NASA Technical Reports Server (NTRS)
Wolf, M.
1981-01-01
The effect of solar cell metallization pattern design on solar cell performance and the costs and performance effects of different metallization processes are discussed. Definitive design rules for the front metallization pattern for large area solar cells are presented. Chemical and physical deposition processes for metallization are described and compared. An economic evaluation of the 6 principal metallization options is presented. Instructions for preparing Format A cost data for solar cell manufacturing processes from UPPC forms for input into the SAMIC computer program are presented.
Refractory metals for ARPS AMTEC cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svedberg, R.C.; Sievers, R.C.
1998-07-01
Alkali Metal Thermal-to-Electric Converter (AMTEC) cells for the Advanced Radioisotope Power Systems (ARPS) program are being developed with refractory metals and alloys as the basic structural materials. AMTEC cell efficiency increases with cell operating temperature. For space applications, long term reliability and high efficiency are essential and refractory metals were selected because of their high temperature strength, low vapor pressure, and compatibility with sodium. However, refractory metals are sensitive to oxygen, nitrogen and hydrogen contamination and refractory metal cells cannot be processed in air. Because of this sensitivity, new manufacturing and processing techniques are being developed. In addition to structuralmore » elements, development of other refractory metal components for the AMTEC cells, such as the artery and evaporator wicks, pinchoff tubes and feedthroughs are required. Changes in cell fabrication techniques and processing procedures being implemented to manufacture refractory metal cells are discussed.« less
A new method of metallization for silicon solar cells
NASA Technical Reports Server (NTRS)
Macha, M.
1979-01-01
The new metallization process based on Mo-Sn system was studied. The reaction mechanism of MoO3 and its mixture with Sn was examined. The basic ink composition was modified in order to obtain a low ohmic contact to the cell. The electrical characteristics of the cells were comparable with the existing metallization processes. However, in comparison with the standard processes using silver as the contacting metal, the saving obtained by the use of the new process was substantial.
Duval, Jérôme F L
2016-04-14
A mechanistic understanding of the processes governing metal toxicity to microorganisms (bacteria, algae) calls for an adequate formulation of metal partitioning at biointerfaces during cell exposure. This includes the account of metal transport dynamics from bulk solution to biomembrane and the kinetics of metal internalisation, both potentially controlling the intracellular and surface metal fractions that originate cell growth inhibition. A theoretical rationale is developed here for such coupled toxicodynamics and interfacial metal partitioning dynamics under non-complexing medium conditions with integration of the defining cell electrostatic properties. The formalism explicitly considers intertwined metal adsorption at the biointerface, intracellular metal excretion, cell growth and metal depletion from bulk solution. The theory is derived under relevant steady-state metal transport conditions on the basis of coupled Nernst-Planck equation and continuous logistic equation modified to include metal-induced cell growth inhibition and cell size changes. Computational examples are discussed to identify limitations of the classical Biotic Ligand Model (BLM) in evaluating metal toxicity over time. In particular, BLM is shown to severely underestimate metal toxicity depending on cell exposure time, metal internalisation kinetics, cell surface electrostatics and initial cell density. Analytical expressions are provided for the interfacial metal concentration profiles in the limit where cell-growth is completely inhibited. A rigorous relationship between time-dependent cell density and metal concentrations at the biosurface and in bulk solution is further provided, which unifies previous equations formulated by Best and Duval under constant cell density and cell size conditions. The theory is sufficiently flexible to adapt to toxicity scenarios with involved cell survival-death processes.
Laser-assisted solar cell metallization processing
NASA Technical Reports Server (NTRS)
Dutta, S.
1984-01-01
Laser assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are investigated. The tasks comprising these investigations are summarized. Metal deposition experiments are carried out utilizing laser assisted pyrolysis of a variety of metal bearing polymer films and metalloorganic inks spun onto silicon substrates. Laser decomposition of spun on silver neodecanoate ink yields very promising results. Solar cell comb metallization patterns are written using this technique.
New method of metallization for silicon solar cells. Final report, December 1978-September 1979
DOE Office of Scientific and Technical Information (OSTI.GOV)
Macha, Milo
1979-12-01
Research on a new metallization process based on the Mo-Sn system is described. MoO/sub 3/ is used as the source of Mo, since its relatively low melting point and ease of reduction to metallic molybdenum. The tasks performed during this study include: (1) establishing the reduction cycle for MoO/sub 3/; (2) determining the reaction mechanism for MoO/sub 3/-Sn mixture; (3) establishing the ratio of MoO/sub 3/-Sn for the ink composition; (4) formulation of screenable ink; (5) evaluation of photovoltaic cells metallized with the ink; (6) comparison of the Mo-Sn metallization with nickel plated and silk screened silver contacts; (7) environmentalmore » test of metallized cells; (8) metallization of N/P cells with BSF and comparison with cells metallized with evaporated Ti-Ag contact; and (9) cost analysis of the process. The reaction mechanism study of MoO/sub 3/ and its mixture with Sn was conducted in an experimental station consisting of a graphite strip-heater and a Pyrex belljar under close control of temperature-atmosphere-time while allowing visual observations of the reactions. The metallization of the cells was done in a diffusion tube furnace. In order to obtain a low ohmic contact to the cell, the basic ink composition was modified with a small addition of titanium in the form of titanium resinate. The electrical characteristics of the cells were comparable with the existing metallization processes. The cost analysis was based on projected production output of one MegaWatt per year, using 2''diam. Silicon crystal wafers and the current material costs. In comparison with the standard processes using silver as the contacting metal, the saving obtained by the use of this new process is a direct result of the price difference between silver and molybdenum oxide with tin.« less
Metal ion transport quantified by ICP-MS in intact cells
Figueroa, Julio A. Landero; Stiner, Cory A.; Radzyukevich, Tatiana L.; Heiny, Judith A.
2016-01-01
The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions. PMID:26838181
Metal ion transport quantified by ICP-MS in intact cells.
Figueroa, Julio A Landero; Stiner, Cory A; Radzyukevich, Tatiana L; Heiny, Judith A
2016-02-03
The use of ICP-MS to measure metal ion content in biological tissues offers a highly sensitive means to study metal-dependent physiological processes. Here we describe the application of ICP-MS to measure membrane transport of Rb and K ions by the Na,K-ATPase in mouse skeletal muscles and human red blood cells. The ICP-MS method provides greater precision and statistical power than possible with conventional tracer flux methods. The method is widely applicable to studies of other metal ion transporters and metal-dependent processes in a range of cell types and conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.
2017-01-10
A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.
Coyle, R.T.; Barrett, J.M.
1982-05-04
Disclosed is a process for substantially reducing the series resistance of a solar cell having a thick film metal contact assembly thereon while simultaneously removing oxide coatings from the surface of the assembly prior to applying solder therewith. The process includes applying a flux to the contact assembly and heating the cell for a period of time sufficient to substantially remove the series resistance associated with the assembly by etching the assembly with the flux while simultaneously removing metal oxides from said surface of said assembly.
Coyle, R. T.; Barrett, Joy M.
1984-01-01
Disclosed is a process for substantially reducing the series resistance of a solar cell having a thick film metal contact assembly thereon while simultaneously removing oxide coatings from the surface of the assembly prior to applying solder therewith. The process includes applying a flux to the contact assembly and heating the cell for a period of time sufficient to substantially remove the series resistance associated with the assembly by etching the assembly with the flux while simultaneously removing metal oxides from said surface of said assembly.
Laser-assisted solar-cell metallization processing
NASA Technical Reports Server (NTRS)
Dutta, S.
1984-01-01
A photolytic metal deposition system using a focused continuous wave ultraviolet laser, a photolytic metal deposition system using a mask and ultraviolet flood illumination, and a pyrolytic metal deposition system using a focused continuous wave laser were studied. Fabrication of solar cells, as well as characterization to determine the effects of transient heat on solar cell junctions were investigated.
Mikes, J; Siglova, M; Cejkova, A; Masak, J; Jirku, V
2005-01-01
Wastewaters from a chemical industry polluted by heavy metal ions represent a hazard for all living organisms. It can mean danger for ecosystems and human health. New methods are sought alternative to traditional chemical and physical processes. Active elimination process of heavy metals ions provided by living cells, their components and extracellular products represents a potential way of separating toxic heavy metals from industrial wastewaters. While the abilities of bacteria to remove metal ions in solution are extensively used, fungi have been recognized as a promising kind of low-cost adsorbents for removal of heavy-metal ions from aqueous waste sources. Yeasts and fungi differ from each other in their constitution and in their abilities to produce variety of extracellular polymeric substances (EPS) with different mechanisms of metal interactions. The accumulation of Cd(2+), Cr(6+), Pb(2+), Ni(2+) and Zn(2+) by yeasts and their EPS was screened at twelve different yeast species in microcultivation system Bioscreen C and in the shaking Erlenmayer's flasks. This results were compared with the production of yeast EPS and the composition of yeast cell walls. The EPS production was measured during the yeast growth and cell wall composition was studied during the cultivations in the shaking flasks. At the end of the process extracellular polymers and their chemical composition were isolated and amount of bound heavy metals was characterized. The variable composition and the amount of the EPS were found at various yeast strains. It was influenced by various compositions of growth medium and also by various concentrations of heavy metals. It is evident, that the amount of bound heavy metals was different. The work reviews the possibilities of usage of various yeast EPS and components of cell walls in the elimination processes of heavy metal ions. Further the structure and properties of yeasts cell wall and EPS were discussed. The finding of mechanisms mentioned above is necessary to identify the functional groups entered in the metals elimination processes.
Composite and Nanocomposite Metal Foams
Duarte, Isabel; Ferreira, José M. F.
2016-01-01
Open-cell and closed-cell metal foams have been reinforced with different kinds of micro- and nano-sized reinforcements to enhance their mechanical properties of the metallic matrix. The idea behind this is that the reinforcement will strengthen the matrix of the cell edges and cell walls and provide high strength and stiffness. This manuscript provides an updated overview of the different manufacturing processes of composite and nanocomposite metal foams. PMID:28787880
Optimizing Grid Patterns on Photovoltaic Cells
NASA Technical Reports Server (NTRS)
Burger, D. R.
1984-01-01
CELCAL computer program helps in optimizing grid patterns for different photovoltaic cell geometries and metalization processes. Five different powerloss phenomena associated with front-surface metal grid pattern on photovoltaic cells.
Leaching of metals from end-of-life solar cells.
Chakankar, Mital; Su, Chun Hui; Hocheng, Hong
2018-04-10
The issue of recycling waste solar cells is critical with regard to the expanded use of these cells, which increases waste production. Technology establishment for this recycling process is essential with respect to the valuable and hazardous metals present therein. In the present study, the leaching potentials of Acidithiobacillus thiooxidans, Acidithiobacillus ferrooxidans, Penicillium chrysogenum, and Penicillium simplicissimum were assessed for the recovery of metals from spent solar cells, with a focus on retrieval of the valuable metal Te. Batch experiments were performed to explore and compare the metal removal efficiencies of the aforementioned microorganisms using spent media. P. chrysogenum spent medium was found to be most effective, recovering 100% of B, Mg, Si, V, Ni, Zn, and Sr along with 93% of Te at 30 °C, 150 rpm and 1% (w/v) pulp density. Further optimization of the process parameters increased the leaching efficiency, and 100% of Te was recovered at the optimum conditions of 20 °C, 200 rpm shaking speed and 1% (w/v) pulp density. In addition, the recovery of aluminum increased from 31 to 89% upon process optimization. Thus, the process has considerable potential for metal recovery and is environmentally beneficial.
Development of metallization process. FSA project, cell and module formation research area
NASA Technical Reports Server (NTRS)
Garcia, A., III
1984-01-01
New pastes were evaluated that contained additives to aid in the silicon-to-metallization contact. None were completely successful. A reevaluation of the molybdenum oxide paste and the two-step screen printing process was done. The oxide paste did not show promise. The two-step process enabled soldering of the cells but the cells still had a high series resistance. Pastes are on order from a different manufacturer.
Development of an all-metal thick film cost affective metallization system for solar cells
NASA Technical Reports Server (NTRS)
Ross, B.
1981-01-01
An economical thick film solar cell contact for high volume production of low cost silicon solar array modules was investigated. All metal screenable pastes using base metals were studied. Solar cells with junction depths varying by a factor of 3.3, with and without a deposited oxide coating were used. Cells were screened and fired by a two step firing process. Adhesion and metallurgical results are unsatisfactory. No electrical information is obtained due to inadequate contact adhesion.
Laser-assisted solar cell metallization processing
NASA Technical Reports Server (NTRS)
Dutta, S.
1984-01-01
Laser-assisted processing techniques utilized to produce the fine line, thin metal grid structures that are required to fabricate high efficiency solar cells are examined. Two basic techniques for metal deposition are investigated; (1) photochemical decomposition of liquid or gas phase organometallic compounds utilizing either a focused, CW ultraviolet laser (System 1) or a mask and ultraviolet flood illumination, such as that provided by a repetitively pulsed, defocused excimer laser (System 2), for pattern definition, and (2) thermal deposition of metals from organometallic solutions or vapors utilizing a focused, CW laser beam as a local heat source to draw the metallization pattern.
Design of optimum solid oxide membrane electrolysis cells for metals production
Guan, Xiaofei; Pal, Uday B.
2015-12-24
Oxide to metal conversion is one of the most energy-intensive steps in the value chain for metals production. Solid oxide membrane (SOM) electrolysis process provides a general route for directly reducing various metal oxides to their respective metals, alloys, or intermetallics. Because of its lower energy use and ability to use inert anode resulting in zero carbon emission, SOM electrolysis process emerges as a promising technology that can replace the state-of-the-art metals production processes. In this paper, a careful study of the SOM electrolysis process using equivalent DC circuit modeling is performed and correlated to the experimental results. Finally, amore » discussion on relative importance of each resistive element in the circuit and on possible ways of lowering the rate-limiting resistive elements provides a generic guideline for designing optimum SOM electrolysis cells.« less
Metal accumulation and detoxification mechanisms in mycorrhizal Betula pubescens.
Fernández-Fuego, D; Bertrand, A; González, A
2017-12-01
Metal detoxification in plants is a complex process that involves different mechanisms, such as the retention of metals to the cell wall and their chelation and subsequent compartmentalization in plant vacuoles. In order to identify the mechanisms involved in metal accumulation and tolerance in Betula pubescens, as well as the role of mycorrhization in these processes, mycorrhizal and non-mycorrhizal plants were grown in two industrial soils with contrasting concentrations of heavy metals. Mycorrhization increased metal uptake at low metal concentrations in the soil and reduced it at high metal concentrations, which led to an enhanced growth and biomass production of the host when growing in the most polluted soil. Our results suggest that the sequestration on the cell wall is the main detoxification mechanism in white birch exposed to acute chronic metal-stress, while phytochelatins play a role mitigating metal toxicity inside the cells. Given its high Mn and Zn root-to-shoot translocation rate, Betula pubescens is a very promising species for the phytoremediation of soils polluted with these metals. Copyright © 2017 Elsevier Ltd. All rights reserved.
Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells
Rehman, Atteq ur; Lee, Soo Hong
2014-01-01
Developing a better method for the metallization of silicon solar cells is integral part of realizing superior efficiency. Currently, contact realization using screen printing is the leading technology in the silicon based photovoltaic industry, as it is simple and fast. However, the problem with metallization of this kind is that it has a lower aspect ratio and higher contact resistance, which limits solar cell efficiency. The mounting cost of silver pastes and decreasing silicon wafer thicknesses encourages silicon solar cell manufacturers to develop fresh metallization techniques involving a lower quantity of silver usage and not relying pressing process of screen printing. In recent times nickel/copper (Ni/Cu) based metal plating has emerged as a metallization method that may solve these issues. This paper offers a detailed review and understanding of a Ni/Cu based plating technique for silicon solar cells. The formation of a Ni seed layer by adopting various deposition techniques and a Cu conducting layer using a light induced plating (LIP) process are appraised. Unlike screen-printed metallization, a step involving patterning is crucial for opening the masking layer. Consequently, experimental procedures involving patterning methods are also explicated. Lastly, the issues of adhesion, back ground plating, process complexity and reliability for industrial applications are also addressed. PMID:28788516
Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells.
Rehman, Atteq Ur; Lee, Soo Hong
2014-02-18
Developing a better method for the metallization of silicon solar cells is integral part of realizing superior efficiency. Currently, contact realization using screen printing is the leading technology in the silicon based photovoltaic industry, as it is simple and fast. However, the problem with metallization of this kind is that it has a lower aspect ratio and higher contact resistance, which limits solar cell efficiency. The mounting cost of silver pastes and decreasing silicon wafer thicknesses encourages silicon solar cell manufacturers to develop fresh metallization techniques involving a lower quantity of silver usage and not relying pressing process of screen printing. In recent times nickel/copper (Ni/Cu) based metal plating has emerged as a metallization method that may solve these issues. This paper offers a detailed review and understanding of a Ni/Cu based plating technique for silicon solar cells. The formation of a Ni seed layer by adopting various deposition techniques and a Cu conducting layer using a light induced plating (LIP) process are appraised. Unlike screen-printed metallization, a step involving patterning is crucial for opening the masking layer. Consequently, experimental procedures involving patterning methods are also explicated. Lastly, the issues of adhesion, back ground plating, process complexity and reliability for industrial applications are also addressed.
Solution-Processed Germanium Nanowire-Positioned Schottky Solar Cells
2011-04-01
nanowire (GeNW)-positioned Schottky solar cell was fabricated by a solution process. A GeNW-containing solution was spread out onto asymmetric metal ...177 mV and a short-circuit current of 19.2 nA. Schottky and ohmic contacts between a single GeNW and different metal electrodes were systematically...containing solution was spread out onto asymmetric metal electrodes to produce a rectifying current flow. Under one-sun illumination, the GeNW
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schnabel, Manuel; Klein, Talysa; Lee, Benjamin G
The rear side metallization of Si solar cells comes with a number of inherent losses and trade-offs: a larger metallized area fraction improves fill factor at the expense of open-circuit voltage, depositing directly on textured Si leads to low contact resistivity at the expense of short-circuit current, and some metallization processes create defects in Si. To mitigate many of these losses we have developed a novel approach for rear side metallization of Si solar cells, utilizing a transparent conducting adhesive (TCA) to metallize Si without exposing the wafer to the metal deposition process. The TCA consists of an insulating adhesivemore » loaded with conductive microspheres. This approach leads to virtually no loss in implied open-circuit voltage upon metallization. Electrical measurements showed that contact resistivities of 3-9 ..omega.. cm2 were achieved, and an analysis of the transit resistance per microsphere showed that less than 1 ..omega.. cm2 should be achievable with higher microsphere loading of the TCA.« less
Ice electrode electrolytic cell
Glenn, D.F.; Suciu, D.F.; Harris, T.L.; Ingram, J.C.
1993-04-06
This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.
Ice electrode electrolytic cell
Glenn, David F.; Suciu, Dan F.; Harris, Taryl L.; Ingram, Jani C.
1993-01-01
This invention relates to a method and apparatus for removing heavy metals from waste water, soils, or process streams by electrolytic cell means. The method includes cooling a cell cathode to form an ice layer over the cathode and then applying an electric current to deposit a layer of the heavy metal over the ice. The metal is then easily removed after melting the ice. In a second embodiment, the same ice-covered electrode can be employed to form powdered metals.
NASA Technical Reports Server (NTRS)
Stirn, R. J.; Yeh, Y.-C. M.
1975-01-01
A new fabrication process is being developed which significantly improves the efficiency of metal-semiconductor solar cells. The resultant effect, a marked increase in the open-circuit voltage, is produced by the addition of an interfacial layer oxide on the semiconductor. Cells using gold on n-type gallium arsenide have been made in small areas (0.17 sq cm) with conversion efficiencies of 15% in terrestrial sunlight.
Xing, Weibing; Buettner-Garrett, Josh
2017-04-18
This disclosure relates generally to cathode materials for electrochemical energy cells, more particularly to metal/air electrochemical energy cell cathode materials containing silver vanadium oxide and methods of making and using the same. The metal/air electrochemical energy cell can be a lithium/air electrochemical energy cell. Moreover the silver vanadium oxide can be a catalyst for one or more of oxidation and reduction processes of the electrochemical energy cell.
Separation of metal ions from aqueous solutions
Almon, Amy C.
1994-01-01
A process and apparatus for quantitatively and selectively separating metal ions from mixtures thereof in aqueous solution. The apparatus includes, in combination, a horizontal electrochemical flow cell containing flow bulk electrolyte solution and an aqueous, metal ion-containing solution, the cell containing a metal mesh working electrode, a counter electrode positioned downstream from the working electrode, an independent variable power supply/potentiostat positioned outside of the flow cell and connected to the electrodes, and optionally a detector such as a chromatographic detector, positioned outside the flow cell. This apparatus and its operation has significant application where trace amounts of metal ions are to be separated.
Process for manufacturing a lithium alloy electrochemical cell
Bennett, William R.
1992-10-13
A process for manufacturing a lithium alloy, metal sulfide cell tape casts slurried alloy powders in an organic solvent containing a dissolved thermoplastic organic binder onto casting surfaces. The organic solvent is then evaporated to produce a flexible tape removable adhering to the casting surface. The tape is densified to increase its green strength and then peeled from the casting surface. The tape is laminated with a separator containing a lithium salt electrolyte and a metal sulfide electrode to form a green cell. The binder is evaporated from the green cell at a temperature lower than the melting temperature of the lithium salt electrolyte. Lithium alloy, metal sulfide and separator powders may be tape cast.
Neuromast hair cells retain the capacity of regeneration during heavy metal exposure.
Montalbano, G; Capillo, G; Laurà, R; Abbate, F; Levanti, M; Guerrera, M C; Ciriaco, E; Germanà, A
2018-07-01
The neuromast is the morphological unit of the lateral line of fishes and is composed of a cluster of central sensory cells (hair cells) surrounded by support and mantle cells. Heavy metals exposure leads to disruption of hair cells within the neuromast. It is well known that the zebrafish has the ability to regenerate the hair cells after damage caused by toxicants. The process of regeneration depends on proliferation, differentiation and cellular migration of sensory and non-sensory progenitor cells. Therefore, our study was made in order to identify which cellular types are involved in the complex process of regeneration during heavy metals exposure. For this purpose, adult zebrafish were exposed to various heavy metals (Arsenic, cadmium and zinc) for 72h. After acute (24h) exposure, immunohistochemical localization of S100 (a specific marker for hair cells) in the neuromasts highlighted the hair cells loss. The immunoreaction for Sox2 (a specific marker for stem cells), at the same time, was observed in the support and mantle cells, after exposure to arsenic and cadmium, while only in the support cells after exposure to zinc. After chronic (72h) exposure the hair cells were regenerated, showing an immunoreaction for S100 protein. At the same exposure time to the three metals, a Sox2 immunoreaction was expressed in support and mantle cells. Our results showed for the first time the regenerative capacity of hair cells, not only after, but also during exposure to heavy metals, demonstrated by the presence of different stem cells that can diversify in hair cells. Copyright © 2018 Elsevier GmbH. All rights reserved.
Positive electrode current collector for liquid metal cells
Shimotake, Hiroshi; Bartholme, Louis G.
1984-01-01
A current collector for the positive electrode of an electrochemical cell with a positive electrode including a sulfide. The cell also has a negative electrode and a molten salt electrolyte including halides of a metal selected from the alkali metals and the alkaline earth metals in contact with both the positive and negative electrodes. The current collector has a base metal of copper, silver, gold, aluminum or alloys thereof with a coating thereon of iron, nickel, chromium or alloys thereof. The current collector when subjected to cell voltage forms a sulfur-containing compound on the surface thereby substantially protecting the current collector from further attack by sulfur ions during cell operation. Both electroless and electrolytic processes may be used to deposit coatings.
18.4%-Efficient Heterojunction Si Solar Cells Using Optimized ITO/Top Electrode.
Kim, Namwoo; Um, Han-Don; Choi, Inwoo; Kim, Ka-Hyun; Seo, Kwanyong
2016-05-11
We optimize the thickness of a transparent conducting oxide (TCO) layer, and apply a microscale mesh-pattern metal electrode for high-efficiency a-Si/c-Si heterojunction solar cells. A solar cell equipped with the proposed microgrid metal electrode demonstrates a high short-circuit current density (JSC) of 40.1 mA/cm(2), and achieves a high efficiency of 18.4% with an open-circuit voltage (VOC) of 618 mV and a fill factor (FF) of 74.1% as result of the shortened carrier path length and the decreased electrode area of the microgrid metal electrode. Furthermore, by optimizing the process sequence for electrode formation, we are able to effectively restore the reduction in VOC that occurs during the microgrid metal electrode formation process. This work is expected to become a fundamental study that can effectively improve current loss in a-Si/c-Si heterojunction solar cells through the optimization of transparent and metal electrodes.
Ion-plating of solar cell arrays encapsulation task: LSA project 32
NASA Technical Reports Server (NTRS)
Volkers, J. C.
1983-01-01
An ion plating process by which solar cells can be metallized and AR coated, yielding efficiencies equal to or better than state-of-the-art cells, was developed. It was demonstrated that ion plated AR films may be used as an effective encapsulant, offering primary protection for the metallization. It was also shown that ion plated metallization and AR coatings can be consistent with the project cost goals.
Electrodeposition for Electrochemical Energy Conversion and Storage Devices
NASA Astrophysics Data System (ADS)
Shaigan, Nima
Electrodeposition of metals, alloys, metal oxides, conductive polymers, and their composites plays a pivotal role in fabrication processes of some recently developed electrochemical energy devices, most particularly fuel cells, supercapacitors, and batteries. Unique nanoscale architectures of electrocatalysts for low temperature fuel cells, including proton exchange membrane fuel cell (PEMFC) and direct methanol fuel cell (DMFC), can only be obtained through electrodeposition processes. Promising, cost-effective conductive/protective coatings for stainless steel interconnects used in solid oxide fuel cells (SOFCs) have been achieved employing a variety of electrodeposition techniques. In supercapacitors, anodic deposition of metal oxides, conductive polymers, and their composites is a versatile technique for fabrication of electrodes with distinctive morphology and exceptional specific capacitance. Electrodeposition is also very recently employed for preparation of Sn-based anodes for lithium ion batteries.
Rodríguez-Sastre, M A; Rojas, E; Valverde, M
2014-07-01
Human beings are exposed to metals as a consequence of various industrial activities, including glass production, agrochemical production, metallurgy and battery manufacture. New data about the possible mechanisms involved in the carcinogenic activity of these metals are constantly being reported. Exposure to complex mixtures of metals is more likely to occur than exposure to a single metal alone. Among these elements, arsenic, cadmium and lead are ubiquitous air and water pollutants that continue to threaten the quality of public health around the world. The aim of the present study was to evaluate the capability of a mixture of 2 µM NaAsO2, 2 µM CdCl2 and 5 µM Pb(C2H3O2)2·3H2O at relevant epidemiological concentrations to induce cell transformation processes. Transforming potential was determined by a murine two-stage Balb/c 3T3 cell assay. Cell viability, reactive oxygen species (ROS), DNA damage, cell cycle analysis, senescence, generation time and metallothionein expression were also evaluated. The results showed that the metal mixture induced morphological cell transformation only when acting as initiator stimuli of the process. A decrease in cell viability was observed at the promotion stage, a time during which ROS increase, especially when a metal mixture was applied as a promoter stimulant. Changes in DNA damage were not observed throughout the assay; however, we observed G1 cell cycle arrest. The metal mixture, acting as a promoter, is capable of inducing senescence, but metals employed as initiators with 12-O-tetradecanoylphorbol-13-acetate as a promoter are capable of causing avoidance of senescence and triggering the transformation potential of the cells. © The Author 2014. Published by Oxford University Press on behalf of the UK Environmental Mutagen Society. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Strategies for chromium bioremediation of tannery effluent.
Garg, Satyendra Kumar; Tripathi, Manikant; Srinath, Thiruneelakantan
2012-01-01
Bioremediation offers the possibility of using living organisms (bacteria, fungi, algae,or plants), but primarily microorganisms, to degrade or remove environmental contaminants, and transform them into nontoxic or less-toxic forms. The major advantages of bioremediation over conventional physicochemical and biological treatment methods include low cost, good efficiency, minimization of chemicals, reduced quantity of secondary sludge, regeneration of cell biomass, and the possibility of recover-ing pollutant metals. Leather industries, which extensively employ chromium compounds in the tanning process, discharge spent-chromium-laden effluent into nearby water bodies. Worldwide, chromium is known to be one of the most common inorganic contaminants of groundwater at pollutant hazardous sites. Hexavalent chromium poses a health risk to all forms of life. Bioremediation of chromium extant in tannery waste involves different strategies that include biosorption, bioaccumulation,bioreduction, and immobilization of biomaterial(s). Biosorption is a nondirected physiochemical interaction that occurs between metal species and the cellular components of biological species. It is metabolism-dependent when living biomass is employed, and metabolism-independent in dead cell biomass. Dead cell biomass is much more effective than living cell biomass at biosorping heavy metals, including chromium. Bioaccumulation is a metabolically active process in living organisms that works through adsorption, intracellular accumulation, and bioprecipitation mechanisms. In bioreduction processes, microorganisms alter the oxidation/reduction state of toxic metals through direct or indirect biological and chemical process(es).Bioreduction of Cr6+ to Cr3+ not only decreases the chromium toxicity to living organisms, but also helps precipitate chromium at a neutral pH for further physical removal,thus offering promise as a bioremediation strategy. However, biosorption, bioaccumulation, and bioreduction methods that rely on free cells for bioremediation suffer from Cr6 toxicity, and cell damage. Therefore, immobilization of microbial cell biomass enhances bioremediation and renders industrial bioremediation processes more economically viable from reduced free-cells toxicity, easier separation of biosorbents from the tannery effluent, ability to achieve multiple biosorption cycles, and desorption (elution) of metal(s) from matrices for reuse. Thus, microbial bioremediation can be a cost competitive strategy and beneficial bioresource for removing many hazardous contaminants from tannery and other industrial wastes.
Thin film solar cells by selenization sulfurization using diethyl selenium as a selenium precursor
Dhere, Neelkanth G.; Kadam, Ankur A.
2009-12-15
A method of forming a CIGSS absorber layer includes the steps of providing a metal precursor, and selenizing the metal precursor using diethyl selenium to form a selenized metal precursor layer (CIGSS absorber layer). A high efficiency solar cell includes a CIGSS absorber layer formed by a process including selenizing a metal precursor using diethyl selenium to form the CIGSS absorber layer.
Processing and Modeling of Porous Copper Using Sintering Dissolution Process
NASA Astrophysics Data System (ADS)
Salih, Mustafa Abualgasim Abdalhakam
The growth of porous metal has produced materials with improved properties as compared to non-metals and solid metals. Porous metal can be classified as either open cell or closed cell. Open cell allows a fluid media to pass through it. Closed cell is made up of adjacent sealed pores with shared cell walls. Metal foams offer higher strength to weight ratios, increased impact energy absorption, and a greater tolerance to high temperatures and adverse environmental conditions when compared to bulk materials. Copper and its alloys are examples of these, well known for high strength and good mechanical, thermal and electrical properties. In the present study, the porous Cu was made by a powder metallurgy process, using three different space holders, sodium chloride, sodium carbonate and potassium carbonate. Several different samples have been produced, using different ratios of volume fraction. The densities of the porous metals have been measured and compared to the theoretical density calculated using an equation developed for these foams. The porous structure was determined with the removal of spacer materials through sintering process. The sintering process of each spacer material depends on the melting point of the spacer material. Processing, characterization, and mechanical properties were completed. These tests include density measurements, compression tests, computed tomography (CT) and scanning electron microscopy (SEM). The captured morphological images are utilized to generate the object-oriented finite element (OOF) analysis for the porous copper. Porous copper was formed with porosities in the range of 40-66% with density ranges from 3 to 5.2 g/cm3. A study of two different methods to measure porosity was completed. OOF (Object Oriented Finite Elements) is a desktop software application for studying the relationship between the microstructure of a material and its overall mechanical, dielectric, or thermal properties using finite element models based on real or simulated micrographs. OOF provides methods for segmenting images, creating meshes and solving of complex geometries using finite element models, and visualizing 2D results.
Directed-energy process technology efforts
NASA Technical Reports Server (NTRS)
Alexander, P.
1985-01-01
A summary of directed-energy process technology for solar cells was presented. This technology is defined as directing energy or mass to specific areas on solar cells to produce a desired effect in contrast to exposing a cell to a thermal or mass flow environment. Some of these second generation processing techniques are: ion implantation; microwave-enhanced chemical vapor deposition; rapid thermal processing; and the use of lasers for cutting, assisting in metallization, assisting in deposition, and drive-in of liquid dopants. Advantages of directed energy techniques are: surface heating resulting in the bulk of the cell material being cooler and unchanged; better process control yields; better junction profiles, junction depths, and metal sintering; lower energy consumption during processing and smaller factory space requirements. These advantages should result in higher-efficiency cells at lower costs. The results of the numerous contracted efforts were presented as well as the application potentials of these new technologies.
Heavy metals in the cell nucleus - role in pathogenesis.
Sas-Nowosielska, Hanna; Pawlas, Natalia
2015-01-01
People are exposed to heavy metals both in an occupational and natural environment. The most pronounced effects of heavy metals result from their interaction with cellular genetic material packed in form of chromatin. Heavy metals influence chromatin, mimicking and substituting natural microelements in various processes taking place in the cell, or interacting chemically with nuclear components: nucleic acids, proteins and lipids. This paper is a review of current knowledge on the effects of heavy metals on chromatin, exerted at the level of various nuclear components.
NASA Technical Reports Server (NTRS)
Khetpal, Deepak; Ducret, Andrew C.; Sadoway, Donald R.
2003-01-01
For the exploration of other bodies in the solar system, electrochemical processing is arguably the most versatile technology for conversion of local resources into usable commodities: by electrolysis one can, in principle, produce (1) breathable oxygen, (2) silicon for the fabrication of solar cells, (3) various reactive metals for use as electrodes in advanced storage batteries, and (4) structural metals such as steel and aluminum. Even so, to date there has been no sustained effort to develop such processes, in part due to the inadequacy of the database. The objective here is to identify chemistries capable of sustaining molten oxide electrolysis in the cited applications and to examine the behavior of laboratory-scale cells designed to generate oxygen and to produce metal. The basic research includes the study of the underlying high-temperature physical chemistry of oxide melts representative of lunar regolith and of Martian soil. To move beyond empirical approaches to process development, the thermodynamic and transport properties of oxide melts are being studied to help set the limits of composition and temperature for the processing trials conducted in laboratory-scale electrolysis cells. The goal of this investigation is to deliver a working prototype cell that can use lunar regolith and Martian soil to produce breathable oxygen along with metal by-product. Additionally, the process can be generalized to permit adaptation to accommodate different feedstock chemistries, such as those that will be encountered on other bodies in the solar system. The expected results of this research include: (1) the identification of appropriate electrolyte chemistries; (2) the selection of candidate anode and cathode materials compatible with electrolytes named above; and (3) performance data from a laboratory-scale cell producing oxygen and metal. On the strength of these results it should be possible to assess the technical viability of molten oxide electrolysis for in situ resource utilization on the Moon and Mars. In parallel, there may be commercial applications here on earth, such as new green technologies for metals extraction and for treatment of hazardous waste, e.g., fixing heavy metals.
Continuous process electrorefiner
Herceg, Joseph E [Naperville, IL; Saiveau, James G [Hickory Hills, IL; Krajtl, Lubomir [Woodridge, IL
2006-08-29
A new device is provided for the electrorefining of uranium in spent metallic nuclear fuels by the separation of unreacted zirconium, noble metal fission products, transuranic elements, and uranium from spent fuel rods. The process comprises an electrorefiner cell. The cell includes a drum-shaped cathode horizontally immersed about half-way into an electrolyte salt bath. A conveyor belt comprising segmented perforated metal plates transports spent fuel into the salt bath. The anode comprises the conveyor belt, the containment vessel, and the spent fuel. Uranium and transuranic elements such as plutonium (Pu) are oxidized at the anode, and, subsequently, the uranium is reduced to uranium metal at the cathode. A mechanical cutter above the surface of the salt bath removes the deposited uranium metal from the cathode.
Ink jet assisted metallization for low cost flat plate solar cells
NASA Technical Reports Server (NTRS)
Teng, K. F.; Vest, R. W.
1987-01-01
Computer-controlled ink-jet-assisted metallization of the front surface of solar cells with metalorganic silver inks offers a maskless alternative method to conventional photolithography and screen printing. This method can provide low cost, fine resolution, reduced process complexity, avoidance of degradation of the p-n junction by firing at lower temperature, and uniform line film on rough surface of solar cells. The metallization process involves belt furnace firing and thermal spiking. With multilayer ink jet printing and firing, solar cells of about 5-6 percent efficiency without antireflection (AR) coating can be produced. With a titanium thin-film underlayer as an adhesion promoter, solar cells of average efficiency 8.08 percent without AR coating can be obtained. This efficiency value is approximately equal to that of thin-film solar cells of the same lot. Problems with regard to lower inorganic content of the inks and contact resistance are noted.
Recovery of critical and value metals from mobile electronics enabled by electrochemical processing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tedd E. Lister; Peiming Wang; Andre Anderko
2014-10-01
Electrochemistry-based schemes were investigated as a means to recover critical and value metals from scrap mobile electronics. Mobile electronics offer a growing feedstock for replenishing value and critical metals and reducing need to exhaust primary sources. The electrorecycling process generates oxidizing agents at an anode to dissolve metals from the scrap matrix while reducing dissolved metals at the cathode. The process uses a single cell to maximize energy efficiency. E vs pH diagrams and metals dissolution experiments were used to assess effectiveness of various solution chemistries. Following this work, a flow chart was developed where two stages of electrorecycling weremore » proposed: 1) initial dissolution of Cu, Sn, Ag and magnet materials using Fe+3 generated in acidic sulfate and 2) final dissolution of Pd and Au using Cl2 generated in an HCl solution. Experiments were performed using a simulated metal mixture equivalent to 5 cell phones. Both Cu and Ag were recovered at ~ 97% using Fe+3 while leaving Au and Pd intact. Strategy for extraction of rare earth elements (REE) from dissolved streams is discussed as well as future directions in process development.« less
Processing experiments on non-Czochralski silicon sheet
NASA Technical Reports Server (NTRS)
Pryor, R. A.; Grenon, L. A.; Sakiotis, N. G.; Pastirik, E. M.; Sparks, T. O.; Legge, R. N.
1981-01-01
A program is described which supports and promotes the development of processing techniques which may be successfully and cost-effectively applied to low-cost sheets for solar cell fabrication. Results are reported in the areas of process technology, cell design, cell metallization, and production cost simulation.
Simplified process for leaching precious metals from fuel cell membrane electrode assemblies
Shore, Lawrence [Edison, NJ; Matlin, Ramail [Berkeley Heights, NJ
2009-12-22
The membrane electrode assemblies of fuel cells are recycled to recover the catalyst precious metals from the assemblies. The assemblies are cryogenically embrittled and pulverized to form a powder. The pulverized assemblies are then mixed with a surfactant to form a paste which is contacted with an acid solution to leach precious metals from the pulverized membranes.
Rotureau, Elise; Billard, Patrick; Duval, Jérôme F L
2015-01-20
Bioavailability of trace metals is a key parameter for assessment of toxicity on living organisms. Proper evaluation of metal bioavailability requires monitoring the various interfacial processes that control metal partitioning dynamics at the biointerface, which includes metal transport from solution to cell membrane, adsorption at the biosurface, internalization, and possible excretion. In this work, a methodology is proposed to quantitatively describe the dynamics of Cd(II) uptake by Pseudomonas putida. The analysis is based on the kinetic measurement of Cd(II) depletion from bulk solution at various initial cell concentrations using electroanalytical probes. On the basis of a recent formalism on the dynamics of metal uptake by complex biointerphases, the cell concentration-dependent depletion time scales and plateau values reached by metal concentrations at long exposure times (>3 h) are successfully rationalized in terms of limiting metal uptake flux, rate of excretion, and metal affinity to internalization sites. The analysis shows the limits of approximate depletion models valid in the extremes of high and weak metal affinities. The contribution of conductive diffusion transfer of metals from the solution to the cell membrane in governing the rate of Cd(II) uptake is further discussed on the basis of estimated resistances for metal membrane transfer and extracellular mass transport.
Strmcnik, Dusan; Cuesta, Angel; Stamenkovic, Vojislav; Markovic, Nenad
2015-06-23
A process includes patterning a surface of a platinum group metal-based electrode by contacting the electrode with an adsorbate to form a patterned platinum group metal-based electrode including platinum group metal sites blocked with adsorbate molecules and platinum group metal sites which are not blocked.
High resolution, low cost solar cell contact development
NASA Technical Reports Server (NTRS)
Mardesich, N.
1979-01-01
The experimental work demonstrating the feasibility of the MIDFILM process as a low cost means of applying solar cell collector metallization as reported. Cell efficiencies of above 14% (AMl, 28 C) were achieved with fritted silver metallization. Environmental tests suggest that the metallization is slightly humidity sensitive and degradation is observed on cells with high series resistance. The major yield loss in the fabrication of cells was due to discontinuous grid lines, resulting in high series resitance. Standard lead-tin solder plated interconnections do not appear compatible with the MIDFILM contact. Copper, nickel and molybdemun base powder were investigated as low cost metallization systems. The copper based powder degraded the cell response. The nickel and molybdenum base powders oxidized when sintered in the oxidizing atmosphere necessary to ash the photoresin.
High resolution, low cost solar cell contact development
NASA Technical Reports Server (NTRS)
Mardesich, N.
1981-01-01
The MIDFILM cell fabrication and encapsulation processes were demonstrated as a means of applying low-cost solar cell collector metallization. The average cell efficiency of 12.0 percent (AM1, 28 C) was achieved with fritted silver metallization with a demonstration run of 500 starting wafers. A 98 percent mechanical yield and 80 percent electrical yield were achieved through the MIDFILM process. High series resistance was responsible for over 90 percent of the electrical failures and was the major factor causing the low average cell efficiency. Environmental evaluations suggest that the MIDFILM cells do not degrade. A slight degradation in power was experienced in the MIDFILM minimodules when the AMP Solarlok connector delaminated during the environmental testing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguiar, Jeffery A.; Young, David; Lee, Benjamin
2016-11-21
The key attributes for achieving high efficiency crystalline silicon solar cells include class leading developments in the ability to approach the theoretical limits of silicon solar technology (29.4% efficiency). The push for high efficiency devices is further compounded with the clear need for passivation to reduce recombination at the metal contacts. At the same time there is stringent requirement to retain the same material device quality, surface passivation, and performance characteristics following subsequent processing. The development of passivated silicon cell structures that retain active front and rear surface passivation and overall material cell quality is therefore a relevant and activemore » area of development. To address the potential outcomes of metallization on passivated silicon stack, we report on some common microstructural features of degradation due to metallization for a series of silicon device stacks. A fundamental materials understanding of the metallization process on retaining high-efficiency passivated Si devices is therefore gained over these series of results.« less
Heavy-metal-induced reactive oxygen species: phytotoxicity and physicochemical changes in plants.
Shahid, Muhammad; Pourrut, Bertrand; Dumat, Camille; Nadeem, Muhammad; Aslam, Muhammad; Pinelli, Eric
2014-01-01
As a result of the industrial revolution, anthropogenic activities have enhanced there distribution of many toxic heavy metals from the earth's crust to different environmental compartments. Environmental pollution by toxic heavy metals is increasing worldwide, and poses a rising threat to both the environment and to human health.Plants are exposed to heavy metals from various sources: mining and refining of ores, fertilizer and pesticide applications, battery chemicals, disposal of solid wastes(including sewage sludge), irrigation with wastewater, vehicular exhaust emissions and adjacent industrial activity.Heavy metals induce various morphological, physiological, and biochemical dysfunctions in plants, either directly or indirectly, and cause various damaging effects. The most frequently documented and earliest consequence of heavy metal toxicity in plants cells is the overproduction of ROS. Unlike redox-active metals such as iron and copper, heavy metals (e.g, Pb, Cd, Ni, AI, Mn and Zn) cannot generate ROS directly by participating in biological redox reactions such as Haber Weiss/Fenton reactions. However, these metals induce ROS generation via different indirect mechanisms, such as stimulating the activity of NADPH oxidases, displacing essential cations from specific binding sites of enzymes and inhibiting enzymatic activities from their affinity for -SH groups on the enzyme.Under normal conditions, ROS play several essential roles in regulating the expression of different genes. Reactive oxygen species control numerous processes like the cell cycle, plant growth, abiotic stress responses, systemic signalling, programmed cell death, pathogen defence and development. Enhanced generation of these species from heavy metal toxicity deteriorates the intrinsic antioxidant defense system of cells, and causes oxidative stress. Cells with oxidative stress display various chemical,biological and physiological toxic symptoms as a result of the interaction between ROS and biomolecules. Heavy-metal-induced ROS cause lipid peroxidation, membrane dismantling and damage to DNA, protein and carbohydrates. Plants have very well-organized defense systems, consisting of enzymatic and non-enzymatic antioxidation processes. The primary defense mechanism for heavy metal detoxification is the reduced absorption of these metals into plants or their sequestration in root cells.Secondary heavy metal tolerance mechanisms include activation of antioxidant enzymes and the binding of heavy metals by phytochelatins, glutathione and amino acids. These defense systems work in combination to manage the cascades of oxidative stress and to defend plant cells from the toxic effects of ROS.In this review, we summarized the biochemiCal processes involved in the over production of ROS as an aftermath to heavy metal exposure. We also described the ROS scavenging process that is associated with the antioxidant defense machinery.Despite considerable progress in understanding the biochemistry of ROS overproduction and scavenging, we still lack in-depth studies on the parameters associated with heavy metal exclusion and tolerance capacity of plants. For example, data about the role of glutathione-glutaredoxin-thioredoxin system in ROS detoxification in plant cells are scarce. Moreover, how ROS mediate glutathionylation (redox signalling)is still not completely understood. Similarly, induction of glutathione and phytochelatins under oxidative stress is very well reported, but it is still unexplained that some studied compounds are not involved in the detoxification mechanisms. Moreover,although the role of metal transporters and gene expression is well established for a few metals and plants, much more research is needed. Eventually, when results for more metals and plants are available, the mechanism of the biochemical and genetic basis of heavy metal detoxification in plants will be better understood. Moreover, by using recently developed genetic and biotechnological tools it may be possible to produce plants that have traits desirable for imparting heavy metal tolerance.
Electrolysis of a molten semiconductor
Yin, Huayi; Chung, Brice; Sadoway, Donald R.
2016-01-01
Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides. PMID:27553525
Electrolysis of a molten semiconductor.
Yin, Huayi; Chung, Brice; Sadoway, Donald R
2016-08-24
Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.
Electrolysis of a molten semiconductor
NASA Astrophysics Data System (ADS)
Yin, Huayi; Chung, Brice; Sadoway, Donald R.
2016-08-01
Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb2S3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across the cell. As opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO2, CO and SO2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.
NASA Technical Reports Server (NTRS)
Wolf, M.; Goldman, H.
1981-01-01
The attributes of the various metallization processes were investigated. It is shown that several metallization process sequences will lead to adequate metallization for large area, high performance solar cells at a metallization add on price in the range of $6. to 12. m squared, or 4 to $.8/W(peak), assuming 15% efficiency. Conduction layer formation by thick film silver or by tin or tin/lead solder leads to metallization add-on prices significantly above the $6. to 12/m squared range c.) The wet chemical processes of electroless and electrolytic plating for strike/barrier layer and conduction layer formation, respectively, seem to be most cost effective.
Nam, SeongSik; Mai, Cuc Thi Kim; Oh, Ilwhan
2018-05-02
Herein, we report an integrated photoelectrolysis of water employing organic metal halide (OMH) perovskite material. As generic OMH perovskite material and device architecture are highly susceptible to degradation by aqueous electrolytes, we have developed a versatile mold-cast and lift-off process to fabricate and assemble multipurpose metal encapsulation onto perovskite devices. With the metal encapsulation effectively protecting the perovskite cell and also functioning as electrocatalyst, the high-performance perovskite photoelectrodes exhibit high photovoltage and photocurrent that are effectively inherited from the original solid-state solar cell. More importantly, thus-fabricated perovskite photoelectrode demonstrates record-long unprecedented stability even at highly oxidizing potential in strong alkaline electrolyte. We expect that this versatile lift-off process can be adapted in a wide variety of photoelectrochemical devices to protect the material surfaces from corroding electrolyte and facilitate various electrochemical reactions.
Sauge-Merle, Sandrine; Cuiné, Stéphan; Carrier, Patrick; Lecomte-Pradines, Catherine; Luu, Doan-Trung; Peltier, Gilles
2003-01-01
Phytochelatins (PCs) are metal-binding cysteine-rich peptides, enzymatically synthesized in plants and yeasts from glutathione in response to heavy metal stress by PC synthase (EC 2.3.2.15). In an attempt to increase the ability of bacterial cells to accumulate heavy metals, the Arabidopsis thaliana gene encoding PC synthase (AtPCS) was expressed in Escherichia coli. A marked accumulation of PCs was observed in vivo together with a decrease in the glutathione cellular content. When bacterial cells expressing AtPCS were placed in the presence of heavy metals such as cadmium or the metalloid arsenic, cellular metal contents were increased 20- and 50-fold, respectively. We discuss the possibility of using genes of the PC biosynthetic pathway to design bacterial strains or higher plants with increased abilities to accumulate toxic metals, and also arsenic, for use in bioremediation and/or phytoremediation processes. PMID:12514032
Production of anhydrous aluminum chloride composition and process for electrolysis thereof
Vandegrift, George F.; Krumpelt, Michael; Horwitz, E. Philip
1983-01-01
A process for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.
Investigating reliability attributes of silicon photovoltaic cells - An overview
NASA Technical Reports Server (NTRS)
Royal, E. L.
1982-01-01
Reliability attributes are being developed on a wide variety of advanced single-crystal silicon solar cells. Two separate investigations: cell-contact integrity (metal-to-silicon adherence), and cracked cells identified with fracture-strength-reducing flaws are discussed. In the cell-contact-integrity investigation, analysis of contact pull-strength data shows that cell types made with different metallization technologies, i.e., vacuum, plated, screen-printed and soldered, have appreciably different reliability attributes. In the second investigation, fracture strength was measured using Czochralski wafers and cells taken at various stages of processing and differences were noted. Fracture strength, which is believed to be governed by flaws introduced during wafer sawing, was observed to improve (increase) after chemical polishing and other process steps that tend to remove surface and edge flaws.
Fuel cells and the theory of metals.
NASA Technical Reports Server (NTRS)
Bocciarelli, C. V.
1972-01-01
Metal theory is used to study the role of metal catalysts in electrocatalysis, with particular reference to alkaline hydrogen-oxygen fuel cells. Use is made of a simple model, analogous to that used to interpret field emission in vacuum. Theoretical values for all the quantities in the Tafel equation are obtained in terms of bulk properties of the metal catalysts (such as free electron densities and Fermi level). The reasons why some processes are reversible (H-electrodes) and some irreversible (O-electrodes) are identified. Selection rules for desirable properties of catalytic materials are established.
Minoda, Ayumi; Sawada, Hitomi; Suzuki, Sonoe; Miyashita, Shin-ichi; Inagaki, Kazumi; Yamamoto, Takaiku; Tsuzuki, Mikio
2015-02-01
The demand for rare earth elements has increased dramatically in recent years because of their numerous industrial applications, and considerable research efforts have consequently been directed toward recycling these materials. The accumulation of metals in microorganisms is a low-cost and environmentally friendly method for the recovery of metals present in the environment at low levels. Numerous metals, including rare earth elements, can be readily dissolved in aqueous acid, but the efficiency of metal biosorption is usually decreased under the acidic conditions. In this report, we have investigated the use of the sulfothermophilic red alga Galdieria sulphuraria for the recovery of metals, with particular emphasis on the recovery of rare earth metals. Of the five different growth conditions investigated where G. sulphuraria could undergo an adaptation process, Nd(III), Dy(III), and Cu(II) were efficiently recovered from a solution containing a mixture of different metals under semi-anaerobic heterotrophic condition at a pH of 2.5. G. sulphuraria also recovered Nd(III), Dy(III), La(III), and Cu(II) with greater than 90% efficiency at a concentration of 0.5 ppm. The efficiency remained unchanged at pH values in the range of 1.5-2.5. Furthermore, at pH values in the range of 1.0-1.5, the lanthanoid ions were collected much more efficiently into the cell fractions than Cu(II) and therefore successfully separated from the Cu(II) dissolved in the aqueous acid. Microscope observation of the cells using alizarin red suggested that the metals were accumulating inside of the cells. Experiments using dead cells suggested that this phenomenon was a biological process involving specific activities within the cells.
NASA Astrophysics Data System (ADS)
Kumm, J.; Samadi, H.; Chacko, R. V.; Hartmann, P.; Wolf, A.
2016-07-01
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al2O3 layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatory to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.
CMOS array design automation techniques. [metal oxide semiconductors
NASA Technical Reports Server (NTRS)
Ramondetta, P.; Feller, A.; Noto, R.; Lombardi, T.
1975-01-01
A low cost, quick turnaround technique for generating custom metal oxide semiconductor arrays using the standard cell approach was developed, implemented, tested and validated. Basic cell design topology and guidelines are defined based on an extensive analysis that includes circuit, layout, process, array topology and required performance considerations particularly high circuit speed.
Regulating cellular trace metal economy in algae
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blaby-Haas, Crysten E.; Merchant, Sabeeha S.
As indispensable protein cofactors, Fe, Mn, Cu and Zn are at the center of multifaceted acclimation mechanisms that have evolved to ensure extracellular supply meets intracellular demand. In starting with selective transport at the plasma membrane and ending in protein metalation, metal homeostasis in algae involves regulated trafficking of metal ions across membranes, intracellular compartmentalization by proteins and organelles, and metal-sparing/recycling mechanisms to optimize metal-use efficiency. Overlaid on these processes are additional circuits that respond to the metabolic state as well as to the prior metal status of the cell. Here, we focus on recent progress made toward understanding themore » pathways by which the single-celled, green alga Chlamydomonas reinhardtii controls its cellular trace metal economy. We also compare these mechanisms to characterized and putative processes in other algal lineages. Photosynthetic microbes continue to provide insight into cellular regulation and handling of Cu, Fe, Zn and Mn as a function of the nutritional supply and cellular demand for metal cofactors. We found that new experimental tools such as RNA-Seq and subcellular metal imaging are bringing us closer to a molecular understanding of acclimation to supply dynamics in algae and beyond.« less
Regulating cellular trace metal economy in algae
Blaby-Haas, Crysten E.; Merchant, Sabeeha S.
2017-06-30
As indispensable protein cofactors, Fe, Mn, Cu and Zn are at the center of multifaceted acclimation mechanisms that have evolved to ensure extracellular supply meets intracellular demand. In starting with selective transport at the plasma membrane and ending in protein metalation, metal homeostasis in algae involves regulated trafficking of metal ions across membranes, intracellular compartmentalization by proteins and organelles, and metal-sparing/recycling mechanisms to optimize metal-use efficiency. Overlaid on these processes are additional circuits that respond to the metabolic state as well as to the prior metal status of the cell. Here, we focus on recent progress made toward understanding themore » pathways by which the single-celled, green alga Chlamydomonas reinhardtii controls its cellular trace metal economy. We also compare these mechanisms to characterized and putative processes in other algal lineages. Photosynthetic microbes continue to provide insight into cellular regulation and handling of Cu, Fe, Zn and Mn as a function of the nutritional supply and cellular demand for metal cofactors. We found that new experimental tools such as RNA-Seq and subcellular metal imaging are bringing us closer to a molecular understanding of acclimation to supply dynamics in algae and beyond.« less
Bernardini, Simone; Johnston, Steve; West, Bradley; ...
2016-11-14
Metal impurities are known to hinder the performance of commercial Si-based solar cells by inducing bulk recombination, increasing leakage current, and causing direct shunting. Recently, a set of photoluminescence (PL) images of neighboring multicrystalline silicon wafers taken from a cell production line at different processing stages has been acquired. Both band-to-band PL and sub-bandgap PL (subPL) images showed various regions with different PL signal intensity. Interestingly, in several of these regions a reversal of the subPL intensity was observed right after the deposition of the antireflective coating. In this paper, we present the results of the synchrotron-based nano-X-ray fluorescence imagingmore » performed in areas characterized by the subPL reversal to evaluate the possible role of metal decoration in this uncommon behavior. Furthermore, the acquisition of a statistically meaningful set of data for samples taken at different stages of the solar cell manufacturing allows us to shine a light on the precipitation and rediffusion mechanisms of metal impurities at these grain boundaries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tretiak, O. Yu., E-mail: otretiak@genphys.ru; Balabas, M. V.; Blanchard, J. W.
2016-03-07
The use of anti-relaxation coatings in alkali vapor cells yields substantial performance improvements compared to a bare glass surface by reducing the probability of spin relaxation in wall collisions by several orders of magnitude. Some of the most effective anti-relaxation coating materials are alpha-olefins, which (as in the case of more traditional paraffin coatings) must undergo a curing period after cell manufacturing in order to achieve the desired behavior. Until now, however, it has been unclear what physicochemical processes occur during cell curing, and how they may affect relevant cell properties. We present the results of nondestructive Raman-spectroscopy and magnetic-resonancemore » investigations of the influence of alkali metal vapor (Cs or K) on an alpha-olefin, 1-nonadecene coating the inner surface of a glass cell. It was found that during the curing process, the alkali metal catalyzes migration of the carbon-carbon double bond, yielding a mixture of cis- and trans-2-nonadecene.« less
Effects of solar cell environment on contact integrity
NASA Technical Reports Server (NTRS)
Weizer, Victor G.; Fatemi, Navid S.
1993-01-01
The III-V semiconductors react extremely rapidly with most commonly used contact metallizations. This precludes the use of elevated temperatures in the contact formation process for solar cells and other shallow junction devices. These devices must rely upon contact metallizations that are sufficiently conductive in their 'as-fabricated' state. However, while there are a number of non-sintered metallizations that have acceptable characteristics, the lack of a sintering step makes them vulnerable to a variety of environmentally induced degradation processes. The degrading effects resulting from the exposure of unsintered devices to a humid environment and to a vacuum (space) environment are described. It is shown, further, that these effects are magnified by the presence of mechanical damage in the contact metallization. The means to avoid or prevent these degrading interactions are presented.
Metallization pattern on solid electrolyte or porous support of sodium battery process
Kim, Jin Yong; Li, Guosheng; Lu, Xiaochuan; Sprenkle, Vincent L.; Lemmon, John P.
2016-05-31
A new battery configuration and process are detailed. The battery cell includes a solid electrolyte configured with an engineered metallization layer that distributes sodium across the surface of the electrolyte extending the active area of the cathode in contact with the anode during operation. The metallization layer enhances performance, efficiency, and capacity of sodium batteries at intermediate temperatures at or below about 200.degree. C.
Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting
Mun, Jiwon; Ju, Jaehyung; Thurman, James
2016-01-01
One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique. PMID:27214495
Indirect Fabrication of Lattice Metals with Thin Sections Using Centrifugal Casting.
Mun, Jiwon; Ju, Jaehyung; Thurman, James
2016-05-14
One of the typical methods to manufacture 3D lattice metals is the direct-metal additive manufacturing (AM) process such as Selective Laser Melting (SLM) and Electron Beam Melting (EBM). In spite of its potential processing capability, the direct AM method has several disadvantages such as high cost, poor surface finish of final products, limitation in material selection, high thermal stress, and anisotropic properties of parts. We propose a cost-effective method to manufacture 3D lattice metals. The objective of this study is to provide a detailed protocol on fabrication of 3D lattice metals having a complex shape and a thin wall thickness; e.g., octet truss made of Al and Cu alloys having a unit cell length of 5 mm and a cell wall thickness of 0.5 mm. An overall experimental procedure is divided into eight sections: (a) 3D printing of sacrificial patterns (b) melt-out of support materials (c) removal of residue of support materials (d) pattern assembly (e) investment (f) burn-out of sacrificial patterns (g) centrifugal casting (h) post-processing for final products. The suggested indirect AM technique provides the potential to manufacture ultra-lightweight lattice metals; e.g., lattice structures with Al alloys. It appears that the process parameters should be properly controlled depending on materials and lattice geometry, observing the final products of octet truss metals by the indirect AM technique.
Highly active non-PGM catalysts prepared from metal organic frameworks
Barkholtz, Heather M.; Chong, Lina; Kaiser, Zachary B.; ...
2015-06-11
Finding inexpensive alternatives to platinum group metals (PGMs) is essential for reducing the cost of proton exchange membrane fuel cells (PEMFCs). Numerous materials have been investigated as potential replacements of Pt, of which the transition metal and nitrogen-doped carbon composites (TM/N x/C) prepared from iron doped zeolitic imidazolate frameworks (ZIFs) are among the most active ones in catalyzing the oxygen reduction reaction based on recent studies. In this report, we demonstrate that the catalytic activity of ZIF-based TM/N x/C composites can be substantially improved through optimization of synthesis and post-treatment processing conditions. Ultimately, oxygen reduction reaction (ORR) electrocatalytic activity mustmore » be demonstrated in membrane-electrode assemblies (MEAs) of fuel cells. The process of preparing MEAs using ZIF-based non-PGM electrocatalysts involves many additional factors which may influence the overall catalytic activity at the fuel cell level. Evaluation of parameters such as catalyst loading and perfluorosulfonic acid ionomer to catalyst ratio were optimized. Our overall efforts to optimize both the catalyst and MEA construction process have yielded impressive ORR activity when tested in a fuel cell system.« less
Merrifield, R C; Stephan, C; Lead, J R
2018-02-20
Quantifying metal and nanoparticle (NP) biouptake and distribution on an individual cellular basis has previously been impossible, given available techniques which provide qualitative data that are laborious to acquire and prone to artifacts. Quantifying metal and metal NP uptake and loss processes in environmental organisms will lead to mechanistic understanding of biouptake and improved understanding of potential hazards and risks of metals and NPs. In this work, we present a new technique, single cell inductively coupled plasma mass spectrometry (SC-ICP-MS), which allows quantification of metal concentrations on an individual cell basis down to the attogram (ag) per cell level. We present data validating the novel method, along with the mass of metal per cell. Finally, we use SC-ICP-MS, with ancillary cell counting methods, to quantify the biouptake and strong sorption and distribution of both dissolved Au and Au NPs in a freshwater alga (Cyptomonas ovate). The data suggests differences between dissolved and NP uptake and loss. In the case of NPs, there was a dose and time dependent uptake, but individual cellular variations; at the highest realistic exposure conditions used in this study up to 40-50% of cells contained NPs, while 50-60% of cells did not.
Electrolysis of a molten semiconductor
Yin, Huayi; Chung, Brice; Sadoway, Donald R.
