Sample records for cell manipulation techniques

  1. Optical micromanipulation of active cells with minimal perturbations: direct and indirect pushing.

    PubMed

    Wang, Chenlu; Chowdhury, Sagar; Gupta, Satyandra K; Losert, Wolfgang

    2013-04-01

    The challenge to wide application of optical tweezers in biological micromanipulation is the photodamage caused by high-intensity laser exposure to the manipulated living systems. While direct exposure to infrared lasers is less likely to kill cells, it can affect cell behavior and signaling. Pushing cells with optically trapped objects has been introduced as a less invasive alternative, but the technique includes some exposure of the biological object to parts of the optical tweezer beam. To keep the cells farther away from the laser, we introduce an indirect pushing-based technique for noninvasive manipulation of sensitive cells. We compare how cells respond to three manipulation approaches: direct manipulation, pushing, and indirect pushing. We find that indirect manipulation techniques lessen the impact of manipulation on cell behavior. Cell survival increases, as does the ability of cells to maintain shape and wiggle. Our experiments also demonstrate that indirect pushing allows cell-cell contacts to be formed in a controllable way, while retaining the ability of cells to change shape and move.

  2. Cell manipulation in microfluidics.

    PubMed

    Yun, Hoyoung; Kim, Kisoo; Lee, Won Gu

    2013-06-01

    Recent advances in the lab-on-a-chip field in association with nano/microfluidics have been made for new applications and functionalities to the fields of molecular biology, genetic analysis and proteomics, enabling the expansion of the cell biology field. Specifically, microfluidics has provided promising tools for enhancing cell biological research, since it has the ability to precisely control the cellular environment, to easily mimic heterogeneous cellular environment by multiplexing, and to analyze sub-cellular information by high-contents screening assays at the single-cell level. Various cell manipulation techniques in microfluidics have been developed in accordance with specific objectives and applications. In this review, we examine the latest achievements of cell manipulation techniques in microfluidics by categorizing externally applied forces for manipulation: (i) optical, (ii) magnetic, (iii) electrical, (iv) mechanical and (v) other manipulations. We furthermore focus on history where the manipulation techniques originate and also discuss future perspectives with key examples where available.

  3. MEMS-based platforms for mechanical manipulation and characterization of cells

    NASA Astrophysics Data System (ADS)

    Pan, Peng; Wang, Wenhui; Ru, Changhai; Sun, Yu; Liu, Xinyu

    2017-12-01

    Mechanical manipulation and characterization of single cells are important experimental techniques in biological and medical research. Because of the microscale sizes and highly fragile structures of cells, conventional cell manipulation and characterization techniques are not accurate and/or efficient enough or even cannot meet the more and more demanding needs in different types of cell-based studies. To this end, novel microelectromechanical systems (MEMS)-based technologies have been developed to improve the accuracy, efficiency, and consistency of various cell manipulation and characterization tasks, and enable new types of cell research. This article summarizes existing MEMS-based platforms developed for cell mechanical manipulation and characterization, highlights their specific design considerations making them suitable for their designated tasks, and discuss their advantages and limitations. In closing, an outlook into future trends is also provided.

  4. Cell Signaling Experiments Driven by Optical Manipulation

    PubMed Central

    Difato, Francesco; Pinato, Giulietta; Cojoc, Dan

    2013-01-01

    Cell signaling involves complex transduction mechanisms in which information released by nearby cells or extracellular cues are transmitted to the cell, regulating fundamental cellular activities. Understanding such mechanisms requires cell stimulation with precise control of low numbers of active molecules at high spatial and temporal resolution under physiological conditions. Optical manipulation techniques, such as optical tweezing, mechanical stress probing or nano-ablation, allow handling of probes and sub-cellular elements with nanometric and millisecond resolution. PicoNewton forces, such as those involved in cell motility or intracellular activity, can be measured with femtoNewton sensitivity while controlling the biochemical environment. Recent technical achievements in optical manipulation have new potentials, such as exploring the actions of individual molecules within living cells. Here, we review the progress in optical manipulation techniques for single-cell experiments, with a focus on force probing, cell mechanical stimulation and the local delivery of active molecules using optically manipulated micro-vectors and laser dissection. PMID:23698758

  5. Vision-guided micromanipulation system for biomedical application

    NASA Astrophysics Data System (ADS)

    Shim, Jae-Hong; Cho, Sung-Yong; Cha, Dong-Hyuk

    2004-10-01

    In these days, various researches for biomedical application of robots have been carried out. Particularly, robotic manipulation of the biological cells has been studied by many researchers. Usually, most of the biological cell's shape is sphere. Commercial biological manipulation systems have been utilized the 2-Dimensional images through the optical microscopes only. Moreover, manipulation of the biological cells mainly depends on the subjective viewpoint of an operator. Due to these reasons, there exist lots of problems such as slippery and destruction of the cell membrane and damage of the pipette tip etc. In order to overcome the problems, we have proposed a vision-guided biological cell manipulation system. The newly proposed manipulation system makes use of vision and graphic techniques. Through the proposed procedures, an operator can inject the biological cell scientifically and objectively. Also, the proposed manipulation system can measure the contact force occurred at injection of a biological cell. It can be transmitted a measured force to the operator by the proposed haptic device. Consequently, the proposed manipulation system could safely handle the biological cells without any damage. This paper presents the introduction of our vision-guided manipulation techniques and the concept of the contact force sensing. Through a series of experiments the proposed vision-guided manipulation system shows the possibility of application for precision manipulation of the biological cell such as DNA.

  6. Directed Assembly of Cells with Magnetic Nanowires

    NASA Astrophysics Data System (ADS)

    Tanase, M.; Hultgren, A.; Chen, C. S.; Reich, D. H.

    2003-03-01

    We demonstrate the use of magnetic nanowires for assembly and manipulation of mammalian cells. Currently, superparamagnetic beads are used for manipulations of cells, but large field strengths and gradients are required for these to be effective. Unlike the beads, the large remnant magnetization of the nanowires offers the prospect of a variety of low-field manipulation techniques. Ferromagnetic nanowires suspended in fluids can be easily manipulated and assembled using small magnetic field [1]. The wires can be bound to cells, and the dipolar interaction between the nanowires can be used to create self-assembled cell chains. Microfabricated arrays of Py magnets were used to trap single cells or chains of cells bound to Ni nanowires. Possible applications of these techniques include controlled initiation of cell cultures, as well as isolation of individual cells. This work was supported by DARPA/AFOSR Grant No. F49620-02-1-0307 and by the David and Lucile Packard Foundation Grant No. 2001-17715. [1] M. Tanase et.al., Nanoletters 1, 155 (2001), J. Appl. Phys. 91, 8549 (2002).

  7. Autofocusing and Polar Body Detection in Automated Cell Manipulation.

    PubMed

    Wang, Zenan; Feng, Chen; Ang, Wei Tech; Tan, Steven Yih Min; Latt, Win Tun

    2017-05-01

    Autofocusing and feature detection are two essential processes for performing automated biological cell manipulation tasks. In this paper, we have introduced a technique capable of focusing on a holding pipette and a mammalian cell under a bright-field microscope automatically, and a technique that can detect and track the presence and orientation of the polar body of an oocyte that is rotated at the tip of a micropipette. Both algorithms were evaluated by using mouse oocytes. Experimental results show that both algorithms achieve very high success rates: 100% and 96%. As robust and accurate image processing methods, they can be widely applied to perform various automated biological cell manipulations.

  8. Numerical Simulations of the Digital Microfluidic Manipulation of Single Microparticles.

    PubMed

    Lan, Chuanjin; Pal, Souvik; Li, Zhen; Ma, Yanbao

    2015-09-08

    Single-cell analysis techniques have been developed as a valuable bioanalytical tool for elucidating cellular heterogeneity at genomic, proteomic, and cellular levels. Cell manipulation is an indispensable process for single-cell analysis. Digital microfluidics (DMF) is an important platform for conducting cell manipulation and single-cell analysis in a high-throughput fashion. However, the manipulation of single cells in DMF has not been quantitatively studied so far. In this article, we investigate the interaction of a single microparticle with a liquid droplet on a flat substrate using numerical simulations. The droplet is driven by capillary force generated from the wettability gradient of the substrate. Considering the Brownian motion of microparticles, we utilize many-body dissipative particle dynamics (MDPD), an off-lattice mesoscopic simulation technique, in this numerical study. The manipulation processes (including pickup, transport, and drop-off) of a single microparticle with a liquid droplet are simulated. Parametric studies are conducted to investigate the effects on the manipulation processes from the droplet size, wettability gradient, wetting properties of the microparticle, and particle-substrate friction coefficients. The numerical results show that the pickup, transport, and drop-off processes can be precisely controlled by these parameters. On the basis of the numerical results, a trap-free delivery of a hydrophobic microparticle to a destination on the substrate is demonstrated in the numerical simulations. The numerical results not only provide a fundamental understanding of interactions among the microparticle, the droplet, and the substrate but also demonstrate a new technique for the trap-free immobilization of single hydrophobic microparticles in the DMF design. Finally, our numerical method also provides a powerful design and optimization tool for the manipulation of microparticles in DMF systems.

  9. Optical trapping for analytical biotechnology.

    PubMed

    Ashok, Praveen C; Dholakia, Kishan

    2012-02-01

    We describe the exciting advances of using optical trapping in the field of analytical biotechnology. This technique has opened up opportunities to manipulate biological particles at the single cell or even at subcellular levels which has allowed an insight into the physical and chemical mechanisms of many biological processes. The ability of this technique to manipulate microparticles and measure pico-Newton forces has found several applications such as understanding the dynamics of biological macromolecules, cell-cell interactions and the micro-rheology of both cells and fluids. Furthermore we may probe and analyse the biological world when combining trapping with analytical techniques such as Raman spectroscopy and imaging. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Digital Microfluidics for Manipulation and Analysis of a Single Cell.

    PubMed

    He, Jie-Long; Chen, An-Te; Lee, Jyong-Huei; Fan, Shih-Kang

    2015-09-15

    The basic structural and functional unit of a living organism is a single cell. To understand the variability and to improve the biomedical requirement of a single cell, its analysis has become a key technique in biological and biomedical research. With a physical boundary of microchannels and microstructures, single cells are efficiently captured and analyzed, whereas electric forces sort and position single cells. Various microfluidic techniques have been exploited to manipulate single cells through hydrodynamic and electric forces. Digital microfluidics (DMF), the manipulation of individual droplets holding minute reagents and cells of interest by electric forces, has received more attention recently. Because of ease of fabrication, compactness and prospective automation, DMF has become a powerful approach for biological application. We review recent developments of various microfluidic chips for analysis of a single cell and for efficient genetic screening. In addition, perspectives to develop analysis of single cells based on DMF and emerging functionality with high throughput are discussed.

  11. Digital Microfluidics for Manipulation and Analysis of a Single Cell

    PubMed Central

    He, Jie-Long; Chen, An-Te; Lee, Jyong-Huei; Fan, Shih-Kang

    2015-01-01

    The basic structural and functional unit of a living organism is a single cell. To understand the variability and to improve the biomedical requirement of a single cell, its analysis has become a key technique in biological and biomedical research. With a physical boundary of microchannels and microstructures, single cells are efficiently captured and analyzed, whereas electric forces sort and position single cells. Various microfluidic techniques have been exploited to manipulate single cells through hydrodynamic and electric forces. Digital microfluidics (DMF), the manipulation of individual droplets holding minute reagents and cells of interest by electric forces, has received more attention recently. Because of ease of fabrication, compactness and prospective automation, DMF has become a powerful approach for biological application. We review recent developments of various microfluidic chips for analysis of a single cell and for efficient genetic screening. In addition, perspectives to develop analysis of single cells based on DMF and emerging functionality with high throughput are discussed. PMID:26389890

  12. On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.

    PubMed

    Ding, Xiaoyun; Lin, Sz-Chin Steven; Kiraly, Brian; Yue, Hongjun; Li, Sixing; Chiang, I-Kao; Shi, Jinjie; Benkovic, Stephen J; Huang, Tony Jun

    2012-07-10

    Techniques that can dexterously manipulate single particles, cells, and organisms are invaluable for many applications in biology, chemistry, engineering, and physics. Here, we demonstrate standing surface acoustic wave based "acoustic tweezers" that can trap and manipulate single microparticles, cells, and entire organisms (i.e., Caenorhabditis elegans) in a single-layer microfluidic chip. Our acoustic tweezers utilize the wide resonance band of chirped interdigital transducers to achieve real-time control of a standing surface acoustic wave field, which enables flexible manipulation of most known microparticles. The power density required by our acoustic device is significantly lower than its optical counterparts (10,000,000 times less than optical tweezers and 100 times less than optoelectronic tweezers), which renders the technique more biocompatible and amenable to miniaturization. Cell-viability tests were conducted to verify the tweezers' compatibility with biological objects. With its advantages in biocompatibility, miniaturization, and versatility, the acoustic tweezers presented here will become a powerful tool for many disciplines of science and engineering.

  13. Rapid and efficient genetic engineering of both wild type and axenic strains of Dictyostelium discoideum

    PubMed Central

    Knecht, David A.; Silale, Augustinas; Traynor, David; Williams, Thomas D.; Thomason, Peter A.; Insall, Robert H.; Chubb, Jonathan R.; Kay, Robert R.; Veltman, Douwe M.

    2018-01-01

    Dictyostelium has a mature technology for molecular-genetic manipulation based around transfection using several different selectable markers, marker re-cycling, homologous recombination and insertional mutagenesis, all supported by a well-annotated genome. However this technology is optimized for mutant, axenic cells that, unlike non-axenic wild type, can grow in liquid medium. There is a pressing need for methods to manipulate wild type cells and ones with defects in macropinocytosis, neither of which can grow in liquid media. Here we present a panel of molecular genetic techniques based on the selection of Dictyostelium transfectants by growth on bacteria rather than liquid media. As well as extending the range of strains that can be manipulated, these techniques are faster than conventional methods, often giving usable numbers of transfected cells within a few days. The methods and plasmids described here allow efficient transfection with extrachromosomal vectors, as well as chromosomal integration at a ‘safe haven’ for relatively uniform cell-to-cell expression, efficient gene knock-in and knock-out and an inducible expression system. We have thus created a complete new system for the genetic manipulation of Dictyostelium cells that no longer requires cell feeding on liquid media. PMID:29847546

  14. Multifunctional picoliter droplet manipulation platform and its application in single cell analysis.

    PubMed

    Gu, Shu-Qing; Zhang, Yun-Xia; Zhu, Ying; Du, Wen-Bin; Yao, Bo; Fang, Qun

    2011-10-01

    We developed an automated and multifunctional microfluidic platform based on DropLab to perform flexible generation and complex manipulations of picoliter-scale droplets. Multiple manipulations including precise droplet generation, sequential reagent merging, and multistep solid-phase extraction for picoliter-scale droplets could be achieved in the present platform. The system precision in generating picoliter-scale droplets was significantly improved by minimizing the thermo-induced fluctuation of flow rate. A novel droplet fusion technique based on the difference of droplet interfacial tensions was developed without the need of special microchannel networks or external devices. It enabled sequential addition of reagents to droplets on demand for multistep reactions. We also developed an effective picoliter-scale droplet splitting technique with magnetic actuation. The difficulty in phase separation of magnetic beads from picoliter-scale droplets due to the high interfacial tension was overcome using ferromagnetic particles to carry the magnetic beads to pass through the phase interface. With this technique, multistep solid-phase extraction was achieved among picoliter-scale droplets. The present platform had the ability to perform complex multistep manipulations to picoliter-scale droplets, which is particularly required for single cell analysis. Its utility and potentials in single cell analysis were preliminarily demonstrated in achieving high-efficiency single-cell encapsulation, enzyme activity assay at the single cell level, and especially, single cell DNA purification based on solid-phase extraction.

  15. Optothermal Manipulations of Colloidal Particles and Living Cells.

    PubMed

    Lin, Linhan; Hill, Eric H; Peng, Xiaolei; Zheng, Yuebing

    2018-05-25

    Optical manipulation techniques are important in many fields. For instance, they enable bottom-up assembly of nanomaterials and high-resolution and in situ analysis of biological cells and molecules, providing opportunities for discovery of new materials, medical diagnostics, and nanomedicines. Traditional optical tweezers have their applications limited due to the use of rigorous optics and high optical power. New strategies have been established for low-power optical manipulation techniques. Optothermal manipulation, which exploits photon-phonon conversion and matter migration under a light-controlled temperature gradient, is one such emerging technique. Elucidation of the underlying physics of optothermo-matter interaction and rational engineering of optical environments are required to realize diverse optothermal manipulation functionalities. This Account covers the working principles, design concepts, and applications of a series of newly developed optothermal manipulation techniques, including bubble-pen lithography, opto-thermophoretic tweezers, opto-thermoelectric tweezers, optothermal assembly, and opto-thermoelectric printing. In bubble-pen lithography, optical heating of a plasmonic substrate generates microbubbles at the solid-liquid interface to print diverse colloidal particles on the substrates. Programmable bubble printing of semiconductor quantum dots on different substrates and haptic control of printing have also been achieved. The key to optothermal tweezers is the ability to deliver colloidal particles from cold to hot regions of a temperature gradient or a negative Soret effect. We explore different driving forces for the two types of optothermal tweezers. Opto-thermophoretic tweezers rely on an abnormal permittivity gradient built by structured solvent molecules in the electric double layer of colloidal particles and living cells in response to heat-induced entropy, and opto-thermoelectric tweezers exploit a thermophoresis-induced thermoelectric field for the low-power manipulation of small nanoparticles with minimum diameter around 20 nm. Furthermore, by incorporating depletion attraction into the optothermal tweezers system as particle-particle or particle-substrate binding force, we have achieved bottom-up assembly and reconfigurable optical printing of artificial colloidal matter. Beyond optothermal manipulation techniques in liquid environments, we also review recent progress of gas-phase optothermal manipulation based on photophoresis. Photophoretic trapping and transport of light-absorbing materials have been achieved through optical engineering to tune particle-molecule interactions during optical heating, and a novel optical trap display has been demonstrated. An improved understanding of the colloidal response to temperature gradients will surely facilitate further innovations in optothermal manipulation. With their low-power operation, simple optics, and diverse functionalities, optothermal manipulation techniques will find a wide range of applications in life sciences, colloidal science, materials science, and nanoscience, as well as in the developments of colloidal functional devices and nanomedicine.

  16. Characterization of the cellular response triggered by gold nanoparticle-mediated laser manipulation

    NASA Astrophysics Data System (ADS)

    Kalies, Stefan; Keil, Sebastian; Sender, Sina; Hammer, Susanne C.; Antonopoulos, Georgios C.; Schomaker, Markus; Ripken, Tammo; Escobar, Hugo Murua; Meyer, Heiko; Heinemann, Dag

    2015-11-01

    Laser-based transfection techniques have proven high applicability in several cell biologic applications. The delivery of different molecules using these techniques has been extensively investigated. In particular, new high-throughput approaches such as gold nanoparticle-mediated laser transfection allow efficient delivery of antisense molecules or proteins into cells preserving high cell viabilities. However, the cellular response to the perforation procedure is not well understood. We herein analyzed the perforation kinetics of single cells during resonant gold nanoparticle-mediated laser manipulation with an 850-ps laser system at a wavelength of 532 nm. Inflow velocity of propidium iodide into manipulated cells reached a maximum within a few seconds. Experiments based on the inflow of FM4-64 indicated that the membrane remains permeable for a few minutes for small molecules. To further characterize the cellular response postmanipulation, we analyzed levels of oxidative heat or general stress. Although we observed an increased formation of reactive oxygen species by an increase of dichlorofluorescein fluorescence, heat shock protein 70 was not upregulated in laser-treated cells. Additionally, no evidence of stress granule formation was visible by immunofluorescence staining. The data provided in this study help to identify the cellular reactions to gold nanoparticle-mediated laser manipulation.

  17. Myogenic Maturation by Optical-Training in Cultured Skeletal Muscle Cells.

    PubMed

    Asano, Toshifumi; Ishizuka, Toru; Yawo, Hiromu

    2017-01-01

    Optogenetic techniques are powerful tools for manipulating biological processes in identified cells using light under high temporal and spatial resolutions. Here, we describe an optogenetic training strategy to promote morphological maturation and functional development of skeletal muscle cells in vitro. Optical stimulation with a rhythmical frequency facilitates specific structural alignment of sarcomeric proteins. Optical stimulation also depolarizes the membrane potential, and induces contractile responses in synchrony with the given pattern of light pulses. These results suggest that optogenetic techniques can be employed to manipulate activity-dependent processes during myogenic development and control contraction of photosensitive skeletal muscle cells with high temporal and special precision.

  18. A brief review of extrusion-based tissue scaffold bio-printing.

    PubMed

    Ning, Liqun; Chen, Xiongbiao

    2017-08-01

    Extrusion-based bio-printing has great potential as a technique for manipulating biomaterials and living cells to create three-dimensional (3D) scaffolds for damaged tissue repair and function restoration. Over the last two decades, advances in both engineering techniques and life sciences have evolved extrusion-based bio-printing from a simple technique to one able to create diverse tissue scaffolds from a wide range of biomaterials and cell types. However, the complexities associated with synthesis of materials for bio-printing and manipulation of multiple materials and cells in bio-printing pose many challenges for scaffold fabrication. This paper presents an overview of extrusion-based bio-printing for scaffold fabrication, focusing on the prior-printing considerations (such as scaffold design and materials/cell synthesis), working principles, comparison to other techniques, and to-date achievements. This paper also briefly reviews the recent development of strategies with regard to hydrogel synthesis, multi-materials/cells manipulation, and process-induced cell damage in extrusion-based bio-printing. The key issue and challenges for extrusion-based bio-printing are also identified and discussed along with recommendations for future, aimed at developing novel biomaterials and bio-printing systems, creating patterned vascular networks within scaffolds, and preserving the cell viability and functions in scaffold bio-printing. The address of these challenges will significantly enhance the capability of extrusion-based bio-printing. Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Detection and manipulation of phosphoinositides.

    PubMed

    Idevall-Hagren, Olof; De Camilli, Pietro

    2015-06-01

    Phosphoinositides (PIs) are minor components of cell membranes, but play key roles in cell function. Recent refinements in techniques for their detection, together with imaging methods to study their distribution and changes, have greatly facilitated the study of these lipids. Such methods have been complemented by the parallel development of techniques for the acute manipulation of their levels, which in turn allow bypassing the long-term adaptive changes implicit in genetic perturbations. Collectively, these advancements have helped elucidate the role of PIs in physiology and the impact of the dysfunction of their metabolism in disease. Combining methods for detection and manipulation enables the identification of specific roles played by each of the PIs and may eventually lead to the complete deconstruction of the PI signaling network. Here, we review current techniques used for the study and manipulation of cellular PIs and also discuss advantages and disadvantages associated with the various methods. This article is part of a Special Issue entitled Phosphoinositides. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Detection and manipulation of phosphoinositides☆

    PubMed Central

    Idevall-Hagren, Olof; Camilli, Pietro De

    2016-01-01

    Phosphoinositides (PIs) are minor components of cell membranes, but play key roles in cell function. Recent refinements in techniques for their detection, together with imaging methods to study their distribution and changes, have greatly facilitated the study of these lipids. Such methods have been complemented by the parallel development of techniques for the acute manipulation of their levels, which in turn allow bypassing the long-term adaptive changes implicit in genetic perturbations. Collectively, these advancements have helped elucidate the role of PIs in physiology and the impact of the dysfunction of their metabolism in disease. Combining methods for detection and manipulation enables the identification of specific roles played by each of the PIs and may eventually lead to the complete deconstruction of the PI signaling network. Here, we review current techniques used for the study and manipulation of cellular PIs and also discuss advantages and disadvantages associated with the various methods. This article is part of a Special Issue entitled Phosphoinositides. PMID:25514766

  1. Chemistry and Biology in Femtoliter and Picoliter Volume Droplets

    PubMed Central

    Chiu, Daniel T.; Lorenz, Robert M.

    2009-01-01

    Conspectus The basic unit of any biological system is the cell, and malfunctions at the single-cell level can result in devastating diseases; in cancer metastasis, for example, a single cell seeds the formation of a distant tumor. Although tiny, a cell is a highly heterogeneous and compartmentalized structure: proteins, lipids, RNA, and small-molecule metabolites constantly traffic among intracellular organelles. Gaining detailed information about the spatiotemporal distribution of these biomolecules is crucial to our understanding of cellular function and dysfunction. To access this information, we need sensitive tools that are capable of extracting comprehensive biochemical information from single cells and subcellular organelles. In this Account, we outline our approach and highlight our progress towards mapping the spatiotemporal organization of information flow in single cells. Our technique is centered on the use of femtoliter- and picoliter-sized droplets as nanolabs for manipulating single cells and subcellular compartments. We have developed a single-cell nanosurgical technique for isolating select subcellular structures from live cells, a capability that is needed for the high-resolution manipulation and chemical analysis of single cells. Our microfluidic approaches for generating single femtoliter-sized droplets on demand include both pressure and electric field methods; we have also explored a design for the on-demand generation of multiple aqueous droplets to increase throughput. Droplet formation is only the first step in a sequence that requires manipulation, fusion, transport, and analysis. Optical approaches provide the most convenient and precise control over the formed droplets with our technology platform; we describe aqueous droplet manipulation with optical vortex traps, which enable the remarkable ability to dynamically “tune” the concentration of the contents. Integration of thermoelectric manipulations with these techniques affords further control. The amount of chemical information that can be gleaned from single cells and organelles is critically dependent on the methods available for analyzing droplet contents. We describe three techniques we have developed: (i) droplet encapsulation, rapid cell lysis, and fluorescence-based single-cell assays, (ii) physical sizing of the subcellular organelles and nanoparticles in droplets, and (iii) capillary electrophoresis (CE) analysis of droplet contents. For biological studies, we are working to integrate the different components of our technology into a robust, automated device; we are also addressing an anticipated need for higher throughput. With progress in these areas, we hope to cement our technique as a new tool for studying single cells and organelles with unprecedented molecular detail. PMID:19260732

  2. Cellular and multicellular form and function.

    PubMed

    Liu, Wendy F; Chen, Christopher S

    2007-11-10

    Engineering artificial tissue constructs requires the appropriate spatial arrangement of cells within scaffolds. The introduction of microengineering tools to the biological community has provided a valuable set of techniques to manipulate the cellular environment, and to examine how cell structure affects cellular function. Using micropatterning techniques, investigators have found that the geometric presentation of cell-matrix adhesions are important regulators of various cell behaviors including cell growth, proliferation, differentiation, polarity and migration. Furthermore, the presence of neighboring cells in multicellular aggregates has a significant impact on the proliferative and differentiated state of cells. Using microengineering tools, it will now be possible to manipulate the various environmental factors for practical applications such as engineering tissue constructs with greater control over the physical structure and spatial arrangement of cells within their surrounding microenvironment.

  3. Acoustic devices for particle and cell manipulation and sensing.

    PubMed

    Qiu, Yongqiang; Wang, Han; Demore, Christine E M; Hughes, David A; Glynne-Jones, Peter; Gebhardt, Sylvia; Bolhovitins, Aleksandrs; Poltarjonoks, Romans; Weijer, Kees; Schönecker, Andreas; Hill, Martyn; Cochran, Sandy

    2014-08-13

    An emerging demand for the precise manipulation of cells and particles for applications in cell biology and analytical chemistry has driven rapid development of ultrasonic manipulation technology. Compared to the other manipulation technologies, such as magnetic tweezing, dielectrophoresis and optical tweezing, ultrasonic manipulation has shown potential in a variety of applications, with its advantages of versatile, inexpensive and easy integration into microfluidic systems, maintenance of cell viability, and generation of sufficient forces to handle particles, cells and their agglomerates. This article briefly reviews current practice and reports our development of various ultrasonic standing wave manipulation devices, including simple devices integrated with high frequency (>20 MHz) ultrasonic transducers for the investigation of biological cells and complex ultrasonic transducer array systems to explore the feasibility of electronically controlled 2-D and 3-D manipulation. Piezoelectric and passive materials, fabrication techniques, characterization methods and possible applications are discussed. The behavior and performance of the devices have been investigated and predicted with computer simulations, and verified experimentally. Issues met during development are highlighted and discussed. To assist long term practical adoption, approaches to low-cost, wafer level batch-production and commercialization potential are also addressed.

  4. Acoustic Devices for Particle and Cell Manipulation and Sensing

    PubMed Central

    Qiu, Yongqiang; Wang, Han; Demore, Christine E. M.; Hughes, David A.; Glynne-Jones, Peter; Gebhardt, Sylvia; Bolhovitins, Aleksandrs; Poltarjonoks, Romans; Weijer, Kees; Schönecker, Andreas; Hill, Martyn; Cochran, Sandy

    2014-01-01

    An emerging demand for the precise manipulation of cells and particles for applications in cell biology and analytical chemistry has driven rapid development of ultrasonic manipulation technology. Compared to the other manipulation technologies, such as magnetic tweezing, dielectrophoresis and optical tweezing, ultrasonic manipulation has shown potential in a variety of applications, with its advantages of versatile, inexpensive and easy integration into microfluidic systems, maintenance of cell viability, and generation of sufficient forces to handle particles, cells and their agglomerates. This article briefly reviews current practice and reports our development of various ultrasonic standing wave manipulation devices, including simple devices integrated with high frequency (>20 MHz) ultrasonic transducers for the investigation of biological cells and complex ultrasonic transducer array systems to explore the feasibility of electronically controlled 2-D and 3-D manipulation. Piezoelectric and passive materials, fabrication techniques, characterization methods and possible applications are discussed. The behavior and performance of the devices have been investigated and predicted with computer simulations, and verified experimentally. Issues met during development are highlighted and discussed. To assist long term practical adoption, approaches to low-cost, wafer level batch-production and commercialization potential are also addressed. PMID:25123465

  5. Effect of Cell Sheet Manipulation Techniques on the Expression of Collagen Type II and Stress Fiber Formation in Human Chondrocyte Sheets.

    PubMed

    Wongin, Sopita; Waikakul, Saranatra; Chotiyarnwong, Pojchong; Siriwatwechakul, Wanwipa; Viravaidya-Pasuwat, Kwanchanok

    2018-03-01

    Cell sheet technology is applied to human articular chondrocytes to construct a tissue-like structure as an alternative treatment for cartilage defect. The effect of a gelatin manipulator, as a cell sheet transfer system, on the quality of the chondrocyte sheets was investigated. The changes of important chondrogenic markers and stress fibers, resulting from the cell sheet manipulation, were also studied. The chondrocyte cell sheets were constructed with patient-derived chondrocytes using a temperature-responsive polymer and a gelatin manipulator as a transfer carrier. The properties of the cell sheets, including sizes, expression levels of collagen type II and I, and the localization of the stress fibers, were assessed and compared with those of the cell sheets harvested without the gelatin manipulator. Using the gelatin manipulator, the original size of the chondrocyte cell sheets was retained with abundant stress fibers, but with a decrease in the expression of collagen type II. Without the gelatin manipulator, although the cell shrinkage occurred, the cell sheet with suppressed stress fiber formation showed significantly higher levels of collagen type II. These results support our observations that stress fiber formation in chondrocyte cell sheets affected the production of chondrogenic markers. These densely packed tissue-like structures possessed a good chondrogenic activity, indicating their potential for use in autologous chondrocyte implantation to treat cartilage defects.

  6. Thin-film-transistor array: an exploratory attempt for high throughput cell manipulation using electrowetting principle

    NASA Astrophysics Data System (ADS)

    Shaik, F. Azam; Cathcart, G.; Ihida, S.; Lereau-Bernier, M.; Leclerc, E.; Sakai, Y.; Toshiyoshi, H.; Tixier-Mita, A.

    2017-05-01

    In lab-on-a-chip (LoC) devices, microfluidic displacement of liquids is a key component. electrowetting on dielectric (EWOD) is a technique to move fluids, with the advantage of not requiring channels, pumps or valves. Fluids are discretized into droplets on microelectrodes and moved by applying an electric field via the electrodes to manipulate the contact angle. Micro-objects, such as biological cells, can be transported inside of these droplets. However, the design of conventional microelectrodes, made by standard micro-fabrication techniques, fixes the path of the droplets, and limits the reconfigurability of paths and thus limits the parallel processing of droplets. In that respect, thin film transistor (TFT) technology presents a great opportunity as it allows infinitely reconfigurable paths, with high parallelizability. We propose here to investigate the possibility of using TFT array devices for high throughput cell manipulation using EWOD. A COMSOL based 2D simulation coupled with a MATLAB algorithm was used to simulate the contact angle modulation, displacement and mixing of droplets. These simulations were confirmed by experimental results. The EWOD technique was applied to a droplet of culture medium containing HepG2 carcinoma cells and demonstrated no negative effects on the viability of the cells. This confirms the possibility of applying EWOD techniques to cellular applications, such as parallel cell analysis.

  7. Recent developments in microfluidics for cell studies.

    PubMed

    Xiong, Bin; Ren, Kangning; Shu, Yiwei; Chen, Yin; Shen, Bo; Wu, Hongkai

    2014-08-20

    As a technique for precisely manipulating fluid at the micrometer scale, the field of microfluidics has experienced an explosive growth over the past two decades, particularly owing to the advances in device design and fabrication. With the inherent advantages associated with its scale of operation, and its flexibility in being incorporated with other microscale techniques for manipulation and detection, microfluidics has become a major enabling technology, which has introduced new paradigms in various fields involving biological cells. A microfluidic device is able to realize functions that are not easily imaginable in conventional biological analysis, such as highly parallel, sophisticated high-throughput analysis, single-cell analysis in a well-defined manner, and tissue engineering with the capability of manipulation at the single-cell level. Major advancements in microfluidic device fabrication and the growing trend of implementing microfluidics in cell studies are presented, with a focus on biological research and clinical diagnostics. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Raman sorting and identification of single living micro-organisms with optical tweezers

    NASA Astrophysics Data System (ADS)

    Xie, Changan; Chen, De; Li, Yong-Qing

    2005-07-01

    We report on a novel technique for sorting and identification of single biological cells and food-borne bacteria based on laser tweezers and Raman spectroscopy (LTRS). With this technique, biological cells of different physiological states in a sample chamber were identified by their Raman spectral signatures and then they were selectively manipulated into a clean collection chamber with optical tweezers through a microchannel. As an example, we sorted the live and dead yeast cells into the collection chamber and validated this with a standard staining technique. We also demonstrated that bacteria existing in spoiled foods could be discriminated from a variety of food particles based on their characteristic Raman spectra and then isolated with laser manipulation. This label-free LTRS sorting technique may find broad applications in microbiology and rapid examination of food-borne diseases.

  9. Avian Biotechnology.

    PubMed

    Nakamura, Yoshiaki

    2017-01-01

    Primordial germ cells (PGCs) generate new individuals through differentiation, maturation and fertilization. This means that the manipulation of PGCs is directly linked to the manipulation of individuals, making PGCs attractive target cells in the animal biotechnology field. A unique biological property of avian PGCs is that they circulate temporarily in the vasculature during early development, and this allows us to access and manipulate avian germ lines. Following the development of a technique for transplantation, PGCs have become central to avian biotechnology, in contrast to the use of embryo manipulation and subsequent transfer to foster mothers, as in mammalian biotechnology. Today, avian PGC transplantation combined with recent advanced manipulation techniques, including cell purification, cryopreservation, depletion, and long-term culture in vitro, have enabled the establishment of genetically modified poultry lines and ex-situ conservation of poultry genetic resources. This chapter introduces the principles, history, and procedures of producing avian germline chimeras by transplantation of PGCs, and the current status of avian germline modification as well as germplasm cryopreservation. Other fundamental avian reproductive technologies are described, including artificial insemination and embryo culture, and perspectives of industrial applications in agriculture and pharmacy are considered, including poultry productivity improvement, egg modification, disease resistance impairment and poultry gene "pharming" as well as gene banking.

  10. Cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1997-12-16

    Bacteria which produce large amounts of cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  11. Nanobiotechnology for the capture and manipulation of circulating tumor cells.

    PubMed

    Hughes, Andrew D; King, Michael R

    2012-01-01

    A necessary step in metastasis is the dissemination of malignant cells into the bloodstream, where cancer cells travel throughout the body as circulating tumor cells (CTC) in search of an opportunity to seed a secondary tumor. CTC represent a valuable diagnostic tool: evidence indicates that the quantity of CTC in the blood has been shown to relate to the severity of the illness, and samples are readily obtained through routine blood draws. As such, there has been a push toward developing technologies to reliably detect CTC using a variety of molecular and immunocytochemical techniques. In addition to their use in diagnostics, CTC detection systems that isolate CTC in such a way that the cells remain viable will allow for the performance of live-cell assays to facilitate the development of personalized cancer therapies. Moreover, techniques for the direct manipulation of CTC in circulation have been developed, intending to block metastasis in situ. We review a number of current and emerging micro- and nanobiotechnology approaches for the detection, capture, and manipulation of rare CTC aimed at advancing cancer treatment. Copyright © 2011 Wiley Periodicals, Inc.

  12. Laser nanosurgery and manipulation in living cells

    NASA Astrophysics Data System (ADS)

    Sacconi, Leonardo; Tolic-Norrelykke, Iva M.; Antolini, Renzo; Pavone, Francesco S.

    2005-03-01

    We present a combination of nonlinear microscopy, laser nanosurgery and optical trapping applied to the 3D imaging and manipulation of intracellular structures in live cells. We use Titanium-sapphire laser pulses for a combined nonlinear microscopy and nanosurgery on microtubules tagged with green fluorescent protein (GFP) in fission yeast. The same laser source is also used to trap small round lipid droplets naturally present in the cell. The trapped droplets are used as handles to exert a pushing force on the nucleus, allowing for a displacement of the nucleus away from its normal position in the center of the cell. We show that nonlinear nanosurgery and optical manipulation can be performed with sub-micrometer precision and without visible collateral damage to the cell. We present this combination as an important tool in cell biology for the manipulation of specific structures in alternative to genetic methods or chemical agents. This technique can be applied to several fundamental problems in cell biology, including the study of dynamics processes in cell division.

  13. High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip

    PubMed Central

    Li, Shunbo; Li, Ming; Bougot-Robin, Kristelle; Cao, Wenbin; Yeung Yeung Chau, Irene; Li, Weihua; Wen, Weijia

    2013-01-01

    Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis. PMID:24404011

  14. High-throughput particle manipulation by hydrodynamic, electrokinetic, and dielectrophoretic effects in an integrated microfluidic chip.

    PubMed

    Li, Shunbo; Li, Ming; Bougot-Robin, Kristelle; Cao, Wenbin; Yeung Yeung Chau, Irene; Li, Weihua; Wen, Weijia

    2013-01-01

    Integrating different steps on a chip for cell manipulations and sample preparation is of foremost importance to fully take advantage of microfluidic possibilities, and therefore make tests faster, cheaper and more accurate. We demonstrated particle manipulation in an integrated microfluidic device by applying hydrodynamic, electroosmotic (EO), electrophoretic (EP), and dielectrophoretic (DEP) forces. The process involves generation of fluid flow by pressure difference, particle trapping by DEP force, and particle redirect by EO and EP forces. Both DC and AC signals were applied, taking advantages of DC EP, EO and AC DEP for on-chip particle manipulation. Since different types of particles respond differently to these signals, variations of DC and AC signals are capable to handle complex and highly variable colloidal and biological samples. The proposed technique can operate in a high-throughput manner with thirteen independent channels in radial directions for enrichment and separation in microfluidic chip. We evaluated our approach by collecting Polystyrene particles, yeast cells, and E. coli bacteria, which respond differently to electric field gradient. Live and dead yeast cells were separated successfully, validating the capability of our device to separate highly similar cells. Our results showed that this technique could achieve fast pre-concentration of colloidal particles and cells and separation of cells depending on their vitality. Hydrodynamic, DC electrophoretic and DC electroosmotic forces were used together instead of syringe pump to achieve sufficient fluid flow and particle mobility for particle trapping and sorting. By eliminating bulky mechanical pumps, this new technique has wide applications for in situ detection and analysis.

  15. Poultry genetic resource conservation using primordial germ cells

    PubMed Central

    NAKAMURA, Yoshiaki

    2016-01-01

    The majority of poultry genetic resources are maintained in situ in living populations. However, in situ conservation of poultry genetic resources always carries the risk of loss owing to pathogen outbreaks, genetic problems, breeding cessation, or natural disasters. Cryobanking of germplasm in birds has been limited to the use of semen, preventing conservation of the W chromosome and mitochondrial DNA. A further challenge is posed by the structure of avian eggs, which restricts the cryopreservation of ova and fertilized embryos, a technique widely used for mammalian species. By using a unique biological property and accessibility of avian primordial germ cells (PGCs), precursor cells for gametes, which temporally circulate in the vasculature during early development, an avian PGC transplantation technique has been established. To date, several techniques for PGC manipulation including purification, cryopreservation, depletion, and long-term culture have been developed in chickens. PGC transplantation combined with recent advanced PGC manipulation techniques have enabled ex situ conservation of poultry genetic resources in their complete form. Here, the updated technologies for avian PGC manipulation are introduced, and then the concept of a poultry PGC-bank is proposed by considering the biological properties of avian PGCs. PMID:27210834

  16. Rotational manipulation of single cells and organisms using acoustic waves

    PubMed Central

    Ahmed, Daniel; Ozcelik, Adem; Bojanala, Nagagireesh; Nama, Nitesh; Upadhyay, Awani; Chen, Yuchao; Hanna-Rose, Wendy; Huang, Tony Jun

    2016-01-01

    The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation. PMID:27004764

  17. Rotational manipulation of single cells and organisms using acoustic waves.

    PubMed

    Ahmed, Daniel; Ozcelik, Adem; Bojanala, Nagagireesh; Nama, Nitesh; Upadhyay, Awani; Chen, Yuchao; Hanna-Rose, Wendy; Huang, Tony Jun

    2016-03-23

    The precise rotational manipulation of single cells or organisms is invaluable to many applications in biology, chemistry, physics and medicine. In this article, we describe an acoustic-based, on-chip manipulation method that can rotate single microparticles, cells and organisms. To achieve this, we trapped microbubbles within predefined sidewall microcavities inside a microchannel. In an acoustic field, trapped microbubbles were driven into oscillatory motion generating steady microvortices which were utilized to precisely rotate colloids, cells and entire organisms (that is, C. elegans). We have tested the capabilities of our method by analysing reproductive system pathologies and nervous system morphology in C. elegans. Using our device, we revealed the underlying abnormal cell fusion causing defective vulval morphology in mutant worms. Our acoustofluidic rotational manipulation (ARM) technique is an easy-to-use, compact, and biocompatible method, permitting rotation regardless of optical, magnetic or electrical properties of the sample under investigation.

  18. Ferromagnetic nanowires: Field-induced self-assembly, magnetotransport and biological applications

    NASA Astrophysics Data System (ADS)

    Tanase, Monica

    In this dissertation, a series of experiments on magnetic nanowires are described. Magnetic nanowires suspended in fluid solutions can be assembled and ordered by taking advantage of their large shape anisotropy. Magnetic manipulation and assembly techniques were developed, using electrodeposited Ni nanowires. Preorienting nanowires in a small magnetic field induced their self-assembly in continuous chains. A new technique of magnetic trapping allowed capture of single nanowires from fluid suspension on lithographically fabricated micromagnets. As described herein, the presence of an external magnetic field plays a fundamental role in all fluid assembly methods used. The dynamics of both chaining and trapping processes is described quantitatively in terms of the interplay of magnetic forces and fluid drag at low Reynolds number. Lithographic methods for addressing single nanowires for transport characterization were developed. Magnetotransport measurements were performed on individual straight and bent PtNiPt nanowires. The Pt end segments provided an oxide-free interface to the magnetic central segment. In straight nanowires, domain reversal was observed to occur via curling mode initiated in a small nucleation volume. Magnetotransport in bent nanowires allowed the investigation of a domain wall trapped at the bend. Magnetic trapping of nanowires on pre-fabricated electrodes was adapted as a successful alternative contacting technique to lithography. The self-assembly and manipulation techniques were adapted for manipulation of cells as nanowires were found to bind to cells through nonspecific adhesion mechanisms. Ni nanowires were found to outperform superparamagnetic beads in magnetic cell separations. Additionally, the large remnant magnetization of the nanowires allowed for low-field manipulation techniques. Self-assembled chains of cells were formed and single cells were localized on substrates patterned with micromagnets. A fluid flow method was developed to controllably introduce the cells in the proximity of arrays of micromagnets. Cells decorated the arrays forming patterns described well by dipolar interactions between the magnetic elements and the nanowires. Calculations of the locations favorable for trapping were performed by evaluating the energy of interaction between the array and the nanowires. A second-order mechanism of cell capture was also identified, i.e. chaining by wire-wire dipolar interaction.

  19. Practical cell labeling with magnetite cationic liposomes for cell manipulation.

    PubMed

    Ito, Hiroshi; Nonogaki, Yurika; Kato, Ryuji; Honda, Hiroyuki

    2010-07-01

    Personalization of the cell culture process for cell therapy is an ideal strategy to obtain maximum treatment effects. In a previous report, we proposed a strategy using a magnetic manipulation device that combined a palm-top size device and a cell-labeling method using magnetite cationic liposomes (MCLs) to enable feasible personalized cell processing. In the present study, we focused on optimizing the MCL-labeling technique with respect to cell manipulation in small devices. From detailed analysis with different cell types, 4 pg/cell of MCL-label was found to be obtained immediately after mixing with MCLs, which was sufficient for magnetic cell manipulation. The amount of label increased within 24 h depending on cell type, although in all cases it decreased along with cell doubling, indicating that the labeling potential of MCLs was limited. The role of free MCLs not involved in labeling was also investigated; MCLs' role was found to be a supportive one that maximized the manipulation performance up to 100%. We also determined optimum conditions to manipulate adherent cells by MCL labeling using the MCL dispersed in trypsin solution. Considering labeling feasibility and practical performance with 10(3)-10(5) cells for personalized cell processing, we determined that 10 microg/ml of label without incubation time (0 h incubation) was the universal MCL-labeling condition. We propose the optimum specifications for a device to be combined with this method. 2010. Published by Elsevier B.V.

  20. Microfluidics for Single-Cell Genetic Analysis

    PubMed Central

    Thompson, A. M.; Paguirigan, A. L.; Kreutz, J. E.; Radich, J. P.; Chiu, D. T.

    2014-01-01

    The ability to correlate single-cell genetic information to cellular phenotypes will provide the kind of detailed insight into human physiology and disease pathways that is not possible to infer from bulk cell analysis. Microfluidic technologies are attractive for single-cell manipulation due to precise handling and low risk of contamination. Additionally, microfluidic single-cell techniques can allow for high-throughput and detailed genetic analyses that increase accuracy and decreases reagent cost compared to bulk techniques. Incorporating these microfluidic platforms into research and clinical laboratory workflows can fill an unmet need in biology, delivering the highly accurate, highly informative data necessary to develop new therapies and monitor patient outcomes. In this perspective, we describe the current and potential future uses of microfluidics at all stages of single-cell genetic analysis, including cell enrichment and capture, single-cell compartmentalization and manipulation, and detection and analyses. PMID:24789374

  1. Detection, manipulation and post processing of circulating tumor cells using optical techniques

    NASA Astrophysics Data System (ADS)

    Bakhtiaridoost, Somayyeh; Habibiyan, Hamidreza; Ghafoorifard, Hassan

    2015-12-01

    Circulating tumor cells (CTCs) are malignant cells that are derived from a solid tumor in the metastasis stage and are shed into the blood stream. These cells hold great promise to be used as liquid biopsy that is less aggressive than traditional biopsy. Recently, detection and enumeration of these cells has received ever-increasing attention from researchers as a way of early detection of cancer metastasis, determining the effectiveness of treatment and studying the mechanism of formation of secondary tumors. CTCs are found in blood at low concentration, which is a major limitation of isolation and detection of these cells. Over the last few years, multifarious research studies have been conducted on accurate isolation and detection and post processing of CTCs. Among all the proposed systems, microfluidic systems seem to be more attractive for researchers due to their numerous advantages. On the other hand, recent developments in optical methods have made the possibility of cellular studies at single-cell level. Thus, accuracy and efficiency of separation, detection and manipulation of CTCs can be improved using optical techniques. In this review, we describe optical methods that have been used for CTC detection, manipulation and post processing.

  2. Method of producing a cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of cellulose-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  3. Detergent composition comprising a cellulase containing cell-free fermentate produced from microorganism ATCC 55702 or mutant thereof

    DOEpatents

    Dees, H. Craig

    1998-01-01

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  4. Cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1997-12-16

    Bacteria which produce large amounts of cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  5. Method of producing a cellulase-containing cell-free fermentate produced from microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1998-05-26

    Bacteria which produce large amounts of cellulose-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  6. Cellular Cultivation: Growing HeLa Cells Using Standard High School Laboratory Equipment.

    ERIC Educational Resources Information Center

    Woloschak, Gayle; And Others

    1995-01-01

    Describes experiments to culture cells in a laboratory that provide students with hands-on experience in manipulating cells and a chance to observe cell growth characteristics first hand. Exposes students to sterile technique, cell culture, cell growth concepts, and eukaryotic cell structure. (JRH)

  7. High accuracy indirect optical manipulation of live cells with functionalized microtools

    NASA Astrophysics Data System (ADS)

    Vizsnyiczai, Gaszton; Aekbote, Badri L.; Buzás, András.; Grexa, István.; Ormos, Pál.; Kelemen, Lóránd

    2016-09-01

    Optical micro manipulation of live cells has been extensively used to study a wide range of cellular phenomena with relevance in basic research or in diagnostics. The approaches span from manipulation of many cells for high throughput measurement or sorting, to more elaborated studies of intracellular events on trapped single cells when coupled with modern imaging techniques. In case of direct cell trapping the damaging effects of light-cell interaction must be minimized, for instance with the choice of proper laser wavelength. Microbeads have already been used for trapping cells indirectly thereby reducing the irradiation damage and increasing trapping efficiency with their high refractive index contrast. We show here that such intermediate objects can be tailor-made for indirect cell trapping to further increase cell-to-focal spot distance while maintaining their free and fast maneuverability. Carefully designed structures were produced with two-photon polymerization with shapes optimized for effective manipulation and cell attachment. Functionalization of the microstructures is also presented that enables cell attachment to them within a few seconds with strength much higher that the optical forces. Fast cell actuation in 6 degrees of freedom is demonstrated with the outlook to possible applications in cell imaging.

  8. The Age of Enlightenment: Evolving Opportunities in Brain Research Through Optical Manipulation of Neuronal Activity

    PubMed Central

    Jerome, Jason; Heck, Detlef H.

    2011-01-01

    Optical manipulation of neuronal activity has rapidly developed into the most powerful and widely used approach to study mechanisms related to neuronal connectivity over a range of scales. Since the early use of single site uncaging to map network connectivity, rapid technological development of light modulation techniques has added important new options, such as fast scanning photostimulation, massively parallel control of light stimuli, holographic uncaging, and two-photon stimulation techniques. Exciting new developments in optogenetics complement neurotransmitter uncaging techniques by providing cell-type specificity and in vivo usability, providing optical access to the neural substrates of behavior. Here we review the rapid evolution of methods for the optical manipulation of neuronal activity, emphasizing crucial recent developments. PMID:22275886

  9. The age of enlightenment: evolving opportunities in brain research through optical manipulation of neuronal activity.

    PubMed

    Jerome, Jason; Heck, Detlef H

    2011-01-01

    Optical manipulation of neuronal activity has rapidly developed into the most powerful and widely used approach to study mechanisms related to neuronal connectivity over a range of scales. Since the early use of single site uncaging to map network connectivity, rapid technological development of light modulation techniques has added important new options, such as fast scanning photostimulation, massively parallel control of light stimuli, holographic uncaging, and two-photon stimulation techniques. Exciting new developments in optogenetics complement neurotransmitter uncaging techniques by providing cell-type specificity and in vivo usability, providing optical access to the neural substrates of behavior. Here we review the rapid evolution of methods for the optical manipulation of neuronal activity, emphasizing crucial recent developments.

  10. Detergent composition comprising a cellulase containing cell-free fermentate produced from microorganism ATCC 55702 or mutant thereof

    DOEpatents

    Dees, H.C.

    1998-07-14

    Bacteria which produce large amounts of a cellulase-containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualities for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  11. Cell Membrane Deformation Induced by a Fibronectin-Coated Polystyrene Microbead in a 200-MHz Acoustic Trap

    PubMed Central

    Hwang, Jae Youn; Lee, Changyang; Lam, Kwok Ho; Kim, Hyung Ham; Lee, Jungwoo; Shung, K. Kirk

    2014-01-01

    The measurement of cell mechanics is crucial for a better understanding of cellular responses during the progression of certain diseases and for the identification of the cell’s nature. Many techniques using optical tweezers, atomic force microscopy, and micro-pipettes have been developed to probe and manipulate cells in the spatial domain. In particular, we recently proposed a two-dimensional acoustic trapping method as an alternative technique for small particle manipulation. Although the proposed method may have advantages over optical tweezers, its applications to cellular mechanics have not yet been vigorously investigated. This study represents an initial attempt to use acoustic tweezers as a tool in the field of cellular mechanics in which cancer cell membrane deformability is studied. A press-focused 193-MHz single-element lithium niobate (LiNbO3) transducer was designed and fabricated to trap a 5-µm polystyrene microbead near the ultrasound beam focus. The microbeads were coated with fibronectin, and trapped before being attached to the surface of a human breast cancer cell (MCF-7). The cell membrane was then stretched by remotely pulling a cell-attached microbead with the acoustic trap. The maximum cell membrane stretched lengths were measured to be 0.15, 0.54, and 1.41 µm at input voltages to the transducer of 6.3, 9.5, and 12.6 Vpp, respectively. The stretched length was found to increase nonlinearly as a function of the voltage input. No significant cytotoxicity was observed to result from the bead or the trapping force on the cell during or after the deformation procedure. Hence, the results convincingly demonstrated the possible application of the acoustic trapping technique as a tool for cell manipulation. PMID:24569245

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vasdekis, Andreas E.; Stephanopoulos, Gregory

    The sampling and manipulation of cells down to the individual has been of substantial interest since the very beginning of Life Sciences. Herein, our objective is to highlight the most recent developments in single cell manipulation, as well as pioneering ones. First, flow-through methods will be discussed, namely methods in which the single cells flow continuously in an ordered manner during their analysis. This section will be followed by confinement techniques that enable cell isolation and confinement in one, two- or three-dimensions. Flow cytometry and droplet microfluidics are the two most common methods of flow-through analysis. While both are high-throughputmore » techniques, their difference lays in the fact that the droplet encapsulated cells experience a restricted and personal microenvironment, while in flow cytometry cells experience similar nutrient and stimuli initial concentrations. These methods are rather well established; however, they recently enabled immense strides in single cell phenotypic analysis, namely the identification and analysis of metabolically distinct individuals from an isogenic population using both droplet microfluidics and flow cytometry.« less

  13. Photothermal gold nanoparticle mediated stimulation of cardiomyocyte beating (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kalies, Stefan; Gentemann, Lara; Coffee, Michelle; Zweigerdt, Robert; Heinemann, Dag; Heisterkamp, Alexander

    2017-03-01

    Photothermal manipulation of cells via heating of gold nanoparticles has proven to be an efficient tool for molecular delivery into cells via cell perforation with short laser pulses. We investigated a potential extension of this technique for cell stimulation of cardiomyocytes using a 532 nm and 850 ps laser system and a surface concentration of 0.5 μg/cm2 of 200 nm gold nanoparticles. The gold nanoparticles were unspecifically attached to the cardiomyocytes after an incubation period of three hours. The laser irradiation leads to a temperature rise directly at the particles of several hundred degrees K which evokes bubble formation and membrane perforation. We examined the effect of laser based photothermal manipulation at different laser powers, with different calcium concentrations, and for a cardiomyocyte-like cell line (HL1 cells), neonatal rat cardiomyocytes and human embryonic stem cell (hESC)-derived cardiomyocytes. Fast calcium oscillations in HL1 cells were observed in the presence and absence of extracellular calcium and most pronounced in the area next to the laser spot after irradiation. Within the laser spot, in particular high laser powers led to a single rise in calcium over a time period of several seconds. These results were confirmed in stem cell-derived cardiomyocytes. In the presence of normal and high calcium concentrations, the spontaneous contraction frequency increased after laser irradiation in neonatal rat cardiomyocytes. Consequently, gold nanoparticle mediated photothermal cell manipulation via pulsed lasers may serve as a potential pacemaker-technique in regenerative approaches, next to optogenetics.

  14. Effects of intermittent pressure imitating rolling manipulation on calcium ion homeostasis in human skeletal muscle cells.

    PubMed

    Zhang, Hong; Liu, Howe; Lin, Qing; Zhang, Guohui; Mason, David C

    2016-08-26

    Homeostasis imbalance of intracellular Ca(2+) is one of the key pathophysiological factors in skeletal muscle injuries. Such imbalance can cause significant change in the metabolism of Ca(2+)-related biomarkers in skeletal muscle, such as superoxide dismutase (SOD), malondialdehyde (MDA) and creatine kinase (CK). Measurements of these biomarkers can be used to evaluate the degree of damage to human skeletal muscle cells (HSKMCs) injury. Rolling manipulation is the most popular myofascial release technique in Traditional Chinese Medicine. The mechanism of how this technique works in ameliorating muscle injury is unknown. This study aimed to investigate the possible Ca(2+) mediated effects of intermittent pressure imitating rolling manipulation (IPIRM) of Traditional Chinese Medicine in the injured HSKMCs. The normal HSKMCs was used as control normal group (CNG), while the injured HSKMCs were further divided into five different groups: control injured group (CIG), Rolling manipulation group (RMG), Rolling manipulation-Verapamil group (RMVG), static pressure group (SPG) and static pressure-Verapamil group (SPVG). RMG and RMVG cells were cyclically exposed to 9.5-12.5 N/cm(2) of IPIRM at a frequency of 1.0 Hz for 10 min. SPG and SPVG were loaded to a continuous pressure of 12.5 N/cm(2) for 10 min. Verapamil, a calcium antagonist, was added into the culture mediums of both RMVG and SPVG groups to block the influx of calcium ion. Compared with the CNG (normal cells), SOD activity was remarkably decreased while both MDA content and CK activity were significantly increased in the CIG (injured cells). When the injured cells were treated with the intermittent rolling manipulation pressure (RMG), the SOD activity was significantly increased and MDA content and CK activity were remarkably decreased. These effects were suppressed by adding the calcium antagonist Verapamil into the culture medium in RMVG. On the other hand, exposure to static pressure in SPG and SPVG affected neither the SOD activity nor the MDA content and CK activity in the injured muscle cells regardless of the presence of verapamil or not in the culture medium. These data suggest that the intermittent rolling pressure with the manipulation could ameliorate HSKMCs injury through a Ca(2+) dependent pathway. Static pressure did not lead to the same results.

  15. Get to Understand More from Single-Cells: Current Studies of Microfluidic-Based Techniques for Single-Cell Analysis.

    PubMed

    Lo, Shih-Jie; Yao, Da-Jeng

    2015-07-23

    This review describes the microfluidic techniques developed for the analysis of a single cell. The characteristics of microfluidic (e.g., little sample amount required, high-throughput performance) make this tool suitable to answer and to solve biological questions of interest about a single cell. This review aims to introduce microfluidic related techniques for the isolation, trapping and manipulation of a single cell. The major approaches for detection in single-cell analysis are introduced; the applications of single-cell analysis are then summarized. The review concludes with discussions of the future directions and opportunities of microfluidic systems applied in analysis of a single cell.

  16. Get to Understand More from Single-Cells: Current Studies of Microfluidic-Based Techniques for Single-Cell Analysis

    PubMed Central

    Lo, Shih-Jie; Yao, Da-Jeng

    2015-01-01

    This review describes the microfluidic techniques developed for the analysis of a single cell. The characteristics of microfluidic (e.g., little sample amount required, high-throughput performance) make this tool suitable to answer and to solve biological questions of interest about a single cell. This review aims to introduce microfluidic related techniques for the isolation, trapping and manipulation of a single cell. The major approaches for detection in single-cell analysis are introduced; the applications of single-cell analysis are then summarized. The review concludes with discussions of the future directions and opportunities of microfluidic systems applied in analysis of a single cell. PMID:26213918

  17. Review of methods to probe single cell metabolism and bioenergetics

    DOE PAGES

    Vasdekis, Andreas E.; Stephanopoulos, Gregory

    2014-10-31

    The sampling and manipulation of cells down to the individual has been of substantial interest since the very beginning of Life Sciences. Herein, our objective is to highlight the most recent developments in single cell manipulation, as well as pioneering ones. First, flow-through methods will be discussed, namely methods in which the single cells flow continuously in an ordered manner during their analysis. This section will be followed by confinement techniques that enable cell isolation and confinement in one, two- or three-dimensions. Flow cytometry and droplet microfluidics are the two most common methods of flow-through analysis. While both are high-throughputmore » techniques, their difference lays in the fact that the droplet encapsulated cells experience a restricted and personal microenvironment, while in flow cytometry cells experience similar nutrient and stimuli initial concentrations. These methods are rather well established; however, they recently enabled immense strides in single cell phenotypic analysis, namely the identification and analysis of metabolically distinct individuals from an isogenic population using both droplet microfluidics and flow cytometry.« less

  18. Induction of RNA interference in dendritic cells.

    PubMed

    Li, Mu; Qian, Hua; Ichim, Thomas E; Ge, Wei-Wen; Popov, Igor A; Rycerz, Katarzyna; Neu, John; White, David; Zhong, Robert; Min, Wei-Ping

    2004-01-01

    Dendritic cells (DC) reside at the center of the immunological universe, possessing the ability both to stimulate and inhibit various types of responses. Tolerogenic/regulatory DC with therapeutic properties can be generated through various means of manipulations in vitro and in vivo. Here we describe several attractive strategies for manipulation of DC using the novel technique of RNA interference (RNAi). Additionally, we overview some of our data regarding yet undescribed characteristics of RNAi in DC such as specific transfection strategies, persistence of gene silencing, and multi-gene silencing. The advantages of using RNAi for DC genetic manipulation gives rise to the promise of generating tailor-made DC that can be used effectively to treat a variety of immunologically mediated diseases.

  19. Effective cell trapping using PDMS microspheres in an acoustofluidic chip.

    PubMed

    Yin, Di; Xu, Gangwei; Wang, Mengyuan; Shen, Mingwu; Xu, Tiegang; Zhu, Xiaoyue; Shi, Xiangyang

    2017-09-01

    We present a facile particle-based cell manipulation method using acoustic radiation forces. In this work, we selected several representative particles including poly(lactic-co-glycolic acid) (PLGA) microspheres, silica-coated magnetic microbeads, polydimethylsiloxane (PDMS) microspheres and investigated the responses of these particle systems to ultrasonic standing waves (USWs) in a microfluidic chip. We show that depending on the nature (positive or negative acoustic contrast factors) of the particles, these particle systems display different alignment behaviors along the microfluidic channel under USWs. Specifically, PLGA microspheres and silica-coated magnetic microbeads are able to be aligned in the middle of the microfluidic channel, while PDMS microspheres are translocated to the side walls of the channel, which is beneficial for cell trapping and manipulation. Further results demonstrate that the functional PDMS microspheres with a negative acoustic contrast factor can be used to trap cells to the pressure antinodes in the acoustofluidic chip. Cell viability tests reveal that the ultrasonic manipulation does not exert any harmful effect to the cells. This acoustic-based particle and cell manipulation technique may hold a great promise for the development of rapid, noninvasive, continuous assays for detecting of cells and separation of biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Evidence of femtosecond-laser pulse induced cell membrane nanosurgery

    NASA Astrophysics Data System (ADS)

    Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y.

    2017-02-01

    The mechanism of femtosecond laser nanosurgical attachment is investigated in the following article. Using sub-10 femtosecond laser pulses with 800 nm central wavelength were used to attach retinoblastoma cells. During the attachment process the cell membrane phospholipid bilayers hemifuse into one shared phospholipid bilayer, at the location of attachment. Transmission electron microscopy was used in order to verify the above hypothesis. Based on the imaging results, it was concluded that the two cell membrane coalesce to form one single shared membrane. The technique of cell-cell attachment via femtosecond laser pulses could potentially serve as a platform for precise cell membrane manipulation. Manipulation of the cellular membrane is valuable for studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.

  1. Cellulase producing microorganism ATCC 55702

    DOEpatents

    Dees, H. Craig

    1997-01-01

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques.

  2. Cellulase producing microorganism ATCC 55702

    DOEpatents

    Dees, H.C.

    1997-12-30

    Bacteria which produce large amounts of cellulase--containing cell-free fermentate have been identified. The original bacterium (ATCC 55703) was genetically altered using nitrosoguanidine (MNNG) treatment to produce the enhanced cellulase producing bacterium (ATCC 55702), which was identified through replicate plating. ATCC 55702 has improved characteristics and qualifies for the degradation of cellulosic waste materials for fuel production, food processing, textile processing, and other industrial applications. ATCC 55702 is an improved bacterial host for genetic manipulations using recombinant DNA techniques, and is less likely to destroy genetic manipulations using standard mutagenesis techniques. 5 figs.

  3. Voltage controlled nano-injection system for single-cell surgery

    PubMed Central

    Seger, R. Adam; Actis, Paolo; Penfold, Catherine; Maalouf, Michelle; Vilozny, Boaz; Pourmand, Nader

    2015-01-01

    Manipulation and analysis of single cells is the next frontier in understanding processes that control the function and fate of cells. Herein we describe a single-cell injection platform based on nanopipettes. The system uses scanning microscopy techniques to detect cell surfaces, and voltage pulses to deliver molecules into individual cells. As a proof of concept, we injected adherent mammalian cells with fluorescent dyes. PMID:22899383

  4. Voltage controlled nano-injection system for single-cell surgery.

    PubMed

    Adam Seger, R; Actis, Paolo; Penfold, Catherine; Maalouf, Michelle; Vilozny, Boaz; Pourmand, Nader

    2012-09-28

    Manipulation and analysis of single cells is the next frontier in understanding processes that control the function and fate of cells. Herein we describe a single-cell injection platform based on nanopipettes. The system uses scanning microscopy techniques to detect cell surfaces, and voltage pulses to deliver molecules into individual cells. As a proof of concept, we injected adherent mammalian cells with fluorescent dyes.

  5. Aspects of remote maintenance in an FRG reprocessing plant from the manufacturer's viewpoint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeitzchel, G.; Tennie, M.; Saal, G.

    In April 1986 a consortium led by Kraftwerk Union AG was commissioned by the German society for nuclear fuel reprocessing (DWK) to build the first West German commercial reprocessing plant for spent fuel assemblies. The main result of the planning efforts regarding remote maintenance operations inside the main process building was the introduction of FEMO technology (FEMO is an acronym based on German for remote handling modular technique). According to this technology the two cells in which the actual reprocessing (which is based on the PUREX technique) takes place are provided with frames to accommodate the process components (tanks, pumps,more » agitators, etc.), each frame together with the components which it supports forming one module. The two cells are inaccessible and windowless. For handling operations each cell is equipped with an overhead crane and a crane-like manipulator carrier system (MTS) with power manipulator. Viewing of the operations from outside the cells is made possible by television (TV) cameras installed at the crane, the MTS, and the manipulator. This paper addresses some examples of problems that still need to be solved in connection with FEMO handling. In particular, the need for close cooperation between the equipment operator, the component designer, the process engineer, the planning engineer, and the licensing authorities will be demonstrated.« less

  6. Acoustic tweezers: patterning cells and microparticles using standing surface acoustic waves (SSAW).

    PubMed

    Shi, Jinjie; Ahmed, Daniel; Mao, Xiaole; Lin, Sz-Chin Steven; Lawit, Aitan; Huang, Tony Jun

    2009-10-21

    Here we present an active patterning technique named "acoustic tweezers" that utilizes standing surface acoustic wave (SSAW) to manipulate and pattern cells and microparticles. This technique is capable of patterning cells and microparticles regardless of shape, size, charge or polarity. Its power intensity, approximately 5x10(5) times lower than that of optical tweezers, compares favorably with those of other active patterning methods. Flow cytometry studies have revealed it to be non-invasive. The aforementioned advantages, along with this technique's simple design and ability to be miniaturized, render the "acoustic tweezers" technique a promising tool for various applications in biology, chemistry, engineering, and materials science.

  7. Development of an Integrated Chip for Automatic Tracking and Positioning Manipulation for Single Cell Lysis

    PubMed Central

    Young, Chao-Wang; Hsieh, Jia-Ling; Ay, Chyung

    2012-01-01

    This study adopted a microelectromechanical fabrication process to design a chip integrated with electroosmotic flow and dielectrophoresis force for single cell lysis. Human histiocytic lymphoma U937 cells were driven rapidly by electroosmotic flow and precisely moved to a specific area for cell lysis. By varying the frequency of AC power, 15 V AC at 1 MHz of frequency configuration achieved 100% cell lysing at the specific area. The integrated chip could successfully manipulate single cells to a specific position and lysis. The overall successful rate of cell tracking, positioning, and cell lysis is 80%. The average speed of cell driving was 17.74 μm/s. This technique will be developed for DNA extraction in biomolecular detection. It can simplify pre-treatment procedures for biotechnological analysis of samples. PMID:22736957

  8. Development of an integrated chip for automatic tracking and positioning manipulation for single cell lysis.

    PubMed

    Young, Chao-Wang; Hsieh, Jia-Ling; Ay, Chyung

    2012-01-01

    This study adopted a microelectromechanical fabrication process to design a chip integrated with electroosmotic flow and dielectrophoresis force for single cell lysis. Human histiocytic lymphoma U937 cells were driven rapidly by electroosmotic flow and precisely moved to a specific area for cell lysis. By varying the frequency of AC power, 15 V AC at 1 MHz of frequency configuration achieved 100% cell lysing at the specific area. The integrated chip could successfully manipulate single cells to a specific position and lysis. The overall successful rate of cell tracking, positioning, and cell lysis is 80%. The average speed of cell driving was 17.74 μm/s. This technique will be developed for DNA extraction in biomolecular detection. It can simplify pre-treatment procedures for biotechnological analysis of samples.

