Photovoltaic cell module and method of forming
Howell, Malinda; Juen, Donnie; Ketola, Barry; Tomalia, Mary Kay
2017-12-12
A photovoltaic cell module, a photovoltaic array including at least two modules, and a method of forming the module are provided. The module includes a first outermost layer and a photovoltaic cell disposed on the first outermost layer. The module also includes a second outermost layer disposed on the photovoltaic cell and sandwiching the photovoltaic cell between the second outermost layer and the first outermost layer. The method of forming the module includes the steps of disposing the photovoltaic cell on the first outermost layer, disposing a silicone composition on the photovoltaic cell, and compressing the first outermost layer, the photovoltaic cell, and the second layer to form the photovoltaic cell module.
Photovoltaic power generation system free of bypass diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentine, Anthony L.; Okandan, Murat; Nielson, Gregory N.
A photovoltaic power generation system that includes a solar panel that is free of bypass diodes is described herein. The solar panel includes a plurality of photovoltaic sub-modules, wherein at least two of photovoltaic sub-modules in the plurality of photovoltaic sub-modules are electrically connected in parallel. A photovoltaic sub-module includes a plurality of groups of electrically connected photovoltaic cells, wherein at least two of the groups are electrically connected in series. A photovoltaic group includes a plurality of strings of photovoltaic cells, wherein a string of photovoltaic cells comprises a plurality of photovoltaic cells electrically connected in series. The stringsmore » of photovoltaic cells are electrically connected in parallel, and the photovoltaic cells are microsystem-enabled photovoltaic cells.« less
Module level solutions to solar cell polarization
Xavier, Grace , Li; Bo, [San Jose, CA
2012-05-29
A solar cell module includes interconnected solar cells, a transparent cover over the front sides of the solar cells, and a backsheet on the backsides of the solar cells. The solar cell module includes an electrical insulator between the transparent cover and the front sides of the solar cells. An encapsulant protectively packages the solar cells. To prevent polarization, the insulator has resistance suitable to prevent charge from leaking from the front sides of the solar cells to other portions of the solar cell module by way of the transparent cover. The insulator may be attached (e.g., by coating) directly on an underside of the transparent cover or be a separate layer formed between layers of the encapsulant. The solar cells may be back junction solar cells.
Multi-processor including data flow accelerator module
Davidson, George S.; Pierce, Paul E.
1990-01-01
An accelerator module for a data flow computer includes an intelligent memory. The module is added to a multiprocessor arrangement and uses a shared tagged memory architecture in the data flow computer. The intelligent memory module assigns locations for holding data values in correspondence with arcs leading to a node in a data dependency graph. Each primitive computation is associated with a corresponding memory cell, including a number of slots for operands needed to execute a primitive computation, a primitive identifying pointer, and linking slots for distributing the result of the cell computation to other cells requiring that result as an operand. Circuitry is provided for utilizing tag bits to determine automatically when all operands required by a processor are available and for scheduling the primitive for execution in a queue. Each memory cell of the module may be associated with any of the primitives, and the particular primitive to be executed by the processor associated with the cell is identified by providing an index, such as the cell number for the primitive, to the primitive lookup table of starting addresses. The module thus serves to perform functions previously performed by a number of sections of data flow architectures and coexists with conventional shared memory therein. A multiprocessing system including the module operates in a hybrid mode, wherein the same processing modules are used to perform some processing in a sequential mode, under immediate control of an operating system, while performing other processing in a data flow mode.
Transparent superstrate terrestrial solar cell module
NASA Technical Reports Server (NTRS)
1977-01-01
The design, development, fabrication, and testing of the transparent solar cell module were examined. Cell performance and material process characteristics were determined by extensive tests and design modifications were made prior to preproduction fabrication. These tests included three cell submodules and two full size engineering modules. Along with hardware and test activity, engineering documentation was prepared and submitted.
Integrated circuits, and design and manufacture thereof
Auracher, Stefan; Pribbernow, Claus; Hils, Andreas
2006-04-18
A representation of a macro for an integrated circuit layout. The representation may define sub-circuit cells of a module. The module may have a predefined functionality. The sub-circuit cells may include at least one reusable circuit cell. The reusable circuit cell may be configured such that when the predefined functionality of the module is not used, the reusable circuit cell is available for re-use.
Solar cell modules with improved backskin and methods for forming same
Hanoka, Jack I.
1998-04-21
A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal. A laminated solar cell module with a backskin layer that reduces the materials and labor required during the manufacturing process. The solar cell module includes a rigid front support layer formed of light transmitting material having first and second surfaces. A transparent encapsulant layer has a first surface disposed adjacent the second surface of the front support layer. A plurality of interconnected solar cells have a first surface disposed adjacent a second surface of the transparent encapsulant layer. The backskin layer is formed of a thermoplastic olefin, which includes first ionomer, a second ionomer, glass fiber, and carbon black. A first surface of the backskin layer is disposed adjacent a second surface of the interconnected solar cells. The transparent encapsulant layer and the backskin layer, in combination, encapsulate the interconnected solar cells. An end portion of the backskin layer can be wrapped around the edge of the module for contacting the first surface of the front support layer to form an edge seal.
Real-time and accelerated outdoor endurance testing of solar cells
NASA Technical Reports Server (NTRS)
Forestieri, A. F.; Anagnostou, E.
1978-01-01
Materials for solar-cell module construction have been studied on the basis of limited real-time outdoor exposure evaluations. The materials tested included transmission samples, sub-modules, and actual solar cells. The results suggest that glass, fluorinated ethylene propylene, and perfluoroalkoxy are good materials for the covering or encapsulation of solar-cell modules. In all cases, dirt accumulation and cleanability are important factors.
Design, fabrication, test qualification and price analysis of a third generation solar cell module
NASA Technical Reports Server (NTRS)
1982-01-01
The design, fabrication, test, and qualification of a third generation intermediate load solar cell module are presented. A technical discussion of the detailed module design, preliminary design review, design modifications, and environmental testing are included. A standardized pricing system is utilized to establish the cost competitiveness of this module design.
Space Qualification Test of a-Silicon Solar Cell Modules
NASA Technical Reports Server (NTRS)
Kim, Q.; Lawton, R. A.; Manion, S. J.; Okuno, J. O.; Ruiz, R. P.; Vu, D. T.; Vu, D. T.; Kayali, S. A.; Jeffrey, F. R.
2004-01-01
The basic requirements of solar cell modules for space applications are generally described in MIL-S-83576 for the specific needs of the USAF. However, the specifications of solar cells intended for use on space terrestrial applications are not well defined. Therefore, this qualifications test effort was concentrated on critical areas specific to the microseismometer probe which is intended to be included in the Mars microprobe programs. Parameters that were evaluated included performance dependence on: illuminating angles, terrestrial temperatures, lifetime, as well as impact landing conditions. Our qualification efforts were limited to these most critical areas of concern. Most of the tested solar cell modules have met the requirements of the program except the impact tests. Surprisingly, one of the two single PIN 2 x 1 amorphous solar cell modules continued to function even after the 80000G impact tests. The output power parameters, Pout, FF, Isc and Voc, of the single PIN amorphous solar cell module were found to be 3.14 mW, 0.40, 9.98 mA and 0.78 V, respectively. These parameters are good enough to consider the solar module as a possible power source for the microprobe seismometer. Some recommendations were made to improve the usefulness of the amorphous silicon solar cell modules in space terrestrial applications, based on the results obtained from the intensive short term lab test effort.
Series interconnected photovoltaic cells and method for making same
Albright, S.P.; Chamberlin, R.R.; Thompson, R.A.
1995-01-31
A novel photovoltaic module and method for constructing the same are disclosed. The module includes a plurality of photovoltaic cells formed on a substrate and laterally separated by interconnection regions. Each cell includes a bottom electrode, a photoactive layer and a top electrode layer. Adjacent cells are connected in electrical series by way of a conductive-buffer line. The buffer line is also useful in protecting the bottom electrode against severing during downstream layer cutting processes. 11 figs.
Process Development for Automated Solar Cell and Module Production. Task 4: Automated Array Assembly
NASA Technical Reports Server (NTRS)
1979-01-01
A baseline sequence for the manufacture of solar cell modules was specified. Starting with silicon wafers, the process goes through damage etching, texture etching, junction formation, plasma edge etch, aluminum back surface field formation, and screen printed metallization to produce finished solar cells. The cells were then series connected on a ribbon and bonded into a finished glass tedlar module. A number of steps required additional developmental effort to verify technical and economic feasibility. These steps include texture etching, plasma edge etch, aluminum back surface field formation, array layup and interconnect, and module edge sealing and framing.
Formed photovoltaic module busbars
Rose, Douglas; Daroczi, Shan; Phu, Thomas
2015-11-10
A cell connection piece for a photovoltaic module is disclosed herein. The cell connection piece includes an interconnect bus, a plurality of bus tabs unitarily formed with the interconnect bus, and a terminal bus coupled with the interconnect bus. The plurality of bus tabs extend from the interconnect bus. The terminal bus includes a non-linear portion.
NASA Technical Reports Server (NTRS)
Jones, G. T.
1977-01-01
Forty kilowatts of solar cell modules was produced in this program. This is equivalent to 4123 modules. The average power output per module was 9.7 watts at 16.5 volts, 60 C and 100 mW/sq cm. The peak production rate was 200 modules per week which is equal to 1.9 kW per week. This rate was sustained for over four and one-half months and is equivalent to 100 kW per year. This final report covers the solar cell module design, electrical and power performance, module preproduction environmental test results, production and shipping schedule, program summary, and delivery. A cost analysis section is written. Particular emphasis on the percentage of labor and material utilized in constructing a solar cell module is presented. Also included are cost reduction recommendations.
NASA Technical Reports Server (NTRS)
Gee, James M.; Curtis, Henry B.
1988-01-01
The effect of different module configurations on the performance of multijunction (MJ) solar cells in a radiation environment was investigated. Module configuration refers to the electrical circuit in which the subcells of the multijunction cell are wired. Experimental data for AlCaAs, GaAs, InGaAs, and silicon single-junction concentrator cells subjected to 1 MeV electron irradiation was used to calculate the expected performance of AlGaAs/InGaAs, AlGa/silicon, GaAs/InGaAs, and GaAs/silicon Mj concentrator cells. These calculations included independent, series, and voltage-matched configurations. The module configuration was found to have a significant impact on the radiation tolerance characteristic of the MJ cells.
NASA CF6 jet engine diagnostics program: Long-term CF6-6D low-pressure turbine deterioration
NASA Technical Reports Server (NTRS)
Smith, J. J.
1979-01-01
Back-to-back performance tests were run on seven airline low pressure turbine (LPT) modules and four new CF6-6D modules. Back-to-back test cell runs, in which an airline LPT module was directly compared to a new production module, were included. The resulting change, measured in fuel burn, equaled the level of LPT module deterioration. Three of the LPT modules were analytically inspected followed by a back-to-back test cell run to evaluate current refurbishment techniques.
Synthetic biology for microbial heavy metal biosensors.
Kim, Hyun Ju; Jeong, Haeyoung; Lee, Sang Jun
2018-02-01
Using recombinant DNA technology, various whole-cell biosensors have been developed for detection of environmental pollutants, including heavy metal ions. Whole-cell biosensors have several advantages: easy and inexpensive cultivation, multiple assays, and no requirement of any special techniques for analysis. In the era of synthetic biology, cutting-edge DNA sequencing and gene synthesis technologies have accelerated the development of cell-based biosensors. Here, we summarize current technological advances in whole-cell heavy metal biosensors, including the synthetic biological components (bioparts), sensing and reporter modules, genetic circuits, and chassis cells. We discuss several opportunities for improvement of synthetic cell-based biosensors. First, new functional modules must be discovered in genome databases, and this knowledge must be used to upgrade specific bioparts through molecular engineering. Second, modules must be assembled into functional biosystems in chassis cells. Third, heterogeneity of individual cells in the microbial population must be eliminated. In the perspectives, the development of whole-cell biosensors is also discussed in the aspects of cultivation methods and synthetic cells.
Some failure modes and analysis techniques for terrestrial solar cell modules
NASA Technical Reports Server (NTRS)
Shumka, A.; Stern, K. H.
1978-01-01
Analysis data are presented on failed/defective silicon solar cell modules of various types and produced by different manufacturers. The failure mode (e.g., internal short and open circuits, output power degradation, isolation resistance degradation, etc.) are discussed in detail and in many cases related to the type of technology used in the manufacture of the modules; wherever applicable, appropriate corrective actions are recommended. Consideration is also given to some failure analysis techniques that are applicable to such modules, including X-ray radiography, capacitance measurement, cell shunt resistance measurement by the shadowing technique, steady-state illumination test station for module performance illumination, laser scanning techniques, and the SEM.
Hot-spot durability testing of amorphous cells and modules
NASA Technical Reports Server (NTRS)
Gonzalez, Charles; Jetter, Elizabeth
1985-01-01
This paper discusses the results of a study to determine the hot-spot susceptibility of amorphous-silicon (a-Si) cells and modules, and to provide guidelines for reducing that susceptibility. Amorphous-Si cells are shown to have hot-spot susceptibility levels similar to crystalline-silicon (C-Si) cells. This premise leads to the fact that the same general guidelines must apply to protecting a-Si cells from hot-spot stressing that apply to C-Si cells. Recommendations are made on ways of reducing a-Si module hot-spot susceptibility including the traditional method of using bypass diodes and a new method unique to thin-film cells, limiting the string current by limiting cell area.
Series interconnected photovoltaic cells and method for making same
Albright, Scot P.; Chamberlin, Rhodes R.; Thompson, Roger A.
1995-01-01
A novel photovoltaic module (10) and method for constructing the same are disclosed. The module (10) includes a plurality of photovoltaic cells (12) formed on a substrate (14) and laterally separated by interconnection regions (15). Each cell (12) includes a bottom electrode (16), a photoactive layer (18) and a top electrode layer (20). Adjacent cells (12) are connected in electrical series by way of a conductive-buffer line (22). The buffer line (22) is also useful in protecting the bottom electrode (16) against severing during downstream layer cutting processes.
Hybrid Integration of III-V Solar Microcells for High Efficiency Concentrated Photovoltaic Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tauke-Pedretti, Anna; Cederberg, Jeffery; Cruz-Campa, Jose Luis
The design, fabrication and performance of InGaAs and InGaP/GaAs microcells are presented. These cells are integrated with a Si wafer providing a path for insertion in hybrid concentrated photovoltaic modules. Comparisons are made between bonded cells and cells fabricated on their native wafer. The bonded cells showed no evidence of degradation in spite of the integration process which involved significant processing including the removal of the III-V substrate. Results from a number of hybrid cell configurations were reported. These cells employed integration techniques including wafer level bonding of processed cells and solder bonding of the cells. Lastly, the cells themselvesmore » showed evidence of degradation in spite of the integration process, which involved significant processing including the removal of the III-V substrate.« less
Hybrid Integration of III-V Solar Microcells for High Efficiency Concentrated Photovoltaic Modules
Tauke-Pedretti, Anna; Cederberg, Jeffery; Cruz-Campa, Jose Luis; ...
2018-03-09
The design, fabrication and performance of InGaAs and InGaP/GaAs microcells are presented. These cells are integrated with a Si wafer providing a path for insertion in hybrid concentrated photovoltaic modules. Comparisons are made between bonded cells and cells fabricated on their native wafer. The bonded cells showed no evidence of degradation in spite of the integration process which involved significant processing including the removal of the III-V substrate. Results from a number of hybrid cell configurations were reported. These cells employed integration techniques including wafer level bonding of processed cells and solder bonding of the cells. Lastly, the cells themselvesmore » showed evidence of degradation in spite of the integration process, which involved significant processing including the removal of the III-V substrate.« less
Endurance Test and Evaluation of Alkaline Water Electrolysis Cells
NASA Technical Reports Server (NTRS)
Kovach, Andrew J.; Schubert, Franz H.; Chang, B. J.; Larkins, Jim T.
1985-01-01
The overall objective of this program is to assess the state of alkaline water electrolysis cell technology and its potential as part of a Regenerative Fuel Cell System (RFCS) of a multikilowatt orbiting powerplant. The program evaluates the endurance capabilities of alkaline electrolyte water electrolysis cells under various operating conditions, including constant condition testing, cyclic testing and high pressure testing. The RFCS demanded the scale-up of existing cell hardware from 0.1 sq ft active electrode area to 1.0 sq ft active electrode area. A single water electrolysis cell and two six-cell modules of 1.0 sq ft active electrode area were designed and fabricated. The two six-cell 1.0 sq ft modules incorporate 1.0 sq ft utilized cores, which allow for minimization of module assembly complexity and increased tolerance to pressure differential. A water electrolysis subsystem was designed and fabricated to allow testing of the six-cell modules. After completing checkout, shakedown, design verification and parametric testing, a module was incorporated into the Regenerative Fuel Cell System Breadboard (RFCSB) for testing at Life Systems, Inc., and at NASA JSC.
Real time outdoor exposure testing of solar cell modules and component materials
NASA Technical Reports Server (NTRS)
Anagnostou, E.; Forestieri, A. F.
1977-01-01
Plastic samples, solar cell modules, and sub-modules were exposed at test sites in Florida, Arizona, Puerto Rico, and Cleveland, Ohio, in order to determine materials suitable for use in solar cell modules with a proposed 20-year lifetime. Various environments were encountered including subtropical, subtropical with a sea air atmosphere, desert, rain forest, normal urban, and urban-polluted. The samples were exposed for periods up to six months. Materials found not suitable were polyurethane, polyester, Kapton, Mylar, and UV-stabilized Lexan. Suitable materials were acrylic, FEP-A, and glass. The results of exposure of polyvinylidene fluoride were dependent on the specific formulation, but several types appear suitable. RTV silicone rubber (clear) appears to pick up and hold dirt both as a free film and as a potting medium for modules. The results indicate that dirt accumulation and cleanability are important factors in the selection of solar cell module covers and encapsulants.
Methods of using viral replicase polynucleotides and polypeptides
Gordon-Kamm, William J.; Lowe, Keith S.; Bailey, Matthew A.; Gregory, Carolyn A.; Hoerster, George J.; Larkins, Brian A.; Dilkes, Brian R.; Burnett, Ronald; Woo, Young Min
2007-12-18
The invention provides novel methods of using viral replicase polypeptides and polynucleotides. Included are methods for increasing transformation frequencies, increasing crop yield, providing a positive growth advantage, modulating cell division, transiently modulating cell division, and for providing a means of positive selection.
Multi-crystalline II-VI based multijunction solar cells and modules
Hardin, Brian E.; Connor, Stephen T.; Groves, James R.; Peters, Craig H.
2015-06-30
Multi-crystalline group II-VI solar cells and methods for fabrication of same are disclosed herein. A multi-crystalline group II-VI solar cell includes a first photovoltaic sub-cell comprising silicon, a tunnel junction, and a multi-crystalline second photovoltaic sub-cell. A plurality of the multi-crystalline group II-VI solar cells can be interconnected to form low cost, high throughput flat panel, low light concentration, and/or medium light concentration photovoltaic modules or devices.
Fuel Cell/Electrochemical Cell Voltage Monitor
NASA Technical Reports Server (NTRS)
Vasquez, Arturo
2012-01-01
A concept has been developed for a new fuel cell individual-cell-voltage monitor that can be directly connected to a multi-cell fuel cell stack for direct substack power provisioning. It can also provide voltage isolation for applications in high-voltage fuel cell stacks. The technology consists of basic modules, each with an 8- to 16-cell input electrical measurement connection port. For each basic module, a power input connection would be provided for direct connection to a sub-stack of fuel cells in series within the larger stack. This power connection would allow for module power to be available in the range of 9-15 volts DC. The relatively low voltage differences that the module would encounter from the input electrical measurement connection port, coupled with the fact that the module's operating power is supplied by the same substack voltage input (and so will be at similar voltage), provides for elimination of high-commonmode voltage issues within each module. Within each module, there would be options for analog-to-digital conversion and data transfer schemes. Each module would also include a data-output/communication port. Each of these ports would be required to be either non-electrical (e.g., optically isolated) or electrically isolated. This is necessary to account for the fact that the plurality of modules attached to the stack will normally be at a range of voltages approaching the full range of the fuel cell stack operating voltages. A communications/ data bus could interface with the several basic modules. Options have been identified for command inputs from the spacecraft vehicle controller, and for output-status/data feeds to the vehicle.
Proceedings of the 21st Project Integration Meeting
NASA Technical Reports Server (NTRS)
1983-01-01
Progress made by the Flat Plate Solar Array Project during the period April 1982 to January 1983 is described. Reports on polysilicon refining, thin film solar cell and module technology development, central station electric utility activities, silicon sheet growth and characteristics, advanced photovoltaic materials, cell and processes research, module technology, environmental isolation, engineering sciences, module performance and failure analysis and project analysis and integration are included.
Nickel-hydrogen battery with oxygen and electrolyte management features
Sindorf, John F.
1991-10-22
A nickel-hydrogen battery or cell having one or more pressure vessels containing hydrogen gas and a plurality of cell-modules therein. Each cell-module includes a configuration of cooperatively associated oxygen and electrolyte mangement and component alignment features. A cell-module having electrolyte includes a negative electrode, a positive electrode adapted to facilitate oxygen diffusion, a separator disposed between the positive and negative electrodes for separating them and holding electrolyte for ionic conductivity, an absorber engaging the surface of the positive electrode facing away from the separator for providing electrolyte to the positive electrode, and a pair of surface-channeled diffusion screens for enclosing the positive and negative electrodes, absorber, and separator and for maintaining proper alignment of these components. The screens, formed in the shape of a pocket by intermittently sealing the edges together along as many as three sides, permit hydrogen gas to diffuse therethrough to the negative electrodes, and prevent the edges of the separator from swelling. Electrolyte is contained in the cell-module, absorbhed by the electrodes, the separator and the absorber.
Testing of dual-junction SCARLET modules and cells plus lessons learned
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eskenazi, M.I.; Murphy, D.M.; Ralph, E.L.
1997-12-31
Key simulator test methods and results for Solar Concentrator Array with Refractive Linear Element Technology (SCARLET) cells, modules, and module strings are presented from the NASA/JPL New Millennium DS1 program. Important observations and lessons learned are discussed. These findings include: (1) a significant efficiency increase for shunted low performing 1 sun cells at SCARLET`s {approximately}7 sun concentration, (2) a decrease in temperature coefficient under SCARLET concentration, and (3) the importance of active germanium (third junction) screening during GaInP{sub 2}/GaAs/Ge cell production especially when red reflecting covers are used.
NDR1 modulates the UV-induced DNA-damage checkpoint and nucleotide excision repair
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Jeong-Min; Choi, Ji Ye; Yi, Joo Mi
2015-06-05
Nucleotide excision repair (NER) is the sole mechanism of UV-induced DNA lesion repair in mammals. A single round of NER requires multiple components including seven core NER factors, xeroderma pigmentosum A–G (XPA–XPG), and many auxiliary effector proteins including ATR serine/threonine kinase. The XPA protein helps to verify DNA damage and thus plays a rate-limiting role in NER. Hence, the regulation of XPA is important for the entire NER kinetic. We found that NDR1, a novel XPA-interacting protein, modulates NER by modulating the UV-induced DNA-damage checkpoint. In quiescent cells, NDR1 localized mainly in the cytoplasm. After UV irradiation, NDR1 accumulated inmore » the nucleus. The siRNA knockdown of NDR1 delayed the repair of UV-induced cyclobutane pyrimidine dimers in both normal cells and cancer cells. It did not, however, alter the expression levels or the chromatin association levels of the core NER factors following UV irradiation. Instead, the NDR1-depleted cells displayed reduced activity of ATR for some set of its substrates including CHK1 and p53, suggesting that NDR1 modulates NER indirectly via the ATR pathway. - Highlights: • NDR1 is a novel XPA-interacting protein. • NDR1 accumulates in the nucleus in response to UV irradiation. • NDR1 modulates NER (nucleotide excision repair) by modulating the UV-induced DNA-damage checkpoint response.« less
Using Mouse Mammary Tumor Cells to Teach Core Biology Concepts: A Simple Lab Module.
McIlrath, Victoria; Trye, Alice; Aguanno, Ann
2015-06-18
Undergraduate biology students are required to learn, understand and apply a variety of cellular and molecular biology concepts and techniques in preparation for biomedical, graduate and professional programs or careers in science. To address this, a simple laboratory module was devised to teach the concepts of cell division, cellular communication and cancer through the application of animal cell culture techniques. Here the mouse mammary tumor (MMT) cell line is used to model for breast cancer. Students learn to grow and characterize these animal cells in culture and test the effects of traditional and non-traditional chemotherapy agents on cell proliferation. Specifically, students determine the optimal cell concentration for plating and growing cells, learn how to prepare and dilute drug solutions, identify the best dosage and treatment time course of the antiproliferative agents, and ascertain the rate of cell death in response to various treatments. The module employs both a standard cell counting technique using a hemocytometer and a novel cell counting method using microscopy software. The experimental procedure lends to open-ended inquiry as students can modify critical steps of the protocol, including testing homeopathic agents and over-the-counter drugs. In short, this lab module requires students to use the scientific process to apply their knowledge of the cell cycle, cellular signaling pathways, cancer and modes of treatment, all while developing an array of laboratory skills including cell culture and analysis of experimental data not routinely taught in the undergraduate classroom.
Thermal and optical performance of encapsulation systems for flat-plate photovoltaic modules
NASA Technical Reports Server (NTRS)
Minning, C. P.; Coakley, J. F.; Perrygo, C. M.; Garcia, A., III; Cuddihy, E. F.
1981-01-01
The electrical power output from a photovoltaic module is strongly influenced by the thermal and optical characteristics of the module encapsulation system. Described are the methodology and computer model for performing fast and accurate thermal and optical evaluations of different encapsulation systems. The computer model is used to evaluate cell temperature, solar energy transmittance through the encapsulation system, and electric power output for operation in a terrestrial environment. Extensive results are presented for both superstrate-module and substrate-module design schemes which include different types of silicon cell materials, pottants, and antireflection coatings.
Neuropeptide Substance P and the Immune Response
Tehrani, Mohsen; Grace, Peter M.; Pothoulakis, Charalabos; Dana, Reza
2016-01-01
Substance P is a peptide mainly secreted by neurons and is involved in many biological processes, including nociception and inflammation. Animal models have provided insights into the biology of this peptide and offered compelling evidence for the importance of substance P in cell-to-cell communication by either paracrine or endocrine signaling. Substance P mediates interactions between neurons and immune cells, with nerve-derived substance P modulating immune cell proliferation rates and cytokine production. Intriguingly, some immune cells have also been found to secrete substance P, which hints at an integral role of substance P in the immune response. These communications play important functional roles in immunity including mobilization, proliferation and modulation of activity of immune cells. This Review summarizes current knowledge of substance P and its receptors, as well as its physiological and pathological roles. We focus on recent developments in the immuno-biology of substance P and we discuss the clinical implications of its ability to modulate the immune response. PMID:27314883
Neuropeptide substance P and the immune response.
Mashaghi, Alireza; Marmalidou, Anna; Tehrani, Mohsen; Grace, Peter M; Pothoulakis, Charalabos; Dana, Reza
2016-11-01
Substance P is a peptide mainly secreted by neurons and is involved in many biological processes, including nociception and inflammation. Animal models have provided insights into the biology of this peptide and offered compelling evidence for the importance of substance P in cell-to-cell communication by either paracrine or endocrine signaling. Substance P mediates interactions between neurons and immune cells, with nerve-derived substance P modulating immune cell proliferation rates and cytokine production. Intriguingly, some immune cells have also been found to secrete substance P, which hints at an integral role of substance P in the immune response. These communications play important functional roles in immunity including mobilization, proliferation and modulation of the activity of immune cells. This review summarizes current knowledge of substance P and its receptors, as well as its physiological and pathological roles. We focus on recent developments in the immunobiology of substance P and discuss the clinical implications of its ability to modulate the immune response.
NASA Astrophysics Data System (ADS)
Shepard, N. F.
1980-03-01
The Block 4 shingle type module makes it possible to apply a photovoltaic array to the sloping roof of a residential building by simply nailing the overlapping hexagon shaped shingles to the plywood roof sheathing. This third-generation shingle module design consists of nineteen series connected 100 mm diameter solar cells which are arranged in a closely packed hexagon configuration to provide in excess of 75 watts/sq m of exposed module area under standard operating conditions. The solar cells are individually bonded to the embossed underside of a 4.4 mm thick thermally tempered piece of glass. An experimental silicone pottant was used as the transparent bonding adhesive between the cells and glass. The semi-flexible portion of each shingle module is a composite laminate construction consisting of an outer layer of FLEXSEAL bonded to an inner core of closed cell polyethylene foam. Silaprene is used as the substrate laminating adhesive. The module design has satisfactorily survived qualification testing program which includes 50 thermal cycles between -40 and +90 C, a seven day temperature-humidity exposure test, and a wind resistance test.
NASA Technical Reports Server (NTRS)
Shepard, N. F.
1980-01-01
The Block 4 shingle type module makes it possible to apply a photovoltaic array to the sloping roof of a residential building by simply nailing the overlapping hexagon shaped shingles to the plywood roof sheathing. This third-generation shingle module design consists of nineteen series connected 100 mm diameter solar cells which are arranged in a closely packed hexagon configuration to provide in excess of 75 watts/sq m of exposed module area under standard operating conditions. The solar cells are individually bonded to the embossed underside of a 4.4 mm thick thermally tempered piece of glass. An experimental silicone pottant was used as the transparent bonding adhesive between the cells and glass. The semi-flexible portion of each shingle module is a composite laminate construction consisting of an outer layer of FLEXSEAL bonded to an inner core of closed cell polyethylene foam. Silaprene is used as the substrate laminating adhesive. The module design has satisfactorily survived qualification testing program which includes 50 thermal cycles between -40 and +90 C, a seven day temperature-humidity exposure test, and a wind resistance test.
