khaw, P T; Akbar, A N
2004-03-01
To evaluate the effect of T cell co-culture on mitomycin C treated and untreated Tenon's capsule fibroblasts. IL-2 dependent allogeneic T cells were incubated over a monolayer of mitomycin C treated or control fibroblasts. Fibroblast numbers were evaluated by direct counts using phase contrast microscopy. To determine whether T cell mediated lysis was a consequence of MHC mismatch, co-culture experiments were repeated with autologous T cells. The effect of Fas receptor blockade was established by co-incubation with a Fas blocking (M3) antibody. T cell co-culture resulted in a dramatic reduction in fibroblast survival compared to mitomycin C treatment alone (p = 0.032). T cell killing required fibroblast/lymphocyte cell to cell contact and was observed in both allogeneic and autologous co-culture experiments. Fas blocking antibodies did not significantly inhibit T cell killing (p = 0.39). T cells augment mitomycin C treated fibroblast death in vitro. Similar mechanisms may contribute to the cytotoxic effect of mitomycin C in vivo and account for the largely hypocellular drainage blebs that are observed clinically.
Bacterial decontamination using ambient pressure nonthermal discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birmingham, J.G.; Hammerstrom, D.J.
2000-02-01
Atmospheric pressure nonthermal plasmas can efficiently deactivate bacteria in gases, liquids, and on surfaces, as well as can decompose hazardous chemicals. This paper focuses on the changes to bacterial spores and toxic biochemical compounds, such as mycotoxins, after their treatment in ambient pressure discharges. The ability of nonthermal plasmas to decompose toxic chemicals and deactivate hazardous biological materials has been applied to sterilizing medical instruments, ozonating water, and purifying air. In addition, the fast lysis of bacterial spores and other cells has led us to include plasma devices within pathogen detection instruments, where nucleic acids must be accessed. Decontaminating chemicalmore » and biological warfare materials from large, high value targets such as building surfaces, after a terrorist attack, are especially challenging. A large area plasma decontamination technology is described.« less
Moore, Paul A; Shah, Kalpana; Yang, Yinhua; Alderson, Ralph; Roberts, Penny; Long, Vatana; Liu, Daorong; Li, Jonathan C; Burke, Steve; Ciccarone, Valentina; Li, Hua; Fieger, Claudia B; Hooley, Jeff; Easton, Ann; Licea, Monica; Gorlatov, Sergey; King, Kathleen L; Young, Peter; Adami, Arash; Loo, Deryk; Chichili, Gurunadh R; Liu, Liqin; Smith, Douglas H; Brown, Jennifer G; Chen, Francine Z; Koenig, Scott; Mather, Jennie; Bonvini, Ezio; Johnson, Syd
2018-06-04
We have developed MGD007 (anti-glycoprotein A33 x anti-CD3), a DART® protein designed to redirect T-cells to target gpA33 expressing colon cancer. The gpA33 target was selected based on an antibody-based screen to identify cancer antigens universally expressed in both primary and metastatic CRC specimens, including putative cancer stem cell populations. MGD007 displays the anticipated bispecific binding properties and mediates potent lysis of gpA33-positive cancer cell lines, including models of colorectal cancer stem cells, through recruitment of T-cells. Xenograft studies showed tumor growth inhibition at doses as low as 4 µg/kg. Both CD8 and CD4 T cells mediated lysis of gpA33-expressing tumor cells, with activity accompanied by increases in granzyme and perforin. Notably, suppressive T-cell populations could also be leveraged to mediate lysis of gpA33 expressing tumor cells. Concomitant with CTL activity, both T-cell activation and expansion are observed in a gpA33-dependent manner. No cytokine activation was observed with human PBMC alone, consistent with the absence of gpA33 expression on peripheral blood cell populations. Following prolonged exposure to MGD007 and gpA33 positive tumor cells, T cells express PD 1 and LAG-3 and acquire a memory phenotype but retain ability to support potent cell killing. In cynomolgus monkeys, 4 weekly doses of 100 µg/kg were well tolerated, with prolonged PK consistent with that of an Fc-containing molecule. Taken together MGD007 displays potent activity against colorectal cancer cells consistent with a mechanism of action endowed in its design and support further investigation of MGD007 as a potential novel therapeutic treatment for colorectal cancer. Copyright ©2018, American Association for Cancer Research.
Survival, Physiology, and Lysis of Lactococcus lactis in the Digestive Tract
Drouault, Sophie; Corthier, Gérard; Ehrlich, S. Dusko; Renault, Pierre
1999-01-01
The survival and the physiology of lactococcal cells in the different compartments of the digestive tracts of rats were studied in order to know better the fate of ingested lactic acid bacteria after oral administration. For this purpose, we used strains marked with reporter genes, the luxA-luxB gene of Vibrio harveyi and the gfp gene of Aequora victoria, that allowed us to differentiate the inoculated bacteria from food and the other intestinal bacteria. Luciferase was chosen to measure the metabolic activity of Lactococcus lactis in the digestive tract because it requires NADH, which is available only in metabolically active cells. The green fluorescent protein was used to assess the bacterial lysis independently of death. We report not only that specific factors affect the cell viability and integrity in some digestive tract compartments but also that the way bacteria are administrated has a dramatic impact. Lactococci which transit with the diet are quite resistant to gastric acidity (90 to 98% survival). In contrast, only 10 to 30% of bacteria survive in the duodenum. Viable cells are metabolically active in each compartment of the digestive tract, whereas most dead cells appear to be subject to rapid lysis. This property suggests that lactococci could be used as a vector to deliver specifically into the duodenum the proteins produced in the cytoplasm. This type of delivery vector would be particularly appropriate for targeting digestive enzymes such as lipase to treat pancreatic deficiencies. PMID:10543799
Bhatia, Sujata K; Yetter, Ann B
2008-08-01
Medical devices and implanted biomaterials are often assessed for biological reactivity using visual scores of cell-material interactions. In such testing, biomaterials are assigned cytotoxicity ratings based on visual evidence of morphological cellular changes, including cell lysis, rounding, spreading, and proliferation. For example, ISO 10993 cytotoxicity testing of medical devices allows the use of a visual grading scale. The present study compared visual in vitro cytotoxicity ratings to quantitative in vitro cytotoxicity measurements for biomaterials to determine the level of correlation between visual scoring and a quantitative cell viability assay. Biomaterials representing a spectrum of biological reactivity levels were evaluated, including organo-tin polyvinylchloride (PVC; a known cytotoxic material), ultra-high molecular weight polyethylene (a known non-cytotoxic material), and implantable tissue adhesives. Each material was incubated in direct contact with mouse 3T3 fibroblast cell cultures for 24 h. Visual scores were assigned to the materials using a 5-point rating scale; the scorer was blinded to the material identities. Quantitative measurements of cell viability were performed using a 3-(4,5-dimethylthiozol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay; again, the assay operator was blinded to material identities. The investigation revealed a high degree of correlation between visual cytotoxicity ratings and quantitative cell viability measurements; a Pearson's correlation gave a correlation coefficient of 0.90 between the visual cytotoxicity score and the percent viable cells. An equation relating the visual cytotoxicity score and the percent viable cells was derived. The results of this study are significant for the design and interpretation of in vitro cytotoxicity studies of novel biomaterials.
[Growth Factors and Interleukins in Amniotic Membrane Tissue Homogenate].
Stachon, T; Bischoff, M; Seitz, B; Huber, M; Zawada, M; Langenbucher, A; Szentmáry, N
2015-07-01
Application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy resistant corneal epithelial defects. The purpose of this study was to determine the concentrations of epidermal growth factor (EGF), fibroblast growth factor basic (bFGF), hepatocyte growth factor (HGF), keratinocyte growth factor (KGF), interleukin-6 (IL-6) and interleukin-8 (IL-8) in amniotic membrane homogenates. Amniotic membranes of 8 placentas were prepared and thereafter stored at - 80 °C using the standard methods of the LIONS Cornea Bank Saar-Lor-Lux, Trier/Westpfalz. Following defreezing, amniotic membranes were cut in two pieces and homogenized in liquid nitrogen. One part of the homogenate was prepared in cell-lysis buffer, the other part was prepared in PBS. The tissue homogenates were stored at - 20 °C until enzyme-linked immunosorbent assay (ELISA) analysis for EGF, bFGF, HGF, KGF, IL-6 and IL-8 concentrations. Concentrations of KGF, IL-6 and IL-8 were below the detection limit using both preparation techniques. The EGF concentration in tissue homogenates treated with cell-lysis buffer (2412 pg/g tissue) was not significantly different compared to that of tissue homogenates treated with PBS (1586 pg/g tissue, p = 0.72). bFGF release was also not significantly different using cell-lysis buffer (3606 pg/g tissue) or PBS treated tissue homogenates (4649 pg/g tissue, p = 0.35). HGF release was significantly lower using cell-lysis buffer (23,555 pg/g tissue), compared to PBS treated tissue (47,766 pg/g tissue, p = 0.007). Containing EGF, bFGF and HGF, and lacking IL-6 and IL-8, the application of amniotic membrane homogenate eye drops may be a potential treatment alternative for therapy-resistant corneal epithelial defects. Georg Thieme Verlag KG Stuttgart · New York.
Mechanisms of lectin and antibody-dependent polymorphonuclear leukocyte-mediated cytolysis.
Tsunawaki, S; Ikenami, M; Mizuno, D; Yamazaki, M
1983-04-01
The mechanisms of tumor lysis by polymorphonuclear leukocytes (PMNs) were investigated. In antibody-dependent PMN-mediated cytolysis (ADPC), sensitized tumor cells were specifically lysed via Fc receptors on PMNs. On the other hand, lectin-dependent PMN-mediated cytolysis (LDPC) caused nonspecific lysis of several murine tumors after recognition of carbohydrate moieties on the cell membrane of both PMNs and tumor cells. Both ADPC and LDPC depended on glycolysis, and cytotoxicity was mediated by reactive oxygen species; LDPC was dependent on superoxide and ADPC on the myeloperoxidase system. The participation of reactive oxygen species in PMN cytotoxicity was also demonstrated by pharmacological triggering with phorbol myristate acetate. These results indicate that reactive oxygen species have an important role In tumor killing by PMNs and that ADPC and LDPC have partly different cytolytic processes as well as different recognition steps.
Analysis of ribosomal RNA stability in dead cells of wine yeast by quantitative PCR.
Sunyer-Figueres, Merce; Wang, Chunxiao; Mas, Albert
2018-04-02
During wine production, some yeasts enter a Viable But Not Culturable (VBNC) state, which may influence the quality and stability of the final wine through remnant metabolic activity or by resuscitation. Culture-independent techniques are used for obtaining an accurate estimation of the number of live cells, and quantitative PCR could be the most accurate technique. As a marker of cell viability, rRNA was evaluated by analyzing its stability in dead cells. The species-specific stability of rRNA was tested in Saccharomyces cerevisiae, as well as in three species of non-Saccharomyces yeast (Hanseniaspora uvarum, Torulaspora delbrueckii and Starmerella bacillaris). High temperature and antimicrobial dimethyl dicarbonate (DMDC) treatments were efficient in lysing the yeast cells. rRNA gene and rRNA (as cDNA) were analyzed over 48 h after cell lysis by quantitative PCR. The results confirmed the stability of rRNA for 48 h after the cell lysis treatments. To sum up, rRNA may not be a good marker of cell viability in the wine yeasts that were tested. Copyright © 2018 Elsevier B.V. All rights reserved.
Jin, Sheng; Gu, Hao; Chen, Xianshuang; Liu, Xiaoli; Zhan, Wenjun; Wei, Ting; Sun, Xuebo; Ren, Chuanlu; Chen, Hong
2018-07-01
Clot and thrombus formation on surfaces that come into contact with blood is still the most serious problem for blood contacting devices. Despite many years of continuous efforts in developing hemocompatible materials, it is still of great interest to develop multifunctional materials to enable vascular cell selectivity (to favor rapid endothelialization while inhibiting smooth muscle cell proliferation) and improve hemocompatibility. In addition, biomaterial-associated infections also cause the failure of biomedical implants and devices. However, it remains a challenging task to design materials that are multifunctional, since one of their functions will usually be compromised by the introduction of another function. In the present work, the gold substrate was first layer-by-layer (LbL) deposited with a multilayered polyelectrolyte film containing chitosan (positively charged) and a copolymer of sodium 4-vinylbenzenesulfonate (SS) and the "guest" adamantane monomer 1-adamantan-1-ylmethyl methacrylate (P(SS-co-Ada), negatively charged) via electro-static interactions, referred to as Au-LbL. The chitosan and P(SS-co-Ada) were intended to provide, respectively, resistance to bacteria and heparin-like properties. Then, "host" β-cyclodextrin derivatives bearing seven lysine ligands (CD-L) were immobilized on the Au-LbL surface by host-guest interactions between adamantane residues and CD-L, referred to as Au-LbL/CD-L. Finally, a versatile surface coating with fibrinolytic activity (lysis of nascent clots), vascular cell selectivity and antibacterial properties was developed. Copyright © 2018 Elsevier B.V. All rights reserved.
Brand, Alexandra; Barnes, Julia D; Mackenzie, Kevin S; Odds, Frank C; Gow, Neil A R
2008-10-01
The fungus, Candida albicans, and the bacterium, Pseudomonas aeruginosa, are opportunistic human pathogens that have been coisolated from diverse body sites. Pseudomonas aeruginosa suppresses C. albicans proliferation in vitro and potentially in vivo but it is the C. albicans hyphae that are killed while yeast cells are not. We show that hyphal killing involves both contact-mediated and soluble factors. Bacterial culture filtrates contained heat-labile soluble factors that killed C. albicans hyphae. In cocultures, localized points of hyphal lysis were observed, suggesting that adhesion and subsequent bacteria-mediated cell wall lysis is involved in the killing of C. albicans hyphae. The glycosylation status of the C. albicans cell wall affected the rate of contact-dependent killing because mutants with severely truncated O-linked, but not N-linked, glycans were hypersensitive to Pseudomonas-mediated killing. Deletion of HWP1, ALS3 or HYR1, which encode major hypha-associated cell wall proteins, had no effect on fungal susceptibility.
Vilchèze, Catherine; Morbidoni, Hector R.; Weisbrod, Torin R.; Iwamoto, Hiroyuki; Kuo, Mack; Sacchettini, James C.; Jacobs, William R.
2000-01-01
The mechanism of action of isoniazid (INH), a first-line antituberculosis drug, is complex, as mutations in at least five different genes (katG, inhA, ahpC, kasA, and ndh) have been found to correlate with isoniazid resistance. Despite this complexity, a preponderance of evidence implicates inhA, which codes for an enoyl-acyl carrier protein reductase of the fatty acid synthase II (FASII), as the primary target of INH. However, INH treatment of Mycobacterium tuberculosis causes the accumulation of hexacosanoic acid (C26:0), a result unexpected for the blocking of an enoyl-reductase. To test whether inactivation of InhA is identical to INH treatment of mycobacteria, we isolated a temperature-sensitive mutation in the inhA gene of Mycobacterium smegmatis that rendered InhA inactive at 42°C. Thermal inactivation of InhA in M. smegmatis resulted in the inhibition of mycolic acid biosynthesis, a decrease in hexadecanoic acid (C16:0) and a concomitant increase of tetracosanoic acid (C24:0) in a manner equivalent to that seen in INH-treated cells. Similarly, INH treatment of Mycobacterium bovis BCG caused an inhibition of mycolic acid biosynthesis, a decrease in C16:0, and a concomitant accumulation of C26:0. Moreover, the InhA-inactivated cells, like INH-treated cells, underwent a drastic morphological change, leading to cell lysis. These data show that InhA inactivation, alone, is sufficient to induce the accumulation of saturated fatty acids, cell wall alterations, and cell lysis and are consistent with InhA being a primary target of INH. PMID:10869086
Internalization property of intestinal bacteria in colon cancer and HIV/AIDS patients.
Wachsmannova, Lenka; Ciernikova, Sona; Majek, Juraj; Mego, Michal; Stevurkova, Viola; Zajac, Vladimir
2016-07-01
Bacteria from the intestinal tract of Slovak and American HIV/AIDS patients and Slovak colon cancer patients were tested for the capacity to be internalized by cells of the HL-60 cell line as well as by normal human lymphocytes. They were anticipated to possess a specific characteristic, i.e. a vigorous ability to be internalized by HL-60 cells and human lymphocytes. This assumption was confirmed by gentamicin protection assay. Internalization of bacteria from HIV/AIDS patients frequently resulted in partial (patients SKM1, SKM22) or complete lysis (patients SKK1-1, SKM12) of HL-60 cells. In comparison with intramucosal bacteria isolated from patients with colorectal cancer (TSG, 883, 660, 838, 536, MZRa), their capacity to internalize HL-60 cells was found to be 15-20 times higher (USP15/7, USP1/4, USP3/3, SK725/5). Partial lysis (patients USP15/7, USP3/3 and SKM22) and complete lysis (patients USP1/4, SKK1-1/1, SKM1/6, SKM12/5) were detected also after internalization of bacteria by normal human lymphocytes. Compared to the amount of intracellular bacteria isolated from patients with HIV/AIDS, the ability of bacteria from patients with colorectal cancer to internalize normal human lymphocytes was significantly lower (10-15 times), yet still higher than that of bacteria isolated from healthy people. Our results present the ability of bacteria of colon cancer patients and HIV/AIDS patients to internalize HL-60 cells and normal human lymphocytes. The findings underline the potentially important function of bacteria in the induction of colorectal cancer and immunodeficiency. The particularly high detection ability of bacteria from HIV/AIDS patients to internalize normal human cells emphasizes their potentially important role in the process of AIDS.
Application of real-time PCR to postharvest physiology – DNA isolation
USDA-ARS?s Scientific Manuscript database
Real-time PCR technology has been widely used in the postharvest plant physiology research. One of the difficulties to isolate DNA from plant martial and pathogen cells is the presence of rigid polysaccharide cell walls and capsules, which physically protect DNA from cell lysis. Many materials requi...
Soto, Carmen; Bergado, Gretchen; Blanco, Rancés; Griñán, Tania; Rodríguez, Hermis; Ros, Uris; Pazos, Fabiola; Lanio, María Eliana; Hernández, Ana María; Álvarez, Carlos
2018-05-01
Sticholysin II (StII) is a pore-forming toxin of biomedical interest that belongs to the actinoporin protein family. Sticholysins are currently under examination as an active immunomodulating component of a vaccinal platform against tumoral cells and as a key element of a nucleic acids delivery system to cell cytosol. These proteins form pores in the plasma membrane leading to ion imbalance and cell lysis. However, the intracellular mechanisms triggered by actinoporins upon binding to membranes and its consequences for cell death are barely understood. Here, we have examined the cytotoxicity and intracellular responses induced by StII upon binding to human B-cell lymphoma Raji in vitro. StII cytotoxicity involves a functional actin cytoskeleton, induces cellular swelling, lysis and the concomitant release of cytosol content. In addition, StII induces calcium release mainly from the Endoplasmic Reticulum, activates Mitogen-Activated Protein Kinase ERK and impairs mitochondrial membrane potential. Furthermore, StII stimulates the expression of receptor interacting protein kinase 1 (RIP1), normally related to different forms of regulated cell death such as apoptosis and necroptosis. In correspondence, necrostatin-1, an inhibitor of this kinase, reduces StII cytotoxicity. However, the mechanism of cell death activated by StII does not involve caspases activation, typical molecular features of apoptosis and pyroptosis. Our results suggest that, beyond pore-formation and cell lysis, StII-induced cytotoxicity could involve other regulated intracellular mechanisms connected to RIP1-MEK1/2 -ERK1/2- pathways. This opens new perspectives and challenges the general point of view that these toxins induce a completely unregulated mechanism of necrotic cell death. This study contributes to a better understanding of the molecular mechanisms involved in toxin-cell interaction and the implications for cell functioning, with connotation for the exploitations of these toxins in clinical settings. Copyright © 2018 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.
Chlamydia trachomatis Cellular Exit Alters Interactions with Host Dendritic Cells
Sherrid, Ashley M.
2017-01-01
ABSTRACT The strategies utilized by pathogens to exit host cells are an area of pathogenesis which has received surprisingly little attention, considering the necessity of this step for infections to propagate. Even less is known about how exit through these pathways affects downstream host-pathogen interactions and the generation of an immune response. Chlamydia trachomatis exits host epithelial cells through two equally active mechanisms: lysis and extrusion. Studies have characterized the outcome of interactions between host innate immune cells, such as dendritic cells and macrophages, and free, extracellular Chlamydia bacteria, such as those resulting from lysis. Exit via extrusion generates a distinct, host-membrane-bound compartment of Chlamydia separate from the original infected cell. In this study, we assessed the effect of containment within extrusions upon the interaction between Chlamydia and host dendritic cells. Extrusion dramatically affected the outcome of Chlamydia-dendritic cell interactions for both the bacterium and the host cell. Dendritic cells rapidly underwent apoptosis in response to engulfment of an extrusion, while uptake of an equivalent dose of free Chlamydia had no such effect. Containment within an extrusion also prolonged bacterial survival within dendritic cells and altered the initial innate immune signaling by the dendritic cell. PMID:28223346
Effect of lipoteichoic acid and lipids on lysis of intact cells of Streptococcus faecalis.
Cleveland, R F; Daneo-Moore, L; Wicken, A J; Shockman, G D
1976-01-01
Autolysis of intact cells of Streptococcus faecalis was inhibited to a greater extent by phospholipids than by lipoteichoic acid, suggesting a possible difference in the accessibility of native autolysin to these substances. PMID:821938
Phosphoinositide-mediated oligomerization of a defensin induces cell lysis
Poon, Ivan KH; Baxter, Amy A; Lay, Fung T; Mills, Grant D; Adda, Christopher G; Payne, Jennifer AE; Phan, Thanh Kha; Ryan, Gemma F; White, Julie A; Veneer, Prem K; van der Weerden, Nicole L; Anderson, Marilyn A; Kvansakul, Marc; Hulett, Mark D
2014-01-01
Cationic antimicrobial peptides (CAPs) such as defensins are ubiquitously found innate immune molecules that often exhibit broad activity against microbial pathogens and mammalian tumor cells. Many CAPs act at the plasma membrane of cells leading to membrane destabilization and permeabilization. In this study, we describe a novel cell lysis mechanism for fungal and tumor cells by the plant defensin NaD1 that acts via direct binding to the plasma membrane phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2). We determined the crystal structure of a NaD1:PIP2 complex, revealing a striking oligomeric arrangement comprising seven dimers of NaD1 that cooperatively bind the anionic headgroups of 14 PIP2 molecules through a unique ‘cationic grip’ configuration. Site-directed mutagenesis of NaD1 confirms that PIP2-mediated oligomerization is important for fungal and tumor cell permeabilization. These observations identify an innate recognition system by NaD1 for direct binding of PIP2 that permeabilizes cells via a novel membrane disrupting mechanism. DOI: http://dx.doi.org/10.7554/eLife.01808.001 PMID:24692446
Fully integrated lab-on-a-disc for nucleic acid analysis of food-borne pathogens.
Kim, Tae-Hyeong; Park, Juhee; Kim, Chi-Ju; Cho, Yoon-Kyoung
2014-04-15
This paper describes a micro total analysis system for molecular analysis of Salmonella, a major food-borne pathogen. We developed a centrifugal microfluidic device, which integrated the three main steps of pathogen detection, DNA extraction, isothermal recombinase polymerase amplification (RPA), and detection, onto a single disc. A single laser diode was utilized for wireless control of valve actuation, cell lysis, and noncontact heating in the isothermal amplification step, thereby yielding a compact and miniaturized system. To achieve high detection sensitivity, rare cells in large volumes of phosphate-buffered saline (PBS) and milk samples were enriched before loading onto the disc by using antibody-coated magnetic beads. The entire procedure, from DNA extraction through to detection, was completed within 30 min in a fully automated fashion. The final detection was carried out using lateral flow strips by direct visual observation; detection limit was 10 cfu/mL and 10(2) cfu/mL in PBS and milk, respectively. Our device allows rapid molecular diagnostic analysis and does not require specially trained personnel or expensive equipment. Thus, we expect that it would have an array of potential applications, including in the detection of food-borne pathogens, environmental monitoring, and molecular diagnostics in resource-limited settings.
Krämer, Christina E M; Wiechert, Wolfgang; Kohlheyer, Dietrich
2016-09-01
Conventional propidium iodide (PI) staining requires the execution of multiple steps prior to analysis, potentially affecting assay results as well as cell vitality. In this study, this multistep analysis method has been transformed into a single-step, non-toxic, real-time method via live-cell imaging during perfusion with 0.1 μM PI inside a microfluidic cultivation device. Dynamic PI staining was an effective live/dead analytical tool and demonstrated consistent results for single-cell death initiated by direct or indirect triggers. Application of this method for the first time revealed the apparent antibiotic tolerance of wild-type Corynebacterium glutamicum cells, as indicated by the conversion of violet fluorogenic calcein acetoxymethyl ester (CvAM). Additional implementation of this method provided insight into the induced cell lysis of Escherichia coli cells expressing a lytic toxin-antitoxin module, providing evidence for non-lytic cell death and cell resistance to toxin production. Finally, our dynamic PI staining method distinguished necrotic-like and apoptotic-like cell death phenotypes in Saccharomyces cerevisiae among predisposed descendants of nutrient-deprived ancestor cells using PO-PRO-1 or green fluorogenic calcein acetoxymethyl ester (CgAM) as counterstains. The combination of single-cell cultivation, fluorescent time-lapse imaging, and PI perfusion facilitates spatiotemporally resolved observations that deliver new insights into the dynamics of cellular behaviour.
Zhao, Pan; Geyer, R Ryan; Boron, Walter F
2017-01-01
We report a novel carbonic-anhydrase (CA) assay and its use for quantitating red-blood-cell (RBC) lysis during stopped-flow (SF) experiments. We combine two saline solutions, one containing HEPES/pH 7.03 and the other, ~1% CO 2 /44 mM [Formula: see text]/pH 8.41, to generate an out-of-equilibrium CO 2 /[Formula: see text] solution containing ~0.5% CO 2 /22 [Formula: see text]/pH ~7.25 (10°C) in the SF reaction cell. CA catalyzes relaxation of extracellular pH to ~7.50: [Formula: see text] + H + → CO 2 + H 2 O. Proof-of-concept studies (no intact RBCs) show that the pH-relaxation rate constant ( k ΔpH )-measured via pyranine fluorescence-rises linearly with increases in [bovine CAII] or [murine-RBC lysate]. The y-intercept (no CA) was k ΔpH = 0.0183 s -1 . Combining increasing amounts of murine-RBC lysate with ostensibly intact RBCs (pre-SF hemolysis ≅0.4%)-fixing total [hemoglobin] at 2.5 μM in the reaction cell to simulate hemolysis from ostensibly 0 to 100%-causes k ΔpH to increase linearly. This y-intercept (0% lysate/100% ostensibly intact RBCs) was k ΔpH = 0.0820 s -1 , and the maximal k ΔpH (100% lysate/0% intact RBCs) was 1.304 s -1 . Thus, mean percent hemolysis in the reaction cell was ~4.9%. Phenol-red absorbance assays yield indistinguishable results. The increase from 0.4 to 4.9% presumably reflects mechanical RBC disruption during rapid mixing. In all fluorescence studies, the CA blocker acetazolamide reduces k ΔpH to near-uncatalyzed values, implying that all CA activity is extracellular. Our lysis assay is simple, sensitive, and precise, and will be valuable for correcting for effects of lysis in physiological SF experiments. The underlying CA assay, applied to blood plasma, tissue-culture media, and organ perfusates could assess lysis in a variety of applications.
Zhao, Pan; Geyer, R. Ryan; Boron, Walter F.
2017-01-01
We report a novel carbonic-anhydrase (CA) assay and its use for quantitating red-blood-cell (RBC) lysis during stopped-flow (SF) experiments. We combine two saline solutions, one containing HEPES/pH 7.03 and the other, ~1% CO2/44 mM HCO3-/pH 8.41, to generate an out-of-equilibrium CO2/HCO3- solution containing ~0.5% CO2/22 HCO3-/pH ~7.25 (10°C) in the SF reaction cell. CA catalyzes relaxation of extracellular pH to ~7.50: HCO3- + H+ → CO2 + H2O. Proof-of-concept studies (no intact RBCs) show that the pH-relaxation rate constant (kΔpH)—measured via pyranine fluorescence—rises linearly with increases in [bovine CAII] or [murine-RBC lysate]. The y-intercept (no CA) was kΔpH = 0.0183 s−1. Combining increasing amounts of murine-RBC lysate with ostensibly intact RBCs (pre-SF hemolysis ≅0.4%)—fixing total [hemoglobin] at 2.5 μM in the reaction cell to simulate hemolysis from ostensibly 0 to 100%—causes kΔpH to increase linearly. This y-intercept (0% lysate/100% ostensibly intact RBCs) was kΔpH = 0.0820 s−1, and the maximal kΔpH (100% lysate/0% intact RBCs) was 1.304 s−1. Thus, mean percent hemolysis in the reaction cell was ~4.9%. Phenol-red absorbance assays yield indistinguishable results. The increase from 0.4 to 4.9% presumably reflects mechanical RBC disruption during rapid mixing. In all fluorescence studies, the CA blocker acetazolamide reduces kΔpH to near-uncatalyzed values, implying that all CA activity is extracellular. Our lysis assay is simple, sensitive, and precise, and will be valuable for correcting for effects of lysis in physiological SF experiments. The underlying CA assay, applied to blood plasma, tissue-culture media, and organ perfusates could assess lysis in a variety of applications. PMID:28400735
Virus Resistance Is Not Costly in a Marine Alga Evolving under Multiple Environmental Stressors
Heath, Sarah E.; Knox, Kirsten; Vale, Pedro F.; Collins, Sinead
2017-01-01
Viruses are important evolutionary drivers of host ecology and evolution. The marine picoplankton Ostreococcus tauri has three known resistance types that arise in response to infection with the Phycodnavirus OtV5: susceptible cells (S) that lyse following viral entry and replication; resistant cells (R) that are refractory to viral entry; and resistant producers (RP) that do not all lyse but maintain some viruses within the population. To test for evolutionary costs of maintaining antiviral resistance, we examined whether O. tauri populations composed of each resistance type differed in their evolutionary responses to several environmental drivers (lower light, lower salt, lower phosphate and a changing environment) in the absence of viruses for approximately 200 generations. We did not detect a cost of resistance as measured by life-history traits (population growth rate, cell size and cell chlorophyll content) and competitive ability. Specifically, all R and RP populations remained resistant to OtV5 lysis for the entire 200-generation experiment, whereas lysis occurred in all S populations, suggesting that resistance is not costly to maintain even when direct selection for resistance was removed, or that there could be a genetic constraint preventing return to a susceptible resistance type. Following evolution, all S population densities dropped when inoculated with OtV5, but not to zero, indicating that lysis was incomplete, and that some cells may have gained a resistance mutation over the evolution experiment. These findings suggest that maintaining resistance in the absence of viruses was not costly. PMID:28282867
Phage lytic proteins: biotechnological applications beyond clinical antimicrobials
USDA-ARS?s Scientific Manuscript database
Most bacteriophages encode two types of cell wall lytic proteins: Endolysins (lysins) and virion-associated peptidoglycan hydrolases. Both enzymes have the ability to degrade the peptidoglycan of Gram positive bacteria resulting in cell lysis when they are applied externally. Bacteriophage lytic p...
Peripolesis followed by cytotoxicity in chronic idiopathic inflammatory bowel disease.
Wilders, M M; Drexhage, H A; Kokjé, M; Verspaget, H W; Meuwissen, S G
1984-01-01
Antigen presenting veiled cells have recently been described in cell suspensions prepared from the gut wall of patients with chronic idiopathic inflammatory bowel disease (CIBD). The normal gut wall is virtually devoid of these cells. In this report we describe a phenomenon known as peripolesis studied by phase contrast cinematography. This is a process in which lymphocytes are seen to wander around larger target cells. These could be identified ultrastructurally as Ia positive veiled cells. In most cases peripolesis was followed by lysis of the target cell. Peripolesis was recorded in cell suspensions of three out of seven patients with ulcerative colitis and in three out of nine patients with Crohn's disease; furthermore peripolesis was observed in one out of two patients with non-classifiable CIBD. In four cell suspensions showing peripolesis, cell lysis could be recorded and was especially striking in ulcerative colitis. Peripolesis involving veiled cells was previously described in delayed hypersensitivity reactions. This study lends support to the concept that delayed allergic reactivity plays a part in chronic inflammatory bowel disease. The antigens involved are, however, completely unknown. Images Fig. 1 Fig. 2 Fig. 3 PMID:6380839
Chimeric Antigen Receptor–Modified T Cells in Chronic Lymphoid Leukemia
Porter, David L.; Levine, Bruce L.; Kalos, Michael; Bagg, Adam; June, Carl H.
2012-01-01
SUMMARY We designed a lentiviral vector expressing a chimeric antigen receptor with specificity for the B-cell antigen CD19, coupled with CD137 (a costimulatory receptor in T cells [4-1BB]) and CD3-zeta (a signal-transduction component of the T-cell antigen receptor) signaling domains. A low dose (approximately 1.5×105 cells per kilogram of body weight) of autologous chimeric antigen receptor–modified T cells reinfused into a patient with refractory chronic lymphocytic leukemia (CLL) expanded to a level that was more than 1000 times as high as the initial engraftment level in vivo, with delayed development of the tumor lysis syndrome and with complete remission. Apart from the tumor lysis syndrome, the only other grade 3/4 toxic effect related to chimeric antigen receptor T cells was lymphopenia. Engineered cells persisted at high levels for 6 months in the blood and bone marrow and continued to express the chimeric antigen receptor. A specific immune response was detected in the bone marrow, accompanied by loss of normal B cells and leukemia cells that express CD19. Remission was ongoing 10 months after treatment. Hypogammaglobulinemia was an expected chronic toxic effect. PMID:21830940
Observations on the antibody-dependent cytotoxic cell by scanning electron microscopy.
Inglis, J R; Penhale, W J; Farmer, A; Irvine, W J; Williams, A E
1975-01-01
The cytotoxic effect of human peripheral blood leucocytes on antibody-coated sheep erythrocyte monolayers has been investigated using scanning electron microscopy. Only a small proportion of leucocytes were found to adhere to the monolayers. A progressive destruction was observed beginning as small plaque-like areas of erythrocyte clearing which later became confluent. Three distinct cell types were found to be associated with the areas of lysis. No destruction was observed in control monolayers incubated for a similar period in the absence of either antibody of leucocytes. Surface changes in the erthrocytes adjacent to the leucocytes suggest that mechanical factors may be involved in erythrocyte lysis in this system. It is concluded that more than one leucocyte type may damage antibody-coated erythrocytes, possibly by a mechanism involving attachment to and mechanical disruption of the red cell membrane. Images FIG. 5 FIG. 2 FIG. 3 FIG. 1 FIG. 2 FIG. 4 PMID:1191386
Role of the SRRz/Rz1 lambdoid lysis cassette in the pathoadaptive evolution of Shigella.
Leuzzi, Adriano; Grossi, Milena; Di Martino, Maria Letizia; Pasqua, Martina; Micheli, Gioacchino; Colonna, Bianca; Prosseda, Gianni
2017-06-01
Shigella, the etiological agent of bacillary dysentery (shigellosis), is a highly adapted human pathogen. It evolved from an innocuous ancestor resembling the Escherichia coli strain by gain and loss of genes and functions. While the gain process concerns the acquisition of the genetic determinants of virulence, the loss is related to the adaptation of the genome to the new pathogenic status and occurs by pathoadaptive mutation of antivirulence genes. In this study, we highlight that the SRRz/Rz 1 lambdoid lysis cassette, even though stably adopted in E. coli K12 by virtue of its beneficial effect on cell physiology, has undergone a significant decay in Shigella. Moreover, we show the antivirulence nature of the SRRz/Rz 1 lysis cassette in Shigella. In fact, by restoring the SRRz/Rz 1 expression in this pathogen, we observe an increased release of peptidoglycan fragments, causing an unbalance in the fine control exerted by Shigella on host innate immunity and a mitigation of its virulence. This strongly affects the virulence of Shigella and allows to consider the loss of SRRz/Rz 1 lysis cassette as another pathoadaptive event in the life of Shigella. Copyright © 2017 Elsevier GmbH. All rights reserved.
Pyroptosis induced by enterovirus A71 infection in cultured human neuroblastoma cells.
Zhu, Xiaojuan; Wu, Tao; Chi, Ying; Ge, Yiyue; Wu, Bin; Zhou, Minghao; Zhu, Fengcai; Ji, Minjun; Cui, Lunbiao
2018-06-07
Enterovirus A71 (EV-A71) infection can cause hand, foot and mouth disease (HFMD), and even fatal meningoencephalitis. Unfortunately, there is currently no effective treatment for EV-A71 infection due to the lack of understanding of the mechanism of neurological diseases. In this study, we employed SH-SY5Y human neuroblastoma cells to explore the roles of caspase-1 in neuropathogenesis. The expression and activity of caspase-1 were analyzed. The potential immuneconsequences mediated by caspase-1 including cell death, lysis, DNA degradation, and secretion of pro-inflammatory were also examined. We found the gene expression levels of caspase-1, IL-1β, IL-18 and active caspase-1 were markedly increased in the SH-SY5Y cells at 48 h post EV-A71 infection. The cell death, lysis, and DNA degradation were also increased during infection, which could be significantly alleviated by caspase-1 inhibition. These observations provided additional experimental evidence supporting caspase-1-mediated pyroptosis as a novel pathway of inflammatory programmed cell death. Copyright © 2018 Elsevier Inc. All rights reserved.
Devarapu, Satish Kumar; Mamidi, Srinivas; Plöger, Frank; Dill, Othmar; Blixt, Ola; Kirschfink, Michael; Schwartz-Albiez, Reinhard
2016-06-15
A small percentage of healthy donors identified in the Western population carry antibodies in their peripheral blood which convey cytotoxic activity against certain human melanoma and neuroblastoma cell lines. We measured the cytotoxic activity of sera and plasmas from healthy donors on the human neuroblastoma cell line Kelly and various melanoma cell lines. Antibodies of IgM isotype, presumably belonging to the class of naturally occurring antibodies, exerted cytotoxic activity in a complement-dependent fashion. Apart from complement-dependent tumor cell lysis, we observed C3 opsonization in all tumor cell lines upon treatment with cytotoxic plasmas. Cell lines tested primarily expressed membrane complement regulatory proteins (mCRP) CD46, CD55 and CD59 to various extents. Blocking of mCRPs by monoclonal antibodies enhanced cell lysis and opsonization, though some melanoma cells remained resistant to complement attack. Epitopes recognized by cytotoxic antibodies were represented by gangliosides such as GD2 and GD3, as evidenced by cellular sialidase pretreatment and enhanced expression of distinct gangliosides. It remains to be clarified why only a small fraction of healthy persons carry these antitumor cytotoxic antibodies. © 2016 UICC.
Algicidal microorganisms and secreted algicides: New tools to induce microalgal cell disruption.
Demuez, Marie; González-Fernández, Cristina; Ballesteros, Mercedes
2015-12-01
Cell disruption is one of the most critical steps affecting the economy and yields of biotechnological processes for producing biofuels from microalgae. Enzymatic cell disruption has shown competitive results compared to mechanical or chemical methods. However, the addition of enzymes implies an associated cost in the overall production process. Recent studies have employed algicidal microorganisms to perform enzymatic cell disruption and degradation of microalgae biomass in order to reduce this associated cost. Algicidal microorganisms induce microalgae growth inhibition, death and subsequent lysis. Secreted algicidal molecules and enzymes produced by bacteria, cyanobacteria, viruses and the microalga themselves that are capable of inducing algal death are classified, and the known modes of action are described along with insights into cell-to-cell interaction and communication. This review aims to provide information regarding microalgae degradation by microorganisms and secreted algicidal substances that would be useful for microalgae cell breakdown in biofuels production processes. A better understanding of algae-to-algae communication and the specific mechanisms of algal cell lysis is expected to be an important breakthrough for the broader application of algicidal microorganisms in biological cell disruption and the production of biofuels from microalgae biomass. Copyright © 2015 Elsevier Inc. All rights reserved.
Carnes, Aaron E; Hodgson, Clague P; Luke, Jeremy M; Vincent, Justin M; Williams, James A
2009-10-15
DNA vaccines and gene medicines, derived from bacterial plasmids, are emerging as an important new class of pharmaceuticals. However, the challenges of performing cell lysis processes for plasmid DNA purification at an industrial scale are well known. To address downstream purification challenges, we have developed autolytic Escherichia coli host strains that express endolysin (phage lambdaR) in the cytoplasm. Expression of the endolysin is induced during fermentation by a heat inducible promoter. The endolysin remains in the cytoplasm, where it is separated from its peptidoglycan substrate in the cell wall; hence the cells remain alive and intact and can be harvested by the usual methods. The plasmid DNA is then recovered by autolytic extraction under slightly acidic, low salt buffer conditions and treatment with a low concentration of non-ionic detergent. Under these conditions the E. coli genomic DNA remains associated with the insoluble cell debris and is removed by a solid-liquid separation. Here, we report fermentation, lysis methods, and plasmid purification using autolytic hosts.
Lazzi, Camilla; Povolo, Milena; Locci, Francesco; Bernini, Valentina; Neviani, Erasmo; Gatti, Monica
2016-09-16
In this study, the relationship between the dynamics of the growth and lysis of lactic acid bacteria in Grana Padano cheese and the formation of the volatile flavor compounds during cheese ripening was investigated. The microbial dynamics of Grana Padano cheeses that were produced in two different dairies were followed during ripening. The total and cultivable lactic microflora, community composition as determined by length heterogeneity-PCR (LH-PCR), and extent of bacterial lysis using an intracellular enzymatic activity assay were compared among cheeses after 2, 6 and 13months of ripening in two dairies. The evolution of whole and lysed microbiota was different between the two dairies. In dairy 2, the number of total cells was higher than that in dairy 1 in all samples, and the number of cells that lysed during ripening was lower. In addition, at the beginning of ripening (2months), the community structure of the cheese from dairy 2 was more complex and was composed of starter lactic acid bacteria (Lactobacillus helveticus and Lactobacillus delbrueckii) and NSLAB, possibly arising from raw milk, including Lactobacillus rhamnosus/Lactobacillus casei and Pediococcus acidilactici. On the other hand, the cheese from dairy 1 that ripened for 2months was mainly composed of the SLAB L. helveticus and L. delbrueckii. An evaluation of the free-DNA fraction through LH-PCR identified those species that had a high degree of lysis. Data on the dynamics of bacterial growth and lysis were evaluated with respect to the volatile profile and the organic acid content of the two cheeses after 13months of ripening, producing very different results. Cheese from dairy 1 showed a higher content of free fatty acids, particularly those deriving from milk fat lipolysis, benzaldehyde and organic acids, such as pGlu and citric. In contrast, cheese from dairy 2 had a greater amount of ketones, alcohols, hydrocarbons, acetic acid and propionic acid. Based on these results, we can conclude that in the first cheese, the intracellular enzymes that were released from lysis were mainly involved in aroma formation, whereas in the second cheese, the greater complexity of volatile compounds may be associated with its more complex microbial composition caused from SLAB lysis and NSLAB (mainly L. rhamnosus/L. casei) growth during ripening. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Huifa; Jenkins, Gareth; Zou, Yuan; Zhu, Zhi; Yang, Chaoyong James
2012-04-17
A microfluidic device for performing single copy, emulsion Reverse Transcription Polymerase Chain Reaction (RT-PCR) within agarose droplets is presented. A two-aqueous-inlet emulsion droplet generator was designed and fabricated to produce highly uniform monodisperse picoliter agarose emulsion droplets with RT-PCR reagents in carrier oil. Template RNA or cells were delivered from one inlet with RT-PCR reagents/cell lysis buffer delivered separately from the other. Efficient RNA/cell encapsulation and RT-PCR at the single copy level was achieved in agarose-in-oil droplets, which, after amplification, can be solidified into agarose beads for further analysis. A simple and efficient method to graft primer to the polymer matrix using 5'-acrydite primer was developed to ensure highly efficient trapping of RT-PCR products in agarose. High-throughput single RNA molecule/cell RT-PCR was demonstrated in stochastically diluted solutions. Our results indicate that single-molecule RT-PCR can be efficiently carried out in agarose matrix. Single-cell RT-PCR was successfully performed which showed a clear difference in gene expression level of EpCAM, a cancer biomarker gene, at the single-cell level between different types of cancer cells. This work clearly demonstrates for the first time, single-copy RT-PCR in agarose droplets. We believe this will open up new possibilities for viral RNA detection and single-cell transcription analysis.