  9. Three-dimensional holographic optical manipulation through a high-numerical-aperture soft-glass multimode fibre

    NASA Astrophysics Data System (ADS)

    Leite, Ivo T.; Turtaev, Sergey; Jiang, Xin; Šiler, Martin; Cuschieri, Alfred; Russell, Philip St. J.; Čižmár, Tomáš

    2018-01-01

    Holographic optical tweezers (HOT) hold great promise for many applications in biophotonics, allowing the creation and measurement of minuscule forces on biomolecules, molecular motors and cells. Geometries used in HOT currently rely on bulk optics, and their exploitation in vivo is compromised by the optically turbid nature of tissues. We present an alternative HOT approach in which multiple three-dimensional (3D) traps are introduced through a high-numerical-aperture multimode optical fibre, thus enabling an equally versatile means of manipulation through channels having cross-section comparable to the size of a single cell. Our work demonstrates real-time manipulation of 3D arrangements of micro-objects, as well as manipulation inside otherwise inaccessible cavities. We show that the traps can be formed over fibre lengths exceeding 100 mm and positioned with nanometric resolution. The results provide the basis for holographic manipulation and other high-numerical-aperture techniques, including advanced microscopy, through single-core-fibre endoscopes deep inside living tissues and other complex environments.

  10. Three-dimensional visualization and a deep-learning model reveal complex fungal parasite networks in behaviorally manipulated ants

    PubMed Central

    Fredericksen, Maridel A.; Zhang, Yizhe; Hazen, Missy L.; Loreto, Raquel G.; Mangold, Colleen A.; Chen, Danny Z.; Hughes, David P.

    2017-01-01

    Some microbes possess the ability to adaptively manipulate host behavior. To better understand how such microbial parasites control animal behavior, we examine the cell-level interactions between the species-specific fungal parasite Ophiocordyceps unilateralis sensu lato and its carpenter ant host (Camponotus castaneus) at a crucial moment in the parasite’s lifecycle: when the manipulated host fixes itself permanently to a substrate by its mandibles. The fungus is known to secrete tissue-specific metabolites and cause changes in host gene expression as well as atrophy in the mandible muscles of its ant host, but it is unknown how the fungus coordinates these effects to manipulate its host’s behavior. In this study, we combine techniques in serial block-face scanning-electron microscopy and deep-learning–based image segmentation algorithms to visualize the distribution, abundance, and interactions of this fungus inside the body of its manipulated host. Fungal cells were found throughout the host body but not in the brain, implying that behavioral control of the animal body by this microbe occurs peripherally. Additionally, fungal cells invaded host muscle fibers and joined together to form networks that encircled the muscles. These networks may represent a collective foraging behavior of this parasite, which may in turn facilitate host manipulation. PMID:29114054

  11. Embryonic and Induced Pluripotent Stem Cells: Understanding, Creating, and Exploiting the Nano-Niche for Regenerative Medicine

    PubMed Central

    2013-01-01

    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have the capacity to differentiate into any specialized cell type of the human body, and therefore, ESC/iPSC-derived cell types offer great potential for regenerative medicine. However, key to realizing this potential requires a strong understanding of stem cell biology, techniques to maintain stem cells, and strategies to manipulate cells to efficiently direct cell differentiation toward a desired cell type. As nanoscale science and engineering continues to produce novel nanotechnology platforms, which inform, infiltrate, and impinge on many aspects of everyday life, it is no surprise that stem cell research is turning toward developments in nanotechnology to answer research questions and to overcome obstacles in regenerative medicine. Here we discuss recent advances in ESC and iPSC manipulation using nanomaterials and highlight future challenges within this area of research. PMID:23414366

  12. Biophotonics for imaging and cell manipulation: quo vadis?

    NASA Astrophysics Data System (ADS)

    Serafetinides, Alexandros A.; Makropoulou, Mirsini; Kotsifaki, Domna G.; Tsigaridas, Giorgos

    2016-01-01

    As one of the major health problems for mankind is cancer, any development for the early detection and effective treatment of cancer is crucial to saving lives. Worldwide, the dream for the anti-cancer procedure of attack is the development of a safe and efficient early diagnosis technique, the so called "optical biopsy". As early diagnosis of cancer is associated with improved prognosis, several laser based optical diagnostic methods were developed to enable earlier, non-invasive detection of human cancer, as Laser Induced Fluorescence spectroscopy (LIFs), Diffuse Reflectance spectroscopy (DRs), confocal microscopy, and Optical Coherence Tomography (OCT). Among them, Optical Coherence Tomography (OCT) imaging is considered to be a useful tool to differentiate healthy from malignant (e.g. basal cell carcinoma, squamous cell carcinoma) skin tissue. If the demand is to perform imaging in sub-tissular or even sub-cellular level, optical tweezers and atomic force microscopy have enabled the visualization of molecular events underlying cellular processes in live cells, as well as the manipulation and characterization of microscale or even nanoscale biostructures. In this work, we will present the latest advances in the field of laser imaging and manipulation techniques, discussing some representative experimental data focusing on the 21th century biophotonics roadmap of novel diagnostic and therapeutical approaches. As an example of a recently discussed health and environmental problem, we studied both experimentally and theoretically the optical trapping forces exerted on yeast cells and modified with estrogen-like acting compounds yeast cells, suspended in various buffer media.

  13. Manipulation of cells' position across a microfluidic channel using a series of continuously varying herringbone structures

    NASA Astrophysics Data System (ADS)

    Jung, Yugyung; Hyun, Ji-chul; Choi, Jongchan; Atajanov, Arslan; Yang, Sung

    2017-12-01

    Controlling cells' movement is an important technique in biological analysis that is performed within a microfluidic system. Many external forces are utilized for manipulation of cells, including their position in the channel. These forces can effectively control cells in a desired manner. Most of techniques used to manipulate cells require sophisticated set-ups and equipment to generate desired effect. The exception to this is the use of hydrodynamic force. In this study, a series of continuously varying herringbone structures is proposed for positioning cells in a microfluidic channel using hydrodynamic force. This structure was experimentally developed by changing parameters, such as the length of the herringbone's apex, the length of the herringbone's base and the ratio of the height of the flat channel to the height of the herringbone structure. Results of this study, have demonstrated that the length of the herringbone's apex and the ratio of the heights of the flat channel and the herringbone structure were crucial parameters influencing positioning of cells at 100 μl/h flow rate. The final design was fixed at 170 and 80 μm for the length of herringbone's apex and the length of herringbone's base, respectively. The average position of cells in this device was 34 μm away from the side wall in a 200 μm wide channel. Finally, to substantiate a practical application of the herringbone structure for positioning, cells were randomly introduced into a microfluidic device, containing an array of trapping structures together with a series of herringbone structures along the channel. The cells were moved toward the trapping structure by the herringbone structure and the trapping efficiency was increased. Therefore, it is anticipated that this device will be utilized to continuously control cells' position without application of external forces.

  14. Engineered core-shell magnetic nanoparticle for MR dual-modal tracking and safe magnetic manipulation of ependymal cells in live rodents

    NASA Astrophysics Data System (ADS)

    Peng, Yung-Kang; Lui, Cathy N. P.; Chen, Yu-Wei; Chou, Shang-Wei; Chou, Pi-Tai; Yung, Ken K. L.; Edman Tsang, S. C.

    2018-01-01

    Tagging recognition group(s) on superparamagnetic iron oxide is known to aid localisation (imaging), stimulation and separation of biological entities using magnetic resonance imaging (MRI) and magnetic agitation/separation (MAS) techniques. Despite the wide applicability of iron oxide nanoparticles in T 2-weighted MRI and MAS, the quality of the images and safe manipulation of the exceptionally delicate neural cells in a live brain are currently the key challenges. Here, we demonstrate the engineered manganese oxide clusters-iron oxide core-shell nanoparticle as an MR dual-modal contrast agent for neural stem cells (NSCs) imaging and magnetic manipulation in live rodents. As a result, using this engineered nanoparticle and associated technologies, identification, stimulation and transportation of labelled potentially multipotent NSCs from a specific location of a live brain to another by magnetic means for self-healing therapy can therefore be made possible.

  15. FlpStop, a tool for conditional gene control in Drosophila

    PubMed Central

    Fisher, Yvette E; Yang, Helen H; Isaacman-Beck, Jesse; Xie, Marjorie; Gohl, Daryl M; Clandinin, Thomas R

    2017-01-01

    Manipulating gene function cell type-specifically is a common experimental goal in Drosophila research and has been central to studies of neural development, circuit computation, and behavior. However, current cell type-specific gene disruption techniques in flies often reduce gene activity incompletely or rely on cell division. Here we describe FlpStop, a generalizable tool for conditional gene disruption and rescue in post-mitotic cells. In proof-of-principle experiments, we manipulated apterous, a regulator of wing development. Next, we produced conditional null alleles of Glutamic acid decarboxylase 1 (Gad1) and Resistant to dieldrin (Rdl), genes vital for GABAergic neurotransmission, as well as cacophony (cac) and paralytic (para), voltage-gated ion channels central to neuronal excitability. To demonstrate the utility of this approach, we manipulated cac in a specific visual interneuron type and discovered differential regulation of calcium signals across subcellular compartments. Thus, FlpStop will facilitate investigations into the interactions between genes, circuits, and computation. DOI: http://dx.doi.org/10.7554/eLife.22279.001 PMID:28211790

  16. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    NASA Astrophysics Data System (ADS)

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; England, Grant T.; Kim, Philseok; Kolle, Mathias; Ferrante, Thomas; Zarzar, Lauren D.; Strong, Elizabeth; Aizenberg, Joanna

    2017-03-01

    Mechanical forces in the cell's natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.

  17. A portable and integrated instrument for cell manipulation by dielectrophoresis.

    PubMed

    Burgarella, Sarah; Di Bari, Marco

    2015-07-01

    The physical manipulation of biological cells is a key point in the development of miniaturized systems for point-of-care analyses. Dielectrophoresis (DEP) has been reported by several laboratories as a promising method in biomedical research for label-free cell manipulation without physical contact, by exploiting the dielectric properties of cells suspended in a microfluidic sample, under the action of high-gradient electric fields. In view of a more extended use of DEP phenomena in lab-on-chip devices for point-of-care settings, we have developed a portable instrument, integrating on the same device the microfluidic biochip for cell manipulation and all the laboratory functions (i.e., DEP electric signal generation, microscopic observation of the biological sample under test and image acquisition) that are normally obtained by combining different nonportable standard laboratory instruments. The nonuniform electric field for cell manipulation on the biochip is generated by microelectrodes, patterned on the silicon substrate of microfluidic channels, using standard microfabrication techniques. Numerical modeling was performed to simulate the electric field distribution, quantify the DEP force, and optimize the geometry of the microelectrodes. The developed instrument includes an electronic board, which allows the control of the electric signal applied to electrodes necessary for DEP, and a miniaturized optical microscope system that allows visual inspection and eventually cell counting, as well as image and video recording. The system also includes the control software. The portable and integrated platform described in this work therefore represents a complete and innovative solution of applied research, suitable for many biological applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Novel Parallelized Electroporation by Electrostatic Manipulation of a Water-in-Oil Droplet as a Microreactor

    PubMed Central

    Takahashi, Shota; Asada, Atsushi; Matsuo, Minako; Kishikawa, Kenta; Mizuno, Akira

    2015-01-01

    Electroporation is the most widely used transfection method for delivery of cell-impermeable molecules into cells. We developed a novel gene transfection method, water-in-oil (W/O) droplet electroporation, using dielectric oil and an aqueous droplet containing mammalian cells and transgene DNA. When a liquid droplet suspended between a pair of electrodes in dielectric oil is exposed to a DC electric field, the droplet moves between the pair of electrodes periodically and droplet deformation occurs under the intense DC electric field. During electrostatic manipulation of the droplet, the local intense electric field and instantaneous short circuit via the droplet due to droplet deformation facilitate gene transfection. This method has several advantages over conventional transfection techniques, including co-transfection of multiple transgene DNAs into even as few as 103 cells, transfection into differentiated neural cells, and the capable establishment of stable cell lines. In addition, there have been improvements in W/O droplet electroporation electrodes for disposable 96-well plates making them suitable for concurrent performance without thermal loading by a DC electric field. This technique will lead to the development of cell transfection methods for novel regenerative medicine and gene therapy. PMID:26649904

  19. A lentiviral vector with a short troponin-I promoter for tracking cardiomyocyte differentiation of human embryonic stem cells.

    PubMed

    Gallo, P; Grimaldi, S; Latronico, M V G; Bonci, D; Pagliuca, A; Gallo, P; Ausoni, S; Peschle, C; Condorelli, G

    2008-02-01

    Human embryonic stem cells (hESCs) may become important for cardiac repair due to their potentially unlimited ability to generate cardiomyocytes (CMCs). Moreover, genetic manipulation of hESC-derived CMCs would be a very promising technique for curing myocardial disorders. At the present time, however, inducing the differentiation of hESCs into CMCs is extremely difficult and, therefore, an easy and standardizable technique is needed to evaluate differentiation strategies. Vectors driving cardiac-specific expression may represent an important tool not only for monitoring new cardiac-differentiation strategies, but also for the manipulation of cardiac differentiation of ESCs. To this aim, we generated cardiac-specific lentiviral vectors (LVVs) in which expression is driven by a short fragment of the cardiac troponin-I proximal promoter (TNNI3) with a human cardiac alpha-actin enhancer, and tested its suitability in inducing tissue-specific gene expression and ability to track the CMC lineage during differentiation of ESCs. We determined that (1) TNNI3-LVVs efficiently drive cardiac-specific gene expression and mark the cardiomyogenic lineage in human and mouse ESC differentiation systems (2) the cardiac alpha-actin enhancer confers a further increase in gene-expression specificity of TNNI3-LVVs in hESCs. Although this technique may not be useful in tracking small numbers of cells, data suggested that TNNI3-based LVVs are a powerful tool for manipulating human ESCs and modifying hESC-derived CMCs.

  20. Multimodal biophotonic workstation for live cell analysis.

    PubMed

    Esseling, Michael; Kemper, Björn; Antkowiak, Maciej; Stevenson, David J; Chaudet, Lionel; Neil, Mark A A; French, Paul W; von Bally, Gert; Dholakia, Kishan; Denz, Cornelia

    2012-01-01

    A reliable description and quantification of the complex physiology and reactions of living cells requires a multimodal analysis with various measurement techniques. We have investigated the integration of different techniques into a biophotonic workstation that can provide biological researchers with these capabilities. The combination of a micromanipulation tool with three different imaging principles is accomplished in a single inverted microscope which makes the results from all the techniques directly comparable. Chinese Hamster Ovary (CHO) cells were manipulated by optical tweezers while the feedback was directly analyzed by fluorescence lifetime imaging, digital holographic microscopy and dynamic phase-contrast microscopy. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Droplet based microfluidics.

    PubMed

    Seemann, Ralf; Brinkmann, Martin; Pfohl, Thomas; Herminghaus, Stephan

    2012-01-01

    Droplet based microfluidics is a rapidly growing interdisciplinary field of research combining soft matter physics, biochemistry and microsystems engineering. Its applications range from fast analytical systems or the synthesis of advanced materials to protein crystallization and biological assays for living cells. Precise control of droplet volumes and reliable manipulation of individual droplets such as coalescence, mixing of their contents, and sorting in combination with fast analysis tools allow us to perform chemical reactions inside the droplets under defined conditions. In this paper, we will review available drop generation and manipulation techniques. The main focus of this review is not to be comprehensive and explain all techniques in great detail but to identify and shed light on similarities and underlying physical principles. Since geometry and wetting properties of the microfluidic channels are crucial factors for droplet generation, we also briefly describe typical device fabrication methods in droplet based microfluidics. Examples of applications and reaction schemes which rely on the discussed manipulation techniques are also presented, such as the fabrication of special materials and biophysical experiments.

  2. Methods to study maternal regulation of germ cell specification in zebrafish

    PubMed Central

    Kaufman, O.H.; Marlow, F.L.

    2016-01-01

    The process by which the germ line is specified in the zebrafish embryo is under the control of maternal gene products that were produced during oogenesis. Zebrafish are highly amenable to microscopic observation of the processes governing maternal germ cell specification because early embryos are transparent, and the germ line is specified rapidly (within 4–5 h post fertilization). Advantages of zebrafish over other models used to study vertebrate germ cell formation include their genetic tractability, the large numbers of progeny, and the easily manipulable genome, all of which make zebrafish an ideal system for studying the genetic regulators and cellular basis of germ cell formation and maintenance. Classical molecular biology techniques, including expression analysis through in situ hybridization and forward genetic screens, have laid the foundation for our understanding of germ cell development in zebrafish. In this chapter, we discuss some of these classic techniques, as well as recent cutting-edge methodologies that have improved our ability to visualize the process of germ cell specification and differentiation, and the tracking of specific molecules involved in these processes. Additionally, we discuss traditional and novel technologies for manipulating the zebrafish genome to identify new components through loss-of-function studies of putative germ cell regulators. Together with the numerous aforementioned advantages of zebrafish as a genetic model for studying development, we believe these new techniques will continue to advance zebrafish to the forefront for investigation of the molecular regulators of germ cell specification and germ line biology. PMID:27312489

  3. Hybrid modeling method for a DEP based particle manipulation.

    PubMed

    Miled, Mohamed Amine; Gagne, Antoine; Sawan, Mohamad

    2013-01-30

    In this paper, a new modeling approach for Dielectrophoresis (DEP) based particle manipulation is presented. The proposed method fulfills missing links in finite element modeling between the multiphysic simulation and the biological behavior. This technique is amongst the first steps to develop a more complex platform covering several types of manipulations such as magnetophoresis and optics. The modeling approach is based on a hybrid interface using both ANSYS and MATLAB to link the propagation of the electrical field in the micro-channel to the particle motion. ANSYS is used to simulate the electrical propagation while MATLAB interprets the results to calculate cell displacement and send the new information to ANSYS for another turn. The beta version of the proposed technique takes into account particle shape, weight and its electrical properties. First obtained results are coherent with experimental results.

  4. Hybrid Modeling Method for a DEP Based Particle Manipulation

    PubMed Central

    Miled, Mohamed Amine; Gagne, Antoine; Sawan, Mohamad

    2013-01-01

    In this paper, a new modeling approach for Dielectrophoresis (DEP) based particle manipulation is presented. The proposed method fulfills missing links in finite element modeling between the multiphysic simulation and the biological behavior. This technique is amongst the first steps to develop a more complex platform covering several types of manipulations such as magnetophoresis and optics. The modeling approach is based on a hybrid interface using both ANSYS and MATLAB to link the propagation of the electrical field in the micro-channel to the particle motion. ANSYS is used to simulate the electrical propagation while MATLAB interprets the results to calculate cell displacement and send the new information to ANSYS for another turn. The beta version of the proposed technique takes into account particle shape, weight and its electrical properties. First obtained results are coherent with experimental results. PMID:23364197

  5. Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.

    PubMed

    Wang, Zhuochen; Zhe, Jiang

    2011-04-07

    Manipulation of microscale particles and fluid liquid droplets is an important task for lab-on-a-chip devices for numerous biological researches and applications, such as cell detection and tissue engineering. Particle manipulation techniques based on surface acoustic waves (SAWs) appear effective for lab-on-a-chip devices because they are non-invasive, compatible with soft lithography micromachining, have high energy density, and work for nearly any type of microscale particles. Here we review the most recent research and development of the past two years in SAW based particle and liquid droplet manipulation for lab-on-a-chip devices including particle focusing and separation, particle alignment and patterning, particle directing, and liquid droplet delivery.

  6. Voltage clamp methods for the study of membrane currents and SR Ca2+ release in adult skeletal muscle fibres

    PubMed Central

    Hernández-Ochoa, Erick O.; Schneider, Martin F.

    2012-01-01

    Skeletal muscle excitation-contraction (E-C)1 coupling is a process composed of multiple sequential stages, by which an action potential triggers sarcoplasmic reticulum (SR)2 Ca2+ release and subsequent contractile activation. The various steps in the E-C coupling process in skeletal muscle can be studied using different techniques. The simultaneous recordings of sarcolemmal electrical signals and the accompanying elevation in myoplasmic Ca2+, due to depolarization-initiated SR Ca2+ release in skeletal muscle fibres, have been useful to obtain a better understanding of muscle function. In studying the origin and mechanism of voltage dependency of E-C coupling a variety of different techniques have been used to control the voltage in adult skeletal fibres. Pioneering work in muscles isolated from amphibians or crustaceans used microelectrodes or ‘high resistance gap’ techniques to manipulate the voltage in the muscle fibres. The development of the patch clamp technique and its variant, the whole-cell clamp configuration that facilitates the manipulation of the intracellular environment, allowed the use of the voltage clamp techniques in different cell types, including skeletal muscle fibres. The aim of this article is to present an historical perspective of the voltage clamp methods used to study skeletal muscle E-C coupling as well as to describe the current status of using the whole-cell patch clamp technique in studies in which the electrical and Ca2+ signalling properties of mouse skeletal muscle membranes are being investigated. PMID:22306655

  7. Cells and Stripes: A novel quantitative photo-manipulation technique

    PubMed Central

    Mistrik, Martin; Vesela, Eva; Furst, Tomas; Hanzlikova, Hana; Frydrych, Ivo; Gursky, Jan; Majera, Dusana; Bartek, Jiri

    2016-01-01

    Laser micro-irradiation is a technology widely used in the DNA damage response, checkpoint signaling, chromatin remodeling and related research fields, to assess chromatin modifications and recruitment of diverse DNA damage sensors, mediators and repair proteins to sites of DNA lesions. While this approach has aided numerous discoveries related to cell biology, maintenance of genome integrity, aging and cancer, it has so far been limited by a tedious manual definition of laser-irradiated subcellular regions, with the ensuing restriction to only a small number of cells treated and analyzed in a single experiment. Here, we present an improved and versatile alternative to the micro-irradiation approach: Quantitative analysis of photo-manipulated samples using innovative settings of standard laser-scanning microscopes. Up to 200 cells are simultaneously exposed to a laser beam in a defined pattern of collinear rays. The induced striation pattern is then automatically evaluated by a simple algorithm, which provides a quantitative assessment of various laser-induced phenotypes in live or fixed cells. Overall, this new approach represents a more robust alternative to existing techniques, and provides a versatile tool for a wide range of applications in biomedicine. PMID:26777522

  8. Light-neuron interactions: key to understanding the brain

    NASA Astrophysics Data System (ADS)

    Go, Mary Ann; Daria, Vincent R.

    2017-02-01

    In recent years, advances in light-based technology have driven an ongoing optical revolution in neuroscience. Synergistic technologies in laser microscopy, molecular biology, organic and synthetic chemistry, genetic engineering and materials science have allowed light to overcome the limitations of and to replace many conventional tools used by physiologists to record from and to manipulate single cells or whole cellular networks. Here we review the different optical techniques for stimulating neurons, influencing neuronal growth, manipulating neuronal structures and neurosurgery.

  9. Surface Acoustic Waves Grant Superior Spatial Control of Cells Embedded in Hydrogel Fibers.

    PubMed

    Lata, James P; Guo, Feng; Guo, Jinshan; Huang, Po-Hsun; Yang, Jian; Huang, Tony Jun

    2016-10-01

    By exploiting surface acoustic waves and a coupling layer technique, cells are patterned within a photosensitive hydrogel fiber to mimic physiological cell arrangement in tissues. The aligned cell-polymer matrix is polymerized with short exposure to UV light and the fiber is extracted. These patterned cell fibers are manipulated into simple and complex architectures, demonstrating feasibility for tissue-engineering applications. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Thermometry in dielectrophoresis chips for contact-free cell handling

    NASA Astrophysics Data System (ADS)

    Jaeger, M. S.; Mueller, T.; Schnelle, T.

    2007-01-01

    Cell biology applications, protocols in immunology and stem cell research, require that individual cells are handled under strict control of their contacts to other cells or synthetic surfaces. Dielectrophoresis (DEP) in microfluidic chips is an established technique to investigate, group, wash, cultivate and sort cells contact-free under physiological conditions: microelectrode octode cages, versatile dielectrophoretic elements energized with radio frequency electric fields, stably trap single cells or cellular aggregates. For medical applications and cell cultivation, possible side effects of the dielectrophoretic manipulation, such as membrane polarization and Joule heating, have to be quantified. Therefore, we characterized the electric field-induced warming in dielectrophoretic cages using ohmic resistance measurements, fluorometry, liquid crystal beads, infra-red thermography and bubble size thermometry. We compare the results of these techniques with respect to the influences of voltage, electric conductivity of buffer, frequency, cage size and electrode surface. We conclude that in the culture medium thermal effects may be neglected if low voltages and an electric field-reducing phase pattern are used. Our experimental results provide explicit values for estimating the thermal effect on dielectrophoretically caged cells and show that Joule heating is best minimized by optimizing the cage geometry and reducing the buffer conductivity. The results may additionally serve to evaluate and improve theoretical predictions on field-induced effects. Based on present-day chip processing possibilities, DEP is well suited for the manipulation of cells.

  11. Programmable micrometer-sized motor array based on live cells.

    PubMed

    Xie, Shuangxi; Wang, Xiaodong; Jiao, Niandong; Tung, Steve; Liu, Lianqing

    2017-06-13

    Trapping and transporting microorganisms with intrinsic motility are important tasks for biological, physical, and biomedical applications. However, fast swimming speed makes the manipulation of these organisms an inherently challenging task. In this study, we demonstrated that an optoelectrical technique, namely, optically induced dielectrophoresis (ODEP), could effectively trap and manipulate Chlamydomonas reinhardtii (C. reinhardtii) cells swimming at velocities faster than 100 μm s -1 . Furthermore, live C. reinhardtii cells trapped by ODEP can form a micrometer-sized motor array. The rotating frequency of the cells ranges from 50 to 120 rpm, which can be reversibly adjusted with a fast response speed by varying the optical intensity. Functional flagella have been demonstrated to play a decisive role in the rotation. The programmable cell array with a rotating motion can be used as a bio-micropump to drive the liquid flow in microfludic chips and may shed new light on bio-actuation.

  12. High spatial and temporal resolution cell manipulation techniques in microchannels.

    PubMed

    Novo, Pedro; Dell'Aica, Margherita; Janasek, Dirk; Zahedi, René P

    2016-03-21

    The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.

  13. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    DOE PAGES

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; ...

    2017-03-13

    Mechanical forces in the cell’s natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging frommore » the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.« less

  14. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    PubMed Central

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.; England, Grant T; Kim, Philseok; Kolle, Mathias; Ferrante, Thomas; Zarzar, Lauren D; Strong, Elizabeth; Aizenberg, Joanna

    2017-01-01

    Mechanical forces in the cell’s natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging from the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques. PMID:28287116

  15. Photothermally triggered actuation of hybrid materials as a new platform for in vitro cell manipulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutton, Amy; Shirman, Tanya; Timonen, Jaakko V. I.

    Mechanical forces in the cell’s natural environment have a crucial impact on growth, differentiation and behaviour. Few areas of biology can be understood without taking into account how both individual cells and cell networks sense and transduce physical stresses. However, the field is currently held back by the limitations of the available methods to apply physiologically relevant stress profiles on cells, particularly with sub-cellular resolution, in controlled in vitro experiments. Here we report a new type of active cell culture material that allows highly localized, directional and reversible deformation of the cell growth substrate, with control at scales ranging frommore » the entire surface to the subcellular, and response times on the order of seconds. These capabilities are not matched by any other method, and this versatile material has the potential to bridge the performance gap between the existing single cell micro-manipulation and 2D cell sheet mechanical stimulation techniques.« less

  16. Characterization of a Honeycomb-Like Scaffold With Dielectrophoresis-Based Patterning for Tissue Engineering.

    PubMed

    Huan, Zhijie; Chu, Henry K; Yang, Jie; Sun, Dong

    2017-04-01

    Seeding and patterning of cells with an engineered scaffold is a critical process in artificial tissue construction and regeneration. To date, many engineered scaffolds exhibit simple intrinsic designs, which fail to mimic the geometrical complexity of native tissues. In this study, a novel scaffold that can automatically seed cells into multilayer honeycomb patterns for bone tissue engineering application was designed and examined. The scaffold incorporated dielectrophoresis for noncontact manipulation of cells and intrinsic honeycomb architectures were integrated in each scaffold layer. When a voltage was supplied to the stacked scaffold layers, three-dimensional electric fields were generated, thereby manipulating cells to form into honeycomb-like cellular patterns for subsequent culture. The biocompatibility of the scaffold material was confirmed through the cell viability test. Experiments were conducted to evaluate the cell viability during DEP patterning at different voltage amplitudes, frequencies, and manipulating time. Three different mammalian cells were examined and the effects of the cell size and the cell concentration on the resultant cellular patterns were evaluated. Results showed that the proposed scaffold structure was able to construct multilayer honeycomb cellular patterns in a manner similar to the natural tissue. This honeycomb-like scaffold and the dielectrophoresis-based patterning technique examined in this study could provide the field with a promising tool to enhance seeding and patterning of a wide range of cells for the development of high-quality artificial tissues.

  17. Manipulation of biological samples using micro and nano techniques.

    PubMed

    Castillo, Jaime; Dimaki, Maria; Svendsen, Winnie Edith

    2009-01-01

    The constant interest in handling, integrating and understanding biological systems of interest for the biomedical field, the pharmaceutical industry and the biomaterial researchers demand the use of techniques that allow the manipulation of biological samples causing minimal or no damage to their natural structure. Thanks to the advances in micro- and nanofabrication during the last decades several manipulation techniques offer us the possibility to image, characterize and manipulate biological material in a controlled way. Using these techniques the integration of biomaterials with remarkable properties with physical transducers has been possible, giving rise to new and highly sensitive biosensing devices. This article reviews the different techniques available to manipulate and integrate biological materials in a controlled manner either by sliding them along a surface (2-D manipulation), by grapping them and moving them to a new position (3-D manipulation), or by manipulating and relocating them applying external forces. The advantages and drawbacks are mentioned together with examples that reflect the state of the art of manipulation techniques for biological samples (171 references).

  18. Plant Development & the Fern Life Cycle: Using "Ceratopteris richardii."

    ERIC Educational Resources Information Center

    Renzaglia, Karen S.; And Others

    1995-01-01

    Presents laboratory activities focusing on the development of sexually mature gametophytes from single-celled spores. Includes techniques for culture and manipulation of gametophyte development from spores that are applicable for hands-on activities for students at all levels. (MKR)

  19. Micro/nano-fabrication technologies for cell biology.

    PubMed

    Qian, Tongcheng; Wang, Yingxiao

    2010-10-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities.

  20. Micro/nano-fabrication technologies for cell biology

    PubMed Central

    Qian, Tongcheng

    2012-01-01

    Micro/nano-fabrication techniques, such as soft lithography and electrospinning, have been well-developed and widely applied in many research fields in the past decade. Due to the low costs and simple procedures, these techniques have become important and popular for biological studies. In this review, we focus on the studies integrating micro/nano-fabrication work to elucidate the molecular mechanism of signaling transduction in cell biology. We first describe different micro/nano-fabrication technologies, including techniques generating three-dimensional scaffolds for tissue engineering. We then introduce the application of these technologies in manipulating the physical or chemical micro/nano-environment to regulate the cellular behavior and response, such as cell life and death, differentiation, proliferation, and cell migration. Recent advancement in integrating the micro/nano-technologies and live cell imaging are also discussed. Finally, potential schemes in cell biology involving micro/nano-fabrication technologies are proposed to provide perspectives on the future research activities. PMID:20490938

  1. Three-dimensional organotypic culture: experimental models of mammalian biology and disease.

    PubMed

    Shamir, Eliah R; Ewald, Andrew J

    2014-10-01

    Mammalian organs are challenging to study as they are fairly inaccessible to experimental manipulation and optical observation. Recent advances in three-dimensional (3D) culture techniques, coupled with the ability to independently manipulate genetic and microenvironmental factors, have enabled the real-time study of mammalian tissues. These systems have been used to visualize the cellular basis of epithelial morphogenesis, to test the roles of specific genes in regulating cell behaviours within epithelial tissues and to elucidate the contribution of microenvironmental factors to normal and disease processes. Collectively, these novel models can be used to answer fundamental biological questions and generate replacement human tissues, and they enable testing of novel therapeutic approaches, often using patient-derived cells.

  2. Practical immunology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hudson, L.; Hay, F.C.

    1989-01-01

    This book covers the advances in contemporary molecular and cellular immunology which have provided the experimentalist with tools of unparalleled reproducibility and precision. Techniques for the propagation and manipulation of cells, genes and gene products have a central place in the new edition, reflecting their role in modern immunology.

  3. Rapid and simple method for in vivo ex utero development of mouse embryo explants.

    PubMed

    Gonçalves, André B; Thorsteinsdóttir, Sólveig; Deries, Marianne

    2016-01-01

    The in utero development of mammals drastically reduces the accessibility of the mammalian embryo and therefore limits the range of experimental manipulation that can be done to study functions of genes or signaling pathways during embryo development. Over the past decades, tissue and organ-like culture methods have been developed with the intention of reproducing in vivo situations. Developing accessible and simple techniques to study and manipulate embryos is an everlasting challenge. Herein, we describe a reliable and quick technique to culture mid-gestation explanted mouse embryos on top of a floating membrane filter in a defined medium. Viability of the cultured tissues was assessed by apoptosis and proliferation analysis showing that cell proliferation is normal and there is only a slight increase in apoptosis after 12h of culture compared to embryos developing in utero. Moreover, differentiation and morphogenesis proceed normally as assessed by 3D imaging of the transformation of the myotome into deep back muscles. Not only does muscle cell differentiation occur as expected, but so do extracellular matrix organization and the characteristic splitting of the myotome into the three epaxial muscle groups. Our culture method allows for the culture and manipulation of mammalian embryo explants in a very efficient way, and it permits the manipulation of in vivo developmental events in a controlled environment. Explants grown under these ex utero conditions simulate real developmental events that occur in utero. Copyright © 2016 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  4. Engineered Ferritin for Magnetogenetic Manipulation of Proteins and Organelles Inside Living Cells.

    PubMed

    Liße, Domenik; Monzel, Cornelia; Vicario, Chiara; Manzi, John; Maurin, Isabelle; Coppey, Mathieu; Piehler, Jacob; Dahan, Maxime

    2017-11-01

    Magnetogenetics is emerging as a novel approach for remote-controlled manipulation of cellular functions in tissues and organisms with high spatial and temporal resolution. A critical, still challenging issue for these techniques is to conjugate target proteins with magnetic probes that can satisfy multiple colloidal and biofunctional constraints. Here, semisynthetic magnetic nanoparticles are tailored based on human ferritin coupled to monomeric enhanced green fluorescent protein (mEGFP) for magnetic manipulation of proteins inside living cells. This study demonstrates efficient delivery, intracellular stealth properties, and rapid subcellular targeting of those magnetic nanoparticles via GFP-nanobody interactions. By means of magnetic field gradients, rapid spatial reorganization in the cytosol of proteins captured to the nanoparticle surface is achieved. Moreover, exploiting efficient nanoparticle targeting to intracellular membranes, remote-controlled arrest of mitochondrial dynamics using magnetic fields is demonstrated. The studies establish subcellular control of proteins and organelles with unprecedented spatial and temporal resolution, thus opening new prospects for magnetogenetic applications in fundamental cell biology and nanomedicine. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Exploring protein-DNA interactions in 3D using in situ construction, manipulation, and visualization of individual DNA-dumbbells with optical traps, microfluidics, and fluorescence microscopy

    PubMed Central

    Forget, Anthony L.; Dombrowski, Christopher C.; Amitani, Ichiro; Kowalczykowski, Stephen C.

    2015-01-01

    In this Protocol, we describe a procedure to generate ‘DNA-dumbbells’ — single molecules of DNA with a microscopic bead attached at each end — and techniques for manipulating individual DNA-dumbbells. We also detail the design and fabrication of a microfluidic device (flow cell) used in conjunction with dual optical trapping to manipulate DNA-dumbbells and to visualize individual protein–DNA complexes by single-molecule epifluorescence microscopy. Our design of the flow cell enables the rapid movement of trapped molecules between laminar flow channels and a flow-free ‘reservoir’. The reservoir provides the means to examine formation of DNA–protein complexes in solution in the absence of external flow forces, while still maintaining a predetermined end-to-end extension of the DNA. These features facilitate examination of the role of three-dimensional DNA conformation and dynamics in protein–DNA interactions. Preparation of flow cells and reagents requires two days each; in situ DNA-dumbbell assembly and imaging of single protein–DNA complexes requires another day. PMID:23411634

  6. Three-dimensional Organotypic Cultures of Vestibular and Auditory Sensory Organs.

    PubMed

    Gnedeva, Ksenia; Hudspeth, A J; Segil, Neil

    2018-06-01

    The sensory organs of the inner ear are challenging to study in mammals due to their inaccessibility to experimental manipulation and optical observation. Moreover, although existing culture techniques allow biochemical perturbations, these methods do not provide a means to study the effects of mechanical force and tissue stiffness during development of the inner ear sensory organs. Here we describe a method for three-dimensional organotypic culture of the intact murine utricle and cochlea that overcomes these limitations. The technique for adjustment of a three-dimensional matrix stiffness described here permits manipulation of the elastic force opposing tissue growth. This method can therefore be used to study the role of mechanical forces during inner ear development. Additionally, the cultures permit virus-mediated gene delivery, which can be used for gain- and loss-of-function experiments. This culture method preserves innate hair cells and supporting cells and serves as a potentially superior alternative to the traditional two-dimensional culture of vestibular and auditory sensory organs.

  7. Ultrasonic manipulation of particles and cells. Ultrasonic separation of cells.

    PubMed

    Coakley, W T; Whitworth, G; Grundy, M A; Gould, R K; Allman, R

    1994-04-01

    Cells or particles suspended in a sonic standing wave field experience forces which concentrate them at positions separated by half a wavelength. The aims of the study were: (1) To optimise conditions and test theoretical predictions for ultrasonic concentration and separation of particles or cells. (2) To investigate the scale-up of experimental systems. (3) To establish the maximum acoustic pressure to which a suspension might be exposed without inducing order-disrupting cavitation. (4) To compare the efficiencies of techniques for harvesting concentrated particles. The primary outcomes were: (1) To design of an acoustic pressure distribution within cylindrical containers which led to uniformly repeating sound pressure patterns throughout the containers in the standing wave mode, concentrated suspended eukaryotic cells or latex beads in clumps on the axis of wide containers, and provided uniform response of all particle clumps to acoustic harvesting regimes. Theory for the behaviour (e.g. movement to different preferred sites) of particles as a function of specific gravity and compressibility in containers of different lateral dimensions was extended and was confirmed experimentally. Convective streaming in the container was identified as a variable requiring control in the manipulation of particles of 1 micron or smaller size. (2) Consideration of scale-up from the model 10 ml volume led to the conclusion that flow systems in intermediate volume containers have more promise than scaled up batch systems. (3) The maximum acoustic pressures applicable to a suspension without inducing order-disrupting cavitation or excessive conductive streaming at 1 MHz and 3 MHz induce a force equivalent to a centrifugal field of about 10(3) g. (4) The most efficient technique for harvesting concentrated particles was the introduction of a frequency increment between two transducers to form a slowly sweeping pseudo-standing wave. The attractive inter-droplet ultrasonic standing wave force was employed to enhance the rate of aqueous biphasic cell separation and harvesting. The results help clarify the particle size, concentration, density and compressibility for which standing wave separation techniques can contribute either on a process engineering scale or on the scale of the manipulation of small particles for industrial and medical diagnostic procedures.

  8. Single-neuron labeling with inducible cre-mediated knockout in transgenic mice

    PubMed Central

    Young, Paul; Qiu, Li; Wang, Dongqing; Zhao, Shengli; Gross, James; Feng, Guoping

    2011-01-01

    To facilitate functional analysis of neuronal connectivity in a mammalian nervous system tightly packed with billions of cells, we developed a new technique that allows inducible genetic manipulations within fluorescently labeled single neurons in mice. We term this technique SLICK for Single-neuron Labeling with Inducible Cre-mediated Knockout. SLICK is achieved by co-expressing a drug-inducible form of cre recombinase and a fluorescent protein within the same small subsets of neurons. Thus, SLICK combines the powerful cre recombinase system for conditional genetic manipulation and the fluorescent labeling of single neurons for imaging. We demonstrate efficient inducible genetic manipulation in several types of neurons using SLICK. Furthermore, we apply SLICK to eliminate synaptic transmission in a small subset of neuromuscular junctions. Our results provide evidence for the long-term stability of inactive neuromuscular synapses in adult animals. More broadly, these studies demonstrate a cre-LoxP compatible system for dissecting gene functions in single identifiable neurons. PMID:18454144

  9. A hybrid microfluidic device for on-demand orientation and multidirectional imaging of C. elegans organs and neurons

    PubMed Central

    Ardeshiri, Ramtin; Mulcahy, Ben; Zhen, Mei; Rezai, Pouya

    2016-01-01

    C. elegans is a well-known model organism in biology and neuroscience with a simple cellular (959 cells) and nervous (302 neurons) system and a relatively homologous (40%) genome to humans. Lateral and longitudinal manipulation of C. elegans to a favorable orientation is important in many applications such as neural and cellular imaging, laser ablation, microinjection, and electrophysiology. In this paper, we describe a micro-electro-fluidic device for on-demand manipulation of C. elegans and demonstrate its application in imaging of organs and neurons that cannot be visualized efficiently under natural orientation. To achieve this, we have used the electrotaxis technique to longitudinally orient the worm in a microchannel and then insert it into an orientation and imaging channel in which we integrated a rotatable glass capillary for orientation of the worm in any desired direction. The success rates of longitudinal and lateral orientations were 76% and 100%, respectively. We have demonstrated the application of our device in optical and fluorescent imaging of vulva, uterine-vulval cell (uv1), vulB1\\2 (adult vulval toroid cells), and ventral nerve cord of wild-type and mutant worms. In comparison to existing methods, the developed technique is capable of orienting the worm at any desired angle and maintaining the orientation while providing access to the worm for potential post-manipulation assays. This versatile tool can be potentially used in various applications such as neurobehavioral imaging, neuronal ablation, microinjection, and electrophysiology. PMID:27990213

  10. Biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy.

    PubMed

    Spyratou, E; Makropoulou, M; Mourelatou, E A; Demetzos, C

    2012-12-31

    Reactive oxygen species (ROS) are usually involved in two opposite procedures related to cancer: initiation, progression and metastasis of cancer, as well as in all non-surgical therapeutic approaches for cancer, including chemotherapy, radiotherapy and photodynamic therapy. This review is concentrated in new therapeutic strategies that take advantage of increased ROS in cancer cells to enhance therapeutic activity and selectivity. Novel biophotonic techniques for manipulation and characterization of drug delivery nanosystems in cancer therapy are discussed, including optical tweezers and atomic force microscopy. This review highlights how these techniques are playing a critical role in recent and future cancer fighting applications. We can conclude that Biophotonics and nanomedicine are the future for cancer biology and disease management, possessing unique potential for early detection, accurate diagnosis, dosimetry and personalized treatment of biomedical applications targeting cancer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Setup for functional cell ablation with lasers: coupling of a laser to a microscope.

    PubMed

    Sweeney, Sean T; Hidalgo, Alicia; de Belle, J Steven; Keshishian, Haig

    2012-06-01

    The selective removal of cells by ablation is a powerful tool in the study of eukaryotic developmental biology, providing much information about their origin, fate, or function in the developing organism. In Drosophila, three main methods have been used to ablate cells: chemical, genetic, and laser ablation. Each method has its own applicability with regard to developmental stage and the cells to be ablated, and its own limitations. The primary advantage of laser-based ablation is the flexibility provided by the method: The operations can be performed in any cell pattern and at any time in development. Laser-based techniques permit manipulation of structures within cells, even to the molecular level. They can also be used for gene activation. However, laser ablation can be expensive, labor-intensive, and time-consuming. Although live cells can be difficult to image in Drosophila embryos, the use of vital fluorescent imaging methods has made laser-mediated cell manipulation methods more appealing; the methods are relatively straightforward. This article provides the information necessary for setting up and using a laser microscope for lasesr ablation studies.

  12. 3D Nanochannel Array Platform for High-throughput Cell Manipulation and Nano-electroporation

    NASA Astrophysics Data System (ADS)

    Chang, Lingqian

    Electroporation is one of the most common non-viral methods for gene delivery. Recent progress in gene therapy has offered special opportunities to electroporation for in vitro and in vivo applications. However, conventional bulk electroporation (BEP) inevitably causes serious cell damage and stochastic transfection between cells. Microfluidic electroporation (MEP) has been claimed to provide benign single cell transfection for the last decade. Nevertheless, the intracellular transport in both MEP and BEP systems is highly diffusion-dominant, which prevents precise dose control and high uniformity. In this Ph.D. research, we developed a 3D nanochannel-electroporation (3D NEP) platform for mass cell transfection. A silicon-based nanochannel array (3D NEP) chip was designed and fabricated for cell manipulation and electroporation. The chip, designed as Z-directional microchannel - nanochannel array, was fabricated by clean room techniques including projection photolithography and deep reactive-ion etching (DRIE). The fabricated 3D NEP chip is capable of handling 40,000 cells per 1 cm2, up to 1 million per wafer (100 mm diameter). High-throughput cell manipulation technologies were investigated for precise alignment of individual cells to the nanochannel array, a key step for NEP to achieve dose control. We developed three techniques for cell trapping in this work. (1) Magnetic tweezers (MTs) were integrated on the chip to remotely control cells under a programmed magnetic field. (2) A positive dielectrophoresis (pDEP) power system was built as an alternative to trap cells onto the nanochannel array using DEP force. (3) A novel yet simple 'dipping-trap' method was used to rapidly trap cells onto a nanochannel array, aligned by a micro-cap array pattern on the 3D NEP chip, which eventually offered 70 - 90 % trapping efficiency and 90 % specificity. 3D NEP platforms were assembled for cell transfection based on the Si-based nanochannel array chip and cell manipulation techniques. Cells were patterned on the nanochannel array and collectively were electroporated in parallel, injected with cargo in Z-direction. Controlling the dose was demonstrated with the external pulse durations at high-throughput. The 'electrophoretic'- expedited delivery of large molecular weight plasmids were demonstrated with large numbers of primary cells simultaneously, which cannot be achieved in BEP and MEP. Two clinically valuable case studies were performed with our 3D NEP for living cell sensing / interrogation. (1) In the case of in vitro transfection of primary cardiomyocytes, we studied the dose-effects of miR-29 on mitochondrial changes and the suppression of the Mcl-1 gene in adult mouse cardiomyocytes by precisely controlling the miR-29 dose injected. (2) Glioma stem cells (GSCs), a type of cell hypothesized to be highly aggressive and to lead to the relapses of gliobastoma in human brain, was studied at single cell resolution on 3D NEP platform. The developed 3D NEP system moves towards clinically oriented and user-friendly tools for life science applications. The batch-treated cells with controlled dosage delivery provide a useful tool for single cell analysis. The pioneering experiments in this work have demonstrated the 3D NEP for the applications of cell reprogramming, adoptive immunotherapy, in vitro cardiomyocytes transfection and glioma stem cells study.

  13. Three-dimensional organotypic culture: experimental models of mammalian biology and disease

    PubMed Central

    Shamir, Eliah R.; Ewald, Andrew J.

    2015-01-01

    Mammalian organs are challenging to study as they are fairly inaccessible to experimental manipulation and optical observation. Recent advances in three-dimensional (3D) culture techniques, coupled with the ability to independently manipulate genetic and microenvironmental factors, have enabled the real-time study of mammalian tissues. These systems have been used to visualize the cellular basis of epithelial morphogenesis, to test the roles of specific genes in regulating cell behaviours within epithelial tissues and to elucidate the contribution of microenvironmental factors to normal and disease processes. Collectively, these novel models can be used to answer fundamental biological questions and generate replacement human tissues, and they enable testing of novel therapeutic approaches, often using patient-derived cells. PMID:25237826

  14. Biodegradable Polymers and Stem Cells for Bioprinting.

    PubMed

    Lei, Meijuan; Wang, Xiaohong

    2016-04-29

    It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  15. Integrality and separability of multitouch interaction techniques in 3D manipulation tasks.

    PubMed

    Martinet, Anthony; Casiez, Géry; Grisoni, Laurent

    2012-03-01

    Multitouch displays represent a promising technology for the display and manipulation of data. While the manipulation of 2D data has been widely explored, 3D manipulation with multitouch displays remains largely unexplored. Based on an analysis of the integration and separation of degrees of freedom, we propose a taxonomy for 3D manipulation techniques with multitouch displays. Using that taxonomy, we introduce Depth-Separated Screen-Space (DS3), a new 3D manipulation technique based on the separation of translation and rotation. In a controlled experiment, we compared DS3 with Sticky Tools and Screen-Space. Results show that separating the control of translation and rotation significantly affects performance for 3D manipulation, with DS3 performing faster than the two other techniques.

  16. Volume reduction of hot cell plastic wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dykes, F W; Henscheid, J P; Lewis, L C

    1989-09-19

    The disposal of radioactively-contaminated solid wastes has become a national crisis. In such circumstances, it is imperative that this waste be reduced to minimum volume and be packaged to prevent pollution of the environment. The majority of the solid waste generated at the hot cell under consideration is plastic lab ware. Cutting this waste into small pieces with a hot wire technique reduced the volume 66%. Melting the waste, although more time consuming, reduced the volume 90%. The hot wire technique can also be used to cut up damaged master slave manipulator boots, greatly reducing their disposal volume.

  17. Laser surgery of zebrafish (Danio rerio) embryos using femtosecond laser pulses: Optimal parameters for exogenous material delivery, and the laser's effect on short- and long-term development

    PubMed Central

    Kohli, Vikram; Elezzabi, Abdulhakem Y

    2008-01-01

    Background Femtosecond (fs) laser pulses have recently received wide interest as an alternative tool for manipulating living biological systems. In various model organisms the excision of cellular components and the intracellular delivery of foreign exogenous materials have been reported. However, the effect of the applied fs laser pulses on cell viability and development has yet to be determined. Using the zebrafish (Danio rerio) as our animal model system, we address both the short- and long-term developmental changes following laser surgery on zebrafish embryonic cells. Results An exogenous fluorescent probe, fluorescein isothiocyanate (FITC), was successfully introduced into blastomere cells and found to diffuse throughout all developing cells. Using the reported manipulation tool, we addressed whether the applied fs laser pulses induced any short- or long-term developmental effects in embryos reared to 2 and 7 days post-fertilization (dpf). Using light microscopy and scanning electron microscopy we compared key developmental features of laser-manipulated and control samples, including the olfactory pit, dorsal, ventral and pectoral fins, notochord, pectoral fin buds, otic capsule, otic vesicle, neuromast patterning, and kinocilia of the olfactory pit rim and cristae of the lateral wall of the ear. Conclusion In our study, no significant differences in hatching rates and developmental morphologies were observed in laser-manipulated samples relative to controls. This tool represents an effective non-destructive technique for potential medical and biological applications. PMID:18230185

  18. Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation.

    PubMed

    Lei, Ting; Poon, Andrew W

    2013-01-28

    We demonstrate two-dimensional optical trapping and manipulation of 1 μm and 2.2 μm polystyrene particles in an 18 μm-thick fluidic cell at a wavelength of 1565 nm using the recently proposed Silicon-on-insulator Multimode-interference (MMI) waveguide-based ARrayed optical Tweezers (SMART) technique. The key component is a 100 μm square-core silicon waveguide with mm length. By tuning the fiber-coupling position at the MMI waveguide input facet, we demonstrate various patterns of arrayed optical tweezers that enable optical trapping and manipulation of particles. We numerically simulate the physical mechanisms involved in the arrayed trap, including the optical force, the heat transfer and the thermal-induced microfluidic flow.

  19. Atomic force microscopy – looking at mechanosensors on the cell surface

    PubMed Central

    Heinisch, Jürgen J.; Lipke, Peter N.; Beaussart, Audrey; El Kirat Chatel, Sofiane; Dupres, Vincent; Alsteens, David; Dufrêne, Yves F.

    2012-01-01

    Summary Living cells use cell surface proteins, such as mechanosensors, to constantly sense and respond to their environment. However, the way in which these proteins respond to mechanical stimuli and assemble into large complexes remains poorly understood at the molecular level. In the past years, atomic force microscopy (AFM) has revolutionized the way in which biologists analyze cell surface proteins to molecular resolution. In this Commentary, we discuss how the powerful set of advanced AFM techniques (e.g. live-cell imaging and single-molecule manipulation) can be integrated with the modern tools of molecular genetics (i.e. protein design) to study the localization and molecular elasticity of individual mechanosensors on the surface of living cells. Although we emphasize recent studies on cell surface proteins from yeasts, the techniques described are applicable to surface proteins from virtually all organisms, from bacteria to human cells. PMID:23077172

  20. Biogelx: Cell Culture on Self-Assembling Peptide Gels.

    PubMed

    Harper, Mhairi M; Connolly, Michael L; Goldie, Laura; Irvine, Eleanore J; Shaw, Joshua E; Jayawarna, Vineetha; Richardson, Stephen M; Dalby, Matthew J; Lightbody, David; Ulijn, Rein V

    2018-01-01

    Aromatic peptide amphiphiles can form self-supporting nanostructured hydrogels with tunable mechanical properties and chemical compositions. These hydrogels are increasingly applied in two-dimensional (2D) and three-dimensional (3D) cell culture, where there is a rapidly growing need to store, grow, proliferate, and manipulate naturally derived cells within a hydrated, 3D matrix. Biogelx Limited is a biomaterials company, created to commercialize these bio-inspired hydrogels to cell biologists for a range of cell culture applications. This chapter describes methods of various characterization and cell culture techniques specifically optimized for compatibility with Biogelx products.

  1. Methods in Molecular Biology Mouse Genetics: Methods and Protocols | Center for Cancer Research

    Cancer.gov

    Mouse Genetics: Methods and Protocols provides selected mouse genetic techniques and their application in modeling varieties of human diseases. The chapters are mainly focused on the generation of different transgenic mice to accomplish the manipulation of genes of interest, tracing cell lineages, and modeling human diseases.

  2. Telescience testbed experiments for biomedical studies: fertilization potential recording of amphibian eggs using tele-manipulation under stereoscopic vision.

    PubMed

    Watanabe, S; Tanaka, M; Wada, Y; Suzuki, H; Takagi, S; Mori, S; Fukai, K; Kanazawa, Y; Takagi, M; Hirakawa, K; Ogasawara, K; Tsumura, K; Ogawa, K; Matsumoto, K; Nagaoka, S; Suzuki, T; Shimura, D; Yamashita, M; Nishio, S

    1994-07-01

    The telescience testbed experiments were carried out to test and investigate the tele-manipulation techniques in the intracellular potential recording of amphibian eggs. Implementation of telescience testbed was set up in the two separated laboratories of the Tsukuba Space center of NASDA, which were connected by tele-communication links. Manipulators respective for a microelectrode and a sample stage of microscope were moved by computers, of which command signals were transmitted from a computer in a remote control room. The computer in the control room was operated by an investigator (PI) who controlled the movement of each manipulator remotely. A stereoscopic vision of the microscope image were prepared by using a head mounted display (HMD) and were indispensable to the intracellular single cell recording. The fertilization potential of amphibian eggs was successfully obtained through the remote operating system.

  3. Optical levitation and manipulation of stuck particles with pulsed optical tweezers.

    PubMed

    Ambardekar, Amol Ashok; Li, Yong-Qing

    2005-07-15

    We report on optical levitation and manipulation of microscopic particles that are stuck on a glass surface with pulsed optical tweezers. An infrared pulse laser at 1.06 microm was used to generate a large gradient force (up to 10(-9) N) within a short duration (approximately 45 micros) that overcomes the adhesive interaction between the particles and the glass surface. Then a low-power continuous-wave diode laser at 785 nm was used to capture and manipulate the levitated particle. We have demonstrated that both stuck dielectric and biological micrometer-sized particles, including polystyrene beads, yeast cells, and Bacillus cereus bacteria, can be levitated and manipulated with this technique. We measured the single-pulse levitation efficiency for 2.0 microm polystyrene beads as a function of the pulse energy and of the axial displacement from the stuck particle to the pulsed laser focus, which was as high as 88%.

  4. Selective Manipulation of Neural Circuits.

    PubMed

    Park, Hong Geun; Carmel, Jason B

    2016-04-01

    Unraveling the complex network of neural circuits that form the nervous system demands tools that can manipulate specific circuits. The recent evolution of genetic tools to target neural circuits allows an unprecedented precision in elucidating their function. Here we describe two general approaches for achieving circuit specificity. The first uses the genetic identity of a cell, such as a transcription factor unique to a circuit, to drive expression of a molecule that can manipulate cell function. The second uses the spatial connectivity of a circuit to achieve specificity: one genetic element is introduced at the origin of a circuit and the other at its termination. When the two genetic elements combine within a neuron, they can alter its function. These two general approaches can be combined to allow manipulation of neurons with a specific genetic identity by introducing a regulatory gene into the origin or termination of the circuit. We consider the advantages and disadvantages of both these general approaches with regard to specificity and efficacy of the manipulations. We also review the genetic techniques that allow gain- and loss-of-function within specific neural circuits. These approaches introduce light-sensitive channels (optogenetic) or drug sensitive channels (chemogenetic) into neurons that form specific circuits. We compare these tools with others developed for circuit-specific manipulation and describe the advantages of each. Finally, we discuss how these tools might be applied for identification of the neural circuits that mediate behavior and for repair of neural connections.

  5. Induced pluripotent stem cells for regenerative medicine.

    PubMed

    Hirschi, Karen K; Li, Song; Roy, Krishnendu

    2014-07-11

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.

  6. Cell refractive index for cell biology and disease diagnosis: past, present and future.

    PubMed

    Liu, P Y; Chin, L K; Ser, W; Chen, H F; Hsieh, C-M; Lee, C-H; Sung, K-B; Ayi, T C; Yap, P H; Liedberg, B; Wang, K; Bourouina, T; Leprince-Wang, Y

    2016-02-21

    Cell refractive index is a key biophysical parameter, which has been extensively studied. It is correlated with other cell biophysical properties including mechanical, electrical and optical properties, and not only represents the intracellular mass and concentration of a cell, but also provides important insight for various biological models. Measurement techniques developed earlier only measure the effective refractive index of a cell or a cell suspension, providing only limited information on cell refractive index and hence hindering its in-depth analysis and correlation. Recently, the emergence of microfluidic, photonic and imaging technologies has enabled the manipulation of a single cell and the 3D refractive index of a single cell down to sub-micron resolution, providing powerful tools to study cells based on refractive index. In this review, we provide an overview of cell refractive index models and measurement techniques including microfluidic chip-based techniques for the last 50 years, present the applications and significance of cell refractive index in cell biology, hematology, and pathology, and discuss future research trends in the field, including 3D imaging methods, integration with microfluidics and potential applications in new and breakthrough research areas.

  7. Hybrid microfabrication of nanofiber-based sheets and rods for tissue engineering applications.

    PubMed

    Park, Suk-Hee; Kim, Min Sung; Lee, Dasom; Choi, Yong Whan; Kim, Deok-Ho; Suh, Kahp-Yang

    2013-12-01

    Electrospun nanofibers have been developed into a variety of forms for tissue engineering scaffolds to regulate the cellular functions guided by nanotopographical cues. Here, we have successfully fabricated nanofiber-based scaffold complexes of rod and sheet type by combining the three microfabrication techniques of electrospinning, spin coating, and polymer melt deposition. It was demonstrated that this hybrid fabrication could produce uniaxially aligned nanofiber scaffolds supported by a thin film, allowing for a mechanically enforced substrate for cell culture as well as facile scaffold manipulation. The results of cell analysis indicated that nanofibers on spin-coated films could provide contact guidance effects on cells and retain them even after manipulation. As an application of the cell-laden nanofiber film, we built a rod-type structure by rolling up the film around a mechanically supporting core microfiber, which was incorporated by polymer melt deposition. A biocompatible and biodegradable polymer, polycaprolactone, was used throughout the processes and thus could be used as a directly implantable substitute in tissue regeneration.

  8. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory.

    PubMed

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V McNeil; Segarra, Verónica A

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented-one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research.

  9. Introducing Mammalian Cell Culture and Cell Viability Techniques in the Undergraduate Biology Laboratory †

    PubMed Central

    Bowey-Dellinger, Kristen; Dixon, Luke; Ackerman, Kristin; Vigueira, Cynthia; Suh, Yewseok K.; Lyda, Todd; Sapp, Kelli; Grider, Michael; Crater, Dinene; Russell, Travis; Elias, Michael; Coffield, V. McNeil; Segarra, Verónica A.

    2017-01-01

    Undergraduate students learn about mammalian cell culture applications in introductory biology courses. However, laboratory modules are rarely designed to provide hands-on experience with mammalian cells or teach cell culture techniques, such as trypsinization and cell counting. Students are more likely to learn about cell culture using bacteria or yeast, as they are typically easier to grow, culture, and manipulate given the equipment, tools, and environment of most undergraduate biology laboratories. In contrast, the utilization of mammalian cells requires a dedicated biological safety cabinet and rigorous antiseptic techniques. For this reason, we have devised a laboratory module and method herein that familiarizes students with common cell culture procedures, without the use of a sterile hood or large cell culture facility. Students design and perform a time-efficient inquiry-based cell viability experiment using HeLa cells and tools that are readily available in an undergraduate biology laboratory. Students will become familiar with common techniques such as trypsinizing cells, cell counting with a hemocytometer, performing serial dilutions, and determining cell viability using trypan blue dye. Additionally, students will work with graphing software to analyze their data and think critically about the mechanism of death on a cellular level. Two different adaptations of this inquiry-based lab are presented—one for non-biology majors and one for biology majors. Overall, these laboratories aim to expose students to mammalian cell culture and basic techniques and help them to conceptualize their application in scientific research. PMID:28861134

  10. Transgenesis in axolotl (Ambystoma mexicanum).

    PubMed

    Khattak, Shahryar; Tanaka, Elly M

    2015-01-01

    Transgenic animals have been indispensable in elucidating and deciphering mechanisms underlying various biological phenomena. In regeneration, transgenic animals expressing fluorescent protein genes have been crucial for identifying the source cells for regeneration and the mechanism of blastema formation. Animals are usually generated by manipulating their genome using various techniques at/in one cell embryo/fertilized egg stage. Here, we describe the generation of germline transgenic axolotls (Ambystoma mexicanum) using the I-SceI meganuclease and Tol2 transposase.

  11. EVA manipulation and assembly of space structure columns

    NASA Technical Reports Server (NTRS)

    Loughead, T. E.; Pruett, E. C.

    1980-01-01

    Assembly techniques and hardware configurations used in assembly of the basic tetrahedral cell by A7LB pressure-suited subjects in a neutral bouyancy simulator were studied. Eleven subjects participated in assembly procedures which investigated two types of structural members and two configurations of attachment hardware. The assembly was accomplished through extra-vehicular activity (EVA) only, EVA with simulated manned maneuvering unit (MMU), and EVA with simulated MMU and simulated remote manipulator system (RMS). Assembly times as low as 10.20 minutes per tetrahedron were achieved. Task element data, as well as assembly procedures, are included.

  12. Optical and Acoustical Techniques for Non-viral Gene Delivery to Mammalian Cells and In-situ Study of Cytoskeletal Mechanics

    NASA Astrophysics Data System (ADS)

    Ma, Zili

    Since the first optical microscope invented by Anton van Leeuwenhoek in 1674, the great development of laser technique and its applications in biophotonics have helped us reveal the mechanisms underlying numerous biological activities gradually. The introduction of fs lasers to the studies of biology has emerged as a fast developing area calling for the efforts and skills both from optics and electric engineering and biology and medicine. Due to the fast update of laser source techniques, there has been an increasing number of commercialized fs lasers available for this growing market of biophotonics. To better utilize the potential offered by fs lasers, we studied the technique of optical gene delivery and tried to narrow the gap between laboratorial research and industrial/clinical applications, in that the strict experimental conditions of specific optical laboratorial studies are generally not appropriate for the practical biological applications. To carry out our experiments, we built a two-stage amplifier fs laser system to generate the desired pulse train. The laser pulse train was coupled into an invert fluorescence microscope for the imaging and manipulation of each cell. To overcome limitations brought by the tight focus of laser beam due to high NA objective, we introduced gold nanorods (GNRs), a metallic nanomaterial, with tunable optical property. With these additional membrane for membrane permeabilization, which could significantly improve the manipulation speed than that based on the tightly focused laser. We used GFP plasmid to demonstrate the applications of this technique in gene delivery, and successfully transfected and GFP-expressed cells were observed one day after the optical transfection. Additionally, as an important trend of biophotonics, the integration of optics with microfluidic chips has become the new frontier of both biology and engineering. Here we firstly demonstrated a technique of gene delivery by an on-chip device generating surface acoustic waves, which not only achieved a high efficiency of cells permeabilization in a quick speed, but also allowed us to observe the permeabilization process in real time by microscope. This device is also compatible with biophotonics studies based on fs laser, which can be further developed as a powerful tool for optical gene delivery with the capability of precisely controlling the fluid on-chip by SAW. SAW devices could also achieve exogenous gene delivery through the cell membrane without the need of adding chemical agents. Our results showed that the membrane of mammalian adherent cells could be effectively perforated transiently by applying a SAW. The transfection of pEGFP plasmids into endothelial cells was carried out successfully via this SAW-induced cell perforation. The expression of GFP was observed after 24-hour incubation subsequent to the SAW treatment. In regard to the application of fs lasers in cellular and subcellular level studies, we applied the optical nanoscissoring technique based on fs lasers in biomechanical studies to study the mechanical properties of single SF in-situ. Integrated into a confocal microscope, the fs laser showed great power in manipulating targeted in-situ subcellular structures under real-time imaging without damaging nearby regions. Here, how oxidative challenges would alter the mechanical properties of SFs in myoblasts was firstly investigated using the optical nanoscissoring technique to comprehend the whole picture of muscle tissue injury and repair from the basics. The prestress of stress fibers after the oxidative challenges was found through our modified viscoelastic retraction model and experiment result.

  13. A new method used in laparoscopic hysterectomy for uterine manipulation: uterine rein technique.

    PubMed

    Boztosun, Abdullah; Atılgan, Remzi; Pala, Şehmus; Olgan, Şafak

    2018-03-22

    The aim of this study is to define a new method of manipulating the uterus during laparoscopic hysterectomy. A total laparoscopic hysterectomy (TLH) with the newly defined technique was performed in 29 patients between July 2016 and July 2017. In this new technique, the uterus was bound from uterine corpus and fundus like a bridle with polyester tape, to allow abdominal manipulation. The technique was successfully performed at the first attempt in 93.1% of cases. It was repeated in two cases (6.9%) since the polyester tape departed away from the uterus at the first attempt. The mean application time was 11.2 min. The vaginal manipulator was not required in any of the cases. There were no intraoperative complications. In conclusion, this method has the advantages of not requiring any vaginal manipulator, reducing the number of people required during operation, permitting a near maximum manipulation of the uterus in all three dimensions, and giving the control of these manipulations directly to the surgeon. On the other hand, the technique also has some inadequacies which should be discussed and improved on in the future. Impact of statement What is already known on this subject? In a laparoscopic hysterectomy, manipulation of the uterus is essential for anatomical dissection of the regions and completion of the operation without complications. An ideal uterine manipulator is defined as inexpensive, as convenient, fast and suitable for injecting solutions, removing the need for an assistant and most importantly offering the most suitable range of motion. In this study, we describe a new and different technique (rein technique) allowing the abdominal manipulation of the uterus in a laparoscopic hysterectomy and discuss the advantages and disadvantages of this method. What do the results of this study add? The procedure was easily accomplished in most patients. We did not need to use an extra uterine manipulator in any of the cases. What are the implications of these findings for clinical practice and/or further research? In conclusion, the rein technique of uterine manipulation is effective and safe.

  14. Ferromagnetic resonance in a topographically modulated permalloy film

    NASA Astrophysics Data System (ADS)

    Sklenar, J.; Tucciarone, P.; Lee, R. J.; Tice, D.; Chang, R. P. H.; Lee, S. J.; Nevirkovets, I. P.; Heinonen, O.; Ketterson, J. B.

    2015-04-01

    A major focus within the field of magnonics involves the manipulation and control of spin-wave modes. This is usually done by patterning continuous soft magnetic films. Here, we report on work in which we use topographic modifications of a continuous magnetic thin film, rather than lithographic patterning techniques, to modify the ferromagnetic resonance spectrum. To demonstrate this technique we have performed in-plane, broadband, ferromagnetic resonance studies on a 100-nm-thick permalloy film sputtered onto a colloidal crystal with individual sphere diameters of 200 nm. Effects resulting from the, ideally, sixfold-symmetric underlying colloidal crystal were studied as a function of the in-plane field angle through experiment and micromagnetic modeling. Experimentally, we find two primary modes; the ratio of the intensities of these two modes exhibits a sixfold dependence. Detailed micromagnetic modeling shows that both modes are quasiuniform and nodeless in the unit cell but that they reside in different demagnetized regions of the unit cell. Our results demonstrate that topographic modification of magnetic thin films opens additional directions for manipulating ferromagnetic resonant excitations.

  15. Gene Expression Analysis of Mouse Embryonic Stem Cells Following Levitation in an Ultrasound Standing Wave Trap

    PubMed Central

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-01-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08–0.85 MPa) and times (5–60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. (E-mail: Bazoud@tcd.ie) PMID:21208732

  16. Targeted Gene Knock Out Using Nuclease-Assisted Vector Integration: Hemi- and Homozygous Deletion of JAG1.

    PubMed

    Gapinske, Michael; Tague, Nathan; Winter, Jackson; Underhill, Gregory H; Perez-Pinera, Pablo

    2018-01-01

    Gene editing technologies are revolutionizing fields such as biomedicine and biotechnology by providing a simple means to manipulate the genetic makeup of essentially any organism. Gene editing tools function by introducing double-stranded breaks at targeted sites within the genome, which the host cells repair preferentially by Non-Homologous End Joining. While the technologies to introduce double-stranded breaks have been extensively optimized, this progress has not been matched by the development of methods to integrate heterologous DNA at the target sites or techniques to detect and isolate cells that harbor the desired modification. We present here a technique for rapid introduction of vectors at target sites in the genome that enables efficient isolation of successfully edited cells.