Photovoltaic module with adhesion promoter
Xavier, Grace
2013-10-08
Photovoltaic modules with adhesion promoters and methods for fabricating photovoltaic modules with adhesion promoters are described. A photovoltaic module includes a solar cell including a first surface and a second surface, the second surface including a plurality of interspaced back-side contacts. A first glass layer is coupled to the first surface by a first encapsulating layer. A second glass layer is coupled to the second surface by a second encapsulating layer. At least a portion of the second encapsulating layer is bonded directly to the plurality of interspaced back-side contacts by an adhesion promoter.
Wang, Ke; Zhao, Yang; Chen, Deyong; Huang, Chengjun; Fan, Beiyuan; Long, Rong; Hsieh, Chia-Hsun; Wang, Junbo; Wu, Min-Hsien; Chen, Jian
2017-06-19
This paper presents the instrumentation of a microfluidic analyzer enabling the characterization of single-cell biophysical properties, which includes seven key components: a microfluidic module, a pressure module, an imaging module, an impedance module, two LabVIEW platforms for instrument operation and raw data processing, respectively, and a Python code for data translation. Under the control of the LabVIEW platform for instrument operation, the pressure module flushes single cells into the microfluidic module with raw biophysical parameters sampled by the imaging and impedance modules and processed by the LabVIEW platform for raw data processing, which were further translated into intrinsic cellular biophysical parameters using the code developed in Python. Based on this system, specific membrane capacitance, cytoplasm conductivity, and instantaneous Young's modulus of three cell types were quantified as 2.76 ± 0.57 μF/cm², 1.00 ± 0.14 S/m, and 3.79 ± 1.11 kPa for A549 cells ( n cell = 202); 1.88 ± 0.31 μF/cm², 1.05 ± 0.16 S/m, and 3.74 ± 0.75 kPa for 95D cells ( n cell = 257); 2.11 ± 0.38 μF/cm², 0.87 ± 0.11 S/m, and 5.39 ± 0.89 kPa for H460 cells ( n cell = 246). As a semi-automatic instrument with a throughput of roughly 1 cell per second, this prototype instrument can be potentially used for the characterization of cellular biophysical properties.
A protein interaction mechanism for suppressing the mechanosensitive Piezo channels.
Zhang, Tingxin; Chi, Shaopeng; Jiang, Fan; Zhao, Qiancheng; Xiao, Bailong
2017-11-27
Piezo proteins are bona fide mammalian mechanotransduction channels for various cell types including endothelial cells. The mouse Piezo1 of 2547 residues forms a three-bladed, propeller-like homo-trimer comprising a central pore-module and three propeller-structures that might serve as mechanotransduction-modules. However, the mechanogating and regulation of Piezo channels remain unclear. Here we identify the sarcoplasmic /endoplasmic-reticulum Ca 2+ ATPase (SERCA), including the widely expressed SERCA2, as Piezo interacting proteins. SERCA2 strategically suppresses Piezo1 via acting on a 14-residue-constituted intracellular linker connecting the pore-module and mechanotransduction-module. Mutating the linker impairs mechanogating and SERCA2-mediated modulation of Piezo1. Furthermore, the synthetic linker-peptide disrupts the modulatory effects of SERCA2, demonstrating the key role of the linker in mechanogating and regulation. Importantly, the SERCA2-mediated regulation affects Piezo1-dependent migration of endothelial cells. Collectively, we identify SERCA-mediated regulation of Piezos and the functional significance of the linker, providing important insights into the mechanogating and regulation mechanisms of Piezo channels.
Tang, Chun-Lian; Liu, Zhi-Ming; Gao, Yan Ru; Xiong, Fei
2018-01-01
Studies on parasite-induced immunoregulatory mechanisms could contribute to the development of new therapies for inflammatory diseases such as type 2 diabetes (T2D), which is a chronic inflammatory disease characterized by persistent elevated glucose levels due to insulin resistance. The association between previous Schistosoma infection and T2D has been confirmed—Schistosoma infection and Schistosoma-derived products modulate the immune system, including innate and acquired immune responses, contributing to T2D disease control. Schistosoma infections and Schistosoma-derived molecules affect the immune cell composition in adipose tissue, dampening inflammation and improving glucose tolerance. This protective role includes the polarization of immune cells to alternatively activated macrophages, dendritic cells, eosinophils, and group 2 innate lymphoid cells. Furthermore, Schistosoma infection and Schistosoma products are effective for the treatment of T2D, as they increase the number of type 2 helper T cells (Th2) and regulatory T cells (Tregs) and decrease type 1 helper T cells (Th1) and type 17 helper T cells (Th17) cells. Thus, our aim was to comprehensively review the mechanism through which Schistosoma infection and Schistosoma products modulate the immune response against T2D. PMID:29387059
Tang, Chun-Lian; Liu, Zhi-Ming; Gao, Yan Ru; Xiong, Fei
2017-01-01
Studies on parasite-induced immunoregulatory mechanisms could contribute to the development of new therapies for inflammatory diseases such as type 2 diabetes (T2D), which is a chronic inflammatory disease characterized by persistent elevated glucose levels due to insulin resistance. The association between previous Schistosoma infection and T2D has been confirmed- Schistosoma infection and Schistosoma -derived products modulate the immune system, including innate and acquired immune responses, contributing to T2D disease control. Schistosoma infections and Schistosoma -derived molecules affect the immune cell composition in adipose tissue, dampening inflammation and improving glucose tolerance. This protective role includes the polarization of immune cells to alternatively activated macrophages, dendritic cells, eosinophils, and group 2 innate lymphoid cells. Furthermore, Schistosoma infection and Schistosoma products are effective for the treatment of T2D, as they increase the number of type 2 helper T cells (Th2) and regulatory T cells (Tregs) and decrease type 1 helper T cells (Th1) and type 17 helper T cells (Th17) cells. Thus, our aim was to comprehensively review the mechanism through which Schistosoma infection and Schistosoma products modulate the immune response against T2D.
Space Qualification Test of a-Silicon Solar Cell Modules
NASA Technical Reports Server (NTRS)
Kim, Q.; Lawton, R. A.; Manion, S. J.; Okuno, J. O.; Ruiz, R. P.; Vu, D. T.; Kayali, S. A.; Jeffrey, F. R.
1997-01-01
The basic requirement of solar cell modules for space applications are generally described in MIL-S-83576 for the specific needs of the USAF. However, the specifications of solar cells intended for use on space terrestrial applications are not well defined. Therefore this qualification test effort was concentrated on critical areas specific to the microseismometer probe which is intended to be included in the Mars microprobe programs.
Microengineering as a tool to study substratum modulation and cell behaviour.
Keatch, R P; Armoogum, K; Schor, S L; Pridham, M S; Banks, K; Khor, T Y; Matthew, C
2002-01-01
This research is an investigation of the means by which geometrical parameters (e.g. area and shape) and various surface attributes (materials and surface finish) of microengineered structures can modulate cellular response. This is based on biological observations indicating that: (i) the response of tissue cells to injury is determined by the net signal transduction response elicited by soluble regulatory molecules (e.g. cytokines), (ii) common matrix constituents (e.g. collagen) directly affect cell behaviour by the same signal transduction mechanisms mediating cytokine bioactivity, (iii) cellular response to cytokines is modulated by the precise nature of the extracellular matrix to which the target cells are adherent, including its biochemical composition and physical structure.
A solar module fabrication process for HALE solar electric UAV's
NASA Astrophysics Data System (ADS)
Carey, P. G.; Aceves, R. C.; Colella, N. J.; Williams, K. A.; Sinton, R. A.; Glenn, G. S.
1994-12-01
We describe a fabrication process used to manufacture high power-to-weight-ratio flexible solar array modules for use on high-altitude-long-endurance (HALE) solar-electric unmanned air vehicles (UAV's). These modules have achieved power-to-weight ratios of 315 and 396 W/kg for 150 micron-thick monofacial and 110 micron-thick bifacial silicon solar cells, respectively. These calculations reflect average module efficiencies of 15.3% (150 micron) and 14.7% (110 micron) obtained from electrical tests performed by Spectrolab, Inc. under AMO global conditions at 25 C, and include weight contributions from all module components (solar cells, lamination material, bypass diodes, interconnect wires, and adhesive tape used to attach the modules to the wing). The fabrication, testing, and performance of 32 sq m of these modules is described.
Apicomplexans pulling the strings: manipulation of the host cell cytoskeleton dynamics.
Cardoso, Rita; Soares, Helena; Hemphill, Andrew; Leitão, Alexandre
2016-07-01
Invasive stages of apicomplexan parasites require a host cell to survive, proliferate and advance to the next life cycle stage. Once invasion is achieved, apicomplexans interact closely with the host cell cytoskeleton, but in many cases the different species have evolved distinct mechanisms and pathways to modulate the structural organization of cytoskeletal filaments. The host cell cytoskeleton is a complex network, largely, but not exclusively, composed of microtubules, actin microfilaments and intermediate filaments, all of which are modulated by associated proteins, and it is involved in diverse functions including maintenance of cell morphology and mechanical support, migration, signal transduction, nutrient uptake, membrane and organelle trafficking and cell division. The ability of apicomplexans to modulate the cytoskeleton to their own advantage is clearly beneficial. We here review different aspects of the interactions of apicomplexans with the three main cytoskeletal filament types, provide information on the currently known parasite effector proteins and respective host cell targets involved, and how these interactions modulate the host cell physiology. Some of these findings could provide novel targets that could be exploited for the development of preventive and/or therapeutic strategies.
Usenik, Aleksandra; Renko, Miha; Mihelič, Marko; Lindič, Nataša; Borišek, Jure; Perdih, Andrej; Pretnar, Gregor; Müller, Uwe; Turk, Dušan
2017-03-07
Bacterial cell wall proteins play crucial roles in cell survival, growth, and environmental interactions. In Gram-positive bacteria, cell wall proteins include several types that are non-covalently attached via cell wall binding domains. Of the two conserved surface-layer (S-layer)-anchoring modules composed of three tandem SLH or CWB2 domains, the latter have so far eluded structural insight. The crystal structures of Cwp8 and Cwp6 reveal multi-domain proteins, each containing an embedded CWB2 module. It consists of a triangular trimer of Rossmann-fold CWB2 domains, a feature common to 29 cell wall proteins in Clostridium difficile 630. The structural basis of the intact module fold necessary for its binding to the cell wall is revealed. A comparison with previously reported atomic force microscopy data of S-layers suggests that C. difficile S-layers are complex oligomeric structures, likely composed of several different proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.
Infrared-Proximity-Sensor Modules For Robot
NASA Technical Reports Server (NTRS)
Parton, William; Wegerif, Daniel; Rosinski, Douglas
1995-01-01
Collision-avoidance system for articulated robot manipulators uses infrared proximity sensors grouped together in array of sensor modules. Sensor modules, called "sensorCells," distributed processing board-level products for acquiring data from proximity-sensors strategically mounted on robot manipulators. Each sensorCell self-contained and consists of multiple sensing elements, discrete electronics, microcontroller and communications components. Modules connected to central control computer by redundant serial digital communication subsystem including both serial and a multi-drop bus. Detects objects made of various materials at distance of up to 50 cm. For some materials, such as thermal protection system tiles, detection range reduced to approximately 20 cm.
Nicola, Fabrício; Marques, Marília Rossato; Odorcyk, Felipe; Petenuzzo, Letícia; Aristimunha, Dirceu; Vizuete, Adriana; Sanches, Eduardo Farias; Pereira, Daniela Pavulack; Maurmann, Natasha; Gonçalves, Carlos-Alberto; Pranke, Patricia; Netto, Carlos Alexandre
2018-06-16
The authors hereby declare that the Figure 4 in page eight of the paper "Stem cells from human exfoliated deciduous teeth modulate early astrocyte response after spinal cord contusion" authored by Fabrício Nicola and colleagues (DOI: 10.1007/s12035-018-1127-4) was mistakenly included.
Device Performance Capabilities | Photovoltaic Research | NREL
multijunction cells and modules. We use I-V measurement systems to assess the main performance parameters for PV cells and modules. I-V measurement systems determine the output performance of devices, including: open the device (η). Some I-V systems may also be used to perform dark I-V measurements to determine diode
Universal lab-on-a-chip platform for complex, perfused 3D cell cultures
NASA Astrophysics Data System (ADS)
Sonntag, F.; Schmieder, F.; Ströbel, J.; Grünzner, S.; Busek, M.; Günther, K.; Steege, T.; Polk, C.; Klotzbach, U.
2016-03-01
The miniaturization, rapid prototyping and automation of lab-on-a-chip technology play nowadays a very important role. Lab-on-a-chip technology is successfully implemented not only for environmental analysis and medical diagnostics, but also as replacement of animals used for the testing of substances in the pharmaceutical and cosmetics industries. For that purpose the Fraunhofer IWS and partners developed a lab-on-a-chip platform for perfused cell-based assays in the last years, which includes different micropumps, valves, channels, reservoirs and customized cell culture modules. This technology is already implemented for the characterization of different human cell cultures and organoids, like skin, liver, endothelium, hair follicle and nephron. The advanced universal lab-on-a-chip platform for complex, perfused 3D cell cultures is divided into a multilayer basic chip with integrated micropump and application-specific 3D printed cell culture modules. Moreover a technology for surface modification of the printed cell culture modules by laser micro structuring and a complex and flexibly programmable controlling device based on an embedded Linux system was developed. A universal lab-on-a-chip platform with an optional oxygenator and a cell culture module for cubic scaffolds as well as first cell culture experiments within the cell culture device will be presented. The module is designed for direct interaction with robotic dispenser systems. This offers the opportunity to combine direct organ printing of cells and scaffolds with the microfluidic cell culture module. The characterization of the developed system was done by means of Micro-Particle Image Velocimetry (μPIV) and an optical oxygen measuring system.
Proceedings of the 22nd Project Integration Meeting
NASA Technical Reports Server (NTRS)
1983-01-01
This report describes progress made by the Flat-Plate Solar Array Project during the period January to September 1983. It includes reports on silicon sheet growth and characterization, module technology, silicon material, cell processing and high-efficiency cells, environmental isolation, engineering sciences, module performance and failure analysis and project analysis and integration. It includes a report on, and copies of visual presentations made at the 22nd Project Integration Meeting held at Pasadena, California, on September 28 and 29, 1983.
Wang, Ke; Zhao, Yang; Chen, Deyong; Huang, Chengjun; Fan, Beiyuan; Long, Rong; Hsieh, Chia-Hsun; Wang, Junbo; Wu, Min-Hsien; Chen, Jian
2017-01-01
This paper presents the instrumentation of a microfluidic analyzer enabling the characterization of single-cell biophysical properties, which includes seven key components: a microfluidic module, a pressure module, an imaging module, an impedance module, two LabVIEW platforms for instrument operation and raw data processing, respectively, and a Python code for data translation. Under the control of the LabVIEW platform for instrument operation, the pressure module flushes single cells into the microfluidic module with raw biophysical parameters sampled by the imaging and impedance modules and processed by the LabVIEW platform for raw data processing, which were further translated into intrinsic cellular biophysical parameters using the code developed in Python. Based on this system, specific membrane capacitance, cytoplasm conductivity, and instantaneous Young’s modulus of three cell types were quantified as 2.76 ± 0.57 μF/cm2, 1.00 ± 0.14 S/m, and 3.79 ± 1.11 kPa for A549 cells (ncell = 202); 1.88 ± 0.31 μF/cm2, 1.05 ± 0.16 S/m, and 3.74 ± 0.75 kPa for 95D cells (ncell = 257); 2.11 ± 0.38 μF/cm2, 0.87 ± 0.11 S/m, and 5.39 ± 0.89 kPa for H460 cells (ncell = 246). As a semi-automatic instrument with a throughput of roughly 1 cell per second, this prototype instrument can be potentially used for the characterization of cellular biophysical properties. PMID:28629175
Investigation of test methods, material properties, and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
1984-01-01
Photovoltaic (PV) modules consist of a string of electrically interconnected silicon solar cells capable of producing practical quantities of electrical power when exposed to sunlight. To insure high reliability and long term performance, the functional components of the solar cell module must be adequately protected from the environment by some encapsulation technique. The encapsulation system must provide mechanical support for the cells and corrosion protection for the electrical components. The goal of the program is to identify and develop encapsulation systems consistent with the PV module operating requirements of 30 year life and a target cost of $0.70 per peak watt ($70 per square meter) (1980 dollars). Assuming a module efficiency of ten percent, which is equivalent to a power output of 100 watts per square meter in midday sunlight, the capital cost of the modules may be calculated to be $70.00 per square meter. Out of this cost goal, only 20 percent is available for encapsulation due to the high cost of the cells, interconnects, and other related components. The encapsulation cost allocation may then be stated as $14.00 per square meter, included all coatings, pottant and mechanical supports for the cells.
Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries.
Boeva, Valentina; Louis-Brennetot, Caroline; Peltier, Agathe; Durand, Simon; Pierre-Eugène, Cécile; Raynal, Virginie; Etchevers, Heather C; Thomas, Sophie; Lermine, Alban; Daudigeos-Dubus, Estelle; Geoerger, Birgit; Orth, Martin F; Grünewald, Thomas G P; Diaz, Elise; Ducos, Bertrand; Surdez, Didier; Carcaboso, Angel M; Medvedeva, Irina; Deller, Thomas; Combaret, Valérie; Lapouble, Eve; Pierron, Gaelle; Grossetête-Lalami, Sandrine; Baulande, Sylvain; Schleiermacher, Gudrun; Barillot, Emmanuel; Rohrer, Hermann; Delattre, Olivier; Janoueix-Lerosey, Isabelle
2017-09-01
Neuroblastoma is a tumor of the peripheral sympathetic nervous system, derived from multipotent neural crest cells (NCCs). To define core regulatory circuitries (CRCs) controlling the gene expression program of neuroblastoma, we established and analyzed the neuroblastoma super-enhancer landscape. We discovered three types of identity in neuroblastoma cell lines: a sympathetic noradrenergic identity, defined by a CRC module including the PHOX2B, HAND2 and GATA3 transcription factors (TFs); an NCC-like identity, driven by a CRC module containing AP-1 TFs; and a mixed type, further deconvoluted at the single-cell level. Treatment of the mixed type with chemotherapeutic agents resulted in enrichment of NCC-like cells. The noradrenergic module was validated by ChIP-seq. Functional studies demonstrated dependency of neuroblastoma with noradrenergic identity on PHOX2B, evocative of lineage addiction. Most neuroblastoma primary tumors express TFs from the noradrenergic and NCC-like modules. Our data demonstrate a previously unknown aspect of tumor heterogeneity relevant for neuroblastoma treatment strategies.
Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex
Winter, Shawn S.; Mehlman, Max L.; Clark, Benjamin J.; Taube, Jeffrey S.
2015-01-01
Summary Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal’s movements. These signals include grid cells, which fire at multiple locations forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz EEG oscillation that is modulated by the animals’ movement velocity. We passively moved rats in a clear cart to eliminate motor related self-movement cues that drive moment-to-moment changes in theta rhythmicity. We found that passive movement maintained theta power and frequency at levels equivalent to low active movement velocity, spared overall HD cell characteristics, and abolished velocity modulation of theta rhythmicity and grid cell firing patterns. These results indicate that self-movement motor cues are necessary for generating grid-specific firing patterns, possibly by driving velocity modulation of theta rhythmicity. Velocity modulation of theta may be used as a speed signal to generate the repeating pattern of grid cells. PMID:26387719
Cell illustrator 4.0: a computational platform for systems biology.
Nagasaki, Masao; Saito, Ayumu; Jeong, Euna; Li, Chen; Kojima, Kaname; Ikeda, Emi; Miyano, Satoru
2011-01-01
Cell Illustrator is a software platform for Systems Biology that uses the concept of Petri net for modeling and simulating biopathways. It is intended for biological scientists working at bench. The latest version of Cell Illustrator 4.0 uses Java Web Start technology and is enhanced with new capabilities, including: automatic graph grid layout algorithms using ontology information; tools using Cell System Markup Language (CSML) 3.0 and Cell System Ontology 3.0; parameter search module; high-performance simulation module; CSML database management system; conversion from CSML model to programming languages (FORTRAN, C, C++, Java, Python and Perl); import from SBML, CellML, and BioPAX; and, export to SVG and HTML. Cell Illustrator employs an extension of hybrid Petri net in an object-oriented style so that biopathway models can include objects such as DNA sequence, molecular density, 3D localization information, transcription with frame-shift, translation with codon table, as well as biochemical reactions.
Cell Illustrator 4.0: a computational platform for systems biology.
Nagasaki, Masao; Saito, Ayumu; Jeong, Euna; Li, Chen; Kojima, Kaname; Ikeda, Emi; Miyano, Satoru
2010-01-01
Cell Illustrator is a software platform for Systems Biology that uses the concept of Petri net for modeling and simulating biopathways. It is intended for biological scientists working at bench. The latest version of Cell Illustrator 4.0 uses Java Web Start technology and is enhanced with new capabilities, including: automatic graph grid layout algorithms using ontology information; tools using Cell System Markup Language (CSML) 3.0 and Cell System Ontology 3.0; parameter search module; high-performance simulation module; CSML database management system; conversion from CSML model to programming languages (FORTRAN, C, C++, Java, Python and Perl); import from SBML, CellML, and BioPAX; and, export to SVG and HTML. Cell Illustrator employs an extension of hybrid Petri net in an object-oriented style so that biopathway models can include objects such as DNA sequence, molecular density, 3D localization information, transcription with frame-shift, translation with codon table, as well as biochemical reactions.
Solar Photovoltaic Cell/Module Shipments Report
2017-01-01
Summary data for the photovoltaic industry in the United States. Data includes manufacturing, imports, and exports of modules in the United States and its territories. Summary data include volumes in peak kilowatts and average prices. Where possible, imports and exports are listed by country, and shipments to the United States are listed by state.
Non-destructive evaluation of water ingress in photovoltaic modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bora, Mihail; Kotovsky, Jack
Systems and techniques for non-destructive evaluation of water ingress in photovoltaic modules include and/or are configured to illuminate a photovoltaic module comprising a photovoltaic cell and an encapsulant with at least one beam of light having a wavelength in a range from about 1400 nm to about 2700 nm; capture one or more images of the illuminated photovoltaic module, each image relating to a water content of the photovoltaic module; and determine a water content of the photovoltaic module based on the one or more images. Systems preferably include one or more of a light source, a moving mirror, amore » focusing lens, a beam splitter, a stationary mirror, an objective lens and an imaging module.« less
Lightweight, direct-radiating nickel hydrogen batteries
NASA Technical Reports Server (NTRS)
Metcalfe, J. R.
1986-01-01
Two battery module configurations were developed which, in addition to integrating cylindrical nickel hydrogen (NiH2) cells into batteries, provide advances in the means of mounting, monitoring and thermal control of these cells. The main difference between the two modules is the physical arrangement of the cells: vertical versus horizontal. Direct thermal radiation to deep space is accomplished by substituting the battery structure for an exterior spacecraft panel. Unlike most conventional nickel-cadmium (NiCd) and NiH2 batteries, the cells are not tightly packed together; therefore ancillary heat conducting media to outside radiating areas, and spacecraft deck reinforcements for high mass concentration are not necessary. Testing included electrical characterization and a comprehensive regime of environmental exposures. The designs are flexible with respect to quantity and type of cells, orbit altitude and period, power demand profile, and the extent of cell parameter monitoring. This paper compares the characteristics of the two battery modules and summarizes their performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2015-12-09
PV_LIB comprises a library of Matlab? code for modeling photovoltaic (PV) systems. Included are functions to compute solar position and to estimate irradiance in the PV system's plane of array, cell temperature, PV module electrical output, and conversion from DC to AC power. Also included are functions that aid in determining parameters for module performance models from module characterization testing. PV_LIB is open source code primarily intended for research and academic purposes. All algorithms are documented in openly available literature with the appropriate references included in comments within the code.
Investigation of test methods, material properties, and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.
1983-01-01
A study of potentially useful low cost encapsulation materials for the Flat-Plate Solar Array project is discussed. The goal is to identify, evaluate, test and recommend encapsulant materials and processes for the production of cost-effective, long life solar cell modules. Technical investigations included studies of aging and degradation of candidate encapsulation materials, continued identification of primers for durable bonding of module interfaces, continued evaluation of soil resistant treatments for the sunlit surface of the module and testing of corrosion protective coatings for use low cost mild steel substrates.
Severe Accident Test Station Design Document
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Mary A.; Yan, Yong; Howell, Michael
The purpose of the ORNL severe accident test station (SATS) is to provide a platform for evaluation of advanced fuels under projected beyond design basis accident (BDBA) conditions. The SATS delivers the capability to map the behavior of advanced fuels concepts under accident scenarios across various temperature and pressure profiles, steam and steam-hydrogen gas mixtures, and thermal shock. The overall facility will include parallel capabilities for examination of fuels and irradiated materials (in-cell) and non-irradiated materials (out-of-cell) at BDBA conditions as well as design basis accident (DBA) or loss of coolant accident (LOCA) conditions. Also, a supporting analytical infrastructure tomore » provide the data-needs for the fuel-modeling components of the Fuel Cycle Research and Development (FCRD) program will be put in place in a parallel manner. This design report contains the information for the first, second and third phases of design and construction of the SATS. The first phase consisted of the design and construction of an out-of-cell BDBA module intended for examination of non-irradiated materials. The second phase of this work was to construct the BDBA in-cell module to test irradiated fuels and materials as well as the module for DBA (i.e. LOCA) testing out-of-cell, The third phase was to build the in-cell DBA module. The details of the design constraints and requirements for the in-cell facility have been closely captured during the deployment of the out-of-cell SATS modules to ensure effective future implementation of the in-cell modules.« less
Cancer cell metabolism and the modulating effects of nitric oxide.
Chang, Ching-Fang; Diers, Anne R; Hogg, Neil
2015-02-01
Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma, and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes. Copyright © 2015. Published by Elsevier Inc.
Cancer Cell Metabolism and the Modulating Effects of Nitric Oxide
Chang, Ching-Fang; Diers, Anne R.; Hogg, Neil
2016-01-01
Altered metabolic phenotype has been recognized as a hallmark of tumor cells for many years, but this aspect of the cancer phenotype has come into greater focus in recent years. NOS2 (inducible nitric oxide synthase of iNOS) has been implicated as a component in many aggressive tumor phenotypes, including melanoma, glioblastoma and breast cancer. Nitric oxide has been well established as a modulator of cellular bioenergetics pathways, in many ways similar to the alteration of cellular metabolism observed in aggressive tumors. In this review we attempt to bring these concepts together with the general hypothesis that one function of NOS2 and NO in cancer is to modulate metabolic processes to facilitate increased tumor aggression. There are many mechanisms by which NO can modulate tumor metabolism, including direct inhibition of respiration, alterations in mitochondrial mass, oxidative inhibition of bioenergetic enzymes, and the stimulation of secondary signaling pathways. Here we review metabolic alterations in the context of cancer cells and discuss the role of NO as a potential mediator of these changes. PMID:25464273
Encapsulant Material For Solar Cell Module And Laminated Glass Applications
Hanoka, Jack I.
2000-09-05
An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of ionomer. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first ionomer layer, and a second layer of ionomer is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.
Crystalline-silicon reliability lessons for thin-film modules
NASA Technical Reports Server (NTRS)
Ross, Ronald G., Jr.
1985-01-01
Key reliability and engineering lessons learned from the 10-year history of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project are presented and analyzed. Particular emphasis is placed on lessons applicable to the evolving new thin-film cell and module technologies and the organizations involved with these technologies. The user-specific demand for reliability is a strong function of the application, its location, and its expected duration. Lessons relative to effective means of specifying reliability are described, and commonly used test requirements are assessed from the standpoint of which are the most troublesome to pass, and which correlate best with field experience. Module design lessons are also summarized, including the significance of the most frequently encountered failure mechanisms and the role of encapsulant and cell reliability in determining module reliability. Lessons pertaining to research, design, and test approaches include the historical role and usefulness of qualification tests and field tests.
Ivy and neurogliaform interneurons are a major target of μ opioid receptor modulation
Krook-Magnuson, Esther; Luu, Lillian; Lee, Sang-Hun; Varga, Csaba; Soltesz, Ivan
2011-01-01
Mu opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform cells are not only numerous, but also have unique properties, including promiscuous gap junctions formed with various interneuronal subtypes, volume transmission, and the ability to produce a postsynaptic GABAB response after a single presynaptic spike. Using a mouse line expressing green fluorescent protein under the neuropeptide Y promoter, we find that across all layers of CA1, activation of μORs hyperpolarizes Ivy and neurogliaform cells. Further, paired recordings between synaptically coupled Ivy and pyramidal cells show that Ivy cell terminals are dramatically inhibited by μOR-activation. Effects in Ivy and neurogliaform cells are seen at similar concentrations of agonist as those producing inhibition in fast-spiking PV basket cells. We also report that Ivy cells display the recently described phenomenon of persistent firing, a state of continued firing in the absence of continued input, and that induction of persistent firing is inhibited by μOR-activation. Together these findings identify a major, previously unrecognized, target of μOR-modulation. Given the prominence of this cell type in and beyond CA1, as well as its unique role in microcircuitry, opioid modulation of neurogliaform cells has wide implications. PMID:22016519
Ivy and neurogliaform interneurons are a major target of μ-opioid receptor modulation.