Okochi, Mina; Koike, Shinji; Tanaka, Masayoshi; Honda, Hiroyuki
2017-07-15
An on-chip gene expression analysis compartmentalized in droplets was developed for detection of cancer cells at a single-cell level. The chip consists of a keyhole-shaped reaction chamber with hydrophobic modification employing a magnetic bead-droplet-handling system with a gate for bead separation. Using three kinds of water-based droplets in oil, a droplet with sample cells, a lysis buffer with magnetic beads, and RT-PCR buffer, parallel magnetic manipulation and fusion of droplets were performed using a magnet-handling device containing small external magnet patterns in an array. The actuation with the magnet offers a simple system for droplet manipulation that allows separation and fusion of droplets containing magnetic beads. After reverse transcription and amplification by thermal cycling, fluorescence was obtained for detection of overexpressing genes. For clinical detection of gastric cancer cells in peritoneal washing, the Her2-overexpressing gastric cancer cells spiked within normal cells was detected by gene expression analysis of droplets containing an average of 2.5 cells. Our developed droplet-based cancer detection system manipulated by external magnetic force without pumps or valves offers a simple and flexible set-up for transcriptional detection of cancer cells, and will be greatly advantageous for less-invasive clinical diagnosis and prognostic prediction. Copyright © 2016 Elsevier B.V. All rights reserved.
Hupert, Mateusz L; Jackson, Joshua M; Wang, Hong; Witek, Małgorzata A; Kamande, Joyce; Milowsky, Matthew I; Whang, Young E; Soper, Steven A
2014-10-01
Microsystem-based technologies are providing new opportunities in the area of in vitro diagnostics due to their ability to provide process automation enabling point-of-care operation. As an example, microsystems used for the isolation and analysis of circulating tumor cells (CTCs) from complex, heterogeneous samples in an automated fashion with improved recoveries and selectivity are providing new opportunities for this important biomarker. Unfortunately, many of the existing microfluidic systems lack the throughput capabilities and/or are too expensive to manufacture to warrant their widespread use in clinical testing scenarios. Here, we describe a disposable, all-polymer, microfluidic system for the high-throughput (HT) isolation of CTCs directly from whole blood inputs. The device employs an array of high aspect ratio (HAR), parallel, sinusoidal microchannels (25 µm × 150 µm; W × D; AR = 6.0) with walls covalently decorated with anti-EpCAM antibodies to provide affinity-based isolation of CTCs. Channel width, which is similar to an average CTC diameter (12-25 µm), plays a critical role in maximizing the probability of cell/wall interactions and allows for achieving high CTC recovery. The extended channel depth allows for increased throughput at the optimized flow velocity (2 mm/s in a microchannel); maximizes cell recovery, and prevents clogging of the microfluidic channels during blood processing. Fluidic addressing of the microchannel array with a minimal device footprint is provided by large cross-sectional area feed and exit channels poised orthogonal to the network of the sinusoidal capillary channels (so-called Z-geometry). Computational modeling was used to confirm uniform addressing of the channels in the isolation bed. Devices with various numbers of parallel microchannels ranging from 50 to 320 have been successfully constructed. Cyclic olefin copolymer (COC) was chosen as the substrate material due to its superior properties during UV-activation of the HAR microchannels surfaces prior to antibody attachment. Operation of the HT-CTC device has been validated by isolation of CTCs directly from blood secured from patients with metastatic prostate cancer. High CTC sample purities (low number of contaminating white blood cells, WBCs) allowed for direct lysis and molecular profiling of isolated CTCs.
USDA-ARS?s Scientific Manuscript database
Glioblastoma multiforme (GBM) remains frustratingly impervious to any existing therapy. We have previously shown that GBM is sensitive to recognition and lysis by ex vivo activated gamma delta T cells, a minor subset of lymphocytes that innately recognize autologous stress-associated target antigens...
Van Epps, Dennis E.; Andersen, Burton R.
1974-01-01
The effects of streptolysin O (SO) (1 to 4 hemolytic units) on the mobility of neutrophilic leukocytes from humans, baboons, sheep, and rabbits were compared. After SO treatment, chemotaxis and random mobility of human neutrophils were markedly suppressed, baboon and sheep neutrophils were partially suppressed, and rabbit neutrophils were unaffected and demonstrated normal chemotaxis and mobility. The amounts of SO used in the mobility studies caused no leukocyte lysis or trypan blue uptake by human, baboon, or sheep cells, and minimal lysis or trypan blue uptake by rabbit cells. The possible involvement of immune mediators in the observed inhibition of human neutrophils was considered and excluded by the following studies. White blood cells from humans with humoral or cellular immune deficiencies responded in a manner similar to normal human cells; supernatant solutions from SO-treated human white blood cells did not contain a chemotactic suppressor; preincubation of SO with cholesterol (an inhibitor of SO hemolytic activity) caused loss of the chemotactic suppressive effect of the toxin on human leukocytes; and leukocytes from rabbits preimmunized with SO remained refractory to chemotactic suppression. Images PMID:4128632
Muirhead, K A; Wallace, P K; Schmitt, T C; Frescatore, R L; Franco, J A; Horan, P K
1986-01-01
As the diagnostic utility of lymphocyte subset analysis has been recognized in the clinical research laboratory, a wide variety of reagents and cell preparation, staining and analysis methods have also been described. Methods that are perfectly suitable for analysis of smaller sample numbers in the biological or clinical research setting are not always appropriate and/or applicable in the setting of a high volume clinical reference laboratory. We describe here some of the specific considerations involved in choosing a method for flow cytometric analysis which minimizes sample preparation and data analysis time while maximizing sample stability, viability, and reproducibility. Monoclonal T- and B-cell reagents from three manufacturers were found to give equivalent results for a reference population of healthy individuals. This was true whether direct or indirect immunofluorescence staining was used and whether cells were prepared by Ficoll-Hypaque fractionation (FH) or by lysis of whole blood. When B cells were enumerated using a polyclonal anti-immunoglobulin reagent, less cytophilic immunoglobulin staining was present after lysis than after FH preparation. However, both preparation methods required additional incubation at 37 degrees C to obtain results concordant with monoclonal B-cell reagents. Standard reagents were chosen on the basis of maximum positive/negative separation and the availability of appropriate negative controls. The effects of collection medium and storage conditions on sample stability and reproducibility of subset analysis were also assessed. Specimens collected in heparin and stored at room temperature in buffered medium gave reproducible results for 3 days after specimen collection, using either FH or lysis as the preparation method. General strategies for instrument optimization, quality control, and biohazard containment are also discussed.
NASA Astrophysics Data System (ADS)
Nieschke, Kathleen; Mittag, Anja; Golab, Karolina; Bocsi, Jozsef; Pierzchalski, Arkadiusz; Kamysz, Wojciech; Tarnok, Attila
2014-03-01
Toxicity test of new chemicals belongs to the first steps in the drug screening, using different cultured cell lines. However, primary human cells represent the human organism better than cultured tumor derived cell lines. We developed a very gentle toxicity assay for isolation and incubation of human peripheral blood leukocytes (PBL) and tested it using different bioactive oligopeptides (OP). Effects of different PBL isolation methods (red blood cell lysis; Histopaque isolation among others), different incubation tubes (e.g. FACS tubes), anticoagulants and blood sources on PBL viability were tested using propidium iodide-exclusion as viability measure (incubation time: 60 min, 36°C) and flow cytometry. Toxicity concentration and time-depended effects (10-60 min, 36 °C, 0-100 μg /ml of OP) on human PBL were analyzed. Erythrocyte lysis by hypotonic shock (dH2O) was the fastest PBL isolation method with highest viability (>85%) compared to NH4Cl-Lysis (49%). Density gradient centrifugation led to neutrophil granulocyte cell loss. Heparin anticoagulation resulted in higher viability than EDTA. Conical 1.5 mL and 2 mL micro-reaction tubes (both polypropylene (PP)) had the highest viability (99% and 97%) compared to other tubes, i.e. three types of 5.0 mL round-bottom tubes PP (opaque-60%), PP (blue-62%), Polystyrene (PS-64%). Viability of PBL did not differ between venous and capillary blood. A gentle reproducible preparation and analytical toxicity-assay for human PBL was developed and evaluated. Using our assay toxicity, time-course, dose-dependence and aggregate formation by OP could be clearly differentiated and quantified. This novel assay enables for rapid and cost effective multiparametric toxicological screening and pharmacological testing on primary human PBL and can be adapted to high-throughput-screening.°z
Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells
2010-01-01
Background In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry. To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process. To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. Results In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared. During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation. During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity. High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. Conclusions The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells. PMID:20831775
Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells.
Peternel, Spela; Komel, Radovan
2010-09-10
In recent years bacterial inclusion bodies (IBs) were recognised as highly pure deposits of active proteins inside bacterial cells. Such active nanoparticles are very interesting for further downstream protein isolation, as well as for many other applications in nanomedicine, cosmetic, chemical and pharmaceutical industry.To prepare large quantities of a high quality product, the whole bioprocess has to be optimised. This includes not only the cultivation of the bacterial culture, but also the isolation step itself, which can be of critical importance for the production process.To determine the most appropriate method for the isolation of biologically active nanoparticles, three methods for bacterial cell disruption were analyzed. In this study, enzymatic lysis and two mechanical methods, high-pressure homogenization and sonication, were compared.During enzymatic lysis the enzyme lysozyme was found to attach to the surface of IBs, and it could not be removed by simple washing. As this represents an additional impurity in the engineered nanoparticles, we concluded that enzymatic lysis is not the most suitable method for IBs isolation.During sonication proteins are released (lost) from the surface of IBs and thus the surface of IBs appears more porous when compared to the other two methods. We also found that the acoustic output power needed to isolate the IBs from bacterial cells actually damages proteins structures, thereby causing a reduction in biological activity.High-pressure homogenization also caused some damage to IBs, however the protein loss from the IBs was negligible. Furthermore, homogenization had no side-effects on protein biological activity. The study shows that among the three methods tested, homogenization is the most appropriate method for the isolation of active nanoparticles from bacterial cells.
Levin, D; Jonak, J; Harris, T N
1977-01-01
Dinitrophenyl-bovine albumin was coupled at room temperature to sheep red blood cells in a procedure which minimized spontaneous lysis and allowed the preparation of large batches and their use for at least 3 weeks. The modified erythrocytes were used as a substrate for detecting local hemolytic plaques in agar by myeloma MOPC 315 cells, which secrete a paraprotein IgA with high affinity for dinitrophenyl ligand. Conditions maximizing the number of plaques formed by a given number of tumor cells were found to include coupling the erythrocytes at 1 mg/ml dinitrophenyl-bovine albumin with a molar ratio of about 50, and incubation with an amino-to-carboxy cross-linking agent, 1-ethyl-3(3 dimethyl aminopropyl) carbodiimide, at 2 mg/ml for 50 min. The method thus developed was employed to measure cellular and antibody-dependent immune reactions against the MOPC 315 cells. The experimental results show comparisons of the plaque technique with other measurements of tumor cell injury. The nature of the assay, which requires only 500 cells per plating, and which tests the synthetic capacity of single cells, suggests its use in experiments which limit the number of target cells, and in immune reactions causing injury, but not necessarily lysis, of the target cells.
The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...
Single cell and single molecule techniques for the analysis of the epigenome
NASA Astrophysics Data System (ADS)
Wallin, Christopher Benjamin
Epigenetic regulation is a critical biological process for the health and development of a cell. Epigenetic regulation is facilitated by covalent modifications to the underlying DNA and chromatin proteins. A fundamental understanding of these epigenetic modifications and their associated interactions at the molecular scale is necessary to explain phenomena including cellular identity, stem cell plasticity, and neoplastic transformation. It is widely known that abnormal epigenetic profiles have been linked to many diseases, most notably cancer. While the field of epigenetics has progressed rapidly with conventional techniques, significant advances remain to be made with respect to combinatoric analysis of epigenetic marks and single cell epigenetics. Therefore, in this dissertation, I will discuss our development of devices and methodologies to address these pertinent issues. First, we designed a preparatory polydimethylsiloxane (PDMS) microdevice for the extraction, purification, and stretching of human chromosomal DNA and chromatin from small cell populations down to a single cell. The valveless device captures cells by size exclusion within the micropillars, entraps the DNA or chromatin in the micropillars after cell lysis, purifies away the cellular debris, and fluorescently labels the DNA and/or chromatin all within a single reaction chamber. With the device, we achieve nearly 100% extraction efficiency of the DNA. The device is also used for in-channel immunostaining of chromatin followed by downstream single molecule chromatin analysis in nanochannels (SCAN). Second, using multi-color, time-correlated single molecule measurements in nanochannels, simultaneous coincidence detection of 2 epigenetic marks is demonstrated. Coincidence detection of 3 epigenetic marks is also established using a pulsed interleaved excitation scheme. With these two promising results, genome-wide quantification of epigenetic marks was pursued. Unfortunately, quantitative SCAN never materialized. Reasons for this, including poor signal to background, are explained in detail. Third, development of mobility-SCAN, an analytical technique for measuring and analyzing single molecules based on their fluorescent signature and their electrophoretic mobility in nanochannels is described. We use the technique to differentiate biomolecules from complex mixtures and derive parameters such as diffusion coefficients and effective charges. Finally, the device is used to detect binding interactions of various complexes similar to affinity capillary electrophoresis, but on a single molecule level. Fourth, we conclude by briefly discussing SCAN-sort, a technique to sort individual chromatin molecules based on their fluorescent emissions for further downstream analysis such as DNA sequencing. We demonstrate a 2-fold enrichment of chromatin from sorting and discuss possible system modifications for better performance in the future.
Nanochannel Electroporation as a Platform for Living Cell Interrogation in Acute Myeloid Leukemia.
Zhao, Xi; Huang, Xiaomeng; Wang, Xinmei; Wu, Yun; Eisfeld, Ann-Kathrin; Schwind, Sebastian; Gallego-Perez, Daniel; Boukany, Pouyan E; Marcucci, Guido I; Lee, Ly James
2015-12-01
A living cell interrogation platform based on nanochannel electroporation is demonstrated with analysis of RNAs in single cells. This minimally invasive process is based on individual cells and allows both multi-target analysis and stimulus-response analysis by sequential deliveries. The unique platform possesses a great potential to the comprehensive and lysis-free nucleic acid analysis on rare or hard-to-transfect cells.
Hamilton, Duane H; McCampbell, Kristen K; Palena, Claudia
2018-01-01
The acquisition of mesenchymal features by carcinoma cells is now recognized as a driver of metastasis and tumor resistance to a range of anticancer therapeutics, including chemotherapy, radiation, and certain small-molecule targeted therapies. With the recent successful implementation of immunotherapies for the treatment of various types of cancer, there is growing interest in understanding whether an immunological approach could be effective at eradicating carcinoma cells bearing mesenchymal features. Recent studies, however, demonstrated that carcinoma cells that have acquired mesenchymal features may also exhibit decreased susceptibility to lysis mediated by immune effector cells, including antigen-specific CD8 + T cells, innate natural killer (NK), and lymphokine-activated killer (LAK) cells. Here, we investigated the mechanism involved in the immune resistance of carcinoma cells that express very high levels of the transcription factor brachyury, a molecule previously shown to drive the acquisition of mesenchymal features by carcinoma cells. Our results demonstrate that very high levels of brachyury expression drive the loss of the cyclin-dependent kinase inhibitor 1 (p21CIP1, p21), an event that results in decreased tumor susceptibility to immune-mediated lysis. We show here that reconstitution of p21 expression markedly increases the lysis of brachyury-high tumor cells mediated by antigen-specific CD8 + T cells, NK, and LAK cells, TNF-related apoptosis-inducing ligand, and chemotherapy. Several reports have now demonstrated a role for p21 loss in cancer as an inducer of the epithelial-mesenchymal transition. The results from the present study situate p21 as a central player in many of the aspects of the phenomenon of brachyury-mediated mesenchymalization of carcinomas, including resistance to chemotherapy and immune-mediated cytotoxicity. We also demonstrate here that the defects in tumor cell death described in association with very high levels of brachyury could be alleviated via the use of a WEE1 inhibitor. Several vaccine platforms targeting brachyury have been developed and are undergoing clinical evaluation. These studies provide further rationale for the use of WEE1 inhibition in combination with brachyury-based immunotherapeutic approaches.
Hamilton, Duane H.; McCampbell, Kristen K.; Palena, Claudia
2018-01-01
The acquisition of mesenchymal features by carcinoma cells is now recognized as a driver of metastasis and tumor resistance to a range of anticancer therapeutics, including chemotherapy, radiation, and certain small-molecule targeted therapies. With the recent successful implementation of immunotherapies for the treatment of various types of cancer, there is growing interest in understanding whether an immunological approach could be effective at eradicating carcinoma cells bearing mesenchymal features. Recent studies, however, demonstrated that carcinoma cells that have acquired mesenchymal features may also exhibit decreased susceptibility to lysis mediated by immune effector cells, including antigen-specific CD8+ T cells, innate natural killer (NK), and lymphokine-activated killer (LAK) cells. Here, we investigated the mechanism involved in the immune resistance of carcinoma cells that express very high levels of the transcription factor brachyury, a molecule previously shown to drive the acquisition of mesenchymal features by carcinoma cells. Our results demonstrate that very high levels of brachyury expression drive the loss of the cyclin-dependent kinase inhibitor 1 (p21CIP1, p21), an event that results in decreased tumor susceptibility to immune-mediated lysis. We show here that reconstitution of p21 expression markedly increases the lysis of brachyury-high tumor cells mediated by antigen-specific CD8+ T cells, NK, and LAK cells, TNF-related apoptosis-inducing ligand, and chemotherapy. Several reports have now demonstrated a role for p21 loss in cancer as an inducer of the epithelial–mesenchymal transition. The results from the present study situate p21 as a central player in many of the aspects of the phenomenon of brachyury-mediated mesenchymalization of carcinomas, including resistance to chemotherapy and immune-mediated cytotoxicity. We also demonstrate here that the defects in tumor cell death described in association with very high levels of brachyury could be alleviated via the use of a WEE1 inhibitor. Several vaccine platforms targeting brachyury have been developed and are undergoing clinical evaluation. These studies provide further rationale for the use of WEE1 inhibition in combination with brachyury-based immunotherapeutic approaches. PMID:29774202
Minagawa, Masahiro; Kawamura, Hiroki; Liu, Zhangxu; Govindarajan, Sugantha; Dennert, Gunther
2005-06-01
Injection of adenoviral constructs causes liver infection prompting immunity, which suppress viral gene expression. Innate and adaptive immunity mediate these processes raising the question which pathways are the most prominent. Adenovirus expressing the beta-galactosidase (beta-gal) gene was injected into normal and immunodeficient mice. Elimination of beta-gal-expressing hepatocytes and increases in liver enzymes were assayed. Major histocompatibility complex (MHC) class I densities, perforin channel insertion and apoptosis by Fas and tumor necrosis factor (TNF)-alpha were assayed. At high virus doses, suppression of viral gene expression was as efficient in immunodeficient as in normal mice, while at low doses effects of cytotoxic T lymphocytes (CTL) were demonstrable. Despite CTL priming and elimination of infected hepatocytes no liver injury is detected. Hepatocyte MHC I densities were able to trigger CTL granule exocytosis and perforin lysis in vitro but not in vivo. This is we show is because of decreased sensitivity of hepatocytes from infected mice to perforin and increased sensitivity to Fas and TNF-alpha lysis. Effector cells of the innate immune system are exceedingly effective in suppressing adenoviral gene expression. Perforin-independent pathways, those mediated by TNF-alpha and Fas are very efficient in hepatocytes from virus-infected livers.
Clotrimazole enhances lysis of human erythrocytes induced by t-BHP.
Lisovskaya, Irene L; Shcherbachenko, Irina M; Volkova, Rimma I; Ataullakhanov, Fazoil I
2009-08-14
Clotrimazole (CLT) is an antifungal and antimalarial agent also effective as a Gardos channel inhibitor. In addition, CLT possesses antitumor properties. Recent data provide evidence that CLT forms a complex with heme (hemin), which produces a more potent lytic effect than heme alone. This study addressed the effect of CLT on the lysis of normal human erythrocytes induced by tert-butyl hydroperoxide (t-BHP). For the first time, it was shown that 10 microM CLT significantly enhanced the lytic effect of t-BHP on erythrocytes in both Ca(2+)-containing and Ca(2+)-free media, suggesting that the effect is not related to Gardos channels. CLT did not affect the rate of free radical generation, the kinetics of GSH degradation, methemoglobin formation and TBARS generation; therefore, we concluded that CLT does not cause additional oxidative damage to erythrocytes treated with t-BHP. It is tempted to speculate that CLT enhances t-BHP-induced changes in erythrocyte volume and lysis largely by forming a complex with hemin released during hemoglobin oxidation in erythrocytes: the CLT-hemin complex destabilizes the cell membrane more potently than hemin alone. If so, the effect of CLT on cell membrane damage during free-radical oxidation may be used to increase the efficacy of antitumor therapy.
Viral lysis, flagellate grazing potential, and bacterial production in Lake Pavin.
Bettarel, Y; Amblard, C; Sime-Ngando, T; Carrias, J-F; Sargos, D; Garabétian, F; Lavandier, P
2003-02-01
Abundances of different compartments of the microbial loop (i.e., viruses, heterotrophic bacteria, nonpigmented nanoflagellates, and pigmented nanoflagellates), bacterial heterotrophic production (BHP), viral lysis, and potential flagellate grazing impacts on the bacterial assemblages were estimated during a short-term study (24 h) conducted in June 1998 in the epilimnion (5 m) and metalimnion (10 m) of a moderate-altitude oligomesotrophic lake (Lake Pavin, France). Viral and bacterial abundances were higher in the metalimnion than in the epilimnion, whereas pigmented and nonpigmented nanoflagellates were more numerous in the epilimnion. The control of the BHP due to viral lysis (determined by examination of viral-containing bacteria using a transmission electron microscope) was significantly higher in the meta- (range = 6.0-33.7%, mean = 15.6%) than in the epilimnion (3.5-10.3%, 6.4%). The same was for the losses of BHP from the potential predation by nanoflagellates which ranged from 0.5 to 115.4% (mean = 38.7%) in the epilimnion, and from 0.7 to 97.5% (mean = 66.7%) in the metalimnion. Finally, estimated viral mediated mortality rates from the percentage of visibly infected cells and potential nanoflagellate grazing rates based on assumed clearance rates suggest that flagellates consumed a larger proportion of bacterial production than was lost to viral lysis.
Chromosome movement in lysed mitotic cells is inhibited by vanadate
1978-01-01
Mitotic PtK1 cells, lysed at anaphase into a carbowax 20 M Brij 58 solution, continue to move chromosomes toward the spindle poles and to move the spindle poles apart at 50% in vivo rates for 10 min. Chromosome movements can be blocked by adding metabolic inhibitors to the lysis medium and inhibition of movement can be reversed by adding ATP to the medium. Vanadate at micromolar levels reversibly inhibits dynein ATPase activity and movement of demembranated flagella and cilia. It does not affect glycerinated myofibril contraction or myosin ATPase activty at less than millimolar concentrations. Vanadate at 10-- 100 micron reversibly inhibits anaphase movement of chromosomes and spindle elongation. After lysis in vanadate, spindles lose their fusiform appearance and become more barrel shaped. In vitro microtubule polymerization is insensitive to vanadate. PMID:152767
Gautam, S C; Chikkala, N F; Lewis, I; Grabowski, D R; Finke, J H; Ganapathi, R
1992-01-01
Development of multidrug-resistance (MDR) remains a major cause of failure in the treatment of cancer with chemotherapeutic agents. In our efforts to explore alternative treatment regimens for multidrug-resistant tumors we have examined the sensitivity of MDR tumor cell lines to lymphokine activated killer (LAK) cells. Adriamycin (ADM) resistant B16-BL6 melanoma, L1210 and P388 leukemic cell lines were tested for sensitivity to lysis by LAK cells in vitro. While ADM-resistant B16-BL6 and L1210 sublines were found to exhibit at least 2-fold greater susceptibility to lysis by LAK cells, sensitivity of ADM-resistant P388 cell was similar to that of parental cells. Since ADM-resistant B16-BL6 cells were efficiently lysed by LAK cells in vitro, the efficacy of therapy with LAK cells against the ADM-resistant B16-BL6 subline in vivo was evaluated. Compared to mice bearing parental B16-BL6 tumor cells, the adoptive transfer of LAK cells and rIL2 significantly reduced formation of experimental metastases (P less than 0.009) and extended median survival time (P less than 0.001) of mice bearing ADM-resistant B16-BL6 tumor cells. Results suggest that immunotherapy with LAK cells and rIL2 may be a useful modality in the treatment of cancers with the MDR phenotype.
Human Cytomegalovirus UL18 Utilizes US6 for Evading the NK and T-Cell Responses
Kim, Youngkyun; Park, Boyoun; Cho, Sunglim; Shin, Jinwook; Cho, Kwangmin; Jun, Youngsoo; Ahn, Kwangseog
2008-01-01
Human cytomegalovirus (HCMV) US6 glycoprotein inhibits TAP function, resulting in down-regulation of MHC class I molecules at the cell surface. Cells lacking MHC class I molecules are susceptible to NK cell lysis. HCMV expresses UL18, a MHC class I homolog that functions as a surrogate to prevent host cell lysis. Despite a high level of sequence and structural homology between UL18 and MHC class I molecules, surface expression of MHC class I, but not UL18, is down regulated by US6. Here, we describe a mechanism of action by which HCMV UL18 avoids attack by the self-derived TAP inhibitor US6. UL18 abrogates US6 inhibition of ATP binding by TAP and, thereby, restores TAP-mediated peptide translocation. In addition, UL18 together with US6 interferes with the physical association between MHC class I molecules and TAP that is required for optimal peptide loading. Thus, regardless of the recovery of TAP function, surface expression of MHC class I molecules remains decreased. UL18 represents a unique immune evasion protein that has evolved to evade both the NK and the T cell immune responses. PMID:18688275
Cytotoxic and hemolytic effects of Tritrichomonas foetus on mammalian cells.
Burgess, D E; Knoblock, K F; Daugherty, T; Robertson, N P
1990-01-01
Geographically distinct lines of Tritrichomonas foetus were assayed for their ability to cause cytotoxicity in nucleated mammalian cells and lysis of bovine erythrocytes. T. foetus was highly cytotoxic toward a human cervical cell line (HeLa) and early bovine lymphosarcoma (BL-3) but displayed low levels of cytotoxicity against African green monkey kidney (Vero) cells. In addition to variation in the extent of cytotoxicity toward different targets, differences in the levels of cytotoxicity in the same nucleated target occurred with different parasite lines. Whole T. foetus, unfractionated whole-cell extracts, and parasite-conditioned medium (RPMI 1640 without serum) all caused lysis of bovine erythrocytes. Lytic activity in the conditioned medium was substantially reduced by repeated freezing and thawing or heating to 90 degrees C for 30 min. Damage of mammalian target cells by live T. foetus could be reduced by the presence of protease inhibitors; however, such inhibitors did not diminish the lytic effects of conditioned medium. These results suggested that proteolytic enzymes were necessary for the lytic mechanism of the live parasites but were not required once lytic factors were released into the parasite-conditioned medium. They further suggested that the lytic molecules were either proteins or had proteinaceous components. Images PMID:2228233
NASA Astrophysics Data System (ADS)
Biswas, Ananya; Deori, Meenakshi; Nivetha, A.; Mohansrinivasan, V.
2017-11-01
In the current research the effect of probiotic microorganisms viz; Lactococcus lactis and Lactobacillus plantarum on fermentation of Camellia sinensis and Punica grantum was studied. In vitro test were done to analyze the anticancer, antioxidant and atherosclerosis (clot lysis) properties of fermented juice. The juice was fermented for 48 and 96h, during which concentration of phenolic content, total acid content and free radical scavenging activity of the sample was analyzed by DPPH assay (α, α-diphenyl-β-picrylhydrazyl). Dropping of pH was observed after 48 h of fermentation. The clot lysis activity was found to be 80 % in 100μl concentration of fermented cocktail juice. The 96 h fermented sample has shown around 70% inhibition against colon cancer cell lines. Analytical study of HPLC proves the organic acid production such as ascorbic acid in superior amount for 96h of fermented sample, Based on the retention time, the corresponding peaks were detected at 4.919 and 4.831 min.
Shchetina, V N; Belanov, E F; Starobinets, Z G; Volianskiĭ, Iu L
1990-01-01
Decamethoxin is shown to be able to increase membrane permeability of Pseudomonas aeruginosa, Escherichia coli and Micrococcus lysodeikticus, that is confirmed by a loss of compounds with the absorption maximum at 260 nm by cells. Parallel with this the number of viable individuals has fallen and activity of dehydrogenases has been inhibited. The aspartate and alanine aminotransferase activity was not inhibited by decamethoxin and even increased. Decamethoxin lysed the protoplasts of the tested microorganisms. At high decamethoxin concentrations (over 500 micrograms/ml for P. aeruginosa and over 200 mu/ml--for E. coli) the outflow of components from the cells of gram-negative bacteria ceased, that may be associated with the coagulation changes in the cytoplasm. A loss of the low-molecular components by M. lysodeikticus cells and lysis of protoplasts proceeded less intensely than the same processes in the gram-negative microorganisms, that is explained by a less resistance of M. lysodeikticus to decamethoxin and earlier coagulation of the cytoplasm preventing lysis.
USDA-ARS?s Scientific Manuscript database
Background: Lysostaphin is a glycyl-glycine bacteriocin peptidoglycan hydrolase secreted by Staphylococcus simulans for degrading the peptidoglycan moieties in Staphylococcus aureus cell walls which result in cell lysis. There are known mechanisms of resistance to lysostaphin, e.g. serine in place...
Bryan, J; Redden, P; Traba, C
2016-02-01
The interaction between antibiotic-resistant Staphylococcus aureus and antibiotic-sensitive Escherichia coli biofilm-forming bacteria and Russian propolis ethanol extracts was evaluated. In this study, bacterial cell death occurred when the cell membranes of bacteria interacted specifically with the antibacterial compounds found in propolis. In order to understand the Russian propolis ethanol extract mechanism of action, microscopy and bacterial lysis studies were conducted. Results uncovered from these experiments imply that the mechanism of action of Russian propolis ethanol extracts is structural rather than functional. The results obtained throughout this study demonstrate cell membrane damage, resulting in cell lysis and eventually bacterial death. Most strains of bacteria and subsequently biofilms, have evolved and have altered their chemical composition in an attempt to protect themselves from antibiotics. The resistant nature of bacteria stems from the chemical rather than the physical means of inactivation of antibiotics. The results uncovered in this work demonstrate the potential application of Russian propolis ethanol extracts as a very efficient and effective method for bacterial and biofilm inactivation. © 2015 The Society for Applied Microbiology.
Large-scale preparation of plasmid DNA.
Heilig, J S; Elbing, K L; Brent, R
2001-05-01
Although the need for large quantities of plasmid DNA has diminished as techniques for manipulating small quantities of DNA have improved, occasionally large amounts of high-quality plasmid DNA are desired. This unit describes the preparation of milligram quantities of highly purified plasmid DNA. The first part of the unit describes three methods for preparing crude lysates enriched in plasmid DNA from bacterial cells grown in liquid culture: alkaline lysis, boiling, and Triton lysis. The second part describes four methods for purifying plasmid DNA in such lysates away from contaminating RNA and protein: CsCl/ethidium bromide density gradient centrifugation, polyethylene glycol (PEG) precipitation, anion-exchange chromatography, and size-exclusion chromatography.
Method and apparatus for iterative lysis and extraction of algae
Chew, Geoffrey; Boggs, Tabitha; Dykes, Jr., H. Waite H.; Doherty, Stephen J.
2015-12-01
A method and system for processing algae involves the use of an ionic liquid-containing clarified cell lysate to lyse algae cells. The resulting crude cell lysate may be clarified and subsequently used to lyse algae cells. The process may be repeated a number of times before a clarified lysate is separated into lipid and aqueous phases for further processing and/or purification of desired products.
Herbert, A G; Le Gros, G S; Bidawid, S; Watson, J D
1984-01-01
Cytotoxic effector cell populations in murine spleen can be characterized by the phenotype of the cytotoxic cells or the nature of target cells. Lytic events can be antigen-specific, MHC-restricted and clonal, or target cell-specific but apparently non-MHC-restricted. Two cytotoxic effectors of this latter category are spontaneous and natural killers. Normal spleen cells from (BALB/c X DBA/2J)F1 mice (CDF1) cultured without added antigen develop a population of Thy-1+ spontaneous cytotoxic lymphocytes (SCTL) that lyse the DBA/2J mastocytoma P815, as well as the BALB/c-derived plasmacytomas MOPC-11 and SP2/0. Cold target competition experiments reveal the BALB/c-derived plasmacytomas MOPC-11, SP2/0, J558 and the A strain-derived T cell lymphoma YAC-1, but not normal lymphoblasts, block the lysis of P815 target cells. Thus, while these tumour cells appear to express common antigens which are recognized by SCTL cells, plasmacytomas such as J558 are not susceptible to lysis by SCTL. The relationship of SCTL to natural killer (NK) cells was examined. In-vivo treatment of mice with monoclonal anti-Thy-1 antibody leads to a rapid loss of SCTL and precursors from the spleen, but there is a concomitant increase in NK cell activity. PMID:6607213
Liao, Sumei; Klein, Marlise I.; Heim, Kyle P.; Fan, Yuwei; Bitoun, Jacob P.; Ahn, San-Joon; Burne, Robert A.; Koo, Hyun; Brady, L. Jeannine
2014-01-01
Streptococcus mutans, a major etiological agent of human dental caries, lives primarily on the tooth surface in biofilms. Limited information is available concerning the extracellular DNA (eDNA) as a scaffolding matrix in S. mutans biofilms. This study demonstrates that S. mutans produces eDNA by multiple avenues, including lysis-independent membrane vesicles. Unlike eDNAs from cell lysis that were abundant and mainly concentrated around broken cells or cell debris with floating open ends, eDNAs produced via the lysis-independent pathway appeared scattered but in a structured network under scanning electron microscopy. Compared to eDNA production of planktonic cultures, eDNA production in 5- and 24-h biofilms was increased by >3- and >1.6-fold, respectively. The addition of DNase I to growth medium significantly reduced biofilm formation. In an in vitro adherence assay, added chromosomal DNA alone had a limited effect on S. mutans adherence to saliva-coated hydroxylapatite beads, but in conjunction with glucans synthesized using purified glucosyltransferase B, the adherence was significantly enhanced. Deletion of sortase A, the transpeptidase that covalently couples multiple surface-associated proteins to the cell wall peptidoglycan, significantly reduced eDNA in both planktonic and biofilm cultures. Sortase A deficiency did not have a significant effect on membrane vesicle production; however, the protein profile of the mutant membrane vesicles was significantly altered, including reduction of adhesin P1 and glucan-binding proteins B and C. Relative to the wild type, deficiency of protein secretion and membrane protein insertion machinery components, including Ffh, YidC1, and YidC2, also caused significant reductions in eDNA. PMID:24748612
Tremante, Elisa; Santarelli, Lory; Lo Monaco, Elisa; Sampaoli, Camilla; Ingegnere, Tiziano; Guerrieri, Roberto; Tomasetti, Marco; Giacomini, Patrizio
2015-10-13
Alpha-tocopheryl succinate (αTOS), vitamin K3 (VK3) and vitamin C (ascorbic acid, AA) were previously shown to synergistically promote different death pathways in carcinoma cells, depending on their concentrations and combinations. Similar effects were observed herein in melanoma cells, although αTOS behaved as an antagonist. Interestingly, suboptimal cell death-inducing concentrations (1.5 μM αTOS/20 μM AA/0.2 μM VK3) effectively up-regulated activating Natural Killer (NK) cell ligands, including MICA (the stress-signaling ligand of the NKG2D receptor), and/or the ligands of at least one of the natural cytotoxicity receptors (NKp30, NKp44 and NKp46) in 5/6 melanoma cell lines. Only an isolated MICA down-regulation was seen. HLA class I, HLA class II, ULBP1, ULBP2, ULBP3, Nectin-2, and PVR displayed little, if any, change in expression. Ligand up-regulation resulted in improved lysis by polyclonal NK cells armed with the corresponding activating receptors. These results provide the first evidence for concerted induction of cell death by cell-autonomous and extrinsic (immune) mechanisms. Alarming the immune system much below the cell damage threshold may have evolved as a sensitive readout of neoplastic transformation and oxidative stress. Cocktails of vitamin analogues at slightly supra-physiological dosages may find application as mild complements of melanoma treatment, and in chemoprevention.
Tremante, Elisa; Santarelli, Lory; Monaco, Elisa Lo; Sampaoli, Camilla; Ingegnere, Tiziano; Guerrieri, Roberto
2015-01-01
Alpha-tochopheryl succinate (αTOS), vitamin K3 (VK3) and vitamin C (ascorbic acid, AA) were previously shown to synergistically promote different death pathways in carcinoma cells, depending on their concentrations and combinations. Similar effects were observed herein in melanoma cells, although αTOS behaved as an antagonist. Interestingly, suboptimal cell death-inducing concentrations (1.5 μM αTOS/20 μM AA/0.2 μM VK3) effectively up-regulated activating Natural Killer (NK) cell ligands, including MICA (the stress-signaling ligand of the NKG2D receptor), and/or the ligands of at least one of the natural cytotoxicity receptors (NKp30, NKp44 and NKp46) in 5/6 melanoma cell lines. Only an isolated MICA down-regulation was seen. HLA class I, HLA class II, ULBP1, ULBP2, ULBP3, Nectin-2, and PVR displayed little, if any, change in expression. Ligand up-regulation resulted in improved lysis by polyclonal NK cells armed with the corresponding activating receptors. These results provide the first evidence for concerted induction of cell death by cell-autonomous and extrinsic (immune) mechanisms. Alarming the immune system much below the cell damage threshold may have evolved as a sensitive readout of neoplastic transformation and oxidative stress. Cocktails of vitamin analogues at slightly supra-physiological dosages may find application as mild complements of melanoma treatment, and in chemoprevention. PMID:26427039
The Host Immune Response to Streptococcus pneumoniae: Bridging Innate and Adaptive Immunity
2006-07-06
agar, colonies characteristically produce a zone of alpha (green) hemolysis, indicative of partial cell lysis (Fig.1). Despite advances in treatment...proinflammatory cytokines and chemokines are produced , which leads to the recruitment and activation of neutrophils, macrophages and dendritic cells that aid...proliferation and development into antibody- producing plasma cells. Antibodies are crucial to the clearance of extracellular bacteria such as Pn. More
Consensus conference on the management of tumor lysis syndrome.
Tosi, Patrizia; Barosi, Giovanni; Lazzaro, Carlo; Liso, Vincenzo; Marchetti, Monia; Morra, Enrica; Pession, Andrea; Rosti, Giovanni; Santoro, Antonio; Zinzani, Pier Luigi; Tura, Sante
2008-12-01
Tumor lysis syndrome is a potentially life threatening complication of massive cellular lysis in cancers. Identification of high-risk patients and early recognition of the syndrome is crucial in the institution of appropriate treatments. Drugs that act on the metabolic pathway of uric acid to allantoin, like allopurinol or rasburicase, are effective for prophylaxis and treatment of tumor lysis syndrome. Sound recommendations should regulate diagnosis and drug application in the clinical setting. The current article reports the recommendations on the management of tumor lysis syndrome that were issued during a Consensus Conference project, and which were endorsed by the Italian Society of Hematology (SIE), the Italian Association of Pediatric Oncologists (AIEOP) and the Italian Society of Medical Oncology (AIOM). Current concepts on the pathophysiology, clinical features, and therapy of tumor lysis syndrome were evaluated by a Panel of 8 experts. A consensus was then developed for statements regarding key questions on tumor lysis syndrome management selected according to the criterion of relevance by group discussion. Hydration and rasburicase should be administered to adult cancer patients who are candidates for tumor-specific therapy and who carry a high risk of tumor lysis syndrome. Cancer patients with a low-risk of tumor lysis syndrome should instead receive hydration along with oral allopurinol. Hydration and rasburicase should also be administered to patients with clinical tumor lysis syndrome and to adults and high-risk children who develop laboratory tumor lysis syndrome. In conclusion, the Panel recommended rasburicase for tumor lysis syndrome prophylaxis in selected patients based on the drug efficacy profile. Methodologically rigorous studies are needed to clarify its cost-effectiveness profile.
New nucleic acid testing devices to diagnose infectious diseases in resource-limited settings.
Maffert, P; Reverchon, S; Nasser, W; Rozand, C; Abaibou, H
2017-10-01
Point-of-care diagnosis based on nucleic acid testing aims to incorporate all the analytical steps, from sample preparation to nucleic acid amplification and detection, in a single device. This device needs to provide a low-cost, robust, sensitive, specific, and easily readable analysis. Microfluidics has great potential for handling small volumes of fluids on a single platform. Microfluidic technology has recently been applied to paper, which is already used in low-cost lateral flow tests. Nucleic acid extraction from a biological specimen usually requires cell filtration and lysis on specific membranes, while affinity matrices, such as chitosan or polydiacetylene, are well suited to concentrating nucleic acids for subsequent amplification. Access to electricity is often difficult in resource-limited areas, so the amplification step needs to be equipment-free. Consequently, the reaction has to be isothermal to alleviate the need for a thermocycler. LAMP, NASBA, HDA, and RPA are examples of the technologies available. Nucleic acid detection techniques are currently based on fluorescence, colorimetry, or chemiluminescence. For point-of-care diagnostics, the results should be readable with the naked eye. Nowadays, interpretation and communication of results to health professionals could rely on a smartphone, used as a telemedicine device. The major challenge of creating an "all-in-one" diagnostic test involves the design of an optimal solution and a sequence for each analytical step, as well as combining the execution of all these steps on a single device. This review provides an overview of available materials and technologies which seem to be adapted to point-of-care nucleic acid-based diagnosis, in low-resource areas.
Leigh, Brittany; Karrer, Charlotte; Cannon, John P.; Breitbart, Mya; Dishaw, Larry J.
2017-01-01
Outnumbering all other biological entities on earth, bacteriophages (phages) play critical roles in structuring microbial communities through bacterial infection and subsequent lysis, as well as through horizontal gene transfer. While numerous studies have examined the effects of phages on free-living bacterial cells, much less is known regarding the role of phage infection in host-associated biofilms, which help to stabilize adherent microbial communities. Here we report the cultivation and characterization of a novel strain of Shewanella fidelis from the gut of the marine tunicate Ciona intestinalis, inducible prophages from the S. fidelis genome, and a strain-specific lytic phage recovered from surrounding seawater. In vitro biofilm assays demonstrated that lytic phage infection affects biofilm formation in a process likely influenced by the accumulation and integration of the extracellular DNA released during cell lysis, similar to the mechanism that has been previously shown for prophage induction. PMID:28327522
Pazos, Manuel; Otten, Christian; Vollmer, Waldemar
2018-03-20
Peptidoglycan encases the bacterial cytoplasmic membrane to protect the cell from lysis due to the turgor. The final steps of peptidoglycan synthesis require a membrane-anchored substrate called lipid II, in which the peptidoglycan subunit is linked to the carrier lipid undecaprenol via a pyrophosphate moiety. Lipid II is the target of glycopeptide antibiotics and several antimicrobial peptides, and is degraded by 'attacking' enzymes involved in bacterial competition to induce lysis. Here we describe two protocols using thin-layer chromatography (TLC) and high pressure liquid chromatography (HPLC), respectively, to assay the digestion of lipid II by phosphatases such as Colicin M or the LXG toxin protein TelC from Streptococcus intermedius . The TLC method can also monitor the digestion of undecaprenyl (pyro)phosphate, whereas the HPLC method allows to separate the di-, mono- or unphosphorylated disaccharide pentapeptide products of lipid II.
Pazos, Manuel; Otten, Christian; Vollmer, Waldemar
2018-01-01
Peptidoglycan encases the bacterial cytoplasmic membrane to protect the cell from lysis due to the turgor. The final steps of peptidoglycan synthesis require a membrane-anchored substrate called lipid II, in which the peptidoglycan subunit is linked to the carrier lipid undecaprenol via a pyrophosphate moiety. Lipid II is the target of glycopeptide antibiotics and several antimicrobial peptides, and is degraded by ‘attacking’ enzymes involved in bacterial competition to induce lysis. Here we describe two protocols using thin-layer chromatography (TLC) and high pressure liquid chromatography (HPLC), respectively, to assay the digestion of lipid II by phosphatases such as Colicin M or the LXG toxin protein TelC from Streptococcus intermedius. The TLC method can also monitor the digestion of undecaprenyl (pyro)phosphate, whereas the HPLC method allows to separate the di-, mono- or unphosphorylated disaccharide pentapeptide products of lipid II. PMID:29651453
Effect of primycin on growth-arrested cultures and cell integrity of Staphylococcus aureus.