  17. Microparticles controllable accumulation, arrangement, and spatial shaping performed by tapered-fiber-based laser-induced convection flow.

    PubMed

    Zhang, Yu; Lei, Jiaojie; Zhang, Yaxun; Liu, Zhihai; Zhang, Jianzhong; Yang, Xinghua; Yang, Jun; Yuan, Libo

    2017-10-30

    The ability to arrange cells and/or microparticles into the desired pattern is critical in biological, chemical, and metamaterial studies and other applications. Researchers have developed a variety of patterning techniques, which either have a limited capacity to simultaneously trap massive particles or lack the spatial resolution necessary to manipulate individual particle. Several approaches have been proposed that combine both high spatial selectivity and high throughput simultaneously. However, those methods are complex and difficult to fabricate. In this article, we propose and demonstrate a simple method that combines the laser-induced convection flow and fiber-based optical trapping methods to perform both regular and special spatial shaping arrangement. Essentially, we combine a light field with a large optical intensity gradient distribution and a thermal field with a large temperature gradient distribution to perform the microparticles shaping arrangement. The tapered-fiber-based laser-induced convection flow provides not only the batch manipulation of massive particles, but also the finer manipulation of special one or several particles, which break out the limit of single-fiber-based massive/individual particles photothermal manipulation. The combination technique allows for microparticles quick accumulation, single-layer and multilayer arrangement; special spatial shaping arrangement/adjustment, and microparticles sorting.

  18. Development and characterization of hollow microprobe array as a potential tool for versatile and massively parallel manipulation of single cells.

    PubMed

    Nagai, Moeto; Oohara, Kiyotaka; Kato, Keita; Kawashima, Takahiro; Shibata, Takayuki

    2015-04-01

    Parallel manipulation of single cells is important for reconstructing in vivo cellular microenvironments and studying cell functions. To manipulate single cells and reconstruct their environments, development of a versatile manipulation tool is necessary. In this study, we developed an array of hollow probes using microelectromechanical systems fabrication technology and demonstrated the manipulation of single cells. We conducted a cell aspiration experiment with a glass pipette and modeled a cell using a standard linear solid model, which provided information for designing hollow stepped probes for minimally invasive single-cell manipulation. We etched a silicon wafer on both sides and formed through holes with stepped structures. The inner diameters of the holes were reduced by SiO2 deposition of plasma-enhanced chemical vapor deposition to trap cells on the tips. This fabrication process makes it possible to control the wall thickness, inner diameter, and outer diameter of the probes. With the fabricated probes, single cells were manipulated and placed in microwells at a single-cell level in a parallel manner. We studied the capture, release, and survival rates of cells at different suction and release pressures and found that the cell trapping rate was directly proportional to the suction pressure, whereas the release rate and viability decreased with increasing the suction pressure. The proposed manipulation system makes it possible to place cells in a well array and observe the adherence, spreading, culture, and death of the cells. This system has potential as a tool for massively parallel manipulation and for three-dimensional hetero cellular assays.

  19. Novel physical chemistry approaches in biophysical researches with advanced application of lasers: Detection and manipulation.

    PubMed

    Iwata, Koichi; Terazima, Masahide; Masuhara, Hiroshi

    2018-02-01

    Novel methodologies utilizing pulsed or intense CW irradiation obtained from lasers have a major impact on biological sciences. In this article, recent development in biophysical researches fully utilizing the laser irradiation is described for three topics, time-resolved fluorescence spectroscopy, time-resolved thermodynamics, and manipulation of the biological assemblies by intense laser irradiation. First, experimental techniques for time-resolved fluorescence spectroscopy are concisely explained in Section 2. As an example of the recent application of time-resolved fluorescence spectroscopy to biological systems, evaluation of the viscosity of lipid bilayer membranes is described. The results of the spectroscopic experiments strongly suggest the presence of heterogeneous membrane structure with two different viscosity values in liposomes formed by a single phospholipid. Section 3 covers the time-resolved thermodynamics. Thermodynamical properties are important to characterize biomolecules. However, measurement of these quantities for short-lived intermediate species has been impossible by traditional thermodynamical techniques. Recently, development of a spectroscopic method based on the transient grating method enables us to measure these quantities and also to elucidate reaction kinetics which cannot be detected by other spectroscopic methods. The principle of the measurements and applications to some protein reactions are reviewed. Manipulation and fabrication of supramolecues, amino acids, proteins, and living cells by intense laser irradiation are described in Section 4. Unconventional assembly, crystallization and growth, amyloid fibril formation, and living cell manipulation are achieved by CW laser trapping and femtosecond laser-induced cavitation bubbling. Their spatio-temporal controllability is opening a new avenue in the relevant molecular and bioscience research fields. This article is part of a Special Issue entitled "Biophysical Exploration of Dynamical Ordering of Biomolecular Systems" edited by Dr. Koichi Kato. Copyright © 2017. Published by Elsevier B.V.

  20. Hydrogel Droplet Microfluidics for High-Throughput Single Molecule/Cell Analysis.

    PubMed

    Zhu, Zhi; Yang, Chaoyong James

    2017-01-17

    Heterogeneity among individual molecules and cells has posed significant challenges to traditional bulk assays, due to the assumption of average behavior, which would lose important biological information in heterogeneity and result in a misleading interpretation. Single molecule/cell analysis has become an important and emerging field in biological and biomedical research for insights into heterogeneity between large populations at high resolution. Compared with the ensemble bulk method, single molecule/cell analysis explores the information on time trajectories, conformational states, and interactions of individual molecules/cells, all key factors in the study of chemical and biological reaction pathways. Various powerful techniques have been developed for single molecule/cell analysis, including flow cytometry, atomic force microscopy, optical and magnetic tweezers, single-molecule fluorescence spectroscopy, and so forth. However, some of them have the low-throughput issue that has to analyze single molecules/cells one by one. Flow cytometry is a widely used high-throughput technique for single cell analysis but lacks the ability for intercellular interaction study and local environment control. Droplet microfluidics becomes attractive for single molecule/cell manipulation because single molecules/cells can be individually encased in monodisperse microdroplets, allowing high-throughput analysis and manipulation with precise control of the local environment. Moreover, hydrogels, cross-linked polymer networks that swell in the presence of water, have been introduced into droplet microfluidic systems as hydrogel droplet microfluidics. By replacing an aqueous phase with a monomer or polymer solution, hydrogel droplets can be generated on microfluidic chips for encapsulation of single molecules/cells according to the Poisson distribution. The sol-gel transition property endows the hydrogel droplets with new functionalities and diversified applications in single molecule/cell analysis. The hydrogel can act as a 3D cell culture matrix to mimic the extracellular environment for long-term single cell culture, which allows further heterogeneity study in proliferation, drug screening, and metastasis at the single-cell level. The sol-gel transition allows reactions in solution to be performed rapidly and efficiently with product storage in the gel for flexible downstream manipulation and analysis. More importantly, controllable sol-gel regulation provides a new way to maintain phenotype-genotype linkages in the hydrogel matrix for high throughput molecular evolution. In this Account, we will review the hydrogel droplet generation on microfluidics, single molecule/cell encapsulation in hydrogel droplets, as well as the progress made by our group and others in the application of hydrogel droplet microfluidics for single molecule/cell analysis, including single cell culture, single molecule/cell detection, single cell sequencing, and molecular evolution.

  1. A single frame: imaging live cells twenty-five years ago.

    PubMed

    Fink, Rachel

    2011-07-01

    In the mid-1980s live-cell imaging was changed by the introduction of video techniques, allowing new ways to collect and store data. The increased resolution obtained by manipulating video signals, the ability to use time-lapse videocassette recorders to study events that happen over long time intervals, and the introduction of fluorescent probes and sensitive video cameras opened research avenues previously unavailable. The author gives a personal account of this evolution, focusing on cell migration studies at the Marine Biological Laboratory 25 years ago. Copyright © 2011 Wiley-Liss, Inc.

  2. Genome Editing of Erythroid Cell Culture Model Systems.

    PubMed

    Yik, Jinfen J; Crossley, Merlin; Quinlan, Kate G R

    2018-01-01

    Genome editing to introduce specific mutations or to knock out genes in model cell systems has become an efficient platform for research in the fields of molecular biology, genetics, and cell biology. With recent rapid improvements in genome editing techniques, bench-top manipulation of the genome in cell culture has become progressively easier. The application of this knowledge to erythroid cell culture systems now allows the rapid analysis of the downstream effects of virtually any engineered gene disruption or modification in cell systems. Here, we describe a CRISPR/Cas9-based approach to making genomic modifications in erythroid lineage cells which we have successfully used in both murine (MEL) and human (K562) erythroleukaemia immortalized cell lines.

  3. Environmental scanning electron microscopy in cell biology.

    PubMed

    McGregor, J E; Staniewicz, L T L; Guthrie Neé Kirk, S E; Donald, A M

    2013-01-01

    Environmental scanning electron microscopy (ESEM) (1) is an imaging technique which allows hydrated, insulating samples to be imaged under an electron beam. The resolution afforded by this technique is higher than conventional optical microscopy but lower than conventional scanning electron microscopy (CSEM). The major advantage of the technique is the minimal sample preparation needed, making ESEM quick to use and the images less susceptible to the artifacts that the extensive sample preparation usually required for CSEM may introduce. Careful manipulation of both the humidity in the microscope chamber and the beam energy are nevertheless essential to prevent dehydration and beam damage artifacts. In some circumstances it is possible to image live cells in the ESEM (2).In the following sections we introduce the fundamental principles of ESEM imaging before presenting imaging protocols for plant epidermis, mammalian cells, and bacteria. In the first two cases samples are imaged using the secondary electron (topographic) signal, whereas a transmission technique is employed to image bacteria.

  4. Yeast cell surface display for lipase whole cell catalyst and its applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chainmore » length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.« less

  5. Particle Manipulation Methods in Droplet Microfluidics.

    PubMed

    Tenje, Maria; Fornell, Anna; Ohlin, Mathias; Nilsson, Johan

    2018-02-06

    This Feature describes the different particle manipulation techniques available in the droplet microfluidics toolbox to handle particles encapsulated inside droplets and to manipulate whole droplets. We address the advantages and disadvantages of the different techniques to guide new users.

  6. Investigation of Biophysical Mechanisms in Gold Nanoparticle Mediated Laser Manipulation of Cells Using a Multimodal Holographic and Fluorescence Imaging Setup

    PubMed Central

    Rakoski, Mirko S.; Heinemann, Dag; Schomaker, Markus; Ripken, Tammo; Meyer, Heiko

    2015-01-01

    Laser based cell manipulation has proven to be a versatile tool in biomedical applications. In this context, combining weakly focused laser pulses and nanostructures, e.g. gold nanoparticles, promises to be useful for high throughput cell manipulation, such as transfection and photothermal therapy. Interactions between laser pulses and gold nanoparticles are well understood. However, it is still necessary to study cell behavior in gold nanoparticle mediated laser manipulation. While parameters like cell viability or perforation efficiency are commonly addressed, the influence of the manipulation process on other essential cell parameters is not sufficiently investigated yet. Thus, we set out to study four relevant cell properties: cell volume and area, ion exchange and cytoskeleton structure after gold nanoparticle based laser manipulation. For this, we designed a multimodal imaging and manipulation setup. 200 nm gold nanoparticles were attached unspecifically to canine cells and irradiated by weakly focused 850 ps laser pulses. Volume and area change in the first minute post laser manipulation was monitored using digital holography. Calcium imaging and cells expressing a marker for filamentous actin (F-actin) served to analyze the ion exchange and the cytoskeleton, respectively. High radiant exposures led to cells exhibiting a tendency to shrink in volume and area, possibly due to outflow of cytoplasm. An intracellular raise in calcium was observed and accompanied by an intercellular calcium wave. This multimodal approach enabled for the first time a comprehensive analysis of the cell behavior in gold nanoparticle mediated cell manipulation. Additionally, this work can pave the way for a better understanding and the evaluation of new applications in the context of cell transfection or photothermal therapy. PMID:25909631

  7. Why do spinal manipulation techniques take the form they do? Towards a general model of spinal manipulation.

    PubMed

    Evans, David W

    2010-06-01

    For centuries, techniques used to manipulate joints in the spine have been passed down from one generation of manipulators to the next. Today, spinal manipulation is in the curious position that positive clinical effects have now been demonstrated, yet the theoretical base underpinning every aspect of its use is still underdeveloped. An important question is posed in this masterclass: why do spinal manipulation techniques take the form they do? From the available literature, two factors appear to provide an answer: 1. Action of a force upon vertebrae. Any 'direct' spinal manipulation technique requires that the patient be orientated in such a way that force is applied perpendicular to the overlying skin surface so as to act upon the vertebrae beneath. If the vertebral motion produced by 'directly' applied force is insufficient to produce the desired effect (e.g. cavitation), then force must be applied 'indirectly', often through remote body segments such as the head, thorax, abdomen, pelvis, and extremities. 2. Spinal segment morphology. A new hypothesis is presented. Spinal manipulation techniques exploit the morphology of vertebrae by inducing rotation at a spinal segment, about an axis that is always parallel to the articular surfaces of the constituent zygapophysial joints. In doing so, the articular surfaces of one zygapophysial joint appose to the point of contact, resulting in migration of the axis of rotation towards these contacting surfaces, and in turn this facilitates gapping of the other (target) zygapophysial joint. Other variations in the form of spinal manipulation techniques are likely to depend upon the personal style and individual choices of the practitioner.

  8. Learning spinal manipulation: A best-evidence synthesis of teaching methods.

    PubMed

    Stainsby, Brynne E; Clarke, Michelle C S; Egonia, Jade R

    2016-10-01

    The purpose of this study was to evaluate the effectiveness of different reported methods used to teach spinal manipulative therapy to chiropractic students. For this best-evidence literature synthesis, 5 electronic databases were searched from 1900 to 2015. Eligible studies were critically appraised using the criteria of the Scottish Intercollegiate Guidelines Network. Scientifically admissible studies were synthesized following best-evidence synthesis principles. Twenty articles were critically appraised, including 9 randomized clinical trials, 9 cohort studies, and 2 systematic reviews/meta-analyses. Eleven articles were accepted as scientifically admissible. The type of teaching method aids included a Thrust in Motion cervical manikin, instrumented cardiopulmonary reanimation manikin, padded contact with a load cell, instrumented treatment table with force sensor/transducer, and Dynadjust instrument. Several different methods exist in the literature for teaching spinal manipulative therapy techniques; however, future research in this developing area of chiropractic education is proposed. It is suggested that various teaching methods be included in the regular curricula of chiropractic colleges to aid in developing manipulation skills, efficiency, and knowledge of performance.

  9. Gene therapy: advances, challenges and perspectives

    PubMed Central

    Gonçalves, Giulliana Augusta Rangel; Paiva, Raquel de Melo Alves

    2017-01-01

    ABSTRACT The ability to make site-specific modifications to the human genome has been an objective in medicine since the recognition of the gene as the basic unit of heredity. Thus, gene therapy is understood as the ability of genetic improvement through the correction of altered (mutated) genes or site-specific modifications that target therapeutic treatment. This therapy became possible through the advances of genetics and bioengineering that enabled manipulating vectors for delivery of extrachromosomal material to target cells. One of the main focuses of this technique is the optimization of delivery vehicles (vectors) that are mostly plasmids, nanostructured or viruses. The viruses are more often investigated due to their excellence of invading cells and inserting their genetic material. However, there is great concern regarding exacerbated immune responses and genome manipulation, especially in germ line cells. In vivo studies in in somatic cell showed satisfactory results with approved protocols in clinical trials. These trials have been conducted in the United States, Europe, Australia and China. Recent biotechnological advances, such as induced pluripotent stem cells in patients with liver diseases, chimeric antigen receptor T-cell immunotherapy, and genomic editing by CRISPR/Cas9, are addressed in this review. PMID:29091160

  10. High throughput system for magnetic manipulation of cells, polymers, and biomaterials

    PubMed Central

    Spero, Richard Chasen; Vicci, Leandra; Cribb, Jeremy; Bober, David; Swaminathan, Vinay; O’Brien, E. Timothy; Rogers, Stephen L.; Superfine, R.

    2008-01-01

    In the past decade, high throughput screening (HTS) has changed the way biochemical assays are performed, but manipulation and mechanical measurement of micro- and nanoscale systems have not benefited from this trend. Techniques using microbeads (particles ∼0.1–10 μm) show promise for enabling high throughput mechanical measurements of microscopic systems. We demonstrate instrumentation to magnetically drive microbeads in a biocompatible, multiwell magnetic force system. It is based on commercial HTS standards and is scalable to 96 wells. Cells can be cultured in this magnetic high throughput system (MHTS). The MHTS can apply independently controlled forces to 16 specimen wells. Force calibrations demonstrate forces in excess of 1 nN, predicted force saturation as a function of pole material, and powerlaw dependence of F∼r−2.7±0.1. We employ this system to measure the stiffness of SR2+ Drosophila cells. MHTS technology is a key step toward a high throughput screening system for micro- and nanoscale biophysical experiments. PMID:19044357

  11. Strategies for cell manipulation and skeletal tissue engineering using high-throughput polymer blend formulation and microarray techniques.

    PubMed

    Khan, Ferdous; Tare, Rahul S; Kanczler, Janos M; Oreffo, Richard O C; Bradley, Mark

    2010-03-01

    A combination of high-throughput material formulation and microarray techniques were synergistically applied for the efficient analysis of the biological functionality of 135 binary polymer blends. This allowed the identification of cell-compatible biopolymers permissive for human skeletal stem cell growth in both in vitro and in vivo applications. The blended polymeric materials were developed from commercially available, inexpensive and well characterised biodegradable polymers, which on their own lacked both the structural requirements of a scaffold material and, critically, the ability to facilitate cell growth. Blends identified here proved excellent templates for cell attachment, and in addition, a number of blends displayed remarkable bone-like architecture and facilitated bone regeneration by providing 3D biomimetic scaffolds for skeletal cell growth and osteogenic differentiation. This study demonstrates a unique strategy to generate and identify innovative materials with widespread application in cell biology as well as offering a new reparative platform strategy applicable to skeletal tissues. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  12. The structure and function of cell membranes studied by atomic force microscopy.

    PubMed

    Shi, Yan; Cai, Mingjun; Zhou, Lulu; Wang, Hongda

    2018-01-01

    The cell membrane, involved in almost all communications of cells and surrounding matrix, is one of the most complicated components of cells. Lack of suitable methods for the detection of cell membranes in vivo has sparked debates on the biochemical composition and structure of cell membranes over half a century. The development of single molecule techniques, such as AFM, SMFS, and TREC, provides a versatile platform for imaging and manipulating cell membranes in biological relevant environments. Here, we discuss the latest developments in AFM and the progress made in cell membrane research. In particular, we highlight novel structure models and dynamic processes, including the mechanical properties of the cell membranes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Multimodal optical phenotyping of cancer cells

    NASA Astrophysics Data System (ADS)

    Kastl, Lena; Budde, Björn; Isbach, Michael; Rommel, Christina; Kemper, Björn; Schnekenburger, Jürgen

    2015-03-01

    There is a growing interest in label-free, optical techniques like digital holographic microscopy (DHM) and optical cell stretching, since the interaction with samples is minimized. Because optical manipulation strongly depends on the optical and physiological properties of the investigated material, we combined the usage of these methods for the characterization of pancreatic tumor cells. Our results demonstrate that cells of distinct differentiation levels, or different expression in only one protein, show differences in their deformability. Additionally, the DHM results showed only few variations in the refractive index, indicating that it does not significantly influence the results of the optical cell stretching. Thus, the combined usage of the two technologies represents a promising new approach for tumor cell characterization.

  14. A flow cytometry assay to quantify intercellular exchange of membrane components† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00260b Click here for additional data file.

    PubMed Central

    Poulcharidis, Dimitrios; Belfor, Kimberley

    2017-01-01

    Membrane-compound exchange is vital for cell-to-cell communication, yet quantification of this process is difficult. Here we present a method using flow cytometry in combination with bioorthogonal and fluorescent labelling techniques to quantify the amount of exchange of cholesterol and sialylated compounds between cells. We demonstrate that direct cell–cell contact is the likely mechanism of sterol-exchange and show that by manipulating the contact time between cells using complementary coiled-coil peptides results in an enhanced exchange rate of membrane components between cells. PMID:28970937

  15. Bioprinting Living Biofilms through Optogenetic Manipulation.

    PubMed

    Huang, Yajia; Xia, Aiguo; Yang, Guang; Jin, Fan

    2018-04-18

    In this paper, we present a new strategy for microprinting dense bacterial communities with a prescribed organization on a substrate. Unlike conventional bioprinting techniques that require bioinks, through optogenetic manipulation, we directly manipulated the behaviors of Pseudomonas aeruginosa to allow these living bacteria to autonomically form patterned biofilms following prescribed illumination. The results showed that through optogenetic manipulation, patterned bacterial communities with high spatial resolution (approximately 10 μm) could be constructed in 6 h. Thus, optogenetic manipulation greatly increases the range of available bioprinting techniques.

  16. Lysophosphatidic acid enhances collagen deposition and matrix thickening in engineered tissue.

    PubMed

    Chabaud, Stéphane; Marcoux, Thomas-Louis; Deschênes-Rompré, Marie-Pier; Rousseau, Alexandre; Morissette, Amélie; Bouhout, Sara; Bernard, Geneviève; Bolduc, Stéphane

    2015-11-01

    The time needed to produce engineered tissue is critical. A self-assembly approach provided excellent results regarding biological functions and cell differentiation because it closely respected the microenvironment of cells. Nevertheless, the technique was time consuming for producing tissue equivalents with enough extracellular matrix to allow manipulations. Unlike L-arginine supplementation that only increased accumulation of collagen in cell culture supernatant in our model, addition of lysophosphatidic acid, a natural bioactive lipid, did not modify the amount of accumulated collagen in the cell culture supernatant; however, it enhanced the matrix deposition rate without inducing fibroblast hyperproliferation and tissue fibrosis. Copyright © 2013 John Wiley & Sons, Ltd.

  17. Inactivation of an integrated antibiotic resistance gene in mammalian cells to re-enable antibiotic selection.

    PubMed

    Ni, Peiling; Zhang, Qian; Chen, Haixia; Chen, Lingyi

    2014-01-01

    Removing an antibiotic resistance gene allows the same antibiotic to be re-used in the next round of genetic manipulation. Here we applied the CRISPR/Cas system to disrupt the puromycin resistance gene in an engineered mouse embryonic stem cell line and then re-used puromycin selection in the resulting cells to establish stable reporter cell lines. With the CRISPR/Cas system, pre-engineered sequences, such as loxP or FRT, are not required. Thus, this technique can be used to disrupt antibiotic resistance genes that cannot be removed by the Cre-loxP and Flp-FRT systems.

  18. In vitro manipulation techniques of porcine embryos: a meta-analysis related to transfers, pregnancies and piglets.

    PubMed

    Liu, Ying; Li, Juan; Løvendahl, Peter; Schmidt, Mette; Larsen, Knud; Callesen, Henrik

    2015-03-01

    During the last 17 years, considerable advancements have been achieved in the production of pigs, transgenic and non-transgenic, by methods of somatic cell nuclear transfer, in vitro fertilisation, intracytoplasmic sperm injection, microinjection and sperm-mediated gene transfer by artificial insemination. Therefore, a review of the overall efficiency for the developmental competence of embryos produced by these in vitro methods would be useful in order to obtain a more thorough overview of this growing area with respect to its development and present status. In this review a meta-analysis was used to analyse data collected from all published articles with a focus on zygotes and embryos for transfer, pregnancy, full-term development and piglets born. It was generally concluded that an increasing level of in vitro manipulation of porcine embryos decreased the overall efficiency for production of piglets. The techniques of nuclear transfer have been developed markedly through the increasing number of studies performed, and the results have become more stable. Prolonged in vitro culture period did not lead to any negative effect on nuclear transfer embryos after their transfer and it resulted in a similar or even higher litter size. More complete information is needed in future scientific articles about these in vitro manipulation techniques to establish a more solid basis for the evaluation of their status and to reveal and further investigate any eventual problems.

  19. Ferromagnetic resonance in a topographically modulated permalloy film

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sklenar, J.; Tucciarone, P.; Lee, R. J.

    2015-04-01

    A major focus within the field of magnonics involves the manipulation and control spin wave modes. This is usually done by patterning continuous soft magnetic films. Here, we report on work in which we use topographic modifications of a continuous magnetic thin film, rather than lithographic patterning techniques, to modify the magnon spectrum. To demonstrate this technique we have performed in-plane, broad-band, ferromagnetic res- onance studies on a 100 nm Permalloy film sputtered unto a colloidal crystal with individual sphere diameters of 200 nm. Effects resulting from the, ideally, six-fold symmetric underlying colloidal crystal were studied as a function ofmore » the in plane field angle through experiment and micromagnetic modeling. Experimentally, we find two primary spin wave modes; the ratio of the amplitude of these two modes exhibits a six-fold dependence. Modeling shows that both modes are fundamental modes that are nodeless in the unit cell but reside in different demagnetized regions of the unit cell. Additionally, modeling suggests the presence of new higher order topographically modified spin wave modes. Our results demonstrate that topographic modification of magnetic thin films opens new directions for manipulating spin wave modes.« less

  20. Gene expression analysis of mouse embryonic stem cells following levitation in an ultrasound standing wave trap.

    PubMed

    Bazou, Despina; Kearney, Roisin; Mansergh, Fiona; Bourdon, Celine; Farrar, Jane; Wride, Michael

    2011-02-01

    In the present paper, gene expression analysis of mouse embryonic stem (ES) cells levitated in a novel ultrasound standing wave trap (USWT) (Bazou et al. 2005a) at variable acoustic pressures (0.08-0.85 MPa) and times (5-60 min) was performed. Our results showed that levitation of ES cells at the highest employed acoustic pressure for 60 min does not modify gene expression and cells maintain their pluripotency. Embryoid bodies (EBs) also expressed the early and late neural differentiation markers, which were also unaffected by the acoustic field. Our results suggest that the ultrasound trap microenvironment is minimally invasive as the biologic consequences of ES cell replication and EB differentiation proceed without significantly affecting gene expression. The technique holds great promise in safe cell manipulation techniques for a variety of applications including tissue engineering and regenerative medicine. Copyright © 2011 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Characterization of femtosecond-laser pulse induced cell membrane nanosurgical attachment.

    PubMed

    Katchinskiy, Nir; Godbout, Roseline; Elezzabi, Abdulhakem Y

    2016-07-01

    This article provides insight into the mechanism of femtosecond laser nanosurgical attachment of cells. We have demonstrated that during the attachment of two retinoblastoma cells using sub-10 femtosecond laser pulses, with 800 nm central wavelength, the phospholipid molecules of both cells hemifuse and form one shared phospholipid bilayer, at the attachment location. In order to verify the hypothesis that hemifusion takes place, transmission electron microscope images of the cell membranes of retinoblastoma cells were taken. It is shown that at the attachment interface, the two cell membranes coalesce and form one single membrane shared by both cells. Thus, further evidence is provided to support the hypothesis that laser-induced ionization process led to an ultrafast reversible destabilization of the phospholipid layer of the cellular membrane, which resulted in cross-linking of the phospholipid molecules in each membrane. This process of hemifusion occurs throughout the entire penetration depth of the femtosecond laser pulse train. Thus, the attachment between the cells takes place across a large surface area, which affirms our findings of strong physical attachment between the cells. The femtosecond laser pulse hemifusion technique can potentially provide a platform for precise molecular manipulation of cellular membranes. Manipulation of the cellular membrane is an important procedure that could aid in studying diseases such as cancer; where the expression level of plasma proteins on the cell membrane is altered.

  2. Detection of Genetically Altered Copper Levels in Drosophila Tissues by Synchrotron X-Ray Fluorescence Microscopy

    PubMed Central

    Lye, Jessica C.; Hwang, Joab E. C.; Paterson, David; de Jonge, Martin D.; Howard, Daryl L.; Burke, Richard

    2011-01-01

    Tissue-specific manipulation of known copper transport genes in Drosophila tissues results in phenotypes that are presumably due to an alteration in copper levels in the targeted cells. However direct confirmation of this has to date been technically challenging. Measures of cellular copper content such as expression levels of copper-responsive genes or cuproenzyme activity levels, while useful, are indirect. First-generation copper-sensitive fluorophores show promise but currently lack the sensitivity required to detect subtle changes in copper levels. Moreover such techniques do not provide information regarding other relevant biometals such as zinc or iron. Traditional techniques for measuring elemental composition such as inductively coupled plasma mass spectroscopy are not sensitive enough for use with the small tissue amounts available in Drosophila research. Here we present synchrotron x-ray fluorescence microscopy analysis of two different Drosophila tissues, the larval wing imaginal disc, and sectioned adult fly heads and show that this technique can be used to detect changes in tissue copper levels caused by targeted manipulation of known copper homeostasis genes. PMID:22053217

  3. Flagellation of Pseudomonas aeruginosa in newly divided cells

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Lee, Calvin; Anda, Jaime; Wong, Gerard

    2015-03-01

    For monotrichous bacteria, Pseudomonas aeruginosa, after cell division, one daughter cell inherits the old flagellum from its mother cell, and the other grows a new flagellum during or after cell division. It had been shown that the new flagellum grows at the distal pole of the dividing cell when the two daughter cells haven't completely separated. However, for those daughter cells who grow new flagella after division, it still remains unknown at which pole the new flagellum will grow. Here, by combining our newly developed bacteria family tree tracking techniques with genetic manipulation method, we showed that for the daughter cell who did not inherit the old flagellum, a new flagellum has about 90% chances to grow at the newly formed pole. We proposed a model for flagellation of P. aeruginosa.

  4. Innovative Tools and Technology for Analysis of Single Cells and Cell-Cell Interaction.

    PubMed

    Konry, Tania; Sarkar, Saheli; Sabhachandani, Pooja; Cohen, Noa

    2016-07-11

    Heterogeneity in single-cell responses and intercellular interactions results from complex regulation of cell-intrinsic and environmental factors. Single-cell analysis allows not only detection of individual cellular characteristics but also correlation of genetic content with phenotypic traits in the same cell. Technological advances in micro- and nanofabrication have benefited single-cell analysis by allowing precise control of the localized microenvironment, cell manipulation, and sensitive detection capabilities. Additionally, microscale techniques permit rapid, high-throughput, multiparametric screening that has become essential for -omics research. This review highlights innovative applications of microscale platforms in genetic, proteomic, and metabolic detection in single cells; cell sorting strategies; and heterotypic cell-cell interaction. We discuss key design aspects of single-cell localization and isolation in microfluidic systems, dynamic and endpoint analyses, and approaches that integrate highly multiplexed detection of various intracellular species.

  5. A comparison of force sensing techniques for planetary manipulation

    NASA Technical Reports Server (NTRS)

    Helmick, Daniel; Okon, Avi; DiCicco, Matt

    2006-01-01

    Five techniques for sensing forces with a manipulator are compared analytically and experimentally. The techniques compared are: a six-axis wrist force/torque sensor, joint torque sensors, link strain gauges, motor current sensors, and flexibility modeling. The accuracy and repeatability fo each technique is quantified and compared.

  6. [Inheritance and evolution of acupuncture manipulation techniques of Zhejiang acupuncture masters in modern times].

    PubMed

    Yu, Daxiong; Ma, Ruijie; Fang, Jianqiao

    2015-05-01

    There are many eminent acupuncture masters in modern times in the regions of Zhejiang province, which has developed the acupuncture schools of numerous characteristics and induces the important impacts at home and abroad. Through the literature collection on the acupuncture schools in Zhejiang and the interviews to the parties involved, it has been discovered that the acupuncture manipulation techniques of acupuncture masters in modern times are specifically featured. Those techniques are developed on the basis of Neijing (Internal Classic), Jinzhenfu (Ode to Gold Needle) and Zhenjiu Dacheng (Great Compendium of Acupuncture and Moxibustion). No matter to obey the old maxim or study by himself, every master lays the emphasis on the research and interpretation of classical theories and integrates the traditional with the modern. In the paper, the acupuncture manipulation techniques of Zhejiang acupuncture masters in modern times are stated from four aspects, named needling techniques in Internal Classic, feijingzouqi needling technique, penetrating needling technique and innovation of acupuncture manipulation.

  7. Future dentistry: cell therapy meets tooth and periodontal repair and regeneration

    PubMed Central

    Catón, Javier; Bostanci, Nagihan; Remboutsika, Eumorphia; De Bari, Cosimo; Mitsiadis, Thimios A

    2011-01-01

    Abstract Cell-based tissue repair of the tooth and – tooth-supporting – periodontal ligament (PDL) is a new attractive approach that complements traditional restorative or surgical techniques for replacement of injured or pathologically damaged tissues. In such therapeutic approaches, stem cells and/or progenitor cells are manipulated in vitro and administered to patients as living and dynamic biological agents. In this review, we discuss the clonogenic potential of human dental and periodontal tissues such as the dental pulp and the PDL and their potential for tooth and periodontal repair and/or regeneration. We propose novel therapeutic approaches using stem cells or progenitor cells, which are targeted to regenerate the lost dental or periodontal tissue. PMID:21199329

  8. Review Article—Dielectrophoresis: Status of the theory, technology, and applications

    PubMed Central

    Pethig, Ronald

    2010-01-01

    A review is presented of the present status of the theory, the developed technology and the current applications of dielectrophoresis (DEP). Over the past 10 years around 2000 publications have addressed these three aspects, and current trends suggest that the theory and technology have matured sufficiently for most effort to now be directed towards applying DEP to unmet needs in such areas as biosensors, cell therapeutics, drug discovery, medical diagnostics, microfluidics, nanoassembly, and particle filtration. The dipole approximation to describe the DEP force acting on a particle subjected to a nonuniform electric field has evolved to include multipole contributions, the perturbing effects arising from interactions with other cells and boundary surfaces, and the influence of electrical double-layer polarizations that must be considered for nanoparticles. Theoretical modelling of the electric field gradients generated by different electrode designs has also reached an advanced state. Advances in the technology include the development of sophisticated electrode designs, along with the introduction of new materials (e.g., silicone polymers, dry film resist) and methods for fabricating the electrodes and microfluidics of DEP devices (photo and electron beam lithography, laser ablation, thin film techniques, CMOS technology). Around three-quarters of the 300 or so scientific publications now being published each year on DEP are directed towards practical applications, and this is matched with an increasing number of patent applications. A summary of the US patents granted since January 2005 is given, along with an outline of the small number of perceived industrial applications (e.g., mineral separation, micropolishing, manipulation and dispensing of fluid droplets, manipulation and assembly of micro components). The technology has also advanced sufficiently for DEP to be used as a tool to manipulate nanoparticles (e.g., carbon nanotubes, nano wires, gold and metal oxide nanoparticles) for the fabrication of devices and sensors. Most efforts are now being directed towards biomedical applications, such as the spatial manipulation and selective separation∕enrichment of target cells or bacteria, high-throughput molecular screening, biosensors, immunoassays, and the artificial engineering of three-dimensional cell constructs. DEP is able to manipulate and sort cells without the need for biochemical labels or other bioengineered tags, and without contact to any surfaces. This opens up potentially important applications of DEP as a tool to address an unmet need in stem cell research and therapy. PMID:20697589

  9. Rapid determination of cell mass and density using digitally controlled electric field in a microfluidic chip.

    PubMed

    Zhao, Yuliang; Lai, Hok Sum Sam; Zhang, Guanglie; Lee, Gwo-Bin; Li, Wen Jung

    2014-11-21

    The density of a single cell is a fundamental property of cells. Cells in the same cycle phase have similar volume, but the differences in their mass and density could elucidate each cell's physiological state. Here we report a novel technique to rapidly measure the density and mass of a single cell using an optically induced electrokinetics (OEK) microfluidic platform. Presently, single cellular mass and density measurement devices require a complicated fabrication process and their output is not scalable, i.e., it is extremely difficult to measure the mass and density of a large quantity of cells rapidly. The technique reported here operates on a principle combining sedimentation theory, computer vision, and microparticle manipulation techniques in an OEK microfluidic platform. We will show in this paper that this technique enables the measurement of single-cell volume, density, and mass rapidly and accurately in a repeatable manner. The technique is also scalable - it allows simultaneous measurement of volume, density, and mass of multiple cells. Essentially, a simple time-controlled projected light pattern is used to illuminate the selected area on the OEK microfluidic chip that contains cells to lift the cells to a particular height above the chip's surface. Then, the cells are allowed to "free fall" to the chip's surface, with competing buoyancy, gravitational, and fluidic drag forces acting on the cells. By using a computer vision algorithm to accurately track the motion of the cells and then relate the cells' motion trajectory to sedimentation theory, the volume, mass, and density of each cell can be rapidly determined. A theoretical model of micro-sized spheres settling towards an infinite plane in a microfluidic environment is first derived and validated experimentally using standard micropolystyrene beads to demonstrate the viability and accuracy of this new technique. Next, we show that the yeast cell volume, mass, and density could be rapidly determined using this technology, with results comparable to those using the existing method suspended microchannel resonator.

  10. Reproducible isolation of lymph node stromal cells reveals site-dependent differences in fibroblastic reticular cells.

    PubMed

    Fletcher, Anne L; Malhotra, Deepali; Acton, Sophie E; Lukacs-Kornek, Veronika; Bellemare-Pelletier, Angelique; Curry, Mark; Armant, Myriam; Turley, Shannon J

    2011-01-01

    Within lymph nodes, non-hematopoietic stromal cells organize and interact with leukocytes in an immunologically important manner. In addition to organizing T and B cell segregation and expressing lymphocyte survival factors, several recent studies have shown that lymph node stromal cells shape the naïve T cell repertoire, expressing self-antigens which delete self-reactive T cells in a unique and non-redundant fashion. A fundamental role in peripheral tolerance, in addition to an otherwise extensive functional portfolio, necessitates closer study of lymph node stromal cell subsets using modern immunological techniques; however this has not routinely been possible in the field, due to difficulties reproducibly isolating these rare subsets. Techniques were therefore developed for successful ex vivo and in vitro manipulation and characterization of lymph node stroma. Here we discuss and validate these techniques in mice and humans, and apply them to address several unanswered questions regarding lymph node composition. We explored the steady-state stromal composition of lymph nodes isolated from mice and humans, and found that marginal reticular cells and lymphatic endothelial cells required lymphocytes for their normal maturation in mice. We also report alterations in the proportion and number of fibroblastic reticular cells (FRCs) between skin-draining and mesenteric lymph nodes. Similarly, transcriptional profiling of FRCs revealed changes in cytokine production from these sites. Together, these methods permit highly reproducible stromal cell isolation, sorting, and culture.

  11. Microfabricated Patch Clamp Electrodes for Improved Ion Channel Protein Measurements

    NASA Astrophysics Data System (ADS)

    Klemic, James; Klemic, Kathryn; Reed, Mark; Sigworth, Frederick

    2002-03-01

    Ion channels are trans-membrane proteins that underlie many cell functions including hormone and neurotransmitter release, muscle contraction and cell signaling cascades. Ion channel proteins are commonly characterized via the patch clamp method in which an extruded glass tube containing ionic solution, manipulated by an expert technician, is brought into contact with a living cell to record ionic current through the cell membrane. Microfabricated planar patch electrodes, micromolded in the silicone elastomer poly-dimethylsiloxane (PDMS) from microlithographically patterned structures, have been developed that improve on this method. Microfabrication techniques allow arrays of patch electrodes to be fabricated, increasing the throughput of the measurement technique. Planar patch electrodes readily allow the automation of cell sealing, further increasing throughput. Microfabricated electrode arrays may be readily integrated with microfluidic structures to allow fast, in situ solution exchange. Miniaturization of the electrode geometry should increase both the signal to noise and the bandwidth of the measurement. Microfabricated patch electrode arrays have been fabricated and measurements have been taken.

  12. Development and biological applications of optical tweezers and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Xie, Chang'an

    Optical tweezers is a three-dimensional manipulation tool that employs a gradient force that originates from the single highly focused laser beam. Raman spectroscopy is a molecular analytical tool that can give a highly unique "fingerprint" for each substance by measuring the unique vibrations of its molecules. The combination of these two optical techniques offers a new tool for the manipulation and identification of single biological cells and microscopic particles. In this thesis, we designed and implemented a Laser-Tweezers-Raman-Spectroscopy (LTRS) system, also called the Raman-tweezers, for the simultaneous capture and analysis of both biological particles and non-biological particles. We show that microparticles can be conveniently captured at the focus of a laser beam and the Raman spectra of trapped particles can be acquired with high quality. The LTRS system overcomes the intrinsic Brownian motion and cell motility of microparticles in solution and provides a promising tool for in situ identifying suspicious agents. In order to increase the signal to noise ratio, several schemes were employed in LTRS system to reduce the blank noise and the fluorescence signal coming from analytes and the surrounding background. These techniques include near-infrared excitation, optical levitation, confocal microscopy, and frequency-shifted Raman difference. The LTRS system has been applied for the study in cell biology at the single cell level. With the built Raman-tweezers system, we studied the dynamic physiological processes of single living cells, including cell cycle, the transcription and translation of recombinant protein in transgenic yeast cells and the T cell activation. We also studied cell damage and associated biochemical processes in optical traps, UV radiations, and evaluated heating by near-infrared Raman spectroscopy. These studies show that the Raman-tweezers system is feasible to provide rapid and reliable diagnosis of cellular disorders and can be used as a valuable tool to study cellular processes within single living cells or intracellular organelles and may aid research in molecular and cellular biology.

  13. Learning spinal manipulation: A best-evidence synthesis of teaching methods*

    PubMed Central

    Stainsby, Brynne E.; Clarke, Michelle C.S.; Egonia, Jade R.

    2016-01-01

    Objective: The purpose of this study was to evaluate the effectiveness of different reported methods used to teach spinal manipulative therapy to chiropractic students. Methods: For this best-evidence literature synthesis, 5 electronic databases were searched from 1900 to 2015. Eligible studies were critically appraised using the criteria of the Scottish Intercollegiate Guidelines Network. Scientifically admissible studies were synthesized following best-evidence synthesis principles. Results: Twenty articles were critically appraised, including 9 randomized clinical trials, 9 cohort studies, and 2 systematic reviews/meta-analyses. Eleven articles were accepted as scientifically admissible. The type of teaching method aids included a Thrust in Motion cervical manikin, instrumented cardiopulmonary reanimation manikin, padded contact with a load cell, instrumented treatment table with force sensor/transducer, and Dynadjust instrument. Conclusions: Several different methods exist in the literature for teaching spinal manipulative therapy techniques; however, future research in this developing area of chiropractic education is proposed. It is suggested that various teaching methods be included in the regular curricula of chiropractic colleges to aid in developing manipulation skills, efficiency, and knowledge of performance. PMID:26998630

  14. Applications and Limitations of Micropropagation for the Production of Underwater Grasses

    DTIC Science & Technology

    2006-01-01

    ERDC/TN SAV-06-1 January 2006 Applications and Limitations of Micropropagation for the Production of Underwater Grasses by Steve Ailstock and...Deborah Shafer DEFINITION: Micropropagation is a technique that manipulates small quantities of axenic plant mate- rial, ranging from single cells to...plant structures. Micropropagation , on the other hand, allows the year-round production of new plants at rates significantly higher than that

  15. Transportation of single cell and microbubbles by phase-shift introduced to standing leaky surface acoustic waves

    PubMed Central

    Meng, Long; Cai, Feiyan; Zhang, Zidong; Niu, Lili; Jin, Qiaofeng; Yan, Fei; Wu, Junru; Wang, Zhanhui; Zheng, Hairong

    2011-01-01

    A microfluidic device was developed to precisely transport a single cell or multiple microbubbles by introducing phase-shifts to a standing leaky surface acoustic wave (SLSAW). The device consists of a polydimethyl-siloxane (PDMS) microchannel and two phase-tunable interdigital transducers (IDTs) for the generation of the relative phase for the pair of surface acoustic waves (SAW) propagating along the opposite directions forming a standing wave. When the SAW contacts the fluid medium inside the microchannel, some of SAW energy is coupled to the fluid and the SAW becomes the leaky surface wave. By modulating the relative phase between two IDTs, the positions of pressure nodes of the SLSAW in the microchannel change linearly resulting in the transportation of a single cell or microbubbles. The results also reveal that there is a good linear relationship between the relative phase and the displacement of a single cell or microbubbles. Furthermore, the single cell and the microbubbles can be transported over a predetermined distance continuously until they reach the targeted locations. This technique has its distinct advantages, such as precise position-manipulation, simple to implement, miniature size, and noninvasive character, which may provide an effective method for the position-manipulation of a single cell and microbubbles in many biological and biomedical applications. PMID:22662056

  16. Manipulation of mammalian cells using a single-fiber optical microbeam

    PubMed Central

    Mohanty, Samarendra K.; Mohanty, Khyati S.; Berns, Michael W.

    2014-01-01

    The short working distance of microscope objectives has severely restricted the application of optical micromanipulation techniques at larger depths. We show the first use of fiber-optic tweezers toward controlled guidance of neuronal growth cones and stretching of neurons. Further, by mode locking, the fiber-optic tweezers beam was converted to fiber-optic scissors, enabling dissection of neuronal processes and thus allowing study of the subsequent response of neurons to localized injury. At high average powers, lysis of a three-dimensionally trapped cell was accomplished. PMID:19021429

  17. Hybrid cell adhesive material for instant dielectrophoretic cell trapping and long-term cell function assessment.

    PubMed

    Reyes, Darwin R; Hong, Jennifer S; Elliott, John T; Gaitan, Michael

    2011-08-16

    Dielectrophoresis (DEP) for cell manipulation has focused, for the most part, on approaches for separation/enrichment of cells of interest. Advancements in cell positioning and immobilization onto substrates for cell culture, either as single cells or as cell aggregates, has benefited from the intensified research efforts in DEP (electrokinetic) manipulation. However, there has yet to be a DEP approach that provides the conditions for cell manipulation while promoting cell function processes such as cell differentiation. Here we present the first demonstration of a system that combines DEP with a hybrid cell adhesive material (hCAM) to allow for cell entrapment and cell function, as demonstrated by cell differentiation into neuronlike cells (NLCs). The hCAM, comprised of polyelectrolytes and fibronectin, was engineered to function as an instantaneous cell adhesive surface after DEP manipulation and to support long-term cell function (cell proliferation, induction, and differentiation). Pluripotent P19 mouse embryonal carcinoma cells flowing within a microchannel were attracted to the DEP electrode surface and remained adhered onto the hCAM coating under a fluid flow field after the DEP forces were removed. Cells remained viable after DEP manipulation for up to 8 d, during which time the P19 cells were induced to differentiate into NLCs. This approach could have further applications in areas such as cell-cell communication, three-dimensional cell aggregates to create cell microenvironments, and cell cocultures.

  18. Articular dysfunction patterns in patients with mechanical low back pain: A clinical algorithm to guide specific mobilization and manipulation techniques.

    PubMed

    Dewitte, V; Cagnie, B; Barbe, T; Beernaert, A; Vanthillo, B; Danneels, L

    2015-06-01

    Recent systematic reviews have demonstrated reasonable evidence that lumbar mobilization and manipulation techniques are beneficial. However, knowledge on optimal techniques and doses, and its clinical reasoning is currently lacking. To address this, a clinical algorithm is presented so as to guide therapists in their clinical reasoning to identify patients who are likely to respond to lumbar mobilization and/or manipulation and to direct appropriate technique selection. Key features in subjective and clinical examination suggestive of mechanical nociceptive pain probably arising from articular structures, can categorize patients into distinct articular dysfunction patterns. Based on these patterns, specific mobilization and manipulation techniques are suggested. This clinical algorithm is merely based on empirical clinical expertise and complemented through knowledge exchange between international colleagues. The added value of the proposed articular dysfunction patterns should be considered within a broader perspective. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Comparison of short-term response to two spinal manipulation techniques for patients with low back pain in a military beneficiary population.

    PubMed

    Sutlive, Thomas G; Mabry, Lance M; Easterling, Emmanuel J; Durbin, Jose D; Hanson, Stephen L; Wainner, Robert S; Childs, John D

    2009-07-01

    To determine whether military health care beneficiaries with low back pain (LBP) who are likely to respond successfully to spinal manipulation experience a difference in short-term clinical outcomes based on the manipulation technique that is used. Sixty patients with LBP identified as likely responders to manipulation underwent a standardized clinical examination and were randomized to receive a lumbopelvic (LP) or lumbar neutral gap (NG) manipulation technique. Outcome measures were a numeric pain rating scale and the modified Oswestry Disability Questionnaire. Both the LP and NG groups experienced statistically significant reductions in pain and disability at 48 hours postmanipulation. The improvements seen in each group were small because of the short follow-up. There were no statistically significant or clinically meaningful differences in pain or disability between the two groups. The two manipulation techniques used in this study were equally effective at reducing pain and disability when compared at 48 hours posttreatment. Clinicians may employ either technique for the treatment of LBP and can expect similar outcomes in those who satisfy the clinical prediction rule (CPR). Further research is required to determine whether differences exist at longer-term follow-up periods, after multiple treatment sessions, or in different clinical populations.

  20. Production of cloned mice by somatic cell nuclear transfer.

    PubMed

    Kishigami, Satoshi; Wakayama, Sayaka; Thuan, Nguyen Van; Ohta, Hiroshi; Mizutani, Eiji; Hikichi, Takafusa; Bui, Hong-Thuy; Balbach, Sebastian; Ogura, Atsuo; Boiani, Michele; Wakayama, Teruhiko

    2006-01-01

    Although it has now been 10 years since the first cloned mammals were generated from somatic cells using nuclear transfer (NT), the success rate for producing live offspring by cloning remains < 5%. Nevertheless, the techniques have potential as important tools for future research in basic biology. We have been able to develop a stable NT method in the mouse, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. Although manipulation of the piezo unit is complex, once mastered it is of great help not only in NT experiments but also in almost all other forms of micromanipulation. In addition to this technique, embryonic stem (ES) cell lines established from somatic cell nuclei by NT can be generated relatively easily from a variety of mouse genotypes and cell types. Such NT-ES cells can be used not only for experimental models of human therapeutic cloning but also as a backup of the donor cell's genome. Our most recent protocols for mouse cloning, as described here, will allow the production of cloned mice in > or = 3 months.

  1. Kinematically redundant robot manipulators

    NASA Technical Reports Server (NTRS)

    Baillieul, J.; Hollerbach, J.; Brockett, R.; Martin, D.; Percy, R.; Thomas, R.

    1987-01-01

    Research on control, design and programming of kinematically redundant robot manipulators (KRRM) is discussed. These are devices in which there are more joint space degrees of freedom than are required to achieve every position and orientation of the end-effector necessary for a given task in a given workspace. The technological developments described here deal with: kinematic programming techniques for automatically generating joint-space trajectories to execute prescribed tasks; control of redundant manipulators to optimize dynamic criteria (e.g., applications of forces and moments at the end-effector that optimally distribute the loading of actuators); and design of KRRMs to optimize functionality in congested work environments or to achieve other goals unattainable with non-redundant manipulators. Kinematic programming techniques are discussed, which show that some pseudo-inverse techniques that have been proposed for redundant manipulator control fail to achieve the goals of avoiding kinematic singularities and also generating closed joint-space paths corresponding to close paths of the end effector in the workspace. The extended Jacobian is proposed as an alternative to pseudo-inverse techniques.

  2. Dog red blood cells: Na and K diffusion potentials with extracellular ATP

    PubMed Central

    1977-01-01

    External ATP causes a prompt increase in the Na and K permeability of dog red blood cells. By manipulating intra- and extracellular ion composition it is possible to observe ATP-induced net fluxes which can be explained in terms of the contribution of Na or K diffusion potentials to the membrane potential. Measurements of membrane voltage by a fluorescent dye technique confirm the existence of such potentials. A rough calculation of chloride permeability gives a value of the order of 10(-8) cm/s, which agrees with results in other species. The cells appear to be somewhat more permeable to bromide than to chloride. PMID:853285

  3. Non-invasive and non-destructive measurements of confluence in cultured adherent cell lines.

    PubMed

    Busschots, Steven; O'Toole, Sharon; O'Leary, John J; Stordal, Britta

    2015-01-01

    Many protocols used for measuring the growth of adherent monolayer cells in vitro are invasive, destructive and do not allow for the continued, undisturbed growth of cells within flasks. Protocols often use indirect methods for measuring proliferation. Microscopy techniques can analyse cell proliferation in a non-invasive or non-destructive manner but often use expensive equipment and software algorithms. In this method images of cells within flasks are captured by photographing under a standard inverted phase contract light microscope using a digital camera with a camera lens adaptor. Images are analysed for confluence using ImageJ freeware resulting in a measure of confluence known as an Area Fraction (AF) output. An example of the AF method in use on OVCAR8 and UPN251 cell lines is included. •Measurements of confluence from growing adherent cell lines in cell culture flasks is obtained in a non-invasive, non-destructive, label-free manner.•The technique is quick, affordable and eliminates sample manipulation.•The technique provides an objective, consistent measure of when cells reach confluence and is highly correlated to manual counting with a haemocytometer. The average correlation co-efficient from a Spearman correlation (n = 3) was 0.99 ± 0.008 for OVCAR8 (p = 0.01) and 0.99 ± 0.01 for UPN251 (p = 0.01) cell lines.

  4. High transduction efficiency of circulating first trimester fetal mesenchymal stem cells: potential targets for in utero ex vivo gene therapy.

    PubMed

    Campagnoli, Cesare; Bellantuono, Ilaria; Kumar, Sailesh; Fairbairn, Leslie J; Roberts, Irene; Fisk, Nicholas M

    2002-08-01

    We recently reported the existence of fetal mesenchymal stem cells in first trimester fetal blood. Here we demonstrate that fetal mesenchymal stem cells from as early as eight weeks of gestation can be retrovirally transduced with 99% efficiency without selection. Circulating fetal mesenchymal stem cells are known to readily expand and differentiate into multiple tissue types both in vitro and in vivo, and might be suitable vehicles for prenatal gene delivery. With advances in early fetal blood sampling techniques, we suggest that genetic disorders causing irreversible damage before birth could be treated in utero in the late first/early second trimester by genetically manipulated autologous fetal stem cells.

  5. A single-cell and feeder-free culture system for monkey embryonic stem cells.

    PubMed

    Ono, Takashi; Suzuki, Yutaka; Kato, Yosuke; Fujita, Risako; Araki, Toshihiro; Yamashita, Tomoko; Kato, Hidemasa; Torii, Ryuzo; Sato, Naoya

    2014-01-01

    Primate pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs), hold great potential for research and application in regenerative medicine and drug discovery. To maximize primate PSC potential, a practical system is required for generating desired functional cells and reproducible differentiation techniques. Much progress regarding their culture systems has been reported to date; however, better methods would still be required for their practical use, particularly in industrial and clinical fields. Here we report a new single-cell and feeder-free culture system for primate PSCs, the key feature of which is an originally formulated serum-free medium containing FGF and activin. In this culture system, cynomolgus monkey ESCs can be passaged many times by single-cell dissociation with traditional trypsin treatment and can be propagated with a high proliferation rate as a monolayer without any feeder cells; further, typical PSC properties and genomic stability can be retained. In addition, it has been demonstrated that monkey ESCs maintained in the culture system can be used for various experiments such as in vitro differentiation and gene manipulation. Thus, compared with the conventional culture system, monkey ESCs grown in the aforementioned culture system can serve as a cell source with the following practical advantages: simple, stable, and easy cell maintenance; gene manipulation; cryopreservation; and desired differentiation. We propose that this culture system can serve as a reliable platform to prepare primate PSCs useful for future research and application.

  6. Stiffness measurement of a biomaterial by optical manipulation of microparticle

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Dae; Waleed, Muhammad; Lee, Yong-Gu

    2013-02-01

    Since the discovery of the trapping nature of laser beam, optical tweezers have been extensively employed to measure various parameters at micro/nano level. Optical tweezers show exceptional sensitivity to weak forces making it one of the most sensitive force measurement devices. In this work, we present a technique to measure the stiffness of a biomaterial at different points. For this purpose, a microparticle stuck at the bottom of the dish is illuminated by the trapping laser and respective QPD signal as a function of the distance between the focus of the laser and the center of the microparticle is monitored. After this, microparticle is trapped and manipulated towards the target biomaterial and when it touches the cell membrane, QPD signal shows variation. By comparing two different QPD signals and measuring the trap stiffness, a technique is described to measure the stiffness of the biomaterial at a particular point. We believe that this parameter can be used as a tool to identify and classify different biomaterials.

  7. Optical trapping for complex fluid microfluidics

    NASA Astrophysics Data System (ADS)

    Vestad, Tor; Oakey, John; Marr, David W. M.

    2004-10-01

    Many proposed applications of microfluidics involve the manipulation of complex fluid mixtures such as blood or bacterial suspensions. To sort and handle the constituent particles within these suspensions, we have developed a miniaturized automated cell sorter using optical traps. This microfluidic cell sorter offers the potential to perform chip-top microbiology more rapidly and with less associated hardware and preparation time than other techniques currently available. To realize the potential of this technology in practical clinical and consumer lab-on-a-chip devices however, microscale control of not only particulates but also the fluid phase must be achieved. To address this, we have developed a mechanical fluid control scheme that integrates well with our optical separations approach. We demonstrate here a combined technique, one that employs both mechanical actuation and optical trapping for the precise control of complex suspensions. This approach enables both cell and particle separations as well as the subsequent fluid control required for the completion of complex analyses.

  8. Advances in the application of genetic manipulation methods to apicomplexan parasites.

    PubMed

    Suarez, C E; Bishop, R P; Alzan, H F; Poole, W A; Cooke, B M

    2017-10-01

    Apicomplexan parasites such as Babesia, Theileria, Eimeria, Cryptosporidium and Toxoplasma greatly impact animal health globally, and improved, cost-effective measures to control them are urgently required. These parasites have complex multi-stage life cycles including obligate intracellular stages. Major gaps in our understanding of the biology of these relatively poorly characterised parasites and the diseases they cause severely limit options for designing novel control methods. Here we review potentially important shared aspects of the biology of these parasites, such as cell invasion, host cell modification, and asexual and sexual reproduction, and explore the potential of the application of relatively well-established or newly emerging genetic manipulation methods, such as classical transfection or gene editing, respectively, for closing important gaps in our knowledge of the function of specific genes and proteins, and the biology of these parasites. In addition, genetic manipulation methods impact the development of novel methods of control of the diseases caused by these economically important parasites. Transient and stable transfection methods, in conjunction with whole and deep genome sequencing, were initially instrumental in improving our understanding of the molecular biology of apicomplexan parasites and paved the way for the application of the more recently developed gene editing methods. The increasingly efficient and more recently developed gene editing methods, in particular those based on the CRISPR/Cas9 system and previous conceptually similar techniques, are already contributing to additional gene function discovery using reverse genetics and related approaches. However, gene editing methods are only possible due to the increasing availability of in vitro culture, transfection, and genome sequencing and analysis techniques. We envisage that rapid progress in the development of novel gene editing techniques applied to apicomplexan parasites of veterinary interest will ultimately lead to the development of novel and more efficient methods for disease control. Published by Elsevier Ltd.

  9. Update: Biochemistry of Genetic Manipulation.

    ERIC Educational Resources Information Center

    Barker, G. R.

    1983-01-01

    Various topics on the biochemistry of genetic manipulation are discussed. These include genetic transformation and DNA; genetic expression; DNA replication, repair, and mutation; technology of genetic manipulation; and applications of genetic manipulation. Other techniques employed are also considered. (JN)

  10. [Extendable Cords to Prevent Tumbling of a Suction Device during Craniotomy].

    PubMed

    Shimizu, Satoru; Mochizuki, Takahiro; Osawa, Shigeyuki; Sekiguchi, Tomoko; Koizumi, Hiroyuki; Kumabe, Toshihiro

    2016-02-01

    Suction is necessary during craniotomy, and intraoperative tumbling of the suction device interrupts operative procedures. To avoid this, we developed a technique that would fasten the device to an extendable cord as is used to secure cell phones. We used this technique in more than 300 craniotomies at the specific point of time when the suction device tends to tumble, i. e., during the opening and closure of a wound, which requires frequent instrument exchanges. Extendable cords fastened to the tip of the suction hose using a gift tie were attached to the drapes to secure the suction device next to the operative field. During the operation, the extendable cord followed the suction device manipulations. Consequently, although there was some tension in the cord during its extension, the maneuverability of the suction device was maintained. As the hanging suction device was closer to the operative field than devices stored in conventional pockets, its manipulation was easier and quicker. Upon release, the suction device automatically returned to its original position without distracting the surgeon. Tumbling of the device was prevented, and there were no procedure-related complications. Our simple modification using extendable cords prevented tumbling, avoided unnecessary replacements, and eased the manipulation of a suction device.

  11. Design of a novel magnetic platform for cell manipulation

    NASA Astrophysics Data System (ADS)

    Lucarini, Gioia; Iacovacci, Veronica; Gouveia, Pedro J.; Ricotti, Leonardo; Menciassi, Arianna

    2018-02-01

    Cell manipulation tasks, especially in lab-on-a-chip applications for personalized medicine, could greatly benefit from mobile untethered microdevices able to wirelessly navigate in fluidic environments by means of magnetic fields. In this paper, the design, fabrication and testing of a magnetic platform enabling the controlled locomotion and immersion of microrobots placed at the air/liquid interface is proposed and exploited for cell manipulation. The proposed microrobot consists of a polymeric magnetic thin film that acts as cell transporter and a specific coating strategy, devised to enhance a safe cancer cell adhesion to the magnetic film. Experimental results demonstrated an overall cell viability and a fine control of magnetic microrobot locomotion. The proposed technologies are promising in view of future cell manipulation tasks for personalized medicine applications.

  12. Self-Locking Optoelectronic Tweezers for Single-Cell and Microparticle Manipulation across a Large Area in High Conductivity Media

    PubMed Central

    Yang, Yajia; Mao, Yufei; Shin, Kyeong-Sik; Chui, Chi On; Chiou, Pei-Yu

    2016-01-01

    Optoelectronic tweezers (OET) has advanced within the past decade to become a promising tool for cell and microparticle manipulation. Its incompatibility with high conductivity media and limited throughput remain two major technical challenges. Here a novel manipulation concept and corresponding platform called Self-Locking Optoelectronic Tweezers (SLOT) are proposed and demonstrated to tackle these challenges concurrently. The SLOT platform comprises a periodic array of optically tunable phototransistor traps above which randomly dispersed single cells and microparticles are self-aligned to and retained without light illumination. Light beam illumination on a phototransistor turns off the trap and releases the trapped cell, which is then transported downstream via a background flow. The cell trapping and releasing functions in SLOT are decoupled, which is a unique feature that enables SLOT’s stepper-mode function to overcome the small field-of-view issue that all prior OET technologies encountered in manipulation with single-cell resolution across a large area. Massively parallel trapping of more than 100,000 microparticles has been demonstrated in high conductivity media. Even larger scale trapping and manipulation can be achieved by linearly scaling up the number of phototransistors and device area. Cells after manipulation on the SLOT platform maintain high cell viability and normal multi-day divisibility. PMID:26940301

  13. Fs-laser-induced Ca2+ concentration change during membrane perforation for cell transfection.

    PubMed

    Baumgart, J; Bintig, W; Ngezahayo, A; Lubatschowski, H; Heisterkamp, A

    2010-02-01

    Fs-laser based opto-perforation is a gentle method for gene transfer into sensitive cells such as stem cells or primary cells. The high selectivity and the low damage to the cell lead to a high efficiency of transfection. However, there are side effects which induce stress to the cell due to the exchange of intra- and extracellular media as well as the disintegration of the structure of biomolecules resulting from the laser exposure. Moreover, the mechanisms of the optical transfection are still unclear. In this paper, we present our study on calcium (Ca(2+)) homeostasis during cell surgery, especially during laser induced membrane perforation. We show that the manipulation of cells can induce an increase in the cytosolic Ca(2+) concentration. This increase was not observed if the manipulation of the cells was performed in absence of the extracellular calcium indicating the importance of the Ca(2+) uptake. We found, that the uptake of extracellular Ca(2+) strongly depends on the repetition rate and the irradiation time of the laser pulses. The exposure for several seconds to kHz pulses even induces Ca(2+) induced Ca(2+) release. Dependent on the location of perforation, probably in the vicinity of an intracellular Ca(2+) stock, an instantaneous intracellular Ca(2+) release can be induced. Since Ca(2+) could be involved in negative side effect by cell surgery, we propose an application of the optoperforation technique in nominal Ca(2+)-free external solution.

  14. Configuration and design study of manipulator systems applicable to the free flying teleoperator. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    Tewell, J. R.

    1974-01-01

    A preliminary design of a manipulator system, applicable to a free flying teleoperator spacecraft operating in conjunction with the shuttle or tug, is presented. A new control technique is proposed for application to the manipulator system. This technique, a range/azimuth/elevation rate-rate mode, was selected based upon the results of man-in-the-loop simulations. Several areas are identified in which additional emphasis must be placed prior to the development of the manipulator system. The study results in a manipulator system which will provide an effective method for servicing, maintaining, and repairing satellites to increase their useful life.

  15. Mechanical Coupling of Smooth Muscle Cells Using Microengineered Substrates and Local Stimulation

    NASA Astrophysics Data System (ADS)

    Copeland, Craig; Hunter, David; Tung, Leslie; Chen, Christopher; Reich, Daniel

    2013-03-01

    Mechanical stresses directly affect many cellular processes, including signal transduction, growth, differentiation, and survival. Cells can themselves generate such stresses by activating myosin to contract the actin cytoskeleton, which in turn can regulate both cell-substrate and cell-cell interactions. We are studying mechanical forces at cell-cell and cell-substrate interactions using arrays of selectively patterned flexible PDMS microposts combined with the ability to apply local chemical stimulation. Micropipette ``spritzing'', a laminar flow technique, uses glass micropipettes mounted on a microscope stage to deliver drugs to controlled regions within a cellular construct while cell traction forces are recorded via the micropost array. The pipettes are controlled by micromanipulators allowing for rapid and precise movement across the array and the ability to treat multiple constructs within a sample. This technique allows for observing the propagation of a chemically induced mechanical stimulus through cell-cell and cell-substrate interactions. We have used this system to administer the acto-myosin inhibitors Blebbistatin and Y-27632 to single cells and observed the subsequent decrease in cell traction forces. Experiments using trypsin-EDTA have shown this system to be capable of single cell manipulation through removal of one cell within a pair configuration while leaving the other cell unaffected. This project is supported in part by NIH grant HL090747

  16. Vibrational Micro-Spectroscopy of Human Tissues Analysis: Review.

    PubMed

    Bunaciu, Andrei A; Hoang, Vu Dang; Aboul-Enein, Hassan Y

    2017-05-04

    Vibrational spectroscopy (Infrared (IR) and Raman) and, in particular, micro-spectroscopy and micro-spectroscopic imaging have been used to characterize developmental changes in tissues, to monitor these changes in cell cultures and to detect disease and drug-induced modifications. The conventional methods for biochemical and histophatological tissue characterization necessitate complex and "time-consuming" sample manipulations and the results are rarely quantifiable. The spectroscopy of molecular vibrations using mid-IR or Raman techniques has been applied to samples of human tissue. This article reviews the application of these vibrational spectroscopic techniques for analysis of biological tissue published between 2005 and 2015.

  17. In situ flat embedding of monolayers and cell relocation in the acrylic resin LR white for comparative light and electron microscopy studies.

    PubMed

    Steiner, M; Schöfer, C; Mosgoeller, W

    1994-12-01

    A simple and reliable method has been developed for the in situ LR White embedding of cell monolayers grown on glass cover-slips. Combined with cytochemical or immunological procedures, this technique allows light and/or electron microscopy investigations of a large number of cells in the same horizontal plane within a relatively short period of time. It can be applied to cells grown on microgrid finder cover-slips which allows a distinct site of even an individual cell of a monolayer to be studied at first at the light microscope level and subsequently at the electron microscope level. Hence, it is also suitable for controlling manipulation of single cells, followed by their serial sectioning after relocation in the electron microscope.

  18. Automatic cell detection and segmentation from H and E stained pathology slides using colorspace decorrelation stretching

    NASA Astrophysics Data System (ADS)

    Peikari, Mohammad; Martel, Anne L.

    2016-03-01

    Purpose: Automatic cell segmentation plays an important role in reliable diagnosis and prognosis of patients. Most of the state-of-the-art cell detection and segmentation techniques focus on complicated methods to subtract foreground cells from the background. In this study, we introduce a preprocessing method which leads to a better detection and segmentation results compared to a well-known state-of-the-art work. Method: We transform the original red-green-blue (RGB) space into a new space defined by the top eigenvectors of the RGB space. Stretching is done by manipulating the contrast of each pixel value to equalize the color variances. New pixel values are then inverse transformed to the original RGB space. This altered RGB image is then used to segment cells. Result: The validation of our method with a well-known state-of-the-art technique revealed a statistically significant improvement on an identical validation set. We achieved a mean F1-score of 0.901. Conclusion: Preprocessing steps to decorrelate colorspaces may improve cell segmentation performances.