Krook-Magnuson, Esther; Luu, Lillian; Lee, Sang-Hun; Varga, Csaba; Soltesz, Ivan
2011-10-19
μ-Opioid receptors (μORs) are selectively expressed on interneurons in area CA1 of the hippocampus. Fast-spiking, parvalbumin-expressing, basket cells express μORs, but circumstantial evidence suggests that another major, unidentified, GABAergic cell class must also be modulated by μORs. Here we report that the abundant, dendritically targeting, neurogliaform family of cells (Ivy and neurogliaform cells) is a previously unrecognized target of direct modulation by μORs. Ivy and neurogliaform cells are not only numerous but also have unique properties, including promiscuous gap junctions formed with various interneuronal subtypes, volume transmission, and the ability to produce a postsynaptic GABA(B) response after a single presynaptic spike. Using a mouse line expressing green fluorescent protein under the neuropeptide Y promoter, we find that, across all layers of CA1, activation of μORs hyperpolarizes Ivy and neurogliaform cells. Furthermore, paired recordings between synaptically coupled Ivy and pyramidal cells show that Ivy cell terminals are dramatically inhibited by μOR activation. Effects in Ivy and neurogliaform cells are seen at similar concentrations of agonist as those producing inhibition in fast-spiking parvalbumin basket cells. We also report that Ivy cells display the recently described phenomenon of persistent firing, a state of continued firing in the absence of continued input, and that induction of persistent firing is inhibited by μOR activation. Together, these findings identify a major, previously unrecognized, target of μOR modulation. Given the prominence of this cell type in and beyond CA1, as well as its unique role in microcircuitry, opioid modulation of neurogliaform cells has wide implications.
Immunological changes with kinase inhibitor therapy for chronic lymphocytic leukemia.
Pleyer, Christopher; Wiestner, Adrian; Sun, Clare
2018-05-15
Ibrutinib and idelalisib are kinase inhibitors that have revolutionized the treatment of chronic lymphocytic leukemia (CLL). Capable of inducing durable remissions, these agents also modulate the immune system. Both ibrutinib and idelalisib abrogate the tumor-supporting microenvironment by disrupting cell-cell interactions, modulating the T-cell compartment, and altering the cytokine milieu. Ibrutinib also partially restores T-cell and myeloid defects associated with CLL. In contrast, immune-related adverse effects, including pneumonitis, colitis, hepatotoxicity, and infections are of particular concern with idelalisib. While opportunistic infections and viral reactivations occur with both ibrutinib and idelalisib, these complications are less common and less severe with ibrutinib, especially when used as monotherapy without additional immunosuppressive agents. This review discusses the impact of ibrutinib and idelalisib on the immune system, including infectious and auto-immune complications as well as their specific effects on the B-cell, T-cell, and myeloid compartment.
Preliminary results of accelerated exposure testing of solar cell system components
NASA Technical Reports Server (NTRS)
Anagnostou, E.; Forestieri, A. F.
1977-01-01
Plastic samples and solar cell sub modules were exposed to an accelerated outdoor environment in Arizona and an accelerated simulated environment in a cyclic ultraviolet exposure tester which included humidity exposure. These tests were for preliminary screening of materials suitable for use in the manufacture of solar cell modules which are to have a 20-year lifetime. The samples were exposed for various times up to six months, equivalent to a real time exposure of four years. Suitable materials were found to be FEP-A, FEP-C, PFA, acrylic, silicone compounds and adhesives and possibly parylene. The method of packaging the sub modules was also found to be important to their performance.
Endocannabinoid regulation of β-cell functions: implications for glycaemic control and diabetes.
Jourdan, T; Godlewski, G; Kunos, G
2016-06-01
Visceral obesity is a major risk factor for the development of insulin resistance which can progress to overt type 2 diabetes (T2D) with loss of β-cell function and, ultimately, loss of β-cells. Insulin secretion by β-cells of the pancreatic islets is tightly coupled to blood glucose concentration and modulated by a large number of blood-borne or locally released mediators, including endocannabinoids. Obesity and its complications, including T2D, are associated with increased activity of the endocannabinoid/CB1 receptor (CB1 R) system, as indicated by the therapeutic effects of CB1 R antagonists. Similar beneficial effects of CB1 R antagonists with limited brain penetrance indicate the important role of CB1 R in peripheral tissues, including the endocrine pancreas. Pancreatic β-cells express all of the components of the endocannabinoid system, and endocannabinoids modulate their function via both autocrine and paracrine mechanisms, which influence basal and glucose-induced insulin secretion and also affect β-cell proliferation and survival. The present brief review will survey available information on the modulation of these processes by endocannabinoids and their receptors, with an attempt to assess the contribution of such effects to glycaemic control in T2D and insulin resistance. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Cytokines and cytokine networks target neurons to modulate long-term potentiation.
Prieto, G Aleph; Cotman, Carl W
2017-04-01
Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines. Copyright © 2017 Elsevier Ltd. All rights reserved.
Cytokines and cytokine networks target neurons to modulate long-term potentiation
Prieto, G. Aleph; Cotman, Carl W.
2017-01-01
Cytokines play crucial roles in the communication between brain cells including neurons and glia, as well as in the brain-periphery interactions. In the brain, cytokines modulate long-term potentiation (LTP), a cellular correlate of memory. Whether cytokines regulate LTP by direct effects on neurons or by indirect mechanisms mediated by non-neuronal cells is poorly understood. Elucidating neuron-specific effects of cytokines has been challenging because most brain cells express cytokine receptors. Moreover, cytokines commonly increase the expression of multiple cytokines in their target cells, thus increasing the complexity of brain cytokine networks even after single-cytokine challenges. Here, we review evidence on both direct and indirect-mediated modulation of LTP by cytokines. We also describe novel approaches based on neuron- and synaptosome-enriched systems to identify cytokines able to directly modulate LTP, by targeting neurons and synapses. These approaches can test multiple samples in parallel, thus allowing the study of multiple cytokines simultaneously. Hence, a cytokine networks perspective coupled with neuron-specific analysis may contribute to delineation of maps of the modulation of LTP by cytokines. PMID:28377062
Texturing Silicon Nanowires for Highly Localized Optical Modulation of Cellular Dynamics.
Fang, Yin; Jiang, Yuanwen; Acaron Ledesma, Hector; Yi, Jaeseok; Gao, Xiang; Weiss, Dara E; Shi, Fengyuan; Tian, Bozhi
2018-06-18
Engineered silicon-based materials can display photoelectric and photothermal responses under light illumination, which may lead to further innovations at the silicon-biology interfaces. Silicon nanowires have small radial dimensions, promising as highly localized cellular modulators, however the single crystalline form typically has limited photothermal efficacy due to the poor light absorption and fast heat dissipation. In this work, we report strategies to improve the photothermal response from silicon nanowires by introducing nanoscale textures on the surface and in the bulk. We next demonstrate high-resolution extracellular modulation of calcium dynamics in a number of mammalian cells including glial cells, neurons, and cancer cells. The new materials may be broadly used in probing and modulating electrical and chemical signals at the subcellular length scale, which is currently a challenge in the field of electrophysiology or cellular engineering.
Bon, Robin S; Beech, David J
2013-01-01
The primary purpose of this review is to address the progress towards small molecule modulators of human Transient Receptor Potential Canonical proteins (TRPC1, TRPC3, TRPC4, TRPC5, TRPC6 and TRPC7). These proteins generate channels for calcium and sodium ion entry. They are relevant to many mammalian cell types including acinar gland cells, adipocytes, astrocytes, cardiac myocytes, cochlea hair cells, endothelial cells, epithelial cells, fibroblasts, hepatocytes, keratinocytes, leukocytes, mast cells, mesangial cells, neurones, osteoblasts, osteoclasts, platelets, podocytes, smooth muscle cells, skeletal muscle and tumour cells. There are broad-ranging positive roles of the channels in cell adhesion, migration, proliferation, survival and turning, vascular permeability, hypertrophy, wound-healing, hypo-adiponectinaemia, angiogenesis, neointimal hyperplasia, oedema, thrombosis, muscle endurance, lung hyper-responsiveness, glomerular filtration, gastrointestinal motility, pancreatitis, seizure, innate fear, motor coordination, saliva secretion, mast cell degranulation, cancer cell drug resistance, survival after myocardial infarction, efferocytosis, hypo-matrix metalloproteinase, vasoconstriction and vasodilatation. Known small molecule stimulators of the channels include hyperforin, genistein and rosiglitazone, but there is more progress with inhibitors, some of which have promising potency and selectivity. The inhibitors include 2-aminoethoxydiphenyl borate, 2-aminoquinolines, 2-aminothiazoles, fatty acids, isothiourea derivatives, naphthalene sulfonamides, N-phenylanthranilic acids, phenylethylimidazoles, piperazine/piperidine analogues, polyphenols, pyrazoles and steroids. A few of these agents are starting to be useful as tools for determining the physiological and pathophysiological functions of TRPC channels. We suggest that the pursuit of small molecule modulators for TRPC channels is important but that it requires substantial additional effort and investment before we can reap the rewards of highly potent and selective pharmacological modulators. PMID:23763262
Module Based Complexity Formation: Periodic Patterning in Feathers and Hairs
Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall
2012-01-01
Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism's lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specified number, size, and spacing. We explore how a field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical-chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators / inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (micro-environment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macro-environment) prevent this. Different wave patterns can be simulated by Cellular Automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to “organ metamorphosis”, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential evolutionary novel steps using this module based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. PMID:23539312
Module-based complexity formation: periodic patterning in feathers and hairs.
Chuong, Cheng-Ming; Yeh, Chao-Yuan; Jiang, Ting-Xin; Widelitz, Randall
2013-01-01
Patterns describe order which emerges from homogeneity. Complex patterns on the integument are striking because of their visibility throughout an organism’s lifespan. Periodic patterning is an effective design because the ensemble of hair or feather follicles (modules) allows the generation of complexity, including regional variations and cyclic regeneration, giving the skin appendages a new lease on life. Spatial patterns include the arrangements of feathers and hairs in specific number, size, and spacing.We explorehowa field of equivalent progenitor cells can generate periodically arranged modules based on genetic information, physical–chemical rules and developmental timing. Reconstitution experiments suggest a competitive equilibrium regulated by activators/inhibitors involving Turing reaction-diffusion. Temporal patterns result from oscillating stem cell activities within each module (microenvironment regulation), reflected as growth (anagen) and resting (telogen) phases during the cycling of feather and hair follicles. Stimulating modules with activators initiates the spread of regenerative hair waves, while global inhibitors outside each module (macroenvironment) prevent this. Different wave patterns can be simulated by cellular automata principles. Hormonal status and seasonal changes can modulate appendage phenotypes, leading to ‘organ metamorphosis’, with multiple ectodermal organ phenotypes generated from the same precursors. We discuss potential novel evolutionary steps using this module-based complexity in several amniote integument organs, exemplified by the spectacular peacock feather pattern. We thus explore the application of the acquired knowledge of patterning in tissue engineering. New hair follicles can be generated after wounding. Hairs and feathers can be reconstituted through self-organization of dissociated progenitor cells. © 2012 Wiley Periodicals, Inc.
USDA-ARS?s Scientific Manuscript database
Natural killer (NK) cells are a diverse population of lymphocytes with a range of biological roles including essential immune functions. NK cell diversity is created by the differential expression of cell surface receptors which modulate activation and function, including multiple subfamilies of C-t...
Immune modulation by genetic modification of dendritic cells with lentiviral vectors.
Liechtenstein, Therese; Perez-Janices, Noemi; Bricogne, Christopher; Lanna, Alessio; Dufait, Inès; Goyvaerts, Cleo; Laranga, Roberta; Padella, Antonella; Arce, Frederick; Baratchian, Mehdi; Ramirez, Natalia; Lopez, Natalia; Kochan, Grazyna; Blanco-Luquin, Idoia; Guerrero-Setas, David; Breckpot, Karine; Escors, David
2013-09-01
Our work over the past eight years has focused on the use of HIV-1 lentiviral vectors (lentivectors) for the genetic modification of dendritic cells (DCs) to control their functions in immune modulation. DCs are key professional antigen presenting cells which regulate the activity of most effector immune cells, including T, B and NK cells. Their genetic modification provides the means for the development of targeted therapies towards cancer and autoimmune disease. We have been modulating with lentivectors the activity of intracellular signalling pathways and co-stimulation during antigen presentation to T cells, to fine-tune the type and strength of the immune response. In the course of our research, we have found unexpected results such as the surprising immunosuppressive role of anti-viral signalling pathways, and the close link between negative co-stimulation in the immunological synapse and T cell receptor trafficking. Here we review our major findings and put them into context with other published work. Copyright © 2013 Elsevier B.V. All rights reserved.
Development and testing of shingle-type solar cell modules. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shepard, N.F.
1979-02-28
The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/m/sup 2/ of exposed module area at 1 kW/m/sup 2/ insolation and 61/sup 0/C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packaged hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of ASGmore » SUNADEX glass. Monsanto SAFLEX polyvinyl butyral is used as the laminating adhesive. RTVII functions as the encapsulant between the underside of the glass superstrate and a rear protective sheet of 0.8 mm thick TEXTOLITE. The semi-flexible portion of each shingle module is a composite laminate construction consisting of outer layers of B.F. Goodrich FLEXSEAL and an epichlorohydrin closed cell foam core. The module design has satisfactorily survived the JPL-defined qualification testing program which includes 50 thermal cycles between -40 and +90/sup 0/C, a seven-day temperature-humidity exposure test and a mechanical integrity test consisting of a bidirectional cyclic loading at 2390 Pa (50 lb/ft/sup 2/) which is intended to simulate loads due to a 45 m/s (100 mph) wind.« less
Electrical insulation design requirements and reliability goals
NASA Astrophysics Data System (ADS)
Ross, R. G., Jr.
1983-11-01
The solar cells in a photovoltaic module which must be electrically isolated from module exterior surfaces to satisfy a variety of safety and operating considerations are discussed. The performance and reliability of the insulation system are examined. Technical requirements involve the capability of withstanding the differential voltage from the solar cells to the module frame. The maximum system voltage includes consideration of maximum open circuit array voltages achieved under low-temperature, high-irradiance conditions, and transient overvoltages due to system feedback of lightning transients. The latter is bounded by the characteristics of incorporated voltage limiting devices such as MOVs.
Astrocyte–endothelial interactions and blood–brain barrier permeability*
Abbott, N Joan
2002-01-01
The blood–brain barrier (BBB) is formed by brain endothelial cells lining the cerebral microvasculature, and is an important mechanism for protecting the brain from fluctuations in plasma composition, and from circulating agents such as neurotransmitters and xenobiotics capable of disturbing neural function. The barrier also plays an important role in the homeostatic regulation of the brain microenvironment necessary for the stable and co-ordinated activity of neurones. The BBB phenotype develops under the influence of associated brain cells, especially astrocytic glia, and consists of more complex tight junctions than in other capillary endothelia, and a number of specific transport and enzyme systems which regulate molecular traffic across the endothelial cells. Transporters characteristic of the BBB phenotype include both uptake mechanisms (e.g. GLUT-1 glucose carrier, L1 amino acid transporter) and efflux transporters (e.g. P-glycoprotein). In addition to a role in long-term barrier induction and maintenance, astrocytes and other cells can release chemical factors that modulate endothelial permeability over a time-scale of seconds to minutes. Cell culture models, both primary and cell lines, have been used to investigate aspects of barrier induction and modulation. Conditioned medium taken from growing glial cells can reproduce some of the inductive effects, evidence for involvement of diffusible factors. However, for some features of endothelial differentiation and induction, the extracellular matrix plays an important role. Several candidate molecules have been identified, capable of mimicking aspects of glial-mediated barrier induction of brain endothelium; these include TGFβ, GDNF, bFGF, IL-6 and steroids. In addition, factors secreted by brain endothelial cells including leukaemia inhibitory factor (LIF) have been shown to induce astrocytic differentiation. Thus endothelium and astrocytes are involved in two-way induction. Short-term modulation of brain endothelial permeability has been shown for a number of small chemical mediators produced by astrocytes and other nearby cell types. It is clear that endothelial cells are involved in both long- and short-term chemical communication with neighbouring cells, with the perivascular end feet of astrocytes being of particular importance. The role of barrier induction and modulation in normal physiology and in pathology is discussed. PMID:12162730
Method and apparatus for fabricating improved solar cell modules
NASA Technical Reports Server (NTRS)
Bloch, J. T.; Hanger, R. T.; Nichols, F. W. (Inventor)
1980-01-01
A method and apparatus for fabricating an improved solar cell module is described. The apparatus includes a supply drum for feeding a flexible strip having etched electrical circuitry deposited on it a supply drum for feeding into overlying engagement with the flexible strip a flexible tape having a pair of exposed tacky surfaces, and a plurality of rams for receiving and depositing a plurality of solar cells in side-by-side relation on an exposed tacky surface of the tape in electrical contacting engagement with the etched circuitry.
Electrostatically actuatable light modulating device
Koehler, Dale R.
1991-01-01
The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.
Biomedical Potential of mTOR Modulation by Nanoparticles.
Hulea, Laura; Markovic, Zoran; Topisirovic, Ivan; Simmet, Thomas; Trajkovic, Vladimir
2016-05-01
Modulation of the mammalian target of rapamycin (mTOR), the principal regulator of cellular homeostasis, underlies the biological effects of engineered nanoparticles, including regulation of cell death/survival and metabolic responses. Understanding the mechanisms and biological actions of nanoparticle-mediated mTOR modulation may help in developing safe and efficient nanotherapeutics to fight human disease. Copyright © 2016 Elsevier Ltd. All rights reserved.
The SDF-1–CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis
Petit, Isabelle; Jin, David; Rafii, Shahin
2010-01-01
Pro-angiogenic bone marrow (BM) cells include subsets of hematopoietic cells that provide vascular support and endothelial progenitor cells (EPCs), which under certain permissive conditions could differentiate into functional vascular cells. Recent evidence demonstrates that the chemokine stromal-cell derived factor-1 (SDF-1, also known as CXCL12) has a major role in the recruitment and retention of CXCR4+ BM cells to the neo-angiogenic niches supporting revascularization of ischemic tissue and tumor growth. However, the precise mechanism by which activation of CXCR4 modulates neo-angiogenesis is not clear. SDF-1 not only promotes revascularization by engaging with CXCR4 expressed on the vascular cells but also supports mobilization of pro-angiogenic CXCR4+VEGFR1+ hematopoietic cells, thereby accelerating revascularization of ischemic organs. Here, we attempt to define the multiple functions of the SDF-1–CXCR4 signaling pathway in the regulation of neo-vascularization during acute ischemia and tumor growth. In particular, we introduce the concept that, by modulating plasma SDF-1 levels, the CXCR4 antagonist AMD3100 acutely promotes, while chronic AMD3100 treatment inhibits, mobilization of pro-angiogenic cells. We will also discuss strategies to modulate the mobilization of essential subsets of BM cells that participate in neo-angiogenesis, setting up the stage for enhancing revascularization or targeting tumor vessels by exploiting CXCR4 agonists and antagonists, respectively. PMID:17560169
Immune Interventions to Preserve Beta Cell Function in Type 1 Diabetes
Ehlers, Mario R.
2015-01-01
Type 1 diabetes (T1D) is a chronic autoimmune disease that leads to destruction of pancreatic beta cells, lifelong dependence on insulin, and increased morbidity and mortality from diabetes-related complications. Preservation of residual beta cells at diagnosis is a major goal because higher levels of endogenous insulin secretion are associated with better short- and long-term outcomes. Over the past 3 decades, a variety of immune interventions have been evaluated in the setting of new-onset T1D, including nonspecific immunosuppression, pathway-specific immune modulation, antigen-specific therapies, and cellular therapies. To date, no single intervention has produced durable remission off-therapy in the majority of treated patients, but the field has gained valuable insights into disease mechanisms and potential immunologic correlates of success. In particular, T cell-directed therapies, including therapies that lead to partial depletion or modulation of effector T (Teff) cells and preservation or augmentation of regulatory T (Treg) cells, have shown the most success and will likely form the backbone of future approaches. The next phase will see evaluation of rational combinations, comprising one or more of the following: a Teff-depleting or modulating drug, a cytokine-based tolerogenic (Treg-promoting) agent, and an antigen-specific component. The long-term goal is to reestablish immunologic tolerance to beta cells, thereby preserving residual beta cells early after diagnosis or enabling restoration of beta cell mass from autologous stem cells or induced neogenesis in patients with established T1D. PMID:26225763
Legge, Kevin L.; Min, Booki; Bell, J. Jeremiah; Caprio, Jacque C.; Li, Lequn; Gregg, Randal K.; Zaghouani, Habib
2000-01-01
Several immune-based approaches are being considered for modulation of inflammatory T cells and amelioration of autoimmune diseases. The most recent strategies include simulation of peripheral self-tolerance by injection of adjuvant free antigen, local delivery of cytokines by genetically altered T cells, and interference with the function of costimulatory molecules. Although promising results have been obtained from these studies that define mechanisms of T cell modulation, efficacy, practicality, and toxicity, concerns remain unsolved, thereby justifying further investigations to define alternatives for effective downregulation of aggressive T cells. In prior studies, we demonstrated that an immunoglobulin (Ig) chimera carrying the encephalitogenic proteolipid protein (PLP)1 peptide corresponding to amino acid sequence 139–151 of PLP, Ig-PLP1, is presented to T cells ∼100-fold better than free PLP1. Here, we demonstrate that aggregation endows Ig-PLP1 with an additional feature, namely, induction of interleukin (IL)-10 production by macrophages and dendritic cells, both of which are antigen-presenting cells (APCs). These functions synergize in vivo and drive effective modulation of autoimmunity. Indeed, it is shown that animals with ongoing active experimental allergic encephalomyelitis dramatically reduce the severity of their paralysis when treated with adjuvant free aggregated Ig-PLP1. Moreover, IL-10 displays bystander antagonism on unrelated autoreactive T cells, allowing for reversal of disease involving multiple epitopes. Therefore, aggregated Ig-PLP1 likely brings together a peripheral T cell tolerance mechanism emanating from peptide presentation by APCs expressing suboptimal costimulatory molecules and IL-10 bystander suppression to drive a dual-modal T cell modulation system effective for reversal of autoimmunity involving several epitopes and diverse T cell specificities. PMID:10859329
Oweis, Salah; D'Ussel, Louis; Chagnon, Guy; Zuhowski, Michael; Sack, Tim; Laucournet, Gaullume; Jackson, Edward J.
2002-06-04
A stand alone battery module including: (a) a mechanical configuration; (b) a thermal management configuration; (c) an electrical connection configuration; and (d) an electronics configuration. Such a module is fully interchangeable in a battery pack assembly, mechanically, from the thermal management point of view, and electrically. With the same hardware, the module can accommodate different cell sizes and, therefore, can easily have different capacities. The module structure is designed to accommodate the electronics monitoring, protection, and printed wiring assembly boards (PWAs), as well as to allow airflow through the module. A plurality of modules may easily be connected together to form a battery pack. The parts of the module are designed to facilitate their manufacture and assembly.
Swimming motility plays a key role in the stochastic dynamics of cell clumping
NASA Astrophysics Data System (ADS)
Qi, Xianghong; Nellas, Ricky B.; Byrn, Matthew W.; Russell, Matthew H.; Bible, Amber N.; Alexandre, Gladys; Shen, Tongye
2013-04-01
Dynamic cell-to-cell interactions are a prerequisite to many biological processes, including development and biofilm formation. Flagellum induced motility has been shown to modulate the initial cell-cell or cell-surface interaction and to contribute to the emergence of macroscopic patterns. While the role of swimming motility in surface colonization has been analyzed in some detail, a quantitative physical analysis of transient interactions between motile cells is lacking. We examined the Brownian dynamics of swimming cells in a crowded environment using a model of motorized adhesive tandem particles. Focusing on the motility and geometry of an exemplary motile bacterium Azospirillum brasilense, which is capable of transient cell-cell association (clumping), we constructed a physical model with proper parameters for the computer simulation of the clumping dynamics. By modulating mechanical interaction (‘stickiness’) between cells and swimming speed, we investigated how equilibrium and active features affect the clumping dynamics. We found that the modulation of active motion is required for the initial aggregation of cells to occur at a realistic time scale. Slowing down the rotation of flagellar motors (and thus swimming speeds) is correlated to the degree of clumping, which is consistent with the experimental results obtained for A. brasilense.
Phosphofructokinase-P Modulates P44/42 MAPK Levels in HeLa Cells.
Cardim Pires, Thyago Rubens; Albanese, Jamille Mansur; Schwab, Michael; Marette, André; Carvalho, Renato Sampaio; Sola-Penna, Mauro; Zancan, Patricia
2017-05-01
It is known that interfering with glycolysis leads to profound modification of cancer cell proliferation. However, energy production is not the major reason for this correlation. Here, using HeLa cells as a model for cancer, we demonstrate that phosphofructokinase-P (PFK-P), which is overexpressed in diverse types of cancer including HeLa cells, modulates expression of P44/42 mitogen-activated protein kinase (MAPK). Silencing of PFK-P did not alter HeLa cell viability or energy production, including the glycolytic rate. On the other hand, silencing of PFK-P induced the downregulation of p44/42 MAPK, augmenting the sensitivity of HeLa cells to different drugs. Conversely, overexpression of PFK-P promotes the upregulation of p44/42 MAPK, making the cells more resistant to the drugs. These results indicate that overexpression of PFK-P by cancer cells is related to activation of survival pathways via upregulation of MAPK and suggest PFK-P as a promising target for cancer therapy. J. Cell. Biochem. 118: 1216-1226, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Yang, Liulin; Li, Yun; Wei, Zhi; Chang, Xiao
2018-06-01
Neuroblastoma is a highly complex and heterogeneous cancer in children. Acquired genomic alterations including MYCN amplification, 1p deletion and 11q deletion are important risk factors and biomarkers in neuroblastoma. Here, we performed a co-expression-based gene network analysis to study the intrinsic association between specific genomic changes and transcriptome organization. We identified multiple gene coexpression modules which are recurrent in two independent datasets and associated with functional pathways including nervous system development, cell cycle, immune system process and extracellular matrix/space. Our results also indicated that modules involved in nervous system development and cell cycle are highly associated with MYCN amplification and 1p deletion, while modules responding to immune system process are associated with MYCN amplification only. In summary, this integrated analysis provides novel insights into molecular heterogeneity and pathogenesis of neuroblastoma. This article is part of a Special Issue entitled: Accelerating Precision Medicine through Genetic and Genomic Big Data Analysis edited by Yudong Cai & Tao Huang. Copyright © 2017. Published by Elsevier B.V.
Neukomm, L J; Zeng, S; Frei, A P; Huegli, P A; Hengartner, M O
2014-01-01
The rapid clearance of dying cells is important for the well-being of multicellular organisms. In C. elegans, cell corpse removal is mainly mediated by three parallel engulfment signaling cascades. These pathways include two small GTPases, MIG-2/RhoG and CED-10/Rac1. Here we present the identification and characterization of CDC-42 as a third GTPase involved in the regulation of cell corpse clearance. Genetic analyses performed by both loss of cdc-42 function and cdc-42 overexpression place cdc-42 in parallel to the ced-2/5/12 signaling module, in parallel to or upstream of the ced-10 module, and downstream of the ced-1/6/7 module. CDC-42 accumulates in engulfing cells at membranes surrounding apoptotic corpses. The formation of such halos depends on the integrins PAT-2/PAT-3, UNC-112 and the GEF protein UIG-1, but not on the canonical ced-1/6/7 or ced-2/5/12 signaling modules. Together, our results suggest that the small GTPase CDC-42 regulates apoptotic cell engulfment possibly upstream of the canonical Rac GTPase CED-10, by polarizing the engulfing cell toward the apoptotic corpse in response to integrin signaling and ced-1/6/7 signaling in C. elegans. PMID:24632947
Neukomm, L J; Zeng, S; Frei, A P; Huegli, P A; Hengartner, M O
2014-06-01
The rapid clearance of dying cells is important for the well-being of multicellular organisms. In C. elegans, cell corpse removal is mainly mediated by three parallel engulfment signaling cascades. These pathways include two small GTPases, MIG-2/RhoG and CED-10/Rac1. Here we present the identification and characterization of CDC-42 as a third GTPase involved in the regulation of cell corpse clearance. Genetic analyses performed by both loss of cdc-42 function and cdc-42 overexpression place cdc-42 in parallel to the ced-2/5/12 signaling module, in parallel to or upstream of the ced-10 module, and downstream of the ced-1/6/7 module. CDC-42 accumulates in engulfing cells at membranes surrounding apoptotic corpses. The formation of such halos depends on the integrins PAT-2/PAT-3, UNC-112 and the GEF protein UIG-1, but not on the canonical ced-1/6/7 or ced-2/5/12 signaling modules. Together, our results suggest that the small GTPase CDC-42 regulates apoptotic cell engulfment possibly upstream of the canonical Rac GTPase CED-10, by polarizing the engulfing cell toward the apoptotic corpse in response to integrin signaling and ced-1/6/7 signaling in C. elegans.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentine, Anthony L.; Nielson, Gregory N.; Cruz-Campa, Jose Luis
A photovoltaic module includes colorized reflective photovoltaic cells that act as pixels. The colorized reflective photovoltaic cells are arranged so that reflections from the photovoltaic cells or pixels visually combine into an image on the photovoltaic module. The colorized photovoltaic cell or pixel is composed of a set of 100 to 256 base color sub-pixel reflective segments or sub-pixels. The color of each pixel is determined by the combination of base color sub-pixels forming the pixel. As a result, each pixel can have a wide variety of colors using a set of base colors, which are created, from sub-pixel reflectivemore » segments having standard film thicknesses.« less
Photovoltaic power generation system with photovoltaic cells as bypass diodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lentine, Anthony L.; Nielson, Gregory N.; Tauke-Pedretti, Anna
A photovoltaic power generation system that includes a solar panel is described herein. The solar panel includes a photovoltaic sub-module, which includes a group of microsystem enabled photovoltaic cells. The group includes a first string of photovoltaic cells, a second string of photovoltaic cells, and a differing photovoltaic cell. Photovoltaic cells in the first string are electrically connected in series, and photovoltaic cells in the second string are electrically connected in series. Further, the first string of photovoltaic cells, the second string of photovoltaic cells, and the differing photovoltaic cell are electrically connected in parallel. Moreover, the differing photovoltaic cellmore » is used as a bypass diode for the first string of photovoltaic cells and the second string of photovoltaic cells.« less
Microenvironment Influences Interaction of Signaling Molecules | Center for Cancer Research
Tumor progression depends not only on events that occur within cancer cells but also on the interaction of cancer cells with their environment, which can regulate tumor growth and metastasis and modulate the formation of new blood vessels to nourish the tumor. All cells communicate with other cells around them, including endothelial cells (the cells that make up blood
Mechanisms of cell signaling by nitric oxide and peroxynitrite: from mitochondria to MAP kinases
NASA Technical Reports Server (NTRS)
Levonen, A. L.; Patel, R. P.; Brookes, P.; Go, Y. M.; Jo, H.; Parthasarathy, S.; Anderson, P. G.; Darley-Usmar, V. M.