2016-08-24
Metals cannot be extracted by electrolysis of transition-metal sulfides because as liquids they are semiconductors, which exhibit high levels of electronic conduction and metal dissolution. Herein by introduction of a distinct secondary electrolyte, we reveal a high-throughput electro-desulfurization process that directly converts semiconducting molten stibnite (Sb 2S 3) into pure (99.9%) liquid antimony and sulfur vapour. At the bottom of the cell liquid antimony pools beneath cathodically polarized molten stibnite. At the top of the cell sulfur issues from a carbon anode immersed in an immiscible secondary molten salt electrolyte disposed above molten stibnite, thereby blocking electronic shorting across themore » cell. In conclusion, as opposed to conventional extraction practices, direct sulfide electrolysis completely avoids generation of problematic fugitive emissions (CO 2, CO and SO 2), significantly reduces energy consumption, increases productivity in a single-step process (lower capital and operating costs) and is broadly applicable to a host of electronically conductive transition-metal chalcogenides.« less
Production of anhydrous aluminum chloride composition
Vandergrift, G.F. III; Krumpelt, M.; Horwitz, E.P.
1981-10-08
A process is described for producing an anhydrous aluminum chloride composition from a water-based aluminous material such as a slurry of aluminum hydroxide in a multistage extraction process in which the aluminum ion is first extracted into an organic liquid containing an acidic extractant and then extracted from the organic phase into an alkali metal chloride or chlorides to form a melt containing a mixture of chlorides of alkali metal and aluminum. In the process, the organic liquid may be recycled. In addition, the process advantageously includes an electrolysis cell for producing metallic aluminum and the alkali metal chloride or chlorides may be recycled for extraction of the aluminum from the organic phase.
Cell and module formation research area
NASA Technical Reports Server (NTRS)
Bickler, D. B.
1982-01-01
Metallization is discussed. The influence of hydrogen on the firing of base-metal pastes in reducing atmospheres is reported. A method for optimization of metallization patterns is presented. A process sequence involving an AR coating and thick-film metallization system capable of penetrating the AR coating during firing is reported. Design and construction of the NMA implantation machine is reported. Implanted back-surface fields and NMA primary (front) junctions are discussed. The use of glass beads, a wave-soldering device, and ion milling is reported. Processing through the module fabrication and environmental testing of its design are reported. Metallization patterns by mathematical optimization are assessed.
NASA Astrophysics Data System (ADS)
Liang, Chao; Li, Pengwei; Zhang, Yiqiang; Gu, Hao; Cai, Qingbin; Liu, Xiaotao; Wang, Jiefei; Wen, Hua; Shao, Guosheng
2017-12-01
TiO2 is extensively used as electron-transporting material on perovskite solar cells (PSCs). However, traditional TiO2 processing method needs high annealing temperature (>450 °C) and pure TiO2 suffers from low electrical mobility and poor conductivity. In this study, a general one-pot solution-processed method is devised to grow uniform crystallized metal-doped TiO2 thin film as large as 15 × 15 cm2. The doping process can be controlled effectively via a series of doping precursors from niobium (V), tin (IV), tantalum (V) to tungsten (VI) chloride. As far as we know, this is so far the lowest processing temperature for metal-doped TiO2 compact layers, as low as 70 °C. The overall performance of PSCs employing the metal-doped TiO2 layers is significantly improved in term of hysteresis effect, short circuit current, open-circuit voltage, fill factor, power conversion efficiency, and device stability. With the insertion of metal ions into TiO2 lattice, the corresponding CH3NH3PbI3 PSC leads to a ∼25% improved PCE of over 16% under irradiance of 100 mW cm-2 AM1.5G sunlight, compared with control device. The results indicate that this mild solution-processed metal-doped TiO2 is an effective industry-scale way for fabricating hysteresis-less and high-performance PSCs.
Non-noble metal based metallization systems
NASA Technical Reports Server (NTRS)
Garcia, A., III
1983-01-01
The results of efforts to produce a nonsilver metallization system for silicon photovoltaic cells are given. The system uses a metallization system based on molybdenum, tin, and titanium hydride. The initial work in this system was done using the MIDFILM process. The MIDFILM process attains a line resolution comparable to photoresist methods with a process related to screen printing. The surface to be processed is first coated with a thin layer of photopolymer material. Upon exposure to ultraviolet light through a suitable mask, the polymer in the non-pattern area crosslinks and becomes hard. The unexposed pattern areas remain tacky. The conductor material is then applied in the form of a dry mixture of metal which adheres to the tacky pattern area. The assemblage is then fired to ash the photopolymer and sinter the conductor powder.
Optimization of solar cell contacts by system cost-per-watt minimization
NASA Technical Reports Server (NTRS)
Redfield, D.
1977-01-01
New, and considerably altered, optimum dimensions for solar-cell metallization patterns are found using the recently developed procedure whose optimization criterion is the minimum cost-per-watt effect on the entire photovoltaic system. It is also found that the optimum shadow fraction by the fine grid is independent of metal cost and resistivity as well as cell size. The optimum thickness of the fine grid metal depends on all these factors, and in familiar cases it should be appreciably greater than that found by less complete analyses. The optimum bus bar thickness is much greater than those generally used. The cost-per-watt penalty due to the need for increased amounts of metal per unit area on larger cells is determined quantitatively and thereby provides a criterion for the minimum benefits that must be obtained in other process steps to make larger cells cost effective.
Automated array assembly task, phase 1
NASA Technical Reports Server (NTRS)
Carbajal, B. G.
1977-01-01
An assessment of state-of-the-art technologies that are applicable to silicon solar cell and solar cell module fabrication is provided. The assessment consists of a technical feasibility evaluation and a cost projection for high-volume production of silicon solar cell modules. The cost projection was approached from two directions; a design-to-cost analysis assigned cost goals to each major process element in the fabrication scheme, and a cost analysis built up projected costs for alternate technologies for each process element. A technical evaluation was used in combination with the cost analysis to identify a baseline low cost process. A novel approach to metal pattern design based on minimum power loss was developed. These design equations were used as a tool in the evaluation of metallization technologies.
NASA Astrophysics Data System (ADS)
Lee, Juno; Cho, Hyeoncheol; Choi, Jinsu; Kim, Doyeon; Hong, Daewha; Park, Ji Hun; Yang, Sung Ho; Choi, Insung S.
2015-11-01
Individual mammalian cells were coated with cytoprotective and degradable films by cytocompatible processes maintaining the cell viability. Three types of mammalian cells (HeLa, NIH 3T3, and Jurkat cells) were coated with a metal-organic complex of tannic acid (TA) and ferric ion, and the TA-FeIII nanocoat effectively protected the coated mammalian cells against UV-C irradiation and a toxic compound. More importantly, the cell proliferation was controlled by programmed formation and degradation of the TA-FeIII nanocoat, mimicking the sporulation and germination processes found in nature.Individual mammalian cells were coated with cytoprotective and degradable films by cytocompatible processes maintaining the cell viability. Three types of mammalian cells (HeLa, NIH 3T3, and Jurkat cells) were coated with a metal-organic complex of tannic acid (TA) and ferric ion, and the TA-FeIII nanocoat effectively protected the coated mammalian cells against UV-C irradiation and a toxic compound. More importantly, the cell proliferation was controlled by programmed formation and degradation of the TA-FeIII nanocoat, mimicking the sporulation and germination processes found in nature. Electronic supplementary information (ESI) available: Experimental details, LSCM images, and SEM and TEM images. See DOI: 10.1039/c5nr05573c
Low temperature formation of electrode having electrically conductive metal oxide surface
Anders, Simone; Anders, Andre; Brown, Ian G.; McLarnon, Frank R.; Kong, Fanping
1998-01-01
A low temperature process is disclosed for forming metal suboxides on substrates by cathodic arc deposition by either controlling the pressure of the oxygen present in the deposition chamber, or by controlling the density of the metal flux, or by a combination of such adjustments, to thereby control the ratio of oxide to metal in the deposited metal suboxide coating. The density of the metal flux may, in turn, be adjusted by controlling the discharge current of the arc, by adjusting the pulse length (duration of on cycle) of the arc, and by adjusting the frequency of the arc, or any combination of these parameters. In a preferred embodiment, a low temperature process is disclosed for forming an electrically conductive metal suboxide, such as, for example, an electrically conductive suboxide of titanium, on an electrode surface, such as the surface of a nickel oxide electrode, by such cathodic arc deposition and control of the deposition parameters. In the preferred embodiment, the process results in a titanium suboxide-coated nickel oxide electrode exhibiting reduced parasitic evolution of oxygen during charging of a cell made using such an electrode as the positive electrode, as well as exhibiting high oxygen overpotential, resulting in suppression of oxygen evolution at the electrode at full charge of the cell.
Study of process technology for GaAlAs/GaAs heteroface solar cells
NASA Technical Reports Server (NTRS)
Conway, E. J.; Walker, G. H.; Byvik, C. E.; Almgren, D. W.
1980-01-01
Two processes were considered: the infinite melt process and the finite melt process. The only technique that is developed to the point that 10,000 cells could be produced in one year is the infinite melt liquid phase epitaxy process. The lowest cost per cell was achieved with the advanced metal organic chemical vapor deposition process. Molecular beam epitaxy was limited by the slow growth rate. The lowest cost, an 18 percent efficient cell at air mass zero, was approximately $70 per watt.
Niedrach, L.W.; Glamm, A.C.
1959-09-01
An electrolytic process of refining or decontaminating uranium is presented. The impure uranium is made the anode of an electrolytic cell. The molten salt electrolyte of this cell comprises a uranium halide such as UF/sub 4/ or UCl/sub 3/ and an alkaline earth metal halide such as CaCl/sub 2/, BaF/sub 2/, or BaCl/sub 2/. The cathode of the cell is a metal such as Mn, Cr, Co, Fe, or Ni which forms a low melting eutectic with U. The cell is operated at a temperature below the melting point of U. In operation the electrodeposited uranium becomes alloyed with the metal of the cathode, and the low melting alloy thus formed drips from the cathode.
Donado, R.A.; Hrdina, K.E.; Remick, R.J.
1993-04-27
A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process is described for production of the lithium ferrite containing anode by slipcasting.
Donado, Rafael A.; Hrdina, Kenneth E.; Remick, Robert J.
1993-01-01
A molten alkali metal carbonates fuel cell porous anode of lithium ferrite and a metal or metal alloy of nickel, cobalt, nickel/iron, cobalt/iron, nickel/iron/aluminum, cobalt/iron/aluminum and mixtures thereof wherein the total iron content including ferrite and iron of the composite is about 25 to about 80 percent, based upon the total anode, provided aluminum when present is less than about 5 weight percent of the anode. A process for production of the lithium ferrite containing anode by slipcasting.
MOD silver metallization for photovoltaics
NASA Technical Reports Server (NTRS)
Vest, G. M.; Vest, R. W.
1985-01-01
The feasibility of utilizing metallo-organic decomposition (MOD) silver inks were investigated for front contact metallization of solar cells. Generic synthesis procedures were developed for all metallo-organic compounds investigated. Silver neodecanoate was found to be the most suitable silver metallo-organic compound for use in thick film inks, but the quality of the inks was found to be highly dependent on its purity. Although neither the process nor inks were completely optimized for solar cell front contact metallization, they show great promise for this application.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumm, J.; Samadi, H.; Chacko, R. V.
An evaporated Al layer is known as an excellent rear metallization for highly efficient solar cells, but suffers from incompatibility with a common solder process. To enable solar cell-interconnection and module integration, in this work the Al layer is complemented with a solder stack of TiN/Ti/Ag or TiN/NiV/Ag, in which the TiN layer acts as an Al diffusion barrier. X-ray photoelectron spectroscopy measurements prove that diffusion of Al through the stack and the formation of an Al{sub 2}O{sub 3} layer on the stack's surface are responsible for a loss of solderability after a strong post-metallization anneal, which is often mandatorymore » to improve contact resistance and passivation quality. An optimization of the reactive TiN sputter process results in a densification of the TiN layer, which improves its barrier quality against Al diffusion. However, measurements with X-ray diffraction and scanning electron microscopy show that small grains with vertical grain boundaries persist, which still offer fast diffusion paths. Therefore, the concept of stuffing is introduced. By incorporating oxygen into the grain boundaries of the sputtered TiN layer, Al diffusion is strongly reduced as confirmed by secondary ion mass spectroscopy profiles. A quantitative analysis reveals a one order of magnitude lower Al diffusion coefficient for stuffed TiN layers. This metallization system maintains its solderability even after strong post-metallization annealing at 425 °C for 15 min. This paper thus presents an industrially feasible, conventionally solderable, and long-term stable metallization scheme for highly efficient silicon solar cells.« less
Biofilms associated with poultry processing equipment.
Lindsay, D; Geornaras, I; von Holy, A
1996-01-01
Aerobic and Gram-negative bacteria were enumerated on non-metallic surfaces and stainless steel test pieces attached to equipment surfaces by swabbing and a mechanical dislodging procedure, respectively, in a South African grade B poultry processing plant. Changes in bacterial numbers were also monitored over time on metal test pieces. The highest bacterial counts were obtained from non-metallic surfaces such as rubber fingered pluckers and plastic defeathering curtains which exceeded the highest counts found on the metal surfaces by at least 1 log CFU cm-2. Gram-negative bacterial counts on all non-metallic surface types were at least 2 log CFU cm-2 lower than corresponding aerobic plate counts. On metal surfaces, the highest microbial numbers were obtained after 14 days exposure, with aerobic plate counts ranging from 3.57 log CFU cm-2 to 5.13 log CFU cm-2, and Gram-negative counts from 0.70 log CFU cm-2 to 3.31 log CFU cm-2. Scanning electron microscopy confirmed the presence of bacterial cells on non-metallic and metallic surfaces associated with poultry processing. Rubber 'fingers', plastic curtains, conveyor belt material and stainless steel test surfaces placed on the scald tank overflow and several chutes revealed extensive and often confluent bacterial biofilms. Extracellular polymeric substances, but few bacterial cells were visible on test pieces placed on evisceration equipment, spinchiller blades and the spinchiller outlet.
A low-cost photovoltaic cell process based on thick film techniques
NASA Technical Reports Server (NTRS)
Mardesich, N.; Pepe, A.; Bunyan, S.; Edwards, B.; Olson, C.
1980-01-01
The low-cost, easily automated processing for solar cell fabrication being developed at Spectrolab for the DOE LSA program is described. These processes include plasma-etching, spray-on diffusion sources and antireflective coating, thick film metallization, aluminum back contacts, laser scribing and ultrasonic soldering. The process sequence has been shown to produce solar cells having 15% conversion efficiency at AM1 which meet the cell fabrication budget required for the DOE 1986 cost goal of $0.70 per peak watt in 1980.
Présent, Romain M; Rotureau, Elise; Billard, Patrick; Pagnout, Christophe; Sohm, Bénédicte; Flayac, Justine; Gley, Renaud; Pinheiro, José P; Duval, Jérôme F L
2017-11-08
Genetically engineered microorganisms are alternatives to physicochemical methods for remediation of metal-contaminated aquifers due to their remarkable bioaccumulation capacities. The design of such biosystems would benefit from the elaboration of a sound quantitative connection between performance in terms of metal removal from aqueous solution and dynamics of the multiscale processes leading to metal biouptake. In this work, this elaboration is reported for Escherichia coli cells modified to overexpress intracellular metallothionein (MTc), a strong proteinaceous metal chelator. Depletion kinetics of Cd(ii) from bulk solution following biouptake and intracellular accumulation is addressed as a function of cell volume fraction using electroanalytical probes and ligand exchange-based analyses. It is shown that metal biouptake in the absence and presence of MTc is successfully interpreted on the basis of a formalism recently developed for metal partitioning dynamics at biointerfaces with integration of intracellular metal speciation. The analysis demonstrates how fast sequestration of metals by intracellular MTc bypasses metal excretion (efflux) and enhances the rate of metal depletion to an extent such that complete removal is achieved at sufficiently large cell volume fractions. The magnitude of the stability constant of nanoparticulate metal-MTc complexes, as derived from refined analysis of macroscopic bulk metal depletion data, is further confirmed by independent electrochemical measurement of metal binding by purified MTc extracts.
Sintered electrode for solid oxide fuel cells
Ruka, Roswell J.; Warner, Kathryn A.
1999-01-01
A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation.
Sintered electrode for solid oxide fuel cells
Ruka, R.J.; Warner, K.A.
1999-06-01
A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation. 4 figs.
Influence of hole transport material/metal contact interface on perovskite solar cells
NASA Astrophysics Data System (ADS)
Lei, Lei; Zhang, Shude; Yang, Songwang; Li, Xiaomin; Yu, Yu; Wei, Qingzhu; Ni, Zhichun; Li, Ming
2018-06-01
Interfaces have a significant impact on the performance of perovskite solar cells. This work investigated the influence of hole transport material/metal contact interface on photovoltaic behaviours of perovskite solar devices. Different hole material/metal contact interfaces were obtained by depositing the metal under different conditions. High incident kinetic energy metal particles were proved to penetrate and embed into the hole transport material. These isolated metal particles in hole transport materials capture holes and increase the apparent carrier transport resistance of the hole transport layer. Sample temperature was found to be of great significance in metal deposition. Since metal vapour has a high temperature, the deposition process accumulated a large amount of heat. The heat evaporated the additives in the hole transport layer and decreased the hole conductivity. On the other hand, high temperature may cause iodization of the metal contact.
Influence of hole transport material/metal contact interface on perovskite solar cells.
Lei, Lei; Zhang, Shude; Yang, Songwang; Li, Xiaomin; Yu, Yu; Wei, Qingzhu; Ni, Zhichun; Li, Ming
2018-06-22
Interfaces have a significant impact on the performance of perovskite solar cells. This work investigated the influence of hole transport material/metal contact interface on photovoltaic behaviours of perovskite solar devices. Different hole material/metal contact interfaces were obtained by depositing the metal under different conditions. High incident kinetic energy metal particles were proved to penetrate and embed into the hole transport material. These isolated metal particles in hole transport materials capture holes and increase the apparent carrier transport resistance of the hole transport layer. Sample temperature was found to be of great significance in metal deposition. Since metal vapour has a high temperature, the deposition process accumulated a large amount of heat. The heat evaporated the additives in the hole transport layer and decreased the hole conductivity. On the other hand, high temperature may cause iodization of the metal contact.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gordon, John Howard; Alvare, Javier
Alkali metals and sulfur may be recovered from alkali monosulfide and polysulfides in an electrolytic process that utilizes an electrolytic cell having an alkali ion conductive membrane. An anolyte solution includes an alkali monosulfide, an alkali polysulfide, or a mixture thereof and a solvent that dissolves elemental sulfur. A catholyte includes molten alkali metal. Applying an electric current oxidizes sulfide and polysulfide in the anolyte compartment, causes alkali metal ions to pass through the alkali ion conductive membrane to the catholyte compartment, and reduces the alkali metal ions in the catholyte compartment. Liquid sulfur separates from the anolyte solution andmore » may be recovered. The electrolytic cell is operated at a temperature where the formed alkali metal and sulfur are molten.« less
Heteroepitaxial Cu 2O thin film solar cell on metallic substrates
Wee, Sung Hun; Huang, Po-Shun; Lee, Jung-Kun; ...
2015-11-06
Heteroepitaxial, single-crystal-like Cu 2O films on inexpensive, flexible, metallic substrates can potentially be used as absorber layers for fabrication of low-cost, high-performance, non-toxic, earth-abundant solar cells. Here, we report epitaxial growth of Cu 2O films on low cost, flexible, textured metallic substrates. Cu 2O films were deposited on the metallic templates via pulsed laser deposition under various processing conditions to study the influence of processing parameters on the structural and electronic properties of the films. It is found that pure, epitaxial Cu 2O phase without any trace of CuO phase is only formed in a limited deposition window of P(Omore » 2) - temperature. The (00l) single-oriented, highly textured, Cu 2O films deposited under optimum P(O 2) - temperature conditions exhibit excellent electronic properties with carrier mobility in the range of 40-60 cm 2 V -1 s -1 and carrier concentration over 10 16 cm -3. The power conversion efficiency of 1.65% is demonstrated from a proof-of-concept Cu 2O solar cell based on epitaxial Cu 2O film prepared on the textured metal substrate.« less
Heteroepitaxial Cu2O thin film solar cell on metallic substrates
Wee, Sung Hun; Huang, Po-Shun; Lee, Jung-Kun; Goyal, Amit
2015-01-01
Heteroepitaxial, single-crystal-like Cu2O films on inexpensive, flexible, metallic substrates can potentially be used as absorber layers for fabrication of low-cost, high-performance, non-toxic, earth-abundant solar cells. Here, we report epitaxial growth of Cu2O films on low cost, flexible, textured metallic substrates. Cu2O films were deposited on the metallic templates via pulsed laser deposition under various processing conditions to study the influence of processing parameters on the structural and electronic properties of the films. It is found that pure, epitaxial Cu2O phase without any trace of CuO phase is only formed in a limited deposition window of P(O2) - temperature. The (00l) single-oriented, highly textured, Cu2O films deposited under optimum P(O2) - temperature conditions exhibit excellent electronic properties with carrier mobility in the range of 40–60 cm2 V−1 s−1 and carrier concentration over 1016 cm−3. The power conversion efficiency of 1.65% is demonstrated from a proof-of-concept Cu2O solar cell based on epitaxial Cu2O film prepared on the textured metal substrate. PMID:26541499
NASA Astrophysics Data System (ADS)
Xu, Cheng; Liu, Bo; Chen, Yi-Feng; Liang, Shuang; Song, Zhi-Tang; Feng, Song-Lin; Wan, Xu-Dong; Yang, Zuo-Ya; Xie, Joseph; Chen, Bomy
2008-05-01
A Ge2Sb2Te5 based phase change memory device cell integrated with metal-oxide semiconductor field effect transistor (MOSFET) is fabricated using standard 0. 18 μm complementary metal-oxide semiconductor process technology. It shows steady switching characteristics in the dc current-voltage measurement. The phase changing phenomenon from crystalline state to amorphous state with a voltage pulse altitude of 2.0 V and pulse width of 50 ns is also obtained. These results show the feasibility of integrating phase change memory cell with MOSFET.
Use of ion conductors in the pyrochemical reduction of oxides
Miller, William E.; Tomczuk, Zygmunt
1994-01-01
An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO.sub.2 oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a .beta.-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca.degree. used for reducing UO.sub.2 and PuO.sub.2 to U and Pu.
Metallized polymeric foam material
NASA Technical Reports Server (NTRS)
Birnbaum, B. A.; Bilow, N.
1974-01-01
Open-celled polyurethane foams can be coated uniformly with thin film of metal by vapor deposition of aluminum or by sensitization of foam followed by electroless deposition of nickel or copper. Foam can be further processed to increase thickness of metal overcoat to impart rigidity or to provide inert surface with only modest increase in weight.
Automated brush plating process for solid oxide fuel cells
Long, Jeffrey William
2003-01-01
A method of depositing a metal coating (28) on the interconnect (26) of a tubular, hollow fuel cell (10) contains the steps of providing the fuel cell (10) having an exposed interconnect surface (26); contacting the inside of the fuel cell (10) with a cathode (45) without use of any liquid materials; passing electrical current through a contacting applicator (46) which contains a metal electrolyte solution; passing the current from the applicator (46) to the cathode (45) and contacting the interconnect (26) with the applicator (46) and coating all of the exposed interconnect surface.
Metal-Insulator-Semiconductor Nanowire Network Solar Cells.
Oener, Sebastian Z; van de Groep, Jorik; Macco, Bart; Bronsveld, Paula C P; Kessels, W M M; Polman, Albert; Garnett, Erik C
2016-06-08
Metal-insulator-semiconductor (MIS) junctions provide the charge separating properties of Schottky junctions while circumventing the direct and detrimental contact of the metal with the semiconductor. A passivating and tunnel dielectric is used as a separation layer to reduce carrier recombination and remove Fermi level pinning. When applied to solar cells, these junctions result in two main advantages over traditional p-n-junction solar cells: a highly simplified fabrication process and excellent passivation properties and hence high open-circuit voltages. However, one major drawback of metal-insulator-semiconductor solar cells is that a continuous metal layer is needed to form a junction at the surface of the silicon, which decreases the optical transmittance and hence short-circuit current density. The decrease of transmittance with increasing metal coverage, however, can be overcome by nanoscale structures. Nanowire networks exhibit precisely the properties that are required for MIS solar cells: closely spaced and conductive metal wires to induce an inversion layer for homogeneous charge carrier extraction and simultaneously a high optical transparency. We experimentally demonstrate the nanowire MIS concept by using it to make silicon solar cells with a measured energy conversion efficiency of 7% (∼11% after correction), an effective open-circuit voltage (Voc) of 560 mV and estimated short-circuit current density (Jsc) of 33 mA/cm(2). Furthermore, we show that the metal nanowire network can serve additionally as an etch mask to pattern inverted nanopyramids, decreasing the reflectivity substantially from 36% to ∼4%. Our extensive analysis points out a path toward nanowire based MIS solar cells that exhibit both high Voc and Jsc values.
NASA Astrophysics Data System (ADS)
Mueller, M.; Hoehlich, D.; Scharf, I.; Lampke, T.; Hollaender, U.; Maier, H. J.
2016-03-01
Beside lithium batteries, PEM fuel cells are the most promising strategy as a power source to achieve the targets for introducing and increasing the usage of electric vehicles. Due to limited space and weight problems, water cooled, metallic bipolar plates in a fuel cell metal stack are preferred in motor vehicles. These plates are stamped metal sheets with a complex structure, interconnected media-tight. To meet the multiple tasks and requirements in use, complex and expensive combinations of materials are currently in use (carbon fiber composites, graphite, gold-plated nickel, stainless and acid resistant steel). The production of such plates is expensive as it is connected with considerable effort or the usage of precious metals. As an alternative, metalloid nitrides (CrN, VN, W2N, etc.) show a high chemical resistance, hardness and a good conductivity. So this material category meets the basic requirements of a top layer. However, the standard methods for their production (PVD, CVD) are expensive and have a slow deposition rate and a lower layer thicknesses. Because of these limitations, a full functionality over the life cycle of a bipolar plate is not guaranteed. The contribution shows the development and quantification of an alternative production process for bipolar plates. The expectation is to get significant advantages from the combination of chromium electrodeposition and thermochemical treatment to form chromium nitrides. Both processes are well researched and suitable for series production. The thermochemical treatment of the chromium layer also enables a process-integrated brazing.
NASA Technical Reports Server (NTRS)
Dutta, S.
1983-01-01
Applications of laser-based processing techniques to solar cell metallization are discussed. Laser-assisted thermal or photolytic maskless deposition from organometallic vapors or solutions may provide a viable alternative to photovoltaic metallization systems currently in use. High power, defocused excimer lasers may be used in conjunction with masks as an alternative to direct laser writing to provide higher throughput. Repeated pulsing with excimer lasers may eliminate the need for secondary plating techniques for metal film buildup. A comparison between the thermal and photochemical deposition processes is made.
Process for making structure for a MCFC
Pasco, Wayne D.; Arendt, Ronald H.
1986-01-01
A process of making a porous carbonate-containing structure for use in a molten carbonate fuel cell, wherein a suitable porous structure is prepared having disposed therein a metal salt selected from the alkali metals and the alkaline earth metals or mixtures thereof with at least a portion of the salt being a monobasic organic acid salt. The monobasic acid salt is converted to the carbonate in situ by heating in the presence of oxygen. Both electrode and electrolyte structures can be prepared. Formic acid is preferred.
NASA Technical Reports Server (NTRS)
Isaac, Bryan J.
1994-01-01
Electrochemical Impedance Spectroscopy (EIS) is a valuable tool for investigating the chemical and physical processes occurring at electrode surfaces. It offers information about electron transfer at interfaces, kinetics of reactions, and diffusion characteristics of the bulk phase between the electrodes. For battery cells, this technique offers another advantage in that it can be done without taking the battery apart. This non-destructive analysis technique can thus be used to gain a better understanding of the processes occurring within a battery cell. This also raises the possibility of improvements in battery design and identification or prediction of battery characteristics useful in industry and aerospace applications. EIS as a technique is powerful and capable of yielding significant information about the cell, but it also requires that the many parameters under investigation can be resolved. This implies an understanding of the processes occurring in a battery cell. Many battery types were surveyed in this work, but the main emphasis was on nickel/metal hydride batteries.
NASA Astrophysics Data System (ADS)
Hsiao, Jen-Hung; Yu, Jian-He; He, Yulu; Tu, Yi-Chou; Hua, Wei-Hsiang; Low, Meng Chun; Hsieh, Cheng-Che; Kiang, Yean-Woei; Yang, Chih-Chung
2017-02-01
Cancer cell killing efficiencies based on the photothermal effect caused by the surface plasmon resonance of metal nanoparticles (NPs) and the photodynamic effect caused by the singlet oxygen generation of a photosensitizer rely on the cell uptake efficiency of metal NP and photosensitizer. Perforation and heating can increase cell membrane permeability and hence can increase the cell uptake efficiency of NPs and drugs. In this paper, we demonstrate the variations of the cell damage efficiency under the illuminations of different lasers, which can produce mainly photothermal effect, mainly photodynamic effect, and mixed effect, when a pre-perforation and a pre-heating processes are applied. Au nanorings (NRIs) with their localized surface plasmon resonance wavelength around 1064 nm are used. The perforation process is undertaken by illuminating the cell samples by a femtosecond laser at 1064 nm with the power density lower than the cell damage threshold intensity. The heating process is implemented by illuminating cells with a low power continuous laser at 1064 nm. It is found that with the pre-perforation and pre-heating processes, the photodynamic effect is enhanced because the internalized Au NRI number and hence the internalized photosensitizer (AlPcS) molecule number are increased. However, the photothermal effect can be reduced because the adsorbed Au NRIs on cell membrane are effectively internalized during the pre-perforation and pre-heating processes. The photothermal effect is more effective when Au NRIs are adsorbed on cell membrane.
A comprehensive review of metal-induced cellular transformation studies.
Chen, Qiao Yi; Costa, Max
2017-09-15
In vitro transformation assays not only serve practical purposes in screening for potential carcinogenic substances in food, drug, and cosmetic industries, but more importantly, they provide a means of understanding the critical biological processes behind in vivo cancer development. In resemblance to cancer cells in vivo, successfully transformed cells display loss of contact inhibition, gain of anchorage independent growth, resistant to proper cell cycle regulation such as apoptosis, faster proliferation rate, potential for cellular invasion, and ability to form tumors in experimental animals. Cells purposely transformed using metal exposures enable researchers to examine molecular changes, dissect various stages of tumor formation, and ultimately elucidate metal induced cancer mode of action. For practical purposes, this review specifically focuses on studies incorporating As-, Cd-, Cr-, and Ni-induced cell transformation. Through investigating and comparing an extensive list of studies using various methods of metal-induced transformation, this review serves to bridge an information gap and provide a guide for avoiding procedural discrepancies as well as maximizing experimental efficiency. Copyright © 2017 Elsevier Inc. All rights reserved.
Fidelity of metal insertion into hydrogenases.
Magalon, A; Blokesch, M; Zehelein, E; Böck, A
2001-06-15
The fidelity of metal incorporation into the active center of hydrogenase 3 from Escherichia coli was studied by analyzing the inhibition of the maturation pathway by zinc and other transition metals. Hydrogenase maturation of wild-type cells was significantly affected only by concentrations of zinc or cadmium higher than 200 microM, whereas a mutant with a lesion in the nickel uptake system displayed a total blockade of the proteolytic processing of the precursor form into the mature form of the large subunit after growth in the presence of 10 microM Zn(2+). The precursor could not be processed in vitro by the maturation endopeptidase even in the presence of an excess of nickel ions. Evidence is presented that zinc does not interfere with the incorporation of iron into the metal center. Precursor of the large subunit accumulated in nickel proficient cells formed a transient substrate complex with the cognate endoprotease HycI whereas that of zinc-supplemented cells did not. The results show that zinc can intrude the nickel-dependent maturation pathway only when nickel uptake is blocked. Under this condition zinc appears to be incorporated at the nickel site of the large subunit and delivers a precursor not amenable to proteolytic processing since the interaction with the endoprotease is blocked.
All-solid-state lithium-ion and lithium metal batteries - paving the way to large-scale production
NASA Astrophysics Data System (ADS)
Schnell, Joscha; Günther, Till; Knoche, Thomas; Vieider, Christoph; Köhler, Larissa; Just, Alexander; Keller, Marlou; Passerini, Stefano; Reinhart, Gunther
2018-04-01
Challenges and requirements for the large-scale production of all-solid-state lithium-ion and lithium metal batteries are herein evaluated via workshops with experts from renowned research institutes, material suppliers, and automotive manufacturers. Aiming to bridge the gap between materials research and industrial mass production, possible solutions for the production chains of sulfide and oxide based all-solid-state batteries from electrode fabrication to cell assembly and quality control are presented. Based on these findings, a detailed comparison of the production processes for a sulfide based all-solid-state battery with conventional lithium-ion cell production is given, showing that processes for composite electrode fabrication can be adapted with some effort, while the fabrication of the solid electrolyte separator layer and the integration of a lithium metal anode will require completely new processes. This work identifies the major steps towards mass production of all-solid-state batteries, giving insight into promising manufacturing technologies and helping stakeholders, such as machine engineering, cell producers, and original equipment manufacturers, to plan the next steps towards safer batteries with increased storage capacity.
Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana.
Gola, Deepak; Dey, Priyadarshini; Bhattacharya, Arghya; Mishra, Abhishek; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin
2016-10-01
Towards the development of a potential remediation technology for multiple heavy metals [Zn(II), Cu(II), Cd(II), Cr(VI) and Ni(II)] from contaminated water, present study examined the growth kinetics and heavy metal removal ability of Beauveria bassiana in individual and multi metals. The specific growth rate of B. bassiana varied from 0.025h(-1) to 0.039h(-1) in presence of individual/multi heavy metals. FTIR analysis indicated the involvement of different surface functional groups in biosorption of different metals, while cellular changes in fungus was reflected by various microscopic (SEM, AFM and TEM) analysis. TEM studies proved removal of heavy metals via sorption and accumulation processes, whereas AFM studies revealed increase in cell surface roughness in fungal cells exposed to heavy metals. Present study delivers first report on the mechanism of bioremediation of heavy metals when present individually as well as multi metal mixture by entomopathogenic fungi. Copyright © 2016 Elsevier Ltd. All rights reserved.
Metal matrix composite structural panel construction
NASA Technical Reports Server (NTRS)
Mcwithey, R. R.; Royster, D. M. (Inventor); Bales, T. T.
1983-01-01
Lightweight capped honeycomb stiffeners for use in fabricating metal or metal/matrix exterior structural panels on aerospace type vehicles and the process for fabricating same are disclosed. The stiffener stringers are formed in sheets, cut to the desired width and length and brazed in spaced relationship to a skin with the honeycomb material serving directly as the required lightweight stiffeners and not requiring separate metal encasement for the exposed honeycomb cells.
NASA Technical Reports Server (NTRS)
Hopkins, R. H.; Davis, J. R.; Blais, P. D.; Rohatgi, A.; Campbell, R. B.; Rai-Choudhury, P.; Stapleton, R. E.; Mollenkopf, H. C.; Mccormick, J. R.
1979-01-01
The effects of impurities, various thermochemical processes, and any impurity process interactions on the performance of terrestrial silicon solar cells are defined. Determinations of the segregation coefficients of tungsten, tantalum, and cobalt for the Czochralski pulling of silicon single crystals are reported. Sensitive neutron activation analysis was used to determine the metal impurity content of the silicon while atomic absorption was used to measure the metal content of the residual liquid from which the doped crystals were grown. Gettering of Ti doped silicon wafers improved cell performance by one to two percent for the highest temperatures and longest times. The HCl is more effective than POCl3 treatments for deactivating Ti but POCl3 and HCl produced essentially identical results for Mo or Fe.
Approaching conversion limit with all-dielectric solar cell reflectors.
Fu, Sze Ming; Lai, Yi-Chun; Tseng, Chi Wei; Yan, Sheng Lun; Zhong, Yan Kai; Shen, Chang-Hong; Shieh, Jia-Min; Li, Yu-Ren; Cheng, Huang-Chung; Chi, Gou-chung; Yu, Peichen; Lin, Albert
2015-02-09
Metallic back reflectors has been used for thin-film and wafer-based solar cells for very long time. Nonetheless, the metallic mirrors might not be the best choices for photovoltaics. In this work, we show that solar cells with all-dielectric reflectors can surpass the best-configured metal-backed devices. Theoretical and experimental results all show that superior large-angle light scattering capability can be achieved by the diffuse medium reflectors, and the solar cell J-V enhancement is higher for solar cells using all-dielectric reflectors. Specifically, the measured diffused scattering efficiency (D.S.E.) of a diffuse medium reflector is >0.8 for the light trapping spectral range (600nm-1000nm), and the measured reflectance of a diffuse medium can be as high as silver if the geometry of embedded titanium oxide(TiO(2)) nanoparticles is optimized. Moreover, the diffuse medium reflectors have the additional advantage of room-temperature processing, low cost, and very high throughput. We believe that using all-dielectric solar cell reflectors is a way to approach the thermodynamic conversion limit by completely excluding metallic dissipation.
Materials, device, and interface engineering to improve polymer-based solar cells
NASA Astrophysics Data System (ADS)
Hau, Steven Kin
The continued depletion of fossil fuel resources has lead to the rise in energy production costs which has lead to the search for an economically viable alternative energy source. One alternative of particular interest is solar energy. A promising alternative to inorganic materials is organic semiconductor polymer solar cells due to their advantages of being cheaper, light weight, flexible and made into large areas by roll-to-roll processing. In this dissertation, an integrated approach is taken to improve the overall performance of polymer-based solar cells by the development of new polymer materials, device architectures, and interface engineering of the contacts between layers. First, a new class of metallated conjugated polymers is explored as potential solar cell materials. Systematic modifications to the molecular units on the main chain of amorphous metallated Pt-polymers show a correlation that improving charge carrier mobility also improves solar cell performance leading to mobilities as high as 1 x 10-2 cm2/V·s and efficiencies as high as 4.1%. Second, an inverted device architecture using a more air stable electrode (Ag) is demonstrated to improve the ambient stability of unencapsulated P3HT:PCBM devices showing over 80% efficiency retention after 40 days of exposure. To further demonstrate the potential for roll-to-roll processing of polymer solar cells, solution processed Ag-nanoparticles were used to replace the vacuum deposited Ag anode electrode for inverted solar cells showing efficiencies as high as 3%. In addition, solution processed polymer based electrodes were demonstrated as a replacement to the expensive and brittle indium tin oxide showing efficiencies of 3% on flexible substrate solar cells. Third, interface engineering of the n-type (high temperature sol-gel processed TiO2 or ZnO, low temperature processed ZnO nanoparticles) electron selective metal oxide contacts in inverted solar cells with self-assembled monolayers (SAM) show improved device performance. Modifying the n-type layer in inverted cells with C60-SAMs containing different anchoring groups leads to an improvement in photocurrent density and fill factor leading to efficiencies as high as 4.9%.
Production, characterisation, and cytocompatibility of porous titanium-based particulate scaffolds.
Luthringer, B J C; Ali, F; Akaichi, H; Feyerabend, F; Ebel, T; Willumeit, R
2013-10-01
Despite its non-matching mechanical properties titanium remains the preferred metal implant material in orthopaedics. As a consequence in some cases stress shielding effect occurs, leading to implant loosening, osteopenia, and finally revision surgery. Porous metal scaffolds to allow easier specialised cells ingrowth with mechanical properties closer to the ones of bone can overcome this problem. This should improve healing processes, implant integration, and dynamic strength of implants retaining. Three Ti-6Al-4V materials were metal injection moulded and tailored porosities were effectively achieved. After microstructural and mechanical characterisation, two different primary cells of mesenchymal origin (human umbilical cord perivascular cells and human bone derived cells which revealed to be two pertinent models) as well as one cell line originated from primary osteogenic sarcoma, Saos-2, were bestowed to investigate cell-material interaction on genomic and proteome levels. Biological examinations disclosed that no material has negative impact on early adhesion, proliferation or cell viability. An efficient cell ingrowth into material with an average porosity of 25-50 μm was proved.
Method of preparing electrolyte for use in fuel cells
Kinoshita, Kimio; Ackerman, John P.
1978-01-01
An electrolyte compact for fuel cells includes a particulate support material of lithium aluminate that contains a mixture of alkali metal compounds, such as carbonates or hydroxides, as the active electrolyte material. The porous lithium aluminate support structure is formed by mixing alumina particles with a solution of lithium hydroxide and another alkali metal hydroxide, evaporating the solvent from the solution and heating to a temperature sufficient to react the lithium hydroxide with alumina to form lithium aluminate. Carbonates are formed by reacting the alkali metal hydroxides with carbon dioxide gas in an exothermic reaction which may proceed simultaneously with the formation with the lithium aluminate. The mixture of lithium aluminate and alkali metal in an electrolyte active material is pressed or otherwise processed to form the electrolyte structure for assembly into a fuel cell.
Automated array assembly task, phase 1
NASA Technical Reports Server (NTRS)
Carbajal, B. G.
1977-01-01
State-of-the-art technologies applicable to silicon solar cell and solar cell module fabrication were assessed. The assessment consisted of a technical feasibility evaluation and a cost projection for high volume production of solar cell modules. Design equations based on minimum power loss were used as a tool in the evaluation of metallization technologies. A solar cell process sensitivity study using models, computer calculations, and experimental data was used to identify process step variation and cell output variation correlations.
Cha, Eunho; Patel, Mumukshu D; Park, Juhong; Hwang, Jeongwoon; Prasad, Vish; Cho, Kyeongjae; Choi, Wonbong
2018-04-01
Among the candidates to replace Li-ion batteries, Li-S cells are an attractive option as their energy density is about five times higher (~2,600 Wh kg -1 ). The success of Li-S cells depends in large part on the utilization of metallic Li as anode material. Metallic lithium, however, is prone to grow parasitic dendrites and is highly reactive to several electrolytes; moreover, Li-S cells with metallic Li are also susceptible to polysulfides dissolution. Here, we show that ~10-nm-thick two-dimensional (2D) MoS 2 can act as a protective layer for Li-metal anodes, greatly improving the performances of Li-S batteries. In particular, we observe stable Li electrodeposition and the suppression of dendrite nucleation sites. The deposition and dissolution process of a symmetric MoS 2 -coated Li-metal cell operates at a current density of 10 mA cm -2 with low voltage hysteresis and a threefold improvement in cycle life compared with using bare Li-metal. In a Li-S full-cell configuration, using the MoS 2 -coated Li as anode and a 3D carbon nanotube-sulfur cathode, we obtain a specific energy density of ~589 Wh kg -1 and a Coulombic efficiency of ~98% for over 1,200 cycles at 0.5 C. Our approach could lead to the realization of high energy density and safe Li-metal-based batteries.
2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries
NASA Astrophysics Data System (ADS)
Cha, Eunho; Patel, Mumukshu D.; Park, Juhong; Hwang, Jeongwoon; Prasad, Vish; Cho, Kyeongjae; Choi, Wonbong
2018-04-01
Among the candidates to replace Li-ion batteries, Li-S cells are an attractive option as their energy density is about five times higher ( 2,600 Wh kg-1). The success of Li-S cells depends in large part on the utilization of metallic Li as anode material. Metallic lithium, however, is prone to grow parasitic dendrites and is highly reactive to several electrolytes; moreover, Li-S cells with metallic Li are also susceptible to polysulfides dissolution. Here, we show that 10-nm-thick two-dimensional (2D) MoS2 can act as a protective layer for Li-metal anodes, greatly improving the performances of Li-S batteries. In particular, we observe stable Li electrodeposition and the suppression of dendrite nucleation sites. The deposition and dissolution process of a symmetric MoS2-coated Li-metal cell operates at a current density of 10 mA cm-2 with low voltage hysteresis and a threefold improvement in cycle life compared with using bare Li-metal. In a Li-S full-cell configuration, using the MoS2-coated Li as anode and a 3D carbon nanotube-sulfur cathode, we obtain a specific energy density of 589 Wh kg-1 and a Coulombic efficiency of 98% for over 1,200 cycles at 0.5 C. Our approach could lead to the realization of high energy density and safe Li-metal-based batteries.
Titanium dioxide antireflection coating for silicon solar cells by spray deposition
NASA Technical Reports Server (NTRS)
Kern, W.; Tracy, E.
1980-01-01
A high-speed production process is described for depositing a single-layer, quarter-wavelength thick antireflection coating of titanium dioxide on metal-patterned single-crystal silicon solar cells for terrestrial applications. Controlled atomization spraying of an organotitanium solution was selected as the most cost-effective method of film deposition using commercial automated equipment. The optimal composition consists of titanium isopropoxide as the titanium source, n-butyl acetate as the diluent solvent, sec-butanol as the leveling agent, and 2-ethyl-1-hexanol to render the material uniformly depositable. Application of the process to the coating of circular, large-diameter solar cells with either screen-printed silver metallization or with vacuum-evaporated Ti/Pd/Ag metallization showed increases of over 40% in the electrical conversion efficiency. Optical characteristics, corrosion resistance, and several other important properties of the spray-deposited film are reported. Experimental evidence indicates a wide tolerance in the coating thickness upon the overall efficiency of the cell. Considerations pertaining to the optimization of AR coatings in general are discussed, and a comprehensive critical survey of the literature is presented.
Plasmon-Assisted Efficiency Enhancement of Eu3+-Doped Tellurite Glass-Covered Solar Cells
NASA Astrophysics Data System (ADS)
Lima, Bismarck C.; Gómez-Malagón, L. A.; Gomes, A. S. L.; Garcia, J. A. M.; Kassab, L. R. P.
2017-12-01
Rare-earth-doped tellurite glass containing metallic nanoparticles can be exploited to manage the solar spectrum in order to increase solar cell efficiency. It is therefore possible to modify the incident solar spectrum profile to the spectrum that optimizes the solar cell recombination process by covering the solar cell with plasmonic luminescent downshifting layers. With this approach, the losses due to thermalization are minimized and the efficiency is increased. Due to the down-conversion process that couples the plasmon resonance of the metallic nanoparticles and the rare-earth electronic energy levels, it is possible to convert photons from the ultraviolet region to the visible and near-band-gap region of the semiconductor. It is demonstrated here that plasmon-assisted efficiency enhancements of 14.0% and 34.5% can be obtained for commercial Si and GaP solar cells, respectively, covered with Eu3+-doped TeO2-ZnO glass containing silver nanoparticles.
Soares, Eduardo V; Soares, Helena M V M
2012-05-01
The release of heavy metals into the environment, mainly as a consequence of anthropogenic activities, constitutes a worldwide environmental pollution problem. Unlike organic pollutants, heavy metals are not degraded and remain indefinitely in the ecosystem, which poses a different kind of challenge for remediation. It seems that the "best treatment technologies" available may not be completely effective for metal removal or can be expensive; therefore, new methodologies have been proposed for the detoxification of metal-bearing wastewaters. The present work reviews and discusses the advantages of using brewing yeast cells of Saccharomyces cerevisiae in the detoxification of effluents containing heavy metals. The current knowledge of the mechanisms of metal removal by yeast biomass is presented. The use of live or dead biomass and the influence of biomass inactivation on the metal accumulation characteristics are outlined. The role of chemical speciation for predicting and optimising the efficiency of metal removal is highlighted. The problem of biomass separation, after treatment of the effluents, and the use of flocculent characteristics, as an alternative process of cell-liquid separation, are also discussed. The use of yeast cells in the treatment of real effluents to bridge the gap between fundamental and applied studies is presented and updated. The convenient management of the contaminated biomass and the advantages of the selective recovery of heavy metals in the development of a closed cycle without residues (green technology) are critically reviewed.
Plascencia-Villa, Germán; Starr, Clarise R; Armstrong, Linda S; Ponce, Arturo; José-Yacamán, Miguel
2012-11-01
Use of engineered metal oxide nanoparticles in a plethora of biological applications and custom products has warned about some possible dose-dependent cytotoxic effects. Macrophages are key components of the innate immune system used to study possible toxic effects and internalization of different nanoparticulate materials. In this work, ultra-high resolution field emission scanning electron microscopy (FE-SEM) was used to offer new insights into the dynamical processes of interaction of nanomaterials with macrophage cells dosed with different concentrations of metal oxide nanoparticles (CeO(2), TiO(2) and ZnO). The versatility of FE-SEM has allowed obtaining a detailed characterization of processes of adsorption and endocytosis of nanoparticles, by using advanced analytical and imaging techniques on complete unstained uncoated cells, including secondary electron imaging, high-sensitive backscattered electron imaging, X-ray microanalysis and stereoimaging. Low voltage BF/DF-STEM confirmed nanoparticle adsorption and internalization into endosomes of CeO(2) and TiO(2), whereas ZnO develop apoptosis after 24 h of interaction caused by dissolution and invasion of cell nucleus. Ultra-high resolution scanning electron microscopy techniques provided new insights into interactions of inorganic nanoparticles with macrophage cells with high spatial resolution.
Ou, Yu-Yen; Chen, Shu-An; Wu, Sheng-Cheng
2013-01-01
Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation-reduction reactions. In these oxidation-reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain. We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins. We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88. We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins.
Ou, Yu-Yen; Chen, Shu-An; Wu, Sheng-Cheng
2013-01-01
Background Cellular respiration is the process by which cells obtain energy from glucose and is a very important biological process in living cell. As cells do cellular respiration, they need a pathway to store and transport electrons, the electron transport chain. The function of the electron transport chain is to produce a trans-membrane proton electrochemical gradient as a result of oxidation–reduction reactions. In these oxidation–reduction reactions in electron transport chains, metal ions play very important role as electron donor and acceptor. For example, Fe ions are in complex I and complex II, and Cu ions are in complex IV. Therefore, to identify metal-binding sites in electron transporters is an important issue in helping biologists better understand the workings of the electron transport chain. Methods We propose a method based on Position Specific Scoring Matrix (PSSM) profiles and significant amino acid pairs to identify metal-binding residues in electron transport proteins. Results We have selected a non-redundant set of 55 metal-binding electron transport proteins as our dataset. The proposed method can predict metal-binding sites in electron transport proteins with an average 10-fold cross-validation accuracy of 93.2% and 93.1% for metal-binding cysteine and histidine, respectively. Compared with the general metal-binding predictor from A. Passerini et al., the proposed method can improve over 9% of sensitivity, and 14% specificity on the independent dataset in identifying metal-binding cysteines. The proposed method can also improve almost 76% sensitivity with same specificity in metal-binding histidine, and MCC is also improved from 0.28 to 0.88. Conclusions We have developed a novel approach based on PSSM profiles and significant amino acid pairs for identifying metal-binding sites from electron transport proteins. The proposed approach achieved a significant improvement with independent test set of metal-binding electron transport proteins. PMID:23405059
Use of ion conductors in the pyrochemical reduction of oxides
Miller, W.E.; Tomczuk, Z.
1994-02-01
An electrochemical process and electrochemical cell for reducing a metal oxide are provided. First the oxide is separated as oxygen gas using, for example, a ZrO[sub 2] oxygen ion conductor anode and the metal ions from the reduction salt are reduced and deposited on an ion conductor cathode, for example, sodium ion reduced on a [beta]-alumina sodium ion conductor cathode. The generation of and separation of oxygen gas avoids the problem with chemical back reaction of oxygen with active metals in the cell. The method also is characterized by a sequence of two steps where an inert cathode electrode is inserted into the electrochemical cell in the second step and the metallic component in the ion conductor is then used as the anode to cause electrochemical reduction of the metal ions formed in the first step from the metal oxide where oxygen gas formed at the anode. The use of ion conductors serves to isolate the active components from chemically reacting with certain chemicals in the cell. While applicable to a variety of metal oxides, the invention has special importance for reducing CaO to Ca[sup o] used for reducing UO[sub 2] and PuO[sub 2] to U and Pu. 2 figures.
Recrystallization as a controlling process in the wear of some f.c.c. metals
NASA Technical Reports Server (NTRS)
Bill, R. C.; Wisander, D.
1977-01-01
Detailed examination of copper specimens after sliding against 440 C steel in liquid methane at speeds up to 25 m/s and loads of up to 2 kg showed the metal comprising the wear surface to possess a fine cell recrystallized structure. Wear proceeded by the plastic shearing of metal in this near surface region without the occurrence of visible metal transfer. A dynamic balance between the intense shear process at the surface and the nucleation of recrystallized grains was proposed to account for the behavior of the metal at the wear surface. Sliding wear experiments were also conducted on Ag, Cu-10% Al, Cu-10% Sn, Ni and Al. It was found that low wear and the absence of heavy metal transfer were associated with those metals observed to undergo recrystallization nucleation without prior recovery.
Characterization of silicon-gate CMOS/SOS integrated circuits processed with ion implantation
NASA Technical Reports Server (NTRS)
Woo, D. S.
1980-01-01
The double layer metallization technology applied on p type silicon gate CMOS/SOS integrated circuits is described. A smooth metal surface was obtained by using the 2% Si-sputtered Al. More than 10% probe yield was achieved on solar cell controller circuit TCS136 (or MSFC-SC101). Reliability tests were performed on 15 arrays at 150 C. Only three arrays failed during the burn in, and 18 arrays out of 22 functioning arrays maintained the leakage current below 100 milli-A. Analysis indicates that this technology will be a viable process if the metal short circuit problem between the two metals can be reduced.
Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young
2016-11-09
We report the preparation of Cu 2 S, In 2 S 3 , CuInS 2 and Cu(In,Ga)S 2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN 1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.
NASA Astrophysics Data System (ADS)
Heo, Jungwoo; Kim, Gi-Hwan; Jeong, Jaeki; Yoon, Yung Jin; Seo, Jung Hwa; Walker, Bright; Kim, Jin Young
2016-11-01
We report the preparation of Cu2S, In2S3, CuInS2 and Cu(In,Ga)S2 semiconducting films via the spin coating and annealing of soluble tertiary-alkyl thiolate complexes. The thiolate compounds are readily prepared via the reaction of metal bases and tertiary-alkyl thiols. The thiolate complexes are soluble in common organic solvents and can be solution processed by spin coating to yield thin films. Upon thermal annealing in the range of 200-400 °C, the tertiary-alkyl thiolates decompose cleanly to yield volatile dialkyl sulfides and metal sulfide films which are free of organic residue. Analysis of the reaction byproducts strongly suggests that the decomposition proceeds via an SN1 mechanism. The composition of the films can be controlled by adjusting the amount of each metal thiolate used in the precursor solution yielding bandgaps in the range of 1.2 to 3.3 eV. The films form functioning p-n junctions when deposited in contact with CdS films prepared by the same method. Functioning solar cells are observed when such p-n junctions are prepared on transparent conducting substrates and finished by depositing electrodes with appropriate work functions. This method enables the fabrication of metal chalcogenide films on a large scale via a simple and chemically clear process.
ERIC Educational Resources Information Center
Bowman, Hannah E.
2016-01-01
Transition metals play an important role in many biological processes, however, they are also toxic at high concentrations. Therefore, the uptake and efflux of these metals must be tightly regulated by the cell. Bacteria have evolved a variety of pathways and regulatory systems to monitor the presence and concentration of metals in the cellular…
Method for ultra-fast boriding
Erdemir, Ali; Sista, Vivekanand; Kahvecioglu, Ozgenur; Eryilmaz, Osman Levent
2017-01-31
An article of manufacture and method of forming a borided material. An electrochemical cell is used to process a substrate to deposit a plurality of borided layers on the substrate. The plurality of layers are co-deposited such that a refractory metal boride layer is disposed on a substrate and a rare earth metal boride conforming layer is disposed on the refractory metal boride layer.
Gaalas/Gaas Solar Cell Process Study
NASA Technical Reports Server (NTRS)
Almgren, D. W.; Csigi, K. I.
1980-01-01
Available information on liquid phase, vapor phase (including chemical vapor deposition) and molecular beam epitaxy growth procedures that could be used to fabricate single crystal, heteroface, (AlGa) As/GaAs solar cells, for space applications is summarized. A comparison of the basic cost elements of the epitaxy growth processes shows that the current infinite melt LPE process has the lower cost per cell for an annual production rate of 10,000 cells. The metal organic chemical vapor deposition (MO-CVD) process has the potential for low cost production of solar cells but there is currently a significant uncertainty in process yield, i.e., the fraction of active material in the input gas stream that ends up in the cell. Additional work is needed to optimize and document the process parameters for the MO-CVD process.
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Fatemi, N. S.; Hoffman, R. W.
1995-01-01
Two contact systems for use on shallow junction InP solar cells are described. The feature shared by these two contact systems is the absence of the metallurgical intermixing that normally takes place between the semiconductor and the contact metallization during the sintering process. The n(+)pp(+) cell contact system, consisting of a combination of Au and Ge, not only exhibits very low resistance in the as-fabricated state, but also yields post-sinter resistivity values of 1(exp -7) ohms-sq cm, with effectively no metal-InP interdiffusion. The n(+)pp(+)cell contact system, consisting of a combination of Ag and Zn, permits low resistance ohmic contact to be made directly to a shallow junction p/n InP device without harming the device itself during the contacting process.
Process of making structure for a MCFC
Pasco, W.D.; Arendt, R.H.
1985-04-03
A process of making a porous carbonate-containing structure for use in a molten carbonate fuel cell is disclosed, wherein a suitable porous structure is prepared having disposed therein a metal salt selected from the alkali metals and the alkaline earth metals or mixtures thereof with at least a portion of the salt being a monobasic organic acid salt. The monobasic acid salt is converted to the carbonate in situ by heating in the presence of oxygen. Both electrode and electrolyte structures can be prepared. Formic acid is preferred.
Roehrens, Daniel; Packbier, Ute; Fang, Qingping; Blum, Ludger; Sebold, Doris; Bram, Martin; Menzler, Norbert
2016-01-01
In this study we report on the development and operational data of a metal-supported solid oxide fuel cell with a thin film electrolyte under varying conditions. The metal-ceramic structure was developed for a mobile auxiliary power unit and offers power densities of 1 W/cm2 at 800 °C, as well as robustness under mechanical, thermal and chemical stresses. A dense and thin yttria-doped zirconia layer was applied to a nanoporous nickel/zirconia anode using a scalable adapted gas-flow sputter process, which allowed the homogeneous coating of areas up to 100 cm2. The cell performance is presented for single cells and for stack operation, both in lightweight and stationary stack designs. The results from short-term operation indicate that this cell technology may be a very suitable alternative for mobile applications. PMID:28773883
Nickel-Tin Electrode Materials for Nonaqueous Li-Ion Cells
NASA Technical Reports Server (NTRS)
Ehrlich, Grant M.; Durand, Christopher
2005-01-01
Experimental materials made from mixtures of nickel and tin powders have shown promise for use as the negative electrodes of rechargeable lithium-ion electrochemical power cells. During charging (or discharging) of a lithium-ion cell, lithium ions are absorbed into (or desorbed from, respectively) the negative electrode, typically through an intercalation or alloying process. The negative electrodes (for this purpose, designated as anodes) in state-of-the-art Li-ion cells are made of graphite, in which intercalation occurs. Alternatively, the anodes can be made from metals, in which alloying can occur. For reasons having to do with the electrochemical potential of intercalated lithium, metallic anode materials (especially materials containing tin) are regarded as safer than graphite ones; in addition, such metallic anode materials have been investigated in the hope of obtaining reversible charge/discharge capacities greater than those of graphite anodes. However, until now, each of the tin-containing metallic anode formulations tested has been found to be inadequate in some respect.
Electrolytic process for preparing uranium metal
Haas, Paul A.
1990-01-01
An electrolytic process for making uranium from uranium oxide using Cl.sub.2 anode product from an electrolytic cell to react with UO.sub.2 to form uranium chlorides. The chlorides are used in low concentrations in a melt comprising fluorides and chlorides of potassium, sodium and barium in the electrolytic cell. The electrolysis produces Cl.sub.2 at the anode that reacts with UO.sub.2 in the feed reactor to form soluble UCl.sub.4, available for a continuous process in the electrolytic cell, rather than having insoluble UO.sub.2 fouling the cell.
Galvanic cell for processing of used nuclear fuel
Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.
2017-02-07
A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.
Impact of Acute Metal Stress in Saccharomyces cerevisiae
Lichtenberg-Fraté, Hella; Glaser, Walter; Schüller, Christoph; Klipp, Edda
2014-01-01
Although considered as essential cofactors for a variety of enzymatic reactions and for important structural and functional roles in cell metabolism, metals at high concentrations are potent toxic pollutants and pose complex biochemical problems for cells. We report results of single dose acute toxicity testing in the model organism S. cerevisiae. The effects of moderate toxic concentrations of 10 different human health relevant metals, Ag+, Al3+, As3+, Cd2+, Co2+, Hg2+, Mn2+, Ni2+, V3+, and Zn2+, following short-term exposure were analyzed by transcription profiling to provide the identification of early-on target genes or pathways. In contrast to common acute toxicity tests where defined endpoints are monitored we focused on the entire genomic response. We provide evidence that the induction of central elements of the oxidative stress response by the majority of investigated metals is the basic detoxification process against short-term metal exposure. General detoxification mechanisms also comprised the induction of genes coding for chaperones and those for chelation of metal ions via siderophores and amino acids. Hierarchical clustering, transcription factor analyses, and gene ontology data further revealed activation of genes involved in metal-specific protein catabolism along with repression of growth-related processes such as protein synthesis. Metal ion group specific differences in the expression responses with shared transcriptional regulators for both, up-regulation and repression were also observed. Additionally, some processes unique for individual metals were evident as well. In view of current concerns regarding environmental pollution our results may support ongoing attempts to develop methods to monitor potentially hazardous areas or liquids and to establish standardized tests using suitable eukaryotic a model organism. PMID:24416162
Impact of acute metal stress in Saccharomyces cerevisiae.
Hosiner, Dagmar; Gerber, Susanne; Lichtenberg-Fraté, Hella; Glaser, Walter; Schüller, Christoph; Klipp, Edda
2014-01-01
Although considered as essential cofactors for a variety of enzymatic reactions and for important structural and functional roles in cell metabolism, metals at high concentrations are potent toxic pollutants and pose complex biochemical problems for cells. We report results of single dose acute toxicity testing in the model organism S. cerevisiae. The effects of moderate toxic concentrations of 10 different human health relevant metals, Ag(+), Al(3+), As(3+), Cd(2+), Co(2+), Hg(2+), Mn(2+), Ni(2+), V(3+), and Zn(2+), following short-term exposure were analyzed by transcription profiling to provide the identification of early-on target genes or pathways. In contrast to common acute toxicity tests where defined endpoints are monitored we focused on the entire genomic response. We provide evidence that the induction of central elements of the oxidative stress response by the majority of investigated metals is the basic detoxification process against short-term metal exposure. General detoxification mechanisms also comprised the induction of genes coding for chaperones and those for chelation of metal ions via siderophores and amino acids. Hierarchical clustering, transcription factor analyses, and gene ontology data further revealed activation of genes involved in metal-specific protein catabolism along with repression of growth-related processes such as protein synthesis. Metal ion group specific differences in the expression responses with shared transcriptional regulators for both, up-regulation and repression were also observed. Additionally, some processes unique for individual metals were evident as well. In view of current concerns regarding environmental pollution our results may support ongoing attempts to develop methods to monitor potentially hazardous areas or liquids and to establish standardized tests using suitable eukaryotic a model organism.