Feiszt, Péter; Schneider, György; Emődy, Levente
2017-06-01
Bactericidal effect against non-dividing bacteria is a very advantageous, but rare characteristic among antimicrobial agents, mostly possessed by those affecting the cell membrane. These kinds of agents can kill bacterial cells without lysis. We assessed these characteristics on primycin, a topical anti-staphylococcal agent highly effective against prevalent multiresistant strains, as it also acts on the cell membrane. In time-kill studies, primycin preserved its bactericidal activity against growth-arrested Staphylococcus aureus cultures. The bactericidal action was slower against growth-arrested cultures compared to the exponentially growing ones to different extents depending on the manner of arrest. The bactericidal effect was less influenced by stringent response and by protein synthesis inhibition, proving that it does not depend on metabolic activity. In contrast, uncoupling of the membrane potential predominantly slowed, and low temperature almost stopped killing of bacteria. In consideration of published data, these facts suggest that the antibacterial action of primycin involves disrupting of the membrane potential, and is predominantly influenced by the membrane fluidity. Optical density measurements and transmission electron microscopy verified that primycin kills bacterial cells without lysis. These results reveal favorable characteristics of primycin and point to, and broaden the knowledge on its membrane-targeted effect.
Induction of cell-mediated cytotoxicity by lipoprotein containing histocompatibility antigens.
Dennert, G
1979-01-01
Lipoprotein was isolated from tumour cells by sonication and ultracentrifugal flotation on KBr gradients. It contained H-2 antigen detectable by antibody binding and induced a primary or secondary cell-mediated cytotoxic response in vitro which was H-2 specific. In a syngeneic model only a secondary cell-mediated response was stimulated and no competitive inhibition of the effector step of cell-mediated lysis could be demonstrated. The implications of these findings are discussed. PMID:521060
NASA Astrophysics Data System (ADS)
Cameron, Bruce D.; Joos, Karen M.; Shen, Jin-Hui
1996-05-01
Purpose: To develop a simple suture lysis technique for post-trabeculectomy examinations under anesthesia since slit lamp laser suture lysis in the clinic cannot be performed on infants and young children. Methods: An argon endolaser probe lysed 10-0 nylon suture through conjunctiva harvested from human cadaver eyes. Since suture lysis failed with the thick Hoskins lens, clear plastic from the suture package compressed the conjunctiva. The conjunctiva was examined histologically. Results: Argon laser suture lysis (250 mW, 0.1 sec, 488 - 514 nm) was achieved without conjunctival damage. Conclusion: The argon endolaser probe is effective for suture lysis when the slit lamp cannot be used.
Effect of solvent/detergent-treated pooled plasma on fibrinolysis in reconstituted whole blood.
Saadah, Nicholas H; van der Meer, Pieter F; Brinkman, Herm Jan M; de Korte, Dirk; Bontekoe, Ido J; Korsten, Herbert H; Middelburg, Rutger A; van der Bom, Johanna G; Schipperus, Martin R
2017-10-01
Hyperfibrinolysis has been observed in patients heavily transfused with solvent/detergent-treated pooled plasma (S/D plasma). We compared coagulation and fibrinolytic variables in blood containing S/D plasma with blood containing fresh-frozen plasma (FFP), with and without α2-antiplasmin or tranexamic acid (TXA) supplementation. Whole blood samples were reconstituted from red blood cells, platelet (PLT) concentrates, and varying mixtures of FFP and S/D plasma. Hematocrit and PLT count of reconstituted whole blood samples were varied. For a subset of runs, α2-antiplasmin or TXA was added to S/D plasma whole blood samples. Thromboelastography (TEG) analysis was performed to assess 50% clot lysis time (CLT 50% ), maximum amplitude (MA), and initial clotting time (R-time). The change in CLT 50% of whole blood as the plasma compartment transitions from FFP to S/D plasma was -52% (95% confidence interval [CI], -60% to -45%; p < 0.001). PLT count strengthened the effect, leading to an additional change in CLT 50% of -8% (95% CI, -14% to -2%; p = 0.012) as PLT count increased from 10 × 10 9 to 150 × 10 9 /L. MA and R-time were not associated with fraction of S/D plasma in whole blood. α2-Antiplasmin and TXA restored clot lysis time in S/D plasma whole blood. Whole blood with S/D plasma has shorter clot lysis times in vitro compared to whole blood with FFP. α2-Antiplasmin and TXA restore clot lysis time of S/D plasma whole blood to that of FFP whole blood. Clinicians should be aware of the decreased clot lysis time associated with S/D plasma transfusion. © 2017 AABB.
Competition for DNA binding sites using Promega DNA IQ™ paramagnetic beads.
Frégeau, Chantal J; De Moors, Anick
2012-09-01
The Promega DNA IQ™ system is easily amenable to automation and has been an integral part of standard operating procedures for many forensic laboratories including those of the Royal Canadian Mounted Police (RCMP) since 2004. Due to some failure to extract DNA from samples that should have produced DNA using our validated automated DNA IQ™-based protocol, the competition for binding sites on the DNA IQ™ magnetic beads was more closely examined. Heme from heavily blooded samples interfered slightly with DNA binding. Increasing the concentration of Proteinase K during lysis of these samples did not enhance DNA recovery. However, diluting the sample lysate following lysis prior to DNA extraction overcame the reduction in DNA yield and preserved portions of the lysates for subsequent manual or automated extraction. Dye/chemicals from black denim lysates competed for binding sites on the DNA IQ™ beads and significantly reduced DNA recovery. Increasing the size or number of black denim cuttings during lysis had a direct adverse effect on DNA yield from various blood volumes. The dilution approach was successful on these samples and permitted the extraction of high DNA yields. Alternatively, shortening the incubation time for cell lysis to 30 min instead of the usual overnight at 56 °C prevented competition from black denim dye/chemicals and increased DNA yields. Crown Copyright © 2011. Published by Elsevier Ireland Ltd. All rights reserved.
Myeloid IKKβ Promotes Antitumor Immunity by Modulating CCL11 and the Innate Immune Response
Yang, Jinming; Hawkins, Oriana E.; Barham, Whitney; Gilchuk, Pavlo; Boothby, Mark; Ayers, Gregory D.; Joyce, Sebastian; Karin, Michael; Yull, Fiona E.; Richmond, Ann
2015-01-01
Myeloid cells are capable of promoting or eradicating tumor cells and the nodal functions that contribute to their different roles are still obscure. Here, we show that mice with myeloid-specific genetic loss of the NF-κB pathway regulatory kinase IKKβ exhibit more rapid growth of cutaneous and lung melanoma tumors. In a BRAFV600E/PTEN−/− allograft model, IKKβ loss in macrophages reduced recruitment of myeloid cells into the tumor, lowered expression of MHC class II molecules, and enhanced production of the chemokine CCL11, thereby negatively regulating dendritic-cell maturation. Elevated serum and tissue levels of CCL11 mediated suppression of dendritic-cell differentiation/maturation within the tumor microenvironment, skewing it toward a Th2 immune response and impairing CD8+ T cell–mediated tumor cell lysis. Depleting macrophages or CD8+ T cells in mice with wild-type IKKβ myeloid cells enhanced tumor growth, where the myeloid cell response was used to mediate antitumor immunity against melanoma tumors (with less dependency on a CD8+ T-cell response). In contrast, myeloid cells deficient in IKKβ were compromised in tumor cell lysis, based on their reduced ability to phagocytize and digest tumor cells. Thus, mice with continuous IKKβ signaling in myeloid-lineage cells (IKKβCA) exhibited enhanced antitumor immunity and reduced melanoma outgrowth. Collectively, our results illuminate new mechanisms through which NF-κB signaling in myeloid cells promotes innate tumor surveillance. PMID:25336190
Fernie-King, Barbara A; Seilly, David J; Willers, Christine; Würzner, Reinhard; Davies, Alexandra; Lachmann, Peter J
2001-01-01
Streptococcal inhibitor of complement (SIC) was first described in 1996 as a putative inhibitor of the membrane attack complex of complement (MAC). SIC is a 31 000 MW protein secreted in large quantities by the virulent Streptococcus pyogenes strains M1 and M57, and is encoded by a gene which is extremely variable. In order to study further the interactions of SIC with the MAC, we have made a recombinant form of SIC (rSIC) in Escherichia coli and purified native M1 SIC which was used to raise a polyclonal antibody. SIC prevented reactive lysis of guinea pig erythrocytes by the MAC at a stage prior to C5b67 complexes binding to cell membranes, presumably by blocking the transiently expressed membrane insertion site on C7. The ability of SIC and clusterin (another putative fluid phase complement inhibitor) to inhibit complement lysis was compared, and found to be equally efficient. In parallel, by enzyme-linked immunosorbent assay both SIC and rSIC bound strongly to C5b67 and C5b678 complexes and to a lesser extent C5b-9, but only weakly to individual complement components. The implications of these data for virulence of SIC-positive streptococci are discussed, in light of the fact that Gram-positive organisms are already protected against complement lysis by the presence of their peptidoglycan cell walls. We speculate that MAC inhibition may not be the sole function of SIC. PMID:11454069
Pradhan, Subhra; Mallick, Sanjaya K.; Chowdhury, Rukhsana
2013-01-01
A unique event in bacterial epidemiology was the emergence of the El Tor biotype of Vibrio cholerae O1 and the subsequent rapid displacement of the existing classical biotype as the predominant cause of epidemic cholera. We demonstrate that when the El Tor and classical biotypes were cocultured in standard laboratory medium a precipitous decline in colony forming units (CFU) of the classical biotype occurred in a contact dependent manner. Several lines of evidence including DNA release, microscopy and flow cytometric analysis indicated that the drastic reduction in CFU of the classical biotype in cocultures was not accompanied by lysis, although when the classical biotype was grown individually in monocultures, lysis of the cells occurred concomitant with decrease in CFU starting from late stationary phase. Furthermore, uptake of a membrane potential sensitive dye and protection of genomic DNA from extracellular DNase strongly suggested that the classical biotype cells in cocultures retained viability in spite of loss of culturability. These results suggest that coculturing the classical biotype with the El Tor biotype protects the former from lysis allowing the cells to remain viable in spite of the loss of culturability. The stationary phase sigma factor RpoS may have a role in the loss of culturability of the classical biotype in cocultures. Although competitive exclusion of closely related strains has been reported for several bacterial species, conversion of the target bacterial population to the viable non-culturable state has not been demonstrated previously and may have important implications in the evolution of bacterial strains. PMID:23326443
Kriss, Joseph P.; Mehdi, S. Qasim
1979-01-01
We prepared artificial vesicles that are lysed upon cell-mediated immunological attack by human lymphocytes. These vesicles are made from a mixture of dimyristoyl lecithin, dipalmitoyl lecithin, and cholesterol, have eye muscle membrane protein (EMP) inserted into the bilayer wall, and contain intravesicular 99mTc marker. Injury to the vesicular membrane was assessed by measurement of 99mTc release. Thyroglobulin (Tg) and Tg-anti-Tg complex (TgA) bind to EMP-vesicles to an extent equal to or greater than to native eye muscle membranes in vitro; this binding requires the presence of normal human IgG. The role of Tg, TgA, IgG, and peripheral blood lymphocytes in altering membrane permeability was analyzed. Incubation of vesicles for up to 3 hr alone, with added IgG alone, or with further addition of Tg or TgA did not result in 99mTc release. Addition of lymphocytes from normal donors to the above four preparations showed release in the presence of TgA. Lymphocytes from each of eight patients with Graves ophthalmopathy caused release not only in the presence of TgA, but also in the presence of Tg. Separation of a patient's lymphocytes into high- and low-affinity rosette-formers (T and K cells, respectively) showed that cell-mediated vesicle lysis in the presence of TgA was greater with K cells than with T cells, while vesicle lysis in the presence of Tg was greater with T cells than with K cells. Vesicles made with inserted Tg but lacking EMP were not lysed by such T cells. Lymphocytes failed to induce permeability changes in vesicles containing other inserted proteins obtained from human nonextraocular muscle, liver, spleen, or adrenal, even if Tg or TgA were present. The results support the concept that muscle cell damage in Graves ophthalmopathy is immunological, cell-mediated, and of two types: (i) K lymphocytes reacting to immune complex, TgA, on the eye muscle cell surface (i.e., antibody-dependent cytotoxicity) and (ii) sensitized T lymphocytes reacting to Tg on the eye muscle cell surface. An antigenic role for EMP is possible, but has not been unequivocally proven. PMID:88053
Tumor Lysis Syndrome in Chronic Lymphocytic Leukemia with Novel Targeted Agents.
Cheson, Bruce D; Heitner Enschede, Sari; Cerri, Elisa; Desai, Monali; Potluri, Jalaja; Lamanna, Nicole; Tam, Constantine
2017-11-01
Tumor lysis syndrome (TLS) is an uncommon but potentially life-threatening complication associated with the treatment of some cancers. If left untreated, TLS may result in acute renal failure, cardiac dysrhythmia, neurologic complications, seizures, or death. Tumor lysis syndrome is most commonly observed in patients with hematologic malignancies with a high proliferation rate undergoing treatment with very effective therapies. In chronic lymphocytic leukemia (CLL), historically, TLS has been observed less often, owing to a low proliferation rate and slow response to chemotherapy. New targeted therapies have recently been approved in the treatment of CLL, including the oral kinase inhibitors, idelalisib and ibrutinib, and the B-cell lymphoma-2 protein inhibitor, venetoclax. Several others are also under development, and combination strategies of these agents are being explored. This review examines the diagnosis, prevention, and management of TLS and summarizes the TLS experience in CLL clinical trials with newer targeted agents. Overall, the risk of TLS is small, but the consequences may be fatal; therefore, patients should be monitored carefully. Therapies capable of eliciting rapid response and combination regimens are increasingly being evaluated for treatment of CLL, which may pose a higher risk of TLS. For optimal management, patients at risk for TLS require prophylaxis and close monitoring with appropriate tests and appropriate management to correct laboratory abnormalities, which allows for safe and effective disease control. Tumor lysis syndrome (TLS) is a potentially fatal condition observed with hematologic malignancies, caused by release of cellular components in the bloodstream from rapidly dying tumor cells. The frequency and severity of TLS is partly dependent upon the biology of the disease and type of therapy administered. Novel targeted agents highly effective at inducing rapid cell death in chronic lymphocytic leukemia (CLL) may pose a risk for TLS in patients with tumors characterized by rapid growth, high tumor burden, and/or high sensitivity to treatment. In this review, prevention strategies and management of patients with CLL who develop TLS are described. © 2017 The Authors The Oncologist published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
Role of adrenal hormones and prostaglandins in the control of mouse thymocytes lysis.
Durant, S; Seillan, C; Duval, D; Homo-Delarche, F
1984-01-01
The cytolytic actions of glucocorticoids and of agents increasing cyclic AMP were studied in vitro in thymocyte suspensions isolated from adrenalectomized or hydrocortisone-treated mice. Although considered as corticoresistant cells, the thymocytes isolated from hydrocortisone-treated mice were lysed to the same extent although more slowly in vitro by dexamethasone than whole thymocyte populations (i.e. corticosensitive cells). Moreover, these two cell populations were shown to contain comparable amounts of glucocorticoid receptors and to be almost equally sensitive to the metabolic effects of glucocorticoids when measured by inhibition of RNA and DNA synthesis. Studies performed with corticosensitive cells showed that prostaglandin E2, isoproterenol and dibutyrilcyclic AMP were also able to induce cell lysis and that, isoproterenol and dexamethasone exerted additive cytolytic action in vitro. In vivo experiments showed also an additive effect of steroids and isoproterenol on thymus atrophy. In contrast, cells isolated from hydrocortisone-treated animals were not sensitive to the cytotoxic action of prostaglandin E2, isoproterenol and dibutyril cyclic AMP. This difference between the two populations was not associated with any difference in the responsiveness of adenylate cyclase as determined following isoproterenol-induced accumulation of cyclic AMP. The cytolytic action of dexamethasone but also that of prostaglandin E2 and isoproterenol, could be blocked in the presence of cycloheximide, an inhibitor of protein synthesis, thus suggesting that glucocorticoids and agents increasing cyclic AMP control the synthesis of some proteins involved in the triggering of cell lysis. Among the hypotheses proposed to explain the differences between in vitro and in vivo sensitivity of lymphoid cell to glucocorticoids, it was suggested that the drug may in vivo indirectly control the viability or the proliferation of thymocytes through the release of other mediators. We have shown that in vivo injection of hydrocortisone induces an accumulation of fatty acids in the whole thymus gland but not in the isolated thymocytes. Since exogenous fatty acids exert cytolytic actions on isolated thymocytes, we suggest that glucocorticoids may exert in vivo an indirect toxic action by promoting the release of fatty acids from adipose tissue or other sources.
Yakimovich, Artur; Gumpert, Heidi; Burckhardt, Christoph J; Lütschg, Verena A; Jurgeit, Andreas; Sbalzarini, Ivo F; Greber, Urs F
2012-09-01
Viruses spread between cells, tissues, and organisms by cell-free and cell-cell transmissions. Both mechanisms enhance disease development, but it is difficult to distinguish between them. Here, we analyzed the transmission mode of human adenovirus (HAdV) in monolayers of epithelial cells by wet laboratory experimentation and a computer simulation. Using live-cell fluorescence microscopy and replication-competent HAdV2 expressing green fluorescent protein, we found that the spread of infection invariably occurred after cell lysis. It was affected by convection and blocked by neutralizing antibodies but was independent of second-round infections. If cells were overlaid with agarose, convection was blocked and round plaques developed around lytic infected cells. Infected cells that did not lyse did not give rise to plaques, highlighting the importance of cell-free transmission. Key parameters for cell-free virus transmission were the time from infection to lysis, the dose of free viruses determining infection probability, and the diffusion of single HAdV particles in aqueous medium. With these parameters, we developed an in silico model using multiscale hybrid dynamics, cellular automata, and particle strength exchange. This so-called white box model is based on experimentally determined parameters and reproduces viral infection spreading as a function of the local concentration of free viruses. These analyses imply that the extent of lytic infections can be determined by either direct plaque assays or can be predicted by calculations of virus diffusion constants and modeling.
Hombach, Andreas A.; Abken, Hinrich
2017-01-01
Evidences are accumulating that CD4+ T cells can physiologically mediate antigen specific target cell lysis. By circumventing major histocompatibility complex (MHC)-restrictions through an engineered chimeric antigen receptor (CAR), CD4+ T cells lyse defined target cells as efficiently as do CD8+ T cells. However, the cytolytic capacity of redirected CD4+CD25− T cells, in comparison with CD4+CD25+ regulatory T (Treg) cells was so far not thoroughly defined. Treg cells require a strong CD28 signal together with CD3ζ for activation. We consequently used a CAR with combined CD28CD3ζ signalling for redirecting CD4+CD25− T cells and CD4+CD25+ Treg cells from the same donor. CAR redirected activation of these T cell subsets and induced a distinct cytokine pattern with high IL-10 and a lack of IL-2 release by Treg cells. Despite strong antigen-specific activation, CAR Treg cells produced only weak target cell lysis, whereas CD4+CD25− CAR T cells were potent killers. Cytolysis did not correlate with the target cell sensitivity to Fas/FasL mediated killing; CD4+CD25− T cells upregulated perforin and granzyme B upon CAR activation, whereas Treg cells did less. The different cytolytic capacities of CAR redirected conventional CD4+ cells and Treg cells imply their use for different purposes in cell therapy. PMID:28850063
Standard Scenarios for the Less-Lethal Weapons Evaluation Model
1975-08-01
smoke (for obscuration) with chemical irritant. "MODIPAC" - 12 - gauge plastic shotgun shell loaded with polyethyleie shot. Net - A net for entrapment...Oklahoma, U. S. Department of Justice, April 30, 1974 (Grant Numbers 73-TA-08-0004 and 73-DF-06-0053). 12 Ana~lysis of Scenarios a. The developmecnt of...for transmitting electrical energy (e.g., TASER ). Electrical Prod - A device to transmit electrical shock to the target. Heavy Slug - Experimental
Wert, Eric C; Dong, Mei Mei; Rosario-Ortiz, Fernando L
2013-07-01
Depending on drinking water treatment conditions, oxidation processes may result in the degradation of cyanobacteria cells causing the release of toxic metabolites (microcystin), odorous metabolites (MIB, geosmin), or disinfection byproduct precursors. In this study, a digital flow cytometer (FlowCAM(®)) in combination with chlorophyll-a analysis was used to evaluate the ability of ozone, chlorine, chlorine dioxide, and chloramine to damage or lyse cyanobacteria cells added to Colorado River water. Microcystis aeruginosa (MA), Oscillatoria sp. (OSC) and Lyngbya sp. (LYN) were selected for the study due to their occurrence in surface water supplies, metabolite production, and morphology. Results showed that cell damage was observed without complete lysis or fragmentation of the cell membrane under many of the conditions tested. During ozone and chlorine experiments, the unicellular MA was more susceptible to oxidation than the filamentous OSC and LYN. Rate constants were developed based on the loss of chlorophyll-a and oxidant exposure, which showed the oxidants degraded MA, OSC, and LYN according to the order of ozone > chlorine ~ chlorine dioxide > chloramine. Digital and binary images taken by the digital flow cytometer provided qualitative insight regarding cell damage. When applying this information, drinking water utilities can better understand the risk of cell damage or lysis during oxidation processes. Copyright © 2013 Elsevier Ltd. All rights reserved.
Chaney, L K; Jacobson, B S
1983-08-25
Plasma membrane (PM) can be isolated by binding to a positively charged solid support. Using this concept, we have developed a novel method of PM isolation using cationic colloidal silica. The method is designed for the comparative study of various physiological states of PM and for transbilayer protein mapping. The procedure consists of coating intact cells with a dense pellicle of silica particles and polyanion. Since cells remain intact during pellicle formation, the external face of the PM is selectively coated. The pellicle greatly enhances PM density and stabilizes it against vesiculation or lateral reorientation. Upon cell lysis, large open sheets of PM are rapidly isolated by centrifugation. PM from Dictyostelium discoideum was prepared by this method. Marker enzymes, cell surface labeling and microscopy demonstrate that the PM was isolated in high yield (70-80%) with a 10-17-fold purification and only low levels of cytoplasmic contamination. The pellicle remains intact during cell lysis and membrane isolation, shielding the external surface of the membranes up to 92% from chemical or enzymatic attack. The PM can thus be labeled selectively from inside and/or outside. Transmembrane proteins were identified in Dictyostelium PM by means of lactoperoxidase iodination and autoradiography.
Roth, Patricia B; Twiner, Michael J; Wang, Zhihong; Bottein Dechraoui, Marie-Yasmine; Doucette, Gregory J
2007-12-15
Flavobacteriaceae (strain S03) and Cytophaga sp. (strain 41-DBG2) are algicidal bacteria active against the brevetoxin (PbTx)-producing, red tide dinoflagellate, Karenia brevis. Little is known about the fate of PbTx associated with K. brevis cells following attack by such bacteria. The fate and distribution of PbTx in K. brevis cultures exposed to these algicidal strains were thus examined by receptor binding assay and liquid chromatography/mass spectrometry (LC/MS) in three size fractions (>5, 0.22-5, <0.22microm) over a 2-week time course. In control cultures, brevetoxin concentrations in the >5microm particulate size fraction correlated with changes in cell density, whereas significant increases in dissolved (i.e., <0.22microm) toxin were observed in the later stages of culture growth. Exposure of K. brevis to either of the two algicidal bacteria tested caused cell lysis, coinciding with a rapid decline in the >5microm PbTX size fraction and a simultaneous release of dissolved toxin into the growth medium. Upon cell lysis, dissolved brevetoxin accounted for ca. 60% of total toxin and consisted of 51-82% open A-ring derivatives. Open A-ring PbTx-2 and PbTx-3 derivatives bound with lower affinity (approximately 22- and 57-fold, respectively) to voltage-gated sodium channels and were considerably less cytotoxic (86- and 142-fold, respectively) to N2A cells than their individual parent toxins (i.e., PbTx-2 and PbTx-3). These novel findings of changes in PbTx size-fractioned distribution and overall reduction in K. brevis toxicity following attack by algicidal bacteria improve our understanding of potential trophic transfer routes and the fate of PbTx during red tide events. Moreover, this information will be important to consider when evaluating the potential role of algicidal bacteria in harmful algal bloom (HAB) management strategies involving control of bloom populations.
Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput.
Gierahn, Todd M; Wadsworth, Marc H; Hughes, Travis K; Bryson, Bryan D; Butler, Andrew; Satija, Rahul; Fortune, Sarah; Love, J Christopher; Shalek, Alex K
2017-04-01
Single-cell RNA-seq can precisely resolve cellular states, but applying this method to low-input samples is challenging. Here, we present Seq-Well, a portable, low-cost platform for massively parallel single-cell RNA-seq. Barcoded mRNA capture beads and single cells are sealed in an array of subnanoliter wells using a semipermeable membrane, enabling efficient cell lysis and transcript capture. We use Seq-Well to profile thousands of primary human macrophages exposed to Mycobacterium tuberculosis.
Xu, Chun-Xiu; Yin, Xue-Feng
2011-02-04
A chip-based microfluidic system for high-throughput single-cell analysis is described. The system was integrated with continuous introduction of individual cells, rapid dynamic lysis, capillary electrophoretic (CE) separation and laser induced fluorescence (LIF) detection. A cross microfluidic chip with one sheath-flow channel located on each side of the sampling channel was designed. The labeled cells were hydrodynamically focused by sheath-flow streams and sequentially introduced into the cross section of the microchip under hydrostatic pressure generated by adjusting liquid levels in the reservoirs. Combined with the electric field applied on the separation channel, the aligned cells were driven into the separation channel and rapidly lysed within 33ms at the entry of the separation channel by Triton X-100 added in the sheath-flow solution. The maximum rate for introducing individual cells into the separation channel was about 150cells/min. The introduction of sheath-flow streams also significantly reduced the concentration of phosphate-buffered saline (PBS) injected into the separation channel along with single cells, thus reducing Joule heating during electrophoretic separation. The performance of this microfluidic system was evaluated by analysis of reduced glutathione (GSH) and reactive oxygen species (ROS) in single erythrocytes. A throughput of 38cells/min was obtained. The proposed method is simple and robust for high-throughput single-cell analysis, allowing for analysis of cell population with considerable size to generate results with statistical significance. Copyright © 2010 Elsevier B.V. All rights reserved.
Cell wall of pathogenic yeasts and implications for antimycotic therapy.
Cassone, A
1986-01-01
Yeast cell wall is a complex, multilayered structure where amorphous, granular and fibrillar components interact with each other to confer both the specific cell shape and osmotic protection against lysis. Thus it is widely recognized that as is the case with bacteria, yeast cell wall is a major potential target for selective chemotherapeutic drugs. Despite intensive research, very few such drugs have been discovered and none has found substantial application in human diseases to date. Among the different cell wall components, beta-glucan and chitin are the fibrillar materials playing a fundamental role in the overall rigidity and resistance of the wall. Inhibition of the metabolism of these polymers, therefore, should promptly lead to lysis. This indeed occurs and aculeacin, echinocandin and polyoxins are examples of agents producing such an action. Particular attention should be focused on chitin synthesis. Although quantitatively a minor cell wall component, chitin is important in the mechanism of dimorphic transition, especially in Candida albicans, a major human opportunistic pathogen. This transition is associated with increased invasiveness and general virulence of the fungus. Yeast cell wall may also limit the effect of antifungals which owe their action to disturbance of the cytoplasmic membrane or of cell metabolism. Indeed, the cell wall may hinder access to the cell interior both under growing conditions and, particularly, during cell ageing in the stationary phase, when important structural changes occur in the cell wall due to unbalanced wall growth (phenotypic drug resistance).
Stress and Immunity Breast Cancer Project
1999-09-01
activity, stimulating the T cells with a monoclonal marker being studied: total T cells (CD3. fluorescein These findings suggest that how a person...sets of outcome P .006 .002 .002 .006 .012 .066 measures: 1) NK cell lysis at five E:T ratios. 2) response of NK cells to rIFN -y and rIL-2 stimulation ...the CES-D is relatively unaffected by physical symptoms and is, therefore, commonly used in research with medical patients5 0. Internal consistency
Zhang, Xiao; El-Hajj, Ziad W; Newman, Elaine
2010-10-01
Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes L-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S L-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of L-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C(1) units and interferes with cell wall synthesis. We suggest that at high concentrations, L-serine decreases synthesis of UDP-N-acetylmuramate-L-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high L-serine is overcome in several ways: by a large concentration of L-alanine, by overproducing MurC together with a low concentration of L-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide.
Screening of surfactants for harmful algal blooms mitigation.
Sun, Xiao-Xia; Han, Kyung-Nam; Choi, Joong-Ki; Kim, Eun-Ki
2004-05-01
Screening experiments were conducted in order to find promising synthetic surfactants for harmful algal blooms (HABs) mitigation. The chemically synthesized surfactant cocamidopropyl betaine (CAPB) showed characteristics of relatively high inhibition efficiency, high biodegradability and low cost. The motility inhibition ratios of 10 mg/L CAPB on Cochlodinium polykrikoides and Alexandrium tamarense were about 60% after 5 min. The biodegradation test indicated that the half-life of CAPB in seawater was shorter than one day and 90% was biodegraded after five days under the initial concentration of 100 mg/L at 25 degrees C. Further cell lysis experiments revealed the selective lysis effect of CAPB on different HAB organisms. More than 90% of C. polykrikoides lysed at the concentration of 10 mg/L CAPB after 24 h and at 15 mg/L CAPB after 4 h, whereas the lysis effect of CAPB on A. tamarense was slight, no more than 10% after 2 h interaction with 50 mg/L CAPB. This research provided preliminary data for CAPB as a candidate in harmful algal blooms mitigation and pointed out unresolved problems for its practical application in the meantime.
Algimantas P. Valaitis
2011-01-01
The microbial insecticide Bacillus thuringiensis (Bt) produces Cry toxins, proteins that bind to the brush border membranes of gut epithelial cells of insects that ingest it, disrupting the integrity of the membranes, and leading to cell lysis and insect death. In gypsy moth, Lymantria dispar, two toxin-binding molecules for the...
The Gasdermin-D pore acts as a conduit for IL-1β secretion in mice.
Heilig, Rosalie; Dick, Mathias S; Sborgi, Lorenzo; Meunier, Etienne; Hiller, Sebastian; Broz, Petr
2018-04-01
The pro-inflammatory cytokine IL-1β is well known for its role in host defense and the initiation of potent inflammatory responses. It is processed from its inactive pro-form by the inflammatory caspase-1 into its mature bioactive form, which is then released from the cell via an unconventional secretion mechanism. Recently, gasdermin-D has been identified as a new target of caspase-1. After proteolytical cleavage of gasdermin-D, the N-terminal fragment induces pyroptosis, a lytic cell death, by forming large permeability pores in the plasma membrane. Here we show using the murine system that gasdermin-D is required for IL-1β secretion by macrophages, dendritic cells and partially in neutrophils, and that secretion is a cell-lysis-independent event. Liposome transport assays in vitro further demonstrate that gasdermin-D pores are large enough to allow the direct release of IL-1β. Moreover, IL-18 and other small soluble cytosolic proteins can also be released in a lysis-independent but gasdermin-D-dependent mode, suggesting that the gasdermin-D pores allow passive the release of cytosolic proteins in a size-dependent manner. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fox, Bridget C; Devonshire, Alison S; Baradez, Marc-Olivier; Marshall, Damian; Foy, Carole A
2012-08-15
Single cell gene expression analysis can provide insights into development and disease progression by profiling individual cellular responses as opposed to reporting the global average of a population. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) is the "gold standard" for the quantification of gene expression levels; however, the technical performance of kits and platforms aimed at single cell analysis has not been fully defined in terms of sensitivity and assay comparability. We compared three kits using purification columns (PicoPure) or direct lysis (CellsDirect and Cells-to-CT) combined with a one- or two-step RT-qPCR approach using dilutions of cells and RNA standards to the single cell level. Single cell-level messenger RNA (mRNA) analysis was possible using all three methods, although the precision, linearity, and effect of lysis buffer and cell background differed depending on the approach used. The impact of using a microfluidic qPCR platform versus a standard instrument was investigated for potential variability introduced by preamplification of template or scaling down of the qPCR to nanoliter volumes using laser-dissected single cell samples. The two approaches were found to be comparable. These studies show that accurate gene expression analysis is achievable at the single cell level and highlight the importance of well-validated experimental procedures for low-level mRNA analysis. Copyright © 2012 Elsevier Inc. All rights reserved.
In vitro induction of apoptosis in tumor cells by inactivated NDV and IAV.
Yang, ShuYan; Liu, WeiQuan; Cui, HuanXian; Sun, ShaoGuang; Wang, JiGui
2007-04-01
We examined how Newcastle disease virus (NDV) and influenza A virus (IAV) inactivated by 5% formaldehyde, used either alone or in combination, can induce apoptosis in both HeLa and SP2/0 cells. Inactive NDV and IAV demonstrated enhanced rates of lysis in apoptotic tumor cells and greater antitumor effects when combined. Our study supports the argument that viral replication does not cause virally induced apoptosis.
The Role of AHR in Breast Cancer Development
2005-07-01
Carlsbad, CA) was used according to the manufacturer’s instructions to transfect cells. The renilla luciferase vectorphRL-TK (0.5 [tg/well) was co...the firefly and renilla signals. Briefly, cells were lysed in equal volumes of cell lysis buffer (Promega) and RPMI for 20 min, transferred to a 96...well white wall plate, and analyzed using a Reporter Luminometer (Promega). The renilla signal was read after quenching the firefly output, thus
Schrödinger’s Cheshire Cat: Are Haploid Emiliania huxleyi Cells Resistant to Viral Infection or Not?
Mordecai, Gideon J.; Verret, Frederic; Highfield, Andrea; Schroeder, Declan C.
2017-01-01
Emiliania huxleyi is the main calcite producer on Earth and is routinely infected by a virus (EhV); a double stranded DNA (dsDNA) virus belonging to the family Phycodnaviridae. E. huxleyi exhibits a haplodiploid life cycle; the calcified diploid stage is non-motile and forms extensive blooms. The haploid phase is a non-calcified biflagellated cell bearing organic scales. Haploid cells are thought to resist infection, through a process deemed the “Cheshire Cat” escape strategy; however, a recent study detected the presence of viral lipids in the same haploid strain. Here we report on the application of an E. huxleyi CCMP1516 EhV-86 combined tiling array (TA) that further confirms an EhV infection in the RCC1217 haploid strain, which grew without any signs of cell lysis. Reverse transcription polymerase chain reaction (RT-PCR) and PCR verified the presence of viral RNA in the haploid cells, yet indicated an absence of viral DNA, respectively. These infected cells are an alternative stage of the virus life cycle deemed the haplococcolithovirocell. In this instance, the host is both resistant to and infected by EhV, i.e., the viral transcriptome is present in haploid cells whilst there is no evidence of viral lysis. This superimposed state is reminiscent of Schrödinger’s cat; of being simultaneously both dead and alive. PMID:28335465
Schrödinger's Cheshire Cat: Are Haploid Emiliania huxleyi Cells Resistant to Viral Infection or Not?
Mordecai, Gideon J; Verret, Frederic; Highfield, Andrea; Schroeder, Declan C
2017-03-18
Emiliania huxleyi is the main calcite producer on Earth and is routinely infected by a virus (EhV); a double stranded DNA (dsDNA) virus belonging to the family Phycodnaviridae . E. huxleyi exhibits a haplodiploid life cycle; the calcified diploid stage is non-motile and forms extensive blooms. The haploid phase is a non-calcified biflagellated cell bearing organic scales. Haploid cells are thought to resist infection, through a process deemed the "Cheshire Cat" escape strategy; however, a recent study detected the presence of viral lipids in the same haploid strain. Here we report on the application of an E. huxleyi CCMP1516 EhV-86 combined tiling array (TA) that further confirms an EhV infection in the RCC1217 haploid strain, which grew without any signs of cell lysis. Reverse transcription polymerase chain reaction (RT-PCR) and PCR verified the presence of viral RNA in the haploid cells, yet indicated an absence of viral DNA, respectively. These infected cells are an alternative stage of the virus life cycle deemed the haplococcolithovirocell. In this instance, the host is both resistant to and infected by EhV, i.e., the viral transcriptome is present in haploid cells whilst there is no evidence of viral lysis. This superimposed state is reminiscent of Schrödinger's cat; of being simultaneously both dead and alive.
Pseudomonas aeruginosa Pore-Forming Exolysin and Type IV Pili Cooperate To Induce Host Cell Lysis
Basso, Pauline; Ragno, Michel; Elsen, Sylvie; Reboud, Emeline; Golovkine, Guillaume; Bouillot, Stephanie; Huber, Philippe; Lory, Stephen; Faudry, Eric
2017-01-01
ABSTRACT Clinical strains of Pseudomonas aeruginosa lacking the type III secretion system genes employ a toxin, exolysin (ExlA), for host cell membrane disruption. Here, we demonstrated that ExlA export requires a predicted outer membrane protein, ExlB, showing that ExlA and ExlB define a new active two-partner secretion (TPS) system of P. aeruginosa. In addition to the TPS signals, ExlA harbors several distinct domains, which include one hemagglutinin domain, five arginine-glycine-aspartic acid (RGD) motifs, and a C-terminal region lacking any identifiable sequence motifs. However, this C-terminal region is important for the toxic activity, since its deletion abolishes host cell lysis. Using lipid vesicles and eukaryotic cells, including red blood cells, we demonstrated that ExlA has a pore-forming activity which precedes cell membrane disruption of nucleated cells. Finally, we developed a high-throughput cell-based live-dead assay and used it to screen a transposon mutant library of an ExlA-producing P. aeruginosa clinical strain for bacterial factors required for ExlA-mediated toxicity. The screen resulted in the identification of proteins involved in the formation of type IV pili as being required for ExlA to exert its cytotoxic activity by promoting close contact between bacteria and the host cell. These findings represent the first example of cooperation between a pore-forming toxin of the TPS family and surface appendages in host cell intoxication. PMID:28119472
Steinmoen, Hilde; Knutsen, Eivind; Håvarstein, Leiv Sigve
2002-05-28
Naturally competent bacteria have the ability to take up free DNA from the surrounding medium and incorporate this DNA into their genomes by homologous recombination. In naturally competent Streptococcus pneumoniae, and related streptococcal species from the mitis phylogenetic group, the competent state is not a constitutive property but is induced by a peptide pheromone through a quorum-sensing mechanism. Recent studies have shown that natural genetic transformation is an important mechanism for gene exchange between streptococci in nature. A prerequisite for effective gene exchange is the presence of streptococcal donor DNA in the environment. Despite decades of study of the transformation process we still do not know how this donor DNA is released from streptococcal cells to the external milieu. Traditionally, it has been assumed that donor DNA originates from cells that die and fall apart from natural causes. In this study we show that induction of the competent state initiates release of DNA from a subfraction of the bacterial population, probably by cell lysis. The majority of the cells induced to competence take up DNA and act as recipients, whereas the rest release DNA and act as donors. These findings show that natural transformation in streptococci provides a natural mechanism for genetic recombination that resembles sex in higher organisms.
Mutational analysis of the MS2 lysis protein L
Chamakura, Karthik R.; Edwards, Garrett B.
2017-01-01
Small single-stranded nucleic acid phages effect lysis by expressing a single protein, the amurin, lacking muralytic enzymatic activity. Three amurins have been shown to act like ‘protein antibiotics’ by inhibiting cell-wall biosynthesis. However, the L lysis protein of the canonical ssRNA phage MS2, a 75 aa polypeptide, causes lysis by an unknown mechanism without affecting net peptidoglycan synthesis. To identify residues important for lytic function, randomly mutagenized alleles of L were generated, cloned into an inducible plasmid and the transformants were selected on agar containing the inducer. From a total of 396 clones, 67 were unique single base-pair changes that rendered L non-functional, of which 44 were missense mutants and 23 were nonsense mutants. Most of the non-functional missense alleles that accumulated in levels comparable to the wild-type allele are localized in the C-terminal half of L, clustered in and around an LS dipeptide sequence. The LS motif was used to align L genes from ssRNA phages lacking any sequence similarity to MS2 or to each other. This alignment revealed a conserved domain structure, in terms of charge, hydrophobic character and predicted helical content. None of the missense mutants affected membrane-association of L. Several of the L mutations in the central domains were highly conservative and recessive, suggesting a defect in a heterotypic protein–protein interaction, rather than in direct disruption of the bilayer structure, as had been previously proposed for L. PMID:28691656
Cheng, Huijun; Asakura, Yuya; Kanda, Kosuke; Fukui, Ryo; Kawano, Yoshihisa; Okugawa, Yuki; Tashiro, Yukihiro; Sakai, Kenji
2018-04-12
Autothermal thermophilic aerobic digestion (ATAD) is conducted for stabilization of sludge waste and is driven by the action of various microorganisms under aerobic conditions. However, the mechanism controlling bacterial community changes during ATAD via three (initial, middle and final) phases is currently unclear. To investigate this mechanism, activity analysis and a microcosm assay with shaking were performed on a bacterial community during the initial, middle, and final phases of incubation. Cell lysis activities toward gram-negative bacteria, but not gram-positive bacteria, were detected in the ATAD samples in the middle and final phases. During shaking incubation in initial-phase samples at 30 °C, major operational taxonomic units (OTUs) related to Acinetobacter indicus and Arcobacter cibarius dramatically increased along with decreases in several major OTUs. In middle-phase samples at 45 °C, we observed a major alteration of OTUs related to Caldicellulosiruptor bescii and Aciditerrimonas ferrireducens, together with distinct decreases in several other OTUs. Final-phase samples maintained a stable bacterial community with major OTUs showing limited similarities to Heliorestis baculata, Caldicellulosiruptorbescii, and Ornatilinea apprima. In conclusion, the changes in the bacterial community observed during ATAD could be partially attributed to the cell lysis activity toward gram-negative bacteria in the middle and final phases. The microcosm assay suggested that certain physical factors, such as a high oxygen supply and shearing forces, also might contribute to bacterial community changes in the initial and middle phases, and to the stable bacterial community in the final phase of ATAD. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Kong, Wei; Wanda, Soo-Young; Zhang, Xin; Bollen, Wendy; Tinge, Steven A; Roland, Kenneth L; Curtiss, Roy
2008-07-08
We have devised and constructed a biological containment system designed to cause programmed bacterial cell lysis with no survivors. We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for antigen delivery after colonization of host lymphoid tissues. The system is composed of two parts. The first component is Salmonella typhimurium strain chi8937, with deletions of asdA and arabinose-regulated expression of murA, two genes required for peptidoglycan synthesis and additional mutations to enhance complete lysis and antigen delivery. The second component is plasmid pYA3681, which encodes arabinose-regulated murA and asdA expression and C2-regulated synthesis of antisense asdA and murA mRNA transcribed from the P22 P(R) promoter. An arabinose-regulated c2 gene is present in the chromosome. chi8937(pYA3681) exhibits arabinose-dependent growth. Upon invasion of host tissues, an arabinose-free environment, transcription of asdA, murA, and c2 ceases, and concentrations of their gene products decrease because of cell division. The drop in C2 concentration results in activation of P(R), driving synthesis of antisense mRNA to block translation of any residual asdA and murA mRNA. A highly antigenic alpha-helical domain of Streptococcus pneumoniae Rx1 PspA was cloned into pYA3681, resulting in pYA3685 to test antigen delivery. Mice orally immunized with chi8937(pYA3685) developed antibody responses to PspA and Salmonella outer membrane proteins. No viable vaccine strain cells were detected in host tissues after 21 days. This system has potential applications with other Gram-negative bacteria in which biological containment would be desirable.