2001-01-01
Many of the biological and pathological effects of nitric oxide (NO) are mediated through cell signaling pathways that are initiated by NO reacting with metalloproteins. More recently, it has been recognized that the reaction of NO with free radicals such as superoxide and the lipid peroxyl radical also has the potential to modulate redox signaling. Although it is clear that NO can exert both cytotoxic and cytoprotective actions, the focus of this overview are those reactions that could lead to protection of the cell against oxidative stress in the vasculature. This will include the induction of antioxidant defenses such as glutathione, activation of mitogen-activated protein kinases in response to blood flow, and modulation of mitochondrial function and its impact on apoptosis. Models are presented that show the increased synthesis of glutathione in response to shear stress and inhibition of cytochrome c release from mitochondria. It appears that in the vasculature NO-dependent signaling pathways are of three types: (i) those involving NO itself, leading to modulation of mitochondrial respiration and soluble guanylate cyclase; (ii) those that involve S-nitrosation, including inhibition of caspases; and (iii) autocrine signaling that involves the intracellular formation of peroxynitrite and the activation of the mitogen-activated protein kinases. Taken together, NO plays a major role in the modulation of redox cell signaling through a number of distinct pathways in a cellular setting.
Gameiro, Sofia R.; Jammed, Momodou L.; Wattenberg, Max M.; Tsang, Kwong Y.; Ferrone, Soldano; Hodge, James W.
2014-01-01
Radiation therapy (RT) is used for local tumor control through direct killing of tumor cells. Radiation-induced cell death can trigger tumor antigen-specific immune responses, but these are often noncurative. Radiation has been demonstrated to induce immunogenic modulation (IM) in various tumor types by altering the biology of surviving cells to render them more susceptible to T cell-mediated killing. Little is known about the mechanism(s) underlying IM elicited by sub-lethal radiation dosing. We have examined the molecular and immunogenic consequences of radiation exposure in breast, lung, and prostate human carcinoma cells. Radiation induced secretion of ATP and HMGB1 in both dying and surviving tumor cells. In vitro and in vivo tumor irradiation induced significant upregulation of multiple components of the antigen-processing machinery and calreticulin cell-surface expression. Augmented CTL lysis specific for several tumor-associated antigens was largely dictated by the presence of calreticulin on the surface of tumor cells and constituted an adaptive response to endoplasmic reticulum stress, mediated by activation of the unfolded protein response. This study provides evidence that radiation induces a continuum of immunogenic alterations in tumor biology, from immunogenic modulation to immunogenic cell death. We also expand the concept of immunogenic modulation, where surviving tumor cells recovering from radiation-induced endoplasmic reticulum stress become more sensitive to CTL killing. These observations offer a rationale for the combined use of radiation with immunotherapy, including for patients failing RT alone. PMID:24480782
Apparatus and method for measuring single cell and sub-cellular photosynthetic efficiency
Davis, Ryan Wesley; Singh, Seema; Wu, Huawen
2013-07-09
Devices for measuring single cell changes in photosynthetic efficiency in algal aquaculture are disclosed that include a combination of modulated LED trans-illumination of different intensities with synchronized through objective laser illumination and confocal detection. Synchronization and intensity modulation of a dual illumination scheme were provided using a custom microcontroller for a laser beam block and constant current LED driver. Therefore, single whole cell photosynthetic efficiency, and subcellular (diffraction limited) photosynthetic efficiency measurement modes are permitted. Wide field rapid light scanning actinic illumination is provided for both by an intensity modulated 470 nm LED. For the whole cell photosynthetic efficiency measurement, the same LED provides saturating pulses for generating photosynthetic induction curves. For the subcellular photosynthetic efficiency measurement, a switched through objective 488 nm laser provides saturating pulses for generating photosynthetic induction curves. A second near IR LED is employed to generate dark adapted states in the system under study.
NASA Astrophysics Data System (ADS)
Yamaguchi, Seira; Masuda, Atsushi; Ohdaira, Keisuke
2016-04-01
This paper deals with the dependence of the potential-induced degradation (PID) of flat, p-type mono-crystalline silicon solar cell modules on the surface orientation of solar cells. The investigated modules were fabricated from p-type mono-crystalline silicon cells with a (100) or (111) surface orientation using a module laminator. PID tests were performed by applying a voltage of -1000 V to shorted module interconnector ribbons with respect to an Al plate placed on the cover glass of the modules at 85 °C. A decrease in the parallel resistance of the (100)-oriented cell modules is more significant than that of the (111)-oriented cell modules. Hence, the performance of the (100)-oriented-cell modules drastically deteriorates, compared with that of the (111)-oriented-cell modules. This implies that (111)-oriented cells offer a higher PID resistance.
Support arrangement for core modules of nuclear reactors
Bollinger, Lawrence R.
1987-01-01
A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.
Support arrangements for core modules of nuclear reactors. [PWR
Bollinger, L.R.
1983-11-03
A support arrangement is provided for the core modules of a nuclear reactor which provides support access through the control drive mechanisms of the reactor. This arrangement provides axial support of individual reactor core modules from the pressure vessel head in a manner which permits attachment and detachment of the modules from the head to be accomplished through the control drive mechanisms after their leadscrews have been removed. The arrangement includes a module support nut which is suspended from the pressure vessel head and screw threaded to the shroud housing for the module. A spline lock prevents loosening of the screw connection. An installation tool assembly, including a cell lifting and preloading tool and a torquing tool, fits through the control drive mechanism and provides lifting of the shroud housing while disconnecting the spline lock, as well as application of torque to the module support nut.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chicca, Matthew; Wohlgemuth, John; TamizhMani, GovindaSamy
The primary objective of this research work is two-fold: (i) determine the degradation rates of Siemens-Arco M55 modules exposed over 18 and 28 years in a hot-dry climate of Arizona and a temperate climate of California, and; (ii) identify the potential modes responsible for these degradation losses. The degradation rates were determined based on the I-V data obtained on exposed modules and on the corresponding control modules which were not exposed in the fields. The degradation modes responsible for these degradations were determined using several nondestructive tests and destructive tests performed on these control and exposed modules. The nondestructive testsmore » included: current-voltage, visual inspection, cell-module quantum efficiency, and module level reflectance spectroscopy. The destructive tests included: transmittance spectroscopy of glass superstrates, and FTIR, DSC and TGA of encapsulant materials.« less
B cell biology: implications for treatment of systemic lupus erythematosus.
Anolik, J H
2013-04-01
B cells are critical players in the orchestration of properly regulated immune responses, normally providing protective immunity without autoimmunity. Balance in the B cell compartment is achieved through the finely regulated participation of multiple B cell populations with different antibody-dependent and independent functions. Both types of functions allow B cells to modulate other components of the innate and adaptive immune system. Autoantibody-independent B cell functions include antigen presentation, T cell activation and polarization, and dendritic cell modulation. Several of these functions are mediated by the ability of B cells to produce immunoregulatory cytokines and chemokines and by their critical contribution to lymphoid tissue development and organization including the development of ectopic tertiary lymphoid tissue. Additionally, the functional versatility of B cells enables them to play either protective or pathogenic roles in autoimmunity. In turn, B cell dysfunction has been critically implicated in the pathophysiology of systemic lupus erythematosus (SLE), a complex disease characterized by the production of autoantibodies and heterogeneous clinical involvement. Thus, the breakdown of B cell tolerance is a defining and early event in the disease process and may occur by multiple pathways, including alterations in factors that affect B cell activation thresholds, B cell longevity, and apoptotic cell processing. Once tolerance is broken, autoantibodies contribute to autoimmunity by multiple mechanisms including immune-complex mediated Type III hypersensitivity reactions, type II antibody-dependent cytotoxicity, and by instructing innate immune cells to produce pathogenic cytokines including IFNα, TNF and IL-1. The complexity of B cell functions has been highlighted by the variable success of B cell-targeted therapies in multiple autoimmune diseases, including those conventionally viewed as T cell-mediated conditions. Given the widespread utilization of B cell depletion therapy in autoimmune diseases and the need for new therapeutic approaches in SLE, a better understanding of human B cell subsets and the balance of pathogenic and regulatory functions is of the essence.
Space Station Freedom solar array design development
NASA Technical Reports Server (NTRS)
Winslow, Cindy; Bilger, Kevin; Baraona, Cosmo
1989-01-01
The Space Station Freedom solar array program is required to provide a 75-kW power module that uses eight solar array (SA) wings over a four-year period in low earth orbit (LEO). Each wing will be capable of providing 23.4 kW at the 4-yr design point. The design of flexible-substrate SAs that must survive exposure to the space environment, including atomic oxygen, for an operating life of fifteen years is discussed. The tradeoff study and development areas being investigated include solar cell module size, solar cell weld pads, panel stiffener frames, materials inherently resistant to atomic oxygen, and weight reduction design alternatives.
Excitable toxin-antitoxin modules coordinated through intracellular bottlenecks
NASA Astrophysics Data System (ADS)
Mather, William
Chronic infections and pathogenic biofilms present a serious threat to the health of humans by decreasing life expectancy and quality. The resilience of these microbial communities has been attributed to the spontaneous formation of persister cells, which constitute a small fraction of the population capable of surviving a wide range of environmental stressors. Gating of bacterial persistence has recently been linked to toxin-antitoxin (TA) modules, which are operons with an evolutionarily conserved motif that includes a toxin that halts cell growth and a corresponding antitoxin that neutralizes the toxin. While many such modules have been identified and studied in a wide range of organisms, little consideration of the interactions between multiple modules within a single host has been made. Moreover, the multitude of different antitoxin species are degraded by a relatively small number of proteolytic pathways, strongly suggesting competition between antitoxins for degradation machinery, i.e. queueing coupling. Here we present a theoretical understanding of the dynamics of multiple TA modules that are coupled through either proteolytic queueing, a toxic effect on cell growth rate, or both. We conclude that indirect queueing coordination between multiple TA modules may be central to controlling bacterial persistence. NSF Award Number MCB-1330180.
Prostanoids and their receptors that modulate dendritic cell-mediated immunity.
Gualde, Norbert; Harizi, Hedi
2004-08-01
Dendritic cells (DC) are essential for the initiation of immune responses by capturing, processing and presenting antigens to T cells. In addition to their important role as professional APC, they are able to produce immunosuppressive and pro-inflammatory prostanoids from arachidonic acid (AA) by the action of cyclooxygenase (COX) enzymes. In an autocrine and paracrine fashion, the secreted lipid mediators subsequently modulate the maturation, cytokine production, Th-cell polarizing ability, chemokine receptor expression, migration, and apoptosis of these extremely versatile APC. The biological actions of prostanoids, including their effects on APC-mediated immunity and acute inflammatory responses, are exerted by G protein-coupled receptors on plasma membrane. Some COX metabolites act as anti-inflammatory lipid mediators by binding to nuclear receptors and modulating DC functions. Although the role of cytokines in DC function has been studied extensively, the effects of prostanoids on DC biology have only recently become the focus of investigation. This review summarizes the current knowledge about the role of prostanoids and their receptors in modulating DC function and the subsequent immune responses.
Gence, Rémi; Bouchenot, Catherine; Lajoie-Mazenc, Isabelle
2018-01-01
ABSTRACT The human Ras superfamily of small GTPases controls essential cellular processes such as gene expression and cell proliferation. As their deregulation is widely associated with human cancer, small GTPases and their regulatory proteins have become increasingly attractive for the development of novel therapeutics. Classical methods to monitor GTPase activation include pulldown assays that limit the analysis of GTP-bound form of proteins from cell lysates. Alternatively, live-cell FRET biosensors may be used to study GTPase activation dynamics in response to stimuli, but these sensors often require further optimization for high-throughput applications. Here, we describe a cell-based approach that is suitable to monitor the modulation of small GTPase activity in a high-content analysis. The assay relies on a genetically encoded tripartite split-GFP (triSFP) system that we integrated in an optimized cellular model to monitor modulation of RhoA and RhoB GTPases. Our results indicate the robust response of the reporter, allowing the interrogation of inhibition and stimulation of Rho activity, and highlight potential applications of this method to discover novel modulators and regulators of small GTPases and related protein-binding domains. PMID:29192060
Preliminary design for a standard 10 sup 7 bit Solid State Memory (SSM)
NASA Technical Reports Server (NTRS)
Hayes, P. J.; Howle, W. M., Jr.; Stermer, R. L., Jr.
1978-01-01
A modular concept with three separate modules roughly separating bubble domain technology, control logic technology, and power supply technology was employed. These modules were respectively the standard memory module (SMM), the data control unit (DCU), and power supply module (PSM). The storage medium was provided by bubble domain chips organized into memory cells. These cells and the circuitry for parallel data access to the cells make up the SMM. The DCU provides a flexible serial data interface to the SMM. The PSM provides adequate power to enable one DCU and one SMM to operate simultaneously at the maximum data rate. The SSM was designed to handle asynchronous data rates from dc to 1.024 Mbs with a bit error rate less than 1 error in 10 to the eight power bits. Two versions of the SSM, a serial data memory and a dual parallel data memory were specified using the standard modules. The SSM specification includes requirements for radiation hardness, temperature and mechanical environments, dc magnetic field emission and susceptibility, electromagnetic compatibility, and reliability.
Optogenetic Modulation and Multi-Electrode Analysis of Cerebellar Networks In Vivo
Kruse, Wolfgang; Krause, Martin; Aarse, Janna; Mark, Melanie D.; Manahan-Vaughan, Denise; Herlitze, Stefan
2014-01-01
The firing patterns of cerebellar Purkinje cells (PCs), as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs), climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2) expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice. PMID:25144735
Microtubules provide directional information for core PCP function
Matis, Maja; Russler-Germain, David A; Hu, Qie; Tomlin, Claire J; Axelrod, Jeffrey D
2014-01-01
Planar cell polarity (PCP) signaling controls the polarization of cells within the plane of an epithelium. Two molecular modules composed of Fat(Ft)/Dachsous(Ds)/Four-jointed(Fj) and a ‘PCP-core’ including Frizzled(Fz) and Dishevelled(Dsh) contribute to polarization of individual cells. How polarity is globally coordinated with tissue axes is unresolved. Consistent with previous results, we find that the Ft/Ds/Fj-module has an effect on a MT-cytoskeleton. Here, we provide evidence for the model that the Ft/Ds/Fj-module provides directional information to the core-module through this MT organizing function. We show Ft/Ds/Fj-dependent initial polarization of the apical MT-cytoskeleton prior to global alignment of the core-module, reveal that the anchoring of apical non-centrosomal MTs at apical junctions is polarized, observe that directional trafficking of vesicles containing Dsh depends on Ft, and demonstrate the feasibility of this model by mathematical simulation. Together, these results support the hypothesis that Ft/Ds/Fj provides a signal to orient core PCP function via MT polarization. DOI: http://dx.doi.org/10.7554/eLife.02893.001 PMID:25124458
High Voltage Solar Concentrator Experiment with Implications for Future Space Missions
NASA Technical Reports Server (NTRS)
Mehdi, Ishaque S.; George, Patrick J.; O'Neill, Mark; Matson, Robert; Brockschmidt, Arthur
2004-01-01
This paper describes the design, development, fabrication, and test of a high performance, high voltage solar concentrator array. This assembly is believed to be the first ever terrestrial triple-junction-cell solar array rated at over 1 kW. The concentrator provides over 200 W/square meter power output at a nominal 600 Vdc while operating under terrestrial sunlight. Space-quality materials and fabrication techniques were used for the array, and the 3005 meter elevation installation below the Tropic of Cancer allowed testing as close as possible to space deployment without an actual launch. The array includes two concentrator modules, each with a 3 square meter aperture area. Each concentrator module uses a linear Fresnel lens to focus sunlight onto a photovoltaic receiver that uses 240 series-connected triple-junction solar cells. Operation of the two receivers in series can provide 1200 Vdc which would be adequate for the 'direct drive' of some ion engines or microwave transmitters in space. Lens aperture width is 84 cm and the cell active width is 3.2 cm, corresponding to a geometric concentration ratio of 26X. The evaluation includes the concentrator modules, the solar cells, and the materials and techniques used to attach the solar cells to the receiver heat sink. For terrestrial applications, a finned aluminum extrusion was used for the heat sink for the solar cells, maintaining a low cell temperature so that solar cell efficiency remains high.
Passive Transport Disrupts Grid Signals in the Parahippocampal Cortex.
Winter, Shawn S; Mehlman, Max L; Clark, Benjamin J; Taube, Jeffrey S
2015-10-05
Navigation is usually thought of relative to landmarks, but neural signals representing space also use information generated by an animal's movements. These signals include grid cells, which fire at multiple locations, forming a repeating grid pattern. Grid cell generation depends upon theta rhythm, a 6-10 Hz electroencephalogram (EEG) oscillation that is modulated by the animals' movement velocity. We passively moved rats in a clear cart to eliminate motor related self-movement cues that drive moment-to-moment changes in theta rhythmicity. We found that passive movement maintained theta power and frequency at levels equivalent to low active movement velocity, spared overall head-direction (HD) cell characteristics, but abolished both velocity modulation of theta rhythmicity and grid cell firing patterns. These results indicate that self-movement motor cues are necessary for generating grid-specific firing patterns, possibly by driving velocity modulation of theta rhythmicity, which may be used as a speed signal to generate the repeating pattern of grid cells. Copyright © 2015 Elsevier Ltd. All rights reserved.
ABCG2/BCRP interaction with the sea grass Thalassia testudinum.
Miguel, Verónica; Otero, Jon A; Barrera, Borja; Rodeiro, Idania; Prieto, Julio G; Merino, Gracia; Álvarez, Ana I
2015-12-01
The aqueous ethanolic extract from leaves of the marine plant Thalassia testudinum has shown antioxidant, cytoprotective, and neuroprotective properties. The chemical composition of this extract, rich in polyphenols, could interfere with active transport of drugs out of the cell and circumvent the phenomenon of multidrug resistance (MDR). The extract can act as an MDR modulator through its interaction with efflux transporters. The ABCG2/BCRP has been shown to confer MDR acting in tumor cells. To evaluate the interaction of ABCG2/BCRP with the extract, studies in cells overexpressing human BCRP transporter and its murine ortholog Bcrp1 were performed. T. testudinum extract could be included as MDR modulator, as interaction with ABCG2/BCRP has been shown through flow cytometry and MTT assays. The cells overexpressing ABCG2/BCRP in the presence of the extract (25-150 μg/mL) decreased the survival rates of the anti-tumoral mitoxantrone. Our results support its inclusion as a possible MDR modulator against tumor cells that overexpress ABCG2/BCRP.
Thin film module electrical configuration versus electrical performance
NASA Technical Reports Server (NTRS)
Morel, D. L.
1985-01-01
The as made and degraded states of thin film silicon (TFS) based modules have been modelled in terms of series resistance losses. The origins of these losses lie in interface and bulk regions of the devices. When modules degrade under light exposure, increases occur in both the interface and bulk components of the loss based on series resistance. Actual module performance can thus be simulated by use of only one unknown parameter, shunt losses. Use of the simulation to optimize module design indicates that the current design of 25 cells per linear foot is near optimum. Degradation performance suggests a shift to approx. 35 cells to effect maximum output for applications not constrained to 12 volts. Earlier studies of energy based performance and tandem structures should be updated to include stability factors, not only the initial loss factor tested here, but also appropriate annealing factors.
Aquaporins: important but elusive drug targets
Verkman, Alan S.; Anderson, Marc O.; Papadopoulos, Marios C.
2014-01-01
The aquaporins (AQPs) are a family of small, integral membrane proteins that facilitate water transport across the plasma membranes of cells in response to osmotic gradients. Data from knockout mice support the involvement of AQPs in epithelial fluid secretion, cell migration, brain oedema and adipocyte metabolism, which suggests that modulation of AQP function or expression could have therapeutic potential in oedema, cancer, obesity, brain injury, glaucoma and several other conditions. Moreover, loss-of-function mutations in human AQPs cause congenital cataracts (AQP0) and nephrogenic diabetes insipidus (AQP2), and autoantibodies against AQP4 cause the autoimmune demyelinating disease neuromyelitis optica. Although some potential AQP modulators have been identified, challenges associated with the development of better modulators include the druggability of the target and the suitability of the assay methods used to identify modulators. PMID:24625825
Space photovoltaic modules based on reflective optics
NASA Technical Reports Server (NTRS)
Andreev, V. M.; Larionov, V. R.; Rumyantsev, V. D.; Shvarts, M. Z.
1995-01-01
The conceptual design and experimental results for two types of space application concentrator photovoltaic modules, employing reflective optical elements, are presented. The first type is based on the use of compound parabolic concentrators, the second type is based on the use of line-focus parabolic troughs. Lightweight concentrators are formed with nickel foil coated silver with a diamond-like carbon layer protection. Secondary optical elements, including lenses and cones, are introduced for a better matching of concentrators and solar cells. Both types of modules are characterized by concentration ratios in the range 20x to 30x, depending on the chosen range of misorientation angles. The estimated specific parameters of these modules operating with single junction AlGaAs/GaAs solar cells are 240 W/sq m and 3 kg/sq m.
Development of Low Cost, High Energy-Per-Unit-Area Solar Cell Modules
NASA Technical Reports Server (NTRS)
Jones, G. T.; Chitre, S.
1977-01-01
Work on the development of low cost, high energy per unit area solar cell modules was conducted. Hexagonal solar cell and module efficiencies, module packing ratio, and solar cell design calculations were made. The cell grid structure and interconnection pattern was designed and the module substrates were fabricated for the three modules to be used. It was demonstrated that surface macrostructures significantly improve cell power output and photovoltaic energy conversion efficiency.
Encapsulant Material For Solar Cell Module And Laminated Glass Applications
Hanoka, Jack I.; Klemchuk, Peter P.
2001-02-13
An encapsulant material includes a layer of metallocene polyethylene disposed between two layers of an acid copolymer of polyethylene. More specifically, the layer of metallocene polyethylene is disposed adjacent a rear surface of the first layer of the acid copolymer of polyethylene, and a second layer of the acid copolymer of polyethlene is disposed adjacent a rear surface of the layer of metallocene polyethylene. The encapsulant material can be used in solar cell module and laminated glass applications.
High rate lithium/thionyl chloride bipolar battery development
NASA Technical Reports Server (NTRS)
Russell, Philip G.; Goebel, F.
1994-01-01
Presented in viewgraph format are results and accomplishments on the development of lithium/thionyl chloride bipolar batteries. Results include the development of manufacturing capability for producing large quantities of uniform cathodes and bipolar plates; the development of assembly, sealing, and activation procedures for fabrication of battery modules containing up to 150 cells in bipolar configuration; and the successful demonstration of a 10.7 kW 150-cell module with constant power pulse discharge, 20 second pulse, and 10 percent duty cycle.
Modulation of integrin-linked kinase nucleo-cytoplasmic shuttling by ILKAP and CRM1.
Nakrieko, Kerry-Ann; Vespa, Alisa; Mason, David; Irvine, Timothy S; D'Souza, Sudhir J A; Dagnino, Lina
2008-07-15
Integrin-linked kinase (ILK) plays key roles in a variety of cell functions, including cell proliferation, adhesion and migration. Within the cell, ILK localizes to multiple sites, including the cytoplasm, focal adhesion complexes that mediate cell adhesion to extracellular substrates, as well as cell-cell junctions in epidermal keratinocytes. Central to understanding ILK function is the elucidation of the mechanisms that regulate its subcellular localization. We now demonstrate that ILK is imported into the nucleus through sequences in its N-terminus, via active transport mechanisms that involve nuclear pore complexes. In addition, nuclear ILK can be rapidly exported into the cytoplasm through a CRM1-dependent pathway, and its export is enhanced by the type 2C protein phosphatase ILKAP. Nuclear localization of ILK in epidermal keratinocytes is associated with increased DNA synthesis, which is sensitive to inhibition by ILKAP. Our studies demonstrate the importance for keratinocyte proliferation of ILK regulation through changes in its subcellular localization, and establish ILKAP and CRM1 as pivotal modulators of ILK subcellular distribution and activity in these cells.
Modulation of Ocular Inflammation by Mesenchymal Stem Cells
2017-03-01
mature myeloid cells in 64 host defense and resolution of inflammation, excessive innate immune response can have 65 deleterious effects on tissue...that MSCs can regulate 69 functions of mature innate immune cells , including polarization of inflammatory macrophages 70 into an anti-inflammatory... cells 191 As immune cells are primarily developed in lymphoid organs, single cell suspensions from bone 192 marrow, spleen, and submandibular lymph
miR-181a and miR-630 regulate cisplatin-induced cancer cell death.
Galluzzi, Lorenzo; Morselli, Eugenia; Vitale, Ilio; Kepp, Oliver; Senovilla, Laura; Criollo, Alfredo; Servant, Nicolas; Paccard, Caroline; Hupé, Philippe; Robert, Thomas; Ripoche, Hugues; Lazar, Vladimir; Harel-Bellan, Annick; Dessen, Philippe; Barillot, Emmanuel; Kroemer, Guido
2010-03-01
MicroRNAs (miRNA) are noncoding RNAs that regulate multiple cellular processes, including proliferation and apoptosis. We used microarray technology to identify miRNAs that were upregulated by non-small cell lung cancer (NSCLC) A549 cells in response to cisplatin (CDDP). The corresponding synthetic miRNA precursors (pre-miRNAs) per se were not lethal when transfected into A549 cells yet affected cell death induction by CDDP, C2-ceramide, cadmium, etoposide, and mitoxantrone in an inducer-specific fashion. Whereas synthetic miRNA inhibitors (anti-miRNAs) targeting miR-181a and miR-630 failed to modulate the response of A549 to CDDP, pre-miR-181a and pre-miR-630 enhanced and reduced CDDP-triggered cell death, respectively. Pre-miR-181a and pre-miR-630 consistently modulated mitochondrial/postmitochondrial steps of the intrinsic pathway of apoptosis, including Bax oligomerization, mitochondrial transmembrane potential dissipation, and the proteolytic maturation of caspase-9 and caspase-3. In addition, pre-miR-630 blocked early manifestations of the DNA damage response, including the phosphorylation of the ataxia-telangiectasia mutated (ATM) kinase and of two ATM substrates, histone H2AX and p53. Pharmacologic and genetic inhibition of p53 corroborated the hypothesis that pre-miR-630 (but not pre-miR-181a) blocks the upstream signaling pathways that are ignited by DNA damage and converge on p53 activation. Pre-miR-630 arrested A549 cells in the G0-G1 phase of the cell cycle, correlating with increased levels of the cell cycle inhibitor p27(Kip1) as well as with reduced proliferation rates and resulting in greatly diminished sensitivity of A549 cells to the late S-G2-M cell cycle arrest mediated by CDDP. Altogether, these results identify miR-181a and miR-630 as novel modulators of the CDDP response in NSCLC.
Glycoengineering of CHO Cells to Improve Product Quality.
Wang, Qiong; Yin, Bojiao; Chung, Cheng-Yu; Betenbaugh, Michael J
2017-01-01
Chinese hamster ovary (CHO) cells represent the predominant platform in biopharmaceutical industry for the production of recombinant biotherapeutic proteins, especially glycoproteins. These glycoproteins include oligosaccharide or glycan attachments that represent one of the principal components dictating product quality. Especially important are the N-glycan attachments present on many recombinant glycoproteins of commercial interest. Furthermore, altering the glycan composition can be used to modulate the production quality of a recombinant biotherapeutic from CHO and other mammalian hosts. This review first describes the glycosylation network in mammalian cells and compares the glycosylation patterns between CHO and human cells. Next genetic strategies used in CHO cells to modulate the sialylation patterns through overexpression of sialyltransfereases and other glycosyltransferases are summarized. In addition, other approaches to alter sialylation including manipulation of sialic acid biosynthetic pathways and inhibition of sialidases are described. Finally, this review also covers other strategies such as the glycosylation site insertion and manipulation of glycan heterogeneity to produce desired glycoforms for diverse biotechnology applications.