  19. Phototransfection of mouse embryonic stem cells with plasmid DNA using femtosecond laser pulses

    NASA Astrophysics Data System (ADS)

    Thobakgale, Lebogang; Manoto, Sello Lebohang; Ombinda Lemboumba, Saturnin; Maaza, Malik; Mthunzi-Kufa, Patience

    2017-02-01

    Cellular manipulation by delivery of molecules into cells has been applied extensively in tissue engineering research for medical applications . The different molecular delivery techniques used range from viral and chemical agents to physical and electrical methods. Although successful in most studies, these techniques have inherent difficulties such as toxicity, unwanted genetic mutations and low reproducibility respectively. Literature recognizes pulsed lasers at femtosecond level to be most efficient in photonic interactions with biological material. As of late, laser pulses have been used for drug and DNA delivery into cells via transient optical perforation of the cellular membrane. Thus in this study, we design and construct an optical system coupled to a femtosecond laser for the purpose of phototransfection or insertion of plasmid DNA (pDNA) into cells using lasers. We used fluorescent green protein (pGFP) to transfect mouse embryonic stem cells as our model. Secondly, we applied fluorescence imaging to view the extent of DNA delivery using this method. We also assessed the biocompatibility of our system by performing molecular assays of the cells post irradiation using adenosine triphosphate (ATP) and lactate dehydrogenase (LDH).

  20. Rapid and efficient gene delivery into the adult mouse brain via focal electroporation

    PubMed Central

    Nomura, Tadashi; Nishimura, Yusuke; Gotoh, Hitoshi; Ono, Katsuhiko

    2016-01-01

    In vivo gene delivery is required for studying the cellular and molecular mechanisms of various biological events. Virus-mediated gene transfer or generation of transgenic animals is widely used; however, these methods are time-consuming and expensive. Here we show an improved electroporation technique for acute gene delivery into the adult mouse brain. Using a syringe-based microelectrode, local DNA injection and the application of electric current can be performed simultaneously; this allows rapid and efficient gene transduction of adult non-neuronal cells. Combining this technique with various expression vectors that carry specific promoters resulted in targeted gene expression in astrocytic cells. Our results constitute a powerful strategy for the genetic manipulation of adult brains in a spatio-temporally controlled manner. PMID:27430903

  1. From bioseparation to artificial micro-organs: microfluidic chip based particle manipulation techniques

    NASA Astrophysics Data System (ADS)

    Stelzle, Martin

    2010-02-01

    Microfluidic device technology provides unique physical phenomena which are not available in the macroscopic world. These may be exploited towards a diverse array of applications in biotechnology and biomedicine ranging from bioseparation of particulate samples to the assembly of cells into structures that resemble the smallest functional unit of an organ. In this paper a general overview of chip-based particle manipulation and separation is given. In the state of the art electric, magnetic, optical and gravitational field effects are utilized. Also, mechanical obstacles often in combination with force fields and laminar flow are employed to achieve separation of particles or molecules. In addition, three applications based on dielectrophoretic forces for particle manipulation in microfluidic systems are discussed in more detail. Firstly, a virus assay is demonstrated. There, antibody-loaded microbeads are used to bind virus particles from a sample and subsequently are accumulated to form a pico-liter sized aggregate located at a predefined position in the chip thus enabling highly sensitive fluorescence detection. Secondly, subcellular fractionation of mitochondria from cell homogenate yields pure samples as was demonstrated by Western Blot and 2D PAGE analysis. Robust long-term operation with complex cell homogenate samples while avoiding electrode fouling is achieved by a set of dedicated technical means. Finally, a chip intended for the dielectrophoretic assembly of hepatocytes and endothelial cells into a structure resembling a liver sinusoid is presented. Such "artificial micro organs" are envisioned as substance screening test systems providing significantly higher predictability with respect to the in vivo response towards a substance under test.

  2. Optoelectronic tweezers integrated with lensfree holographic microscopy for wide-field interactive cell and particle manipulation on a chip.

    PubMed

    Huang, Kuo-Wei; Su, Ting-Wei; Ozcan, Aydogan; Chiou, Pei-Yu

    2013-06-21

    We demonstrate an optoelectronic tweezer (OET) coupled to a lensfree holographic microscope for real-time interactive manipulation of cells and micro-particles over a large field-of-view (FOV). This integrated platform can record the holographic images of cells and particles over the entire active area of a CCD sensor array, perform digital image reconstruction to identify target cells, dynamically track the positions of cells and particles, and project light beams to trigger light-induced dielectrophoretic forces to pattern and sort cells on a chip. OET technology has been previously shown to be capable of performing parallel single cell manipulation over a large area. However, its throughput has been bottlenecked by the number of cells that can be imaged within the limited FOV of a conventional microscope objective lens. Integrating lensfree holographic imaging with OET solves this fundamental FOV barrier, while also creating a compact on-chip cell/particle manipulation platform. Using this unique platform, we have successfully demonstrated real-time interactive manipulation of thousands of single cells and micro-particles over an ultra-large area of e.g., 240 mm(2) (i.e. 17.96 mm × 13.52 mm).

  3. Optoelectronic tweezers for microparticle and cell manipulation

    NASA Technical Reports Server (NTRS)

    Wu, Ming Chiang (Inventor); Chiou, Pei Yu (Inventor); Ohta, Aaron T. (Inventor)

    2009-01-01

    An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 .mu.m or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or groups of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.

  4. Optoelectronic Tweezers for Microparticle and Cell Manipulation

    NASA Technical Reports Server (NTRS)

    Wu, Ming Chiang (Inventor); Chiou, Pei-Yu (Inventor); Ohta, Aaron T. (Inventor)

    2014-01-01

    An optical image-driven light induced dielectrophoresis (DEP) apparatus and method are described which provide for the manipulation of particles or cells with a diameter on the order of 100 micromillimeters or less. The apparatus is referred to as optoelectric tweezers (OET) and provides a number of advantages over conventional optical tweezers, in particular the ability to perform operations in parallel and over a large area without damage to living cells. The OET device generally comprises a planar liquid-filled structure having one or more portions which are photoconductive to convert incoming light to a change in the electric field pattern. The light patterns are dynamically generated to provide a number of manipulation structures that can manipulate single particles and cells or group of particles/cells. The OET preferably includes a microscopic imaging means to provide feedback for the optical manipulation, such as detecting position and characteristics wherein the light patterns are modulated accordingly.

  5. The immediate effect of individual manipulation techniques on pulmonary function measures in persons with chronic obstructive pulmonary disease

    PubMed Central

    Noll, Donald R; Johnson, Jane C; Baer, Robert W; Snider, Eric J

    2009-01-01

    Background The use of manipulation has long been advocated in the treatment of chronic obstructive pulmonary disease (COPD), but few randomized controlled clinical trials have measured the effect of manipulation on pulmonary function. In addition, the effects of individual manipulative techniques on the pulmonary system are poorly understood. Therefore, the purpose of this study was to determine the immediate effects of four osteopathic techniques on pulmonary function measures in persons with COPD relative to a minimal-touch control protocol. Methods Persons with COPD aged 50 and over were recruited for the study. Subjects received five, single-technique treatment sessions: minimal-touch control, thoracic lymphatic pump (TLP) with activation, TLP without activation, rib raising, and myofascial release. There was a 4-week washout period between sessions. Protocols were given in random order until all five techniques had been administered. Pulmonary function measures were obtained at baseline and 30-minutes posttreatment. For the actual pulmonary function measures and percent predicted values, Wilcoxon signed rank tests were used to test within-technique changes from baseline. For the percent change from baseline, Friedman tests were used to test for between-technique differences. Results Twenty-five subjects were enrolled in the study. All four tested osteopathic techniques were associated with adverse posttreatment changes in pulmonary function measures; however, different techniques changed different measures. TLP with activation increased posttreatment residual volume compared to baseline, while TLP without activation did not. Side effects were mild, mostly posttreatment chest wall soreness. Surprisingly, the majority of subjects believed they could breathe better after receiving osteopathic manipulation. Conclusion In persons with COPD, TLP with activation, TLP without activation, rib raising, and myofascial release mildly worsened pulmonary function measures immediately posttreatment relative to baseline measurements. The activation component of the TLP technique appears to increase posttreatment residual volume. Despite adverse changes in pulmonary function measures, persons with COPD subjectively reported they benefited from osteopathic manipulation. PMID:19814829

  6. The immediate effect of individual manipulation techniques on pulmonary function measures in persons with chronic obstructive pulmonary disease.

    PubMed

    Noll, Donald R; Johnson, Jane C; Baer, Robert W; Snider, Eric J

    2009-10-08

    The use of manipulation has long been advocated in the treatment of chronic obstructive pulmonary disease (COPD), but few randomized controlled clinical trials have measured the effect of manipulation on pulmonary function. In addition, the effects of individual manipulative techniques on the pulmonary system are poorly understood. Therefore, the purpose of this study was to determine the immediate effects of four osteopathic techniques on pulmonary function measures in persons with COPD relative to a minimal-touch control protocol. Persons with COPD aged 50 and over were recruited for the study. Subjects received five, single-technique treatment sessions: minimal-touch control, thoracic lymphatic pump (TLP) with activation, TLP without activation, rib raising, and myofascial release. There was a 4-week washout period between sessions. Protocols were given in random order until all five techniques had been administered. Pulmonary function measures were obtained at baseline and 30-minutes posttreatment. For the actual pulmonary function measures and percent predicted values, Wilcoxon signed rank tests were used to test within-technique changes from baseline. For the percent change from baseline, Friedman tests were used to test for between-technique differences. Twenty-five subjects were enrolled in the study. All four tested osteopathic techniques were associated with adverse posttreatment changes in pulmonary function measures; however, different techniques changed different measures. TLP with activation increased posttreatment residual volume compared to baseline, while TLP without activation did not. Side effects were mild, mostly posttreatment chest wall soreness. Surprisingly, the majority of subjects believed they could breathe better after receiving osteopathic manipulation. In persons with COPD, TLP with activation, TLP without activation, rib raising, and myofascial release mildly worsened pulmonary function measures immediately posttreatment relative to baseline measurements. The activation component of the TLP technique appears to increase posttreatment residual volume. Despite adverse changes in pulmonary function measures, persons with COPD subjectively reported they benefited from osteopathic manipulation.

  7. Cell-surface display of enzymes by the yeast Saccharomyces cerevisiae for synthetic biology.

    PubMed

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-02-01

    In yeast cell-surface displays, functional proteins, such as cellulases, are genetically fused to an anchor protein and expressed on the cell surface. Saccharomyces cerevisiae, which is often utilized as a cell factory for the production of fuels, chemicals, and proteins, is the most commonly used yeast for cell-surface display. To construct yeast cells with a desired function, such as the ability to utilize cellulose as a substrate for bioethanol production, cell-surface display techniques for the efficient expression of enzymes on the cell membrane need to be combined with metabolic engineering approaches for manipulating target pathways within cells. In this Minireview, we summarize the recent progress of biorefinery fields in the development and application of yeast cell-surface displays from a synthetic biology perspective and discuss approaches for further enhancing cell-surface display efficiency. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  8. Magnetization of individual yeast cells by in situ formation of iron oxide on cell surfaces

    NASA Astrophysics Data System (ADS)

    Choi, Jinsu; Lee, Hojae; Choi, Insung S.; Yang, Sung Ho

    2017-09-01

    Magnetic functionalization of living cells has intensively been investigated with the aim of various bioapplications such as selective separation, targeting, and localization of the cells by using an external magnetic field. However, the magnetism has not been introduced to individual living cells through the in situ chemical reactions because of harsh conditions required for synthesis of magnetic materials. In this work, magnetic iron oxide was formed on the surface of living cells by optimizing reactions conditions to be mild sufficiently enough to sustain cell viability. Specifically, the reactive LbL strategy led to formation of magnetically responsive yeast cells with iron oxide shells. This facile and direct post-magnetization method would be a useful tool for remote manipulation of living cells with magnetic interactions, which is an important technique for the integration of cell-based circuits and the isolation of cell in microfluidic devices.

  9. Controlling micro- and nano-environment of tumor and stem cells for novel research and therapy of brain cancer

    NASA Astrophysics Data System (ADS)

    Smith, Christopher Lloyd

    The use of modern technologies in cancer research has engendered a great deal of excitement. Many of these advanced approaches involve in-depth mathematical analyses of the inner working of cells, via genomic and proteomic analyses. However these techniques may not be ideal for the study of complex cell phenotypes and behaviors. This dissertation explores cancer and potential therapies through phenotypic analysis of cell behaviors, an alternative approach. We employ this experimental framework to study brain cancer (glioma), a particularly formidable example of this diverse ailment. Through the application of micro- and nanotechnology, we carefully control the surrounding environments of cells to understand their responses to various cues and to manipulate their behaviors. Subsequently we obtain clinically relevant information that allows better understanding of glioma, and enhancement of potential therapies. We first aim to address brain tumor dispersal, through analysis of cell migration. Utilizing nanometer-scale topographic models of the extracellular matrix, we study the migratory response of glioma cells to various stimuli in vitro. Second, we implement knowledge gained from these investigations to define characteristics of tumor progression in patients, and to develop treatments inhibiting cell migration. Next we use microfluidic and nanotopographic models to study the behaviors of stem cells in vitro. Here we attempt to improve their abilities to deliver therapeutic proteins to cancer, an innovative treatment approach. We analyze the multi-step process by which adipose-derived stem cells naturally home to tumor sites, and identify numerous environmental perturbations to enhance this behavior. Finally, we attempt to demonstrate that these cell culture-based manipulations can enhance the localization of adipose stem cells to glioma in vivo using animal models. Throughout this work we utilize environmental cues to analyze and induce particular behaviors in cells. We further demonstrate that this general technique can be used to determine clinically relevant tumor characteristics, to identify potential drug targets, and to enhance potential therapies. Therefore this thesis illuminates a novel framework for experimentation into cancer, and specifically advances two treatment approaches. We anticipate that the methodologies described in this study will prove useful to various branches of medicine and biological research.

  10. Mechanical diagnosis of human erythrocytes by ultra-high speed manipulation unraveled critical time window for global cytoskeletal remodeling

    NASA Astrophysics Data System (ADS)

    Ito, Hiroaki; Murakami, Ryo; Sakuma, Shinya; Tsai, Chia-Hung Dylan; Gutsmann, Thomas; Brandenburg, Klaus; Pöschl, Johannes M. B.; Arai, Fumihito; Kaneko, Makoto; Tanaka, Motomu

    2017-02-01

    Large deformability of erythrocytes in microvasculature is a prerequisite to realize smooth circulation. We develop a novel tool for the three-step “Catch-Load-Launch” manipulation of a human erythrocyte based on an ultra-high speed position control by a microfluidic “robotic pump”. Quantification of the erythrocyte shape recovery as a function of loading time uncovered the critical time window for the transition between fast and slow recoveries. The comparison with erythrocytes under depletion of adenosine triphosphate revealed that the cytoskeletal remodeling over a whole cell occurs in 3 orders of magnitude longer timescale than the local dissociation-reassociation of a single spectrin node. Finally, we modeled septic conditions by incubating erythrocytes with endotoxin, and found that the exposure to endotoxin results in a significant delay in the characteristic transition time for cytoskeletal remodeling. The high speed manipulation of erythrocytes with a robotic pump technique allows for high throughput mechanical diagnosis of blood-related diseases.

  11. Use of nanoscale mechanical stimulation for control and manipulation of cell behaviour.

    PubMed

    Childs, Peter G; Boyle, Christina A; Pemberton, Gabriel D; Nikukar, Habib; Curtis, Adam S G; Henriquez, Fiona L; Dalby, Matthew J; Reid, Stuart

    2016-04-01

    The ability to control cell behaviour, cell fate and simulate reliable tissue models in vitro remains a significant challenge yet is crucial for various applications of high throughput screening e.g. drug discovery. Mechanotransduction (the ability of cells to convert mechanical forces in their environment to biochemical signalling) represents an alternative mechanism to attain this control with such studies developing techniques to reproducibly control the mechanical environment in techniques which have potential to be scaled. In this review, the use of techniques such as finite element modelling and precision interferometric measurement are examined to provide context for a novel technique based on nanoscale vibration, also known as "nanokicking". Studies have shown this stimulus to alter cellular responses in both endothelial and mesenchymal stem cells (MSCs), particularly in increased proliferation rate and induced osteogenesis respectively. Endothelial cell lines were exposed to nanoscale vibration amplitudes across a frequency range of 1-100 Hz, and MSCs primarily at 1 kHz. This technique provides significant potential benefits over existing technologies, as cellular responses can be initiated without the use of expensive engineering techniques and/or chemical induction factors. Due to the reproducible and scalable nature of the apparatus it is conceivable that nanokicking could be used for controlling cell behaviour within a wide array of high throughput procedures in the research environment, within drug discovery, and for clinical/therapeutic applications. The results discussed within this article summarise the potential benefits of using nanoscale vibration protocols for controlling cell behaviour. There is a significant need for reliable tissue models within the clinical and pharma industries, and the control of cell behaviour and stem cell differentiation would be highly beneficial. The full potential of this method of controlling cell behaviour has not yet been realised. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. A structured review of spinal stiffness as a kinesiological outcome of manipulation: its measurement and utility in diagnosis, prognosis and treatment decision-making.

    PubMed

    Snodgrass, Suzanne J; Haskins, Robin; Rivett, Darren A

    2012-10-01

    To review and discuss the methods used for measuring spinal stiffness and factors associated with stiffness, how stiffness is used in diagnosis, prognosis, and treatment decision-making and the effects of manipulative techniques on stiffness. A systematic search of MEDLINE, EMBASE, CINAHL, AMED and ICL databases was conducted. Included studies addressed one of four constructs related to stiffness: measurement, diagnosis, prognosis and/or treatment decision-making, and the effects of manipulation on stiffness. Spinal stiffness was defined as the relationship between force and displacement. One hundred and four studies are discussed in this review, with the majority of studies focused on the measurement of stiffness, most often in asymptomatic persons. Eight studies investigated spinal stiffness in diagnosis, providing limited evidence that practitioner-judged stiffness is associated with radiographic findings of sagittal rotational mobility. Fifteen studies investigated spinal stiffness in prognosis or treatment decision-making, providing limited evidence that spinal stiffness is unlikely to independently predict patient outcomes, though stiffness may influence a practitioner's application of non-thrust manipulative techniques. Nine studies investigating the effects of manipulative techniques on spinal stiffness provide very limited evidence that there is no change in spinal stiffness following thrust or non-thrust manipulation in asymptomatic individuals and non-thrust techniques in symptomatic persons, with only one study supporting an immediate, but not sustained, stiffness decrease following thrust manipulation in symptomatic individuals. The existing limited evidence does not support an association between spinal stiffness and manipulative treatment outcomes. There is a need for additional research investigating the effects of manipulation on spinal stiffness in persons with spinal pain. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. MULTIPLE IMAGING TECHNIQUES DEMONSTRATE THE MANIPULATION OF SURFACES TO REDUCE BACTERIAL CONTAMINATION

    EPA Science Inventory

    Surface imaging techniques were combined to determine appropriate manipulation of technologically important surfaces for commercial applications. Stainless steel surfaces were engineered to reduce bacterial contamination, biofilm formation, and corrosion during product processing...

  14. The Soft Seal disposable laryngeal mask airway in adults: comparison of two insertion techniques without intra-oral manipulation.

    PubMed

    Kuvaki, B; Küçükgüçlü, S; Iyilikçi, L; Tuncali, B E; Cinar, O

    2008-10-01

    We investigated whether insertion of the disposable Soft Seal laryngeal mask airway (SSLM) was successful without intra-oral digital manipulation. One hundred patients undergoing anaesthesia using the SSLM were randomly assigned into two groups. Insertion was performed by either a direct or a rotational technique, both without intra-oral digital manipulation. The primary outcome measure was successful insertion at first attempt. Other outcomes included insertion time, fibreoptic assessment of the airway view and airway morbidity. The first attempt success rate was higher (98%) with the direct technique than with the rotational technique (75%; p = 0.002) but insertion time was faster with the latter method (mean [range] 15 [8-50] s) than with the direct method (20 [8-56] s; p = 0.035). Fibreoptic assessment and airway morbidity were similar in both groups. We conclude that the SSLM can be successfully inserted without intra-oral digital manipulation.

  15. In Vitro Electrochemistry of Biological Systems

    PubMed Central

    Adams, Kelly L.; Puchades, Maja; Ewing, Andrew G.

    2009-01-01

    This article reviews recent work involving electrochemical methods for in vitro analysis of biomolecules, with an emphasis on detection and manipulation at and of single cells and cultures of cells. The techniques discussed include constant potential amperometry, chronoamperometry, cellular electroporation, scanning electrochemical microscopy, and microfluidic platforms integrated with electrochemical detection. The principles of these methods are briefly described, followed in most cases with a short description of an analytical or biological application and its significance. The use of electrochemical methods to examine specific mechanistic issues in exocytosis is highlighted, as a great deal of recent work has been devoted to this application. PMID:20151038

  16. Zinc-finger nucleases-based genome engineering to generate isogenic human cell lines.

    PubMed

    Dreyer, Anne-Kathrin; Cathomen, Toni

    2012-01-01

    Customized zinc-finger nucleases (ZFNs) have developed into a promising technology to precisely alter mammalian genomes for biomedical research, biotechnology, or human gene therapy. In the context of synthetic biology, the targeted integration of a transgene or reporter cassette into a "neutral site" of the human genome, such as the AAVS1 locus, permits the generation of isogenic human cell lines with two major advantages over standard genetic manipulation techniques: minimal integration site-dependent effects on the transgene and, vice versa, no functional perturbation of the host-cell transcriptome. Here we describe in detail how ZFNs can be employed to target integration of a transgene cassette into the AAVS1 locus and how to characterize the targeted cells by PCR-based genotyping.

  17. Magnetic manipulation of nanorods in the nucleus of living cells.

    PubMed

    Celedon, Alfredo; Hale, Christopher M; Wirtz, Denis

    2011-10-19

    The organization of chromatin in the cell nucleus is crucial for gene expression regulation. However, physically probing the nuclear interior is challenging because high forces have to be applied using minimally invasive techniques. Here, magnetic nanorods embedded in the nucleus of living cells are subjected to controlled rotational forces, producing micron-sized displacements in the nuclear interior. The resulting time-dependent rotation of the nanorods is analyzed in terms of viscoelastic parameters of the nucleus, in wild-type and Lamin A/C deficient cells. This method and analysis reveal that Lamin A/C knockout, together perhaps with other changes that result from the knockout, induce significant decreases in the nuclear viscosity and elasticity. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  18. Combining Microinjection and Immunoblotting to Analyze MAP Kinase Phosphorylation in Single Starfish Oocytes and Eggs

    NASA Astrophysics Data System (ADS)

    Carroll, David J.; Hua, Wei

    The starfish oocyte has proven useful for studies involving microinjection because it is relatively large (190 μm) and optically clear. These oocytes are easily obtained from the ovary arrested at prophase of meiosis I, making them useful as a model system for the study of cell cycle-related events. In this chapter, a method for combining microinjection with immunoblotting of single cells is described. Individual starfish oocytes are injected, removed from the microinjection chamber, and analyzed by immunoblotting for the dual-phosphorylated form of mitogen-activated protein kinase (MAPK). This method will allow for experiments testing the regulation of MAPK in single cells and for the manipulation of these cells by a quantitative microinjection technique.

  19. A randomized clinical trial to compare the immediate effects of seated thoracic manipulation and targeted supine thoracic manipulation on cervical spine flexion range of motion and pain.

    PubMed

    Karas, Steve; Olson Hunt, Megan J

    2014-05-01

    Randomized clinical trial. To determine the effectiveness of seated thoracic manipulation versus targeted supine thoracic manipulation on cervical spine pain and flexion range of motion (ROM). There is evidence that thoracic spine manipulation is an effective treatment for patients with cervical spine pain. This evidence includes a variety of techniques to manipulate the thoracic spine. Although each of them is effective, no research has compared techniques to determine which produces the best outcomes. A total of 39 patients with cervical spine pain were randomly assigned to either a seated thoracic manipulation or targeted supine thoracic manipulation group. Pain and flexion ROM measures were taken before and after the intervention. Pain reduction (post-treatment-pre-treatment) was significantly greater in those patients receiving the targeted supine thoracic manipulation compared to the seated thoracic manipulation (P<0.05). Although not significant, we did observe greater improvement in flexion ROM in the targeted supine thoracic manipulation group. The results of this study indicate that a targeted supine thoracic manipulation may be more effective in reducing cervical spine pain and improving cervical flexion ROM than a seated thoracic manipulation. Future studies should include a variety of patients and physical therapists (PTs) to validate our findings.

  20. Combining single-molecule manipulation and single-molecule detection.

    PubMed

    Cordova, Juan Carlos; Das, Dibyendu Kumar; Manning, Harris W; Lang, Matthew J

    2014-10-01

    Single molecule force manipulation combined with fluorescence techniques offers much promise in revealing mechanistic details of biomolecular machinery. Here, we review force-fluorescence microscopy, which combines the best features of manipulation and detection techniques. Three of the mainstay manipulation methods (optical traps, magnetic traps and atomic force microscopy) are discussed with respect to milestones in combination developments, in addition to highlight recent contributions to the field. An overview of additional strategies is discussed, including fluorescence based force sensors for force measurement in vivo. Armed with recent exciting demonstrations of this technology, the field of combined single-molecule manipulation and single-molecule detection is poised to provide unprecedented views of molecular machinery. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Label-free isolation of circulating tumor cells in microfluidic devices: Current research and perspectives.

    PubMed

    Cima, Igor; Wen Yee, Chay; Iliescu, Florina S; Phyo, Wai Min; Lim, Kiat Hon; Iliescu, Ciprian; Tan, Min Han

    2013-01-01

    This review will cover the recent advances in label-free approaches to isolate and manipulate circulating tumor cells (CTCs). In essence, label-free approaches do not rely on antibodies or biological markers for labeling the cells of interest, but enrich them using the differential physical properties intrinsic to cancer and blood cells. We will discuss technologies that isolate cells based on their biomechanical and electrical properties. Label-free approaches to analyze CTCs have been recently invoked as a valid alternative to "marker-based" techniques, because classical epithelial and tumor markers are lost on some CTC populations and there is no comprehensive phenotypic definition for CTCs. We will highlight the advantages and drawbacks of these technologies and the status on their implementation in the clinics.

  2. Genetic modification of stem cells for transplantation.

    PubMed

    Phillips, M Ian; Tang, Yao Liang

    2008-01-14

    Gene modification of cells prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene-modified cell has to gain entrance inside the host's walls and survive and deliver its transgene products. Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non-viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene-modified stem cells in cardiovascular disease, diabetes, neurological diseases, (including Parkinson's, Alzheimer's and spinal cord injury repair), bone defects, hemophilia, and cancer.

  3. Genetic Modification of Stem Cells for Transplantation

    PubMed Central

    Phillips, M. Ian; Tang, Yao Liang

    2009-01-01

    Gene modification of cells for prior to their transplantation, especially stem cells, enhances their survival and increases their function in cell therapy. Like the Trojan horse, the gene modified cell has to gain entrance inside the host’s walls and survive and deliver its transgene products Using cellular, molecular and gene manipulation techniques the transplanted cell can be protected in a hostile environment from immune rejection, inflammation, hypoxia and apoptosis. Genetic engineering to modify cells involves constructing modules of functional gene sequences. They can be simple reporter genes or complex cassettes with gene switches, cell specific promoters and multiple transgenes. We discuss methods to deliver and construct gene cassettes with viral and non viral delivery, siRNA, and conditional Cre/Lox P. We review the current uses of gene modified stem cells in cardiovascular disease, diabetes, neurological diseases,( including Parkinson’s, Alzheimer’s and spinal cord injury repair), bone defects, hemophilia, and cancer. PMID:18031863

  4. Genetic strategies to investigate neuronal circuit properties using stem cell-derived neurons

    PubMed Central

    Garcia, Isabella; Kim, Cynthia; Arenkiel, Benjamin R.

    2012-01-01

    The mammalian brain is anatomically and functionally complex, and prone to diverse forms of injury and neuropathology. Scientists have long strived to develop cell replacement therapies to repair damaged and diseased nervous tissue. However, this goal has remained unrealized for various reasons, including nascent knowledge of neuronal development, the inability to track and manipulate transplanted cells within complex neuronal networks, and host graft rejection. Recent advances in embryonic stem cell (ESC) and induced pluripotent stem cell (iPSC) technology, alongside novel genetic strategies to mark and manipulate stem cell-derived neurons, now provide unprecedented opportunities to investigate complex neuronal circuits in both healthy and diseased brains. Here, we review current technologies aimed at generating and manipulating neurons derived from ESCs and iPSCs toward investigation and manipulation of complex neuronal circuits, ultimately leading to the design and development of novel cell-based therapeutic approaches. PMID:23264761

  5. Endowing carbon nanotubes with superparamagnetic properties: applications for cell labeling, MRI cell tracking and magnetic manipulations.

    PubMed

    Lamanna, Giuseppe; Garofalo, Antonio; Popa, Gabriela; Wilhelm, Claire; Bégin-Colin, Sylvie; Felder-Flesch, Delphine; Bianco, Alberto; Gazeau, Florence; Ménard-Moyon, Cécilia

    2013-05-21

    Coating of carbon nanotubes (CNTs) with magnetic nanoparticles (NPs) imparts novel magnetic, optical, and thermal properties with potential applications in the biomedical domain. Multi-walled CNTs have been decorated with iron oxide superparamagnetic NPs. Two different approaches have been investigated based on ligand exchange or "click chemistry". The presence of the NPs on the nanotube surface allows conferring magnetic properties to CNTs. We have evaluated the potential of the NP/CNT hybrids as a contrast agent for magnetic resonance imaging (MRI) and their interactions with cells. The capacity of the hybrids to magnetically monitor and manipulate cells has also been investigated. The NP/CNTs can be manipulated by a remote magnetic field with enhanced contrast in MRI. They are internalized into tumor cells without showing cytotoxicity. The labeled cells can be magnetically manipulated as they display magnetic mobility and are detected at a single cell level through high resolution MRI.

  6. [Exploration of acupoint combination and needling techniques in the reinforcing and reducing manipulation at different acupoints].

    PubMed

    Dai, Qing; Sheng, Xiesun; Chen, Feng

    2017-04-12

    The reinforcing and reducing manipulation at different acupoints is a kind of acupuncture manipulations and has satisfactory clinical therapeutic effects, combined with a proper needling techniques. The reinforcing needling method is used in the upper and the reducing one in the lower, the distal acupoints are combined with the nearby acupoints. The local acupoints or adjcant acupoints of the affected area are regarded as the nearby acupoints, e.g. the acupoints in the upper. The distant acupoints and the acupoints on the hand and foot are named as distal acupoints, e.g. the acupoint in the lower. In the reinforcing manipulation, the needle is inserted shallowly along the running direction of meridian. In the reducing manipulation, the needle is inserted deeply and against the running direction of meridian. The yin - yang couple needling technique is used with the combination of the front- mu and back- shu points. In the first option, the reinforcing and reducing needling method with rotating technique is predominated at the front- mu points, while that with lifting and thrusting technique is at the back- shu points. In the second option, when needling the back- shu points, the needling sensation is transmitted along the transverse segment and far to the chest and abdomen. These two kinds of integration of acupoint combination and needling techniques display a certain clinical significance in improving the therapeutic effects of acupuncture.

  7. Microfluidic integrated acoustic waving for manipulation of cells and molecules.

    PubMed

    Barani, Alireza; Paktinat, Hossein; Janmaleki, Mohsen; Mohammadi, Aminollah; Mosaddegh, Peiman; Fadaei-Tehrani, Alireza; Sanati-Nezhad, Amir

    2016-11-15

    Acoustophoresis with its simple and low-cost fabrication, rapid and localized fluid actuation, compatibility with microfluidic components, and biocompatibility for cellular studies, has been extensively integrated into microfluidics to provide on-chip microdevices for a variety of applications in biology, bioengineering and chemistry. Among different applications, noninvasive manipulation of cells and biomolecules are significantly important, which are addressed by acoustic-based microfluidics. Here in this paper, we briefly explain the principles and different configurations of acoustic wave and acoustic streaming for the manipulation of cells and molecules and overview its applications for single cell isolation, cell focusing and sorting, cell washing and patterning, cell-cell fusion and communication, and tissue engineering. We further discuss the application of acoustic-based microfluidic systems for the mixing and transport of liquids, manipulation of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) molecules, followed by explanation on the present challenges of acoustic-based microfluidics for the handling of cells and molecules, and highlighting the future directions. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  8. Effects of surgery and anesthetic choice on immunosuppression and cancer recurrence.

    PubMed

    Kim, Ryungsa

    2018-01-18

    The relationship between surgery and anesthetic-induced immunosuppression and cancer recurrence remains unresolved. Surgery and anesthesia stimulate the hypothalamic-pituitary-adrenal (HPA) axis and sympathetic nervous system (SNS) to cause immunosuppression through several tumor-derived soluble factors. The potential impact of surgery and anesthesia on cancer recurrence was reviewed to provide guidance for cancer surgical treatment. PubMed was searched up to December 31, 2016 using search terms such as, "anesthetic technique and cancer recurrence," "regional anesthesia and cancer recurrence," "local anesthesia and cancer recurrence," "anesthetic technique and immunosuppression," and "anesthetic technique and oncologic surgery." Surgery-induced stress responses and surgical manipulation enhance tumor metastasis via release of angiogenic factors and suppression of natural killer (NK) cells and cell-mediated immunity. Intravenous agents such as ketamine and thiopental suppress NK cell activity, whereas propofol does not. Ketamine induces T-lymphocyte apoptosis but midazolam does not affect cytotoxic T-lymphocytes. Volatile anesthetics suppress NK cell activity, induce T-lymphocyte apoptosis, and enhance angiogenesis through hypoxia inducible factor-1α (HIF-1α) activity. Opioids suppress NK cell activity and increase regulatory T cells. Local anesthetics such as lidocaine increase NK cell activity. Anesthetics such as propofol and locoregional anesthesia, which decrease surgery-induced neuroendocrine responses through HPA-axis and SNS suppression, may cause less immunosuppression and recurrence of certain types of cancer compared to volatile anesthetics and opioids.

  9. Effects of Cervical High-Velocity Low-Amplitude Techniques on Range of Motion, Strength Performance, and Cardiovascular Outcomes: A Review.

    PubMed

    Galindez-Ibarbengoetxea, Xabier; Setuain, Igor; Andersen, Lars L; Ramírez-Velez, Robinson; González-Izal, Miriam; Jauregi, Andoni; Izquierdo, Mikel

    2017-09-01

    Cervical high-velocity low-amplitude (HVLA) manipulation technique is among the oldest and most frequently used chiropractic manual therapy, but the physiologic and biomechanics effects were not completely clear. This review aims to describe the effects of cervical HVLA manipulation techniques on range of motion, strength, and cardiovascular performance. A systematic search was conducted of the electronic databases from January 2000 to August 2016: PubMed (n = 131), ScienceDirect (n = 101), Scopus (n = 991), PEDro (n = 33), CINAHL (n = 884), and SciELO (n = 5). Two independent reviewers conducted the screening process to determine article eligibility. The intervention that included randomized controlled trials was thrust, or HVLA, manipulative therapy directed to the cervical spine. Methodological quality was assessed using the Cochrane risk-of-bias tool. The initial search rendered 2145 articles. After screening titles and abstracts, 11 articles remained for full-text review. The review shows that cervical HVLA manipulation treatment results in a large effect size (d > 0.80) on increasing cervical range of motion and mouth opening. In patients with lateral epicondylalgia, cervical HVLA manipulation resulted in increased pain-free handgrip strength, with large effect sizes (1.44 and 0.78, respectively). Finally, in subjects with hypertension the blood pressure seemed to decrease after cervical HVLA manipulation. Higher quality studies are needed to develop a stronger evidence-based foundation for HVLA manipulation techniques as a treatment for cervical conditions.

  10. Text Manipulation Techniques and Foreign Language Composition.

    ERIC Educational Resources Information Center

    Walker, Ronald W.

    1982-01-01

    Discusses an approach to teaching second language composition which emphasizes (1) careful analysis of model texts from a limited, but well-defined perspective and (2) the application of text manipulation techniques developed by the word processing industry to student compositions. (EKN)

  11. Study to design and develop remote manipulator system

    NASA Technical Reports Server (NTRS)

    Hill, J. W.; Sword, A. J.

    1973-01-01

    Human performance measurement techniques for remote manipulation tasks and remote sensing techniques for manipulators are described for common manipulation tasks, performance is monitored by means of an on-line computer capable of measuring the joint angles of both master and slave arms as a function of time. The computer programs allow measurements of the operator's strategy and physical quantities such as task time and power consumed. The results are printed out after a test run to compare different experimental conditions. For tracking tasks, we describe a method of displaying errors in three dimensions and measuring the end-effector position in three dimensions.

  12. Overcoming barriers to the use of osteopathic manipulation techniques in the emergency department.

    PubMed

    Roberge, Raymond J; Roberge, Marc R

    2009-08-01

    Osteopathic Manipulation Techniques (OMT) have been shown to be effective therapeutic modalities in various clinical settings, but appear to be underutilized in the emergency department (ED) setting. To examine barriers to the use of OMT in the ED and provide suggestions to ameliorate these barriers. Literature review While the medical literature cites numerous obstacles to the use of OMT in the ED setting, most can be positively addressed through education, careful planning, and ongoing research into use of these techniques. Recent prospective clinical trials of OMT have demonstrated the utility of these modalities. Osteopathic Manipulation Techniques are useful therapeutic modalities that could be utilized to a greater degree in the ED. As the number of osteopathic emergency physicians increases, the opportunity to employ these techniques should increase.

  13. Methods for assessing autophagy and autophagic cell death.

    PubMed

    Tasdemir, Ezgi; Galluzzi, Lorenzo; Maiuri, M Chiara; Criollo, Alfredo; Vitale, Ilio; Hangen, Emilie; Modjtahedi, Nazanine; Kroemer, Guido

    2008-01-01

    Autophagic (or type 2) cell death is characterized by the massive accumulation of autophagic vacuoles (autophagosomes) in the cytoplasm of cells that lack signs of apoptosis (type 1 cell death). Here we detail and critically assess a series of methods to promote and inhibit autophagy via pharmacological and genetic manipulations. We also review the techniques currently available to detect autophagy, including transmission electron microscopy, half-life assessments of long-lived proteins, detection of LC3 maturation/aggregation, fluorescence microscopy, and colocalization of mitochondrion- or endoplasmic reticulum-specific markers with lysosomal proteins. Massive autophagic vacuolization may cause cellular stress and represent a frustrated attempt of adaptation. In this case, cell death occurs with (or in spite of) autophagy. When cell death occurs through autophagy, on the contrary, the inhibition of the autophagic process should prevent cellular demise. Accordingly, we describe a strategy for discriminating cell death with autophagy from cell death through autophagy.

  14. Laser Surgery: Organelles to Organs

    NASA Astrophysics Data System (ADS)

    Berns, Michael W. D.

    1998-03-01

    Understanding the physical mechanisms of light interaction with biological molecules and structure has resulted in the application of photons to a wide variety of biological and medical problems ranging from subcellular manipulation/surgery to the successful diagnosis and treatment of human disease. Mechanisms such as the generation and transfer of heat, light-driven chemistry (photochemistry), high peak power acoustic-mechanical effects, high photon-energy induced bond breaking, and optical induced forces through momentum transfer, are being utilized in single cells at the microscopic (submicron and micron) level as well as the macroscopic level in tissue and organs. At the subcellular level, focused laser microbeams (laser scissors and tweezers) are being used to cut and move chromosomes to study genetic function as well as to clone and sequence genes. The same laser technology is being used to manipulate a variety of cell organelles such as mitochondria, cell membranes, nucleoli, and mitochondria in order to study their functions in cell physiology. At the tissue level, lasers are being used to diagnose and treat malignancy in combination with light-activated drugs, to ablate cornea and other hard and soft tissue through ultraviolet photoablation, to selectively ablate structures within the skin under controlled heating/cooling conditions, and to differentiate normal from abnormal tissue using a variety of fluorescence detection and light scattering techniques.

  15. Bio-inspired configurable multiscale extracellular matrix-like structures for functional alignment and guided orientation of cells.

    PubMed

    Bae, Won-Gyu; Kim, Jangho; Choung, Yun-Hoon; Chung, Yesol; Suh, Kahp Y; Pang, Changhyun; Chung, Jong Hoon; Jeong, Hoon Eui

    2015-11-01

    Inspired by the hierarchically organized protein fibers in extracellular matrix (ECM) as well as the physiological importance of multiscale topography, we developed a simple but robust method for the design and manipulation of precisely controllable multiscale hierarchical structures using capillary force lithography in combination with an original wrinkling technique. In this study, based on our proposed fabrication technology, we approached a conceptual platform that can mimic the hierarchically multiscale topographical and orientation cues of the ECM for controlling cell structure and function. We patterned the polyurethane acrylate-based nanotopography with various orientations on the microgrooves, which could provide multiscale topography signals of ECM to control single and multicellular morphology and orientation with precision. Using our platforms, we found that the structures and orientations of fibroblast cells were greatly influenced by the nanotopography, rather than the microtopography. We also proposed a new approach that enables the generation of native ECM having nanofibers in specific three-dimensional (3D) configurations by culturing fibroblast cells on the multiscale substrata. We suggest that our methodology could be used as efficient strategies for the design and manipulation of various functional platforms, including well-defined 3D tissue structures for advanced regenerative medicine applications. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Whole arm manipulation planning based on feedback velocity fields and sampling-based techniques.

    PubMed

    Talaei, B; Abdollahi, F; Talebi, H A; Omidi Karkani, E

    2013-09-01

    Changing the configuration of a cooperative whole arm manipulator is not easy while enclosing an object. This difficulty is mainly because of risk of jamming caused by kinematic constraints. To reduce this risk, this paper proposes a feedback manipulation planning algorithm that takes grasp kinematics into account. The idea is based on a vector field that imposes perturbation in object motion inducing directions when the movement is considerably along manipulator redundant directions. Obstacle avoidance problem is then considered by combining the algorithm with sampling-based techniques. As experimental results confirm, the proposed algorithm is effective in avoiding jamming as well as obstacles for a 6-DOF dual arm whole arm manipulator. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.

  17. WONOEP appraisal: new genetic approaches to study epilepsy

    PubMed Central

    Rossignol, Elsa; Kobow, Katja; Simonato, Michele; Loeb, Jeffrey A.; Grisar, Thierry; Gilby, Krista L.; Vinet, Jonathan; Kadam, Shilpa D.; Becker, Albert J.

    2014-01-01

    Objective New genetic investigation techniques, including next-generation sequencing, epigenetic profiling, cell lineage mapping, targeted genetic manipulation of specific neuronal cell types, stem cell reprogramming and optogenetic manipulations within epileptic networks are progressively unravelling the mysteries of epileptogenesis and ictogenesis. These techniques have opened new avenues to discover the molecular basis of epileptogenesis and to study the physiological impacts of mutations in epilepsy-associated genes on a multilayer level, from cells to circuits. Methods This manuscript reviews recently published applications of these new genetic technologies in the study of epilepsy, as well as work presented by the authors at the genetic session of the XII Workshop on the Neurobiology of Epilepsy in Quebec, Canada. Results Next-generation sequencing is providing investigators with an unbiased means to assess the molecular causes of sporadic forms of epilepsy and have revealed the complexity and genetic heterogeneity of sporadic epilepsy disorders. To assess the functional impact of mutations in these newly identified genes on specific neuronal cell-types during brain development, new modeling strategies in animals, including conditional genetics in mice and in utero knockdown approaches, are enabling functional validation with exquisite cell-type and temporal specificity. In addition, optogenetics, using cell-type specific Cre recombinase driver lines, is enabling investigators to dissect networks involved in epilepsy. Genetically-encoded cell-type labeling is also providing new means to assess the role of the non-neuronal components of epileptic networks such as glial cells. Furthermore, beyond its role in revealing coding variants involved in epileptogenesis, next-generation sequencing can be used to assess the epigenetic modifications that lead to sustained network hyperexcitability in epilepsy, including methylation changes in gene promoters and non-coding RNAs involved in modifying gene expression following seizures. In addition, genetically-based bioluminescent reporters are providing new opportunities to assess neuronal activity and neurotransmitter levels both in vitro and in vivo in the context of epilepsy. Finally, genetically rederived neurons generated from patient iPS cells and genetically-modified zebrafish have become high-throughput means to investigate disease mechanisms and potential new therapies. Significance Genetics has considerably changed the field of epilepsy research and is paving the way for better diagnosis and therapies for patients with epilepsy. PMID:24965021

  18. Cell damage evaluation of mammalian cells in cell manipulation by amplified femtosecond ytterbium laser

    NASA Astrophysics Data System (ADS)

    Hong, Z.-Y.; Iino, T.; Hagihara, H.; Maeno, T.; Okano, K.; Yasukuni, R.; Hosokawa, Y.

    2018-03-01

    A micrometer-scale explosion with cavitation bubble generation is induced by focusing a femtosecond laser in an aqueous solution. We have proposed to apply the explosion as an impulsive force to manipulate mammalian cells especially in microfluidic chip. Herein, we employed an amplified femtosecond ytterbium laser as an excitation source for the explosion and evaluated cell damage in the manipulation process to clarify the application potential. The damage of C2C12 myoblast cell prepared as a representative mammalian cell was investigated as a function of distance between cell and laser focal point. Although the cell received strong damage on the direct laser irradiation condition, the damage sharply decreased with increasing distance. Since the threshold distance, above which the cell had no damage, was consistent with radius of the cavitation bubble, impact of the cavitation bubble would be a critical factor for the cell damage. The damage had strong nonlinearity in the pulse energy dependence. On the other hand, cell position shift by the impact of the cavitation bubble was almost proportional to the pulse energy. In balance between the cell viability and the cell position shift, we elucidated controllability of the cell manipulation in microfluidic chip.

  19. A randomized clinical trial to compare the immediate effects of seated thoracic manipulation and targeted supine thoracic manipulation on cervical spine flexion range of motion and pain

    PubMed Central

    Karas, Steve; Olson Hunt, Megan J

    2014-01-01

    Design Randomized clinical trial. Objectives To determine the effectiveness of seated thoracic manipulation versus targeted supine thoracic manipulation on cervical spine pain and flexion range of motion (ROM). There is evidence that thoracic spine manipulation is an effective treatment for patients with cervical spine pain. This evidence includes a variety of techniques to manipulate the thoracic spine. Although each of them is effective, no research has compared techniques to determine which produces the best outcomes. Methods A total of 39 patients with cervical spine pain were randomly assigned to either a seated thoracic manipulation or targeted supine thoracic manipulation group. Pain and flexion ROM measures were taken before and after the intervention. Results Pain reduction (post-treatment–pre-treatment) was significantly greater in those patients receiving the targeted supine thoracic manipulation compared to the seated thoracic manipulation (P<0.05). Although not significant, we did observe greater improvement in flexion ROM in the targeted supine thoracic manipulation group. The results of this study indicate that a targeted supine thoracic manipulation may be more effective in reducing cervical spine pain and improving cervical flexion ROM than a seated thoracic manipulation. Future studies should include a variety of patients and physical therapists (PTs) to validate our findings. PMID:24976754

  20. Applications of optical manipulation in plant biology

    NASA Astrophysics Data System (ADS)

    Buer, Charles S.

    Measuring small forces in biology is important for determining basic physiological parameters of a cell. The plant cell wall provides a primary defense and presents a barrier to research. Magnitudes of small forces are impossible to measure with mechanical transducers, glass needles, atomic force microscopy, or micropipet-based force transduction due to the cell wall. Therefore, a noninvasive method of breaching the plant cell wall to access the symplastic region of the cell is required. Laser light provides sub-micrometer positioning, particle manipulation without mechanical contact, and piconewton force determination. Consequently, the extension of laser microsurgery to expand an experimental tool for plant biology encompassed the overall objective. A protocol was developed for precisely inserting microscopic objects into the periplasmic region of plant callus cells using laser microsurgery. Ginkgo biloba and Agrobacterium rhizogenes were used as the model system for developing the optical tweezers and scalpel techniques. Better than 95% survival was achieved after plasmolyzing G. biloba cells, ablating a 2-4 μm hole through the cell wall using a pulsed UV laser beam, trapping and manipulating bacteria into the periplasmic region, and deplasmolyzing the cells. Optical trapping experiments implied a difference existed between the bacteria models. Determining the optical trapping efficiency of Agrobacterium rhizogenes and A. tumefaciens strains indicated the A. rhizogenes strain, ATCC 11325, was significantly less efficiently trapped than strains A4 and ATCC 15834 and the A. tumefaciens strain LBA4404. Differences were also found in capsule generation, growth media viscosity, and transmission electron microscopy negative staining implying that a difference in surface structure exists. Calcofluor fluorescence suggests the difference involves an exopolysaccharide. Callus cell plasmolysis revealed Hechtian strands interconnecting the plasma membrane and the cell wall. The spring tension of these strands was measured in normal and cold-hardened G. biloba and N. tabacum callus cells. There was little change in flexibility between the groups of cultured cells in either species studied. Microspheres were attached to Hechtian strands in normal cultured Nicotiana tabacum and the cells were deplasmolyzed and replasmolyzed to determine the fate of Hechtian strands. The microspheres either moved to the plasma membrane and adhered or moved to the cell wall and adhered. The attached microspheres occasionally moved independently on the same strand. Inserted microspheres provided a visual probe to follow physiological events within a plant cell.

  1. Microfluidics as a functional tool for cell mechanics.

    PubMed

    Vanapalli, Siva A; Duits, Michel H G; Mugele, Frieder

    2009-01-05

    Living cells are a fascinating demonstration of nature's most intricate and well-coordinated micromechanical objects. They crawl, spread, contract, and relax-thus performing a multitude of complex mechanical functions. Alternatively, they also respond to physical and chemical cues that lead to remodeling of the cytoskeleton. To understand this intricate coupling between mechanical properties, mechanical function and force-induced biochemical signaling requires tools that are capable of both controlling and manipulating the cell microenvironment and measuring the resulting mechanical response. In this review, the power of microfluidics as a functional tool for research in cell mechanics is highlighted. In particular, current literature is discussed to show that microfluidics powered by soft lithographic techniques offers the following capabilities that are of significance for understanding the mechanical behavior of cells: (i) Microfluidics enables the creation of in vitro models of physiological environments in which cell mechanics can be probed. (ii) Microfluidics is an excellent means to deliver physical cues that affect cell mechanics, such as cell shape, fluid flow, substrate topography, and stiffness. (iii) Microfluidics can also expose cells to chemical cues, such as growth factors and drugs, which alter their mechanical behavior. Moreover, these chemical cues can be delivered either at the whole cell or subcellular level. (iv) Microfluidic devices offer the possibility of measuring the intrinsic mechanical properties of cells in a high throughput fashion. (v) Finally, microfluidic methods provide exquisite control over drop size, generation, and manipulation. As a result, droplets are being increasingly used to control the physicochemical environment of cells and as biomimetic analogs of living cells. These powerful attributes of microfluidics should further stimulate novel means of investigating the link between physicochemical cues and the biomechanical response of cells. Insights from such studies will have implications in areas such as drug delivery, medicine, tissue engineering, and biomedical diagnostics.

  2. Human spleen contains different subsets of dendritic cells and regulatory T lymphocytes

    PubMed Central

    Velásquez-Lopera, M M; Correa, L A; García, L F

    2008-01-01

    Most knowledge about dendritic cells (DCs) and regulatory T cells in humans has been gathered from circulating cells but little is known about their frequency and distribution in lymphoid organs. This report shows the frequency, phenotype and location of DCs and regulatory T cells in deceased organ donors' spleens. As determined by flow cytometry, conventional/myeloid DCs (cDCs) CD11chighHLA-DR+CD123−/low were 2·3 ± 0·9% and LIN- HLA-DR+CD11chigh 2·1 ± 0·3% of total spleen cells. Mature CD11chighHLA-DR+CD83+ were 1·5 ± 0·8% and 1·0 ± 1·6% immature CD11chighHLA-DR+CD83- cDC. There were 0·3 ± 0·3% plasmacytoid DCs (pDC) CD11c−/lowHLA-DR+CD123high and 0·3 ± 0·1% LIN-HLA-DR+CD123high. Cells expressing cDCs markers, BDCA-1 and BDCA-3, and pDCs markers BDCA-2 and BDCA-4 were observed in higher frequencies than DCs with other phenotypes evaluated. CD11c+, CD123+ and CD83+ cells were located in subcapsular zone, T cells areas and B-cell follicles. CD4+CD25high Tregs were 0·2 ± 0·2% and CD8+CD28- comprised 11·5 ± 8·1% of spleen lymphocytes. FOXP3+ cells were found in T- and B-cell areas. The improvement in cell separation, manipulation and expansion techniques, will facilitate the manipulation of donor spleen cells as a part of protocols for induction and maintenance of allograft tolerance or treatment of autoimmune diseases. PMID:18727627

  3. Identification of fungi isolated from banana rachis and characterization of their surface activity.

    PubMed

    Méndez-Castillo, L; Prieto-Correa, E; Jiménez-Junca, C

    2017-03-01

    Filamentous fungi are an unexplored source for the production of biosurfactants, but over a decade one of the most surface active molecules called hydrophobins was discovered. There are few techniques to determine the surface activity of fungi without any kind of manipulation that can affect the final results. In this work, we identified 33 strains of filamentous fungi isolated from banana rachis which may have potential in producing biosurfactants. Further, the production of surface active compounds by the strains was measured by two techniques. First, the surface tension of supernatants was evaluated in liquid cultures of the strains. We found that three strains belonging to the genus Fusarium, Penicillium and Trichoderma showed activity in the reduction of surface tension, which indicate a putative production of biosurfactants. Second, we measured the contact angle between the drop of water and the solid culture of strains to determine the surface activity of cells, classifying the strains as hydrophilic or hydrophobic. These techniques can be used as a quantitative measurement of the surface activity of fungi without cell manipulation. Biosurfactants are an alternative to petrochemical derivatives, and filamentous fungi are a promising source of these molecules. This work identified 33 strains of filamentous fungi in agroindustrial wastes. This is important because these results open the opportunity of finding new biosurfactants (hydrophobins) with unique properties. We propose the evaluation of surface tension in the supernatant as a quantitative screening to determine the production of biosurfactants from the strains of fungi. © 2017 The Society for Applied Microbiology.

  4. Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells

    NASA Astrophysics Data System (ADS)

    Herce, Henry D.; Schumacher, Dominik; Schneider, Anselm F. L.; Ludwig, Anne K.; Mann, Florian A.; Fillies, Marion; Kasper, Marc-André; Reinke, Stefan; Krause, Eberhard; Leonhardt, Heinrich; Cardoso, M. Cristina; Hackenberger, Christian P. R.

    2017-08-01

    Functional antibody delivery in living cells would enable the labelling and manipulation of intracellular antigens, which constitutes a long-thought goal in cell biology and medicine. Here we present a modular strategy to create functional cell-permeable nanobodies capable of targeted labelling and manipulation of intracellular antigens in living cells. The cell-permeable nanobodies are formed by the site-specific attachment of intracellularly stable (or cleavable) cyclic arginine-rich cell-penetrating peptides to camelid-derived single-chain VHH antibody fragments. We used this strategy for the non-endocytic delivery of two recombinant nanobodies into living cells, which enabled the relocalization of the polymerase clamp PCNA (proliferating cell nuclear antigen) and tumour suppressor p53 to the nucleolus, and thereby allowed the detection of protein-protein interactions that involve these two proteins in living cells. Furthermore, cell-permeable nanobodies permitted the co-transport of therapeutically relevant proteins, such as Mecp2, into the cells. This technology constitutes a major step in the labelling, delivery and targeted manipulation of intracellular antigens. Ultimately, this approach opens the door towards immunostaining in living cells and the expansion of immunotherapies to intracellular antigen targets.

  5. Photo-irradiation paradigm: Mapping a remarkable facile technique used for advanced drug, gene and cell delivery.

    PubMed

    Shaker, Mohamed A; Younes, Husam M

    2015-11-10

    Undoubtedly, the progression of photo-irradiation technique has provided a smart engineering tool for the state-of-the-art biomaterials that guide the biomedical and therapeutic domains for promoting the modern pharmaceutical industry. Many investigators had exploited such a potential technique to create/ameliorate numerous pharmaceutical carriers. These carriers show promising applications that vary from small drug to therapeutic protein delivery and from gene to living cell encapsulation design. Harmony between the properties of precisely engineered precursors and the formed network structure broadens the investigator's intellect for both brilliant creations and effective applications. As well, controlling photo-curing at the formulation level, through manipulating the absorption of light stimuli, photoinitiator system and photo-responsive precursor, facilitates the exploration of novel distinctive biomaterials. Discussion of utilizing different photo-curing procedures in designing/formulation of different pharmaceutical carriers is the main emphasis of this review. In addition, recent applications of these intelligent techniques in targeted, controlled, and sustained drug delivery with understanding of photo-irradiation concept and mechanism are illustrated. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Hepatoprotective effect of manual acupuncture at acupoint GB34 against CCl4-induced chronic liver damage in rats

    PubMed Central

    Yim, Yun-Kyoung; Lee, Hyun; Hong, Kwon-Eui; Kim, Young-Il; Lee, Byung-Ryul; Kim, Tae-Han; Yi, Ji-Young

    2006-01-01

    AIM: To investigate the hepatoprotective effect of manual acupuncture at Yanglingquan (GB34) on CCl4-induced chronic liver damage in rats. METHODS: Rats were injected intraperitoneally with CCl4 (1 mL/kg) and treated with manual acupuncture using reinforcing manipulation techniques at left GB34 (Yanglingquan) 3 times a week for 10 wk. A non-acupoint in left gluteal area was selected as a sham point. To estimate the hepatoprotective effect of manual acupuncture at GB34, measurement of liver index, biochemical assays including serum ALT, AST, ALP and total cholesterol, histological analysis and blood cell counts were conducted. RESULTS: Manual acupuncture at GB34 reduced the liver index, serum ALT, AST, ALP and total cholesterol levels as compared with the control group and the sham acupuncture group. It also increased and normalized the populations of WBC and lymphocytes. CONCLUSION: Manual acupuncture with reinforcing manipulation techniques at left GB34 reduces liver toxicity, protects liver function and liver tissue, and normalizes immune activity in CCl4-intoxicated rats. PMID:16610030

  7. Characterization of nanoparticle mediated laser transfection by femtosecond laser pulses for applications in molecular medicine.

    PubMed

    Schomaker, Markus; Heinemann, Dag; Kalies, Stefan; Willenbrock, Saskia; Wagner, Siegfried; Nolte, Ingo; Ripken, Tammo; Murua Escobar, Hugo; Meyer, Heiko; Heisterkamp, Alexander

    2015-02-03

    In molecular medicine, the manipulation of cells is prerequisite to evaluate genes as therapeutic targets or to transfect cells to develop cell therapeutic strategies. To achieve these purposes it is essential that given transfection techniques are capable of handling high cell numbers in reasonable time spans. To fulfill this demand, an alternative nanoparticle mediated laser transfection method is presented herein. The fs-laser excitation of cell-adhered gold nanoparticles evokes localized membrane permeabilization and enables an inflow of extracellular molecules into cells. The parameters for an efficient and gentle cell manipulation are evaluated in detail. Efficiencies of 90% with a cell viability of 93% were achieved for siRNA transfection. The proof for a molecular medical approach is demonstrated by highly efficient knock down of the oncogene HMGA2 in a rapidly proliferating prostate carcinoma in vitro model using siRNA. Additionally, investigations concerning the initial perforation mechanism are conducted. Next to theoretical simulations, the laser induced effects are experimentally investigated by spectrometric and microscopic analysis. The results indicate that near field effects are the initial mechanism of membrane permeabilization. This methodical approach combined with an automated setup, allows a high throughput targeting of several 100,000 cells within seconds, providing an excellent tool for in vitro applications in molecular medicine. NIR fs lasers are characterized by specific advantages when compared to lasers employing longer (ps/ns) pulses in the visible regime. The NIR fs pulses generate low thermal impact while allowing high penetration depths into tissue. Therefore fs lasers could be used for prospective in vivo applications.

  8. Label-free detection of HIV-1 infected cells via integration of optical tweezers and photoluminescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Lugongolo, Masixole Yvonne; Ombinda-Lemboumba, Saturnin; Noto, Luyanda Lunga; Maaza, Malik; Mthunzi-Kufa, Patience

    2018-02-01

    The human immunodeficiency virus-1 (HIV-1) is currently detected using conventional qualitative and quantitative tests to determine the presence or absence of HIV in blood samples. However, the approach of these tests detects the presence of either viral antibodies or viral RNA that require labelling which may be costly, sophisticated and time consuming. A label-free approach of detecting the presence of HIV is therefore desirable. Of note optical tweezers can be coupled with other technologies including spectroscopy, which also investigates light-matter interactions. For example, coupling of optical tweezers with luminescence spectroscopy techniques has emerged as a powerful tool in biology for micro-manipulation, detection and analysis of individual cells. Integration of optical techniques has enabled studying biological particles in a label-free manner, whilst detecting functional groups and other essential molecules within mixed populations of cells. In the current study, an optical trapping system coupled to luminescence spectroscopy was utilised to detect the presence of HIV infection in TZM-bl cells in vitro. This was performed by infecting TZM-bl cells with the ZM53 HIV-1 pseudovirus, and incubating them for 48 hours prior analysis. The differences between infected and uninfected cells were thereafter displayed as shown by the spectrographs obtained. Combination of these two techniques has a potential in the field of infectious disease diagnostics.

  9. Overcoming Barriers to the Use of Osteopathic Manipulation Techniques in the Emergency Department

    PubMed Central

    Roberge, Raymond J.; Roberge, Marc R.

    2009-01-01

    Background: Osteopathic Manipulation Techniques (OMT) have been shown to be effective therapeutic modalities in various clinical settings, but appear to be underutilized in the emergency department (ED) setting. Objective: To examine barriers to the use of OMT in the ED and provide suggestions to ameliorate these barriers. Methods: Literature review Results: While the medical literature cites numerous obstacles to the use of OMT in the ED setting, most can be positively addressed through education, careful planning, and ongoing research into use of these techniques. Recent prospective clinical trials of OMT have demonstrated the utility of these modalities. Conclusion: Osteopathic Manipulation Techniques are useful therapeutic modalities that could be utilized to a greater degree in the ED. As the number of osteopathic emergency physicians increases, the opportunity to employ these techniques should increase. PMID:19718381

  10. Ultrashort laser pulse cell manipulation using nano- and micro- materials

    NASA Astrophysics Data System (ADS)

    Schomaker, Markus; Killian, Doreen; Willenbrock, Saskia; Diebold, Eric; Mazur, Eric; Bintig, Willem; Ngezahayo, Anaclet; Nolte, Ingo; Murua Escobar, Hugo; Junghanß, Christian; Lubatschowski, Holger; Heisterkamp, Alexander

    2010-08-01

    The delivery of extra cellular molecules into cells is essential for cell manipulation. For this purpose genetic materials (DNA/RNA) or proteins have to overcome the impermeable cell membrane. To increase the delivery efficiency and cell viability of common methods different nano- and micro material based approaches were applied. To manipulate the cells, the membrane is in contact with the biocompatible material. Due to a field enhancement of the laser light at the material and the resulting effect the cell membrane gets perforated and extracellular molecules can diffuse into the cytoplasm. Membrane impermeable dyes, fluorescent labelled siRNA, as well as plasmid vectors encoded for GFP expression were used as an indicator for successful perforation or transfection, respectively. Dependent on the used material, perforation efficiencies over 90 % with a cell viability of about 80 % can be achieved. Additionally, we observed similar efficiencies for siRNA transfection. Due to the larger molecule size and the essential transport of the DNA into the nucleus cells are more difficult to transfect with GFP plasmid vectors. Proof of principle experiments show promising and adequate efficiencies by applying micro materials for plasmid vector transfection. For all methods a weakly focused fs laser beam is used to enable a high manipulation throughput for adherent and suspension cells. Furthermore, with these alternative optical manipulation methods it is possible to perforate the membrane of sensitive cell types such as primary and stem cells with a high viability.

  11. Layer-by-layer-based silica encapsulation of individual yeast with thickness control.

    PubMed

    Lee, Hojae; Hong, Daewha; Choi, Ji Yu; Kim, Ji Yup; Lee, Sang Hee; Kim, Ho Min; Yang, Sung Ho; Choi, Insung S

    2015-01-01

    In the area of cell-surface engineering with nanomaterials, the metabolic and functional activities of the encapsulated cells are manipulated and controlled by various parameters of the artificial shells that encase the cells, such as stiffness and elasticity, thickness, and porosity. The mechanical durability and physicochemical stability of inorganic shells prove superior to layer-by-layer-based organic shells with regard to cytoprotection, but it has been difficult to vary the parameters of inorganic shells including their thickness. In this work, we combine the layer-by-layer technique with a process of bioinspired silicification to control the thickness of the silica shells that encapsulate yeast Saccharomyces cerevisiae cells individually, and investigate the thickness-dependent microbial growth. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Comparison of System Identification Techniques for the Hydraulic Manipulator Test Bed (HMTB)

    NASA Technical Reports Server (NTRS)

    Morris, A. Terry

    1996-01-01

    In this thesis linear, dynamic, multivariable state-space models for three joints of the ground-based Hydraulic Manipulator Test Bed (HMTB) are identified. HMTB, housed at the NASA Langley Research Center, is a ground-based version of the Dexterous Orbital Servicing System (DOSS), a representative space station manipulator. The dynamic models of the HMTB manipulator will first be estimated by applying nonparametric identification methods to determine each joint's response characteristics using various input excitations. These excitations include sum of sinusoids, pseudorandom binary sequences (PRBS), bipolar ramping pulses, and chirp input signals. Next, two different parametric system identification techniques will be applied to identify the best dynamical description of the joints. The manipulator is localized about a representative space station orbital replacement unit (ORU) task allowing the use of linear system identification methods. Comparisons, observations, and results of both parametric system identification techniques are discussed. The thesis concludes by proposing a model reference control system to aid in astronaut ground tests. This approach would allow the identified models to mimic on-orbit dynamic characteristics of the actual flight manipulator thus providing astronauts with realistic on-orbit responses to perform space station tasks in a ground-based environment.

  13. Manipulation of the osteoblast response to a Ti 6Al 4V titanium alloy using a high power diode laser

    NASA Astrophysics Data System (ADS)

    Hao, L.; Lawrence, J.; Li, L.

    2005-07-01

    To improve the bone integration of titanium-based implants a high power diode laser (HPDL) was used to modify the material for improved osteoblast cell response. The surface properties of un-treated and HPDL treated samples were characterized. Contact angles for the un-treated and the HPDL modified titanium alloy (Ti-6Al-4V) were determined with selected biological liquids by the sessile drop technique. The analysis revealed that the wettability of the Ti-6Al-4V improved after HPDL laser treatment, indicating that better interaction with the biological liquids occurred. Moreover, an in vitro human fetal osteoblast cells (hFOB 1.19) evaluation revealed a more favourable cell response on the HPDL laser treated Ti-6Al-4V alloy than on either un-treated sample or a mechanically roughened sample. It was consequently determined that the HPDL provides more a controllable and effective technique to improve the biocompatibility of bio-metals.

  14. Imaging live cells at high spatiotemporal resolution for lab-on-a-chip applications.

    PubMed

    Chin, Lip Ket; Lee, Chau-Hwang; Chen, Bi-Chang

    2016-05-24

    Conventional optical imaging techniques are limited by the diffraction limit and difficult-to-image biomolecular and sub-cellular processes in living specimens. Novel optical imaging techniques are constantly evolving with the desire to innovate an imaging tool that is capable of seeing sub-cellular processes in a biological system, especially in three dimensions (3D) over time, i.e. 4D imaging. For fluorescence imaging on live cells, the trade-offs among imaging depth, spatial resolution, temporal resolution and photo-damage are constrained based on the limited photons of the emitters. The fundamental solution to solve this dilemma is to enlarge the photon bank such as the development of photostable and bright fluorophores, leading to the innovation in optical imaging techniques such as super-resolution microscopy and light sheet microscopy. With the synergy of microfluidic technology that is capable of manipulating biological cells and controlling their microenvironments to mimic in vivo physiological environments, studies of sub-cellular processes in various biological systems can be simplified and investigated systematically. In this review, we provide an overview of current state-of-the-art super-resolution and 3D live cell imaging techniques and their lab-on-a-chip applications, and finally discuss future research trends in new and breakthrough research areas of live specimen 4D imaging in controlled 3D microenvironments.

  15. Project Plan 7930 Cell G PaR Remote Handling System Replacement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinney, Kathryn A

    2009-10-01

    For over 40 years the US Department of Energy (DOE) and its predecessors have made Californium-252 ({sup 252}Cf) available for a wide range of industries including medical, nuclear fuels, mining, military and national security. The Radiochemical Engineering Development Center (REDC) located within the Oak Ridge National Laboratory (ORNL) processes irradiated production targets from the High Flux Isotope Reactor (HFIR). Operations in Building 7930, Cell G provide over 70% of the world's demand for {sup 252}Cf. Building 7930 was constructed and equipped in the mid-1960s. Current operations for {sup 252}Cf processing in Building 7930, Cell G require use of through-the-wall manipulatorsmore » and the PaR Remote Handling System. Maintenance and repairs for the manipulators is readily accomplished by removal of the manipulator and relocation to a repair shop where hands-on work can be performed in glove boxes. Contamination inside cell G does not currently allow manned entry and no provisions were created for a maintenance area inside the cell. There has been no maintenance of the PaR system or upgrades, leaving operations vulnerable should the system have a catastrophic failure. The Cell G PaR system is currently being operated in a run to failure mode. As the manipulator is now 40+ years old there is significant risk in this method of operation. In 2006 an assessment was completed that resulted in recommendations for replacing the manipulator operator control and power centers which are used to control and power the PaR manipulator in Cell G. In mid-2008 the chain for the bridge drive failed and subsequent examinations indicated several damaged links (see Figure 1). To continue operations the PaR manipulator arm is being used to push and pull the bridge as a workaround. A retrieval tool was fabricated, tested and staged inside Cell G that will allow positioning of the bridge and manipulator arm for removal from the cell should the PaR system completely fail. A fully functioning and reliable Par manipulator arm is necessary for uninterrupted {sup 252}Cf operations; a fully-functioning bridge is needed for the system to function as intended.« less

  16. Manual and Instrument Applied Cervical Manipulation for Mechanical Neck Pain: A Randomized Controlled Trial.

    PubMed

    Gorrell, Lindsay M; Beath, Kenneth; Engel, Roger M

    2016-06-01

    The purpose of this study was to compare the effects of 2 different cervical manipulation techniques for mechanical neck pain (MNP). Participants with MNP of at least 1 month's duration (n = 65) were randomly allocated to 3 groups: (1) stretching (control), (2) stretching plus manually applied manipulation (MAM), and (3) stretching plus instrument-applied manipulation (IAM). MAM consisted of a single high-velocity, low-amplitude cervical chiropractic manipulation, whereas IAM involved the application of a single cervical manipulation using an (Activator IV) adjusting instrument. Preintervention and postintervention measurements were taken of all outcomes measures. Pain was the primary outcome and was measured using visual analogue scale and pressure pain thresholds. Secondary outcomes included cervical range of motion, hand grip-strength, and wrist blood pressure. Follow-up subjective pain scores were obtained via telephone text message 7 days postintervention. Subjective pain scores decreased at 7-day follow-up in the MAM group compared with control (P = .015). Cervical rotation bilaterally (ipsilateral: P = .002; contralateral: P = .015) and lateral flexion on the contralateral side to manipulation (P = .001) increased following MAM. Hand grip-strength on the contralateral side to manipulation (P = .013) increased following IAM. No moderate or severe adverse events were reported. Mild adverse events were reported on 6 occasions (control, 4; MAM, 1; IAM, 1). This study demonstrates that a single cervical manipulation is capable of producing immediate and short-term benefits for MNP. The study also demonstrates that not all manipulative techniques have the same effect and that the differences may be mediated by neurological or biomechanical factors inherent to each technique. Copyright © 2016. Published by Elsevier Inc.