Kong, Wei; Wanda, Soo-Young; Zhang, Xin; Bollen, Wendy; Tinge, Steven A.; Roland, Kenneth L.; Curtiss, Roy
2008-01-01
We have devised and constructed a biological containment system designed to cause programmed bacterial cell lysis with no survivors. We have validated this system, using Salmonella enterica serovar Typhimurium vaccines for antigen delivery after colonization of host lymphoid tissues. The system is composed of two parts. The first component is Salmonella typhimurium strain χ8937, with deletions of asdA and arabinose-regulated expression of murA, two genes required for peptidoglycan synthesis and additional mutations to enhance complete lysis and antigen delivery. The second component is plasmid pYA3681, which encodes arabinose-regulated murA and asdA expression and C2-regulated synthesis of antisense asdA and murA mRNA transcribed from the P22 PR promoter. An arabinose-regulated c2 gene is present in the chromosome. χ8937(pYA3681) exhibits arabinose-dependent growth. Upon invasion of host tissues, an arabinose-free environment, transcription of asdA, murA, and c2 ceases, and concentrations of their gene products decrease because of cell division. The drop in C2 concentration results in activation of PR, driving synthesis of antisense mRNA to block translation of any residual asdA and murA mRNA. A highly antigenic α-helical domain of Streptococcus pneumoniae Rx1 PspA was cloned into pYA3681, resulting in pYA3685 to test antigen delivery. Mice orally immunized with χ8937(pYA3685) developed antibody responses to PspA and Salmonella outer membrane proteins. No viable vaccine strain cells were detected in host tissues after 21 days. This system has potential applications with other Gram-negative bacteria in which biological containment would be desirable. PMID:18607005
Souidi, Naima; Stolk, Meaghan; Rudeck, Juliane; Strunk, Dirk; Schallmoser, Katharina; Volk, Hans-Dieter; Seifert, Martina
2017-05-01
Regeneration of injured tissues requires effective therapeutic strategies supporting vasculogenesis. The lack of instantly available autologous cell sources and immunogenicity of allogeneic endothelial (progenitor) cells limits clinical progress. Based on the immunosuppressive potency of mesenchymal stem/progenitor cells (MSCs), we investigated whether crosstalk between endothelial colony-forming progenitor cells (ECFCs) and MSCs during vasculogenesis could lower allogeneic T cell responses against ECFCs allowing long-term engraftment in vivo. Immunodeficient mice received subcutaneous grafts containing human ECFCs alone, or pairs of human ECFCs/MSCs from the same umbilical cord (UC) to study vasculogenesis in the presence of human leukocyte antigen (HLA)-mismatched human peripheral blood mononuclear cells (PBMCs). In vitro, cell surface marker changes due to interferon gamma (IFNγ) stimulation during ECFC/MSC coculture were determined and further effects on allostimulated T cell proliferation and cytotoxic lysis were measured. IFNγ-induced HLA-DR expression on ECFCs and MSCs, but both cell types had significantly less HLA-DR in cocultures. ECFC-induced T cell proliferation was abolished after MSC coculture as a result of HLA-DR downregulation and indolamin-2,3-dioxygenase activation. Additionally, allospecific CD8 + T cell-mediated lysis of ECFCs was reduced in cocultures. ECFC/MSC coapplication in immunodeficient mice not only promoted the generation of improved blood vessel architecture after 6 weeks, but also reduced intragraft immune cell infiltration and endothelial HLA-DR expression following PBMC reconstitution. Crosstalk between UC-derived ECFCs and MSCs after combined transplantation can lower the risk of ECFC rejection, thus enabling their coapplication for therapeutic vasculogenesis. Stem Cells 2017;35:1233-1245. © 2017 AlphaMed Press.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yung, Mimi C.; Bourguet, Feliza A.; Carpenter, Timothy S.
Recombinant expression of toxic proteins remains a challenging problem. Furthermore, one potential method to shield toxicity and thus improve expression of these proteins is to encapsulate them within protein compartments to sequester them away from their targets. Many bacteria naturally produce so-called bacterial microcompartments (BMCs) in which enzymes comprising a biosynthetic pathway are encapsulated in a proteinaeous shell, which is in part thought to shield the cells from the toxicity of reaction intermediates. As a proof-of-concept, we attempted to encapsulate toxic, lysis protein E (E) from bacteriophage ΦX174 inside recombinant BMCs to enhance its expression and achieve higher yields duringmore » downstream purification.« less
Yung, Mimi C.; Bourguet, Feliza A.; Carpenter, Timothy S.; ...
2017-04-26
Recombinant expression of toxic proteins remains a challenging problem. Furthermore, one potential method to shield toxicity and thus improve expression of these proteins is to encapsulate them within protein compartments to sequester them away from their targets. Many bacteria naturally produce so-called bacterial microcompartments (BMCs) in which enzymes comprising a biosynthetic pathway are encapsulated in a proteinaeous shell, which is in part thought to shield the cells from the toxicity of reaction intermediates. As a proof-of-concept, we attempted to encapsulate toxic, lysis protein E (E) from bacteriophage ΦX174 inside recombinant BMCs to enhance its expression and achieve higher yields duringmore » downstream purification.« less
Miltenburg, A M; Van Laar, J M; De Kuiper, P; Daha, M R; Breedveld, F C
1990-01-01
A panel of T cell clones was derived from the synovial membrane of a patient with rheumatoid arthritis (RA). We investigated whether T cell clones with cytolytic properties were present and whether T cell cytotoxicity was influenced by the presence of synovial fluid. These issues were studied using anti-CD3 and lectin-induced cytotoxicity assays. The majority of the T cell clones derived from the synovial membrane showed cytotoxic properties although non-cytotoxic clones were also found. Three clones (N11, N6 and N15) showed strong cytotoxicity (more than 40% lysis at an effector-to-target cell ratio of 10:1) whereas three clones (N16, N4 and N14) were non-cytotoxic (less than 20% lysis at an effector-to-target cell ratio of 10:1). The induction of cytotoxicity in the anti-CD3-driven system was shown to be dependent on the dose of anti-CD3 present. When synovial fluid was added to these assays a strong inhibition of cytotoxicity was found. This inhibition of cytotoxicity was found with synovial fluid samples of RA patients, as well as with non-RA synovial fluids. Both anti-CD3 and lectin-dependent cytotoxicity assays were strongly inhibited. In conclusion, T cell clones with cytotoxic activity can be isolated from rheumatoid synovial membrane. In the presence of synovial fluid these cytotoxic cells are inhibited to exert their cytotoxic function. PMID:2148285
A comparison of the intoxication pathways of tumor necrosis factor and diphtheria toxin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chang, M.P.
1988-01-01
The mechanism by which tumor necrosis factor-alpha (TNF) initiates tumor cell destruction is unknown. We have approached this problem by comparing the biological properties of TNF with diphtheria toxin (DTx), a well-characterized cytotoxin. Initial studies with human U937 cells revealed that a transient exposure to low pH enhances the cytotoxic activity of TNF. Detailed studies on the interaction of TNF with pure lipid vesicles revealed that the acid-enhanced cytolytic activity of this cytokine is correlated with the acquisition of membrane binding and insertion properties. Significantly, an increase in target membrane stabilization was observed in the presence of TNF; hence, TNFmore » is not directly lytic for membranes. In susceptible target cells, DTx induces the release of {sup 51}Cr- and {sup 75}Se-labeled proteins within 7 h. Although DTx-triggered cell death has generally been accepted as a straightforward effect of translation inhibition, little or no cell lysis was observed over a 20-30 h period when target cells were exposed to cycloheximide, amino acid deficient medium or metabolic poisons even though protein synthesis was inhibited to levels observed with DTx. The protein synthesis inhibition and cytolytic activities of DTx showed similar dose-dependencies, target cell specificities, and sensitivities to NH{sub 4}Cl inhibition. DTx-induced DNA fragmentation preceded cells lysis and did not occur in cells that were treated with the other protein synthesis inhibitors.« less
Galandrini, Ricciarda; Porpora, Maria Grazia; Stoppacciaro, Antonella; Micucci, Federica; Capuano, Cristina; Tassi, Ilaria; Di Felice, Alessia; Benedetti-Panici, Pierluigi; Santoni, Angela
2008-05-01
To analyze the frequency of peritoneal natural killer (NK) cells expressing the human leukocyte antigen (HLA)-E receptor CD94/NKG2A in patients with endometriosis. Case-control study. University hospital. Stage III and stage IV endometriosis, according to the revised American Society for Reproductive Medicine classification, was laparoscopically and histologically confirmed in 11 and 9 patients, respectively; 13 subjects without endometriosis were selected for the control group. Collection of peripheral venous blood, peritoneal fluid, endometriotic tissue, and normal endometrium in subjects undergoing laparoscopy. Surface expression levels of CD94/NKG2A and CD94/NKG2C were detected by three-color cytofluorometric analysis. Semiquantitative HLA-E messenger RNA expression analysis was performed in endometriotic lesions and in eutopic endometrium. NK cell-mediated cytotoxic activity toward HLA-E positive target, DT360 cell line, was also determined. In women with endometriosis, the percentage of CD94/NKG2A-positive peritoneal NK cells was significantly higher than in the control group. The CD94/NKG2A ligand, HLA-E, was detected at high levels in endometriotic tissue as messenger RNA transcript. Target cells bearing HLA-E were resistant to NK cell-mediated lysis in a CD94/NKG2A-dependent manner. Increased expression of CD94/NKG2A in peritoneal NK cells may mediate the resistance of endometriotic tissue to NK cell-mediated lysis, thus contributing to the progression of the disease.
Cao, Guoshuai; Wang, Jian; Zheng, Xiaodong; Wei, Haiming; Tian, Zhigang; Sun, Rui
2015-12-11
Immune cells are believed to participate in initiating anti-tumor effects during regular tumor therapy such as chemotherapy, radiation, hyperthermia, and cytokine injection. One of the mechanisms underlying this process is the expression of so-called stress-inducible immunostimulating ligands. Although the activating receptor NKG2D has been proven to play roles in tumor therapy through targeting its ligands, the role of NKp30, another key activating receptor, is seldom addressed. In this study, we found that the NKp30 ligand B7-H6 was widely expressed in tumor cells and closely correlated to their susceptibility to NK cell lysis. Further studies showed that treatment of tumor cells with almost all standard tumor therapeutics, including chemotherapy (cisplatin, 5-fluorouracil), radiation therapy, non-lethal heat shock, and cytokine therapy (TNF-α), could up-regulate the expression of B7-H6 in tumor cells and enhance tumor sensitivity to NK cell cytolysis. B7-H6 shRNA treatment effectively dampened sensitization of tumor cells to NK-mediated lysis. Our study not only reveals the possibility that tumor therapeutics work as stress inducers to enhance tumor sensitivity to NK cell cytolysis but also suggests that B7-H6 could be a potential target for tumor therapy in the future. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Lupatov, A Yu; Kim, Ya S; Bystrykh, O A; Vakhrushev, I V; Pavlovich, S V; Yarygin, K N; Sukhikh, G T
2017-02-01
We studied immunosuppressive properties of skin fibroblasts and mesenchymal stromal cells against NK cells. In vitro experiments showed that mesenchymal stromal cells isolated from human umbilical cord and human skin fibroblasts can considerably attenuate cytotoxic activity of NK cells against Jurkat cells sensitive to NK-mediated lysis. NK cells cultured in lymphocyte population exhibited higher cytotoxic activity than isolated NK cells. Mesenchymal stromal cells or fibroblasts added 1:1 to lymphocyte culture almost completely suppressed NK cell cytotoxicity. This suggests that fibroblast-like cells can suppress not only isolated NK cells, but also NK cells in natural cell microenvironment.
Ebenezer, A Vimala; Kaliappan, S; Adish Kumar, S; Yeom, Ick-Tae; Banu, J Rajesh
2015-06-01
In the present study, the potential benefits of deflocculation on microwave pretreatment of waste activated sludge were investigated. Deflocculation in the absence of cell lysis was achieved through the removal of extra polymeric substances (EPS) by sodium citrate (0.1g sodium citrate/g suspended solids), and DNA was used as a marker for monitoring cell lysis. Subsequent microwave pretreatment yielded a chemical oxygen demand (COD) solubilisation of 31% and 21%, suspended solids (SS) reduction of 37% and 22%, for deflocculated and flocculated sludge, respectively, with energy input of 14,000kJ/kg TS. When microwave pretreated sludge was subjected to anaerobic fermentation, greater accumulation of volatile fatty acid (860mg/L) was noticed in deflocculated sludge, indicating better hydrolysis. Among the samples subjected to BMP (Biochemical methane potential test), deflocculated microwave pretreated sludge showed better amenability towards anaerobic digestion with high methane production potential of 0.615L (gVS)(-1). Copyright © 2015 Elsevier Ltd. All rights reserved.
Chen, Dafeng; Mauk, Michael; Qiu, Xianbo; Liu, Changchun; Kim, Jitae; Ramprasad, Sudhir; Ongagna, Serge; Abrams, William R.; Malamud, Daniel; Corstjens, Paul L. A. M.
2010-01-01
A self-contained, integrated, disposable, sample-to-answer, polycarbonate microfluidic cassette for nucleic acid—based detection of pathogens at the point of care was designed, constructed, and tested. The cassette comprises on-chip sample lysis, nucleic acid isolation, enzymatic amplification (polymerase chain reaction and, when needed, reverse transcription), amplicon labeling, and detection. On-chip pouches and valves facilitate fluid flow control. All the liquids and dry reagents needed for the various reactions are pre-stored in the cassette. The liquid reagents are stored in flexible pouches formed on the chip surface. Dry (RT-)PCR reagents are pre-stored in the thermal cycling, reaction chamber. The process operations include sample introduction; lysis of cells and viruses; solid-phase extraction, concentration, and purification of nucleic acids from the lysate; elution of the nucleic acids into a thermal cycling chamber and mixing with pre-stored (RT-)PCR dry reagents; thermal cycling; and detection. The PCR amplicons are labeled with digoxigenin and biotin and transmitted onto a lateral flow strip, where the target analytes bind to a test line consisting of immobilized avidin-D. The immobilized nucleic acids are labeled with up-converting phosphor (UCP) reporter particles. The operation of the cassette is automatically controlled by an analyzer that provides pouch and valve actuation with electrical motors and heating for the thermal cycling. The functionality of the device is demonstrated by detecting the presence of bacterial B.Cereus, viral armored RNA HIV, and HIV I virus in saliva samples. The cassette and actuator described here can be used to detect other diseases as well as the presence of bacterial and viral pathogens in the water supply and other fluids. PMID:20401537
Chen, Dafeng; Mauk, Michael; Qiu, Xianbo; Liu, Changchun; Kim, Jitae; Ramprasad, Sudhir; Ongagna, Serge; Abrams, William R; Malamud, Daniel; Corstjens, Paul L A M; Bau, Haim H
2010-08-01
A self-contained, integrated, disposable, sample-to-answer, polycarbonate microfluidic cassette for nucleic acid-based detection of pathogens at the point of care was designed, constructed, and tested. The cassette comprises on-chip sample lysis, nucleic acid isolation, enzymatic amplification (polymerase chain reaction and, when needed, reverse transcription), amplicon labeling, and detection. On-chip pouches and valves facilitate fluid flow control. All the liquids and dry reagents needed for the various reactions are pre-stored in the cassette. The liquid reagents are stored in flexible pouches formed on the chip surface. Dry (RT-)PCR reagents are pre-stored in the thermal cycling, reaction chamber. The process operations include sample introduction; lysis of cells and viruses; solid-phase extraction, concentration, and purification of nucleic acids from the lysate; elution of the nucleic acids into a thermal cycling chamber and mixing with pre-stored (RT-)PCR dry reagents; thermal cycling; and detection. The PCR amplicons are labeled with digoxigenin and biotin and transmitted onto a lateral flow strip, where the target analytes bind to a test line consisting of immobilized avidin-D. The immobilized nucleic acids are labeled with up-converting phosphor (UCP) reporter particles. The operation of the cassette is automatically controlled by an analyzer that provides pouch and valve actuation with electrical motors and heating for the thermal cycling. The functionality of the device is demonstrated by detecting the presence of bacterial B.Cereus, viral armored RNA HIV, and HIV I virus in saliva samples. The cassette and actuator described here can be used to detect other diseases as well as the presence of bacterial and viral pathogens in the water supply and other fluids.
NK Cell–Mediated Antitumor Effects of a Folate-Conjugated Immunoglobulin are Enhanced by Cytokines
Kondadasula, SriVidya; Skinner, Cassandra C.; Mundy-Bosse, Bethany L.; Luedke, Eric; Jones, Natalie B.; Mani, Aruna; Roda, Julie; Karpa, Volodymyr; Li, Hong; Li, Jilong; Elavazhagan, Saranya; La Perle, Krista M.; Schmitt, Alessandra C.; Lu, Yanhui; Zhang, Xiaoli; Pan, Xueliang; Mao, Hsaioyin; Davis, Melanie; Jarjoura, David; Butchar, Jonathan P.; Poi, Ming; Phelps, Mitch; Tridandapani, Susheela; Byrd, John C.; Caligiuri, Michael A.; Lee, Robert J.; Carson, William E.
2016-01-01
Optimally effective antitumor therapies would not only activate immune effector cells, but engage them at the tumor. Folate-conjugated to immunoglobulin (F-IgG) could direct innate immune cells with Fc receptors to folate receptor–expressing cancer cells. F-IgG bound to human KB and HeLa cells, as well as murine L1210JF, a folate receptor (FR) overexpressing cancer cell line, as determined by flow cytometry. Recognition of F-IgG by NK cell Fc receptors led to phosphorylation of the ERK transcription factor and increased NK cell expression of CD69. Lysis of KB tumor cells by NK cells increased about 5-fold after treatment with F-IgG, an effect synergistically enhanced by treatment with IL2, IL12, IL15, or IL21 (P < 0.001). F-IgG also enhanced the lysis of chronic lymphocytic leukemia cells by autologous NK cells. NK cells significantly increased production of IFNγ, MIP-1α, and RANTES in response to F-IgG–coated KB target cells in the presence of the NK cell–activating cytokine IL12, and these coculture supernatants induced significant T cell chemotaxis P < 0.001). F-IgG–coated targets also stimulated FcR-mediated monocyte effector functions. Studies in a murine leukemia model confirmed the intratumoral localization and antitumor activity of F-IgG, as well as enhancement of its effects by IL12 (P = 0.05). The antitumor effect of this combination was dependent on NK cells and led to decreased tumor cell proliferation in vivo. Thus, F-IgG can induce an immune response against FR-positive tumor cells that is mediated by NK cells and can be augmented by cytokine therapy. PMID:26865456
Zhang, Xiao; El-Hajj, Ziad W.; Newman, Elaine
2010-01-01
Escherichia coli K-12 provided with glucose and a mixture of amino acids depletes l-serine more quickly than any other amino acid even in the presence of ammonium sulfate. A mutant without three 4Fe4S l-serine deaminases (SdaA, SdaB, and TdcG) of E. coli K-12 is unable to do this. The high level of l-serine that accumulates when such a mutant is exposed to amino acid mixtures starves the cells for C1 units and interferes with cell wall synthesis. We suggest that at high concentrations, l-serine decreases synthesis of UDP-N-acetylmuramate-l-alanine by the murC-encoded ligase, weakening the cell wall and producing misshapen cells and lysis. The inhibition by high l-serine is overcome in several ways: by a large concentration of l-alanine, by overproducing MurC together with a low concentration of l-alanine, and by overproducing FtsW, thus promoting septal assembly and also by overexpression of the glycine cleavage operon. S-Adenosylmethionine reduces lysis and allows an extensive increase in biomass without improving cell division. This suggests that E. coli has a metabolic trigger for cell division. Without that reaction, if no other inhibition occurs, other metabolic functions can continue and cells can elongate and replicate their DNA, reaching at least 180 times their usual length, but cannot divide. PMID:20729359
Bianchi, Paola; Fermo, Elisa; Vercellati, Cristina; Marcello, Anna P.; Porretti, Laura; Cortelezzi, Agostino; Barcellini, Wilma; Zanella, Alberto
2012-01-01
Background The laboratory diagnosis of hereditary spherocytosis commonly relies on NaCl-based or glycerol-based red cell osmotic fragility tests; more recently, an assay directly targeting the hereditary spherocytosis molecular defect (eosin-5′-maleimide-binding test) has been proposed. None of the available tests identifies all cases of hereditary spherocytosis. Design and Methods We compared the performances of the eosin-5′-maleimide-binding test, NaCl-osmotic fragility studies on fresh and incubated blood, the glycerol lysis test, the acidified glycerol lysis test, and the Pink test on a series of 150 patients with hereditary spherocytosis grouped according to clinical phenotype and the defective protein, with the final aim of finding the combination of tests associated with the highest diagnostic power, even in the mildest cases of hereditary spherocytosis. Results The eosin-5′-maleimide-binding test had a sensitivity of 93% and a specificity of 98% for detecting hereditary spherocytosis: the sensitivity was independent of the type and amount of molecular defect and of the clinical phenotype. The acidified glycerol lysis test and Pink test showed comparable sensitivity (95% and 91%). The sensitivity of NaCl osmotic fragility tests, commonly considered the gold standard for the diagnosis of hereditary spherocytosis, was 68% on fresh blood and 81% on incubated blood, and further decreased in compensated cases (53% and 64%, respectively). The combination of the eosin-5′-maleimide-binding test and acidified glycerol lysis test enabled all patients with hereditary spherocytosis to be identified. The eosin-5′-maleimide-binding test showed the greatest disease specificity. Conclusions Each type of test fails to diagnose some cases of hereditary spherocytosis. The association of an eosin-5′-maleimide-binding test and an acidified glycerol lysis test enabled identification of all patients with hereditary spherocytosis in this series and, therefore, represents a currently effective diagnostic strategy for hereditary spherocytosis including mild/compensated cases. PMID:22058213
Cell biology perspectives in phage biology.
Ansaldi, Mireille
2012-01-01
Cellular biology has long been restricted to large cellular organisms. However, as the resolution of microscopic methods increased, it became possible to study smaller cells, in particular bacterial cells. Bacteriophage biology is one aspect of bacterial cell biology that has recently gained insight from cell biology. Despite their small size, bacteriophages could be successfully labeled and their cycle studied in the host cells. This review aims to put together, although non-extensively, several cell biology studies that recently pushed the elucidation of key mechanisms in phage biology, such as the lysis-lysogeny decision in temperate phages or genome replication and transcription, one step further.
Donahue, Renee N; Lepone, Lauren M; Grenga, Italia; Jochems, Caroline; Fantini, Massimo; Madan, Ravi A; Heery, Christopher R; Gulley, James L; Schlom, Jeffrey
2017-01-01
Multiple anti-PD-L1/PD-1 checkpoint monoclonal antibodies (MAb) have shown clear evidence of clinical benefit. All except one have been designed or engineered to omit the possibility to mediate antibody-dependent cell-mediated cytotoxicity (ADCC) as a second potential mode of anti-tumor activity; the reason for this is the concern of lysis of PD-L1 positive immune cells. Avelumab is a fully human IgG1 MAb which has been shown in prior in vitro studies to mediate ADCC versus a range of human tumor cells, and clinical studies have demonstrated anti-tumor activity versus a range of human cancers. This study was designed to investigate the effect on immune cell subsets in the peripheral blood of cancer patients prior to and following multiple administrations of avelumab. One hundred twenty-three distinct immune cell subsets in the peripheral blood of cancer patients ( n = 28) in a phase I trial were analyzed by flow cytometry prior to and following one, three, and nine cycles of avelumab. Changes in soluble (s) CD27 and sCD40L in plasma were also evaluated. In vitro studies were also performed to determine if avelumab would mediate ADCC of PBMC. No statistically significant changes in any of the 123 immune cell subsets analyzed were observed at any dose level, or number of doses, of avelumab. Increases in the ratio of sCD27:sCD40L were observed, suggesting potential immune activation. Controlled in vitro studies also showed lysis of tumor cells by avelumab versus no lysis of PBMC from five donors. These studies demonstrate the lack of any significant effect on multiple immune cell subsets, even those expressing PD-L1, following multiple cycles of avelumab. These results complement prior studies showing anti-tumor effects of avelumab and comparable levels of adverse events with avelumab versus other anti-PD-1/PD-L1 MAbs. These studies provide the rationale to further exploit the potential ADCC mechanism of action of avelumab as well as other human IgG1 checkpoint inhibitors. ClinicalTrials.gov identifier: NCT01772004 (first received: 1/14/13; start date: January 2013) and NCT00001846 (first received date: 11/3/99; start date: August 1999).
Single-Cell Western Blotting after Whole-Cell Imaging to Assess Cancer Chemotherapeutic Response
2015-01-01
Intratumor heterogeneity remains a major obstacle to effective cancer therapy and personalized medicine. Current understanding points to differential therapeutic response among subpopulations of tumor cells as a key challenge to successful treatment. To advance our understanding of how this heterogeneity is reflected in cell-to-cell variations in chemosensitivity and expression of drug-resistance proteins, we optimize and apply a new targeted proteomics modality, single-cell western blotting (scWestern), to a human glioblastoma cell line. To acquire both phenotypic and proteomic data on the same, single glioblastoma cells, we integrate high-content imaging prior to the scWestern assays. The scWestern technique supports thousands of concurrent single-cell western blots, with each assay comprised of chemical lysis of single cells seated in microwells, protein electrophoresis from those microwells into a supporting polyacrylamide (PA) gel layer, and in-gel antibody probing. We systematically optimize chemical lysis and subsequent polyacrylamide gel electrophoresis (PAGE) of the single-cell lysate. The scWestern slides are stored for months then reprobed, thus allowing archiving and later analysis as relevant to sparingly limited, longitudinal cell specimens. Imaging and scWestern analysis of single glioblastoma cells dosed with the chemotherapeutic daunomycin showed both apoptotic (cleaved caspase 8- and annexin V-positive) and living cells. Intriguingly, living glioblastoma subpopulations show up-regulation of a multidrug resistant protein, P-glycoprotein (P-gp), suggesting an active drug efflux pump as a potential mechanism of drug resistance. Accordingly, linking of phenotype with targeted protein analysis with single-cell resolution may advance our understanding of drug response in inherently heterogeneous cell populations, such as those anticipated in tumors. PMID:25226230
Brooks, R A; Burrin, J M; Kohner, E M
1991-01-01
Release of basic fibroblast growth factor (bFGF) was investigated in bovine retinal endothelial cells (BREC) maintained in monolayer culture. Confluent cells released bFGF into serum-free culture medium or medium containing 5% serum at rates of up to 105.2 and 61.3 pM/day respectively. bFGF release coincided with a decrease in monolayer cell number and increases in lactate dehydrogenase (LDH) concentration and cells and cell-debris particles in the medium, which suggested that cell damage and lysis were responsible for growth-factor release. Maximum bFGF release at 24 h (230 +/- 10 pM) occurred when the cells were treated with lipopolysaccharide (10 micrograms/ml), which also produced the greatest changes in parameters of cell damage. Sub-confluent cells showed little overt damage at 24 h, but released bFGF (78 +/- 20 pM) along with LDH, indicating that some cell lysis had occurred. Insulin-like growth factor 1 (IGF-1) was also released into serum-free culture medium at a rate of 0.34 nM/day, but not into medium containing serum or when the cells were treated with lipopolysaccharide. This implies that the mechanism of IGF-1 release is different from that of bFGF and is not related to cell damage. Culture medium conditioned by BREC stimulated the proliferation of these cells, as measured by an increase in their incorporation of [methyl-3H]thymidine from 7550 +/- 479 to 10467 +/- 924 d.p.m. These results demonstrate that bFGF is released from damaged BREC and that medium conditioned by these cells can stimulate retinal-endothelial-cell proliferation. This strengthens the case for an involvement of this growth factor in retinal neovascularization. Images Fig. 1. PMID:2039465
2002-01-01
A filterable lytic agent (FLA) was obtained from seawater in the southeastern Gulf of Mexico during a red tide bloom that caused lysis of Karenia brevis (formerly Gymnodinium breve) Piney Island. This agent was obtained from <0.2µ filtrates that were concentrated by ultrafiltration using a 100 kDa filter. The FLA was propagated by passage on K. brevis cultures, and the filtered supernatants of such cultures resulted in K. brevis lysis when added to such cultures. The lytic activity was lost upon heating to 65°C or by 0.02 µm filtration. Epifluorescence and transmission electron microscopy (TEM) of supernatants of K. brevis cultures treated with the lytic agent indicated a high abundance of viral particles (4 × 109 to 7 × 109 virus-like particles [VLPs] ml–1) compared to control cultures (~107 ml–1). However, viral particles were seldom found in TEM photomicrograph thin sections of lysing K. brevis cells. Although a virus specific for K. brevis may have been the FLA, other explanations such as filterable bacteria or bacteriophages specific for bacteria associated with the K. brevis cultures cannot be discounted.
Nakagawa, K; Yoshida, F; Omori, N; Tsunoda, T; Nose, T
1990-01-01
The effect of radiation therapy combined with lymphoid cells against spontaneous murine fibrosarcoma (FSa-II) was investigated both in vivo and in vitro. In the in vivo experiment, syngeneic C3H mice were divided into 3 groups. Animals in the first group were injected with 1 x 10(5) tumor cells into the right hind leg. Animals in the second and third groups were injected with 1 x 10(5) tumor cells mixed with 1 x 10(7) normal lymphoid cells (NLC) or effector lymphoid cells (ELC), respectively. ELC were obtained from spleen and lymph nodes of FSa-II-bearing mice and incubated in vitro for 40 hr to eliminate suppressor T cell function. NLC were obtained from normal mice and incubated in the same way. Irradiation was given using 137Cs unit 3 days after cell inoculation. 12 out of 14 mice (85.7%) inoculated with tumor cells mixed with NLC did not show any tumor growth at 60 Gy local irradiation. 12 out of 21 mice (57.1%) inoculated with tumor cells alone and 6 out of 10 (60%) with tumor cells mixed with ELC rejected tumors at the same radiation dose. This synergistic effect with NLC was not observed when NLC was inoculated after irradiation, indicating that lymphoid cells should be in contact with tumor cells before irradiation. In the 51Cr release assay, lymphoid cells obtained from whole body irradiated (WBI) mice showed 17.8% lysis without irradiation and 28.8% lysis at 5 Gy irradiation. Untreated NLC showed almost no cytotoxic effect at the same radiation dose. This synergistic effect disappeared when WBI lymphoid cells were treated with anti asialo GM1 and complement.(ABSTRACT TRUNCATED AT 250 WORDS)
Jochems, Caroline; Fantini, Massimo; Fernando, Romaine I; Kwilas, Anna R; Donahue, Renee N; Lepone, Lauren M; Grenga, Italia; Kim, Young-Seung; Brechbiel, Martin W; Gulley, James L; Madan, Ravi A; Heery, Christopher R; Hodge, James W; Newton, Robert; Schlom, Jeffrey; Tsang, Kwong Y
2016-06-21
Epacadostat is a novel inhibitor of indoleamine-2,3-dioxygenase-1 (IDO1) that suppresses systemic tryptophan catabolism and is currently being evaluated in ongoing clinical trials. We investigated the effects of epacadostat on (a) human dendritic cells (DCs) with respect to maturation and ability to activate human tumor antigen-specific cytotoxic T-cell (CTL) lines, and subsequent T-cell lysis of tumor cells, (b) human regulatory T cells (Tregs), and (c) human peripheral blood mononuclear cells (PBMCs) in vitro. Simultaneous treatment with epacadostat and IFN-γ plus lipopolysaccharide (LPS) did not change the phenotype of matured human DCs, and as expected decreased the tryptophan breakdown and kynurenine production. Peptide-specific T-cell lines stimulated with DCs pulsed with peptide produced significantly more IFN-γ, TNFα, GM-CSF and IL-8 if the DCs were treated with epacadostat. These T cells also displayed higher levels of tumor cell lysis on a per cell basis. Epacadostat also significantly decreased Treg proliferation induced by IDO production from IFN-γ plus LPS matured human DCs, although the Treg phenotype did not change. Multicolor flow cytometry was performed on human PBMCs treated with epacadostat; analysis of 123 discrete immune cell subsets revealed no changes in major immune cell types, an increase in activated CD83+ conventional DCs, and a decrease in immature activated Tim3+ NK cells. These studies show for the first time several effects of epacadostat on human DCs, and subsequent effects on CTL and Tregs, and provide a rationale as to how epacadostat could potentially increase the efficacy of immunotherapeutics, including cancer vaccines.
Arden, Catherine; Harbottle, Andrew; Baltrusch, Simone; Tiedge, Markus; Agius, Loranne
2004-09-01
The association of glucokinase with insulin secretory granules has been shown by cell microscopy techniques. We used MIN6 insulin-secretory cells and organelle fractionation to determine the effects of glucose on the subcellular distribution of glucokinase. After permeabilization with digitonin, 50% of total glucokinase remained bound intracellularly, while 30% was associated with the 13,000g particulate fraction. After density gradient fractionation of the organelles, immunoreactive glucokinase was distributed approximately equally between dense insulin granules and low-density organelles that cofractionate with mitochondria. Although MIN6 cells show glucose-responsive insulin secretion, glucokinase association with the granules and low-density organelles was not affected by glucose. Subfractionation of the insulin granule components by hypotonic lysis followed by sucrose gradient centrifugation showed that glucokinase colocalized with the granule membrane marker phogrin and not with insulin. PFK2 (6-phosphofructo-2-kinase-2/fructose-2,6-bisphosphatase)/FDPase-2, a glucokinase-binding protein, and glyceraldehyde phosphate dehydrogenase, which has been implicated in granule fusion, also colocalized with glucokinase after hypotonic lysis or detergent extaction of the granules. The results suggest that glucokinase is an integral component of the granule and does not translocate during glucose stimulation.
Khalilzadeh, Rasoul; Mohammadian-Mosaabadi, Jafar; Bahrami, Ali; Nazak-Tabbar, Ahmad; Nasiri-Khalili, Mohammad Ali; Amouheidari, Alireza
2008-12-01
The fed-batch process using glucose as the sole source of carbon and energy with exponential feeding rate was carried out for high cell density cultivation of recombinant Escherichia coli BL21 (DE3) expressing human granulocyte-colony stimulating factor (hG-CSF). IPTG was used to induce the expression of hG-CSF at 48 g dry cell wt l(-1) during high cell density culture of recombinant E. coli BL21 (DE3) [pET23a-g-csf]. The final cell density, specific yield and overall productivity of hG-CSF were obtained as approximately 64 g dry cell wt l(-1), 223 mg hG-CSF g(-1) dry cell wt and 775 mg hG-CSF l(-1) h(-1), respectively. The resulting purification process used cell lysis, inclusion body (IB) preparation, refolding, DEAE and Butyl-Sepharose. Effects of different process conditions such as cell lysis and washing of IB were evaluated. The results reveal that the cells lyzed at 1,200 bar, 99.9% and Triton removed about 64% of the LPS but sarcosyl had no effect on removal of nucleic acids and LPS. Further analysis show that DEAE column removes DNA about 84%. Cupper concentration was identified as parameter that could have a significant impact on aggregation, as an unacceptable pharmaceutical form that decrease process yields. The purity of purified hG-CSF was more than 99%. Also the comparison of activity between purified hG-CSF and commercial form do not show valuable decrease in activity in purified form.
Huang, X L; Fan, Z; Murayama, T; Rinaldo, C
1995-01-01
A decrease in natural killer (NK) cell function has been related to the progression of human immunodeficiency virus (HIV) infection. In the present study, we assessed the ability of a streptococcus-derived biologic response modifier, OK-432, to augment NK lysis of uninfected K562 and U937 cells and HIV-infected U937 cells by peripheral blood mononuclear cells (PBMC) from HIV-seropositive homosexual men. Optimal two- to fourfold increases in lysis of the three targets were observed after pretreatment of PBMC from HIV-negative subjects for 4 h with 2 micrograms of OK-432 per ml. This effect was related primarily to gamma interferon (IFN-gamma) production induced by OK-432 and was not linked to production of tumor necrosis factors alpha and beta or to monocytes in the cultures. The enhancing effect of OK-432 on NK cell function was diminished but still evident in PBMC from subjects with relatively early-phase (< 3-year) HIV infection and high CD4+ cell counts and was lower in subjects with longer-term HIV infection (> 3 years), in association with reduced production of IFN-gamma. Augmentation of NK cell activity in HIV-infected men by OK-432 was comparable to that induced by treatment of cells with 1,000 U of IFN-alpha or interleukin 2 per ml. The data suggest that the NK cell-enhancing effects of OK-432 are at least in part mediated by IFN-gamma and that OK-432 may be effective in treatment of patients with early-phase HIV infection. PMID:7719919
Demonstration of the Origin of Human Mast Cells from CD34+ Bone Marrow Progenitor Cells
1991-03-01
culture media sexi -ral tixixesovxer the agaxosc surf-~c. Total poured off, anid the reixiiig adherenxt cells were -cultured In cornm- cell counts were...ined bilue . Resi ills we-re explressed xis Itire percent Iage of cit her noxrmalx goat sern o xr gx xx IgGO (0,5 i, ’ ) I Ix at room cells st...hixIxri- aiixre - ;it ixialer lysis w%*is per-~- foxrmed ’loxverify the rcinxv~dl xIli- (1)2. (1119 ixx ("D2(1. 4A 17,oxr ()1. p it cells
Wang, Guan; Zhang, Kai; Wang, Yindian; Zhao, Changwen; He, Bin; Ma, Yuhong; Yang, Wantai
2018-05-03
Surface engineering of individual living cells is a promising field for cell-based applications. However, engineering individual cells with controllable thickness by chemical methods has been rarely studied. This article describes the development of a new cytocompatible chemical strategy to decorate individual living cells. The thicknesses of the crosslinked shells could be conveniently controlled by the irradiation time, visible light intensity, or monomer concentration. Moreover, the lag phase of the yeast cell division was extended and their stability against lysis was improved, which could also be tuned by controlling the shell thickness.
Clinical-Grade Human Multipotent Adult Progenitor Cells Block CD8+ Cytotoxic T Lymphocytes
Dekimpe, Emily; Van Woensel, Matthias; Roobrouck, Valerie D.; Bullens, Dominique M.; Pinxteren, Jef; Verfaillie, Catherine M.; Van Gool, Stefaan W.
2016-01-01
MultiStem cells are clinical-grade multipotent adult bone marrow-derived progenitor cells (MAPCs), with extensive replication potential and broader differentiation capacity compared with mesenchymal stem cells. Human MAPCs suppress T-cell proliferation induced by alloantigens and mutually interact with allogeneic natural killer cells. In this study, the interaction between MultiStem and CD8+ cytotoxic T lymphocytes (CTLs) was addressed for the first time. In an in vitro setting, the immunogenicity of MultiStem, the susceptibility of MultiStem toward CTL-mediated lysis, and its effects on CTL function were investigated. MultiStem was nonimmunogenic for alloreactive CTL induction and was—even after major histocompatibility complex class I upregulation—insensitive to alloantigen-specific CTL-mediated lysis. Furthermore, MultiStem reduced CTL proliferation and significantly decreased perforin expression during the T-cell activation phase. As a consequence, MultiStem dose-dependently impaired the induction of CTL function. These effects of MultiStem were mediated predominantly through contact-dependent mechanisms. Moreover, MultiStem cells considerably influenced the expression of T-cell activation markers CD25, CD69, and human leukocyte antigen-DR. The MultiStem-induced CD8−CD69+ T-cell population displayed a suppressive effect on the induction of CTL function during a subsequent mixed-lymphocyte culture. Finally, the killer activity of activated antigen-specific CTLs during their cytolytic effector phase was also diminished in the presence of MultiStem. This study confirms that these clinical-grade MAPCs are an immune-modulating population that inhibits CTL activation and effector responses and are, consequently, a highly valuable cell population for adoptive immunosuppressive therapy in diseases where damage is induced by CTLs. Significance Because multipotent adult progenitor cells (MAPCs) are among the noteworthy adult mesenchymal stem cell populations for immune therapy and have the advantage over mesenchymal stem cells (MSCs) of large-scale manufacturing and banking potential and thus prompt availability, it is important to understand how MAPCs interact with immune cells to validate their widespread therapeutic applicability. Cytotoxic immune effector cells play a crucial role in immune homeostasis and in the pathogenesis of some autoimmune diseases. This study assessed for the first time the in vitro influence of a clinical-grade human MAPC product (MultiStem) on the cytotoxic function of CD8+ T cells (CTLs) by evaluating the immunogenicity of MAPCs and the susceptibility of MAPCs toward CTL-mediated lysis and by analyzing the mechanism of MAPC-mediated modulation of CTL functionality. These results may represent a highly relevant contribution to the current knowledge and, in combination with the results of future phase II/III trials using MultiStem, could lead to an intriguing continuation of stem cell-based research for immunotherapy. PMID:27465071
Clinical-Grade Human Multipotent Adult Progenitor Cells Block CD8+ Cytotoxic T Lymphocytes.
Plessers, Jeroen; Dekimpe, Emily; Van Woensel, Matthias; Roobrouck, Valerie D; Bullens, Dominique M; Pinxteren, Jef; Verfaillie, Catherine M; Van Gool, Stefaan W
2016-12-01
: MultiStem cells are clinical-grade multipotent adult bone marrow-derived progenitor cells (MAPCs), with extensive replication potential and broader differentiation capacity compared with mesenchymal stem cells. Human MAPCs suppress T-cell proliferation induced by alloantigens and mutually interact with allogeneic natural killer cells. In this study, the interaction between MultiStem and CD8 + cytotoxic T lymphocytes (CTLs) was addressed for the first time. In an in vitro setting, the immunogenicity of MultiStem, the susceptibility of MultiStem toward CTL-mediated lysis, and its effects on CTL function were investigated. MultiStem was nonimmunogenic for alloreactive CTL induction and was-even after major histocompatibility complex class I upregulation-insensitive to alloantigen-specific CTL-mediated lysis. Furthermore, MultiStem reduced CTL proliferation and significantly decreased perforin expression during the T-cell activation phase. As a consequence, MultiStem dose-dependently impaired the induction of CTL function. These effects of MultiStem were mediated predominantly through contact-dependent mechanisms. Moreover, MultiStem cells considerably influenced the expression of T-cell activation markers CD25, CD69, and human leukocyte antigen-DR. The MultiStem-induced CD8 - CD69 + T-cell population displayed a suppressive effect on the induction of CTL function during a subsequent mixed-lymphocyte culture. Finally, the killer activity of activated antigen-specific CTLs during their cytolytic effector phase was also diminished in the presence of MultiStem. This study confirms that these clinical-grade MAPCs are an immune-modulating population that inhibits CTL activation and effector responses and are, consequently, a highly valuable cell population for adoptive immunosuppressive therapy in diseases where damage is induced by CTLs. Because multipotent adult progenitor cells (MAPCs) are among the noteworthy adult mesenchymal stem cell populations for immune therapy and have the advantage over mesenchymal stem cells (MSCs) of large-scale manufacturing and banking potential and thus prompt availability, it is important to understand how MAPCs interact with immune cells to validate their widespread therapeutic applicability. Cytotoxic immune effector cells play a crucial role in immune homeostasis and in the pathogenesis of some autoimmune diseases. This study assessed for the first time the in vitro influence of a clinical-grade human MAPC product (MultiStem) on the cytotoxic function of CD8 + T cells (CTLs) by evaluating the immunogenicity of MAPCs and the susceptibility of MAPCs toward CTL-mediated lysis and by analyzing the mechanism of MAPC-mediated modulation of CTL functionality. These results may represent a highly relevant contribution to the current knowledge and, in combination with the results of future phase II/III trials using MultiStem, could lead to an intriguing continuation of stem cell-based research for immunotherapy. ©AlphaMed Press.
Machado, Francisco R S; Trevisol, Thalles C; Boschetto, Daiane L; Burkert, Janaína F M; Ferreira, Sandra R S; Oliveira, J Vladimir; Burkert, Carlos André V
2016-01-20
In this work, the effectiveness of different enzymatic techniques for cell wall disruption of Haematococcus pluvialis for the extraction of carotenoids and subsequent encapsulation of extracts in the co-polymer poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) using the Solution Enhanced Dispersion by Supercritical fluids (SEDS) technique was investigated. Glucanex(®) performed best compared with Lyticase(®) and Driselase(®). The conditions for enzymatic lysis using this enzyme preparation were established as a pH of 4.5, a temperature of 55 °C, an initial activity of β-1,3-glucanase of 0.6 U mL(-1) and a reaction time of 30 min. Enzymatic lysis assisted by ultrasound without biomass freezing was shown to be a promising and simple one-step technique for cell wall disruption, reaching 83.90% extractability. In the co-precipitation experiments, the highest encapsulation efficiency (51.21%) was obtained when using a higher biomass to dichloromethane ratio (10 mg mL(-1)) at the carotenoid extraction step and a lower pressure of precipitation (80 bar). In these conditions, spherical particles in the micrometer range (0.228 μm) were obtained. Copyright © 2015 Elsevier B.V. All rights reserved.
Detection of Bacterial Pathogens from Broncho-Alveolar Lavage by Next-Generation Sequencing.