Probiotic Modulation of Innate Cell Pathogen Sensing and Signaling Events
Llewellyn, Amy; Foey, Andrew
2017-01-01
There is a growing body of evidence documenting probiotic bacteria to have a beneficial effect to the host through their ability to modulate the mucosal immune system. Many probiotic bacteria can be considered to act as either immune activators or immune suppressors, which have appreciable influence on homeostasis, inflammatory- and suppressive-immunopathology. What is becoming apparent is the ability of these probiotics to modulate innate immune responses via direct or indirect effects on the signaling pathways that drive these activatory or suppressive/tolerogenic mechanisms. This review will focus on the immunomodulatory role of probiotics on signaling pathways in innate immune cells: from positive to negative regulation associated with innate immune cells driving gut mucosal functionality. Research investigations have shown probiotics to modulate innate functionality in many ways including, receptor antagonism, receptor expression, binding to and expression of adaptor proteins, expression of negative regulatory signal molecules, induction of micro-RNAs, endotoxin tolerisation and finally, the secretion of immunomodulatory proteins, lipids and metabolites. The detailed understanding of the immunomodulatory signaling effects of probiotic strains will facilitate strain-specific selective manipulation of innate cell signal mechanisms in the modulation of mucosal adjuvanticity, immune deviation and tolerisation in both healthy subjects and patients with inflammatory and suppressive pathology. PMID:29065562
Localized Immunosuppressive Environment in the Foreign Body Response to Implanted Biomaterials
Higgins, David M.; Basaraba, Randall J.; Hohnbaum, April C.; Lee, Eric J.; Grainger, David W.; Gonzalez-Juarrero, Mercedes
2009-01-01
The implantation of synthetic biomaterials initiates the foreign body response (FBR), which is characterized by macrophage infiltration, foreign body giant cell formation, and fibrotic encapsulation of the implant. The FBR is orchestrated by a complex network of immune modulators, including diverse cell types, soluble mediators, and unique cell surface interactions. The specific tissue locations, expression patterns, and spatial distribution of these immune modulators around the site of implantation are not clear. This study describes a model for studying the FBR in vivo and specifically evaluates the spatial relationship of immune modulators. We modified a biomaterials implantation in vivo model that allowed for cross-sectional in situ analysis of the FBR. Immunohistochemical techniques were used to determine the localization of soluble mediators, ie, interleukin (IL)-4, IL-13, IL-10, IL-6, transforming growth factor-β, tumor necrosis factor-α, interferon-γ, and MCP-1; specific cell types, ie, macrophages, neutrophils, fibroblasts, and lymphocytes; and cell surface markers, ie, F4/80, CD11b, CD11c, and Ly-6C, at early, middle, and late stages of the FBR in subcutaneous implant sites. The cytokines IL-4, IL-13, IL-10, and transforming growth factor-β were localized to implant-adherent cells that included macrophages and foreign body giant cells. A better understanding of the FBR in vivo will allow the development of novel strategies to enhance biomaterial implant design to achieve better performance and safety of biomedical devices at the site of implant. PMID:19528351
Localized immunosuppressive environment in the foreign body response to implanted biomaterials.
Higgins, David M; Basaraba, Randall J; Hohnbaum, April C; Lee, Eric J; Grainger, David W; Gonzalez-Juarrero, Mercedes
2009-07-01
The implantation of synthetic biomaterials initiates the foreign body response (FBR), which is characterized by macrophage infiltration, foreign body giant cell formation, and fibrotic encapsulation of the implant. The FBR is orchestrated by a complex network of immune modulators, including diverse cell types, soluble mediators, and unique cell surface interactions. The specific tissue locations, expression patterns, and spatial distribution of these immune modulators around the site of implantation are not clear. This study describes a model for studying the FBR in vivo and specifically evaluates the spatial relationship of immune modulators. We modified a biomaterials implantation in vivo model that allowed for cross-sectional in situ analysis of the FBR. Immunohistochemical techniques were used to determine the localization of soluble mediators, ie, interleukin (IL)-4, IL-13, IL-10, IL-6, transforming growth factor-beta, tumor necrosis factor-alpha, interferon-gamma, and MCP-1; specific cell types, ie, macrophages, neutrophils, fibroblasts, and lymphocytes; and cell surface markers, ie, F4/80, CD11b, CD11c, and Ly-6C, at early, middle, and late stages of the FBR in subcutaneous implant sites. The cytokines IL-4, IL-13, IL-10, and transforming growth factor-beta were localized to implant-adherent cells that included macrophages and foreign body giant cells. A better understanding of the FBR in vivo will allow the development of novel strategies to enhance biomaterial implant design to achieve better performance and safety of biomedical devices at the site of implant.
Reliability and Engineering of Thin-Film Photovoltaic Modules. Research forum proceedings
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr. (Editor); Royal, E. L. (Editor)
1985-01-01
A Research Forum on Reliability and Engineering of Thin Film Photovoltaic Modules, under sponsorship of the Jet Propulsion Laboratory's Flat Plate Solar Array (FSA) Project and the U.S. Department of Energy, was held in Washington, D.C., on March 20, 1985. Reliability attribute investigations of amorphous silicon cells, submodules, and modules were the subjects addressed by most of the Forum presentations. Included among the reliability research investigations reported were: Arrhenius-modeled accelerated stress tests on a Si cells, electrochemical corrosion, light induced effects and their potential effects on stability and reliability measurement methods, laser scribing considerations, and determination of degradation rates and mechanisms from both laboratory and outdoor exposure tests.
Silicon Heterojunction System Field Performance
Jordan, Dirk C.; Deline, Chris; Johnston, Steve; ...
2017-11-17
A silicon heterostructure photovoltaic system fielded for 10 years has been investigated in detail. The system has shown degradation, but at a rate similar to an average Si system, and still within the module warranty level. The power decline is dominated by a nonlinear Voc loss rather than more typical changes in Isc or Fill Factor. Modules have been evaluated using multiple techniques including: dark and light I-V measurement, Suns-Voc, thermal imaging, and quantitative electroluminescence. All techniques indicate that recombination and series resistance in the cells have increased along with a decrease of factor 2 in minority carrier lifetime. Performancemore » changes are fairly uniform across the module, indicating changes occur primarily within the cells.« less
SOFC seal and cell thermal management
Potnis, Shailesh Vijay [Neenah, WI; Rehg, Timothy Joseph [Huntington Beach, CA
2011-05-17
The solid oxide fuel cell module includes a manifold, a plate, a cathode electrode, a fuel cell and an anode electrode. The manifold includes an air or oxygen inlet in communication with divergent passages above the periphery of the cell which combine to flow the air or oxygen radially or inwardly for reception in the center of the cathode flow field. The latter has interconnects providing circuitous cooling passages in a generally radial outward direction cooling the fuel cell and which interconnects are formed of different thermal conductivity materials for a preferential cooling.
Adachi, Yasuhiro; Hiramatsu, Sumie; Tokuda, Nobuko; Sharifi, Kazem; Ebrahimi, Majid; Islam, Ariful; Kagawa, Yoshiteru; Koshy Vaidyan, Linda; Sawada, Tomoo; Hamano, Kimikazu; Owada, Yuji
2012-09-01
Thymic stromal cells, including cortical thymic epithelial cells (cTEC) produce many humoral factors, such as cytokines and eicosanoids to modulate thymocyte homeostasis, thereby regulating the peripheral immune responses. In this study, we identified fatty acid-binding protein (FABP4), an intracellular fatty acid chaperone, in the mouse thymus, and examined its role in the control of cytokine production in comparison with FABP5. By immunofluorescent staining, FABP4(+) cells enclosing the thymocytes were scattered throughout the thymic cortex with a spatial difference from the FABP5(+) cell that were distributed widely throughout the cTEC. The FABP4(+) cells were immunopositive for MHC class II, NLDC145 and cytokeratin 8, and were identified as part of cTEC. The FABP4(+) cells were identified as thymic nurse cells (TNC), a subpopulation of cTEC, by their active phagocytosis of apoptotic thymocytes. Furthermore, FABP4 expression was confirmed in the isolated TNC at the gene and protein levels. To explore the function of FABP in TNC, TSt-4/DLL1 cells stably expressing either FABP4 or FABP5 were established and the gene expressions of various cytokines were examined. The gene expression of interleukin (IL)-7 and IL-18 was increased both in FABP4 and FABP5 over-expressing cells compared with controls, and moreover, the increase in their expressions by adding of stearic acids was significantly enhanced in the FABP4 over-expressing cells. These data suggest that both FABPs are involved in the maintenance of T lymphocyte homeostasis through the modulation of cytokine production, which is possibly regulated by cellular fatty acid-mediated signaling in TEC, including TNC.
Lee, Kyung-Yil; Rhim, Jung-Woo; Kang, Jin-Han
2011-01-01
It has been believed that acute lung injury in influenza virus infections is caused by a virus-induced cytopathy; viruses that have multiplied in the upper respiratory tract spread to lung tissues along the lower respiratory tract. However, some experimental and clinical studies have suggested that the pathogenesis of acute lung injury in influenza virus infections is associated with excessive host response including a cell-mediated immune reaction. During the pandemic H1N1 2009 influenza A virus infections in Korea, we experienced a dramatic effect of immune-modulators (corticosteroids) on the patients with severe pneumonia who had significant respiratory distress at presentation and those who showed rapidly progressive pneumonia during oseltamivir treatment. We also found that the pneumonia patients treated with corticosteroids showed the lowest lymphocyte differential and that the severity of pneumonia was associated with the lymphocyte count at presentation. From our findings and previous experimental and clinical studies, we postulated that hyperactive immune cells (T cells) may be involved in the acute lung injury of influenza virus infections, using a hypothesis of 'protein homeostasis system'; the inducers of the cell-mediated immune response are initially produced at the primary immune sites by the innate immune system. These substances reach the lung cells, the main target organ, via the systemic circulation, and possibly the cells of other organs, including myocytes or central nerve system cells, leading to extrapulmonary symptoms (e.g., myalgia and rhabdomyolysis, and encephalopathy). To control these substances that may be possibly toxic to host cells, the adaptive immune reaction may be operated by immune cells, mainly lymphocytes. Hyperimmune reaction of immune cells produces higher levels of cytokines which may be associated with acute lung injury, and may be controlled by early use of immune-modulators. Early initiation and proper dosage of immune-modulators with antiviral agents for severe pneumonia patients may reduce morbidity and prevent progressive fatal pneumonia. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Namkoong, D.; Simon, F. F.
1981-01-01
Four different photovoltaic module designs were tested to determine the cell temperature of each design. The cell temperatures were compared to those obtained on identical design, using the same nominal operating cell temperature (NOCT) concept. The results showed that the NOCT procedure does not apply to the enclosed configurations due to continuous transient conditions. The enclosed modules had higher cell temperatures than the open modules, and insulated modules higher than the uninsulated. The severest performance loss - when translated from cell temperatures - 17.5 % for one enclosed, insulated module as a compared to that module mounted openly.
NASA Astrophysics Data System (ADS)
Korobeinikov, Igor V.; Morozova, Natalia V.; Lukyanova, Lidia N.; Usov, Oleg A.; Kulbachinskii, Vladimir A.; Shchennikov, Vladimir V.; Ovsyannikov, Sergey V.
2018-01-01
We propose a model of a thermoelectric module in which the performance parameters can be controlled by applied tuneable stress. This model includes a miniature high-pressure anvil-type cell and a specially designed thermoelectric module that is compressed between two opposite anvils. High thermally conductive high-pressure anvils that can be made, for instance, of sintered technical diamonds with enhanced thermal conductivity, would enable efficient heat absorption or rejection from a thermoelectric module. Using a high-pressure cell as a prototype of a stress-controlled thermoelectric converter, we investigated the effect of applied high pressure on the power factors of several single-crystalline thermoelectrics, including binary p-type Bi2Te3, and multi-component (Bi,Sb)2Te3 and Bi2(Te,Se,S)3 solid solutions. We found that a moderate applied pressure of a few GPa significantly enhances the power factors of some of these thermoelectrics. Thus, they might be more efficiently utilized in stress-controlled thermoelectric modules. In the example of one of these thermoelectrics crystallizing in the same rhombohedral structure, we examined the crystal lattice stability under moderate high pressures. We uncovered an abnormal compression of the rhombohedral lattice of (Bi0.25,Sb0.75)2Te3 along the c-axis in a hexagonal unit cell, and detected two phase transitions to the C2/m and C2/c monoclinic structures above 9.5 and 18 GPa, respectively.
Malcomson, Fiona C; Willis, Naomi D; Mathers, John C
2015-08-01
Epidemiological and experimental evidence suggests that non-digestible carbohydrates (NDC) including resistant starch are protective against colorectal cancer. These anti-neoplastic effects are presumed to result from the production of the SCFA, butyrate, by colonic fermentation, which binds to the G-protein-coupled receptor GPR43 to regulate inflammation and other cancer-related processes. The WNT pathway is central to the maintenance of homeostasis within the large bowel through regulation of processes such as cell proliferation and migration and is frequently aberrantly hyperactivated in colorectal cancers. Abnormal WNT signalling can lead to irregular crypt cell proliferation that favours a hyperproliferative state. Butyrate has been shown to modulate the WNT pathway positively, affecting functional outcomes such as apoptosis and proliferation. Butyrate's ability to regulate gene expression results from epigenetic mechanisms, including its role as a histone deacetylase inhibitor and through modulating DNA methylation and the expression of microRNA. We conclude that genetic and epigenetic modulation of the WNT signalling pathway may be an important mechanism through which butyrate from fermentation of resistant starch and other NDC exert their chemoprotective effects.
Solar array module plasma interactions experiment (SAMPIE) - Science and technology objectives
NASA Technical Reports Server (NTRS)
Hillard, G. B.; Ferguson, Dale C.
1993-01-01
The solar array module plasma interactions experiment (SAMPIE) is an approved NASA flight experiment manifested for Shuttle deployment in early 1994. The SAMPIE experiment is designed to investigate the interaction of high voltage space power systems with ionospheric plasma. To study the behavior of solar cells, a number of solar cell coupons (representing design technologies of current interest) will be biased to high voltages to measure both arcing and current collection. Various theories of arc suppression will be tested by including several specially modified cell coupons. Finally, SAMPIE will include experiments to study the basic nature of arcing and current collection. This paper describes the rationale for a space flight experiment, the measurements to be made, and the significance of the expected results. A future paper will present a detailed discussion of the engineering design.
Ghequire, Maarten G K; Kemland, Lieselore; Anoz-Carbonell, Ernesto; Buchanan, Susan K; De Mot, René
2017-02-21
Modular bacteriocins represent a major group of secreted protein toxins with a narrow spectrum of activity, involved in interference competition between Gram-negative bacteria. These antibacterial proteins include a domain for binding to the target cell and a toxin module at the carboxy terminus. Self-inhibition of producers is provided by coexpression of linked immunity genes that transiently inhibit the toxin's activity through formation of bacteriocin-immunity complexes or by insertion in the inner membrane, depending on the type of toxin module. We demonstrate strain-specific inhibitory activity for PmnH, a Pseudomonas bacteriocin with an unprecedented dual-toxin architecture, hosting both a colicin M domain, potentially interfering with peptidoglycan synthesis, and a novel colicin N-type domain, a pore-forming module distinct from the colicin Ia-type domain in Pseudomonas aeruginosa pyocin S5. A downstream-linked gene product confers PmnH immunity upon susceptible strains. This protein, ImnH, has a transmembrane topology similar to that of Pseudomonas colicin M-like and pore-forming immunity proteins, although homology with either of these is essentially absent. The enhanced killing activity of PmnH under iron-limited growth conditions reflects parasitism of the ferrichrome-type transporter for entry into target cells, a strategy shown here to be used as well by monodomain colicin M-like bacteriocins from pseudomonads. The integration of a second type of toxin module in a bacteriocin gene could offer a competitive advantage against bacteria displaying immunity against only one of both toxic activities. IMPORTANCE In their continuous struggle for ecological space, bacteria face a huge load of contenders, including phylogenetically related strains that compete for the same niche. One important group of secreted antibacterial proteins assisting in eliminating these rivals are modular bacteriocins of Gram-negative bacteria, comprising a domain for docking onto the cell envelope of a target cell, a translocation domain enabling subsequent cellular entry, and a toxin module that kills target cells via enzymatic or pore-forming activity. We here demonstrate the antagonistic function of a Pseudomonas bacteriocin with unique architecture that combines a putative enzymatic colicin M-like domain and a novel pore-forming toxin module. For target cell recognition and entry, this bacteriocin hybrid takes advantage of the ferrichrome transporter, also parasitized by enzymatic Pseudomonas bacteriocins devoid of the pore-forming module. Bacteriocins with an expanded toxin potential may represent an inventive bacterial strategy to alleviate immunity in target cells. Copyright © 2017 Ghequire et al.
Bachir, Alexia; Horwitz, Alan Rick; Nelson, W. James; Bianchini, Julie M.
2018-01-01
Cell adhesions link cells to the extracellular matrix (ECM) and to each other, and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping functional modules. These modules establish physical association with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as sense and translate the mechanical properties of the cellular environment to changes in cell organization and behavior. In this chapter we discuss the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions, and how adhesion molecules mediate crosstalk between cell-ECM and cell-cell adhesion sites. PMID:28679638
Chiurchiù, Valerio; Leuti, Alessandro; Dalli, Jesmond; Jacobsson, Anders; Battistini, Luca; Maccarrone, Mauro; Serhan, Charles N
2016-08-24
Resolution of inflammation is a finely regulated process mediated by specialized proresolving lipid mediators (SPMs), including docosahexaenoic acid (DHA)-derived resolvins and maresins. The immunomodulatory role of SPMs in adaptive immune cells is of interest. We report that D-series resolvins (resolvin D1 and resolvin D2) and maresin 1 modulate adaptive immune responses in human peripheral blood lymphocytes. These lipid mediators reduce cytokine production by activated CD8(+) T cells and CD4(+) T helper 1 (TH1) and TH17 cells but do not modulate T cell inhibitory receptors or abrogate their capacity to proliferate. Moreover, these SPMs prevented naïve CD4(+) T cell differentiation into TH1 and TH17 by down-regulating their signature transcription factors, T-bet and Rorc, in a mechanism mediated by the GPR32 and ALX/FPR2 receptors; they concomitantly enhanced de novo generation and function of Foxp3(+) regulatory T (Treg) cells via the GPR32 receptor. These results were also supported in vivo in a mouse deficient for DHA synthesis (Elovl2(-/-)) that showed an increase in TH1/TH17 cells and a decrease in Treg cells compared to wild-type mice. Additionally, either DHA supplementation in Elovl2(-/-) mice or in vivo administration of resolvin D1 significantly reduced cytokine production upon specific stimulation of T cells. These findings demonstrate actions of specific SPMs on adaptive immunity and provide a new avenue for SPM-based approaches to modulate chronic inflammation. Copyright © 2016, American Association for the Advancement of Science.
Das, Undurti N
2011-12-01
Stem cells are pluripotent and expected to be of benefit in the management of coronary heart disease, stroke, diabetes mellitus, cancer, and Alzheimer's disease in which pro-inflammatory cytokines are increased. Identifying endogenous bioactive molecules that have a regulatory role in stem cell survival, proliferation, and differentiation may aid in the use of stem cells in various diseases including cancer. Essential fatty acids form precursors to both pro- and anti-inflammatory molecules have been shown to regulate gene expression, enzyme activity, modulate inflammation and immune response, gluconeogenesis via direct and indirect pathways, function directly as agonists of a number of G protein-coupled receptors, activate phosphatidylinositol 3-kinase/Akt and p44/42 mitogen-activated protein kinases, and stimulate cell proliferation via Ca(2+), phospholipase C/protein kinase, events that are also necessary for stem cell survival, proliferation, and differentiation. Hence, it is likely that bioactive lipids play a significant role in various diseases by modulating the proliferation and differentiation of embryonic stem cells in addition to their capacity to suppress inflammation. Ephrin Bs and reelin, adhesion molecules, and microRNAs regulate neuronal migration and cancer cell metastasis. Polyunsaturated fatty acids and their products seem to modulate the expression of ephrin Bs and reelin and several adhesion molecules and microRNAs suggesting that bioactive lipids participate in neuronal regeneration and stem cell proliferation, migration, and cancer cell metastasis. Thus, there appears to be a close interaction among essential fatty acids, their bioactive products, and inflammation and cancer growth and its metastasis.
Cytomegalovirus immune evasion of myeloid lineage cells.
Brinkmann, Melanie M; Dağ, Franziska; Hengel, Hartmut; Messerle, Martin; Kalinke, Ulrich; Čičin-Šain, Luka
2015-06-01
Cytomegalovirus (CMV) evades the immune system in many different ways, allowing the virus to grow and its progeny to spread in the face of an adverse environment. Mounting evidence about the antiviral role of myeloid immune cells has prompted the research of CMV immune evasion mechanisms targeting these cells. Several cells of the myeloid lineage, such as monocytes, dendritic cells and macrophages, play a role in viral control, but are also permissive for CMV and are naturally infected by it. Therefore, CMV evasion of myeloid cells involves mechanisms that qualitatively differ from the evasion of non-CMV-permissive immune cells of the lymphoid lineage. The evasion of myeloid cells includes effects in cis, where the virus modulates the immune signaling pathways within the infected myeloid cell, and those in trans, where the virus affects somatic cells targeted by cytokines released from myeloid cells. This review presents an overview of CMV strategies to modulate and evade the antiviral activity of myeloid cells in cis and in trans.
Belalcazar, Astrid; Shaib, Walid L; Farren, Matthew R; Zhang, Chao; Chen, Zhengjia; Yang, Lily; Lesinski, Gregory B; El-Rayes, Bassel F; Nagaraju, Ganji Purnachandra
2017-12-15
Heat shock protein 90 (HSP90) and the ubiquitin-proteasome pathway play crucial roles in the homeostasis of pancreatic cancer cells. This study combined for the first time the HSP90 inhibitor ganetespib (Gan) and the proteasome inhibitor carfilzomib (Carf) to target key mechanisms of homeostasis in pancreatic cancer. It was hypothesized that Gan plus Carf would elicit potent antitumor activity by modulating complementary homeostatic processes. In vitro and in vivo effects of this combination on mechanisms of cell growth and viability were evaluated with human pancreatic cancer cell lines (MIA PaCa-2 and HPAC). Combined treatment with Gan and Carf significantly decreased cell viability. The mechanism varied by cell line and involved G 2 -M cell-cycle arrest accompanied by a consistent reduction in key cell-cycle regulatory proteins and concomitant upregulation of p27. Further studies revealed increased autophagy markers, including the upregulation of autophagy related 7 and light chain 3 cleavage, and evidence of apoptosis (increased Bax expression and processing of caspase 3). Immunoblot analyses confirmed the modulation of other pathways that influence cell viability, including phosphoinositide 3-kinase/Akt and nuclear factor κB. Finally, the treatment of athymic mice bearing HPAC tumors with Gan and Carf significantly reduced tumor growth in vivo. An immunoblot analysis of freshly isolated tumors from animals at the end of the study confirmed in vivo modulation of key signaling pathways. The results reveal Gan plus Carf to be a promising combination with synergistic antiproliferative, apoptotic, and pro-autophagy effects in preclinical studies of pancreatic cancer and will further the exploration of the utility of this treatment combination in clinical trials. Cancer 2017;123:4924-33. © 2017 American Cancer Society. © 2017 American Cancer Society.
Engineering vaccines and niches for immune modulation.
Purwada, Alberto; Roy, Krishnendu; Singh, Ankur
2014-04-01
Controlled modulation of immune response, especially the balance between immunostimulatory and immunosuppressive responses, is critical for a variety of clinical applications, including immunotherapies against cancer and infectious diseases, treatment of autoimmune disorders, transplant surgeries, regenerative medicine, prosthetic implants, etc. Our ability to precisely modify both innate and adaptive immune responses could provide new therapeutic directions in a variety of diseases. In the context of vaccines and immunotherapies, the interplay between antigen-presenting cells (e.g. dendritic cells and macrophages), B cells, T helper and killer subtypes, and regulatory T- and B-cell responses is critical for generating effective immunity against cancer, infectious diseases and autoimmune diseases. In recent years, immunoengineering has emerged as a new field that uses quantitative engineering tools to understand molecular-, cellular- and system-level interactions of the immune system and to develop design-driven approaches to control and modulate immune responses. Biomaterials are an integral part of this engineering toolbox and can exploit the intrinsic biological and mechanical cues of the immune system to directly modulate and train immune cells and direct their response to a particular phenotype. A large body of literature exists on strategies to evade or suppress the immune response in implants, transplantation and regenerative medicine. This review specifically focuses on the use of biomaterials for immunostimulation and controlled modulation, especially in the context of vaccines and immunotherapies against cancer, infectious diseases and autoimmune disorders. Bioengineering smart systems that can simultaneously deliver multiple bioactive agents in a controlled manner or can work as a niche for in situ priming and modulation of the immune system could significantly enhance the efficacy of next-generation immunotherapeutics. In this review, we describe our perspective on the important design aspects for the development of biomaterials that can actively modulate immune responses by stimulating receptor complexes and cells, and delivering multiple immunomodulatory biomolecules. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Zinc-chlorine battery plant system and method
Whittlesey, Curtis C.; Mashikian, Matthew S.
1981-01-01
A zinc-chlorine battery plant system and method of redirecting the electrical current around a failed battery module. The battery plant includes a power conditioning unit, a plurality of battery modules connected electrically in series to form battery strings, a plurality of battery strings electrically connected in parallel to the power conditioning unit, and a bypass switch for each battery module in the battery plant. The bypass switch includes a normally open main contact across the power terminals of the battery module, and a set of normally closed auxiliary contacts for controlling the supply of reactants electrochemically transformed in the cells of the battery module. Upon the determination of a failure condition, the bypass switch for the failed battery module is energized to close the main contact and open the auxiliary contacts. Within a short time, the electrical current through the battery module will substantially decrease due to the cutoff of the supply of reactants, and the electrical current flow through the battery string will be redirected through the main contact of the bypass switch.
Legeay, Samuel; Clere, Nicolas; Hilairet, Grégory; Do, Quoc-Tuan; Bernard, Philippe; Quignard, Jean-François; Apaire-Marchais, Véronique; Lapied, Bruno; Faure, Sébastien
2016-06-27
The insect repellent N,N-diethyl-m-toluamide (DEET) has been reported to inhibit AChE (acetylcholinesterase) and to possess potential carcinogenic properties with excessive vascularization. In the present paper, we demonstrate that DEET specifically stimulates endothelial cells that promote angiogenesis which increases tumor growth. DEET activates cellular processes that lead to angiogenesis including proliferation, migration and adhesion. This is associated with an enhancement of NO production and VEGF expression in endothelial cells. M3 silencing or the use of a pharmacological M3 inhibitor abrogates all of these effects which reveals that DEET-induced angiogenesis is M3 sensitive. The experiments involving calcium signals in both endothelial and HEK cells overexpressing M3 receptors, as well as binding and docking studies demonstrate that DEET acts as an allosteric modulator of the M3 receptor. In addition, DEET inhibited AChE which increased acetylcholine bioavailability and binding to M3 receptors and also strengthened proangiogenic effects by an allosteric modulation.
Synthetic biology: new engineering rules for an emerging discipline
Andrianantoandro, Ernesto; Basu, Subhayu; Karig, David K; Weiss, Ron
2006-01-01
Synthetic biologists engineer complex artificial biological systems to investigate natural biological phenomena and for a variety of applications. We outline the basic features of synthetic biology as a new engineering discipline, covering examples from the latest literature and reflecting on the features that make it unique among all other existing engineering fields. We discuss methods for designing and constructing engineered cells with novel functions in a framework of an abstract hierarchy of biological devices, modules, cells, and multicellular systems. The classical engineering strategies of standardization, decoupling, and abstraction will have to be extended to take into account the inherent characteristics of biological devices and modules. To achieve predictability and reliability, strategies for engineering biology must include the notion of cellular context in the functional definition of devices and modules, use rational redesign and directed evolution for system optimization, and focus on accomplishing tasks using cell populations rather than individual cells. The discussion brings to light issues at the heart of designing complex living systems and provides a trajectory for future development. PMID:16738572
Synthetic biology: new engineering rules for an emerging discipline.
Andrianantoandro, Ernesto; Basu, Subhayu; Karig, David K; Weiss, Ron
2006-01-01
Synthetic biologists engineer complex artificial biological systems to investigate natural biological phenomena and for a variety of applications. We outline the basic features of synthetic biology as a new engineering discipline, covering examples from the latest literature and reflecting on the features that make it unique among all other existing engineering fields. We discuss methods for designing and constructing engineered cells with novel functions in a framework of an abstract hierarchy of biological devices, modules, cells, and multicellular systems. The classical engineering strategies of standardization, decoupling, and abstraction will have to be extended to take into account the inherent characteristics of biological devices and modules. To achieve predictability and reliability, strategies for engineering biology must include the notion of cellular context in the functional definition of devices and modules, use rational redesign and directed evolution for system optimization, and focus on accomplishing tasks using cell populations rather than individual cells. The discussion brings to light issues at the heart of designing complex living systems and provides a trajectory for future development.
From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing.
Marinov, Georgi K; Williams, Brian A; McCue, Ken; Schroth, Gary P; Gertz, Jason; Myers, Richard M; Wold, Barbara J
2014-03-01
Single-cell RNA-seq mammalian transcriptome studies are at an early stage in uncovering cell-to-cell variation in gene expression, transcript processing and editing, and regulatory module activity. Despite great progress recently, substantial challenges remain, including discriminating biological variation from technical noise. Here we apply the SMART-seq single-cell RNA-seq protocol to study the reference lymphoblastoid cell line GM12878. By using spike-in quantification standards, we estimate the absolute number of RNA molecules per cell for each gene and find significant variation in total mRNA content: between 50,000 and 300,000 transcripts per cell. We directly measure technical stochasticity by a pool/split design and find that there are significant differences in expression between individual cells, over and above technical variation. Specific gene coexpression modules were preferentially expressed in subsets of individual cells, including one enriched for mRNA processing and splicing factors. We assess cell-to-cell variation in alternative splicing and allelic bias and report evidence of significant differences in splice site usage that exceed splice variation in the pool/split comparison. Finally, we show that transcriptomes from small pools of 30-100 cells approach the information content and reproducibility of contemporary RNA-seq from large amounts of input material. Together, our results define an experimental and computational path forward for analyzing gene expression in rare cell types and cell states.
Automated Array Assembly, Phase 2
NASA Technical Reports Server (NTRS)
Carbajal, B. G.
1979-01-01
The solar cell module process development activities in the areas of surface preparation are presented. The process step development was carried out on texture etching including the evolution of a conceptual process model for the texturing process; plasma etching; and diffusion studies that focused on doped polymer diffusion sources. Cell processing was carried out to test process steps and a simplified diode solar cell process was developed. Cell processing was also run to fabricate square cells to populate sample minimodules. Module fabrication featured the demonstration of a porcelainized steel glass structure that should exceed the 20 year life goal of the low cost silicon array program. High efficiency cell development was carried out in the development of the tandem junction cell and a modification of the TJC called the front surface field cell. Cell efficiencies in excess of 16 percent at AM1 have been attained with only modest fill factors. The transistor-like model was proposed that fits the cell performance and provides a guideline for future improvements in cell performance.