  17. Single cell adhesion assay using computer controlled micropipette.

    PubMed

    Salánki, Rita; Hős, Csaba; Orgovan, Norbert; Péter, Beatrix; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint

    2014-01-01

    Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today's techniques typically have an extremely low throughput (5-10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub-population of strongly fibrinogen adherent cells appearing in macrophages and highly represented in dendritic cells, but not observed in monocytes.

  18. Single Cell Adhesion Assay Using Computer Controlled Micropipette

    PubMed Central

    Salánki, Rita; Hős, Csaba; Orgovan, Norbert; Péter, Beatrix; Sándor, Noémi; Bajtay, Zsuzsa; Erdei, Anna; Horvath, Robert; Szabó, Bálint

    2014-01-01

    Cell adhesion is a fundamental phenomenon vital for all multicellular organisms. Recognition of and adhesion to specific macromolecules is a crucial task of leukocytes to initiate the immune response. To gain statistically reliable information of cell adhesion, large numbers of cells should be measured. However, direct measurement of the adhesion force of single cells is still challenging and today’s techniques typically have an extremely low throughput (5–10 cells per day). Here, we introduce a computer controlled micropipette mounted onto a normal inverted microscope for probing single cell interactions with specific macromolecules. We calculated the estimated hydrodynamic lifting force acting on target cells by the numerical simulation of the flow at the micropipette tip. The adhesion force of surface attached cells could be accurately probed by repeating the pick-up process with increasing vacuum applied in the pipette positioned above the cell under investigation. Using the introduced methodology hundreds of cells adhered to specific macromolecules were measured one by one in a relatively short period of time (∼30 min). We blocked nonspecific cell adhesion by the protein non-adhesive PLL-g-PEG polymer. We found that human primary monocytes are less adherent to fibrinogen than their in vitro differentiated descendants: macrophages and dendritic cells, the latter producing the highest average adhesion force. Validation of the here introduced method was achieved by the hydrostatic step-pressure micropipette manipulation technique. Additionally the result was reinforced in standard microfluidic shear stress channels. Nevertheless, automated micropipette gave higher sensitivity and less side-effect than the shear stress channel. Using our technique, the probed single cells can be easily picked up and further investigated by other techniques; a definite advantage of the computer controlled micropipette. Our experiments revealed the existence of a sub-population of strongly fibrinogen adherent cells appearing in macrophages and highly represented in dendritic cells, but not observed in monocytes. PMID:25343359

  19. The genome editing toolbox: a spectrum of approaches for targeted modification.

    PubMed

    Cheng, Joseph K; Alper, Hal S

    2014-12-01

    The increase in quality, quantity, and complexity of recombinant products heavily drives the need to predictably engineer model and complex (mammalian) cell systems. However, until recently, limited tools offered the ability to precisely manipulate their genomes, thus impeding the full potential of rational cell line development processes. Targeted genome editing can combine the advances in synthetic and systems biology with current cellular hosts to further push productivity and expand the product repertoire. This review highlights recent advances in targeted genome editing techniques, discussing some of their capabilities and limitations and their potential to aid advances in pharmaceutical biotechnology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Standardized limbal epithelial stem cell graft generation and transplantation.

    PubMed

    Zakaria, Nadia; Koppen, Carina; Van Tendeloo, Viggo; Berneman, Zwi; Hopkinson, Andrew; Tassignon, Marie-José

    2010-10-01

    To describe a standardized, xenogenic-free protocol for the manufacture of limbal epithelial stem cell grafts and a "no touch" surgical technique for its standardized transplantation. Antwerp University Hospital, Antwerp, Belgium. The limbo-amnion composite graft is generated by cultivating limbal epithelial stem cells on a standardized (thermolysin treated and spongy layer removed) amniotic membrane, stretched within an interlockable amnion ring. The cells are cultured in CnT-20 medium with the addition of 1% human AB serum for a period of 2 weeks. Fibrin glue is applied to the surgically prepared recipient's cornea and in one fluid motion, the composite graft within the amnion ring construct is transferred from culture and positioned onto the graft bed. The required size is cut out at the level of the limbus by means of a trephine and/or microsurgical scissors. The lightweight, plastic interlockable ring offered stability to the graft during culture, transport, and transplantation. The use of the standardized amniotic membrane, within the amnion ring construct, improves reproducibility of the results and therefore heralds elective surgery. Rapid transplantation of a wrinkle-free graft, using a sutureless, “no touch" technique was achieved and this allowed precise tailoring of the graft to the recipient bed. This is the first time a standardized, clinical grade protocol has been described for manufacturing limbal epithelial grafts with an efficient surgical technique that prevents postsurgical graft shrinkage and improves corneal integration. The quick, sutureless, and manipulation-free technique ensured transplantation of viable, proliferating limbal epithelial stem cells.

  1. Laser microtreatment for genetic manipulations and DNA diagnostics by a combination of microbeam and photonic tweezers (laser microbeam trap)

    NASA Astrophysics Data System (ADS)

    Greulich, Karl-Otto; Monajembashi, Shamci; Celeda, D.; Endlich, N.; Eickhoff, Holger; Hoyer, Carsten; Leitz, G.; Weber, Gerd; Scheef, J.; Rueterjans, H.

    1994-12-01

    Genomes of higher organisms are larger than one typically expects. For example, the DNA of a single human cell is almost two meters long, the DNA in the human body covers the distance Earth-Sun approximately 140 times. This is often not considered in typical molecular biological approaches for DNA diagnostics, where usually only DNA of the length of a gene is investigated. Also, one basic aspect of sequencing the human genome is not really solved: the problem how to prepare the huge amounts of DNA required. Approaches from biomedical optics combined with new developments in single molecule biotechnology may at least contribute some parts of the puzzle. A large genome can be partitioned into portions comprising approximately 1% of the whole DNA using a laser microbeam. The single DNA fragment can be amplified by the polymerase chain reaction in order to obtain a sufficient amount of molecules for conventional DNA diagnostics or for analysis by octanucleotide hybridization. When not amplified by biotechnological processes, the individual DNA molecule can be visualized in the light microscope and can be manipulated and dissected with the laser microbeam trap. The DNA probes obtained by single molecule biotechnology can be employed for fluorescence in situ introduced into plant cells and subcellular structures even when other techniques fail. Since the laser microbeam trap allows to work in the interior of a cell without opening it, subcellular structures can be manipulated. For example, in algae, such structures can be moved out of their original position and used to study intracellular viscosities.

  2. Validation of a device for the active manipulation of the tumor microenvironment during intravital imaging

    PubMed Central

    Williams, James K.; Entenberg, David; Wang, Yarong; Avivar-Valderas, Alvaro; Padgen, Michael; Clark, Ashley; Aguirre-Ghiso, Julio A.; Castracane, James; Condeelis, John S.

    2016-01-01

    ABSTRACT The tumor microenvironment is recognized as playing a significant role in the behavior of tumor cells and their progression to metastasis. However, tools to manipulate the tumor microenvironment directly, and image the consequences of this manipulation with single cell resolution in real time in vivo, are lacking. We describe here a method for the direct, local manipulation of microenvironmental parameters through the use of an implantable Induction Nano Intravital Device (iNANIVID) and simultaneous in vivo visualization of the results at single-cell resolution. As a proof of concept, we deliver both a sustained dose of EGF to tumor cells while intravital imaging their chemotactic response as well as locally induce hypoxia in defined microenvironments in solid tumors. PMID:27790386

  3. CalQuo: automated, simultaneous single-cell and population-level quantification of global intracellular Ca2+ responses.

    PubMed

    Fritzsche, Marco; Fernandes, Ricardo A; Colin-York, Huw; Santos, Ana M; Lee, Steven F; Lagerholm, B Christoffer; Davis, Simon J; Eggeling, Christian

    2015-11-13

    Detecting intracellular calcium signaling with fluorescent calcium indicator dyes is often coupled with microscopy techniques to follow the activation state of non-excitable cells, including lymphocytes. However, the analysis of global intracellular calcium responses both at the single-cell level and in large ensembles simultaneously has yet to be automated. Here, we present a new software package, CalQuo (Calcium Quantification), which allows the automated analysis and simultaneous monitoring of global fluorescent calcium reporter-based signaling responses in up to 1000 single cells per experiment, at temporal resolutions of sub-seconds to seconds. CalQuo quantifies the number and fraction of responding cells, the temporal dependence of calcium signaling and provides global and individual calcium-reporter fluorescence intensity profiles. We demonstrate the utility of the new method by comparing the calcium-based signaling responses of genetically manipulated human lymphocytic cell lines.

  4. A sensible technique to detect mollicutes impurities in human cells cultured in GMP condition.

    PubMed

    Ugolotti, Elisabetta; Vanni, Irene

    2014-01-01

    In therapeutic trials the use of manipulated cell cultures for clinical applications is often required. Mollicutes microorganism contamination of tissue cultures is a major problem because it can determine various and severe alterations in cellular function. Thus methods able to detect and trace cell cultures with Mollicutes contamination are needed in the monitoring of cells grown under good manufacturing practice conditions, and cell lines in continuous culture must be tested at regular intervals. We here describe a multiplex quantitative polymerase chain reaction assay able to detect contaminant Mollicutes species in a single-tube reaction through analysis of 16S-23S rRNA intergenic spacer regions and Tuf and P1 cytoadhesin genes. The method shows a sensitivity, specificity, and robustness comparable with the culture and the indicator cell culture as required by the European Pharmacopoeia guidelines and was validated following International Conference on Harmonization guidelines and Food and Drug Administration requirements.

  5. In Vivo Imaging of Transgenic Gene Expression in Individual Retinal Progenitors in Chimeric Zebrafish Embryos to Study Cell Nonautonomous Influences.

    PubMed

    Dudczig, Stefanie; Currie, Peter D; Poggi, Lucia; Jusuf, Patricia R

    2017-03-22

    The genetic and technical strengths have made the zebrafish vertebrate a key model organism in which the consequences of gene manipulations can be traced in vivo throughout the rapid developmental period. Multiple processes can be studied including cell proliferation, gene expression, cell migration and morphogenesis. Importantly, the generation of chimeras through transplantations can be easily performed, allowing mosaic labeling and tracking of individual cells under the influence of the host environment. For example, by combining functional gene manipulations of the host embryo (e.g., through morpholino microinjection) and live imaging, the effects of extrinsic, cell nonautonomous signals (provided by the genetically modified environment) on individual transplanted donor cells can be assessed. Here we demonstrate how this approach is used to compare the onset of fluorescent transgene expression as a proxy for the timing of cell fate determination in different genetic host environments. In this article, we provide the protocol for microinjecting zebrafish embryos to mark donor cells and to cause gene knockdown in host embryos, a description of the transplantation technique used to generate chimeric embryos, and the protocol for preparing and running in vivo time-lapse confocal imaging of multiple embryos. In particular, performing multiposition imaging is crucial when comparing timing of events such as the onset of gene expression. This requires data collection from multiple control and experimental embryos processed simultaneously. Such an approach can easily be extended for studies of extrinsic influences in any organ or tissue of choice accessible to live imaging, provided that transplantations can be targeted easily according to established embryonic fate maps.

  6. Application of optically-induced-dielectrophoresis in microfluidic system for purification of circulating tumour cells for gene expression analysis- Cancer cell line model

    NASA Astrophysics Data System (ADS)

    Chiu, Tzu-Keng; Chou, Wen-Pin; Huang, Song-Bin; Wang, Hung-Ming; Lin, Yung-Chang; Hsieh, Chia-Hsun; Wu, Min-Hsien

    2016-09-01

    Circulating tumour cells (CTCs) in a blood circulation system are associated with cancer metastasis. The analysis of the drug-resistance gene expression of cancer patients’ CTCs holds promise for selecting a more effective therapeutic regimen for an individual patient. However, the current CTC isolation schemes might not be able to harvest CTCs with sufficiently high purity for such applications. To address this issue, this study proposed to integrate the techniques of optically induced dielectrophoretic (ODEP) force-based cell manipulation and fluorescent microscopic imaging in a microfluidic system to further purify CTCs after the conventional CTC isolation methods. In this study, the microfluidic system was developed, and its optimal operating conditions and performance for CTC isolation were evaluated. The results revealed that the presented system was able to isolate CTCs with cell purity as high as 100%, beyond what is possible using the previously existing techniques. In the analysis of CTC gene expression, therefore, this method could exclude the interference of leukocytes in a cell sample and accordingly contribute to higher analytical sensitivity, as demonstrated in this study. Overall, this study has presented an ODEP-based microfluidic system capable of simply and effectively isolating a specific cell species from a cell mixture.

  7. Application of optically-induced-dielectrophoresis in microfluidic system for purification of circulating tumour cells for gene expression analysis- Cancer cell line model.

    PubMed

    Chiu, Tzu-Keng; Chou, Wen-Pin; Huang, Song-Bin; Wang, Hung-Ming; Lin, Yung-Chang; Hsieh, Chia-Hsun; Wu, Min-Hsien

    2016-09-09

    Circulating tumour cells (CTCs) in a blood circulation system are associated with cancer metastasis. The analysis of the drug-resistance gene expression of cancer patients' CTCs holds promise for selecting a more effective therapeutic regimen for an individual patient. However, the current CTC isolation schemes might not be able to harvest CTCs with sufficiently high purity for such applications. To address this issue, this study proposed to integrate the techniques of optically induced dielectrophoretic (ODEP) force-based cell manipulation and fluorescent microscopic imaging in a microfluidic system to further purify CTCs after the conventional CTC isolation methods. In this study, the microfluidic system was developed, and its optimal operating conditions and performance for CTC isolation were evaluated. The results revealed that the presented system was able to isolate CTCs with cell purity as high as 100%, beyond what is possible using the previously existing techniques. In the analysis of CTC gene expression, therefore, this method could exclude the interference of leukocytes in a cell sample and accordingly contribute to higher analytical sensitivity, as demonstrated in this study. Overall, this study has presented an ODEP-based microfluidic system capable of simply and effectively isolating a specific cell species from a cell mixture.

  8. Application of optically-induced-dielectrophoresis in microfluidic system for purification of circulating tumour cells for gene expression analysis- Cancer cell line model

    PubMed Central

    Chiu, Tzu-Keng; Chou, Wen-Pin; Huang, Song-Bin; Wang, Hung-Ming; Lin, Yung-Chang; Hsieh, Chia-Hsun; Wu, Min-Hsien

    2016-01-01

    Circulating tumour cells (CTCs) in a blood circulation system are associated with cancer metastasis. The analysis of the drug-resistance gene expression of cancer patients’ CTCs holds promise for selecting a more effective therapeutic regimen for an individual patient. However, the current CTC isolation schemes might not be able to harvest CTCs with sufficiently high purity for such applications. To address this issue, this study proposed to integrate the techniques of optically induced dielectrophoretic (ODEP) force-based cell manipulation and fluorescent microscopic imaging in a microfluidic system to further purify CTCs after the conventional CTC isolation methods. In this study, the microfluidic system was developed, and its optimal operating conditions and performance for CTC isolation were evaluated. The results revealed that the presented system was able to isolate CTCs with cell purity as high as 100%, beyond what is possible using the previously existing techniques. In the analysis of CTC gene expression, therefore, this method could exclude the interference of leukocytes in a cell sample and accordingly contribute to higher analytical sensitivity, as demonstrated in this study. Overall, this study has presented an ODEP-based microfluidic system capable of simply and effectively isolating a specific cell species from a cell mixture. PMID:27609546

  9. 76 FR 51038 - Draft Guidance for Industry: Cell Selection Devices for Point of Care Production of Minimally...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-17

    ...; formerly Docket No. 2007D-0290] Draft Guidance for Industry: Cell Selection Devices for Point of Care Production of Minimally Manipulated Autologous Peripheral Blood Stem Cells; Withdrawal of Draft Guidance...: Cell Selection Devices for Point of Care Production of Minimally Manipulated Autologous Peripheral...

  10. A review on optical actuators for microfluidic systems

    NASA Astrophysics Data System (ADS)

    Yang, Tie; Chen, Yue; Minzioni, Paolo

    2017-12-01

    During the last few decades microfluidic systems have become more and more popular and their relevance in different fields is continually growing. In fact, the use of microchannels allows a significant reduction of the required sample-volume and opens the way to a completely new set of possible investigations, including the study of the properties of cells, the development of new cells’ separation techniques and the analysis of single-cell proteins. One of the main differences between microscopic and macroscopic systems is obviously dictated by the need for suitable actuation mechanisms, which should allow precise control of microscopic fluid volumes and of micro-samples inside the fluid. Even if both syringe-pump and pneumatic-pump technologies significantly evolved and they currently enable sub-μL samples control, completely new approaches were recently developed for the manipulation of samples inside the microchannel. This review is dedicated to describing different kinds of optical actuators that can be applied in microfluidic systems for sample manipulation as well as for pumping. The basic principles underlying the optical actuation mechanisms will be described first, and then several experimental demonstrations will be reviewed and compared.

  11. Nanotechnology as an adjunct tool for transplanting engineered cells and tissues.

    PubMed

    Borlongan, Cesar V; Masuda, Tadashi; Walker, Tiffany A; Maki, Mina; Hara, Koichi; Yasuhara, Takao; Matsukawa, Noriyuki; Emerich, Dwaine F

    2007-11-01

    Laboratory and clinical studies have provided evidence of feasibility, safety and efficacy of cell transplantation to treat a wide variety of diseases characterized by tissue and cell dysfunction ranging from diabetes to spinal cord injury. However, major hurdles remain and limit pursuing large clinical trials, including the availability of a universal cell source that can be differentiated into specific cellular phenotypes, methods to protect the transplanted allogeneic or xenogeneic cells from rejection by the host immune system, techniques to enhance cellular integration of the transplant within the host tissue, strategies for in vivo detection and monitoring of the cellular implants, and new techniques to deliver genes to cells without eliciting a host immune response. Finding ways to circumvent these obstacles will benefit considerably from being able to understand, visualize, and control cellular interactions at a sub-micron level. Cutting-edge discoveries in the multidisciplinary field of nanotechnology have provided us a platform to manipulate materials, tissues, cells, and DNA at the level of and within the individual cell. Clearly, the scientific innovations achieved with nanotechnology are a welcome strategy for enhancing the generally encouraging results already achieved in cell transplantation. This review article discusses recent progress in the field of nanotechnology as a tool for tissue engineering, gene therapy, cell immunoisolation, and cell imaging, highlighting its direct applications in cell transplantation therapy.

  12. Precise Spatiotemporal Control of Optogenetic Activation Using an Acousto-Optic Device

    PubMed Central

    Guo, Yanmeng; Song, Peipei; Zhang, Xiaohui; Zeng, Shaoqun; Wang, Zuoren

    2011-01-01

    Light activation and inactivation of neurons by optogenetic techniques has emerged as an important tool for studying neural circuit function. To achieve a high resolution, new methods are being developed to selectively manipulate the activity of individual neurons. Here, we report that the combination of an acousto-optic device (AOD) and single-photon laser was used to achieve rapid and precise spatiotemporal control of light stimulation at multiple points in a neural circuit with millisecond time resolution. The performance of this system in activating ChIEF expressed on HEK 293 cells as well as cultured neurons was first evaluated, and the laser stimulation patterns were optimized. Next, the spatiotemporally selective manipulation of multiple neurons was achieved in a precise manner. Finally, we demonstrated the versatility of this high-resolution method in dissecting neural circuits both in the mouse cortical slice and the Drosophila brain in vivo. Taken together, our results show that the combination of AOD-assisted laser stimulation and optogenetic tools provides a flexible solution for manipulating neuronal activity at high efficiency and with high temporal precision. PMID:22174813

  13. Improved efficiency of nanoneedle insertion by modification with a cell-puncturing protein

    NASA Astrophysics Data System (ADS)

    Ryu, Seunghwan; Matsumoto, Yuta; Matsumoto, Takahiro; Ueno, Takafumi; Silberberg, Yaron R.; Nakamura, Chikashi

    2018-03-01

    An atomic force microscope (AFM) probe etched into an ultra-sharp cylindrical shape (a nanoneedle) can be inserted into a living cell and mechanical responses of the insertion process are represented as force-distance curves using AFM. A probe-molecule-functionalized nanoneedle can be used to detect intracellular molecules of interest in situ. The insertion efficiencies of nanoneedles vary among cell types due to the cortex structures of cells, and some cell types, such as mouse fibroblast Balb/3T3 cells, show extremely low efficacy of insertion. We addressed this issue by using a cell membrane puncturing protein from bacteriophage T4 (gp5), a needle-like protein that spontaneously penetrates through the cell membrane. Gp5 was immobilized onto a nanoneedle surface. The insertion efficiency of the functionalized nanoneedle increased by over 15% compared to the non-functionalized control. Gp5-modification is a versatile approach in cell manipulation techniques for the insertion of other types of nanostructures into cells.

  14. Articular dysfunction patterns in patients with mechanical neck pain: a clinical algorithm to guide specific mobilization and manipulation techniques.

    PubMed

    Dewitte, Vincent; Beernaert, Axel; Vanthillo, Bart; Barbe, Tom; Danneels, Lieven; Cagnie, Barbara

    2014-02-01

    In view of a didactical approach for teaching cervical mobilization and manipulation techniques to students as well as their use in daily practice, it is mandatory to acquire sound clinical reasoning to optimally apply advanced technical skills. The aim of this Masterclass is to present a clinical algorithm to guide (novice) therapists in their clinical reasoning to identify patients who are likely to respond to mobilization and/or manipulation. The presented clinical reasoning process is situated within the context of pain mechanisms and is narrowed to and applicable in patients with a dominant input pain mechanism. Based on key features in subjective and clinical examination, patients with mechanical nociceptive pain probably arising from articular structures can be categorized into specific articular dysfunction patterns. Pending on these patterns, specific mobilization and manipulation techniques are warranted. The proposed patterns are illustrated in 3 case studies. This clinical algorithm is the corollary of empirical expertise and is complemented by in-depth discussions and knowledge exchange with international colleagues. Consequently, it is intended that a carefully targeted approach contributes to an increase in specificity and safety in the use of cervical mobilizations and manipulation techniques as valuable adjuncts to other manual therapy modalities. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Basic procedures for epigenetic analysis in plant cell and tissue culture.

    PubMed

    Rodríguez, José L; Pascual, Jesús; Viejo, Marcos; Valledor, Luis; Meijón, Mónica; Hasbún, Rodrigo; Yrei, Norma Yague; Santamaría, María E; Pérez, Marta; Fernández Fraga, Mario; Berdasco, María; Rodríguez Fernández, Roberto; Cañal, María J

    2012-01-01

    In vitro culture is one of the most studied techniques, and it is used to study many developmental processes, especially in forestry species, because of growth timing and easy manipulation. Epigenetics has been shown as an important influence on many research analyses such as cancer in mammals and developmental processes in plants such as flowering, but regarding in vitro culture, techniques to study DNA methylation or chromatin modifications were mainly limited to identify somaclonal variation of the micropropagated material. Because in vitro culture is not only a way to generate plant material but also a bunch of differentially induced developmental processes, an approach of techniques and some research carried out to study the different changes regarding DNA methylation and chromatin and translational modifications that take place during these processes is reviewed.

  16. Optical Manipulation of Symbiotic Chlorella in Paramecium Bursaria Using a Fiber Axicon Microlens

    NASA Astrophysics Data System (ADS)

    Taguchi, K.; Hirota, S.; Nakayama, H.; Kunugihara, D.; Mihara, Y.

    2012-03-01

    In this paper, chemically etched axicon fiber was proposed for laser trapping of symbiotic chlorella from paramecium bursaria. We fabricated axicon micro lenses on a single-mode bare optical fiber by selective chemical etching technique. The laser beam from fiber axicon microlens was strongly focused and optical forces were sufficient to move a symbiotic chlorella. From experimental results, it was found that our proposed fiber axicon microlens was a promising tool for cell trapping without physical contact.

  17. Physics-based interactive volume manipulation for sharing surgical process.

    PubMed

    Nakao, Megumi; Minato, Kotaro

    2010-05-01

    This paper presents a new set of techniques by which surgeons can interactively manipulate patient-specific volumetric models for sharing surgical process. To handle physical interaction between the surgical tools and organs, we propose a simple surface-constraint-based manipulation algorithm to consistently simulate common surgical manipulations such as grasping, holding and retraction. Our computation model is capable of simulating soft-tissue deformation and incision in real time. We also present visualization techniques in order to rapidly visualize time-varying, volumetric information on the deformed image. This paper demonstrates the success of the proposed methods in enabling the simulation of surgical processes, and the ways in which this simulation facilitates preoperative planning and rehearsal.

  18. Acoustic Liquid Manipulation Used to Enhance Electrochemical Processes

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2005-01-01

    Working in concert with the NASA Technology Transfer and Partnership Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation of Elgin, Illinois, the NASA Glenn Research Center has applied nonlinear acoustic principles to industrial applications. High-intensity ultrasonic beam techniques employ the effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. This includes propelling liquids, moving bubbles, and ejecting liquids as droplets and fountains. Since these effects can be accomplished without mechanical pumps or moving parts, we are exploring how these techniques could be used to manipulate liquids in space applications. Some of these acoustic techniques could be used both in normal Earth gravity and in the microgravity of space.

  19. Application of identification techniques to remote manipulator system flight data

    NASA Technical Reports Server (NTRS)

    Shepard, G. D.; Lepanto, J. A.; Metzinger, R. W.; Fogel, E.

    1983-01-01

    This paper addresses the application of identification techniques to flight data from the Space Shuttle Remote Manipulator System (RMS). A description of the remote manipulator, including structural and control system characteristics, sensors, and actuators is given. A brief overview of system identification procedures is presented, and the practical aspects of implementing system identification algorithms are discussed. In particular, the problems posed by desampling rate, numerical error, and system nonlinearities are considered. Simulation predictions of damping, frequency, and system order are compared with values identified from flight data to support an evaluation of RMS structural and control system models. Finally, conclusions are drawn regarding the application of identification techniques to flight data obtained from a flexible space structure.

  20. [An Introduction to A Newly-developed "Acupuncture Needle Manipulation Training-evaluation System" Based on Optical Motion Capture Technique].

    PubMed

    Zhang, Ao; Yan, Xing-Ke; Liu, An-Guo

    2016-12-25

    In the present paper, the authors introduce a newly-developed "Acupuncture Needle Manipulation Training-evaluation System" based on optical motion capture technique. It is composed of two parts, sensor and software, and overcomes some shortages of mechanical motion capture technique. This device is able to analyze the data of operations of the pressing-hand and needle-insertion hand during acupuncture performance and its software contains personal computer (PC) version, Android version, and Internetwork Operating System (IOS) Apple version. It is competent in recording and analyzing information of any ope-rator's needling manipulations, and is quite helpful for teachers in teaching, training and examining students in clinical practice.

  1. [Reconstruction of penile function with tissue engineering techniques].

    PubMed

    Song, Lu-jie; Pan, Lian-jun; Xu, Yue-min

    2007-04-01

    Tissue engineering techniques, with their potential applied value for penile reconstruction, are of special interest for andrologists. The purpose of this review is to appraise the recent development and publications in this field. In the past few years, great efforts have been made to develop corpus cavernosum tissues by combining smooth muscle and endothelial cells seeded on biodegradable polyglycolic acid polymer (PGA) or acellular corporal collagen matrices scaffolds. Animal experiment demonstrated that the engineered corpus cavernosum achieved adequate structural and functional parameters. Engineered cartilage rods as an alternative for the current clinical standard of semirigid or inflatable penile implants could be created by seeding chondrocyte cylindrical PGA. A series of studies showed that, compared to commercially available silicone implants, the engineered rods were flexible, elastic and stable. Besides, a variety of decellularized biological materials have been used as grafts not only for substitution of tunica albuginea but also for penile enhancement, with promising results. For treating erectile dysfunction, a new approach to recovering erectile function by cell-based therapy could be the injection of functional cells into corpus cavernosum, which seemed to be promising when combined with cell manipulation by gene therapy prior to cell transfer.

  2. Nanoneedle insertion into the cell nucleus does not induce double-strand breaks in chromosomal DNA.

    PubMed

    Ryu, Seunghwan; Kawamura, Ryuzo; Naka, Ryohei; Silberberg, Yaron R; Nakamura, Noriyuki; Nakamura, Chikashi

    2013-09-01

    An atomic force microscope probe can be formed into an ultra-sharp cylindrical shape (a nanoneedle) using micro-fabrication techniques such as focused ion beam etching. This nanoneedle can be effectively inserted through the plasma membrane of a living cell to not only access the cytosol, but also to penetrate through the nuclear membrane. This technique shows great potential as a tool for performing intranuclear measurements and manipulations. Repeated insertions of a nanoneedle into a live cell were previously shown not to affect cell viability. However, the effect of nanoneedle insertion on the nucleus and nuclear components is still unknown. DNA is the most crucial component of the nucleus for proper cell function and may be physically damaged by a nanoneedle. To investigate the integrity of DNA following nanoneedle insertion, the occurrence of DNA double-strand breaks (DSBs) was assessed. The results showed that there was no chromosomal DNA damage due to nanoneedle insertion into the nucleus, as indicated by the expression level of γ-H2AX, a molecular marker of DSBs. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  3. Host manipulation by cancer cells: Expectations, facts, and therapeutic implications.

    PubMed

    Tissot, Tazzio; Arnal, Audrey; Jacqueline, Camille; Poulin, Robert; Lefèvre, Thierry; Mery, Frédéric; Renaud, François; Roche, Benjamin; Massol, François; Salzet, Michel; Ewald, Paul; Tasiemski, Aurélie; Ujvari, Beata; Thomas, Frédéric

    2016-03-01

    Similar to parasites, cancer cells depend on their hosts for sustenance, proliferation and reproduction, exploiting the hosts for energy and resources, and thereby impairing their health and fitness. Because of this lifestyle similarity, it is predicted that cancer cells could, like numerous parasitic organisms, evolve the capacity to manipulate the phenotype of their hosts to increase their own fitness. We claim that the extent of this phenomenon and its therapeutic implications are, however, underappreciated. Here, we review and discuss what can be regarded as cases of host manipulation in the context of cancer development and progression. We elaborate on how acknowledging the applicability of these principles can offer novel therapeutic and preventive strategies. The manipulation of host phenotype by cancer cells is one more reason to adopt a Darwinian approach in cancer research. © 2016 WILEY Periodicals, Inc.

  4. The role of computerized symbolic manipulation in rotorcraft dynamics analysis

    NASA Technical Reports Server (NTRS)

    Crespo Da Silva, Marcelo R. M.; Hodges, Dewey H.

    1986-01-01

    The potential role of symbolic manipulation programs in development and solution of the governing equations for rotorcraft dynamics problems is discussed and illustrated. Nonlinear equations of motion for a helicopter rotor blade represented by a rotating beam are developed making use of the computerized symbolic manipulation program MACSYMA. The use of computerized symbolic manipulation allows the analyst to concentrate on more meaningful tasks, such as establishment of physical assumptions, without being sidetracked by the tedious and trivial details of the algebraic manipulations. Furthermore, the resulting equations can be produced, if necessary, in a format suitable for numerical solution. A perturbation-type solution for the resulting dynamical equations is shown to be possible with a combination of symbolic manipulation and standard numerical techniques. This should ultimately lead to a greater physical understanding of the behavior of the solution than is possible with purely numerical techniques. The perturbation analysis of the flapping motion of a rigid rotor blade in forward flight is presented, for illustrative purposes, via computerized symbolic manipulation with a method that bypasses Floquet theory.

  5. T regulatory cells: an overview and intervention techniques to modulate allergy outcome

    PubMed Central

    Nandakumar, Subhadra; Miller, Christopher WT; Kumaraguru, Uday

    2009-01-01

    Dysregulated immune response results in inflammatory symptoms in the respiratory mucosa leading to asthma and allergy in susceptible individuals. The T helper type 2 (Th2) subsets are primarily involved in this disease process. Nevertheless, there is growing evidence in support of T cells with regulatory potential that operates in non-allergic individuals. These regulatory T cells occur naturally are called natural T regulatory cells (nTregs) and express the transcription factor Foxp3. They are selected in the thymus and move to the periphery. The CD4 Th cells in the periphery can be induced to become regulatory T cells and hence called induced or adaptive T regulatory cells. These cells can make IL-10 or TGF-b or both, by which they attain most of their suppressive activity. This review gives an overview of the regulatory T cells, their role in allergic diseases and explores possible interventionist approaches to manipulate Tregs for achieving therapeutic goals. PMID:19284628

  6. Characterizing Esophageal Cancerous Cells at Different Stages Using the Dielectrophoretic Impedance Measurement Method in a Microchip.

    PubMed

    Wang, Hsiang-Chen; Nguyen, Ngoc-Viet; Lin, Rui-Yi; Jen, Chun-Ping

    2017-05-06

    Analysis of cancerous cells allows us to provide useful information for the early diagnosis of cancer and to monitor treatment progress. An approach based on electrical principles has recently become an attractive technique. This study presents a microdevice that utilizes a dielectrophoretic impedance measurement method for the identification of cancerous cells. The proposed biochip consists of circle-on-line microelectrodes that are patterned using a standard microfabrication processes. A sample of various cell concentrations was introduced in an open-top microchamber. The target cells were collectively concentrated between the microelectrodes using dielectrophoresis manipulation, and their electrical impedance properties were also measured. Different stages of human esophageal squamous cell carcinoma lines could be distinguished. This result is consistent with findings using hyperspectral imaging technology. Moreover, it was observed that the distinguishing characteristics change in response to the progression of cancer cell invasiveness by Raman spectroscopy. The device enables highly efficient cell collection and provides rapid, sensitive, and label-free electrical measurements of cancerous cells.

  7. System-Level Biochip for Impedance Sensing and Programmable Manipulation of Bladder Cancer Cells

    PubMed Central

    Chuang, Cheng-Hsin; Huang, Yao-Wei; Wu, Yao-Tung

    2011-01-01

    This paper develops a dielectrophoretic (DEP) chip with multi-layer electrodes and a micro-cavity array for programmable manipulations of cells and impedance measurement. The DEP chip consists of an ITO top electrode, flow chamber, middle electrode on an SU-8 surface, micro-cavity arrays of SU-8 and distributed electrodes at the bottom of the micro-cavity. Impedance sensing of single cells could be performed as follows: firstly, cells were trapped in a micro-cavity array by negative DEP force provided by top and middle electrodes; then, the impedance measurement for discrimination of different stage of bladder cancer cells was accomplished by the middle and bottom electrodes. After impedance sensing, the individual releasing of trapped cells was achieved by negative DEP force using the top and bottom electrodes in order to collect the identified cells once more. Both cell manipulations and impedance measurement had been integrated within a system controlled by a PC-based LabVIEW program. In the experiments, two different stages of bladder cancer cell lines (grade III: T24 and grade II: TSGH8301) were utilized for the demonstration of programmable manipulation and impedance sensing; as the results show, the lower-grade bladder cancer cells (TSGH8301) possess higher impedance than the higher-grade ones (T24). In general, the multi-step manipulations of cells can be easily programmed by controlling the electrical signal in our design, which provides an excellent platform technology for lab-on-a-chip (LOC) or a micro-total-analysis-system (Micro TAS). PMID:22346685

  8. Immunomagnetic separation can enrich fixed solid tumors for epithelial cells.

    PubMed

    Yaremko, M L; Kelemen, P R; Kutza, C; Barker, D; Westbrook, C A

    1996-01-01

    Immunomagnetic separation is a highly specific technique for the enrichment or isolation of cells from a variety of fresh tissues and microorganisms or molecules from suspensions. Because new techniques for molecular analysis of solid tumors are now applicable to fixed tissue but sometimes require or benefit from enrichment for tumor cells, we tested the efficacy of immunomagnetic separation for enriching fixed solid tumors for malignant epithelial cells. We applied it to two different tumors and fixation methods to separate neoplastic from non-neoplastic cells in primary colorectal cancers and metastatic breast cancers, and were able to enrich to a high degree of purity. Immunomagnetic separation was effective in unembedded fixed tissue as well as fixed paraffin-embedded tissue. The magnetically separated cells were amenable to fluorescence in situ hybridization and polymerase chain reaction amplification of their DNA with minimal additional manipulation. The high degree of enrichment achieved before amplification contributed to interpretation of loss of heterozygosity in metastatic breast cancers, and simplified fluorescence in situ hybridization analysis because only neoplastic cells were hybridized and counted. Immunomagnetic separation is effective for the enrichment of fixed solid tumors, can be performed with widely available commercial antibodies, and requires little specialized instrumentation. It can contribute to interpretation of results in situations where enrichment by other methods is difficult or not possible.

  9. Electric and Magnetic Manipulation of Biological Systems

    NASA Astrophysics Data System (ADS)

    Lee, H.; Hunt, T. P.; Liu, Y.; Ham, D.; Westervelt, R. M.

    2005-06-01

    New types of biological cell manipulation systems, a micropost matrix, a microelectromagnet matrix, and a microcoil array, were developed. The micropost matrix consists of post-shaped electrodes embedded in an insulating layer. With a separate ac voltage applied to each electrode, the micropost matrix generates dielectrophoretic force to trap and move individual biological cells. The microelectromagnet matrix consists of two arrays of straight wires aligned perpendicular to each other, that are covered with insulating layers. By independently controlling the current in each wire, the microelectromagnet matrix creates versatile magnetic fields to manipulate individual biological cells attached to magnetic beads. The microcoil array is a set of coils implemented in a foundry using a standard silicon fabrication technology. Current sources to the coils, and control circuits are integrated on a single chip, making the device self-contained. Versatile manipulation of biological cells was demonstrated using these devices by generating optimized electric or magnetic field patterns. A single yeast cell was trapped and positioned with microscopic resolution, and multiple yeast cells were trapped and independently moved along the separate paths for cell-sorting.

  10. Multifunctional single beam acoustic tweezer for non-invasive cell/organism manipulation and tissue imaging

    NASA Astrophysics Data System (ADS)

    Lam, Kwok Ho; Li, Ying; Li, Yang; Lim, Hae Gyun; Zhou, Qifa; Shung, Koping Kirk

    2016-11-01

    Non-contact precise manipulation of single microparticles, cells, and organisms has attracted considerable interest in biophysics and biomedical engineering. Similar to optical tweezers, acoustic tweezers have been proposed to be capable of manipulating microparticles and even cells. Although there have been concerted efforts to develop tools for non-contact manipulation, no alternative to complex, unifunctional tweezer has yet been found. Here we report a simple, low-cost, multifunctional single beam acoustic tweezer (SBAT) that is capable of manipulating an individual micrometer scale non-spherical cell at Rayleigh regime and even a single millimeter scale organism at Mie regime, and imaging tissue as well. We experimentally demonstrate that the SBAT with an ultralow f-number (f# = focal length/aperture size) could manipulate an individual red blood cell and a single 1.6 mm-diameter fertilized Zebrafish egg, respectively. Besides, in vitro rat aorta images were collected successfully at dynamic foci in which the lumen and the outer surface of the aorta could be clearly seen. With the ultralow f-number, the SBAT offers the combination of large acoustic radiation force and narrow beam width, leading to strong trapping and high-resolution imaging capabilities. These attributes enable the feasibility of using a single acoustic device to perform non-invasive multi-functions simultaneously for biomedical and biophysical applications.

  11. Engineering the Intracellular Micro- and Nano-environment via Magnetic Nanoparticles

    NASA Astrophysics Data System (ADS)

    Tseng, Peter

    Single cells, despite being the base unit of living organisms, possess a high degree of hierarchical structure and functional compartmentalization. This complexity exists for good reason: cells must respond efficiently and effectively to its surrounding environment by differentiating, moving, interacting, and more in order to survive or inhabit its role in the larger biological system. At the core of these responses is cellular decision-making. Cells process cues internally and externally from the environment and effect intracellular asymmetry in biochemistry and structure in order to carry out the proper biological responses. Functionalized magnetic particles have shown to be a powerful tool in interacting with biological matter, through either cell or biomolecule sorting, and the activation of biological processes. This dissertation reports on techniques utilizing manipulated magnetic nanoparticles (internalized by cells) to spatially and temporally localize intracellular cues, and examines the resulting asymmetry in biological processes generated by our methods. We first examine patterned micromagnetic elements as a simple strategy of rapidly manipulating magnetic nanoparticles throughout the intracellular space. Silicon or silicon dioxide substrates form the base for electroplated NiFe rods, which are repeated at varying size and pitch. A planarizing resin, initially SU-8, is used as the substrate layer for cellular adhesion. We demonstrate that through the manipulations of a simple external magnet, these micro-fabricated substrates can mediate rapid (under 2 s) and precise (submicron), reversible translation of magnetic nanoparticles through cellular space. Seeding cells on substrates composed of these elements allows simultaneous control of ensembles of nanoparticles over thousands of cells at a time. We believe such substrates could form the basis of magnetically based tools for the activation of biological matter. We further utilize these strategies to generate user-controllable (time-varying and localizable), massively parallel forces on arrays of cells mediated by coalesced ensembles of magnetic nanoparticles. The above process is simplified and adapted for single cell analysis by precisely aligning fibronectin patterned cells to a single flanking micromagnet. The cells are loaded with magnetic-fluorescent nanoparticles, which are then localized to uniform positions at the internal edge of the cell membrane over huge arrays of cells using large external fields, allowing us to conduct composed studies on cellular response to force. By applying forces approaching the yield tension (5 nN / mum) of single cells, we are able to generate highly coordinated responses in cellular behavior. We discover that increasing tension generates highly directed, PAK-dependent leading-edge type filopodia that increase in intensity with rising tension. In addition, we find that our generated forces can simulate cues created during cellular mitosis, as we are consistently able to generate significant (45 to 90 degree) biasing of the metaphase plate during cell division. Large sample size and rapid sample generation also allow us to analyze cells at an unprecedented rate---a single sample can simultaneously stimulate thousands of cells for high statistical accuracy in measurements. We believe these approaches have potential not just as a tool to study single-cell response, but as a means of cell control, potentially through modifying cell movement, division, or differentiation. More generally, once approaches to release nanoparticles from endosomes are implemented, the technique provides a platform to dynamically apply a range of localized stimuli arbitrarily within cells. Through the bioconjugation of proteins, nucleic acids, small molecules, or whole organelles a broad range of questions should be accessible concerning molecular localization and its importance in cell function.

  12. [Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research].

    PubMed

    Sun, S J; Huo, J H; Geng, Z J; Sun, X Y; Fu, X B

    2018-04-20

    Gene engineering has attracted worldwide attention because of its ability of precise location of disease mutations in genome. As a new gene editing technology, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9) system is simple, fast, and accurate to operate at a specific gene site. It overcomes the long-standing problem of conventional operation. At the same time, stem cells are a good foundation for establishing disease model in vitro. Therefore, it has great significance to combine stem cells with the rapidly developing gene manipulation techniques. In this review, we mainly focus on the mechanism of CRISPR/Cas9 technology and its application in stem cell genomic editing, so as to pave the way for promoting rapid application and development of CRISPR/Cas9 technology.

  13. Growing Arabidopsis in vitro: cell suspensions, in vitro culture, and regeneration.

    PubMed

    Barkla, Bronwyn J; Vera-Estrella, Rosario; Pantoja, Omar

    2014-01-01

    An understanding of basic methods in Arabidopsis tissue culture is beneficial for any laboratory working on this model plant. Tissue culture refers to the aseptic growth of cells, organs, or plants in a controlled environment, in which physical, nutrient, and hormonal conditions can all be easily manipulated and monitored. The methodology facilitates the production of a large number of plants that are genetically identical over a relatively short growth period. Techniques, including callus production, cell suspension cultures, and plant regeneration, are all indispensable tools for the study of cellular biochemical and molecular processes. Plant regeneration is a key technology for successful stable plant transformation, while cell suspension cultures can be exploited for metabolite profiling and mining. In this chapter we report methods for the successful and highly efficient in vitro regeneration of plants and production of stable cell suspension lines from leaf explants of both Arabidopsis thaliana and Arabidopsis halleri.

  14. Nanoscale monitoring of drug actions on cell membrane using atomic force microscopy

    PubMed Central

    Li, Mi; Liu, Lian-qing; Xi, Ning; Wang, Yue-chao

    2015-01-01

    Knowledge of the nanoscale changes that take place in individual cells in response to a drug is useful for understanding the drug action. However, due to the lack of adequate techniques, such knowledge was scarce until the advent of atomic force microscopy (AFM), which is a multifunctional tool for investigating cellular behavior with nanometer resolution under near-physiological conditions. In the past decade, researchers have applied AFM to monitor the morphological and mechanical dynamics of individual cells following drug stimulation, yielding considerable novel insight into how the drug molecules affect an individual cell at the nanoscale. In this article we summarize the representative applications of AFM in characterization of drug actions on cell membrane, including topographic imaging, elasticity measurements, molecular interaction quantification, native membrane protein imaging and manipulation, etc. The challenges that are hampering the further development of AFM for studies of cellular activities are aslo discussed. PMID:26027658

  15. Megakaryocyte- and megakaryocyte precursor–related gene therapies

    PubMed Central

    2016-01-01

    Hematopoietic stem cells (HSCs) can be safely collected from the body, genetically modified, and re-infused into a patient with the goal to express the transgene product for an individual’s lifetime. Hematologic defects that can be corrected with an allogeneic bone marrow transplant can theoretically also be treated with gene replacement therapy. Because some genetic disorders affect distinct cell lineages, researchers are utilizing HSC gene transfer techniques using lineage-specific endogenous gene promoters to confine transgene expression to individual cell types (eg, ITGA2B for inherited platelet defects). HSCs appear to be an ideal target for platelet gene therapy because they can differentiate into megakaryocytes which are capable of forming several thousand anucleate platelets that circulate within blood vessels to establish hemostasis by repairing vascular injury. Platelets play an essential role in other biological processes (immune response, angiogenesis) as well as diseased states (atherosclerosis, cancer, thrombosis). Thus, recent advances in genetic manipulation of megakaryocytes could lead to new and improved therapies for treating a variety of disorders. In summary, genetic manipulation of megakaryocytes has progressed to the point where clinically relevant strategies are being developed for human trials for genetic disorders affecting platelets. Nevertheless, challenges still need to be overcome to perfect this field; therefore, strategies to increase the safety and benefit of megakaryocyte gene therapy will be discussed. PMID:26787735

  16. Real Time Visualization and Manipulation of the Metastatic Trajectory ofBreast Cancer Cell

    DTIC Science & Technology

    2017-09-01

    AWARD NUMBER: W81XWH-13-1-0173 TITLE: Real-Time Visualization and Manipulation of the Metastatic Trajectory of Breast Cancer Cells ...of this work was to engineer breast cancer cells to irreversibly alter the genome of nearby cells through exosomal transfer of Cre recombinase from...the cancer cells to surrounding cells . Our goal was to use this study to activate green fluorescent protein in the host reporter cells in the

  17. Manipulation of immune system via immortal bone marrow stem cells.

    PubMed

    Ruedl, Christiane; Khameneh, Hanif Javanmard; Karjalainen, Klaus

    2008-09-01

    Extensive amplification of hematopoietic stem cells (HSCs) and their multipotent primitive progenitors (MPPs) in culture would greatly benefit not only clinical transplantation but also provide a potential tool to manipulate all cellular lineages derived from these cells for gene therapy and experimental purposes. Here, we demonstrate that mouse bone marrow cultures containing cells engineered to over-express NUP98-HOXB4 fusion protein support self-renewal of physiologically normal HSC and MPP for several weeks leading practically to their unlimited expansion. This allows time consuming and cumulative in vitro experimental manipulations without sacrificing their ability to differentiate in vivo or in vitro to any hematopoietic lineage.

  18. Stem cell maintenance by manipulating signaling pathways: past, current and future

    PubMed Central

    Chen, Xi; Ye, Shoudong; Ying, Qi-Long

    2015-01-01

    Pluripotent stem cells only exist in a narrow window during early embryonic development, whereas multipotent stem cells are abundant throughout embryonic development and are retainedin various adult tissues and organs. While pluripotent stem cell lines have been established from several species, including mouse, rat, and human, it is still challenging to establish stable multipotent stem cell lines from embryonic or adult tissues. Based on current knowledge, we anticipate that by manipulating extrinsic and intrinsic signaling pathways, most if not all types of stem cells can be maintained in a long-term culture. In this article, we summarize current culture conditions established for the long-term maintenance of authentic pluripotent and multipotent stem cells and the signaling pathways involved. We also discuss the general principles of stem cell maintenance and propose several strategies on the establishment of novel stem cell lines through manipulation of signaling pathways. [BMB Reports 2015; 48(12): 668-676] PMID:26497581

  19. Generation of the SCN1A epilepsy mutation in hiPS cells using the TALEN technique

    NASA Astrophysics Data System (ADS)

    Chen, Wanjuan; Liu, Jingxin; Zhang, Longmei; Xu, Huijuan; Guo, Xiaogang; Deng, Sihao; Liu, Lipeng; Yu, Daiguan; Chen, Yonglong; Li, Zhiyuan

    2014-06-01

    Human induced pluripotent stem cells (iPSC) can be used to understand the pathological mechanisms of human disease. These cells are a promising source for cell-replacement therapy. However, such studies require genetically defined conditions. Such genetic manipulations can be performed using the novel Transcription Activator-Like Effector Nucleases (TALENs), which generate site-specific double-strand DNA breaks (DSBs) with high efficiency and precision. Combining the TALEN and iPSC methods, we developed two iPS cell lines by generating the point mutation A5768G in the SCN1A gene, which encodes the voltage-gated sodium channel Nav1.1 α subunit. The engineered iPSC maintained pluripotency and successfully differentiated into neurons with normal functional characteristics. The two cell lines differ exclusively at the epilepsy-susceptibility variant. The ability to robustly introduce disease-causing point mutations in normal hiPS cell lines can be used to generate a human cell model for studying epileptic mechanisms and for drug screening.

  20. Rethinking Guard Cell Metabolism1[OPEN

    PubMed Central

    2016-01-01

    Stomata control gaseous fluxes between the internal leaf air spaces and the external atmosphere and, therefore, play a pivotal role in regulating CO2 uptake for photosynthesis as well as water loss through transpiration. Guard cells, which flank the stomata, undergo adjustments in volume, resulting in changes in pore aperture. Stomatal opening is mediated by the complex regulation of ion transport and solute biosynthesis. Ion transport is exceptionally well understood, whereas our knowledge of guard cell metabolism remains limited, despite several decades of research. In this review, we evaluate the current literature on metabolism in guard cells, particularly the roles of starch, sucrose, and malate. We explore the possible origins of sucrose, including guard cell photosynthesis, and discuss new evidence that points to multiple processes and plasticity in guard cell metabolism that enable these cells to function effectively to maintain optimal stomatal aperture. We also discuss the new tools, techniques, and approaches available for further exploring and potentially manipulating guard cell metabolism to improve plant water use and productivity. PMID:27609861

  1. Research Techniques Made Simple: Analysis of Collective Cell Migration Using the Wound Healing Assay.

    PubMed

    Grada, Ayman; Otero-Vinas, Marta; Prieto-Castrillo, Francisco; Obagi, Zaidal; Falanga, Vincent

    2017-02-01

    Collective cell migration is a hallmark of wound repair, cancer invasion and metastasis, immune responses, angiogenesis, and embryonic morphogenesis. Wound healing is a complex cellular and biochemical process necessary to restore structurally damaged tissue. It involves dynamic interactions and crosstalk between various cell types, interaction with extracellular matrix molecules, and regulated production of soluble mediators and cytokines. In cutaneous wound healing, skin cells migrate from the wound edges into the wound to restore skin integrity. Analysis of cell migration in vitro is a useful assay to quantify alterations in cell migratory capacity in response to experimental manipulations. Although several methods exist to study cell migration (such as Boyden chamber assay, barrier assays, and microfluidics-based assays), in this short report we will explain the wound healing assay, also known as the "in vitro scratch assay" as a simple, versatile, and cost-effective method to study collective cell migration and wound healing. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  2. It Must Be True, I Saw It on Channel 84: Manipulation and Short Films.

    ERIC Educational Resources Information Center

    Donelson, Ken

    1979-01-01

    Discusses the importance of fostering young adults' awareness of the techniques used to manipulate them, particularly in the marketplace. Briefly reviews 15 short films that can be shown in the classroom and that illustrate various facets of media manipulation. (GC)

  3. Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping

    NASA Astrophysics Data System (ADS)

    Labib, Mahmoud; Mohamadi, Reza M.; Poudineh, Mahla; Ahmed, Sharif U.; Ivanov, Ivaylo; Huang, Ching-Lung; Moosavi, Maral; Sargent, Edward H.; Kelley, Shana O.

    2018-05-01

    Cell-to-cell variation in gene expression creates a need for techniques that can characterize expression at the level of individual cells. This is particularly true for rare circulating tumour cells, in which subtyping and drug resistance are of intense interest. Here we describe a method for cell analysis—single-cell mRNA cytometry—that enables the isolation of rare cells from whole blood as a function of target mRNA sequences. This approach uses two classes of magnetic particles that are labelled to selectively hybridize with different regions of the target mRNA. Hybridization leads to the formation of large magnetic clusters that remain localized within the cells of interest, thereby enabling the cells to be magnetically separated. Targeting specific intracellular mRNAs enablescirculating tumour cells to be distinguished from normal haematopoietic cells. No polymerase chain reaction amplification is required to determine RNA expression levels and genotype at the single-cell level, and minimal cell manipulation is required. To demonstrate this approach we use single-cell mRNA cytometry to detect clinically important sequences in prostate cancer specimens.

  4. Kinematics and control algorithm development and simulation for a redundant two-arm robotic manipulator system

    NASA Technical Reports Server (NTRS)

    Hennessey, Michael P.; Huang, Paul C.; Bunnell, Charles T.

    1989-01-01

    An efficient approach to cartesian motion and force control of a 7 degree of freedom (DOF) manipulator is presented. It is based on extending the active stiffness controller to the 7 DOF case in general and use of an efficient version of the gradient projection technique for solving the inverse kinematics problem. Cooperative control is achieved through appropriate configuration of individual manipulator controllers. In addition, other aspects of trajectory generation using standard techniques are integrated into the controller. The method is then applied to a specific manipulator of interest (Robotics Research T-710). Simulation of the kinematics, dynamics, and control are provided in the context of several scenarios: one pertaining to a noncontact pick and place operation; one relating to contour following where contact is made between the manipulator and environment; and one pertaining to cooperative control.

  5. Electrochemical Processes Enhanced by Acoustic Liquid Manipulation

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2004-01-01

    Acoustic liquid manipulation is a family of techniques that employ the nonlinear acoustic effects of acoustic radiation pressure and acoustic streaming to manipulate the behavior of liquids. Researchers at the NASA Glenn Research Center are exploring new methods of manipulating liquids for a variety of space applications, and we have found that acoustic techniques may also be used in the normal Earth gravity environment to enhance the performance of existing fluid processes. Working in concert with the NASA Commercial Technology Office, the Great Lakes Industrial Technology Center, and Alchemitron Corporation (Elgin, IL), researchers at Glenn have applied nonlinear acoustic principles to industrial applications. Collaborating with Alchemitron Corporation, we have adapted the devices to create acoustic streaming in a conventional electroplating process.

  6. In situ cell manipulation through enzymatic hydrogel photopatterning

    NASA Astrophysics Data System (ADS)

    Mosiewicz, Katarzyna A.; Kolb, Laura; van der Vlies, André J.; Martino, Mikaël M.; Lienemann, Philipp S.; Hubbell, Jeffrey A.; Ehrbar, Martin; Lutolf, Matthias P.

    2013-11-01

    The physicochemical properties of hydrogels can be manipulated in both space and time through the controlled application of a light beam. However, methods for hydrogel photopatterning either fail to maintain the bioactivity of fragile proteins and are thus limited to short peptides, or have been used in hydrogels that often do not support three-dimensional (3D) cell growth. Here, we show that the 3D invasion of primary human mesenchymal stem cells can be spatiotemporally controlled by micropatterning the hydrogel with desired extracellular matrix (ECM) proteins and growth factors. A peptide substrate of activated transglutaminase factor XIII (FXIIIa)—a key ECM crosslinking enzyme—is rendered photosensitive by masking its active site with a photolabile cage group. Covalent incorporation of the caged FXIIIa substrate into poly(ethylene glycol) hydrogels and subsequent laser-scanning lithography affords highly localized biomolecule tethering. This approach for the 3D manipulation of cells within gels should open up avenues for the study and manipulation of cell signalling.

  7. [The essence of Professor Wu Lian-Zhong's acupuncture manipulation].

    PubMed

    Liu, Jing; Guo, Yi; Wu, Lian-Zhong

    2014-05-01

    The painless needle insertion technique, summarized by Professor WU Lian-zhong during his decades of acupuncture clinical practice is introduced in this article, which is characterized as soft, flexible, fast, plucking and activating antipathogenic qi. The Sancai (three layers) lifting and thrusting manipulation technique is adopted by Professor WU for getting the qi sensation. And features of 10 kinds of needling sensation such as soreness, numbness, heaviness, distension, pain, cold, hot, radiation, jumping and contracture are summarized. Finger force, amplitude, speed and time length are also taken as the basis of reinforcing and reducing manipulations. Moreover, examples are also given to explain the needling technique on some specific points which further embodies Professor WU's unique experiences and understandings on acupuncture.

  8. Cell type-specific manipulation with GFP-dependent Cre recombinase.

    PubMed

    Tang, Jonathan C Y; Rudolph, Stephanie; Dhande, Onkar S; Abraira, Victoria E; Choi, Seungwon; Lapan, Sylvain W; Drew, Iain R; Drokhlyansky, Eugene; Huberman, Andrew D; Regehr, Wade G; Cepko, Constance L

    2015-09-01

    There are many transgenic GFP reporter lines that allow the visualization of specific populations of cells. Using such lines for functional studies requires a method that transforms GFP into a molecule that enables genetic manipulation. We developed a method that exploits GFP for gene manipulation, Cre recombinase dependent on GFP (CRE-DOG), a split component system that uses GFP and its derivatives to directly induce Cre/loxP recombination. Using plasmid electroporation and AAV viral vectors, we delivered CRE-DOG to multiple GFP mouse lines, which led to effective recombination selectively in GFP-labeled cells. Furthermore, CRE-DOG enabled optogenetic control of these neurons. Beyond providing a new set of tools for manipulation of gene expression selectively in GFP(+) cells, we found that GFP can be used to reconstitute the activity of a protein not known to have a modular structure, suggesting that this strategy might be applicable to a wide range of proteins.

  9. Micro- and nanotechnology in cardiovascular tissue engineering.

    PubMed

    Zhang, Boyang; Xiao, Yun; Hsieh, Anne; Thavandiran, Nimalan; Radisic, Milica

    2011-12-09

    While in nature the formation of complex tissues is gradually shaped by the long journey of development, in tissue engineering constructing complex tissues relies heavily on our ability to directly manipulate and control the micro-cellular environment in vitro. Not surprisingly, advancements in both microfabrication and nanofabrication have powered the field of tissue engineering in many aspects. Focusing on cardiac tissue engineering, this paper highlights the applications of fabrication techniques in various aspects of tissue engineering research: (1) cell responses to micro- and nanopatterned topographical cues, (2) cell responses to patterned biochemical cues, (3) controlled 3D scaffolds, (4) patterned tissue vascularization and (5) electromechanical regulation of tissue assembly and function.

  10. Ultrasound analysis of the vertebral artery during non-thrust cervical translatoric spinal manipulation.

    PubMed

    Creighton, Doug; Kondratek, Melodie; Krauss, John; Huijbregts, Peter; Qu, Harvey

    2011-05-01

    Cervical translatoric spinal manipulation (TSM) techniques have been suggested as a safer alternative to cervical thrust rotatory techniques. The objective of this study was to determine the effect of three C5-C6 non-thrust TSM techniques on vertebral artery (VA) lumen diameter (LD) and two blood flow velocity parameters. The two-tailed research hypothesis was that the TSM techniques would result in a significant change (increase or decrease) in blood flow velocity and arterial LD at the C5-C6 intertransverse portion of the VA. In a sample of 30 subjects representative of a clinical population, color-coded duplex Doppler diagnostic ultrasound imaging was used to collect data on LD, peak systolic velocity (PSV), and end diastolic velocity with the cervical spine positioned in neutral and in three different manipulation positions. Pair-wise mean differences between measurements at baseline (neutral position) and in all three manipulation positions were analyzed using two-tailed paired t-tests with alpha set at 0·05. Of the 18 paired comparisons, there were four statistically significant differences between measurements in the neutral position and a manipulation position, three concerning LD and one PSV. The three significant differences in LD ranged from 4·6 to 3·2% and were not associated with changes in blood flow velocity. The one significant change in PSV was only 6·6 cm/s. A value that still greatly exceeded the end diastolic velocity. No subject experienced symptoms associated with VA compromise. This study has provided evidence for the safety of the three lower cervical non-thrust TSM techniques on the current population studied. Further study is required on thrust versus non-thrust TSM techniques and on levels other than C5-C6.

  11. A model for teaching and learning spinal thrust manipulation and its effect on participant confidence in technique performance.

    PubMed

    Wise, Christopher H; Schenk, Ronald J; Lattanzi, Jill Black

    2016-07-01

    Despite emerging evidence to support the use of high velocity thrust manipulation in the management of lumbar spinal conditions, utilization of thrust manipulation among clinicians remains relatively low. One reason for the underutilization of these procedures may be related to disparity in training in the performance of these techniques at the professional and post professional levels. To assess the effect of using a new model of active learning on participant confidence in the performance of spinal thrust manipulation and the implications for its use in the professional and post-professional training of physical therapists. A cohort of 15 DPT students in their final semester of entry-level professional training participated in an active training session emphasizing a sequential partial task practice (SPTP) strategy in which participants engaged in partial task practice over several repetitions with different partners. Participants' level of confidence in the performance of these techniques was determined through comparison of pre- and post-training session surveys and a post-session open-ended interview. The increase in scores across all items of the individual pre- and post-session surveys suggests that this model was effective in changing overall participant perception regarding the effectiveness and safety of these techniques and in increasing student confidence in their performance. Interviews revealed that participants greatly preferred the SPTP strategy, which enhanced their confidence in technique performance. Results indicate that this new model of psychomotor training may be effective at improving confidence in the performance of spinal thrust manipulation and, subsequently, may be useful for encouraging the future use of these techniques in the care of individuals with impairments of the spine. Inasmuch, this method of instruction may be useful for training of physical therapists at both the professional and post-professional levels.

  12. Image Manipulation: Then and Now.

    ERIC Educational Resources Information Center

    Sutton, Ronald E.

    The images of photography have been manipulated almost from the moment of their discovery. The blending together in the studio and darkroom of images not found in actual scenes from life has been a regular feature of modern photography in both art and advertising. Techniques of photograph manipulation include retouching; blocking out figures or…

  13. Study of modeling and evaluation of remote manipulation tasks with force feedback

    NASA Technical Reports Server (NTRS)

    Hill, J. W.

    1979-01-01

    The use of time and motion study methods to evaluate force feedback in remote manipulation tasks are described. Several systems of time measurement derived for industrial workers were studied and adapted for manipulator use. A task board incorporating a set of basic motions was designed and built. Results obtained from two subjects in three manipulation situations for each are reported: a force-reflective manipulator, a unilateral manipulator, and the unaided human hand. The results indicate that: (1) a time-and-motion study techniques are applicable to manipulation; and that (2) force feedback facilitates some motions (notably fitting), but not others (such as positioning).

  14. BAC Modification through Serial or Simultaneous Use of CRE/Lox Technology

    PubMed Central

    Parrish, Mark; Unruh, Jay; Krumlauf, Robb

    2011-01-01

    Bacterial Artificial Chromosomes (BACs) are vital tools in mouse genomic analyses because of their ability to propagate large inserts. The size of these constructs, however, prevents the use of conventional molecular biology techniques for modification and manipulation. Techniques such as recombineering and Cre/Lox methodologies have thus become heavily relied upon for such purposes. In this work, we investigate the applicability of Lox variant sites for serial and/or simultaneous manipulations of BACs. We show that Lox spacer mutants are very specific, and inverted repeat variants reduce Lox reaction rates through reducing the affinity of Cre for the site, while retaining some functionality. Employing these methods, we produced serial modifications encompassing four independent changes which generated a mouse HoxB BAC with fluorescent reporter proteins inserted into four adjacent Hox genes. We also generated specific, simultaneous deletions using combinations of spacer variants and inverted repeat variants. These techniques will facilitate BAC manipulations and open a new repertoire of methods for BAC and genome manipulation. PMID:21197414

  15. Enrichment of human bone marrow aspirates for low-density mononuclear cells using a haemonetics discontinuous blood cell separator.

    PubMed

    Raijmakers, R; de Witte, T; Koekman, E; Wessels, J; Haanen, C

    1986-01-01

    Isopycnic density floatation centrifugation has been proven to be a suitable technique to enrich bone marrow aspirates for clonogenic cells on a small scale. We have tested a Haemonetics semicontinuous blood cell separator in order to process large volumes of bone marrow with minimal bone marrow manipulation. The efficacy of isopycnic density floatation was tested in a one and a two-step procedure. Both procedures showed a recovery of about 20% of the nucleated cells and 1-2% of the erythrocytes. The enrichment of clonogenic cells in the one-step procedure appeared superior to the two-step enrichment, first separating buffy coat cells. The recovery of clonogenic cells was 70 and 50%, respectively. Repopulation capacity of the low-density cell fraction containing the clonogenic cells was excellent after autologous reinfusion (6 cases) and allogeneic bone marrow transplantation (3 cases). Fast enrichment of large volumes of bone marrow aspirates with low-density cells containing the clonogenic cells by isopycnic density floatation centrifugation can be done safely using a Haemonetics blood cell separator.

  16. Primary culture of human Schwann and schwannoma cells: improved and simplified protocol.

    PubMed

    Dilwali, Sonam; Patel, Pratik B; Roberts, Daniel S; Basinsky, Gina M; Harris, Gordon J; Emerick, Kevin S; Stankovic, Konstantina M

    2014-09-01

    Primary culture of human Schwann cells (SCs) and vestibular schwannoma (VS) cells are invaluable tools to investigate SC physiology and VS pathobiology, and to devise effective pharmacotherapies against VS, which are sorely needed. However, existing culture protocols, in aiming to create robust, pure cultures, employ methods that can lead to loss of biological characteristics of the original cells, potentially resulting in misleading biological findings. We have developed a minimally manipulative method to culture primary human SC and VS cells, without the use of selective mitogens, toxins, or time-consuming and potentially transformative laboratory techniques. Schwann cell purity was quantified longitudinally using S100 staining in SC cultures derived from the great auricular nerve and VS cultures followed for 7 and 12 weeks, respectively. SC cultures retained approximately ≥85% purity for 2 weeks. VS cultures retained approximately ≥80% purity for the majority of the span of 12 weeks, with maximal purity of 87% at 2 weeks. The VS cultures showed high level of biological similarity (68% on average) to their respective parent tumors, as assessed using a protein array featuring 41 growth factors and receptors. Apoptosis rate in vitro negatively correlated with tumor volume. Our results, obtained using a faster, simplified culturing method than previously utilized, indicate that highly pure, primary human SC and VS cultures can be established with minimal manipulation, reaching maximal purity at 2 weeks of culture. The VS cultures recapitulate the parent tumors' biology to a great degree, making them relevant models to investigate VS pathobiology. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Primary culture of human Schwann and schwannoma cells: Improved and simplified protocol

    PubMed Central

    Dilwali, Sonam; Patel, Pratik B.; Roberts, Daniel S.; Basinsky, Gina M.; Harris, Gordon J.; Emerick, Kevin; Stankovic, Konstantina M.