Hormesis effect of trace metals on cultured normal and immortal human mammary cells.
Schmidt, Craig M; Cheng, Chun N; Marino, Angelo; Konsoula, Roula; Barile, Frank A
2004-06-01
An in vitro study was conducted to determine the effects of variable concentrations of trace metals on human cultured mammary cells. Monolayers of human mortal (MCF-12A) and immortal (MDA-MB231) mammary epithelial cells were incubated in the absence or presence of increasing concentrations of arsenic (As), mercury (Hg) and copper (Cu) for 24-h, 72-h, 4-d, and 7-d. The MTT assay was used to assess viability for all time periods and cell proliferation was monitored for 4-d and 7-d studies. Monolayers were also labeled with rhodamine-110 (R-6501), Sytox green, and Celltiter blue fluorescent dyes as indicators for intracellular esterase activity, nucleic acid staining, and cell reduction/viability, respectively. Total incubation time with chemical plus dyes was 24 h. For 24-h and 72-h studies, cells were seeded in 96-well plates, after which confluent monolayers were exposed to increasing concentrations of chemicals. For 4-d and 7-d studies, cells were seeded in 12-well plates at 1/3 confluent density (day 0) and exposed to increasing concentrations of metals on day 1. All cells were counted on days 4 and 7. In addition, test medium was removed from select groups of cultures on day 4, replaced with fresh medium in the absence of chemical (recovery studies), and assays were performed on day 7 as above. The data suggest that there is a consistent protective and/or stimulating effect of metals at the lowest concentrations in MCF-12A cells that is not observed in immortal MDA-MB231 cells. In fact, cell viability of MCF-12A cells is stimulated by otherwise equivalent inhibitory concentrations of As, Cu, and Hg on MDA-MB231 cells at 24-h. Whereas As and Hg suppress proliferation and viability in both cell lines after 4-d and 7-d of exposure, Cu enhances cell proliferation and viability of MCF-12A cells. MDA-MB231, however, recover better after 4-days of toxic insult. In addition, nutritional manipulation of media between the cell lines, or pretreatment with penicillamine, did not alter the hormesis effect displayed by MCF-12A. Growth of these cells however was not maintained in the alternative medium. The study demonstrates that a hormesis effect from trace metals is detectable in cultured mammary cells; fluorescent indicators, however, are not as sensitive as cell proliferation or MTT in recognizing the subtle responses. Also, sensitivity of mammary cells to lower concentrations of Cu, a biologically important trace metal, may play an important role in controlling cellular processes and proliferation. The ability to detect this in vitro phenomenon implies that similar processes, occurring in vivo, may be responsible for the development, induction, or enhancement of human cancers.
Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil.
Kranz, Lukas; Gretener, Christina; Perrenoud, Julian; Schmitt, Rafael; Pianezzi, Fabian; La Mattina, Fabio; Blösch, Patrick; Cheah, Erik; Chirilă, Adrian; Fella, Carolin M; Hagendorfer, Harald; Jäger, Timo; Nishiwaki, Shiro; Uhl, Alexander R; Buecheler, Stephan; Tiwari, Ayodhya N
2013-01-01
Roll-to-roll manufacturing of CdTe solar cells on flexible metal foil substrates is one of the most attractive options for low-cost photovoltaic module production. However, various efforts to grow CdTe solar cells on metal foil have resulted in low efficiencies. This is caused by the fact that the conventional device structure must be inverted, which imposes severe restrictions on device processing and consequently limits the electronic quality of the CdTe layer. Here we introduce an innovative concept for the controlled doping of the CdTe layer in the inverted device structure by means of evaporation of sub-monolayer amounts of Cu and subsequent annealing, which enables breakthrough efficiencies up to 13.6%. For the first time, CdTe solar cells on metal foil exceed the 10% efficiency threshold for industrialization. The controlled doping of CdTe with Cu leads to increased hole density, enhanced carrier lifetime and improved carrier collection in the solar cell. Our results offer new research directions for solving persistent challenges of CdTe photovoltaics.
Doping of polycrystalline CdTe for high-efficiency solar cells on flexible metal foil
NASA Astrophysics Data System (ADS)
Kranz, Lukas; Gretener, Christina; Perrenoud, Julian; Schmitt, Rafael; Pianezzi, Fabian; La Mattina, Fabio; Blösch, Patrick; Cheah, Erik; Chirilă, Adrian; Fella, Carolin M.; Hagendorfer, Harald; Jäger, Timo; Nishiwaki, Shiro; Uhl, Alexander R.; Buecheler, Stephan; Tiwari, Ayodhya N.
2013-08-01
Roll-to-roll manufacturing of CdTe solar cells on flexible metal foil substrates is one of the most attractive options for low-cost photovoltaic module production. However, various efforts to grow CdTe solar cells on metal foil have resulted in low efficiencies. This is caused by the fact that the conventional device structure must be inverted, which imposes severe restrictions on device processing and consequently limits the electronic quality of the CdTe layer. Here we introduce an innovative concept for the controlled doping of the CdTe layer in the inverted device structure by means of evaporation of sub-monolayer amounts of Cu and subsequent annealing, which enables breakthrough efficiencies up to 13.6%. For the first time, CdTe solar cells on metal foil exceed the 10% efficiency threshold for industrialization. The controlled doping of CdTe with Cu leads to increased hole density, enhanced carrier lifetime and improved carrier collection in the solar cell. Our results offer new research directions for solving persistent challenges of CdTe photovoltaics.
Fukuzumi, Shunichi; Yamada, Yusuke; Karlin, Kenneth D
2012-11-01
This review describes homogeneous and heterogeneous catalytic reduction of dioxygen with metal complexes focusing on the catalytic two-electron reduction of dioxygen to produce hydrogen peroxide. Whether two-electron reduction of dioxygen to produce hydrogen peroxide or four-electron O 2 -reduction to produce water occurs depends on the types of metals and ligands that are utilized. Those factors controlling the two processes are discussed in terms of metal-oxygen intermediates involved in the catalysis. Metal complexes acting as catalysts for selective two-electron reduction of oxygen can be utilized as metal complex-modified electrodes in the electrocatalytic reduction to produce hydrogen peroxide. Hydrogen peroxide thus produced can be used as a fuel in a hydrogen peroxide fuel cell. A hydrogen peroxide fuel cell can be operated with a one-compartment structure without a membrane, which is certainly more promising for the development of low-cost fuel cells as compared with two compartment hydrogen fuel cells that require membranes. Hydrogen peroxide is regarded as an environmentally benign energy carrier because it can be produced by the electrocatalytic two-electron reduction of O 2 , which is abundant in air, using solar cells; the hydrogen peroxide thus produced could then be readily stored and then used as needed to generate electricity through the use of hydrogen peroxide fuel cells.
To, Wai-Pong; Zou, Taotao; Sun, Raymond Wai-Yin; Che, Chi-Ming
2013-07-28
Transition metal compounds are well documented to have diverse applications such as in catalysis, light-emitting materials and therapeutics. In the areas of photocatalysis and photodynamic therapy, metal compounds of heavy transition metals are highly sought after because they can give rise to triplet excited states upon photoexcitation. The long lifetimes (more than 1 μs) of the triplet states of transition metal compounds allow for bimolecular reactions/processes such as energy transfer and/or electron transfer to occur. Reactions of triplet excited states of luminescent metal compounds with oxygen in cells may generate reactive oxygen species and/or induce damage to DNA, leading to cell death. This article recaps the recent findings on photochemical and phototoxic properties of luminescent platinum(II) and gold(III) compounds both from the literature and experimental results from our group.
Metals in Cyanobacteria: Analysis of the Copper, Nickel, Cobalt and Arsenic Homeostasis Mechanisms
Huertas, María José; López-Maury, Luis; Giner-Lamia, Joaquín; Sánchez-Riego, Ana María; Florencio, Francisco Javier
2014-01-01
Traces of metal are required for fundamental biochemical processes, such as photosynthesis and respiration. Cyanobacteria metal homeostasis acquires an important role because the photosynthetic machinery imposes a high demand for metals, making them a limiting factor for cyanobacteria, especially in the open oceans. On the other hand, in the last two centuries, the metal concentrations in marine environments and lake sediments have increased as a result of several industrial activities. In all cases, cells have to tightly regulate uptake to maintain their intracellular concentrations below toxic levels. Mechanisms to obtain metal under limiting conditions and to protect cells from an excess of metals are present in cyanobacteria. Understanding metal homeostasis in cyanobacteria and the proteins involved will help to evaluate the use of these microorganisms in metal bioremediation. Furthermore, it will also help to understand how metal availability impacts primary production in the oceans. In this review, we will focus on copper, nickel, cobalt and arsenic (a toxic metalloid) metabolism, which has been mainly analyzed in model cyanobacterium Synechocystis sp. PCC 6803. PMID:25501581
Responses of Plant Proteins to Heavy Metal Stress—A Review
Hasan, Md. Kamrul; Cheng, Yuan; Kanwar, Mukesh K.; Chu, Xian-Yao; Ahammed, Golam J.; Qi, Zhen-Yu
2017-01-01
Plants respond to environmental pollutants such as heavy metal(s) by triggering the expression of genes that encode proteins involved in stress response. Toxic metal ions profoundly affect the cellular protein homeostasis by interfering with the folding process and aggregation of nascent or non-native proteins leading to decreased cell viability. However, plants possess a range of ubiquitous cellular surveillance systems that enable them to efficiently detoxify heavy metals toward enhanced tolerance to metal stress. As proteins constitute the major workhorses of living cells, the chelation of metal ions in cytosol with phytochelatins and metallothioneins followed by compartmentalization of metals in the vacuoles as well as the repair of stress-damaged proteins or removal and degradation of proteins that fail to achieve their native conformations are critical for plant tolerance to heavy metal stress. In this review, we provide a broad overview of recent advances in cellular protein research with regards to heavy metal tolerance in plants. We also discuss how plants maintain functional and healthy proteomes for survival under such capricious surroundings. PMID:28928754
Processes for making dense, spherical active materials for lithium-ion cells
Kang, Sun-Ho [Naperville, IL; Amine, Khalil [Downers Grove, IL
2011-11-22
Processes are provided for making dense, spherical mixed-metal carbonate or phosphate precursors that are particularly well suited for the production of active materials for electrochemical devices such as lithium ion secondary batteries. Exemplified methods include precipitating dense, spherical particles of metal carbonates or metal phosphates from a combined aqueous solution using a precipitating agent such as ammonium hydrogen carbonate, sodium hydrogen carbonate, or a mixture that includes sodium hydrogen carbonate. Other exemplified methods include precipitating dense, spherical particles of metal phosphates using a precipitating agent such as ammonium hydrogen phosphate, ammonium dihydrogen phosphate, sodium phosphate, sodium hydrogen phosphate, sodium dihydrogen phosphate, or a mixture of any two or more thereof. Further provided are compositions of and methods of making dense, spherical metal oxides and metal phosphates using the dense, spherical metal precursors. Still further provided are electrodes and batteries using the same.
Jiang-Tao, Liu; Yun-Kai, Cao; Hong, Tong; Dai-Qiang, Wang; Zhen-Hua, Wu
2018-04-06
The optical absorption of graphene-molybdenum disulfide photovoltaic cells (GM-PVc) in wedge-shaped metal-mirror microcavities (w-MMCs) combined with a spectrum-splitting structure was studied. Results showed that the combination of spectrum-splitting structure and w-MMC can enable the light absorption of GM-PVcs to reach about 65% in the broad spectrum. The influence of processing errors on the absorption of GM-PVcs in w-MMCs was 3-14 times lower than that of GM-PVcs in wedge photonic crystal microcavities. The light absorption of GM-PVcs reached 60% in the broad spectrum, even with the processing errors. The proposed structure is easy to implement and may have potentially important applications in the development of ultra-thin and high-efficiency solar cells and optoelectronic devices.
NASA Astrophysics Data System (ADS)
Jiang-Tao, Liu; Yun-Kai, Cao; Hong, Tong; Dai-Qiang, Wang; Zhen-Hua, Wu
2018-04-01
The optical absorption of graphene-molybdenum disulfide photovoltaic cells (GM-PVc) in wedge-shaped metal-mirror microcavities (w-MMCs) combined with a spectrum-splitting structure was studied. Results showed that the combination of spectrum-splitting structure and w-MMC can enable the light absorption of GM-PVcs to reach about 65% in the broad spectrum. The influence of processing errors on the absorption of GM-PVcs in w-MMCs was 3-14 times lower than that of GM-PVcs in wedge photonic crystal microcavities. The light absorption of GM-PVcs reached 60% in the broad spectrum, even with the processing errors. The proposed structure is easy to implement and may have potentially important applications in the development of ultra-thin and high-efficiency solar cells and optoelectronic devices.
Phase 2 of the array automated assembly task for the low cost silicon solar array project
NASA Technical Reports Server (NTRS)
Petersen, R. C.
1980-01-01
Studies were conducted on several fundamental aspects of electroless nickel/solder metallization for silicon solar cells. A process, which precedes the electroless nickel plating with several steps of palladium plating and heat treatment, was compared directly with single step electroless nickel plating. Work was directed toward answering specific questions concerning the effect of silicon surface oxide on nickel plating, effects of thermal stresses on the metallization, sintering of nickel plated on silicon, and effects of exposure to the plating solution on solar cell characteristics. The process was found to be extremely lengthy and cumbersome, and was also found to produce a product virtually identical to that produced by single step electroless nickel plating, as shown by adhesion tests and electrical characteristics of cells under illumination.
Wood smoke particle sequesters cell iron to impact a biological effect.
The biological effect of an inorganic particle (i.e., silica) can be associated with a disruption in cell iron homeostasis. Organic compounds included in particles originating from combustion processes can also complex sources of host cell iron to disrupt metal homeostasis. We te...
Litzov, Ivan; Brabec, Christoph J.
2013-01-01
Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeOx) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n-type- and p-type-like MeOx interface materials consisting of binary compounds AxBy. Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed. PMID:28788423
Litzov, Ivan; Brabec, Christoph J
2013-12-10
Solution-processed inverted bulk heterojunction (BHJ) solar cells have gained much more attention during the last decade, because of their significantly better environmental stability compared to the normal architecture BHJ solar cells. Transparent metal oxides (MeO x ) play an important role as the dominant class for solution-processed interface materials in this development, due to their excellent optical transparency, their relatively high electrical conductivity and their tunable work function. This article reviews the advantages and disadvantages of the most common synthesis methods used for the wet chemical preparation of the most relevant n -type- and p -type-like MeO x interface materials consisting of binary compounds A x B y . Their performance for applications as electron transport/extraction layers (ETL/EEL) and as hole transport/extraction layers (HTL/HEL) in inverted BHJ solar cells will be reviewed and discussed.
Microbial Influences on Trace Metal Cycling in a Meromictic Lake, Fayetteville Green Lake, NY
NASA Astrophysics Data System (ADS)
Zerkle, A. L.; House, C.; Kump, L.
2002-12-01
Microorganisms can exist in aquatic environments at very high cell densities of up to 1011 cells/L, and can accumulate significant quantities of trace metals. Bacteria actively take up bioactive trace metals, including Fe, Zn, Mn, Co, Ni, Cu, and Mo, which function as catalytic centers in metalloproteins and metal-activated enzymes involved in virtually all cellular functions. In addition, bacteria may catalyze the release of trace metals from inorganic substrates by processes such as the reduction of iron and manganese oxides, suggesting that trace metal distributions within a natural environment dominated by microbial processes may be controlled primarily by microbial ecology. Fayetteville Green Lake (FGL), NY, is a permanently stratified meromictic lake that has a well-oxygenated surface water mass (mixolimnion) overlying a relatively stagnant, anoxic deep water mass (monimolimnion). A chemocline separates the water masses at around 20m depth, where oxygen concentrations decrease and sulfate and methane concentrations increase. In addition, previous studies have indicated that trace metals such as V, Cr, Co, Mn, and Fe reach elevated concentrations at the chemocline. Using fluorescent in situ hybridization (FISH) of FGL samples from depths of up to 40m with bacterial and archaeal probes, we have shown that fluctuating redox conditions within the FGL water column correlate with significant variations in the composition and distribution of microbial populations with depth. The mixolimnion is dominated by Eubacteria, with increasing concentrations of Archaea in the lower anoxic zone. Increases in microbial cell densities coincide with increases in trace metals at the chemocline, suggesting microbial activity may be responsible for trace metal release at this boundary. 16S rRNA PCR cloning techniques are currently being used to identify dominant microbial populations at various levels within the FGL water column. Future studies will focus on the potential for these dominant microorganisms to influence trace metal cycling and bioavailability in the FGL water column.
Native and engineered sensors for Ca2+ and Zn2+: lessons from calmodulin and MTF1.
Carpenter, Margaret C; Palmer, Amy E
2017-05-09
Ca 2+ and Zn 2+ dynamics have been identified as important drivers of physiological processes. In order for these dynamics to encode function, the cell must have sensors that transduce changes in metal concentration to specific downstream actions. Here we compare and contrast the native metal sensors: calmodulin (CaM), the quintessential Ca 2+ sensor and metal-responsive transcription factor 1 (MTF1), a candidate Zn 2+ sensor. While CaM recognizes and modulates the activity of hundreds of proteins through allosteric interactions, MTF1 recognizes a single DNA motif that is distributed throughout the genome regulating the transcription of many target genes. We examine how the different inorganic chemistries of these two metal ions may shape these different mechanisms transducing metal ion concentration into changing physiologic activity. In addition to native metal sensors, scientists have engineered sensors to spy on the dynamic changes of metals in cells. The inorganic chemistry of the metals shapes the possibilities in the design strategies of engineered sensors. We examine how different strategies to tune the affinities of engineered sensors mirror the strategies nature developed to sense both Ca 2+ and Zn 2+ in cells. © 2017 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.
Oriented TiO2 nanotubes as a lithium metal storage medium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Jae-Hun; Kang, Hee-Kook; Woo, Sang-Gil
2014-07-01
A new strategy for suppressing dendritic lithium growth in rechargeable lithium metal batteries is introduced, in which TiO2 nanotube (NT) array electrodes prepared by anodization are used as a metallic lithium storage medium. During the first charge process, lithium ions are inserted into the crystal structure of the TiO2 NT arrays, and then, lithium metal is deposited on the surfaces of the NT arrays, i.e., in the NT pores and between NT walls. From the second cycle onward, the TiO2 material is used as lithium ion pathways, which results in the effective current distribution for lithium deposition and prevents disintegrationmore » of the deposited metallic lithium. Compared to a Li(Cu foil)-LiCoO2 cell, the Li(TiO2 NT)-LiCoO2 cell exhibits enhanced cycling efficiency. This new concept will enable other 3D structured negative active materials to be used as lithium metal storage media for lithium metal batteries.« less
Nanostructured GaAs solar cells via metal-assisted chemical etching of emitter layers.
Song, Yunwon; Choi, Keorock; Jun, Dong-Hwan; Oh, Jungwoo
2017-10-02
GaAs solar cells with nanostructured emitter layers were fabricated via metal-assisted chemical etching. Au nanoparticles produced via thermal treatment of Au thin films were used as etch catalysts to texture an emitter surface with nanohole structures. Epi-wafers with emitter layers 0.5, 1.0, and 1.5 um in thickness were directly textured and a window layer removal process was performed before metal catalyst deposition. A nanohole-textured emitter layer provides effective light trapping capabilities, reducing the surface reflection of a textured solar cell by 11.0%. However, because the nanostructures have high surface area to volume ratios and large numbers of defects, various photovoltaic properties were diminished by high recombination losses. Thus, we have studied the application of nanohole structures to GaAs emitter solar cells and investigated the cells' antireflection and photovoltaic properties as a function of the nanohole structure and emitter thickness. Due to decreased surface reflection and improved shunt resistance, the solar cell efficiency increased from 4.25% for non-textured solar cells to 7.15% for solar cells textured for 5 min.
Hazards, Safety and Design Considerations for Commercial Lithium-ion Cells and Batteries
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith
2007-01-01
This viewgraph presentation reviews the features of the Lithium-ion batteries, particularly in reference to the hazards and safety of the battery. Some of the characteristics of the Lithium-ion cell are: Highest Energy Density of Rechargeable Battery Chemistries, No metallic lithium, Leading edge technology, Contains flammable electrolyte, Charge cut-off voltage is critical (overcharge can result in fire), Open circuit voltage higher than metallic lithium anode types with similar organic electrolytes. Intercalation is a process that places small ions in crystal lattice. Small ions (such as lithium, sodium, and the other alkali metals) can fit in the interstitial spaces in a graphite lattice. These metallic ions can go farther and force the graphitic planes apart to fit two, three, or more layers of metallic ions between the carbon sheets. Other features of the battery/cell are: The graphite is conductive, Very high energy density compared to NiMH or NiCd, Corrosion of aluminum occurs very quickly in the presence of air and electrolyte due to the formation of HF from LiPF6 and HF is highly corrosive. Slides showing the Intercalation/Deintercalation and the chemical reactions are shown along with the typical charge/discharge for a cylindrical cell. There are several graphs that review the hazards of the cells.
Plascencia-Villa, Germán; Starr, Clarise R.; Armstrong, Linda S.; Ponce, Arturo
2016-01-01
Use of engineered metal oxide nanoparticles in a plethora of biological applications and custom products has warned about some possible dose-dependent cytotoxic effects. Macrophages are key components of the innate immune system used to study possible toxic effects and internalization of different nanoparticulate materials. In this work, ultra-high resolution field emission scanning electron microscopy (FE-SEM) was used to offer new insights into the dynamical processes of interaction of nanomaterials with macrophage cells dosed with different concentrations of metal oxide nanoparticles (CeO2, TiO2 and ZnO). The versatility of FE-SEM has allowed obtaining a detailed characterization of processes of adsorption and endocytosis of nanoparticles, by using advanced analytical and imaging techniques on complete unstained uncoated cells, including secondary electron imaging, high-sensitive backscattered electron imaging, X-ray microanalysis and stereoimaging. Low voltage BF/DF-STEM confirmed nanoparticle adsorption and internalization into endosomes of CeO2 and TiO2, whereas ZnO develop apoptosis after 24 h of interaction caused by dissolution and invasion of cell nucleus. Ultra-high resolution scanning electron microscopy techniques provided new insights into interactions of inorganic nanoparticles with macrophage cells with high spatial resolution. PMID:23023106
Transition Metal-Oxide Free Perovskite Solar Cells Enabled by a New Organic Charge Transport Layer.
Chang, Sehoon; Han, Ggoch Ddeul; Weis, Jonathan G; Park, Hyoungwon; Hentz, Olivia; Zhao, Zhibo; Swager, Timothy M; Gradečak, Silvija
2016-04-06
Various electron and hole transport layers have been used to develop high-efficiency perovskite solar cells. To achieve low-temperature solution processing of perovskite solar cells, organic n-type materials are employed to replace the metal oxide electron transport layer (ETL). Although PCBM (phenyl-C61-butyric acid methyl ester) has been widely used for this application, its morphological instability in films (i.e., aggregation) is detrimental. Herein, we demonstrate the synthesis of a new fullerene derivative (isobenzofulvene-C60-epoxide, IBF-Ep) that serves as an electron transporting material for methylammonium mixed lead halide-based perovskite (CH3NH3PbI(3-x)Cl(x)) solar cells, both in the normal and inverted device configurations. We demonstrate that IBF-Ep has superior morphological stability compared to the conventional acceptor, PCBM. IBF-Ep provides higher photovoltaic device performance as compared to PCBM (6.9% vs 2.5% in the normal and 9.0% vs 5.3% in the inverted device configuration). Moreover, IBF-Ep devices show superior tolerance to high humidity (90%) in air. By reaching power conversion efficiencies up to 9.0% for the inverted devices with IBF-Ep as the ETL, we demonstrate the potential of this new material as an alternative to metal oxides for perovskite solar cells processed in air.
NASA Astrophysics Data System (ADS)
Gokhale, Rohan; Agarkar, Shruti; Debgupta, Joyashish; Shinde, Deodatta; Lefez, Benoit; Banerjee, Abhik; Jog, Jyoti; More, Mahendra; Hannoyer, Beatrice; Ogale, Satishchandra
2012-10-01
A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode.A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode. Electronic supplementary information (ESI) available: Materials and equipment details, solar cell fabrication protocol, electrolyte spreading time measurement details, XPS spectra, electronic study, film adhesion test detailed analysis and field emission results. See DOI: 10.1039/c2nr32082g
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oh, Jaewon; Dahal, Som; Dauksher, Bill
2016-11-21
Various characterization techniques have historically been developed in order to screen potential induced degradation (PID)-susceptible cells, but those techniques require final solar cells. We present a new characterization technique for screening PID-susceptible cells during the cell fabrication process. Illuminated Lock-In Thermography (ILIT) was used to image PID shunting of the cell without metallization and clearly showed PID-affected areas. PID-susceptible cells can be screened by ILIT, and the sample structure can advantageously be simplified as long as the sample has the silicon nitride antireflection coating and an aluminum back surface field.
Development of large-area monolithically integrated silicon-film photovoltaic modules
NASA Astrophysics Data System (ADS)
Rand, J. A.; Cotter, J. E.; Ingram, A. E.; Ruffins, T. R.; Shreve, K. P.; Hall, R. B.; Barnett, A. M.
1993-06-01
This report describes work to develop Silicon-Film (trademark) Product 3 into a low-cost, stable solar cell for large-scale terrestrial power applications. The Product 3 structure is a thin (less than 100 micron) polycrystalline layer of silicon on a durable, insulating, ceramic substrate. The insulating substrate allows the silicon layer to be isolated and metallized to form a monolithically interconnected array of solar cells. High efficiency is achievable with the use of light trapping and a passivated back surface. The long-term goal for the product is a 1200 sq cm, 18%-efficient, monolithic array. The short-term objectives are to improve material quality and to fabricate 100 sq cm monolithically interconnected solar cell arrays. Low minority-carrier diffusion length in the silicon film and series resistance in the interconnected device structure are presently limiting device performance. Material quality is continually improving through reduced impurity contamination. Metallization schemes, such as a solder-dipped interconnection process, have been developed that will allow low-cost production processing and minimize R(sub s) effects. Test data for a nine-cell device (16 sq cm) indicated a V(sub oc) of 3.72 V. These first-reported monolithically interconnected multicrystalline silicon-on-ceramic devices show low shunt conductance (less than 0.1 mA/sq cm) due to limited conduction through the ceramic and no process-related metallization shunts.
Pulsed excimer laser processing for cost-effective solar cells
NASA Technical Reports Server (NTRS)
Wong, David C.
1985-01-01
The application of excimer laser in the fabrication of photovoltaic devices was investigated extensively. Processes included junction formation, laser assisted chemical vapor deposition metallization, and laser assisted chemical vapor deposition surface passivation. Results demonstrated that implementation of junction formation by laser annealing in production is feasible because of excellent control in junction depth and quality. Both metallization and surface passivation, however, were found impractical to be considered for manufacturing at this stage.
NASA Astrophysics Data System (ADS)
Jen, Alex K.
2015-10-01
The performance of polymer and hybrid solar cells is also strongly dependent on their efficiency in harvesting light, exciton dissociation, charge transport, and charge collection at the metal/organic/metal oxide or the metal/perovskite/metal oxide interfaces. Our laboratory employs a molecular engineering approach to develop processible low band-gap polymers with high charge carrier mobility that can enhance power conversion efficiency of the single junction solar cells to values as high as ~11%. We have also developed several innovative strategies to modify the interface of bulk-heterojunction devices and create new device architectures to fully explore their potential for solar applications. In this talk, the integrated approach of combining material design, interface, and device engineering to significantly improve the performance of polymer and hybrid perovskite photovoltaic cells will be discussed. Specific emphasis will be placed on the development of low band-gap polymers with reduced reorganizational energy and proper energy levels, formation of optimized morphology of active layer, and minimized interfacial energy barriers using functional conductive surfactants. At the end, several new device architectures and optical engineering strategies to make tandem cells and semitransparent solar cells will be discussed to explore the full promise of polymer and perovskite hybrid solar cells.
NASA Astrophysics Data System (ADS)
Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo; Tayagaki, Takeshi; Guthrey, Harvey; Shibata, Hajime; Matsubara, Koji; Niki, Shigeru
2018-03-01
The precise control of alkali-metal concentrations in Cu(In,Ga)Se2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance from the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.
Improving poor fill factors for solar cells via light-induced plating
NASA Astrophysics Data System (ADS)
Zhao, Xing; Rui, Jia; Wuchang, Ding; Yanlong, Meng; Zhi, Jin; Xinyu, Liu
2012-09-01
Silicon solar cells are prepared following the conventional fabrication processes, except for the metallization firing process. The cells are divided into two groups with higher and lower fill factors, respectively. After light-induced plating (LIP), the fill factors of the solar cells in both groups with different initial values reach the same level. Scanning electron microscope (SEM) images are taken under the bulk silver electrodes, which prove that the improvement for cells with a poor factor after LIP should benefit from sufficient exploitation of the high density silver crystals formed during the firing process. Moreover, the application of LIP to cells with poor electrode contact performance, such as nanowire cells and radial junction solar cells, is proposed.
Process for recycling components of a PEM fuel cell membrane electrode assembly
Shore, Lawrence [Edison, NJ
2012-02-28
The membrane electrode assembly (MEA) of a PEM fuel cell can be recycled by contacting the MEA with a lower alkyl alcohol solvent which separates the membrane from the anode and cathode layers of the assembly. The resulting solution containing both the polymer membrane and supported noble metal catalysts can be heated under mild conditions to disperse the polymer membrane as particles and the supported noble metal catalysts and polymer membrane particles separated by known filtration means.
Soares, Eduardo V; Soares, Helena M V M
2013-08-01
Heavy metal pollution is a matter of concern in industrialised countries. Contrary to organic pollutants, heavy metals are not metabolically degraded. This fact has two main consequences: its bioremediation requires another strategy and heavy metals can be indefinitely recycled. Yeast cells of Saccharomyces cerevisiae are produced at high amounts as a by-product of brewing industry constituting a cheap raw material. In the present work, the possibility of valorising this type of biomass in the bioremediation of real industrial effluents containing heavy metals is reviewed. Given the auto-aggregation capacity (flocculation) of brewing yeast cells, a fast and off-cost yeast separation is achieved after the treatment of metal-laden effluent, which reduces the costs associated with the process. This is a critical issue when we are looking for an effective, eco-friendly, and low-cost technology. The possibility of the bioremediation of industrial effluents linked with the selective recovery of metals, in a strategy of simultaneous minimisation of environmental hazard of industrial wastes with financial benefits from reselling or recycling the metals, is discussed.
NASA Technical Reports Server (NTRS)
Beck, Theodore S.
1992-01-01
Existing procedures for design of electrochemical plants can be used for design of lunar processes taking into consideration the differences in environmental conditions. These differences include: 1/6 Earth gravity, high vacuum, solar electrical and heat source, space radiation heat sink, long days and nights, and different availability and economics of materials, energy, and labor. Techniques have already been developed for operation of relatively small scale hydrogen-oxygen fuel cell systems used in the U.S. lunar landing program. Design and operation of lunar aqueous electrolytic process plants appears to be within the state-of-the-art. Finding or developing compatible materials for construction and designing of fused-magma metal winning cells will present a real engineering challenge.
The rhizotoxicity of metal cations is related to their strength of binding to hard ligands.
Kopittke, Peter M; Menzies, Neal W; Wang, Peng; McKenna, Brigid A; Wehr, J Bernhard; Lombi, Enzo; Kinraide, Thomas B; Blamey, F Pax C
2014-02-01
Mechanisms whereby metal cations are toxic to plant roots remain largely unknown. Aluminum, for example, has been recognized as rhizotoxic for approximately 100 yr, but there is no consensus on its mode of action. The authors contend that the primary mechanism of rhizotoxicity of many metal cations is nonspecific and that the magnitude of toxic effects is positively related to the strength with which they bind to hard ligands, especially carboxylate ligands of the cell-wall pectic matrix. Specifically, the authors propose that metal cations have a common toxic mechanism through inhibiting the controlled relaxation of the cell wall as required for elongation. Metal cations such as Al(3+) and Hg(2+), which bind strongly to hard ligands, are toxic at relatively low concentrations because they bind strongly to the walls of cells in the rhizodermis and outer cortex of the root elongation zone with little movement into the inner tissues. In contrast, metal cations such as Ca(2+), Na(+), Mn(2+), and Zn(2+) , which bind weakly to hard ligands, bind only weakly to the cell wall and move farther into the root cylinder. Only at high concentrations is their weak binding sufficient to inhibit the relaxation of the cell wall. Finally, different mechanisms would explain why certain metal cations (for example, Tl(+), Ag(+), Cs(+), and Cu(2+)) are sometimes more toxic than expected through binding to hard ligands. The data presented in the present study demonstrate the importance of strength of binding to hard ligands in influencing a range of important physiological processes within roots through nonspecific mechanisms. © 2013 SETAC.
Process development for automated solar cell and module production. Task 4: Automated array assembly
NASA Technical Reports Server (NTRS)
1980-01-01
A process sequence which can be used in conjunction with automated equipment for the mass production of solar cell modules for terrestrial use was developed. The process sequence was then critically analyzed from a technical and economic standpoint to determine the technological readiness of certain process steps for implementation. The steps receiving analysis were: back contact metallization, automated cell array layup/interconnect, and module edge sealing. For automated layup/interconnect, both hard automation and programmable automation (using an industrial robot) were studied. The programmable automation system was then selected for actual hardware development.
Small angle neutron and X-ray studies of carbon structures with metal atoms
NASA Astrophysics Data System (ADS)
Lebedev, V. T.; Szhogina, A. A.; Bairamukov, V. Yu
2017-05-01
Encapsulation of metal atoms inside carbon single-wall cages or within multi-layer cells has been realized using molecular precursors and high temperature processes transforming them into desirable structures. Endohedral fullerenols Fe@C60(OH)X with 3d-metal (iron) have been studied by SANS in aqueous solutions where they form stable globular clusters with radii R C ∼ 10-12 nm and aggregation numbers N C ∼ 104. This self-assembly is a crucial feature of paramagnetic fullerenols as perspective contrast agents for Magneto-Resonance Imaging in medicine. Cellular carbon-metal structures have been created by the pyrolysis of diphthalocyanines of lanthanides and actinides. It was established that these ultra porous matrices consist of globular cells of molecular precursor size (∼ 1 nm) which are aggregated into superstructures. This provides retain of metal atoms inside matrices which may serve for safety storage of spent fuel of nuclear power plants.
NASA Astrophysics Data System (ADS)
Dombrovskis, Johanna K.; Palmqvist, Anders E. C.
2017-07-01
Development of non-precious metal catalysts for the oxygen reduction reaction (ORR) in proton exchange membrane (PEM) fuel cells with high activity and durability and with optimal water management properties is of outmost technological importance and highly challenging. Here we study the possibilities offered through judicious selection of small molecular precursors used for the formation of ordered mesoporous carbon-based non-precious metal ORR catalysts. By combining two complementary precursors, we present a one-pot synthesis that leads to a composite material consisting of transition metal ion-chelating ordered mesoporous carbon and multi-walled carbon nanotubes (TM-OMC/CNT). The resulting composite materials show high specific surface areas and a carbon structure that exhibits graphitic signatures. The synthesis procedure allows for tuning of the carbon structure, the surface area, the pore volume and the ratio of the two components of the composite. The TM-OMC/CNT composites were processed into membrane electrode assemblies and evaluated in single cell fuel cell measurements where they showed a combination of good ORR activity and very high durability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Charles W. Solbrig; Chad Pope; Jason Andrus
The fuel cycle facility (FCF) at the Idaho National Laboratory is a nuclear facility which must be licensed in order to operate. A safety analysis is required for a license. This paper describes the analysis of the Design Basis Accident for this facility. This analysis involves a model of the transient behavior of the FCF inert atmosphere hot cell following an earthquake initiated breach of pipes passing through the cell boundary. The hot cell is used to process spent metallic nuclear fuel. Such breaches allow the introduction of air and subsequent burning of pyrophoric metals. The model predicts the pressure,more » temperature, volumetric releases, cell heat transfer, metal fuel combustion, heat generation rates, radiological releases and other quantities. The results show that releases from the cell are minimal and satisfactory for safety. This analysis method should be useful in other facilities that have potential for damage from an earthquake and could eliminate the need to back fit facilities with earthquake proof boundaries or lessen the cost of new facilities.« less
Electrochemical fluorination for processing of used nuclear fuel
Garcia-Diaz, Brenda L.; Martinez-Rodriguez, Michael J.; Gray, Joshua R.; Olson, Luke C.
2016-07-05
A galvanic cell and methods of using the galvanic cell is described for the recovery of uranium from used nuclear fuel according to an electrofluorination process. The galvanic cell requires no input energy and can utilize relatively benign gaseous fluorinating agents. Uranium can be recovered from used nuclear fuel in the form of gaseous uranium compound such as uranium hexafluoride, which can then be converted to metallic uranium or UO.sub.2 and processed according to known methodology to form a useful product, e.g., fuel pellets for use in a commercial energy production system.
Investigation of the degradation of different nickel anode types for alkaline fuel cells (AFCs)
NASA Astrophysics Data System (ADS)
Gülzow, E.; Schulze, M.; Steinhilber, G.
Alkaline fuel cells (AFCs) have the opportunity of becoming important for mobile energy systems as, in contrast to other low temperature fuel cells, the alkaline type requires neither noble metal catalysts nor an expensive polymer electrolyte. In AFCs, nickel is used as anode catalyst in gas diffusion electrodes. The metal catalyst was mixed with polytetraflourethylene (PTFE) as organic binder in a knife mile and rolled onto a metal web in a calendar to prepare the electrode. After an activation process with hydrogen evolution at 5 mA/cm 2 for 18 h, the electrodes were stressed at constant loading in a half cell equipment. During the fuel cell operation, the electrochemical performance decreased due to changes of the polymer (PTFE) and of the metal particles in the electrode, which is described in detail in another paper. In this study, three types of electrodes were investigated. The first type of electrode is composed of pure Raney-nickel and PTFE powder, the nickel particles in the second electrode type were selected according to particle size and in the third electrode copper powder was added to the nickel powder not selected by size. The size selected nickel particles show a better electrochemical performance related to the non-selected catalyst, but due to the electrochemically induced disintegration of the nickel particles the electrochemical performance decreases stronger. The copper powder in the third electrode is added to improve the electronic conductivity of the nickel catalyst, but the copper is not stable under the electrochemical conditions in fuel cell operation. With all three anode types long-term experiments have been performed. The electrodes have been characterized after the electrochemical stressing to investigate the degradation processes.
NASA Technical Reports Server (NTRS)
Patten, J. W.; Greenwell, E. N.
1976-01-01
Metallography from experiment 24-10 obtained on the second space processing applications rocket (SPAR) flight is discussed. Results are considered along with results from the related experiments on the first SPAR flight. Conclusions are presented.
Steel refining with an electrochemical cell
Blander, M.; Cook, G.M.
1988-05-17
Apparatus is described for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom. 2 figs.
Steel refining with an electrochemical cell
Blander, M.; Cook, G.M.
1985-05-21
Disclosed is an apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.
Steel refining with an electrochemical cell
Blander, Milton; Cook, Glenn M.
1988-01-01
Apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contact with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.
Refractory lining for electrochemical cell
Blander, Milton; Cook, Glenn M.
1987-01-01
Apparatus for processing a metallic fluid containing iron oxide, container for a molten metal including an electrically conductive refractory disposed for contact with the molten metal which contains iron oxide, an electrolyte in the form of a basic slag on top of the molten metal, an electrode in the container in contcat with the slag electrically separated from the refractory, and means for establishing a voltage across the refractory and the electrode to reduce iron oxide to iron at the surface of the refractory in contact with the iron oxide containing fluid. A process is disclosed for refining an iron product containing not more than about 10% by weight oxygen and not more than about 10% by weight sulfur, comprising providing an electrolyte of a slag containing one or more of calcium oxide, magnesium oxide, silica or alumina, providing a cathode of the iron product in contact with the electrolyte, providing an anode in contact with the electrolyte electrically separated from the cathode, and operating an electrochemical cell formed by the anode, the cathode and the electrolyte to separate oxygen or sulfur present in the iron product therefrom.
Apparatus and process for the electrolytic reduction of uranium and plutonium oxides
Poa, David S.; Burris, Leslie; Steunenberg, Robert K.; Tomczuk, Zygmunt
1991-01-01
An apparatus and process for reducing uranium and/or plutonium oxides to produce a solid, high-purity metal. The apparatus is an electrolyte cell consisting of a first container, and a smaller second container within the first container. An electrolyte fills both containers, the level of the electrolyte in the first container being above the top of the second container so that the electrolyte can be circulated between the containers. The anode is positioned in the first container while the cathode is located in the second container. Means are provided for passing an inert gas into the electrolyte near the lower end of the anode to sparge the electrolyte and to remove gases which form on the anode during the reduction operation. Means are also provided for mixing and stirring the electrolyte in the first container to solubilize the metal oxide in the electrolyte and to transport the electrolyte containing dissolved oxide into contact with the cathode in the second container. The cell is operated at a temperature below the melting temperature of the metal product so that the metal forms as a solid on the cathode.
Road to Grid Parity through Deployment of Low-Cost 21.5% N-Type Si Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velundur, Vijay
This project seeks to develop and deploy differentiated 21.5% efficient n-type Si solar cells while reaching the SunShot module cost goal of ≤ $0.50/W. This objective hinges on development of enabling low cost technologies that simplify the manufacturing process and reduce overall processing costs. These comprise of (1) Boron emitter formation and passivation; (2) Simplified processing process for emitter and BSF layers; and (3) Advanced metallization for the front and back contacts.
Solution-Processed Metal Oxides as Efficient Carrier Transport Layers for Organic Photovoltaics.
Choy, Wallace C H; Zhang, Di
2016-01-27
Carrier (electron and hole) transport layers (CTLs) are essential components for boosting the performance of various organic optoelectronic devices such as organic solar cells and organic light-emitting diodes. Considering the drawbacks of conventional CTLs (easily oxidized/unstable, demanding/costly fabrication, etc.), transition metal oxides with good carrier transport/extraction and superior stability have drawn extensive research interest as CTLs for next-generation devices. In recent years, many research efforts have been made toward the development of solution-based metal oxide CTLs with the focus on low- or even room-temperature processes, which can potentially be compatible with the deposition processes of organic materials and can significantly contribute to the low-cost and scale-up of organic devices. Here, the recent progress of different types of solution-processed metal oxide CTLs are systematically reviewed in the context of organic photovoltaics, from synthesis approaches to device performance. Different approaches for further enhancing the performance of solution-based metal oxide CTLs are also discussed, which may push the future development of this exciting field. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Electric field distribution on surface of the artificial magnetic conductor: miniaturization process
NASA Astrophysics Data System (ADS)
Ramos, Welyson T. S.; Mesquita, Renato C.; Silva, Elson J.
2017-08-01
This paper presents a study of the influence of the geometric shape on the resonance frequency of the artificial magnetic conductor (AMC) by analysis of the electric field distributions on top of the surface metallic patch inside the unit cell. It is known that various parameters such as geometry, dielectric substrate thickness, gap between patches, length and width of patch, size of unit cell, permittivity and permeability strongly affect the resonance frequency. In attempts to elucidate the miniaturization process, as reference, a metallic square patch with a unit cell of size 10 mm × 10 mm was simulated and a resonance frequency of 5.75 GHz was obtained. The device has illuminated by a plane wave with polarization in the y direction. Additionally, different geometries were performed such as triangle, hexagon, circle and cross of Jerusalem. We realized that the field distribution can be used as an physical insight to understand the AMC miniaturization process. In particular, bow-tie geometry provided considerable electrical miniaturization compared with square patch, about 1.5 GHz. The results are supported by finite element method. Our findings suggest that shift at resonant frequency may be interpreted as a variation in the net induced electric polarizability on the surface of the metallic patches.
In Situ Neutron Depth Profiling of Lithium Metal-Garnet Interfaces for Solid State Batteries.
Wang, Chengwei; Gong, Yunhui; Dai, Jiaqi; Zhang, Lei; Xie, Hua; Pastel, Glenn; Liu, Boyang; Wachsman, Eric; Wang, Howard; Hu, Liangbing
2017-10-11
The garnet-based solid state electrolyte (SSE) is considered a promising candidate to realize all solid state lithium (Li) metal batteries. However, critical issues require additional investigation before practical applications become possible, among which high interfacial impedance and low interfacial stability remain the most challenging. In this work, neutron depth profiling (NDP), a nondestructive and uniquely Li-sensitive technique, has been used to reveal the interfacial behavior of garnet SSE in contact with metallic Li through in situ monitoring of Li plating-stripping processes. The NDP measurement demonstrates predictive capabilities for diagnosing short-circuits in solid state batteries. Two types of cells, symmetric Li/garnet/Li (LGL) cells and asymmetric Li/garnet/carbon-nanotubes (LGC), are fabricated to emulate the behavior of Li metal and Li-free Li metal anodes, respectively. The data imply the limitation of Li-free Li metal anode in forming reliable interfacial contacts, and strategies of excessive Li and better interfacial engineering need to be investigated.
NASA Astrophysics Data System (ADS)
Schulte-Huxel, H.; Blankemeyer, S.; Kajari-Schröder, S.; Brendel, R.
2014-03-01
We investigate a laser welding process for contacting aluminum metallized crystalline silicon solar cells to a 10-μm-thick aluminum layers on a glass substrate. The reduction of the solar cell metallization thickness is analyzed with respect to laser induced damage using SiNx passivated silicon wafers. Additionally, we measure the mechanical stress of the laser welds by perpendicular tear-off as well as the electrical contact resistance. We apply two types of laser processes; one uses one to eight 20-ns-laser pulses at 355 nm with fluences between 12 and 40 J/cm2 and the other single 1.2-μs-laser pulses at 1064 nm with 33 to 73 J/cm2. Ns laser pulses can contact down to 1-μm-thick aluminum layers on silicon without inducing laser damage to the silicon and lead to sufficient strong mechanical contact. In case of μs laser pulses the limiting thickness is 2 μm.
Process for growing a film epitaxially upon an oxide surface and structures formed with the process
McKee, Rodney Allen; Walker, Frederick Joseph
1998-01-01
A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.
Process for growing a film epitaxially upon an oxide surface and structures formed with the process
McKee, Rodney A.; Walker, Frederick J.
1995-01-01
A process and structure wherein a film comprised of a perovskite or a spinel is built epitaxially upon a surface, such as an alkaline earth oxide surface, involves the epitaxial build up of alternating constituent metal oxide planes of the perovskite or spinel. The first layer of metal oxide built upon the surface includes a metal element which provides a small cation in the crystalline structure of the perovskite or spinel, and the second layer of metal oxide built upon the surface includes a metal element which provides a large cation in the crystalline structure of the perovskite or spinel. The layering sequence involved in the film build up reduces problems which would otherwise result from the interfacial electrostatics at the first atomic layers, and these oxides can be stabilized as commensurate thin films at a unit cell thickness or grown with high crystal quality to thicknesses of 0.5-0.7 .mu.m for optical device applications.
An overview of biofunctionalization of metals in Japan
Hanawa, Takao
2009-01-01
Surface modification is an important and predominant technique for obtaining biofunction and biocompatibility in metals for biomedical use. The surface modification technique is a process that changes the surface composition, structure and morphology of a material, leaving the bulk mechanical properties intact. A tremendous number of surface modification techniques using dry and wet processes to improve the hard tissue compatibility of titanium have been developed. Some are now commercially available. Most of these processes have been developed by Japanese institutions since the 1990s. A second approach is the immobilization of biofunctional molecules to the metal surface to control the adsorption of proteins and adhesion of cells, platelets and bacteria. The immobilization of poly(ethylene glycol) to a metal surface with electrodeposition and its effect on biofunction are reviewed. The creation of a metal–polymer composite is another way to obtain metal-based biofunctional materials. The relationship between the shear bonding strength and the chemical structure at the bonding interface of a Ti-segmentated polyurethane composite through a silane coupling agent is explained. PMID:19158014
Visibly transparent polymer solar cells produced by solution processing.
Chen, Chun-Chao; Dou, Letian; Zhu, Rui; Chung, Choong-Heui; Song, Tze-Bin; Zheng, Yue Bing; Hawks, Steve; Li, Gang; Weiss, Paul S; Yang, Yang
2012-08-28
Visibly transparent photovoltaic devices can open photovoltaic applications in many areas, such as building-integrated photovoltaics or integrated photovoltaic chargers for portable electronics. We demonstrate high-performance, visibly transparent polymer solar cells fabricated via solution processing. The photoactive layer of these visibly transparent polymer solar cells harvests solar energy from the near-infrared region while being less sensitive to visible photons. The top transparent electrode employs a highly transparent silver nanowire-metal oxide composite conducting film, which is coated through mild solution processes. With this combination, we have achieved 4% power-conversion efficiency for solution-processed and visibly transparent polymer solar cells. The optimized devices have a maximum transparency of 66% at 550 nm.
Plant water relations as affected by heavy metal stress: A review
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barcelo, J.; Poschenrieder, C.
1990-01-01
Metal toxicity causes multiple direct and indirect effects in plants which concern practically all physiological functions. In this review the effects of excess heavy metals and aluminum on those functions which will alter plant water relations are considered. After a brief comment on the metal effects in cell walls and plasma-lemma, and their consequences for cell expansion growth, the influences of high meal availability on the factors which regulate water entry and water exit in plants are considered. Emphasis is placed on the importance of distinguishing between low water availability in mine and serpentine soils and toxicity effects in plantsmore » which may impair the ability of a plant to regulate water uptake. Examples on water relations of both plants grown on metalliferous soil and hydroponics are presented, and the effects of metal toxicity on root growth, water transport and transpiration are considered. It is concluded that future research has to focus on the mechanisms of metal-induced inhibition of both root elongation and morphogenetic processes within roots. In order to understand the relation between metal tolerance and drought resistance better, further studies into metal tolerance mechanisms at the cell wall, membrane and vacuolar level, as well as into the mechanisms of drought resistance of plants adapted to metalliferous soils are required. 135 refs., 7 figs., 6 tabs.« less
Grillo, Claudia A; Morales, María L; Mirífico, María V; Fernández Lorenzo de Mele, Mónica A
2013-07-01
The use of copper-based alloys for fixed dental crowns and bridges is increasingly widespread in several countries. The aim of this work is to study the dissolution of a zinc-aluminum-bronze and the cytotoxic effects of the ions released on UMR-106 osteoblastic cell line. Two sources of ions were used: (1) ions released by the metal alloy immersed in the cell culture and (2) salts of the metal ions. Conventional electrochemical techniques, atomic absorption spectroscopy [to obtain the average concentration of ions (AC) in solution], and energy dispersive X-ray (EDX) spectroscopy analysis were used to study the corrosion process. Corrosion tests revealed a strong influence of the composition of the electrolyte medium and the immersion time on the electrochemical response. The cytotoxicity was evaluated with (a) individual ions, (b) combinations of two ions, and (c) the mixture of all the ions released by a metal disc of the alloy. Importantly, synergistic cytotoxic effects were found when Al-Zn ion combinations were used at concentration levels lower than the cytotoxic threshold values of the individual ions. Cytotoxic effects in cells in the vicinity of the metal disc were also found. These results were interpreted considering synergistic effects and a diffusion controlled mechanism that yields to concentration levels, in the metal surroundings, several times higher than the measured AC value. Copyright © 2013 Wiley Periodicals, Inc.
Recent advances in plasmonic dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Rho, Won-Yeop; Song, Da Hyun; Yang, Hwa-Young; Kim, Ho-Sub; Son, Byung Sung; Suh, Jung Sang; Jun, Bong-Hyun
2018-02-01
Dye-sensitized solar cells (DSSCs) are among the best devices in generating electrons from solar light energy due to their high efficiency, low-cost in processing and transparency in building integrated photovoltaics. There are several ways to improve their energy-conversion efficiency, such as increasing light harvesting and electron transport, of which plasmon and 3-dimensional nanostructures are greatly capable. We review recent advances in plasmonic effects which depend on optimizing sizes, shapes, alloy compositions and integration of metal nanoparticles. Different methods to integrate metal nanoparticles into 3-dimensional nanostructures are also discussed. This review presents a guideline for enhancing the energy-conversion efficiency of DSSCs by utilizing metal nanoparticles that are incorporated into 3-dimensional nanostructures.
Alkali Metal Doping for Improved CH3NH3PbI3 Perovskite Solar Cells.
Zhao, Wangen; Yao, Zhun; Yu, Fengyang; Yang, Dong; Liu, Shengzhong Frank
2018-02-01
Organic-inorganic hybrid halide perovskites are proven to be a promising semiconductor material as the absorber layer of solar cells. However, the perovskite films always suffer from nonuniform coverage or high trap state density due to the polycrystalline characteristics, which degrade the photoelectric properties of thin films. Herein, the alkali metal ions which are stable against oxidation and reduction are used in the perovskite precursor solution to induce the process of crystallization and nucleation, then affect the properties of the perovskite film. It is found that the addition of the alkali metal ions clearly improves the quality of perovskite film: enlarges the grain sizes, reduces the defect state density, passivates the grain boundaries, increases the built-in potential ( V bi ), resulting to the enhancement in the power conversion efficiency of perovskite thin film solar cell.
High capacity electrode materials for batteries and process for their manufacture
Johnson, Christopher S.; Xiong, Hui; Rajh, Tijana; Shevchenko, Elena; Tepavcevic, Sanja
2018-04-03
The present invention provides a nanostructured metal oxide material for use as a component of an electrode in a lithium-ion or sodium-ion battery. The material comprises a nanostructured titanium oxide or vanadium oxide film on a metal foil substrate, produced by depositing or forming a nanostructured titanium dioxide or vanadium oxide material on the substrate, and then charging and discharging the material in an electrochemical cell from a high voltage in the range of about 2.8 to 3.8 V, to a low voltage in the range of about 0.8 to 1.4 V over a period of about 1/30 of an hour or less. Lithium-ion and sodium-ion electrochemical cells comprising electrodes formed from the nanostructured metal oxide materials, as well as batteries formed from the cells, also are provided.
Interactions of Water Vapor with Oxides at Elevated Temperatures
NASA Technical Reports Server (NTRS)
Jacobson, Nathan; Opila, Elizabeth; Copland, Evan; Myers, Dwight
2003-01-01
Many volatile metal hydroxides form by reaction of the corresponding metal oxide with water vapor. These reactions are important in a number of high temperature corrosion processes. Experimental methods for studying the thermodynamics of metal hydroxides include: gas leak Knudsen cell mass spectrometry, free jet sampling mass spectrometry, transpiration and hydrogen-oxygen flame studies. The available experimental information is reviewed and the most stable metal hydroxide species are correlated with position in the periodic table. Current studies in our laboratory on the Si-O-H system are discussed.
Mechanisms of Contact-Mediated Killing of Yeast Cells on Dry Metallic Copper Surfaces▿
Quaranta, Davide; Krans, Travis; Santo, Christophe Espírito; Elowsky, Christian G.; Domaille, Dylan W.; Chang, Christopher J.; Grass, Gregor
2011-01-01
Surfaces made of copper or its alloys have strong antimicrobial properties against a wide variety of microorganisms. However, the molecular mode of action responsible for the antimicrobial efficacy of metallic copper is not known. Here, we show that dry copper surfaces inactivate Candida albicans and Saccharomyces cerevisiae within minutes in a process called contact-mediated killing. Cellular copper ion homeostasis systems influenced the kinetics of contact-mediated killing in both organisms. Deregulated copper ion uptake through a hyperactive S. cerevisiae Ctr1p (ScCtr1p) copper uptake transporter in Saccharomyces resulted in faster inactivation of mutant cells than of wild-type cells. Similarly, lack of the C. albicans Crp1p (CaCrp1p) copper-efflux P-type ATPase or the metallothionein CaCup1p caused more-rapid killing of Candida mutant cells than of wild-type cells. Candida and Saccharomyces took up large quantities of copper ions as soon as they were in contact with copper surfaces, as indicated by inductively coupled plasma mass spectroscopy (ICP-MS) analysis and by the intracellular copper ion-reporting dye coppersensor-1. Exposure to metallic copper did not cause lethality through genotoxicity, deleterious action on a cell's genetic material, as indicated by a mutation assay with Saccharomyces. Instead, toxicity mediated by metallic copper surfaces targeted membranes in both yeast species. With the use of Live/Dead staining, onset of rapid and extensive cytoplasmic membrane damage was observed in cells from copper surfaces. Fluorescence microscopy using the indicator dye DiSBaC2(3) indicated that cell membranes were depolarized. Also, during contact-mediated killing, vacuoles first became enlarged and then disappeared from the cells. Lastly, in metallic copper-stressed yeasts, oxidative stress in the cytoplasm and in mitochondria was elevated. PMID:21097600
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo
The precise control of alkali-metal concentrations in Cu(In,Ga)Se 2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance frommore » the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.« less
Kamikawa, Yukiko; Nishinaga, Jiro; Ishizuka, Shogo; ...
2018-03-07
The precise control of alkali-metal concentrations in Cu(In,Ga)Se 2 (CIGS) solar cells via post deposition treatment (PDT) has recently attracted attention. When PDT is performed at an elevated temperature, an accompanying annealing effect is expected. Here, we investigate how thermal annealing affects the redistribution of alkali metals in CIGS solar cells on glass substrates and the properties of the solar cells. In addition, we investigate the origin of non-homogeneous alkali-metal depth profiles that are typical of CIGS grown using a three-stage process. In particular, we use secondary-ion mass spectrometry measurements of the ion concentration as a function of distance frommore » the CIGS surface to investigate the impact of thermal annealing on the distribution of alkali metals (Na, Ka, and Rb) and constituent elements (Ga and In) in the CIGS absorbers. We find that the depth profiles of the alkali metals strongly reflect the density of sites that tend to accommodate alkali metals, i.e., vacancies. Annealing at elevated temperature caused a redistribution of the alkali metals. The thermal-diffusion kinetics of alkali metals depends strongly on the species involved. We introduced low flux potassium fluoride (KF) to study a side effect of KF-PDT, i.e., Na removal from CIGS, separately from its predominant effects such as surface modification. When sufficient amounts of Na are supplied from the soda lime glass via annealing at an elevated temperature, the negative effect was not apparent. Conversely, when the Na supply was not sufficient, it caused a deterioration of the photovoltaic properties.« less
Sui, Li; Zhang, Rui-Hong; Zhang, Ping; Yun, Ke-Li; Zhang, Hong-Cai; Liu, Li; Hu, Ming-Xu
2015-01-01
Heavy metals, such as lead (Pb2+), are usually accumulated in human bodies and impair human's health. Lead is a metal with many recognized adverse health side effects and yet the molecular processes underlying lead toxicity are still poorly understood. In the present study, we proposed to investigate the effects of lead toxicity in cultured cardiofibroblasts. After lead treatment, cultured cardiofibroblasts showed severe endoplasmic reticulum (ER) stress. However, the lead-treated cardiofibroblasts were not dramatically apoptotic. Further, we found that these cells determined to undergo autophagy through inhibiting mammalian target of rapamycin complex 1 (mTORC1) pathway. Moreover, inhibition of autophagy by 3-methyladenine (3-MA) may dramatically enhance lead toxicity in cardiofibroblasts and cause cell death. Our data establish that lead toxicity induces cell stress in cardiofibroblasts and protective autophagy is activated by inhibition of mTORC1 pathway. These findings describe a mechanism by which lead toxicity may promote the autophagy of cardiofibroblasts cells, which protects cells from cell stress. Our findings provide evidence that autophagy may help cells to survive under ER stress conditions in cardiofibroblasts and may set up an effective therapeutic strategy for heavy metal toxicity. PMID:25686247
Sui, Li; Zhang, Rui-Hong; Zhang, Ping; Yun, Ke-Li; Zhang, Hong-Cai; Liu, Li; Hu, Ming-Xu
2015-03-31
Heavy metals, such as lead (Pb(2+)), are usually accumulated in human bodies and impair human's health. Lead is a metal with many recognized adverse health side effects and yet the molecular processes underlying lead toxicity are still poorly understood. In the present study, we proposed to investigate the effects of lead toxicity in cultured cardiofibroblasts. After lead treatment, cultured cardiofibroblasts showed severe endoplasmic reticulum (ER) stress. However, the lead-treated cardiofibroblasts were not dramatically apoptotic. Further, we found that these cells determined to undergo autophagy through inhibiting mammalian target of rapamycin complex 1 (mTORC1) pathway. Moreover, inhibition of autophagy by 3-methyladenine (3-MA) may dramatically enhance lead toxicity in cardiofibroblasts and cause cell death. Our data establish that lead toxicity induces cell stress in cardiofibroblasts and protective autophagy is activated by inhibition of mTORC1 pathway. These findings describe a mechanism by which lead toxicity may promote the autophagy of cardiofibroblasts cells, which protects cells from cell stress. Our findings provide evidence that autophagy may help cells to survive under ER stress conditions in cardiofibroblasts and may set up an effective therapeutic strategy for heavy metal toxicity.
Metal nano-grids for transparent conduction in solar cells
Muzzillo, Christopher P.
2017-05-11
A general procedure for predicting metal grid performance in solar cells was developed. Unlike transparent conducting oxides (TCOs) or other homogeneous films, metal grids induce more resistance in the neighbor layer. The resulting balance of transmittance, neighbor and grid resistance was explored in light of cheap lithography advances that have enabled metal nano-grid (MNG) fabrication. The patterned MNGs have junction resistances and degradation rates that are more favorable than solution-synthesized metal nanowires. Neighbor series resistance was simulated by the finite element method, although a simpler analytical model was sufficient in most cases. Finite-difference frequency-domain transmittance simulations were performed for MNGsmore » with minimum wire width (w) of 50 nm, but deviations from aperture transmittance were small in magnitude. Depending on the process, MNGs can exhibit increased series resistance as w is decreased. However, numerous experimental reports have already achieved transmittance-MNG sheet resistance trade-offs comparable to TCOs. The transmittance, neighbor and MNG series resistances were used to parameterize a grid fill factor for a solar cell. In conclusion, this new figure of merit was used to demonstrate that although MNGs have only been employed in low efficiency solar cells, substantial gains in performance are predicted for decreased w in all high efficiency absorber technologies.« less
Metal nano-grids for transparent conduction in solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muzzillo, Christopher P.
A general procedure for predicting metal grid performance in solar cells was developed. Unlike transparent conducting oxides (TCOs) or other homogeneous films, metal grids induce more resistance in the neighbor layer. The resulting balance of transmittance, neighbor and grid resistance was explored in light of cheap lithography advances that have enabled metal nano-grid (MNG) fabrication. The patterned MNGs have junction resistances and degradation rates that are more favorable than solution-synthesized metal nanowires. Neighbor series resistance was simulated by the finite element method, although a simpler analytical model was sufficient in most cases. Finite-difference frequency-domain transmittance simulations were performed for MNGsmore » with minimum wire width (w) of 50 nm, but deviations from aperture transmittance were small in magnitude. Depending on the process, MNGs can exhibit increased series resistance as w is decreased. However, numerous experimental reports have already achieved transmittance-MNG sheet resistance trade-offs comparable to TCOs. The transmittance, neighbor and MNG series resistances were used to parameterize a grid fill factor for a solar cell. In conclusion, this new figure of merit was used to demonstrate that although MNGs have only been employed in low efficiency solar cells, substantial gains in performance are predicted for decreased w in all high efficiency absorber technologies.« less
Challenges and Prospect of Non-aqueous Non-alkali (NANA) Metal-Air Batteries.