2010-01-01
Background The assembly and spatial organization of enzymes in naturally occurring multi-protein complexes is of paramount importance for the efficient degradation of complex polymers and biosynthesis of valuable products. The degradation of cellulose into fermentable sugars by Clostridium thermocellum is achieved by means of a multi-protein "cellulosome" complex. Assembled via dockerin-cohesin interactions, the cellulosome is associated with the cell surface during cellulose hydrolysis, forming ternary cellulose-enzyme-microbe complexes for enhanced activity and synergy. The assembly of recombinant cell surface displayed cellulosome-inspired complexes in surrogate microbes is highly desirable. The model organism Lactococcus lactis is of particular interest as it has been metabolically engineered to produce a variety of commodity chemicals including lactic acid and bioactive compounds, and can efficiently secrete an array of recombinant proteins and enzymes of varying sizes. Results Fragments of the scaffoldin protein CipA were functionally displayed on the cell surface of Lactococcus lactis. Scaffolds were engineered to contain a single cohesin module, two cohesin modules, one cohesin and a cellulose-binding module, or only a cellulose-binding module. Cell toxicity from over-expression of the proteins was circumvented by use of the nisA inducible promoter, and incorporation of the C-terminal anchor motif of the streptococcal M6 protein resulted in the successful surface-display of the scaffolds. The facilitated detection of successfully secreted scaffolds was achieved by fusion with the export-specific reporter staphylococcal nuclease (NucA). Scaffolds retained their ability to associate in vivo with an engineered hybrid reporter enzyme, E. coli β-glucuronidase fused to the type 1 dockerin motif of the cellulosomal enzyme CelS. Surface-anchored complexes exhibited dual enzyme activities (nuclease and β-glucuronidase), and were displayed with efficiencies approaching 104 complexes/cell. Conclusions We report the successful display of cellulosome-inspired recombinant complexes on the surface of Lactococcus lactis. Significant differences in display efficiency among constructs were observed and attributed to their structural characteristics including protein conformation and solubility, scaffold size, and the inclusion and exclusion of non-cohesin modules. The surface-display of functional scaffold proteins described here represents a key step in the development of recombinant microorganisms capable of carrying out a variety of metabolic processes including the direct conversion of cellulosic substrates into fuels and chemicals. PMID:20840763
System and method for charging electrochemical cells in series
DeLuca, William H.; Hornstra, Jr, Fred; Gelb, George H.; Berman, Baruch; Moede, Larry W.
1980-01-01
A battery charging system capable of equalizing the charge of each individual cell at a selected full charge voltage includes means for regulating charger current to first increase current at a constant rate until a bulk charging level is achieved or until any cell reaches a safe reference voltage. A system controller then begins to decrease the charging rate as long as any cell exceeds the reference voltage until an equalization current level is reached. At this point, the system controller activates a plurality of shunt modules to permit shunting of current around any cell having a voltage exceeding the reference voltage. Leads extending between the battery of cells and shunt modules are time shared to permit alternate shunting of current and voltage monitoring without the voltage drop caused by the shunt current. After each cell has at one time exceeded the reference voltage, the charging current is terminated.
Early, Jack; Kaufman, Arthur; Stawsky, Alfred
1982-01-01
A fuel cell system is comprised of a fuel cell module including sub-stacks of series-connected fuel cells, the sub-stacks being held together in a stacked arrangement with cold plates of a cooling means located between the sub-stacks to function as electrical terminals. The anode and cathode terminals of the sub-stacks are connected in parallel by means of the coolant manifolds which electrically connect selected cold plates. The system may comprise a plurality of the fuel cell modules connected in series. The sub-stacks are designed to provide a voltage output equivalent to the desired voltage demand of a low voltage, high current DC load such as an electrolytic cell to be driven by the fuel cell system. This arrangement in conjunction with switching means can be used to drive a DC electrical load with a total voltage output selected to match that of the load being driven. This arrangement eliminates the need for expensive voltage regulation equipment.
Amorphous-silicon module hot-spot testing
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.
1985-01-01
Hot spot heating occurs when cell short-circuit current is lower than string operating current. Amorphous cell hot spot are tested to develop the techniques required for performing reverse bias testing of amorphous cells. Also, to quantify the response of amorphous cells to reverse biasing. Guidelines are developed from testing for reducing hot spot susceptibility of amorphous modules and to develop a qualification test for hot spot testing of amorphous modules. It is concluded that amorphous cells undergo hot spot heating similarly to crystalline cells. Comparison of results obtained with submodules versus actual modules indicate heating levels lower in actual modules. Module design must address hot spot testing and hot spot qualification test conducted on modules showed no instabilities and minor cell erosion.
Sarmiento, Daniela; Montorfano, Ignacio; Cerda, Oscar; Cáceres, Mónica; Becerra, Alvaro; Cabello-Verrugio, Claudio; Elorza, Alvaro A; Riedel, Claudia; Tapia, Pablo; Velásquez, Luis A; Varela, Diego; Simon, Felipe
2015-03-01
A hallmark of severe inflammation is reactive oxygen species (ROS) overproduction induced by increased inflammatory mediators secretion. During systemic inflammation, inflammation mediators circulating in the bloodstream interact with endothelial cells (ECs) raising intracellular oxidative stress at the endothelial monolayer. Oxidative stress mediates several pathological functions, including an exacerbated EC migration. Because cell migration critically depends on calcium channel-mediated Ca(2+) influx, the molecular identification of the calcium channel involved in oxidative stress-modulated EC migration has been the subject of intense investigation. The transient receptor potential melastatin 4 (TRPM4) protein is a ROS-modulated non-selective cationic channel that performs several cell functions, including regulating intracellular Ca(2+) overload and Ca(2+) oscillation. This channel is expressed in multiple tissues, including ECs, and contributes to the migration of certain immune cells. However, whether the TRPM4 ion channel participates in oxidative stress-mediated EC migration is not known. Herein, we investigate whether oxidative stress initiates or enhances EC migration and study the role played by the ROS-modulated TRPM4 ion channel in oxidative stress-mediated EC migration. We demonstrate that oxidative stress enhances, but does not initiate, EC migration in a dose-dependent manner. Notably, we demonstrate that the TRPM4 ion channel is critical in promoting H2O2-enhanced EC migration. These results show that TRPM4 is a novel pharmacological target for the possible treatment of severe inflammation and other oxidative stress-mediated inflammatory diseases. Copyright © 2014 Elsevier Inc. All rights reserved.
A Functional and Regulatory Network Associated with PIP Expression in Human Breast Cancer
Debily, Marie-Anne; Marhomy, Sandrine El; Boulanger, Virginie; Eveno, Eric; Mariage-Samson, Régine; Camarca, Alessandra; Auffray, Charles; Piatier-Tonneau, Dominique; Imbeaud, Sandrine
2009-01-01
Background The PIP (prolactin-inducible protein) gene has been shown to be expressed in breast cancers, with contradictory results concerning its implication. As both the physiological role and the molecular pathways in which PIP is involved are poorly understood, we conducted combined gene expression profiling and network analysis studies on selected breast cancer cell lines presenting distinct PIP expression levels and hormonal receptor status, to explore the functional and regulatory network of PIP co-modulated genes. Principal Findings Microarray analysis allowed identification of genes co-modulated with PIP independently of modulations resulting from hormonal treatment or cell line heterogeneity. Relevant clusters of genes that can discriminate between [PIP+] and [PIP−] cells were identified. Functional and regulatory network analyses based on a knowledge database revealed a master network of PIP co-modulated genes, including many interconnecting oncogenes and tumor suppressor genes, half of which were detected as differentially expressed through high-precision measurements. The network identified appears associated with an inhibition of proliferation coupled with an increase of apoptosis and an enhancement of cell adhesion in breast cancer cell lines, and contains many genes with a STAT5 regulatory motif in their promoters. Conclusions Our global exploratory approach identified biological pathways modulated along with PIP expression, providing further support for its good prognostic value of disease-free survival in breast cancer. Moreover, our data pointed to the importance of a regulatory subnetwork associated with PIP expression in which STAT5 appears as a potential transcriptional regulator. PMID:19262752
Soteropoulos, Demetris S; Williams, Elizabeth R; Baker, Stuart N
2012-01-01
Recent work has shown that the primate reticulospinal tract can influence spinal interneurons and motoneurons involved in control of the hand. However, demonstrating connectivity does not reveal whether reticular outputs are modulated during the control of different types of hand movement. Here, we investigated how single unit discharge in the pontomedullary reticular formation (PMRF) modulated during performance of a slow finger movement task in macaque monkeys. Two animals performed an index finger flexion–extension task to track a target presented on a computer screen; single units were recorded both from ipsilateral PMRF (115 cells) and contralateral primary motor cortex (M1, 210 cells). Cells in both areas modulated their activity with the task (M1: 87%, PMRF: 86%). Some cells (18/115 in PMRF; 96/210 in M1) received sensory input from the hand, showing a short-latency modulation in their discharge following a rapid passive extension movement of the index finger. Effects in ipsilateral electromyogram to trains of stimuli were recorded at 45 sites in the PMRF. These responses involved muscles controlling the digits in 13/45 sites (including intrinsic hand muscles, 5/45 sites). We conclude that PMRF may contribute to the control of fine finger movements, in addition to its established role in control of more proximal limb and trunk movements. This finding may be especially important in understanding functional recovery after brain lesions such as stroke. PMID:22641776
Modulation by Melatonin of the Pathogenesis of Inflammatory Autoimmune Diseases
Lin, Gu-Jiun; Huang, Shing-Hwa; Chen, Shyi-Jou; Wang, Chih-Hung; Chang, Deh-Ming; Sytwu, Huey-Kang
2013-01-01
Melatonin is the major secretory product of the pineal gland during the night and has multiple activities including the regulation of circadian and seasonal rhythms, and antioxidant and anti-inflammatory effects. It also possesses the ability to modulate immune responses by regulation of the T helper 1/2 balance and cytokine production. Autoimmune diseases, which result from the activation of immune cells by autoantigens released from normal tissues, affect around 5% of the population. Activation of autoantigen-specific immune cells leads to subsequent damage of target tissues by these activated cells. Melatonin therapy has been investigated in several animal models of autoimmune disease, where it has a beneficial effect in a number of models excepting rheumatoid arthritis, and has been evaluated in clinical autoimmune diseases including rheumatoid arthritis and ulcerative colitis. This review summarizes and highlights the role and the modulatory effects of melatonin in several inflammatory autoimmune diseases including multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes mellitus, and inflammatory bowel disease. PMID:23727938
Photovoltaic performance and reliability workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kroposki, B
1996-10-01
This proceedings is the compilation of papers presented at the ninth PV Performance and Reliability Workshop held at the Sheraton Denver West Hotel on September 4--6, 1996. This years workshop included presentations from 25 speakers and had over 100 attendees. All of the presentations that were given are included in this proceedings. Topics of the papers included: defining service lifetime and developing models for PV module lifetime; examining and determining failure and degradation mechanisms in PV modules; combining IEEE/IEC/UL testing procedures; AC module performance and reliability testing; inverter reliability/qualification testing; standardization of utility interconnect requirements for PV systems; need activitiesmore » to separate variables by testing individual components of PV systems (e.g. cells, modules, batteries, inverters,charge controllers) for individual reliability and then test them in actual system configurations; more results reported from field experience on modules, inverters, batteries, and charge controllers from field deployed PV systems; and system certification and standardized testing for stand-alone and grid-tied systems.« less
PhreeqcRM: A reaction module for transport simulators based on the geochemical model PHREEQC
Parkhurst, David L.; Wissmeier, Laurin
2015-01-01
PhreeqcRM is a geochemical reaction module designed specifically to perform equilibrium and kinetic reaction calculations for reactive transport simulators that use an operator-splitting approach. The basic function of the reaction module is to take component concentrations from the model cells of the transport simulator, run geochemical reactions, and return updated component concentrations to the transport simulator. If multicomponent diffusion is modeled (e.g., Nernst–Planck equation), then aqueous species concentrations can be used instead of component concentrations. The reaction capabilities are a complete implementation of the reaction capabilities of PHREEQC. In each cell, the reaction module maintains the composition of all of the reactants, which may include minerals, exchangers, surface complexers, gas phases, solid solutions, and user-defined kinetic reactants.PhreeqcRM assigns initial and boundary conditions for model cells based on standard PHREEQC input definitions (files or strings) of chemical compositions of solutions and reactants. Additional PhreeqcRM capabilities include methods to eliminate reaction calculations for inactive parts of a model domain, transfer concentrations and other model properties, and retrieve selected results. The module demonstrates good scalability for parallel processing by using multiprocessing with MPI (message passing interface) on distributed memory systems, and limited scalability using multithreading with OpenMP on shared memory systems. PhreeqcRM is written in C++, but interfaces allow methods to be called from C or Fortran. By using the PhreeqcRM reaction module, an existing multicomponent transport simulator can be extended to simulate a wide range of geochemical reactions. Results of the implementation of PhreeqcRM as the reaction engine for transport simulators PHAST and FEFLOW are shown by using an analytical solution and the reactive transport benchmark of MoMaS.
Nair, Sharmila; Diamond, Michael S.
2015-01-01
The innate immune system mediates protection against neurotropic viruses that replicate in the central nervous system (CNS). Virus infection within specific cells of the CNS triggers activation of several families of pattern recognition receptors including Toll-like receptors, retinoic acid-inducible gene 1 like receptors, nucleotide-binding oligomerization domain-like receptors, and cytosolic DNA sensors. In this review, we highlight recent advances in our understanding of how cell-intrinsic host defenses within the CNS modulate infection of different DNA and RNA viruses. PMID:26163762
Advances in polycrystalline thin-film photovoltaics for space applications
NASA Technical Reports Server (NTRS)
Lanning, Bruce R.; Armstrong, Joseph H.; Misra, Mohan S.
1994-01-01
Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 ev and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its (each step) effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not 'reactor-specific' and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a 'substrate configuration' by physical vapor deposition techniques and CdTe cells/modules are fabricated in a 'superstrate configuration' by wet chemical methods. Both laser and mechanical scribing operations are used to monolithically integrate (series interconnect) the individual cells into modules. Results will be presented at the cell and module development levels with a brief description of the test methods used to qualify these devices for space applications. The approach and development efforts are directed towards large-scale manufacturability of established thin-film, polycrystalline processing methods for large area modules with less emphasis on maximizing small area efficiencies.
Shi, Feng; Long, Xiaochun; Hendershot, Allison; Miano, Joseph M.; Sottile, Jane
2014-01-01
Smooth muscle cells are maintained in a differentiated state in the vessel wall, but can be modulated to a synthetic phenotype following injury. Smooth muscle phenotypic modulation is thought to play an important role in the pathology of vascular occlusive diseases. Phenotypically modulated smooth muscle cells exhibit increased proliferative and migratory properties that accompany the downregulation of smooth muscle cell marker proteins. Extracellular matrix proteins, including fibronectin, can regulate the smooth muscle phenotype when used as adhesive substrates. However, cells produce and organize a 3-dimensional fibrillar extracellular matrix, which can affect cell behavior in distinct ways from the protomeric 2-dimensional matrix proteins that are used as adhesive substrates. We previously showed that the deposition/polymerization of fibronectin into the extracellular matrix can regulate the deposition and organization of other extracellular matrix molecules in vitro. Further, our published data show that the presence of a fibronectin polymerization inhibitor results in increased expression of smooth muscle cell differentiation proteins and inhibits vascular remodeling in vivo. In this manuscript, we used an in vitro cell culture system to determine the mechanism by which fibronectin polymerization affects smooth muscle phenotypic modulation. Our data show that fibronectin polymerization decreases the mRNA levels of multiple smooth muscle differentiation genes, and downregulates the levels of smooth muscle α-actin and calponin proteins by a Rac1-dependent mechanism. The expression of smooth muscle genes is transcriptionally regulated by fibronectin polymerization, as evidenced by the increased activity of luciferase reporter constructs in the presence of a fibronectin polymerization inhibitor. Fibronectin polymerization also promotes smooth muscle cell growth, and decreases the levels of actin stress fibers. These data define a Rac1-dependent pathway wherein fibronectin polymerization promotes the SMC synthetic phenotype by modulating the expression of smooth muscle cell differentiation proteins. PMID:24752318
High cancer death rates indicate the need for new anticancer therapeutic agents. Approaches to discovering new cancer drugs include target-based drug discovery and phenotypic screening. Here, we identified phosphodiesterase 3A modulators as cell-selective cancer cytotoxic compounds through phenotypic compound library screening and target deconvolution by predictive chemogenomics.
Characterization and modulation of canine mast cell derived eicosanoids
Lin, Tzu-Yin; London, Cheryl A.
2013-01-01
Mast cells play an important role in both innate and acquired immunity as well as several pathological conditions including allergy, arthritis and neoplasia. They influence these processes by producing a variety of mediators including cytokines, chemokines and eicosanoids. Very little is currently known about the spectrum of inflammatory mediators, particularly eicosanoids (prostaglandins and leukotrienes), produced by canine mast cells. This is important since modulating mast cell derived eicosanoids may help in the treatment of autoimmune and inflammatory disorders. The purpose of this study was to investigate the spectrum of eicosanoids produced by normal canine mast cells and to evaluate the effects of cytokines and non-steroidal anti-inflammatory mediators (NSAIDS) on eicosanoid production and release. Canine bone marrow derived cultured mast cells (cBMCMCs) expressed COX-1, COX-2, and 5-LOX and synthesized and released PGD2, PGE2, LTB4, and LTC4 following activation by a variety of stimuli. The selective COX-2 NSAIDs carprofen (Rimadyl®) and deracoxib (Deramaxx®) inhibited PGD2 and PGE2 production but only slightly inhibited LTB4 and LTC4. The mixed COX-1/COX-2 inhibitor piroxicam blocked PGD2 and PGE2 production, but upregulated LTC4 following treatment while tepoxilan (Zubrin®), a pan COX/LOX inhibitor, markedly reduced the production of all eicosanoids. The LOX inhibitor nordihydroguaiaretic acid (NDGA) prevented LTB4/LTC4 release and BMBMC degranulation. Pre-incubation of cBMCMCs with IL-4 and SCF sensitized these cells to degranulation in response to substance P. In conclusion, canine BMCMCs produce an array of eicosanoids similar to those produced by mast cells from other species. Tepoxilan appeared to be the most effective NSAID for blocking eicosanoid production and thus may be useful for modulating mast cell mediated responses in dogs. PMID:20036014
Ponce, Rafael A
2011-01-01
Regulatory T-cell (T(reg)) modulation is developing as an important therapeutic opportunity for the treatment of a number of important diseases, including cancer, autoimmunity, infection, and organ transplant rejection. However, as demonstrated with IL-2 and TGN-1412, our understanding of the complex immunological interactions that occur with T(reg) modulation in both non-clinical models and in patients remains limited and appears highly contextual. This lack of understanding will challenge our ability to identify the patient population who might derive the highest benefit from T(reg) modulation and creates special challenges as we transition these therapeutics from non-clinical models into humans. Thus, in vivo testing in the most representative animal model systems, with careful progress in the clinic, will remain critical in developing therapeutics targeting T(reg) and understanding their clinical utility. Moreover, toxicology models can inform some of the potential liabilities associated with T(reg) modulation, but not all, suggesting a continued need to explore and validate predictive models.
Complex dynamics of selection and cellular memory in adaptation to a changing environment
NASA Astrophysics Data System (ADS)
Kussell, Edo; Lin, Wei-Hsiang
We study a synthetic evolutionary system in bacteria in which an antibiotic resistance gene is controlled by a stochastic on/off switching promoter. At the population level, this system displays all the basic ingredients for evolutionary selection, including diversity, fitness differences, and heritability. At the single cell level, physiological processes can modulate the ability of selection to act. We expose the stochastic switching strains to pulses of antibiotics of different durations in periodically changing environments using microfluidics. Small populations are tracked over a large number of periods at single cell resolution, allowing the visualization and quantification of selective sweeps and counter-sweeps at the population level, as well as detailed single cell analysis. A simple model is introduced to predict long-term population growth rates from single cell measurements, and reveals unexpected aspects of population dynamics, including cellular memory that acts on a fast timescale to modulate growth rates. This work is supported by NIH Grant No. R01-GM097356.
The role of redox mechanisms in hepatic chronic wound healing and fibrogenesis
2012-01-01
Under physiological conditions, intracellular and tissue levels of reactive oxygen species (ROS) are carefully controlled and employed as fine modulators of signal transduction, gene expression and cell functional responses (redox signaling). A significant derangement in redox homeostasis, resulting in sustained levels of oxidative stress and related mediators, plays a role in the pathogenesis of human diseases characterized by chronic inflammation, chronic activation of wound healing and tissue fibrogenesis, including chronic liver diseases. In this chapter major concepts and mechanisms in redox signaling will be briefly recalled to introduce a number of selected examples of redox-related mechanisms that can actively contribute to critical events in the natural history of a chronic liver diseases, including induction of cell death, perpetuation of chronic inflammatory responses and fibrogenesis. A major focus will be on redox-dependent mechanisms involved in the modulation of phenotypic responses of activated, myofibroblast-like, hepatic stellate cells (HSC/MFs), still considered as the most relevant pro-fibrogenic cells operating in chronic liver diseases. PMID:23259696
Mechanical dynamics in live cells and fluorescence-based force/tension sensors
Yang, Chao; Zhang, Xiaohan; Guo, Yichen; Meng, Fanjie; Sachs, Frederick; Guo, Jun
2016-01-01
Three signaling systems play the fundamental roles in modulating cell activities: chemical, electrical, and mechanical. While the former two are well studied, the mechanical signaling system is still elusive because of the lack of methods to measure structural forces in real time at cellular and subcellular levels. Indeed, almost all biological processes are responsive to modulation by mechanical forces that trigger dispersive downstream electrical and biochemical pathways. Communication among the three systems is essential to make cells and tissues receptive to environmental changes. Cells have evolved many sophisticated mechanisms for the generation, perception and transduction of mechanical forces, including motor proteins and mechanosensors. In this review, we introduce some background information about mechanical dynamics in live cells, including the ubiquitous mechanical activity, various types of mechanical stimuli exerted on cells and the different mechanosensors. We also summarize recent results obtained using genetically encoded FRET (fluorescence resonance energy transfer)-based force/tension sensors; a new technique used to measure mechanical forces in structural proteins. The sensors have been incorporated into many specific structural proteins and have measured the force gradients in real time within live cells, tissues, and animals. PMID:25958335
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-13
... Silicon Photovoltaic Cells and Modules From China; Scheduling of the Final Phase of Countervailing Duty... silicon photovoltaic cells and modules, provided for in subheadings 8501.31.80, 8501.61.00, 8507.20.80... photovoltaic cells, and modules, laminates, and panels, consisting of crystalline silicon photovoltaic cells...
Calcium-regulatory proteins as modulators of chemotherapy in human neuroblastoma.
Florea, Ana-Maria; Varghese, Elizabeth; McCallum, Jennifer E; Mahgoub, Safa; Helmy, Irfan; Varghese, Sharon; Gopinath, Neha; Sass, Steffen; Theis, Fabian J; Reifenberger, Guido; Büsselberg, Dietrich
2017-04-04
Neuroblastoma (NB) is a pediatric cancer treated with poly-chemotherapy including platinum complexes (e.g. cisplatin (CDDP), carboplatin), DNA alkylating agents, and topoisomerase I inhibitors (e.g. topotecan (TOPO)). Despite aggressive treatment, NB may become resistant to chemotherapy. We investigated whether CDDP and TOPO treatment of NB cells interacts with the expression and function of proteins involved in regulating calcium signaling. Human neuroblastoma cell lines SH-SY5Y, IMR-32 and NLF were used to investigate the effects of CDDP and TOPO on cell viability, apoptosis, calcium homeostasis, and expression of selected proteins regulating intracellular calcium concentration ([Ca2+]i). In addition, the impact of pharmacological inhibition of [Ca2+]i-regulating proteins on neuroblastoma cell survival was studied. Treatment of neuroblastoma cells with increasing concentrations of CDDP (0.1-10 μM) or TOPO (0.1 nM-1 μM) induced cytotoxicity and increased apoptosis in a concentration- and time-dependent manner. Both drugs increased [Ca2+]i over time. Treatment with CDDP or TOPO also modified mRNA expression of selected genes encoding [Ca2+]i-regulating proteins. Differentially regulated genes included S100A6, ITPR1, ITPR3, RYR1 and RYR3. With FACS and confocal laser scanning microscopy experiments we validated their differential expression at the protein level. Importantly, treatment of neuroblastoma cells with pharmacological modulators of [Ca2+]i-regulating proteins in combination with CDDP or TOPO increased cytotoxicity. Thus, our results confirm an important role of calcium signaling in the response of neuroblastoma cells to chemotherapy and suggest [Ca2+]i modulation as a promising strategy for adjunctive treatment.
Inhibiting NANOG Enhances Efficacy of BH3 Mimetics | Center for Cancer Research
BCL-2 family proteins regulate cell fate. Some members promote cell survival while others induce programmed cell death. A third group, the BH3-only members, modulates the activities of the rest of the family. Some cancers, including those of the colon and rectum, express elevated levels of pro-survival BCL-2 members, which may protect cancer cells from chemotherapy. BH3
In silico pathway analysis in cervical carcinoma reveals potential new targets for treatment
van Dam, Peter A.; van Dam, Pieter-Jan H. H.; Rolfo, Christian; Giallombardo, Marco; van Berckelaer, Christophe; Trinh, Xuan Bich; Altintas, Sevilay; Huizing, Manon; Papadimitriou, Kostas; Tjalma, Wiebren A. A.; van Laere, Steven
2016-01-01
An in silico pathway analysis was performed in order to improve current knowledge on the molecular drivers of cervical cancer and detect potential targets for treatment. Three publicly available Affymetrix gene expression data-sets (GSE5787, GSE7803, GSE9750) were retrieved, vouching for a total of 9 cervical cancer cell lines (CCCLs), 39 normal cervical samples, 7 CIN3 samples and 111 cervical cancer samples (CCSs). Predication analysis of microarrays was performed in the Affymetrix sets to identify cervical cancer biomarkers. To select cancer cell-specific genes the CCSs were compared to the CCCLs. Validated genes were submitted to a gene set enrichment analysis (GSEA) and Expression2Kinases (E2K). In the CCSs a total of 1,547 probe sets were identified that were overexpressed (FDR < 0.1). Comparing to CCCLs 560 probe sets (481 unique genes) had a cancer cell-specific expression profile, and 315 of these genes (65%) were validated. GSEA identified 5 cancer hallmarks enriched in CCSs (P < 0.01 and FDR < 0.25) showing that deregulation of the cell cycle is a major component of cervical cancer biology. E2K identified a protein-protein interaction (PPI) network of 162 nodes (including 20 drugable kinases) and 1626 edges. This PPI-network consists of 5 signaling modules associated with MYC signaling (Module 1), cell cycle deregulation (Module 2), TGFβ-signaling (Module 3), MAPK signaling (Module 4) and chromatin modeling (Module 5). Potential targets for treatment which could be identified were CDK1, CDK2, ABL1, ATM, AKT1, MAPK1, MAPK3 among others. The present study identified important driver pathways in cervical carcinogenesis which should be assessed for their potential therapeutic drugability. PMID:26701206
Old, Lloyd J.; Stockert, Elisabeth; Boyse, Edward A.; Kim, Jae Ho
1968-01-01
Antigenic modulation (the loss of TL antigens from TL+ cells exposed to TL antibody in the absence of lytic complement) has been demonstrated in vitro. An ascites leukemia, phenotype TL.1,2,3, which modulates rapidly and completely when incubated with TL antiserum in vitro, was selected for further study of the phenomenon. Over a wide range of TL antibody concentrations modulation at 37°C was detectable within 10 min and was complete within approximately 1 hr. The cells were initially sensitized to C' by their contact with antibody, thereafter losing this sensitivity to C' lysis together with their sensitivity to TL antibody and C' in the cytotoxic test. The capacity of the cells to undergo modulation was abolished by actinomycin D and by iodoacetamide, and by reducing the temperature of incubation to 0°C. Thus modulation apparently is an active cellular process. Antigens TL. 1,2, and 3 are all modulated by anti-TL.1,3 serum and by anti-TL.3 serum. This modulation affects all three TL components together, even when antibody to one or two of them is lacking. aAnti-TL.2 serum does not induce modulation and in fact impairs modulation by the other TL antibodies. The influence of the TL phenotype of cells upon the demonstrable content of H-2 (D region) isoantigen, first shown in cells modulated in vivo, has been observed with cells modulated in vitro. Cells undergoing modulation show a progressive increase in H-2 (D region) antigen over a period of 4 hr, with no change in H-2 antigens of the K region. Restoration of the TL+ phenotype of modulated cells after removal of antibody is less rapid than TL+ → TL- modulation and may require several cell divisions. PMID:5636556
Method and apparatus for assembling solid oxide fuel cells
Szreders, B.E.; Campanella, N.
1988-05-11
This invention relates generally to solid oxide fuel power generators and is particularly directed to improvements in the assembly and coupling of solid oxide fuel cell modules. A plurality of jet air tubes are supported and maintained in a spaced matrix array by a positioning/insertion assembly for insertion in respective tubes of a solid oxide fuel cell (SOFC) in the assembly of an SOFC module. The positioning/insertion assembly includes a plurality of generally planar, elongated, linear vanes which are pivotally mounted at each end thereof to a support frame. A rectangular compression assembly of adjustable size is adapted to receive and squeeze a matrix of SOFC tubes so as to compress the inter-tube nickel felt conductive pads which provide series/parallel electrical connection between adjacent SOFCs, with a series of increasingly larger retainer frames used to maintain larger matrices of SOFC tubes in position. Expansion of the SOFC module housing at the high operating temperatures of the SOFC is accommodated by conductive, flexible, resilient expansion, connector bars which provide support and electrical coupling at the top and bottom of the SOFC module housing. 17 figs.