    2014-01-01

    Primary culture of human Schwann cells (SCs) and vestibular schwannoma (VS) cells are invaluable tools to investigate SC physiology and VS pathobiology, and to devise effective pharmacotherapies against VS, which are sorely needed. However, existing culture protocols, in aiming to create robust, pure cultures, employ methods that can lead to loss of biological characteristics of the original cells, potentially resulting in misleading biological findings. We have developed a minimally manipulative method to culture primary human SC and VS cells, without the use of selective mitogens, toxins, or time-consuming and potentially transformative laboratory techniques. Schwann cell purity was quantified longitudinally using S100 staining in SC cultures derived from the great auricular nerve and VS cultures followed for 7 and 12 weeks, respectively. SC cultures retained approximately ≥85% purity for 2 weeks. VS cultures retained approximately ≥80% purity for the majority of the span of 12 weeks, with maximal purity of 87% at 2 weeks. The VS cultures showed high level of biological similarity (68% on average) to their respective parent tumors, as assessed using a protein array featuring 41 growth factors and receptors. Apoptosis rate in vitro negatively correlated with tumor volume. Our results, obtained using a faster, simplified culturing method than previously utilized, indicate that highly pure, primary human SC and VS cultures can be established with minimal manipulation, reaching maximal purity at 2 weeks of culture. The VS cultures recapitulate the parent tumors' biology to a great degree, making them relevant models to investigate VS pathobiology. PMID:24910344

  18. Production and manipulation of bovine embryos: techniques and terminology.

    PubMed

    Machaty, Z; Peippo, J; Peter, A

    2012-09-15

    There are numerous publications regarding bovine embryos, ranging from descriptions of their appearance and development to emerging techniques in the field of assisted reproductive technology. Concurrently, several specialized terms have been developed to describe the bovine embryo. The purpose of the current review is two-fold; it is primarily to describe techniques involved in the in vivo and in vitro production of bovine embryos and their manipulation, and secondarily to summarize specialized terms used in these processes. The intention is not to review these techniques in detail, but instead to provide salient points and current knowledge regarding these techniques, with a focus on terminology. The first review dealt with classical and contemporary terminology used to describe morphologic aspects of ovarian dynamics in cattle. Subsequently, the terms and current understanding of processes involved in preattachment bovine embryos were described in the second review. As the third article in a series, this mini-review is focused on defining the production, manipulation, and transfer of bovine preattachment embryos. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Parthenogenesis and somatic cell nuclear transfer in sheep oocytes using Polscope.

    PubMed

    Nandedkar, Pandit; Chohan, Parul; Patwardhan, Archana; Gaikwad, Santosh; Bhartiya, Deepa

    2009-07-01

    Parthenogenesis and Somatic cell nuclear transfer (SCNT) techniques, offer a unique approach to manipulate the genetic composition of derived human embryonic stem cells - an essential step if the full opportunities for disease modeling, drug discovery or individualized stem cell therapy are to be realized. The present study describes the use of sheep oocytes to acquire expertise and establish methods to reconstruct embryos for obtaining blastocysts before venturing into human SCNT where the oocytes are a very precious starting material. Maturation of sheep eggs in vitro for 20-24 hr resulted in 65% metaphase II (MII) eggs which were either parthenogenetically activated using calcium ionomycin or ethanol or subjected to SCNT using cumulus cell as somatic cell. Sixteen blastocysts were produced by parthenogenetic activation of 350 eggs whereas reconstructed embryos, after SCNT carried out in 139 eggs, progressed only up to morula stage. The procedure of parthenogenesis and SCNT will be useful to generate autologous ES cells using human eggs.

  20. Manual therapy as a conservative treatment for adolescent idiopathic scoliosis: a systematic review

    PubMed Central

    Romano, Michele; Negrini, Stefano

    2008-01-01

    Background The treatment of adolescent idiopathic scoliosis is contingent upon many variables. Simple observation is enough for less serious curvatures, but for very serious cases surgical intervention could be proposed. Between these there is a wide range of different treatments. Manual therapy is commonly used: the aim of this paper is to verify the data existing in the literature on the efficacy of this approach. Methods A systematic review of the scientific literature published internationally has been performed. We have included in the term manual therapy all the manipulative and generally passive techniques performed by an external operator. In a more specific meaning, osteopathic, chiropractic and massage techniques have been considered as manipulative therapeutic methods. We performed our systematic research in Medline, Embase, Cinhal, Cochrane Library, Pedro with the following terms: idiopathic scoliosis combined with chiropractic; manipulation; mobilization; manual therapy; massage; osteopathy; and therapeutic manipulation. The criteria for inclusion were as follows: Any kind of research; diagnosis of adolescent idiopathic scoliosis; patients treated exclusively by one of the procedures established as a standard for this review (chiropractic manipulation, osteopathic techniques, massage); and outcome in Cobb degrees. Results We founded 145 texts, but only three papers were relevant to our study. However, no one of the three satisfied all the required inclusion criteria because they were characterized by a combination of manual techniques and other therapeutic approaches. Conclusion The lack of any kind of serious scientific data does not allow us to draw any conclusion on the efficacy of manual therapy as an efficacious technique for the treatment of Adolescent idiopathic scoliosis. PMID:18211702

  1. Manual therapy as a conservative treatment for adolescent idiopathic scoliosis: a systematic review.

    PubMed

    Romano, Michele; Negrini, Stefano

    2008-01-22

    The treatment of adolescent idiopathic scoliosis is contingent upon many variables. Simple observation is enough for less serious curvatures, but for very serious cases surgical intervention could be proposed. Between these there is a wide range of different treatments. Manual therapy is commonly used: the aim of this paper is to verify the data existing in the literature on the efficacy of this approach. A systematic review of the scientific literature published internationally has been performed. We have included in the term manual therapy all the manipulative and generally passive techniques performed by an external operator. In a more specific meaning, osteopathic, chiropractic and massage techniques have been considered as manipulative therapeutic methods. We performed our systematic research in Medline, Embase, Cinhal, Cochrane Library, Pedro with the following terms: idiopathic scoliosis combined with chiropractic; manipulation; mobilization; manual therapy; massage; osteopathy; and therapeutic manipulation. The criteria for inclusion were as follows: Any kind of research; diagnosis of adolescent idiopathic scoliosis; patients treated exclusively by one of the procedures established as a standard for this review (chiropractic manipulation, osteopathic techniques, massage); and outcome in Cobb degrees. We founded 145 texts, but only three papers were relevant to our study. However, no one of the three satisfied all the required inclusion criteria because they were characterized by a combination of manual techniques and other therapeutic approaches. The lack of any kind of serious scientific data does not allow us to draw any conclusion on the efficacy of manual therapy as an efficacious technique for the treatment of Adolescent idiopathic scoliosis.

  2. HoloHands: games console interface for controlling holographic optical manipulation

    NASA Astrophysics Data System (ADS)

    McDonald, C.; McPherson, M.; McDougall, C.; McGloin, D.

    2013-03-01

    The increasing number of applications for holographic manipulation techniques has sparked the development of more accessible control interfaces. Here, we describe a holographic optical tweezers experiment which is controlled by gestures that are detected by a Microsoft Kinect. We demonstrate that this technique can be used to calibrate the tweezers using the Stokes drag method and compare this to automated calibrations. We also show that multiple particle manipulation can be handled. This is a promising new line of research for gesture-based control which could find applications in a wide variety of experimental situations.

  3. Evaluation of automated decisionmaking methodologies and development of an integrated robotic system simulation. Volume 1: Study results

    NASA Technical Reports Server (NTRS)

    Lowrie, J. W.; Fermelia, A. J.; Haley, D. C.; Gremban, K. D.; Vanbaalen, J.; Walsh, R. W.

    1982-01-01

    A variety of artificial intelligence techniques which could be used with regard to NASA space applications and robotics were evaluated. The techniques studied were decision tree manipulators, problem solvers, rule based systems, logic programming languages, representation language languages, and expert systems. The overall structure of a robotic simulation tool was defined and a framework for that tool developed. Nonlinear and linearized dynamics equations were formulated for n link manipulator configurations. A framework for the robotic simulation was established which uses validated manipulator component models connected according to a user defined configuration.

  4. Stem Cell Therapy to Treat Diabetes Mellitus

    PubMed Central

    Liew, Chee Gee; Andrews, Peter W.

    2008-01-01

    Transplantation of pancreatic islets offers a direct treatment for type 1 diabetes and in some cases, insulin-dependent type 2 diabetes. However, its widespread use is hampered by a shortage of donor organs. Many extant studies have focused on deriving β-cell progenitors from pancreas and pluripotent stem cells. Efforts to generate β-cells in vitro will help elucidate the mechanisms of β-cell formation and thus provide a versatile in vivo system to evaluate the therapeutic potential of these cells to treat diabetes. Various successful experiments using β-cells in animal models have generated extensive interest in using human embryonic stem cells to restore normoglycemia in diabetic patients. While new techniques are continually unveiled, the success of β-cell generation rests upon successful manipulation of culture conditions and the induction of key regulatory genes implicated in pancreas development. In this review, we compare successfully conducted protocols, highlight essential steps and identify some of the remarkable shortfalls common to these methods. In addition, we discuss recent advancements in the derivation of patient-specific pluripotent stem cells that may facilitate the use of autologous β-cells in stem cell therapy. PMID:19290381

  5. Using Novel 2D Image Manipulation Methods to Aid Initial Concept Generation with Postgraduate Industrial Design Students

    ERIC Educational Resources Information Center

    Hurn, Karl; Storer, Ian

    2015-01-01

    The aim of this paper is to provide educators and industrial design professionals with an insight into the development of innovative design ideation images manipulation techniques and, highlight how these techniques could be used to not only improve student ideation skills, but also as design enablers for a broader range of professionals working…

  6. Micro-/nano-engineered cellular responses for soft tissue engineering and biomedical applications.

    PubMed

    Tay, Chor Yong; Irvine, Scott Alexander; Boey, Freddy Y C; Tan, Lay Poh; Venkatraman, Subbu

    2011-05-23

    The development of biomedical devices and reconstruction of functional ex vivo tissues often requires the need to fabricate biomimetic surfaces with features of sub-micrometer precision. This can be achieved with the advancements in micro-/nano-engineering techniques, allowing researchers to manipulate a plethora of cellular behaviors at the cell-biomaterial interface. Systematic studies conducted on these 2D engineered surfaces have unraveled numerous novel findings that can potentially be integrated as part of the design consideration for future 2D and 3D biomaterials and will no doubt greatly benefit tissue engineering. In this review, recent developments detailing the use of micro-/nano-engineering techniques to direct cellular orientation and function pertinent to soft tissue engineering will be highlighted. Particularly, this article aims to provide valuable insights into distinctive cell interactions and reactions to controlled surfaces, which can be exploited to understand the mechanisms of cell growth on micro-/nano-engineered interfaces, and to harness this knowledge to optimize the performance of 3D artificial soft tissue grafts and biomedical applications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Remote Learning for the Manipulation and Control of Robotic Cells

    ERIC Educational Resources Information Center

    Goldstain, Ofir; Ben-Gal, Irad; Bukchin, Yossi

    2007-01-01

    This work proposes an approach to remote learning of robotic cells based on internet and simulation tools. The proposed approach, which integrates remote-learning and tele-operation into a generic scheme, is designed to enable students and developers to set-up and manipulate a robotic cell remotely. Its implementation is based on a dedicated…

  8. Move, Stop, Learn: Illustrating Mitosis through Stop-Motion Animation

    ERIC Educational Resources Information Center

    Kamp, Brandi L.; Deaton, Cynthia C. M.

    2013-01-01

    Learning about microscopic things, such as cells, can often be mundane to students because they are not able to see or manipulate what they are learning about. Students often recall learning about cell division through memorization--thus they find it tedious and dull. Few opportunities exist that allow students to explore and manipulate cells or…

  9. Microfluidic devices for the controlled manipulation of small volumes

    DOEpatents

    Ramsey, J Michael [Knoxville, TN; Jacobson, Stephen C [Knoxville, TN

    2003-02-25

    A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The method and apparatus are implemented on a fluidic microchip to provide high serial throughput. The method and device of the invention also lend themselves to multiple parallel analyses and manipulation to provide greater throughput for the generation of biochemical information. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter biochemical reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The individual reaction volumes are manipulated in serial fashion analogous to a digital shift register. The method and apparatus according to this invention have application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.

  10. Microcurrent therapeutic technique for treatment of radiation toxicity

    DOEpatents

    Lennox, Arlene; Funder, Sandra

    2000-01-01

    The present technique provides a method of remediating the toxicities associated with radiation therapy. A conductive gel is applied to the affected bodily area. A sinusoidally pulsed biphasic DC current is then applied to the affected bodily area using at least one electrode. The electrode is manipulated using active tactile manipulation by for a predetermined time and the frequency of the sinusoidally pulsed biphasic DC current is decreased during the course of the treatment. The method also includes applying a spiked pulsed biphasic DC current to the affected bodily area using at least one electrode. This electrode is also manipulated using active tactile manipulation by for a predetermined time and the frequency of the spiked pulsed biphasic DC current is also decreased during the course of the treatment.

  11. Telerobotic research at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Sliwa, Nancy E.

    1987-01-01

    An overview of Automation Technology Branch facilities and research is presented. Manipulator research includes dual-arm coordination studies, space manipulator dynamics, end-effector controller development, automatic space structure assembly, and the development of a dual-arm master-slave telerobotic manipulator system. Sensor research includes gravity-compensated force control, real-time monovision techniques, and laser ranging. Artificial intelligence techniques are being explored for supervisory task control, collision avoidance, and connectionist system architectures. A high-fidelity dynamic simulation of robotic systems, ROBSIM, is being supported and extended. Cooperative efforts with Oak Ridge National Laboratory have verified the ability of teleoperators to perform complex structural assembly tasks, and have resulted in the definition of a new dual-arm master-slave telerobotic manipulator. A bibliography of research results and a list of technical contacts are included.

  12. Visualizing Motion Patterns in Acupuncture Manipulation.

    PubMed

    Lee, Ye-Seul; Jung, Won-Mo; Lee, In-Seon; Lee, Hyangsook; Park, Hi-Joon; Chae, Younbyoung

    2016-07-16

    Acupuncture manipulation varies widely among practitioners in clinical settings, and it is difficult to teach novice students how to perform acupuncture manipulation techniques skillfully. The Acupuncture Manipulation Education System (AMES) is an open source software system designed to enhance acupuncture manipulation skills using visual feedback. Using a phantom acupoint and motion sensor, our method for acupuncture manipulation training provides visual feedback regarding the actual movement of the student's acupuncture manipulation in addition to the optimal or intended movement, regardless of whether the manipulation skill is lifting, thrusting, or rotating. Our results show that students could enhance their manipulation skills by training using this method. This video shows the process of manufacturing phantom acupoints and discusses several issues that may require the attention of individuals interested in creating phantom acupoints or operating this system.

  13. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function

    PubMed Central

    Gahl, Trevor J.; Kunze, Anja

    2018-01-01

    Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices. PMID:29867315

  14. Manipulating biological agents and cells in micro-scale volumes for applications in medicine

    PubMed Central

    Tasoglu, Savas; Gurkan, Umut Atakan; Wang, ShuQi

    2013-01-01

    Recent technological advances provide new tools to manipulate cells and biological agents in micro/nano-liter volumes. With precise control over small volumes, the cell microenvironment and other biological agents can be bioengineered; interactions between cells and external stimuli can be monitored; and the fundamental mechanisms such as cancer metastasis and stem cell differentiation can be elucidated. Technological advances based on the principles of electrical, magnetic, chemical, optical, acoustic, and mechanical forces lead to novel applications in point-of-care diagnostics, regenerative medicine, in vitro drug testing, cryopreservation, and cell isolation/purification. In this review, we first focus on the underlying mechanisms of emerging examples for cell manipulation in small volumes targeting applications such as tissue engineering. Then, we illustrate how these mechanisms impact the aforementioned biomedical applications, discuss the associated challenges, and provide perspectives for further development. PMID:23575660

  15. Force-Mediating Magnetic Nanoparticles to Engineer Neuronal Cell Function.

    PubMed

    Gahl, Trevor J; Kunze, Anja

    2018-01-01

    Cellular processes like membrane deformation, cell migration, and transport of organelles are sensitive to mechanical forces. Technically, these cellular processes can be manipulated through operating forces at a spatial precision in the range of nanometers up to a few micrometers through chaperoning force-mediating nanoparticles in electrical, magnetic, or optical field gradients. But which force-mediating tool is more suitable to manipulate cell migration, and which, to manipulate cell signaling? We review here the differences in forces sensation to control and engineer cellular processes inside and outside the cell, with a special focus on neuronal cells. In addition, we discuss technical details and limitations of different force-mediating approaches and highlight recent advancements of nanomagnetics in cell organization, communication, signaling, and intracellular trafficking. Finally, we give suggestions about how force-mediating nanoparticles can be used to our advantage in next-generation neurotherapeutic devices.

  16. Single cell manipulation utilizing femtosecond laser-induced shock and stress waves

    NASA Astrophysics Data System (ADS)

    Hosokawa, Yoichiroh

    2017-02-01

    When an intense femtosecond laser pulse is focused into a culture medium through an objective lens, an impulsive force is loaded on the cells with generations of the shock and stress waves at the laser focal point. The shock and stress waves were acted to single cells in the vicinity of the laser focal point as an impulsive force. We have applied the impulsive force to manipulate single cells. As the transient intensity of the impulsive force is over 1000 times stronger than the force due to optical tweezers, drastic single manipulation which is difficult by the optical tweezers can be realized. The generation process of the impulsive force and behavior of animal cell after loading the impulsive force were reviewed, and then our original quantification method of the impulsive force utilizing atomic force microscope (AFM) was introduced with its applications for evaluating adhesions between animal cells and between sub-organelles in plant cell.

  17. Magnetic manipulation of particles and cells in ferrofluid flow through straight microchannels using two magnets

    NASA Astrophysics Data System (ADS)

    Zeng, Jian

    Microfluidic devices have been increasingly used in the past two decades for particle and cell manipulations in many chemical and biomedical applications. A variety of force fields have been demonstrated to control particle and cell transport in these devices including electric, magnetic, acoustic, and optical forces etc. Among these particle handling techniques, the magnetic approach provides clear advantages over others such as low cost, noninvasive, and free of fluid heating issues. However, the current knowledge of magnetic control of particle transport is still very limited, especially lacking is the handling of diamagnetic particle. This thesis is focused on the magnetic manipulation of diamagnetic particles and cells in ferrofluid flow through the use of a pair of permanent magnets. By varying the configuration of the two magnets, diverse operations of particles and cells is implemented in a straight microchannel that can potentially be integrated into lab-on-a-chip devices for various applications. First, an approach for embedding two, symmetrically positioned, repulsive permanent magnets about a straight rectangular microchannel in a PDMS-based microfluidic device is developed for particle focusing. Focusing particles and cells into a tight stream is often required in order for continuous detection, counting, and sorting. The closest distance between the magnets is limited only by the size of the magnets involved in the fabrication process. The device is used to implement and investigate the three-dimensional magnetic focusing of polystyrene particles in ferrofluid microflow with both top-view and side-view visualizations. The effects of flow speed and particle size on the particle focusing effectiveness are studied. This device is also applied to magnetically focus yeast cells in ferrofluid, which proves to be biocompatible as verified by cell viability test. In addition, an analytical model is developed and found to be able to predict the experimentally observed particle and cell focusing behaviors with reasonable agreement. Next, a simple magnetic technique to concentrate polystyrene particles and live yeast cells in ferrofluid flow through a straight rectangular microchannel is developed. Concentrating particles to a detectable level is often necessary in many applications. The magnetic field gradient is created by two attracting permanent magnets that are placed on the top and bottom of the planar microfluidic device and held in position by their natural attractive force. The effects of flow speed and magnet-magnet distance are studied and the device was applied for use for concentrating live yeast cells. The magnet-magnet distance is mainly controlled by the thickness of the device substrate and can be made small, providing a locally strengthened magnetic field as well as allowing for the use of dilute ferrofluid in the developed magnetic concentration technique. This advantage not only enables a magnetic/fluorescent label-free handling of diamagnetic particles but also renders such handling biocompatible. Lastly, a device is presented for a size-based continuous separation of particles through a straight rectangular microchannel. Particle separation is critical in many applications involving the sorting of cells. A first magnet is used for focusing the particle mixture into a single stream due to its relative close positioning with respect to the channel, thus creating a greater magnetic field magnitude. Then, a following magnet is used to displace the aligned particles to dissimilar flow paths by placing it farther away compared the first magnet, which provides a weaker magnetic field, therefore more sensitive towards the deflection of particles based on their size. The effects of both flow speed and separator magnet position are examined. The experimental data are found to fit well with analytical model predictions. This is followed by a study replacing the particles which are closely sized to that of live yeast cells and observe the separation of the cells from larger particles. Afterwards, a test for biocompatibility is confirmed.

  18. Nano-ranged low-energy ion-beam-induced DNA transfer in biological cells

    NASA Astrophysics Data System (ADS)

    Yu, L. D.; Wongkham, W.; Prakrajang, K.; Sangwijit, K.; Inthanon, K.; Thongkumkoon, P.; Wanichapichart, P.; Anuntalabhochai, S.

    2013-06-01

    Low-energy ion beams at a few tens of keV were demonstrated to be able to induce exogenous macromolecules to transfer into plant and bacterial cells. In the process, the ion beam with well controlled energy and fluence bombarded living cells to cause certain degree damage in the cell envelope in nanoscales to facilitate the macromolecules such as DNA to pass through the cell envelope and enter the cell. Consequently, the technique was applied for manipulating positive improvements in the biological species. This physical DNA transfer method was highly efficient and had less risk of side-effects compared with chemical and biological methods. For better understanding of mechanisms involved in the process, a systematic study on the mechanisms was carried out. Applications of the technique were also expanded from DNA transfer in plant and bacterial cells to DNA transfection in human cancer cells potentially for the stem cell therapy purpose. Low-energy nitrogen and argon ion beams that were applied in our experiments had ranges of 100 nm or less in the cell envelope membrane which was majorly composed of polymeric cellulose. The ion beam bombardment caused chain-scission dominant damage in the polymer and electrical property changes such as increase in the impedance in the envelope membrane. These nano-modifications of the cell envelope eventually enhanced the permeability of the envelope membrane to favor the DNA transfer. The paper reports details of our research in this direction.

  19. Magnetoelectricity in Multi-Scale Composites and Application in Nanorobotics for Live Cell Manipulation

    NASA Astrophysics Data System (ADS)

    Betal, Soutik

    In this research biomedical and sensor applications of magnetoelectric effect have been broadly explored using magnetoelectric composites. Firstly NiFe2O4/Pb(Zr0.52Ti0.48)O 3/NiFe2O4 layered bulk composite have been studied to achieve high magnetoelectric coefficient for their applications in brain magnetic field detection at room temperature. Magnetic sensors like SQUID (superconducting quantum interference device) nowadays are able to detect pico-Tesla magnetic fields produced outside the brain by the neuronal currents which can be used for diagnostic application, but due to heavy liquid helium cooling and insulation requirements, the technique become quite inefficient in gaining high resolution measurement. At room temperature layered ME samples exhibit high magnetoelectric response in mV/cm.Oe range and hence can transform very low magnetic field into electric signal which can be measured even in femtovolts. Moreover temperature and a.c. frequency dependent studies were done to extensively characterize the layered ME sample for sensor application. Secondly core-shell magnetoelectric nanoparticles (CSMEN) have been fabricated, characterized and their interaction with biological cell in presence of a.c. and d.c. field have been thoroughly analyzed. A magnetically controlled elastically driven electroporation phenomenon, or Magneto-Elasto- Electroporation (MEEP), is discovered while studying interactions between core-shell magneto-electric nanoparticles (CSMEN) and biological cells in the presence of an AC magnetic field. In this research MEEP effect was observed via a series of in-vitro experiments using core (CoFe2O4)-shell (BaTiO3 ) structured magnetoelectric nanoparticles and human epithelial cells (HEP2). Cell electroporation phenomenon and its correlation with the magnetic field modulated CSMEN have been elaborately studied. Potential of CSMEN for application in targeted single cell electroporation have been confirmed by analysing crystallographic phases, multiferroic properties of the fabricated CSMEN , influences of DC and AC magnetic field on the CSMEN and cytotoxicity tests. We also report the mathematical formalism to quantitatively describe the phenomena. The reported findings provide the basis of the underlying MEEP mechanism and demonstrate the utility of CSMEN as electric pulse generating nano-probe in cell electroporation experiments for the potential application towards accurate and efficient targeted cell permeation as well as drug delivery. Thirdly, experiments of fabricated magnetoelectric nanocomposites with biological cells in controlled boundary condition under fluctuating and biased magnetic field excitation revealed the smart nanorobotics characteristics of the nanostructure to achieve remote controlled dynamically targeted live cell manipulation. A remotely controlled dynamic process of manipulating targeted biological live cells using fabricated core-shell magnetoelectric nanocomposites have been fabricated, which comprises of single crystalline ferromagnetic cores (CoFe2O4) coated with crystalline ferroelectric thin film shells (BaTiO3). These nanocomposites are demonstrated as a unique family of inorganic magnetoelectric nanorobots (MENRs), controlled remotely by applied a.c. or d.c. magnetic fields, to perform cell targeting, permeation, patterning and transport. MENRs performs these functions via localized electric periodic pulse generation, local electric-field sensing, or thrust generation and acts as a unique tool for remotely controlled dynamically targeted cellular manipulation. Under a.c. magnetic field excitation (50 Oe, 60 Hz), the MENR acts as a localized periodic electric pulse generator and can permeate a series of misaligned cells, while aligning/patterning them to an equipotential mono-array. Under a.c. magnetic field (40 Oe, 30 Hz) excitation, MENRs can be dynamically driven to a targeted cell, avoiding untargeted cells in the path, irrespective of cell density. D.C. magnetic field (-50 Oe) excitation causes the MENRs to act as thrust generator and exerts motion in a group of cells. Visualization of magnetoelectricity at nanoscale and its application in dynamically targeted live cell manipulation have been presented in this research.

  20. Mechanisms driving the lactate switch in Chinese hamster ovary cells.

    PubMed

    Hartley, Fiona; Walker, Tracy; Chung, Vicky; Morten, Karl

    2018-03-31

    The metabolism of Chinese Hamster Ovary (CHO) cells in a production environment has been extensively investigated. However, a key metabolic transition, the switch from lactate production to lactate consumption, remains enigmatic. Though commonly observed in CHO cultures, the mechanism(s) by which this metabolic shift is triggered is unknown. Despite this, efforts to control the switch have emerged due to the association of lactate consumption with improved cell growth and productivity. This review aims to consolidate current theories surrounding the lactate switch. The influence of pH, NAD + /NADH, pyruvate availability and mitochondrial function on lactate consumption are explored. A hypothesis based on the cellular redox state is put forward to explain the onset of lactate consumption. Various techniques implemented to control the lactate switch, including manipulation of the culture environment, genetic engineering, and cell line selection are also discussed. © 2018 Wiley Periodicals, Inc.

  1. Assessing the secretory capacity of pancreatic acinar cells.

    PubMed

    Geron, Erez; Schejter, Eyal D; Shilo, Ben-Zion

    2014-08-28

    Pancreatic acinar cells produce and secrete digestive enzymes. These cells are organized as a cluster which forms and shares a joint lumen. This work demonstrates how the secretory capacity of these cells can be assessed by culture of isolated acini. The setup is advantageous since isolated acini, which retain many characteristics of the intact exocrine pancreas can be manipulated and monitored more readily than in the whole animal. Proper isolation of pancreatic acini is a key requirement so that the ex vivo culture will represent the in vivo nature of the acini. The protocol demonstrates how to isolate intact acini from the mouse pancreas. Subsequently, two complementary methods for evaluating pancreatic secretion are presented. The amylase secretion assay serves as a global measure, while direct imaging of pancreatic secretion allows the characterization of secretion at a sub-cellular resolution. Collectively, the techniques presented here enable a broad spectrum of experiments to study exocrine secretion.

  2. Neurologic complications after off-pump coronary artery bypass grafting with and without aortic manipulation: meta-analysis of 11,398 cases from 8 studies.

    PubMed

    Misfeld, Martin; Brereton, R John L; Sweetman, Elizabeth A; Doig, Gordon S

    2011-08-01

    Neurologic complications after coronary artery bypass grafting remain a concern. Off-pump coronary artery bypass grafting is a surgical strategy proposed to decrease this risk. Use of an off-pump anaortic technique, which leaves the ascending aorta untouched, may result in further reductions. This systematic review of all published evidence compares neurologic complications after anaortic off-pump coronary artery bypass grafting versus that with aortic manipulation. PubMed and Embase were searched up to August 2008. Experts were contacted, and reference lists of retrieved articles were hand searched. The search process was not limited to English-language sources. Observational studies comparing standard off-pump coronary artery bypass grafting technique with anaortic technique were eligible for inclusion if they reported neurologic complications (stroke and transient ischemic attack). Meta-analysis was conducted to assess differences between groups with regard to neurologic complications. Electronic search identified 1428 abstracts, which resulted in retrieval and detailed review of 331 full-text articles. Eight observational studies reported neurologic complications in 5619 anaortic off-pump coronary artery bypass grafting cases and 5779 cases with aortic manipulation. Postsurgical neurologic complications were significantly lower in anaortic off-pump coronary artery bypass grafting cases (odds ratio, 0.46; 95% confidence interval, 0.29-0.72; I(2) = 0.8%; P = .0008). Avoidance of aortic manipulation during off-pump coronary artery bypass grafting decreases neurologic complications relative to standard technique in which the ascending aorta is manipulated. In patients at high risk for stroke or transient ischemic attack, we recommend avoidance of aortic manipulation during off-pump coronary artery bypass grafting. Copyright © 2010 The American Association for Thoracic Surgery. Published by Mosby, Inc. All rights reserved.

  3. The effect of manipulation plus massage therapy versus massage therapy alone in people with tension-type headache. A randomized controlled clinical trial.

    PubMed

    Espí-López, Gemma V; Zurriaga-Llorens, Rosario; Monzani, Lucas; Falla, Deborah

    2016-10-01

    Manipulative techniques have shown promising results for relief of tension-type headache (TTH), however prior studies either lacked a control group, or suffered from poor methodological quality. The aim of this study was to compare the effect of spinal manipulation combined with massage versus massage alone on range of motion of the cervical spine, headache frequency, intensity and disability in patients with TTH. Randomized, single-blinded, controlled clinical trial. University clinic. We enrolled 105 subjects with TTH. Participants were divided into two groups: 1) manipulation and massage; 2) massage only (control). Four treatment sessions were applied over four weeks. The Headache Disability Inventory (HDI) and range of upper cervical and cervical motion were evaluated at baseline, immediately after the intervention and at a follow-up, 8 weeks after completing the intervention. Both groups demonstrated a large (ƒ=1.22) improvement on their HDI scores. Those that received manipulation reported a medium-sized reduction (ƒ=0.33) in headache frequency across all data points (P<0.05) compared to the control group. Both groups showed a large within-subject effect for upper cervical extension (ƒ=0.62), a medium-sized effect for cervical extension (ƒ=0.39), and large effects for upper cervical (ƒ=1.00) and cervical (ƒ=0.27) flexion. The addition of manipulation resulted in larger gains of upper cervical flexion range of motion, and this difference remained stable at the follow-up. These findings support the benefit of treating TTH with either massage or massage combined with a manipulative technique. However, the addition of manipulative technique was more effective for increasing range of motion of the upper cervical spine and for reducing the impact of headache. Although massage provided relief of headache in TTH sufferers, when combined with cervical manipulation, there was a stronger effect on range of upper cervical spine motion.

  4. Nanoliter-Scale Oil-Air-Droplet Chip-Based Single Cell Proteomic Analysis.

    PubMed

    Li, Zi-Yi; Huang, Min; Wang, Xiu-Kun; Zhu, Ying; Li, Jin-Song; Wong, Catherine C L; Fang, Qun

    2018-04-17

    Single cell proteomic analysis provides crucial information on cellular heterogeneity in biological systems. Herein, we describe a nanoliter-scale oil-air-droplet (OAD) chip for achieving multistep complex sample pretreatment and injection for single cell proteomic analysis in the shotgun mode. By using miniaturized stationary droplet microreaction and manipulation techniques, our system allows all sample pretreatment and injection procedures to be performed in a nanoliter-scale droplet with minimum sample loss and a high sample injection efficiency (>99%), thus substantially increasing the analytical sensitivity for single cell samples. We applied the present system in the proteomic analysis of 100 ± 10, 50 ± 5, 10, and 1 HeLa cell(s), and protein IDs of 1360, 612, 192, and 51 were identified, respectively. The OAD chip-based system was further applied in single mouse oocyte analysis, with 355 protein IDs identified at the single oocyte level, which demonstrated its special advantages of high enrichment of sequence coverage, hydrophobic proteins, and enzymatic digestion efficiency over the traditional in-tube system.

  5. Cell sorting using efficient light shaping approaches

    NASA Astrophysics Data System (ADS)

    Bañas, Andrew; Palima, Darwin; Villangca, Mark; Glückstad, Jesper

    2016-03-01

    Early detection of diseases can save lives. Hence, there is emphasis in sorting rare disease-indicating cells within small dilute quantities such as in the confines of lab-on-a-chip devices. In our work, we use optical forces to isolate red blood cells detected by machine vision. This approach is gentler, less invasive and more economical compared to conventional FACS systems. As cells are less responsive to plastic or glass beads commonly used in the optical manipulation literature, and since laser safety would be an issue in clinical use, we develop efficient approaches in utilizing lasers and light modulation devices. The Generalized Phase Contrast (GPC) method that can be used for efficiently illuminating spatial light modulators or creating well-defined contiguous optical traps is supplemented by diffractive techniques capable of integrating the available light and creating 2D or 3D beam distributions aimed at the positions of the detected cells. Furthermore, the beam shaping freedom provided by GPC can allow optimizations in the beam's propagation and its interaction with the catapulted cells.

  6. Non-viral gene delivery regulated by stiffness of cell adhesion substrates.

    PubMed

    Kong, Hyun Joon; Liu, Jodi; Riddle, Kathryn; Matsumoto, Takuya; Leach, Kent; Mooney, David J

    2005-06-01

    Non-viral gene vectors are commonly used for gene therapy owing to safety concerns with viral vectors. However, non-viral vectors are plagued by low levels of gene transfection and cellular expression. Current efforts to improve the efficiency of non-viral gene delivery are focused on manipulations of the delivery vector, whereas the influence of the cellular environment in DNA uptake is often ignored. The mechanical properties (for example, rigidity) of the substrate to which a cell adheres have been found to mediate many aspects of cell function including proliferation, migration and differentiation, and this suggests that the mechanics of the adhesion substrate may regulate a cell's ability to uptake exogeneous signalling molecules. In this report, we present a critical role for the rigidity of the cell adhesion substrate on the level of gene transfer and expression. The mechanism relates to material control over cell proliferation, and was investigated using a fluorescent resonance energy transfer (FRET) technique. This study provides a new material-based control point for non-viral gene therapy.

  7. Manipulation of biological cells using a microelectromagnet matrix

    NASA Astrophysics Data System (ADS)

    Lee, H.; Purdon, A. M.; Westervelt, R. M.

    2004-08-01

    Noninvasive manipulation of biological cells inside a microfluidic channel was demonstrated using a microelectromagnet matrix. The matrix consists of two layers of straight Au wires, aligned perpendicular to each other, that are covered by insulating layers. By adjusting the current in each independent wire, the microelectromagnet matrix can create versatile magnetic field patterns to control the motion of individual cells in fluid. Single or multiple yeast cells attached to magnetic beads were trapped, continuously moved and rotated, and a viable cell was separated from nonviable cells for cell sorting.

  8. Optical quantification of forces at play during stem cell differentiation

    NASA Astrophysics Data System (ADS)

    Ritter, Christine M.; Brickman, Joshua M.; Oddershede, Lene B.

    2016-03-01

    A cell is in constant interaction with its environment, it responds to external mechanical, chemical and biological signals. The response to these signals can be of various nature, for instance intra-cellular mechanical re-arrangements, cell-cell interactions, or cellular reinforcements. Optical methods are quite attractive for investigating the mechanics inside living cells as, e.g., optical traps are amongst the only nanotools that can reach and manipulate, measure forces, inside a living cell. In the recent years it has become increasingly evident that not only biochemical and biomolecular cues, but also that mechanical ones, play an important roles in stem cell differentiation. The first evidence for the importance of mechanical cues emerged from studies showing that substrate stiffness had an impact on stem cell differentiation. Recently, techniques such as optical tweezers and stretchers have been applied to stem cells, producing new insights into the role of mechanics in regulating renewal and differentiation. Here, we describe how optical tweezers and optical stretchers can be applied as a tool to investigate stem cell mechanics and some of the recent results to come out of this work.

  9. Double-layered cell transfer technology for bone regeneration

    PubMed Central

    Akazawa, Keiko; Iwasaki, Kengo; Nagata, Mizuki; Yokoyama, Naoki; Ayame, Hirohito; Yamaki, Kazumasa; Tanaka, Yuichi; Honda, Izumi; Morioka, Chikako; Kimura, Tsuyoshi; Komaki, Motohiro; Kishida, Akio; Izumi, Yuichi; Morita, Ikuo

    2016-01-01

    For cell-based medicine, to mimic in vivo cellular localization, various tissue engineering approaches have been studied to obtain a desirable arrangement of cells on scaffold materials. We have developed a novel method of cell manipulation called “cell transfer technology”, enabling the transfer of cultured cells onto scaffold materials, and controlling cell topology. Here we show that using this technique, two different cell types can be transferred onto a scaffold surface as stable double layers or in patterned arrangements. Various combinations of adherent cells were transferred to a scaffold, amniotic membrane, in overlapping bilayers (double-layered cell transfer), and transferred cells showed stability upon deformations of the material including folding and trimming. Transplantation of mesenchymal stem cells from periodontal ligaments (PDLSC) and osteoblasts, using double-layered cell transfer significantly enhanced bone formation, when compared to single cell type transplantation. Our findings suggest that this double-layer cell transfer is useful to produce a cell transplantation material that can bear two cell layers. Moreover, the transplantation of an amniotic membrane with PDLSCs/osteoblasts by cell transfer technology has therapeutic potential for bone defects. We conclude that cell transfer technology provides a novel and unique cell transplantation method for bone regeneration. PMID:27624174

  10. Magnetic tagging of cell-derived microparticles: new prospects for imaging and manipulation of these mediators of biological information.

    PubMed

    Vats, Nidhi; Wilhelm, Claire; Rautou, Pierre-Emmanuel; Poirier-Quinot, Marie; Péchoux, Christine; Devue, Cécile; Boulanger, Chantal M; Gazeau, Florence

    2010-07-01

    Submicron membrane fragments termed microparticles (MPs), which are released by apoptotic or activated cells, are newly considered as vectors of biological information and actors of pathology development. We propose the tagging of MPs with magnetic nanoparticles as a new approach allowing imaging, manipulation and targeting of cell-derived MPs. MPs generated in vitro from human endothelial cells or isolated from atherosclerotic plaques were labeled using citrate-coated 8 nm iron-oxide nanoparticles. MPs were tagged with magnetic nanoparticles on their surface and detected as Annexin-V positive by flow cytometry. Labeled MPs could be mobilized, isolated and manipulated at a distance in a magnetic field gradient. Magnetic mobility of labeled MPs was quantified by micromagnetophoresis. Interactions of labeled MPs with endothelial cells could be triggered and modulated by magnetic guidance. Nanoparticles served as tracers at different scales: at the subcellular level by electron microscopy, at the cellular level by histology and at the macroscopic level by MRI. Magnetic labeling of biogenic MPs opens new prospects for noninvasive monitoring and distal manipulations of these biological effectors.

  11. Microfluidic devices for the controlled manipulation of small volumes

    DOEpatents

    Ramsey, Michael J; Jacobson, Stephen C

    2012-09-18

    A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The invention is implemented on a fluidic microchip to provide high serial throughput. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The reaction volumes are manipulated in serial fashion analogous to a digital shift register. The invention has application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.

  12. Microfluidic devices for the controlled manipulation of small volumes

    DOEpatents

    Ramsey, J Michael [Knoxville, TN; Jacobson, Stephen C [Knoxville, TN

    2007-07-03

    A method for conducting a broad range of biochemical analyses or manipulations on a series of nano- to subnanoliter reaction volumes and an apparatus for carrying out the same are disclosed. The invention is implemented on a fluidic microchip to provide high serial throughput. In particular, the disclosed device is a microfabricated channel device that can manipulate nanoliter or subnanoliter reaction volumes in a controlled manner to produce results at rates of 1 to 10 Hz per channel. The reaction volumes are manipulated in serial fashion analogous to a digital shift register. The invention has application to such problems as screening molecular or cellular targets using single beads from split-synthesis combinatorial libraries, screening single cells for RNA or protein expression, genetic diagnostic screening at the single cell level, or performing single cell signal transduction studies.

  13. Immunomagnetic separation can enrich fixed solid tumors for epithelial cells.

    PubMed Central

    Yaremko, M. L.; Kelemen, P. R.; Kutza, C.; Barker, D.; Westbrook, C. A.

    1996-01-01

    Immunomagnetic separation is a highly specific technique for the enrichment or isolation of cells from a variety of fresh tissues and microorganisms or molecules from suspensions. Because new techniques for molecular analysis of solid tumors are now applicable to fixed tissue but sometimes require or benefit from enrichment for tumor cells, we tested the efficacy of immunomagnetic separation for enriching fixed solid tumors for malignant epithelial cells. We applied it to two different tumors and fixation methods to separate neoplastic from non-neoplastic cells in primary colorectal cancers and metastatic breast cancers, and were able to enrich to a high degree of purity. Immunomagnetic separation was effective in unembedded fixed tissue as well as fixed paraffin-embedded tissue. The magnetically separated cells were amenable to fluorescence in situ hybridization and polymerase chain reaction amplification of their DNA with minimal additional manipulation. The high degree of enrichment achieved before amplification contributed to interpretation of loss of heterozygosity in metastatic breast cancers, and simplified fluorescence in situ hybridization analysis because only neoplastic cells were hybridized and counted. Immunomagnetic separation is effective for the enrichment of fixed solid tumors, can be performed with widely available commercial antibodies, and requires little specialized instrumentation. It can contribute to interpretation of results in situations where enrichment by other methods is difficult or not possible. Images Figure 1 Figure 2 Figure 3 PMID:8546231

  14. Production of cloned mice from somatic cells, ES cells, and frozen bodies.

    PubMed

    Wakayama, Sayaka; Mizutani, Eiji; Wakayama, Teruhiko

    2010-01-01

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, therefore, the nuclear transfer (NT) method has been thought of as a "black box approach" and inadequate to determine the detail of how genomic reprogramming occurs. However, only the NT approach can reveal dynamic and global modifications in the epigenome without using genetic modification, as well as can create live animals. At present, this is the only technique available for the preservation and propagation of valuable genetic resources from mutant mice that are infertile or too old, or recovered from carcasses, without the use of germ cells. This chapter describes a basic protocol for mouse cloning and embryonic stem (ES) cell establishment from cloned embryo using a piezo-actuated micromanipulator. This technique will greatly help not only in mouse cloning but also in other forms of micromanipulation such as intracytoplasmic sperm injection (ICSI) into oocytes or ES cell injection into blastocysts. In addition, we describe a new, more efficient mouse cloning protocol using histone deacetylase inhibitor (HDACi), which increases the success rates of cloned mice or establish rate of ES cells to fivefold. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  15. Investigation of HIV-1 infected and uninfected cells using the optical trapping technique

    NASA Astrophysics Data System (ADS)

    Ombinda-Lemboumba, S.; Malabi, R.; Lugongolo, M. Y.; Thobakgale, S. L.; Manoto, S.; Mthunzi-Kufa, P.

    2017-02-01

    Optical trapping has emerged as an essential tool for manipulating single biological material and performing sophisticated spectroscopy analysis on individual cell. The optical trapping technique has been used to grab and immobilize cells from a tightly focused laser beam emitted through a high numerical aperture objective lens. Coupling optical trapping with other technologies is possible and allows stable sample trapping, while also facilitating molecular, chemical and spectroscopic analysis. For this reason, we are exploring laser trapping combined with laser spectroscopy as a potential non-invasive method of interrogating individual cells with a high degree of specificity in terms of information generated. Thus, for the delivery of as much pathological information as possible, we use a home-build optical trapping and spectroscopy system for real time probing human immunodeficiency virus (HIV-1) infected and uninfected single cells. Briefly, our experimental rig comprises an infrared continuous wave laser at 1064 nm with power output of 1.5 W, a 100X high numerical aperture oil-immersion microscope objective used to capture and immobilise individual cell samples as well as an excitation source. Spectroscopy spectral patterns obtained by the 1064 nm laser beam excitation provide information on HIV-1 infected and uninfected cells. We present these preliminary findings which may be valuable for the development of an HIV-1 point of care detection system.

  16. The Iraq War, "Sound Science," and "Evidence-Based" Educational Reform: How the Bush Administration Uses Deception, Manipulation, and Subterfuge to Advance Its Chosen Ideology

    ERIC Educational Resources Information Center

    Gordon, Stephen P.; Smyth, John; Diehl, Julie

    2008-01-01

    In this article we describe how the Bush administration has used deceptive techniques and subterfuge to force its ideology upon the American people. We provide examples of similar techniques used to manipulate public opinion and national policy in three broad areas: national defense, science, and education. Our example from national defense…

  17. Multiweek cell culture project for use in upper-level biology laboratories.

    PubMed

    Marion, Rebecca E; Gardner, Grant E; Parks, Lisa D

    2012-06-01

    This article describes a laboratory protocol for a multiweek project piloted in a new upper-level biology laboratory (BIO 426) using cell culture techniques. Human embryonic kidney-293 cells were used, and several culture media and supplements were identified for students to design their own experiments. Treatments included amino acids, EGF, caffeine, epinephrine, heavy metals, and FBS. Students researched primary literature to determine their experimental variables, made their own solutions, and treated their cells over a period of 2 wk. Before this, a sterile technique laboratory was developed to teach students how to work with the cells and minimize contamination. Students designed their experiments, mixed their solutions, seeded their cells, and treated them with their control and experimental media. Students had the choice of manipulating a number of variables, including incubation times, exposure to treatment media, and temperature. At the end of the experiment, students observed the effects of their treatment, harvested and dyed their cells, counted relative cell numbers in control and treatment flasks, and determined the ratio of living to dead cells using a hemocytometer. At the conclusion of the experiment, students presented their findings in a poster presentation. This laboratory can be expanded or adapted to include additional cell lines and treatments. The ability to design and implement their own experiments has been shown to increase student engagement in the biology-related laboratory activities as well as develop the critical thinking skills needed for independent research.

  18. Manipulating motions of targeted single cells in solution by an integrated double-ring magnetic tweezers imaging microscope.

    PubMed

    Wu, Meiling; Yadav, Rajeev; Pal, Nibedita; Lu, H Peter

    2017-07-01

    Controlling and manipulating living cell motions in solution hold a high promise in developing new biotechnology and biological science. Here, we developed a magnetic tweezers device that employs a combination of two permanent magnets in up-down double-ring configuration axially fitting with a microscopic objective, allowing a picoNewton (pN) bidirectional force and motion control on the sample beyond a single upward pulling direction. The experimental force calibration and magnetic field simulation using finite element method magnetics demonstrate that the designed magnetic tweezers covers a linear-combined pN force with positive-negative polarization changes in a tenability of sub-pN scale, which can be utilized to further achieve motion manipulation by shifting the force balance. We demonstrate an application of the up-down double-ring magnetic tweezers for single cell manipulation, showing that the cells with internalized paramagnetic beads can be selectively picked up and guided in a controlled fine motion.

  19. Cell Type-Specific Manipulation with GFP-Dependent Cre Recombinase

    PubMed Central

    Tang, Jonathan C Y; Rudolph, Stephanie; Dhande, Onkar S; Abraira, Victoria E; Choi, Seungwon; Lapan, Sylvain; Drew, Iain R; Drokhlyansky, Eugene; Huberman, Andrew D; Regehr, Wade G; Cepko, Constance L

    2016-01-01

    Summary There are many transgenic GFP reporter lines that allow visualization of specific populations of cells. Using such lines for functional studies requires a method that transforms GFP into a molecule that enables genetic manipulation. Here we report the creation of a method that exploits GFP for gene manipulation, Cre Recombinase Dependent on GFP (CRE-DOG), a split component system that uses GFP and its derivatives to directly induce Cre/loxP recombination. Using plasmid electroporation and AAV viral vectors, we delivered CRE-DOG to multiple GFP mouse lines, leading to effective recombination selectively in GFP-labeled cells. Further, CRE-DOG enabled optogenetic control of these neurons. Beyond providing a new set of tools for manipulation of gene expression selectively in GFP+ cells, we demonstrate that GFP can be used to reconstitute the activity of a protein not known to have a modular structure, suggesting that this strategy might be applicable to a wide range of proteins. PMID:26258682

  20. Manipulating motions of targeted single cells in solution by an integrated double-ring magnetic tweezers imaging microscope

    NASA Astrophysics Data System (ADS)

    Wu, Meiling; Yadav, Rajeev; Pal, Nibedita; Lu, H. Peter

    2017-07-01

    Controlling and manipulating living cell motions in solution hold a high promise in developing new biotechnology and biological science. Here, we developed a magnetic tweezers device that employs a combination of two permanent magnets in up-down double-ring configuration axially fitting with a microscopic objective, allowing a picoNewton (pN) bidirectional force and motion control on the sample beyond a single upward pulling direction. The experimental force calibration and magnetic field simulation using finite element method magnetics demonstrate that the designed magnetic tweezers covers a linear-combined pN force with positive-negative polarization changes in a tenability of sub-pN scale, which can be utilized to further achieve motion manipulation by shifting the force balance. We demonstrate an application of the up-down double-ring magnetic tweezers for single cell manipulation, showing that the cells with internalized paramagnetic beads can be selectively picked up and guided in a controlled fine motion.

  1. Cellular nanotechnology: making biological interfaces smarter.

    PubMed

    Mendes, Paula M

    2013-12-21

    Recently, there has been an outburst of research on engineered cell-material interfaces driven by nanotechnology and its tools and techniques. This tutorial review begins by providing a brief introduction to nanostructured materials, followed by an overview of the wealth of nanoscale fabrication and analysis tools available for their development. This background serves as the basis for a discussion of early breakthroughs and recent key developments in the endeavour to develop nanostructured materials as smart interfaces for fundamental cellular studies, tissue engineering and regenerative medicine. The review covers three major aspects of nanostructured interfaces - nanotopographical control, dynamic behaviour and intracellular manipulation and sensing - where efforts are continuously being made to further understand cell function and provide new ways to control cell behaviour. A critical reflection of the current status and future challenges are discussed as a conclusion to the review.

  2. Manipulation of Bloch surface waves: from subwavelength focusing to nondiffracting beam

    NASA Astrophysics Data System (ADS)

    Kim, Myun-Sik; Herzig, Hans Peter

    2018-01-01

    We present a different type of electromagnetic surface wave than a surface plasmon polariton (SPP), called Bloch surface wave (BSW). BSWs are sustained by dielectric multilayers, and therefore they do not suffer from dissipation. Their propagation length is unbeatably long, e.g., over several millimeters. Thanks to this feature, larger integrations of 2D photonic chips are realizable. To do this, 2D optical components and corresponding techniques are necessary to manipulate in-plane propagation of surface waves. We overview recent progresses of the BSW research on manipulation techniques and developed components. Our study will provide a good guideline of the BSW components for users.

  3. Algorithmic formulation of control problems in manipulation

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.

    1975-01-01

    The basic characteristics of manipulator control algorithms are discussed. The state of the art in the development of manipulator control algorithms is briefly reviewed. Different end-point control techniques are described together with control algorithms which operate on external sensor (imaging, proximity, tactile, and torque/force) signals in realtime. Manipulator control development at JPL is briefly described and illustrated with several figures. The JPL work pays special attention to the front or operator input end of the control algorithms.

  4. Manipulation of in vitro collagen matrix architecture for scaffolds of improved physiological relevance

    NASA Astrophysics Data System (ADS)

    Hapach, Lauren A.; VanderBurgh, Jacob A.; Miller, Joseph P.; Reinhart-King, Cynthia A.

    2015-12-01

    Type I collagen is a versatile biomaterial that is widely used in medical applications due to its weak antigenicity, robust biocompatibility, and its ability to be modified for a wide array of applications. As such, collagen has become a major component of many tissue engineering scaffolds, drug delivery platforms, and substrates for in vitro cell culture. In these applications, collagen constructs are fabricated to recapitulate a diverse set of conditions. Collagen fibrils can be aligned during or post-fabrication, cross-linked via numerous techniques, polymerized to create various fibril sizes and densities, and copolymerized into a wide array of composite scaffolds. Here, we review approaches that have been used to tune collagen to better recapitulate physiological environments for use in tissue engineering applications and studies of basic cell behavior. We discuss techniques to control fibril alignment, methods for cross-linking collagen constructs to modulate stiffness, and composite collagen constructs to better mimic physiological extracellular matrix.

  5. High-efficiency genome editing and allele replacement in prototrophic and wild strains of Saccharomyces.

    PubMed

    Alexander, William G; Doering, Drew T; Hittinger, Chris Todd

    2014-11-01

    Current genome editing techniques available for Saccharomyces yeast species rely on auxotrophic markers, limiting their use in wild and industrial strains and species. Taking advantage of the ancient loss of thymidine kinase in the fungal kingdom, we have developed the herpes simplex virus thymidine kinase gene as a selectable and counterselectable marker that forms the core of novel genome engineering tools called the H: aploid E: ngineering and R: eplacement P: rotocol (HERP) cassettes. Here we show that these cassettes allow a researcher to rapidly generate heterogeneous populations of cells with thousands of independent chromosomal allele replacements using mixed PCR products. We further show that the high efficiency of this approach enables the simultaneous replacement of both alleles in diploid cells. Using these new techniques, many of the most powerful yeast genetic manipulation strategies are now available in wild, industrial, and other prototrophic strains from across the diverse Saccharomyces genus. Copyright © 2014 by the Genetics Society of America.

  6. Experimental studies of protozoan response to intense magnetic fields and forces

    NASA Astrophysics Data System (ADS)

    Guevorkian, Karine

    Intense static magnetic fields of up to 31 Tesla were used as a novel tool to manipulate the swimming mechanics of unicellular organisms. It is shown that homogenous magnetic fields alter the swimming trajectories of the single cell protozoan Paramecium caudatum, by aligning them parallel to the applied field. Immobile neutrally buoyant paramecia also oriented in magnetic fields with similar rates as the motile ones. It was established that the magneto-orientation is mostly due to the magnetic torques acting on rigid structures in the cell body and therefore the response is a non-biological, passive response. From the orientation rate of paramecia in various magnetic field strengths, the average anisotropy of the diamagnetic susceptibility of the cell was estimated. It has also been demonstrated that magnetic forces can be used to create increased, decreased and even inverted simulated gravity environments for the investigation of the gravi-responses of single cells. Since the mechanisms by which Earth's gravity affects cell functioning are still not fully understood, a number of methods to simulate different strength gravity environments, such as centrifugation, have been employed. Exploiting the ability to exert magnetic forces on weakly diamagnetic constituents of the cells, we were able to vary the gravity from -8 g to 10 g, where g is Earth's gravity. Investigations of the swimming response of paramecia in these simulated gravities revealed that they actively regulate their swimming speed to oppose the external force. This result is in agreement with centrifugation experiments, confirming the credibility of the technique. Moreover, the Paramecium's swimming ceased in simulated gravity of 10 g, indicating a maximum possible propulsion force of 0.7 nN. The magnetic force technique to simulate gravity is the only earthbound technique that can create increased and decreased simulated gravities in the same experimental setup. These findings establish a general technique for applying continuously variable forces to cells or cell populations suitable for exploring their force transduction mechanisms.

  7. The post-humanist embryo: genetic manipulation, assisted reproductive technologies and the Principle of Procreative Beneficence.

    PubMed

    Güell Pelayo, Francisco

    2014-01-01

    Drawing from Julian Savulescu's argument for the obligation to use technological interventions for the enhancement human life, the Principle of Procreative Beneficence (PPB) states that parents have a moral obligation to use available reproductive technologies, including techniques of genetic manipulation, to create children who have the best chance of enjoying the best possible life. The aim of this study is to analyse the extent to which the possibility of using genetic manipulation to promote specific personality traits and thereby enhance human life is actually supported by current scientific knowledge and to determine whether the techniques employed in embryo selection comply with the PPB. In light of this analysis, the importance of involving the scientific community in the enhancement debate will be made clear. Moreover, when current knowledge of genetic and epigenetic processes and evidence of the risks of assisted reproductive technologies are taken into account, we find sufficient reason - even when guided by the PPB - to abstain from the use of current techniques of genetic manipulation and embryonic selection.

  8. Microfluidic Systems for Biosensing

    PubMed Central

    Liu, Kuo-Kang; Wu, Ren-Guei; Chuang, Yun-Ju; Khoo, Hwa Seng; Huang, Shih-Hao; Tseng, Fan-Gang

    2010-01-01

    In the past two decades, Micro Fluidic Systems (MFS) have emerged as a powerful tool for biosensing, particularly in enriching and purifying molecules and cells in biological samples. Compared with conventional sensing techniques, distinctive advantages of using MFS for biomedicine include ultra-high sensitivity, higher throughput, in-situ monitoring and lower cost. This review aims to summarize the recent advancements in two major types of micro fluidic systems, continuous and discrete MFS, as well as their biomedical applications. The state-of-the-art of active and passive mechanisms of fluid manipulation for mixing, separation, purification and concentration will also be elaborated. Future trends of using MFS in detection at molecular or cellular level, especially in stem cell therapy, tissue engineering and regenerative medicine, are also prospected. PMID:22163570

  9. Preparation of RNA from bacteria infected with bacteriophages: a case study from the marine unicellular Synechococcus sp. WH7803 infected by phage S-PM2.

    PubMed

    Shan, Jinyu; Clokie, Martha

    2009-01-01

    Bacteriophages manipulate bacterial gene expression in order to express their own genes or influence bacterial metabolism. Gene expression can be studied using real-time PCR or microarrays. Either technique requires the prior isolation of high quality RNA uncontaminated by the presence of genomic DNA. We outline the considerations necessary when working with bacteriophage infected bacterial cells. We also give an example of a protocol for extraction and quantification of high quality RNA from infected bacterial cells, using the marine cyanobacterium WH7803 and the phage S-PM2 as a case study. This protocol can be modified to extract RNA from the host/bacteriophage of interest.

  10. The role of utility value in achievement behavior: the importance of culture.

    PubMed

    Shechter, Olga G; Durik, Amanda M; Miyamoto, Yuri; Harackiewicz, Judith M

    2011-03-01

    Two studies tested how participants' responses to utility value interventions and subsequent interest in a math technique vary by culture (Westerners vs. East Asians) and levels of initial math interest. Participants in Study 1 were provided with information about the utility value of the technique or not. The manipulation was particularly effective for East Asian learners with initially lower math interest, who showed more interest in the technique relative to low-interest Westerners. Study 2 compared the effects of two types of utility value (proximal or distal) and examined the effects on interest, effort, performance, and process variables. Whereas East Asian participants reaped the most motivational benefits from a distal value manipulation, Westerners benefited the most from a proximal value manipulation. These findings have implications for how to promote motivation for learners with different cultural backgrounds and interests.

  11. Virtual reality visual feedback for hand-controlled scanning probe microscopy manipulation of single molecules.

    PubMed

    Leinen, Philipp; Green, Matthew F B; Esat, Taner; Wagner, Christian; Tautz, F Stefan; Temirov, Ruslan

    2015-01-01

    Controlled manipulation of single molecules is an important step towards the fabrication of single molecule devices and nanoscale molecular machines. Currently, scanning probe microscopy (SPM) is the only technique that facilitates direct imaging and manipulations of nanometer-sized molecular compounds on surfaces. The technique of hand-controlled manipulation (HCM) introduced recently in Beilstein J. Nanotechnol. 2014, 5, 1926-1932 simplifies the identification of successful manipulation protocols in situations when the interaction pattern of the manipulated molecule with its environment is not fully known. Here we present a further technical development that substantially improves the effectiveness of HCM. By adding Oculus Rift virtual reality goggles to our HCM set-up we provide the experimentalist with 3D visual feedback that displays the currently executed trajectory and the position of the SPM tip during manipulation in real time, while simultaneously plotting the experimentally measured frequency shift (Δf) of the non-contact atomic force microscope (NC-AFM) tuning fork sensor as well as the magnitude of the electric current (I) flowing between the tip and the surface. The advantages of the set-up are demonstrated by applying it to the model problem of the extraction of an individual PTCDA molecule from its hydrogen-bonded monolayer grown on Ag(111) surface.

  12. Single cell Enrichment with High Throughput Microfluidic Devices

    NASA Astrophysics Data System (ADS)

    Pakjesm Pourfard, Pedram

    Microfluidics is a rapidly growing field of biomedical engineering with numerous applications such as diagnostic testing, therapeutics, and research preparation. Cell enrichment for automated diagnostic is often assayed through measurement of biochemical and biophysical markers. Although biochemical markers have been widely used, intrinsic biophysical markers, such as, Shear migration, Lift force, Dean force, and many other label-free techniques, are advantageous since they don't require costly labeling or sample preparation. However, current passive techniques for enrichment had limited adoption in clinical and cell biology research applications. They generally require low flow rate and low cell volume fraction for high efficiency. The Control increment filtration, T-shaped microfluidic device, and spiral-shaped microfluidic devices will be studied for single-cell separation from aggregates. Control increment filtration works like the tangential filter; however, cells are separated based off of same amount of flow rate passing through large space gaps. Main microchannel of T-Shaped is connected to two perpendicular side channels. Based off Shear-modulated inertial migration, this device will enable selective enrichment of cells. The spiral shaped microfluidic device depends on different Dean and lift forces acting on cells to separate them based off different sizes. The spiral geometry of the microchannel will enable dominant inertial forces and the Dean Rotation force to cause larger cells to migrate to the inner side of the microchannel. Because manipulation of microchannel dimensions correlates to the degree of cell separation, versatility in design exists. Cell mixture samples will contain cells of different sizes and therefore design strategies could be utilized to maximize the effectiveness of single-cell separation.

  13. Manipulating Cells with Static Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Valles, J. M.; Guevorkian, K.

    2005-07-01

    We review our investigations of the use of static magnetic fields, B, for manipulating cells and cellular processes. We describe how B fields modify the cell division pattern of frog embryos and consequently can be used to probe the pattern determinants. We also observe that magnetic fields modify the swimming behavior of Paramecium Caudatum. We describe these modifications and their potential application to investigations of their swimming behavior.

  14. EVALUATION OF THE REPRODUCIBILITY OF TWO TECHNIQUES USED TO DETERMINE AND RECORD CENTRIC RELATION IN ANGLE’S CLASS I PATIENTS

    PubMed Central

    Paixão, Fernanda; Silva, Wilkens Aurélio Buarque e; Silva, Frederico Andrade e; Ramos, Guilherme da Gama; Cruz, Mônica Vieira de Jesus

    2007-01-01

    The centric relation is a mandibular position that determines a balance relation among the temporomandibular joints, the chew muscles and the occlusion. This position makes possible to the dentist to plan and to execute oral rehabilitation respecting the physiological principles of the stomatognathic system. The aim of this study was to investigate the reproducibility of centric relation records obtained using two techniques: Dawson’s Bilateral Manipulation and Gysi’s Gothic Arch Tracing. Twenty volunteers (14 females and 6 males) with no dental loss, presenting occlusal contacts according to those described in Angle’s I classification and without signs and symptoms of temporomandibular disorders were selected. All volunteers were submitted five times with a 1-week interval, always in the same schedule, to the Dawson’s Bilateral Manipulation and to the Gysi’s Gothic Arch Tracing with aid of an intraoral apparatus. The average standard error of each technique was calculated (Bilateral Manipulation 0.94 and Gothic Arch Tracing 0.27). Shapiro-Wilk test was applied and the results allowed application of Student’s t-test (sampling error of 5%). The techniques showed different degrees of variability. The Gysi’s Gothic Arch Tracing was found to be more accurate than the Bilateral Manipulation in reproducing the centric relation records. PMID:19089144

  15. Transfer of plasmid DNA to clinical coagulase-negative staphylococcal pathogens by using a unique bacteriophage.

    PubMed

    Winstel, Volker; Kühner, Petra; Krismer, Bernhard; Peschel, Andreas; Rohde, Holger

    2015-04-01

    Genetic manipulation of emerging bacterial pathogens, such as coagulase-negative staphylococci (CoNS), is a major hurdle in clinical and basic microbiological research. Strong genetic barriers, such as restriction modification systems or clustered regularly interspaced short palindromic repeats (CRISPR), usually interfere with available techniques for DNA transformation and therefore complicate manipulation of CoNS or render it impossible. Thus, current knowledge of pathogenicity and virulence determinants of CoNS is very limited. Here, a rapid, efficient, and highly reliable technique is presented to transfer plasmid DNA essential for genetic engineering to important CoNS pathogens from a unique Staphylococcus aureus strain via a specific S. aureus bacteriophage, Φ187. Even strains refractory to electroporation can be transduced by this technique once donor and recipient strains share similar Φ187 receptor properties. As a proof of principle, this technique was used to delete the alternative transcription factor sigma B (SigB) via allelic replacement in nasal and clinical Staphylococcus epidermidis isolates at high efficiencies. The described approach will allow the genetic manipulation of a wide range of CoNS pathogens and might inspire research activities to manipulate other important pathogens in a similar fashion. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  16. Transgenic manipulation of the metabolism of polyamines in poplar cells

    Treesearch

    Pratiksha Bhatnagar; Bernadette M. Glasheen; Suneet K. Bains; Stephanie L. Long; Rakesh Minocha; Christian Walter; Subhash C. Minocha

    2001-01-01

    The metabolism of polyamines (putrescine, spermidine, and spermine) has become the target of genetic manipulation because of their significance in plant development and possibly stress tolerance. We studied the polyamine metabolism in non-transgenic (NT) and transgenic cells of poplar (Populus nigra 3 maximowiczii) expressing a...

  17. A model for teaching and learning spinal thrust manipulation and its effect on participant confidence in technique performance

    PubMed Central

    Wise, Christopher H.; Schenk, Ronald J.; Lattanzi, Jill Black

    2016-01-01

    Background Despite emerging evidence to support the use of high velocity thrust manipulation in the management of lumbar spinal conditions, utilization of thrust manipulation among clinicians remains relatively low. One reason for the underutilization of these procedures may be related to disparity in training in the performance of these techniques at the professional and post professional levels. Purpose To assess the effect of using a new model of active learning on participant confidence in the performance of spinal thrust manipulation and the implications for its use in the professional and post-professional training of physical therapists. Methods A cohort of 15 DPT students in their final semester of entry-level professional training participated in an active training session emphasizing a sequential partial task practice (SPTP) strategy in which participants engaged in partial task practice over several repetitions with different partners. Participants’ level of confidence in the performance of these techniques was determined through comparison of pre- and post-training session surveys and a post-session open-ended interview. Results The increase in scores across all items of the individual pre- and post-session surveys suggests that this model was effective in changing overall participant perception regarding the effectiveness and safety of these techniques and in increasing student confidence in their performance. Interviews revealed that participants greatly preferred the SPTP strategy, which enhanced their confidence in technique performance. Conclusion Results indicate that this new model of psychomotor training may be effective at improving confidence in the performance of spinal thrust manipulation and, subsequently, may be useful for encouraging the future use of these techniques in the care of individuals with impairments of the spine. Inasmuch, this method of instruction may be useful for training of physical therapists at both the professional and post-professional levels. PMID:27559284

  18. Three-dimensional manipulation of single cells using surface acoustic waves.

    PubMed

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-02-09

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving "acoustic tweezers" in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner.

  19. Cell viability test after laser guidance

    NASA Astrophysics Data System (ADS)

    Rosenbalm, Tabitha N.; Owens, Sarah; Bakken, Daniel; Gao, Bruce Z.

    2006-02-01

    To precisely control the position of multiple types of cells in a coculture for the study of cell-cell interactions, we have developed a laser micropatterning technique. The technique employs the optical forces generated by a weakly focused laser beam. In the beam's focal region, the optical force draws microparticles, such as cells, into the center of the beam, propels them along the beam axis, and guides them onto a target surface. Specific patterns are created through computercontrolled micromanipulation of the substrate relative to the laser beam. Preliminary data have demonstrated cell viability after laser guidance. This project was designed to systematically vary the controllable laser parameters, namely, intensity and exposure time of the laser on single cells, and thus determine the laser parameters that allow negligible cell damage with functional cellular position control. To accomplish this goal, embryonic day 7 (E7) chick forebrain neurons were cultured in 35 mm petri dishes. Control and test cells were selected one hour after cell placement to allow cell attachment. Test cells were subjected to the laser at the focal region. The experimental parameters were chosen as: wavelength - 800 nm, intensities - 100 mW, 200 mW, and 300 mW, and exposure times - 10 s and 60 s. Results were analyzed based on neurite outgrowth and the Live/Dead assay (Viability/Cytoxicity kit from Molecular Probes). No statistical difference (p >> 0.1, student t-test) in viability or function was found between the control neurons and those exposed to the laser. This confirms that laser guidance seems to be a promising method for cellular manipulation.

  20. Characterization of the Tissue and Stromal Cell Components of Micro-Superficial Enhanced Fluid Fat Injection (Micro-SEFFI) for Facial Aging Treatment.

    PubMed

    Rossi, Martina; Roda, Barbara; Zia, Silvia; Vigliotta, Ilaria; Zannini, Chiara; Alviano, Francesco; Bonsi, Laura; Zattoni, Andrea; Reschiglian, Pierluigi; Gennai, Alessandro

    2018-06-14

    New microfat preparations provide material suitable for use as a regenerative filler for different facial areas. To support the development of new robust techniques for regenerative purposes, the cellular content of the sample should be considered. To evaluate the stromal vascular fraction (SVF) cell components of micro-superficial enhanced fluid fat injection (SEFFI) samples via a technique to harvest re-injectable tissue with minimum manipulation. The results were compared to those obtained from SEFFI samples. Microscopy analysis was performed to visualize the tissue structure. Micro-SEFFI samples were also fractionated using Celector ®, an innovative non-invasive separation technique, to provide an initial evaluation of sample fluidity and composition. SVFs obtained from SEFFI and micro-SEFFI were studied. Adipose stromal cells (ASCs) were isolated and characterized by proliferation and differentiation capacity assays. Microscopic and quality analyses of micro-SEFFI samples by Celector® confirmed the high fluidity and sample cellular composition in terms of red blood cell contamination, the presence of cell aggregates and extracellular matrix fragments. ASCs were isolated from adipose tissue harvested using SEFFI and micro-SEFFI systems. These cells were demonstrated to have a good proliferation rate and differentiation potential towards mesenchymal lineages. Despite the small sizes and low cellularity observed in micro-SEFFI-derived tissue, we were able to isolate stem cells. This result partially explains the regenerative potential of autologous micro-SEFFI tissue grafts. In addition, using this novel Celector® technology, tissues used for aging treatment were characterized analytically, and the adipose tissue composition was evaluated with no need for extra sample processing.