Gelman, Danny; Shvartsev, Boris; Ein-Eli, Yair
2016-12-01
Non-aqueous non-alkali (NANA) metal-air battery technologies promise to provide electrochemical energy storage with the highest specific energy density. Metal-air battery technology is particularly advantageous being implemented in long-range electric vehicles. Up to now, almost all the efforts in the field are focused on Li-air cells, but other NANA metal-air battery technologies emerge. The major concern, which the research community should be dealing with, is the limited and rather poor rechargeability of these systems. The challenges we are covering in this review are related to the initial limited discharge capacities and cell performances. By comprehensively reviewing the studies conducted so far, we show that the implementation of advanced materials is a promising approach to increase metal-air performance and, particularly, metal surface activation as a prime achievement leading to respectful discharge currents. In this review, we address the most critical areas that need careful research attention in order to achieve progress in the understanding of the physical and electrochemical processes in non-aqueous electrolytes applied in beyond lithium and zinc air generation of metal-air battery systems.
Clustered atom-replaced structure in single-crystal-like metal oxide
NASA Astrophysics Data System (ADS)
Araki, Takeshi; Hayashi, Mariko; Ishii, Hirotaka; Yokoe, Daisaku; Yoshida, Ryuji; Kato, Takeharu; Nishijima, Gen; Matsumoto, Akiyoshi
2018-06-01
By means of metal organic deposition using trifluoroacetates (TFA-MOD), we replaced and localized two or more atoms in a single-crystalline structure having almost perfect orientation. Thus, we created a new functional structure, namely, clustered atom-replaced structure (CARS), having single-crystal-like metal oxide. We replaced metals in the oxide with Sm and Lu and localized them. Energy dispersive x-ray spectroscopy results, where the Sm signal increases with the Lu signal in the single-crystalline structure, confirm evidence of CARS. We also form other CARS with three additional metals, including Pr. The valence number of Pr might change from 3+ to approximately 4+, thereby reducing the Pr–Ba distance. We directly observed the structure by a high-angle annular dark-field image, which provided further evidence of CARS. The key to establishing CARS is an equilibrium chemical reaction and a combination of additional larger and smaller unit cells to matrix cells. We made a new functional metal oxide with CARS and expect to realize CARS in other metal oxide structures in the future by using the above-mentioned process.
NASA Astrophysics Data System (ADS)
Bauhuis, Gerard J.; Mulder, Peter; Haverkamp, Erik J.; Schermer, John J.; Nash, Lee J.; Fulgoni, Dominic J. F.; Ballard, Ian M.; Duggan, Geoffrey
2010-10-01
The epitaxial lift-off (ELO) technique has been combined with inverted III-V PV cell epitaxial growth with the aim of employing thin film PV cells in HCPV systems. In a stepwise approach to the realization of an inverted triple junction on a MELO platform we have first grown a GaAs single junction PV cell to establish the basic layer release process and cell processing steps followed by the growth, fabrication and test of an inverted InGaP/GaAs dual junction structure.
NASA Astrophysics Data System (ADS)
Lu, Haifei; Sun, Jingsong; Zhang, Hong; Lu, Shunmian; Choy, Wallace C. H.
2016-03-01
The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies.The exploration of low-temperature and solution-processed charge transporting and collecting layers can promote the development of low-cost and large-scale perovskite solar cells (PVSCs) through an all solution process. Here, we propose a room-temperature solution-processed and metal oxide-free nano-composite composed of a silver nano-network and graphene oxide (GO) flawless film for the transparent bottom electrode of a PVSC. Our experimental results show that the amount of GO flakes play a critical role in forming the flawless anti-corrosive barrier in the silver nano-network through a self-assembly approach under ambient atmosphere, which can effectively prevent the penetration of liquid or gaseous halides and their corrosion against the silver nano-network underneath. Importantly, we simultaneously achieve good work function alignment and surface wetting properties for a practical bottom electrode by controlling the degree of reduction of GO flakes. Finally, flexible PVSC adopting the room-temperature and solution-processed nano-composite as the flexible transparent bottom electrode has been demonstrated on a polyethylene terephthalate (PET) substrate. As a consequence, the demonstration of our room-temperature solution-processed and metal oxide-free flexible transparent bottom electrode will contribute to the emerging large-area flexible PVSC technologies. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr00011h
NASA Technical Reports Server (NTRS)
McDonald, Robert; Brawn, Shelly; Harrison, Katherine; O'Toole, Shannon; Moeller, Michael
2011-01-01
Lithium primary and lithium ion secondary batteries provide high specific energy and energy density. The use of these batteries also helps to reduce launch weight. Both primary and secondary cells can be packaged as high-rate cells, which can present a threat to crew and equipment in the event of external or internal short circuits. Overheating of the cell interior from high current flows induced by short circuits can result in exothermic reactions in lithium primary cells and fully charged lithium ion secondary cells. Venting of the cell case, ejection of cell components, and fire have been reported in both types of cells, resulting from abuse, cell imperfections, or faulty electronic control design. A switch has been developed that consists of a thin layer of composite material made from nanoscale particles of nickel and Teflon that conducts electrons at room temperature and switches to an insulator at an elevated temperature, thus interrupting current flow to prevent thermal runaway caused by internal short circuits. The material is placed within the cell, as a thin layer incorporated within the anode and/or the cathode, to control excess currents from metal-to-metal or metal-to-carbon shorts that might result from cell crush or a manufacturing defect. The safety of high-rate cells is thus improved, preventing serious injury to personnel and sensitive equipment located near the battery. The use of recently available nanoscale particles of nickel and Teflon permits an improved, homogeneous material with the potential to be fine-tuned to a unique switch temperature, sufficiently below the onset of a catastrophic chemical reaction. The smaller particles also permit the formation of a thinner control film layer (<50 m), which can be incorporated into commercial high-rate lithium primary and secondary cells. The innovation permits incorporation in current lithium and lithium-ion cell designs with a minimal impact on cell weight and volume. The composite thermal switch (CTS(TradeMark)) coating can be incorporated in either the anode or cathode or both. The coating can be applied in a variety of different processes that permits incorporation in the cell and electrode manufacturing processes. The CTS responds quickly and halts current flow in the hottest parts of the cell first. The coating can be applied to metal foil and supplied as a cell component onto which the active electrode materials are coated.
Fluidized-Bed Cleaning of Silicon Particles
NASA Technical Reports Server (NTRS)
Rohatgi, Naresh K.; Hsu, George C.
1987-01-01
Fluidized-bed chemical cleaning process developed to remove metallic impurities from small silicon particles. Particles (250 micrometer in size) utilized as seed material in silane pyrolysis process for production of 1-mm-size silicon. Product silicon (1 mm in size) used as raw material for fabrication of solar cells and other semiconductor devices. Principal cleaning step is wash in mixture of hydrochloric and nitric acids, leaching out metals and carrying them away as soluble chlorides. Particles fluidized by cleaning solution to assure good mixing and uniform wetting.
Xu, Qiaojing; Song, Tao; Cui, Wei; Liu, Yuqiang; Xu, Weidong; Lee, Shuit-Tong; Sun, Baoquan
2015-02-11
Hybrid solar cells based on n-Si/poly(3,4-ethylenedioxythiophene):poly(styrene- sulfonate) (PEDOT:PSS) heterojunction promise to be a low cost photovoltaic technology by using simple device structure and easy fabrication process. However, due to the low conductivity of PEDOT:PSS, a metal grid deposited by vacuum evaporation method is still required to enhance the charge collection efficiency, which complicates the device fabrication process. Here, a solution-processed graphene oxide (GO)-welded silver nanowires (AgNWs) transparent conductive electrode (TCE) was employed to replace the vacuum deposited metal grid. A unique "sandwich" structure was developed by embedding an AgNW network between PEDOT:PSS and GO with a figure-of-merit of 8.6×10(-3) Ω(-1), which was even higher than that of sputtered indium tin oxide electrode (6.6×10(-3) Ω(-1)). A champion power conversion efficiency of 13.3% was achieved, because of the decreased series resistance of the TCEs as well as the enhanced built-in potential (Vbi) in the hybrid solar cells. The TCEs were obtained by facile low-temperature solution process method, which was compatible with cost-effective mass production technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vining, C.B.; Williams, R.M.; Underwood, M.L.
1993-10-01
An AMTEC cell, may be described as performing two distinct energy conversion processes: (i) conversion of heat to mechanical energy via a sodium-based heat engine and (ii) conversion of mechanical energy to electrical energy by utilizing the special properties of the electrolyte material. The thermodynamic cycle appropriate to an alkali metal thermal-to-electric converter cell is discussed for both liquid- and vapor-fed modes of operation, under the assumption that all processes can be performed reversibly. In the liquid-fed mode, the reversible efficiency is greater than 89.6% of Carnot efficiency for heat input and rejection temperatures (900--1,300 and 400--800 K, respectively) typicalmore » of practical devices. Vapor-fed cells can approach the efficiency of liquid-fed cells. Quantitative estimates confirm that the efficiency is insensitive to either the work required to pressurize the sodium liquid or the details of the state changes associated with cooling the low pressure sodium gas to the heat rejection temperature.« less
Overview of processing activities aimed at higher efficiencies and economical production
NASA Technical Reports Server (NTRS)
Bickler, D. B.
1985-01-01
An overview of processing activities aimed at higher efficiencies and economical production were presented. Present focus is on low-cost process technology for higher-efficiency cells of up to 18% or higher. Process development concerns center on the use of less than optimum silicon sheet, the control of production yields, and making uniformly efficient large-area cells. High-efficiency cell factors that require process development are bulk material perfection, very shallow junction formation, front-surface passivation, and finely detailed metallization. Better bulk properties of the silicon sheet and the keeping of those qualities throughout large areas during cell processing are required so that minority carrier lifetimes are maintained and cell performance is not degraded by high doping levels. When very shallow junctions are formed, the process must be sensitive to metallizatin punch-through, series resisitance in the cell, and control of dopant leaching during surface passivation. There is a need to determine the sensitivity to processing by mathematical modeling and experimental activities.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-01
... a metal detector, and sign the EPA visitor log. All visitor bags are processed through an X- ray... equipment from solid waste landfills in the United States. EPA does, however, control how cathode ray tube... cell phone and computers/laptops or recover valuable resources, such as precious metals, plastics or...
Colvin, Robert A; Lai, Barry; Holmes, William R; Lee, Daewoo
2015-07-01
The purpose of this study was to demonstrate how single cell quantitative and subcellular metallomics inform us about both the spatial distribution and cellular mechanisms of metal buffering and homeostasis in primary cultured neurons from embryonic rat brain, which are often used as models of human disease involving metal dyshomeostasis. The present studies utilized synchrotron radiation X-ray fluorescence (SRXRF) and focused primarily on zinc and iron, two abundant metals in neurons that have been implicated in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Total single cell contents for calcium, iron, zinc, copper, manganese, and nickel were determined. Resting steady state zinc showed a diffuse distribution in both soma and processes, best defined by the mass profile of the neuron with an enrichment in the nucleus compared with the cytoplasm. Zinc buffering and homeostasis was studied using two modes of cellular zinc loading - transporter and ionophore (pyrithione) mediated. Single neuron zinc contents were shown to statistically significantly increase by either loading method - ionophore: 160 million to 7 billion; transporter 160 million to 280 million atoms per neuronal soma. The newly acquired and buffered zinc still showed a diffuse distribution. Soma and processes have about equal abilities to take up zinc via transporter mediated pathways. Copper levels are distributed diffusely as well, but are relatively higher in the processes relative to zinc levels. Prior studies have observed iron puncta in certain cell types, but others have not. In the present study, iron puncta were characterized in several primary neuronal types. The results show that iron puncta could be found in all neuronal types studied and can account for up to 50% of the total steady state content of iron in neuronal soma. Although other metals can be present in iron puncta, they are predominantly iron containing and do not appear to be associated with ferritin cages or transferrin receptor endosomes. The iron content and its distribution in puncta were similar in all neuron types studied including primary dopaminergic neurons. In summary, quantitative measurements of steady state metal levels in single primary cultured neurons made possible by SRXRF analyses provide unique information on the relative levels of each metal in neuronal soma and processes, subcellular location of zinc loads, and have confirmed and extended the characterization of heretofore poorly understood cytoplasmic iron puncta.
Design, Modeling, Fabrication & Characterization of Industrial Si Solar Cells
NASA Astrophysics Data System (ADS)
Chowdhury, Ahrar Ahmed
Photovoltaic is a viable solution towards meeting the energy demand in an ecofriendly environment. To ensure the mass access in photovoltaic electricity, cost effective approach needs to be adapted. This thesis aims towards substrate independent fabrication process in order to achieve high efficiency cost effective industrial Silicon (Si) solar cells. Most cost-effective structures, such as, Al-BSF (Aluminum Back Surface Field), FSF (Front Surface Field) and bifacial cells are investigated in detail to exploit the efficiency potentials. First off, we introduced two-dimensional simulation model to design and modeling of most commonly used Si solar cells in today's PV arena. Best modelled results of high efficiency Al-BSF, FSF and bifacial cells are 20.50%, 22% and 21.68% respectively. Special attentions are given on the metallization design on all the structures in order to reduce the Ag cost. Furthermore, detail design and modeling were performed on FSF and bifacial cells. The FSF cells has potentials to gain 0.42%abs efficiency by combining the emitter design and front surface passivation. The prospects of bifacial cells can be revealed with the optimization of gridline widths and gridline numbers. Since, bifacial cells have metallization on both sides, a double fold cost saving is possible via innovative metallization design. Following modeling an effort is undertaken to reach the modelled result in fabrication the process. We proposed substrate independent fabrication process aiming towards establishing simultaneous processing sequences for both monofacial and bifacial cells. Subsequently, for the contact formation cost effective screen-printed technology is utilized throughout this thesis. The best Al-BSF cell attained efficiency ˜19.40%. Detail characterization was carried out to find a roadmap of achieving >20.50% efficiency Al-BSF cell. Since, n-type cell is free from Light Induced degradation (LID), recently there is a growing interest on FSF cell. Our best fabricated result of FSF cell achieved ˜18.40% efficiency. Characterizations on such cells provide that, cell performance can be further improved by utilizing high lifetime base wafer. We showed a step by step improvement on the device parameters to achieve ˜22% efficiency FSF cell. Finally, bifacial cells were fabricated with 13.32% front and 9.65% rear efficiency. The efficiency limitation is due to the quality of base wafer. Detail resistance breakdown was conducted on these cells to analyze parasitic resistance losses. It was found that base and gridline resistances dominated the FF loss. However, very low contact resistance of 20 mO-cm 2 at front side and 2 mO-cm2 at the rear side was observed by utilizing same Ag paste for front and rear contact formation. This might provide a pathway towards the search of an optimized Ag paste to attain high efficiency screen-printed bifacial cell. Detail investigations needs to be carried out to unveil the property of this Ag paste. In future work, more focus will be given on the metallization design to incorporate further reduction in Ag cost. Al2O3 passivation layer will be incorporated as a means to attain ˜23% screen-printed bifacial cell.
Coupled electro-thermal field in a high current electrolysis cell or liquid metal batteries
Cai, Liwei; Ni, Haiou; Lu, Gui-Min; Yu, Jian-Guo
2018-01-01
Coupled electro-thermal field exists widely in chemical batteries and electrolysis industry. In this study, a three-dimensional numerical model, which is based on the finite-element software ANSYS, has been built to simulate the electro-thermal field in a magnesium electrolysis cell. The adjustment of the relative position of the anode and cathode can change the energy consumption of the magnesium electrolysis process significantly. Besides, the current intensity has a nonlinear effect on heat balance, and the effects of heat transfer coefficients, electrolysis and air temperature on the heat balance have been released to maintain the thermal stability in a magnesium electrolysis cell. The relationship between structure as well as process parameters and electro-thermal field has been obtained and the simulation results can provide experience for the scale-up design in liquid metal batteries. PMID:29515848
Thick-film materials for silicon photovoltaic cell manufacture
NASA Technical Reports Server (NTRS)
Field, M. B.
1977-01-01
Thick film technology is applicable to three areas of silicon solar cell fabrication; metallization, junction formation, and coating for protection of screened ohmic contacts, particularly wrap around contacts, interconnection and environmental protection. Both material and process parameters were investigated. Printed ohmic contacts on n- and p-type silicon are very sensitive to the processing parameters of firing time, temperature, and atmosphere. Wrap around contacts are easily achieved by first printing and firing a dielectric over the edge and subsequently applying a low firing temperature conductor. Interconnection of cells into arrays can be achieved by printing and cofiring thick film metal pastes, soldering, or with heat curing conductive epoxies on low cost substrates. Printed (thick) film vitreous protection coatings do not yet offer sufficient optical uniformity and transparency for use on silicon. A sprayed, heat curable SiO2 based resin shows promise of providing both optical matching and environmental protection.
Ultralight monolithic photovoltaic modules of amorphous silicon alloys
NASA Astrophysics Data System (ADS)
Hanak, J. J.
A process has been developed for fabrication of roll-up, monolithic, photovoltaic (PV) modules made of amorphous silicon (a-Si) alloys. They consist of tandem-junction solar cells deposited by a continuous, roll-to-roll process onto thin, foil substrates of bare metal, high temperature resin, or metal coated with insulators. They have the following characteristics: size, up to 71 cm x 30.5 cm; total thickness, 8 to 50 microns, power-to-weight and power-to-volume ratios at AM1, 2.4 kW/kg and 6.5 MW/cu m, respectively. Cells of a-Si alloys are up to 100 times as tolerant to irradiation with 1 MeV protons than crystalline cells and the damage is easily annealable. The modules have high power density and stability, they are portable, stowable, deployable, retractable, tolerant to radiation and meteorite or projectile impact, and attractive for terrestrial and aerospace applications.
PEROXOTITANATE- AND MONOSODIUM METAL-TITANATE COMPOUNDS AS INHIBITORS OF BACTERIAL GROWTH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hobbs, D.
2011-01-19
Sodium titanates are ion-exchange materials that effectively bind a variety of metal ions over a wide pH range. Sodium titanates alone have no known adverse biological effects but metal-exchanged titanates (or metal titanates) can deliver metal ions to mammalian cells to alter cell processes in vitro. In this work, we test a hypothesis that metal-titanate compounds inhibit bacterial growth; demonstration of this principle is one prerequisite to developing metal-based, titanate-delivered antibacterial agents. Focusing initially on oral diseases, we exposed five species of oral bacteria to titanates for 24 h, with or without loading of Au(III), Pd(II), Pt(II), and Pt(IV), andmore » measuring bacterial growth in planktonic assays through increases in optical density. In each experiment, bacterial growth was compared with control cultures of titanates or bacteria alone. We observed no suppression of bacterial growth by the sodium titanates alone, but significant (p < 0.05, two-sided t-tests) suppression was observed with metal-titanate compounds, particularly Au(III)-titanates, but with other metal titanates as well. Growth inhibition ranged from 15 to 100% depending on the metal ion and bacterial species involved. Furthermore, in specific cases, the titanates inhibited bacterial growth 5- to 375-fold versus metal ions alone, suggesting that titanates enhanced metal-bacteria interactions. This work supports further development of metal titanates as a novel class of antibacterials.« less
Integral glass encapsulation for solar arrays
NASA Technical Reports Server (NTRS)
Landis, G. A.
1981-01-01
Electrostatic bonding technology, an encapsulation technique for terrestrial solar array was developed. The process produces full integral, hermetic bonds with no adhesives or pottants. Panels of six solar cells on a simple glass superstrate were produced. Electrostatic bonding for making the cell front contact was also developed. A metal mesh is trapped into contact with the cell front during the bonding process. Six cell panels using the bonded mesh as the only cell front contact were produced. The possibility of using lower cost glass, with a higher thermal expansion mismatch to silicon, by making lower temperature bonds is developed. However, this requires a planar surface cell.
Recovery of Metal Values from Spent Zinc-Carbon Dry Cell Batteries
NASA Astrophysics Data System (ADS)
Khan, Majharul Haque; Gulshan, Fahmida; Kurny, A. S. W.
2013-04-01
Spent zinc-carbon dry cell batteries were characterized in the process of recovery of metal values. Zinc, manganese and steel were the major metallic materials constituting 63 % of the weight of spent batteries. Different components of the spent batteries were separately processed to extract the metallic values. A maximum of 92 % of total amount of zinc contained in the anodes could be extracted with a purity of over 99.0 % from the anodes by heating at 600 °C for 10 min in presence of 12 % NH4Cl flux. Spent electrolyte paste containing manganese and zinc as major metallic elements, was leached in sulfuric acid solution in presence of hydrogen peroxide as a reducing agent. The optimum condition for leaching was found to be concentration of sulfuric acid: 2.5 M, concentration of hydrogen peroxide: 10 %, temperature: 60 °C, stirring speed: 600 rpm and solid/liquid ratio 1:12. A maximum of 88 % manganese contained in the paste could be dissolved within 27 min of leaching under the optimized conditions. Dissolution of zinc under the same conditions was 97 %. A maximum of 69.89 % of manganese and 83.29 % of zinc contained in the leach liquor could be precipitated in the form of manganese carbonate and zinc oxalate.
Sahraie, Nastaran Ranjbar; Kramm, Ulrike I.; Steinberg, Julian; Zhang, Yuanjian; Thomas, Arne; Reier, Tobias; Paraknowitsch, Jens-Peter; Strasser, Peter
2015-01-01
Carbon materials doped with transition metal and nitrogen are highly active, non-precious metal catalysts for the electrochemical conversion of molecular oxygen in fuel cells, metal air batteries, and electrolytic processes. However, accurate measurement of their intrinsic turn-over frequency and active-site density based on metal centres in bulk and surface has remained difficult to date, which has hampered a more rational catalyst design. Here we report a successful quantification of bulk and surface-based active-site density and associated turn-over frequency values of mono- and bimetallic Fe/N-doped carbons using a combination of chemisorption, desorption and 57Fe Mössbauer spectroscopy techniques. Our general approach yields an experimental descriptor for the intrinsic activity and the active-site utilization, aiding in the catalyst development process and enabling a previously unachieved level of understanding of reactivity trends owing to a deconvolution of site density and intrinsic activity. PMID:26486465
NASA Astrophysics Data System (ADS)
Huang, Jinsong
This thesis described three types of organic optoelectronic devices: polymer light emitting diodes (PLED), polymer photovoltaic solar cell, and organic photo detector. The research in this work focuses improving their performance including device efficiency, operation lifetime simplifying fabrication process. With further understanding in PLED device physics, we come up new device operation model and improved device architecture design. This new method is closely related to understanding of the science and physics at organic/metal oxide and metal oxide/metal interface. In our new device design, both material and interface are considered in order to confine and balance all injected carriers, which has been demonstrated very be successful in increasing device efficiency. We created two world records in device efficiency: 18 lm/W for white emission fluorescence PLED, 22 lm/W for red emission phosphorescence PLED. Slow solvent drying process has been demonstrated to significantly increase device efficiency in poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C 61-butyric acid methyl ester (PCBM) mixture polymer solar cell. From the mobility study by time of flight, the increase of efficiency can be well correlated to the improved carrier transport property due to P3HT crystallization during slow solvent drying. And it is found that, similar to PLED, balanced carrier mobility is essential in high efficient polymer solar cell. There is also a revolution in our device fabrication method. A unique device fabrication method is presented by an electronic glue based lamination process combined with interface modification as a one-step polymer solar cell fabrication process. It can completely skip the thermal evaporation process, and benefit device lifetime by several merits: no air reactive. The device obtained is metal free, semi-transparent, flexible, self-encapsulated, and comparable efficiency with that by regular method. We found the photomultiplication (PM) phenomenon in C60 based device accidentally. The high PM factor makes it good candidate for photo detector. The high gain was assigned to the trapped-charge induced enhanced-injection at C60/PEDOT:PSS interface.
The Au Cathode in the System Li2CO3-CO2-CO at 800 to 900 C
NASA Technical Reports Server (NTRS)
Hagedorn, Norman H.
1991-01-01
Gold is one of several metals being evaluated at NASA Lewis Research Center as positive electrode catalysts for an alkali metal/molten alkali metal carbonate/carbon dioxide electrochemical cell. Such a cell is proposed for CO2-rich planetary atmospheres such as those of Mars and Venus. Its application could be as a primary power supply, as a secondary power supply recharged either 'chemically' by replenishment of the alkali metal or electrochemically from a central station power source, or as a converter of carbon dioxide to oxygen via a complete electrochemical cycle. For the work being reported, lithium was assumed to be the alkali metal of choice for the negative electrode of the cell, and therefore molten lithium carbonate was the electrolyte used in the Au electrode experiments. Cathodic linear sweep voltammetry (LSV) was the primary analytical technique for evaluating the performance of the Au cathode. interest comprised the cell temperature and the total pressure and composition of the reactant gas. In the absence of operational difficulties, the effect of bubbling the reactant gas through the melt was also determined. On the basis of the variation of electrode performance with changes in these parameters, inferences have been made concerning the electrochemical and chemical processes at and near the electrode. The results of post-test micrographic analyses of the Au cathode are also presented. An attempt is then made to project from the experimental results to some relevant conclusions pertaining to a gold cathode in a practical alkali metal - carbon dioxide cell.
Traversing the Links between Heavy Metal Stress and Plant Signaling
Jalmi, Siddhi K.; Bhagat, Prakash K.; Verma, Deepanjali; Noryang, Stanzin; Tayyeba, Sumaira; Singh, Kirti; Sharma, Deepika; Sinha, Alok K.
2018-01-01
Plants confront multifarious environmental stresses widely divided into abiotic and biotic stresses, of which heavy metal stress represents one of the most damaging abiotic stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes in the plant cell. One of the approaches by which heavy metals act in plants is by over production of reactive oxygen species (ROS) either directly or indirectly. Plants act against such overdose of metal in the environment by boosting the defense responses like metal chelation, sequestration into vacuole, regulation of metal intake by transporters, and intensification of antioxidative mechanisms. This response shown by plants is the result of intricate signaling networks functioning in the cell in order to transmit the extracellular stimuli into an intracellular response. The crucial signaling components involved are calcium signaling, hormone signaling, and mitogen activated protein kinase (MAPK) signaling that are discussed in this review. Apart from signaling components other regulators like microRNAs and transcription factors also have a major contribution in regulating heavy metal stress. This review demonstrates the key role of MAPKs in synchronously controlling the other signaling components and regulators in metal stress. Further, attempts have been made to focus on metal transporters and chelators that are regulated by MAPK signaling. PMID:29459874
NASA Astrophysics Data System (ADS)
Krawczak, Ewelina; Gułkowski, Sławomir
2017-10-01
The use of aluminum contacts is common in the process of silicon solar cells production because of low contact resistivity. It has also a great importance in thin film technology for photovoltaics, especially in copper-indium-gallium-diselenide (CIGS) devices. The final stage of CIGS cell production is the top contact deposition of high conductivity layer for lateral current collection. Such material has to be highly optically transparent as well. In order to make a contact, metal is deposited onto TCO layer with minimum shadowing to allow as much light as possible into device. The metal grid contact is being made by deposition of few microns of aluminum. The resistivity of the deposited material as well as resistance between the metal grid and TCO layer plays a great role in high quality solar cell production. This paper presents the results of four point probe conductivity analysis of Al thin films deposited by direct current (DC) magnetron sputtering method. Influence of technological parameters of the Al deposition process on sheet resistance of deposited layers has been showed. In order to obtain the lowest resistivity of the thin contact layer, optimal set of sputtering parameters, i.e. power applied, deposition time and deposition pressure was found. The resistivity of the contact between two adjacent Al metal fingers deposited onto transparent conductive Al-doped zinc oxide film has been also examined.
Copper-induced deregulation of microRNA expression in the zebrafish olfactory system
Wang, Lu; Bammler, Theo K.; Beyer, Richard P.; Gallagher, Evan P.
2016-01-01
Although environmental trace metals, such as copper (Cu), can disrupt normal olfactory function in fish, the underlying molecular mechanisms of metal-induced olfactory injury have not been elucidated. Current research has suggested the involvement of epigenetic modifications. To address this hypothesis, we analyzed microRNA (miRNA) profiles in the olfactory system of Cu-exposed zebrafish. Our data revealed 2, 10, and 28 differentially expressed miRNAs in a dose-response manner corresponding to three increasing Cu concentrations. Numerous deregulated miRNAs were involved in neurogenesis (e.g. let-7, miR-7a, miR-128 and miR-138), indicating a role for Cu-mediated toxicity via interference with neurogenesis processes. Putative gene targets of deregulated miRNAs were identified when interrogating our previously published microarray database, including those involved in cell growth and proliferation, cell death, and cell morphology. Moreover, several miRNAs (e.g. miR-203a, miR-199*, miR-16a, miR-16c, and miR-25) may contribute to decreased mRNA levels of their host genes involved in olfactory signal transduction pathways and other critical neurological processes via a post-transcriptional mechanism. Our findings provide novel insight into the epigenetic regulatory mechanisms of metal-induced neurotoxicity of the fish olfactory system, and identify novel miRNA biomarkers of metal exposures. PMID:23745839
Survey of mercury, cadmium and lead content of household batteries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Recknagel, Sebastian, E-mail: sebastian.recknagel@bam.de; Radant, Hendrik; Kohlmeyer, Regina
2014-01-15
Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146more » different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.« less
Biochemical basis of mercury remediation and bioaccumulation by Enterobacter sp. EMB21.
Sinha, Arvind; Kumar, Sumit; Khare, Sunil Kumar
2013-01-01
The aims of this study were to isolate metal bioaccumulating bacterial strains and to study their applications in removal of environmental problematic heavy metals like mercury. Five bacterial strains belonging to genera Enterobacter, Bacillus, and Pseudomonas were isolated from oil-spilled soil. Among these, one of the strains Enterobacter sp. EMB21 showed mercury bioaccumulation inside the cells simultaneous to its bioremediation. The bioaccumulation of remediated mercury was confirmed by transmission electron microscopy and energy dispersive X-ray. The mercury-resistant loci in the Enterobacter sp. EMB21 cells were plasmid-mediated as confirmed by transformation of mercury-sensitive Escherichia coli DH5α by Enterobacter sp. EMB21 plasmid. Effect of different culture parameters viz-a-viz inoculum size, pH, carbon, and nitrogen source revealed that alkaline pH and presence of dextrose and yeast extract favored better remediation. The results indicated the usefulness of Enterobacter sp. EMB21 for the effective remediation of mercury in bioaccumulated form. The Enterobacter sp. EMB21 seems promising for heavy metal remediation wherein the remediated metal can be trapped inside the cells. The process can further be developed for the synthesis of valuable high-end functional alloy, nanoparticles, or metal conjugates from the metal being remediated.
NASA Astrophysics Data System (ADS)
Park, Beom-Kyeong; Song, Rak-Hyun; Lee, Seung-Bok; Lim, Tak-Hyoung; Park, Seok-Joo; Jung, WooChul; Lee, Jong-Won
2017-04-01
Solid oxide fuel cells (SOFCs) require low-cost metallic components for current collection from electrodes as well as electrical connection between unit cells; however, the degradation of their electrical properties and surface stability associated with high-temperature oxidation is of great concern. It is thus important to develop protective conducting oxide coatings capable of mitigating the degradation of metallic components under SOFC operating conditions. Here, we report a conformal bi-layered coating composed of perovskite and spinel oxides on a metallic wire network fabricated by a facile electrodeposition-based route. A highly dense, crack-free, and adhesive bi-layered LaMnO3/Co3O4 coating of ∼1.2 μm thickness is conformally formed on the surfaces of wires with ∼100 μm diameter. We demonstrate that the bi-layered LaMnO3/Co3O4 coating plays a key role in improving the power density and durability of a tubular SOFC by stabilizing the surface of the metallic wire network used as a cathode current collector. The electrodeposition-based technique presented in this study offers a low-cost and scalable process to fabricate conformal multi-layered coatings on various metallic structures.
Resource recovery of scrap silicon solar battery cell.
Lee, Ching-Hwa; Hung, Chi-En; Tsai, Shang-Lin; Popuri, Srinivasa R; Liao, Ching-Hua
2013-05-01
In order to minimize pollution problems and to conserve limited natural resources, a hydrometallurgical procedure was developed in this study to recover the valuable resources of silicon (Si), silver (Ag) and aluminum (Al) from scrap silicon solar battery cells. In this study, several methods of leaching, crystallization, precipitation, electrolysis and replacement were employed to investigate the recovery efficiency of Ag and Al from defective monocrystalline silicon solar battery cells. The defective solar battery cells were ground into powder followed by composition analysis with inductively coupled plasma-atomic emission spectrometry. The target metals Ag and Al weight percentage were found to be 1.67 and 7.68 respectively. A leaching process was adopted with nitric acid (HNO3), hydrochloric acid, sulfuric acid (H2SO4) and sodium hydroxide as leaching reagent to recover Ag and Al from a ground solar battery cell. Aluminum was leached 100% with 18N H2SO4 at 70°C and Ag was leached 100% with 6N HNO3. Pure Si of 100% was achieved from the leaching solution after the recovery of Ag and Al, and was analyzed by scanning electron microscope-energy dispersive spectroscopy. Aluminum was recovered by crystallization process and silver was recovered by precipitation, electrolysis and replacement processes. These processes were applied successfully in the recovery of valuable metal Ag of 98-100%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judy D. Wall
2011-06-09
Our findings demonstrated that D. vulgaris surface-adhered populations produce extracellular structures, and that that the cells have altered carbon and energy flux compared to planktonic cells. Biofilms did not have greatly increased carbohydrate accumulation. Interestingly genes present on the native plasmid found in D. vulgaris Hildenborough were necessary for wild type biofilm formation. In addition, extracellular appendages dependent on functions or proteins encoded by flaG or fliA also contributed to biofilm formation. Studies with SRB biofilms have indicated that the reduction and precipitation of metals can occur within the biofilm matrix; however, little work has been done to elucidate themore » physiological state of surface-adhered cells during metal reduction (Cr6+, U6+) and how this process is affected by nutrient feed levels (i.e., the stimulant).« less
Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells
NASA Astrophysics Data System (ADS)
Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert
2014-06-01
A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.
Evidence of isotopic fractionation of natural uranium in cultured human cells
NASA Astrophysics Data System (ADS)
Paredes, Eduardo; Avazeri, Emilie; Malard, Véronique; Vidaud, Claude; Reiller, Pascal E.; Ortega, Richard; Nonell, Anthony; Isnard, Hélène; Chartier, Frédéric; Bresson, Carole
2016-12-01
The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235U isotope with regard to 238U. Efforts were made to develop and then validate a procedure for highly accurate n(238U)/n(235U) determinations in microsamples of cells. We found that intracellular U is enriched in 235U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO22+) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes.
Evidence of isotopic fractionation of natural uranium in cultured human cells
Paredes, Eduardo; Avazeri, Emilie; Malard, Véronique; Vidaud, Claude; Reiller, Pascal E.; Ortega, Richard; Nonell, Anthony; Isnard, Hélène; Chartier, Frédéric; Bresson, Carole
2016-01-01
The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235U isotope with regard to 238U. Efforts were made to develop and then validate a procedure for highly accurate n(238U)/n(235U) determinations in microsamples of cells. We found that intracellular U is enriched in 235U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO22+) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes. PMID:27872304
Evidence of isotopic fractionation of natural uranium in cultured human cells.
Paredes, Eduardo; Avazeri, Emilie; Malard, Véronique; Vidaud, Claude; Reiller, Pascal E; Ortega, Richard; Nonell, Anthony; Isnard, Hélène; Chartier, Frédéric; Bresson, Carole
2016-12-06
The study of the isotopic fractionation of endogen elements and toxic heavy metals in living organisms for biomedical applications, and for metabolic and toxicological studies, is a cutting-edge research topic. This paper shows that human neuroblastoma cells incorporated small amounts of uranium (U) after exposure to 10 µM natural U, with preferential uptake of the 235 U isotope with regard to 238 U. Efforts were made to develop and then validate a procedure for highly accurate n( 238 U)/n( 235 U) determinations in microsamples of cells. We found that intracellular U is enriched in 235 U by 0.38 ± 0.13‰ (2σ, n = 7) relative to the exposure solutions. These in vitro experiments provide clues for the identification of biological processes responsible for uranium isotopic fractionation and link them to potential U incorporation pathways into neuronal cells. Suggested incorporation processes are a kinetically controlled process, such as facilitated transmembrane diffusion, and the uptake through a high-affinity uranium transport protein involving the modification of the uranyl (UO 2 2+ ) coordination sphere. These findings open perspectives on the use of isotopic fractionation of metals in cellular models, offering a probe to track uptake/transport pathways and to help decipher associated cellular metabolic processes.
System for operating solid oxide fuel cell generator on diesel fuel
NASA Technical Reports Server (NTRS)
Singh, Prabhu (Inventor); George, Raymond A. (Inventor)
1997-01-01
A system is provided for operating a solid oxide fuel cell generator on diesel fuel. The system includes a hydrodesulfurizer which reduces the sulfur content of commercial and military grade diesel fuel to an acceptable level. Hydrogen which has been previously separated from the process stream is mixed with diesel fuel at low pressure. The diesel/hydrogen mixture is then pressurized and introduced into the hydrodesulfurizer. The hydrodesulfurizer comprises a metal oxide such as ZnO which reacts with hydrogen sulfide in the presence of a metal catalyst to form a metal sulfide and water. After desulfurization, the diesel fuel is reformed and delivered to a hydrogen separator which removes most of the hydrogen from the reformed fuel prior to introduction into a solid oxide fuel cell generator. The separated hydrogen is then selectively delivered to the diesel/hydrogen mixer or to a hydrogen storage unit. The hydrogen storage unit preferably comprises a metal hydride which stores hydrogen in solid form at low pressure. Hydrogen may be discharged from the metal hydride to the diesel/hydrogen mixture at low pressure upon demand, particularly during start-up and shut-down of the system.
Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals
NASA Astrophysics Data System (ADS)
Carey, Benjamin J.; Ou, Jian Zhen; Clark, Rhiannon M.; Berean, Kyle J.; Zavabeti, Ali; Chesman, Anthony S. R.; Russo, Salvy P.; Lau, Desmond W. M.; Xu, Zai-Quan; Bao, Qiaoliang; Kevehei, Omid; Gibson, Brant C.; Dickey, Michael D.; Kaner, Richard B.; Daeneke, Torben; Kalantar-Zadeh, Kourosh
2017-02-01
A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (~1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes.
Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals.
Carey, Benjamin J; Ou, Jian Zhen; Clark, Rhiannon M; Berean, Kyle J; Zavabeti, Ali; Chesman, Anthony S R; Russo, Salvy P; Lau, Desmond W M; Xu, Zai-Quan; Bao, Qiaoliang; Kevehei, Omid; Gibson, Brant C; Dickey, Michael D; Kaner, Richard B; Daeneke, Torben; Kalantar-Zadeh, Kourosh
2017-02-17
A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (∼1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes.
Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals
Carey, Benjamin J.; Ou, Jian Zhen; Clark, Rhiannon M.; Berean, Kyle J.; Zavabeti, Ali; Chesman, Anthony S. R.; Russo, Salvy P.; Lau, Desmond W. M.; Xu, Zai-Quan; Bao, Qiaoliang; Kavehei, Omid; Gibson, Brant C.; Dickey, Michael D.; Kaner, Richard B.; Daeneke, Torben; Kalantar-Zadeh, Kourosh
2017-01-01
A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (∼1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes. PMID:28211538
Pelfrêne, Aurélie; Waterlot, Christophe; Guerin, Annie; Proix, Nicolas; Richard, Antoine; Douay, Francis
2015-08-01
Metal contamination of urban soils and homegrown vegetables has caused major concern. Some studies showed that cadmium (Cd) was among the most significant hazards in kitchen garden soils and prolonged exposure to this metal could cause deleterious health effects in humans. In general, most risk assessment procedures are based on total concentrations of metals in vegetables. The present study assesses human bioaccessibility of Cd in vegetables cultivated in smelter-impacted kitchen garden soils. Seven vegetables (radish, lettuce, French bean, carrot, leek, tomato, and potato) were considered. Using the UBM protocol (unified BARGE bioaccessibility method), the bioaccessibility of Cd was measured in raw/cooked vegetables. A considerable amount of Cd was mobilized from raw vegetables during the digestion process (on average 85% in the gastric phase and 69% in the gastrointestinal phase), which could be attributed to a high uptake of Cd during the growth of the vegetables. Most Cd is accumulated in the vacuoles of plant cells, except what is absorbed by the cell wall, allowing Cd to be released from plant tissues under moderate conditions. Cooking by the steaming process generally increased the bioaccessibility of Cd in French bean, carrot, and leek. For potato, few or no significant differences of Cd bioaccessibility were observed after the steaming process, while the frying process strongly decreased bioaccessibility in both phases. The estimation of metal bioaccessibility in vegetables is helpful for human health risk assessment.
Method for fabricating solar cells having integrated collector grids
NASA Technical Reports Server (NTRS)
Evans, J. C., Jr. (Inventor)
1979-01-01
A heterojunction or Schottky barrier photovoltaic device comprising a conductive base metal layer compatible with and coating predominately the exposed surface of the p-type substrate of the device such that a back surface field region is formed at the interface between the device and the base metal layer, a transparent, conductive mixed metal oxide layer in integral contact with the n-type layer of the heterojunction or Schottky barrier device having a metal alloy grid network of the same metal elements of the oxide constituents of the mixed metal oxide layer embedded in the mixed metal oxide layer, an insulating layer which prevents electrical contact between the conductive metal base layer and the transparent, conductive metal oxide layer, and a metal contact means covering the insulating layer and in intimate contact with the metal grid network embedded in the transparent, conductive oxide layer for conducting electrons generated by the photovoltaic process from the device.
Research on treatment of wastewater containing heavy metal by microbial fuel cell
NASA Astrophysics Data System (ADS)
Chen, Zixuan; Lu, Xun; Yin, Ruixia; Luo, Yunyi; Mai, Hanjian; Zhang, Nan; Xiong, Jingfang; Zhang, Hongguo; Tang, Jinfeng; Luo, Dinggui
2018-02-01
With rapid development of social economy, serious problem has been caused by wastewater containing heavy metals, which was difficult to be treated by many kinds of traditional treatment methods, such as complex processes, high cost or easy to cause secondary pollution. As a novel biological treatment technology, microbial fuel cells (MFC) can generate electric energy while dealing with wastewater, which was proposed and extensively studied. This paper introduced the working principle of MFC, the classification of cathode, and the research progress on the treatment of wastewater containing Cr(VI), Cu(II), Ag(I), Mn(II) and Cd(II) by MFC. The study found that different cathode, different heavy metals anddifferent hybrid systems would affect the performance of the system and removal effect for heavy metal in MFC. MFC was a highly potential pollution control technology. Until now, the research was still in the laboratory stage. Its industrial application for recovery of heavy metal ion, improving the energy recovery rate and improvement or innovation of system were worthy of further research.
NASA Technical Reports Server (NTRS)
Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.
2015-01-01
Complex integrated circuit (IC) chips rely on more than one level of interconnect metallization for routing of electrical power and signals. This work reports the processing and testing of 4H-SiC junction field effect transistor (JFET) prototype ICs with two levels of metal interconnect capable of prolonged operation at 500 C. Packaged functional circuits including 3-and 11-stage ring oscillators, a 4-bit digital to analog converter, and a 4-bit address decoder and random access memory cell have been demonstrated at 500 C. A 3-stage oscillator functioned for over 3000 hours at 500 C in air ambient.
Understanding the molecular mechanism of pulse current charging for stable lithium-metal batteries
Li, Qi; Tan, Shen; Li, Linlin; Lu, Yingying; He, Yi
2017-01-01
High energy and safe electrochemical storage are critical components in multiple emerging fields of technologies. Rechargeable lithium-metal batteries are considered to be promising alternatives for current lithium-ion batteries, leading to as much as a 10-fold improvement in anode storage capacity (from 372 to 3860 mAh g−1). One of the major challenges for commercializing lithium-metal batteries is the reliability and safety issue, which is often associated with uneven lithium electrodeposition (lithium dendrites) during the charging stage of the battery cycling process. We report that stable lithium-metal batteries can be achieved by simply charging cells with square-wave pulse current. We investigated the effects of charging period and frequency as well as the mechanisms that govern this process at the molecular level. Molecular simulations were performed to study the diffusion and the solvation structure of lithium cations (Li+) in bulk electrolyte. The model predicts that loose association between cations and anions can enhance the transport of Li+ and eventually stabilize the lithium electrodeposition. We also performed galvanostatic measurements to evaluate the cycling behavior and cell lifetime under pulsed electric field and found that the cell lifetime can be more than doubled using certain pulse current waveforms. Both experimental and simulation results demonstrate that the effectiveness of pulse current charging on dendrite suppression can be optimized by choosing proper time- and frequency-dependent pulses. This work provides a molecular basis for understanding the mechanisms of pulse current charging to mitigating lithium dendrites and designing pulse current waveforms for stable lithium-metal batteries. PMID:28776039
Recent advancements in monolithic AlGaAs/GaAs solar cells for space applications
NASA Technical Reports Server (NTRS)
Wickham, K. R.; Chung, B.-C.; Klausmeier-Brown, M.; Kuryla, M. S.; Ristow, M. Ladle; Virshup, G. F.; Werthen, J. G.
1991-01-01
High efficiency, two terminal, multijunction AlGaAs/GaAs solar cells were reproducibly made with areas of 0.5 sq cm. The multiple layers in the cells were grown by Organo Metallic Vapor Phase Epitaxy (OMVPE) on GaAs substrates in the n-p configuration. The upper AlGaAs cell has a bandgap of 1.93 eV and is connected in series to the lower GaAs cell (1.4 eV) via a metal interconnect deposited during post-growth processing. A prismatic coverglass is installed on top of the cell to reduce obscuration caused by the gridlines. The best 0.5 sq cm cell has a two terminal efficiency of 23.0 pct. at 1 sun, air mass zero (AM0) and 25 C. To date, over 300 of these cells were grown and processed for a manufacturing demonstration. Yield and efficiency data for this demonstration are presented. As a first step toward the goal of a 30 pct. efficient cell, a mechanical stack of the 0.5 sq cm cells described above, and InGaAsP (0.95 eV) solar cells was made. The best two terminal measurement to date yields an efficiency of 25.2 pct. AM0. This is the highest reported efficiency of any two terminal, 1 sun space solar cell.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hansen; Lin, Dingchang; Liu, Yayuan
Lithium (Li) metal is the ultimate solution for next-generation high–energy density batteries but is plagued from commercialization by infinite relative volume change, low Coulombic efficiency due to side reactions, and safety issues caused by dendrite growth. These hazardous issues are further aggravated under high current densities needed by the increasing demand for fast charging/discharging. We report a one-step fabricated Li/Al 4Li 9-LiF nanocomposite (LAFN) through an “overlithiation” process of a mesoporous AlF 3 framework, which can simultaneously mitigate the abovementioned problems. Reaction-produced Al 4Li 9-LiF nanoparticles serve as the ideal skeleton for Li metal infusion, helping to achieve a near-zeromore » volume change during stripping/plating and suppressed dendrite growth. As a result, the LAFN electrode is capable of working properly under an ultrahigh current density of 20 mA cm –2 in symmetric cells and manifests highly improved rate capability with increased Coulombic efficiency in full cells. Here, the simple fabrication process and its remarkable electrochemical performances enable LAFN to be a promising anode candidate for next-generation lithium metal batteries.« less
Wang, Hansen; Lin, Dingchang; Liu, Yayuan; ...
2017-09-08
Lithium (Li) metal is the ultimate solution for next-generation high–energy density batteries but is plagued from commercialization by infinite relative volume change, low Coulombic efficiency due to side reactions, and safety issues caused by dendrite growth. These hazardous issues are further aggravated under high current densities needed by the increasing demand for fast charging/discharging. We report a one-step fabricated Li/Al 4Li 9-LiF nanocomposite (LAFN) through an “overlithiation” process of a mesoporous AlF 3 framework, which can simultaneously mitigate the abovementioned problems. Reaction-produced Al 4Li 9-LiF nanoparticles serve as the ideal skeleton for Li metal infusion, helping to achieve a near-zeromore » volume change during stripping/plating and suppressed dendrite growth. As a result, the LAFN electrode is capable of working properly under an ultrahigh current density of 20 mA cm –2 in symmetric cells and manifests highly improved rate capability with increased Coulombic efficiency in full cells. Here, the simple fabrication process and its remarkable electrochemical performances enable LAFN to be a promising anode candidate for next-generation lithium metal batteries.« less
Method of fabrication of electrodes and electrolytes
Jankowski, Alan F.; Morse, Jeffrey D.
2004-01-06
Fuel cell stacks contain an electrolyte layer surrounded on top and bottom by an electrode layer. Porous electrodes are prepared which enable fuel and oxidant to easily flow to the respective electrode-electrolyte interface without the need for high temperatures or pressures to assist the flow. Rigid, inert microspheres in combination with thin-film metal deposition techniques are used to fabricate porous anodes, cathodes, and electrolytes. Microshperes contained in a liquid are randomly dispersed onto a host structure and dried such that the microsperes remain in position. A thin-film deposition technique is subsequently employed to deposit a metal layer onto the microsperes. After such metal layer deposition, the microspheres are removed leaving voids, i.e. pores, in the metal layer, thus forming a porous electrode. Successive repetitions of the fabrication process result in the formation of a continuous fuel cell stack. Such stacks may produce power outputs ranging from about 0.1 Watt to about 50 Watts.
Válega, M; Lima, A I G; Figueira, E M A P; Pereira, E; Pardal, M A; Duarte, A C
2009-01-01
In the presence of metal stress, plants can resort to a series of tolerance mechanisms. Therefore field studies should be undertaken in order to evaluate the real role of these mechanisms in stress coping. The aim of this paper was to clarify the biochemical processes behind mercury tolerance in Halimione portulacoides (L.) Aellen (Caryophyllales: Chenopodiaceae) collected in a mercury contaminated salt marsh. Different fractions of mercury were separated: buffer-soluble (mainly cytosolic) and insoluble mercury (mainly associated with membranes and cell walls). The amounts in each fraction of metal were compared and related to metal distribution within plant organs. Protein-mercury complexes were isolated and analysed for their thiol content in order to assess wether the tolerance of this salt marsh plant was associated with the induction of metal chelation by phytochelatins. Overall, the mercury tolerance strategies of the plant are likely to involve root cell wall immobilization as a major mechanism of metal resistance, rather than metal chelation in the cytosolic fraction. Nevertheless, phytochelatins were demonstrated to chelate mercury under environmental exposure.
Process Development for Automated Solar Cell and Module Production. Task 4: Automated Array Assembly
NASA Technical Reports Server (NTRS)
1979-01-01
A baseline sequence for the manufacture of solar cell modules was specified. Starting with silicon wafers, the process goes through damage etching, texture etching, junction formation, plasma edge etch, aluminum back surface field formation, and screen printed metallization to produce finished solar cells. The cells were then series connected on a ribbon and bonded into a finished glass tedlar module. A number of steps required additional developmental effort to verify technical and economic feasibility. These steps include texture etching, plasma edge etch, aluminum back surface field formation, array layup and interconnect, and module edge sealing and framing.
NASA Technical Reports Server (NTRS)
Mukhopadhyay, C. K.; Fox, P. L.
1998-01-01
Oxidative damage by transition metals bound to proteins may be an important pathogenic mechanism. Ceruloplasmin (Cp) is a Cu-containing plasma protein thought to be involved in oxidative modification of lipoproteins. We have previously shown that Cp increased cell-mediated low-density lipoprotein (LDL) oxidation by a process requiring cell-derived superoxide, but the underlying chemical mechanism(s) is (are) unknown. We now show that superoxide reduction of Cp Cu is a critical reaction in cellular LDL oxidation. By bathocuproine disulfonate (BCS) binding and by superoxide utilization, we showed that exogenous superoxide reduces a single Cp Cu atom, the same Cu required for LDL oxidation. The Cu atom remained bound to Cp during the redox cycle. Three avenues of evidence showed that vascular cells reduce Cp Cu by a superoxide-dependent process. The 2-fold higher rate of Cp Cu reduction by smooth muscle cells (SMC) compared to endothelial cells (EC) was consistent with their relative rates of superoxide release. Furthermore, Cp Cu reduction by cells was blocked by Cu,Zn superoxide dismutase (SOD1). Finally, the level of superoxide produced by EC and SMC was sufficient to cause the amount of Cu reduction observed. An important role of Cp Cu reduction in LDL oxidation was suggested by results showing that SOD1 inhibited Cp Cu reduction and LDL oxidation by SMC with equal potency, while tumor necrosis factor-alpha stimulated both processes. In summary, these results show that superoxide is a critical cellular reductant of divalent transition metals involved in oxidation, and that protein-bound Cu is a substrate for this reaction. The role of these mechanisms in oxidative processes in vivo has yet to be defined.
Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells.
Trost, S; Becker, T; Zilberberg, K; Behrendt, A; Polywka, A; Heiderhoff, R; Görrn, P; Riedl, T
2015-01-16
ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (λ < 400 nm) is blocked to achieve an improved device lifetime. In this work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1-20 nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with hν < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated.
Plasmonically sensitized metal-oxide electron extraction layers for organic solar cells
Trost, S.; Becker, T.; Zilberberg, K.; Behrendt, A.; Polywka, A.; Heiderhoff, R.; Görrn, P.; Riedl, T.
2015-01-01
ZnO and TiOx are commonly used as electron extraction layers (EELs) in organic solar cells (OSCs). A general phenomenon of OSCs incorporating these metal-oxides is the requirement to illuminate the devices with UV light in order to improve device characteristics. This may cause severe problems if UV to VIS down-conversion is applied or if the UV spectral range (λ < 400 nm) is blocked to achieve an improved device lifetime. In this work, silver nanoparticles (AgNP) are used to plasmonically sensitize metal-oxide based EELs in the vicinity (1–20 nm) of the metal-oxide/organic interface. We evidence that plasmonically sensitized metal-oxide layers facilitate electron extraction and afford well-behaved highly efficient OSCs, even without the typical requirement of UV exposure. It is shown that in the plasmonically sensitized metal-oxides the illumination with visible light lowers the WF due to desorption of previously ionosorbed oxygen, in analogy to the process found in neat metal oxides upon UV exposure, only. As underlying mechanism the transfer of hot holes from the metal to the oxide upon illumination with hν < Eg is verified. The general applicability of this concept to most common metal-oxides (e.g. TiOx and ZnO) in combination with different photoactive organic materials is demonstrated. PMID:25592174
Hallab, Nadim James; Caicedo, Marco; Epstein, Rachael; McAllister, Kyron; Jacobs, Joshua J
2009-01-01
Hypersensitivity to metallic implants remains relatively unpredictable and poorly understood. We initially hypothesized that metal-induced lymphocyte proliferation responses to soluble metal challenge (ions) are mediated exclusively by early T-cell activation (not B-cells), typical of a Delayed-Type-Hypersensitivity response. We tested this by comparing proliferation (6-days) of primary lymphocytes with early T-cell and B-cell activation (48-hours) in three groups of subjects likely to demonstrate elevated metal-reactivity: Group 1(n=12) history of metal-sensitivity with no implant; Group 2a(n=6) well performing metal-on-metal THRs, and Group 2b(n=20) subjects with poorly performing metal-on-polymer total joint arthroplasties (TJA). Group 1 showed 100%(12/12) metal reactivity (Stimulation Index>2) to Ni. Group 2a&2b were 83%(5/6) and 75%(15/22) metal reactive (to Co, Cr or Ni) respectively. Of the n=32 metal reactive subjects to Co, Cr or Ni (SI>2), n=22/32 demonstrated >2-fold elevations in % of T-cell or B-cell activation (CD25+,CD69+) to metal challenge compared to untreated control. 18/22 metal-activated subjects demonstrated an exclusively T-cell or B-cell activation response to metal challenge, where 6/18 demonstrated exclusively B-cell activation and 12/18 demonstrated a T-cell only response, as measured by surface activation markers CD25+ and CD69+. However, there was no direct correlation (R2<0.1) between lymphocyte proliferation and % T-cell or B-cell activation (CD25+:CD69+). Proliferation assays (LTT) showed greater ability to detect metal reactivity than did subject-dependent results of flow-cytometry analysis of T-cell or B-cell activation. The high incidence of lymphocyte reactivity and activation, indicate that more complex than initially hypothesized immune responses may contribute to the etiology of debris induced osteolysis in metal-sensitive individuals. PMID:19235773
DOE Office of Scientific and Technical Information (OSTI.GOV)
Posada, Olga M., E-mail: O.M.PosadaEstefan@leeds.ac.uk; Gilmour, Denise; Tate, Rothwelle J., E-mail: r.j.tate@strath.ac.uk
Cobalt-chromium (CoCr) particles in the nanometre size range and their concomitant release of Co and Cr ions into the patients' circulation are produced by wear at the articulating surfaces of metal-on-metal (MoM) implants. This process is associated with inflammation, bone loss and implant loosening and led to the withdrawal from the market of the DePuy ASR™ MoM hip replacements in 2010. Ions released from CoCr particles derived from a resurfacing implant in vitro and their subsequent cellular up-take were measured by ICP-MS. Moreover, the ability of such metal debris and Co ions to induce both apoptosis was evaluated with bothmore » FACS and immunoblotting. qRT-PCR was used to assess the effects on the expression of lymphotoxin alpha (LTA), BCL2-associated athanogene (BAG1), nitric oxide synthase 2 inducible (NOS2), FBJ murine osteosarcoma viral oncogene homolog (FOS), growth arrest and DNA-damage-inducible alpha (GADD45A). ICP-MS showed that the wear debris released significant (p < 0.05) amounts of Co and Cr ions into the culture medium, and significant (p < 0.05) cellular uptake of both ions. There was also an increase (p < 0.05) in apoptosis after a 48 h exposure to wear debris. Analysis of qRT-PCR results found significant up-regulation (p < 0.05) particularly of NOS2 and BAG1 in Co pre-treated cells which were subsequently exposed to Co ions + debris. Metal debris was more effective as an inducer of apoptosis and gene expression when cells had been pre-treated with Co ions. This suggests that if a patient receives sequential bilateral CoCr implants, the second implant may be more likely to produce adverse effects than the first one. - Highlights: • Effects of CoCr nanoparticles and Co ions on U937 cells were investigated. • Ions released from wear debris play an important role in cellular response, • Toxicity of Co ions could be related to NO metabolic processes and apoptosis. • CoCr particles were a more effective inducer of apoptosis after cell priming. • CoCr particles were a more effective inducer of gene expression after cell priming.« less
Development of simplified process for environmentally resistant cells
NASA Technical Reports Server (NTRS)
King, W. J.
1980-01-01
This report describes a program to develop a simple, foolproof, all vacuum solar cell manufacturing process which can be completely automated and which results in medium efficiency cells which are inherently environmentally resistant. All components of the completed cells are integrated into a monolithic structure with no material interfaces. The exposed materials (SI, Al2O3, Al, Ni) are all resistant to atmospheric attack and the junction, per se, is passivated to prevent long term degradation. Such cells are intended to be incorporated into a simple module consisting basically of a press formed metallic superstructure with a separated glass cover for missile, etc., protection.
Environmental Biotechnology: Moving from the Flask to the Field
1991-09-30
biosorption , Biosorption of metal ions is a phenome- non exhibited by both alive and dead microbial cells. The detailed investigation of the mechanism of... biosorption has revealed that biosorption is a physical-chemical process whereby selected areas of the microbial cell exhibit high selectivity and...dead cells than by the same cells alive. The use of proper chemical solutions (eluants) is capable of reversing the equilibrium of biosorption
NASA Astrophysics Data System (ADS)
Nielsen, Jimmi; Persson, Åsa H.; Sudireddy, Bhaskar R.; Irvine, John T. S.; Thydén, Karl
2017-12-01
For improved robustness, durability and to avoid severe processing challenges alternatives to the Ni:YSZ composite electrode is highly desirable. The Ni:YSZ composite electrode is conventionally used for solid oxide fuel cell and solid oxide electrolysis cell. In the present study we report on high performing nanostructured Ni:CGO electrocatalyst coated A site deficient Lanthanum doped Strontium Titanate (La0.4Sr0.4Fe0.03Ni0.03Ti0.94O3) based anodes. The anodes were incorporated into the co-sintered DTU metal supported solid oxide fuel cell design and large sized 12 cm × 12 cm cells were fabricated. The titanate material showed good processing characteristics and surface wetting properties towards the Ni:CGO electrocatalyst coating. The cell performances were evaluated on single cell level (active area 16 cm2) and a power density at 0.7 V and 700 °C of 0.650 Wcm-2 with a fuel utilization of 31% was achieved. Taking the temperature into account the performances of the studied anodes are among the best reported for redox stable and corrosion resistant alternatives to the conventional Ni:YSZ composite solid oxide cell electrode.
The trace metal composition of marine phytoplankton.
Twining, Benjamin S; Baines, Stephen B
2013-01-01
Trace metals are required for numerous processes in phytoplankton and can influence the growth and structure of natural phytoplankton communities. The metal contents of phytoplankton reflect biochemical demands as well as environmental availability and influence the distribution of metals in the ocean. Metal quotas of natural populations can be assessed from analyses of individual cells or bulk particle assemblages or inferred from ratios of dissolved metals and macronutrients in the water column. Here, we review the available data from these approaches for temperate, equatorial, and Antarctic waters in the Pacific and Atlantic Oceans. The data show a generalized metal abundance ranking of Fe≈Zn>Mn≈Ni≈Cu≫Co≈Cd; however, there are notable differences between taxa and regions that inform our understanding of ocean metal biogeochemistry. Differences in the quotas estimated by the various techniques also provide information on metal behavior. Therefore, valuable information is lost when a single metal stoichiometry is assumed for all phytoplankton.
Broeks, A; Gerrard, B; Allikmets, R; Dean, M; Plasterk, R H
1996-01-01
Acquired resistance of mammalian cells to multiple chemotherapeutic drugs can result from enhanced expression of the multidrug resistance-associated protein (MRP), which belongs to the ABC transporter superfamily. ABC transporters play a role in the protection of organisms against exogenous toxins by cellular detoxification processes. We have identified four MRP homologues in the soil nematode Caenorhabditis elegans, and we have studied one member, mrp-1, in detail. Using an mrp::lacZ gene fusion, mrp-l expression was found in cells of the pharynx, the pharynx-intestinal valve and the anterior intestinal cells, the rectum-intestinal valve and the epithelial cells of the vulva. Targeted inactivation of mrp-l resulted in increased sensitivity to the heavy metal ions cadmium and arsenite, to which wild-type worms are highly tolerant. The most pronounced effect of the mrp-1 mutation is on the ability of animals to recover from temporary exposure to high concentrations of heavy metals. Nematodes were found to be hypersensitive to heavy metals when both the MRP homologue, mrp-1, and a member of the P-glycoprotein (Pgp) gene family, pgp-1, were deleted. We conclude that nematodes have multiple proteins, homologues of mammalian proteins involved in the cellular resistance to chemotherapeutic drugs, that protect them against heavy metals. Images PMID:8947035
Bioinspired metal-cell wall-metal sandwich structure on an individual bacterial cell scaffold.