Leo, Stefano; Gaïa, Nadia; Ruppé, Etienne; Emonet, Stephane; Girard, Myriam; Lazarevic, Vladimir; Schrenzel, Jacques
2017-09-20
The applications of whole-metagenome shotgun sequencing (WMGS) in routine clinical analysis are still limited. A combination of a DNA extraction procedure, sequencing, and bioinformatics tools is essential for the removal of human DNA and for improving bacterial species identification in a timely manner. We tackled these issues with a broncho-alveolar lavage (BAL) sample from an immunocompromised patient who had developed severe chronic pneumonia. We extracted DNA from the BAL sample with protocols based either on sequential lysis of human and bacterial cells or on the mechanical disruption of all cells. Metagenomic libraries were sequenced on Illumina HiSeq platforms. Microbial community composition was determined by k-mer analysis or by mapping to taxonomic markers. Results were compared to those obtained by conventional clinical culture and molecular methods. Compared to mechanical cell disruption, a sequential lysis protocol resulted in a significantly increased proportion of bacterial DNA over human DNA and higher sequence coverage of Mycobacterium abscessus , Corynebacterium jeikeium and Rothia dentocariosa , the bacteria reported by clinical microbiology tests. In addition, we identified anaerobic bacteria not searched for by the clinical laboratory. Our results further support the implementation of WMGS in clinical routine diagnosis for bacterial identification.
Physical Pretreatment Methods for Improving Microalgae Anaerobic Biodegradability.
Córdova, Olivia; Passos, Fabiana; Chamy, Rolando
2018-05-01
Microalgae may be a potential feedstock for biogas production through anaerobic digestion. However, this process is limited by the hydrolytic stage, due to the complex and resistant microalgae cell wall components. This fact hinders biomass conversion into biogas, demanding the application of pretreatment techniques for inducing cell damage and/or lysis and organic matter solubilisation. In this study, sonication, thermal, ultrasound, homogeneizer, hydrothermal and steam explosion pretreatments were evaluated in different conditions for comparing their effects on anaerobic digestion performance in batch reactors. The results showed that the highest biomass solubilisation values were reached for steam explosion (65-73%) and ultrasound (33-57%). In fact, only applied energies higher than 220 W or temperatures higher than 80 °C induced cell wall lysis in C. sorokiniana. Nonetheless, the highest methane yields were not correlated to biogas production. Thermal hydrolysis and steam explosion showed lower methane yields in respect to non-pretreated biomass, suggesting the presence of toxic compounds that inhibited the biological process. Accordingly, these pretreatment techniques led to a negative energy balance. The best pretreatment method among the ones evaluated was thermal pretreatment, with four times more energy produced that demanded.
Zhao, Xing-Chun; Wang, Le; Sun, Jing; Jiang, Bo-Wei; Zhang, Er-Li; Ye, Jian
2016-01-01
Vaginal swabs taken in rape cases usually contain epithelial cells from the victim and sperm from the assailant and forensic DNA analysis requires separation of sperm from these cell mixtures. PH-20, which is a glycosylphosphatidylinositol-anchored hyaluronidase located on the head of sperm, has important functions in fertilization. Here we describe a newly developed method for sperm isolation using anti-PH-20 antibody-coupled immunomagnetic beads (anti-PH-20 IMBs). Optical microscopy and scanning electron microscopy showed the IMBs recognized the head of sperm specifically and exhibited a great capacity to capture sperm cells. However, we found it necessary to incubate the IMB-sperm complex with DNase I before sperm lysis in order to remove any female DNA completely. We compared the sensitivity of anti-PH-20 IMBs in sperm and epithelial cell discrimination to those coated with a different anti-sperm antibody (anti-SP-10, anti-ADAM2 or anti-JLP). Only the anti-PH-20 IMBs succeeded in isolating sperm from cell mixtures at a sperm/epithelial cell ratio of 103:105. Further, our method exhibited greater power and better stability for sperm isolation compared to the traditional differential lysis strategy. Taken together, the anti-PH-20 IMB method described here could be effective for the isolation of sperm needed to obtain a single-sourced DNA profile as an aid to identifying the perpetrator in sexual assault cases.
Zhao, Xing-Chun; Wang, Le; Sun, Jing; Jiang, Bo-Wei; Zhang, Er-Li; Ye, Jian
2016-01-01
Vaginal swabs taken in rape cases usually contain epithelial cells from the victim and sperm from the assailant and forensic DNA analysis requires separation of sperm from these cell mixtures. PH-20, which is a glycosylphosphatidylinositol-anchored hyaluronidase located on the head of sperm, has important functions in fertilization. Here we describe a newly developed method for sperm isolation using anti-PH-20 antibody-coupled immunomagnetic beads (anti-PH-20 IMBs). Optical microscopy and scanning electron microscopy showed the IMBs recognized the head of sperm specifically and exhibited a great capacity to capture sperm cells. However, we found it necessary to incubate the IMB–sperm complex with DNase I before sperm lysis in order to remove any female DNA completely. We compared the sensitivity of anti-PH-20 IMBs in sperm and epithelial cell discrimination to those coated with a different anti-sperm antibody (anti-SP-10, anti-ADAM2 or anti-JLP). Only the anti-PH-20 IMBs succeeded in isolating sperm from cell mixtures at a sperm/epithelial cell ratio of 103:105. Further, our method exhibited greater power and better stability for sperm isolation compared to the traditional differential lysis strategy. Taken together, the anti-PH-20 IMB method described here could be effective for the isolation of sperm needed to obtain a single-sourced DNA profile as an aid to identifying the perpetrator in sexual assault cases. PMID:27442128
LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells.
USDA-ARS?s Scientific Manuscript database
LysK is a staphylococcal bacteriophage endolysin composed of three domains, an N-terminal cysteine, histidine-dependent amidohydrolases/peptidases (CHAP) endopeptidase domain (cleaves between D-alanine of the stem peptide and glycine of the cross-bridge peptide) a mid-protein amidase 2 domain (N-ace...
USDA-ARS?s Scientific Manuscript database
Eicosanoids mediate cellular and humoral immune responses in the beet armyworm, Spodoptera exigua, including activation of prophenoloxidase (PPO). PPO activation begins with release of its inactive zymogen, PPO, from oenocytoids in response to prostaglandins (PGs). Based on the biomedical literatur...
Selective cytotoxicity of an oxygen-radical-generating enzyme conjugated to a monoclonal antibody.
Battelli, M G; Abbondanza, A; Tazzari, P L; Dinota, A; Rizzi, S; Grassi, G; Gobbi, M; Stirpe, F
1988-07-01
The monoclonal antibody 8A, which recognizes a human plasma cell-associated antigen, was covalently linked to xanthine oxidase in a conjugate maintaining both immunological and enzymatic properties. A significant degree of target cell lysis was obtained at an enzyme concentration that was ineffective on non-target cells and on myeloid staminal cells (CFU-GM). The cytotoxic activity was abolished by an excess of antibody, by allopurinol and by superoxide dismutase and catalase. A possible use of the conjugate for bone marrow purging in multiple myeloma patients is suggested.
Late Maturation Steps Preceding Selective Nuclear Export and Egress of Progeny Parvovirus
Wolfisberg, Raphael; Kempf, Christoph
2016-01-01
ABSTRACT Although the mechanism is not well understood, growing evidence indicates that the nonenveloped parvovirus minute virus of mice (MVM) may actively egress before passive release through cell lysis. We have dissected the late maturation steps of the intranuclear progeny with the aims of confirming the existence of active prelytic egress and identifying critical capsid rearrangements required to initiate the process. By performing anion-exchange chromatography (AEX), we separated intranuclear progeny particles by their net surface charges. Apart from empty capsids (EC), two distinct populations of full capsids (FC) arose in the nuclei of infected cells. The earliest population of FC to appear was infectious but, like EC, could not be actively exported from the nucleus. Further maturation of this early population, involving the phosphorylation of surface residues, gave rise to a second, late population with nuclear export potential. While capsid surface phosphorylation was strictly associated with nuclear export capacity, mutational analysis revealed that the phosphoserine-rich N terminus of VP2 (N-VP2) was dispensable, although it contributed to passive release. The reverse situation was observed for the incoming particles, which were dephosphorylated in the endosomes. Our results confirm the existence of active prelytic egress and reveal a late phosphorylation event occurring in the nucleus as a selective factor for initiating the process. IMPORTANCE In general, the process of egress of enveloped viruses is active and involves host cell membranes. However, the release of nonenveloped viruses seems to rely more on cell lysis. At least for some nonenveloped viruses, an active process before passive release by cell lysis has been reported, although the underlying mechanism remains poorly understood. By using the nonenveloped model parvovirus minute virus of mice, we could confirm the existence of an active process of nuclear export and further characterize the associated capsid maturation steps. Following DNA packaging in the nucleus, capsids required further modifications, involving the phosphorylation of surface residues, to acquire nuclear export potential. Inversely, those surface residues were dephosphorylated on entering capsids. These spatially controlled phosphorylation-dephosphorylation events concurred with the nuclear export-import potential required to complete the infectious cycle. PMID:27009963
Late Maturation Steps Preceding Selective Nuclear Export and Egress of Progeny Parvovirus.
Wolfisberg, Raphael; Kempf, Christoph; Ros, Carlos
2016-06-01
Although the mechanism is not well understood, growing evidence indicates that the nonenveloped parvovirus minute virus of mice (MVM) may actively egress before passive release through cell lysis. We have dissected the late maturation steps of the intranuclear progeny with the aims of confirming the existence of active prelytic egress and identifying critical capsid rearrangements required to initiate the process. By performing anion-exchange chromatography (AEX), we separated intranuclear progeny particles by their net surface charges. Apart from empty capsids (EC), two distinct populations of full capsids (FC) arose in the nuclei of infected cells. The earliest population of FC to appear was infectious but, like EC, could not be actively exported from the nucleus. Further maturation of this early population, involving the phosphorylation of surface residues, gave rise to a second, late population with nuclear export potential. While capsid surface phosphorylation was strictly associated with nuclear export capacity, mutational analysis revealed that the phosphoserine-rich N terminus of VP2 (N-VP2) was dispensable, although it contributed to passive release. The reverse situation was observed for the incoming particles, which were dephosphorylated in the endosomes. Our results confirm the existence of active prelytic egress and reveal a late phosphorylation event occurring in the nucleus as a selective factor for initiating the process. In general, the process of egress of enveloped viruses is active and involves host cell membranes. However, the release of nonenveloped viruses seems to rely more on cell lysis. At least for some nonenveloped viruses, an active process before passive release by cell lysis has been reported, although the underlying mechanism remains poorly understood. By using the nonenveloped model parvovirus minute virus of mice, we could confirm the existence of an active process of nuclear export and further characterize the associated capsid maturation steps. Following DNA packaging in the nucleus, capsids required further modifications, involving the phosphorylation of surface residues, to acquire nuclear export potential. Inversely, those surface residues were dephosphorylated on entering capsids. These spatially controlled phosphorylation-dephosphorylation events concurred with the nuclear export-import potential required to complete the infectious cycle. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Méndez, E; Kawanishi, T; Clemens, K; Siomi, H; Soldan, S S; Calabresi, P; Brady, J; Jacobson, S
1997-12-01
Human T-cell lymphotropic virus type 1 (HTLV-1) is associated with a chronic neurological disease termed HTLV-1-associated myelopathy/tropical spastic paraperesis (HAM/TSP). Although the pathogenesis of this disease remains to be elucidated, the evidence suggests that immunopathological mechanisms are involved. Since HTLV-1 tax mRNA was colocalized with glial acidic fibrillary protein, a marker for astrocytes, we developed an in vitro model to assess whether HTLV-1 infection activates astrocytes to secrete cytokines or present viral immunodominant epitopes to virus-specific T cells. Two human astrocytic glioma cell lines, U251 and U373, were transfected with the 3' portion of the HTLV-1 genome and with the HTLV-1 tax gene under astrocyte-specific promoter control. In this study, we report that Tax-expressing astrocytic glioma transfectants activate the expression of tumor necrosis factor alpha mRNA in vitro. Furthermore, these Tax-expressing glioma transfectants can serve as immunological targets for HTLV-1-specific cytotoxic T lymphocytes (CTL). We propose that these events could contribute to the neuropathology of HAM/TSP, since infected astrocytes can become a source for inflammatory cytokines upon HTLV-1 infection and serve as targets for HTLV-1-specific CTL, resulting in parenchymal damage by direct lysis and/or cytokine release.
Ohyama, K; Kikuchi, H; Oda, Y; Moritake, K; Yamasaki, T
1993-06-01
We studied the effects of mouse IFN-gamma on the cytotoxic activity of murine activated macrophages (M phi) against mouse VM-Glioma cells (H-2b). Activated M phi were obtained from peritoneal exudate cells of mice from four strains, C57BL/6 (H-2b), C3H/He(H-2k), DBA/2 (H-2d), and BALB/c (H-2d), following intraperitoneal injection of (1) LPS 200 micrograms, (2) BCG 200 micrograms, (3) C. parvum 200 micrograms, or (4) MDP 350 micrograms 7 days prior to 20-hr 51Cr release-assay. Of the various combination of mouse strains and activating agents tested, that of activated M phi of the C3H/He mouse with induction by LPS had the most tumoricidal effect against the glioma cells, which was not MHC restricted. Although LPS-activated M phi underwent marked loss of cytotoxicity following initiation of in vitro culture, this 24 hr pretreatment with IFN-gamma inhibited this reduction in tumoricidal effects in a dose-dependent fashion. On the other hand, 24 hr pretreatment of target cells with IFN-gamma did not increase their susceptibility to lysis by activated M phi. These findings suggest that IFN-gamma augments the in vitro tumoricidal activation of M phi; This effect appears to be unrelated to any influence of IFN-gamma on target sensitivity to lysis by macrophages.
Frazao, Alexandra; Colombo, Marina; Fourmentraux-Neves, Emmanuelle; Messaoudene, Meriem; Rusakiewicz, Sylvie; Zitvogel, Laurence; Vivier, Eric; Vély, Frédéric; Faure, Florence; Dréno, Brigitte; Benlalam, Houssem; Bouquet, Fanny; Savina, Ariel; Pasmant, Eric; Toubert, Antoine; Avril, Marie-Françoise; Caignard, Anne
2017-07-01
Over 60% of human melanoma tumors bear a mutation in the BRAF gene. The most frequent mutation is a substitution at codon 600 (V600E), leading to a constitutively active BRAF and overactivation of the MAPK pathway. Patients harboring mutated BRAF respond to kinase inhibitors such as vemurafenib. However, these responses are transient, and relapses are frequent. Melanoma cells are efficiently lysed by activated natural killer (NK) cells. Melanoma cells express several stress-induced ligands that are recognized by activating NK-cell receptors. We have investigated the effect of vemurafenib on the immunogenicity of seven BRAF -mutated melanoma cells to NK cells and on their growth and sensitivity to NK-cell-mediated lysis. We showed that vemurafenib treatment modulated expression of ligands for two activating NK receptors, increasing expression of B7-H6, a ligand for NKp30, and decreasing expression of MICA and ULBP2, ligands for NKG2D. Vemurafenib also increased expression of HLA class I and HLA-E molecules, likely leading to higher engagement of inhibitory receptors (KIRs and NKG2A, respectively), and decreased lysis of vemurafenib-treated melanoma cell lines by cytokine-activated NK cells. Finally, we showed that whereas batimastat (a broad-spectrum matrix metalloprotease inhibitor) increased cell surface ULBP2 by reducing its shedding, vemurafenib lowered soluble ULBP2, indicating that BRAF signal inhibition diminished expression of both cell-surface and soluble forms of NKG2D ligands. Vemurafenib, inhibiting BRAF signaling, shifted the balance of activatory and inhibitory NK ligands on melanoma cells and displayed immunoregulatory effects on NK-cell functional activities. Cancer Immunol Res; 5(7); 582-93. ©2017 AACR . ©2017 American Association for Cancer Research.
Ellis, Mark; Patel, Pareshkumar; Edon, Marjory; Ramage, Walter; Dickinson, Robert; Humphreys, David P
2017-01-01
Humanized Fab' fragments may be produced in the periplasm of Escherichia coli but can be subject to degradation by host cell proteases. In order to increase Fab' yield and reduce proteolysis we developed periplasmic protease deficient strains of E. coli. These strains lacked the protease activity of Tsp, protease III and DegP. High cell density fermentations indicated Tsp deficient strains increased productivity two fold but this increase was accompanied by premature cell lysis soon after the induction of Fab' expression. To overcome the reduction in cell viability we introduced suppressor mutations into the spr gene. The mutations partially restored the wild type phenotype of the cells. Furthermore, we coexpressed a range of periplasmic chaperone proteins with the Fab', DsbC had the most significant impact, increasing humanized Fab' production during high cell density fermentation. When DsbC coexpression was combined with a Tsp deficient spr strain we observed an increase in yield and essentially restored "wild type" cell viability. We achieved a final periplasmic yield of over 2.4g/L (final cell density OD 600 105), 40 h post Fab' induction with minimal cell lysis.The data suggests that proteolysis, periplasm integrity, protein folding and disulphide bond formation are all potential limiting steps in the production of Fab' fragments in the periplasm of E. coli. In this body of work, we have addressed these limiting steps by utilizing stabilized protease deficient strains and chaperone coexpression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:212-220, 2017. © 2016 American Institute of Chemical Engineers.
An integratable microfluidic cartridge for forensic swab samples lysis.
Yang, Jianing; Brooks, Carla; Estes, Matthew D; Hurth, Cedric M; Zenhausern, Frederic
2014-01-01
Fully automated rapid forensic DNA analysis requires integrating several multistep processes onto a single microfluidic platform, including substrate lysis, extraction of DNA from the released lysate solution, multiplexed PCR amplification of STR loci, separation of PCR products by capillary electrophoresis, and analysis for allelic peak calling. Over the past several years, most of the rapid DNA analysis systems developed started with the reference swab sample lysate and involved an off-chip lysis of collected substrates. As a result of advancement in technology and chemistry, addition of a microfluidic module for swab sample lysis has been achieved in a few of the rapid DNA analysis systems. However, recent reports on integrated rapid DNA analysis systems with swab-in and answer-out capability lack any quantitative and qualitative characterization of the swab-in sample lysis module, which is important for downstream forensic sample processing. Maximal collection and subsequent recovery of the biological material from the crime scene is one of the first and critical steps in forensic DNA technology. Herein we present the design, fabrication and characterization of an integratable swab lysis cartridge module and the test results obtained from different types of commonly used forensic swab samples, including buccal, saliva, and blood swab samples, demonstrating the compatibility with different downstream DNA extraction chemistries. This swab lysis cartridge module is easy to operate, compatible with both forensic and microfluidic requirements, and ready to be integrated with our existing automated rapid forensic DNA analysis system. Following the characterization of the swab lysis module, an integrated run from buccal swab sample-in to the microchip CE electropherogram-out was demonstrated on the integrated prototype instrument. Therefore, in this study, we demonstrate that this swab lysis cartridge module is: (1) functionally, comparable with routine benchtop lysis, (2) compatible with various types of swab samples and chemistries, and (3) integratable to achieve a micro total analysis system (μTAS) for rapid DNA analysis. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Clots Are Potent Triggers of Inflammatory Cell Gene Expression: Indications for Timely Fibrinolysis.
Campbell, Robert A; Vieira-de-Abreu, Adriana; Rowley, Jesse W; Franks, Zechariah G; Manne, Bhanu Kanth; Rondina, Matthew T; Kraiss, Larry W; Majersik, Jennifer J; Zimmerman, Guy A; Weyrich, Andrew S
2017-10-01
Blood vessel wall damage often results in the formation of a fibrin clot that traps inflammatory cells, including monocytes. The effect of clot formation and subsequent lysis on the expression of monocyte-derived genes involved in the development and progression of ischemic stroke and other vascular diseases, however, is unknown. Determine whether clot formation and lysis regulates the expression of human monocyte-derived genes that modulate vascular diseases. We performed next-generation RNA sequencing on monocytes extracted from whole blood clots and using a purified plasma clot system. Numerous mRNAs were differentially expressed by monocytes embedded in clots compared with unclotted controls, and IL-8 (interleukin 8) and MCP-1 (monocyte chemoattractant protein-1) were among the upregulated transcripts in both models. Clotted plasma also increased expression of IL-8 and MCP-1, which far exceeded responses observed in lipopolysaccharide-stimulated monocytes. Upregulation of IL-8 and MCP-1 occurred in a thrombin-independent but fibrin-dependent manner. Fibrinolysis initiated shortly after plasma clot formation (ie, 1-2 hours) reduced the synthesis of IL-8 and MCP-1, whereas delayed fibrinolysis was far less effective. Consistent with these in vitro models, monocytes embedded in unresolved thrombi from patients undergoing thrombectomy stained positively for IL-8 and MCP-1. These findings demonstrate that clots are potent inducers of monocyte gene expression and that timely fibrinolysis attenuates inflammatory responses, specifically IL-8 and MCP-1. Dampening of inflammatory gene expression by timely clot lysis may contribute to the clinically proven efficacy of fibrinolytic drug treatment within hours of stroke onset. © 2017 American Heart Association, Inc.
Reno, Frederick E; Edwards, C Nicholas; Bendix Jensen, Morten; Török-Bathó, Magdolna; Esdaile, David J; Piché, Claude; Triest, Myriam; Carballo, Dolorès
2016-09-01
The intranasal route is a promising route of administration for several emergency rescue drugs including naloxone and glucagon. Glucagon nasal powder (GNP) is a novel, needle-free delivery system for intranasal administration of glucagon for the treatment of severe hypoglycemia, an infrequent but serious complication of insulin use in patients with diabetes. The GNP delivery device is a compact, highly portable, single-use nasal powder dosing device constructed of polypropylene that allows for simple, single-step administration. To evaluate the toxicological profile of the polypropylene resin used in the actuator part of the delivery device that will contact skin and nasal mucosal membranes of the patient, we performed an in vitro cytotoxicity study, a skin sensitization study and an irritation (intracutaneous reactivity) study in animal models. Extracts of the actuator of the GNP device were generated from HAM F12 medium with 10% fetal bovine serum, 0.9% sodium chloride (NaCl) or sesame oil. The in vitro cytotoxicity test was performed in cultured L929 mouse fibroblasts. Skin sensitization analysis was performed in 10 guinea pigs according to the Magnusson-Kligman method, using a maximization method with Freund's Complete Adjuvant. Irritation following intracutaneous/intradermal treatment with device extracts (NaCl and sesame oil extractants) was assessed in three New Zealand White rabbits. In vitro cytotoxicity test: Both undiluted and diluted extract showed no toxicity (i.e. no abnormal morphology, cell death or cell lysis) toward L929 fibroblasts (cytotoxicity grade 0). Sensitization test in guinea pigs: Challenge with device extracts did not evoke positive responses in test animals previously induced with device extracts. The net response value represented an incidence rate of 0% and a net dermal irritation score value of 0.00. Irritation (intracutaneous/intradermal) test in New Zealand White rabbits: Device extracts and corresponding vehicle controls caused similar irritation reactions. The difference between the mean scores for the device extracts and the corresponding vehicle controls was less than 1.0. Extracts of the polypropylene resin of the GNP delivery device are not cytotoxic, do not result in dermal sensitization and do not cause irritation when applied topically or intracutaneously. Given the infrequent use and very short duration of exposure to the nasal mucosa during administration of GNP, the polypropylene resin of the GNP device actuator will likely not cause adverse dermal sensitization effects or irritation effects in humans and can, therefore, be considered for use as a delivery device in clinical trials assessing the efficacy and safety of GNP for the treatment of insulin-using patients experiencing episodes of severe hypoglycemia.
Qureshi, Ai; Connelly, B; Abbott, Ei; Maland, E; Kim, J; Blake, J
2012-08-01
The availability of internet connectivity and mobile application software used by low-power handheld devices makes smart phones of unique value in time-sensitive clinical trials. Trial-specific applications can be downloaded by investigators from various mobile software distribution platforms or web applications delivered over HTTP. The Antihypertensive Treatment in Acute Cerebral Hemorrhage (ATACH) II investigators in collaboration with MentorMate released the ATACH-II Patient Recruitment mobile application available on iPhone, Android, and Blackberry in 2011. The mobile application provides tools for pre-screening, assessment of eligibility, and randomization of patients. Since the release of ATACH-II mobile application, the CLEAR-IVH (Clot Lysis Evaluating Accelerated Resolution of Intraventricular Hemorrhage) trial investigators have also adopted such a mobile application. The video-conferencing capabilities of the most recent mobile devices open up additional opportunities to involve central coordinating centers in the recruitment process in real time.
1992-05-01
COMPLEMENT-LYSIS-ENHANCING MONOCLONAL ANTIBODY, 3D12, ON THE GALACTOSE ADHERENCE LECTIN OF ENTAMOEBA HISTOLYTICA, USING BIAcore Sheila J. Wood...Binding 5. FUNDING NUMBERS Site for a Complement-Lysis-Enhancing Monoclonal Antibody, 3D12, on the Galactose Adherence Lectin of Entamoeba Hiiutolitica...Mechani sms of pathogenicity used by Entamoeba histolytica to invade the bloodstream and cause liver abscess, include complement mediated lysis
Pinto, Mariana Tomazini; Malta, Tathiane Maistro; Rodrigues, Evandra Strazza; Pinheiro, Daniel Guariz; Panepucci, Rodrigo Alexandre; Malmegrim de Farias, Kelen Cristina Ribeiro; Sousa, Alessandra De Paula; Takayanagui, Osvaldo Massaiti; Tanaka, Yuetsu; Covas, Dimas Tadeu
2014-01-01
Abstract Human T cell leukemia virus type 1 (HTLV-1) preferentially infects CD4+ T cells and these cells play a central role in HTLV-1 infection. In this study, we investigated the global gene expression profile of circulating CD4+ T cells from the distinct clinical status of HTLV-1-infected individuals in regard to TAX expression levels. CD4+ T cells were isolated from asymptomatic HTLV-1 carrier (HAC) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients in order to identify genes involved in HAM/TSP development using a microarray technique. Hierarchical clustering analysis showed that healthy control (CT) and HTLV-1-infected samples clustered separately. We also observed that the HAC and HAM/TSP groups clustered separately regardless of TAX expression. The gene expression profile of CD4+ T cells was compared among the CT, HAC, and HAM/TSP groups. The paxillin (Pxn), chemokine (C-X-C motif ) receptor 4 (Cxcr4), interleukin 27 (IL27), and granzyme A (Gzma) genes were differentially expressed between the HAC and HAM/TSP groups, regardless of TAX expression. The perforin 1 (Prf1) and forkhead box P3 (Foxp3) genes were increased in the HAM/TSP group and presented a positive correlation to the expression of TAX and the proviral load (PVL). The frequency of CD4+FOXP3+ regulatory T cells (Treg) was higher in HTLV-1-infected individuals. Foxp3 gene expression was positively correlated with cell lysis-related genes (Gzma, Gzmb, and Prf1). These findings suggest that CD4+ T cell activity is distinct between the HAC and HAM/TSP groups. PMID:24041428
Mechanisms of diminished natural killer cell activity in pregnant women and neonates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baley, J.E.; Schacter, B.Z.
1985-05-01
Because alterations in natural killer (NK) activity in the perinatal period may be important in the maintenance of a healthy pregnancy, the mechanisms by which these alterations are mediated in neonates and in pregnant and postpartum women was examined. NK activity, as measured in a 4-hr /sup 51/Cr-release assay and compared with adult controls, is significantly diminished in all three trimesters of pregnancy and in immediately postpartum women. In postpartum women, NK activity appears to be higher than in pregnant women, although this does not reach statistical significance. Pregnant and postpartum women have normal numbers of large granular lymphocytes andmore » normal target cell binding in an agarose single cell assay but decreased lysis of the bound target cells. NK activity of mononuclear cells from postpartum women, in addition, demonstrate a shift in distribution to higher levels of resistance to gamma-irradiation. Further, sera from postpartum women cause a similar shift to increased radioresistance in mononuclear cells from adult controls. Because radioresistance is a property of interleukin 2-stimulated NK, the shift to radioresistance may represent lymphokine-mediated stimulation occurring during parturition. In contrast, cord blood cells have a more profound decrease in NK activity as determined by /sup 51/Cr-release assay and decreases in both binding and lysis of bound target cells in the single cell assay. The resistance of NK activity in cord cells to gamma-irradiation is also increased, as seen in postpartum women. Cord blood serum, however, did not alter radioresistance or inhibit NK activity. The results suggest that the observed diminished NK activity in pregnant women and neonates arise by different mechanisms: an absence of mature NK cells in the neonate and an alteration of the NK cell in pregnancy leading to decreased killing.« less
Parikh, Harshal R; De, Anuradha S; Baveja, Sujata M
2012-07-01
Physicians and microbiologists have long recognized that the presence of living microorganisms in the blood of a patient carries with it considerable morbidity and mortality. Hence, blood cultures have become critically important and frequently performed test in clinical microbiology laboratories for diagnosis of sepsis. To compare the conventional blood culture method with the lysis centrifugation method in cases of sepsis. Two hundred nonduplicate blood cultures from cases of sepsis were analyzed using two blood culture methods concurrently for recovery of bacteria from patients diagnosed clinically with sepsis - the conventional blood culture method using trypticase soy broth and the lysis centrifugation method using saponin by centrifuging at 3000 g for 30 minutes. Overall bacteria recovered from 200 blood cultures were 17.5%. The conventional blood culture method had a higher yield of organisms, especially Gram positive cocci. The lysis centrifugation method was comparable with the former method with respect to Gram negative bacilli. The sensitivity of lysis centrifugation method in comparison to conventional blood culture method was 49.75% in this study, specificity was 98.21% and diagnostic accuracy was 89.5%. In almost every instance, the time required for detection of the growth was earlier by lysis centrifugation method, which was statistically significant. Contamination by lysis centrifugation was minimal, while that by conventional method was high. Time to growth by the lysis centrifugation method was highly significant (P value 0.000) as compared to time to growth by the conventional blood culture method. For the diagnosis of sepsis, combination of the lysis centrifugation method and the conventional blood culture method with trypticase soy broth or biphasic media is advocable, in order to achieve faster recovery and a better yield of microorganisms.
TGF-Beta Antibody for Prostate Cancer: Role of ERK
2012-07-01
medicine has been used either as a major medication or as a supplement either for cancer prevention or for cancer treatment. These herbal products...Blot Analysis ell lysates were prepared by using cell lysis buffer (Cell Sig- aling, Danvers, MA) supplemented with 1 mM PMSF and 1% rotease inhibitor...of target protein was used. Negative controls were identical array sections stained in the absence of primary antibody. (TIF) Method S1 Supplemental
EBERT, E C
2004-01-01
Human intraepithelial lymphocytes (IELs) comprise a unique compartment of memory T cell receptor (TCR)-αβ+CD8+ T lymphocytes interspersed between intestinal epithelial cells. They develop potent lymphokine-activated killer (LAK) activity with interleukin (IL)-15, a cytokine that is found in excess in certain mucosal inflammatory states. IL-12, released by activated antigen-presenting cells, is known to potentiate perforin-induced cytotoxicity. This study evaluates the mechanism by which IL-12 up-regulates LAK activity. When IELs were stimulated with IL-15, the CD94+ IEL subset expanded and carried out cytotoxic activity in redirected lysis against P815 cells as well as Fas ligand (FL)- and tumour necrosis factor (TNF)-α-mediated lysis of Jurkat and WEHI cells, respectively. IL-12 enhanced the perforin- and FL-, but not TNF-α-mediated events. In addition, the up-regulated killing of HT-29 cells by IL-12 was reduced by concanamycin (which targets perforin) and antibody neutralizing FL but not by anti-TNF-α antibody. Furthermore, IL-12 augmented IL-15-stimulated release of serine esterases as well as expression of perforin and FL by IELs, but not TNF-α. This study shows that LAK activity, carried out by the CD94+ IELs, involves perforin, FL and TNF-α. IL-12 up-regulates the first two mechanisms of action, showing for the first time its effect on FL production and lytic activity. PMID:15498035
Kellner, Christian; Bräutigam, Joachim; Staudinger, Matthias; Schub, Natalie; Peipp, Matthias; Gramatzki, Martin; Humpe, Andreas
2012-01-01
CD96, a cell surface antigen recently described to be preferentially expressed on acute myeloid leukemia (AML) leukemic stem cells (LSC) may represent an interesting target structure for the development of antibody-based therapeutic approaches. The v-regions from the CD96-specific hybridoma TH-111 were isolated and used to generate a CD96-specific single chain fragment of the variable regions (scFv). An affinity maturated variant resulting in 4-fold enhanced CD96-binding was generated by random mutagenesis and stringent selection using phage display. The affinity maturated scFv CD96-S32F was used to generate bivalent mini-antibodies by genetically fusing an IgG1 wild type Fc region or a variant with enhanced CD16a binding. Antibody dependent cell-mediated cytotoxicity (ADCC) experiments revealed that Fc engineering was essential to trigger significant effector cell-mediated lysis when the wild type scFv was used. The mini-antibody variant generated by fusing the affinity-maturated scFv with the optimized Fc variant demonstrated the highest ADCC activity (2.3-fold enhancement in efficacy). In conclusion, our data provide proof of concept that CD96 could serve as a target structure for effector cell-mediated lysis and demonstrate that both enhancing affinity for CD96 and for CD16a resulted in mini-antibodies with the highest cytolytic potential. PMID:22879978
Kim, Y J; Liu, R H; Bond, D R; Russell, J B
2000-12-01
Butyrivibrio fibrisolvens A38 inocula were inhibited by as little as 15 microM linoleic acid (LA), but growing cultures tolerated 10-fold more LA before growth was inhibited. Growing cultures did not produce significant amounts of cis-9, trans-11 conjugated linoleic acid (CLA) until the LA concentration was high enough to inhibit biohydrogenation, growth was inhibited, and lysis was enhanced. Washed-cell suspensions that were incubated anaerobically with 350 microM LA converted most of the LA to hydrogenated products, and little CLA was detected. When the washed-cell suspensions were incubated aerobically, biohydrogenation was inhibited, CLA production was at least twofold greater, and CLA persisted. The LA isomerase reaction was very rapid, but the LA isomerase did not recycle like a normal enzyme to catalyze more substrate. Cells that were preincubated with CLA lost their ability to produce more CLA from LA, and the CLA accumulation was directly proportional (r(2) = 0.98) to the initial cell density. Growing cells were as sensitive to CLA as LA, the LA isomerase and reductases of biohydrogenation were linked, and free CLA was not released. Because growing cultures of B. fibrisolvens A38 did not produce significant amounts of CLA until the LA concentration was high, biohydrogenation was arrested, and the cell density had declined, the flow of CLA from the rumen may be due to LA-dependent bacterial inactivation, death, or lysis.
Kim, Young Jun; Liu, Rui Hai; Bond, Daniel R.; Russell, James B.
2000-01-01
Butyrivibrio fibrisolvens A38 inocula were inhibited by as little as 15 μM linoleic acid (LA), but growing cultures tolerated 10-fold more LA before growth was inhibited. Growing cultures did not produce significant amounts of cis-9, trans-11 conjugated linoleic acid (CLA) until the LA concentration was high enough to inhibit biohydrogenation, growth was inhibited, and lysis was enhanced. Washed-cell suspensions that were incubated anaerobically with 350 μM LA converted most of the LA to hydrogenated products, and little CLA was detected. When the washed-cell suspensions were incubated aerobically, biohydrogenation was inhibited, CLA production was at least twofold greater, and CLA persisted. The LA isomerase reaction was very rapid, but the LA isomerase did not recycle like a normal enzyme to catalyze more substrate. Cells that were preincubated with CLA lost their ability to produce more CLA from LA, and the CLA accumulation was directly proportional (r2 = 0.98) to the initial cell density. Growing cells were as sensitive to CLA as LA, the LA isomerase and reductases of biohydrogenation were linked, and free CLA was not released. Because growing cultures of B. fibrisolvens A38 did not produce significant amounts of CLA until the LA concentration was high, biohydrogenation was arrested, and the cell density had declined, the flow of CLA from the rumen may be due to LA-dependent bacterial inactivation, death, or lysis. PMID:11097894
Nguyen, Huong Minh; Kang, Changwon
2014-02-01
Bacteriophage T7 terminator Tϕ is a class I intrinsic terminator coding for an RNA hairpin structure immediately followed by oligo(U), which has been extensively studied in terms of its transcription termination mechanism, but little is known about its physiological or regulatory functions. In this study, using a T7 mutant phage, where a 31-bp segment of Tϕ was deleted from the genome, we discovered that deletion of Tϕ from T7 reduces the phage burst size but delays lysis timing, both of which are disadvantageous for the phage. The burst downsizing could directly result from Tϕ deletion-caused upregulation of gene 17.5, coding for holin, among other Tϕ downstream genes, because infection of gp17.5-overproducing Escherichia coli by wild-type T7 phage showed similar burst downsizing. However, the lysis delay was not associated with cellular levels of holin or lysozyme or with rates of phage adsorption. Instead, when allowed to evolve spontaneously in five independent adaptation experiments, the Tϕ-lacking mutant phage, after 27 or 29 passages, recovered both burst size and lysis time reproducibly by deleting early genes 0.5, 0.6, and 0.7 of class I, among other mutations. Deletion of genes 0.5 to 0.7 from the Tϕ-lacking mutant phage decreased expression of several Tϕ downstream genes to levels similar to that of the wild-type phage. Accordingly, phage T7 lysis timing is associated with cellular levels of Tϕ downstream gene products. This suggests the involvement of unknown factor(s) besides the known lysis proteins, lysozyme and holin, and that Tϕ plays a role of optimizing burst size and lysis time during T7 infection. IMPORTANCE Bacteriophages are bacterium-infecting viruses. After producing numerous progenies inside bacteria, phages lyse bacteria using their lysis protein(s) to get out and start a new infection cycle. Normally, lysis is tightly controlled to ensure phage progenies are maximally produced and released at an optimal time. Here, we have discovered that phage T7, besides employing its known lysis proteins, additionally uses its transcription terminator Tϕ to guarantee the optimal lysis of the E. coli host. Tϕ, positioned in the middle of the T7 genome, must be inactivated at least partially to allow for transcription-driven translocation of T7 DNA into hosts and expression of Tϕ downstream but promoter-lacking genes. What role is played by Tϕ before inactivation? Without Tϕ, not only was lysis time delayed but also the number of progenies was reduced in this study. Furthermore, T7 can overcome Tϕ deletion by further deleting some genes, highlighting that a phage has multiple strategies for optimizing lysis.
Exploring the Innate Immune System: Using Complement-Medicated Cell Lysis in the Classroom
ERIC Educational Resources Information Center
Fuller, Kevin G.
2008-01-01
The protein complement pathway comprises an important part of the innate immunity. The use of serum to demonstrate complement-mediated destruction across a series of bacterial dilutions allows an instructor to introduce a number of important biological concepts such as bacterial growth, activation cascades, and adaptive versus innate immunity.
Fan, Natalie K.; Keegan, Philip M.; Platt, Manu O.; Averett, Rodney D.
2015-01-01
Fibrin is an extracellular matrix protein that is responsible for maintaining the structural integrity of blood clots. Much research has been done on fibrin in the past years to include the investigation of synthesis, structure-function, and lysis of clots. However, there is still much unknown about the morphological and structural features of clots that ensue from patients with disease. In this research study, experimental techniques are presented that allow for the examination of morphological differences of abnormal clot structures due to diseased states such as diabetes and sickle cell anemia. Our study focuses on the preparation and evaluation of fibrin clots in order to assess morphological differences using various experimental assays and confocal microscopy. In addition, a method is also described that allows for continuous, real-time calculation of lysis rates in fibrin clots. The techniques described herein are important for researchers and clinicians seeking to elucidate comorbid thrombotic pathologies such as myocardial infarctions, ischemic heart disease, and strokes in patients with diabetes or sickle cell disease. PMID:25867016
Rianthavorn, Pornpimol; Cain, Joan P; Turman, Martin A
2008-08-01
The available treatment options for hyponatremia secondary to SIADH are limited and not completely effective. Conivaptan is a vasopressin 1a and 2 receptor antagonist recently approved by the US Food and Drug Administration (FDA) for treating euvolemic and hypervolemic hyponatremia in adult patients. However, data on efficacy and safety of conivaptan in pediatrics are limited. We report a case of a 13-year-old boy with extensively metastasized anaplastic large-cell lymphoma. He also developed hyponatremia due to syndrome of inappropriate antidiuretic hormone secretion (SIADH) prior to chemotherapy initiation. SIADH management in this case was complicated when fluid restriction was not safely attainable. Conivaptan played a significant role in this situation by allowing provision of a large amount of intravenous fluid prior to and during induction chemotherapy. It proved to be an important component in preventing uric acid nephropathy/tumor lysis syndrome. Conivaptan induced free-water clearance as indicated by increased urine output and decreased urine osmolality. The patient responded to conivaptan without any adverse effects.
Stroncek, David F; Fellowes, Vicki; Pham, Chauha; Khuu, Hanh; Fowler, Daniel H; Wood, Lauren V; Sabatino, Marianna
2014-09-17
Peripheral blood mononuclear cells (PBMC) concentrates collected by apheresis are frequently used as starting material for cellular therapies, but the cell of interest must often be isolated prior to initiating manufacturing. The results of enriching 59 clinical PBMC concentrates for monocytes or lymphocytes from patients with solid tumors or multiple myeloma using a commercial closed system semi-automated counter-flow elutriation instrument (Elutra, Terumo BCT) were evaluated for quality and consistency. Elutriated monocytes (n = 35) were used to manufacture autologous dendritic cells and elutriated lymphocytes (n = 24) were used manufacture autologous T cell therapies. Elutriated monocytes with >10% neutrophils were subjected to density gradient sedimentation to reduce neutrophil contamination and elutriated lymphocytes to RBC lysis. Elutriation separated the PBMC concentrates into 5 fractions. Almost all of the lymphocytes, platelets and red cells were found in fractions 1 and 2; in contrast, most of the monocytes, 88.6 ± 43.0%, and neutrophils, 74.8 ± 64.3%, were in fraction 5. In addition, elutriation of 6 PBMCs resulted in relatively large quantities of monocytes in fractions 1 or 2. These 6 PBMCs contained greater quantities of monocytes than the other 53 PBMCs. Among fraction 5 isolates 38 of 59 contained >10% neutrophils. High neutrophil content of fraction 5 was associated with greater quantities of neutrophils in the PBMC concentrate. Following density gradient separation the neutrophil counts fell to 3.6 ± 3.4% (all products contained <10% neutrophils). Following red cell lysis of the elutriated lymphocyte fraction the lymphocyte recovery was 86.7 ± 24.0% and 34.3 ± 37.4% of red blood cells remained. Elutriation was consistent and effective for isolating monocytes and lymphocytes from PBMC concentrates for manufacturing clinical cell therapies, but further processing is often required.
Kennedy, LeAnne D; Koontz, Susannah; Rao, Kamakshi
2011-01-01
Tumor lysis syndrome (TLS) is defined as a group of metabolic derangements that result from the massive and abrupt release of cellular components into the bloodstream after rapid lysis of tumor cells. Breakdown of released materials leads to a number of electrolyte abnormalities, including elevated uric acid concentrations in the blood (hyperuricemia), which carries potentially serious consequences. The diagnosis, prevention, and management of TLS is complicated by variability in definitions, differences in risk factors based on patient- and tumor-specific characteristics, and practitioner preferences in terms of pharmaceutical management strategies. The best prevention and management option for a particular patient depends on the patient’s baseline risk for TLS development, the severity of symptoms in the event of TLS development, practical management considerations, and financial implications of treatment. PMID:22287858
Recovery of Fuel-Precursor Lipids from Oleaginous Yeast
Kruger, Jacob S.; Cleveland, Nicholas S.; Yeap, Rou Yi; ...