The Progressive Ankylosis Protein Regulates Cementum Apposition and Extracellular Matrix Composition
Foster, B.L.; Nagatomo, K.J.; Bamashmous, S.O.; Tompkins, K.A.; Fong, H.; Dunn, D.; Chu, E.Y.; Guenther, C.; Kingsley, D.M.; Rutherford, R.B.; Somerman, M.J.
2011-01-01
Background/Aims Tooth root cementum is sensitive to modulation of inorganic pyrophosphate (PPi), an inhibitor of hydroxyapatite precipitation. Factors increasing PPi include progressive ankylosis protein (ANK) and ectonucleotide pyrophosphatase/phosphodiesterase 1 (NPP1) while tissue nonspecific alkaline phosphatase hydrolyzes PPi. Studies here aimed to define the role of ANK in root and cementum by analyzing tooth development in Ank knock-out (KO) mice versus wild type. Materials and Methods: Periodontal development in KO versus control mice was analyzed by histology, histomorphometry, immunohistochemistry, in situ hybridization, electron microscopy, and nanoindentation. Cementoblast cultures were used in vitro to provide mechanistic underpinnings for PPi modulation of cell function. Results Over the course of root development, Ank KO cervical cementum became 8- to 12-fold thicker than control cervical cementum. Periodontal ligament width was maintained and other dentoalveolar tissues, including apical cementum, were unaltered. Cervical cementum uncharacteristically included numerous cells, from rapid cementogenesis. Ank KO increased osteopontin and dentin matrix protein 1 gene and protein expression, and markedly increased NPP1 protein expression in cementoblasts but not in other cell types. Conditional ablation of Ank in joints and periodontia confirmed a local role for ANK in cementogenesis. In vitro studies employing cementoblasts indicated that Ank and Enpp1 mRNA levels increased in step with mineral nodule formation, supporting a role for these factors in regulation of cementum matrix mineralization. Conclusion: ANK, by modulating local PPi, controls cervical cementum apposition and extracellular matrix. Loss of ANK created a local environment conducive to rapid cementogenesis; therefore, approaches modulating PPi in periodontal tissues have potential to promote cementum regeneration. PMID:21389671
Bachir, Alexia I; Horwitz, Alan Rick; Nelson, W James; Bianchini, Julie M
2017-07-05
Cell adhesions link cells to the extracellular matrix (ECM) and to each other and depend on interactions with the actin cytoskeleton. Both cell-ECM and cell-cell adhesion sites contain discrete, yet overlapping, functional modules. These modules establish physical associations with the actin cytoskeleton, locally modulate actin organization and dynamics, and trigger intracellular signaling pathways. Interplay between these modules generates distinct actin architectures that underlie different stages, types, and functions of cell-ECM and cell-cell adhesions. Actomyosin contractility is required to generate mature, stable adhesions, as well as to sense and translate the mechanical properties of the cellular environment into changes in cell organization and behavior. Here, we review the organization and function of different adhesion modules and how they interact with the actin cytoskeleton. We highlight the molecular mechanisms of mechanotransduction in adhesions and how adhesion molecules mediate cross talk between cell-ECM and cell-cell adhesion sites. Copyright © 2017 Cold Spring Harbor Laboratory Press; all rights reserved.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-07
... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Countervailing... photovoltaic cells, whether or not assembled into modules (solar cells), from the People's Republic of China... material injury to a U.S. industry.\\1\\ \\1\\ See Crystalline Silicon Photovoltaic Cells and Modules from...
Simulation analysis of a novel high efficiency silicon solar cell
NASA Technical Reports Server (NTRS)
Mokashi, Anant R.; Daud, T.; Kachare, A. H.
1985-01-01
It is recognized that crystalline silicon photovoltaic module efficiency of 15 percent or more is required for cost-effective photovoltaic energy utilization. This level of module efficiency requires large-area encapsulated production cell efficiencies in the range of 18 to 20 percent. Though the theoretical maximum of silicon solar cell efficiency for an idealized case is estimated to be around 30 percent, practical performance of cells to-date are considerably below this limit. This is understood to be largely a consequence of minority carrier losses in the bulk as well as at all surfaces including those under the metal contacts. In this paper a novel device design with special features to reduce bulk and surface recombination losses is evaluated using numerical analysis technique. Details of the numerical model, cell design, and analysis results are presented.
Looking beyond the induction of Th2 responses to explain immunomodulation by helminths.
Nutman, T B
2015-06-01
Although helminth infections are characteristically associated with Th2-mediated responses that include the production of the prototypical cytokines IL-4, IL-5 and IL-13 by CD4(+) cells, the production of IgE, peripheral blood eosinophilia and mucus production in localized sites, these responses are largely attenuated when helminth infections become less acute. This modulation of the immune response that occurs with chronic helminth infection is often induced by molecules secreted by helminth parasites, by non-Th2 regulatory CD4(+) cells, and by nonclassical B cells, macrophages and dendritic cells. This review will focus on those parasite- and host-mediated mechanisms underlying the modulated T-cell response that occurs as the default in chronic helminth infections. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Osmotic modulation of chromatin impacts on efficiency and kinetics of cell fate modulation.
Lima, A F; May, G; Colunga, J; Pedreiro, S; Paiva, A; Ferreira, L; Enver, T; Iborra, F J; Pires das Neves, R
2018-05-08
Chromatin structure is a major regulator of transcription and gene expression. Herein we explore the use of osmotic modulation to modify the chromatin structure and reprogram gene expression. In this study we use the extracellular osmotic pressure as a chromatin structure and transcriptional modulator. Hyposmotic modulation promotes chromatin loosening and induces changes in RNA polymerase II (Pol II) activity. The chromatin decondensation opens space for higher amounts of DNA engaged RNA Pol II. Hyposmotic modulation constitutes an alternative route to manipulate cell fate decisions. This technology was tested in model protocols of induced pluripotency and transdifferentiation in cells growing in suspension and adherent to substrates, CD34 + umbilical-cord-blood (UCB), fibroblasts and B-cells. The efficiency and kinetics of these cell fate modulation processes were improved by transient hyposmotic modulation of the cell environment.
Neuro-immune modulation of the thymus microenvironment (review).
Mignini, Fiorenzo; Sabbatini, Maurizio; Mattioli, Laura; Cosenza, Monica; Artico, Marco; Cavallotti, Carlo
2014-06-01
The thymus is the primary site for T-cell lympho-poiesis. Its function includes the maturation and selection of antigen specific T cells and selective release of these cells to the periphery. These highly complex processes require precise parenchymal organization and compartmentation where a plethora of signalling pathways occur, performing strict control on the maturation and selection processes of T lymphocytes. In this review, the main morphological characteristics of the thymus microenvironment, with particular emphasis on nerve fibers and neuropeptides were assessed, as both are responsible for neuro-immune‑modulation functions. Among several neurotransmitters that affect thymus function, we highlight the dopaminergic system as only recently has its importance on thymus function and lymphocyte physiology come to light.
Shen, Siming; Casaccia-Bonnefil, Patrizia
2008-01-01
The role of epigenetics in modulating gene expression in the development of organs and tissues and in disease states is becoming increasingly evident. Epigenetics refers to the several mechanisms modulating inheritable changes in gene expression that are independent of modifications of the primary DNA sequence and include post-translational modifications of nucleosomal histones, changes in DNA methylation, and the role of microRNA. This review focuses on the epigenetic regulation of gene expression in oligodendroglial lineage cells. The biological effects that post-translational modifications of critical residues in the N-terminal tails of nucleosomal histones have on oligodendroglial cells are reviewed, and the implications for disease and repair are critically discussed. PMID:17999198
A Module Experimental Process System Development Unit (MEPSDU). [flat plate solar arrays
NASA Technical Reports Server (NTRS)
1981-01-01
The development of a cost effective process sequence that has the potential for the production of flat plate photovoltaic modules which meet the price goal in 1986 of 70 cents or less per Watt peak is described. The major accomplishments include (1) an improved AR coating technique; (2) the use of sand blast back clean-up to reduce clean up costs and to allow much of the Al paste to serve as a back conductor; and (3) the development of wave soldering for use with solar cells. Cells were processed to evaluate different process steps, a cell and minimodule test plan was prepared and data were collected for preliminary Samics cost analysis.
Quantitative phase microscopy for cellular dynamics based on transport of intensity equation.
Li, Ying; Di, Jianglei; Ma, Chaojie; Zhang, Jiwei; Zhong, Jinzhan; Wang, Kaiqiang; Xi, Teli; Zhao, Jianlin
2018-01-08
We demonstrate a simple method for quantitative phase imaging of tiny transparent objects such as living cells based on the transport of intensity equation. The experiments are performed using an inverted bright field microscope upgraded with a flipping imaging module, which enables to simultaneously create two laterally separated images with unequal defocus distances. This add-on module does not include any lenses or gratings and is cost-effective and easy-to-alignment. The validity of this method is confirmed by the measurement of microlens array and human osteoblastic cells in culture, indicating its potential in the applications of dynamically measuring living cells and other transparent specimens in a quantitative, non-invasive and label-free manner.
Potential Antitumor Effects of Pomegranates and Its Ingredients.
Rahmani, Arshad H; Alsahli, Mohammed A; Almatroodi, Saleh A
2017-01-01
The treatment based on plant or plant derivatives is a promising strategy in the killing of cancers cells. Moreover, wide-ranging finding has established that medicinal plant and its ingredient modulate several cells signaling pathways or inhibiting the carcinogenesis process. In this vista, pomegranates fruits, seeds and peels illustrate cancer preventive role seems to be due to rich source of antioxidant and other valuable ingredients. Furthermore, anti-tumour activities of pomegranates have been evidences through the modulation of cell signaling pathways including transcription factor, apoptosis and angiogenesis. In this review article, anti-tumor activity of pomegranates and its components or its different type of extracts are described to understand the mechanism of action of pomegranates in cancer therapy.
Probiotics as an Immune Modulator.
Kang, Hye-Ji; Im, Sin-Hyeog
2015-01-01
Probiotics are nonpathogenic live microorganism that can provide a diverse health benefits on the host when consumed in adequate amounts. Probiotics are consumed in diverse ways including dairy product, food supplements and functional foods with specific health claims. Recently, many reports suggest that certain probiotic strains or multi strain mixture have potent immunomodulatory activity in diverse disorders including allergic asthma, atopic dermatitis and rheumatoid arthritis. However, underlying mechanism of action is still unclear and efficacy of probiotic administration is quite different depending on the type of strains and the amounts of doses. We and others have suggested that live probiotics or their metabolites could interact with diverse immune cells (antigen presenting cells and T cells) and confer them to have immunoregulatory functions. Through this interaction, probiotics could contribute to maintaining immune homeostasis by balancing pro-inflammatory and anti-inflammatory immune responses. However, the effect of probiotics in prevention or modulation of ongoing disease is quite diverse even within a same species. Therefore, identification of functional probiotics with specific immune regulatory property is a certainly important issue. Herein, we briefly review selection methods for immunomodulatory probiotic strains and the mechanism of action of probiotics in immune modulation.
Developmental Bisphenol A Exposure Modulates Immune-Related Diseases
Xu, Joella; Huang, Guannan; Guo, Tai L.
2016-01-01
Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases. PMID:29051427
Developmental Bisphenol A Exposure Modulates Immune-Related Diseases.
Xu, Joella; Huang, Guannan; Guo, Tai L
2016-09-26
Bisphenol A (BPA), used in polycarbonate plastics and epoxy resins, has a widespread exposure to humans. BPA is of concern for developmental exposure resulting in immunomodulation and disease development due to its ability to cross the placental barrier and presence in breast milk. BPA can use various mechanisms to modulate the immune system and affect diseases, including agonistic and antagonistic effects on many receptors (e.g., estrogen receptors), epigenetic modifications, acting on cell signaling pathways and, likely, the gut microbiome. Immune cell populations and function from the innate and adaptive immune system are altered by developmental BPA exposure, including decreased T regulatory (Treg) cells and upregulated pro- and anti-inflammatory cytokines and chemokines. Developmental BPA exposure can also contribute to the development of type 2 diabetes mellitus, allergy, asthma and mammary cancer disease by altering immune function. Multiple sclerosis and type 1 diabetes mellitus may also be exacerbated by BPA, although more research is needed. Additionally, BPA analogs, such as bisphenol S (BPS), have been increasing in use, and currently, little is known about their immune effects. Therefore, more studies should be conducted to determine if developmental exposure BPA and its analogs modulate immune responses and lead to immune-related diseases.
76 FR 78313 - Crystalline Silicon Photovoltaic Cells and Modules From China
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-16
...)] Crystalline Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the record \\1... injured by reason of imports from China of crystalline silicon photovoltaic cells and modules, provided... imports of crystalline silicon photovoltaic cells and modules from China. Accordingly, effective October...
Dron, M; Modjtahedi, N; Brison, O; Tovey, M G
1986-05-01
Treatment of interferon-sensitive Daudi cell with electrophoretically pure human interferon alpha markedly reduced the level of c-myc mRNA, increased the level of class I histocompatibility antigen (HLA) mRNA, and did not affect the level of actin mRNA within the same cells. In contrast, the level of c-myc mRNA or HLA mRNA did not change significantly following interferon treatment in different clones of Daudi cells selected for resistance to the antiproliferative action of interferon. These cells possessed interferon receptors, however, and responded to interferon modulation of other genes, including 2',5' oligoisoadenylate synthetase (M. G. Tovey, M. Dron, K. E. Mogensen, B. Lebleu, N. Metchi, and J. Begon-Lours, Guymarho, J. Gen. Virol., 64:2649-2653, 1983; M. Dron, M. G. Tovey, and P. Eid, J. Gen. Virol., 66:787-795, 1985). A clone of interferon-resistant Daudi cells which had reverted to almost complete sensitivity to both the antiproliferative action of interferon and the interferon-enhanced expression of HLA mRNA remained refractory, however, to interferon modulation of c-myc expression, suggesting that a reduced level of c-myc mRNA may not be a prerequisite for inhibition of cell proliferation in interferon-treated cells. Our results do not exclude the possibility, however, that posttranscriptional modification(s) of c-myc expression may precede an inhibition of cell proliferation in interferon-treated cells.
Mitigation of PID in commercial PV modules using current interruption method
NASA Astrophysics Data System (ADS)
Bora, Birinchi; Oh, Jaewon; Tatapudi, Sai; Sastry, Oruganty S.; Kumar, Rajesh; Prasad, Basudev; Tamizhmani, Govindasamy
2017-08-01
Potential-induced degradation (PID) is known to have a very severe effect on the reliability of PV modules. PID is caused due to the leakage of current from the cell circuit to the grounded frame under humid conditions of high voltage photovoltaic (PV) systems. There are multiple paths for the current leakage. The most dominant leakage path is from the cell to the frame through encapsulant, glass bulk and glass surface. This dominant path can be prevented by interrupting the electrical conductivity at the glass surface. In our previous works related to this topic, we demonstrated the effectiveness of glass surface conductivity interruption technique using one-cell PV coupons. In this work, we demonstrate the effectiveness of this technique using a full size commercial module susceptible to PID. The interruption of surface conductivity of the commercial module was achieved by attaching a narrow, thin flexible glass strips, from Corning, called Willow Glass on the glass surface along the inner edges of the frame. The flexible glass strip was attached to the module glass surface by heating the glass strip with an ionomer adhesive underneath using a handheld heat gun. The PID stress test was performed at 60°C and 85% RH for 96 hours at -600 V. Pre- and post-PID characterizations including I-V and electroluminescence were carried out to determine the performance loss and affected cell areas. This work demonstrates that the PID issue can be effectively addressed by using this current interruption technique. An important benefit of this approach is that this interruption technique can be applied after manufacturing the modules and after installing the modules in the field as well.
NASA Technical Reports Server (NTRS)
Griffith, J. S.
1979-01-01
Qualification tests of solar cell modules are described. These modules continue to show improvement over earlier type modules tested. Cell cracking and delamination are less prevalent, and interconnect problems and electrical degradation from environmental testing are now rare.
77 FR 72884 - Crystalline Silicon Photovoltaic Cells and Modules From China
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-06
... Silicon Photovoltaic Cells and Modules From China Determinations On the basis of the record \\1\\ developed... imports of crystalline silicon photovoltaic cells and modules from China, provided for in subheadings 8501... silicon photovoltaic cells and modules from China. Chairman Irving A. Williamson and Commissioner Dean A...
Hotspot Endurance Of Solar-Cell Modules
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Sugimura, R. S.; Ross, R. G., Jr.
1989-01-01
Procedure for evaluating modules for use with concentrators now available. Solar simulator illuminates photovoltaic cells through Fresnel lens of concentrator module. Module and test cells inspected visually at 24-h intervals during test and again when test completed. After test, electrical characteristics of module measured for comparison with pretest characteristics.
Antibody induced CD4 down-modulation of T cells is site-specifically mediated by CD64+ cells
Vogel, Stephanie; Grabski, Elena; Buschjäger, Daniela; Klawonn, Frank; Döring, Marius; Wang, Junxi; Fletcher, Erika; Bechmann, Ingo; Witte, Torsten; Durisin, Martin; Schraven, Burkhart; Mangsbo, Sara M.; Schönfeld, Kurt; Czeloth, Niklas; Kalinke, Ulrich
2015-01-01
Treatment of PBMC with the CD4-specific mAb BT-061 induces CD4 down-modulation of T cells. Here we report that addition of BT-061 to purified T cells did not confer this effect, whereas incubation of T cells in BT-061 coated wells restored CD4 down-modulation. These results implied that Fcγ receptor mediated cell-cell interactions played a role. In consistence with this hypothesis PBMC depleted of CD64+ monocytes did not confer CD4 down-modulation of BT-061 decorated T cells. Strikingly, CD4 down-modulation was observed in BT-061 treated synovial fluid punctuated from patients’ inflamed joints that comprised enhanced numbers of CD64+ cells. In contrast, in a circulating whole blood system injection of BT-061 did not induce CD4 down-modulation, due to CD64 saturation by serum IgG. Similarly, tonsil derived mononuclear cells devoid of CD64+ cells did not show CD4 down-modulation, whereas addition of blood derived monocytes restored the effect. Thus, the interaction of BT-061 decorated T cells with CD64+ cells is needed for CD4 down-modulation, implying that in patients BT-061 would primarily induce CD4 down-modulation at inflammatory sites. These results highlight the need not only to examine the interaction of a given mAb with single FcγR, but also the immunological environment that is appropriate to support such interactions. PMID:26670584
Isolation of exosomes from whole blood by integrating acoustics and microfluidics.
Wu, Mengxi; Ouyang, Yingshi; Wang, Zeyu; Zhang, Rui; Huang, Po-Hsun; Chen, Chuyi; Li, Hui; Li, Peng; Quinn, David; Dao, Ming; Suresh, Subra; Sadovsky, Yoel; Huang, Tony Jun
2017-10-03
Exosomes are nanoscale extracellular vesicles that play an important role in many biological processes, including intercellular communications, antigen presentation, and the transport of proteins, RNA, and other molecules. Recently there has been significant interest in exosome-related fundamental research, seeking new exosome-based biomarkers for health monitoring and disease diagnoses. Here, we report a separation method based on acoustofluidics (i.e., the integration of acoustics and microfluidics) to isolate exosomes directly from whole blood in a label-free and contact-free manner. This acoustofluidic platform consists of two modules: a microscale cell-removal module that first removes larger blood components, followed by extracellular vesicle subgroup separation in the exosome-isolation module. In the cell-removal module, we demonstrate the isolation of 110-nm particles from a mixture of micro- and nanosized particles with a yield greater than 99%. In the exosome-isolation module, we isolate exosomes from an extracellular vesicle mixture with a purity of 98.4%. Integrating the two acoustofluidic modules onto a single chip, we isolated exosomes from whole blood with a blood cell removal rate of over 99.999%. With its ability to perform rapid, biocompatible, label-free, contact-free, and continuous-flow exosome isolation, the integrated acoustofluidic device offers a unique approach to investigate the role of exosomes in the onset and progression of human diseases with potential applications in health monitoring, medical diagnosis, targeted drug delivery, and personalized medicine.
Isolation of exosomes from whole blood by integrating acoustics and microfluidics
Wu, Mengxi; Ouyang, Yingshi; Wang, Zeyu; Zhang, Rui; Huang, Po-Hsun; Chen, Chuyi; Li, Hui; Li, Peng; Quinn, David; Dao, Ming; Suresh, Subra
2017-01-01
Exosomes are nanoscale extracellular vesicles that play an important role in many biological processes, including intercellular communications, antigen presentation, and the transport of proteins, RNA, and other molecules. Recently there has been significant interest in exosome-related fundamental research, seeking new exosome-based biomarkers for health monitoring and disease diagnoses. Here, we report a separation method based on acoustofluidics (i.e., the integration of acoustics and microfluidics) to isolate exosomes directly from whole blood in a label-free and contact-free manner. This acoustofluidic platform consists of two modules: a microscale cell-removal module that first removes larger blood components, followed by extracellular vesicle subgroup separation in the exosome-isolation module. In the cell-removal module, we demonstrate the isolation of 110-nm particles from a mixture of micro- and nanosized particles with a yield greater than 99%. In the exosome-isolation module, we isolate exosomes from an extracellular vesicle mixture with a purity of 98.4%. Integrating the two acoustofluidic modules onto a single chip, we isolated exosomes from whole blood with a blood cell removal rate of over 99.999%. With its ability to perform rapid, biocompatible, label-free, contact-free, and continuous-flow exosome isolation, the integrated acoustofluidic device offers a unique approach to investigate the role of exosomes in the onset and progression of human diseases with potential applications in health monitoring, medical diagnosis, targeted drug delivery, and personalized medicine. PMID:28923936
Shen, Haoran; Liang, Zhou; Zheng, Saihua; Li, Xuelian
2017-01-01
The purpose of this study was to identify promising candidate genes and pathways in polycystic ovary syndrome (PCOS). Microarray dataset GSE345269 obtained from the Gene Expression Omnibus database includes 7 granulosa cell samples from PCOS patients, and 3 normal granulosa cell samples. Differentially expressed genes (DEGs) were screened between PCOS and normal samples. Pathway enrichment analysis was conducted for DEGs using ClueGO and CluePedia plugin of Cytoscape. A Reactome functional interaction (FI) network of the DEGs was built using ReactomeFIViz, and then network modules were extracted, followed by pathway enrichment analysis for the modules. Expression of DEGs in granulosa cell samples was measured using quantitative RT-PCR. A total of 674 DEGs were retained, which were significantly enriched with inflammation and immune-related pathways. Eight modules were extracted from the Reactome FI network. Pathway enrichment analysis revealed significant pathways of each module: module 0, Regulation of RhoA activity and Signaling by Rho GTPases pathways shared ARHGAP4 and ARHGAP9; module 2, GlycoProtein VI-mediated activation cascade pathway was enriched with RHOG; module 3, Thromboxane A2 receptor signaling, Chemokine signaling pathway, CXCR4-mediated signaling events pathways were enriched with LYN, the hub gene of module 3. Results of RT-PCR confirmed the finding of the bioinformatic analysis that ARHGAP4, ARHGAP9, RHOG and LYN were significantly upregulated in PCOS. RhoA-related pathways, GlycoProtein VI-mediated activation cascade pathway, ARHGAP4, ARHGAP9, RHOG and LYN may be involved in the pathogenesis of PCOS. PMID:28949383
The 19th Project Integration Meeting
NASA Technical Reports Server (NTRS)
Mcdonald, R. R.
1981-01-01
The Flat-Plate Solar Array Project is described. Project analysis and integration is discussed. Technology research in silicon material, large-area silicon sheet and environmental isolation; cell and module formation; engineering sciences, and module performance and failure analysis. It includes a report on, and copies of visual presentations made at, the 19th Project Integration Meeting held at Pasadena, California, on November 11, 1981.
2014-06-08
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, the Orion service module has been secured in the Final Assembly and System Testing, or FAST, cell. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, before rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
2014-06-08
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, the Orion service module has been secured in the Final Assembly and System Testing, or FAST, cell. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, before rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
A Gene Module-Based eQTL Analysis Prioritizing Disease Genes and Pathways in Kidney Cancer.
Yang, Mary Qu; Li, Dan; Yang, William; Zhang, Yifan; Liu, Jun; Tong, Weida
2017-01-01
Clear cell renal cell carcinoma (ccRCC) is the most common and most aggressive form of renal cell cancer (RCC). The incidence of RCC has increased steadily in recent years. The pathogenesis of renal cell cancer remains poorly understood. Many of the tumor suppressor genes, oncogenes, and dysregulated pathways in ccRCC need to be revealed for improvement of the overall clinical outlook of the disease. Here, we developed a systems biology approach to prioritize the somatic mutated genes that lead to dysregulation of pathways in ccRCC. The method integrated multi-layer information to infer causative mutations and disease genes. First, we identified differential gene modules in ccRCC by coupling transcriptome and protein-protein interactions. Each of these modules consisted of interacting genes that were involved in similar biological processes and their combined expression alterations were significantly associated with disease type. Then, subsequent gene module-based eQTL analysis revealed somatic mutated genes that had driven the expression alterations of differential gene modules. Our study yielded a list of candidate disease genes, including several known ccRCC causative genes such as BAP1 and PBRM1 , as well as novel genes such as NOD2, RRM1, CSRNP1, SLC4A2, TTLL1 and CNTN1. The differential gene modules and their driver genes revealed by our study provided a new perspective for understanding the molecular mechanisms underlying the disease. Moreover, we validated the results in independent ccRCC patient datasets. Our study provided a new method for prioritizing disease genes and pathways.
Vallerie, Sara N; Kramer, Farah; Barnhart, Shelley; Kanter, Jenny E; Breyer, Richard M; Andreasson, Katrin I; Bornfeldt, Karin E
2016-01-01
Type 1 diabetes mellitus (T1DM) is associated with cardiovascular complications induced by atherosclerosis. Prostaglandin E2 (PGE2) is often raised in states of inflammation, including diabetes, and regulates inflammatory processes. In myeloid cells, a key cell type in atherosclerosis, PGE2 acts predominately through its Prostaglandin E Receptor 4 (EP4; Ptger4) to modulate inflammation. The effect of PGE2-mediated EP4 signaling specifically in myeloid cells on atherosclerosis in the presence and absence of diabetes is unknown. Because diabetes promotes atherosclerosis through increased arterial myeloid cell accumulation, we generated a myeloid cell-targeted EP4-deficient mouse model (EP4M-/-) of T1DM-accelerated atherogenesis to investigate the relationship between myeloid cell EP4, inflammatory phenotypes of myeloid cells, and atherogenesis. Diabetic mice exhibited elevated plasma PGE metabolite levels and elevated Ptger4 mRNA in macrophages, as compared with non-diabetic littermates. PGE2 increased Il6, Il1b, Il23 and Ccr7 mRNA while reducing Tnfa mRNA through EP4 in isolated myeloid cells. Consistently, the stimulatory effect of diabetes on peritoneal macrophage Il6 was mediated by PGE2-EP4, while PGE2-EP4 suppressed the effect of diabetes on Tnfa in these cells. In addition, diabetes exerted effects independent of myeloid cell EP4, including a reduction in macrophage Ccr7 levels and increased early atherogenesis characterized by relative lesional macrophage accumulation. These studies suggest that this mouse model of T1DM is associated with increased myeloid cell PGE2-EP4 signaling, which is required for the stimulatory effect of diabetes on IL-6, markedly blunts the effect of diabetes on TNF-α and does not modulate diabetes-accelerated atherogenesis.
Vallerie, Sara N.; Kramer, Farah; Barnhart, Shelley; Kanter, Jenny E.; Breyer, Richard M.; Andreasson, Katrin I.; Bornfeldt, Karin E.
2016-01-01
Type 1 diabetes mellitus (T1DM) is associated with cardiovascular complications induced by atherosclerosis. Prostaglandin E2 (PGE2) is often raised in states of inflammation, including diabetes, and regulates inflammatory processes. In myeloid cells, a key cell type in atherosclerosis, PGE2 acts predominately through its Prostaglandin E Receptor 4 (EP4; Ptger4) to modulate inflammation. The effect of PGE2-mediated EP4 signaling specifically in myeloid cells on atherosclerosis in the presence and absence of diabetes is unknown. Because diabetes promotes atherosclerosis through increased arterial myeloid cell accumulation, we generated a myeloid cell-targeted EP4-deficient mouse model (EP4M-/-) of T1DM-accelerated atherogenesis to investigate the relationship between myeloid cell EP4, inflammatory phenotypes of myeloid cells, and atherogenesis. Diabetic mice exhibited elevated plasma PGE metabolite levels and elevated Ptger4 mRNA in macrophages, as compared with non-diabetic littermates. PGE2 increased Il6, Il1b, Il23 and Ccr7 mRNA while reducing Tnfa mRNA through EP4 in isolated myeloid cells. Consistently, the stimulatory effect of diabetes on peritoneal macrophage Il6 was mediated by PGE2-EP4, while PGE2-EP4 suppressed the effect of diabetes on Tnfa in these cells. In addition, diabetes exerted effects independent of myeloid cell EP4, including a reduction in macrophage Ccr7 levels and increased early atherogenesis characterized by relative lesional macrophage accumulation. These studies suggest that this mouse model of T1DM is associated with increased myeloid cell PGE2-EP4 signaling, which is required for the stimulatory effect of diabetes on IL-6, markedly blunts the effect of diabetes on TNF-α and does not modulate diabetes-accelerated atherogenesis. PMID:27351842
Senadheera, D. B.; Cordova, M.; Ayala, E. A.; Chávez de Paz, L. E.; Singh, K.; Downey, J. S.; Svensäter, G.; Goodman, S. D.