Zhang, Xiaoliang; Yu, Mei; Liu, Jianhua; Li, Songmei
2012-08-25
Pd nanoparticles were introduced to individual Bacillus cells and dispersedly anchored on both the inside and outside of the cell walls. The anchored nanoparticles served as "seeds" to drive the formation of double metallic layers forming a metal-cell wall-metal sandwich structure at the single-cell level.
Ahn, Sejin; Son, Tae Hwa; Cho, Ara; Gwak, Jihye; Yun, Jae Ho; Shin, Keeshik; Ahn, Seoung Kyu; Park, Sang Hyun; Yoon, Kyunghoon
2012-09-01
A simple direct solution coating process for forming CuInSe₂ (CIS) thin films was described, employing a low-cost and environmentally friendly precursor solution. The precursor solution was prepared by mixing metal acetates, ethanol, and ethanolamine. The facile formation of a precursor solution without the need to prefabricate nanoparticles enables a rapid and easy processing, and the high stability of the solution in air further ensures the precursor preparation and the film deposition in ambient conditions without a glove box. The thin film solar cell fabricated with the absorber film prepared by this route showed an initial conversion efficiency of as high as 7.72 %. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Chiu, Shengfen; Xu, Yue; Ji, Xiaoli; Yan, Feng
2016-12-01
This paper investigates the impact of post-metallization annealing (PMA) in pure nitrogen ambient on the reliability of 65 nm NOR-type floating-gate flash memory devices. The experimental results show that, with PMA process, the cycling performance of flash cells, especially for the erasing speed is obviously degraded compared to that without PMA. It is found that the bulk oxide traps and tunnel oxide/Si interface traps are significantly increased with PMA treatment. The water/moisture residues left in the interlayer dielectric layers diffuse to tunnel oxide during PMA process is considered to be responsible for these traps generation, which further enhances the degradation of erase performance. Skipping PMA treatment is proposed to suppress the water diffusion effect on erase performance degradation of flash cells.
Process for forming a metal compound coating on a substrate
Sharp, D.J.; Vernon, M.E.; Wright, S.A.
1988-06-29
A method of coating a substrate with a thin layer of a metal compound by forming a dispersion of an electrophoretically active organic colloid and a precursor of the metal compound in an electrolytic cell in which the substrate is an electrode. Upon application of an electric potential, the electrode is coated with a mixture of the organic colloid and the precursor to the metal compound, and the coated substrate is then heated in the presence of an atmosphere or vacuum to decompose the organic colloid and form a coating of either a combination of metal compound and carbon, or optionally forming a porous metal compound coating by heating to a temperature high enough to chemically react the carbon.
Nano-Engineered Catalysts for Direct Methanol Fuel Cells
NASA Technical Reports Server (NTRS)
Myung, Nosang; Narayanan, Sekharipuram; Wiberg, Dean
2008-01-01
Nano-engineered catalysts, and a method of fabricating them, have been developed in a continuing effort to improve the performances of direct methanol fuel cells as candidate power sources to supplant primary and secondary batteries in a variety of portable electronic products. In order to realize the potential for high energy densities (as much as 1.5 W h/g) of direct methanol fuel cells, it will be necessary to optimize the chemical compositions and geometric configurations of catalyst layers and electrode structures. High performance can be achieved when catalyst particles and electrode structures have the necessary small feature sizes (typically of the order of nanometers), large surface areas, optimal metal compositions, high porosity, and hydrophobicity. The present method involves electrodeposition of one or more catalytic metal(s) or a catalytic-metal/polytetrafluoroethylene nanocomposite on an alumina nanotemplate. The alumina nanotemplate is then dissolved, leaving the desired metal or metal/polytetrafluoroethylene-composite catalyst layer. Unlike some prior methods of making fine metal catalysts, this method does not involve processing at elevated temperature; all processing can be done at room temperature. In addition, this method involves fewer steps and is more amenable to scaling up for mass production. Alumina nanotemplates are porous alumina membranes that have been fabricated, variously, by anodizing either pure aluminum or aluminum that has been deposited on silicon by electronbeam evaporation. The diameters of the pores (7 to 300 nm), areal densities of pores (as much as 7 x 10(exp 10)sq cm), and lengths of pores (up to about 100 nm) can be tailored by selection of fabrication conditions. In a given case, the catalytic metal, catalytic metal alloy, or catalytic metal/ polytetrafluoroethylene composite is electrodeposited in the pores of the alumina nanotemplate. The dimensions of the pores, together with the electrodeposition conditions, determine the sizes and surface areas of the catalytic particles. Hence, the small features and large surface areas of the porosity translate to the desired small particle size and large surface area of the catalyst (see figure). When polytetrafluoroethylene is included, it is for the purpose of imparting hydrophobicity in order to prevent water from impeding the desired diffusion of gases through the catalyst layer. To incorporate polytetrafluoroethylene into a catalytic-metal/polytetrafluoroethylene nanocomposite, one suspends polytetrafluoroethylene nanoparticles in the electrodeposition solution. The polytetrafluoroethylene content can be varied to obtain the desired degree of hydrophobicity and permeability by gas.
Properties of open-cell porous metals and alloys for orthopaedic applications.
Lewis, Gladius
2013-10-01
One shortcoming of metals and alloys used to fabricate various components of orthopaedic systems, such as the femoral stem of a total hip joint replacement and the tibial plate of a total knee joint replacement, is well-recognized. This is that the material modulus of elasticity (E') is substantially larger than that of the contiguous cancellous bone, a consequence of which is stress shielding which, in turn, has been postulated to be implicated in a cascade of events that culminates in the principal life-limiting phenomenon of these systems, namely, aseptic loosening. Thus, over the years, a host of research programs have focused on the synthesis of metallic biomaterials whose E' can be tailored to match that of cancellous bone. The present work is a review of the extant large volume of literature on these materials, which are called open-cell porous metals/alloys (or, sometimes, metal foams or cellular materials). As such, its range is wide, covering myriad aspects such as production methods, characterization studies, in vitro evaluations, and in vivo performance. The review also includes discussion of seven areas for future research, such as parametric studies of the influence of an assortment of process variables (such as the space holder material and the laser power in the space holder method and the laser-engineered net-shaping process, respectively) on various properties (notably, permeability, fatigue strength, and corrosion resistance) of a given porous metal/alloy, innovative methods of determining fatigue strength, and modeling of corrosion behavior.
Eroglu, Seckin; Giehl, Ricardo F H; Meier, Bastian; Takahashi, Michiko; Terada, Yasuko; Ignatyev, Konstantin; Andresen, Elisa; Küpper, Hendrik; Peiter, Edgar; von Wirén, Nicolaus
2017-07-01
Metal accumulation in seeds is a prerequisite for germination and establishment of plants but also for micronutrient delivery to humans. To investigate metal transport processes and their interactions in seeds, we focused on METAL TOLERANCE PROTEIN8 (MTP8), a tonoplast transporter of the manganese (Mn) subclade of cation diffusion facilitators, which in Arabidopsis ( Arabidopsis thaliana ) is expressed in embryos of seeds. The x-ray fluorescence imaging showed that expression of MTP8 was responsible for Mn localization in subepidermal cells on the abaxial side of the cotyledons and in cortical cells of the hypocotyl. Accordingly, under low Mn availability, MTP8 increased seed stores of Mn, required for efficient seed germination. In mutant embryos lacking expression of VACUOLAR IRON TRANSPORTER1 ( VIT1 ), MTP8 built up iron (Fe) hotspots in MTP8 -expressing cells types, suggesting that MTP8 transports Fe in addition to Mn. In mtp8 vit1 double mutant seeds, Mn and Fe were distributed in all cell types of the embryo. An Fe transport function of MTP8 was confirmed by its ability to complement Fe hypersensitivity of a yeast mutant defective in vacuolar Fe transport. Imbibing mtp8-1 mutant seeds in the presence of Mn or subjecting seeds to wet-dry cycles showed that MTP8 conferred Mn tolerance. During germination, MTP8 promoted reallocation of Fe from the vasculature. These results indicate that cell type-specific accumulation of Mn and Fe in seeds depends on MTP8 and that this transporter plays an important role in the generation of seed metal stores as well as for metal homeostasis and germination efficiency under challenging environmental conditions. © 2017 American Society of Plant Biologists. All Rights Reserved.
Takahashi, Michiko; Terada, Yasuko
2017-01-01
Metal accumulation in seeds is a prerequisite for germination and establishment of plants but also for micronutrient delivery to humans. To investigate metal transport processes and their interactions in seeds, we focused on METAL TOLERANCE PROTEIN8 (MTP8), a tonoplast transporter of the manganese (Mn) subclade of cation diffusion facilitators, which in Arabidopsis (Arabidopsis thaliana) is expressed in embryos of seeds. The x-ray fluorescence imaging showed that expression of MTP8 was responsible for Mn localization in subepidermal cells on the abaxial side of the cotyledons and in cortical cells of the hypocotyl. Accordingly, under low Mn availability, MTP8 increased seed stores of Mn, required for efficient seed germination. In mutant embryos lacking expression of VACUOLAR IRON TRANSPORTER1 (VIT1), MTP8 built up iron (Fe) hotspots in MTP8-expressing cells types, suggesting that MTP8 transports Fe in addition to Mn. In mtp8 vit1 double mutant seeds, Mn and Fe were distributed in all cell types of the embryo. An Fe transport function of MTP8 was confirmed by its ability to complement Fe hypersensitivity of a yeast mutant defective in vacuolar Fe transport. Imbibing mtp8-1 mutant seeds in the presence of Mn or subjecting seeds to wet-dry cycles showed that MTP8 conferred Mn tolerance. During germination, MTP8 promoted reallocation of Fe from the vasculature. These results indicate that cell type-specific accumulation of Mn and Fe in seeds depends on MTP8 and that this transporter plays an important role in the generation of seed metal stores as well as for metal homeostasis and germination efficiency under challenging environmental conditions. PMID:28461400
Advanced chemical hydride-based hydrogen generation/storage system for fuel cell vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Breault, R.W.; Rolfe, J.
1998-08-01
Because of the inherent advantages of high efficiency, environmental acceptability, and high modularity, fuel cells are potentially attractive power supplies. Worldwide concerns over clean environments have revitalized research efforts on developing fuel cell vehicles (FCV). As a result of intensive research efforts, most of the subsystem technology for FCV`s are currently well established. These include: high power density PEM fuel cells, control systems, thermal management technology, and secondary power sources for hybrid operation. For mobile applications, however, supply of hydrogen or fuel for fuel cell operation poses a significant logistic problem. To supply high purity hydrogen for FCV operation, Thermomore » Power`s Advanced Technology Group is developing an advanced hydrogen storage technology. In this approach, a metal hydride/organic slurry is used as the hydrogen carrier and storage media. At the point of use, high purity hydrogen will be produced by reacting the metal hydride/organic slurry with water. In addition, Thermo Power has conceived the paths for recovery and regeneration of the spent hydride (practically metal hydroxide). The fluid-like nature of the spent hydride/organic slurry will provide a unique opportunity for pumping, transporting, and storing these materials. The final product of the program will be a user-friendly and relatively high energy storage density hydrogen supply system for fuel cell operation. In addition, the spent hydride can relatively easily be collected at the pumping station and regenerated utilizing renewable sources, such as biomass, natural, or coal, at the central processing plants. Therefore, the entire process will be economically favorable and environmentally friendly.« less
Carbon monoxide tolerant electrocatalyst with low platinum loading and a process for its preparation
Adzic, Radoslav; Brankovic, Stanko; Wang, Jia
2003-12-30
An electrocatalyst is provided for use in a fuel cell that has low platinum loading and a high tolerance to carbon monoxide poisoning. The fuel cell anode includes an electrocatalyst that has a conductive support material, ruthenium nanoparticles reduced in H.sub.2 and a Group VIII noble metal in an amount of between about 0.1 and 25 wt % of the ruthenium nanoparticles, preferably between about 0.5 and 15 wt %. The preferred Group VIII noble metal is platinum. In one embodiment, the anode can also have a perfluorinated polymer membrane on its surface.
MOD silver metallization for photovoltaics
NASA Technical Reports Server (NTRS)
Vest, G. M.; Vest, R. W.
1984-01-01
The development of flat plate solar arrays is reported. Photovoltaic cells require back side metallization and a collector grid system on the front surface. Metallo-organic decomposition (MOD) silver films can eliminate most of the present problems with silver conductors. The objectives are to: (1) identify and characterize suitable MO compounds; (2) develop generic synthesis procedures for the MO compounds; (3) develop generic fabrication procedures to screen printable MOD silver inks; (4) optimize processing conditions to produce grid patterns and photovoltaic cells; and (5) develop a model which describes the adhesion between the fired silver film and the silicon surface.
Sobianowska-Turek, Agnieszka
2018-04-11
The utilization of the stream of waste secondary nickel-metal hydride (Ni-MH) and lithium-ion (Li-ion) cells, representing annually about 33% of all consumer batteries and accumulators placed on the Polish market, will soon become a big challenge for both legislators and plants dealing with the recycling of this type of hazardous waste. It is due to the fact that no company in Poland operating on the market has a complete technology for the processing of a full stream of waste chemical energy sources produced in this country. Until now, the most commonly used techniques of processing this type of waste were pyrometallurgical process. In this paper, the quantitative and qualitative characteristics of the stream of waste batteries and accumulators collected at separate collection points are presented. The results of metal recovery: caesium, lanthanum, cobalt, iron, manganese, nickel and zinc from the stream of waste Ni-MH cells, type R6 (AA), using hydrometallurgical methods are also offered. The paper demonstrates that one-stage leaching at an initial temperature of 25.0 °C, with 3 M H 2 SO 4 and at the solid to liquid ratio of s/l = 1/10, within 75 min, at a mixing speed of 500 rpm and in a strongly acidic environment should be adopted as optimal parameters for acid leaching of the paramagnetic fraction created after mechanical machining of Ni-MH battery, for which the leaching rates of individual metals were as follows: Ce - 97.7%, La - 88.7%, Co - 79.4%, Fe - 68.5%, Mn - 91.9%, Ni - 66.2% and Zn - 100%. Copyright © 2018 Elsevier Ltd. All rights reserved.
Martin, Dustin P.; Anantharam, Vellareddy; Jin, Huajun; Witte, Travis; Houk, Robert; Kanthasamy, Arthi; Kanthasamy, Anumantha G.
2011-01-01
Protein misfolding and aggregation are considered key features of many neurodegenerative diseases, but biochemical mechanisms underlying protein misfolding and the propagation of protein aggregates are not well understood. Prion disease is a classical neurodegenerative disorder resulting from the misfolding of endogenously expressed normal cellular prion protein (PrPC). Although the exact function of PrPC has not been fully elucidated, studies have suggested that it can function as a metal binding protein. Interestingly, increased brain manganese (Mn) levels have been reported in various prion diseases indicating divalent metals also may play a role in the disease process. Recently, we reported that PrPC protects against Mn-induced cytotoxicity in a neural cell culture model. To further understand the role of Mn in prion diseases, we examined Mn neurotoxicity in an infectious cell culture model of prion disease. Our results show CAD5 scrapie-infected cells were more resistant to Mn neurotoxicity as compared to uninfected cells (EC50 = 428.8 μM for CAD5 infected cells vs. 211.6 μM for uninfected cells). Additionally, treatment with 300 μM Mn in persistently infected CAD5 cells showed a reduction in mitochondrial impairment, caspase-3 activation, and DNA fragmentation when compared to uninfected cells. Scrapie-infected cells also showed significantly reduced Mn uptake as measured by inductively coupled plasma-mass spectrometry (ICP-MS), and altered expression of metal transporting proteins DMT1 and transferrin. Together, our data indicate that conversion of PrP to the pathogenic isoform enhances its ability to regulate Mn homeostasis, and suggest that understanding the interaction of metals with disease-specific proteins may provide further insight to protein aggregation in neurodegenerative diseases. PMID:21871919
High performance, inexpensive solar cell process capable of a high degree of automation
NASA Technical Reports Server (NTRS)
Shah, P.; Fuller, C. R.
1976-01-01
This paper proposes a process for inexpensive high performance solar cell fabrication that can be automated for further cost reduction and higher throughputs. The unique feature of the process is the use of oxides as doping sources for simultaneous n(+) junction formation and back p(+) layer, as a mask for metallization and as an in situ AR coating for spectrum matching. Cost analysis is performed to show that significant cost reductions over the conventional process is possible using the proposed scheme and the cost intensive steps are identified which can be further reduced to make the process compatible with the needed price goals of 50 cents/watt. The process was demonstrated by fabricating n(+)-p cells using Arsenic doped oxides. Simple n(+)-p structure cells showed corrected efficiencies of 14.5% (AMO) and 12% with doped oxide as an in situ antireflection coating.
Büldt, Laura A.
2017-01-01
Some complexes of Cr(iii) and Cr(0) have long been known to exhibit interesting photophysical and photochemical properties, but in the past few years important conceptual progress was made. This Perspective focuses on the recent developments of Cr(iii) complexes as luminophores and dyes for solar cells, their application in photoredox catalysis, their use as sensitizers in upconversion processes, and their performance as photochemical nitric oxide sources. The example of a luminescent Cr(0) isocyanide complex illustrates the possibility of obtaining photoactive analogues of d6 metal complexes that are commonly made from precious metals such as Ru(ii) or Ir(iii). The studies highlighted herein illustrate the favorable excited-state properties of robust first-row transition metal complexes with broad application potential. PMID:29163886
Büldt, Laura A; Wenger, Oliver S
2017-11-01
Some complexes of Cr(iii) and Cr(0) have long been known to exhibit interesting photophysical and photochemical properties, but in the past few years important conceptual progress was made. This Perspective focuses on the recent developments of Cr(iii) complexes as luminophores and dyes for solar cells, their application in photoredox catalysis, their use as sensitizers in upconversion processes, and their performance as photochemical nitric oxide sources. The example of a luminescent Cr(0) isocyanide complex illustrates the possibility of obtaining photoactive analogues of d 6 metal complexes that are commonly made from precious metals such as Ru(ii) or Ir(iii). The studies highlighted herein illustrate the favorable excited-state properties of robust first-row transition metal complexes with broad application potential.
Influence of processing factors on the physical metallurgy of LENS deposited 316L stainless steel.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Nancy Y. C.; Yee, Joshua Keng; Zheng, Baolong
2015-12-01
Directed energy deposition (DED) is a type of additive manufacturing (AM) process; Laser Engineered Net Shaping (LENS) is a commercial DED process. We are developing LENS technology for printing 316L stainless steel components for structural applications. It is widely known that material properties of AM components are process dependent, attributed to different molten metal incorporation and thermal transport mechanisms. This investigation focuses on process-structure-property relationships for LENS deposits for enabling the process development and optimization to control material property. We observed interactions among powder melting, directional molten metal flow, and the molten metal solidification. The resultant LENS induced microstructure foundmore » to be dictated by the process-related characteristics, i.e., interpass boundaries from multi-layer deposition, molten metal flow lines, and solidification dendrite cells. Each characteristic bears the signature of the unique localized thermal history during deposition. Correlation observed between localized thermal transport, resultant microstructure, and its subsequent impact on the mechanical behavior of the current 316L is discussed. We also discuss how the structures of interpass boundaries are susceptible to localized recrystallization, grain growth and/or defect formation, and therefore, heterogeneous mechanical properties due to the adverse presence of unmelted powder inclusions.« less
Gola, Deepak; Malik, Anushree; Namburath, Maneesh; Ahammad, Shaikh Ziauddin
2017-10-01
Presence of industrial dyes and heavy metal as a contaminant in environment poses a great risk to human health. In order to develop a potential technology for remediation of dyes (Reactive remazol red, Yellow 3RS, Indanthrene blue and Vat novatic grey) and heavy metal [Cu(II), Ni(II), Cd(II), Zn(II), Cr(VI) and Pb(II)] contamination, present study was performed with entomopathogenic fungi, Beauveria bassiana (MTCC no. 4580). High dye removal (88-97%) was observed during the growth of B. bassiana while removal percentage for heavy metals ranged from 58 to 75%. Further, detailed investigations were performed with Pb(II) in terms of growth kinetics, effect of process parameters and mechanism of removal. Growth rate decreased from 0.118 h -1 (control) to 0.031 h -1 , showing 28% reduction in biomass at 30 mg L -1 Pb(II) with 58.4% metal removal. Maximum Pb(II) removal was observed at 30 °C, neutral pH and 30 mg L -1 initial metal concentration. FTIR analysis indicated the changes induced by Pb(II) in functional groups on biomass surface. Further, microscopic analysis (SEM and atomic force microscopy (AFM)) was performed to understand the changes in cell surface morphology of the fungal cell. SEM micrograph showed a clear deformation of fungal hyphae, whereas AFM studies proved the increase in surface roughness (RSM) in comparison to control cell. Homogenous bioaccumulation of Pb(II) inside the fungal cell was clearly depicted by TEM-high-angle annular dark field coupled with EDX. Present study provides an insight into the mechanism of Pb(II) bioremediation and strengthens the significance of using entomopathogenic fungus such as B. bassiana for metal and dye removal.
Preservation of Archaeal Surface Layer Structure During Mineralization
NASA Astrophysics Data System (ADS)
Kish, Adrienne; Miot, Jennyfer; Lombard, Carine; Guigner, Jean-Michel; Bernard, Sylvain; Zirah, Séverine; Guyot, François
2016-05-01
Proteinaceous surface layers (S-layers) are highly ordered, crystalline structures commonly found in prokaryotic cell envelopes that augment their structural stability and modify interactions with metals in the environment. While mineral formation associated with S-layers has previously been noted, the mechanisms were unconstrained. Using Sulfolobus acidocaldarius a hyperthermophilic archaeon native to metal-enriched environments and possessing a cell envelope composed only of a S-layer and a lipid cell membrane, we describe a passive process of iron phosphate nucleation and growth within the S-layer of cells and cell-free S-layer “ghosts” during incubation in a Fe-rich medium, independently of metabolic activity. This process followed five steps: (1) initial formation of mineral patches associated with S-layer; (2) patch expansion; (3) patch connection; (4) formation of a continuous mineral encrusted layer at the cell surface; (5) early stages of S-layer fossilization via growth of the extracellular mineralized layer and the mineralization of cytosolic face of the cell membrane. At more advanced stages of encrustation, encrusted outer membrane vesicles are formed, likely in an attempt to remove damaged S-layer proteins. The S-layer structure remains strikingly well preserved even upon the final step of encrustation, offering potential biosignatures to be looked for in the fossil record.
Development of New Front Side Metallization Method of Aluminum Electroplating for Silicon Solar Cell
NASA Astrophysics Data System (ADS)
Willis, Megan D.
In this thesis, the methods of aluminum electroplating in an ionic liquid for silicon solar cell front side metallization were studied. It focused on replacing the current silver screen printing with an alternative metallization technology using a low-cost Earth-abundant metal for mass production, due to the high cost and limited availability of silver. A conventional aluminum electroplating method was employed for silicon solar cells fabrication on both p-type and n-type substrates. The highest efficiency of 17.9% was achieved in the n-type solar cell with a rear junction, which is comparable to that of the same structure cell with screen printed silver electrodes from industrial production lines. It also showed better spiking resistant performance than the common structure p-type solar cell. Further efforts were put on the development of a novel light-induced plating of aluminum technique. The aluminum was deposited directly on a silicon substrate without the assistance of a conductive seed layer, thus simplified and reduced the process cost. The plated aluminum has good adhesion to the silicon surface with the resistivity as low as 4x10-6 Ω-cm. A new demo tool was designed and set up for the light-induced plating experiment, aiming to utilize this technique in large-size solar cells fabrication and mass production. Besides the metallization methods, a comprehensive sensitivity analysis for the efficiency dispersion in the production of crystalline-Si solar cells was presented based on numerical simulations. Temperature variation in the diffusion furnace was the most significant cause of the efficiency dispersion. It was concluded that a narrow efficiency range of +/-0.5% absolute is achievable if the emitter diffusion temperature is confined to a 13°C window, while other cell parameters vary within their normal windows. Possible methods to minimize temperature variation in emitter diffusion were proposed.
NASA Technical Reports Server (NTRS)
Spry, David J.; Neudeck, Philip G.; Chen, Liangyu; Lukco, Dorothy; Chang, Carl W.; Beheim, Glenn M.; Krasowski, Michael J.; Prokop, Norman F.
2015-01-01
Complex integrated circuit (IC) chips rely on more than one level of interconnect metallization for routing of electrical power and signals. This work reports the processing and testing of 4H-SiC junction field effect transistor (JFET) prototype IC's with two levels of metal interconnect capable of prolonged operation at 500 C. Packaged functional circuits including 3- and 11-stage ring oscillators, a 4-bit digital to analog converter, and a 4-bit address decoder and random access memory cell have been demonstrated at 500 C. A 3-stage oscillator functioned for over 3000 hours at 500 C in air ambient. Improved reproducibility remains to be accomplished.
Subunit Dissociation and Metal Binding by Escherichia coli apo-Manganese Superoxide Dismutase
Whittaker, Mei M.; Lerch, Thomas F.; Kirillova, Olga; Chapman, Michael S.; Whittaker, James W.
2010-01-01
Metal binding by apo-manganese superoxide dismutase (apo-MnSOD) is essential for functional maturation of the enzyme. Previous studies have demonstrated that metal binding by apo-MnSOD is conformationally gated, requiring protein reorganization for the metal to bind. We have now solved the X-ray crystal structure of apo-MnSOD at 1.9 Å resolution. The organization of active site residues is independent of the presence of the metal cofactor, demonstrating that protein itself templates the unusual metal coordination geometry. Electrophoretic analysis of mixtures of apo- and (Mn2)-MnSOD, dye-conjugated protein, or C-terminal Strep-tag II fusion protein reveals a dynamic subunit exchange process associated with cooperative metal binding by the two subunits of the dimeric protein. In contrast, (S126C) (SS) apo-MnSOD, which contains an inter-subunit covalent disulfide crosslink, exhibits anticooperative metal binding. The protein concentration dependence of metal uptake kinetics implies that protein dissociation is involved in metal binding by the wild type apo-protein, although other processes may also contribute to gating metal uptake. Protein concentration dependent small-zone size exclusion chromatography is consistent with apo-MnSOD dimer dissociation at low protein concentration (KD = 1×10−6 M). Studies on metal uptake by apo-MnSOD in Escherichia coli cells show that the protein exhibits similar behavior in vivo and in vitro. PMID:21044611
Rawlings, Douglas E
2005-01-01
Microorganisms are used in large-scale heap or tank aeration processes for the commercial extraction of a variety of metals from their ores or concentrates. These include copper, cobalt, gold and, in the past, uranium. The metal solubilization processes are considered to be largely chemical with the microorganisms providing the chemicals and the space (exopolysaccharide layer) where the mineral dissolution reactions occur. Temperatures at which these processes are carried out can vary from ambient to 80°C and the types of organisms present depends to a large extent on the process temperature used. Irrespective of the operation temperature, biomining microbes have several characteristics in common. One shared characteristic is their ability to produce the ferric iron and sulfuric acid required to degrade the mineral and facilitate metal recovery. Other characteristics are their ability to grow autotrophically, their acid-tolerance and their inherent metal resistance or ability to acquire metal resistance. Although the microorganisms that drive the process have the above properties in common, biomining microbes usually occur in consortia in which cross-feeding may occur such that a combination of microbes including some with heterotrophic tendencies may contribute to the efficiency of the process. The remarkable adaptability of these organisms is assisted by several of the processes being continuous-flow systems that enable the continual selection of microorganisms that are more efficient at mineral degradation. Adaptability is also assisted by the processes being open and non-sterile thereby permitting new organisms to enter. This openness allows for the possibility of new genes that improve cell fitness to be selected from the horizontal gene pool. Characteristics that biomining microorganisms have in common and examples of their remarkable adaptability are described. PMID:15877814
Rawlings, Douglas E
2005-05-06
Microorganisms are used in large-scale heap or tank aeration processes for the commercial extraction of a variety of metals from their ores or concentrates. These include copper, cobalt, gold and, in the past, uranium. The metal solubilization processes are considered to be largely chemical with the microorganisms providing the chemicals and the space (exopolysaccharide layer) where the mineral dissolution reactions occur. Temperatures at which these processes are carried out can vary from ambient to 80 degrees C and the types of organisms present depends to a large extent on the process temperature used. Irrespective of the operation temperature, biomining microbes have several characteristics in common. One shared characteristic is their ability to produce the ferric iron and sulfuric acid required to degrade the mineral and facilitate metal recovery. Other characteristics are their ability to grow autotrophically, their acid-tolerance and their inherent metal resistance or ability to acquire metal resistance. Although the microorganisms that drive the process have the above properties in common, biomining microbes usually occur in consortia in which cross-feeding may occur such that a combination of microbes including some with heterotrophic tendencies may contribute to the efficiency of the process. The remarkable adaptability of these organisms is assisted by several of the processes being continuous-flow systems that enable the continual selection of microorganisms that are more efficient at mineral degradation. Adaptability is also assisted by the processes being open and non-sterile thereby permitting new organisms to enter. This openness allows for the possibility of new genes that improve cell fitness to be selected from the horizontal gene pool. Characteristics that biomining microorganisms have in common and examples of their remarkable adaptability are described.
Suzuki, Kazuyuki; Anegawa, Aya; Endo, Kazuto; Yamada, Masato; Ono, Yusaku; Ono, Yoshiro
2008-11-01
This pilot-scale study evaluated the use of intermediate cover soil barriers for removing heavy metals in leachate generated from test cells for co-disposed fly ash from municipal solid waste incinerators, ash melting plants, and shredder residue. Cover soil barriers were mixtures of Andisol (volcanic ash soil), waste iron powder, (grinder dust waste from iron foundries), and slag fragments. The cover soil barriers were installed in the test cells' bottom layer. Sorption/desorption is an important process in cover soil bottom barrier for removal of heavy metals in landfill leachate. Salt concentrations such as those of Na, K, and Ca in leachate were extremely high (often greater than 30 gL(-1)) because of high salt content in fly ash from ash melting plants. Concentrations of all heavy metals (nickel, manganese, copper, zinc, lead, and cadmium) in test cell leachates with a cover soil barrier were lower than those of the test cell without a cover soil barrier and were mostly below the discharge limit, probably because of dilution caused by the amount of leachate and heavy metal removal by the cover soil barrier. The cover soil barriers' heavy metal removal efficiency was calculated. About 50% of copper, nickel, and manganese were removed. About 20% of the zinc and boron were removed, but lead and cadmium were removed only slightly. Based on results of calculation of the Langelier saturation index and analyses of core samples, the reactivity of the cover soil barrier apparently decreases because of calcium carbonate precipitation on the cover soil barriers' surfaces.
Field Deployment for In-situ Metal and Radionuclide Stabilization by Microbial Metabolites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Turick, C. E.; Knox, A. S.; Dixon, K. L.
2005-09-26
A novel biotechnology is reported here that was demonstrated at SRS that facilitates metal and actinide immobilization by incorporating the physiology and ecology of indigenous bacteria. This technology is based on our previous work with pyomelanin-producing bacteria isolated from SRS soils. Through tyrosine supplementation, overproduction of pyomelanin was achieved, which lead ultimately to metal and actinide immobilization, both in-vitro and in-situ. Pyomelanin is a recalcitrant microbial pigment and a humic type compound in the class of melanin pigments. Pyomelanin has electron shuttling and metal chelation capabilities and thus accelerates the bacterial reduction and/or immobilization of metals. Pyomelanin is produced outsidemore » the cell and either diffuses away or attaches to the cell surface. In either case, the reduced pyomelanin is capable of transferring electrons to metals as well as chelating metals. Because of its recalcitrance and redox cycling properties, pyomelanin molecules can be used over and over again for metal transformation. When produced in excess, pyomelanin produced by one bacterial species can be used by other species for metal reduction, thereby extending the utility of pyomelanin and further accelerating metal immobilization rates. Soils contaminated with Ni and U were the focus of this study in order to develop in-situ, metal bioimmobilization technologies. We have demonstrated pyomelanin production in soil from the Tims Branch area of SRS as a result of tyrosine amendments. These results were documented in laboratory soil column studies and field deployment studies. The amended soils demonstrated increased redox behavior and sequestration capacity of U and transition metals following pyomelanin production. Treatments incorporating tyrosine and lactate demonstrated the highest levels of pyomelanin production. In order to determine the potential use of this technology at other areas of SRS, pyomelanin producing bacteria were also quantified from metal contaminated soils at TNX and D areas of SRS. A bacterial culture collection from subsurface studies near P Area of SRS were also evaluated for pyomelanin production. Bacterial densities of pyomelanin producers were determined to be >10{sup 6} cells/g soil at TNX and D areas. In addition, approximately 25% of isolates from P area demonstrated pyomelanin production in the presence of tyrosine. Biogeochemical activity is an ongoing and dynamic process due, in part, to bacterial activity in the subsurface. Bacteria contribute significantly to biotransformation of metals and radionuclides. An understanding and application of the mechanisms of metal and radionuclide reduction offers tremendous potential for development into bioremedial processes and technologies. This report demonstrates the application of recent advances in bacterial physiology and soil ecology for future bioremediation activities involving metal and actinide immobilization.« less
Transparent conductors based on microscale/nanoscale materials for high performance devices
NASA Astrophysics Data System (ADS)
Gao, Tongchuan
Transparent conductors are important as the top electrode for a variety of optoelectronic devices, including solar cells, light-emitting diodes (LEDs), at panel displays, and touch screens. Doped indium tin oxide (ITO) thin films are the predominant transparent conductor material. However, ITO thin films are brittle, making them unsuitable for the emerging flexible devices, and suffer from high material and processing cost. In my thesis, we developed a variety of transparent conductors toward a performance comparable with or superior to ITO thin films, with lower cost and potential for scalable manufacturing. Metal nanomesh (NM), hierarchical graphene/metal microgrid (MG), and hierarchical metal NM/MG materials were investigated. Simulation methods were used as a powerful tool to predict the transparency and sheet resistance of the transparent conductors by solving Maxwell's equations and Poisson's equation. Affordable and scalable fabrication processes were developed thereafter. Transparent conductors with over 90% transparency and less than 10 O/square sheet resistance were successfully fabricated on both rigid and flexible substrates. Durability tests, such as bending, heating and tape tests, were carried out to evaluate the robustness of the samples. Haze factor, which characterizes how blurry a transparent conductor appears, was also studied in-depth using analytical calculation and numerical simulation. We demonstrated a tunable haze factor for metal NM transparent conductors and analyzed the principle for tuning the haze factor. Plasmonic effects, excited by some transparent conductors, can lead to enhanced performance in photovoltaic devices. We systematically studied the effect of incorporating metal NM into ultrathin film silicon solar cells using numerical simulation, with the aid of optimization algorithms to reduce the optimization time. Mechanisms contributing to the enhanced performance were then identified and analyzed. Over 72% enhancement in short-circuit current-density was demonstrated by the optimal solar cell compared with 300-nm-thick Si solar cell with antireflection coating and silver back reflector.
Metal-accelerated oxidation in plant cell death
DOE Office of Scientific and Technical Information (OSTI.GOV)
Czuba, M.
1993-05-01
Cadmium and mercury toxicity is further enhanced by external oxidizing conditions O[sub 3] or inherent plant processes. Lepidium sativum L, Lycopersicon esculentum Mill., or Phaseolus vulgaris L, were grown inpeat-lite to maturity under continuous cadmium exposure followed by one oxidant (O[sub 3]-6 hr. 30 pphm) exposure, with or without foliar calcium pretreatments. In comparison, Daucus carota, L and other species grown in a 71-V suspension, with or without 2,4-D were exposed continuously to low levels of methylmercury during exponential growth and analyzed in aggregates of distinct populations. Proteins were extracted and analyzed. Mechanisms of toxicity and eventual cell death aremore » Ca-mediated and involve chloroplast, stomatal-water relations and changes in oxidant-anti-oxidant components in cells. Whether the metal-accelerated oxidative damage proceeds to cell death, depends on the species and its differential biotransformation system and cell association component.« less
[Acute toxicity analysis performance of CellSense biosensor with E. coli].
Wang, Xue-Jiang; Wang, Hong; Zhao, Jian-Fu; Xia, Si-Qing; Zhao, Hong-Ning
2009-04-15
E. coli microbial electrodes for CellSense biosensor were prepared by polycarbonate membrane immobilization process, and their performance for heavy metals and toxic organic compounds acute toxicity determination were studied. The results showed that when E. coli was in logarithmic and stationary phase, the CellSense biosensor with E. coli showed good performance in heavy metal ions and organic pollutants acute toxicity analysis, when E. coli was in its decline phase, the stability and sensitivity of the CellSense biosensor was poor. The EC50 values of Hg2+, Cu2+, Zn2+, o-chlorophenol (2-CP) and p-nitrophenol (4-NP) detected by CellSense biosensor with E. coli were 0.6, 3.1, 5.8, 180 and 94 microg/mL, respectively. The immobilized E. coli electrodes could still suit for acute toxicity assessment after 2 months storage at 4 degrees C.
Sound absorption of metallic sound absorbers fabricated via the selective laser melting process
NASA Astrophysics Data System (ADS)
Cheng, Li-Wei; Cheng, Chung-Wei; Chung, Kuo-Chun; Kam, Tai-Yan
2017-01-01
The sound absorption capability of metallic sound absorbers fabricated using the additive manufacturing (selective laser melting) method is investigated via both the experimental and theoretical approaches. The metallic sound absorption structures composed of periodic cubic cells were made of laser-melted Ti6Al4 V powder. The acoustic impedance equations with different frequency-independent and frequency-dependent end corrections factors are employed to calculate the theoretical sound absorption coefficients of the metallic sound absorption structures. The calculated sound absorption coefficients are in close agreement with the experimental results for the frequencies ranging from 2 to 13 kHz.
Thermal conductance of metal–diamond interfaces at high pressure
Hohensee, Gregory T.; Wilson, R. B.; Cahill, David G.
2015-03-06
The thermal conductance of interfaces between metals and diamond, which has a comparatively high Debye temperature, is often greater than can be accounted for by two phonon-processes. The high pressures achievable in a diamond anvil cell can significantly extend the metal phonon density of states to higher frequencies, and can also suppress extrinsic effects by greatly stiffening interface bonding. Here we report time-domain thermoreflectance measurements of metal-diamond interface thermal conductance up to 50 GPa in the DAC for Pb, Au 0.95Pd 0.05, Pt, and Al films deposited on Type 1A natural [100] and Type 2A synthetic [110] diamond anvils. Inmore » all cases, the thermal conductances increase weakly or saturate to similar values at high pressure. Lastly, our results suggest that anharmonic conductance at metal-diamond interfaces is controlled by partial transmission processes, where a diamond phonon that inelastically scatters at the interface absorbs or emits a metal phonon.« less
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Fatemi, N. S.; Korenyi-Both, A. L.
1993-01-01
Contact formation to InP is plagued by violent metal-semiconductor intermixing that takes place during the contact sintering process. Because of this the InP solar cell cannot be sintered after contact deposition. This results in cell contact resistances that are orders of magnitude higher than those that could be achieved if sintering could be performed in a non-destructive manner. We report here on a truly unique contact system involving Au and Ge, which is easily fabricated, which exhibits extremely low values of contact resistivity, and in which there is virtually no metal-semiconductor interdiffusion, even after extended sintering. We present a description of this contact system and suggest possible mechanisms to explain the observed behavior.
Stabilizing platinum in phosphoric acid fuel cells
NASA Technical Reports Server (NTRS)
Remick, R. J.
1981-01-01
The cathode of the phosphoric acid fuel cell uses a high surface area platinum catalyst supported on a carbon substrate. During operation, the small platinum crystallites sinter, causing loss in cell performance. A support was developed that stabilizes platinum in the high surface area condition by retarding or preventing the sintering process. The approach is to form etch pits in the carbon by oxidizing the carbon in the presence of a metal oxide catalyst, remove the metal oxide by an acid wash, and then deposit platinum in these pits. Results confirm the formation of etch pits in each of the three supports chosen for investigation: Vulcan XC-72R, Vulcan XC-72 that was graphized at 2500 C, and Shawinigan Acetylene Black.
Semitransparent organic solar cells with hybrid monolayer graphene/metal grid as top electrodes
NASA Astrophysics Data System (ADS)
Lin, Peng; Choy, Wallace C. H.; Zhang, Di; Xie, Fengxian; Xin, Jianzhuo; Leung, C. W.
2013-03-01
Hybrid transparent monolayer graphene/metal grid is proposed as top electrode of semitransparent organic solar cells. The hybrid electrode using gold grid on flexible polyethylene terephthalate substrate shows very low sheet resistance of 22 ± 3 Ω/□ and high optical transmittance of 81.4%, which is comparable to conventional indium tin oxide/glass electrode. Using lamination process, the layer of poly(3,4-ethylenedioythiophene):poly(styrenesulfonate) doped with D-sorbitol plays an important role in the electrical performance of the laminated devices. In addition, the devices show best power convention efficiency of 3.1% and fill factor of 55.0%, which are much better than those of similar graphene-based semitransparent organic solar cells.
Mohamad, Osama Abdalla; Hao, Xiuli; Xie, Pin; Hatab, Shaimaa; Lin, Yanbing; Wei, Gehong
2012-01-01
The mining industry generates huge amounts of wastewater, containing toxic heavy metals. Treatment to remove heavy metals is necessary and recent work has been focused on finding more environmentally friendly materials for removing heavy metals from wastewater. Biosorption can be an effective process for heavy metal removal from aqueous solutions. Our objectives were to investigate the removal of copper (II) from aqueous solutions using dead cells of Mesorhizobium amorphae CCNWGS0123 under differing levels of pH, agitation speed, temperature, initial copper concentration, biosorbent dose and contact time using flame atomic absorption spectroscopy for metal estimation. The maximum copper removal rate was achieved at pH 5.0, agitation speed 150×g, temperature 28°C and initial Cu (II) concentration of 100 mg L−1. Maximum biosorption capacity was at 0.5 g L−1 and equilibrium was attained within 30 min. Langmuir and Freundlich isotherms showed correlation coefficients of 0.958 and 0.934, respectively. Fourier transform-infrared spectroscopy (FT-IR) analysis indicated that many functional groups, such as O-H, N-H, C-H, C=O, -NH, -CN, C-N, C-O, amide -I, -II, -III and unsaturated alkenes, alkyls and aromatic groups on the cell surface were involved in the interaction between CCNWGS0123 and Cu. Scanning electron microscope and energy dispersive X-ray scanning results showed deformation, aggregation, and cell-surface damage due to the precipitation of copper on the cell surface. Dead cells of CCNWGS0123 showed potential as an efficient biosorbent for the removal of Cu2+ from aqueous solutions. PMID:22353770
Walczak-Drzewiecka, Aurelia; Wyczólkowska, Janina; Dastych, Jaroslaw
2003-01-01
Upon contact with allergen, sensitized mast cells release highly active proinflammatory mediators. Allergen-mediated mast cell activation is an important mechanism in the pathogenesis of atopic asthma. Asthmatic patients are especially susceptible to air pollution. Epidemiologic studies found a positive correlation between severity of symptoms among asthmatic patients and the level of particulate matter (PM) in the air. Among the constituents of PM are metals and transition metals, which could mediate some of its adverse effects on human health. We sought to determine the effect of metal and transition metal ions on allergen-mediated mast cell activation. We observed that several metal and transition metal ions activated mast cells and enhanced allergen-mediated mast cell activation. Thus, Al(3+), Cd(2+), and Sr(2+) induced release of granule-associated N-acetyl-ss-d-hexosaminidase, and Al(3+) and Ni(2+) enhanced antigen-mediated release. Metal and transition metal ions also induced significant secretion of interleukin (IL)-4 and increased antigen-mediated IL-4 secretion in mast cells. These effects of metal and transition metal ions on mast cells were observed at concentrations that do not result in direct cytotoxicity and might be relevant for environmental exposure. Thus, metals and transition metals could increase the level of allergen-mediated mast cell activation, which might be one of the mechanisms mediating exacerbation of allergen-driven asthma symptoms by air pollution. PMID:12727598
Method of electrode fabrication for solid oxide electrochemical cells
Jensen, R.R.
1990-11-20
A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used. 5 figs.
Method of electrode fabrication for solid oxide electrochemical cells
Jensen, Russell R.
1990-01-01
A process for fabricating cermet electrodes for solid oxide electrochemical cells by sintering is disclosed. First, a porous metal electrode is fabricated on a solid oxide cell, such as a fuel cell by, for example, sintering, and is then infiltrated with a high volume fraction stabilized zirconia suspension. A second sintering step is used to sinter the infiltrated zirconia to a high density in order to more securely attach the electrode to the solid oxide electrolyte of the cell. High performance fuel electrodes can be obtained with this process. Further electrode performance enhancement may be achieved if stabilized zirconia doped with cerium oxide, chromium oxide, titanium oxide, and/or praseodymium oxide for electronic conduction is used.
Low-Dimensional Nanomaterials as Active Layer Components in Thin-Film Photovoltaics
NASA Astrophysics Data System (ADS)
Shastry, Tejas Attreya
Thin-film photovoltaics offer the promise of cost-effective and scalable solar energy conversion, particularly for applications of semi-transparent solar cells where the poor absorption of commercially-available silicon is inadequate. Applications ranging from roof coatings that capture solar energy to semi-transparent windows that harvest the immense amount of incident sunlight on buildings could be realized with efficient and stable thin-film solar cells. However, the lifetime and efficiency of thin-film solar cells continue to trail their inorganic silicon counterparts. Low-dimensional nanomaterials, such as carbon nanotubes and two-dimensional metal dichalcogenides, have recently been explored as materials in thin-film solar cells due to their exceptional optoelectronic properties, solution-processability, and chemical inertness. Thus far, issues with the processing of these materials has held back their implementation in efficient photovoltaics. This dissertation reports processing advances that enable demonstrations of low-dimensional nanomaterials in thin-film solar cells. These low-dimensional photovoltaics show enhanced photovoltaic efficiency and environmental stability in comparison to previous devices, with a focus on semiconducting single-walled carbon nanotubes as an active layer component. The introduction summarizes recent advances in the processing of carbon nanotubes and their implementation through the thin-film photovoltaic architecture, as well as the use of two-dimensional metal dichalcogenides in photovoltaic applications and potential future directions for all-nanomaterial solar cells. The following chapter reports a study of the interaction between carbon nanotubes and surfactants that enables them to be sorted by electronic type via density gradient ultracentrifugation. These insights are utilized to construct of a broad distribution of carbon nanotubes that absorb throughout the solar spectrum. This polychiral distribution is then shown to result in record breaking performance in a carbon nanotube solar cell, and subsequent chapters study the mechanisms behind charge transfer in the polychiral carbon nanotube / fullerene solar cell. Further processing advances, chiral distribution tailoring, and solvent additives are shown to enable more uniform and larger area carbon nanotube solar cells while maintaining record-breaking performance. In order to increase overall photovoltaic performance of a carbon nanotube active layer solar cell, this dissertation also demonstrates a ternary polymer-carbon nanotube-small molecule photovoltaic with high efficiency and stability enabled by the nanomaterial. Finally, the use of the two-dimensional metal dichalcogenide molybdenum disulfide as a photovoltaic material is explored in an ultrathin solar cell with higher efficiency per thickness than leading organic and inorganic thin-film photovoltaics. Overall, this work demonstrates breakthroughs in utilizing low-dimensional nanomaterials as active layer components in photovoltaics and will inform ongoing research in making ultrathin, stable, efficient solar cells.
Nonvolatile programmable neural network synaptic array
NASA Technical Reports Server (NTRS)
Tawel, Raoul (Inventor)
1994-01-01
A floating-gate metal oxide semiconductor (MOS) transistor is implemented for use as a nonvolatile analog storage element of a synaptic cell used to implement an array of processing synaptic cells. These cells are based on a four-quadrant analog multiplier requiring both X and Y differential inputs, where one Y input is UV programmable. These nonvolatile synaptic cells are disclosed fully connected in a 32 x 32 synaptic cell array using standard very large scale integration (VLSI) complementary MOS (CMOS) technology.
Design of an Airlift Bioreactor
Jiao, Yongqin; Park, Dan; Ho, Lewis
2017-03-13
An important consideration for the process design is cell immobilization-enabled flow-through operation. Large-scale biosorption relies on cells that are immobilized on a supporting substrate and used to 'attract' metal ions. Cell immobilization allows easy separation of the feed solution and REEs that are attached to the cell surface. It also allows continuous operation without the need of energy-intensive centrifugation or filtration. Lightweight, high surface area, low cost (~$200/m3) high-density polyethylene (HDPE) plastic disks are used as cell carriers for biofilm formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atekwana, Estella; Patrauchan, Marianna; Revil, Andre
2016-10-04
Bioremediation strategies for mitigating the transport of heavy metals and radionuclides in subsurface sediments have largely targeted the use of dissimilatory metal and sulfate-reducing bacteria. Growth and metabolic activities from these organisms can significantly influence biogeochemical processes, including mineral dissolution/precipitation, fluctuating pH and redox potential (Eh) values, development of biofilms, and decreasing hydraulic conductivity. The Spectral Induced Polarization (SIP) technique has emerged as the technique most sensitive to the presence of microbial cells and biofilms in porous media; yet it is often difficult to unambiguously distinguish the impact of multiple and often competing processes that occur during in-situ biostimulation activitiesmore » on the SIP signatures. The main goal of our project is to quantitatively characterize major components within bacterial biofilms (cells, DNA, metals, metabolites etc.) contributing to detectable SIP signatures. We specifically: (i) evaluated the contribution of biofilm components to SIP signatures, (ii) determined the contribution of biogenic minerals commonly found in biofilms to SIP signatures, (iii) determined if the SIP signatures can be used to quantify the rates of biofilm formation, (iv) developed models and a fundamental understanding of potential underlying polarization mechanisms at low frequencies (<40 kHz) resulting from the presence of microbial cells and biofilms« less
Regulation of Mesenchymal Stem Cell Differentiation by Nanopatterning of Bulk Metallic Glass.
Loye, Ayomiposi M; Kinser, Emily R; Bensouda, Sabrine; Shayan, Mahdis; Davis, Rose; Wang, Rui; Chen, Zheng; Schwarz, Udo D; Schroers, Jan; Kyriakides, Themis R
2018-06-08
Mesenchymal stem cell (MSC) differentiation is regulated by surface modification including texturing, which is applied to materials to enhance tissue integration. Here, we used Pt 57.5 Cu 14.7 Ni 5.3 P 22.5 bulk metallic glass (Pt-BMG) with nanopatterned surfaces achieved by thermoplastic forming to influence differentiation of human MSCs. Pt-BMGs are a unique class of amorphous metals with high strength, elasticity, corrosion resistance, and an unusual plastic-like processability. It was found that flat and nanopattened Pt-BMGs induced osteogenic and adipogenic differentiation, respectively. In addition, osteogenic differentiation on flat BMG exceeded that observed on medical grade titanium and was associated with increased formation of focal adhesions and YAP nuclear localization. In contrast, cells on nanopatterned BMGs exhibited rounded morphology, formed less focal adhesions and had mostly cytoplasmic YAP. These changes were preserved on nanopatterns made of nanorods with increased stiffness due to shorter aspect ratios, suggesting that MSC differentiation was primarily influenced by topography. These observations indicate that both elemental composition and nanotopography can modulate biochemical cues and influence MSCs. Moreover, the processability and highly tunable nature of Pt-BMGs enables the creation of a wide range of surface topographies that can be reproducibly and systematically studied, leading to the development of implants capable of engineering MSC functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koutsokeras, L. E.; Laboratoire PHYMAT, Universite de Poitiers-CNRS, UMR 6630, SP2MI, Teleport 2, Bd Marie et Pierre Curie, 86962 Chasseneuil-Futuroscope; Abadias, G.
2008-07-07
We present results on the stability and tailoring of the cell size of conducting {delta}-Ti{sub x}Ta{sub 1-x}N obtained by film growth and ab initio calculations. Despite the limited solubility of Ta in Ti, we show that TiN and TaN are soluble due to the hybrization of the d and sp electrons of the metal and N, respectively, that stabilizes the ternary system to the rocksalt structure. The stress-free cell sizes follow the Vegard's rule; nevertheless, process-dependent stresses expand the cell size of the as-grown films. The electronic properties of {delta}-Ti{sub x}Ta{sub 1-x}N films ({rho}=180 {omega} cm) are similar to thosemore » of TiN and TaN.« less
Mazumder, B; Devi, Sasmita Rani
2008-07-01
Aluminum smelter plants employ Hall-Heroult electrolysis cells for electrolysis of molten cryolite to recover aluminum metal by electrolysis. These cells use carbon cathode blocks as a lining material inside. At the end of service life of the cells, pot lines are discarded and new carbon blocks are laid for fresh charging. These used carbon cathode blocks, known as spent pot liners, are heavily infested with toxic elements such as fluoride, cyanide, alkali, etc. Therefore, their disposal in open field poses great environmental risk. A simple process has been developed for decontamination of these spent pot liners and to recover its carbon value. The experiments indicated that this carbon, in the form of fine powder (around 20 micron in size) can absorb toxic elements like heavy metals, dyes, oils, etc. to a great extent and thus can be used for mitigating environmental pollution occuring due to various toxic wastes.
Survey of mercury, cadmium and lead content of household batteries.
Recknagel, Sebastian; Radant, Hendrik; Kohlmeyer, Regina
2014-01-01
The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline-manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc-carbon batteries, on average, contained the highest levels. Copyright © 2013 Elsevier Ltd. All rights reserved.
In vitro osteoblastic differentiation of human bone marrow cells in the presence of metal ions.
Morais, S; Dias, N; Sousa, J P; Fernandes, M H; Carvalho, G S
1999-02-01
For periods up to 21 days human bone marrow was cultured in control conditions that favor the proliferation and differentiation of osteoblastic cells. The effect of AISI 316L corrosion products and the corresponding major separate metal ions (Fe, Cr, and Ni) were studied in three different phases of the culture period in order to investigate the effects of metal ions in cell populations representative of osteoblastic cells in different stages of differentiation. Toxicity consequences of the presence of metal ions in bone marrow cultures were evaluated by biochemical parameters (enzymatic reduction of MTT, alkaline phosphatase activity, and total protein content), histochemical assays (identification of ALP-positive cells and Ca and phosphates deposits), and observation of the cultures by light and scanning electron microscopy. Culture media were analyzed for total and ionized Ca and P and also for metal ions (Fe, Cr, and Ni). The presence of AISI 316L corrosion products and Ni salt in bone marrow cultures during the first and second weeks of culture significantly disturbs the normal behavior of these cultures, interfering in the lag phase and exponential phase of cell growth and ALP expression. However, the presence of these species during the third week of culture, when expression of osteoblastic functions occurs (mineralization process), did not result in any detectable effect. Fe salt also disturbs the behavior of bone marrow cell cultures when present during the lag phase and proliferation phase, and a somewhat compromised response between the normal pattern (control cultures) and intense inhibition (AISI 316L corrosion products and Ni salt-added cultures) was observed. Fe did not affect the progression of the mineralization phase. Osteogenic cultures exposed to Cr salt (Cr3+) presented a pattern similar to the controls, indicating that this element does not interfere, in the concentration studied, in the osteoblastic differentiation of bone marrow cells. Quantification of metal ions in the culture media showed that Cr (originated from AISI 316L corrosion products but from not Cr3+ salt) and Ni (originated from AISI 316L corrosion products and Ni salt) appear to be retained by the bone marrow cultures. Copyright 1999 John Wiley & Sons, Inc.
[The biochemical carcinogenesis of selected heavy metals in bladder cancer].
Rorbach-Dolata, Anna; Marchewka, Zofia; Piwowar, Agnieszka
2015-01-01
Bladder cancer takes the second place in the classification of morbidity of urinary system cancers. Many chemical factors take part in cancerogenesis. It is suggested that exposure to heavy metals such as arsenic, chromium, nickel and cadmium as well as its metabolites may trigger the bladder cancer through inducing excessive reactive oxygen species production and oxidative stress formation which are responsible for DNA damage. In patients with bladder cancer is observed the disorder of processes regulated by p-53, including apoptosis. There are many patients with bladder cancer with confirmed absence of retinoblastoma protein, which is responsible of holding on the process of coming up the cells with mutation into synthesis, where the replication process undergoes. It is mentioned that excessive expression of proto-oncogenes may also cause the bladder cancer. The article concerns biochemical effects of exposure to chosen heavy metals and their potential role in bladder cancer progression.
Mahdavi, Hamed; Liu, Yang; Ulrich, Ania C
2013-02-01
This paper studies the partitioning and bioaccumulation of ten target metals ((53)Cr, Mn, Co, (60)Ni, (65)Cu, (66)Zn, As, (88)Sr, (95)Mo and Ba) from oil sands tailings pond water (TPW) by indigenous Parachlorella kessleri. To determine the role of extracellular and intracellular bioaccumulation in metal removal by P. kessleri, TPW samples taken from two oil sands operators (Syncrude Canada Ltd. and Albian Sands Energy Inc.) were enriched with nutrient supplements. Results indicate that intracellular bioaccumulation played the main role in metal removal from TPW; whereas extracellular bioaccumulation was only observed to some extent for Mn, Co, (60)Ni, (65)Cu, (88)Sr, (95)Mo and Ba. The FTIR scan and titration of functional groups on the cell surface indicated low metal binding capacity by indigenous P. kessleri. However, it is believed that the dissolved cations and organic ligand content in TPW (such as naphthenic acids) may interfere with metal binding on the cell surface and lower extracellular bioaccumulation. In addition, the total bioaccumulation and bioconcentration factor (BCF) varied during the cultivation period in different growth regimes. Copyright © 2012 Elsevier Ltd. All rights reserved.
Fire-through Ag contact formation for crystalline Si solar cells using single-step inkjet printing.
Kim, Hyun-Gang; Cho, Sung-Bin; Chung, Bo-Mook; Huh, Joo-Youl; Yoon, Sam S
2012-04-01
Inkjet-printed Ag metallization is a promising method of forming front-side contacts on Si solar cells due to its non-contact printing nature and fine grid resolution. However, conventional Ag inks are unable to punch through the SiN(x) anti-reflection coating (ARC) layer on emitter Si surfaces. In this study, a novel formulation of Ag ink is examined for the formation of fire-through contacts on a SiN(x)-coated Si substrate using the single-step printing of Ag ink, followed by rapid thermal annealing at 800 degrees C. In order to formulate Ag inks with fire-through contact formation capabilities, a liquid etching agent was first formulated by dissolving metal nitrates in an organic solvent and then mixing the resulting solution with a commercial Ag nanoparticle ink at various volume ratios. During the firing process, the dissolved metal nitrates decomposed into metal oxides and acted in a similar manner to the glass frit contained in Ag pastes for screen-printed Ag metallization. The newly formulated ink with a 1 wt% loading ratio of metal oxides to Ag formed finely distributed Ag crystallites on the Si substrate after firing at 800 degrees C for 1 min.
In vitro bioactivity of micro metal injection moulded stainless steel with defined surface features.
Bitar, Malak; Friederici, Vera; Imgrund, Philipp; Brose, Claudia; Bruinink, Arie
2012-05-04
Micrometre- and nanometre-scale surface structuring with ordered topography features may dramatically enhance orthopaedic implant integration. In this study we utilised a previously optimised micron metal injection moulding (µ-MIM) process to produce medical grade stainless steel surfaces bearing micrometre scale, protruding, hemispheres of controlled dimensions and spatial distribution. Additionally, the structured surfaces were characterised by the presence of submicrometre surface roughness resulting from metal grain boundary formation. Following cytocompatibility (cytotoxicity) evaluation using 3T3 mouse fibroblast cell line, the effect on primary human cell functionality was assessed focusing on cell attachment, shape and cytoskeleton conformation. In this respect, and by day 7 in culture, significant increase in focal adhesion size was associated with the microstructured surfaces compared to the planar control. The morphological conformation of the seeded cells, as revealed by fluorescence cytoskeleton labelling, also appeared to be guided in the vertical dimension between the hemisphere bodies. Quantitative evaluation of this guidance took place using live cytoplasm fluorescence labelling and image morphometry analysis utilising both, compactness and elongation shape descriptors. Significant increase in cell compactness was associated with the hemisphere arrays indicating collective increase in focused cell attachment to the hemisphere bodies across the entire cell population. Micrometre-scale hemisphere array patterns have therefore influenced cell attachment and conformation. Such influence may potentially aid in enhancing key cellular events such as, for example, neo-osteogenesis on implanted orthopaedic surfaces.
Mystkowska, Joanna; Niemirowicz-Laskowska, Katarzyna; Łysik, Dawid; Tokajuk, Grażyna; Dąbrowski, Jan R; Bucki, Robert
2018-03-06
Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials.
Niemirowicz-Laskowska, Katarzyna; Łysik, Dawid; Tokajuk, Grażyna; Dąbrowski, Jan R.; Bucki, Robert
2018-01-01
Metallic biomaterials in the oral cavity are exposed to many factors such as saliva, bacterial microflora, food, temperature fluctuations, and mechanical forces. Extreme conditions present in the oral cavity affect biomaterial exploitation and significantly reduce its biofunctionality, limiting the time of exploitation stability. We mainly refer to friction, corrosion, and biocorrosion processes. Saliva plays an important role and is responsible for lubrication and biofilm formation as a transporter of nutrients for microorganisms. The presence of metallic elements in the oral cavity may lead to the formation of electro-galvanic cells and, as a result, may induce corrosion. Transitional microorganisms such as sulfate-reducing bacteria may also be present among the metabolic microflora in the oral cavity, which can induce biological corrosion. Microorganisms that form a biofilm locally change the conditions on the surface of biomaterials and contribute to the intensification of the biocorrosion processes. These processes may enhance allergy to metals, inflammation, or cancer development. On the other hand, the presence of saliva and biofilm may significantly reduce friction and wear on enamel as well as on biomaterials. This work summarizes data on the influence of saliva and oral biofilms on the destruction of metallic biomaterials. PMID:29509686
Research, Development and Fabrication of Lithium Solar Cells, Part 2
NASA Technical Reports Server (NTRS)
Iles, P. A.
1972-01-01
The development and fabrication of lithium solar cells are discussed. Several single-step, lithium diffusion schedules using lower temperatures and times are described. A comparison was made using evaporated lithium metal as the lithium source, and greatly improved consistency in lithium concentrations was obtained. It was possible to combine all processing steps to obtain lithium doped cells of high output which also contained adequate lithium to ensure good recoverability.
Automated aray assembly, phase 2
NASA Technical Reports Server (NTRS)
Daiello, R. V.