  1. In silico characterization of microbial electrosynthesis for metabolic engineering of biochemicals

    PubMed Central

    2011-01-01

    Background A critical concern in metabolic engineering is the need to balance the demand and supply of redox intermediates such as NADH. Bioelectrochemical techniques offer a novel and promising method to alleviate redox imbalances during the synthesis of biochemicals and biofuels. Broadly, these techniques reduce intracellular NAD+ to NADH and therefore manipulate the cell's redox balance. The cellular response to such redox changes and the additional reducing power available to the cell can be harnessed to produce desired metabolites. In the context of microbial fermentation, these bioelectrochemical techniques can be used to improve product yields and/or productivity. Results We have developed a method to characterize the role of bioelectrosynthesis in chemical production using the genome-scale metabolic model of E. coli. The results in this paper elucidate the role of bioelectrosynthesis and its impact on biomass growth, cellular ATP yields and biochemical production. The results also suggest that strain design strategies can change for fermentation processes that employ microbial electrosynthesis and suggest that dynamic operating strategies lead to maximizing productivity. Conclusions The results in this paper provide a systematic understanding of the benefits and limitations of bioelectrochemical techniques for biochemical production and highlight how electrical enhancement can impact cellular metabolism and biochemical production. PMID:21967745

  2. Manipulation of micro-objects using acoustically oscillating bubbles based on the gas permeability of PDMS.

    PubMed

    Liu, Bendong; Tian, Baohua; Yang, Xu; Li, Mohan; Yang, Jiahui; Li, Desheng; Oh, Kwang W

    2018-05-01

    This paper presents a novel manipulation method for micro-objects using acoustically oscillating bubbles with a controllable position based on the gas permeability of polydimethylsiloxane. The oscillating bubble trapped within the side channel attracts the neighboring micro-objects, and the position of the air-liquid interface is controlled by generating temporary pressure difference between the side channel and the air channel. To demonstrate the feasibility of the method in technological applications, polystyrene microparticles of 10  μ m in diameter were successfully captured, transported, and released. The influence of pressure difference on the movement speed of the air-liquid interface was demonstrated in our experiments, and the manipulation performance was also characterized by varying the frequency of the acoustic excitation and the pressure difference. Since the bubble generation and the air-liquid interface movement in our manipulation method do not need any electrochemical reaction and any high temperature, this on-chip manipulation method provides a controllable, efficient, and noninvasive tool for handling micro-objects such as particles, cells, and other entities. The whole manipulation process, including capturing, transporting, and releasing of particles, spent less than 1 min. It can be used to select the cells and particles in the microfluidic device or change the cell culture medium.

  3. An investigation into the kinematics of 2 cervical manipulation techniques.

    PubMed

    Williams, Jonathan M; Cuesta-Vargas, Antonio I

    2013-01-01

    The purpose of this study was to quantify the kinematics of the premanipulative position, the angular displacement, and velocity of thrust of 2 commonly used cervical spine manipulative procedures using inertial sensor technology. Thirteen asymptomatic subjects (7 females; mean age, 25.3 years; mean height, 170.9 cm; mean weight, 65.3 kg) received a right-handed and left-handed downslope and upslope manipulation, aimed at C4/5 while cervical kinematics were measured using an inertial sensor mounted on the forehead of the subject. One therapist used the upslope, and another therapist, the downslope, as was their preferred method. t tests were used to compare techniques and handiness. The results demonstrated differences in the kinematics between the 2 techniques. The downslope manipulation was associated with a mean premanipulative position of 24.8° side bending and 2.7° rotation, thrust displacement magnitude comprising of 4.5° side bending and 5.4° rotation with thrust velocity comprising, on average, of 57.5°/s side bending and 74.8°/s rotation. Upslope premanipulation was on average comprised of 30.1° side bending and 8.4° rotation, thrust displacement comprised of 4.5° side bending and 12.7° rotation with thrust velocity comprising of 75.9°/s side bending and 194.7°/s rotation. The results of this study demonstrate that there are different kinematic patterns for these 2 manipulative techniques. Copyright © 2013 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  4. Clinical use of adipose-derived stem cells: European legislative issues.

    PubMed

    Raposio, Edoardo; Ciliberti, RosaGemma

    2017-12-01

    With this study we analyse the current European legislation in order to provide guidance for regenerative medicine professionals on correct Adipose-derived Stem Cells (ASCs) isolation and use protocols for clinical applications. The European Medicines Agency (EMA) considers that ASCs does not fall within the definition of an advanced therapy medicinal product if the cells have not been subjected to a substantial manipulation, and the mode of action of the cells (contribute to and enhance tissue renewal and turnover of the subcutaneous tissue) is considered to be homologous to the donor fat tissue. Collagenase digestion, as well as cell culturing, is considered to be a substantial manipulation. Only transplantation of a non-manipulated tissue to another location in the same anatomical or histological environment is considered to be homologous. According to these considerations, ASCs should be not-cultured, isolated mechanically and used only in the subcutaneous tissue.

  5. Clonogenic assay: adherent cells.

    PubMed

    Rafehi, Haloom; Orlowski, Christian; Georgiadis, George T; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C

    2011-03-13

    The clonogenic (or colony forming) assay has been established for more than 50 years; the original paper describing the technique was published in 1956. Apart from documenting the method, the initial landmark study generated the first radiation-dose response curve for X-ray irradiated mammalian (HeLa) cells in culture. Basically, the clonogenic assay enables an assessment of the differences in reproductive viability (capacity of cells to produce progeny; i.e. a single cell to form a colony of 50 or more cells) between control untreated cells and cells that have undergone various treatments such as exposure to ionising radiation, various chemical compounds (e.g. cytotoxic agents) or in other cases genetic manipulation. The assay has become the most widely accepted technique in radiation biology and has been widely used for evaluating the radiation sensitivity of different cell lines. Further, the clonogenic assay is commonly used for monitoring the efficacy of radiation modifying compounds and for determining the effects of cytotoxic agents and other anti-cancer therapeutics on colony forming ability, in different cell lines. A typical clonogenic survival experiment using adherent cells lines involves three distinct components, 1) treatment of the cell monolayer in tissue culture flasks, 2) preparation of single cell suspensions and plating an appropriate number of cells in petri dishes and 3) fixing and staining colonies following a relevant incubation period, which could range from 1-3 weeks, depending on the cell line. Here we demonstrate the general procedure for performing the clonogenic assay with adherent cell lines with the use of an immortalized human keratinocyte cell line (FEP-1811). Also, our aims are to describe common features of clonogenic assays including calculation of the plating efficiency and survival fractions after exposure of cells to radiation, and to exemplify modification of radiation-response with the use of a natural antioxidant formulation.

  6. Genetic modification of stem cells for improved therapy of the infarcted myocardium.

    PubMed

    Haider, Husnain Kh; Mustafa, Anique; Feng, Yuliang; Ashraf, Muhammad

    2011-10-03

    The conventional treatment modalities for ischemic heart disease only provide symptomatic relief to the patient without repairing and regenerating the damaged myocardium. Stem cell transplantation has emerged as a promising alternative therapeutic approach for cardiovascular diseases. Stem cells possess the potential of differentiation to adopt morphofunctional cardiac and vasculogenic phenotypes to repopulate the scar tissue and restore regional blood flow in the ischemic myocardium. These beneficial therapeutic effects make stem cell transplantation the method of choice for the treatment of ischemic heart disease. The efficacy of stem cell transplantation may be augmented by genetic manipulation of the cells prior to transplantation. Not only will insertion of therapeutic transgene(s) into the stem cells support the survival and differentiation of cells in the unfavorable microenvironment of the ischemic myocardium, but also the genetically manipulated stem cells will serve as a source of the transgene expression product in the heart for therapeutic benefits. We provide an overview of the extensively studied stem cell types for cardiac regeneration, the various methods in which these cells have been genetically manipulated and rationale of genetic modification of stem cells for use in regenerative cardiovascular therapeutics.

  7. Dual stimuli-responsive smart beads that allow "on-off" manipulation of cancer cells.

    PubMed

    Kim, Young-Jin; Kim, Soo Hyeon; Fujii, Teruo; Matsunaga, Yukiko T

    2016-06-24

    Temperature- and electric field-responsive polymer-conjugated polystyrene beads, termed smart beads, are designed to isolate cancer cells. In smart beads, the reversible "on-off" antigen-antibody reaction and dielectrophoresis force on an electrode are accomplished to realize "on-off" remote manipulation of smart beads and cancer cells. Both the zeta-potential and the hydrodynamic diameter of the smart beads are sensitive to temperature, allowing "on-off" reversible capture and release of cancer cells. Cancer cell-captured smart beads are then localized on electrodes by applying an electrical signal.

  8. Actin Cytoskeleton Manipulation by Effector Proteins Secreted by Diarrheagenic Escherichia coli Pathotypes

    PubMed Central

    Navarro-Garcia, Fernando; Serapio-Palacios, Antonio; Ugalde-Silva, Paul; Tapia-Pastrana, Gabriela; Chavez-Dueñas, Lucia

    2013-01-01

    The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology. PMID:23509714

  9. Study on Manipulations of Fluids in Micro-scale and Their Applications in Physical, Bio/chemistry

    NASA Astrophysics Data System (ADS)

    Zhou, Bingpu

    Microfluidics is a highly interdisciplinary research field which manipulates, controls and analyzes fluids in micro-scale for physical and bio/chemical applications. In this thesis, several aspects of fluid manipulations in micro-scale were studied, discussed and employed for demonstrations of practical utilizations. To begin with, mixing in continuous flow microfluidic was raised and investigated. A simple method for mixing actuation based on magnetism was proposed and realized via integration of magnetically functionalized micropillar arrays inside the microfluidic channel.With such technique, microfluidic mixing could be swiftly switched on and off via simple application or retraction of the magnetic field. Thereafter, in Chapter 3 we mainly focused on how to establish stable while tunable concentration gradients inside microfluidic network using a simple design. The proposed scheme could also be modified with on-chip pneumatic actuated valve to realize pulsatile/temporal concentration gradients simultaneously in ten microfluidic branches. We further applied such methodology to obtain roughness gradients onPolydimethylsiloxane (PDMS) surface via combinations of the microfluidic network andphoto-polymerizations. The obtained materials were utilized in parallel cell culture to figure out the relationship between substrate morphologies and the cell behaviors. In the second part of this work, we emphasized on manipulations on microdroplets insidethe microfluidic channel and explored related applications in bio/chemical aspects. Firstly, microdroplet-based microfluidic universal logic gates were successfully demonstrated vialiquid-electronic hybrid divider. For application based on such novel scheme of control lable droplet generation, on-demand chemical reaction within paired microdroplets was presented using IF logic gate. Followed by this, another important operation of microdroplet - splitting -was investigated. Addition lateral continuous flow was applied at the bifurcation as a mediumto controllably divide microdroplets with highly tunable splitting ratios. Related physical mechanism was proposed and such approach was adopted further for rapid synthesis of multi-scale microspheres.

  10. An integrated centrifugo-opto-microfluidic platform for arraying, analysis, identification and manipulation of individual cells.

    PubMed

    Burger, R; Kurzbuch, D; Gorkin, R; Kijanka, G; Glynn, M; McDonagh, C; Ducrée, J

    2015-01-21

    In this work we present a centrifugal microfluidic system enabling highly efficient collective trapping and alignment of particles such as microbeads and cells, their multi-colour fluorescent detection and subsequent manipulation by optical tweezers. We demonstrate array-based capture and imaging followed by "cherry-picking" of individual particles, first for fluorescently labelled polystyrene (PS) beads and then for cells. Different cell lines are discriminated based on intracellular as well as surface-based markers.

  11. Marshall Barber and the century of microinjection: from cloning of bacteria to cloning of everything.

    PubMed

    Korzh, Vladimir; Strähle, Uwe

    2002-08-01

    A hundred years ago, Dr. Marshall A. Barber proposed a new technique - the microinjection technique. He developed this method initially to clone bacteria and to confirm the germ theory of Koch and Pasteur. Later on, he refined his approach and was able to manipulate nuclei in protozoa and to implant bacteria into plant cells. Continuous improvement and adaptation of this method to new applications dramatically changed experimental embryology and cytology and led to the formation of several new scientific disciplines including animal cloning as one of its latest applications. Interestingly, microinjection originated as a method at the crossroad of bacteriology and plant biology, demonstrating once again the unforeseen impact that basic research in an unrelated field can have on the development of entirely different disciplines.

  12. Development of Moire machine vision

    NASA Technical Reports Server (NTRS)

    Harding, Kevin G.

    1987-01-01

    Three dimensional perception is essential to the development of versatile robotics systems in order to handle complex manufacturing tasks in future factories and in providing high accuracy measurements needed in flexible manufacturing and quality control. A program is described which will develop the potential of Moire techniques to provide this capability in vision systems and automated measurements, and demonstrate artificial intelligence (AI) techniques to take advantage of the strengths of Moire sensing. Moire techniques provide a means of optically manipulating the complex visual data in a three dimensional scene into a form which can be easily and quickly analyzed by computers. This type of optical data manipulation provides high productivity through integrated automation, producing a high quality product while reducing computer and mechanical manipulation requirements and thereby the cost and time of production. This nondestructive evaluation is developed to be able to make full field range measurement and three dimensional scene analysis.

  13. Development of Moire machine vision

    NASA Astrophysics Data System (ADS)

    Harding, Kevin G.

    1987-10-01

    Three dimensional perception is essential to the development of versatile robotics systems in order to handle complex manufacturing tasks in future factories and in providing high accuracy measurements needed in flexible manufacturing and quality control. A program is described which will develop the potential of Moire techniques to provide this capability in vision systems and automated measurements, and demonstrate artificial intelligence (AI) techniques to take advantage of the strengths of Moire sensing. Moire techniques provide a means of optically manipulating the complex visual data in a three dimensional scene into a form which can be easily and quickly analyzed by computers. This type of optical data manipulation provides high productivity through integrated automation, producing a high quality product while reducing computer and mechanical manipulation requirements and thereby the cost and time of production. This nondestructive evaluation is developed to be able to make full field range measurement and three dimensional scene analysis.

  14. Stem cell education for medical students at Tongji University: Primary cell culture and directional differentiation of rat bone marrow mesenchymal stem cells.

    PubMed

    Jin, Caixia; Tian, Haibin; Li, Jiao; Jia, Song; Li, Siguang; Xu, Guo-Tong; Xu, Lei; Lu, Lixia

    2018-03-01

    Stem cells are cells that can self-renew and differentiate into a variety of cell types under certain conditions. Stem cells have great potential in regenerative medicine and cell therapy for the treatment of certain diseases. To deliver knowledge about this frontier in science and technology to medical undergraduate students, we designed an innovative practical experiment for freshmen in their second semester. The lab exercise focused on rat bone marrow mesenchymal stem cell (BMSC) isolation, cell culture and differentiation, and it aimed to help students master the aseptic techniques for cell culture, the basic methods and procedures for the primary culture and passage of BMSCs, the basic procedure for the directional differentiation of BMSCs into adipocytes and their subsequent identification by oil-red-O staining. This lab exercise is a very meaningful and useful introduction to stem cell collection and manipulation and inspires medical students to deepen their understanding of translational medicine and regenerative medicine. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(2):151-154, 2018. © 2017 The International Union of Biochemistry and Molecular Biology.

  15. Bioluminescent magnetic nanoparticles as potential imaging agents for mammalian spermatozoa.

    PubMed

    Vasquez, Erick S; Feugang, Jean M; Willard, Scott T; Ryan, Peter L; Walters, Keisha B

    2016-03-17

    Nanoparticles have emerged as key materials for developing applications in nanomedicine, nanobiotechnology, bioimaging and theranostics. Existing bioimaging technologies include bioluminescent resonance energy transfer-conjugated quantum dots (BRET-QDs). Despite the current use of BRET-QDs for bioimaging, there are strong concerns about QD nanocomposites containing cadmium which exhibits potential cellular toxicity. In this study, bioluminescent composites comprised of magnetic nanoparticles and firefly luciferase (Photinus pyralis) are examined as potential light-emitting agents for imaging, detection, and tracking mammalian spermatozoa. Characterization was carried out using infrared spectroscopy, TEM and cryo-TEM imaging, and ζ-potential measurements to demonstrate the successful preparation of these nanocomposites. Binding interactions between the synthesized nanoparticles and spermatozoon were characterized using confocal and atomic/magnetic force microscopy. Bioluminescence imaging and UV-visible-NIR microscopy results showed light emission from sperm samples incubated with the firefly luciferase-modified nanoparticles. Therefore, these newly synthesized luciferase-modified magnetic nanoparticles show promise as substitutes for QD labeling, and can potentially also be used for in vivo manipulation and tracking, as well as MRI techniques. These preliminary data indicate that luciferase-magnetic nanoparticle composites can potentially be used for spermatozoa detection and imaging. Their magnetic properties add additional functionality to allow for manipulation, sorting, or tracking of cells using magnetic techniques.

  16. Remote and reversible inhibition of neurons and circuits by small molecule induced potassium channel stabilization

    PubMed Central

    Auffenberg, Eva; Jurik, Angela; Mattusch, Corinna; Stoffel, Rainer; Genewsky, Andreas; Namendorf, Christian; Schmid, Roland M.; Rammes, Gerhard; Biel, Martin; Uhr, Manfred; Moosmang, Sven; Michalakis, Stylianos; Wotjak, Carsten T.; Thoeringer, Christoph K.

    2016-01-01

    Manipulating the function of neurons and circuits that translate electrical and chemical signals into behavior represents a major challenges in neuroscience. In addition to optogenetic methods using light-activatable channels, pharmacogenetic methods with ligand induced modulation of cell signaling and excitability have been developed. However, they are largely based on ectopic expression of exogenous or chimera proteins. Now, we describe the remote and reversible expression of a Kir2.1 type potassium channel using the chemogenetic technique of small molecule induced protein stabilization. Based on shield1-mediated shedding of a destabilizing domain fused to a protein of interest and inhibition of protein degradation, this principle has been adopted for biomedicine, but not in neuroscience so far. Here, we apply this chemogenetic approach in brain research for the first time in order to control a potassium channel in a remote and reversible manner. We could show that shield1-mediated ectopic Kir2.1 stabilization induces neuronal silencing in vitro and in vivo in the mouse brain. We also validated this novel pharmacogenetic method in different neurobehavioral paradigms.The DD-Kir2.1 may complement the existing portfolio of pharmaco- and optogenetic techniques for specific neuron manipulation, but it may also provide an example for future applications of this principle in neuroscience research. PMID:26757616

  17. Applying Behavior-Based Robotics Concepts to Telerobotic Use of Power Tooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noakes, Mark W; Hamel, Dr. William R.

    While it has long been recognized that telerobotics has potential advantages to reduce operator fatigue, to permit lower skilled operators to function as if they had higher skill levels, and to protect tools and manipulators from excessive forces during operation, relatively little laboratory research in telerobotics has actually been implemented in fielded systems. Much of this has to do with the complexity of the implementation and its lack of ability to operate in complex unstructured remote systems environments. One possible solution is to approach the tooling task using an adaptation of behavior-based techniques to facilitate task decomposition to a simplermore » perspective and to provide sensor registration to the task target object in the field. An approach derived from behavior-based concepts has been implemented to provide automated tool operation for a teleoperated manipulator system. The generic approach is adaptable to a wide range of typical remote tools used in hot-cell and decontamination and dismantlement-type operations. Two tasks are used in this work to test the validity of the concept. First, a reciprocating saw is used to cut a pipe. The second task is bolt removal from mockup process equipment. This paper explains the technique, its implementation, and covers experimental data, analysis of results, and suggestions for implementation on fielded systems.« less

  18. Femtosecond optical injection of intact plant cells using a reconfigurable platform

    NASA Astrophysics Data System (ADS)

    Mitchell, Claire A.; Kalies, Stefan; Cizmar, Tomas; Bellini, Nicola; Kubasik-Thayil, Anisha; Heisterkamp, Alexander; Torrance, Lesley; Roberts, Alison G.; Gunn-Moore, Frank J.; Dholakia, Kishan

    2014-03-01

    The use of ultrashort-pulsed lasers for molecule delivery and transfection has proved to be a non-invasive and highly efficient technique for a wide range of mammalian cells. This present study investigates the effectiveness of femtosecond photoporation in plant cells, a hard-to-manipulate yet agriculturally relevant cell type, specifically suspension tobacco BY-2 cells. Both spatial and temporal shaping of the light field is employed to optimise the delivery of membrane impermeable molecules into plant cells using a reconfigurable optical system designed to be able to switch easily between different spatial modes and pulse durations. The use of a propagation invariant Bessel beam was found to increase the number of cells that could be viably optoinjected, when compared to the use of a Gaussian beam. Photoporation with a laser producing sub-12 fs pulses, coupled with a dispersion compensation system to retain the pulse duration at focus, reduced the power required for efficient optical injection by 1.5-1.8 times when compared to a photoporation with a 140 fs laser output.

  19. Variation is function: Are single cell differences functionally important?: Testing the hypothesis that single cell variation is required for aggregate function.

    PubMed

    Dueck, Hannah; Eberwine, James; Kim, Junhyong

    2016-02-01

    There is a growing appreciation of the extent of transcriptome variation across individual cells of the same cell type. While expression variation may be a byproduct of, for example, dynamic or homeostatic processes, here we consider whether single-cell molecular variation per se might be crucial for population-level function. Under this hypothesis, molecular variation indicates a diversity of hidden functional capacities within an ensemble of identical cells, and this functional diversity facilitates collective behavior that would be inaccessible to a homogenous population. In reviewing this topic, we explore possible functions that might be carried by a heterogeneous ensemble of cells; however, this question has proven difficult to test, both because methods to manipulate molecular variation are limited and because it is complicated to define, and measure, population-level function. We consider several possible methods to further pursue the hypothesis that variation is function through the use of comparative analysis and novel experimental techniques. © 2015 The Authors. BioEssays published by WILEY Periodicals, Inc.

  20. From iPSC towards cardiac tissue-a road under construction.

    PubMed

    Peischard, Stefan; Piccini, Ilaria; Strutz-Seebohm, Nathalie; Greber, Boris; Seebohm, Guiscard

    2017-10-01

    The possibility to generate induced pluripotent stem cells (iPSC) opens the way to generate virtually all cell types of our human body. In combination with modern gene editing techniques like CRISPR/CAS, a new set of powerful tools becomes available for life science. Scientific fields like genotype and cell type-specific pharmacology, disease modeling, stem cell biology, and developmental biology have been dramatically fostered and their faces have been changed. However, as golden as the age of iPSC-derived cells and their manipulation has started, the shine begins to tarnish. Researchers face more and more practical problems intrinsic to the system. These problems are related to the specific culturing conditions which are not yet sufficient to mimic the natural environment of native stem cells differentiating towards adult cells. However, researchers work hard to uncover these factors. Here, we review a common standard approach to generate iPSCs and transduce these to iPSC cardiomyocytes. Further, we review recent achievements and discuss their current limitations and future perspectives. We are on track, but the road is still under construction.

  1. Fully Integrated Microfluidic Device for Direct Sample-to-Answer Genetic Analysis

    NASA Astrophysics Data System (ADS)

    Liu, Robin H.; Grodzinski, Piotr

    Integration of microfluidics technology with DNA microarrays enables building complete sample-to-answer systems that are useful in many applications such as clinic diagnostics. In this chapter, a fully integrated microfluidic device [1] that consists of microfluidic mixers, valves, pumps, channels, chambers, heaters, and a DNA microarray sensor to perform DNA analysis of complex biological sample solutions is present. This device can perform on-chip sample preparation (including magnetic bead-based cell capture, cell preconcentration and purification, and cell lysis) of complex biological sample solutions (such as whole blood), polymerase chain reaction, DNA hybridization, and electrochemical detection. A few novel microfluidic techniques were developed and employed. A micromix-ing technique based on a cavitation microstreaming principle was implemented to enhance target cell capture from whole blood samples using immunomagnetic beads. This technique was also employed to accelerate DNA hybridization reaction. Thermally actuated paraffin-based microvalves were developed to regulate flows. Electrochemical pumps and thermopneumatic pumps were integrated on the chip to provide pumping of liquid solutions. The device is completely self-contained: no external pressure sources, fluid storage, mechanical pumps, or valves are necessary for fluid manipulation, thus eliminating possible sample contamination and simplifying device operation. Pathogenic bacteria detection from ~mL whole blood samples and single-nucleotide polymorphism analysis directly from diluted blood were demonstrated. The device provides a cost-effective solution to direct sample-to-answer genetic analysis, and thus has a potential impact in the fields of point-of-care genetic analysis, environmental testing, and biological warfare agent detection.

  2. High degree-of-freedom dynamic manipulation

    NASA Astrophysics Data System (ADS)

    Murphy, Michael P.; Stephens, Benjamin; Abe, Yeuhi; Rizzi, Alfred A.

    2012-06-01

    The creation of high degree of freedom dynamic mobile manipulation techniques and behaviors will allow robots to accomplish difficult tasks in the field. We are investigating the use of the body and legs of legged robots to improve the strength, velocity, and workspace of an integrated manipulator to accomplish dynamic manipulation. This is an especially challenging task, as all of the degrees of freedom are active at all times, the dynamic forces generated are high, and the legged system must maintain robust balance throughout the duration of the tasks. To accomplish this goal, we are utilizing trajectory optimization techniques to generate feasible open-loop behaviors for our 28 dof quadruped robot (BigDog) by planning the trajectories in a 13 dimensional space. Covariance Matrix Adaptation techniques are utilized to optimize for several criteria such as payload capability and task completion speed while also obeying constraints such as torque and velocity limits, kinematic limits, and center of pressure location. These open-loop behaviors are then used to generate feed-forward terms, which are subsequently used online to improve tracking and maintain low controller gains. Some initial results on one of our existing balancing quadruped robots with an additional human-arm-like manipulator are demonstrated on robot hardware, including dynamic lifting and throwing of heavy objects 16.5kg cinder blocks, using motions that resemble a human athlete more than typical robotic motions. Increased payload capacity is accomplished through coordinated body motion.

  3. Tissue-specific insulin signaling mediates female sexual attractiveness

    PubMed Central

    Arbuthnott, Devin; Rundle, Howard D.; Promislow, Daniel E. L.; Pletcher, Scott D.

    2017-01-01

    Individuals choose their mates so as to maximize reproductive success, and one important component of this choice is assessment of traits reflecting mate quality. Little is known about why specific traits are used for mate quality assessment nor about how they reflect it. We have previously shown that global manipulation of insulin signaling, a nutrient-sensing pathway governing investment in survival versus reproduction, affects female sexual attractiveness in the fruit fly, Drosophila melanogaster. Here we demonstrate that these effects on attractiveness derive from insulin signaling in the fat body and ovarian follicle cells, whose signals are integrated by pheromone-producing cells called oenocytes. Functional ovaries were required for global insulin signaling effects on attractiveness, and manipulations of insulin signaling specifically in late follicle cells recapitulated effects of global manipulations. Interestingly, modulation of insulin signaling in the fat body produced opposite effects on attractiveness, suggesting a competitive relationship with the ovary. Furthermore, all investigated tissue-specific insulin signaling manipulations that changed attractiveness also changed fecundity in the corresponding direction, pointing to insulin pathway activity as a reliable link between fecundity and attractiveness cues. The cues themselves, cuticular hydrocarbons, responded distinctly to fat body and follicle cell manipulations, indicating independent readouts of the pathway activity from these two tissues. Thus, here we describe a system in which female attractiveness results from an apparent connection between attractiveness cues and an organismal state of high fecundity, both of which are created by lowered insulin signaling in the fat body and increased insulin signaling in late follicle cells. PMID:28817572

  4. Tissue-specific insulin signaling mediates female sexual attractiveness.

    PubMed

    Fedina, Tatyana Y; Arbuthnott, Devin; Rundle, Howard D; Promislow, Daniel E L; Pletcher, Scott D

    2017-08-01

    Individuals choose their mates so as to maximize reproductive success, and one important component of this choice is assessment of traits reflecting mate quality. Little is known about why specific traits are used for mate quality assessment nor about how they reflect it. We have previously shown that global manipulation of insulin signaling, a nutrient-sensing pathway governing investment in survival versus reproduction, affects female sexual attractiveness in the fruit fly, Drosophila melanogaster. Here we demonstrate that these effects on attractiveness derive from insulin signaling in the fat body and ovarian follicle cells, whose signals are integrated by pheromone-producing cells called oenocytes. Functional ovaries were required for global insulin signaling effects on attractiveness, and manipulations of insulin signaling specifically in late follicle cells recapitulated effects of global manipulations. Interestingly, modulation of insulin signaling in the fat body produced opposite effects on attractiveness, suggesting a competitive relationship with the ovary. Furthermore, all investigated tissue-specific insulin signaling manipulations that changed attractiveness also changed fecundity in the corresponding direction, pointing to insulin pathway activity as a reliable link between fecundity and attractiveness cues. The cues themselves, cuticular hydrocarbons, responded distinctly to fat body and follicle cell manipulations, indicating independent readouts of the pathway activity from these two tissues. Thus, here we describe a system in which female attractiveness results from an apparent connection between attractiveness cues and an organismal state of high fecundity, both of which are created by lowered insulin signaling in the fat body and increased insulin signaling in late follicle cells.

  5. Living cell manipulation, manageable sampling, and shotgun picoliter electrospray mass spectrometry for profiling metabolites.

    PubMed

    Gholipour, Yousef; Erra-Balsells, Rosa; Hiraoka, Kenzo; Nonami, Hiroshi

    2013-02-01

    A modified cell pressure probe and an online Orbitrap mass spectrometer were used to sample in situ plant single cells without any additional manipulation. The cell pressure probe, a quartz capillary tip filled with an oil mixture, was penetrated to various depths into parenchyma cells of tulip bulb scale, followed by a hydraulic continuity test to determine the exact location of the tip inside target cells. The operation was conducted under a digital microscope, and the capillary tip was photographed to calculate the volume of the cell sap sucked. The cell sap sample was then directly nebulized/ionized under high-voltage conditions at the entrance of the mass spectrometer. Several sugars, amino acids, organic acids, vitamins, fatty acids, and secondary metabolites were detected. Because picoliter solutions can be accurately handled and measured, known volumes of standard solutions can be added to cell sap samples inside the capillary tip to be used as references for metabolite characterization and relative quantitation. The high precision and sensitivity of the cell pressure probe and Orbitrap mass spectrometer allow for the manipulation and analysis of both femtoliter cell sap samples and standard solutions. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Single-cell manipulation and DNA delivery technology using atomic force microscopy and nanoneedle.

    PubMed

    Han, Sung-Woong; Nakamura, Chikashi; Miyake, Jun; Chang, Sang-Mok; Adachi, Taiji

    2014-01-01

    The recent single-cell manipulation technology using atomic force microscopy (AFM) not only allows high-resolution visualization and probing of biomolecules and cells but also provides spatial and temporal access to the interior of living cells via the nanoneedle technology. Here we review the development and application of single-cell manipulations and the DNA delivery technology using a nanoneedle. We briefly describe various DNA delivery methods and discuss their advantages and disadvantages. Fabrication of the nanoneedle, visualization of nanoneedle insertion into living cells, DNA modification on the nanoneedle surface, and the invasiveness of nanoneedle insertion into living cells are described. Different methods of DNA delivery into a living cell, such as lipofection, microinjection, and nanoneedles, are then compared. Finally, single-cell diagnostics using the nanoneedle and the perspectives of the nanoneedle technology are outlined. The nanoneedle-based DNA delivery technology provides new opportunities for efficient and specific introduction of DNA and other biomolecules into precious living cells with a high spatial resolution within a desired time frame. This technology has the potential to be applied for many basic cellular studies and for clinical studies such as single-cell diagnostics.

  7. 77 FR 51818 - Agency Information Collection Activities; Application and Approval To Manipulate, Examine, Sample...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-27

    ... automated, electronic, mechanical, or other technological techniques or other forms of information. Title... year for continuous or repetitive manipulation. CBP Form 3499 is provided for by 19 CFR 19.8 and is...

  8. Single cell adhesion force measurement for cell viability identification using an AFM cantilever-based micro putter

    NASA Astrophysics Data System (ADS)

    Shen, Yajing; Nakajima, Masahiro; Kojima, Seiji; Homma, Michio; Kojima, Masaru; Fukuda, Toshio

    2011-11-01

    Fast and sensitive cell viability identification is a key point for single cell analysis. To address this issue, this paper reports a novel single cell viability identification method based on the measurement of single cell shear adhesion force using an atomic force microscopy (AFM) cantilever-based micro putter. Viable and nonviable yeast cells are prepared and put onto three kinds of substrate surfaces, i.e. tungsten probe, gold and ITO substrate surfaces. A micro putter is fabricated from the AFM cantilever by focused ion beam etching technique. The spring constant of the micro putter is calibrated using the nanomanipulation approach. The shear adhesion force between the single viable or nonviable cell and each substrate is measured using the micro putter based on the nanorobotic manipulation system inside an environmental scanning electron microscope. The adhesion force is calculated based on the deflection of the micro putter beam. The results show that the adhesion force of the viable cell to the substrate is much larger than that of the nonviable cell. This identification method is label free, fast, sensitive and can give quantitative results at the single cell level.

  9. Heterotrophic cultivation of microalgae for production of biodiesel.

    PubMed

    Mohamed, Mohd Shamzi; Wei, Lai Zee; Ariff, Arbakariya B

    2011-08-01

    High cell density cultivation of microalgae via heterotrophic growth mechanism could effectively address the issues of low productivity and operational constraints presently affecting the solar driven biodiesel production. This paper reviews the progress made so far in the development of commercial-scale heterotrophic microalgae cultivation processes. The review also discusses on patentable concepts and innovations disclosed in the past four years with regards to new approaches to microalgal cultivation technique, improvisation on the process flow designs to economically produced biodiesel and genetic manipulation to confer desirable traits leading to much valued high lipid-bearing microalgae strains.

  10. Small RNA-induced INTS6 gene up-regulation suppresses castration-resistant prostate cancer cells by regulating β-catenin signaling.

    PubMed

    Chen, Hong; Shen, Hai-Xiang; Lin, Yi-Wei; Mao, Ye-Qing; Liu, Ben; Xie, Li-Ping

    2018-06-12

    Small RNAs play an important role in gene regulatory networks. The gene suppressive effect of small RNAs was previously the dominant focus of studies, but during the recent decade, small RNA-induced gene activation has been reported and has become a notable gene manipulation technique. In this study, a putative tumor suppressor, INTS6, was activated by introducing a promoter-targeted small RNA (dsRNA-915) into castration-resistant prostate cancer (CRPC) cells. Unique dynamics associated with the gene upregulation phenomenon was observed. Following gene activation, cell proliferation and motility were suppressed in vitro. Downregulation of Wnt/β-catenin signaling was observed during the activation period, and the impairment of β-catenin degradation reversed the tumor suppressor effects of INTS6. These results suggest the potential application of small activating RNAs in targeted gene therapy for CRPC.

  11. Cell labeling with magnetic nanoparticles: Opportunity for magnetic cell imaging and cell manipulation

    PubMed Central

    2013-01-01

    This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo. PMID:24564857

  12. Micropatterned photoalignment for wavefront controlled switchable optical devices

    NASA Astrophysics Data System (ADS)

    Glazar, Nikolaus

    Photoalignment is a well-established technique for surface alignment of the liquid crystal director. Previously, chrome masks were necessary for patterned photoalignment but were difficult to use, costly, and inflexible. To extend the capabilities of photoalignment we built an automated maskless multi-domain photoalignment device based on a DMD (digital multimirror device) projection system. The device is capable of creating arbitrary photoalignment patterns with micron-sized features. Pancharatnam-Berry phase (PB-phase) is a geometric phase that arises from cyclic change of polarization state. By varying the azimuthal anchoring angle in a hybrid-aligned liquid crystal cell we can control the spatial variation of the PB-phase shift. Using our automated photoalignment device to align the liquid crystal arbitrary wave front manipulations are possible. The PB-phase shift effect is maximized when the cell is tuned to have a half-wave retardation and disappears at full-wave retardation, so the cell can be switched on and off by applying a voltage. Two wavefront controlled devices developed using this technique will be discussed: A switchable liquid crystal phase shift mask for creating sub-diffraction sized photolithographic features, and a transparent diffractive display that utilizes a switchable liquid crystal diffraction grating.

  13. Rational Manipulation of the Standard Laparoscopic Instruments for Single-Incision Laparoscopic Right Colectomy

    PubMed Central

    Watanabe, Makoto; Murakami, Masahiko; Kato, Takashi; Onaka, Toru; Aoki, Takeshi

    2013-01-01

    This report clarifies the rational manipulation of standard laparoscopic instruments for single-incision laparoscopic right colectomy (SILRC) using the SILS Port. We classified the manipulations required into 4 techniques. Vertical manipulation was required for medial-to-lateral retroperitoneal dissection. Frontal manipulation was needed for extension and establishment of a retroperitoneal plane. External crossing manipulation was used for dissection or ligation of the ileocolic or right colic vessels. Internal crossing manipulation was required for mobilization from the cecum to ascending colon. We performed SILRC for a series of 30 consecutive patients. One additional port was needed in 5 of the patients (16.7%) because of severe adhesion between the ileum and abdominal wall. No intraoperative complications were encountered. Four rational manipulations of the standard laparoscopic instruments are required for SILRC using the SILS Port. However, more experience and comparative trials are needed to determine the exact role of SILRC. PMID:23971771

  14. The effects of spatially displaced visual feedback on remote manipulator performance

    NASA Technical Reports Server (NTRS)

    Smith, Randy L.; Stuart, Mark A.

    1993-01-01

    The results of this evaluation have important implications for the arrangement of remote manipulation worksites and the design of workstations for telerobot operations. This study clearly illustrates the deleterious effects that can accompany the performance of remote manipulator tasks when viewing conditions are less than optimal. Future evaluations should emphasize telerobot camera locations and the use of image/graphical enhancement techniques in an attempt to lessen the adverse effects of displaced visual feedback. An important finding in this evaluation is the extent to which results from previously performed direct manipulation studies can be generalized to remote manipulation studies. Even though the results obtained were very similar to those of the direct manipulation evaluations, there were differences as well. This evaluation has demonstrated that generalizations to remote manipulation applications based upon the results of direct manipulation studies are quite useful, but they should be made cautiously.

  15. Methods for the preparation of an autologous serum-free cultured epidermis and for autografting applications.

    PubMed

    Wille, John J; Burdge, Jeremy J; Park, Jong Y

    2014-01-01

    Cell culture techniques for producing a three-dimensional autologous epidermal autograft (cultured epidermal autograft) suitable for tissue grafting and wound healing procedures are described. This chapter commences with surgical biopsy of patient's skin tissue, further reduction of skin tissues to keratinocyte cells by enzymatic treatment, and recovery of viable adult keratinocytes in a new balanced buffered salt media supportive of the growth of clonally enriched isolated basal keratinocytes. Culture techniques required for the formation of a hole-free monolayer of undifferentiated basal keratinocytes without the use of an organotypic matrix substrate are accomplished with a specially designed nutrient basal media (HECK 109) that is a chemically defined and subsequent culture in this serum-free culture media supplemented with hormones and two human recombinant protein growth factors (EGF and IGF-1). Further culture techniques and media manipulations, including brief exposure to β-TGF to induce reversible G1-phase growth arrest, are followed by para-synchronous induction of a multilayered stratification and keratinizing epidermal differentiation, yielding a living three-dimensional epidermis formed entirely in cell culture. Protocols are listed for its enzymatic removal, floatation, and transfer for shipment to the clinic ready for surgical grafting to the self-same patient's debrided chronic leg ulcers. Recent clinical trial results have demonstrated the utility and efficacy of these grafts in forming durably healed chronic wounds.

  16. Place-pitch manipulations with cochlear implants

    PubMed Central

    Macherey, Olivier; Carlyon, Robert P.

    2012-01-01

    Pitch can be conveyed to cochlear implant (CI) listeners via both place of excitation and temporal cues. The transmission of place cues may be hampered by several factors including limitations on the insertion depth and number of implanted electrodes, and the broad current spread produced by monopolar stimulation. The following series of experiments investigate several methods to partially overcome these limitations. Experiment 1 compares two recently published techniques that aim to activate more apical fibers than produced by monopolar or bipolar stimulation of the most apical contacts. The first technique (phantom stimulation) manipulates the current spread by simultaneously stimulating two electrodes with opposite-polarity pulses of different amplitudes. The second technique manipulates the neural spread of excitation by using asymmetric pulses and exploiting the polarity-sensitive properties of auditory nerve fibers. The two techniques yielded similar results and were shown to produce lower place pitch percepts than stimulation of monopolar and bipolar symmetric pulses. Furthermore, combining these two techniques may be advantageous in a clinical setting. Experiment 2 proposes a novel method to create place pitches intermediate to those produced by physical electrodes by using charge-balanced asymmetric pulses in bipolar mode with different degrees of asymmetry. PMID:22423718

  17. 3D-Printed Biomimetic Super-Hydrophobic Structure for Microdroplet Manipulation and Oil/Water Separation.

    PubMed

    Yang, Yang; Li, Xiangjia; Zheng, Xuan; Chen, Zeyu; Zhou, Qifa; Chen, Yong

    2018-03-01

    Biomimetic functional surfaces are attracting increasing attention for various technological applications, especially the superhydrophobic surfaces inspired by plant leaves. However, the replication of the complex hierarchical microstructures is limited by the traditional fabrication techniques. In this paper, superhydrophobic micro-scale artificial hairs with eggbeater heads inspired by Salvinia molesta leaf was fabricated by the Immersed surface accumulation three dimensional (3D) printing process. Multi-walled carbon nanotubes were added to the photocurable resins to enhance the surface roughness and mechanical strength of the microstructures. The 3D printed eggbeater surface reveals interesting properties in terms of superhydrophobilicity and petal effect. The results show that a hydrophilic material can macroscopically behave as hydrophobic if a surface has proper microstructured features. The controllable adhesive force (from 23 μN to 55 μN) can be easily tuned with different number of eggbeater arms for potential applications such as micro hand for droplet manipulation. Furthermore, a new energy-efficient oil/water separation solution based on our biomimetic structures was demonstrated. The results show that the 3D-printed eggbeater structure could have numerous applications, including water droplet manipulation, 3D cell culture, micro reactor, oil spill clean-up, and oil/water separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Force-time profile differences in the delivery of simulated toggle-recoil spinal manipulation by students, instructors, and field doctors of chiropractic.

    PubMed

    DeVocht, James W; Owens, Edward F; Gudavalli, Maruti Ram; Strazewski, John; Bhogal, Ramneek; Xia, Ting

    2013-01-01

    The objectives of this study were to examine the force-time profiles of toggle recoil using an instrumented simulator to objectively measure and evaluate students' skill to determine if they become quicker and use less force during the course of their training and to compare them to course instructors and to field doctors of chiropractic (DCs) who use this specific technique in their practices. A load cell was placed within a toggle recoil training device. The preload, speed, and magnitude of the toggle recoil thrusts were measured from 60 students, 2 instructors, and 77 DCs (ie, who use the toggle recoil technique in their regular practice). Student data were collected 3 times during their toggle course (after first exposure, at midterm, and at course end.) Thrusts showed a dual-peak force-time profile not previously described in other forms of spinal manipulation. There was a wide range of values for each quantity measured within and between all 3 subject groups. The median peak load for students decreased over the course of their class, but they became slower. Field doctors were faster than students or instructors and delivered higher peak loads. Toggle recoil thrusts into a dropping mechanism varied based upon subject and amount of time practicing the task. As students progressed through the class, speed reduced as they increased control to lower peak loads. In the group studies, field DCs applied higher forces and were faster than both students and instructors. There appears to be a unique 2-peak feature of the force-time plot that is unique to toggle recoil manipulation with a drop mechanism. Copyright © 2013 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  19. Magnetic manipulation device for the optimization of cell processing conditions.

    PubMed

    Ito, Hiroshi; Kato, Ryuji; Ino, Kosuke; Honda, Hiroyuki

    2010-02-01

    Variability in human cell phenotypes make it's advancements in optimized cell processing necessary for personalized cell therapy. Here we propose a strategy of palm-top sized device to assist physically manipulating cells for optimizing cell preparations. For the design of such a device, we combined two conventional approaches: multi-well plate formatting and magnetic cell handling using magnetite cationic liposomes (MCLs). From our previous works, we showed the labeling applications of MCL on adhesive cells for various tissue engineering approaches. To feasibly transfer cells in multi-well plate, we here evaluated the magnetic response of MCL-labeled suspension type cells. The cell handling performance of Jurkat cells proved to be faster and more robust compared to MACS (Magnetic Cell Sorting) bead methods. To further confirm our strategy, prototype palm-top sized device "magnetic manipulation device (MMD)" was designed. In the device, the actual cell transportation efficacy of Jurkat cells was satisfying. Moreover, as a model of the most distributed clinical cell processing, primary peripheral blood mononuclear cells (PBMCs) from different volunteers were evaluated. By MMD, individual PBMCs indicated to have optimum Interleukin-2 (IL-2) concentrations for the expansion. Such huge differences of individual cells indicated that MMD, our proposing efficient and self-contained support tool, could assist the feasible and cost-effective optimization of cell processing in clinical facilities. Copyright (c) 2009 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  20. Protein Phosphatase 2A Regulates Innate Immune and Proteolytic Responses to Cigarette Smoke Exposure in the Lung

    PubMed Central

    Wallace, Alison M.; Hardigan, Andrew; Geraghty, Patrick; Salim, Shaneeza; Gaffney, Adam; Thankachen, Jincy; Arellanos, Leo; D'Armiento, Jeanine M.; Foronjy, Robert F.

    2012-01-01

    Protein phosphatase 2A (PP2A) is the primary serine-threonine phosphatase of eukaryotic cells, and changes in its activity have been linked to neoplastic and neurodegenerative diseases. However, the role of PP2A in noncancerous lung diseases such as chronic obstructive pulmonary disease (COPD) has not been previously examined. This study determined that PP2A activity was significantly increased in the lungs of advanced emphysema subjects compared with age-matched controls. Furthermore, we found that cigarette smoke exposure increases PP2A activity in mouse lung in vivo and in primary human small airway epithelial (SAE) cells in vitro. In mice, intratracheal transfection of PP2A protein prior to cigarette smoke exposure prevented acute smoke–induced lung inflammation. Conversely, inhibiting PP2A activity during smoke exposure exacerbated inflammatory responses in the lung. To further determine how PP2A modulates the responses to cigarette smoke in the lung, enzyme levels were manipulated in SAE cells using protein transfection and short hairpin RNA (shRNA) techniques. Increasing PP2A activity in SAE cells via PP2A protein transfection downregulated cytokine expression and prevented the induction of proteases following cigarette smoke extract (CSE) treatment. Conversely, decreasing enzymatic activity by stably transfecting SAE cells with shRNA for the A subunit of PP2A exacerbated these smoke-mediated responses. This study establishes that PP2A induction by cigarette smoke modulates immune and proteolytic responses to cigarette smoke exposure. Together, these findings suggest that manipulation of PP2A activity may be a plausible means to treat COPD and other inflammatory diseases. PMID:22223484

  1. The 3D widgets for exploratory scientific visualization

    NASA Technical Reports Server (NTRS)

    Herndon, Kenneth P.; Meyer, Tom

    1995-01-01

    Computational fluid dynamics (CFD) techniques are used to simulate flows of fluids like air or water around such objects as airplanes and automobiles. These techniques usually generate very large amounts of numerical data which are difficult to understand without using graphical scientific visualization techniques. There are a number of commercial scientific visualization applications available today which allow scientists to control visualization tools via textual and/or 2D user interfaces. However, these user interfaces are often difficult to use. We believe that 3D direct-manipulation techniques for interactively controlling visualization tools will provide opportunities for powerful and useful interfaces with which scientists can more effectively explore their datasets. A few systems have been developed which use these techniques. In this paper, we will present a variety of 3D interaction techniques for manipulating parameters of visualization tools used to explore CFD datasets, and discuss in detail various techniques for positioning tools in a 3D scene.

  2. Acoustofluidic waveguides for localized control of acoustic wavefront in microfluidics

    PubMed Central

    Bian, Yusheng; Guo, Feng; Yang, Shujie; Mao, Zhangming; Bachman, Hunter; Tang, Shi-Yang; Ren, Liqiang; Zhang, Bin; Gong, Jianying; Guo, Xiasheng

    2017-01-01

    The precise manipulation of acoustic fields in microfluidics is of critical importance for the realization of many biomedical applications. Despite the tremendous efforts devoted to the field of acoustofluidics during recent years, dexterous control, with an arbitrary and complex acoustic wavefront, in a prescribed, microscale region is still out of reach. Here, we introduce the concept of acoustofluidic waveguide, a three-dimensional compact configuration that is capable of locally guiding acoustic waves into a fluidic environment. Through comprehensive numerical simulations, we revealed the possibility of forming complex field patterns with defined pressure nodes within a highly localized, pre-determined region inside the microfluidic chamber. We also demonstrated the tunability of the acoustic field profile through controlling the size and shape of the waveguide geometry, as well as the operational frequency of the acoustic wave. The feasibility of the waveguide concept was experimentally verified via microparticle trapping and patterning. Our acoustofluidic waveguiding structures can be readily integrated with other microfluidic configurations and can be further designed into more complex types of passive acoustofluidic devices. The waveguide platform provides a promising alternative to current acoustic manipulation techniques and is useful in many applications such as single-cell analysis, point-of-care diagnostics, and studies of cell–cell interactions. PMID:29358901

  3. [Are there alternative forms of therapy in breast carcinoma? Status and perspectives for the treatment of metastasized breast carcinoma].

    PubMed

    Unger, C; Marmé, D

    1995-03-28

    The emergence of new cytotoxic agents and techniques for treatment of systemic disease as single modalities or in combination with irradiation and surgery will impact on the use of such agents in the management of systemic breast cancer. Metastatic breast carcinoma, unlike other solid tumors, is highly responsive to chemotherapy, response rates of 50 to 70% have been reported consistently, although there has not been a significant improvement on long-term survival of these patients in the last ten years. New therapeutic approaches include cytotoxic and hormonal agents, growth and differentiation factors, monoclonal antibodies, hematopoietic stem cell support, conquest of tumor cell resistance by MDR-modulation, genetic manipulation, identification of new targets on the tumor surface, synthesis of target-oriented designer-drugs and inhibition of tumor angiogenesis. In breast cancer the tumor growth correlates with vascularization and angiogenesis. Tumor angiogenesis is stimulated by the vascular endothelial growth factor (VEGF). Microvessel density is a significant predictor of survival among node-negative women, who are at risk for having occult metastases at presentation. These patients could then be given systemic adjuvant therapy. Animal experiments show promising inhibition of tumor growth in nude mice after application of antibodies against VEGF. Other methods of manipulation of molecular mechanisms of angiogenesis are under investigation.

  4. Molecular manipulations for enhancing luminescent bioreporters performance in the detection of toxic chemicals.

    PubMed

    Yagur-Kroll, Sharon; Belkin, Shimshon

    2014-01-01

    Microbial whole-cell bioreporters are genetically modified microorganisms that produce a quantifiable output in response to the presence of toxic chemicals or other stress factors. These bioreporters harbor a genetic fusion between a sensing element (usually a gene regulatory element responsive to the target) and a reporter element, the product of which may be quantitatively monitored either by its presence or by its activity. In this chapter we review genetic manipulations undertaken in order to improve bioluminescent bioreporter performance by increasing luminescent output, lowering the limit of detection, and shortening the response time. We describe molecular manipulations applied to all aspects of whole-cell bioreporters: the host strain, the expression system, the sensing element, and the reporter element. The molecular construction of whole-cell luminescent bioreporters, harboring fusions of gene promoter elements to reporter genes, has been around for over three decades; in most cases, these two genetic elements are combined "as is." This chapter outlines diverse molecular manipulations for enhancing the performance of such sensors.

  5. Micro-magnetic Structures for Biological Applications

    NASA Astrophysics Data System (ADS)

    Howdyshell, Marci L.

    Developments in single-molecule and single-cell experiments over the past century have provided researchers with many tools to probe the responses of cells to stresses such as physical force or to the injection of foreign genes. Often these techniques target the cell membrane, although many are now advancing to probe within the cell. As these techniques are improved upon and the investigations advance toward clinical applications, it has become more critical to achieve high-throughput outcomes which in turn lead to statistically significant results. The technologies developed in this thesis are targeted at transfecting large populations of cells with controlled doses of specific exogenic material without adversely affecting cell viability. Underlying this effort is a platform of lithographically patterned ferromagnetic thin films capable of remotely manipulating and localizing magnetic microbeads attached to biological entities. A novel feature of this approach, as demonstrated here with both DNA and cells, is the opportunity for multiplexed operations on targeted biological specimens. This thesis includes two main thrusts: (1) the advancement of the trapping platforms through experimental verification of mathematical models providing the energy landscapes associated with the traps and (2) implementation of the platform as a basis for rapid and effective high-throughput microchannel and nanochannel cell electroporation devices. The electroporation devices have, in our studies, not only been demonstrated to sustain cell viability with extremely low cell mortality rates, but are also found to be effective for various types of cells. The advances over current electroporation technologies that are achieved in these efforts demonstrate the potential for detection of mRNA expression in heterogeneous cell populations and probing intracellular responses to the introduction of foreign genes into cells.

  6. Three-dimensional manipulation of single cells using surface acoustic waves

    PubMed Central

    Guo, Feng; Mao, Zhangming; Chen, Yuchao; Xie, Zhiwei; Lata, James P.; Li, Peng; Ren, Liqiang; Liu, Jiayang; Yang, Jian; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2016-01-01

    The ability of surface acoustic waves to trap and manipulate micrometer-scale particles and biological cells has led to many applications involving “acoustic tweezers” in biology, chemistry, engineering, and medicine. Here, we present 3D acoustic tweezers, which use surface acoustic waves to create 3D trapping nodes for the capture and manipulation of microparticles and cells along three mutually orthogonal axes. In this method, we use standing-wave phase shifts to move particles or cells in-plane, whereas the amplitude of acoustic vibrations is used to control particle motion along an orthogonal plane. We demonstrate, through controlled experiments guided by simulations, how acoustic vibrations result in micromanipulations in a microfluidic chamber by invoking physical principles that underlie the formation and regulation of complex, volumetric trapping nodes of particles and biological cells. We further show how 3D acoustic tweezers can be used to pick up, translate, and print single cells and cell assemblies to create 2D and 3D structures in a precise, noninvasive, label-free, and contact-free manner. PMID:26811444

  7. Molecular genetic techniques for gene manipulation in Candida albicans.

    PubMed

    Xu, Qiu-Rong; Yan, Lan; Lv, Quan-Zhen; Zhou, Mi; Sui, Xue; Cao, Yong-Bing; Jiang, Yuan-Ying

    2014-05-15

    Candida albicans is one of the most common fungal pathogen in humans due to its high frequency as an opportunistic and pathogenic fungus causing superficial as well as invasive infections in immunocompromised patients. An understanding of gene function in C. albicans is necessary to study the molecular basis of its pathogenesis, virulence and drug resistance. Several manipulation techniques have been used for investigation of gene function in C. albicans, including gene disruption, controlled gene expression, protein tagging, gene reintegration, and overexpression. In this review, the main cassettes containing selectable markers used for gene manipulation in C. albicans are summarized; the advantages and limitations of these cassettes are discussed concerning the influences on the target gene expression and the virulence of the mutant strains.

  8. Systems Proteomics View of the Endogenous Human Claudin Protein Family

    PubMed Central

    Liu, Fei; Koval, Michael; Ranganathan, Shoba; Fanayan, Susan; Hancock, William S.; Lundberg, Emma K.; Beavis, Ronald C.; Lane, Lydie; Duek, Paula; McQuade, Leon; Kelleher, Neil L.; Baker, Mark S.

    2016-01-01

    Claudins are the major transmembrane protein components of tight junctions in human endothelia and epithelia. Tissue-specific expression of claudin members suggests that this protein family is not only essential for sustaining the role of tight junctions in cell permeability control but also vital in organizing cell contact signaling by protein–protein interactions. How this protein family is collectively processed and regulated is key to understanding the role of junctional proteins in preserving cell identity and tissue integrity. The focus of this review is to first provide a brief overview of the functional context, on the basis of the extensive body of claudin biology research that has been thoroughly reviewed, for endogenous human claudin members and then ascertain existing and future proteomics techniques that may be applicable to systematically characterizing the chemical forms and interacting protein partners of this protein family in human. The ability to elucidate claudin-based signaling networks may provide new insight into cell development and differentiation programs that are crucial to tissue stability and manipulation. PMID:26680015

  9. On-chip particle trapping and manipulation

    NASA Astrophysics Data System (ADS)

    Leake, Kaelyn Danielle

    The ability to control and manipulate the world around us is human nature. Humans and our ancestors have used tools for millions of years. Only in recent years have we been able to control objects at such small levels. In order to understand the world around us it is frequently necessary to interact with the biological world. Optical trapping and manipulation offer a non-invasive way to move, sort and interact with particles and cells to see how they react to the world around them. Optical tweezers are ideal in their abilities but they require large, non-portable, and expensive setups limiting how and where we can use them. A cheap portable platform is required in order to have optical manipulation reach its full potential. On-chip technology offers a great solution to this challenge. We focused on the Liquid-Core Anti-Resonant Reflecting Optical Waveguide (liquid-core ARROW) for our work. The ARROW is an ideal platform, which has anti-resonant layers which allow light to be guided in liquids, allowing for particles to easily be manipulated. It is manufactured using standard silicon manufacturing techniques making it easy to produce. The planner design makes it easy to integrate with other technologies. Initially I worked to improve the ARROW chip by reducing the intersection losses and by reducing the fluorescence and background on the ARROW chip. The ARROW chip has already been used to trap and push particles along its channel but here I introduce several new methods of particle trapping and manipulation on the ARROW chip. Traditional two beam traps use two counter propagating beams. A trapping scheme that uses two orthogonal beams which counter to first instinct allow for trapping at their intersection is introduced. This scheme is thoroughly predicted and analyzed using realistic conditions. Simulations of this method were done using a program which looks at both the fluidics and optical sources to model complex situations. These simulations were also used to model and predict a sorting method which combines fluid flow with a single optical source to automatically sort dielectric particles by size in waveguide networks. These simulations were shown to be accurate when repeated on-chip. Lastly I introduce a particle trapping technique that uses Multimode Interference(MMI) patterns in order to trap multiple particles at once. The location of the traps can be adjusted as can the number of trapping location by changing the input wavelength. By changing the wavelength back and forth between two values this MMI can be used to pass a particle down the channel like a conveyor belt.

  10. A Novel Tool for Microbial Genome Editing Using the Restriction-Modification System.

    PubMed

    Bai, Hua; Deng, Aihua; Liu, Shuwen; Cui, Di; Qiu, Qidi; Wang, Laiyou; Yang, Zhao; Wu, Jie; Shang, Xiuling; Zhang, Yun; Wen, Tingyi

    2018-01-19

    Scarless genetic manipulation of genomes is an essential tool for biological research. The restriction-modification (R-M) system is a defense system in bacteria that protects against invading genomes on the basis of its ability to distinguish foreign DNA from self DNA. Here, we designed an R-M system-mediated genome editing (RMGE) technique for scarless genetic manipulation in different microorganisms. For bacteria with Type IV REase, an RMGE technique using the inducible DNA methyltransferase gene, bceSIIM (RMGE-bceSIIM), as the counter-selection cassette was developed to edit the genome of Escherichia coli. For bacteria without Type IV REase, an RMGE technique based on a restriction endonuclease (RMGE-mcrA) was established in Bacillus subtilis. These techniques were successfully used for gene deletion and replacement with nearly 100% counter-selection efficiencies, which were higher and more stable compared to conventional methods. Furthermore, precise point mutation without limiting sites was achieved in E. coli using RMGE-bceSIIM to introduce a single base mutation of A128C into the rpsL gene. In addition, the RMGE-mcrA technique was applied to delete the CAN1 gene in Saccharomyces cerevisiae DAY414 with 100% counter-selection efficiency. The effectiveness of the RMGE technique in E. coli, B. subtilis, and S. cerevisiae suggests the potential universal usefulness of this technique for microbial genome manipulation.

  11. Mesenchymal stem cells and cardiac repair

    PubMed Central

    Nesselmann, Catharina; Ma, Nan; Bieback, Karen; Wagner, Wolfgang; Ho, Anthony; Konttinen, Yrjö T; Zhang, Hao; Hinescu, Mihail E; Steinhoff, Gustav

    2008-01-01

    Accumulating clinical and experimental evidence indicates that mesenchymal stem cells (MSCs) are promising cell types in the treatment of cardiac dysfunction. They may trigger production of reparative growth factors, replace damaged cells and create an environment that favours endogenous cardiac repair. However, identifying mechanisms which regulate the role of MSCs in cardiac repair is still at work. To achieve the maximal clinical benefits, ex vivo manipulation can further enhance MSC therapeutic potential. This review focuses on the mechanism of MSCs in cardiac repair, with emphasis on ex vivo manipulation. PMID:18684237

  12. Harnessing Disorder in Compression Based Nanofabrication

    NASA Astrophysics Data System (ADS)

    Engel, Clifford John

    The future of nanotechnologies depends on the successful development of versatile, low-cost techniques for patterning micro- and nanoarchitectures. While most approaches to nanofabrication have focused primarily on making periodic structures at ever smaller length scales with an ultimate goal of massively scaling their production, I have focused on introducing control into relatively disordered nanofabrication systems. Well-ordered patterns are increasingly unnecessary for a growing range of applications, from anti-biofouling coatings to light trapping to omniphobic surfaces. The ability to manipulate disorder, at will and over multiple length scales, starting with the nanoscale, can open new prospects for textured substrates and unconventional applications. Taking advantage of previously considered defects; I have been able to develop nanofabrication techniques with potential for massive scalability and the incorporation into a wide range of potential application. This thesis first describes the manipulation of the non-Newtonian properties of liquid Ga and Ga alloys to confine the metal and metal alloys in gratings with sub-wavelength periodicities. Through a solid to liquid phase change, I was able to access the superior plasmonic properties of liquid Ga for the generation of surface plasmon polaritons (SPP). The switching contract between solid and liquid Ga confine in the nanogratings allowed for reversible manipulation of SPP properties through heating and cooling around the relatively low melting temperature of Ga (29.8 °C). The remaining chapters focus on the development and characterization of an all polymer wrinkle material system. Wrinkles, spontaneous disordered features that are produced in response to compressive force, are an ideal for a growing number of applications where fine feature control is no longer the main motivation. However the mechanical limitations of many wrinkle systems have restricted the potential applications of wrinkled surfaces. We developed a wrinkle material system that could be both tuned in feature size from as small as 30 nm up 10 ?m while maximizing the wrinkle amplitude at all wavelengths. By charactering the material properties of both the skin and substrate, we were able to generate wrinkle patterns with fine control over periodicity, amplitude, and orientation. The final chapters of this thesis focuses on the transfer of the wrinkle structure into functional materials aimed at manipulating biological adhesion of cells, optical absorption of solar cells, and sensor sensitivity of Raman substrates. The success of these applications was directly relative to the capabilities of our wrinkle system in controlling the surface chemistry, tuning the periodicity, and maximizing the amplitude for each application.

  13. Evaluation of user input methods for manipulating a tablet personal computer in sterile techniques.

    PubMed

    Yamada, Akira; Komatsu, Daisuke; Suzuki, Takeshi; Kurozumi, Masahiro; Fujinaga, Yasunari; Ueda, Kazuhiko; Kadoya, Masumi

    2017-02-01

    To determine a quick and accurate user input method for manipulating tablet personal computers (PCs) in sterile techniques. We evaluated three different manipulation methods, (1) Computer mouse and sterile system drape, (2) Fingers and sterile system drape, and (3) Digitizer stylus and sterile ultrasound probe cover with a pinhole, in terms of the central processing unit (CPU) performance, manipulation performance, and contactlessness. A significant decrease in CPU score ([Formula: see text]) and an increase in CPU temperature ([Formula: see text]) were observed when a system drape was used. The respective mean times taken to select a target image from an image series (ST) and the mean times for measuring points on an image (MT) were [Formula: see text] and [Formula: see text] s for the computer mouse method, [Formula: see text] and [Formula: see text] s for the finger method, and [Formula: see text] and [Formula: see text] s for the digitizer stylus method, respectively. The ST for the finger method was significantly longer than for the digitizer stylus method ([Formula: see text]). The MT for the computer mouse method was significantly longer than for the digitizer stylus method ([Formula: see text]). The mean success rate for measuring points on an image was significantly lower for the finger method when the diameter of the target was equal to or smaller than 8 mm than for the other methods. No significant difference in the adenosine triphosphate amount at the surface of the tablet PC was observed before, during, or after manipulation via the digitizer stylus method while wearing starch-powdered sterile gloves ([Formula: see text]). Quick and accurate manipulation of tablet PCs in sterile techniques without CPU load is feasible using a digitizer stylus and sterile ultrasound probe cover with a pinhole.

  14. Revealing Abrupt and Spontaneous Ruptures of Protein Native Structure under picoNewton Compressive Force Manipulation.

    PubMed

    Chowdhury, S Roy; Cao, Jin; He, Yufan; Lu, H Peter

    2018-03-27

    Manipulating protein conformations for exploring protein structure-function relationship has shown great promise. Although protein conformational changes under pulling force manipulation have been extensively studied, protein conformation changes under a compressive force have not been explored quantitatively. The latter is even more biologically significant and relevant in revealing protein functions in living cells associated with protein crowdedness, distribution fluctuations, and cell osmotic stress. Here we report our experimental observations on abrupt ruptures of protein native structures under compressive force, demonstrated and studied by single-molecule AFM-FRET spectroscopic nanoscopy. Our results show that the protein ruptures are abrupt and spontaneous events occurred when the compressive force reaches a threshold of 12-75 pN, a force amplitude accessible from thermal fluctuations in a living cell. The abrupt ruptures are sensitive to local environment, likely a general and important pathway of protein unfolding in living cells.

  15. Magnetic targeting of mechanosensors in bone cells for tissue engineering applications.

    PubMed

    Hughes, Steven; Dobson, Jon; El Haj, Alicia J

    2007-01-01

    Mechanical signalling plays a pivotal role in maintaining bone cell function and remodelling of the skeleton. Our previous work has highlighted the potential role of mechano-induction in tissue engineering applications. In particular, we have highlighted the potential for using magnetic particle techniques for tissue engineering applications. Previous studies have shown that manipulation of integrin attached magnetic particles leads to changes in intracellular calcium signalling within osteoblasts. However, due to the phenomenon of particle internalisation, previous studies have typically focused on short-term stimulation experiments performed within 1-2 h of particle attachment. For tissue engineering applications, bone tissue growth occurs over a period of 3-5 weeks. To date, no study has investigated the cellular responses elicited from osteoblasts over time following stimulation with internalised magnetic particles. Here, we demonstrate the long-term biocompatibility of 4.5 microm RGD-coated particles with osteoblasts up to 21 days in culture, and detail a time course of responses elicited from osteoblasts following mechanical stimulation with integrin attached magnetic particles (<2h post attachment) and internalised particles (>48h post attachment). Mechanical manipulation of both integrin attached and internalised particles were found to induce intracellular calcium signalling. It is concluded that magnetic particles offer a tool for applying controlled mechanical forces to osteoblasts, and can be used to stimulate intracellular calcium signalling over prolonged periods of time. Magnetic particle technology presents a potentially valuable tool for tissue engineering which permits the delivery of highly localised mechano-inductive forces directly to cells.

  16. Dissecting local circuits in vivo: integrated optogenetic and electrophysiology approaches for exploring inhibitory regulation of cortical activity.

    PubMed

    Cardin, Jessica A

    2012-01-01

    Local cortical circuit activity in vivo comprises a complex and flexible series of interactions between excitatory and inhibitory neurons. Our understanding of the functional interactions between these different neural populations has been limited by the difficulty of identifying and selectively manipulating the diverse and sparsely represented inhibitory interneuron classes in the intact brain. The integration of recently developed optical tools with traditional electrophysiological techniques provides a powerful window into the role of inhibition in regulating the activity of excitatory neurons. In particular, optogenetic targeting of specific cell classes reveals the distinct impacts of local inhibitory populations on other neurons in the surrounding local network. In addition to providing the ability to activate or suppress spiking in target cells, optogenetic activation identifies extracellularly recorded neurons by class, even when naturally occurring spike rates are extremely low. However, there are several important limitations on the use of these tools and the interpretation of resulting data. The purpose of this article is to outline the uses and limitations of optogenetic tools, along with current methods for achieving cell type-specific expression, and to highlight the advantages of an experimental approach combining optogenetics and electrophysiology to explore the role of inhibition in active networks. To illustrate the efficacy of these combined approaches, I present data comparing targeted manipulations of cortical fast-spiking, parvalbumin-expressing and low threshold-spiking, somatostatin-expressing interneurons in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  17. A spatial operator algebra for manipulator modeling and control

    NASA Technical Reports Server (NTRS)

    Rodriguez, G.; Jain, A.; Kreutz-Delgado, K.

    1991-01-01

    A recently developed spatial operator algebra for manipulator modeling, control, and trajectory design is discussed. The elements of this algebra are linear operators whose domain and range spaces consist of forces, moments, velocities, and accelerations. The effect of these operators is equivalent to a spatial recursion along the span of a manipulator. Inversion of operators can be efficiently obtained via techniques of recursive filtering and smoothing. The operator algebra provides a high-level framework for describing the dynamic and kinematic behavior of a manipulator and for control and trajectory design algorithms. The interpretation of expressions within the algebraic framework leads to enhanced conceptual and physical understanding of manipulator dynamics and kinematics.