2018-01-24
Bio-derived lipids offer a potentially promising intermediate to displace petroleum-derived diesel. One of the key challenges for the production of lipids via microbial cell mass is that these products are stored intracellularly and must be extracted and recovered efficiently and economically. Thus, improved methods of cell lysis and lipid extraction are needed. In this study, we examine lipid extraction from wet oleaginous yeast in combination with seven different cell lysis approaches encompassing both physical and chemical techniques (high-pressure homogenization, microwave and conventional thermal treatments, bead beating, acid, base, and enzymatic treatments) to facilitate lipid extraction from a model oleaginous yeastmore » strain, Lipomyces starkeyi. Of the seven techniques investigated, acid treatment led to the highest lipid recovery yields. Further exploration of acid treatment and integration with an economic model revealed that treatment at 170 degrees C for 60 min at 1 wt% H 2SO 4 and 8 wt% yeast solids represents a viable option for both lipid recovery yield and process economics, enabling experimental lipid recovery yields of 88.5-93.0% to be achieved at a corresponding estimated minimum fuel selling price (MFSP) of $5.13-$5.61/gallon of gasoline equivalent (GGE). The same acid treatment conditions applied to two other strains of oleaginous yeast (Cutaneotrichosporon curvatus and Rhodotorula toruloides) resulted in similar lipid recovery yields. In pretreatment experiments scaled up to 300 mL, slightly lower temperatures or shorter pretreatment times, along with higher yeast solids loading, resulted in higher lipid yields than the conditions identified from the small-scale runs. Two replicate runs carried out at 170 degrees C for 30 min using 1 wt% H2SO4 and 19 wt% yeast solids achieved an average lipid recovery of 96.1% at a corresponding estimated MFSP of $4.89/GGE. In all cases, the lipids are primarily triglycerides and free fatty acids comprised mainly of palmitic, stearic, and oleic acids, with smaller fractions of polar lipids. The fatty acid composition of the lipids extracted from the wet treated cell mass is the same as that in freeze-dried whole oleaginous yeast cell mass, suggesting the acid treatment renders all lipids extractable. This work demonstrates that acid treatment is a robust and effective cell lysis technique in a microbial lipid-based biofuel scenario and provides a baseline for further scale-up and process integration.« less
Recovery of Fuel-Precursor Lipids from Oleaginous Yeast
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kruger, Jacob S.; Cleveland, Nicholas S.; Yeap, Rou Yi
Bio-derived lipids offer a potentially promising intermediate to displace petroleum-derived diesel. One of the key challenges for the production of lipids via microbial cell mass is that these products are stored intracellularly and must be extracted and recovered efficiently and economically. Thus, improved methods of cell lysis and lipid extraction are needed. In this study, we examine lipid extraction from wet oleaginous yeast in combination with seven different cell lysis approaches encompassing both physical and chemical techniques (high-pressure homogenization, microwave and conventional thermal treatments, bead beating, acid, base, and enzymatic treatments) to facilitate lipid extraction from a model oleaginous yeastmore » strain, Lipomyces starkeyi. Of the seven techniques investigated, acid treatment led to the highest lipid recovery yields. Further exploration of acid treatment and integration with an economic model revealed that treatment at 170 degrees C for 60 min at 1 wt% H 2SO 4 and 8 wt% yeast solids represents a viable option for both lipid recovery yield and process economics, enabling experimental lipid recovery yields of 88.5-93.0% to be achieved at a corresponding estimated minimum fuel selling price (MFSP) of $5.13-$5.61/gallon of gasoline equivalent (GGE). The same acid treatment conditions applied to two other strains of oleaginous yeast (Cutaneotrichosporon curvatus and Rhodotorula toruloides) resulted in similar lipid recovery yields. In pretreatment experiments scaled up to 300 mL, slightly lower temperatures or shorter pretreatment times, along with higher yeast solids loading, resulted in higher lipid yields than the conditions identified from the small-scale runs. Two replicate runs carried out at 170 degrees C for 30 min using 1 wt% H2SO4 and 19 wt% yeast solids achieved an average lipid recovery of 96.1% at a corresponding estimated MFSP of $4.89/GGE. In all cases, the lipids are primarily triglycerides and free fatty acids comprised mainly of palmitic, stearic, and oleic acids, with smaller fractions of polar lipids. The fatty acid composition of the lipids extracted from the wet treated cell mass is the same as that in freeze-dried whole oleaginous yeast cell mass, suggesting the acid treatment renders all lipids extractable. This work demonstrates that acid treatment is a robust and effective cell lysis technique in a microbial lipid-based biofuel scenario and provides a baseline for further scale-up and process integration.« less
Obata, Fumiaki; Tanaka, Shiho; Kashio, Soshiro; Tsujimura, Hidenobu; Sato, Ryoichi; Miura, Masayuki
2015-07-08
Genetic ablation of target cells is a powerful tool to study the origins and functions of cells, tissue regeneration, or pathophysiology in a human disease model in vivo. Several methods for selective cell ablation by inducing apoptosis have been established, using exogenous toxins or endogenous proapoptotic genes. However, their application is limited to cells with intact apoptotic machinery. Herein, we established a method for inducing rapid and selective cell necrosis by the pore-forming bacterial toxin Cry1Aa, which is specifically active in cells expressing the Cry1Aa receptor (CryR) derived from the silkworm Bombyx mori. We demonstrated that overexpressing CryR in Drosophila melanogaster tissues induced rapid cell death of CryR-expressing cells only, in the presence of Cry1Aa toxin. Cry/CryR system was effective against both proliferating cells in imaginal discs and polyploid postmitotic cells in the fat body. Live imaging analysis of cell ablation revealed swelling and subsequent osmotic lysis of CryR-positive cells after 30 min of incubation with Cry1Aa toxin. Osmotic cell lysis was still triggered when apoptosis, JNK activation, or autophagy was inhibited, suggesting that Cry1Aa-induced necrotic cell death occurred independently of these cellular signaling pathways. Injection of Cry1Aa into the body cavity resulted in specific ablation of CryR-expressing cells, indicating the usefulness of this method for in vivo cell ablation. With Cry toxins from Bacillus thuringiensis, we developed a novel method for genetic induction of cell necrosis. Our system provides a "proteinous drill" for killing target cells through physical injury of the cell membrane, which can potentially be used to ablate any cell type in any organisms, even those that are resistant to apoptosis or JNK-dependent programmed cell death.
Precision chemical heating for diagnostic devices.
Buser, J R; Diesburg, S; Singleton, J; Guelig, D; Bishop, J D; Zentner, C; Burton, R; LaBarre, P; Yager, P; Weigl, B H
2015-12-07
Decoupling nucleic acid amplification assays from infrastructure requirements such as grid electricity is critical for providing effective diagnosis and treatment at the point of care in low-resource settings. Here, we outline a complete strategy for the design of electricity-free precision heaters compatible with medical diagnostic applications requiring isothermal conditions, including nucleic acid amplification and lysis. Low-cost, highly energy dense components with better end-of-life disposal options than conventional batteries are proposed as an alternative to conventional heating methods to satisfy the unique needs of point of care use.
The effect of hydration state and energy balance on innate immunity of a desert reptile.
Moeller, Karla T; Butler, Michael W; Denardo, Dale F
2013-05-04
Immune function is a vital physiological process that is often suppressed during times of resource scarcity due to investments in other physiological systems. While energy is the typical currency that has been examined in such trade-offs, limitations of other resources may similarly lead to trade-offs that affect immune function. Specifically, water is a critical resource with profound implications for organismal ecology, yet its availability can fluctuate at local, regional, and even global levels. Despite this, the effect of osmotic state on immune function has received little attention. Using agglutination and lysis assays as measures of an organism's plasma concentration of natural antibodies and capacity for foreign cell destruction, respectively, we tested the independent effects of osmotic state, digestive state, and energy balance on innate immune function in free-ranging and laboratory populations of the Gila monster, Heloderma suspectum. This desert-dwelling lizard experiences dehydration and energy resource fluctuations on a seasonal basis. Dehydration was expected to decrease innate immune function, yet we found that dehydration increased lysis and agglutination abilities in both lab and field studies, a relationship that was not simply an effect of an increased concentration of immune molecules. Laboratory-based differences in digestive state were not associated with lysis or agglutination metrics, although in our field population, a loss of fat stores was correlated with an increase in lysis. Depending on the life history of an organism, osmotic state may have a greater influence on immune function than energy availability. Thus, consideration of osmotic state as a factor influencing immune function will likely improve our understanding of ecoimmunology and the disease dynamics of a wide range of species.
The effect of hydration state and energy balance on innate immunity of a desert reptile
2013-01-01
Introduction Immune function is a vital physiological process that is often suppressed during times of resource scarcity due to investments in other physiological systems. While energy is the typical currency that has been examined in such trade-offs, limitations of other resources may similarly lead to trade-offs that affect immune function. Specifically, water is a critical resource with profound implications for organismal ecology, yet its availability can fluctuate at local, regional, and even global levels. Despite this, the effect of osmotic state on immune function has received little attention. Results Using agglutination and lysis assays as measures of an organism’s plasma concentration of natural antibodies and capacity for foreign cell destruction, respectively, we tested the independent effects of osmotic state, digestive state, and energy balance on innate immune function in free-ranging and laboratory populations of the Gila monster, Heloderma suspectum. This desert-dwelling lizard experiences dehydration and energy resource fluctuations on a seasonal basis. Dehydration was expected to decrease innate immune function, yet we found that dehydration increased lysis and agglutination abilities in both lab and field studies, a relationship that was not simply an effect of an increased concentration of immune molecules. Laboratory-based differences in digestive state were not associated with lysis or agglutination metrics, although in our field population, a loss of fat stores was correlated with an increase in lysis. Conclusions Depending on the life history of an organism, osmotic state may have a greater influence on immune function than energy availability. Thus, consideration of osmotic state as a factor influencing immune function will likely improve our understanding of ecoimmunology and the disease dynamics of a wide range of species. PMID:23642164
Lysis of grouped and ungrouped streptococci by lysozyme.
Coleman, S E; van de Rijn, I; Bleiweis, A S
1970-11-01
Thirty strains of streptococci were tested for lysis with lysozyme, and 29 of these could be lysed by the following method: (i) suspension of the cells to a Klett reading of 200 units (no. 42 filter) in 0.01 m tris(hydroxymethyl)aminomethane buffer, pH 8.2, after washing twice with the buffer; (ii) addition of lysozyme to a final concentration of 250 mug/ml with incubation for 60 min at 37 C; (iii) addition of sodium lauryl sulfate (SLS) to a final concentration of 0.2% and incubation up to an additional 15 min at 37 C. Significant lysis was obtained only after the addition of SLS. (Strains of groups A, E, and G were treated with trypsin at a concentration of 200 mug/ml for 2 hr at 37 C before exposure to lysozyme.) These parameters for optimal lysis of streptococci by lysozyme were established by testing the group D Streptococcus faecalis strain 31 which lyses readily with lysozyme and the group H strain Challis which is less susceptible to the action of the enzyme. Viability of S. faecalis decreased 96% after 3 min of exposure to 250 mug of lysozyme per ml, whereas the more resistant strain Challis retained 27% of the initial viability after the same period. After 60 min, there was almost total loss of viability in each case. Variations of three methods of lysing streptococci with lysozyme were compared with respect to the decrease in turbidity and the release of protein and deoxyribonucleic acid (DNA) effected by each variation. The method presented in this paper allowed the greatest release of these cytoplasmic constituents from S. faecalis and strain Challis. Transformation experiments using DNA obtained from strain Challis (streptomycinresistant) by this method showed that the DNA released is biologically active.
Simultaneous purification of DNA and RNA from microbiota in a single colonic mucosal biopsy.
Moen, Aina E F; Tannæs, Tone M; Vatn, Simen; Ricanek, Petr; Vatn, Morten Harald; Jahnsen, Jørgen
2016-06-28
Nucleic acid purification methods are of importance when performing microbiota studies and especially when analysing the intestinal microbiota as we here find a wide range of different microbes. Various considerations must be taken to lyse the microbial cell wall of each microbe. In the present article, we compare several tissue lysis steps and commercial purification kits, to achieve a joint RNA and DNA purification protocol for the purpose of investigating the microbiota and the microbiota-host interactions in a single colonic mucosal tissue sample. A further optimised tissue homogenisation and lysis protocol comprising mechanical bead beating, lysis buffer replacement and enzymatic treatment, in combination with the AllPrep DNA/RNA Mini Kit (Qiagen, Hilden, Germany) resulted in efficient and simultaneous purification of microbial and human RNA and DNA from a single mucosal colonic tissue sample. The present work provides a unique possibility to study RNA and DNA from the same mucosal biopsy sample, making a direct comparison between metabolically active microbes and total microbial DNA. The protocol also offers an opportunity to investigate other members of a microbiota such as viruses, fungi and micro-eukaryotes, and moreover the possibility to extract data on microbiota and host interactions from one single mucosal biopsy.
[Validation of Differential Extraction Kit in forensic sexual assault cases].
Wu, Dan; Cao, Yu; Xu, Yan; He, Bai-Fang; Bi, Gang; Zhou, Huai-Gu
2009-12-01
To evaluate the validity of Differential Extraction Kit in isolating spermatozoa and epithelial cell DNA from mixture samples. Selective lysis of spermatid and epithelial cells combined with paramagnetic particle method were applied to extract the DNA from the mock samples under controlled conditions and forensic case samples, and template DNA were analyzed by STR genotype method. This Differential Extraction Kit is efficient to obtain high quality spermatid and epithelial cell DNA from the mixture samples with different proportion of sperm to epithelial cell. The Differential Extraction Kit can be applied in DNA extraction for mixed stain from forensic sexual assault samples.
Selective cytotoxicity of an oxygen-radical-generating enzyme conjugated to a monoclonal antibody.
Battelli, M G; Abbondanza, A; Tazzari, P L; Dinota, A; Rizzi, S; Grassi, G; Gobbi, M; Stirpe, F
1988-01-01
The monoclonal antibody 8A, which recognizes a human plasma cell-associated antigen, was covalently linked to xanthine oxidase in a conjugate maintaining both immunological and enzymatic properties. A significant degree of target cell lysis was obtained at an enzyme concentration that was ineffective on non-target cells and on myeloid staminal cells (CFU-GM). The cytotoxic activity was abolished by an excess of antibody, by allopurinol and by superoxide dismutase and catalase. A possible use of the conjugate for bone marrow purging in multiple myeloma patients is suggested. PMID:3262464
PD-1-PD-L1 immune-checkpoint blockade in malignant lymphomas.
Wang, Yi; Wu, Ling; Tian, Chen; Zhang, Yizhuo
2018-02-01
Tumor cells can evade immune surveillance through overexpressing the ligands of checkpoint receptors on tumor cells or adjacent cells, leading T cells to anergy or exhaustion. Growing evidence of the interaction between tumor cells and microenvironment promoted the emergence of immune-checkpoint blockade. By targeting programmed cell death-1 (PD-1) pathway, cytotoxic activity of T cell is enhanced significantly and tumor cell lysis is induced subsequently. Currently, various antibodies against PD-1 and programmed death-ligand 1 (PD-L1) are under clinical studies in lymphomas. In this review, we outline the rationale for investigation of PD-1-PD-L1 immune-checkpoint blockade in lymphomas and discuss their prospect of applications in clinical treatment.
Lymphocyte-dependent antibody-mediated cytotoxicity in Hashimoto thyroiditis
Calder, Elizabeth A.; Penhale, W. J.; McLeman, Dena; Barnes, E. W.; Irvine, W. J.
1973-01-01
In the presence of normal human lymphocytes, decomplemented sera from twentynine out of thirty-nine patients with Hashimoto thyroiditis caused significant lysis of thyroglobulin-coated chicken red blood cells, as estimated by the release of 51Cr; the mean% specific 51Cr release being 14·1 ± 1·9 (SEM). Serum from twenty-one control subjects studied concurrently caused no significant lysis of thyroglobulin-coated chicken red blood cells; the mean% specific 51Cr release being −1·6±0·7 (SEM). The degree of cytotoxicity correlated with the titre of thyroglobulin antibodies in the serum, determined by tanned red cell haemagglutination. The active component in the Hashimoto serum was localized in the 19S fraction, was unaffected by pre-absorption with anti-human IgM serum, but was neutralized by pre-absorption with anti-human IgG serum. These findings suggest that the cytotoxic activity of serum from patients with Hashimoto thyroiditis is due to the presence of thyroglobulin antibody of the IgG class in the form of complexes, either alone or with antigen. It is postulated that non-specific lymphocytes may play an important role in the pathogenesis of Hashimoto thyroiditis, being activated by the presence in the gland of thyroglobulin antibody, either alone or in the form of complexes attached to thyroid cells. PMID:4740445
Feng, Jinsong; Ma, Lina; Nie, Jiatong; Konkel, Michael E; Lu, Xiaonan
2018-03-01
Campylobacter jejuni is a microaerophilic bacterium and is believed to persist in a biofilm to antagonize environmental stress. This study investigated the influence of environmental conditions on the formation of C. jejuni biofilm. We report an extracellular DNA (eDNA)-mediated mechanism of biofilm formation in response to aerobic and starvation stress. The eDNA was determined to represent a major form of constitutional material of C. jejuni biofilms and to be closely associated with bacterial lysis. Deletion mutation of the stress response genes spoT and recA enhanced the aerobic influence by stimulating lysis and increasing eDNA release. Flagella were also involved in biofilm formation but mainly contributed to attachment rather than induction of lysis. The addition of genomic DNA from either Campylobacter or Salmonella resulted in a concentration-dependent stimulation effect on biofilm formation, but the effect was not due to forming a precoating DNA layer. Enzymatic degradation of DNA by DNase I disrupted C. jejuni biofilm. In a dual-species biofilm, eDNA allocated Campylobacter and Salmonella at distinct spatial locations that protect Campylobacter from oxygen stress. Our findings demonstrated an essential role and multiple functions of eDNA in biofilm formation of C. jejuni , including facilitating initial attachment, establishing and maintaining biofilm, and allocating bacterial cells. IMPORTANCE Campylobacter jejuni is a major cause of foodborne illness worldwide. In the natural environment, the growth of C. jejuni is greatly inhibited by various forms of environmental stress, such as aerobic stress and starvation stress. Biofilm formation can facilitate the distribution of C. jejuni by enabling the survival of this fragile microorganism under unfavorable conditions. However, the mechanism of C. jejuni biofilm formation in response to environmental stress has been investigated only partially. The significance of our research is in identifying extracellular DNA released by bacterial lysis as a major form of constitution material that mediates the formation of C. jejuni biofilm in response to environmental stress, which enhances our understanding of the formation mechanism of C. jejuni biofilm. This knowledge can aid the development of intervention strategies to limit the distribution of C. jejuni . Copyright © 2018 American Society for Microbiology.
James, Scott E.; Greenberg, Philip D.; Jensen, Michael C.; Lin, Yukang; Wang, Jinjuan; Till, Brian G.; Raubitschek, Andrew A.; Forman, Stephen J.; Press, Oliver W.
2008-01-01
We have targeted CD22 as a novel tumor-associated antigen for recognition by human CTL genetically modified to express chimeric T cell receptors (cTCR) recognizing this surface molecule. CD22-specifc cTCR targeting different epitopes of the CD22 molecule promoted efficient lysis of target cells expressing high levels of CD22 with a maximum lytic potential that appeared to decrease as the distance of the target epitope from the target cell membrane increased. Targeting membrane-distal CD22 epitopes with cTCR+ CTL revealed defects in both degranulation and lytic granule targeting. CD22-specific cTCR+ CTL exhibited lower levels of maximum lysis and lower antigen sensitivity than CTL targeting CD20, which has a shorter extracellular domain than CD22. This diminished sensitivity was not a result of reduced avidity of antigen engagement, but instead reflected weaker signaling per triggered cTCR molecule when targeting membrane-distal epitopes of CD22. Both of these parameters were restored by targeting a ligand expressing the same epitope but constructed as a truncated CD22 molecule to approximate the length of a TCR:pMHC complex. The reduced sensitivity of CD22-specific cTCR+ CTL for antigen-induced triggering of effector functions has potential therapeutic applications, as such cells selectively lysed B cell lymphoma lines expressing high levels of CD22 but demonstrated minimal activity against autologous normal B cells, which express lower levels of CD22. Thus, our results demonstrate that cTCR signal strength – and consequently antigen sensitivity – can be modulated by differential choice of target epitopes with respect to distance from the cell membrane, allowing discrimination between targets with disparate antigen density. PMID:18453625
Growth characteristics of Lactobacillus brevis KB290 in the presence of bile.
Kimoto-Nira, Hiromi; Suzuki, Shigenori; Suganuma, Hiroyuki; Moriya, Naoko; Suzuki, Chise
2015-10-01
Live Lactobacillus brevis KB290 have several probiotic activities, including immune stimulation and modulation of intestinal microbial balance. We investigated the adaptation of L. brevis KB290 to bile as a mechanism of intestinal survival. Strain KB290 was grown for 5 days at 37 °C in tryptone-yeast extract-glucose (TYG) broth supplemented with 0.5% sodium acetate (TYGA) containing 0.15%, 0.3%, or 0.5% bile. Growth was determined by absorbance at 620 nm or by dry weight. Growth was enhanced as the broth's bile concentration increased. Bile-enhanced growth was not observed in TYG broth or with xylose or fructose as the carbon source, although strain KB290 could assimilate these sugars. Compared with cells grown without bile, cells grown with bile had twice the cell yield (dry weight) and higher hydrophobicity, which may improve epithelial adhesion. Metabolite analysis revealed that bile induced more lactate production by glycolysis, thus enhancing growth efficiency. Scanning electron microscopy revealed that cells cultured without bile for 5 days in TYGA broth had a shortened rod shape and showed lysis and aggregation, unlike cells cultured for 1 day; cells grown with bile for 5 days had an intact rod shape and rarely appeared damaged. Cellular material leakage through autolysis was lower in the presence of bile than in its absence. Thus lysis of strain KB290 cells cultured for extended periods was suppressed in the presence of bile. This study provides new role of bile and sodium acetate for retaining an intact cell shape and enhancing cell yield, which are beneficial for intestinal survival. Copyright © 2015 Elsevier Ltd. All rights reserved.
Clinical roundtable monograph: Paroxysmal nocturnal hemoglobinuria: a case-based discussion.
Szer, Jeff; Hill, Anita; Weitz, Ilene Ceil
2012-11-01
Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, acquired disorder characterized by chronic intravascular hemolysis as the primary clinical manifestation and morbidities that include anemia, thrombosis, renal impairment, pulmonary hypertension, and bone marrow failure. The prevalence of the PNH clone (from <1-100% PNH granulocytes) is approximately 16 per million, and careful monitoring is required. The average age of onset of the clinical disease is the early 30s, although it can present at all ages. PNH is caused by the acquisition of a somatic mutation of the gene phosphatidylinositol glycan anchor (PIG-A) in a multipotent hematopoietic stem cell (HSC), with clonal expansion of the mutated HSC. The mutation causes a deficiency in the synthesis of glycosylphosphatidylinositol (GPI). In cells derived from normal HSCs, the complement regulatory proteins CD55 and CD59 are anchored to the hematopoietic cell membrane surface via GPI, protecting the cells from complement-mediated lysis. However, in patients with PNH, these 2 proteins, along with numerous other GPI-linked proteins, are absent from the cell surface of red cells, granulocytes, monocytes, and platelets, resulting in complement-mediated intravascular hemolysis and other complications. Lysis of red blood cells is the most obvious manifestation, but as other cell lineages are also affected, this complement-mediated attack contributes to additional complications, such as thrombosis. Eculizumab, a humanized monoclonal antibody against the C5 complement protein, is the only effective drug therapy for PNH patients. The antibody prevents cleavage of the C5 protein by C5 convertase, in turn preventing generation of C5b-9 and release of C5a, thereby protecting from hemolysis of cells lacking the CD59 surface protein and other complications associated with complement activation. Drs. Ilene C. Weitz, Anita Hill, and Jeff Szer discuss 3 recent cases of patients with PNH.
NASA Astrophysics Data System (ADS)
Gärtner, Claudia; Becker, Holger; Hlawatsch, Nadine; Klemm, Richard; Moche, Christian; Schattschneider, Sebastian; Frank, Rainer; Willems, Andreas
2015-05-01
The diverse human HLA (human leukocyte antigen) system is responsible for antigen presentation and recognition. It is essential for the immune system to maintain a stable defense line, but also is also involved in autoimmunity as well as metabolic disease. HLA-haplotype (HLA-B27), for instance, is associated with inflammatory diseases such as Bechterew's disease. The administration of the HIV drug Abacavir in combination with another HLA-haplotype (HLAB57) is associated with severe hypersensitivity reactions. Accordingly, the HLA status has to be monitored for diagnosis or prior to start of therapy. Along this line, a miniaturized microfluidic platform has been developed allowing performing the complete analytical process from "sample-in" to "answer-out" in a point-of-care environment. The main steps of the analytical cascade inside the integrated system are blood cell lysis and DNA isolation, DNA purification, real-time PCR and quantitative monitoring of the rise of a fluorescent signal appearing during the PCR based sequence amplification. All bio-analytical steps were intended to be performed inside one chip and will be actuated, controlled and monitored by a matching device. This report will show that all required processes are established and tested and all device components work well and interact with the functional modules on the chips in a harmonized fashion.
Li, Dan; Li, Yufeng; Hernandez, Jessica A.; Patenia, Rebecca; Kim, Tae Kon; Khalili, Jahan; Dougherty, Mark C.; Hanley, Patrick J.; Bollard, Catherine M.; Komanduri, Krishna V.; Hwu, Patrick; Champlin, Richard E.; Radvanyi, Laszlo G.; Molldrem, Jeffrey J.; Ma, Qing
2016-01-01
Statin treatment has been shown to reduce graft-versus-host disease (GVHD) while preserving graft-versus-tumor (GVT) effect in allogeneic stem cell transplantation (allo-HCT). Herein, we investigated whether lovastatin treatment affects the function of human cytolytic T lymphocytes (CTLs). Upon TCR stimulation, lovastatin significantly inhibited the proliferation of both CD4+ and CD8+ T cells from healthy donors while their intracellular cytokine production including IFN-γ and TNF-α remained the same with a slight decrease of IL-2. Moreover, the specific lysis of target cells by CTL lines derived from patients and normal donors specific for EBV-encoded antigen LMP2 or CMV-encoded antigen pp65 was uncompromised in the presence of lovastatin. In addition, we evaluated the effect of lovastatin on the proliferation and effector function of the CD8+ tumor–infiltrating lymphocytes (TILs) derived from melanoma patients specific for MART-1 antigen. Lovastatin significantly reduced the expansion of antigen-specific TILs upon MART-1 stimulation. However, the effector function of TILs, including the specific lysis of target cells and secretion of cytokine IFN-γ, remained intact with lovastatin treatment. Taken together, these data demonstrated that lovastatin inhibits the proliferation of EBV-, CMV- and MART-1-specific CTLs without affecting cytolytic capacity. The differential effect of lovastatin on the proliferation versus cytoxicity of CTLs might shed some light on elucidating the possible mechanisms of GVHD and GVT effect elicited by alloimmune responses. PMID:20948439
Kleine, Tilmann O; Nebe, C Thomas; Löwer, Christa; Lehmitz, Reinhard; Kruse, Rolf; Geilenkeuser, Wolf-Jochen; Dorn-Beineke, Alexandra
2009-08-01
Flow cytometry (FCM) is used with haematology analyzers (HAs) to count cells and differentiate leukocytes in cerebrospinal fluid (CSF). To evaluate the FCM techniques of HAs, 10 external DGKL trials with CSF controls were carried out in 2004 to 2008. Eight single platform HAs with and without CSF equipment were evaluated with living blood leukocytes and erythrocytes in CSF like DGKL controls: Coulter (LH750,755), Abbott CD3200, CD3500, CD3700, CD4000, Sapphire, ADVIA 120(R) CSF assay, and Sysmex XE-2100(R). Results were compared with visual counting of native cells in Fuchs-Rosenthal chamber, unstained, and absolute values of leukocyte differentiation, assayed by dual platform analysis with immune-FCM (FACSCalibur, CD45, CD14) and the chamber counts. Reference values X were compared with HA values Y by statistical evaluation with Passing/Bablock (P/B) linear regression analysis to reveal conformity of both methods. The HAs, studied, produced no valid results with DGKL CSF controls, because P/B regression revealed no conformity with the reference values due to:-blank problems with impedance analysis,-leukocyte loss with preanalytical erythrocyte lysis procedures, especially of monocytes,-inaccurate results with ADVIA cell sphering and cell differentiation with algorithms and enzyme activities (e.g., peroxidase). HA techniques have to be improved, e.g., using no erythrocyte lysis and CSF adequate techniques, to examine CSF samples precise and accurate. Copyright 2009 International Society for Advancement of Cytometry.
Sinha, Vaibhhav; Goyal, Akshit; Svenningsen, Sine L.; Semsey, Szabolcs; Krishna, Sandeep
2017-01-01
Bacteriophages are the most abundant organisms on the planet and both lytic and temperate phages play key roles as shapers of ecosystems and drivers of bacterial evolution. Temperate phages can choose between (i) lysis: exploiting their bacterial hosts by producing multiple phage particles and releasing them by lysing the host cell, and (ii) lysogeny: establishing a potentially mutually beneficial relationship with the host by integrating their chromosome into the host cell's genome. Temperate phages exhibit lysogeny propensities in the curiously narrow range of 5–15%. For some temperate phages, the propensity is further regulated by the multiplicity of infection, such that single infections go predominantly lytic while multiple infections go predominantly lysogenic. We ask whether these observations can be explained by selection pressures in environments where multiple phage variants compete for the same host. Our models of pairwise competition, between phage variants that differ only in their propensity to lysogenize, predict the optimal lysogeny propensity to fall within the experimentally observed range. This prediction is robust to large variation in parameters such as the phage infection rate, burst size, decision rate, as well as bacterial growth rate, and initial phage to bacteria ratio. When we compete phage variants whose lysogeny strategies are allowed to depend upon multiplicity of infection, we find that the optimal strategy is one which switches from full lysis for single infections to full lysogeny for multiple infections. Previous attempts to explain lysogeny propensity have argued for bet-hedging that optimizes the response to fluctuating environmental conditions. Our results suggest that there is an additional selection pressure for lysogeny propensity within phage populations infecting a bacterial host, independent of environmental conditions. PMID:28798729
Lu, Z.; Altermann, E.; Breidt, F.; Kozyavkin, S.
2010-01-01
Vegetable fermentations rely on the proper succession of a variety of lactic acid bacteria (LAB). Leuconostoc mesenteroides initiates fermentation. As fermentation proceeds, L. mesenteroides dies off and other LAB complete the fermentation. Phages infecting L. mesenteroides may significantly influence the die-off of L. mesenteroides. However, no L. mesenteroides phages have been previously genetically characterized. Knowledge of more phage genome sequences may provide new insights into phage genomics, phage evolution, and phage-host interactions. We have determined the complete genome sequence of L. mesenteroides phage Φ1-A4, isolated from an industrial sauerkraut fermentation. The phage possesses a linear, double-stranded DNA genome consisting of 29,508 bp with a G+C content of 36%. Fifty open reading frames (ORFs) were predicted. Putative functions were assigned to 26 ORFs (52%), including 5 ORFs of structural proteins. The phage genome was modularly organized, containing DNA replication, DNA-packaging, head and tail morphogenesis, cell lysis, and DNA regulation/modification modules. In silico analyses showed that Φ1-A4 is a unique lytic phage with a large-scale genome inversion (∼30% of the genome). The genome inversion encompassed the lysis module, part of the structural protein module, and a cos site. The endolysin gene was flanked by two holin genes. The tail morphogenesis module was interspersed with cell lysis genes and other genes with unknown functions. The predicted amino acid sequences of the phage proteins showed little similarity to other phages, but functional analyses showed that Φ1-A4 clusters with several Lactococcus phages. To our knowledge, Φ1-A4 is the first genetically characterized L. mesenteroides phage. PMID:20118355
Bigelow, Timothy A; Xu, Jin; Stessman, Dan J; Yao, Linxing; Spalding, Martin H; Wang, Tong
2014-05-01
Efficient lysis of microalgae for lipid extraction is an important concern when processing biofuels. Historically, ultrasound frequencies in the range of 10-40 kHz have been utilized for this task. However, greater efficiencies might be achievable if higher frequencies could be used. In our study, we evaluated the potential of using 1.1 MHz ultrasound to lyse microalgae for biofuel production while using Chlamydomonas reinhardtii as a model organism. The ultrasound was generated using a spherically focused transducer with a focal length of 6.34 cm and an active diameter of 6.36 cm driven by 20 cycle sine-wave tone bursts at a pulse repetition frequency of 2 kHz (3.6% duty cycle). The time-average acoustic power output was 26.2 W while the spatial-peak-pulse-average intensity (ISPPA) for each tone burst was 41 kW/cm(2). The peak compressional and rarefactional pressures at the focus were 102 and 17 MPa, respectively. The exposure time was varied for the different cases in the experiments from 5s to 9 min and cell lysis was assessed by quantifying the percentage of protein and chlorophyll release into the supernate as well as the lipid extractability. Free radical generation and lipid oxidation for the different ultrasound exposures were also determined. We found that there was a statistically significant increase in lipid extractability for all of the exposures compared to the control. The longer exposures also completely fragmented the cells releasing almost all of the protein and chlorophyll into the supernate. The cavitation activity did not significantly increase lipid oxidation while there was a minor trend of increased free radical production with increased ultrasound exposure. Copyright © 2013 Elsevier B.V. All rights reserved.
The protective effect of a constant magnetic field. [reduction of molecular cell pathology
NASA Technical Reports Server (NTRS)
Sosunov, A. V.; Tripuzov, A. N.
1974-01-01
The protective effect of a constant magnetic field sharply reduced spontaneous lysis of E. coli cells when subjected to ultraviolet radiation. A protective effect of a CMF was found in a study of tissue cultures of normally growing cells (kidney epithelium) and cancer cells (cells from a cancer of the larynx). The protective effect of a CMF is also seen in a combined exposure of tissue cultures to X-rays and CMF energy (strength of the CMF was 2000 oersteds with a gradient of 500 oersteds/cm). The data obtained are of interest to experimental oncology (development of new methods of treating malignant tumors).
Purification of proteins from baculovirus-infected insect cells.
O'Shaughnessy, Luke; Doyle, Sean
2011-01-01
Expression of recombinant proteins in the baculovirus/insect cell expression system is employed because it enables post-translational protein modification and high yields of recombinant protein. The system is capable of facilitating the functional expression of many proteins - either secreted or intracellularly located within infected insect cells. Strategies for the isolation and extraction of soluble proteins are presented in this chapter and involve selective cell lysis, precipitation and chromatography. Protein insolubility, following recombinant expression in insect cells, can occur. However, using the methods described herein, it is possible to extract and purify insoluble protein using affinity, ion-exchange and gel filtration chromatography. Indeed, protein insolubility often aids protein purification.
Shah, Sunny S.; Senapati, Satyajyoti; Klacsmann, Flora; Miller, Daniel L.; Johnson, Jeff J.; Chang, Hsueh-Chia; Stack, M. Sharon
2016-01-01
Mucosal infection by the human papillomavirus (HPV) is responsible for a growing number of malignancies, predominantly represented by cervical cancer and oropharyngeal squamous cell carcinoma. Because of the prevalence of the virus, persistence of infection, and long latency period, novel and low-cost methods are needed for effective population level screening and monitoring. We review established methods for screening of cervical and oral cancer as well as commercially-available techniques for detection of HPV DNA. We then describe the ongoing development of microfluidic nucleic acid-based biosensors to evaluate circulating host microRNAs that are produced in response to an oncogenic HPV infection. The goal is to develop an ideal screening platform that is low-cost, portable, and easy to use, with appropriate signal stability, sensitivity and specificity. Advances in technologies for sample lysis, pre-treatment and concentration, and multiplexed nucleic acid detection are provided. Continued development of these devices provides opportunities for cancer screening in low resource settings, for point-of-care diagnostics and self-screening, and for monitoring response to vaccination or surgical treatment. PMID:27618102
USDA-ARS?s Scientific Manuscript database
Background: Newcastle disease (ND), caused by Newcastle disease virus (NDV), is a devastating disease of poultry and wild birds. ND is prevented by rigorous biocontainment and vaccination. One potential approach to prevent spread of the virus is production of birds that show innate resistance to NDV...
Malinova, Vesna; Schlegel, Anna; Rohde, Veit; Mielke, Dorothee
2017-07-01
For the fibrinolytic therapy of intracerebral hematomas (ICH) using recombinant tissue plasminogen activator (rtPA), a catheter position in the core of the hematoma along the largest clot diameter was assumed to be optimal for an effective clot lysis. However, it never had been proven that core position indeed enhances clot lysis if compared with less optimal catheter positions. In this study, the impact of the catheter position on the effectiveness and on the time course of clot lysis was evaluated. We analyzed the catheter position using a relative error calculating the distance perpendicular to the catheter's center in relation to hematoma's diameter and evaluated the relative hematoma volume reduction (RVR). The correlation of the RVR with the catheter position was evaluated. Additionally, we tried to identify patterns of clot lysis with different catheter positions. The patient's outcome at discharge was evaluated using the Glasgow outcome score. A total of 105 patients were included in the study. The mean hematoma volume was 56 ml. The overall RVR was 62.7 %. In 69 patients, a catheter position in the core of the clot was achieved. We found no significant correlation between catheter position and hematoma RVR (linear regression, p = 0.14). Core catheter position leads to more symmetrical hematoma RVR. Faster clot lysis happens in the vicinity of the catheter openings. We found no significant difference in the patient's outcome dependent on the catheter position (linear regression, p = 0.90). The catheter position in the core of the hematoma along its largest diameter does not significantly influence the effectiveness of clot lysis after rtPA application.
Kim, Paul Y.; Vu, Trang T.; Leslie, Beverly A.; Stafford, Alan R.; Fredenburgh, James C.; Weitz, Jeffrey I.
2014-01-01
Fibrin (Fn) clots formed from γ′-fibrinogen (γ′-Fg), a variant with an elongated γ-chain, are resistant to lysis when compared with clots formed from the predominant γA-Fg, a finding previously attributed to differences in clot structure due to delayed thrombin-mediated fibrinopeptide (FP) B release or impaired cross-linking by factor XIIIa. We investigated whether slower lysis of γ′-Fn reflects delayed plasminogen (Pg) binding and/or activation by tissue plasminogen activator (tPA), reduced plasmin-mediated proteolysis of γ′-Fn, and/or altered cross-linking. Clots formed from γ′-Fg lysed more slowly than those formed from γA-Fg when lysis was initiated with tPA/Pg when FPA and FPB were both released, but not when lysis was initiated with plasmin, or when only FPA was released. Pg bound to γ′-Fn with an association rate constant 22% lower than that to γA-Fn, and the lag time for initiation of Pg activation by tPA was longer with γ′-Fn than with γA-Fn. Once initiated, however, Pg activation kinetics were similar. Factor XIIIa had similar effects on clots formed from both Fg isoforms. Therefore, slower lysis of γ′-Fn clots reflects delayed FPB release, which results in delayed binding and activation of Pg. When clots were formed from Fg mixtures containing more than 20% γ′-Fg, the upper limit of the normal level, the delay in lysis was magnified. These data suggest that circulating levels of γ′-Fg modulate the susceptibility of clots to lysis by slowing Pg activation by tPA and provide another example of the intimate connections between coagulation and fibrinolysis. PMID:25128532
Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner.
Conos, Stephanie A; Chen, Kaiwen W; De Nardo, Dominic; Hara, Hideki; Whitehead, Lachlan; Núñez, Gabriel; Masters, Seth L; Murphy, James M; Schroder, Kate; Vaux, David L; Lawlor, Kate E; Lindqvist, Lisa M; Vince, James E
2017-02-07
Necroptosis is a physiological cell suicide mechanism initiated by receptor-interacting protein kinase-3 (RIPK3) phosphorylation of mixed-lineage kinase domain-like protein (MLKL), which results in disruption of the plasma membrane. Necroptotic cell lysis, and resultant release of proinflammatory mediators, is thought to cause inflammation in necroptotic disease models. However, we previously showed that MLKL signaling can also promote inflammation by activating the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome to recruit the adaptor protein apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) and trigger caspase-1 processing of the proinflammatory cytokine IL-1β. Here, we provide evidence that MLKL-induced activation of NLRP3 requires (i) the death effector four-helical bundle of MLKL, (ii) oligomerization and association of MLKL with cellular membranes, and (iii) a reduction in intracellular potassium concentration. Although genetic or pharmacological targeting of NLRP3 or caspase-1 prevented MLKL-induced IL-1β secretion, they did not prevent necroptotic cell death. Gasdermin D (GSDMD), the pore-forming caspase-1 substrate required for efficient NLRP3-triggered pyroptosis and IL-1β release, was not essential for MLKL-dependent death or IL-1β secretion. Imaging of MLKL-dependent ASC speck formation demonstrated that necroptotic stimuli activate NLRP3 cell-intrinsically, indicating that MLKL-induced NLRP3 inflammasome formation and IL-1β cleavage occur before cell lysis. Furthermore, we show that necroptotic activation of NLRP3, but not necroptotic cell death alone, is necessary for the activation of NF-κB in healthy bystander cells. Collectively, these results demonstrate the potential importance of NLRP3 inflammasome activity as a driving force for inflammation in MLKL-dependent diseases.
Active MLKL triggers the NLRP3 inflammasome in a cell-intrinsic manner
Conos, Stephanie A.; Hara, Hideki; Whitehead, Lachlan; Núñez, Gabriel; Masters, Seth L.; Murphy, James M.; Schroder, Kate; Vaux, David L.; Lawlor, Kate E.; Vince, James E.
2017-01-01
Necroptosis is a physiological cell suicide mechanism initiated by receptor-interacting protein kinase-3 (RIPK3) phosphorylation of mixed-lineage kinase domain-like protein (MLKL), which results in disruption of the plasma membrane. Necroptotic cell lysis, and resultant release of proinflammatory mediators, is thought to cause inflammation in necroptotic disease models. However, we previously showed that MLKL signaling can also promote inflammation by activating the nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) inflammasome to recruit the adaptor protein apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC) and trigger caspase-1 processing of the proinflammatory cytokine IL-1β. Here, we provide evidence that MLKL-induced activation of NLRP3 requires (i) the death effector four-helical bundle of MLKL, (ii) oligomerization and association of MLKL with cellular membranes, and (iii) a reduction in intracellular potassium concentration. Although genetic or pharmacological targeting of NLRP3 or caspase-1 prevented MLKL-induced IL-1β secretion, they did not prevent necroptotic cell death. Gasdermin D (GSDMD), the pore-forming caspase-1 substrate required for efficient NLRP3-triggered pyroptosis and IL-1β release, was not essential for MLKL-dependent death or IL-1β secretion. Imaging of MLKL-dependent ASC speck formation demonstrated that necroptotic stimuli activate NLRP3 cell-intrinsically, indicating that MLKL-induced NLRP3 inflammasome formation and IL-1β cleavage occur before cell lysis. Furthermore, we show that necroptotic activation of NLRP3, but not necroptotic cell death alone, is necessary for the activation of NF-κB in healthy bystander cells. Collectively, these results demonstrate the potential importance of NLRP3 inflammasome activity as a driving force for inflammation in MLKL-dependent diseases. PMID:28096356
Mudgil, A V; To, K W; Balachandran, R M; Janigian, R H; Tsiaras, W G
1999-01-01
To determine the optimal wavelength for subconjunctival laser suture lysis. 130 black monofilament 10-0 nylon sutures were sewn subconjunctivally into the bare sclera of enucleated rabbit globes. The lowest energy levels facilitating laser suture lysis were determined for the argon green (514.5 NM), argon blue-green (488.0 NM, 514.5 NM), and krypton red (647.1 NM) wavelengths. In addition, absorption spectroscopy was performed on the suture material and conjunctiva using the Perkin Elmer W/VIS Lambda 2 spectrometer. Krypton red produced the fewest buttonhole defects, and it was also the most efficient energy source for suture lysis (P = 0.0001) under nontenectomized conjunctiva. Absorbance spectra studies revealed peak absorbance at 628 NM for the 10-0 nylon suture material. Based on animal and absorption spectroscopy studies, krypton red may be a safer and more efficient wavelength for subconjunctival laser suture lysis.
den Hartigh, Andreas B; Fink, Susan L
2018-05-21
Inflammasomes are innate immune signaling platforms that are required for the successful control of many pathogenic organisms, but also promote inflammatory and autoinflammatory diseases. Inflammasomes are activated by cytosolic pattern recognition receptors, including members of the NOD-like receptor (NLR) family. These receptors oligomerize upon the detection of microbial or damage-associated stimuli. Subsequent recruitment of the adaptor protein ASC forms a microscopically visible inflammasome complex, which activates caspase-1 through proximity-induced auto-activation. Following the activation, caspase-1 cleaves pro-IL-1β and pro-IL-18, leading to the activation and secretion of these pro-inflammatory cytokines. Caspase-1 also mediates the inflammatory form of cell death termed pyroptosis, which features the loss of membrane integrity and cell lysis. Caspase-1 cleaves gasdermin D, releasing the N-terminal fragment which forms plasma membrane pores, leading to osmotic lysis. In vitro, the activation of caspase-1 can be determined by labeling bone marrow-derived macrophages with the caspase-1 activity probe FAM-YVAD-FMK and by labeling the cells with antibodies against the adaptor protein ASC. This technique allows the identification of inflammasome formation and caspase-1 activation in individual cells using fluorescence microscopy. Pyroptotic cell death can be detected by measuring the release of cytosolic lactate dehydrogenase into the medium. This procedure is simple, cost effective and performed in a 96-well plate format, allowing adaptation for screening. In this manuscript, we show that activation of the NLRP3 inflammasome by nigericin leads to the co-localization of the adaptor protein ASC and active caspase-1, leading to pyroptosis.