1979-01-01
A manufacturing process suitable for the large-scale production of silicon solar array modules at a cost of less than $500/peak kW is described. Factors which control the efficiency of ion implanted silicon solar cells, screen-printed thick film metallization, spray-on antireflection coating process, and panel assembly are discussed. Conclusions regarding technological readiness or cost effectiveness of individual process steps are presented.
Lunar Metal Oxide Electrolysis with Oxygen and Photovoltaic Array Production Applications
NASA Technical Reports Server (NTRS)
Curreri, P. A.; Ethridge, E.; Hudson, S.; Sen, S.
2006-01-01
This paper presents the results of a Marshall Space Flight Center funded effort to conduct an experimental demonstration of the processing of simulated lunar resources by the molten oxide electrolysis (MOE) process to produce oxygen and metal from lunar resources to support human exploration of space. Oxygen extracted from lunar materials can be used for life support and propellant, and silicon and metallic elements produced can be used for in situ fabrication of thin-film solar cells for power production. The Moon is rich in mineral resources, but it is almost devoid of chemical reducing agents, therefore, molten oxide electrolysis, MOE, is chosen for extraction, since the electron is the most practical reducing agent. MOE was also chosen for following reasons. First, electrolytic processing offers uncommon versatility in its insensitivity to feedstock composition. Secondly, oxide melts boast the twin key attributes of highest solubilizing capacity for regolith and lowest volatility of any candidate electrolytes. The former is critical in ensuring high productivity since cell current is limited by reactant solubility, while the latter simplifies cell design by obviating the need for a gas-tight reactor to contain evaporation losses as would be the case with a gas or liquid phase fluoride reagent operating at such high temperatures. In the experiments reported here, melts containing iron oxide were electrolyzed in a low temperature supporting oxide electrolyte (developed by D. Sadoway, MIT). The production of oxygen and reduced iron were observed. Electrolysis was also performed on the supporting electrolyte with JSC-1 Lunar Simulant. The cell current for the supporting electrolyte alone is negligible while the current for the electrolyte with JSC-1 shows significant current and a peak at about -0.6 V indicating reductive reaction in the simulant.
Therapeutic effects of OP-1 on metal wear particle induced osteoblasts injury in vitro
Sun, Guojing; Chen, Jianmin; Yang, Shufeng; Parker, Thomas MN; Goodman, Gary MP; Hasama, Jack M; Zhao, Jianning
2015-01-01
Aseptic lossening is a main reason for the revision of total joint arthroplasty. Metal-wear particles induced deregulation of bone resorption or formation has been considered as the major process of aseptic lossening. Osteogenic protein-1 (OP-1) can be used to improve bone formation. However, such effect is not clearly understood after the metal-wear particles injury. Here, we investigated the molecular mechanisms by which OP-1 regulates the activity of bone formation and anti-inflammatory after injury. Results showed that OP-1 increased cell viability and bone formation ability of impaired osteoblast cells at 72 hours after being injured by cobalt particles. Pathway analyses revealed that both mRNA and protein levels of Smad1 and Smad5 were significantly increased upon the treatment of OP-1 in the cell injury model. Similarly, runt-related transcription factor 2 (Runx2) was also significantly upregulated in the OP-1 treated cells. Moreover, treatment with OP-1 inhibited the secretion of interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), and IL-18 in cobalt impaired cells. Collectively, these results suggest that OP-1 could inhibit cobalt particles induced cell injury by activating Smad1, Smad5, and Runx2, and such procedure is accompanied by anti-inflammatory reaction. PMID:26885192
Veazey, Joshua P; Reguera, Gemma; Tessmer, Stuart H
2011-12-01
The metal-reducing bacterium Geobacter sulfurreducens produces conductive protein appendages known as "pilus nanowires" to transfer electrons to metal oxides and to other cells. These processes can be harnessed for the bioremediation of toxic metals and the generation of electricity in bioelectrochemical cells. Key to these applications is a detailed understanding of how these nanostructures conduct electrons. However, to the best of our knowledge, their mechanism of electron transport is not known. We used the capability of scanning tunneling microscopy (STM) to probe conductive materials with higher spatial resolution than other scanning probe methods to gain insights into the transversal electronic behavior of native, cell-anchored pili. Despite the presence of insulating cellular components, the STM topography resolved electronic molecular substructures with periodicities similar to those reported for the pilus shaft. STM spectroscopy revealed electronic states near the Fermi level, consistent with a conducting material, but did not reveal electronic states expected for cytochromes. Furthermore, the transversal conductance was asymmetric, as previously reported for assemblies of helical peptides. Our results thus indicate that the Geobacter pilus shaft has an intrinsic electronic structure that could play a role in charge transport.
Ma, Yue; Tai, Cheuk-Wai; Li, Shaowen; Edström, Kristina; Wei, Bingqing
2018-06-13
Interconnected macro/mesoporous structures of mixed metal oxide (MMO) are developed on nickel foam as freestanding anodes for Li-ion batteries. The sustainable production is realized via a wet chemical etching process with bio-friendly chemicals. By means of divalent iron doping during an in situ recrystallization process, the as-developed MMO anodes exhibit enhanced levels of cycling efficiency. Furthermore, this atomic-scale modification coherently synergizes with the encapsulation layer across a micrometer scale. During this step, we develop a quasi-gel-state tri-copolymer, i.e., F127-resorcinol-melamine, as the N-doped carbon source to regulate the interfacial chemistry of the MMO electrodes. Electrochemical tests of the modified Fe x Ni 1- x O@NC-NiF anode in both half-cell and full-cell configurations unravel the favorable suppression of the irreversible capacity loss and satisfactory cyclability at the high rates. This study highlights a proof-of-concept modification strategy across multiple scales to govern the interfacial chemical process of the electrodes toward better reversibility.
Huang, Peng; Yuan, Ligang; Zhang, Kaicheng; Chen, Qiaoyun; Zhou, Yi; Song, Bo; Li, Yongfang
2018-05-02
In this study, a room-temperature and aqueous solution-processed two-dimensional (2D) transition-metal dichalcogenide TiS 2 was applied as an electron transport layer (ETL) in planar n-i-p perovskite solar cells (Pero-SCs). Upon insertion of the 2D TiS 2 ETL with UV-ozone (UVO) treatment, the power conversion efficiency (PCE) of the planar Pero-SCs was optimized to 18.79%. To the best of our knowledge, this value should be the highest efficiency to date among those PCEs of the n-i-p Pero-SCs with room-temperature-processed metal compound ETLs. More importantly, the n-i-p Pero-SCs with the UVO-treated 2D TiS 2 as an ETL also show extremely high stability, where the average PCE remained over 95% of its initial value after 816 h storage without encapsulation.
González-Guerrero, Manuel; Escudero, Viviana; Saéz, Ángela; Tejada-Jiménez, Manuel
2016-01-01
Transition metals such as iron, copper, zinc, or molybdenum are essential nutrients for plants. These elements are involved in almost every biological process, including photosynthesis, tolerance to biotic and abiotic stress, or symbiotic nitrogen fixation. However, plants often grow in soils with limiting metallic oligonutrient bioavailability. Consequently, to ensure the proper metal levels, plants have developed a complex metal uptake and distribution system, that not only involves the plant itself, but also its associated microorganisms. These microorganisms can simply increase metal solubility in soils and making them more accessible to the host plant, as well as induce the plant metal deficiency response, or directly deliver transition elements to cortical cells. Other, instead of providing metals, can act as metal sinks, such as endosymbiotic rhizobia in legume nodules that requires relatively large amounts to carry out nitrogen fixation. In this review, we propose to do an overview of metal transport mechanisms in the plant–microbe system, emphasizing the role of arbuscular mycorrhizal fungi and endosymbiotic rhizobia. PMID:27524990
Zhang, Wei; Pathak, Sandeep; Sakai, Nobuya; Stergiopoulos, Thomas; Nayak, Pabitra K.; Noel, Nakita K.; Haghighirad, Amir A.; Burlakov, Victor M.; deQuilettes, Dane W.; Sadhanala, Aditya; Li, Wenzhe; Wang, Liduo; Ginger, David S.; Friend, Richard H.; Snaith, Henry J.
2015-01-01
Solution-processed metal halide perovskite semiconductors, such as CH3NH3PbI3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce the oxidized I2 back into I−, and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead. PMID:26615763
Characterization of solar-grade silicon produced by the SiF4-Na process
NASA Technical Reports Server (NTRS)
Sanjurjo, A.; Sancier, K. M.; Emerson, R. M.; Leach, S. C.; Minahan, J.
1986-01-01
A process was developed for producing low cost solar grade silicon by the reaction between SiF4 gas and sodium metal. The results of the characterization of the silicon are presented. These results include impurity levels, electronic properties of the silicon after crystal growth, and the performance of solar photovoltaic cells fabricated from wafers of the single crystals. The efficiency of the solar cells fabricated from semiconductor silicon and SiF4-Na silicon was the same.
Reforming of natural gas—hydrogen generation for small scale stationary fuel cell systems
NASA Astrophysics Data System (ADS)
Heinzel, A.; Vogel, B.; Hübner, P.
The reforming of natural gas to produce hydrogen for fuel cells is described, including the basic concepts (steam reforming or autothermal reforming) and the mechanisms of the chemical reactions. Experimental work has been done with a compact steam reformer, and a prototype of an experimental reactor for autothermal reforming was tested, both containing a Pt-catalyst on metallic substrate. Experimental results on the steam reforming system and a comparison of the steam reforming process with the autothermal process are given.
Liu, Mingxue; Dong, Faqin; Zhang, Wei; Nie, Xiaoqin; Sun, Shiyong; Wei, Hongfu; Luo, Lang; Xiang, Sha; Zhang, Gege
2016-08-15
One of the waste disposal principles is decrement. The programmed gradient descent biosorption of strontium ions by Saccaromyces cerevisiae regarding bioremoval and ashing process for decrement were studied in present research. The results indicated that S. cerevisiae cells showed valid biosorption for strontium ions with greater than 90% bioremoval efficiency for high concentration strontium ions under batch culture conditions. The S. cerevisiae cells bioaccumulated approximately 10% of strontium ions in the cytoplasm besides adsorbing 90% strontium ions on cell wall. The programmed gradient descent biosorption presented good performance with a nearly 100% bioremoval ratio for low concentration strontium ions after 3 cycles. The ashing process resulted in a huge volume and weight reduction ratio as well as enrichment for strontium in the ash. XRD results showed that SrSO4 existed in ash. Simulated experiments proved that sulfate could adjust the precipitation of strontium ions. Finally, we proposed a technological flow process that combined the programmed gradient descent biosorption and ashing, which could yield great decrement and allow the supernatant to meet discharge standard. This technological flow process may be beneficial for nuclides and heavy metal disposal treatment in many fields. Copyright © 2016 Elsevier B.V. All rights reserved.
Development of high-efficiency solar cells on silicon web
NASA Technical Reports Server (NTRS)
Meier, D. L.; Greggi, J.; Rai-Choudhury, P.
1986-01-01
Work is reported aimed at identifying and reducing sources of carrier recombination both in the starting web silicon material and in the processed cells. Cross-sectional transmission electron microscopy measurements of several web cells were made and analyzed. The effect of the heavily twinned region on cell efficiency was modeled, and the modeling results compared to measured values for processed cells. The effects of low energy, high dose hydrogen ion implantation on cell efficiency and diffusion length were examined. Cells were fabricated from web silicon known to have a high diffusion length, with a new double layer antireflection coating being applied to these cells. A new contact system, to be used with oxide passivated cells and which greatly reduces the area of contact between metal and silicon, was designed. The application of DLTS measurements to beveled samples was further investigated.
Elizondo Luna, Erardo M.; Barari, Farzad; Woolley, Robert; Goodall, Russell
2014-01-01
Metal foams are interesting materials from both a fundamental understanding and practical applications point of view. Uses have been proposed, and in many cases validated experimentally, for light weight or impact energy absorbing structures, as high surface area heat exchangers or electrodes, as implants to the body, and many more. Although great progress has been made in understanding their structure-properties relationships, the large number of different processing techniques, each producing material with different characteristics and structure, means that understanding of the individual effects of all aspects of structure is not complete. The replication process, where molten metal is infiltrated between grains of a removable preform material, allows a markedly high degree of control and has been used to good effect to elucidate some of these relationships. Nevertheless, the process has many steps that are dependent on individual “know-how”, and this paper aims to provide a detailed description of all stages of one embodiment of this processing method, using materials and equipment that would be relatively easy to set up in a research environment. The goal of this protocol and its variants is to produce metal foams in an effective and simple way, giving the possibility to tailor the outcome of the samples by modifying certain steps within the process. By following this, open cell aluminum foams with pore sizes of 1–2.36 mm diameter and 61% to 77% porosity can be obtained. PMID:25548938
Dielectric Scattering Patterns for Efficient Light Trapping in Thin-Film Solar Cells.
van Lare, Claire; Lenzmann, Frank; Verschuuren, Marc A; Polman, Albert
2015-08-12
We demonstrate an effective light trapping geometry for thin-film solar cells that is composed of dielectric light scattering nanocavities at the interface between the metal back contact and the semiconductor absorber layer. The geometry is based on resonant Mie scattering. It avoids the Ohmic losses found in metallic (plasmonic) nanopatterns, and the dielectric scatterers are well compatible with nearly all types of thin-film solar cells, including cells produced using high temperature processes. The external quantum efficiency of thin-film a-Si:H solar cells grown on top of a nanopatterned Al-doped ZnO, made using soft imprint lithography, is strongly enhanced in the 550-800 nm spectral band by the dielectric nanoscatterers. Numerical simulations are in good agreement with experimental data and show that resonant light scattering from both the AZO nanostructures and the embedded Si nanostructures are important. The results are generic and can be applied on nearly all thin-film solar cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vladimir Gorokhovsky
2008-03-31
This report describes significant results from an on-going, collaborative effort to enable the use of inexpensive metallic alloys as interconnects in planar solid oxide fuel cells (SOFCs) through the use of advanced coating technologies. Arcomac Surface Engineering, LLC, under the leadership of Dr. Vladimir Gorokhovsky, is investigating filtered-arc and filtered-arc plasma-assisted hybrid coating deposition technologies to promote oxidation resistance, eliminate Cr volatility, and stabilize the electrical conductivity of both standard and specialty steel alloys of interest for SOFC metallic interconnect (IC) applications. Arcomac has successfully developed technologies and processes to deposit coatings with excellent adhesion, which have demonstrated a substantialmore » increase in high temperature oxidation resistance, stabilization of low Area Specific Resistance values and significantly decrease Cr volatility. An extensive matrix of deposition processes, coating compositions and architectures was evaluated. Technical performance of coated and uncoated sample coupons during exposures to SOFC interconnect-relevant conditions is discussed, and promising future directions are considered. Cost analyses have been prepared based on assessment of plasma processing parameters, which demonstrate the feasibility of the proposed surface engineering process for SOFC metallic IC applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Branover, H.; Mond, M.; Unger, Y.
The present collection of papers on MHD-related uses of liquid metal flows and their applications discusses topics in laminar MHD flows, MHD power generation, metallurgical MHD applications, and two-phase MHD flows. Attention is given to MHD flows with closed streamlines, nonlinear waves in liquid metals under a transverse magnetic field, liquid-metal MHD conversion of nuclear energy to electricity, the testing of optimized MHD conversion (OMACON) systems, and aspects of a liquid-metal induction generator. Also discussed are MHD effects in liquid-metal breeder reactors, a plasma-driven MHD powerplant, modeling the recirculating flows in channel-induction surfaces, the hydrodynamics of aluminum reduction cells, free-surfacemore » determination in a levitation-melting process, the parametric interactions of waves in bubbly liquid metals, and the occurrence of cavitation in water jets.« less
TOF-SIMS investigation of metallic material surface after culturing cells
NASA Astrophysics Data System (ADS)
Aoyagi, Satoka; Hiromoto, Sachiko; Hanawa, Takao; Kudo, Masahiro
2004-06-01
Biomolecules such as extracellular matrix and adhesive proteins generated by adhered cells on metallic specimens were characterized by means of time-of-flight secondary ion mass spectrometry (TOF-SIMS) in order to clarify the interaction between cells and metal surfaces. Since composition and structure of the extracellular matrix depends on conditions of cells, characterization of the interaction between cells and metallic specimens is important in order to evaluate the biocompatibility and the degradation behavior of metallic biomaterials and artificial organs. Moreover, the obtained data can contribute to the development of new metallic biomaterials. TOF-SIMS spectra were analyzed by means of mutual information described by information theory and principal components analysis (PCA). The results show that cells have great influence on adsorption of biomolecules on metallic materials because they change surface conditions of the materials. Thus TOF-SIMS is a useful technique to investigate the interaction between metallic biomaterials and cells.
Charge carrier localised in zero-dimensional (CH3NH3)3Bi2I9 clusters.
Ni, Chengsheng; Hedley, Gordon; Payne, Julia; Svrcek, Vladimir; McDonald, Calum; Jagadamma, Lethy Krishnan; Edwards, Paul; Martin, Robert; Jain, Gunisha; Carolan, Darragh; Mariotti, Davide; Maguire, Paul; Samuel, Ifor; Irvine, John
2017-08-01
A metal-organic hybrid perovskite (CH 3 NH 3 PbI 3 ) with three-dimensional framework of metal-halide octahedra has been reported as a low-cost, solution-processable absorber for a thin-film solar cell with a power-conversion efficiency over 20%. Low-dimensional layered perovskites with metal halide slabs separated by the insulating organic layers are reported to show higher stability, but the efficiencies of the solar cells are limited by the confinement of excitons. In order to explore the confinement and transport of excitons in zero-dimensional metal-organic hybrid materials, a highly orientated film of (CH 3 NH 3 ) 3 Bi 2 I 9 with nanometre-sized core clusters of Bi 2 I 9 3- surrounded by insulating CH 3 NH 3 + was prepared via solution processing. The (CH 3 NH 3 ) 3 Bi 2 I 9 film shows highly anisotropic photoluminescence emission and excitation due to the large proportion of localised excitons coupled with delocalised excitons from intercluster energy transfer. The abrupt increase in photoluminescence quantum yield at excitation energy above twice band gap could indicate a quantum cutting due to the low dimensionality.Understanding the confinement and transport of excitons in low dimensional systems will aid the development of next generation photovoltaics. Via photophysical studies Ni et al. observe 'quantum cutting' in 0D metal-organic hybrid materials based on methylammonium bismuth halide (CH 3 NH 3 )3Bi 2 I 9 .
NASA Astrophysics Data System (ADS)
Dur, Ender
Polymer Electrolyte Membrane Fuel Cell (PEMFC) systems are promising technology for contributing to meet the deficiency of world`s clean and sustainable energy requirements in the near future. Metallic bipolar plate (BPP) as one of the most significant components of PEMFC device accounts for the largest part of the fuel cell`s stack. Corrosion for metallic bipolar plates is a critical issue, which influences the performance and durability of PEMFC. Corrosion causes adverse impacts on the PEMFC`s performance jeopardizing commercialization. This research is aimed at determining the corrosion resistance of metallic BPPs, particularly stainless steels, used in PEMFC from different aspects. Material selection, coating selection, manufacturing process development and cost considerations need to be addressed in terms of the corrosion behavior to justify the use of stainless steels as a BPP material in PEMFC and to make them commercially feasible in industrial applications. In this study, Ti, Ni, SS304, SS316L, and SS 430 blanks, and BPPs comprised of SS304 and SS316L were examined in terms of the corrosion behavior. SS316L plates were coated to investigate the effect of coatings on the corrosion resistance performance. Stamping and hydroforming as manufacturing processes, and three different coatings (TiN, CrN, ZrN) applied via the Physical Vapor Deposition (PVD) method in three different thicknesses were selected to observe the effects of manufacturing processes, coating types and coating thicknesses on the corrosion resistance of BPP, respectively. Uncoated-coated blank and formed BPP were subjected to two different corrosion tests: potentiostatic and potentiodynamic. Some of the substantial results: 1- Manufacturing processes have an adverse impact on the corrosion resistance. 2- Hydroformed plates have slightly higher corrosion resistance than stamped samples. 3- BPPs with higher channel size showed better corrosion resistance. 4- Since none of the uncoated samples meet the 2015 target of the U.S. Department of Energy, surface coating is required. 5- ZrN and CrN coated BPPs exhibited higher corrosion resistance meeting DOE target while TiN coated samples had the lowest corrosion resistance. Higher coating thicknesses improved the corrosion resistance of the BPPs. 6- Process sequence between coating and manufacturing is not significant for hydroforming case (ZrN and CrN) and stamping case (CrN) in terms of the corrosion resistance. In other words, coating the BPP`s substrate material before manufacturing process does not always decrease the corrosion resistance of the BPPs.
Richardson, D R
2001-04-30
Previously we showed that preincubation of cells with ferric ammonium citrate (FAC) resulted in a marked increase in Fe uptake from both (59)Fe-transferrin (Tf) and (59)Fe-citrate (D.R. Richardson, E. Baker, J. Biol. Chem. 267 (1992) 13972-13979; D.R. Richardson, P. Ponka, Biochim. Biophys. Acta 1269 (1995) 105-114). This Fe uptake process was independent of the transferrin receptor and appeared to be activated by free radicals generated via the iron-catalysed Haber-Weiss reaction. To further understand this process, the present investigation was performed. In these experiments, cells were preincubated for 3 h at 37 degrees C with FAC or metal ion solutions and then labelled for 3 h at 37 degrees C with (59)Fe-Tf. Exposure of cells to FAC resulted in Fe uptake from (59)Fe-citrate that became saturated at an Fe concentration of 2.5 microM, while FAC-activated Fe uptake from Tf was not saturable up to 25 microM. In addition, the extent of FAC-activated Fe uptake from citrate was far greater than that from Tf. These results suggest a mechanism where FAC-activated Fe uptake from citrate may result from direct interaction with the transporter, while Fe uptake from Tf appears indirect and less efficient. Preincubation of cells with FAC at 4 degrees C instead of 37 degrees C prevented its effect at stimulating (59)Fe uptake from (59)Fe-Tf, suggesting that an active process was involved. Previous studies by others have shown that FAC can increase ferrireductase activity that may enhance (59)Fe uptake from (59)Fe-Tf. However, there was no difference in the ability of FAC-treated cells compared to controls to reduce ferricyanide to ferrocyanide, suggesting no change in oxidoreductase activity. To examine if activation of this Fe uptake mechanism could occur by incubation with a range of metal ions, cells were preincubated with either FAC, ferric chloride, ferrous sulphate, ferrous ammonium sulphate, gallium nitrate, copper chloride, zinc chloride, or cobalt chloride. Stimulation of (59)Fe uptake from Tf was shown (in order of potency) with ferric chloride, ferrous sulphate, ferrous ammonium sulphate, and gallium nitrate. The other metal ions examined decreased (59)Fe uptake from Tf. The fact that redox-active Cu(II) ion did not stimulate Fe uptake while redox-inactive Ga(III) did, suggests a mechanism of transporter activation not solely dependent on free radical generation. Indeed, the activation of Fe uptake appears dependent on the presence of the Fe atom itself or a metal ion with atomic similarities to Fe (e.g. Ga).
Gokhale, Rohan; Agarkar, Shruti; Debgupta, Joyashish; Shinde, Deodatta; Lefez, Benoit; Banerjee, Abhik; Jog, Jyoti; More, Mahendra; Hannoyer, Beatrice; Ogale, Satishchandra
2012-11-07
A laser photochemical process is introduced to realize superhydrophobic conducting carbon coatings with broccoli-type hierarchical morphology for use as a metal-free counter electrode in a dye sensitized solar cell. The process involves pulsed excimer laser irradiation of a thin layer of liquid haloaromatic organic solvent o-dichlorobenzene (DCB). The coating reflects a carbon nanoparticle-self assembled and process-controlled morphology that yields solar to electric power conversion efficiency of 5.1% as opposed to 6.2% obtained with the conventional Pt-based electrode.
Radiation Effects On Emerging Electronic Materials And Devices
2010-01-17
RADIATION EFFECTS ON EMERGING ELECTRONIC MATERIALS AND DEVICES FINAL PERFORMANCE REPORT PREPARED FOR: Kitt Reinhardt AFOSR/NE 875 N...and the other with metal gates and a high-K gate dielectric. These devices were programmed using both back-gate pulse and gate induced drain leakage... metal gate process GIDL method Fig. 1. Sensing margin as a function of total ionizing dose for nMOS 1T-DRAM cells programmed by back-gate pulse and
Jeng, Ming-Jer; Chen, Zih-Yang; Xiao, Yu-Ling; Chang, Liann-Be; Ao, Jianping; Sun, Yun; Popko, Ewa; Jacak, Witold; Chow, Lee
2015-10-08
This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients.
Jeng, Ming-Jer; Chen, Zih-Yang; Xiao, Yu-Ling; Chang, Liann-Be; Ao, Jianping; Sun, Yun; Popko, Ewa; Jacak, Witold; Chow, Lee
2015-01-01
This work studies the use of gold (Au) and silver (Ag) nanoparticles in multicrystalline silicon (mc-Si) and copper-indium-gallium-diselenide (CIGS) solar cells. Au and Ag nanoparticles are deposited by spin-coating method, which is a simple and low cost process. The random distribution of nanoparticles by spin coating broadens the resonance wavelength of the transmittance. This broadening favors solar cell applications. Metal shadowing competes with light scattering in a manner that varies with nanoparticle concentration. Experimental results reveal that the mc-Si solar cells that incorporate Au nanoparticles outperform those with Ag nanoparticles. The incorporation of suitable concentration of Au and Ag nanoparticles into mc-Si solar cells increases their efficiency enhancement by 5.6% and 4.8%, respectively. Incorporating Au and Ag nanoparticles into CIGS solar cells improve their efficiency enhancement by 1.2% and 1.4%, respectively. The enhancement of the photocurrent in mc-Si solar cells is lower than that in CIGS solar cells, owing to their different light scattering behaviors and material absorption coefficients. PMID:28793599
TEM Study of Manganese Biosorption by Cyanobacterium Synechocystis 6803
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dohnalkova, Alice; Bilskis, Christina L.; Kennedy, David W.
2006-09-01
The capture of solar energy and its conversion into chemical energy in photosynthetic organisms involves a series of charge reactions across photosynthetic membranes. Oxygen is generated by a proton-electron coupling in photosystem II (PSII) during a water oxidation process where hydrogen is extracted from water terminally bound to a Mn4Ca1Clx inorganic cluster [1]. Manganese is, therefore, an essential catalytic element for photosynthetic growth in cyanobacteria and plants. Since bioavailability of this micronutrient largely depends on the Mn concentration in natural environments, cells have to manage its uptake in order to endure Mn fluctuations. Previous studies have shown that metal biosorptionmore » in cyanobacteria can occur by passive adsorption to their outer membrane (pool A), and by metabolically mediated internal uptake [2]. The fresh water cyanobacterium Synechocystis 6803 has been widely used as a model organism for studying photosynthetic processes. This Gram-negative organism has an intricate architecture of internal thylakoid membranes where photosynthetic electron transfer takes place. Here we report on the spatial distribution of Mn biosorbed by cells in both external pool A and intracellular pool B, as observed and analyzed by methods of TEM. The Synechocystis 6803 cells were cultured in BG11 medium at 30 C with continuous irradiance and constant air bubbling. To determine the influence of solid or liquid Mn substrate and its oxidation state on the cell biosorption ability, cells were exposed to two Mn substrates: 1mM solution of MnCl2, and 0.5mM suspension of nanocrystalline MnO2. Cells were incubated with the respective Mn solutions for 48 hours, harvested, and processed using a modified protocol for plastic embedding of bacterial samples containing minerals that was developed in our laboratory [3]. In order to preserve the fragile redox conditions within the cells, all the common heavy metal-based fixatives and stains were omitted, resulting in cells with very low contrast produced principally by electron-dense manganese precipitates. Thin sections were imaged and analyzed using JEOL 2010 HRTEM coupled with EDS (Oxford) and EELS (Gatan) systems. Manganese uptake was measured using a colorimetric method. Cells incubated with Mn solutions were able to take up about 150uM of Mn(II) or Mn(IV) in 48 hours. The predominant accumulation of Mn was associated with the outer membrane for both Mn substrates. Massive deposits seemed to be related in a large extent to the external polymeric substances (EPS) as shown in Fig. 1A-C. Elemental analyses of these precipitates revealed a signal consistent with manganese phosphate. The potential of EPS such as polysaccharides for biosorption or reduction of metals has been described [4], however, the fact that Mn bound to the EPS withstood multiple washes during TEM sample processing is remarkable. From our work with Gram-negative soil bacteria, we hypothesized that the periplasm, an area between the outer and plasma membrane, might be the storage space for internal Mn in pool B. This phenomenon was not observed at any time point for either culture exposed to the Mn. Instead, thin layers of Mn deposits were often found lining the outer and plasma membrane (F). In the MnCl2 solution only, we also observed fine deposits of Mn precipitates along the thylakoid membranes deep inside the cells (Fig. E). Localization of Mn precipitation sites in Synechocystis has important implications for better understanding of the Mn transport and storage processes within cyanobacterial cells, as well as of metal precipitation, solubilization and cycling in the environment.« less
A novel chlorophyll solar cell
NASA Astrophysics Data System (ADS)
Ludlow, J. C.
The photosynthetic process is reviewed in order to produce a design for a chlorophyll solar cell. In a leaf, antenna chlorophyll absorbs light energy and conducts it to an energy trap composed of a protein and two chlorophyll molecules, which perform the oxidation-reduction chemistry. The redox potential of the trap changes from 0.4 to -0.6 V, which is sufficient to reduce nearby molecules with redox potentials in that range. The reduction occurs by transfer of an electron, and a chlorophyll solar cell would direct the transferred electron to a current carrier. Chlorophyll antenna and traps are placed on a metallic support immersed in an electron acceptor solution, and resulting electrons from exposure to light are gathered by a metallic current collector. Spinach chlorophyll extracted, purified, and applied in a cell featuring a Pt collector and an octane water emulsion resulted in intensity independent voltages.
NASA Technical Reports Server (NTRS)
Cable, Thomas L. (Inventor); Setlock, John A. (Inventor); Farmer, Serene C. (Inventor)
2014-01-01
The invention is a novel solid oxide fuel cell (SOFC) stack comprising individual bi-electrode supported fuel cells in which an electrolyte layer is supported between porous electrodes. The porous electrodes may be made from graded pore ceramic tape that has been created by the freeze cast method followed by freeze-drying. Each piece of graded pore tape later becomes a graded pore electrode scaffold that, subsequent to sintering, is made into either an anode or a cathode. The electrode scaffold comprising the anode includes a layer of liquid metal. The pores of the electrode scaffolds gradually increase in diameter as the layer extends away from the electrolyte layer. As a result of this diameter increase, any forces that would tend to pull the liquid metal away from the electrolyte are reduced while maintaining a diffusion path for the fuel. Advantageously, the fuel cell of the invention may utilize a hydrocarbon fuel without pre-processing to remove sulfur.
Low-cost zinc-plated photoanode for fabric-type dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Kong, Lingfeng; Bao, Yunna; Guo, Wanwan; Cheng, Li; Du, Jun; Liu, Renlong; Wang, Yundong; Fan, Xing; Tao, Changyuan
2016-02-01
Fabric-type flexible solar cells have been recently proposed as a very promising power source for wearable electronics. To increase the photocurrent of fabric-type flexible solar cells, low-cost zinc-plated wire and mesh photoanodes are assembled for the first time through a mild wet process. Given the protection of the compact protection layer, the DSSC device could benefit from the low work function of Zn and self-repairing behavior on the Zn/ZnO interface. An evident current increase by ∼6 mA/cm2 could be observed after coating a layer of metal Zn on various metal substrates, such as traditional stainless steel wire. Given the self-repairing behavior on Zn/ZnO interface, the Zn layer can help to improve the interfacial carrier transfer, leading to better photovoltaic performance, for both liquid-type and solid-type cells.
Fast process flow, on-wafer interconnection and singulation for MEPV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okandan, Murat; Nielson, Gregory N.; Cruz-Campa, Jose Luis
2017-01-31
A method including providing a substrate comprising a device layer on which a plurality of device cells are defined; depositing a first dielectric layer on the device layer and metal interconnect such that the deposited interconnect is electrically connected to at least two of the device cells; depositing a second dielectric layer over the interconnect; and exposing at least one contact point on the interconnect through the second dielectric layer. An apparatus including a substrate having defined thereon a device layer including a plurality of device cells; a first dielectric layer disposed directly on the device layer; a plurality ofmore » metal interconnects, each of which is electrically connected to at least two of the device cells; and a second dielectric layer disposed over the first dielectric layer and over the interconnects, wherein the second dielectric layer is patterned in a positive or negative planar spring pattern.« less
Fast process flow, on-wafer interconnection and singulation for MEPV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okandan, Murat; Nielson, Gregory N.; Cruz-Campa, Jose Luis
2017-08-29
A method including providing a substrate comprising a device layer on which a plurality of device cells are defined; depositing a first dielectric layer on the device layer and metal interconnect such that the deposited interconnect is electrically connected to at least two of the device cells; depositing a second dielectric layer over the interconnect; and exposing at least one contact point on the interconnect through the second dielectric layer. An apparatus including a substrate having defined thereon a device layer including a plurality of device cells; a first dielectric layer disposed directly on the device layer; a plurality ofmore » metal interconnects, each of which is electrically connected to at least two of the device cells; and a second dielectric layer disposed over the first dielectric layer and over the interconnects, wherein the second dielectric layer is patterned in a positive or negative planar spring pattern.« less
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Nakamura, Junichi (Inventor); Kemeny, Sabrina E. (Inventor)
2005-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. A Simple Floating Gate (SFG) pixel structure could also be employed in the imager to provide a non-destructive readout and smaller pixel sizes.
Silver Nanowire Top Electrodes in Flexible Perovskite Solar Cells using Titanium Metal as Substrate.
Lee, Minoh; Ko, Yohan; Min, Byoung Koun; Jun, Yongseok
2016-01-08
Flexible perovskite solar cells (FPSCs) have various applications such as wearable electronic textiles and portable devices. In this work, we demonstrate FPSCs on a titanium metal substrate employing solution-processed silver nanowires (Ag NWs) as the top electrode. The Ag NW electrodes were deposited on top of the spiro-MeOTAD hole transport layer by a carefully controlled spray-coating method at moderate temperatures. The power conversion efficiency (PCE) reached 7.45 % under AM 1.5 100 mW cm(-2) illumination. Moreover, the efficiency for titanium-based FPSCs decreased only slightly (by 2.6 % of the initial value) after the devices were bent 100 times. With this and other advances, fully solution-based indium-free flexible photovoltaics, advantageous in terms of price and processing, have the potential to be scaled into commercial production. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Biomineralization of copper: Solutions for waste remediation and biomining
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashby, C.R.; Thompson, S.A.; Crusberg, T.C.
1997-12-31
The fungus Penicillium ochro-chloron is able to extract copper from aqueous solutions and form insoluble copper precipitates within the matrix of fungal mycelia. The formation of these complexes is probably a detoxification mechanism used by the organism to deal with the potentially lethal concentrations of heavy metals. Metal immobilization occurs external to the cells but within the mycelia when the solubility products of copper phosphate and copper oxalate are exceeded. This process may be exploited in biomining to remove and recover copper and perhaps other heavy metals that have become solubilized in pit mine lakes.
High rate and stable cycling of lithium metal anode
Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu; ...
2015-02-20
Lithium (Li) metal is an ideal anode material for rechargeable batteries. However, dendritic Li growth and limited Coulombic efficiency (CE) during repeated Li deposition/stripping processes have prevented the application of this anode in rechargeable Li metal batteries, especially for use at high current densities. Here, we report that the use of highly concentrated electrolytes composed of ether solvents and the lithium bis(fluorosulfonyl)imide (LiFSI) salt enables the high rate cycling of a Li metal anode at high CE (up to 99.1 %) without dendrite growth. With 4 M LiFSI in 1,2-dimethoxyethane (DME) as the electrolyte, a Li|Li cell can be cycledmore » at high rates (10 mA cm -2) for more than 6000 cycles with no increase in the cell impedance, and a Cu|Li cell can be cycled at 4 mA cm-2 for more than 1000 cycles with an average CE of 98.4%. These excellent high rate performances can be attributed to the increased solvent coordination and increased availability of Li+ concentration in the electrolyte. Lastly, further development of this electrolyte may lead to practical applications for Li metal anode in rechargeable batteries. The fundamental mechanisms behind the high rate ion exchange and stability of the electrolytes also shine light on the stability of other electrochemical systems.« less
Microfabrication of microsystem-enabled photovoltaic (MEPV) cells
NASA Astrophysics Data System (ADS)
Nielson, Gregory N.; Okandan, Murat; Cruz-Campa, Jose L.; Resnick, Paul J.; Wanlass, Mark W.; Clews, Peggy J.; Pluym, Tammy C.; Sanchez, Carlos A.; Gupta, Vipin P.
2011-02-01
Microsystem-Enabled Photovoltaic (MEPV) cells allow solar PV systems to take advantage of scaling benefits that occur as solar cells are reduced in size. We have developed MEPV cells that are 5 to 20 microns thick and down to 250 microns across. We have developed and demonstrated crystalline silicon (c-Si) cells with solar conversion efficiencies of 14.9%, and gallium arsenide (GaAs) cells with a conversion efficiency of 11.36%. In pursuing this work, we have identified over twenty scaling benefits that reduce PV system cost, improve performance, or allow new functionality. To create these cells, we have combined microfabrication techniques from various microsystem technologies. We have focused our development efforts on creating a process flow that uses standard equipment and standard wafer thicknesses, allows all high-temperature processing to be performed prior to release, and allows the remaining post-release wafer to be reprocessed and reused. The c-Si cell junctions are created using a backside point-contact PV cell process. The GaAs cells have an epitaxially grown junction. Despite the horizontal junction, these cells also are backside contacted. We provide recent developments and details for all steps of the process including junction creation, surface passivation, metallization, and release.
Array Automated Assembly Task for the Low Cost Solar Array Project, Phase 2
NASA Technical Reports Server (NTRS)
Campbell, R. B.; Rai-Choudhury, P.; Seman, E. J.; Rohatgi, A.; Davis, J. R.; Ostroski, J.; Stapleton, R. W.
1979-01-01
Using silk screened evaporated and sputtered Al as the metal source, the formation of Al back surface fields was studied. The most satisfactory results were those obtained with the sputtered A1 and in which open circuit voltages (V sub oc) of 0.585 v (12 ohm cm FZ silicon) were achieved. The ultrasonic interconnect process is discussed. The process is shown to be satisfactory, but increased pull-strength may be obtained if some form of sintering is carried out on the metallized contacts. Plasma etching is shown to be feasible as a replacement for wet chemical cleaning prior to diffusion. Initial results on cells prepared by using electroless Pd/Ni plus either electroplated Ag or Cu show slightly poor performance than cells with the baseline evaporated Ti/Pd/Ag system. A mask designed for the 1.6 x 7.0 cm and 2.0 x 7.0 cm cells is described. This mask has a lower area coverage and total lower resistive loss than the previous mask design. It is also shown that the cell width should not exceed 2.0 - 3.0 cm for optimum efficiency.
Park, Jin Hee; Chon, Hyo-Taek
2016-06-01
Bacteria have the ability to bind heavy metals on their cell wall. Biosorption is a passive and energy-independent mechanism to adsorb heavy metals. The efficiency of heavy metal biosorption can vary depending on several factors such as the growth phase of bacteria, solution pH, and existence of competitive heavy metals. In this study, Exiguobacterium sp. isolated from farmland soil near a mine site were used, and optimal conditions for Cd biosorption in solution were investigated. As bacterial growth progressed, Cd biosorption increased, which is attributed to changes in the structure and composition of the cell wall during bacterial growth. The biosorption process was rapid and was completed within 30 min. Cadmium biosorption was highest at pH 7 due to the dissociation of hydrogen ions and the increase of negative charges with increasing pH. In the mixed metal solution of Cd, Pb, and Zn, the amount of biosorption was in the order of Pb>Cd>Zn while in a single metal solution, the order was Cd≥Pb>Zn. The maximum adsorption capacity for Cd by the isolated bacteria was 15.6 mg/g biomass, which was calculated from the Langmuir isotherm model. Different adsorption efficiencies under various environmental conditions indicate that, to control metal mobility, the conditions for biosorption should be optimized before applying bacteria. The results showed that the isolated bacteria can be used to immobilize metals in metal-contaminated wastewater.
Globally sustainable manganese metal production and use.
Hagelstein, Karen
2009-09-01
The "cradle to grave" concept of managing chemicals and wastes has been a descriptive analogy of proper environmental stewardship since the 1970s. The concept incorporates environmentally sustainable product choices-such as metal alloys utilized steel products which civilization is dependent upon. Manganese consumption is related to the increasing production of raw steel and upgrading ferroalloys. Nonferrous applications of manganese include production of dry-cell batteries, plant fertilizer components, animal feed and colorant for bricks. The manganese ore (high grade 35% manganese) production world wide is about 6 million ton/year and electrolytic manganese metal demand is about 0.7 million ton/year. The total manganese demand is consumed globally by industries including construction (23%), machinery (14%), and transportation (11%). Manganese is recycled within scrap of iron and steel, a small amount is recycled within aluminum used beverage cans. Recycling rate is 37% and efficiency is estimated as 53% [Roskill Metals and Minerals Reports, January 13, 2005. Manganese Report: rapid rise in output caused by Chinese crude steel production. Available from: http://www.roskill.com/reports/manganese.]. Environmentally sustainable management choices include identifying raw material chemistry, utilizing clean production processes, minimizing waste generation, recycling materials, controlling occupational exposures, and collecting representative environmental data. This paper will discuss two electrolytically produced manganese metals, the metal production differences, and environmental impacts cited to date. The two electrolytic manganese processes differ due to the addition of sulfur dioxide or selenium dioxide. Adverse environmental impacts due to use of selenium dioxide methodology include increased water consumption and order of magnitude greater solid waste generation per ton of metal processed. The use of high grade manganese ores in the electrolytic process also reduces the quantity of solid wastes generated during processing. Secondary aluminum facilities have reported hazardous waste generation management issues due to baghouse dusts from rotary furnaces processing selenium contaminated manganese alloys. Environmental impacts resulting from industry are represented by emission inventories of chemical releases to the air, water, and soil. The U.S. metals industry releases reported to EPA Toxic Release Inventory indicate the primary metals industry is the major source of metal air toxic emissions, exceeding electric utility air toxic emissions. The nonferrous metals industry is reported to be the Organization for Economic Co-operation and Development (OECD) most intensive airborne and land pollution source of bioaccumulative metals. However, total waste emissions from industries in the OECD countries have declined due to improving energy consumption. Emission registers and access are improving around the world. However, environmental databases for metal particulates have low confidence ratings since the majority of air toxic emissions are not reported, not monitored, or are estimated based on worst-case emission factors. Environmental assessments including biological monitoring are necessary to validate mandated particulate metal emission reductions and control technologies during metal processing.
Development of Silver-Free Silicon Photovoltaic Solar Cells with All-Aluminum Electrodes
NASA Astrophysics Data System (ADS)
Sun, Wen-Cheng
To date, the most popular and dominant material for commercial solar cells is crystalline silicon (or wafer-Si). It has the highest cell efficiency and cell lifetime out of all commercial solar cells. Although the potential of crystalline-Si solar cells in supplying energy demands is enormous, their future growth will likely be constrained by two major bottlenecks. The first is the high electricity input to produce crystalline-Si solar cells and modules, and the second is the limited supply of silver (Ag) reserves. These bottlenecks prevent crystalline-Si solar cells from reaching terawatt-scale deployment, which means the electricity produced by crystalline-Si solar cells would never fulfill a noticeable portion of our energy demands in the future. In order to solve the issue of Ag limitation for the front metal grid, aluminum (Al) electroplating has been developed as an alternative metallization technique in the fabrication of crystalline-Si solar cells. The plating is carried out in a near-room-temperature ionic liquid by means of galvanostatic electrolysis. It has been found that dense, adherent Al deposits with resistivity in the high 10--6 Ω-cm range can be reproducibly obtained directly on Si substrates and nickel seed layers. An all-Al Si solar cell, with an electroplated Al front electrode and a screen-printed Al back electrode, has been successfully demonstrated based on commercial p-type monocrystalline-Si solar cells, and its efficiency is approaching 15%. Further optimization of the cell fabrication process, in particular a suitable patterning technique for the front silicon nitride layer, is expected to increase the efficiency of the cell to ~18%. This shows the potential of Al electroplating in cell metallization is promising and replacing Ag with Al as the front finger electrode is feasible.
Efficient 'Optical Furnace': A Cheaper Way to Make Solar Cells is Reaching the Marketplace
DOE Office of Scientific and Technical Information (OSTI.GOV)
von Kuegelgen, T.
In Bhushan Sopori's laboratory, you'll find a series of optical furnaces he has developed for fabricating solar cells. When not in use, they sit there discreetly among the lab equipment. But when a solar silicon wafer is placed inside one for processing, Sopori walks over to a computer and types in a temperature profile. Almost immediately this fires up the furnace, which glows inside and selectively heats up the silicon wafer to 800 degrees centigrade by the intense light it produces. Sopori, a principal engineer at the National Renewable Energy Laboratory, has been researching and developing optical furnace technology formore » around 20 years. He says it's a challenging technology to develop because there are many issues to consider when you process a solar cell, especially in optics. Despite the challenges, Sopori and his research team have advanced the technology to the point where it will benefit all solar cell manufacturers. They are now developing a commercial version of the furnace in partnership with a manufacturer. 'This advanced optical furnace is highly energy efficient, and it can be used to manufacture any type of solar cell,' he says. Each type of solar cell or manufacturing process typically requires a different furnace configuration and temperature profile. With NREL's new optical furnace system, a solar cell manufacturer can ask the computer for any temperature profile needed for processing a solar cell, and the same type of furnace is suitable for several solar cell fabrication process steps. 'In the future, solar cell manufacturers will only need this one optical furnace because it can be used for any process, including diffusion, metallization and oxidation,' Sopori says. 'This helps reduce manufacturing costs.' One startup company, Applied Optical Systems, has recognized the furnace's potential for manufacturing thin-film silicon cells. 'We'd like to develop thin-film silicon cells with higher efficiencies, up to 15 to 18 percent, and we believe this furnace will enable us to do so,' says A. Rangappan, founder and CEO of Applied Optical Systems. Rangappan also says it will take only a few minutes for the optical furnace to process a thin-film solar cell, which reduces manufacturing costs. Overall, he estimates the company's solar cell will cost around 80 cents per watt. For manufacturing these thin-film silicon cells, Applied Optical Systems and NREL have developed a partnership through a cooperative research and development agreement (CRADA) to construct an optical furnace system prototype. DOE is providing $500,000 from its Technology Commercialization Development Fund to help offset the prototype's development costs because of the technology's significant market potential. The program has provided the NREL technology transfer office with a total of $4 million to expand such collaborative efforts between NREL researchers and companies. Applied Optical will construct a small version of the optical furnace based on the prototype design in NREL's process development and integration laboratory through a separate CRADA. This small furnace will only develop one solar cell wafer at a time. Then, the company will construct a large, commercial-scale optical furnace at its own facilities, which will turn out around 1,000 solar cell wafers per hour. 'We hope to start using the optical furnace for manufacturing within four to five years,' Rangappan says. Meanwhile, another partnership using the optical furnace has evolved between NREL and SiXtron Advanced Materials, another startup. Together they'll use the optical furnace to optimize the metallization process for novel antireflective solar cell coatings. The process is not only expected to yield higher efficiencies for silicon-based solar cells, but also lowers processing costs and eliminates safety concerns for manufacturers. Most solar cell manufacturers currently use a plasma-enhanced chemical vapor deposition (PECVD) system with compressed and extremely pyrophoric silane gas (SiH4) for applying passivation antireflective coatings (ARC). If silane is exposed to air, the SiH4 will explode - a serious safety issue for high-volume manufacturers. SiXtron's process uses a solid, silicon-based polymer that's converted into noncompressed, nonexplosive gas, which then flows to a standard PECVD system. 'The solid source is so safe to handle that it can be shipped by FedEx,' says Zbigniew Barwicz, president and CEO of SiXtron. Barwicz says manufacturers can use the same PECVD processing equipment for the SiXtron process that they already use for SiH4, a plug-and-play solution. For this novel passivation ARC process, NREL is helping to optimize the metallization parameters. NREL has developed a new technology called optical processing. One of the applications of this process is fire-through contact formation of silicon solar cells.« less
NASA Astrophysics Data System (ADS)
Toor, Fatima; Miller, Jeffrey B.; Davidson, Lauren M.; Nichols, Logan; Duan, Wenqi; Jura, Michael P.; Yim, Joanne; Forziati, Joanne; Black, Marcie R.
2016-10-01
There are a range of different methods to generate a nanostructured surface on silicon (Si) but the most cost effective and optically interesting is the metal assisted wet chemical etching (MACE) (Koynov et al 2006 Appl. Phys. Lett. 88 203107). MACE of Si is a controllable, room-temperature wet-chemical technique that uses a thin layer of metal to etch the surface of Si, leaving behind various nano- and micro-scale surface features or ‘black silicon’. MACE-fabricated nanowires (NWs) provide improved antireflection and light trapping functionality (Toor et al 2016 Nanoscale 8 15448-66) compared with the traditional ‘iso-texturing’ (Campbell and Green 1987 J. Appl. Phys. 62 243-9). The resulting lower reflection and improved light trapping can lead to higher short circuit currents in NW solar cells (Toor et al 2011 Appl. Phys. Lett. 99 103501). In addition, NW cells can have higher fill factors and voltages than traditionally processed cells, thus leading to increased solar cell efficiencies (Cabrera et al 2013 IEEE J. Photovolt. 3 102-7). MACE NW processing also has synergy with next generation Si solar cell designs, such as thin epitaxial-Si and passivated emitter rear contact (Toor et al 2016 Nanoscale 8 15448-66). While several companies have begun manufacturing black Si, and many more are researching these techniques, much of the work has not been published in traditional journals and is publicly available only through conference proceedings and patent publications, which makes learning the field challenging. There have been three specialized review articles published recently on certain aspects of MACE or black Si, but do not present a full review that would benefit the industry (Liu et al 2014 Energy Environ. Sci. 7 3223-63 Yusufoglu et al 2015 IEEE J. Photovolt. 5 320-8 Huang et al 2011 Adv. Mater. 23 285-308). In this feature article, we review the chemistry of MACE and explore how changing parameters in the wet etch process effects the resulting texture on the Si surface. Then we review efforts to increase the uniformity and reproducibility of the MACE process, which is critical for commercializing the black Si technology.
Carbon composites with metal nanoparticles for Alcohol fuel cells
NASA Astrophysics Data System (ADS)
Ventrapragada, Lakshman; Siddhardha, R. S.; Podilla, Ramakrishna; Muthukumar, V. S.; Creager, Stephen; Rao, A. M.; Ramamurthy, Sai Sathish
2015-03-01
Graphene due to its high surface area and superior conductivity has attracted wide attention from both industrial and scientific communities. We chose graphene as a substrate for metal nanoparticle deposition for fuel cell applications. There are many chemical routes for fabrication of metal-graphene composites, but they have an inherent disadvantage of low performance due to the usage of surfactants, that adsorb on their surface. Here we present a design for one pot synthesis of gold nanoparticles and simultaneous deposition on graphene with laser ablation of gold strip and functionalized graphene. In this process there are two natural advantages, the nanoparticles are synthesized without any surfactants, therefore they are pristine and subsequent impregnation on graphene is linker free. These materials are well characterized with electron microscopy to find their morphology and spectroscopic techniques like Raman, UV-Vis. for functionality. This gold nanoparticle decorated graphene composite has been tested for its electrocatalytic oxidation of alcohols for alkaline fuel cell applications. An electrode made of this composite showed good stability for more than 200 cycles of operation and reported a low onset potential of 100 mV more negative, an important factor for direct ethanol fuel cells.
Accelerated degradation of silicon metallization systems
NASA Technical Reports Server (NTRS)
Lathrop, J. W.
1983-01-01
Clemson University has been engaged for the past five years in a program to determine the reliability attributes of solar cells by means of accelerated test procedures. The cells are electrically measured and visually inspected and then subjected for a period of time to stress in excess of that normally encountered in use, and then they are reinspected. Changes are noted and the process repeated. This testing has thus far involved 23 different unencapsulated cell types from 12 different manufacturers, and 10 different encapsulated cell types from 9 different manufacturers. Reliability attributes of metallization systems can be classified as major or minor, depending on the severity of the effects observed. As a result of the accelerated testing conducted under the Clemson program, major effects have been observed related to contact resistance and to mechanical adherence and solderability. This paper does not attempt a generalized survey of accelerated test results, but rather concentrates on one particular attribute of metallization that has been observed to cause electrical degradation - increased contact resistance due to Schottky barrier formation. In this example basic semiconductor theory was able to provide an understanding of the electrical effects observed during accelerated stress testing.
Balachandran, Uthamalingam; Poeppel, Roger B.; Kleefisch, Mark S.; Kobylinski, Thaddeus P.; Udovich, Carl A.
1994-01-01
This invention discloses cross-flow electrochemical reactor cells containing oxygen permeable materials which have both electron conductivity and oxygen ion conductivity, cross-flow reactors, and electrochemical processes using cross-flow reactor cells having oxygen permeable monolithic cores to control and facilitate transport of oxygen from an oxygen-containing gas stream to oxidation reactions of organic compounds in another gas stream. These cross-flow electrochemical reactors comprise a hollow ceramic blade positioned across a gas stream flow or a stack of crossed hollow ceramic blades containing a channel or channels for flow of gas streams. Each channel has at least one channel wall disposed between a channel and a portion of an outer surface of the ceramic blade, or a common wall with adjacent blades in a stack comprising a gas-impervious mixed metal oxide material of a perovskite structure having electron conductivity and oxygen ion conductivity. The invention includes reactors comprising first and second zones seprated by gas-impervious mixed metal oxide material material having electron conductivity and oxygen ion conductivity. Prefered gas-impervious materials comprise at least one mixed metal oxide having a perovskite structure or perovskite-like structure. The invention includes, also, oxidation processes controlled by using these electrochemical reactors, and these reactions do not require an external source of electrical potential or any external electric circuit for oxidation to proceed.
Apparatus for the electrolytic production of metals
Sadoway, Donald R.
1993-01-01
Improved electrolytic cells for producing metals by the electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells, at least one electrode includes a protective layer comprising an oxide of the cell product metal formed upon an alloy of the cell product metal and a more noble metal. In the case of an aluminum reduction cell, the electrode can comprise an alloy of aluminum with copper, nickel, iron, or combinations thereof, upon which is formed an aluminum oxide protective layer.
Initial results of metal waste form development activities at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiser, D.D. Jr.; Westphal, B.R.; Hersbt, R.S.
1997-10-01
Argonne National Laboratory is developing a metal alloy to contain metallic waste constituents from the electrometallurgical treatment of spent nuclear fuel. This alloy will contain stainless steel (from stainless steel-clad fuel elements), {approximately}15 wt.% zirconium (from alloy fuel), fission products noble to the process (e.g., Ru, Pd, Tc, etc.), and minor amounts of actinides. The alloy will serve as a final waste form for these components and will be disposed of in a geologic repository. The alloy ingot is produced in an induction furnace situated in a hot cell using Ar cover gas. This paper discusses results from the meltingmore » campaigns that have been initiated at ANL-West to generate the metal waste form using actual process materials. In addition, metal waste form samples have been doped with Tc and selected actinides and are described in the context of how elements of interest partition between various phases in the alloy and how this distribution of elements in the alloy may affect the leaching behavior of the components in an aqueous environment. 3 refs.« less
Initial results of metal waste-form development activities at ANL-West
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keiser, D.D. Jr.; Westphal, B.R.; Herbst, R.S.
1997-12-01
Argonne National Laboratory (ANL) is developing a metal alloy to contain metallic waste constituent residual from the electrometallurgical treatment of spent nuclear fuel. This alloy will contain stainless steel (from stainless steel-clad fuel elements), {approximately} 15 wt% zirconium (from alloy fuel), fission products noble to the process (e.g., ruthenium, palladium, technetium, etc.), and minor amounts of actinides. The alloy will serve as a final waste form for these components and will be disposed of in a geologic repository. The alloy ingot is produced in an induction furnace situated in a hot cell using argon cover gas. This paper discusses resultsmore » from the melting campaigns that have been initiated at ANL-West to generate the metal waste form using actual process materials. In addition, metal waste form samples have been doped with technetium and selected actinides and are described in the context of how elements of interest partition between various phases in the alloy and how this distribution of elements in the alloy may affect the leaching behavior of the components in an aqueous environment.« less
Topotactic Metal-Insulator Transition in Epitaxial SrFeO x Thin Films
Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; ...
2017-07-31
Multivalent transition metal oxides provide fascinating and rich physics related to oxygen stoichiometry. In particular, the adoptability of various valence states of transition metals enables perovskite oxides to display mixed (oxygen) ionic and electronic conduction and catalytic activity useful in many practical applications, including solid-oxide fuel cells (SOFCs), rechargeable batteries, gas sensors, and memristive devices. For proper realization of the ionic conduction and catalytic activity, it is essential to understand the reversible oxidation and reduction process, which is governed by oxygen storage/release steps in oxides. Topotactic phase transformation facilitates the redox process in perovskites with specific oxygen vacancy ordering bymore » largely varying the oxygen concentration of a material without losing the lattice framework. The concentration and diffusion of oxide ions (O 2–), the valence state of the transition metal cations, and the thermodynamic structural integrity together provide fundamental understanding and ways to explicitly control the redox reaction.[6] In addition, it offers an attractive route for tuning the emergent physical properties of transition metal oxides, via strong coupling between the crystal lattice and electronic structure.« less
Contact formation in gallium arsenide solar cells
NASA Technical Reports Server (NTRS)
Weizer, Victor G.; Fatemi, Navid S.
1988-01-01
Gold and gold-based alloys, commonly used as solar cell contact materials, are known to react readily with gallium arsenide. Experiments were performed to identify the mechanisms involved in these GaAs-metal interactions. It is shown that the reaction of GaAs with gold takes place via a dissociative diffusion process. It is shown further that the GaAs-metal reaction rate is controlled to a very great extent by the condition of the free surface of the contact metal, an interesting example of which is the previously unexplained increase in the reaction rate that has been observed for samples annealed in a vacuum environment as compared to those annealed in a gaseous ambient. A number of other hard-to-explain observations, such as the low-temperature formation of voids in the gold lattice and crystallite growth on the gold surface, are explained by invoking this mechanism.
Zhang, Wei; Pathak, Sandeep; Sakai, Nobuya; ...
2015-11-30
Solution-processed metal halide perovskite semiconductors, such as CH 3NH 3PbI 3, have exhibited remarkable performance in solar cells, despite having non-negligible density of defect states. A likely candidate is halide vacancies within the perovskite crystals, or the presence of metallic lead, both generated due to the imbalanced I/Pb stoichiometry which could evolve during crystallization. Herein, we show that the addition of hypophosphorous acid (HPA) in the precursor solution can significantly improve the film quality, both electronically and topologically, and enhance the photoluminescence intensity, which leads to more efficient and reproducible photovoltaic devices. We demonstrate that the HPA can reduce themore » oxidized I2 back into I-, and our results indicate that this facilitates an improved stoichiometry in the perovskite crystal and a reduced density of metallic lead.« less
Three dimensional electrode for the electrolytic removal of contaminants from aqueous waste streams
Spiegel, Ella F.; Sammells, Anthony F.
2001-01-01
Efficient and cost-effective electrochemical devices and processes for the remediation of aqueous waste streams. The invention provides electrolytic cells having a high surface area spouted electrode for removal of heavy metals and oxidation of organics from aqueous environments. Heavy metal ions are reduced, deposited on cathode particles of a spouted bed cathode and removed from solution. Organics are efficiently oxidized at anode particles of a spouted bed anode and removed from solution. The method of this inventions employs an electrochemical cell having an anolyte compartment and a catholyte compartment, separated by a microporous membrane, in and through which compartments anolyte and catholyte, respectively, are circulated. A spouted-bed electrode is employed as the cathode for metal deposition from contaminated aqueous media introduced as catholyte and as the anode for oxidation of organics from contaminated aqueous media introduced as anolyte.
Silicon cells made by self-aligned selective-emitter plasma-etchback process
Ruby, Douglas S.; Schubert, William K.; Gee, James M.; Zaidi, Saleem H.
2000-01-01
Photovoltaic cells and methods for making them are disclosed wherein the metallized grids of the cells are used to mask portions of cell emitter regions to allow selective etching of phosphorus-doped emitter regions. The preferred etchant is SF.sub.6 or a combination of SF.sub.6 and O.sub.2. This self-aligned selective etching allows for enhanced blue response (versus cells with uniform heavy doping of the emitter) while preserving heavier doping in the region beneath the gridlines needed for low contact resistance. Embodiments are disclosed for making cells with or without textured surfaces. Optional steps include plasma hydrogenation and PECVD nitride deposition, each of which are suited to customized applications for requirements of given cells to be manufactured. The techniques disclosed could replace expensive and difficult alignment methodologies used to obtain selectively etched emitters, and they may be easily integrated with existing plasma processing methods and techniques of the invention may be accomplished in a single plasma-processing chamber.
NASA Technical Reports Server (NTRS)
1980-01-01
Experimental electrolysis cells using various platinum catalyzed carbon electrodes were tested. When operated at 200 mA/sq cm current density using 50 w/o acid at 50 C and 1 atm, a reference cell required 1.22 volts and degraded rapidly. After several improvements were incorporated into electrodes and the test cell configuration, a later cell required only 0.77 volts under identical operating conditions. At a lower current density, 100 mA/sq cm, the cell required only 0.63 volts. Kinetic studies on metal electrodes, measurements of temperature effects on electrode kinetics, investigations of electrocatalytic activities of metal electrodes over a wide range of acid concentrations, cyclic voltametric studies and evaluation of alternate catalysts were also conducted. From diffusivity experiments, a cation exchange membrane material, P-4010, exhibited an excellent diffusion coefficient, more than two orders of magnitude lower than that of rubber. Ionic resistivity measurements of eight materials showed that microporous rubber had the lowest resistivity.
High performance cermet electrodes
Isenberg, Arnold O.; Zymboly, Gregory E.
1986-01-01
Disclosed is a method of increasing the operating cell voltage of a solid oxide electrochemical cell having metal electrode particles in contact with an oxygen-transporting ceramic electrolyte. The metal electrode is heated with the cell, and oxygen is passed through the oxygen-transporting ceramic electrolyte to the surface of the metal electrode particles so that the metal electrode particles are oxidized to form a metal oxide layer between the metal electrode particles and the electrolyte. The metal oxide layer is then reduced to form porous metal between the metal electrode particles and the ceramic electrolyte.
Electrochemical devices utilizing molten alkali metal electrode-reactant
Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.
1986-01-01
Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.
Electrochemical devices utilizing molten alkali metal electrode-reactant
Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.
1985-07-10
Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.