  18. 18. Photocopy of photograph. VIEW WITHIN POSTMORTEM CELL OF MANIPULATOR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. Photocopy of photograph. VIEW WITHIN POST-MORTEM CELL OF MANIPULATOR ARMS BEING USED TO MOVE METAL BARS FROM ONE LOCATION TO ANOTHER. Photographer unknown, ca. 1965, original photograph and negative on file at the Remote Sensing Laboratory, Department of Energy, Nevada Operations Office. - Nevada Test Site, Engine Maintenance Assembly & Disassembly Facility, Area 25, Jackass Flats, Mercury, Nye County, NV

  19. Transgenesis of the Wolffian duct visualizes dynamic behavior of cells undergoing tubulogenesis in vivo.

    PubMed

    Atsuta, Yuji; Tadokoro, Ryosuke; Saito, Daisuke; Takahashi, Yoshiko

    2013-05-01

    Deciphering how the tubulogenesis is regulated is an essential but unsolved issue in developmental biology. Here, using Wolffian duct (WD) formation in chicken embryos, we have developed a novel method that enables gene manipulation during tubulogenesis in vivo. Exploiting that WD arises from a defined site located anteriorly in the embryo (pronephric region), we targeted this region with the enhanced green fluorescent protein (EGFP) gene by the in ovo electroporation technique. EGFP-positive signals were detected in a wide area of elongating WD, where transgenic cells formed an epithelial component in a mosaic manner. Time-lapse live imaging analyses further revealed dynamic behavior of cells during WD elongation: some cells possessed numerous filopodia, and others exhibited cellular tails that repeated elongation and retraction. The retraction of the tail was precisely regulated by Rho activity via actin dynamics. When electroporated with the C3 gene, encoding Rho inhibitor, WD cells failed to contract their tails, resulting in an aberrantly elongated process. We further combined with the Tol2 transposon-mediated gene transfer technique, and could trace EGFP-positive cells at later stages in the ureteric bud sprouting from WD. This is the first demonstration that exogenous gene(s) can directly be introduced into elongating tubular structures in living amniote embryos. This method has opened a way to investigate how a complex tubulogenesis proceeds in higher vertebrates. © 2013 The Authors Development, Growth & Differentiation © 2013 Japanese Society of Developmental Biologists.

  20. Invincible, but not invisible: imaging approaches toward in vivo detection of cancer stem cells.

    PubMed

    Hart, Lori S; El-Deiry, Wafik S

    2008-06-10

    With evidence emerging in support of a cancer stem-cell model of carcinogenesis, it is of paramount importance to identify and image these elusive cells in their natural environment. The cancer stem-cell hypothesis has the potential to explain unresolved questions of tumorigenesis, tumor heterogeneity, chemotherapeutic and radiation resistance, and even the metastatic phenotype. Intravital imaging of cancer stem cells could be of great value for determining prognosis, as well as monitoring therapeutic efficacy and influencing therapeutic protocols. Cancer stem cells represent a rare population of cells, as low as 0.1% of cells within a human tumor, and the phenotype of isolated cancer stem cells is easily altered when placed under in vitro conditions. This represents a challenge in studying cancer stem cells without manipulation or extraction from their natural environment. Advanced imaging techniques allow for the in vivo observation of physiological events at cellular resolution. Cancer stem-cell studies must take advantage of such technology to promote a better understanding of the cancer stem-cell model in relation to tumor growth and metastasis, as well as to potentially improve on the principles by which cancers are treated. This review examines the opportunities for in vivo imaging of putative cancer stem cells with regard to currently accepted cancer stem-cell characteristics and advanced imaging technologies.

  1. Mapping and Manipulating Facial Expression

    ERIC Educational Resources Information Center

    Theobald, Barry-John; Matthews, Iain; Mangini, Michael; Spies, Jeffrey R.; Brick, Timothy R.; Cohn, Jeffrey F.; Boker, Steven M.

    2009-01-01

    Nonverbal visual cues accompany speech to supplement the meaning of spoken words, signify emotional state, indicate position in discourse, and provide back-channel feedback. This visual information includes head movements, facial expressions and body gestures. In this article we describe techniques for manipulating both verbal and nonverbal facial…

  2. Hybrid integration of III-V semiconductor lasers on silicon waveguides using optofluidic microbubble manipulation

    PubMed Central

    Jung, Youngho; Shim, Jaeho; Kwon, Kyungmook; You, Jong-Bum; Choi, Kyunghan; Yu, Kyoungsik

    2016-01-01

    Optofluidic manipulation mechanisms have been successfully applied to micro/nano-scale assembly and handling applications in biophysics, electronics, and photonics. Here, we extend the laser-based optofluidic microbubble manipulation technique to achieve hybrid integration of compound semiconductor microdisk lasers on the silicon photonic circuit platform. The microscale compound semiconductor block trapped on the microbubble surface can be precisely assembled on a desired position using photothermocapillary convective flows induced by focused laser beam illumination. Strong light absorption within the micro-scale compound semiconductor object allows real-time and on-demand microbubble generation. After the assembly process, we verify that electromagnetic radiation from the optically-pumped InGaAsP microdisk laser can be efficiently coupled to the single-mode silicon waveguide through vertical evanescent coupling. Our simple and accurate microbubble-based manipulation technique may provide a new pathway for realizing high precision fluidic assembly schemes for heterogeneously integrated photonic/electronic platforms as well as microelectromechanical systems. PMID:27431769

  3. Nano-optical conveyor belt, part II: Demonstration of handoff between near-field optical traps.

    PubMed

    Zheng, Yuxin; Ryan, Jason; Hansen, Paul; Cheng, Yao-Te; Lu, Tsung-Ju; Hesselink, Lambertus

    2014-06-11

    Optical tweezers have been widely used to manipulate biological and colloidal material, but the diffraction limit of far-field optics makes focused beams unsuitable for manipulating nanoscale objects with dimensions much smaller than the wavelength of light. While plasmonic structures have recently been successful in trapping nanoscale objects with high positioning accuracy, using such structures for manipulation over longer range has remained a significant challenge. In this work, we introduce a conveyor belt design based on a novel plasmonic structure, the resonant C-shaped engraving (CSE). We show how long-range manipulation is made possible by means of handoff between neighboring CSEs, and we present a simple technique for controlling handoff by rotating the polarization of laser illumination. We experimentally demonstrate handoff between a pair of CSEs for polystyrene spheres 200, 390, and 500 nm in diameter. We then extend this technique and demonstrate controlled particle transport down a 4.5 μm long "nano-optical conveyor belt."

  4. Inverse dynamics of a 3 degree of freedom spatial flexible manipulator

    NASA Technical Reports Server (NTRS)

    Bayo, Eduardo; Serna, M.

    1989-01-01

    A technique is presented for solving the inverse dynamics and kinematics of 3 degree of freedom spatial flexible manipulator. The proposed method finds the joint torques necessary to produce a specified end effector motion. Since the inverse dynamic problem in elastic manipulators is closely coupled to the inverse kinematic problem, the solution of the first also renders the displacements and rotations at any point of the manipulator, including the joints. Furthermore the formulation is complete in the sense that it includes all the nonlinear terms due to the large rotation of the links. The Timoshenko beam theory is used to model the elastic characteristics, and the resulting equations of motion are discretized using the finite element method. An iterative solution scheme is proposed that relies on local linearization of the problem. The solution of each linearization is carried out in the frequency domain. The performance and capabilities of this technique are tested through simulation analysis. Results show the potential use of this method for the smooth motion control of space telerobots.

  5. Dynamic two-photon imaging of the immune response to Toxoplasma gondii infection.

    PubMed

    Luu, L; Coombes, J L

    2015-03-01

    Toxoplasma gondii is a highly successful parasite that can manipulate host immune responses to optimize its persistence and spread. As a result, a highly complex relationship exists between T. gondii and the immune system of the host. Advances in imaging techniques, and in particular, the application of two-photon microscopy to mouse infection models, have made it possible to directly visualize interactions between parasites and the host immune system as they occur in living tissues. Here, we will discuss how dynamic imaging techniques have provided unexpected new insight into (i) how immune responses are dynamically regulated by cells and structures in the local tissue environment, (ii) how protective responses to T. gondii are generated and (iii) how the parasite exploits the immune system for its own benefit. © 2014 John Wiley & Sons Ltd.

  6. Can we improve fixation and outcomes? Use of bone substitutes.

    PubMed

    Moroni, Antonio; Larsson, Sune; Hoang Kim, Amy; Gelsomini, Letizia; Giannoudis, Peter V

    2009-07-01

    Hip fractures secondary to osteoporosis are common in the elderly. Stabilizing these fractures until union is achieved is a challenge due to poor bone stock and insufficient purchase of the implant to the bone. The reported high rate of complications has prompted extensive research in the development of fixation techniques. Furthermore, manipulation of both the local fracture environment in terms of application of growth factors, scaffolds, and mesenchymal cells and the systemic administration of agents promoting bone formation and bone strength has been considered as a treatment option with promising results. There are only a few evidence-based studies reporting on fixation augmentation techniques. This article reports on the efficacy of bone graft substitutes for the fixation of hip fractures, in particular calcium phosphates, which have been used as granules, cements, and implant coatings.

  7. A microfluidic tubing method and its application for controlled synthesis of polymeric nanoparticles.

    PubMed

    Wang, Jidong; Chen, Wenwen; Sun, Jiashu; Liu, Chao; Yin, Qifang; Zhang, Lu; Xianyu, Yunlei; Shi, Xinghua; Hu, Guoqing; Jiang, Xingyu

    2014-05-21

    This report describes a straightforward but robust tubing method for connecting polydimethylsiloxane (PDMS) microfluidic devices to external equipment. The interconnection is irreversible and can sustain a pressure of up to 4.5 MPa that is characterized experimentally and theoretically. To demonstrate applications of this high-pressure tubing technique, we fabricate a semicircular microfluidic channel to implement a high-throughput, size-controlled synthesis of poly(lactic-co-glycolic acid) (PLGA) nanoparticles ranging from 55 to 135 nm in diameter. This microfluidic device allows for a total flow rate of 410 mL h(-1), resulting in enhanced convective mixing which can be utilized to precipitate small size nanoparticles with a good dispersion. We expect that this tubing technique would be widely used in microfluidic chips for nanoparticle synthesis, cell manipulation, and potentially nanofluidic applications.

  8. Six cloned calves produced from adult fibroblast cells after long-term culture

    PubMed Central

    Kubota, Chikara; Yamakuchi, Hiroshi; Todoroki, Junichi; Mizoshita, Kazunori; Tabara, Norio; Barber, Michele; Yang, Xiangzhong

    2000-01-01

    Cloning whole animals with somatic cells as parents offers the possibility of targeted genetic manipulations in vitro such as “gene knock-out” by homologous recombination. However, such manipulation requires prolonged culture of nuclear donor cells. Previous successes in cloning have been limited to the use of cells collected either fresh or after short-term culture. Therefore, demonstration of genetic totipotency of cells after prolonged culture is pivotal to combining site-specific genetic manipulations and cloning. Here we report birth of six clones of an aged (17-year-old) Japanese Black Beef bull using ear skin fibroblast cells as nuclear donor cells after up to 3 months of in vitro culture (10–15 passages). We observed higher developmental rates for embryos derived from later passages (10 and 15) as compared with those embryos from an early passage (passage 5). The four surviving clones are now 10–12 months of age and appear normal, similar to their naturally reproduced peers. These data show that fibroblasts of aged animals remain competent for cloning, and prolonged culture does not affect the cloning competence of adult somatic donor cells. PMID:10655472

  9. A Heterogeneous In Vitro Three Dimensional Model of Tumour-Stroma Interactions Regulating Sprouting Angiogenesis

    PubMed Central

    Correa de Sampaio, Pedro; Auslaender, David; Krubasik, Davia; Failla, Antonio Virgilio; Skepper, Jeremy N.; Murphy, Gillian; English, William R.

    2012-01-01

    Angiogenesis, the formation of new blood vessels, is an essential process for tumour progression and is an area of significant therapeutic interest. Different in vitro systems and more complex in vivo systems have been described for the study of tumour angiogenesis. However, there are few human 3D in vitro systems described to date which mimic the cellular heterogeneity and complexity of angiogenesis within the tumour microenvironment. In this study we describe the Minitumour model – a 3 dimensional human spheroid-based system consisting of endothelial cells and fibroblasts in co-culture with the breast cancer cell line MDA-MB-231, for the study of tumour angiogenesis in vitro. After implantation in collagen-I gels, Minitumour spheroids form quantifiable endothelial capillary-like structures. The endothelial cell pre-capillary sprouts are supported by the fibroblasts, which act as mural cells, and their growth is increased by the presence of cancer cells. Characterisation of the Minitumour model using small molecule inhibitors and inhibitory antibodies show that endothelial sprout formation is dependent on growth factors and cytokines known to be important for tumour angiogenesis. The model also shows a response to anti-angiogenic agents similar to previously described in vivo data. We demonstrate that independent manipulation of the different cell types is possible, using common molecular techniques, before incorporation into the model. This aspect of Minitumour spheroid analysis makes this model ideal for high content studies of gene function in individual cell types, allowing for the dissection of their roles in cell-cell interactions. Finally, using this technique, we were able to show the requirement of the metalloproteinase MT1-MMP in endothelial cells and fibroblasts, but not cancer cells, for sprouting angiogenesis. PMID:22363483

  10. Hydraulic Robotic Surgical Tool Changing Manipulator

    PubMed Central

    Pourghodrat, Abolfazl; Nelson, Carl A.; Oleynikov, Dmitry

    2017-01-01

    Natural orifice transluminal endoscopic surgery (NOTES) is a surgical technique to perform “scarless” abdominal operations. Robotic technology has been exploited to improve NOTES and circumvent its limitations. Lack of a multitasking platform is a major limitation. Manual tool exchange can be time consuming and may lead to complications such as bleeding. Previous multifunctional manipulator designs use electric motors. These designs are bulky, slow, and expensive. This paper presents design, prototyping, and testing of a hydraulic robotic tool changing manipulator. The manipulator is small, fast, low-cost, and capable of carrying four different types of laparoscopic instruments. PMID:28450979

  11. Self-Rotation of Cells in an Irrotational AC E-Field in an Opto-Electrokinetics Chip

    PubMed Central

    Chau, Long-Ho; Liang, Wenfeng; Cheung, Florence Wing Ki; Liu, Wing Keung; Li, Wen Jung; Chen, Shih-Chi; Lee, Gwo-Bin

    2013-01-01

    The use of optical dielectrophoresis (ODEP) to manipulate microparticles and biological cells has become increasingly popular due to its tremendous flexibility in providing reconfigurable electrode patterns and flow channels. ODEP enables the parallel and free manipulation of small particles on a photoconductive surface on which light is projected, thus eliminating the need for complex electrode design and fabrication processes. In this paper, we demonstrate that mouse cells comprising melan-a cells, RAW 267.4 macrophage cells, peripheral white blood cells and lymphocytes, can be manipulated in an opto-electrokinetics (OEK) device with appropriate DEP parameters. Our OEK device generates a non-rotating electric field and exerts a localized DEP force on optical electrodes. Hitherto, we are the first group to report that among all the cells investigated, melan-a cells, lymphocytes and white blood cells were found to undergo self-rotation in the device in the presence of a DEP force. The rotational speed of the cells depended on the voltage and frequency applied and the cells' distance from the optical center. We discuss a possible mechanism for explaining this new observation of induced self-rotation based on the physical properties of cells. We believe that this rotation phenomenon can be used to identify cell type and to elucidate the dielectric and physical properties of cells. PMID:23320067

  12. Simultaneously discrete biomineralization of magnetite and tellurium nanocrystals in magnetotactic bacteria.

    PubMed

    Tanaka, Masayoshi; Arakaki, Atsushi; Staniland, Sarah S; Matsunaga, Tadashi

    2010-08-01

    Magnetotactic bacteria synthesize intracellular magnetosomes comprising membrane-enveloped magnetite crystals within the cell which can be manipulated by a magnetic field. Here, we report the first example of tellurium uptake and crystallization within a magnetotactic bacterial strain, Magnetospirillum magneticum AMB-1. These bacteria independently crystallize tellurium and magnetite within the cell. This is also highly significant as tellurite (TeO(3)(2-)), an oxyanion of tellurium, is harmful to both prokaryotes and eukaryotes. Additionally, due to its increasing use in high-technology products, tellurium is very precious and commercially desirable. The use of microorganisms to recover such molecules from polluted water has been considered as a promising bioremediation technique. However, cell recovery is a bottleneck in the development of this approach. Recently, using the magnetic property of magnetotactic bacteria and a cell surface modification technology, the magnetic recovery of Cd(2+) adsorbed onto the cell surface was reported. Crystallization within the cell enables approximately 70 times more bioaccumulation of the pollutant per cell than cell surface adsorption, while utilizing successful recovery with a magnetic field. This fascinating dual crystallization of magnetite and tellurium by magnetotactic bacteria presents an ideal system for both bioremediation and magnetic recovery of tellurite.

  13. Simultaneously Discrete Biomineralization of Magnetite and Tellurium Nanocrystals in Magnetotactic Bacteria▿

    PubMed Central

    Tanaka, Masayoshi; Arakaki, Atsushi; Staniland, Sarah S.; Matsunaga, Tadashi

    2010-01-01

    Magnetotactic bacteria synthesize intracellular magnetosomes comprising membrane-enveloped magnetite crystals within the cell which can be manipulated by a magnetic field. Here, we report the first example of tellurium uptake and crystallization within a magnetotactic bacterial strain, Magnetospirillum magneticum AMB-1. These bacteria independently crystallize tellurium and magnetite within the cell. This is also highly significant as tellurite (TeO32−), an oxyanion of tellurium, is harmful to both prokaryotes and eukaryotes. Additionally, due to its increasing use in high-technology products, tellurium is very precious and commercially desirable. The use of microorganisms to recover such molecules from polluted water has been considered as a promising bioremediation technique. However, cell recovery is a bottleneck in the development of this approach. Recently, using the magnetic property of magnetotactic bacteria and a cell surface modification technology, the magnetic recovery of Cd2+ adsorbed onto the cell surface was reported. Crystallization within the cell enables approximately 70 times more bioaccumulation of the pollutant per cell than cell surface adsorption, while utilizing successful recovery with a magnetic field. This fascinating dual crystallization of magnetite and tellurium by magnetotactic bacteria presents an ideal system for both bioremediation and magnetic recovery of tellurite. PMID:20581185

  14. AC electric field induced dipole-based on-chip 3D cell rotation.

    PubMed

    Benhal, Prateek; Chase, J Geoffrey; Gaynor, Paul; Oback, Björn; Wang, Wenhui

    2014-08-07

    The precise rotation of suspended cells is one of the many fundamental manipulations used in a wide range of biotechnological applications such as cell injection and enucleation in nuclear transfer (NT) cloning. Noticeably scarce among the existing rotation techniques is the three-dimensional (3D) rotation of cells on a single chip. Here we present an alternating current (ac) induced electric field-based biochip platform, which has an open-top sub-mm square chamber enclosed by four sidewall electrodes and two bottom electrodes, to achieve rotation about the two axes, thus 3D cell rotation. By applying an ac potential to the four sidewall electrodes, an in-plane (yaw) rotating electric field is generated and in-plane rotation is achieved. Similarly, by applying an ac potential to two opposite sidewall electrodes and the two bottom electrodes, an out-of-plane (pitch) rotating electric field is generated and rolling rotation is achieved. As a prompt proof-of-concept, bottom electrodes were constructed with transparent indium tin oxide (ITO) using the standard lift-off process and the sidewall electrodes were constructed using a low-cost micro-milling process and then assembled to form the chip. Through experiments, we demonstrate rotation of bovine oocytes of ~120 μm diameter about two axes, with the capability of controlling the rotation direction and the rate for each axis through control of the ac potential amplitude, frequency, and phase shift, and cell medium conductivity. The maximum observed rotation rate reached nearly 140° s⁻¹, while a consistent rotation rate reached up to 40° s⁻¹. Rotation rate spectra for zona pellucida-intact and zona pellucida-free oocytes were further compared and found to have no effective difference. This simple, transparent, cheap-to-manufacture, and open-top platform allows additional functional modules to be integrated to become a more powerful cell manipulation system.

  15. Culturing marine bacteria – an essential prerequisite for biodiscovery

    PubMed Central

    Joint, Ian; Mühling, Martin; Querellou, Joël

    2010-01-01

    Summary The potential for using marine microbes for biodiscovery is severely limited by the lack of laboratory cultures. It is a long‐standing observation that standard microbiological techniques only isolate a very small proportion of the wide diversity of microbes that are known in natural environments from DNA sequences. A number of explanations are reviewed. The process of establishing laboratory cultures may destroy any cell‐to‐cell communication that occurs between organisms in the natural environment and that are vital for growth. Bacteria probably grow as consortia in the sea and reliance on other bacteria for essential nutrients and substrates is not possible with standard microbiological approaches. Such interactions should be considered when designing programmes for the isolation of marine microbes. The benefits of novel technologies for manipulating cells are reviewed, including single cell encapsulation in gel micro‐droplets. Although novel technologies offer benefits for bringing previously uncultured microbes into laboratory culture, many useful bacteria can still be isolated using variations of plating techniques. Results are summarized for a study to culture bacteria from a long‐term observatory station in the English Channel. Bacterial biodiversity in this assemblage has recently been characterized using high‐throughput sequencing techniques. Although Alphaproteobacteria dominated the natural bacterial assemblage throughout the year, Gammaproteobacteria were the most frequent group isolated by plating techniques. The use of different gelling agents and the addition of ammonium to seawater‐based agar did lead to the isolation of a higher proportion of Alphaproteobacteria. Variation in medium composition was also able to increase the recovery of other groups of particular interest for biodiscovery, such as Actinobacteria. PMID:21255353

  16. Establishment of novel detection system for embryonic stem cell-derived hepatocyte-like cells based on nongenetic manipulation with indocyanine green.

    PubMed

    Yoshie, Susumu; Ito, Jun; Shirasawa, Sakiko; Yokoyama, Tadayuki; Fujimura, Yuu; Takeda, Kazuo; Mizuguchi, Masahiro; Matsumoto, Ken; Tomotsune, Daihachiro; Sasaki, Katsunori

    2012-01-01

    Hepatocytes derived from embryonic stem cells (ESCs) are expected to be useful for basic research and clinical applications. However, in several studies, genetic methods used to detect and obtain them are difficult and pose major safety problems. Therefore, in this study, we established a novel detection system for hepatocytes by using indocyanine green (ICG), which is selectively taken up by hepatocytes, based on nongenetic manipulation. ICG has maximum light absorption near 780 nm, and it fluoresces between 800 and 900 nm. Making use of these properties, we developed flow cytometry equipped with an excitation lazer of 785 nm and specific bandpass filters and successfully detected ESC-derived ICG-positive cells that were periodic acid-Schiff positive and expressed hepatocyte phenotypic mRNAs. These results demonstrate that this detection system based on nongenetic manipulation with ICG will lead to isolate hepatocytes generated from ESCs and provide the appropriate levels of stability, quality, and safety required for cell source for cell-based therapy and pharmaceutical studies such as toxicology.

  17. Phenotype classification of single cells using SRS microscopy, RNA sequencing, and microfluidics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Streets, Aaron M.; Cao, Chen; Zhang, Xiannian; Huang, Yanyi

    2016-03-01

    Phenotype classification of single cells reveals biological variation that is masked in ensemble measurement. This heterogeneity is found in gene and protein expression as well as in cell morphology. Many techniques are available to probe phenotypic heterogeneity at the single cell level, for example quantitative imaging and single-cell RNA sequencing, but it is difficult to perform multiple assays on the same single cell. In order to directly track correlation between morphology and gene expression at the single cell level, we developed a microfluidic platform for quantitative coherent Raman imaging and immediate RNA sequencing (RNA-Seq) of single cells. With this device we actively sort and trap cells for analysis with stimulated Raman scattering microscopy (SRS). The cells are then processed in parallel pipelines for lysis, and preparation of cDNA for high-throughput transcriptome sequencing. SRS microscopy offers three-dimensional imaging with chemical specificity for quantitative analysis of protein and lipid distribution in single cells. Meanwhile, the microfluidic platform facilitates single-cell manipulation, minimizes contamination, and furthermore, provides improved RNA-Seq detection sensitivity and measurement precision, which is necessary for differentiating biological variability from technical noise. By combining coherent Raman microscopy with RNA sequencing, we can better understand the relationship between cellular morphology and gene expression at the single-cell level.

  18. Interactions between Exosomes from Breast Cancer Cells and Primary Mammary Epithelial Cells Leads to Generation of Reactive Oxygen Species Which Induce DNA Damage Response, Stabilization of p53 and Autophagy in Epithelial Cells

    PubMed Central

    Dutta, Sujoy; Warshall, Case; Bandyopadhyay, Chirosree; Dutta, Dipanjan; Chandran, Bala

    2014-01-01

    Exosomes are nanovesicles originating from multivesicular bodies and are released by all cell types. They contain proteins, lipids, microRNAs, mRNAs and DNA fragments, which act as mediators of intercellular communications by inducing phenotypic changes in recipient cells. Tumor-derived exosomes have been shown to play critical roles in different stages of tumor development and metastasis of almost all types of cancer. One of the ways by which exosomes affect tumorigenesis is to manipulate the tumor microenvironments to create tumor permissive “niches”. Whether breast cancer cell secreted exosomes manipulate epithelial cells of the mammary duct to facilitate tumor development is not known. To address whether and how breast cancer cell secreted exosomes manipulate ductal epithelial cells we studied the interactions between exosomes isolated from conditioned media of 3 different breast cancer cell lines (MDA-MB-231, T47DA18 and MCF7), representing three different types of breast carcinomas, and normal human primary mammary epithelial cells (HMECs). Our studies show that exosomes released by breast cancer cell lines are taken up by HMECs, resulting in the induction of reactive oxygen species (ROS) and autophagy. Inhibition of ROS by N-acetyl-L-cysteine (NAC) led to abrogation of autophagy. HMEC-exosome interactions also induced the phosphorylation of ATM, H2AX and Chk1 indicating the induction of DNA damage repair (DDR) responses. Under these conditions, phosphorylation of p53 at serine 15 was also observed. Both DDR responses and phosphorylation of p53 induced by HMEC-exosome interactions were also inhibited by NAC. Furthermore, exosome induced autophagic HMECs were found to release breast cancer cell growth promoting factors. Taken together, our results suggest novel mechanisms by which breast cancer cell secreted exosomes manipulate HMECs to create a tumor permissive microenvironment. PMID:24831807

  19. Manipulation of Suspended Single Cells by Microfluidics and Optical Tweezers

    PubMed Central

    Nève, Nathalie; Kohles, Sean S.; Winn, Shelley R.; Tretheway, Derek C.

    2010-01-01

    Chondrocytes and osteoblasts experience multiple stresses in vivo. The optimum mechanical conditions for cell health are not fully understood. This paper describes the optical and microfluidic mechanical manipulation of single suspended cells enabled by the μPIVOT, an integrated micron resolution particle image velocimeter (μPIV) and dual optical tweezers instrument (OT). In this study, we examine the viability and trap stiffness of cartilage cells, identify the maximum fluid-induced stresses possible in uniform and extensional flows, and compare the deformation characteristics of bone and muscle cells. These results indicate cell photodamage of chondrocytes is negligible for at least 20 min for laser powers below 30 mW, a dead cell presents less resistance to internal organelle rearrangement and deforms globally more than a viable cell, the maximum fluid-induced shear stresses are limited to ~15 mPa for uniform flows but may exceed 1 Pa for extensional flows, and osteoblasts show no deformation for shear stresses up to 250 mPa while myoblasts are more easily deformed and exhibit a modulated response to increasing stress. This suggests that global and/or local stresses can be applied to single cells without physical contact. Coupled with microfluidic sensors, these manipulations may provide unique methods to explore single cell biomechanics. PMID:20824110

  20. Selective microrobot control using a thermally responsive microclamper for microparticle manipulation

    NASA Astrophysics Data System (ADS)

    Go, Gwangjun; Choi, Hyunchul; Jeong, Semi; Ko, Seong Young; Park, Jong-Oh; Park, Sukho

    2016-03-01

    Microparticle manipulation using a microrobot in an enclosed environment, such as a lab-on-a-chip, has been actively studied because an electromagnetic actuated microrobot can have accurate motility and wireless controllability. In most studies on electromagnetic actuated microrobots, only a single microrobot has been used to manipulate cells or microparticles. However, the use of a single microrobot can pose several limitations when performing multiple roles in microparticle manipulation. To overcome the limitations associated with using a single microrobot, we propose a new method for the control of multiple microrobots. Multiple microrobots can be controlled independently by an electromagnetic actuation system and multiple microclampers combined with microheaters. To select a specific microrobot among multiple microrobots, we propose a microclamper composed of a clamper structure using thermally responsive hydrogel and a microheater for controlling the microclamper. A fundamental test of the proposed microparticle manipulation system is performed by selecting a specific microrobot among multiple microrobots. Through the independent locomotion of multiple microrobots with U- and V-shaped tips, heterogeneous microparticle manipulation is demonstrated in the creation of a two-dimensional structure. In the future, our proposed multiple-microrobot system can be applied to tasks that are difficult to perform using a single microrobot, such as cell manipulation, cargo delivery, tissue assembly, and cloning.

  1. Manipulation under anaesthesia versus low stretch device in poor range of motion after TKA.

    PubMed

    Witvrouw, E; Bellemans, J; Victor, J

    2013-12-01

    The purpose of this study was to evaluate the effectiveness of two frequently used non-operative treatment techniques for a stiff knee after total knee arthroplasty. Sixty-four patients with a stiff knee after total knee arthroplasty (TKA) were randomized into a manipulation under anaesthesia group, or a low load stretch (stretch) group. The patients were followed up for 6 weeks and were evaluated for maximum flexion and extension, range of motion (ROM), pain, stiffness and function. Both groups showed a significant increase in knee flexion in this study. Only the stretch group showed a significant increase in extension ROM. In both groups, a significant increase in Western Ontario and McMaster Universities was observed. No significant difference was observed between both groups for the flexion or extension ROM, or for any of the pain, function or stiffness scores during this study. The results of this study showed that the stretch technique had equal or superior results concerning ROM and function compared to manipulation under anaesthesia. The stretch technique achieved this without requiring the patient to undergo in-hospital treatment or anaesthesia, limiting the costs and the risks for complications. The results of this study showed that stretching is a valuable tool for treating joint contractures of the knee. Therefore, the use of this stretching technique may be an excellent first choice of treatment modality in patients with slow progress of knee flexion or persistent knee stiffness following TKA, prior to manipulation under anaesthesia or lysis of adhesions.

  2. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    NASA Astrophysics Data System (ADS)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  3. Improved recovery of functionally active eosinophils and neutrophils using novel immunomagnetic technology.

    PubMed

    Son, Kiho; Mukherjee, Manali; McIntyre, Brendan A S; Eguez, Jose C; Radford, Katherine; LaVigne, Nicola; Ethier, Caroline; Davoine, Francis; Janssen, Luke; Lacy, Paige; Nair, Parameswaran

    2017-10-01

    Clinically relevant and reliable reports derived from in vitro research are dependent on the choice of cell isolation protocols adopted between different laboratories. Peripheral blood eosinophils are conventionally isolated using density-gradient centrifugation followed by immunomagnetic selection (positive/negative) while neutrophils follow a more simplified dextran-sedimentation methodology. With the increasing sophistication of molecular techniques, methods are now available that promise protocols with reduced user-manipulations, improved efficiency, and better yield without compromising the purity of enriched cell populations. These recent techniques utilize immunomagnetic particles with multiple specificities against differential cell surface markers to negatively select non-target cells from whole blood, greatly reducing the cost/time taken to isolate granulocytes. Herein, we compare the yield efficiencies, purity and baseline activation states of eosinophils/neutrophils isolated using one of these newer protocols that use immunomagnetic beads (MACSxpress isolation) vs. the standard isolation procedures. The study shows that the MACSxpress method consistently allowed higher yields per mL of peripheral blood compared to conventional methods (P<0.001, n=8, Wilcoxon paired test), with high isolation purities for both eosinophils (95.0±1.7%) and neutrophils (94.2±10.1%) assessed by two methods: Wright's staining and flow cytometry. In addition, enumeration of CD63 + (marker for eosinophil activation) and CD66b + (marker for neutrophil activation) cells within freshly isolated granulocytes, respectively, confirmed that conventional protocols using density-gradient centrifugation caused cellular activation of the granulocytes at baseline compared to the MACSxpress method. In conclusion, MACSxpress isolation kits were found to be superior to conventional techniques for consistent purifications of eosinophils and neutrophils that were suitable for activation assays involving degranulation markers. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Real-space Wigner-Seitz Cells Imaging of Potassium on Graphite via Elastic Atomic Manipulation

    PubMed Central

    Yin, Feng; Koskinen, Pekka; Kulju, Sampo; Akola, Jaakko; Palmer, Richard E.

    2015-01-01

    Atomic manipulation in the scanning tunnelling microscopy, conventionally a tool to build nanostructures one atom at a time, is here employed to enable the atomic-scale imaging of a model low-dimensional system. Specifically, we use low-temperature STM to investigate an ultra thin film (4 atomic layers) of potassium created by epitaxial growth on a graphite substrate. The STM images display an unexpected honeycomb feature, which corresponds to a real-space visualization of the Wigner-Seitz cells of the close-packed surface K atoms. Density functional simulations indicate that this behaviour arises from the elastic, tip-induced vertical manipulation of potassium atoms during imaging, i.e. elastic atomic manipulation, and reflects the ultrasoft properties of the surface under strain. The method may be generally applicable to other soft e.g. molecular or biomolecular systems. PMID:25651973

  5. Somatic Cell Nuclear Transfer in the Mouse

    NASA Astrophysics Data System (ADS)

    Kishigami, Satoshi; Wakayama, Teruhiko

    Somatic cell nuclear transfer (SCNT) has become a unique and powerful tool for epigenetic reprogramming research and gene manipulation in animals since “Dolly,” the first animal cloned from an adult cell was reported in 1997. Although the success rates of somatic cloning have been inefficient and the mechanism of reprogramming is still largely unknown, this technique has been proven to work in more than 10 mammalian species. Among them, the mouse provides the best model for both basic and applied research of somatic cloning because of its abounding genetic resources, rapid sexual maturity and propagation, minimal requirements for housing, etc. This chapter describes a basic protocol for mouse cloning using cumulus cells, the most popular cell type for NT, in which donor nuclei are directly injected into the oocyte using a piezo-actuated micromanipulator. In particular, we focus on a new, more efficient mouse cloning protocol using trichostatin A (TSA), a histone deacetylase (HDAC) inhibitor, which increases both in vitro and in vivo developmental rates from twofold to fivefold. This new method including TSA will be helpful to establish mouse cloning in many laboratories.

  6. Part II: morphological analysis of embryonic development following femtosecond laser manipulation

    NASA Astrophysics Data System (ADS)

    Kohli, V.; Elezzabi, A. Y.

    2008-02-01

    The zebrafish (Danio rerio) is an attractive model system that has received wide attention for its usefulness in the study of development and disease. This organism represents a closer analog to humans than the common invetebrates Drosophila melanogaster and Caenorhabditis elegans, making this species an ideal model for human health research. Non-invasive manipulation of the zebrafish has been challenging, owing to the outer proteinaceous membrane and multiple embryonic barriers. A novel tool capable of manipulating early cleavage stage embryonic cells would be important for future advancements in medial research and the aquaculture industry. Herein, we demonstrate the laser surgery of early cleavage stage (2-cell) blastomere cells using a range of average laser powers and beam dwell times. Since the novelty of this manipulation tool depends on its non-invasive application, we examined short- and long-term laser-induced developmental defects following embryonic surgery. Laser-manipulated embryos were reared to 2 and 7 days post-fertilization and compared to control embryos at the same developmental stages. Morphological analysis was performed using light microscopy and scanning electron microscopy. Developmental features that were examined included the antero- and dorsal-lateral whole body views of the larvae, the olfactory pit, dorsal, ventral and pectoral fins, notochord, pectoral fin buds, otic capsule, otic vesicle, neuromast patterning, and kinocilia of the olfactory pit rim and cristae of the lateral wall of the ear. Laser-manipulated embryos developed normally relative to the controls, with developmental patterning and morphology at 2 and 7 days indistinguishable from control larvae.

  7. Microfluidic immunomagnetic cell separation from whole blood.

    PubMed

    Bhuvanendran Nair Gourikutty, Sajay; Chang, Chia-Pin; Puiu, Poenar Daniel

    2016-02-01

    Immunomagnetic-based separation has become a viable technique for the separation of cells and biomolecules. Here we report on the design and analysis of a simple and efficient microfluidic device for high throughput and high efficiency capture of cells tagged with magnetic particles. This is made possible by using a microfluidic chip integrated with customized arrays of permanent magnets capable of creating large magnetic field gradients, which determine the effective capturing of the tagged cells. This method is based on manipulating the cells which are under the influence of a combination of magnetic and fluid dynamic forces in a fluid under laminar flow through a microfluidic chip. A finite element analysis (FEA) model is developed to analyze the cell separation process and predict its behavior, which is validated subsequently by the experimental results. The magnetic field gradients created by various arrangements of magnetic arrays have been simulated using FEA and the influence of these field gradients on cell separation has been studied with the design of our microfluidic chip. The proof-of-concept for the proposed technique is demonstrated by capturing white blood cells (WBCs) from whole human blood. CD45-conjugated magnetic particles were added into whole blood samples to label WBCs and the mixture was flown through our microfluidic device to separate the labeled cells. After the separation process, the remaining WBCs in the elute were counted to determine the capture efficiency, and it was found that more than 99.9% WBCs have been successfully separated from whole blood. The proposed design can be used for positive selection as well as for negative enrichment of rare cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Optoelectronic tweezers for medical diagnostics

    NASA Astrophysics Data System (ADS)

    Kremer, Clemens; Neale, Steven; Menachery, Anoop; Barrett, Mike; Cooper, Jonathan M.

    2012-01-01

    Optoelectronic tweezers (OET) allows the spatial patterning of electric fields through selected illumination of a photoconductive surface. This enables the manipulation of micro particles and cells by creating non-uniform electrical fields that then produce dielectrophoretic (DEP) forces. The DEP responses of cells differ and can produce negative or positive (repelled or attracted to areas of high electric field) forces. Therefore OET can be used to manipulate individual cells and separate different cell types from each other. Thus OET has many applications for medical diagnostics, demonstrated here with work towards diagnosing Human African Trypanosomiasis, also known as sleeping sickness.

  9. REMOTELY OPERATED MANIPULATOR

    DOEpatents

    Hutto, E.L.

    1961-08-15

    A manipulator is described for performing, within an entirely enclosed cell containling radioactive materials, various mechanical operations. A rod with flexible fingers is encompassed by a tubular sleeve shorter than the rod. Relative movement between the rod and sleeve causes the fingers to open and close. This relative movement is effected by relative movement of permanent magnets in magnetic coupling relation to magnetic followers affixed to the ends of the rod and sleeve. The rod and its sleeve may be moved as a unit axially or may be rotated by means of the magnetic couplings. The manipulator is enclosed within a tubular member which is flexibly sealed to an opening in the cell. (AEC)

  10. Advances in Testing Techniques for Digital Microfluidic Biochips

    PubMed Central

    Shukla, Vineeta; Hussin, Fawnizu Azmadi; Hamid, Nor Hisham; Zain Ali, Noohul Basheer

    2017-01-01

    With the advancement of digital microfluidics technology, applications such as on-chip DNA analysis, point of care diagnosis and automated drug discovery are common nowadays. The use of Digital Microfluidics Biochips (DMFBs) in disease assessment and recognition of target molecules had become popular during the past few years. The reliability of these DMFBs is crucial when they are used in various medical applications. Errors found in these biochips are mainly due to the defects developed during droplet manipulation, chip degradation and inaccuracies in the bio-assay experiments. The recently proposed Micro-electrode-dot Array (MEDA)-based DMFBs involve both fluidic and electronic domains in the micro-electrode cell. Thus, the testing techniques for these biochips should be revised in order to ensure proper functionality. This paper describes recent advances in the testing technologies for digital microfluidics biochips, which would serve as a useful platform for developing revised/new testing techniques for MEDA-based biochips. Therefore, the relevancy of these techniques with respect to testing of MEDA-based biochips is analyzed in order to exploit the full potential of these biochips. PMID:28749411

  11. Advances in Testing Techniques for Digital Microfluidic Biochips.

    PubMed

    Shukla, Vineeta; Hussin, Fawnizu Azmadi; Hamid, Nor Hisham; Zain Ali, Noohul Basheer

    2017-07-27

    With the advancement of digital microfluidics technology, applications such as on-chip DNA analysis, point of care diagnosis and automated drug discovery are common nowadays. The use of Digital Microfluidics Biochips (DMFBs) in disease assessment and recognition of target molecules had become popular during the past few years. The reliability of these DMFBs is crucial when they are used in various medical applications. Errors found in these biochips are mainly due to the defects developed during droplet manipulation, chip degradation and inaccuracies in the bio-assay experiments. The recently proposed Micro-electrode-dot Array (MEDA)-based DMFBs involve both fluidic and electronic domains in the micro-electrode cell. Thus, the testing techniques for these biochips should be revised in order to ensure proper functionality. This paper describes recent advances in the testing technologies for digital microfluidics biochips, which would serve as a useful platform for developing revised/new testing techniques for MEDA-based biochips. Therefore, the relevancy of these techniques with respect to testing of MEDA-based biochips is analyzed in order to exploit the full potential of these biochips.

  12. Digital logic optimization using selection operators

    NASA Technical Reports Server (NTRS)

    Whitaker, Sterling R. (Inventor); Miles, Lowell H. (Inventor); Cameron, Eric G. (Inventor); Gambles, Jody W. (Inventor)

    2004-01-01

    According to the invention, a digital design method for manipulating a digital circuit netlist is disclosed. In one step, a first netlist is loaded. The first netlist is comprised of first basic cells that are comprised of first kernel cells. The first netlist is manipulated to create a second netlist. The second netlist is comprised of second basic cells that are comprised of second kernel cells. A percentage of the first and second kernel cells are selection circuits. There is less chip area consumed in the second basic cells than in the first basic cells. The second netlist is stored. In various embodiments, the percentage could be 2% or more, 5% or more, 10% or more, 20% or more, 30% or more, or 40% or more.

  13. Manipulating regulatory T cells: a promising strategy to treat autoimmunity.

    PubMed

    Zhang, Dunfang; Tu, Eric; Kasagi, Shimpei; Zanvit, Peter; Chen, Qianming; Chen, WanJun

    2015-01-01

    CD4(+)CD25(+)Foxp3(+)regulatory T cells (Treg cells) are extremely important in maintaining immune tolerance. Manipulation of Treg cells, especially autoantigen-specific Treg cells is a promising approach for treatments of autoimmune disease since Treg cells may provide the advantage of antigen specificity without overall immune suppression. However, the clinical application of Treg cells has long been limited due to low numbers of Treg cells and the difficulty in identifying their antigen specificity. In this review, we summarize studies that demonstrate regression of autoimmune diseases using Treg cells as therapeutics. We also discuss approaches to generate polyclonal and autoantigen-specific Treg cells in vitro and in vivo. We also discuss our recent study that describes a novel approach of generating autoantigen-specific Treg cells in vivo and restoring immune tolerance by two steps apoptosis-antigen therapy.

  14. Large-scale preparation of plasmid DNA.

    PubMed

    Heilig, J S; Elbing, K L; Brent, R

    2001-05-01

    Although the need for large quantities of plasmid DNA has diminished as techniques for manipulating small quantities of DNA have improved, occasionally large amounts of high-quality plasmid DNA are desired. This unit describes the preparation of milligram quantities of highly purified plasmid DNA. The first part of the unit describes three methods for preparing crude lysates enriched in plasmid DNA from bacterial cells grown in liquid culture: alkaline lysis, boiling, and Triton lysis. The second part describes four methods for purifying plasmid DNA in such lysates away from contaminating RNA and protein: CsCl/ethidium bromide density gradient centrifugation, polyethylene glycol (PEG) precipitation, anion-exchange chromatography, and size-exclusion chromatography.

  15. Vibration control of a manipulator tip on a flexible body

    NASA Technical Reports Server (NTRS)

    Xu, J.; Bainum, P. M.; Li, F.

    1992-01-01

    Vibration control of a rigid manipulator tip on a main flexible uniform beam is examined. It is proposed to add a compensator between the manipulator and the beam to rotate and extend/retrieve the manipulator during the control period. The 2D station-keeping maneuvers within the linear range without gravity and damping are considered. The compensatory open-loop control law, which depends on the amplitudes of the beam's flexible deformations at the connection joint, is synthesized using linear quadratic regulator techniques. After introducing the compensatory control into the system, system control is still stable, and the tip coordinates of the manipulator can be made to closely follow the rigid beam motion, which is assumed to be a desired motion.

  16. Imaging modes of atomic force microscopy for application in molecular and cell biology.

    PubMed

    Dufrêne, Yves F; Ando, Toshio; Garcia, Ricardo; Alsteens, David; Martinez-Martin, David; Engel, Andreas; Gerber, Christoph; Müller, Daniel J

    2017-04-06

    Atomic force microscopy (AFM) is a powerful, multifunctional imaging platform that allows biological samples, from single molecules to living cells, to be visualized and manipulated. Soon after the instrument was invented, it was recognized that in order to maximize the opportunities of AFM imaging in biology, various technological developments would be required to address certain limitations of the method. This has led to the creation of a range of new imaging modes, which continue to push the capabilities of the technique today. Here, we review the basic principles, advantages and limitations of the most common AFM bioimaging modes, including the popular contact and dynamic modes, as well as recently developed modes such as multiparametric, molecular recognition, multifrequency and high-speed imaging. For each of these modes, we discuss recent experiments that highlight their unique capabilities.

  17. Microfluidic microbial fuel cells: from membrane to membrane free

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ye, Dingding; Li, Jun; Zhu, Xun; Liao, Qiang; Zhang, Biao

    2016-08-01

    Microfluidic microbial fuel cells (MMFCs) are small carbon-neutral devices that use self-organized bacteria to degrade organic substrates and harness energy from the waste water. Conventional MMFCs have made great strides in the past decade and have overcome some limitations, such as high capital costs and low energy output. A co-laminar flow MFC has been first proposed in 2011 with the potential to be an attractively power source to niche applications. Co-laminar MFCs typically operate without any physical membranes separating the reactants, and bacterial ecosystems can be easily manipulated by regulating the inlet conditions. This paper highlights recent accomplishments in the development of co-laminar MFCs, emphasizing basic principles, mass transport and fluid dynamics including boundary layer theory, entrance conditions and mixing zone issues. Furthermore, the development of current techniques, major challenges and the potential research directions are discussed.

  18. CASE STUDY 6.26: UNSUCCESSFUL TOXICITY IDENTIFICATION AND EVALUATIONS MANIPULATIONS: SEAWATER BUFFERS AND STERILIZATION METHODS

    EPA Science Inventory

    This paper summarizes several unsuccessful attempts to develop Toxicity Identification and Evaluation (TIE) manipulations for aqueous samples during the first 5 years of our research. The first part of the paper explores irradiation as a sterilization technique to discern if sam...

  19. 76 FR 81481 - Agency Information Collection Activities: Notice of Intent to Renew Collection, Large Trader Reports

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-28

    ... assist the Commission in the prevention of market manipulation. DATES: Comments must be submitted on or... other technological collection techniques or other forms of information technology; e.g., permitting... surveillance program, which includes the detection and prevention of price manipulation and enforcement of...

  20. Hybrid microfluidics combined with active and passive approaches for continuous cell separation.

    PubMed

    Yan, Sheng; Zhang, Jun; Yuan, Dan; Li, Weihua

    2017-01-01

    Microfluidics, which is classified as either active or passive, is capable of separating cells of interest from a complex and heterogeneous sample. Active methods utilise external fields such as electric, magnetic, acoustic, and optical to drive cells for separation, while passive methods utilise channel structures, intrinsic hydrodynamic forces, and steric hindrances to manipulate cells. However, when processing complex biological samples such as whole blood with rare cells, separation with a single module microfluidic device is difficult. Hybrid microfluidics is an emerging technique, which utilises active and passive methods whilst fulfilling higher requirements for stable performance, versatility, and convenience, including (i) the ability to process multi-target cells, (ii) enhanced ability for multiplexed separation, (iii) higher sensitivity, and (iv) tunability for a wider operational range. This review introduces the fundamental physics and typical formats for subclasses of hybrid microfluidic devices based on their different physical fields; presents current examples of cell sorting to highlight the advantage and usefulness of hybrid microfluidics on biomedicine, and then discusses the challenges and perspective of future development and the promising direction of research in this field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Liquid metal actuation by electrical control of interfacial tension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaker, Collin B.; Dickey, Michael D., E-mail: michael-dickey@ncsu.edu

    2016-09-15

    By combining metallic electrical conductivity with low viscosity, liquid metals and liquid metal alloys offer new and exciting opportunities to serve as reconfigurable components of electronic, microfluidic, and electromagnetic devices. Here, we review the physics and applications of techniques that utilize voltage to manipulate the interfacial tension of liquid metals; such techniques include electrocapillarity, continuous electrowetting, electrowetting-on-dielectric, and electrochemistry. These techniques lower the interfacial tension between liquid metals and a surrounding electrolyte by driving charged species (or in the case of electrochemistry, chemical species) to the interface. The techniques are useful for manipulating and actuating liquid metals at sub-mm lengthmore » scales where interfacial forces dominate. We focus on metals and alloys that are liquid near or below room temperature (mercury, gallium, and gallium-based alloys). The review includes discussion of mercury—despite its toxicity—because it has been utilized in numerous applications and it offers a way of introducing several phenomena without the complications associated with the oxide layer that forms on gallium and its alloys. The review focuses on the advantages, applications, opportunities, challenges, and limitations of utilizing voltage to control interfacial tension as a method to manipulate liquid metals.« less

  2. A forester's look at the application of image manipulation techniques to multitemporal Landsat data

    NASA Technical Reports Server (NTRS)

    Williams, D. L.; Stauffer, M. L.; Leung, K. C.

    1979-01-01

    Registered, multitemporal Landsat data of a study area in central Pennsylvania were analyzed to detect and assess changes in the forest canopy resulting from insect defoliation. Images taken July 19, 1976, and June 27, 1977, were chosen specifically to represent forest canopy conditions before and after defoliation, respectively. Several image manipulation and data transformation techniques, developed primarily for estimating agricultural and rangeland standing green biomass, were applied to these data. The applicability of each technique for estimating the severity of forest canopy defoliation was then evaluated. All techniques tested had highly correlated results. In all cases, heavy defoliation was discriminated from healthy forest. Areas of moderate defoliation were confused with healthy forest on northwest (NW) aspects, but were distinct from healthy forest conditions on southeast (SE)-facing slopes.

  3. [Principles and Methods for Formulating National Standards of "Regulations of Acupuncture-nee- dle Manipulating techniques"].

    PubMed

    Gang, Wei-juan; Wang, Xin; Wang, Fang; Dong, Guo-feng; Wu, Xiao-dong

    2015-08-01

    The national standard of "Regulations of Acupuncture-needle Manipulating Techniques" is one of the national Criteria of Acupuncturology for which a total of 22 items have been already established. In the process of formulation, a series of common and specific problems have been met. In the present paper, the authors expound these problems from 3 aspects, namely principles for formulation, methods for formulating criteria, and considerations about some problems. The formulating principles include selection and regulations of principles for technique classification and technique-related key factors. The main methods for formulating criteria are 1) taking the literature as the theoretical foundation, 2) taking the clinical practice as the supporting evidence, and 3) taking the expounded suggestions or conclusions through peer review.

  4. AN IMPROVED SOCKING TECHNIQUE FOR MASTER SLAVES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, T.C.; Deckard, L.E.; Howe, P.W.

    1962-10-29

    A technique for socking a pair of standard Model 8 master-slave manipulators is described. The technique is primarily concerned with the fabrication of the bellows section, which provides for Z motion as well as wris movement and rotation. (N.W.R.)

  5. Beyond the Snapshot.

    ERIC Educational Resources Information Center

    Smith, Lloyd

    1979-01-01

    Presents some inventive darkroom techniques which can lead students to new interests in designing creative images. These techniques include easel manipulation, image blending, paper negatives, vignette, vaseline smear, cut strip, flop negative, or combinations of these. Each technique is illustrated by a student photograph. (Author/SJL)

  6. Laser Nano-Neurosurgery from Gentle Manipulation to Nano-Incision of Neuronal Cells and Scaffolds: An Advanced Neurotechnology Tool.

    PubMed

    Soloperto, Alessandro; Palazzolo, Gemma; Tsushima, Hanako; Chieregatti, Evelina; Vassalli, Massimo; Difato, Francesco

    2016-01-01

    Current optical approaches are progressing far beyond the scope of monitoring the structure and function of living matter, and they are becoming widely recognized as extremely precise, minimally-invasive, contact-free handling tools. Laser manipulation of living tissues, single cells, or even single-molecules is becoming a well-established methodology, thus founding the onset of new experimental paradigms and research fields. Indeed, a tightly focused pulsed laser source permits complex tasks such as developing engineered bioscaffolds, applying calibrated forces, transfecting, stimulating, or even ablating single cells with subcellular precision, and operating intracellular surgical protocols at the level of single organelles. In the present review, we report the state of the art of laser manipulation in neuroscience, to inspire future applications of light-assisted tools in nano-neurosurgery.

  7. Manipulation of acoustic wavefront by gradient metasurface based on Helmholtz Resonators.

    PubMed

    Lan, Jun; Li, Yifeng; Xu, Yue; Liu, Xiaozhou

    2017-09-06

    We designed a gradient acoustic metasurface to manipulate acoustic wavefront freely. The broad bandwidth and high efficiency transmission are achieved by the acoustic metasurface which is constructed with a series of unit cells to provide desired discrete acoustic velocity distribution. Each unit cell is composed of a decorated metal plate with four periodically arrayed Helmholtz resonators (HRs) and a single slit. The design employs a gradient velocity to redirect refracted wave and the impedance matching between the metasurface and the background medium can be realized by adjusting the slit width of unit cell. The theoretical and numerical results show that some excellent wavefront manipulations are demonstrated by anomalous refraction, non-diffracting Bessel beam, sub-wavelength flat focusing, and effective tunable acoustic negative refraction. Our designed structure may offer potential applications for the imaging system, beam steering and acoustic lens.

  8. Laser Nano-Neurosurgery from Gentle Manipulation to Nano-Incision of Neuronal Cells and Scaffolds: An Advanced Neurotechnology Tool

    PubMed Central

    Soloperto, Alessandro; Palazzolo, Gemma; Tsushima, Hanako; Chieregatti, Evelina; Vassalli, Massimo; Difato, Francesco

    2016-01-01

    Current optical approaches are progressing far beyond the scope of monitoring the structure and function of living matter, and they are becoming widely recognized as extremely precise, minimally-invasive, contact-free handling tools. Laser manipulation of living tissues, single cells, or even single-molecules is becoming a well-established methodology, thus founding the onset of new experimental paradigms and research fields. Indeed, a tightly focused pulsed laser source permits complex tasks such as developing engineered bioscaffolds, applying calibrated forces, transfecting, stimulating, or even ablating single cells with subcellular precision, and operating intracellular surgical protocols at the level of single organelles. In the present review, we report the state of the art of laser manipulation in neuroscience, to inspire future applications of light-assisted tools in nano-neurosurgery. PMID:27013962

  9. Drop-on-Demand Single Cell Isolation and Total RNA Analysis

    PubMed Central

    Moon, Sangjun; Kim, Yun-Gon; Dong, Lingsheng; Lombardi, Michael; Haeggstrom, Edward; Jensen, Roderick V.; Hsiao, Li-Li; Demirci, Utkan

    2011-01-01

    Technologies that rapidly isolate viable single cells from heterogeneous solutions have significantly contributed to the field of medical genomics. Challenges remain both to enable efficient extraction, isolation and patterning of single cells from heterogeneous solutions as well as to keep them alive during the process due to a limited degree of control over single cell manipulation. Here, we present a microdroplet based method to isolate and pattern single cells from heterogeneous cell suspensions (10% target cell mixture), preserve viability of the extracted cells (97.0±0.8%), and obtain genomic information from isolated cells compared to the non-patterned controls. The cell encapsulation process is both experimentally and theoretically analyzed. Using the isolated cells, we identified 11 stem cell markers among 1000 genes and compare to the controls. This automated platform enabling high-throughput cell manipulation for subsequent genomic analysis employs fewer handling steps compared to existing methods. PMID:21412416

  10. Domains, defects, and de Vries: Electrooptics of smectic liquid crystals

    NASA Astrophysics Data System (ADS)

    Jones, Christopher D.

    Liquid crystal (LC) materials are easily manipulated with the introduction of fields. Surface alignment of LC materials is commonly achieved via a rubbed polymer. Electric fields are then applied across the LC in order to reorient the individual molecules. These two controlling fields are the fundamental basis for the entirety of the liquid crystal display (LCD) industry, which in the 1970s was limited to calculators and digital watches but now LCDs are present by the dozen in the average home! Because these manipulations are so simple, and because the applications are so obvious, it has been useful to exploit the display cell geometry for the study of LCs. Novel compounds are being synthesized by chemistry groups at a high rate, and characterization of new materials must keep up. Therefore a primary technique is to probe the electrooptics of a material in a display cell. However, this geometry has its own impact on the behavior of a material: orientation and pinning at the surfaces tend to dominate the rest of the cell volume. With this information in mind, three interesting results of the display cell geometry and the resultant electrooptic measurements will be shown. First, the nucleation of twisted domains in achiral materials, made possible by the high energies required to overcome the orientation of the surface layers as compared to the bulk will be discussed. Second, the foundations of a large scale texture, made possible by surface pinning, expressing the stress of a material that shows large layer expansion on cooling through the smectic A phase will be solved. Finally, a model for the frequency dependence of the unique electrooptical behavior of the de Vries-type of smectics will be provided.

  11. Xanthosine administration does not affect the proportion of epithelial stem cells in bovine mammary tissue, but has a latent negative effect on cell proliferation.

    PubMed

    Rauner, Gat; Barash, Itamar

    2014-10-15

    The challenge in manipulating the proportion of somatic stem cells lies in having to override tissue homeostasis. Xanthosine infusion via the teat canal has been reported to augment the number of label-retaining cells in the mammary gland of 3-month-old bovine calves. To further delineate xanthosine׳s effect on defined stem cells in the mammary gland of heifers-which are candidates for increased prospective milk production following such manipulation-bovine mammary parenchymal tissue was transplanted and integrated into the cleared mammary fat pad of immunodeficient mice. Xanthosine administration for 14 days did not affect the number of label-retaining cells after 10- and 11-week chases. No change in stem cell proportion, analyzed according to CD49f and CD24 expression, was noted. Clone formation and propagation rate of cultured cells, as well as expression of stem cell markers, were also unaffected. In contrast, a latent 50% decrease in bovine mammary cell proliferation rate was observed 11 weeks after xanthosine administration. Tumor development in mice was also limited by xanthosine administration. These effects may have resulted from an initial decrease in expression of the rate-limiting enzyme in guanine synthesis, IMPDH. The data indicate that caution should be exerted when considering xanthosine for stem cell manipulation. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Visualization of Live Cochlear Stereocilia at a Nanoscale Resolution Using Hopping Probe Ion Conductance Microscopy

    PubMed Central

    Vélez-Ortega, A. Catalina; Frolenkov, Gregory I.

    2016-01-01

    The mechanosensory apparatus that detects sound-induced vibrations in the cochlea is located on the apex of the auditory sensory hair cells and it is made up of actin-filled projections, called stereocilia. In young rodents, stereocilia bundles of auditory hair cells consist of 3 to 4 rows of stereocilia of decreasing height and varying thickness. Morphological studies of the auditory stereocilia bundles in live hair cells have been challenging because the diameter of each stereocilium is near or below the resolution limit of optical microscopy. In theory, scanning probe microscopy techniques, such as atomic force microscopy, could visualize the surface of a living cell at a nanoscale resolution. However, their implementations for hair cell imaging have been largely unsuccessful because the probe usually damages the bundle and disrupts the bundle cohesiveness during imaging. We overcome these limitations by using hopping probe ion conductance microscopy (HPICM), a non-contact scanning probe technique that is ideally suited for the imaging of live cells with a complex topography. Organ of Corti explants are placed in a physiological solution and then a glass nanopipette –which is connected to a 3D-positioning piezoelectric system and to a patch clamp amplifier– is used to scan the surface of the live hair cells at nanometer resolution without ever touching the cell surface. Here we provide a detailed protocol for the imaging of mouse or rat stereocilia bundles in live auditory hair cells using HPICM. We provide information about the fabrication of the nanopipettes, the calibration of the HPICM setup, the parameters we have optimized for the imaging of live stereocilia bundles and, lastly, a few basic image post-processing manipulations. PMID:27259929

  13. Visualization of Live Cochlear Stereocilia at a Nanoscale Resolution Using Hopping Probe Ion Conductance Microscopy.

    PubMed

    Vélez-Ortega, A Catalina; Frolenkov, Gregory I

    2016-01-01

    The mechanosensory apparatus that detects sound-induced vibrations in the cochlea is located on the apex of the auditory sensory hair cells and it is made up of actin-filled projections, called stereocilia. In young rodents, stereocilia bundles of auditory hair cells consist of 3-4 rows of stereocilia of decreasing height and varying thickness. Morphological studies of the auditory stereocilia bundles in live hair cells have been challenging because the diameter of each stereocilium is near or below the resolution limit of optical microscopy. In theory, scanning probe microscopy techniques, such as atomic force microscopy, could visualize the surface of a living cell at a nanoscale resolution. However, their implementations for hair cell imaging have been largely unsuccessful because the probe usually damages the bundle and disrupts the bundle cohesiveness during imaging. We overcome these limitations by using hopping probe ion conductance microscopy (HPICM), a non-contact scanning probe technique that is ideally suited for the imaging of live cells with a complex topography. Organ of Corti explants are placed in a physiological solution and then a glass nanopipette-which is connected to a 3D-positioning piezoelectric system and to a patch clamp amplifier-is used to scan the surface of the live hair cells at nanometer resolution without ever touching the cell surface.Here, we provide a detailed protocol for the imaging of mouse or rat stereocilia bundles in live auditory hair cells using HPICM. We provide information about the fabrication of the nanopipettes, the calibration of the HPICM setup, the parameters we have optimized for the imaging of live stereocilia bundles and, lastly, a few basic image post-processing manipulations.

  14. Robust and effective methodologies for cryopreservation and DNA extraction from anaerobic gut fungi.

    PubMed

    Solomon, Kevin V; Henske, John K; Theodorou, Michael K; O'Malley, Michelle A

    2016-04-01

    Cell storage and DNA isolation are essential to developing an expanded suite of microorganisms for biotechnology. However, many features of non-model microbes, such as an anaerobic lifestyle and rigid cell wall, present formidable challenges to creating strain repositories and extracting high quality genomic DNA. Here, we establish accessible, high efficiency, and robust techniques to store lignocellulolytic anaerobic gut fungi long term without specialized equipment. Using glycerol as a cryoprotectant, gut fungal isolates were preserved for a minimum of 23 months at -80 °C. Unlike previously reported approaches, this improved protocol is non-toxic and rapid, with samples surviving twice as long with negligible growth impact. Genomic DNA extraction for these isolates was optimized to yield samples compatible with next generation sequencing platforms (e.g. Illumina, PacBio). Popular DNA isolation kits and precipitation protocols yielded preps that were unsuitable for sequencing due to carbohydrate contaminants from the chitin-rich cell wall and extensive energy reserves of gut fungi. To address this, we identified a proprietary method optimized for hardy plant samples that rapidly yielded DNA fragments in excess of 10 kb with minimal RNA, protein or carbohydrate contamination. Collectively, these techniques serve as fundamental tools to manipulate powerful biomass-degrading gut fungi and improve their accessibility among researchers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Establishment of stem cell lines from nuclear transferred and parthenogenetically activated mouse oocytes for therapeutic cloning.

    PubMed

    Ju, Jin Young; Park, Chun Young; Gupta, Mukesh Kumar; Uhm, Sang Jun; Paik, Eun Chan; Ryoo, Zae Young; Cho, Youl Hee; Chung, Kil Saeng; Lee, Hoon Taek

    2008-05-01

    To establish embryonic stem cell lines from nuclear transfer of somatic cell nuclei isolated from the same oocyte donor and from parthenogenetic activation. The study also evaluated the effect of the micromanipulation procedure on the outcome of somatic cell nuclear transfer in mice. Randomized, prospective study. Hospital-based assisted reproductive technology laboratory. F(1) (C57BL/6 x 129P3/J) mice. Metaphase II-stage oocytes were either parthenogenetically activated or nuclear transferred with cumulus cell nuclei or parthenogenetically activated after a sham-manipulation procedure. Embryogenesis and embryonic stem cell establishment. The development rate to morula/blastocyst of nuclear transferred oocytes (27.9% +/- 5.9%) was significantly lower than that of the sham-manipulated (84.1% +/- 5.6%) or parthenogenetic (98.6% +/- 1.4%) groups. A sharp decrease in cleavage potential was obvious in the two- to four-cell transition for the nuclear transferred embryos (79.0% +/- 4.6% and 43.3% +/- 5.0%), implying incomplete nuclear reprogramming in arrested oocytes. However, the cleavage, as well as the development rate, of parthenogenetic and sham-manipulated groups did not differ significantly. The embryonic stem cell line establishment rate was higher from parthenogenetically activated oocytes (15.7%) than nuclear transferred (4.3%) or sham-manipulated oocytes (12.5%). Cell colonies from all groups displayed typical morphology of mice embryonic stem cells and could be maintained successfully with undifferentiated morphology after continuous proliferation for more than 120 passages still maintaining normal karyotype. All these cells were positive for mice embryonic stem cell markers such as Oct-4 and SSEA-1 based on immunocytochemistry and reverse transcriptase-polymerase chain reaction. The clonal origin of the ntES cell line and the parthenogenetic embryonic stem cell lines were confirmed by polymerase chain reaction analysis of the polymorphic markers. Blastocyst injection experiments demonstrated that these lines contributed to resulting chimeras and are germ-line competent. We report the establishment of ntES cell lines from somatic cells isolated from same individual. Our data also suggest that embryo micromanipulation procedure during the nuclear transfer procedure influences the developmental ability and embryonic stem cell establishment rate of nuclear transferred embryos.

  16. Fabrication and electric measurements of nanostructures inside transmission electron microscope.

    PubMed

    Chen, Qing; Peng, Lian-Mao

    2011-06-01

    Using manipulation holders specially designed for transmission electron microscope (TEM), nanostructures can be characterized, measured, modified and even fabricated in-situ. In-situ TEM techniques not only enable real-time study of structure-property relationships of materials at atomic scale, but also provide the ability to control and manipulate materials and structures at nanoscale. This review highlights in-situ electric measurements and in-situ fabrication and structure modification using manipulation holder inside TEM. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. An inquiry into application of Gokyo (Aikido's Fifth Teaching) on human anatomy.

    PubMed

    Olson, G D; Seitz, F C; Guldbrandsen, F

    1996-06-01

    In this anatomical analysis the authors examined Gokyo, Aikido's Fifth Teaching. Using their cadaver/anatomist-observer model, the authors observed that tissues manipulated by the technique were primarily on the dorsal side of the wrist, proximal to the second metacarpal. The source of the pain was thought to involve the manipulation of the wrist joints and associated carpometacarpal ligaments. Locations of the manipulated tissue and sources of pain associated with that tissue, and their limited practical application were discussed.

  18. Computerized symbolic manipulation in structural mechanics Progress and potential

    NASA Technical Reports Server (NTRS)

    Noor, A. K.; Andersen, C. M.

    1978-01-01

    Status and recent applications of computerized symbolic manipulation to structural mechanics problems are summarized. The applications discussed include; (1) generation of characteristic arrays of finite elements; (2) evaluation of effective stiffness and mass coefficients of continuum models for repetitive lattice structures; and (3) application of Rayleigh-Ritz technique to free vibration analysis of laminated composite elliptic plates. The major advantages of using computerized symbolic manipulation in each of these applications are outlined. A number of problem areas which limit the realization of the full potential of computerized symbolic manipulation in structural mechanics are examined and some of the means of alleviating them are discussed.

  19. Large planar maneuvers for articulated flexible manipulators

    NASA Technical Reports Server (NTRS)

    Huang, Jen-Kuang; Yang, Li-Farn

    1988-01-01

    An articulated flexible manipulator carried on a translational cart is maneuvered by an active controller to perform certain position control tasks. The nonlinear dynamics of the articulated flexible manipulator are derived and a transformation matrix is formulated to localize the nonlinearities within the inertia matrix. Then a feedback linearization scheme is introduced to linearize the dynamic equations for controller design. Through a pole placement technique, a robust controller design is obtained by properly assigning a set of closed-loop desired eigenvalues to meet performance requirements. Numerical simulations for the articulated flexible manipulators are given to demonstrate the feasibility and effectiveness of the proposed position control algorithms.

  20. Manipulator control by exact linearization

    NASA Technical Reports Server (NTRS)

    Kruetz, K.

    1987-01-01

    Comments on the application to rigid link manipulators of geometric control theory, resolved acceleration control, operational space control, and nonlinear decoupling theory are given, and the essential unity of these techniques for externally linearizing and decoupling end effector dynamics is discussed. Exploiting the fact that the mass matrix of a rigid link manipulator is positive definite, a consequence of rigid link manipulators belonging to the class of natural physical systems, it is shown that a necessary and sufficient condition for a locally externally linearizing and output decoupling feedback law to exist is that the end effector Jacobian matrix be nonsingular. Furthermore, this linearizing feedback is easy to produce.

Top