Comparative evaluation of cytotoxicity of a glucosamine-TBA conjugate and a chitosan-TBA conjugate.
Guggi, Davide; Langoth, Nina; Hoffer, Martin H; Wirth, Michael; Bernkop-Schnürch, Andreas
2004-07-08
D-glucosamine and chitosan were modified by the immobilization of thiol groups utilizing 2-iminothiolane. The toxicity profile of the resulting D-glucosamine-TBA (4-thiobutylamidine) conjugate, of chitosan-TBA conjugate and of the corresponding unmodified controls was evaluated in vitro. On the one hand, the cell membrane damaging effect of 0.025% solutions of the test compounds was investigated via red blood cell lysis test. On the other hand, the cytotoxity of 0.025, 0.25 and 0.5% solutions of the test compounds was evaluated on L-929 mouse fibroblast cells utilizing two different bioassays: the MTT assay (3-[4,5-dimethylthiazol-2yl]-2,5-diphenyltetrazolium bromide), which assess the mitochondrial metabolic activity of the cells, and the BrdU-based enzyme-linked immunosorbent assay, which measures the incorporation in the DNA of 5-bromo-2'-deoxyuridine and consequently the cell proliferation. Results of the red blood cell lysis test showed that both thiolated compounds displayed a lower membrane damaging effect causing a significantly lower haemoglobine release than the unmodified compounds. Data obtained by the MTT assay and the BrdU assay revealed a concentration dependent relative cytotoxicity for all tested compounds. The covalent linkage of the TBA-substructure to D-glucosamine did not cause a significant increase in cytotoxicity, whereas at higher concentrations a slightly enhanced cytotoxic effect was caused by the derivatisation of chitosan. In conclusion, the -TBA derivatives show a comparable toxicity profile to the corresponding unmodified compounds, which should not compromise their future use as save pharmaceutical excipients.
Memon, Ayesha Majeed; Karim, Farheen
2018-03-01
Autoimmune hemolytic anemia (AIHA) is a form of hemolytic anemia in which red cells lysis occurs due to presence of an autoantibody. Association of AIHA is well known with lymphoproliferative disorders, especially with non-Hodgkin's lymphoma. However, AIHA in association with Hodgkin's lymphoma is seen occasionally. Of the AIHA associated with Hodgkin's lymphoma, most are of warm type or mixed type. Cold AIHA, as seen in our case, is very rare in Hodgkin's lymphoma.
Cleavage/Repair and Signal Transduction Pathways in Irradiated Breast Tumor Cells
2000-09-01
Pharmacology 51: 931-940, 1996. Freemerman,AJ, Vrana J, Tombes RM, Jiang H, Chellepan SP, Fisher PB and Grant S. Effects of antisense p21 (Wafl/CIP1...gene. Mutat. Res. 403, 171-175. Vrana JA, Decker RH, Johnson CR, Wang Z, Jarvis WD, Richon VM, Ehinger M, Fisher PB and Grant S. Induction of apoptosis...centri- blue dye and trypan blue negative cells were counted fuged, washed with PBS and lysed using 100-2001il under phase contrast microscopy. of lysis
Shape-Dependent Optoelectronic Cell Lysis**
Kremer, Clemens; Witte, Christian; Neale, Steven L; Reboud, Julien; Barrett, Michael P; Cooper, Jonathan M
2014-01-01
We show an electrical method to break open living cells amongst a population of different cell types, where cell selection is based upon their shape. We implement the technique on an optoelectronic platform, where light, focused onto a semiconductor surface from a video projector creates a reconfigurable pattern of electrodes. One can choose the area of cells to be lysed in real-time, from single cells to large areas, simply by redrawing the projected pattern. We show that the method, based on the “electrical shadow” that the cell casts, allows the detection of rare cell types in blood (including sleeping sickness parasites), and has the potential to enable single cell studies for advanced molecular diagnostics, as well as wider applications in analytical chemistry. PMID:24402800
Destruction of solid tumors by immune cells
NASA Astrophysics Data System (ADS)
López, Álvaro G.; Seoane, Jesús M.; Sanjuán, Miguel A. F.
2017-03-01
The fractional cell kill is a mathematical expression describing the rate at which a certain population of cells is reduced to a fraction of itself. In order to investigate the fractional cell kill that governs the rate at which a solid tumor is lysed by a cell population of cytotoxic CD8+ T cells (CTLs), we present several in silico simulations and mathematical analyses. When the CTLs eradicate efficiently the tumor cells, the models predict a correlation between the morphology of the tumors and the rate at which they are lysed. However, when the effectiveness of the immune cells is decreased, the mathematical function fails to reproduce the process of lysis. This limit is thoroughly discussed and a new fractional cell kill is proposed.
Cappannella, Elena; Benucci, Ilaria; Lombardelli, Claudio; Liburdi, Katia; Bavaro, Teodora; Esti, Marco
2016-11-01
Lysozyme from hen egg white (HEWL) was covalently immobilized on spherical supports based on microbial chitosan in order to develop a system for the continuous, efficient and food-grade enzymatic lysis of lactic bacteria (Oenococcus oeni) in white and red wine. The objective is to limit the sulfur dioxide dosage required to control malolactic fermentation, via a cell concentration typical during this process. The immobilization procedure was optimized in batch mode, evaluating the enzyme loading, the specific activity, and the kinetic parameters in model wine. Subsequently, a bench-scale fluidized-bed reactor was developed, applying the optimized process conditions. HEWL appeared more effective in the immobilized form than in the free one, when the reactor was applied in real white and red wine. This preliminary study suggests that covalent immobilization renders the enzyme less sensitive to the inhibitory effect of wine flavans. Copyright © 2016 Elsevier Ltd. All rights reserved.
Chung, Tai-Chun; Jones, Charles H; Gollakota, Akhila; Kamal Ahmadi, Mahmoud; Rane, Snehal; Zhang, Guojian; Pfeifer, Blaine A
2015-05-04
Bactofection offers a gene delivery option particularly useful in the context of immune modulation. The bacterial host naturally attracts recognition and cellular uptake by antigen presenting cells (APCs) as the initial step in triggering an immune response. Moreover, depending on the bacterial vector, molecular biology tools are available to influence and/or overcome additional steps and barriers to effective antigen presentation. In this work, molecular engineering was applied using Escherichia coli as a bactofection vector. In particular, the bacteriophage ΦX174 lysis E (LyE) gene was designed for variable expression across strains containing different levels of lysteriolysin O (LLO). The objective was to generate a bacterial vector with improved attenuation and delivery characteristics. The resulting strains exhibited enhanced gene and protein release and inducible cellular death. In addition, the new vectors demonstrated improved gene delivery and cytotoxicity profiles to RAW264.7 macrophage APCs.
Massiah, Michael A; Wright, Katharine M; Du, Haijuan
2016-04-01
This unit describes a straightforward and efficient method of using sarkosyl to solubilize and recover difficult recombinant proteins, such as GST- and His6 -tagged fusion proteins, that are overexpressed in E. coli. This protocol is especially useful for rescuing recombinant proteins overexpressed in M9 minimal medium. Sarkosyl added to lysis buffers helps with both protein solubility and cell lysis. Higher percentage sarkosyl (up to 10%) can extract >95% of soluble protein from inclusion bodies. In the case of sarkosyl-solubilized GST-fusion proteins, batch-mode affinity purification requires addition of a specific ratio of Triton X-100 and CHAPS, while sarkosyl-solubilized His6 -tagged fusion proteins can be directly purified on Ni(2+) resin columns. Proteins purified by this method could be widely used in biological assays, structure analysis and mass spectrum assay. Copyright © 2016 John Wiley & Sons, Inc.
Paganelli, Fernanda L.; Willems, Rob J. L.; Jansen, Pamela; Hendrickx, Antoni; Zhang, Xinglin; Bonten, Marc J. M.; Leavis, Helen L.
2013-01-01
ABSTRACT Enterococcus faecium is an important multidrug-resistant nosocomial pathogen causing biofilm-mediated infections in patients with medical devices. Insight into E. faecium biofilm pathogenesis is pivotal for the development of new strategies to prevent and treat these infections. In several bacteria, a major autolysin is essential for extracellular DNA (eDNA) release in the biofilm matrix, contributing to biofilm attachment and stability. In this study, we identified and functionally characterized the major autolysin of E. faecium E1162 by a bioinformatic genome screen followed by insertional gene disruption of six putative autolysin genes. Insertional inactivation of locus tag EfmE1162_2692 resulted in resistance to lysis, reduced eDNA release, deficient cell attachment, decreased biofilm, decreased cell wall hydrolysis, and significant chaining compared to that of the wild type. Therefore, locus tag EfmE1162_2692 was considered the major autolysin in E. faecium and renamed atlAEfm. In addition, AtlAEfm was implicated in cell surface exposure of Acm, a virulence factor in E. faecium, and thereby facilitates binding to collagen types I and IV. This is a novel feature of enterococcal autolysins not described previously. Furthermore, we identified (and localized) autolysin-independent DNA release in E. faecium that contributes to cell-cell interactions in the atlAEfm mutant and is important for cell separation. In conclusion, AtlAEfm is the major autolysin in E. faecium and contributes to biofilm stability and Acm localization, making AtlAEfm a promising target for treatment of E. faecium biofilm-mediated infections. PMID:23592262
In vitro cytotoxicity of CD8+ T cells in multi-drug-resistant tuberculosis. A preliminary report.
Sada-Ovalle, Isabel; Torre-Bouscoulet, Luis; Valdez-Vázquez, Rafael; Lascurain, Ricardo
2009-05-01
Specific CD8+ T-cell cytotoxicity has been recognized as being involved in the elimination of drug-susceptible tuberculosis (DS-TB). Given that there is currently no information on the cytotoxic effector functions of CD8+ T cells in multi-drug-resistant tuberculosis (MDR-TB), our objective was to analyse the cytotoxic activity, both basal and stimulated, of CD8+ T cells from MDR-TB patients and compare it with that of DS-TB patients, as well as purified protein derivative (PPD)+ and PPD- subjects. Cytotoxic activity of CD8+ T cells from MDR-TB patients, DS-TB patients, PPD+ and PPD- subjects was measured by a colorimetric assay, using H37Rv culture filtrate protein as the antigenic stimulus. Twenty-eight subjects were studied (7 MDR-TB patients, 7 DS-TB patients, 7 PPD+ subjects and 7 PPD- subjects). In the presence of the antigenic stimulus, the cytotoxic activity of CD8+ T cells from MDR-TB patients (% lysis) increased from 6.7% to 59.6% (P < 0.001). In DS-TB patients lysis increased from 3.2% to 22.5% (P < 0.001), whereas in PPD+ subjects it increased from 2.7% to 12.0% (P < 0.001) and in PPD- subjects from 1.3% to 3.2% (P < 0.001). Basal cytotoxic activity was significantly higher for MDR-TB patients than PPD+ and PPD- subjects (P = 0.003), but not compared with that for DS-TB patients (P = 0.05). Stimulated cytotoxic activity was highest for MDR-TB patients. CD8+ T cells from MDR-TB patients showed an exaggerated cytotoxic activity after antigenic stimulation. Further studies are required to elucidate the role of this response in the immunopathogenesis of MDR-TB.
James, Scott E; Greenberg, Philip D; Jensen, Michael C; Lin, Yukang; Wang, Jinjuan; Till, Brian G; Raubitschek, Andrew A; Forman, Stephen J; Press, Oliver W
2008-05-15
We have targeted CD22 as a novel tumor-associated Ag for recognition by human CTL genetically modified to express chimeric TCR (cTCR) recognizing this surface molecule. CD22-specific cTCR targeting different epitopes of the CD22 molecule promoted efficient lysis of target cells expressing high levels of CD22 with a maximum lytic potential that appeared to decrease as the distance of the target epitope from the target cell membrane increased. Targeting membrane-distal CD22 epitopes with cTCR(+) CTL revealed defects in both degranulation and lytic granule targeting. CD22-specific cTCR(+) CTL exhibited lower levels of maximum lysis and lower Ag sensitivity than CTL targeting CD20, which has a shorter extracellular domain than CD22. This diminished sensitivity was not a result of reduced avidity of Ag engagement, but instead reflected weaker signaling per triggered cTCR molecule when targeting membrane-distal epitopes of CD22. Both of these parameters were restored by targeting a ligand expressing the same epitope, but constructed as a truncated CD22 molecule to approximate the length of a TCR:peptide-MHC complex. The reduced sensitivity of CD22-specific cTCR(+) CTL for Ag-induced triggering of effector functions has potential therapeutic applications, because such cells selectively lysed B cell lymphoma lines expressing high levels of CD22, but demonstrated minimal activity against autologous normal B cells, which express lower levels of CD22. Thus, our results demonstrate that cTCR signal strength, and consequently Ag sensitivity, can be modulated by differential choice of target epitopes with respect to distance from the cell membrane, allowing discrimination between targets with disparate Ag density.
1992-01-01
Cytotoxic T lymphocytes (CTL) recognize short antigenic peptides associated with cell surface class I major histocompatibility complex (MHC) molecules. This association presumably occurs between newly synthesized class I MHC molecules and peptide fragments in a pre-Golgi compartment. Little is known about the factors that regulate the formation of these antigenic peptide fragments within the cell. To examine the role of residues within a core epitope and in the flanking sequences for the generation and presentation of the newly synthesized peptide fragment recognized by CD8+ CTL, we have mutagenized the coding sequence for the CTL epitope spanning residues 202-221 in the influenza A/Japan/57 hemagglutinin (HA). In this study over 60 substitution mutations in the epitope were tested for their effects on target cell sensitization using a cytoplasmic viral expression system. The HA202- 221 site contains two overlapping subsites defined by CTL clones 11-1 and 40-2. Mutations in HA residues 204-213 or residues 210-219 often abolished target cell lysis by CTL clones 11-1 and 40-2, respectively. Although residues outside the core epitope did not usually affect the ability to be lysed by CTL clones, substitution of a Gly residue for Val-214 abolished lysis by clone 11-1. These data suggest that residues within a site that affect MHC binding and T cell receptor recognition appear to play the predominant role in dictating the formation of the antigenic complex recognized by CD8+ CTL, and therefore the antigenicity of the protein antigen presented to CD8+ T cells. Most alterations in residues flanking the endogenously expressed epitope do not appreciably affect the generation and recognition of the site. PMID:1383384
Dufour, Nicolas; Delattre, Raphaëlle; Ricard, Jean-Damien; Debarbieux, Laurent
2017-06-01
Other than numerous experimental data assessing phage therapy efficacy, questions regarding safety of this approach are not sufficiently addressed. In particular, as phages can kill bacterial cells within <10 minutes, the associated endotoxin release (ER) in severe infections caused by gram-negative bacteria could be a matter of concern. Two therapeutic virulent phages and 4 reference antibiotics were studied in vitro for their ability to kill 2 pathogenic strains of Escherichia coli and generate an ER. The early interaction (first 3 hours) between these actors was assessed over time by studying the instantaneous cell viability, the colony-forming unit count, the concentration of free endotoxin released, and the cell morphology under light microscope. While β-lactams have a relatively slow effect, both tested phages, as well as amikacin, were able to rapidly abolish the bacterial growth. Even when considering the fastest phage (cell lysis in 9 minutes), the concentrations of phage-induced ER never reached the highest values, which were recorded with antibiotic treatments. Cumulative concentrations of endotoxin over time in phage-treated conditions were lower than those observed with β-lactams and close to those observed with amikacin. Whereas β-lactams were responsible for strong cell morphology changes (spheroplast with imipenem, filamentous cells with cefoxitin and ceftriaxone), amikacin and phages did not modify cell shape but produced intracellular inclusion bodies. This work provides important and comforting data regarding the safety of phage therapy. Therapeutically relevant phages, with their low endotoxin release profile and fast bactericidal effect, are not inferior to β-lactams. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Ultrastructure of the root cap of Arabidopsis Thaliana L. Heynh under spaceflight conditions
NASA Technical Reports Server (NTRS)
1983-01-01
Peculiarities of the ultrastructural organization of Arabidopsis root cap cells grown from the stage of two cotyledonous leaves in the Svetoblok-1 apparatus aboard the Salyut 6 research orbital station and in the laboratory are assessed. It is established that under conditions of real space flight vacuolization of the root cap cells increses considerably compared to the control variant. Changes in the topography and ulstrastructure of amyloplasts as well as lysis of cell walls are observed in the material under study. An assumption is advanced on analogous cell responses observed at the ultrastructural level to weightlessness and clinostatic conditions.
Lipid extraction from microalgae using a single ionic liquid
Salvo, Roberto Di; Reich, Alton; Dykes, Jr., H. Waite H.; Teixeira, Rodrigo
2013-05-28
A one-step process for the lysis of microalgae cell walls and separation of the cellular lipids for use in biofuel production by utilizing a hydrophilic ionic liquid, 1-butyl-3-methylimidazolium. The hydrophilic ionic liquid both lyses the microalgae cell walls and forms two immiscible layers, one of which consists of the lipid contents of the lysed cells. After mixture of the hydrophilic ionic liquid with a suspension of microalgae cells, gravity causes a hydrophobic lipid phase to move to a top phase where it is removed from the mixture and purified. The hydrophilic ionic liquid is recycled to lyse new microalgae suspensions.
Numerical Simulation of Rheological, Chemical and Hydromechanical Processes of Thrombolysis
NASA Astrophysics Data System (ADS)
Khramchenkov, E.; Khramchenkov, M.
2015-04-01
Mathematical model of clot lysis in blood vessels is developed on the basis of equations of convection-diffusion. Fibrin of the clot is considered stationary solid phase, and plasminogen, plasmin and plasminogen-activators - as dissolved fluid phases. As a result of numerical solution of the model predictions of lysis process are gained. Important influence of clot swelling on the process of lysis is revealed.
Determining a carbohydrate profile for Hansenula polymorpha
NASA Technical Reports Server (NTRS)
Petersen, G. R.
1985-01-01
The determination of the levels of carbohydrates in the yeast Hansenula polymorpha required the development of new analytical procedures. Existing fractionation and analytical methods were adapted to deal with the problems involved with the lysis of whole cells. Using these new procedures, the complete carbohydrate profiles of H. polymorpha and selected mutant strains were determined and shown to correlate favourably with previously published results.
Olin, Jacqueline L; Griffiths, Carrie L; Smith, Morgan B
2017-01-01
Patients with chronic lymphocytic leukemia with the 17p deletion have a poor prognosis and treatment options are limited. Venetoclax, a novel B-cell lymphoma-2 inhibitor, has been approved for treatment-experienced chronic lymphocytic leukemia patients with the 17p deletion. A phase 1 dose-escalation study to 400 mg daily showed overall response rates across all doses of 79% with a complete response achieved in 20%. A phase 2 multicenter open-label study demonstrated overall response rate of 79.4% of patients (95% confidence interval 70.5-86.6) with median duration of follow-up of 12.1 months (IQR 10.1-14.2). Tumor lysis syndrome has been observed during initiation and titration. Assessing risk of tumor lysis syndrome prior to therapy initiation is essential to provide appropriate prophylactic medications. Neutropenia, potentially warranting dose reduction or discontinuation, has been observed. Venetoclax has demonstrated activity in other leukemias, multiple myeloma, and lymphomas. Venetoclax has shown response, and is well tolerated in patients with highly resistant chronic lymphocytic leukemia. It has the potential to be part of the treatment armamentarium for other malignancies.
Comparative analysis of protocols for DNA extraction from soybean caterpillars.
Palma, J; Valmorbida, I; da Costa, I F D; Guedes, J V C
2016-04-07
Genomic DNA extraction is crucial for molecular research, including diagnostic and genome characterization of different organisms. The aim of this study was to comparatively analyze protocols of DNA extraction based on cell lysis by sarcosyl, cetyltrimethylammonium bromide, and sodium dodecyl sulfate, and to determine the most efficient method applicable to soybean caterpillars. DNA was extracted from specimens of Chrysodeixis includens and Spodoptera eridania using the aforementioned three methods. DNA quantification was performed using spectrophotometry and high molecular weight DNA ladders. The purity of the extracted DNA was determined by calculating the A260/A280 ratio. Cost and time for each DNA extraction method were estimated and analyzed statistically. The amount of DNA extracted by these three methods was sufficient for PCR amplification. The sarcosyl method yielded DNA of higher purity, because it generated a clearer pellet without viscosity, and yielded high quality amplification products of the COI gene I. The sarcosyl method showed lower cost per extraction and did not differ from the other methods with respect to preparation times. Cell lysis by sarcosyl represents the best method for DNA extraction in terms of yield, quality, and cost effectiveness.
Soman, Soumya; Ray, J G
2016-10-01
Biological approach to synthesis of metal nanoparticles using aqueous leaf extract is a highly relevant and recent theme in nanotechnological research. Phytosynthesized AgNPs have better inhibitory and antimicrobial effects compared to aqueous leaf extract and silver nitrate. In the present investigation crystalline silver nanoparticles (AgNPs) with size of 10nm have been successfully synthesized using aqueous leaf extract (AQLE) of Ziziphus oenoplia (L.) Mill., which act as both reducing as well as capping agent. The particles were characterized using UV Visible spectroscopy, HRTEM-EDAX, XRD, FT-IR and DLS. An evaluation of the anti bacterial activity was carried out using Agar well diffusion method and MIC determination against four bacterial strains, Klebsiella pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi; the AgNPs exhibited quite high antibacterial activity. Furthermore, bactericidal studies with TEM at different time intervals after AgNPs treatment showed the presence of AgNPs near cell membrane of bacteria at about 30min exposure and the bacterial-lysis was found completed at 24h. This gave an insight on the mechanism of bacterial-lysis by direct damage to the cell membrane. Copyright © 2016 Elsevier B.V. All rights reserved.
Proteome analysis of Aspergillus ochraceus.
Rizwan, Muhammad; Miller, Ingrid; Tasneem, Fareeha; Böhm, Josef; Gemeiner, Manfred; Razzazi-Fazeli, Ebrahim
2010-08-01
Genome sequencing for many important fungi has begun during recent years; however, there is still some deficiency in proteome profiling of aspergilli. To obtain a comprehensive overview of proteins and their expression, a proteomic approach based on 2D gel electrophoresis and MALDI-TOF/TOF mass spectrometry was used to investigate A. ochraceus. The cell walls of fungi are exceptionally resistant to destruction, therefore two lysis protocols were tested: (1) lysis via manual grinding using liquid nitrogen, and (2) mechanical lysis via rapid agitation with glass beads using MagNalyser. Mechanical grinding with mortar and pestle using liquid nitrogen was found to be a more efficient extraction method for our purpose, resulting in extracts with higher protein content and a clear band pattern in SDS-PAGE. Two-dimensional electrophoresis gave a complex spot pattern comprising proteins of a broad range of isoelectric points and molecular masses. The most abundant spots were subjected to mass spectrometric analysis. We could identify 31 spots representing 26 proteins, most of them involved in metabolic processes and response to stress. Seventeen spots were identified by de novo sequencing due to a lack of DNA and protein database sequences of A. ochraceus. The proteins identified in our study have been reported for the first time in A. ochraceus and this represents the first proteomic approach with identification of major proteins, when the fungus was grown under submerged culture.
agr-Dependent Interactions of Staphylococcus aureus USA300 with Human Polymorphonuclear Neutrophils
Pang, Yun Yun; Schwartz, Jamie; Thoendel, Matthew; Ackermann, Laynez W.; Horswill, Alexander R.; Nauseef, William M.
2010-01-01
The emergence of serious infections due to community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has fueled interest in the contributions of specific staphylococcal virulence factors to clinical disease. To assess the contributions of agr-dependent factors to the fate of organisms in polymorphonuclear neutrophils (PMN), we examined the consequences for organism and host cells of feeding PMN with wild-type CA-MRSA (LAC) or CA-MRSA (LAC agr KO) at different multiplicities of infection (MOIs). Phagocytosed organisms rapidly increased the transcription of RNAIII in a time- and MOI-dependent fashion; extracellular USA300 (LAC) did not increase RNAIII expression despite having the capacity to respond to autoinducing peptide-enriched culture medium. HOCl-mediated damage and intracellular survival were the same in the wild-type and USA300 (LAC agr KO). PMN lysis by ingested USA300 (LAC) was time- and MOI-dependent and, at MOIs >1, required α-hemolysin (hla) as USA300 (LAC agr KO) and USA300 (LAC hla KO) promoted PMN lysis only at high MOIs. Taken together, these data demonstrate activation of the agr operon in human PMN with the subsequent production of α-hemolysin and PMN lysis. The extent to which these events in the phagosomes of human PMN contribute to the increased morbidity and mortality of infections with USA300 (LAC) merits further study. PMID:20829608
Adaptation of Staphylococcus xylosus to Nutrients and Osmotic Stress in a Salted Meat Model
Vermassen, Aurore; Dordet-Frisoni, Emilie; de La Foye, Anne; Micheau, Pierre; Laroute, Valérie; Leroy, Sabine; Talon, Régine
2016-01-01
Staphylococcus xylosus is commonly used as starter culture for meat fermentation. Its technological properties are mainly characterized in vitro, but the molecular mechanisms for its adaptation to meat remain unknown. A global transcriptomic approach was used to determine these mechanisms. S. xylosus modulated the expression of about 40–50% of the total genes during its growth and survival in the meat model. The expression of many genes involved in DNA machinery and cell division, but also in cell lysis, was up-regulated. Considering that the S. xylosus population remained almost stable between 24 and 72 h of incubation, our results suggest a balance between cell division and cell lysis in the meat model. The expression of many genes encoding enzymes involved in glucose and lactate catabolism was up-regulated and revealed that glucose and lactate were used simultaneously. S. xylosus seemed to adapt to anaerobic conditions as revealed by the overexpression of two regulatory systems and several genes encoding cofactors required for respiration. In parallel, genes encoding transport of peptides and peptidases that could furnish amino acids were up-regulated and thus concomitantly a lot of genes involved in amino acid synthesis were down-regulated. Several genes involved in glutamate homeostasis were up-regulated. Finally, S. xylosus responded to the osmotic stress generated by salt added to the meat model by overexpressing genes involved in transport and synthesis of osmoprotectants, and Na+ and H+ extrusion. PMID:26903967
Elvington, Michelle; Huang, Yuxiang; Morgan, B. Paul; Qiao, Fei; van Rooijen, Nico; Atkinson, Carl
2012-01-01
Complement inhibitors expressed on tumor cells provide an evasion mechanism against mAb therapy and may modulate the development of an acquired antitumor immune response. Here we investigate a strategy to amplify mAb-targeted complement activation on a tumor cell, independent of a requirement to target and block complement inhibitor expression or function, which is difficult to achieve in vivo. We constructed a murine fusion protein, CR2Fc, and demonstrated that the protein targets to C3 activation products deposited on a tumor cell by a specific mAb, and amplifies mAb-dependent complement activation and tumor cell lysis in vitro. In syngeneic models of metastatic lymphoma (EL4) and melanoma (B16), CR2Fc significantly enhanced the outcome of mAb therapy. Subsequent studies using the EL4 model with various genetically modified mice and macrophage-depleted mice revealed that CR2Fc enhanced the therapeutic effect of mAb therapy via both macrophage-dependent FcγR-mediated antibody-dependent cellular cytotoxicity, and by direct complement-mediated lysis. Complement activation products can also modulate adaptive immunity, but we found no evidence that either mAb or CR2Fc treatment had any effect on an antitumor humoral or cellular immune response. CR2Fc represents a potential adjuvant treatment to increase the effectiveness of mAb therapy of cancer. PMID:22442351
Single-Cell mRNA-Seq Using the Fluidigm C1 System and Integrated Fluidics Circuits.
Gong, Haibiao; Do, Devin; Ramakrishnan, Ramesh
2018-01-01
Single-cell mRNA-seq is a valuable tool to dissect expression profiles and to understand the regulatory network of genes. Microfluidics is well suited for single-cell analysis owing both to the small volume of the reaction chambers and easiness of automation. Here we describe the workflow of single-cell mRNA-seq using C1 IFC, which can isolate and process up to 96 cells. Both on-chip procedure (lysis, reverse transcription, and preamplification PCR) and off-chip sequencing library preparation protocols are described. The workflow generates full-length mRNA information, which is more valuable compared to 3' end counting method for many applications.
Martinez, Victor G; Ontoria-Oviedo, Imelda; Ricardo, Carolina P; Harding, Sian E; Sacedon, Rosa; Varas, Alberto; Zapata, Agustin; Sepulveda, Pilar; Vicente, Angeles
2017-09-29
Human dental mesenchymal stem cells (MSCs) are considered as highly accessible and attractive MSCs for use in regenerative medicine, yet some of their features are not as well characterized as other MSCs. Hypoxia-preconditioning and hypoxia-inducible factor 1 (HIF-1) alpha overexpression significantly improves MSC therapeutics, but the mechanisms involved are not fully understood. In the present study, we characterize immunomodulatory properties of dental MSCs and determine changes in their ability to modulate adaptive and innate immune populations after HIF-1 alpha overexpression. Human dental MSCs were stably transduced with green fluorescent protein (GFP-MSCs) or GFP-HIF-1 alpha lentivirus vectors (HIF-MSCs). A hypoxic-like metabolic profile was confirmed by mitochondrial and glycolysis stress test. Capacity of HIF-MSCs to modulate T-cell activation, dendritic cell differentiation, monocyte migration, and polarizations towards macrophages and natural killer (NK) cell lytic activity was assessed by a number of functional assays in co-cultures. The expression of relevant factors were determined by polymerase chain reaction (PCR) analysis and enzyme-linked immunosorbent assay (ELISA). While HIF-1 alpha overexpression did not modify the inhibition of T-cell activation by MSCs, HIF-MSCs impaired dendritic cell differentiation more efficiently. In addition, HIF-MSCs showed a tendency to induce higher attraction of monocytes, which differentiate into suppressor macrophages, and exhibited enhanced resistance to NK cell-mediated lysis, which supports the improved therapeutic capacity of HIF-MSCs. HIF-MSCs also displayed a pro-angiogenic profile characterized by increased expression of CXCL12/SDF1 and CCL5/RANTES and complete loss of CXCL10/IP10 transcription. Immunomodulation and expression of trophic factors by dental MSCs make them perfect candidates for cell therapy. Overexpression of HIF-1 alpha enhances these features and increases their resistance to allogenic NK cell lysis and, hence, their potential in vivo lifespan. Our results further support the use of HIF-1 alpha-expressing dental MSCs for cell therapy in tissue injury and immune disorders.
Kiem, Sungmin; Schentag, Jerome J
2014-12-01
Although antibiotics whose epithelial lining fluid (ELF) concentrations are reported high tend to be preferred in treatment of pneumonia, measurement of ELF concentrations of antibiotics could be misled by contamination from lysis of ELF cells and technical errors of bronchoalveolar lavage (BAL). In this review, ELF concentrations of anti-methicillin resistant Staphylococcus aureus (MRSA) antibiotics were interpreted considering above confounding factors. An equation used to explain antibiotic diffusion into CSF (cerebrospinal fluid) was adopted: ELF/free serum concentration ratio = 0.96 + 0.091 × ln (partition coefficient / molecular weight(1/2)). Seven anti-MRSA antibiotics with reported ELF concentrations were fitted to this equation to see if their ELF concentrations were explainable by the penetration capacity only. Then, outliers were modeled under the assumption of varying contamination from lysed ELF cells (test range 0-10% of ELF volume). ELF concentrations of oritavancin, telavancin, tigecycline, and vancomycin were well described by the diffusion equation, with or without additional impact from cell lysis. For modestly high ELF/free serum concentration ratio of linezolid, technical errors of BAL should be excluded. Although teicoplanin and iclaprim showed high ELF/free serum ratios also, their protein binding levels need to be cleared for proper interpretation. At the moment, it appears very premature to use ELF concentrations of anti-MRSA antibiotics as a relevant guide for treatment of lung infections by MRSA.
Schentag, Jerome J
2014-01-01
Although antibiotics whose epithelial lining fluid (ELF) concentrations are reported high tend to be preferred in treatment of pneumonia, measurement of ELF concentrations of antibiotics could be misled by contamination from lysis of ELF cells and technical errors of bronchoalveolar lavage (BAL). In this review, ELF concentrations of anti-methicillin resistant Staphylococcus aureus (MRSA) antibiotics were interpreted considering above confounding factors. An equation used to explain antibiotic diffusion into CSF (cerebrospinal fluid) was adopted: ELF/free serum concentration ratio = 0.96 + 0.091 × ln (partition coefficient / molecular weight1/2). Seven anti-MRSA antibiotics with reported ELF concentrations were fitted to this equation to see if their ELF concentrations were explainable by the penetration capacity only. Then, outliers were modeled under the assumption of varying contamination from lysed ELF cells (test range 0-10% of ELF volume). ELF concentrations of oritavancin, telavancin, tigecycline, and vancomycin were well described by the diffusion equation, with or without additional impact from cell lysis. For modestly high ELF/free serum concentration ratio of linezolid, technical errors of BAL should be excluded. Although teicoplanin and iclaprim showed high ELF/free serum ratios also, their protein binding levels need to be cleared for proper interpretation. At the moment, it appears very premature to use ELF concentrations of anti-MRSA antibiotics as a relevant guide for treatment of lung infections by MRSA. PMID:25566401
Bose, Jeffrey L; Lehman, McKenzie K; Fey, Paul D; Bayles, Kenneth W
2012-01-01
The most prominent murein hydrolase of Staphylococcus aureus, AtlA, is a bifunctional enzyme that undergoes proteolytic cleavage to yield two catalytically active proteins, an amidase (AM) and a glucosaminidase (GL). Although the bifunctional nature of AtlA has long been recognized, most studies have focused on the combined functions of this protein in cell wall metabolism and biofilm development. In this study, we generated mutant derivatives of the clinical S. aureus isolate, UAMS-1, in which one or both of the AM and GL domains of AtlA have been deleted. Examination of these strains revealed that each mutant exhibited growth rates comparable to the parental strain, but showed clumping phenotypes and lysis profiles that were distinct from the parental strain and each other, suggesting distinct roles in cell wall metabolism. Given the known function of autolysis in the release of genomic DNA for use as a biofilm matrix molecule, we also tested the mutants in biofilm assays and found both AM and GL necessary for biofilm development. Furthermore, the use of enzymatically inactive point mutations revealed that both AM and GL must be catalytically active for S. aureus to form a biofilm. The results of this study provide insight into the relative contributions of AM and GL in S. aureus and demonstrate the contribution of Atl-mediated lysis in biofilm development.
Okai, Blessing; Lyall, Natalie; Gow, Neil A. R.; Erwig, Lars-Peter
2015-01-01
Avoidance of innate immune defense is an important mechanism contributing to the pathogenicity of microorganisms. The fungal pathogen Candida albicans undergoes morphogenetic switching from the yeast to the filamentous hyphal form following phagocytosis by macrophages, facilitating its escape from the phagosome, which can result in host cell lysis. We show that the intracellular host trafficking GTPase Rab14 plays an important role in protecting macrophages from lysis mediated by C. albicans hyphae. Live-cell imaging of macrophages expressing green fluorescent protein (GFP)-tagged Rab14 or dominant negative Rab14, or with small interfering RNA (siRNA)-mediated knockdown of Rab14, revealed the temporal dynamics of this protein and its influence on the maturation of macrophage phagosomes following the engulfment of C. albicans cells. Phagosomes containing live C. albicans cells became transiently Rab14 positive within 2 min following engulfment. The duration of Rab14 retention on phagosomes was prolonged for hyphal cargo and was directly proportional to hyphal length. Interference with endogenous Rab14 did not affect the migration of macrophages toward C. albicans cells, the rate of engulfment, the overall uptake of fungal cells, or early phagosome processing. However, Rab14 depletion delayed the acquisition of the late phagosome maturation markers LAMP1 and lysosomal cathepsin, indicating delayed formation of a fully bioactive lysosome. This was associated with a significant increase in the level of macrophage killing by C. albicans. Therefore, Rab14 activity promotes phagosome maturation during C. albicans infection but is dysregulated on the phagosome in the presence of the invasive hyphal form, which favors fungal survival and escape. PMID:25644001
Kang, Y-H; Kim, B-R; Choi, H J; Seo, J G; Kim, B-H; Han, M-S
2007-11-01
Enhancement of algicidal activity by immobilization of algicidal bacteria antagonistic to Stephanodiscus hantzschii. In laboratory studies, A diatom-lysing bacterium, Pseudomonas fluorescens HYK0210-SK09 showed strong algicidal activity against S. hantzschii, but a natural mesocosm study revealed that this bacterium failed to fully control natural blooms of Stephanodiscus at the low water temperatures that favour these blooms. Here, we sought to develop an effective immobilization strategy for enhancing the algicidal activity of HYK0210-SK09 in the natural setting. Bacterium HYK0210-SK09 was immobilized with various carriers including agar, alginate, polyurethane and cellulose sponge. The bacterial cells immobilized with cellulose sponge (CIS) induced more rapid and complete lysis of S. hantzschii than other carriers, and had a higher packing ability than polyurethane. Furthermore, CIS-immobilized cells showed higher lysis of S. hantzschii at the same concentrations as that of free cells (< or =1 x 10(7) cells ml(-1)), and had especially strong algicidal activity at the low temperatures (<10 degrees C). Based on these laboratory studies, we assessed the possible application of HYK0210-SK09 cells in the field by performing a mesocosm study during the winter season. The CIS-immobilized cells with species-specific activity towards the genera Stephanodiscus showed extremely high algicidal activity (up to 95%) against a bloom of Stephanodiscus hantzschii even at low water temperatures, because of high cell packing and subsequent cell protection against low temperatures and predators, whereas free cells showed negligible algicidal activities under these conditions. Immobilizing cells of HYK0210-SK09 in CIS foam, rather than in the other matrices tested, could achieve more efficient control of Stephanodiscus blooms and showed a significant algicidal activity on in vitro and in vivo blooms, even at low water temperature. Collectively, these results indicate that CIS of algicidal bacteria may form an important strategy for effective management of Stephanodiscus blooms at low water temperatures.
Plasma clots gelled by different amounts of calcium for stem cell delivery.
Gessmann, Jan; Seybold, Dominik; Peter, Elvira; Schildhauer, Thomas Armin; Köller, Manfred
2013-01-01
Freshly prepared autologous plasma clots may serve as a carrier matrix for expanded multipotent mesenchymal stromal cells (MSCs) or bone marrow cells. By varying the calcium concentration, plasma clots with different properties can be produced. The purpose of this in vitro study was to determine the optimal calcium concentrations for the clotting process, intra-clot cell viability, and clot lysis. Different plasma clots were prepared by adding an equal volume of RPMI1640 (with or without MSCs) to citrate plasma (either containing platelets or platelet-free). Clotting was initiated by the addition of CaCl(2) (10 g/100 ml H(2)O, 10 % solution). The final concentration of CaCl(2) ranged from 1 to 10 % by volume of plasma. Viability and distribution of the MSCs were analysed by calcein-AM/propidium iodide staining. MSC-embedded plasma clots were dissolved with trypsin (0.25 %), and recovered cells were further incubated for 1 week under cell culture conditions. The viability of MSCs embedded in clots formed by the addition of 1-8 % by volume CaCl2 was not affected by incubation of up to 1 week. In contrast, clots produced by higher volumes of CaCl(2) solutions (9-10 % by volume of plasma) showed decreased numbers of viable cells. Intra-clot cell proliferation was highest in clots produced by addition of 5 % CaCl(2) by plasma volume. Osteocalcin release was not influenced in platelet-free plasma but decreased in platelet-containing plasma. Morphological analysis of stained recovered MSCs revealed that lysis of the plasma clot did not affect cell morphology or subsequent spontaneous proliferation. Clot formation and clot stability can be controlled by changing the concentration of CaCl(2) added to plasma. The addition of 5 % CaCl(2) produced a plasma clot with optimal results for stem cell delivery.
Saha, Asim; Chatterjee, Sunil K; Foon, Kenneth A; Bhattacharya-Chatterjee, Malaya
2006-08-01
In the present study, we have analysed the detailed cellular immune mechanisms involved in tumour rejection in carcinoembryonic antigen (CEA) transgenic mice after immunization with dendritic cells (DC) pulsed with an anti-idiotype (Id) antibody, 3H1, which mimics CEA. 3H1-pulsed DC vaccinations resulted in induction of CEA specific cytotoxic T lymphocyte (CTL) responses in vitro and the rejection of CEA-transfected MC-38 murine colon carcinoma cells, C15, in vivo (Saha et al.,Cancer Res 2004; 64: 4995-5003). These CTL mediated major histocompatibility complex (MHC) class I-restricted tumour cell lysis, production of interferon-gamma (IFN-gamma) and tumour necrosis factor-alpha (TNF-alpha), and expression of Fas ligand (FasL) and TNF-related apoptosis-inducing ligand (TRAIL) in response to C15 cells. CTL used perforin-, FasL-, and TRAIL-mediated death pathways to lyse C15 cells, although perforin-mediated killing was the predominant lytic mechanism in vitro. The cytokines IFN-gamma and TNF-alpha synergistically enhanced surface expression of Fas, TRAIL receptor, MHC class I and class II on C15 cells that increased the sensitivity of tumour cells to CTL lysis. CTL activity generated in 3H1-pulsed DC immunized mice was directed against an epitope defined by the idio-peptide LCD-2, derived from 3H1. In vivo lymphocyte depletion experiments demonstrated that induction of CTL response and antitumour immunity was dependent on both CD4+ and CD8+ T cells. The analysis of splenocytes of immunized mice that had rejected C15 tumour growth revealed up-regulated surface expression of memory phenotype Ly-6C and CD44 on both CD4+ and CD8+ T cells. The adoptive transfer experiments also suggested the role of both CD4+ and CD8+ T cells in this model system. Furthermore, mice that had rejected C15 tumour growth, developed tumour-specific immunological memory.
The chsD and chsE genes of Aspergillus nidulans and their roles in chitin synthesis.
Specht, C A; Liu, Y; Robbins, P W; Bulawa, C E; Iartchouk, N; Winter, K R; Riggle, P J; Rhodes, J C; Dodge, C L; Culp, D W; Borgia, P T
1996-06-01
Two chitin synthase genes, chsD and chsE, were identified from the filamentous ascomycete Aspergillus nidulans. In a region that is conserved among chitin synthases, the deduced amino acid sequences of chsD and chsE have greater sequence identity to the polypeptides encoded by the Saccharomyces cerevisiae CHS3 gene (also named CSD2, CAL1, DIT101, and KTI1) and the Candida albicans CHSE gene than to other chitin synthases. chsE is more closely related to the CHS3 genes, and this group constitutes the class IV chitin synthases. chsD differs sufficiently from the other classes of fungal chitin synthase genes to constitute a new class, class V. Each of the wild-type A. nidulans genes was replaced by a copy that had a substantial fraction of its coding region replaced by the A. nidulans argB gene. Hyphae from both chsD and chsE disruptants contain about 60-70% of the chitin content of wild-type hyphae. The morphology and development of chsE disruptants are indistinguishable from those of wild type. Nearly all of the conidia of chsD disruption strains swell excessively and lyse when germinated in low osmotic strength medium. Conidia that do not lyse produce hyphae that initially have normal morphology but subsequently lyse at subapical locations and show ballooned walls along their length. The lysis of germinating conidia and hyphae of chsD disruptants is prevented by the presence of osmotic stabilizers in the medium. Conidiophore vesicles from chsD disruption strains frequently swell excessively and lyse, resulting in colonies that show reduced conidiation. These properties indicate that chitin synthesized by the chsD-encoded isozyme contributes to the rigidity of the walls of germinating conidia, of the subapical region of hyphae, and of conidiophore vesicles, but is not necessary for normal morphology of these cells. The phenotypes of chsD and chsE disruptants indicate that the chitin synthesized by each isozyme serves a distinct function. The propensity of a chsD disruptant for osmotically induced lysis was compared to that of strains carrying two other mutations (tsE6 and orlA::trpC) which also result in reduced chitin content vegetative cell lysis. The concentration of osmotic stabilizer necessary to remedy the lysis of strains carrying the three mutations is inversely related to the chitin content of each strain. This finding directly demonstrates the importance of chitin to the integrity of the cell wall and indicates that agents that inhibit the chsD-encoded chitin synthase could be useful anti-Aspergillus drugs.
Nguyen, S; Beziat, V; Dhedin, N; Kuentz, M; Vernant, J P; Debre, P; Vieillard, V
2009-05-01
Natural killer (NK) cells generated after haploidentical hematopoietic SCT in patients with AML are characterized by specific phenotypic features and impaired functioning that may affect transplantation outcome. We show that IFN-gamma produced by immature CD56(bright) NK cells upregulates cell surface expression of HLA-E on AML blasts and that this upregulation protects leukemic cells from NK-mediated cell lysis through the mediation of CD94/NKG2A, an inhibitory receptor overexpressed on NK cells after haploidentical SCT. Two years after transplantation, however, maturing NK cells were functionally active, as evidenced by high cytotoxicity and poor IFN-gamma production. This implies that maturation of NK cells is the key to improved immune responses and transplantation outcome.