Process for desulfurizing petroleum feedstocks
Gordon, John Howard; Alvare, Javier
2014-06-10
A process for upgrading an oil feedstock includes reacting the oil feedstock with a quantity of an alkali metal, wherein the reaction produces solid materials and liquid materials. The solid materials are separated from the liquid materials. The solid materials may be washed and heat treated by heating the materials to a temperature above 400.degree. C. The heat treating occurs in an atmosphere that has low oxygen and water content. Once heat treated, the solid materials are added to a solution comprising a polar solvent, where sulfide, hydrogen sulfide or polysulfide anions dissolve. The solution comprising polar solvent is then added to an electrolytic cell, which during operation, produces alkali metal and sulfur.
Arnou, Panagiota; van Hest, Maikel F A M; Cooper, Carl S; Malkov, Andrei V; Walls, John M; Bowers, Jake W
2016-05-18
Solution processing of semiconductors, such as CuInSe2 and its alloys (CIGS), can significantly reduce the manufacturing costs of thin film solar cells. Despite the recent success of solution deposition approaches for CIGS, toxic reagents such as hydrazine are usually involved, which introduce health and safety concerns. Here, we present a simple and safer methodology for the preparation of high-quality CuIn(S, Se)2 absorbers from metal sulfide solutions in a diamine/dithiol mixture. The solutions are sprayed in air, using a chromatography atomizer, followed by a postdeposition selenization step. Two different selenization methods are explored resulting in power conversion efficiencies of up to 8%.
Active pixel sensor with intra-pixel charge transfer
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)
1995-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
Active pixel sensor with intra-pixel charge transfer
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)
2003-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
Active pixel sensor with intra-pixel charge transfer
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)
2004-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
Status of flexible CIS research at ISET
NASA Technical Reports Server (NTRS)
Basol, B. M.; Kapur, V. K.; Minnick, A.; Halani, A.; Leidholm, C. R.
1994-01-01
Polycrystalline thin film solar cells fabricated on light-weight, flexible substrates are very attractive for space applications. In this work CulnSe2 (CIS) based thin film devices were processed on metallic foil substrates using the selenization technique. CIS deposition method involved reaction of electron-bean evaporated Cu-In precursor layers with a selenizing atmosphere at around 400 C. Several metallic foils such as Mo, Ti, Al, Ni, and Cu were evaluated as possible substrates for these devices. Solar cells with AM1.5 efficiencies of 9.0-9.34 percent and good mechanical integrity were demonstrated on Mo and Ti foils. Monolithic integration of these devices was also demonstrated up to 4 in x 4 in size.
Equilibrium binding behavior of magnesium to wall teichoic acid.
Thomas, Kieth J; Rice, Charles V
2015-10-01
Peptidoglycan and teichoic acids are the major cell wall components of Gram-positive bacteria that obtain and sequester metal ions required for biochemical processes. The delivery of metals to the cytoplasmic membrane is aided by anionic binding sites within the peptidoglycan and along the phosphodiester polymer of teichoic acid. The interaction with metals is a delicate balance between the need for attraction and ion diffusion to the membrane. Likewise, metal chelation from the extracellular fluid must initially have strong binding energetics that weaken within the cell wall to enable ion release. We employed atomic absorption and equilibrium dialysis to measure the metal binding capacity and metal binding affinity of wall teichoic acid and Mg2+. Data show that Mg2+ binds to WTA with a 1:2Mg2+ to phosphate ratio with a binding capacity of 1.27 μmol/mg. The affinity of Mg2+ to WTA was also found to be 41×10(3) M(-1) at low metal concentrations and 1.3×10(3) M(-1) at higher Mg2+ concentrations due to weakening electrostatic effects. These values are lower than the values describing Mg2+ interactions with peptidoglycan. However, the binding capacity of WTA is 4 times larger than peptidoglycan. External WTA initially binds metals with positive cooperativity, but metal binding switches to negative cooperativity, whereas interior WTA binds metals with only negative cooperativity. The relevance of this work is to describe changes in metal binding behavior depending on environment. When metals are sparse, chelation is strong to ensure survival yet the binding weakens when essential minerals are abundant. Copyright © 2015 Elsevier B.V. All rights reserved.
Tuning and synthesis of metallic nanostructures by mechanical compression
Fan, Hongyou; Li, Binsong
2015-11-17
The present invention provides a pressure-induced phase transformation process to engineer metal nanoparticle architectures and to fabricate new nanostructured materials. The reversible changes of the nanoparticle unit cell dimension under pressure allow precise control over interparticle separation in 2D or 3D nanoparticle assemblies, offering unique robustness for interrogation of both quantum and classic coupling interactions. Irreversible changes above a threshold pressure of about 8 GPa enables new nanostructures, such as nanorods, nanowires, or nanosheets.
Composite carbon foam electrode
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
1997-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.
NASA Astrophysics Data System (ADS)
Prasetyaningrum, Aji; Jos, Bakti; Dharmawan, Yudhy; Prabowo, Bilal T.; Fathurrazan, Muh.; Fyrouzabadi
2018-05-01
Chromium (VI) is one of the major metallic pollutants in plating industrial wastewater. Cr(VI) is one of toxic metal that cause serious threat to human health and the environment because its non-biodegradable. Among the technologies for removing these pollutants, electrocoagulation can be considered as an effective method. This method have some advantages such as less amount of produced sludge and high efficiency in removal of pollutants.This research intended to study the effects of type of electrode on the degree of Cr(VI) removal from wastewater of plating industry using electrocoagulation method. This laboratory research conducted with 3 types of electrode (aluminum, stainless and combination of both electrode). Synthetic chromium wastewater was prepared at the initial concentration of 100 mg L-1. The process was conducted at pH 3. The electricity current was setting at 3 Ampere. The variable of time of electrocoagulation at 1 and 2 hours. After performing the process on electrochemical cells, samples analyzed by the UV-Vis spectrophotometer regarding amount of Cr(VI) metals. The results showed that aluminium was the best performance electrode at variable of 2 hours with 26% of reduction of Cr(VI)metal content in plating industrial waste water.
Fungal biosynthesis of gold nanoparticles: mechanism and scale up
Kitching, Michael; Ramani, Meghana; Marsili, Enrico
2015-01-01
Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis. PMID:25154648
NASA Technical Reports Server (NTRS)
Grodzka, P. G.; Pond, J. E.; Spradley, J. W.; Johnson, M. H.
1976-01-01
The Dendrite Remelting Rocket Experiment was performed aboard a Black Brant VC Sounding Rocket during a period which gravity levels of approximately 0.00001 g prevailed. The experiment consisted of cooling an aqueous ammonium chloride solution in a manner such that crystallization of ammonium chloride crystals proceeded throughout a three minute period of zero-g. The crystallization process during flight was recorded on 35 mm panatomic-x film. A number of ground crystallizations were similarly recorded for comparison purposes. The convective and thermal conditions in aqueous and metallic liquid systems were assessed under conditions of the flight experiment to help establish the relevance of the rocket experiment to metals casting phenomena. The results indicate that aqueous or metallic convective velocities in the Dendrite Remelting Rocket Experiment cell are of insignificant magnitudes at the 0.0001 to 0.00001 g levels of the experiment. The crystallization phenomena observed in the Rocket Experiment, therefore, may be indicative of how metals will solidify in low-g.
Long Duration Exposure Facility Space Optics Handbook
1993-09-01
apparent (Ref. 12). The solar cell covers showed similar impact damage as the refractive optics components. 4-1020 Si i -i 10 • 4.12, Related Material...coatings, which worsens the synergistic A(0 0 cr()Sil Oi on Uateia IS, 11nd canl Upset olties, issoc iated telescope baffles, solar cells , star 0 0 trackers...and material processes which address S primarily solar array materials, including solar cell -, 0 composites, thin films, paints, metals and other
Robust Catalysis on 2D Materials Encapsulating Metals: Concept, Application, and Perspective.
Deng, Jiao; Deng, Dehui; Bao, Xinhe
2017-11-01
Great endeavors are undertaken to search for low-cost, rich-reserve, and highly efficient alternatives to replace precious-metal catalysts, in order to cut costs and improve the efficiency of catalysts in industry. However, one major problem in metal catalysts, especially nonprecious-metal catalysts, is their poor stability in real catalytic processes. Recently, a novel and promising strategy to construct 2D materials encapsulating nonprecious-metal catalysts has exhibited inimitable advantages toward catalysis, especially under harsh conditions (e.g., strong acidity or alkalinity, high temperature, and high overpotential). The concept, which originates from unique electron penetration through the 2D crystal layer from the encapsulated metals to promote a catalytic reaction on the outermost surface of the 2D crystal, has been widely applied in a variety of reactions under harsh conditions. It has been vividly described as "chainmail for catalyst." Herein, recent progress concerning this chainmail catalyst is reviewed, particularly focusing on the structural design and control with the associated electronic properties of such heterostructure catalysts, and also on their extensive applications in fuel cells, water splitting, CO 2 conversion, solar cells, metal-air batteries, and heterogeneous catalysis. In addition, the current challenges that are faced in fundamental research and industrial application, and future opportunities for these fantastic catalytic materials are discussed. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
CVD-Based Valence-Mending Passivation for Crystalline-Si Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tao, Meng
2015-03-01
The objective of this project is to investigate a new surface passivation technique, valence-mending passivation, for its applications in crystalline-Si solar cells to achieve significant efficiency improvement and cost reduction. As the enabling technique, the project includes the development of chemical vapor deposition recipes to passivate textured Si(100) and multicrystalline-Si surfaces by sulfur and the characterization of the passivated Si surfaces, including thermal stability, Schottky barrier height, contact resistance and surface recombination. One important application is to replace the Ag finger electrode in Si cells with Al to reduce cost, by ~$0.1/Wp, and allow terawatt-scale deployment of crystalline-Si solar cells.more » These all-Al Si cells require a low-temperature metallization process for the Al electrode, to be compatible with valence-mending passivation and to prevent Al diffusion into n-type Si. Another application is to explore valence-mending passivation of grain boundaries in multicrystalline Si by diffusing sulfur into grain boundaries, to reduce the efficiency gas between monocrystalline-Si solar cells and multicrystalline-Si cells. The major accomplishments of this project include: 1) Demonstration of chemical vapor deposition processes for valence-mending passivation of both monocrystalline Si(100) and multicrystalline Si surfaces. Record Schottky barriers have been demonstrated, with the new record-low barrier of less than 0.08 eV between Al and sulfur-passivated n-type Si(100) and the new record-high barrier of 1.14 eV between Al and sulfur-passivated p-type Si(100). On the textured p-type monocrystalline Si(100) surface, the highest barrier with Al is 0.85 eV by valence-mending passivation. 2) Demonstration of a low-temperature metallization process for Al in crystalline-Si solar cells. The new metallization process is based on electroplating of Al in a room-temperature ionic liquid. The resistivity of the electroplated Al is ~7×10–6 ohm-cm, similar to that of screen-printed Ag. 3) Demonstration of two all-Al, Ag-free Si solar cells, with an electroplated Al front electrode and a screen-printed Al back electrode. One cell is an industrial p-type front-emitter cell, and the other is an n-type back-emitter cell. The efficiency of the p-type cell is close to 15%. This is an industrial cell and its efficiency is capped at ~18%. 4) Demonstration of grain boundary passivation by both hydrogen and sulfur using hydrogen sulfide (H2S). When the new grain boundary passivation is combined with Al2O3 surface passivation and post-annealing, the minority carrier lifetime in the p-type multicrystalline Si samples shows a significant improvement up to 68 fold. 5) In a side project, a simple green process is developed which is capable of recycling over 90% of the Si material in end-of-life crystalline-Si solar cells. The recycled Si meets the specifications for solar-grade Si and can be used as a new poly-Si feedstock for ingot growth.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Karrie A.; Bender, Kelly S.; Li, Yusong
Microbially mediated metabolisms have been identified as a significant factor either directly or indirectly impacting the fate and transport of heavy metal/radionuclide contaminants. To date microorganisms have been isolated from contaminated environments. Examination of annotated finished genome sequences of many of these subsurface isolates from DOE sites, revealed evidence of prior viral infection. To date the role that viruses play influencing microbial mortality and the resulting community structure which directly influences biogeochemical cycling in soils and sedimentary environments remains poorly understood. The objective of this exploratory study was to investigate the role of viral infection of subsurface bacteria and themore » formation of contaminant-bearing viral particles. This objective was approached by examining the following working hypotheses: (i) subsurface microorganisms are susceptible to viral infections by the indigenous subsurface viral community, and (ii) viral surfaces will adsorb heavy metals and radionuclides. Our results have addressed basic research needed to accomplish the BER Long Term Measure to provide sufficient scientific understanding such that DOE sites would be able to incorporate coupled physical, chemical and biological processes into decision making for environmental remediation or natural attenuation and long-term stewardship by establishing viral-microbial relationships on the subsequent fate and transport of heavy metals and radionuclides. Here we demonstrated that viruses play a significant role in microbial mortality and community structure in terrestrial subsurface sedimentary systems. The production of viral-like particles within subsurface sediments in response to biostimulation with dissolved organic carbon and a terminal electron acceptor resulted in the production of viral-like particles. Organic carbon alone did not result in significant viral production and required the addition of a terminal electron acceptor (nitrate), indicating that nutrients are not limiting viral production, but rather substrates that can be converted into energy for host metabolism. Our results also revealed that cell abundance was not correlated to the mineralization of organic carbon, but rather viruses were positively correlated with carbon mineralization. This is a result of viral-mediated cell lysis and demonstrates that viruses are sensitive indicators of microbial activity. Viruses as an indicator of microbial activity was not unique to batch culture studies as results obtained from an in situ field experiment conducted at the DOE Old Rifle Field site. This study revealed that viral abundance increased in response to the injection of oxygenated groundwater and influx of dissolved organic carbon whereas cell abundance changes were minimal. However, the extent to which viral-mediated cell lysis alters organic matter pools subsequently influencing microbial community structure and biogeochemical function remains a critical question in subsurface biogeochemical cycling. The production of significant numbers of viruses in groundwater has implications for nanoparticulate metal as well as carbon transport in groundwater. We have demonstrated that the virus surface is reactive and will adsorb heavy metals. Thus viruses can promote colloidal contaminant mobility. Interestingly, the presence of heavy metals has a positive effect on infectivity of the phage, increasing phage infection which could lead to further production of viruses. Together, the results indicate that the sorption of metals to the surface of viruses could not only contribute to nanoparticulate metal as well as carbon transport but could also enhance infectivity further contributing to cell lysis which could subsequently influence biogeochemical cycling. As more viruses infect host microbial populations the high concentration of metals would enhance infection, resulting in cell lysis, and decreasing the metabolically active host population while yielding greater numbers of viruses capable of transporting contaminats. Additional studies will be necessary to further establish the potential relationship(s) between viruses, cells, carbon, and metals/radionuclides to provide sufficient scientific understanding to incorporate coupled physical, chemical, and biological processes into agent based and reactive transport models.« less
Automated Array Assembly, Phase 2
NASA Technical Reports Server (NTRS)
Carbajal, B. G.
1979-01-01
The Automated Array Assembly Task, Phase 2 of the Low Cost Silicon Solar Array Project is a process development task. The contract provides for the fabrication of modules from large area tandem junction cells (TJC). During this quarter, effort was focused on the design of a large area, approximately 36 sq cm, TJC and process verification runs. The large area TJC design was optimized for minimum I squared R power losses. In the TJM activity, the cell-module interfaces were defined, module substrates were formed and heat treated and clad metal interconnect strips were fabricated.
Facilitation of trace metal uptake in cells by inulin coating of metallic nanoparticles
NASA Astrophysics Data System (ADS)
Santillán-Urquiza, Esmeralda; Arteaga-Cardona, Fernando; Torres-Duarte, Cristina; Cole, Bryan; Wu, Bing; Méndez-Rojas, Miguel A.; Cherr, Gary N.
2017-09-01
Trace elements such as zinc and iron are essential for the proper function of biochemical processes, and their uptake and bioavailability are dependent on their chemical form. Supplementation of trace metals through nanostructured materials is a new field, but its application raises concerns regarding their toxicity. Here, we compared the intracellular zinc uptake of different sources of zinc: zinc sulfate, and ZnO and core-shell α-Fe2O3@ZnO nanoparticles, coated or uncoated with inulin, an edible and biocompatible polysaccharide. Using mussel haemocytes, a well-known model system to assess nanomaterial toxicity, we simultaneously assessed zinc accumulation and multiple cellular response endpoints. We found that intracellular zinc uptake was strongly enhanced by inulin coating, in comparison to the uncoated nanoparticles, while no significant effects on cell death, cell viability, mitochondrial membrane integrity, production of reactive oxygen species or lysosome abundance were observed at concentrations up to 20 ppm. Since no significant increments in toxicity were observed, the coated nanomaterials may be useful to increase in vivo zinc uptake for nutritional applications.
Li, Xuan Qi; Feng, Zhiwei; Xia, Yinyan; Zeng, Hua Chun
2012-02-13
Calcium carbonate (CaCO(3)) is one of the most abundant and important biominerals in nature. Due to its biocompatibility, biodegradability and nontoxicity, CaCO(3) has been investigated extensively in recent years for various fundamental properties and technological applications. Inspired by basic wall structures of cells, we report a protein-assisted approach to synthesize CaCO(3) into a double-shelled structural configuration. Due to varying reactivities of outer and inner shells, the CaCO(3) microcapsules exhibit different sorption capacities and various resultant structures toward different kinds of heavy metal ions, analogical to biologically controlled mineralization (BCM) processes. Surprisingly, three mineralization modes resembling those found in BCM were found with these bacterium-like "CaCO(3) cells". Our investigation of the cytotoxicity (MTT assay protocol) also indicates that the CaCO(3) microcapsules have almost no cytotoxicity against HepG2 cells, and they might be useful for future application of detoxifying heavy metal ions after further study. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Rösken, Liz M.; Körsten, Susanne; Fischer, Christian B.; Schönleber, Andreas; van Smaalen, Sander; Geimer, Stefan; Wehner, Stefan
2014-04-01
Customized metal nanoparticles are highly relevant in industrial processes, where they are used as catalysts and therefore needed on a large scale. An extremely economically and environmentally friendly way to produce metal nanoparticles is microbial biosynthesis, meaning the biosorption and bioreduction of diluted metal ions to zero valent (metal) nanoparticles. To maintain the key advantage of biosynthesis, including eco friendliness, a bioreactor (e.g., bacteria) has to be harmless by itself. Here, the ability of the cyanobacteria Anabaena sp. (SAG 12.82) is shown to fulfill both needs: bioreduction of Au3+ ions to Au0 and the subsequent formation of crystalline Au0-nanoparticles as well as absence of the release of toxic substances (e.g., anatoxin-a). The time-dependent growth of the nanoparticles is recorded by X-ray powder diffraction (XRD) and transmission electron microscopy (TEM) over a range of several days. Formation of nanoparticles starts within the first minutes at the heterocyst polysaccharide layer (HEP). After 4 h, the dominating amount of nanoparticles is found in the vegetative cells. The bioproduced nanoparticles are found in both cell types, mainly located along the thylakoid membranes of the vegetative cells and have a final average size of 9 nm within the examined timescale of a few days.
Influences of Mn(II) and V(IV) on Bacterial Surface Chemistry and Metal Reactivity
NASA Astrophysics Data System (ADS)
French, S.; Fakra, S.; Glasauer, S.
2009-05-01
Microorganisms in terrestrial and marine environments are typically bathed in solutions that contain a range of metal ions, toxic and beneficial. Bacteria such as Shewanella putrefaciens CN32 are metabolically versatile in their respiration, and the reductive dissolution of widely dispersed metals such as Fe(III), Mn(IV), or V(V) can present unique challenges if nearby bodies of water are used for irrigation or drinking. In redox transition zones, dissimilatory metal reduction (DMR) by bacteria can lead to generation of high concentrations of soluble metals. It has been shown that metals will associate with negatively charged bacterial membranes, and the mechanisms of metal reduction are well defined for many species of bacteria. The interaction of metals with the cell wall during DMR is, however, not well documented; very little is known about the interaction of respired transition metals with membrane lipids. Furthermore, bacterial surfaces tend to change in response to their immediate environments. Variations in conditions such as oxygen or metal presence may affect surface component composition, including availability of metal reactive sites. Our research seeks to characterize the biochemical nature of metal-membrane interactions, as well as identify the unique changes at the cell surface that arise as a result of metal presence in their environments. We have utilized scanning transmission X-ray microscopy (STXM) to examine the dynamics of soluble Mn(II) and V(IV) interactions with purified bacterial membranes rather than whole cells. This prevents intracellular interferences, and allows for near edge X-ray absorption fine structure (NEXAFS) spectroscopic analyses of cell surface and surface-associated components. NEXAFS spectra for carbon, nitrogen, and oxygen edges indicate that Mn(II) and V(IV) induce biological modifications of the cell membrane in both aerobic and anaerobic conditions. These changes depend not only on the metal, but also on the presence of oxygen. Results from NEXAFS spectroscopy revealed that oxygen presence had a strong impact on metal sorption, especially in the case of V(IV) association with membranes when oxygen is present. Bacterial membranes are necessarily dynamic, the membrane components are in a state of constant fluidity. Metal sorption to the cell surface, especially soluble metals which can fully engulf the cell, would limit the mobility of membrane components. Supporting this notion, CN32 cell membranes were observed via spectrofluorometry to become significantly stabilized when exposed to Mn(II) and V(IV) metals under anoxia. Despite stabilizing effects, cells are not adversely affected by metal presence in their growth environments, which is also supported by observations of metal coated cells by transmission electron microscopy (TEM). This supports STXM observations that cells counteract the metal effects on their surfaces by altering their membrane composition, and is enhanced by significant differences in cell membrane protein composition and quantity after SDS-PAGE separation. Our studies reveal several clear patterns in how cells interact with soluble metals in their environments, as well as the often overlooked subsequent effects that those metals, as well as oxygen, have on bacterial membranes.
NASA Astrophysics Data System (ADS)
Badro, J.; Blanchard, I.; Siebert, J.
2015-12-01
Core formation is the major chemical fractionation that occurred on Earth. This event is widely believed to have happened at pressures of at least 40 GPa and temperatures exceeding 3000 K. It has left a significant imprint on the chemistry of the mantle by removing most of the siderophile (iron-loving) elements from it. Abundances of most siderophile elements in the bulk silicate Earth are significantly different than those predicted from experiments at low P-T. Among them, vanadium, chromium, cobalt and gallium are four siderophile elements which abundances in the mantle have been marked by core formation processes. Thus, understand their respective abundance in the mantle can help bringing constraints on the conditions of Earth's differentiation. We performed high-pressure high-temperature experiments using laser heating diamond anvil cell to investigate the metal-silicate partitioning of those four elements. Homogeneous glasses doped in vanadium, chromium, cobalt and gallium were synthesized using a levitation furnace and load inside the diamond anvil cell along with metallic powder. Samples were recovered using a Focused Ion Beam and chemically analyzed using an electron microprobe. We investigate the effect of pressure, temperature and metal composition on the metal-silicate partitioning of V, Cr, Co and Ga. Three previous studies focused on V, Cr and Co partitioning at those conditions of pressure and temperature, but none explore gallium partitioning at the relevant extreme conditions of core formation. We will present the first measurements of gallium metal-silicate partitioning performed at the appropriate conditions of pressure and temperature of Earth's differentiation.
NASA Technical Reports Server (NTRS)
Dumas, K. A. (Editor)
1984-01-01
Theoretical and experimental phenomena, applications, and characterization including stress/strain and other problem areas that limit the rate of growth of crystals suitable for processing into efficient, cost-effective solar cells are discussed. Melt spinning, ribbon growth, rapid solidification, laser recrystallization, and ignot growth of silicon and metals are also discussed.
Parasitic corrosion resistant anode for use in metal/air or metal/O.sub.2 cells
Joy, Richard W.; Smith, David F.
1983-01-01
A consumable metal anode which is used in refuelable electrochemical cells and wherein at least a peripheral edge portion of the anode is protected against a corrosive alkaline environment of the cell by the application of a thin metal coating, the coating being formed of metals such as nickel, silver, and gold.
NASA Astrophysics Data System (ADS)
Gunawan, Gunawan
A novel, easy, and cost effective method for synthesizing carbon supported metal/metal oxide nanocomposites has been studied. Carbon supported metal/metal oxide nanocomposites have niche applications in the area of catalysis, fuel cells, electrodes, and more. The method utilizes a commercial microwave and features the addition of a developed graphite-jacket technique with renewable carbon resources, tannin and lignin. The method has been successfully used to synthesize carbon/nickel, carbon/iron oxide, and carbon/nickel phosphide nanocomposites. The method has shown its versatility in the synthesis of carbon nanocomposites. The process is much simpler when compared with the available methods for synthesizing carbon nanocomposites. The synthesized nanocomposites were classified using several characterization techniques, such as electron microscopy, X-ray powder diffraction, surface area analysis, thermogravimetric analysis, and spectrophotometric studies. One application of the carbon nanocomposite is in wastewater remediation. The synthesized carbon/iron oxide nanocomposite was noted as being useful for removing arsenic (As) and phosphorus (P) from contaminated water. The adsorption process of the nanocomposite was critically studied in order to understand the process of removing pollutants from contaminated water. The study shows that the nanocomposites are capable of removing As and P from contaminated water. Kinetic and adsorption isotherm studies were applied to understand the adsorption of As and P onto the adsorbent. Several methods, such as pseudo-first and second order kinetic models, Elovich's equation, and the Weber-Morris intraparticle diffusion model were used to explain the kinetic aspects of the adsorption process. For the adsorption isotherm study, Langmuir and Freundlich isotherm models were applied.
Suleiman, Hanine; Rorat, Agnieszka; Grobelak, Anna; Grosser, Anna; Milczarek, Marcin; Płytycz, Barbara; Kacprzak, Małgorzata; Vandenbulcke, Franck
2017-10-01
The aim of this study was to assess the effectiveness of vermicomposting process applied on three different sewage sludge (precomposted with grass clippings, sawdust and municipal solid wastes) using three different earthworm species. Selected immune parameters, namely biomarkers of stress and metal body burdens, have been used to biomonitor the vermicomposting process and to assess the impact of contaminants on earthworm's physiology. Biotic and abiotic parameters were also used in order to monitor the process and the quality of the final product. Dendrobaena veneta exhibited much lower resistance in all experimental conditions, as the bodyweight and the total number of circulating immune cells decreased in the most contaminated conditions. All earthworm species accumulated heavy metals as follows Cd>Co>Cu>Zn>Ni>Pb>Cr: Eisenia sp. worms exhibited the highest ability to accumulate several heavy metals. Vermicompost obtained after 45days was acceptable according to agronomic parameters and to compost quality norms in France and Poland. Copyright © 2017 Elsevier Ltd. All rights reserved.
New Approach in Filling of Fixed-Point Cells: Case Study of the Melting Point of Gallium
NASA Astrophysics Data System (ADS)
Bojkovski, J.; Hiti, M.; Batagelj, V.; Drnovšek, J.
2008-02-01
The typical way of constructing fixed-point cells is very well described in the literature. The crucible is loaded with shot, or any other shape of pure metal, inside an argon-filled glove box. Then, the crucible is carefully slid into a fused-silica tube that is closed at the top with an appropriate cap. After that, the cell is removed from the argon glove box and melted inside a furnace while under vacuum or filled with an inert gas like argon. Since the metal comes as shot, or in some other shape such as rods of various sizes, and takes more volume than the melted material, it is necessary to repeat the procedure until a sufficient amount of material is introduced into the crucible. With such a procedure, there is the possibility of introducing additional impurities into the pure metal with each cycle of melting the material and putting it back into the glove box to fill the cell. Our new approach includes the use of a special, so-called dry-box system, which is well known in chemistry. The atmosphere inside the dry box contains less than 20 ppm of water and less than 3 ppm of oxygen. Also, the size of the dry box allows it to contain a furnace for melting materials, not only for gallium but for higher-temperature materials as well. With such an approach, the cell and all its parts (pure metal, graphite, fused-silica tube, and cap) are constantly inside the controlled atmosphere, even while melting the material and filling the crucible. With such a method, the possibility of contaminating the cell during the filling process is minimized.
Mantecca, Paride; Kasemets, Kaja; Deokar, Archana; Perelshtein, Ilana; Gedanken, Aharon; Bahk, Yeon Kyoung; Kianfar, Baharh; Wang, Jing
2017-08-15
Nano metal oxides have been proposed as alternatives to silver (Ag) nanoparticles (NPs) for antibacterial coatings. Here, cotton and polyester-cotton fabrics were sonochemically coated with zinc oxide (ZnO) and copper oxide (CuO) NPs. By varying the reaction solvent (water or ethanol), NPs with different sizes and shapes were synthesized. The cytotoxic and pro-inflammatory effects of studied NPs were investigated in vitro in human alveolar epithelial A549 and macrophage-like THP1 cells. To understand the potential respiratory impact of the NPs, the coated textiles were subjected to the abrasion tests, and the released airborne particles were measured. A very small amount of the studied metal oxides NPs was released from abrasion of the textiles coated by the ethanol-based sonochemical process. The release from the water-based coating was comparably higher. Lung and immune cells viability decreased after 24 h of exposure only at the highest studied NPs concentration (100 μg/mL). Different from the ZnO NPs, both formulations of CuO NPs induced IL-8 release in the lung epithelial cells already at subtoxic concentrations (1-10 μg/mL) but not in immune cells. All of the studied NPs did not induce IL-6 release by the lung and immune cells. Calculations revealed that the exposures of the NPs to human lung due to the abrasion of the textiles were lower or comparable to the minimum doses in the cell viability tests (0.1 μg/mL), at which acute cytotoxicity was not observed. The results alleviate the concerns regarding the potential risk of these metal oxide NPs in their applications for the textile coating and provide insight for the safe-by-design approach.
Investigation of nickel-silicon metallization process
NASA Technical Reports Server (NTRS)
Macha, M.
1983-01-01
The metallization of silicon solar cells passivated with silicon nitride coating was investigated by using commercial Ni pastes #5517 from Thick Film Systems, #7028-5 from Cermalloy, experimental formulation # X-A by Sollos, Inc. and evaporated Ti-Ni film. Comparative and reference tests were done with the Dupont Ag paste #7095 and with a mixture of Ni paste #5517 with Ag paste #7095 in the respective ratio of 9 to 1 by weight. The evaluation criteria for the metallization was the mechanical bond strength of the contact, solderability, copper plating ability and electrical characteristics in terms of Voc, Isc values and shape of the V-I curve. The results revealed that the Dupont Ag paste #7095 mt all required criteria, while the quality of the cells metalized with the commercial Ni paste #5517 from Thick Film Systems, #7028-5 from Cermalloy as well as the experimental paste # X-A from Sollos, Inc. was below the acceptable standards. A significant improvement was obtained with the mixture of Ni paste #5517 from Thick Film Systems with 10% addition of Dupont paste # 7095.
Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion.
Li, Fa-tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang
2015-11-14
The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.
Solution combustion synthesis of metal oxide nanomaterials for energy storage and conversion
NASA Astrophysics Data System (ADS)
Li, Fa-Tang; Ran, Jingrun; Jaroniec, Mietek; Qiao, Shi Zhang
2015-10-01
The design and synthesis of metal oxide nanomaterials is one of the key steps for achieving highly efficient energy conversion and storage on an industrial scale. Solution combustion synthesis (SCS) is a time- and energy-saving method as compared with other routes, especially for the preparation of complex oxides which can be easily adapted for scale-up applications. This review summarizes the synthesis of various metal oxide nanomaterials and their applications for energy conversion and storage, including lithium-ion batteries, supercapacitors, hydrogen and methane production, fuel cells and solar cells. In particular, some novel concepts such as reverse support combustion, self-combustion of ionic liquids, and creation of oxygen vacancies are presented. SCS has some unique advantages such as its capability for in situ doping of oxides and construction of heterojunctions. The well-developed porosity and large specific surface area caused by gas evolution during the combustion process endow the resulting materials with exceptional properties. The relationship between the structural properties of the metal oxides studied and their performance is discussed. Finally, the conclusions and perspectives are briefly presented.
Bioinspired Electrocatalysis of Oxygen Reduction Reaction in Fuel Cells Using Molecular Catalysts.
Zion, Noam; Friedman, Ariel; Levy, Naomi; Elbaz, Lior
2018-04-23
One of the most important chemical reactions for renewable energy technologies such as fuel cells and metal-air batteries today is oxygen reduction. Due to the relatively sluggish reaction kinetics, catalysts are necessary to generate high power output. The most common catalyst for this reaction is platinum, but its scarcity and derived high price have raised the search for abundant nonprecious metal catalysts. Inspired from enzymatic processes which are known to catalyze oxygen reduction reaction efficiently, employing transition metal complexes as their catalytic centers, many are working on the development of bioinspired and biomimetic catalysts of this class. This research news article gives a glimpse of the recent progress on the development of bioinspired molecular catalyst for oxygen reduction, highlighting the importance of the molecular structure of the catalysts, from advancements in porphyrins and phthalocyanines to the most recent work on corroles, and 3D networks such as metal-organic frameworks and polymeric networks, all with nonpyrolyzed, well-defined molecular catalysts for oxygen reduction reaction. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Effects of silicon nanowire morphology on optical properties and hybrid solar cell performance
NASA Astrophysics Data System (ADS)
Syu, Hong-Jhang; Shiu, Shu-Chia; Hung, Yung-Jr; Lee, San-Liang; Lin, Ching-Fuh
2012-10-01
Silicon nanowire (SiNW) arrays are widespread applied on hybrid photovoltaic devices because SiNW arrays can substitute the pyramid texture and anti-reflection coating due to its strong light trapping. Also, SiNWs can be prepared through a cost-efficient process of metal-assisted chemical etching. However, though longer SiNW arrays have lower reflectance, the top of long SiNWs aggregate together to make junction synthesis difficult for SiNW/organic hybrid solar cell. To control and analyze the effect of SiNW array morphology on hybrid solar cells, here we change the metal deposition condition for metal-assisted chemical etching to obtain different SiNW array morphologies. The experiment was separated to two groups, by depositing metal, say, Ag, before etching (BE) or during etching (DE). For group BE, Ag was deposited on n-type Si (n-Si) wafers by thermal evaporation; then etched by H2O2 and HF. For group DE, n-Si was etched by Ag+ and HF directly. Ag was deposited on n-Si during etching process. Afterwards, residual Ag and SiO2 were removed by HNO3 and buffered HF, successively; then Ti and Ag were evaporated on the bottom of Si to be a cathode. Finally, SiNWs were stuck on the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) that was spincoated on the ITO coated glass to form SiNW/organic heterojunction. The results show that group BE has reflectance lower than that in group DE in solar spectrum. However, group BE has smaller power conversion efficiency (PCE) of 8.65% and short-circuit current density (Jsc) of 24.94 mA/cm2 than group DE of PCE of 9.47% and Jsc of 26.81 mA/cm2.
NASA Astrophysics Data System (ADS)
Ogumi, Zempachi; Wang, Hongyu
Accompanying the impressive progress of human society, energy storage technologies become evermore urgent. Among the broad categories of energy sources, batteries or cells are the devices that successfully convert chemical energy into electrical energy. Lithium-based batteries stand out in the big family of batteries mainly because of their high-energy density, which comes from the fact that lithium is the most electropositive as well as the lightest metal. However, lithium dendrite growth after repeated charge-discharge cycles easily will lead to short-circuit of the cells and an explosion hazard. Substituting lithium metal for alloys with aluminum, silicon, zinc, and so forth could solve the dendrite growth problem.1 Nevertheless, the lithium storage capacity of alloys drops down quickly after merely several charge-discharge cycles because the big volume change causes great stress in alloy crystal lattice, and thus gives rise to cracking and crumbling of the alloy particles. Alternatively, Sony Corporation succeeded in discovering the highly reversible, low-voltage anode, carbonaceous material and commercialized the C/LiCoO2 rocking chair cells in the early 1990s.2 Figure 3.1 schematically shows the charge-discharge process for reversible lithium storage in carbon. By the application of a lithiated carbon in place of a lithium metal electrode, any lithium metal plating process and the conditions for the growth of irregular dendritic lithium could be considerably eliminated, which shows promise for reducing the chances of shorting and overheating of the batteries. This kind of lithium-ion battery, which possessed a working voltage as high as 3.6 V and gravimetric energy densities between 120 and 150 Wh/kg, rapidly found applications in high-performance portable electronic devices. Thus the research on reversible lithium storage in carbonaceous materials became very popular in the battery community worldwide.
Development of low cost contacts to silicon solar cells
NASA Technical Reports Server (NTRS)
Tanner, D. P.; Iles, P. A.
1980-01-01
A copper based contact system using plated Pd-Cr-Cu was developed. Good cells were made but cells degraded under low temperature (300 C) heat treatments. The degradation was identified as copper migration into the cells junction region. A paper study was conducted to find a proper barrier to the copper migration problem. Nickel was identified as the best candidate barrier and this was verified in a heat treatment study using evaporated metal layers. An electroless nickel solution was substituted for the electroless chromium solution in the original process.
Xia, Zhigang; Wang, Jihao; Hou, Yubin; Lu, Qingyou
2014-09-01
In this paper, we provide and demonstrate a design of a unique cell with Pt single crystal bead electrode for electrochemical scanning tunneling microscope (ECSTM) measurements. The active metal Pt electrode can be protected from air contamination during the preparation process. The transparency of the cell allows the tip and bead to be aligned by direct observation. Based on this, a new and effective alignment method is introduced. The high-quality bead preparations through this new cell have been confirmed by the ECSTM images of Pt (111).
Almárcegui, Rodrigo J; Navarro, Claudio A; Paradela, Alberto; Albar, Juan Pablo; von Bernath, Diego; Jerez, Carlos A
2014-02-07
Acidithiobacillus ferrooxidans is an extremophilic bacterium used in biomining processes to recover metals. The presence in A. ferrooxidans ATCC 23270 of canonical copper resistance determinants does not entirely explain the extremely high copper concentrations this microorganism is able to stand, suggesting the existence of other efficient copper resistance mechanisms. New possible copper resistance determinants were searched by using 2D-PAGE, real time PCR (qRT-PCR) and quantitative proteomics with isotope-coded protein labeling (ICPL). A total of 594 proteins were identified of which 120 had altered levels in cells grown in the presence of copper. Of this group of proteins, 76 were up-regulated and 44 down-regulated. The up-regulation of RND-type Cus systems and different RND-type efflux pumps was observed in response to copper, suggesting that these proteins may be involved in copper resistance. An overexpression of most of the genes involved in histidine synthesis and several of those annotated as encoding for cysteine production was observed in the presence of copper, suggesting a possible direct role for these metal-binding amino acids in detoxification. Furthermore, the up-regulation of putative periplasmic disulfide isomerases was also seen in the presence of copper, suggesting that they restore copper-damaged disulfide bonds to allow cell survival. Finally, the down-regulation of the major outer membrane porin and some ionic transporters was seen in A. ferrooxidans grown in the presence of copper, indicating a general decrease in the influx of the metal and other cations into the cell. Thus, A. ferrooxidans most likely uses additional copper resistance strategies in which cell envelope proteins are key components. This knowledge will not only help to understand the mechanism of copper resistance in this extreme acidophile but may help also to select the best fit members of the biomining community to attain more efficient industrial metal leaching processes.
Kegelmann, Lukas; Wolff, Christian M; Awino, Celline; Lang, Felix; Unger, Eva L; Korte, Lars; Dittrich, Thomas; Neher, Dieter; Rech, Bernd; Albrecht, Steve
2017-05-24
Solar cells made from inorganic-organic perovskites have gradually approached market requirements as their efficiency and stability have improved tremendously in recent years. Planar low-temperature processed perovskite solar cells are advantageous for possible large-scale production but are more prone to exhibiting photocurrent hysteresis, especially in the regular n-i-p structure. Here, a systematic characterization of different electron selective contacts with a variety of chemical and electrical properties in planar n-i-p devices processed below 180 °C is presented. The inorganic metal oxides TiO 2 and SnO 2 , the organic fullerene derivatives C 60 , PCBM, and ICMA, as well as double-layers with a metal oxide/PCBM structure are used as electron transport materials (ETMs). Perovskite layers deposited atop the different ETMs with the herein applied fabrication method show a similar morphology according to scanning electron microscopy. Further, surface photovoltage spectroscopy measurements indicate comparable perovskite absorber qualities on all ETMs, except TiO 2 , which shows a more prominent influence of defect states. Transient photoluminescence studies together with current-voltage scans over a broad range of scan speeds reveal faster charge extraction, less pronounced hysteresis effects, and higher efficiencies for devices with fullerene compared to those with metal oxide ETMs. Beyond this, only double-layer ETM structures substantially diminish hysteresis effects for all performed scan speeds and strongly enhance the power conversion efficiency up to a champion stabilized value of 18.0%. The results indicate reduced recombination losses for a double-layer TiO 2 /PCBM contact design: First, a reduction of shunt paths through the fullerene to the ITO layer. Second, an improved hole blocking by the wide band gap metal oxide. Third, decreased transport losses due to an energetically more favorable contact, as implied by photoelectron spectroscopy measurements. The herein demonstrated improvements of multilayer selective contacts may serve as a general design guideline for perovskite solar cells.
Laser-Based Production of Metallic Conducting Paths
NASA Astrophysics Data System (ADS)
Vedder, Christian; Stollenwerk, Jochen; Wissenbach, Konrad; Pirch, Norbert
For numerous devices such as OLEDs, solar cells or heated windows conducting paths are needed for collecting or distributing electricity on poorly or non-conducting surfaces. With established techniques the metallic paths can only be produced with a great deal of effort, incurring high costs for plant, equipment and energy. A new laser based process to manufacture conducting paths allows for writing narrow paths (down to 35 μm width) of Al, Cu, Ag or similar materials onto flat surfaces of glass (plain or coated with ITO) and silicon wafers by melting and vaporizing a metal foil through optical energy at high speeds of up to 2.5 m/s.
Printable CIGS thin film solar cells
NASA Astrophysics Data System (ADS)
Fan, Xiaojuan
2014-03-01
Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.
NASA Astrophysics Data System (ADS)
Peng, Zhuoyin; Liu, Zhou; Chen, Jianlin; Liao, Lida; Chen, Jian; Li, Cong; Li, Wei
2018-06-01
With the development of photovoltaic industry, the cost of photovoltaic power generation has become the significant issue. And the metallization process has decided the cost of original materials and photovoltaic efficiency of the solar cells. Nowadays, double printing process has been introduced instead of one-step printing process for front contact of polycrystalline silicon solar cells, which can effectively improve the photovoltaic conversion efficiency of silicon solar cells. Here, the relative cheap Cu paste has replaced the expensive Ag paste to form Ag/Cu composite front contact of silicon solar cells. The photovoltaic performance and the cost of photovoltaic power generation have been investigated. With the optimization on structure and height of Cu finger layer for Ag/Cu composite double-printed front contact, the silicon solar cells have exhibited a photovoltaic conversion efficiency of 18.41%, which has reduced 3.42 cent per Watt for the cost of photovoltaic power generation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassett, J.M.
1988-01-01
Metal-aquatic biota interactions are important in both natural and engineered systems. In this study, the uptake of cadmium, strontium and lead by the unicellular green alga Chlorella (UTEX 252) was investigated. Variables included metal concentration, pH, and ionic strength. Data gathered included dry weights (mg/l), cell counts (cells/ml), electrophoretic mobilities (EPMs, {mu}m/sec/V/cm) of metal-free and metal-exposed cells, and metal uptake - difference in concentration in filtrate of cell-metal and cell-free metal solutions. Derived data included cell volumes and surface area, uptake on a {mu}M/m{sup 2} basis, {zeta}-potentials, diffuse layer potentials and charge densities. Typical uptake values were 1.1, 5.2, andmore » 6 {mu}M/m{sup 2} for Cd, Pb, and Sr, respectively, from solutions of pH 6, ionic strength 0.02M, and metal concentration 10{sup {minus}4} M. Cell EPMs were insensitive to metal; under certain conditions, however, (pM > 4, pH > 8), cadmium exposed cells exhibited a reversal in surface charge from negative to positive. The chemical equilibrium model MINEQL1 + STANFORD was used to model algal surface properties and metal uptake. Input data included site pK, density, and {Delta}pK, estimated from EPM-pH data. The model described surface properties of Chlorella (UTEX 252) as judged by a close fit of {zeta}-potentials and model-derived diffuse layer potentials. Metal uptake was modelled by adjusting site density and/or metal-surface site equilibrium constants. Attempts to model surface properties and metal uptake simultaneously were not successful.« less
Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells.
Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa
2016-05-04
Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm(2) and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells.
Digital Printing of Titanium Dioxide for Dye Sensitized Solar Cells
Cherrington, Ruth; Wood, Benjamin Michael; Salaoru, Iulia; Goodship, Vannessa
2016-01-01
Silicon solar cell manufacturing is an expensive and high energy consuming process. In contrast, dye sensitized solar cell production is less environmentally damaging with lower processing temperatures presenting a viable and low cost alternative to conventional production. This paper further enhances these environmental credentials by evaluating the digital printing and therefore additive production route for these cells. This is achieved here by investigating the formation and performance of a metal oxide photoelectrode using nanoparticle sized titanium dioxide. An ink-jettable material was formulated, characterized and printed with a piezoelectric inkjet head to produce a 2.6 µm thick layer. The resultant printed layer was fabricated into a functioning cell with an active area of 0.25 cm2 and a power conversion efficiency of 3.5%. The binder-free formulation resulted in a reduced processing temperature of 250 °C, compatible with flexible polyamide substrates which are stable up to temperatures of 350 ˚C. The authors are continuing to develop this process route by investigating inkjet printing of other layers within dye sensitized solar cells. PMID:27166761
DOE Office of Scientific and Technical Information (OSTI.GOV)
Becker, Ines; Schillig, Cora
A double-sided adhesive metal-based tape for use as contacting aid for SOFC fuel cells is provided. The double-sided metal-based adhesive tape is suitable for simplifying the construction of cell bundles. The double-sided metal-based adhesive tape is used for electrical contacting of the cell connector with the anode and for electrical contacting of the interconnector of the fuel cells with the cell connector. A method for producing the double-sided adhesive metal-base tape is also provided.
Parasitic corrosion-resistant anode for use in metal/air or metal/O/sub 2/ cells
Joy, R.W.; Smith, D.F.
1982-09-20
A consumable metal anode is described which is used in refuelable electrochemical cells and wherein at least a peripheral edge portion of the anode is protected against a corrosive alkaline environment of the cell by the application of a thin metal coating, the coating being formed of metals such as nickel, silver, and gold.
Durst, Julien; Chatenet, Marian; Maillard, Frédéric
2012-10-05
Proton-exchange membrane fuel cells (PEMFCs) use carbon-supported nanoparticles based on platinum and its alloys to accelerate the rate of the sluggish oxygen-reduction reaction (ORR). The most common metals alloyed to Pt include Co, Ni and Cu, and are thermodynamically unstable in the PEMFC environment. Their dissolution yields the formation and redistribution of metal cations (M(y+)) within the membrane electrode assembly (MEA). Metal cations can also contaminate the MEA when metallic bipolar plates are used as current collectors. In each case, the electrical performance of the PEMFC severely decreases, an effect that is commonly attributed to the poisoning of the sulfonic acid groups of the perfluorosulfonated membrane (PEM) and the resulting decrease of the proton transport properties. However, the impact of metal cations on the kinetics of electrochemical reactions involving adsorption/desorption and bond-breaking processes remains poorly understood. In this paper, we use model electrodes to highlight the effect of metal cations on Pt/C nanoparticles coated or not with a perfluorosulfonated ionomer for the CO electrooxidation reaction and the oxygen reduction reaction. We show that metal cations negatively impact the ORR kinetics and the mass-transport resistance of molecular oxygen. However, the specific adsorption of sulfonate groups of the Nafion® ionomer locally modifies the double layer structure and increases the tolerance to metal cations, even in the presence of sulphate ions in the electrolyte. The survey is extended by using an ultramicroelectrode with cavity and a solid state cell (SSC) specifically developed for this study.
Synergistic effect of graphene oxide on the methanol oxidation for fuel cell application
NASA Astrophysics Data System (ADS)
Siwal, Samarjeet; Ghosh, Sarit; Nandi, Debkumar; Devi, Nishu; Perla, Venkata K.; Barik, Rasmita; Mallick, Kaushik
2017-09-01
Aromatic polypyrene was synthesized by the oxidative polymerization of pyrene with potassium tetrachloropalladate (II), as oxidant. During the polymerization process the palladium salt was reduced to metallic palladium and forms the metal-polymer composite material. Polypyrene stabilized palladium nanoparticles showed electrocatalytic activity toward the oxidation of methanol. The performance of the electrocatalytic activity was substantially improved with the incorporation of graphene oxide to the palladium-polypyrene composite and the synergistic performance was attributed to the electronic and structural properties of the system.
MRP proteins as potential mediators of heavy metal resistance in zebrafish cells.
Long, Yong; Li, Qing; Wang, Youhui; Cui, Zongbin
2011-04-01
Acquired resistance of mammalian cells to heavy metals is closely relevant to enhanced expression of several multidrug resistance-associated proteins (MRP), but it remains unclear whether MRP proteins confer resistance to heavy metals in zebrafish. In this study, we obtained zebrafish (Danio rerio) fibroblast-like ZF4 cells with resistance to toxic heavy metals after chronic cadmium exposure and selection for 6months. These cadmium-resistant cells (ZF4-Cd) were maintained in 5μM cadmium and displayed cross-resistance to cadmium, mercury, arsenite and arsenate. ZF4-Cd cells remained the resistance to heavy metals after protracted culture in cadmium-free medium. In comparison with ZF4-WT cells, ZF4-Cd cells exhibited accelerated rate of cadmium excretion, enhanced activity of MRP-like transport, elevated expression of abcc2, abcc4 and mt2 genes, and increased content of cellular GSH. Inhibition of MRP-like transport activity, GSH biosynthesis and GST activity significantly attenuated the resistance of ZF4-Cd cells to heavy metals. The results indicate that some of MRP transporters are involved in the efflux of heavy metals conjugated with cellular GSH and thus play crucial roles in heavy metal detoxification of zebrafish cells. Copyright © 2010 Elsevier Inc. All rights reserved.
Process for continuous production of metallic uranium and uranium alloys
Hayden, H.W. Jr.; Horton, J.A.; Elliott, G.R.B.
1995-06-06
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO{sub 3}), or any other substantially stable uranium oxide, to form the uranium dioxide (UO{sub 2}). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl{sub 4}), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation. 4 figs.
Process for continuous production of metallic uranium and uranium alloys
Hayden, Jr., Howard W.; Horton, James A.; Elliott, Guy R. B.
1995-01-01
A method is described for forming metallic uranium, or a uranium alloy, from uranium oxide in a manner which substantially eliminates the formation of uranium-containing wastes. A source of uranium dioxide is first provided, for example, by reducing uranium trioxide (UO.sub.3), or any other substantially stable uranium oxide, to form the uranium dioxide (UO.sub.2). This uranium dioxide is then chlorinated to form uranium tetrachloride (UCl.sub.4), and the uranium tetrachloride is then reduced to metallic uranium by reacting the uranium chloride with a metal which will form the chloride of the metal. This last step may be carried out in the presence of another metal capable of forming one or more alloys with metallic uranium to thereby lower the melting point of the reduced uranium product. The metal chloride formed during the uranium tetrachloride reduction step may then be reduced in an electrolysis cell to recover and recycle the metal back to the uranium tetrachloride reduction operation and the chlorine gas back to the uranium dioxide chlorination operation.
Large-Grain Tin-Rich Perovskite Films for Efficient Solar Cells via Metal Alloying Technique.
Tavakoli, Mohammad Mahdi; Zakeeruddin, Shaik Mohammed; Grätzel, Michael; Fan, Zhiyong
2018-03-01
Fast research progress on lead halide perovskite solar cells has been achieved in the past a few years. However, the presence of lead (Pb) in perovskite composition as a toxic element still remains a major issue for large-scale deployment. In this work, a novel and facile technique is presented to fabricate tin (Sn)-rich perovskite film using metal precursors and an alloying technique. Herein, the perovskite films are formed as a result of the reaction between Sn/Pb binary alloy metal precursors and methylammonium iodide (MAI) vapor in a chemical vapor deposition process carried out at 185 °C. It is found that in this approach the Pb/Sn precursors are first converted to (Pb/Sn)I 2 and further reaction with MAI vapor leads to the formation of perovskite films. By using Pb-Sn eutectic alloy, perovskite films with large grain sizes up to 5 µm can be grown directly from liquid phase metal. Consequently, using an alloying technique and this unique growth mechanism, a less-toxic and efficient perovskite solar cell with a power conversion efficiency (PCE) of 14.04% is demonstrated, while pure Sn and Pb perovskite solar cells prepared in this manner yield PCEs of 4.62% and 14.21%, respectively. It is found that this alloying technique can open up a new direction to further explore different alloy systems (binary or ternary alloys) with even lower melting point. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Min Ju; Kim, Hee-Dong; Man Hong, Seok
2014-03-07
The metal nanocrystals (NCs) embedded-NiN-based resistive random access memory cells are demonstrated using several metal NCs (i.e., Pt, Ni, and Ti) with different physical parameters in order to investigate the metal NC's dependence on resistive switching (RS) characteristics. First, depending on the electronegativity of metal, the size of metal NCs is determined and this affects the operating current of memory cells. If metal NCs with high electronegativity are incorporated, the size of the NCs is reduced; hence, the operating current is reduced owing to the reduced density of the electric field around the metal NCs. Second, the potential wells aremore » formed by the difference of work function between the metal NCs and active layer, and the barrier height of the potential wells affects the level of operating voltage as well as the conduction mechanism of metal NCs embedded memory cells. Therefore, by understanding these correlations between the active layer and embedded metal NCs, we can optimize the RS properties of metal NCs embedded memory cells as well as predict their conduction mechanisms.« less
NASA Astrophysics Data System (ADS)
You, Eunyoung
Nanostructured metal oxide films have many applications in catalysis, microelectronics, microfluidics, photovoltaics and other fields. Since the performance of a device depends greatly on the structure of the material, the development of methodologies that enable prescriptive control of morphology are of great interest. The focus of this work is to control the structure and properties of the nanostructured metal oxide films using novel synthetic schemes in supercritical fluids and to use those films as key building components in alternative energy applications. A supercritical fluid is a substance at a temperature and pressure above its critical point. It typically exhibits gas-like transport properties and liquid-like densities. Supercritical fluid deposition (SFD) utilizes these properties of supercritical CO2 (scCO2) to deposit chemically pure metal, oxides and alloys of metal films. SFD is a chemical vapor deposition (CVD)-like process in the sense that it uses similar metal organic precursors and deposits films at elevated temperatures. Instead of vaporizing or subliming the precursors, they are dissolved in supercritical fluids. SFD has typically shown to exhibit higher precursor concentrations, lower deposition temperatures, conformal deposition of films on high aspect ratio features as compared to CVD. In2 O3, ZnO and SnO2 are attractive materials because they are used in transparent conductors. SFD of these materials were studied and In2 O3 deposition kinetics using tris(2,2,6,6-tetramethyl-3,5-heptanedionato) In (III) as precursor were determined. Growth rate dependence on the deposition temperature and the precursor concentrations were studied and the physicochemical and optical properties of In2 O3 films were characterized. Metal oxide nanochannels that can potentially be used for microfluidics have been fabricated by sequentially performing nanoimprint lithography (NIL) and SFD. NIL was used to pattern photoresist grating on substrates and SFD of TiO2 was performed thereafter. Subsequent calcination of the samples at high temperature of 400 °C revealed TiO2 nanochannels. H2-assisted-codeposition of Pt and cerium oxide using SFD was performed on porous carbon substrates for their use as anodes for direct methanol fuel cells. X-ray photoelectron analysis revealed that Pt was deposited as a pure metal and Ce was deposited as an oxide. Electrochemical analysis of a full cell revealed that an anode prepared with SFD exhibited better performance than that prepared with conventional brush-painting method. The second process that was developed is a direct spray-on technique to rapidly deposit crystalline nanoscale dendritic TiO2 onto a solid surface. This technique employs atomization of precursor solutions in supercritical fluids combined with the plasma thermal spraying. A solution of metal oxide precursor in scCO2 was expanded across a nozzle into the plasma jet where it is converted to metal oxide. We have investigated TiO2 as our model system using titanium tetra isopropoxide (Ttip) as a precursor. The film structure depends on key process variables including precursor concentration, precursor solution flow rate and plasma gun to substrate distance. The high surface area of the deposited films is attractive for applications in photovoltaics and we have fabricated dye-sensitized solar cells using these films.
Environmental tests of metallization systems for terrestrial photovoltaic cells
NASA Technical Reports Server (NTRS)
Alexander, P., Jr.
1985-01-01
Seven different solar cell metallization systems were subjected to temperature cycling tests and humidity tests. Temperature cycling excursions were -50 deg C to 150 deg C per cycle. Humidity conditions were 70 deg C at 98% relative humidity. The seven metallization systems were: Ti/Ag, Ti/Pd/Ag, Ti/Pd/Cu, Ni/Cu, Pd/Ni/Solder, Cr/Pd/Ag, and thick film Ag. All metallization systems showed a slight to moderate decrease in cell efficiencies after subjection to 1000 temperature cycles. Six of the seven metallization systems also evidenced slight increases in cell efficiencies after moderate numbers of cycles, generally less than 100 cycles. The copper based systems showed the largest decrease in cell efficiencies after temperature cycling. All metallization systems showed moderate to large decreases in cell efficiencies after 123 days of humidity exposure. The copper based systems again showed the largest decrease in cell efficiencies after humidity exposure. Graphs of the environmental exposures versus cell efficiencies are presented for each metallization system, as well as environmental exposures versus fill factors or series resistance.
Code of Federal Regulations, 2011 CFR
2011-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Mercury § 61.50 Applicability. The provisions of this subpart are applicable to those stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal...
Code of Federal Regulations, 2013 CFR
2013-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Mercury § 61.50 Applicability. The provisions of this subpart are applicable to those stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal...
Code of Federal Regulations, 2014 CFR
2014-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Mercury § 61.50 Applicability. The provisions of this subpart are applicable to those stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal...
Code of Federal Regulations, 2012 CFR
2012-07-01
... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Mercury § 61.50 Applicability. The provisions of this subpart are applicable to those stationary sources which process mercury ore to recover mercury, use mercury chlor-alkali cells to produce chlorine gas and alkali metal...
Screen printing technology applied to silicon solar cell fabrication
NASA Technical Reports Server (NTRS)
Thornhill, J. W.; Sipperly, W. E.
1980-01-01
The process for producing space qualified solar cells in both the conventional and wraparound configuration using screen printing techniques was investigated. Process modifications were chosen that could be easily automated or mechanized. Work was accomplished to optimize the tradeoffs associated with gridline spacing, gridline definition and junction depth. An extensive search for possible front contact metallization was completed. The back surface field structures along with the screen printed back contacts were optimized to produce open circuit voltages of at least an average of 600 millivolts. After all intended modifications on the process sequence were accomplished, the cells were exhaustively tested. Electrical tests at AMO and 28 C were made before and after boiling water immersion, thermal shock, and storage under conditions of high temperature and high humidity.
49 CFR 171.24 - Additional requirements for the use of the ICAO Technical Instructions.
Code of Federal Regulations, 2014 CFR
2014-10-01
.... (ii) Lithium metal cells and batteries. Lithium metal cells and batteries (UN3090) are forbidden for transport aboard passenger-carrying aircraft. The outside of each package that contains lithium metal cells or lithium metal batteries (UN3090) transported in accordance with Packing Instruction 968, Section...
Evariste, Lauris; Rioult, Damien; Brousseau, Pauline; Geffard, Alain; David, Elise; Auffret, Michel; Fournier, Michel; Betoulle, Stéphane
2017-03-01
Increasing discharge of industrial wastes into the environment results in pollution transfer towards hydrosystems. These activities release heavy metals such as cadmium, known as persistent pollutant that is accumulated by molluscs and exercise immunotoxicological effects. Among molluscs, the zebra mussel, Dreissena polymorpha constitutes a suitable support for freshwater ecotoxicological studies. In molluscs, homeostasis maintain is ensured in part by hemocytes that are composed of several cell populations involved in multiple physiological processes such as cell-mediated immune response or metal metabolism. Thus, hemocytes constitute a target of concern to study adverse effects of heavy metals. The objectives of this work were to determine whether immune-related endpoints assessed were of different sensitivity to cadmium and whether hemocyte functionalities were differentially affected depending on hemocyte subpopulation considered. Hemocytes were exposed ex vivo to concentrations of cadmium ranging from 10 -6 M to 10 -3 M for 21h prior flow cytometric analysis of cellular markers. Measured parameters (viability, phagocytosis, oxidative activity, lysosomal content) decreased in a dose-dependent manner with sensitivity differences depending on endpoint and cell type considered. Our results indicated that phagocytosis related endpoints were the most sensitive studied mechanisms to cadmium compared to other markers with EC 50 of 3.71±0.53×10 -4 M for phagocytic activity and 2.79±0.19×10 -4 M considering mean number of beads per phagocytic cell. Lysosomal content of granulocytes was less affected compared to other cell types, indicating lower sensitivity to cadmium. This suggests that granulocyte population is greatly involved in metal metabolism. Mitochondrial activity was reduced only in blast-like hemocytes that are considered to be cell precursors. Impairment of these cell functionalities may potentially compromise functions ensured by differentiated cells. We concluded that analysis of hemocyte activities should be performed at sub-population scale for more accurate results in ecotoxicological studies. Copyright © 2016 Elsevier Inc. All rights reserved.
Thin silicon solar cell performance characteristics
NASA Technical Reports Server (NTRS)
Gay, C. F.
1978-01-01
Refined techniques for surface texturizing, back surface field and back surface reflector formation were evaluated for use with shallow junction, single-crystal silicon solar cells. Each process was characterized individually and collectively as a function of device thickness and bulk resistivity. Among the variables measured and reported are open circuit voltage, short circuit current and spectral response. Substantial improvements were obtained by the utilization of a low cost aluminum paste process to simultaneously remove the unwanted n(+) diffused region, form the back surface field and produce an ohmic contact metallization. The highly effective BSF which results from applying this process has allowed fabrication of cells 0.05 mm thick with initial outputs as high as 79.5 mW/4 sq cm (28 C, AM0) and superior electron radiation tolerance. Cells of 0.02 mm to 0.04 mm thickness have been fabricated with power to mass ratios well in excess of 2 watts per gram.
Comparison Through Image Analysis Between Al Foams Produced Using Two Different Methods
NASA Astrophysics Data System (ADS)
Boschetto, A.; Campana, F.; Pilone, D.
2014-02-01
Several methods are available for making metal foams. They allow to tailor their mechanical, thermal, acoustic, and electrical properties for specific applications by varying the relative density as well as the cell size and morphology. Foams have a very heterogeneous structure so that their properties may show a large scatter. In this paper, an aluminum foam produced by means of foaming of powder compacts and another one prepared via the infiltration process were analyzed and compared. Image analysis has been used as a useful tool to determine size, morphology, and distribution of cells in both foams and to correlate cell morphology with the considered manufacturing process. The results highlighted that cell size and morphology are strictly dependent upon the manufacturing method. This paper shows how some standard 2D morphological indicators may be usefully adopted to characterize foams whose structure derives from the specific manufacturing process.
Huang, Edwin P; Marquis, Christopher P; Gray, Peter P
2004-11-20
The suspension Chinese Hamster Ovary cell line, 13-10-302, utilizing the metallothionein (MT) expression system producing recombinant human growth hormone (hGH) was studied in a serum-free and cadmium-free medium at different fermentation scales and modes of operation. Initial experiments were carried out to optimize the concentration of metal addition to induce the MT promoter. Subsequently, the cultivation of the 13-10-302 cell line was scaled up from spinner flasks into bioreactors, and the cultivation duration was extended with fed-batch and perfusion strategies utilizing 180 microM zinc to induce the promoter controlling expression of recombinant hGH. It was shown that a fed-batch process could increase the maximum cell numbers twofold, from 3.3 to 6.3 x 10(6) cell/mL, over those obtained in normal batch fermentations, and this coupled with extended fermentation times resulted in a fourfold increase in final hGH titer, from 135 +/- 15 to 670 +/- 70 mg/L at a specific productivity q(hGH) value of 12 pg cell(-1)d(-1). The addition of sodium butyrate increased the specific productivity of hGH in cells to a value of approximately 48 pg cell(-1)d(-1), resulting in a final hGH titer of over a gram per liter during fed-batch runs. A BioSep acoustic cell recycler was used to retain the cells in the bioreactor during perfusion operation. It was necessary to maintain the specific feeding rates (SFR) above a value of 0.2 vvd/(10(6) cell/mL) to maintain the viability and productivity of the 13-10-302 cells; under these conditions the viable cell number increased to over 10(7) cell/mL and resulted in a volumetric productivity of over 120 mg(hGH) L(-1)d(-1). Process development described in this work demonstrates cultivation at various scales and sustained high levels of productivity under cadmium free condition in a CHO cell line utilizing an inducible metallothionein expression system. (c) 2004 Wiley Periodicals, Inc
Capacitor with a composite carbon foam electrode
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
1999-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.
Method for fabricating composite carbon foam
Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.
2001-01-01
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.
Capacitor with a composite carbon foam electrode
Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.
1999-04-27
Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.
Composite carbon foam electrode
Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.
1997-05-06
Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.
Willit, James L [Ratavia, IL
2007-09-11
An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.
Willit, James L [Batavia, IL
2010-09-21
An improved process and device for the recovery of the minor actinides and the transuranic elements (TRU's) from a molten salt electrolyte. The process involves placing the device, an electrically non-conducting barrier between an anode salt and a cathode salt. The porous barrier allows uranium to diffuse between the anode and cathode, yet slows the diffusion of uranium ions so as to cause depletion of uranium ions in the catholyte. This allows for the eventual preferential deposition of transuranics present in spent nuclear fuel such as Np, Pu, Am, Cm. The device also comprises an uranium oxidation anode. The oxidation anode is solid uranium metal in the form of spent nuclear fuel. The spent fuel is placed in a ferric metal anode basket which serves as the electrical lead or contact between the molten electrolyte and the anodic uranium metal.
NASA Astrophysics Data System (ADS)
Gesing, Adam J.; Das, Subodh K.
2017-02-01
With United States Department of Energy Advanced Research Project Agency funding, experimental proof-of-concept was demonstrated for RE-12TM electrorefining process of extraction of desired amount of Mg from recycled scrap secondary Al molten alloys. The key enabling technology for this process was the selection of the suitable electrolyte composition and operating temperature. The selection was made using the FactSage thermodynamic modeling software and the light metal, molten salt, and oxide thermodynamic databases. Modeling allowed prediction of the chemical equilibria, impurity contents in both anode and cathode products, and in the electrolyte. FactSage also provided data on the physical properties of the electrolyte and the molten metal phases including electrical conductivity and density of the molten phases. Further modeling permitted selection of electrode and cell construction materials chemically compatible with the combination of molten metals and the electrolyte.
NASA Astrophysics Data System (ADS)
Lun Li, Oi; Lee, Hoonseung; Ishizaki, Takahiro
2018-01-01
Carbon-based materials have been widely utilized as the electrode materials in energy conversion and storage technologies, such as fuel cells and metal-air batteries. In these systems, the oxygen reduction reaction is an important step that determines the overall performance. A novel synthesis route, named the solution plasma process, has been recently utilized to synthesize various types of metal-based and heteroatom-doped carbon catalysts. In this review, we summarize cutting-edge technologies involving the synthesis and modeling of carbon-supported catalysts synthesized via solution plasma process, followed by current progress on the electrocatalytic performance of these catalysts. This review provides the fundamental and state-of-the-art performance of solution-plasma-synthesized electrode materials, as well as the remaining scientific and technological challenges for this process.
All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode.
Yang, Kaiyu; Li, Fushan; Zhang, Jianhua; Veeramalai, Chandrasekar Perumal; Guo, Tailiang
2016-03-04
In this work, we report an all-solution route to produce semi-transparent high efficiency perovskite solar cells (PSCs). Instead of an energy-consuming vacuum process with metal deposition, the top electrode is simply deposited by spray-coating silver nanowires (AgNWs) under room temperature using fabrication conditions and solvents that do not damage or dissolve the underlying PSC. The as-fabricated semi-transparent perovskite solar cell shows a photovoltaic output with dual side illuminations due to the transparency of the AgNWs. With a back cover electrode, the open circuit voltage increases significantly from 1.01 to 1.16 V, yielding high power conversion efficiency from 7.98 to 10.64%.
All-Solution-Processed Metal-Oxide-Free Flexible Organic Solar Cells with Over 10% Efficiency.
Song, Wei; Fan, Xi; Xu, Bingang; Yan, Feng; Cui, Huiqin; Wei, Qiang; Peng, Ruixiang; Hong, Ling; Huang, Jiaming; Ge, Ziyi
2018-05-16
All-solution-processing at low temperatures is important and desirable for making printed photovoltaic devices and also offers the possibility of a safe and cost-effective fabrication environment for the devices. Herein, an all-solution-processed flexible organic solar cell (OSC) using poly(3,4-ethylenedioxythiophene):poly-(styrenesulfonate) electrodes is reported. The all-solution-processed flexible devices yield the highest power conversion efficiency of 10.12% with high fill factor of over 70%, which is the highest value for metal-oxide-free flexible OSCs reported so far. The enhanced performance is attributed to the newly developed gentle acid treatment at room temperature that enables a high-performance PEDOT:PSS/plastic underlying substrate with a matched work function (≈4.91 eV), and the interface engineering that endows the devices with better interface contacts and improved hole mobility. Furthermore, the flexible devices exhibit an excellent mechanical flexibility, as indicated by a high retention (≈94%) of the initial efficiency after 1000 bending cycles. This work provides a simple route to fabricate high-performance all-solution-processed flexible OSCs, which is important for the development of printing, blading, and roll-to-roll technologies. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hou, Jing; Liu, Xinhui; Wang, Juan; Zhao, Shengnan; Cui, Baoshan
2015-02-03
The effects of heavy metals in agricultural soils have received special attention due to their potential for accumulation in crops, which can affect species at all trophic levels. Therefore, there is a critical need for reliable bioassays for assessing risk levels due to heavy metals in agricultural soil. In the present study, we used microarrays to investigate changes in gene expression of Lycopersicon esculentum in response to Cd-, Cr-, Hg-, or Pb-spiked soil. Exposure to (1)/10 median lethal concentrations (LC50) of Cd, Cr, Hg, or Pb for 7 days resulted in expression changes in 29 Cd-specific, 58 Cr-specific, 192 Hg-specific and 864 Pb-specific genes as determined by microarray analysis, whereas conventional morphological and physiological bioassays did not reveal any toxicant stresses. Hierarchical clustering analysis showed that the characteristic gene expression profiles induced by Cd, Cr, Hg, and Pb were distinct from not only the control but also one another. Furthermore, a total of three genes related to "ion transport" for Cd, 14 genes related to "external encapsulating structure organization", "reproductive developmental process", "lipid metabolic process" and "response to stimulus" for Cr, 11 genes related to "cellular metabolic process" and "cellular response to stimulus" for Hg, 78 genes related to 20 biological processes (e.g., DNA metabolic process, monosaccharide catabolic process, cell division) for Pb were identified and selected as their potential biomarkers. These findings demonstrated that microarray-based analysis of Lycopersicon esculentum was a sensitive tool for the early detection of potential toxicity of heavy metals in agricultural soil, as well as an effective tool for identifying the heavy metal-specific genes, which should be useful for assessing risk levels due to heavy metals in agricultural soil.
NASA Technical Reports Server (NTRS)
Taylor, W.
1982-01-01
Printed nickel overplated with copper and applied on top of a predeposited silicon nitride antireflective coating system for metallizing solar cells was analyzed. The ESL D and E paste formulations, and the new formulations F, G, H, and D-1 were evaluated. The nickel thick films were tested after firing for stability in the cleaning and plating solutions used in the Vanguard-Pacific brush plating process. It was found that the films are very sensitive to the leaning and alkaline copper solutions. Less sensitivity was displayed to the neutral copper solution. Microscopic and SEM observations show segregation of frit at the silicon nitride thick film interface with loose frit residues after lifting off plated grid lines.
Method of acquiring an image from an optical structure having pixels with dedicated readout circuits
NASA Technical Reports Server (NTRS)
Fossum, Eric R. (Inventor); Mendis, Sunetra (Inventor); Kemeny, Sabrina E. (Inventor)
2006-01-01
An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate, a readout circuit including at least an output field effect transistor formed in the substrate, and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node connected to the output transistor and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node.
Kasoju, Naresh; Kubies, Dana; Kumorek, Marta M.; Kříž, Jan; Fábryová, Eva; Machová, Lud'ka; Kovářová, Jana; Rypáček, František
2014-01-01
The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS) based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T), a metallic conducting block (C) and a non-metallic reservoir tube (R), connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the “Dip TIPS” as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields. PMID:25275373
Kasoju, Naresh; Kubies, Dana; Kumorek, Marta M; Kříž, Jan; Fábryová, Eva; Machová, Lud'ka; Kovářová, Jana; Rypáček, František
2014-01-01
The porous polymer foams act as a template for neotissuegenesis in tissue engineering, and, as a reservoir for cell transplants such as pancreatic islets while simultaneously providing a functional interface with the host body. The fabrication of foams with the controlled shape, size and pore structure is of prime importance in various bioengineering applications. To this end, here we demonstrate a thermally induced phase separation (TIPS) based facile process for the fabrication of polymer foams with a controlled architecture. The setup comprises of a metallic template bar (T), a metallic conducting block (C) and a non-metallic reservoir tube (R), connected in sequence T-C-R. The process hereinafter termed as Dip TIPS, involves the dipping of the T-bar into a polymer solution, followed by filling of the R-tube with a freezing mixture to induce the phase separation of a polymer solution in the immediate vicinity of T-bar; Subsequent free-drying or freeze-extraction steps produced the polymer foams. An easy exchange of the T-bar of a spherical or rectangular shape allowed the fabrication of tubular, open- capsular and flat-sheet shaped foams. A mere change in the quenching time produced the foams with a thickness ranging from hundreds of microns to several millimeters. And, the pore size was conveniently controlled by varying either the polymer concentration or the quenching temperature. Subsequent in vivo studies in brown Norway rats for 4-weeks demonstrated the guided cell infiltration and homogenous cell distribution through the polymer matrix, without any fibrous capsule and necrotic core. In conclusion, the results show the "Dip TIPS" as a facile and adaptable process for the fabrication of anisotropic channeled porous polymer foams of various shapes and sizes for potential applications in tissue engineering, cell transplantation and other related fields.
Apparatus and method for the electrolytic production of metals
Sadoway, Donald R.
1991-01-01
Improved electrolytic cells and methods for producing metals by electrolytic reduction of a compound dissolved in a molten electrolyte are disclosed. In the improved cells and methods, a protective surface layer is formed upon at least one electrode in the electrolytic reduction cell and, optionally, upon the lining of the cell. This protective surface layer comprises a material that, at the operating conditions of the cell: (a) is not substantially reduced by the metal product; (b) is not substantially reactive with the cell electrolyte to form materials that are reactive with the metal product; and, (c) has an electrochemical potential that is more electronegative than that of the compound undergoing electrolysis to produce the metal product of the cell. The protective surface layer can be formed upon an electrode metal layer comprising a material, the oxide of which also satisfies the protective layer selection criteria. The protective layer material can also be used on the surface of a cell lining.
NASA Astrophysics Data System (ADS)
Zhu, Chenyuan; Lv, Yuting; Qian, Chao; Qian, Haixin; Jiao, Ting; Wang, Liqiang; Zhang, Fuqiang
2016-12-01
The aims of this study were to fabricate a novel titanium/silicon carbide (Ti/SiC) metal matrix nanocomposite (MMNC) by friction stir processing (FSP) and to investigate its microstructure and mechanical properties. In addition, the adhesion, proliferation and osteogenic differentiation of rat bone marrow stromal cells (BMSCs) on the nanocomposite surface were investigated. The MMNC microstructure was observed by both scanning and transmission electron microscopy. Mechanical properties were characterized by nanoindentation and Vickers hardness testing. Integrin β1 immunofluorescence, cell adhesion, and MTT assays were used to evaluate the effects of the nanocomposite on cell adhesion and proliferation. Osteogenic and angiogenic differentiation were evaluated by alkaline phosphatase (ALP) staining, ALP activity, PCR and osteocalcin immunofluorescence. The observed microstructures and mechanical properties clearly indicated that FSP is a very effective technique for modifying Ti/SiC MMNC to contain uniformly distributed nanoparticles. In the interiors of recrystallized grains, characteristics including twins, fine recrystallized grains, and dislocations formed concurrently. Adhesion, proliferation, and osteogenic and angiogenic differentiation of rat BMSCs were all enhanced on the novel Ti/SiC MMNC surface. In conclusion, nanocomposites modified using FSP technology not only have superior mechanical properties under stress-bearing conditions but also provide improved surface and physicochemical properties for cell attachment and osseointegration.
Patten, James W.
1978-01-01
Foamed metals and metal alloys which have a closed cellular structure are prepared by heating a metal body containing entrapped inert gas uniformly distributed throughout to a temperature above the melting point of the metal and maintaining the body at this temperature a period of time sufficient to permit the entrapped gas to expand, forming individual cells within the molten metal, thus expanding and foaming the molten metal. After cell formation has reached the desired amount, the foamed molten metal body is cooled to below the melting temperature of the metal. The void area or density of the foamed metal is controlled by predetermining the amount of inert gas entrapped in the metal body and by the period of time the metal body is maintained in the molten state. This method is useful for preparing foamed metals and metal alloys from any metal or other material of which a body containing entrapped inert gas can be prepared.
NASA Technical Reports Server (NTRS)
1982-01-01
Electroprocessing which is concerned with fluid dynamics of the electroreduction process to determine how it may be modified to improve the quality of the deposit was studied. Experimental techniques are used in this research. These techniques include laser Schlieren photography, laser Doppler velocimetry, and frequency spectrum analysis. Projects involve fluid flow studies of zinc plating in aqueous and molten salt electrolytes, study of cell design for magnesium chlorides electrolysis, digital signal analysis of manganese electrodeposition in molten chlorides, and electroplating of molybdenum from low melting salts. It is anticipated that the use of refractory metals as constructed materials in engineering will increase. Their electrodeposition from molten salt electrolytes is important in the extraction metallurgy of refractory metals.
Making High-Pass Filters For Submillimeter Waves
NASA Technical Reports Server (NTRS)
Siegel, Peter H.; Lichtenberger, John A.
1991-01-01
Micromachining-and-electroforming process makes rigid metal meshes with cells ranging in size from 0.002 in. to 0.05 in. square. Series of steps involving cutting, grinding, vapor deposition, and electroforming creates self-supporting, electrically thick mesh. Width of holes typically 1.2 times cutoff wavelength of dominant waveguide mode in hole. To obtain sharp frequency-cutoff characteristic, thickness of mesh made greater than one-half of guide wavelength of mode in hole. Meshes used as high-pass filters (dichroic plates) for submillimeter electromagnetic waves. Process not limited to square silicon wafers. Round wafers also used, with slightly more complication in grinding periphery. Grid in any pattern produced in electroforming mandrel. Any platable metal or alloy used for mesh.
NASA Astrophysics Data System (ADS)
Sun, Ling; Liu, Danxian
2018-07-01
To elevate power performance is crucial for commercally potential metal air fuel cells. Non-precious metal oxide-based oxygen reduction catalytic electrode is much desirable. Rational combination with low-dimension nanomaterials are greatly expected as the supports. Herein, carbon nanotubes (CNTs)-graphene supported manganese oxides composite catalysts (CMnCs) were obtained through activating commercial CNTs, namely, immersing them in acidic KMnO4 solution at room condition. It avoided conventional hydrothermal process and template surfactants. CMnCs-based air cathodes were made via pilot manufacture technology and equipped in fuel cells. Through characterizations, CNTs was found structurally defective and their outer walls suffered cracking into graphene nano pieces during processing, which further enhanced oxygen reduction reaction (ORR). Nano sized manganese oxide flakes were simulataneously grown on the CNTs-graphene surfaces, identified as the manganite. The areal distribution was found closely related to the additive amount of KMnO4 with regard to CNTs, somewhat influencing catalytic performance. The ORR activities of these CMnCs exceeded raw CNTs and referred manganese catalysts under identical conditions, and also the CMnCs air fuel cells were capable of outputting ∼15% more power at 100 mA/cm2. This reseach provided an inspiring pilot evidence for updating air fuel cell power from economical carbon as well as industrialization.
Teplensky, Michelle H; Fantham, Marcus; Li, Peng; Wang, Timothy C; Mehta, Joshua P; Young, Laurence J; Moghadam, Peyman Z; Hupp, Joseph T; Farha, Omar K; Kaminski, Clemens F; Fairen-Jimenez, David
2017-06-07
Utilizing metal-organic frameworks (MOFs) as a biological carrier can lower the amount of the active pharmaceutical ingredient (API) required in cancer treatments to provide a more efficacious therapy. In this work, we have developed a temperature treatment process for delaying the release of a model drug compound from the pores of NU-1000 and NU-901, while taking care to utilize these MOFs' large pore volume and size to achieve exceptional model drug loading percentages over 35 wt %. Video-rate super-resolution microscopy reveals movement of MOF particles when located outside of the cell boundary, and their subsequent immobilization when taken up by the cell. Through the use of optical sectioning structured illumination microscopy (SIM), we have captured high-resolution 3D images showing MOF uptake by HeLa cells over a 24 h period. We found that addition of a model drug compound into the MOF and the subsequent temperature treatment process does not affect the rate of MOF uptake by the cell. Endocytosis analysis revealed that MOFs are internalized by active transport and that inhibiting the caveolae-mediated pathway significantly reduced cellular uptake of MOFs. Encapsulation of an anticancer therapeutic, alpha-cyano-4-hydroxycinnamic acid (α-CHC), and subsequent temperature treatment produced loadings of up to 81 wt % and demonstrated efficacy at killing cells beyond the burst release effect.
Suresh, S; Unni, Gautam E; Satyanarayana, M; Sreekumaran Nair, A; Mahadevan Pillai, V P
2018-08-15
Guiding and capturing photons at the nanoscale by means of metal nanoparticles and interfacial engineering for preventing back-electron transfer are well documented techniques for performance enhancement in excitonic solar cells. Drifting from the conventional route, we propose a simple one-step process to integrate both metal nanoparticles and surface passivation layer in the porous photoanode matrix of a dye-sensitized solar cell. Silver nanoparticles and Nb 2 O 5 surface passivation layer are simultaneously deposited on the surface of a highly porous nanocrystalline TiO 2 photoanode, facilitating an absorption enhancement in the 465 nm and 570 nm wavelength region and a reduction in back-electron transfer in the fabricated dye-sensitized solar cells together. The TiO 2 photoanodes were prepared by spray pyrolysis deposition method from a colloidal solution of TiO 2 nanoparticles. An impressive 43% enhancement in device performance was accomplished in photoanodes having an Ag-incorporated Nb 2 O 5 passivation layer as against a cell without Ag nanoparticles. By introducing this idea, we were able to record two benefits - the metal nanoparticles function as the absorption enhancement agent, and the Nb 2 O 5 layer as surface passivation for TiO 2 nanoparticles and as an energy barrier layer for preventing back-electron transfer - in a single step. Copyright © 2018 Elsevier Inc. All rights reserved.
High energy density aluminum-oxygen cell
NASA Technical Reports Server (NTRS)
Rudd, E. J.; Gibbons, D. W.
1993-01-01
An alternative to a secondary battery as the power source for vehicle propulsion is a fuel cell. An example of this is the metal-air fuel cell using metals such as aluminum, zinc, or iron. Aluminum is a particularly attractive candidate, having high energy and power densities, being environmentally acceptable, and having a large, established industrial base for production and distribution. An aluminum-oxygen system is currently under development for a UUV test vehicle, and recent work has focussed upon low corrosion aluminum alloys and an electrolyte management system for processing the by-products of the energy-producing reactions. This paper summarizes the progress made in both areas. Anode materials capable of providing high utilization factors over current densities ranging from S to 150 mA/sq cm have been identified. These materials are essential to realizing an acceptable mission life for the UUV. With respect to the electrolyte management system, a filter/precipitator unit has been successfully operated for over 250 hours in a large scale, half-cell system.
Yuan, Zhihui; Ruan, Jujun; Li, Yaying; Qiu, Rongliang
2018-04-10
Bioleaching is a green recycling technology for recovering precious metals from waste printed circuit boards (WPCBs). However, this technology requires increasing cyanide production to obtain desirable recovery efficiency. Luria-Bertani medium (LB medium, containing tryptone 10 g/L, yeast extract 5 g/L, NaCl 10 g/L) was commonly used in bioleaching of precious metal. In this study, results showed that LB medium did not produce highest yield of cyanide. Under optimal culture conditions (25 °C, pH 7.5), the maximum cyanide yield of the optimized medium (containing tryptone 6 g/L and yeast extract 5 g/L) was 1.5 times as high as that of LB medium. In addition, kinetics and relationship of cell growth and cyanide production was studied. Data of cell growth fitted logistics model well. Allometric model was demonstrated effective in describing relationship between cell growth and cyanide production. By inserting logistics equation into allometric equation, we got a novel hybrid equation containing five parameters. Kinetic data for cyanide production were well fitted to the new model. Model parameters reflected both cell growth and cyanide production process. Copyright © 2018 Elsevier B.V. All rights reserved.
Yong, Ping; Mikheenko, Iryna P; Deplanche, Kevin; Redwood, Mark D; Macaskie, Lynne E
2010-12-01
Bio-manufacturing of nano-scale palladium was achieved via enzymatically-mediated deposition of Pd from solution using Desulfovibrio desulfuricans, Escherichia coli and Cupriavidus metallidurans. Dried 'Bio-Pd' materials were sintered, applied onto carbon papers and tested as anodes in a proton exchange membrane (PEM) fuel cell for power production. At a Pd(0) loading of 25% by mass the fuel cell power using Bio-Pd( D. desulfuricans ) (positive control) and Bio-Pd( E. coli ) (negative control) was ~140 and ~30 mW respectively. Bio-Pd( C. metallidurans ) was intermediate between these with a power output of ~60 mW. An engineered strain of E. coli (IC007) was previously reported to give a Bio-Pd that was >3-fold more active than Bio-Pd of the parent E. coli MC4100 (i.e. a power output of >110 mW). Using this strain, a mixed metallic catalyst was manufactured from an industrial processing waste. This 'Bio-precious metal' ('Bio-PM') gave ~68% of the power output as commercial Pd(0) and ~50% of that of Bio-Pd( D. desulfuricans ) when used as fuel cell anodic material. The results are discussed in relation to integrated bioprocessing for clean energy.
Ultralight amorphous silicon alloy photovoltaic modules for space and terrestrial applications
NASA Astrophysics Data System (ADS)
Hanak, J. J.; Fulton, C.; Myatt, A.; Nath, P.; Woodyard, J. R.
This paper gives a review and an update on recently developed ultralight photovoltaic modules based on amorphous silicon (a-Si) alloys. They consist of tandem-junction solar cells deposited by a continuous, roll-to-roll process onto thin, foil substrates of bare metal, high temperature resin or metal coated with insulators. They have the following features: size, up to 71 cm x 30.5 cm; total thickness, 8 to 50 microns; power-to-weight at AM1, 2.4 kW/kg; and power-to-volume ratio 6.5 MW/cu m. Cells of a-Si alloys are over 50 times more tolerant to irradiation with 1 MeV and with 200 keV protons than crystalline cells and the damage is easily annealable. The modules have high power density and stability, they are portable, stowable, deployable, retractable, tolerant to radiation and meteorite or projectile impact and attractive for terrestrial and aerospace applications.
Further study of inversion layer MIS solar cells
NASA Technical Reports Server (NTRS)
Ho, Fat Duen
1992-01-01
Many inversion layer metal-insulator-semiconductor (IL/MIS) solar cells have been fabricated. As of today, the best cell fabricated by us has a 9.138 percent AMO efficiency, with FF = 0.641, V(sub OC) = 0.557 V, and I(sub SC) = 26.9 micro A. Efforts made for fabricating an IL/MOS solar cell with reasonable efficiencies are reported. The more accurate control of the thickness of the thin layer of oxide between aluminum and silicon of the MIS contacts has been achieved by using two different process methods. Comparison of these two different thin oxide processings is reported. The effects of annealing time of the sample are discussed. The range of the resistivity of the substrates used in the IL cell fabrication is experimentally estimated. Theoretical study of the MIS contacts under dark conditions is addressed.
Electrochemical cell utilizing molten alkali metal electrode-reactant
Virkar, Anil V.; Miller, Gerald R.
1983-11-04
An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.
Capillary flow of amorphous metal for high performance electrode
Kim, Se Yun; Kim, Suk Jun; Jee, Sang Soo; Park, Jin Man; Park, Keum Hwan; Park, Sung Chan; Cho, Eun Ae; Lee, Jun Ho; Song, In Yong; Lee, Sang Mock; Han, In Taek; Lim, Ka Ram; Kim, Won Tae; Park, Ju Cheol; Eckert, Jürgen; Kim, Do Hyang; Lee, Eun-Sung
2013-01-01
Metallic glass (MG) assists electrical contact of screen-printed silver electrodes and leads to comparable electrode performance to that of electroplated electrodes. For high electrode performance, MG needs to be infiltrated into nanometer-scale cavities between Ag particles and reacts with them. Here, we show that the MG in the supercooled state can fill the gap between Ag particles within a remarkably short time due to capillary effect. The flow behavior of the MG is revealed by computational fluid dynamics and density funtional theory simulation. Also, we suggest the formation mechanism of the Ag electrodes, and demonstrate the criteria of MG for higher electrode performance. Consequently, when Al85Ni5Y8Co2 MG is added in the Ag electrodes, cell efficiency is enhanced up to 20.30% which is the highest efficiency reported so far for screen-printed interdigitated back contact solar cells. These results show the possibility for the replacement of electroplating process to screen-printing process. PMID:23851671
Jensen, Heather M.; TerAvest, Michaela A.; Kokish, Mark G.; ...
2016-03-22
Introducing extracellular electron transfer pathways into heterologous organisms offers the opportunity to explore fundamental biogeochemical processes and to biologically alter redox states of exogenous metals for various applications. While expression of the MtrCAB electron nanoconduit from Shewanella oneidensis MR-1 permits extracellular electron transfer in Escherichia coli, the low electron flux and absence of growth in these cells limits their practicality for such applications. In this paper, we investigate how the rate of electron transfer to extracellular Fe(III) and cell survival in engineered E. coli are affected by mimicking different features of the S. oneidensis pathway: the number of electron nanoconduits,more » the link between the quinol pool and MtrA, and the presence of flavin-dependent electron transfer. While increasing the number of pathways does not significantly improve the extracellular electron transfer rate or cell survival, using the native inner membrane component, CymA, significantly improves the reduction rate of extracellular acceptors and increases cell viability. Strikingly, introducing both CymA and riboflavin to Mtr-expressing E. coli also allowed these cells to couple metal reduction to growth, which is the first time an increase in biomass of an engineered E. coli has been observed under Fe 2O 3 (s) reducing conditions. Overall and finally, this work provides engineered E. coli strains for modulating extracellular metal reduction and elucidates critical factors for engineering extracellular electron transfer in heterologous organisms.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, Heather M.; TerAvest, Michaela A.; Kokish, Mark G.
Introducing extracellular electron transfer pathways into heterologous organisms offers the opportunity to explore fundamental biogeochemical processes and to biologically alter redox states of exogenous metals for various applications. While expression of the MtrCAB electron nanoconduit from Shewanella oneidensis MR-1 permits extracellular electron transfer in Escherichia coli, the low electron flux and absence of growth in these cells limits their practicality for such applications. In this paper, we investigate how the rate of electron transfer to extracellular Fe(III) and cell survival in engineered E. coli are affected by mimicking different features of the S. oneidensis pathway: the number of electron nanoconduits,more » the link between the quinol pool and MtrA, and the presence of flavin-dependent electron transfer. While increasing the number of pathways does not significantly improve the extracellular electron transfer rate or cell survival, using the native inner membrane component, CymA, significantly improves the reduction rate of extracellular acceptors and increases cell viability. Strikingly, introducing both CymA and riboflavin to Mtr-expressing E. coli also allowed these cells to couple metal reduction to growth, which is the first time an increase in biomass of an engineered E. coli has been observed under Fe 2O 3 (s) reducing conditions. Overall and finally, this work provides engineered E. coli strains for modulating extracellular metal reduction and elucidates critical factors for engineering extracellular electron transfer in heterologous organisms.« less
Accumulation of metals by microorganisms — processes and importance for soil systems
NASA Astrophysics Data System (ADS)
Ledin, Maria
2000-08-01
Metal accumulation by solid substances can counteract metal mobilization in the environment if the solid substance is immobile. Microorganisms have a high surface area-to-volume ratio because of their small size and therefore provide a large contact area that can interact with metals in the surrounding environment. Microbial metal accumulation has received much attention in the last years due to the potential use of microorganisms for cleaning metal-polluted water. However, considerably less attention has been paid to the role of microorganisms for metal mobility in soil even though the same processes may occur there. Therefore, this paper highlights this area. The different accumulation processes that microorganisms perform are analyzed and their potential significance in soil systems is discussed. Different kinds of mechanisms can be involved in the accumulation of metals by microorganisms, e.g. adsorption, precipitation, complexation and active transport into the cell. Physicochemical parameters like pH and ionic composition, as well as biological factors are of importance for the magnitude of accumulation. Often large amounts of metals can be accumulated with varying specificity, and microorganisms may provide nucleation sites for mineral formation. Several studies of microbial metal accumulation have been made with different methods and aims. Most of these studies concern single-component systems with one organism at a time. Data from accumulation experiments with pure cultures of microorganisms have been used to model the overall metal retention in soil. A further development is experimental model systems using various solid soil components in salt medium. Microbial metal accumulation is difficult to study in situ, but some experimental methods have been applied as tools for studying real soil systems, e.g. litter bags buried in soil containing microorganisms, a method where discs with microorganisms have been put onto agar plates with soil extracts, and comparison of sterilized and non-sterilized soils or soils with or without nutrient amendment. Different aspects of microbial metal accumulation are emphasized with the different methods applied. Single-component systems have the advantage of providing excellent information of the metal binding properties of microorganisms but cannot directly be applied to metal behavior in the heterogenous systems that real soils constitute. Studies focused on the behavior of metals in real soils can, in contrast, provide information on the overall metal distribution but less insight into the processes involved. Obviously, a combination of approaches is needed to describe metal distribution and mobility in polluted soil such as areas around mines. Different kinds of multi-component systems as well as modelling may bridge the gap between these two types of studies. Several experimental methods, complementary to each other and designed to allow for comparison, may emphasize different aspects of metal accumulation and should therefore be considered. To summarize, there are studies that indicate that microorganisms may also accumulate metals in soil and that the amounts may be considerable. However, much work remains to be done, with the focus of microorganisms in soil. It is also important to put microbial metal accumulation in relation to other microbial processes in soil, which can influence metal mobility, to determine the overall influence of soil microorganisms on metal mobility, and to be able to quantify these processes.
Huang, Yuhong; Wei, Oiang; Chu, Chung-tse; Zheng, Haixing
2001-01-01
Metal nitride, carbonitride, and oxycarbonitride powder with high surface area (up to 150 m.sup.2 /g) is prepared by using sol-gel process. The metal organic precursor, alkoxides or amides, is synthesized firstly. The metal organic precursor is modified by using unhydrolyzable organic ligands or templates. A wet gel is formed then by hydrolysis and condensation process. The solvent in the wet gel is then be removed supercritically to form porous amorphous hydroxide. This porous hydroxide materials is sintered to 725.degree. C. under the ammonia flow and porous nitride powder is formed. The other way to obtain high surface area nitride, carbonitride, and oxycarbonitride powder is to pyrolyze polymerized templated metal amides aerogel in an inert atmosphere. The electrochemical capacitors are prepared by using sol-gel prepared nitride, carbonitride, and oxycarbonitride powder. Two methods are used to assemble the capacitors. Electrode is formed either by pressing the mixture of nitride powder and binder to a foil, or by depositing electrode coating onto metal current collector. The binder or coating is converted into a continuous network of electrode material after thermal treatment to provide enhanced energy and power density. Liquid electrolyte is soaked into porous electrode. The electrochemical capacitor assembly further has a porous separator layer between two electrodes/electrolyte and forming a unit cell.
Advancement on Lead-Free Organic-Inorganic Halide Perovskite Solar Cells: A Review.
Sani, Faruk; Shafie, Suhaidi; Lim, Hong Ngee; Musa, Abubakar Ohinoyi
2018-06-14
Remarkable attention has been committed to the recently discovered cost effective and solution processable lead-free organic-inorganic halide perovskite solar cells. Recent studies have reported that, within five years, the reported efficiency has reached 9.0%, which makes them an extremely promising and fast developing candidate to compete with conventional lead-based perovskite solar cells. The major challenge associated with the conventional perovskite solar cells is the toxic nature of lead (Pb) used in the active layer of perovskite material. If lead continues to be used in fabricating solar cells, negative health impacts will result in the environment due to the toxicity of lead. Alternatively, lead free perovskite solar cells could give a safe way by substituting low-cost, abundant and non toxic material. This review focuses on formability of lead-free organic-inorganic halide perovskite, alternative metal cations candidates to replace lead (Pb), and possible substitutions of organic cations, as well as halide anions in the lead-free organic-inorganic halide perovskite architecture. Furthermore, the review gives highlights on the impact of organic cations, metal cations and inorganic anions on stability and the overall performance of lead free perovskite solar cells.
Mycobacteria, Metals, and the Macrophage
Niederweis, Michael; Wolschendorf, Frank; Mitra, Avishek; Neyrolles, Olivier
2015-01-01
Summary Mycobacterium tuberculosis is a facultative intracellular pathogen that thrives inside host macrophages. A key trait of M. tuberculosis is to exploit and manipulate metal cation trafficking inside infected macrophages to ensure survival and replication inside the phagosome. Here we describe the recent fascinating discoveries that the mammalian immune system responds to infections with M. tuberculosis by overloading the phagosome with copper and zinc, two metals which are essential nutrients in small quantities but are toxic in excess. M. tuberculosis has developed multi-faceted resistance mechanisms to protect itself from metal toxicity including control of uptake, sequestration inside the cell, oxidation, and efflux. The host response to infections combines this metal poisoning strategy with nutritional immunity mechanisms that deprive M. tuberculosis from metals such as iron and manganese to prevent bacterial replication. Both immune mechanisms rely on the translocation of metal transporter proteins to the phagosomal membrane during the maturation process of the phagosome. This review summarizes these recent findings and discusses how metal-targeted approaches might complement existing TB chemotherapeutic regimens with novel anti-infective therapies. PMID:25703564
The Unique Biogeochemical Signature of the Marine Diazotroph Trichodesmium
Nuester, Jochen; Vogt, Stefan; Newville, Matthew; Kustka, Adam B.; Twining, Benjamin S.
2012-01-01
The elemental composition of phytoplankton can depart from canonical Redfield values under conditions of nutrient limitation or production (e.g., N fixation). Similarly, the trace metal metallome of phytoplankton may be expected to vary as a function of both ambient nutrient concentrations and the biochemical processes of the cell. Diazotrophs such as the colonial cyanobacteria Trichodesmium are likely to have unique metal signatures due to their cell physiology. We present metal (Fe, V, Zn, Ni, Mo, Mn, Cu, Cd) quotas for Trichodesmium collected from the Sargasso Sea which highlight the unique metallome of this organism. The element concentrations of bulk colonies and trichomes sections were analyzed by ICP-MS and synchrotron x-ray fluorescence, respectively. The cells were characterized by low P contents but enrichment in V, Fe, Mo, Ni, and Zn in comparison to other phytoplankton. Vanadium was the most abundant metal in Trichodesmium, and the V quota was up to fourfold higher than the corresponding Fe quota. The stoichiometry of 600C:101N:1P (mol mol−1) reflects P-limiting conditions. Iron and V were enriched in contiguous cells of 10 and 50% of Trichodesmium trichomes, respectively. The distribution of Ni differed from other elements, with the highest concentration in the transverse walls between attached cells. We hypothesize that the enrichments of V, Fe, Mo, and Ni are linked to the biochemical requirements for N fixation either directly through enrichment in the N-fixing enzyme nitrogenase or indirectly by the expression of enzymes responsible for the removal of reactive oxygen species. Unintentional uptake of V via P pathways may also be occurring. Overall, the cellular content of trace metals and macronutrients differs significantly from the (extended) Redfield ratio. The Trichodesmium metallome is an example of how physiology and environmental conditions can cause significant deviations from the idealized stoichiometry. PMID:22557997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chong, K.; Wang, W.X.
The green mussel Perna viridis and the clam Ruditapes philippinarum have been frequently used as biomonitors of coastal contamination in subtropical and tropical waters, yet the physiological processes controlling metal uptake in these bivalves are unknown. Assimilation efficiency (AE) is an important physiological parameter quantifying metal bioavailability from ingested food. The authors determined the AEs of Cd, CR, and Zn in these bivalves feeding on five species of phytoplankton and one natural section. The influences of the cytoplasmic distribution of metals in the algal cells and the digestive physiology of bivalves on metal AEs were also examined. Among the threemore » metals, Zn was generally assimilated at the highest efficiency, i.e., 21 to 36% in the mussels and 29 to 59% in the clams. Cr was the least assimilated metal, with AEs being 10 to 16% in the mussels and 11 to 24% in the clams. The AEs of Cd and Zn in the clams were 1.8 to 4.7 and 1.1 to 1.9 times higher, respectively, than the AEs in the mussels. Assimilation efficiencies of Cr were, however, comparable between the mussels and the clams. A positive significant relationship between the metal AE and the percent of metals in the algal cytoplasm was found only for Cd in the clams, suggesting that Cd fractionation in the algal cells influenced its assimilation. No significant relationship, however, was found for other metals in both bivalves. A significant relationship between Cr-assimilation efficiency and gut passage time (GPT) was documented in the mussels, indicating a higher assimilation when Cr was retained longer in the gut. There was also significant correlation of metal AEs among the three metals, which were probably subjected to the same digestive pathway in the bivalves. Their study demonstrated that both the green mussels and the clams were able to accumulate metals from ingested food source, and food quality appeared to have different effects on metal assimilation in different bivalve species.« less
Colza cell autophagy induced of high dose of industrial sewage sludge
NASA Astrophysics Data System (ADS)
Lasoued, Najla; Guenole Bilal, Issam; Rejeb, Saloua; Bilal, Essaid; Rejeb, Nejib
2013-04-01
This preliminary study is to evaluate the effects on colza of land application of industrial sludge containing heavy metals especially lead and chromium. We are interested in high doses spreading 100t/ha to better observe the phenomena of induced transformations on colza by the absorption of heavy metals. We used the technique for ultrastructural observation in a transmission electron microscope. The colza cells show a compaction and marginalization of nuclear chromatin, nuclear membrane and cytoplasmic convolution and condensation of cytoplasm. The kernel then fragments, each fragment are surrounded by a jacket. Some cytoplasmic and nuclear elements are released and are phagocytized by neighboring cells. We observed vacuolation of the cytoplasm and the formation of autophagic vesicles. The two main ways to cell death are apoptosis and autophagy. Apoptosis was not seen in plant yet. At the nucleus level cell death main characteristics are the nuclear blebbing and fragmentation. At the molecular level, caspases activity (VPE for plants, or metacaspases I and II), chromatin condensation, degradation of DNA detected by TUNEL assay and DNA laddering detected by comet test are the main events. Autophagy is the major degradation and recycling process in cells. Its aim is to address part of the cytoplasm or organelles to the proteasome. In macro-Autophagy a specific feature is the double membrane structure that we can see in electron microscopy. This membrane is known to fusion with the lysosome/vacuole where this is in process. As a rule, the vacuole grows more and more until no organelles remains. Small lytic vacuoles appear in increasing quantity also. Autophagosomes tend to be pushed against the membrane and wall of the cell. Sometime in the literature it was describe a permeabilization or a tonoplast disruption; this is the last stage called mega-autophagy. The stress generated by heavy metals in industrial sludge spreading, produces in colza cells programmed death. Several authors (Gilchrist, 1998; Larsen, 1994 White, 1996; Wyllie et al. 1980) observed this type of behavior in tobacco and mammals. They attribute this to the case of autophagy or apoptosis programmed cell death. Cryns and Yuan (1998) have shown that autophagy is characterized by a decrease in mitochondrial membrane potential, intracellular acidification, massive proteolysis and DNA damage. We must complete these observations in a larger study in cell biology and biochemistry to better understand the phenomenon of colza cell autophagy and its relations with the spreading of industrial sludge rich in heavy metals. These transformations will have a significant impact on the colza oil produced by this type of culture and therefore an impact on the human body.
Simulation of void formation in interconnect lines
NASA Astrophysics Data System (ADS)
Sheikholeslami, Alireza; Heitzinger, Clemens; Puchner, Helmut; Badrieh, Fuad; Selberherr, Siegfried
2003-04-01
The predictive simulation of the formation of voids in interconnect lines is important for improving capacitance and timing in current memory cells. The cells considered are used in wireless applications such as cell phones, pagers, radios, handheld games, and GPS systems. In backend processes for memory cells, ILD (interlayer dielectric) materials and processes result in void formation during gap fill. This approach lowers the overall k-value of a given metal layer and is economically advantageous. The effect of the voids on the overall capacitive load is tremendous. In order to simulate the shape and positions of the voids and thus the overall capacitance, the topography simulator ELSA (Enhanced Level Set Applications) has been developed which consists of three modules, a level set module, a radiosity module, and a surface reaction module. The deposition process considered is deposition of silicon nitride. Test structures of interconnect lines of memory cells were fabricated and several SEM images thereof were used to validate the corresponding simulations.
Biomedical Implications of Heavy Metals Induced Imbalances in Redox Systems
Singh, Shweta; Siddiqi, Nikhat J.
2014-01-01
Several workers have extensively worked out the metal induced toxicity and have reported the toxic and carcinogenic effects of metals in human and animals. It is well known that these metals play a crucial role in facilitating normal biological functions of cells as well. One of the major mechanisms associated with heavy metal toxicity has been attributed to generation of reactive oxygen and nitrogen species, which develops imbalance between the prooxidant elements and the antioxidants (reducing elements) in the body. In this process, a shift to the former is termed as oxidative stress. The oxidative stress mediated toxicity of heavy metals involves damage primarily to liver (hepatotoxicity), central nervous system (neurotoxicity), DNA (genotoxicity), and kidney (nephrotoxicity) in animals and humans. Heavy metals are reported to impact signaling cascade and associated factors leading to apoptosis. The present review illustrates an account of the current knowledge about the effects of heavy metals (mainly arsenic, lead, mercury, and cadmium) induced oxidative stress as well as the possible remedies of metal(s) toxicity through natural/synthetic antioxidants, which may render their effects by reducing the concentration of toxic metal(s). This paper primarily concerns the clinicopathological and biomedical implications of heavy metals induced oxidative stress and their toxicity management in mammals. PMID:25184144
Werner, Melanie; Keller, Debora; Haass, Stefan G; Gretener, Christina; Bissig, Benjamin; Fuchs, Peter; La Mattina, Fabio; Erni, Rolf; Romanyuk, Yaroslav E; Tiwari, Ayodhya N
2015-06-10
Solution processing of Cu2ZnSn(S,Se)4 (CZTSSe)-kesterite solar cells is attractive because of easy manufacturing using readily available metal salts. The solution-processed CZTSSe absorbers, however, often suffer from poor morphology with a bilayer structure, exhibiting a dense top crust and a porous bottom layer, albeit yielding efficiencies of over 10%. To understand whether the cell performance is limited by this porous layer, a systematic compositional study using (scanning) transmission electron microscopy ((S)TEM) and energy-dispersive X-ray spectroscopy of the dimethyl sulfoxide processed CZTSSe absorbers is presented. TEM investigation revealed a thin layer of CdS that is formed around the small CZTSSe grains in the porous bottom layer during the chemical bath deposition step. This CdS passivation is found to be beneficial for the cell performance as it increases the carrier collection and facilitates the electron transport. Electron-beam-induced current measurements reveal an enhanced carrier collection for this buried region as compared to reference cells with evaporated CdS.
Fibroblastic interactions with high-porosity Ti-6Al-4V metal foam.
Cheung, Serene; Gauthier, Maxime; Lefebvre, Louis-Philippe; Dunbar, Michael; Filiaggi, Mark
2007-08-01
A novel metallic Ti-6Al-4V foam in development at the National Research Council of Canada was investigated for its ability to foster cell attachment and growth using a fibroblast cell culture model. The foam was manufactured via a powder metallurgical process that could produce interconnected porosity greater than 70%. Cell attachment was assessed after 6 and 24 h, while proliferation was examined after 3 and 7 days. Ingrown fibroblasts displayed a number of different morphologies; some fibroblasts were spread thinly in close apposition with the irregular surface, or more often had several anchorage points and extended in three dimensions as they spanned pore space. It was also demonstrated that fibroblasts were actively migrating through the porous scaffold over a 14-day period. In a 60-day extended culture, fibroblasts were bridging and filling macropores and had extensively infiltrated the foams. Overall, it was established that this foam was supportive of cell attachment and proliferation, migration through the porous network, and that it was capable of sustaining a large cell population.
Experimental and theoretical investigations of the quality factor for n+p silicon solar cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garlick, G.F.J.; Kachare, A.H.
1980-01-01
Many N/sup +/P silicon cells made with silicon from different growth techniques have current-voltage relations of the form: I.I/sub 0/ (exp(qV/AkT) - 1) where the quality factor A is non-integral, is >1 and shows a temperature dependence. The dark forward characteristics of such cells have been measured over a range of temperature and the behavior of the factor A derived from them. A new model is presented on the assumption of non-uniform distributions of recombination levels in the junction depletion layer. This model shows good agreement with experimental data. The cells investigated had evaporated top metallization and so the junctionmore » contamination giving the recombination levels is likely to be a result of junction diffusion and is not specific to the metallization processing. The model needs further development and evaluation in order to apply it to the illuminated cell behavior and also to include any effects of distributed sheet resistance in the N/sup +/ layer. 17 refs.« less
Weng, Nanyan; Jiang, Haibo; Wang, Wen-Xiong
2017-12-19
Determining the in situ localization of trace elements at high lateral resolution levels in the biological system is very challenging, but critical for our understanding of metal sequestration and detoxification. Here, the cellular and subcellular distributions of Cu and Zn in contaminated oysters of Crassostrea hongkongensis were for the first time mapped using nanoscale secondary ion mass spectrometry (nanoSIMS). Three types of metal-containing cells were revealed in the gill and mantle of oysters, including Cu-specific hemocytes, Cu and Zn-containing granular hemocytes, and Cu and Zn-containing calcium cells. Obvious intercellular distribution of Cu was found in the gill tissue, indicating the potential role of hemolymph in the transportation of Cu in oysters. The distribution of Cu showed a strong colocalization with sulfur and nitrogen in Cu-specific hemocyte and intercellular hemolymph. In the Cu and Zn-containing granular hemocytes and calcium cells, the co-occurrence of Cu and Zn with phosphorus and calcium was also found. Different relationships of distributions between Cu/Zn and macronutrient elements (nitrogen, sulfur and phosphorus) implied the differential metal complexation in oysters. Interestingly, quantitative analysis of the ratios of 32 S - / 12 C 14 N - and 31 P - / 12 C 14 N - of metal-deposited sites suggested the dynamic process of transfer of Cu and Zn from the metabolized protein pool to a more thermodynamically stable and detoxified form.
NASA Astrophysics Data System (ADS)
Tait, Jeffrey G.; de Volder, Michaël F. L.; Cheyns, David; Heremans, Paul; Rand, Barry P.
2015-04-01
A current bottleneck in the thin film photovoltaic field is the fabrication of low cost electrodes. We demonstrate ultrasonically spray coated multiwalled carbon nanotube (CNT) layers as opaque and absorptive metal-free electrodes deposited at low temperatures and free of post-deposition treatment. The electrodes show sheet resistance as low as 3.4 Ω □-1, comparable to evaporated metallic contacts deposited in vacuum. Organic photovoltaic devices were optically simulated, showing comparable photocurrent generation between reflective metal and absorptive CNT electrodes for photoactive layer thickness larger than 600 nm when using archetypal poly(3-hexylthiophene) (P3HT) : (6,6)-phenyl C61-butyric acid methyl ester (PCBM) cells. Fabricated devices clearly show that the absorptive CNT electrodes display comparable performance to solution processed and spray coated Ag nanoparticle devices. Additionally, other candidate absorber materials for thin film photovoltaics were simulated with absorptive contacts, elucidating device design in the absence of optical interference and reflection.A current bottleneck in the thin film photovoltaic field is the fabrication of low cost electrodes. We demonstrate ultrasonically spray coated multiwalled carbon nanotube (CNT) layers as opaque and absorptive metal-free electrodes deposited at low temperatures and free of post-deposition treatment. The electrodes show sheet resistance as low as 3.4 Ω □-1, comparable to evaporated metallic contacts deposited in vacuum. Organic photovoltaic devices were optically simulated, showing comparable photocurrent generation between reflective metal and absorptive CNT electrodes for photoactive layer thickness larger than 600 nm when using archetypal poly(3-hexylthiophene) (P3HT) : (6,6)-phenyl C61-butyric acid methyl ester (PCBM) cells. Fabricated devices clearly show that the absorptive CNT electrodes display comparable performance to solution processed and spray coated Ag nanoparticle devices. Additionally, other candidate absorber materials for thin film photovoltaics were simulated with absorptive contacts, elucidating device design in the absence of optical interference and reflection. Electronic supplementary information (ESI) available: An animation of the MWCNT spray coating process, and five figures, including: a photograph of completed devices with MWCNT electrodes, performance metrics for devices with photoactive layer thickness up to 3000 nm, contour plots of simulated devices used to build Fig. 5, simulation data for perovskite devices, and a contour plot of the simplified equation of photoactive layer thickness required to attain a specified photocurrent ratio (x-axis) and absorption coefficient (y-axis). See DOI: 10.1039/c5nr01119a
NASA Astrophysics Data System (ADS)
John, J.; Prajapati, V.; Vermang, B.; Lorenz, A.; Allebe, C.; Rothschild, A.; Tous, L.; Uruena, A.; Baert, K.; Poortmans, J.
2012-08-01
Bulk crystalline Silicon solar cells are covering more than 85% of the world's roof top module installation in 2010. With a growth rate of over 30% in the last 10 years this technology remains the working horse of solar cell industry. The full Aluminum back-side field (Al BSF) technology has been developed in the 90's and provides a production learning curve on module price of constant 20% in average. The main reason for the decrease of module prices with increasing production capacity is due to the effect of up scaling industrial production. For further decreasing of the price per wattpeak silicon consumption has to be reduced and efficiency has to be improved. In this paper we describe a successive efficiency improving process development starting from the existing full Al BSF cell concept. We propose an evolutionary development includes all parts of the solar cell process: optical enhancement (texturing, polishing, anti-reflection coating), junction formation and contacting. Novel processes are benchmarked on industrial like baseline flows using high-efficiency cell concepts like i-PERC (Passivated Emitter and Rear Cell). While the full Al BSF crystalline silicon solar cell technology provides efficiencies of up to 18% (on cz-Si) in production, we are achieving up to 19.4% conversion efficiency for industrial fabricated, large area solar cells with copper based front side metallization and local Al BSF applying the semiconductor toolbox.
Substrate-induced interfacial plasmonics for photovoltaic conversion
Li, Xinxi; Jia, Chuancheng; Ma, Bangjun; Wang, Wei; Fang, Zheyu; Zhang, Guoqing; Guo, Xuefeng
2015-01-01
Surface plasmon resonance (SPR) is widely used as light trapping schemes in solar cells, because it can concentrate light fields surrounding metal nanostructures and realize light management at the nanoscale. SPR in photovoltaics generally occurs at the metal/dielectric interfaces. A well-defined interface is therefore required to elucidate interfacial SPR processes. Here, we designed a photovoltaic device (PVD) with an atomically flat TiO2 dielectric/dye/graphene/metal nanoparticle (NP) interface for quantitatively studying the SPR enhancement of the photovoltaic conversion. Theoretical and experimental results indicated that the graphene monolayer was transparent to the electromagnetic field. This transparency led to significant substrate-induced plasmonic hybridization at the heterostructure interface. Combined with interparticle plasmonic coupling, the substrate-induced plasmonics concentrated light at the interface and enhanced the photo-excitation of dyes, thus improving the photoelectric conversion. Such a mechanistic understanding of interfacial plasmonic enhancement will further promote the development of efficient plasmon-enhanced solar cells and composite photocatalysts. PMID:26412576
NASA Astrophysics Data System (ADS)
Reichel, Christian; Würfel, Uli; Winkler, Kristina; Schleiermacher, Hans-Frieder; Kohlstädt, Markus; Unmüssig, Moritz; Messmer, Christoph A.; Hermle, Martin; Glunz, Stefan W.
2018-01-01
In the last years, novel materials for the formation of electron-selective contacts on n-type crystalline silicon (c-Si) heterojunction solar cells were explored as an interfacial layer between the metal electrode and the c-Si wafer. Besides inorganic materials like transition metal oxides or alkali metal fluorides, also interfacial layers based on organic molecules with a permanent dipole moment are promising candidates to improve the contact properties. Here, the dipole effect plays an essential role in the modification of the interface and effective work function of the contact. The amino acids L-histidine, L-tryptophan, L-phenylalanine, glycine, and sarcosine, the nucleobase adenine, and the heterocycle 4-hydroxypyridine were investigated as dipole materials for an electron-selective contact on the back of p- and n-type c-Si with a metal electrode based on aluminum (Al). Furthermore, the effect of an added fluorosurfactant on the resulting contact properties was examined. The performance of n-type c-Si solar cells with a boron diffusion on the front was significantly increased when L-histidine and/or the fluorosurfactant was applied as a full-area back surface field. This improvement was attributed to the modification of the interface and the effective work function of the contact by the dipole material which was corroborated by numerical device simulations. For these solar cells, conversion efficiencies of 17.5% were obtained with open-circuit voltages (Voc) of 625 mV and fill factors of 76.3%, showing the potential of organic interface dipoles for silicon organic heterojunction solar cells due to their simple formation by solution processing and their low thermal budget requirements.
The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V)
Shin, T.; Lim, D.; Kim, Y. S.; Kim, S. C.; Jo, W. L.
2018-01-01
Objectives Laser-engineered net shaping (LENS) of coated surfaces can overcome the limitations of conventional coating technologies. We compared the in vitro biological response with a titanium plasma spray (TPS)-coated titanium alloy (Ti6Al4V) surface with that of a Ti6Al4V surface coated with titanium using direct metal fabrication (DMF) with 3D printing technologies. Methods The in vitro ability of human osteoblasts to adhere to TPS-coated Ti6Al4V was compared with DMF-coating. Scanning electron microscopy (SEM) was used to assess the structure and morphology of the surfaces. Biological and morphological responses to human osteoblast cell lines were then examined by measuring cell proliferation, alkaline phosphatase activity, actin filaments, and RUNX2 gene expression. Results Morphological assessment of the cells after six hours of incubation using SEM showed that the TPS- and DMF-coated surfaces were largely covered with lamellipodia from the osteoblasts. Cell adhesion appeared similar in both groups. The differences in the rates of cell proliferation and alkaline phosphatase activities were not statistically significant. Conclusions The DMF coating applied using metal 3D printing is similar to the TPS coating, which is the most common coating process used for bone ingrowth. The DMF method provided an acceptable surface structure and a viable biological surface. Moreover, this method is automatable and less complex than plasma spraying. Cite this article: T. Shin, D. Lim, Y. S. Kim, S. C. Kim, W. L. Jo, Y. W. Lim. The biological response to laser-aided direct metal-coated Titanium alloy (Ti6Al4V). Bone Joint Res 2018;7:357–361. DOI: 10.1302/2046-3758.75.BJR-2017-0222.R1. PMID:29922456
The Automated Array Assembly Task of the Low-cost Silicon Solar Array Project, Phase 2
NASA Technical Reports Server (NTRS)
Coleman, M. G.; Grenon, L.; Pastirik, E. M.; Pryor, R. A.; Sparks, T. G.
1978-01-01
An advanced process sequence for manufacturing high efficiency solar cells and modules in a cost-effective manner is discussed. Emphasis is on process simplicity and minimizing consumed materials. The process sequence incorporates texture etching, plasma processes for damage removal and patterning, ion implantation, low pressure silicon nitride deposition, and plated metal. A reliable module design is presented. Specific process step developments are given. A detailed cost analysis was performed to indicate future areas of fruitful cost reduction effort. Recommendations for advanced investigations are included.
[Biochemical protective mechanisms in the accumulation of heavy metals in organisms].
Petukhov, A S; Petukhova, G A
At present due to the environmental contamination by heavy metals there is a great interest to investigate the processes of their both accumulation in plants and toxic effect on biochemical indices. Therefore the objective of this research was the analysis of the alteration of the system of antioxidant protection ofplants in conditions of soil contamination by copper and zinc. Research object were germinants of oat in amount of300 plants in each variant of the experiment. For the performance of the experiment, the sand was equally contaminated by sulfates of Cu and Zn in concentration of 2 MPC on its gross content in soil. The experiment lastedfor 2 weeks. For the implementation of the objective of research there was analyzed the contentof both Cu and Zn in plants exposed to soil contamination. Additionally there was performed an analysis of as the content of lipids peroxidation products, phenols and flavonoids; as well the activity ofperoxidase, catalase and photosynthetic system. Under the soil contamination by copper and zinc corresponding to 2 MPC the accumulation of heavy metals was established to be happening in plants. If compared copper accumulation was higher than zinc accumulation that can be explained by the high migration capability of zinc. Under combined impact of two metals there was revealed their antagonistic interaction. There was established an elevated content of lipids peroxidation products in cells as a sequence of the accumulation of heavy metals in plants. As a result of the elevation of the content of lipids peroxidation products there was revealed a raised activity ofphotosynthetic apparatus and antioxidant system (carotenoids, catalase and peroxidase) in the cell. The decrease of the content ofphenols and flavonoids is related with the usage of this system of antioxidant protection for the neutralization of lipids peroxidation processes.
Fungal biosynthesis of gold nanoparticles: mechanism and scale up.
Kitching, Michael; Ramani, Meghana; Marsili, Enrico
2015-11-01
Gold nanoparticles (AuNPs) are a widespread research tool because of their oxidation resistance, biocompatibility and stability. Chemical methods for AuNP synthesis often produce toxic residues that raise environmental concern. On the other hand, the biological synthesis of AuNPs in viable microorganisms and their cell-free extracts is an environmentally friendly and low-cost process. In general, fungi tolerate higher metal concentrations than bacteria and secrete abundant extracellular redox proteins to reduce soluble metal ions to their insoluble form and eventually to nanocrystals. Fungi harbour untapped biological diversity and may provide novel metal reductases for metal detoxification and bioreduction. A thorough understanding of the biosynthetic mechanism of AuNPs in fungi is needed to reduce the time of biosynthesis and to scale up the AuNP production process. In this review, we describe the known mechanisms for AuNP biosynthesis in viable fungi and fungal protein extracts and discuss the most suitable bioreactors for industrial AuNP biosynthesis. © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.
Vollenweider, Pierre; Bernasconi, Petra; Gautschi, Hans-Peter; Menard, Terry; Frey, Beat; Günthardt-Goerg, Madeleine S
2011-01-01
The phytoextraction potential of plants for removing heavy metals from polluted soils is determined by their capacity to store contaminants in aboveground organs and complex them safely. In this study, the metal compartmentation, elemental composition of zinc deposits and zinc complexation within leaves from poplars grown on soil with mixed metal contamination was analysed combining several histochemical and microanalytical approaches. Zinc was the only heavy metal detected and was stored in several organelles in the form of globoid deposits showing β-metachromasy. It was associated to oxygen anions and different cations, noteworthy phosphorous. The deposit structure, elemental composition and element ratios indicated that zinc was chelated by phytic acid ligands. Maturation processes in vacuolar vs. cytoplasmic deposits were suggested by differences in size and amounts of complexed zinc. Hence, zinc complexation by phytate contributed to metal detoxification and accumulation in foliage but could not prevent toxicity reactions therein. Copyright © 2010 Elsevier Ltd. All rights reserved.
McClusky, Leon M
2006-09-01
Naturally occurring heavy metals and synthetic compounds are potentially harmful for testicular function but evidence linking heavy metal exposure to reduced semen parameters is inconclusive. Elucidation of the exact stage at which the toxicant interferes with spermatogenesis is difficult because the various germ cell stages may have different sensitivities to any given toxicant, germ cell development is influenced by supporting testicular somatic cells and the presence of inter-Sertoli cell tight junctions create a blood-testis barrier, sequestering meiotic and postmeiotic germ cells in a special microenvironment. Sharks such as Squalus acanthias provide a suitable model for studying aspects of vertebrate spermatogenosis because of their unique features: spermatogenesis takes place within spermatocysts and relies mainly on Sertoli cells for somatic cell support; spermatocysts are linearly arranged in a maturational order across the diameter of the elongated testis; spermatocysts containing germ cells at different stages of development are topographically separated, resulting in visible zonation in testicular cross sections. We have used the vital dye acridine orange and a novel fluorescence staining technique to study this model to determine (1) the efficacy of these methods in assays of apoptosis and blood-testis barrier function, (2) the sensitivity of the various spermatogonial generations in Squalus to cadmium (as an illustrative spermatotoxicant) and (3) the way that cadmium might affect more mature spermatogenic stages and other physiological processes in the testis. Our results show that cadmium targets early spermatogenic stages, where it specifically activates a cell death program in susceptible (mature) spermatogonial clones, and negatively affects blood-testis barrier function. Since other parameters are relatively unaffected by cadmium, the effects of this toxicant on apoptosis are presumably process-specific and not attributable to general toxicity.