Tsuchida, Sachio; Murata, Syota; Miyabe, Akiko; Satoh, Mamoru; Takiwaki, Masaki; Matsushita, Kazuyuki; Nomura, Fumio
2018-05-01
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) is now a well-established method for identification of microorganisms from positive blood cultures. Pretreatments to effectively remove non-bacterial proteins are a prerequisite for successful identification, and a variety of protocols have been reported. Although commercially available kits, mainly the Sepsityper Kit, are increasingly used, the identification rates reported often are not satisfactory, particularly for Gram-positive isolates. We developed a new, in-house lysis-filtration protocol and prospectively evaluated its performance compared to the Sepsityper kit. The in-house protocol consists of three simple steps: lysis by ammonium chloride, aspiration with a syringe fitted with a 0.45-μm membrane, and centrifugation to collect microbes. The novel protocol requires only 20 min. Performance of the in-house protocol was evaluated using a total of 117 monomicrobial cases of positive blood culture. Medium from blood culture bottles was pretreated by the in-house protocol or the commercial kit, and isolated cells were subjected to direct identification by mass spectrometry fingerprinting in parallel with conventional subculturing for reference identification. The overall MALDI-TOF MS-based identification rates with score > 1.7 and > 2.0 obtained using the in-house protocol were 99.2% and 85.5%, respectively, whereas those obtained using the Sepsityper Kit were 85.4% and 61.5%, respectively. For Gram-positive cases, the in-house protocol yielded scores >1.7 and > 2.0 at 98.5% and 76.1%, respectively, whereas the commercial kit yielded these scores at 76.1% and 43.3%, respectively. Although these are preliminary results, these values suggest that this easy lysis-filtration protocol deserves assessment in a larger-scale test. Copyright © 2018 Elsevier B.V. All rights reserved.
Auernik, Kathryne S.; Kelly, Robert M.
2010-01-01
Hydrogen served as a competitive inorganic energy source, impacting the CuFeS2 bioleaching efficiency of the extremely thermoacidophilic archaeon Metallosphaera sedula. Open reading frames encoding key terminal oxidase and electron transport chain components were triggered by CuFeS2. Evidence of heterotrophic metabolism was noted after extended periods of bioleaching, presumably related to cell lysis. PMID:20190092
2006-11-01
6 well plate at the concentration of 2X105/ml, then exposed by SH130 (10 uM) with or without the pan-caspase inhibitor zVAD (2.5 uM) ( Biovision ...treated with SH- 130 and radiation. DU-145 cell were treated as described in Figure 7. Cells were lysed by the lysis buffer ( Biovision ) as indicated...Total extracted proteins were determined and normalized, and then reacted with fluorogenic substrates ( Biovision , DEVD-AFC and LEHD- AFC for Caspase
Barger, Anne M
2017-01-01
Cytology of bone is a useful diagnostic tool. Aspiration of lytic or proliferative lesions can assist with the diagnosis of inflammatory or neoplastic processes. Bacterial, fungal, and protozoal organisms can result in significant osteomyelitis, and these organisms can be identified on cytology. Neoplasms of bone including primary bone tumors such as osteosarcoma, chondrosarcoma, fibrosarcoma, synovial cell sarcoma, and histiocytic sarcoma and tumors of bone marrow including plasma cell neoplasia and lymphoma and metastatic neoplasia can result in significant bone lysis or proliferation and can be diagnosed effectively with cytology. Copyright © 2016 Elsevier Inc. All rights reserved.
Ultrasonic disintegration of biosolids for improved biodegradation.
Nickel, Klaus; Neis, Uwe
2007-04-01
Biological cell lysis is known to be the rate-limiting step of anaerobic biosolids degradation. Shear forces generated by low frequency ultrasound can be used to disintegrate bacterial cells in sewage sludge. Thus, the quantity of dissolved organic substrate is increased. Consequently, the degradation rate and the biodegradability of organic biosolids mass are improved. Fundamental pilot-studies showed a significantly accelerated biosolids degradation with less digested sludge being produced and increased biogas production being attained. A full-scale ultrasound reactor system was developed for continuous operation under real life conditions on sewage treatment plants (STP).
1997-10-01
containing 10% FCS. complete medium. Lysis buffer [0.5 ml; containing 5 m guanidine thiocyanate, 25 Okadaic acid, TPA, fumonisin B1, herbimycin A, and sodium...promote cell adhesion, were used instead of free peptides in the herbimycin, fumonisin BI, or TPA on proliferation, the reagents were current studies...stripes), or 25 nam fumonisin B1 (0i). The indicated peptides or proteins (4 gaM 407f or 450f, 50 nM TSP1, and 0.4 nam Fig. 8. Endothelial cell density
Response of Legionella pneumophila to beta-lactam antibiotics.
Weisholtz, S; Tomasz, A
1985-01-01
Legionella pneumophila Philadelphia strain 1 grown in vitro contained five penicillin-binding proteins that were accessible to the antibiotic in membrane preparations and in live cells as well. The bacterium had reasonably low MICs of several beta-lactam antibiotics and was susceptible to both the bactericidal and the lytic activity of these drugs. An unusual feature of the response of this bacterium to penicillin treatment was that cell lysis as determined by decrease in culture turbidity and release of intracellular macromolecules was not accompanied by degradation of the peptidoglycan. Images PMID:2409915
Manipulation of mammalian cells using a single-fiber optical microbeam
Mohanty, Samarendra K.; Mohanty, Khyati S.; Berns, Michael W.
2014-01-01
The short working distance of microscope objectives has severely restricted the application of optical micromanipulation techniques at larger depths. We show the first use of fiber-optic tweezers toward controlled guidance of neuronal growth cones and stretching of neurons. Further, by mode locking, the fiber-optic tweezers beam was converted to fiber-optic scissors, enabling dissection of neuronal processes and thus allowing study of the subsequent response of neurons to localized injury. At high average powers, lysis of a three-dimensionally trapped cell was accomplished. PMID:19021429
Paroxysmal cold haemoglobinuria in an adult with chicken pox.
Papalia, M A; Schwarer, A P
2000-05-01
Paroxysmal cold haemoglobinuria (PCH) is an autoimmune disorder characterized by intravascular haemolysis causing haemoglobinuria. It is due to a biphasic haemolysin known as the Donath-Landsteiner antibody, which binds specifically to the P antigen of red blood cells at low temperatures, leading to complement activation and red cell lysis at 37 degrees C. PCH is a rare disease which predominantly affects the paediatric population, occurring mostly during viral infections. We report on what is possibly the first case of PCH in an adult to be precipitated by chicken pox infection.
Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean
Mojica, Kristina D A; Huisman, Jef; Wilhelm, Steven W; Brussaard, Corina P D
2016-01-01
Viral lysis of phytoplankton constrains marine primary production, food web dynamics and biogeochemical cycles in the ocean. Yet, little is known about the biogeographical distribution of viral lysis rates across the global ocean. To address this, we investigated phytoplankton group-specific viral lysis rates along a latitudinal gradient within the North Atlantic Ocean. The data show large-scale distribution patterns of different virus groups across the North Atlantic that are associated with the biogeographical distributions of their potential microbial hosts. Average virus-mediated lysis rates of the picocyanobacteria Prochlorococcus and Synechococcus were lower than those of the picoeukaryotic and nanoeukaryotic phytoplankton (that is, 0.14 per day compared with 0.19 and 0.23 per day, respectively). Total phytoplankton mortality (virus plus grazer-mediated) was comparable to the gross growth rate, demonstrating high turnover rates of phytoplankton populations. Virus-induced mortality was an important loss process at low and mid latitudes, whereas phytoplankton mortality was dominated by microzooplankton grazing at higher latitudes (>56°N). This shift from a viral-lysis-dominated to a grazing-dominated phytoplankton community was associated with a decrease in temperature and salinity, and the decrease in viral lysis rates was also associated with increased vertical mixing at higher latitudes. Ocean-climate models predict that surface warming will lead to an expansion of the stratified and oligotrophic regions of the world's oceans. Our findings suggest that these future shifts in the regional climate of the ocean surface layer are likely to increase the contribution of viral lysis to phytoplankton mortality in the higher-latitude waters of the North Atlantic, which may potentially reduce transfer of matter and energy up the food chain and thus affect the capacity of the northern North Atlantic to act as a long-term sink for CO2. PMID:26262815
Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean.
Mojica, Kristina D A; Huisman, Jef; Wilhelm, Steven W; Brussaard, Corina P D
2016-02-01
Viral lysis of phytoplankton constrains marine primary production, food web dynamics and biogeochemical cycles in the ocean. Yet, little is known about the biogeographical distribution of viral lysis rates across the global ocean. To address this, we investigated phytoplankton group-specific viral lysis rates along a latitudinal gradient within the North Atlantic Ocean. The data show large-scale distribution patterns of different virus groups across the North Atlantic that are associated with the biogeographical distributions of their potential microbial hosts. Average virus-mediated lysis rates of the picocyanobacteria Prochlorococcus and Synechococcus were lower than those of the picoeukaryotic and nanoeukaryotic phytoplankton (that is, 0.14 per day compared with 0.19 and 0.23 per day, respectively). Total phytoplankton mortality (virus plus grazer-mediated) was comparable to the gross growth rate, demonstrating high turnover rates of phytoplankton populations. Virus-induced mortality was an important loss process at low and mid latitudes, whereas phytoplankton mortality was dominated by microzooplankton grazing at higher latitudes (>56°N). This shift from a viral-lysis-dominated to a grazing-dominated phytoplankton community was associated with a decrease in temperature and salinity, and the decrease in viral lysis rates was also associated with increased vertical mixing at higher latitudes. Ocean-climate models predict that surface warming will lead to an expansion of the stratified and oligotrophic regions of the world's oceans. Our findings suggest that these future shifts in the regional climate of the ocean surface layer are likely to increase the contribution of viral lysis to phytoplankton mortality in the higher-latitude waters of the North Atlantic, which may potentially reduce transfer of matter and energy up the food chain and thus affect the capacity of the northern North Atlantic to act as a long-term sink for CO2.
Clay, Corey D.; Soni, Shilpa; Gunn, John S.; Schlesinger, Larry S.
2009-01-01
The bacterium Francisella tularensis (Ft) is a potential weapon of bioterrorism when aerosolized. Macrophage infection is necessary for disease progression and efficient phagocytosis by human macrophages requires serum opsonization by complement. Microbial complement activation leads to surface deposition of a highly regulated protein complex resulting in opsonization or membrane lysis. The nature of complement component C3 deposition, i.e., C3b (opsonization and lysis) or C3bi (opsonization only) fragment deposition, is central to the outcome of activation. In this study, we examine the mechanisms of Ft resistance to complement-mediated lysis, C3 component deposition on the Ft surface, and complement activation. Upon incubation in fresh nonimmune human serum, Schu S4 (Ft subsp. tularensis), Fn (Ft subsp. novicida), and LVS (Ft subsp. holarctica live vaccine strain) were resistant to complement-mediated lysis, but LVSG and LVSR (LVS strains altered in surface carbohydrate structures) were susceptible. C3 deposition, however, occurred on all strains. Complement-susceptible strains had markedly increased C3 fragment deposition, including the persistent presence of C3b compared with C3bi, which indicates that C3b inactivation results in survival of complement-resistant strains. C1q, an essential component of the classical activation pathway, was necessary for lysis of complement-susceptible strains and optimal C3 deposition on all strains. Finally, use of Francisella LPS mutants confirmed O Ag as a major regulator of complement resistance. These data provide evidence that pathogenic Francisella activate complement, but are resistant to complement-mediated lysis in part due to limited C3 deposition, rapid conversion of surface-bound C3b to C3bi, and the presence of LPS O Ag. PMID:18832715
Nguyen, Huong Minh
2014-01-01
ABSTRACT Bacteriophage T7 terminator Tφ is a class I intrinsic terminator coding for an RNA hairpin structure immediately followed by oligo(U), which has been extensively studied in terms of its transcription termination mechanism, but little is known about its physiological or regulatory functions. In this study, using a T7 mutant phage, where a 31-bp segment of Tφ was deleted from the genome, we discovered that deletion of Tφ from T7 reduces the phage burst size but delays lysis timing, both of which are disadvantageous for the phage. The burst downsizing could directly result from Tφ deletion-caused upregulation of gene 17.5, coding for holin, among other Tφ downstream genes, because infection of gp17.5-overproducing Escherichia coli by wild-type T7 phage showed similar burst downsizing. However, the lysis delay was not associated with cellular levels of holin or lysozyme or with rates of phage adsorption. Instead, when allowed to evolve spontaneously in five independent adaptation experiments, the Tφ-lacking mutant phage, after 27 or 29 passages, recovered both burst size and lysis time reproducibly by deleting early genes 0.5, 0.6, and 0.7 of class I, among other mutations. Deletion of genes 0.5 to 0.7 from the Tφ-lacking mutant phage decreased expression of several Tφ downstream genes to levels similar to that of the wild-type phage. Accordingly, phage T7 lysis timing is associated with cellular levels of Tφ downstream gene products. This suggests the involvement of unknown factor(s) besides the known lysis proteins, lysozyme and holin, and that Tφ plays a role of optimizing burst size and lysis time during T7 infection. IMPORTANCE E. coli PMID:24335287
The Spheroplast Lysis Assay for Yeast in Microtiter Plate Format
Ovalle, Rafael; Spencer, Moyah; Thiwanont, Monthiwa; Lipke, Peter N.
1999-01-01
A yeast lysis assay in the microtiter plate format improved precision and throughput and led to an improved algorithm for estimating lag time. The assay reproducibly revealed differences of 10% or greater in the maximal lysis rate and 50% or greater in the lag time. Clonal differences were determined to be the major source of variation. Microtiter-based assays should be useful for screening for drug susceptibility and for analyzing mutant phenotypes. PMID:10427014
Isolation and purification of rabbit mesenchymal stem cells using an optimized protocol.
Lin, Chunbo; Shen, Maorong; Chen, Weiping; Li, Xiaofeng; Luo, Daoming; Cai, Jinhong; Yang, Yuan
2015-11-01
Mesenchymal stem cells were first isolated and grown in vitro by Friedenstein over 40 yr ago; however, their isolation remains challenging as they lack unique markers for identification and are present in very small quantities in mesenchymal tissues and bone marrow. Using whole marrow samples, common methods for mesenchymal stem cell isolation are the adhesion method and density gradient fractionation. The whole marrow sample adhesion method still results in the nonspecific isolation of mononuclear cells, and activation and/or potential loss of target cells. Density gradient fractionation methods are complicated, and may result in contamination with toxic substances that affect cell viability. In the present study, we developed an optimized protocol for the isolation and purification of mesenchymal stem cells based on the principles of hypotonic lysis and natural sedimentation.
Oncotripsy: Targeting cancer cells selectively via resonant harmonic excitation
NASA Astrophysics Data System (ADS)
Heyden, S.; Ortiz, M.
2016-07-01
We investigate a method of selectively targeting cancer cells by means of ultrasound harmonic excitation at their resonance frequency, which we refer to as oncotripsy. The geometric model of the cells takes into account the cytoplasm, nucleus and nucleolus, as well as the plasma membrane and nuclear envelope. Material properties are varied within a pathophysiologically-relevant range. A first modal analysis reveals the existence of a spectral gap between the natural frequencies and, most importantly, resonant growth rates of healthy and cancerous cells. The results of the modal analysis are verified by simulating the fully-nonlinear transient response of healthy and cancerous cells at resonance. The fully nonlinear analysis confirms that cancerous cells can be selectively taken to lysis by the application of carefully tuned ultrasound harmonic excitation while simultaneously leaving healthy cells intact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kato, Takayuki, E-mail: tkato@med.osaka-cu.ac.jp; Ikemoto, Masaru; Hato, Fumihiko
2009-04-10
Extracellular signal-regulated kinase and p38 have been shown to be cleaved in human neutrophils undergoing apoptosis induced by tumor necrosis factor-{alpha} and cycloheximide. However, the cleavage products of these molecules were undetected when apoptotic neutrophils were pretreated with phenylmethylsulfonyl fluoride or disrupted by nitrogen cavitation before preparation of cell lysates. The electron microscopy revealed that granules in apoptotic neutrophils were significantly swollen than those in control cells. These findings suggest that granule membrane may become destabilized during neutrophil apoptosis, leading to rapid proteolysis of these molecules by granule-derived serine proteases during preparation of cell lysates with the conventional lysis buffer.
Wolfe, Tobie D.; Somanathan Pillai, Smitha Pankajavally; Hildreth, Blake Eason; Lanigan, Lisa G.; Martin, Chelsea K.; Werbeck, Jillian L.
2014-01-01
Osteosarcoma (OSA) is an aggressive, highly metastatic and lytic primary bone neoplasm commonly affecting the appendicular skeleton of dogs and children. Current treatment options include amputation of the afflicted limb, limb-sparing procedures, or palliative radiation with or without adjunct chemotherapy. Therapies that inhibit bone resorption, such as the bisphosphonates, may be an effective palliative therapy by limiting the local progression of OSA in those patients that are not viable candidates for amputation. We have developed a mouse model of canine skeletal OSA following intratibial inoculation of OSCA40 cells that spontaneously metastasized to the lungs. We demonstrated that therapy with a nitrogen-containing bisphosphonate, zoledronic acid (Zol), reduced OSA-induced bone lysis; however, Zol monotherapy or in combination with amputation was not effective at inhibiting pulmonary metastasis. While not reaching statistical significance, amputation of the tumor-bearing limb reduced the average incidence of lung metastases; however, this effect was nullified when Zol was added to the treatment protocol. In untreated mice, the magnitude of proximal tibial lysis was significantly correlated with the incidence of metastasis. The data support amputation alone for the management of appendicular OSA rather than combining amputation with Zol. However, in patients that are not viable candidates for amputation, Zol may be a useful palliative therapy for OSA by reducing the magnitude of lysis and therefore bone pain, despite the risk of increased pulmonary metastasis. PMID:21374084
Umukoro, Solomon; Oluwole, Oluwafemi Gabriel; Eduviere, Anthony T; Adrian, Omogbiya Itievere; Ajayi, Abayomi M
2015-09-01
Jobelyn® (JB) is an African sorghum-based food supplement claimed to be efficacious for the treatment of rheumatoid arthritis (RA). Although in vitro studies confirmed its anti-inflammatory property, no study had shown the effect of JB using in vivo animal models of inflammation. Thus, its effects on acute and chronic inflammation in rats were evaluated in this study. Its effect on rat red blood cell (RBC) lysis was also assessed. Acute inflammation was induced with intraplanter injection of carrageenan and increase in rat paw volume was measured using plethysmometer. The volume of fluid exudates, number of leukocytes, concentrations of malondialdehyde (MDA), and glutathione (GSH) in the fluid were measured on day 5 after induction of chronic inflammation with carrageenan in the granuloma air pouch model. RBC lysis induced by hypotonic medium as determined by release of hemoglobin was measured spectrophotometerically. JB (50-200 mg/kg) given orally produced a significant inhibition of acute inflammation induced by carrageenan in rats. It reduced the volume and number of leukocytes in inflammatory fluid in the granuloma air pouch model of chronic inflammation. It further decreased the levels of MDA in the fluid suggesting antioxidant property. JB elevated the concentrations of GSH in inflammatory exudates indicating free radical scavenging activity. It also significantly inhibited RBC lysis caused by hypotonic medium, suggesting membrane-stabilizing property. JB has in vivo anti-inflammatory activity, which may be related to its antioxidant and membrane-stabilizing properties, supporting its use for the treatment of arthritic disorder.
Binks, Michael; Sriprakash, K. S.
2004-01-01
An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity. PMID:15213143
Binks, Michael; Sriprakash, K S
2004-07-01
An extracellular protein of Streptococcus pyogenes, streptococcal inhibitor of complement (SIC), and its variant, called DRS (distantly related to SIC), are expressed by some S. pyogenes strains. SIC from type 1 (M1) isolates of S. pyogenes interferes with complement-mediated cell lysis, reportedly via its interaction with complement proteins. In this study we demonstrate that S. pyogenes strains carrying emm12 and emm55 (the genes for the M12 and M55 proteins, respectively) express and secrete DRS. This protein, like SIC, binds to the C6 and C7 complement proteins, and competition enzyme-linked immunosorbent assay experiments demonstrate that DRS competes with SIC for C6 and C7 binding. Similarly, SIC competes with DRS for binding to the complement proteins. Despite this, the recombinant DRS preparation showed no significant effect on complement function, as determined by lysis of sensitized sheep erythrocytes. Furthermore, the presence of DRS is not inhibitory to SIC activity.
Effects of viruses and predators on prokaryotic community composition.
Jardillier, Ludwig; Bettarel, Yvan; Richardot, Mathilde; Bardot, Corinne; Amblard, Christian; Sime-Ngando, Télesphore; Debroas, Didier
2005-11-01
Dialysis bags were used to examine the impact of predation and viral lysis on prokaryotic community composition (PCC) over a 5-day experiment in the oligomesotrophic Lake Pavin (France). The impact of the different predator communities (protists and metazoans) of prokaryotes was estimated by water fractionation (<5 microm: treatment filtered on 5 microm, without ciliates and metazoans; UNF: unfiltered treatment with all planktonic communities). Enrichments of natural viruses (<1.2 microm: with a natural virus concentration; <1.2 mum V and VV: with enrichment leading to a double or triple concentration of viruses, respectively) were used to indirectly assess the control of virioplankton. Viral activity was estimated from the frequency of visibly infected cells (FVIC). PCC was determined by fluorescence in situ hybridization (FISH) and terminal restriction fragment length polymorphism (T-RFLP). In this study, PCC was affected by the eukaryote communities (especially flagellates), and viruses to a lesser extent. Cyanobacteria declined significantly during the experiment and were highly correlated with the FVIC. In addition, the 503-bp terminal restriction fragment (T-RF) disappeared in treatments with virus enrichments, suggesting possible viral-associated mortality processes, whereas the 506-bp T-RF was not affected in these treatments. On one hand, these results suggest a control of the PCC: first, by viral lysis of some dominant phylotypes and second, by interspecific competition between resistant strains for the uptake of substrates released by this lysis. The increase of Archaea may suggest that these cells benefit such resources. On the other hand, the disappearance and the stable proportion of some dominant phylotypes suggested a selection pressure due to the predatory activity on prokaryotes. In conclusion, prokaryotic abundance appears to be mainly controlled by flagellate protists, which also affected PCC, whereas viruses seemed to be essentially responsible for profound changes in PCC via direct and indirect actions.
Enzyme-Cleavable Polymeric Micelles for the Intracellular Delivery of Proapoptotic Peptides.
Kern, Hanna B; Srinivasan, Selvi; Convertine, Anthony J; Hockenbery, David; Press, Oliver W; Stayton, Patrick S
2017-05-01
Peptides derived from the third Bcl-2 homology domain (BH3) renormalize apoptotic signaling by antagonizing prosurvival Bcl-2 family members. These potential peptide drugs exhibit therapeutic activities but are limited by barriers including short circulation half-lives and poor penetration into cells. A diblock polymeric micelle carrier for the BIM BH3 peptide was recently described that demonstrated antitumor activity in a B-cell lymphoma xenograft model [Berguig et al., Mol. Ther. 2015, 23, 907-917]. However, the disulfide linkage used to conjugate the BIM peptide was shown to have nonoptimal blood stability. Here we describe a peptide macromonomer composed of BIM capped with a four amino acid cathepsin B substrate (FKFL) that possesses high blood stability and is cleaved to release the drug inside of target cells. Employing RAFT polymerization, the peptide macromonomer was directly integrated into a multifunctional diblock copolymer tailored for peptide delivery. The first polymer block was made as a macro-chain transfer agent (CTA) and composed of a pH-responsive endosomolytic formulation of N,N-diethylaminoethyl methacrylate (DEAEMA) and butyl methacrylate (BMA). The second polymer block was a copolymer of the peptide and polyethylene glycol methacrylate (PEGMA). PEGMA monomers of two sizes were investigated (300 Da and 950 Da). Protein gel analysis, high performance liquid chromatography, and coupled mass spectrometry (MS) showed that incubation with cathepsin B specifically cleaved the FKFL linker and released active BIM peptide with PEGMA 300 but not with PEGMA 950 . MALDI-TOF MS showed that incubation of the peptide monomers alone in human serum resulted in partial cleavage at the FKFL linker after 12 h. However, formulation of the peptides into polymers protected against serum-mediated peptide degradation. Dynamic light scattering (DLS) demonstrated pH-dependent micelle disassembly (25 nm polymer micelles at pH 7.4 versus 6 nm unimers at pH 6.6), and a red blood cell lysis assay showed a corresponding increase in membrane destabilizing activity (<1% lysis at pH 7.4 versus 95% lysis at pH 6.6). The full carrier-drug system successfully induced apoptosis in SKOV3 ovarian cancer cells in a dose-dependent manner, in comparison to a control polymer containing a scrambled BIM peptide sequence. Mechanistic analysis verified target-dependent activation of caspase 3/7 activity (8.1-fold increase), and positive annexin V staining (72% increase). The increased blood stability of this enzyme-cleavable peptide polymer design, together with the direct polymerization approach that eliminated postsynthetic conjugation steps, suggests that this new carrier design could provide important benefits for intracellular peptide drug delivery.
1989-01-01
The severe complications of dengue virus infections, hemorrhagic manifestation and shock, are much more commonly observed during secondary infections caused by a different serotype of dengue virus than that which caused the primary infections. It has been speculated, therefore, that dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) are caused by serotype crossreactive immunopathological mechanisms. We analyzed clones of dengue serotype crossreactive T lymphocytes derived from the PBMC of a donor who had been infected with dengue 3 virus. These PBMC responded best to dengue 3 antigen, but also responded to dengue 1, 2, and 4 antigens, in bulk culture proliferation assays. 12 dengue antigen-specific clones were established using a limiting dilution technique. All of the clones had CD3+ CD4+ CD8 phenotypes. Eight clones responded to dengue 1, 2, 3, and 4 antigens and are crossreactive, while four other clones responded predominantly to dengue 3 antigen. These results indicate that the serotype crossreactive dengue-specific T lymphocyte proliferation observed in bulk cultures reflects the crossreactive responses detected at the clonal level. Serotype crossreactive clones produced high titers of IFN- gamma after stimulation with dengue 3 antigens, and also produced IFN- gamma to lower levels after stimulation with dengue 1, 2, and 4 antigens. The crossreactive clones lysed autologous lymphoblastoid cell line (LCL) pulsed with dengue antigens, and the crossreactivity of CTL lysis by T cell clones was consistent with the crossreactivity observed in proliferation assays. Epidemiological studies have shown that secondary infections with dengue 2 virus cause DHF/DSS at a higher rate than the other serotypes. We hypothesized that the lysis of dengue virus-infected cells by CTL may lead to DHF/DSS; therefore, the clones were examined for cytotoxic activity against dengue 2 virus-infected LCL. All but one of the serotype crossreactive clones lysed dengue 2 virus-infected autologous LCL, and they did not lyse uninfected autologous LCL. The lysis of dengue antigen-pulsed or virus-infected LCL by the crossreactive CTL clones that we have examined is restricted by HLA DP or DQ antigens. These results indicate that primary dengue virus infections induce predominantly crossreactive memory CD4+ T lymphocytes. These crossreactive T lymphocytes proliferate and produce IFN-gamma after stimulation with a virus strain of another serotype, and demonstrate crossreactive cyotoxic activity against autologous cells infected with heterologous dengue viruses.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:2475573
Kaur, Gursharan; Sengupta, Sandeepan; Kumar, Vineet; Kumari, Aruna; Ghosh, Aditi; Parrack, Pradeep
2014-01-01
Manganese is a micronutrient required for activities of several important enzymes under conditions of oxidative stress and iron starvation. In Escherichia coli, the manganese homeostasis network primarily constitutes a manganese importer (MntH) and an exporter (MntP), which are regulated by the MntR dual regulator. In this study, we find that deletion of E. coli hflX, which encodes a ribosome-associated GTPase with unknown function, renders extreme manganese sensitivity characterized by arrested cell growth, filamentation, lower rate of replication, and DNA damage. We demonstrate that perturbation by manganese induces unprecedented influx of manganese in ΔhflX cells compared to that in the wild-type E. coli strain. Interestingly, our study indicates that the imbalance in manganese homeostasis in the ΔhflX strain is independent of the MntR regulon. Moreover, the influx of manganese leads to a simultaneous influx of zinc and inhibition of iron import in ΔhflX cells. In order to review a possible link of HflX with the λ phage life cycle, we performed a lysis-lysogeny assay to show that the Mn-perturbed ΔhflX strain reduces the frequency of lysogenization of the phage. This observation raises the possibility that the induced zinc influx in the manganese-perturbed ΔhflX strain stimulates the activity of the zinc-metalloprotease HflB, the key determinant of the lysis-lysogeny switch. Finally, we propose that manganese-mediated autophosphorylation of HflX plays a central role in manganese, zinc, and iron homeostasis in E. coli cells. PMID:24794564
The direct anti-MRSA effect of emodin via damaging cell membrane.
Liu, Ming; Peng, Wei; Qin, Rongxin; Yan, Zifei; Cen, Yanyan; Zheng, Xinchuan; Pan, Xichun; Jiang, Weiwei; Li, Bin; Li, Xiaoli; Zhou, Hong
2015-09-01
Methicillin-resistant Staphylococcus aureus (MRSA) has become an important bacterium for nosocomial infection. Only a few antibiotics can be effective against MRSA. Therefore, searching for new drugs against MRSA is important. Herein, anti-MRSA activities of emodin and its mechanisms were investigated. Firstly, in vitro antimicrobial activity was investigated by minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-growth curve, and multipassage resistance testing was performed. Secondly, protection of emodin on mice survival and blood bacterial load in mice challenged with lethal or sublethal dose of MRSA were investigated. Subsequently, the influences of emodin on the bacterial morphology, messenger RNA (mRNA) expressions related to cell wall synthesis and lysis, β-lactamase activity, drug accumulation, membrane fluidity, and integrity were performed to investigate its mechanisms. Lastly, in vitro cytotoxicity assay were performed using the 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) method. The results showed MICs and MBCs of emodin against MRSA252 and 36 clinical MRSA strains were among 2-8 and 4-32 μg/mL, respectively. There was no MIC increase for emodin during 20 passages. In vivo, emodin dose-dependently protected mice challenged with lethal dose of MRSA and decreased bacterial load in mice challenged with sublethal dose of MRSA. Morphology observation showed emodin might disrupt cell wall and membrane of MRSA. Although emodin had no influence on genes related to cell wall synthesis and lysis as well as β-lactamase activity and drug accumulation, emodin reduced membrane fluidity and disrupted membrane integrity. Based on the fact that emodin had no significant cytotoxicity against mammalian cells, it could be further investigated as a membrane-damage bactericide against MRSA in the future.
Diao, Jingyu; Bouwman, Catrien; Yan, Donghong; Kang, Jing; Katakam, Anand K.; Liu, Peter; Pantua, Homer; Abbas, Alexander R.; Nickerson, Nicholas N.; Austin, Cary; Reichelt, Mike; Sandoval, Wendy; Xu, Min
2017-01-01
ABSTRACT Murein lipoprotein (Lpp) and peptidoglycan-associated lipoprotein (Pal) are major outer membrane lipoproteins in Escherichia coli. Their roles in cell-envelope integrity have been documented in E. coli laboratory strains, and while Lpp has been linked to serum resistance in vitro, the underlying mechanism has not been established. Here, lpp and pal mutants of uropathogenic E. coli strain CFT073 showed reduced survival in a mouse bacteremia model, but only the lpp mutant was sensitive to serum killing in vitro. The peptidoglycan-bound Lpp form was specifically required for preventing complement-mediated bacterial lysis in vitro and complement-mediated clearance in vivo. Compared to the wild-type strain, the lpp mutant had impaired K2 capsular polysaccharide production and was unable to respond to exposure to serum by elevating capsular polysaccharide amounts. These properties correlated with altered cellular distribution of KpsD, the predicted outer membrane translocon for “group 2” capsular polysaccharides. We identified a novel Lpp-dependent association between functional KpsD and peptidoglycan, highlighting important interplay between cell envelope components required for resistance to complement-mediated lysis in uropathogenic E. coli isolates. PMID:28536290
Protein aggregation induced during glass bead lysis of yeast
Papanayotou, Irene; Sun, Beimeng; Roth, Amy F.; Davis, Nicholas G.
2013-01-01
Yeast cell lysates produced by mechanical glass bead disruption are widely used in a variety of applications, including for the analysis of native function, e.g. protein–protein interaction, enzyme assays and membrane fractionations. Below, we report a striking case of protein denaturation and aggregation that is induced by this lysis protocol. Most of this analysis focuses on the type 1 casein kinase Yck2, which normally tethers to the plasma membrane through C-terminal palmitoylation. Surprisingly, when cells are subjected to glass bead disruption, non-palmitoylated, cytosolic forms of the kinase denature and aggregate, while membrane-associated forms, whether attached through their native palmitoyl tethers or through a variety of artificial membrane-tethering sequences, are wholly protected from denaturation and aggregation. A wider look at the yeast proteome finds that, while the majority of proteins resist glass bead-induced aggregation, a significant subset does, in fact, succumb to such denaturation. Thus, yeast researchers should be aware of this potential artifact when embarking on biochemical analyses that employ glass bead lysates to look at native protein function. Finally, we demonstrate an experimental utility for glass bead-induced aggregation, using its fine discrimination of membrane-associated from non-associated Yck2 forms to discern fractional palmitoylation states of Yck2 mutants that are partially defective for palmitoylation. PMID:20641011
Liu, Bin; Qu, Fangshu; Chen, Wei; Liang, Heng; Wang, Tianyu; Cheng, Xiaoxiang; Yu, Huarong; Li, Guibai; Van der Bruggen, Bart
2017-11-15
In this study, the application of enhanced coagulation with persulfate/Fe(II), permanganate and ozone for Microcystis-laden water treatment was investigated. Two oxidant dosage strategies were compared in terms of the organic removal performance: a simultaneous dosing strategy (SiDS) and a successive dosing strategy (SuDS). To optimize the oxidant species, oxidant doses and oxidant dosage strategy, the zeta potential, floc size and dimension fraction, potassium release and organic removal efficiency during the coagulation of algae-laden water were systematically investigated and comprehensively discussed. Ozonation causes most severe cell lysis and reduces organic removal efficiency because it releases intracellular organics. Moreover, ozonation can cause the release of odor compounds such as 2-methylisoborneol (2-MIB) and geosmin (GSM). With increasing doses, the performance of pollutant removal by coagulation enhanced by persulfate/Fe(II) or permanganate did not noticeably improve, which suggests that a low dosage of persulfate/Fe(II) and permanganate is the optimal strategy to enhance coagulation of Microcystis-laden water. The SiDS performs better than the SuDS because more Microcystis cell lysis occurs and less DOC is removed when oxidants are added before the coagulants. Copyright © 2017 Elsevier Ltd. All rights reserved.
Barr, Jeremy J; Dutilh, Bas E; Skennerton, Connor T; Fukushima, Toshikazu; Hastie, Marcus L; Gorman, Jeffrey J; Tyson, Gene W; Bond, Philip L
2016-01-01
Biofilms are ubiquitous in nature, forming diverse adherent microbial communities that perform a plethora of functions. Here we operated two laboratory-scale sequencing batch reactors enriched with Candidatus Accumulibacter phosphatis (Accumulibacter) performing enhanced biological phosphorus removal. Reactors formed two distinct biofilms, one floccular biofilm, consisting of small, loose, microbial aggregates, and one granular biofilm, forming larger, dense, spherical aggregates. Using metagenomic and metaproteomic methods, we investigated the proteomic differences between these two biofilm communities, identifying a total of 2022 unique proteins. To understand biofilm differences, we compared protein abundances that were statistically enriched in both biofilm states. Floccular biofilms were enriched with pathogenic secretion systems suggesting a highly competitive microbial community. Comparatively, granular biofilms revealed a high-stress environment with evidence of nutrient starvation, phage predation pressure, and increased extracellular polymeric substance and cell lysis. Granular biofilms were enriched in outer membrane transport proteins to scavenge the extracellular milieu for amino acids and other metabolites, likely released through cell lysis, to supplement metabolic pathways. This study provides the first detailed proteomic comparison between Accumulibacter-enriched floccular and granular biofilm communities, proposes a conceptual model for the granule biofilm, and offers novel insights into granule biofilm formation and stability. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Effect of penicillin on fatty acid synthesis and excretion in Streptococcus mutans BHT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brissette, J.L.; Pieringer, R.A.
Treatment of exponentially growing cultures of Streptococcus mutans BHT with growth-inhibitory concentrations (0.2 microgram/ml) of benzylpenicillin stimulates the incorporation of (2-/sup 14/C) acetate into lipids excreted by the cells by as much as 69-fold, but does not change the amount of /sup 14/C incorporated into intracellular lipids. At this concentration of penicillin cellular lysis does not occur. The radioactive label is incorporated exclusively into the fatty acid moieties of the glycerolipids. During a 4-hr incubation in the presence of penicillin, the extracellular fatty acid ester concentration increases 1.5 fold, even though there is no growth or cellular lysis. An indicationmore » of the relative rate of fatty acid synthesis was most readily obtained by placing S. mutans BHT in a buffer containing /sup 14/C-acetate. Under these nongrowing conditions free fatty acids are the only lipids labeled, a factor which simplifies the assay. The addition of glycerol to the buffer causes all of the nonesterified fatty acids to be incorporated into glycerolipid. The cells excrete much of the lipid whether glycerol is present or not. Addition of penicillin to the nongrowth supporting buffer system does not stimulate the incorporation of (/sup 14/C)-acetate into fatty acids.« less
Alkahtani, Ahmed; Alkahtany, Sarah M; Anil, Sukumaran
2014-07-01
To evaluate and compare the cytotoxicity of various concentrations of sodium hypochlorite on immortalized human bone marrow mesenchymal stem cells (MSCs). The 5.25 percent sodium hypochlo-rite (NaOCl) at concentrations of 0.5, 0.1, 0.025, 0.0125, and 0.005 mg/ml were used to assess the cytotoxic effect on MSCs. Immortalized human bone marrow mesenchymal stem cells (hTERT-MSCs) were exposed to NaOCl at 5 different concentrations. Cell viability was assessed by 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and alamarBlue assays. The cell morphology changes were assessed with scanning electron microscopy (SEM) after exposure to 2, 4, and 24 hour incubation. The ethidium bromide/acridine orange (EB/ AO) fuorescent stain was applied to the cells in the 8-chamber slides after they were incubated with the testing agents for 2 and 4 hours to detect live and dead cells. The observations were quantitatively and qualitatively analyzed. The cell viability study using MTT assay and AB assay showed significant reduction with varying concentration at 2 and 4 hours incubation period. The cell viability decreased with the higher percentage of NaOCl. The exposure time also revealed an inverse relation to the cell viability. The SEM analysis showed reduction in the number of cells and morphological alterations with 0.5 mg/ml at 2 and 4 hours compared to 0.025 mg/ml NaOCl. Destruction of the cells with structural alterations and lysis was evident under fuorescence microscope when the cells were exposed to 0.5 mg/ml NaOCl. Within the limitations of this in vitro study it can be concluded that NaOCl is toxic to the human bone marrow MSCs. The cell lysis was evident with higher concentration of sodium hypochlorite. From the observations, it can be concluded that a lower concentration of NaOCl may be used as endodontic irrigant due to its cytotoxic properties. Further studies are mandatory to evolve a consensus on the optimal concentration of sodium hypochlorite to be used as endodontic irrigant.
Cell death versus cell survival instructed by supramolecular cohesion of nanostructures
NASA Astrophysics Data System (ADS)
Newcomb, Christina J.; Sur, Shantanu; Ortony, Julia H.; Lee, One-Sun; Matson, John B.; Boekhoven, Job; Yu, Jeong Min; Schatz, George C.; Stupp, Samuel I.
2014-02-01
Many naturally occurring peptides containing cationic and hydrophobic domains have evolved to interact with mammalian cell membranes and have been incorporated into materials for non-viral gene delivery, cancer therapy or treatment of microbial infections. Their electrostatic attraction to the negatively charged cell surface and hydrophobic interactions with the membrane lipids enable intracellular delivery or cell lysis. Although the effects of hydrophobicity and cationic charge of soluble molecules on the cell membrane are well known, the interactions between materials with these molecular features and cells remain poorly understood. Here we report that varying the cohesive forces within nanofibres of supramolecular materials with nearly identical cationic and hydrophobic structure instruct cell death or cell survival. Weak intermolecular bonds promote cell death through disruption of lipid membranes, while materials reinforced by hydrogen bonds support cell viability. These findings provide new strategies to design biomaterials that interact with the cell membrane.
Direct digestion of proteins in living cells into peptides for proteomic analysis.
Chen, Qi; Yan, Guoquan; Gao, Mingxia; Zhang, Xiangmin
2015-01-01
To analyze the proteome of an extremely low number of cells or even a single cell, we established a new method of digesting whole cells into mass-spectrometry-identifiable peptides in a single step within 2 h. Our sampling method greatly simplified the processes of cell lysis, protein extraction, protein purification, and overnight digestion, without compromising efficiency. We used our method to digest hundred-scale cells. As far as we know, there is no report of proteome analysis starting directly with as few as 100 cells. We identified an average of 109 proteins from 100 cells, and with three replicates, the number of proteins rose to 204. Good reproducibility was achieved, showing stability and reliability of the method. Gene Ontology analysis revealed that proteins in different cellular compartments were well represented.
Mediation of mouse natural cytotoxic activity by tumour necrosis factor
NASA Astrophysics Data System (ADS)
Ortaldo, John R.; Mason, Llewellyn H.; Mathieson, Bonnie J.; Liang, Shu-Mei; Flick, David A.; Herberman, Ronald B.
1986-06-01
Natural cell-mediated cytotoxic activity in the mouse has been associated with two types of effector cells, the natural killer (NK) cell and the natural cytotoxic (NC) cell, which seem to differ with regard to their patterns of target selectivity, cell surface characteristics and susceptibility to regulatory factors1. During studies on the mechanism of action of cytotoxic molecules, it became evident that WEHI-164, the prototype NC target cell, was highly susceptible to direct lysis by both human and mouse recombinant tumour necrosis factor (TNF). Here we show that NC, but not NK activity mediated by normal splenocytes, is abrogated by rabbit antibodies to recombinant and natural TNF, respectively. Thus, the cell-mediated activity defined as NC is due to release of TNF by normal spleen cells and does not represent a unique natural effector mechanism.
Boom, René; Sol, Cees; Beld, Marcel; Weel, Jan; Goudsmit, Jaap; Wertheim-van Dillen, Pauline
1999-01-01
DNA purified from clinical cerebrospinal fluid and urine specimens by a silica-guanidiniumthiocyanate procedure frequently contained an inhibitor(s) of DNA-processing enzymes which may have been introduced by the purification procedure itself. Inhibition could be relieved by the use of a novel lysis buffer containing alpha-casein. When the novel lysis buffer was used, alpha-casein was bound by the silica particles in the first step of the procedure and eluted together with DNA in the last step, after which it exerted its beneficial effects for DNA-processing enzymes. In the present study we have compared the novel lysis buffer with the previously described lysis buffer with respect to double-stranded DNA yield (which was nearly 100%) and the performance of DNA-processing enzymes. PMID:9986822
Tunable Single-Cell Extraction for Molecular Analyses.
Guillaume-Gentil, Orane; Grindberg, Rashel V; Kooger, Romain; Dorwling-Carter, Livie; Martinez, Vincent; Ossola, Dario; Pilhofer, Martin; Zambelli, Tomaso; Vorholt, Julia A
2016-07-14
Because of cellular heterogeneity, the analysis of endogenous molecules from single cells is of significant interest and has major implications. While micromanipulation or cell sorting followed by cell lysis is already used for subsequent molecular examinations, approaches to directly extract the content of living cells remain a challenging but promising alternative to achieving non-destructive sampling and cell-context preservation. Here, we demonstrate the quantitative extraction from single cells with spatiotemporal control using fluidic force microscopy. We further present a comprehensive analysis of the soluble molecules withdrawn from the cytoplasm or the nucleus, including the detection of enzyme activities and transcript abundances. This approach has uncovered the ability of cells to withstand extraction of up to several picoliters and opens opportunities to study cellular dynamics and cell-cell communication under physiological conditions at the single-cell level. Copyright © 2016 Elsevier Inc. All rights reserved.