2012-01-01
The VicRK two-component signaling system modulates biofilm formation, genetic competence, and stress tolerance in Streptococcus mutans. We show here that the VicRK modulates bacteriocin production and cell viability, in part by direct modulation of competence-stimulating peptide (CSP) production in S. mutans. Global transcriptome and real-time transcriptional analysis of the VicK-deficient mutant (SmuvicK) revealed significant modulation of several bacteriocin-related loci, including nlmAB, nlmC, and nlmD (P < 0.001), suggesting a role for the VicRK in producing mutacins IV, V, and VI. Bacteriocin overlay assays revealed an altered ability of the vic mutants to kill related species. Since a well-conserved VicR binding site (TGTWAH-N5-TGTWAH) was identified within the comC coding region, we confirmed VicR binding to this sequence using DNA footprinting. Overexpression of the vic operon caused growth-phase-dependent repression of comC, comDE, and comX. In the vic mutants, transcription of nlmC/cipB encoding mutacin V, previously linked to CSP-dependent cell lysis, as well as expression of its putative immunity factor encoded by immB, were significantly affected relative to the wild type (P < 0.05). In contrast to previous reports that proposed a hyper-resistant phenotype for the VicK mutant in cell viability, the release of extracellular genomic DNA was significantly enhanced in SmuvicK (P < 0.05), likely as a result of increased autolysis compared with the parent. The drastic influence of VicRK on cell viability was also demonstrated using vic mutant biofilms. Taken together, we have identified a novel regulatory link between the VicRK and ComDE systems to modulate bacteriocin production and cell viability of S. mutans. PMID:22228735
Cheng, Xiu; Shi, Jing Bo; Liu, Hao; Chen, Liu Zeng; Wang, Yang; Tang, Wen Jian; Liu, Xin Hua
2017-01-01
Dominant-negative mutants of telomerase hTERT were demonstrated to have selective effects in tumor cells. However, no any effective and highly selective hTERT inhibitor has been developed so far. We focused on developing new hTERT modulators and synthesized a small molecular compound, named (4-bromophenyl)(3-hydroxy-4-methoxyphenyl)methanone. Our in vitro studies found that title compound showed high inhibitory activity against telomerase, had high antiproliferative capacity on SMMC-7721 cells with IC50 value 88 nm, and had no obvious toxic effect on human normal hepatocyte cells with IC50 value 10 μM. Our in vivo studies showed that this compound significantly inhibited tumor growth in xenograft tumor models. The further molecular mechanisms of title compound inhibition SMMC-7721 cell proliferation by modulating hTERT were explored; the results showed that endoplasmic reticulum stress (ERS) through ER over response (EOR) activates the expression of hTERT, and then induces ERS, which is believed to be intricately associated with oxidative stress and mitochondrial dysfunction, resulting in apoptotic cell death, thereby modulating the expression of downstream signaling molecules including CHOP (CAAT/enhancer-binding protein homologous protein)) and mitochondrion pathway of apoptosis, leading to inhibition of cell proliferation. PMID:28837145
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruby, Douglas Scott; Murphy, Brian; Meakin, David
2008-08-01
Back-contact crystalline-silicon photovoltaic solar cells and modules offer a number of advantages, including the elimination of grid shadowing losses, reduced cost through use of thinner silicon substrates, simpler module assembly, and improved aesthetics. While the existing edge tab method for interconnecting and stringing edge-connected back contact cells is acceptably straightforward and reliable, there are further gains to be exploited when you have both contact polarities on one side of the cell. In this work, we produce 'busbarless' emitter wrap-through solar cells that use 41% of the gridline silver (Ag) metallization mass compared to the edge tab design. Further, series resistancemore » power losses are reduced by extraction of current from more places on the cell rear, leading to a fill factor improvement of about 6% (relative) on the module level. Series resistance and current-generation losses associated with large rear bondpads and busbars are eliminated. Use of thin silicon (Si) wafers is enabled because of the reduced Ag metallization mass and by interconnection with conductive adhesives leading to reduced bow. The busbarless cell design interconnected with conductive adhesives passes typical International Electrotechnical Commission damp heat and thermal cycling test.« less
Division of labour between Myc and G1 cyclins in cell cycle commitment and pace control.
Dong, Peng; Maddali, Manoj V; Srimani, Jaydeep K; Thélot, François; Nevins, Joseph R; Mathey-Prevot, Bernard; You, Lingchong
2014-09-01
A body of evidence has shown that the control of E2F transcription factor activity is critical for determining cell cycle entry and cell proliferation. However, an understanding of the precise determinants of this control, including the role of other cell-cycle regulatory activities, has not been clearly defined. Here, recognizing that the contributions of individual regulatory components could be masked by heterogeneity in populations of cells, we model the potential roles of individual components together with the use of an integrated system to follow E2F dynamics at the single-cell level and in real time. These analyses reveal that crossing a threshold amplitude of E2F accumulation determines cell cycle commitment. Importantly, we find that Myc is critical in modulating the amplitude, whereas cyclin D/E activities have little effect on amplitude but do contribute to the modulation of duration of E2F activation, thereby affecting the pace of cell cycle progression.
Radiation-Induced Immunogenic Modulation Enhances T-Cell Killing | Center for Cancer Research
For many types of cancer, including breast, lung, and prostate carcinomas, radiation therapy is the standard of care. However, limits placed on the tolerable levels of radiation exposure coupled with heterogeneity of biological tissue result in cases where not all tumor cells receive a lethal dose of radiation. Preclinical studies have shown that exposing tumor cells to lethal
Microenvironmental Regulation of Biomacromolecular Therapies
2007-06-01
of novel drug delivery systems. NATURE REVIEWS | DRUG DISCOVERY VOLUME 6 | JUNE 2007 | 455 REVIEWS © 2007 Nature Publishing Group Report...direct manner to provide cell responsiveness to protein drugs . Combined delivery of survival cytokines, including stem-cell fac- tor (SCF; also known...Figure 3 | Potential strategies to engineer cell micro environments in vivo to modulate the cellular response to protein drugs . a | Delivery of anti
NASA Astrophysics Data System (ADS)
John, J.; Prajapati, V.; Vermang, B.; Lorenz, A.; Allebe, C.; Rothschild, A.; Tous, L.; Uruena, A.; Baert, K.; Poortmans, J.
2012-08-01
Bulk crystalline Silicon solar cells are covering more than 85% of the world's roof top module installation in 2010. With a growth rate of over 30% in the last 10 years this technology remains the working horse of solar cell industry. The full Aluminum back-side field (Al BSF) technology has been developed in the 90's and provides a production learning curve on module price of constant 20% in average. The main reason for the decrease of module prices with increasing production capacity is due to the effect of up scaling industrial production. For further decreasing of the price per wattpeak silicon consumption has to be reduced and efficiency has to be improved. In this paper we describe a successive efficiency improving process development starting from the existing full Al BSF cell concept. We propose an evolutionary development includes all parts of the solar cell process: optical enhancement (texturing, polishing, anti-reflection coating), junction formation and contacting. Novel processes are benchmarked on industrial like baseline flows using high-efficiency cell concepts like i-PERC (Passivated Emitter and Rear Cell). While the full Al BSF crystalline silicon solar cell technology provides efficiencies of up to 18% (on cz-Si) in production, we are achieving up to 19.4% conversion efficiency for industrial fabricated, large area solar cells with copper based front side metallization and local Al BSF applying the semiconductor toolbox.
Whole organism high content screening identifies stimulators of pancreatic beta-cell proliferation.
Tsuji, Naoki; Ninov, Nikolay; Delawary, Mina; Osman, Sahar; Roh, Alex S; Gut, Philipp; Stainier, Didier Y R
2014-01-01
Inducing beta-cell mass expansion in diabetic patients with the aim to restore glucose homeostasis is a promising therapeutic strategy. Although several in vitro studies have been carried out to identify modulators of beta-cell mass expansion, restoring endogenous beta-cell mass in vivo has yet to be achieved. To identify potential stimulators of beta-cell replication in vivo, we established transgenic zebrafish lines that monitor and allow the quantification of cell proliferation by using the fluorescent ubiquitylation-based cell cycle indicator (FUCCI) technology. Using these new reagents, we performed an unbiased chemical screen, and identified 20 small molecules that markedly increased beta-cell proliferation in vivo. Importantly, these structurally distinct molecules, which include clinically-approved drugs, modulate three specific signaling pathways: serotonin, retinoic acid and glucocorticoids, showing the high sensitivity and robustness of our screen. Notably, two drug classes, retinoic acid and glucocorticoids, also promoted beta-cell regeneration after beta-cell ablation. Thus, this study establishes a proof of principle for a high-throughput small molecule-screen for beta-cell proliferation in vivo, and identified compounds that stimulate beta-cell proliferation and regeneration.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-29
... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Postponement of... investigation of crystalline silicon photovoltaic cells, whether or not assembled into modules, from the People..., 2012. \\1\\ See Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the...
Proteomic Analyses of the Effects of Drugs of Abuse on Monocyte-Derived Mature Dendritic Cells
Reynolds, Jessica L.; Mahajan, Supriya D.; Aalinkeel, Ravikunar; Nair, B.; Sykes, Donald E.; Schwartz, Stanley A.
2010-01-01
Drug abuse has become a global health concern. Understanding how drug abuse modulates the immune system and how the immune system responds to pathogens associated with drug abuse, such hepatitis C virus (HCV) and human immunodeficiency virus (HIV-1), can be assessed by an integrated approach comparing proteomic analyses and quantitation of gene expression. Two-dimensional (2D) difference gel electrophoresis was used to determine the molecular mechanisms underlying the proteomic changes that alter normal biological processes when monocyte-derived mature dendritic cells were treated with cocaine or methamphetamine. Both drugs differentially regulated the expression of several functional classes of proteins including those that modulate apoptosis, protein folding, protein kinase activity, and metabolism and proteins that function as intracellular signal transduction molecules. Proteomic data were validated using a combination of quantitative, real-time PCR and Western blot analyses. These studies will help to identify the molecular mechanisms, including the expression of several functionally important classes of proteins that have emerged as potential mediators of pathogenesis. These proteins may predispose immunocompetent cells, including dendritic cells, to infection with viruses such as HCV and HIV-1, which are associated with drug abuse. PMID:19811410
Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules.
Hu, Linhua; Dai, Songyuan; Weng, Jian; Xiao, Shangfeng; Sui, Yifeng; Huang, Yang; Chen, Shuanghong; Kong, Fantai; Pan, Xu; Liang, Linyun; Wang, Kongjia
2007-01-18
The optimization of dye-sensitized solar cells, especially the design of nanoporous TiO2 film microstructure, is an urgent problem for high efficiency and future commercial applications. However, up to now, little attention has been focused on the design of nanoporous TiO2 microstructure for a high efficiency of dye-sensitized solar cell modules. The optimization and design of TiO2 photoelectrode microstructure are discussed in this paper. TiO2 photoelectrodes with three different layers, including layers of small pore size films, larger pore size films, and light-scattering particles on the conducting glass with the desirable thickness, were designed and investigated. Moreover, the photovoltaic properties showed that the different porosities, pore size distribution, and BET surface area of each layer have a dramatic influence on short-circuit current, open-circuit voltage, and fill factor of the modules. The optimization and design of TiO2 photoelectrode microstructure contribute a high efficiency of DSC modules. The photoelectric conversion efficiency around 6% with 15 x 20 cm2 modules under illumination of simulated AM1.5 sunlight (100 mW/cm2) and 40 x 60 cm2 panels with the same performance tested outdoor have been achieved by our group.
Evaluation of Mismatch Losses due to Shunts in industrial Silicon Photovoltaic Modules
NASA Astrophysics Data System (ADS)
Somasundaran, P.; Shilpi, M.; Gupta, R.
2017-05-01
In order to achieve higher efficiencies in photovoltaic module technology, it is important to characterize the shunts and other defects which degrade the performance of cells and modules as well as decrease their efficiency. These shunts also affect the reliability of cells and modules. It is important to understand how much fill factor and power loss is caused by the presence of shunts in the module. Shunts not only reduce the module power output, but also affect the I-V characteristics of the cell and hence the characteristics of the shunted cells are different from those of the shunt-free cells connected in the module leading to the mismatch effect. This is an interesting effect which has been systematically investigated in the present work. Moreover, the flow of increased shunt current will give rise to increased temperature in the region of shunt, which will affect the cell and hence module performance. In the present study, the distributed diode model has been extended to the module level and applied to evaluate the electrical mismatch losses and thermal mismatch losses due to shunts in industrial Silicon PV modules.
Engineering Breast Cancer Microenvironments and 3D Bioprinting
Belgodere, Jorge A.; King, Connor T.; Bursavich, Jacob B.; Burow, Matthew E.; Martin, Elizabeth C.; Jung, Jangwook P.
2018-01-01
The extracellular matrix (ECM) is a critical cue to direct tumorigenesis and metastasis. Although two-dimensional (2D) culture models have been widely employed to understand breast cancer microenvironments over the past several decades, the 2D models still exhibit limited success. Overwhelming evidence supports that three dimensional (3D), physiologically relevant culture models are required to better understand cancer progression and develop more effective treatment. Such platforms should include cancer-specific architectures, relevant physicochemical signals, stromal–cancer cell interactions, immune components, vascular components, and cell-ECM interactions found in patient tumors. This review briefly summarizes how cancer microenvironments (stromal component, cell-ECM interactions, and molecular modulators) are defined and what emerging technologies (perfusable scaffold, tumor stiffness, supporting cells within tumors and complex patterning) can be utilized to better mimic native-like breast cancer microenvironments. Furthermore, this review emphasizes biophysical properties that differ between primary tumor ECM and tissue sites of metastatic lesions with a focus on matrix modulation of cancer stem cells, providing a rationale for investigation of underexplored ECM proteins that could alter patient prognosis. To engineer breast cancer microenvironments, we categorized technologies into two groups: (1) biochemical factors modulating breast cancer cell-ECM interactions and (2) 3D bioprinting methods and its applications to model breast cancer microenvironments. Biochemical factors include matrix-associated proteins, soluble factors, ECMs, and synthetic biomaterials. For the application of 3D bioprinting, we discuss the transition of 2D patterning to 3D scaffolding with various bioprinting technologies to implement biophysical cues to model breast cancer microenvironments. PMID:29881724
Teng, Xiang; Qin, Lei; Le Borgne, Roland; Toyama, Yusuke
2017-01-01
Apoptosis is a mechanism of eliminating damaged or unnecessary cells during development and tissue homeostasis. During apoptosis within a tissue, the adhesions between dying and neighboring non-dying cells need to be remodeled so that the apoptotic cell is expelled. In parallel, contraction of actomyosin cables formed in apoptotic and neighboring cells drives cell extrusion. To date, the coordination between the dynamics of cell adhesion and the progressive changes in tissue tension around an apoptotic cell is not fully understood. Live imaging of histoblast expansion, which is a coordinated tissue replacement process during Drosophila metamorphosis, shows remodeling of adherens junctions (AJs) between apoptotic and non-dying cells, with a reduction in the levels of AJ components, including E-cadherin. Concurrently, surrounding tissue tension is transiently released. Contraction of a supra-cellular actomyosin cable, which forms in neighboring cells, brings neighboring cells together and further reshapes tissue tension toward the completion of extrusion. We propose a model in which modulation of tissue tension represents a mechanism of apoptotic cell extrusion. © 2017. Published by The Company of Biologists Ltd.
Eicosanoids: an emerging role in dendritic cell biology.
Harizi, Hedi; Gualde, Norbert
2004-01-01
The arachidonic acid (AA)-derived metabolites, termed eicosanoids, are potent lipid mediators with a key role in immune and inflammatory responses. In the immune system, eicosanoids such as prostaglandins (PGs) and leukotrienes (LTs) are produced predominately by antigen-presenting cells (APC), including macrophages and dendritic cells (DC). DC constitute a family of bone marrow-derived professional APC that play a critical role in the induction and modulation of both innate and adaptive immunity. For many years, macrophages were considered as major producers of eicosanoids that are thought to drastically affect their function. Studies concerning the modulation of DC biology by eicosanoids show that PGs and LTs have the potential to affect the maturation, cytokine-producing capacity, Th cell-polarizing ability, and migration of DC. In addition, the development of DC from bone marrow progenitors appears to be under the control of some eicosanoids. Understanding the actions of eicosanoids and their receptors on APC functions is crucial for the generation of efficient DC for therapeutic purposes in patients. In this review, we summarize the current understanding of how DC functions are modulated by eicosanoids.
Wang, Jiankang; Luo, Bingling; Li, Xiaobing; Lu, Wenhua; Yang, Jing; Hu, Yumin; Huang, Peng; Wen, Shijun
2017-06-22
Reactive oxygen species (ROS) have a crucial role in cell signaling and cellular functions. Mounting evidences suggest that abnormal increase of ROS is often observed in cancer cells and that this biochemical feature can be exploited for selective killing of the malignant cells. A naturally occurring compound phenethyl isothiocyanate (PEITC) has been shown to have promising anticancer activity by modulating intracellular ROS. Here we report a novel synthetic analog of PEITC with superior in vitro and in vivo antitumor effects. Mechanistic study showed that LBL21 induced a rapid depletion of intracellular glutathione (GSH), leading to abnormal ROS accumulation and mitochondrial dysfunction, evident by a decrease in mitochondrial respiration and transmembrane potential. Importantly, LBL21 exhibited the ability to abrogate stem cell-like cancer side population (SP) cells in non-small cell lung cancer A549 cells associated with a downregulation of stem cell markers including OCT4, ABCG2, SOX2 and CD133. Functionally, LBL21 inhibited the ability of cancer cells to form colonies in vitro and develop tumor in vivo. The therapeutic efficacy of LBL21 was further demonstrated in mice bearing A549 lung cancer xenografts. Our study suggests that the novel ROS-modulating agent LBL21 has promising anticancer activity with an advantage of elimination of stem-like cancer cells. This compound merits further study to evaluate its potential for use in cancer treatment.
2012-01-01
Background The retina of craniates/vertebrates has been proposed to derive from a photoreceptor prosencephalic territory in ancestral chordates, but the evolutionary origin of the different cell types making the retina is disputed. Except for photoreceptors, the existence of homologs of retinal cells remains uncertain outside vertebrates. Methods The expression of genes expressed in the sensory vesicle of the ascidian Ciona intestinalis including those encoding components of the monoaminergic neurotransmission systems, was analyzed by in situ hybridization or in vivo transfection of the corresponding regulatory elements driving fluorescent reporters. Modulation of photic responses by monoamines was studied by electrophysiology combined with pharmacological treatments. Results We show that many molecular characteristics of dopamine-synthesizing cells located in the vicinity of photoreceptors in the sensory vesicle of the ascidian Ciona intestinalis are similar to those of amacrine dopamine cells of the vertebrate retina. The ascidian dopamine cells share with vertebrate amacrine cells the expression of the key-transcription factor Ptf1a, as well as that of dopamine-synthesizing enzymes. Surprisingly, the ascidian dopamine cells accumulate serotonin via a functional serotonin transporter, as some amacrine cells also do. Moreover, dopamine cells located in the vicinity of the photoreceptors modulate the light-off induced swimming behavior of ascidian larvae by acting on alpha2-like receptors, instead of dopamine receptors, supporting a role in the modulation of the photic response. These cells are located in a territory of the ascidian sensory vesicle expressing genes found both in the retina and the hypothalamus of vertebrates (six3/6, Rx, meis, pax6, visual cycle proteins). Conclusion We propose that the dopamine cells of the ascidian larva derive from an ancestral multifunctional cell population located in the periventricular, photoreceptive field of the anterior neural tube of chordates, which also gives rise to both anterior hypothalamus and the retina in craniates/vertebrates. It also shows that the existence of multiple cell types associated with photic responses predates the formation of the vertebrate retina. PMID:22642675
Mitsiades, Constantine S; Rouleau, Cecile; Echart, Cinara; Menon, Krishna; Teicher, Beverly; Distaso, Maria; Palumbo, Antonio; Boccadoro, Mario; Anderson, Kenneth C; Iacobelli, Massimo; Richardson, Paul G
2009-02-15
Defibrotide, an orally bioavailable polydisperse oligonucleotide, has promising activity in hepatic veno-occlusive disease, a stem cell transplantation-related toxicity characterized by microangiopathy. The antithrombotic properties of defibrotide and its minimal hemorrhagic risk could serve for treatment of cancer-associated thrombotic complications. Given its cytoprotective effect on endothelium, we investigated whether defibrotide protects tumor cells from cytotoxic antitumor agents. Further, given its antiadhesive properties, we evaluated whether defibrotide modulates the protection conferred to multiple myeloma cells by bone marrow stromal cells. Defibrotide lacks significant single-agent in vitro cytotoxicity on multiple myeloma or solid tumor cells and does not attenuate their in vitro response to dexamethasone, bortezomib, immunomodulatory thalidomide derivatives, and conventional chemotherapeutics, including melphalan and cyclophosphamide. Importantly, defibrotide enhances in vivo chemosensitivity of multiple myeloma and mammary carcinoma xenografts in animal models. In cocultures of multiple myeloma cells with bone marrow stromal cells in vitro, defibrotide enhances the multiple myeloma cell sensitivity to melphalan and dexamethasone, and decreases multiple myeloma-bone marrow stromal cell adhesion and its sequelae, including nuclear factor-kappaB activation in multiple myeloma and bone marrow stromal cells, and associated cytokine production. Moreover, defibrotide inhibits expression and/or function of key mediators of multiple myeloma interaction with bone marrow stromal cell and endothelium, including heparanase, angiogenic cytokines, and adhesion molecules. Defibrotide's in vivo chemosensitizing properties and lack of direct in vitro activity against tumor cells suggest that it favorably modulates antitumor interactions between bone marrow stromal cells and endothelia in the tumor microenvironment. These data support clinical studies of defibrotide in combination with conventional and novel therapies to potentially improve patient outcome in multiple myeloma and other malignancies.
Long noncoding RNA lnc-sox5 modulates CRC tumorigenesis by unbalancing tumor microenvironment.
Wu, Kaiming; Zhao, Zhenxian; Liu, Kuanzhi; Zhang, Jian; Li, Guanghua; Wang, Liang
2017-07-03
Long non-coding RNAs (LncRNAs) have been recently regarded as systemic regulators in multiple biologic processes including tumorigenesis. In this study, we observed the expression of lncRNA lnc-sox5 was significantly increased in colorectal cancer (CRC). Despite the CRC cell growth, cell cycle and cell apoptosis was not affected by lnc-sox5 knock-down, lnc-sox5 knock-down suppressed CRC cell migration and invasion. In addition, xenograft animal model suggested that lnc-sox5 knock-down significantly suppressed the CRC tumorigenesis. Our results also showed that the expression of indoleamine 2,3-dioxygenase 1 (IDO1) was significantly reduced by lnc-sox5 knock-down and therefore modulated the infiltration and cytotoxicity of CD3 + CD8 + T cells. Taken together, these results suggested that lnc-sox5 unbalances tumor microenvironment to regulate colorectal cancer progression.
Jamier, Vincent; Ba, Lalla A; Jacob, Claus
2010-09-24
Various human diseases, including different types of cancer, are associated with a disturbed intracellular redox balance and oxidative stress (OS). The past decade has witnessed the emergence of redox-modulating compounds able to utilize such pre-existing disturbances in the redox state of sick cells for therapeutic advantage. Selenium- and tellurium-based agents turn the oxidizing redox environment present in certain cancer cells into a lethal cocktail of reactive species that push these cells over a critical redox threshold and ultimately kill them through apoptosis. This kind of toxicity is highly selective: normal, healthy cells remain largely unaffected, since changes to their naturally low levels of oxidizing species produce little effect. To further improve selectivity, multifunctional sensor/effector agents are now required that recognize the biochemical signature of OS in target cells. The synthesis of such compounds provides interesting challenges for chemistry in the future.
Kang, Kyungsu; Peng, Lei; Jung, Yu-Jin; Kim, Joo Yeon; Lee, Eun Ha; Lee, Hee Ju; Kim, Sang Min; Sung, Sang Hyun; Pan, Cheol-Ho; Choi, Yongsoo
2018-02-01
To develop a high-throughput screening system to measure the conversion of testosterone to dihydrotestosterone (DHT) in cultured human prostate cancer cells using turbulent flow chromatography liquid chromatography-triple quadrupole mass spectrometry (TFC-LC-TQMS). After optimizing the cell reaction system, this method demonstrated a screening capability of 103 samples, including 78 single compounds and 25 extracts, in less than 12 h without manual sample preparation. Consequently, fucoxanthin, phenethyl caffeate, and Curcuma longa L. extract were validated as bioactive chemicals that inhibited DHT production in cultured DU145 cells. In addition, naringenin boosted DHT production in DU145 cells. The method can facilitate the discovery of bioactive chemicals that modulate the DHT production, and four phytochemicals are potential candidates of nutraceuticals to adjust DHT levels in male hormonal dysfunction.
Prabhala, Pavan; Bunge, Kristin; Ge, Qi; Ammit, Alaina J
2016-10-01
Exaggerated cytokine secretion drives pathogenesis of a number of chronic inflammatory diseases, including asthma. Anti-inflammatory pharmacotherapies, including corticosteroids, are front-line therapies and although they have proven clinical utility, the molecular mechanisms responsible for their actions are not fully understood. The corticosteroid-inducible gene, mitogen-activated protein kinase (MAPK) phosphatase 1 (MKP-1, DUSP1) has emerged as a key molecule responsible for the repressive effects of steroids. MKP-1 is known to deactivate p38 MAPK phosphorylation and can control the expression and activity of the mRNA destabilizing protein-tristetraprolin (TTP). But whether corticosteroid-induced MKP-1 acts via p38 MAPK-mediated modulation of TTP function in a pivotal airway cell type, airway smooth muscle (ASM), was unknown. While pretreatment of ASM cells with the corticosteroid dexamethasone (preventative protocol) is known to reduce ASM synthetic function in vitro, the impact of adding dexamethasone after stimulation (therapeutic protocol) had not been explored. Whether dexamethasone modulates TTP in a p38 MAPK-dependent manner in this cell type was also unknown. We address this herein and utilize an in vitro model of asthmatic inflammation where ASM cells were stimulated with the pro-asthmatic cytokine tumor necrosis factor (TNF) and the impact of adding dexamethasone 1 h after stimulation assessed. IL-6 mRNA expression and protein secretion was significantly repressed by dexamethasone acting in a temporally distinct manner to increase MKP-1, deactivate p38 MAPK, and modulate TTP phosphorylation status. In this way, dexamethasone-induced MKP-1 acts via p38 MAPK to switch on the mRNA destabilizing function of TTP to repress pro-inflammatory cytokine secretion from ASM cells. J. Cell. Physiol. 231: 2153-2158, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Calcium-regulatory proteins as modulators of chemotherapy in human neuroblastoma
Florea, Ana-Maria; Varghese, Elizabeth; McCallum, Jennifer E.; Mahgoub, Safa; Helmy, Irfan; Varghese, Sharon; Gopinath, Neha; Sass, Steffen; Theis, Fabian J.; Reifenberger, Guido; Büsselberg, Dietrich
2017-01-01
Neuroblastoma (NB) is a pediatric cancer treated with poly-chemotherapy including platinum complexes (e.g. cisplatin (CDDP), carboplatin), DNA alkylating agents, and topoisomerase I inhibitors (e.g. topotecan (TOPO)). Despite aggressive treatment, NB may become resistant to chemotherapy. We investigated whether CDDP and TOPO treatment of NB cells interacts with the expression and function of proteins involved in regulating calcium signaling. Human neuroblastoma cell lines SH-SY5Y, IMR-32 and NLF were used to investigate the effects of CDDP and TOPO on cell viability, apoptosis, calcium homeostasis, and expression of selected proteins regulating intracellular calcium concentration ([Ca2+]i). In addition, the impact of pharmacological inhibition of [Ca2+]i-regulating proteins on neuroblastoma cell survival was studied. Treatment of neuroblastoma cells with increasing concentrations of CDDP (0.1−10 μM) or TOPO (0.1 nM−1 μM) induced cytotoxicity and increased apoptosis in a concentration- and time-dependent manner. Both drugs increased [Ca2+]i over time. Treatment with CDDP or TOPO also modified mRNA expression of selected genes encoding [Ca2+]i-regulating proteins. Differentially regulated genes included S100A6, ITPR1, ITPR3, RYR1 and RYR3. With FACS and confocal laser scanning microscopy experiments we validated their differential expression at the protein level. Importantly, treatment of neuroblastoma cells with pharmacological modulators of [Ca2+]i-regulating proteins in combination with CDDP or TOPO increased cytotoxicity. Thus, our results confirm an important role of calcium signaling in the response of neuroblastoma cells to chemotherapy and suggest [Ca2+]i modulation as a promising strategy for adjunctive treatment. PMID:28206967
Montalban, Enrica; Mattugini, Nicola; Ciarapica, Roberta; Provenzano, Claudia; Savino, Mauro; Scagnoli, Fiorella; Prosperini, Gianluca; Carissimi, Claudia; Fulci, Valerio; Matrone, Carmela; Calissano, Pietro; Nasi, Sergio
2014-06-01
The neurotrophins Ngf, Bdnf, NT-3, NT4-5 have key roles in development, survival, and plasticity of neuronal cells. Their action involves broad gene expression changes at the level of transcription and translation. MicroRNAs (miRs)-small RNA molecules that control gene expression post-transcriptionally-are increasingly implicated in regulating development and plasticity of neural cells. Using PC12 cells as a model system, we show that Ngf modulates changes in expression of a variety of microRNAs, including miRs known to be modulated by neurotrophins-such as the miR-212/132 cluster-and several others, such as miR-21, miR-29c, miR-30c, miR-93, miR-103, miR-207, miR-691, and miR-709. Pathway analysis indicates that Ngf-modulated miRs may regulate many protein components of signaling pathways involved in neuronal development and disease. In particular, we show that miR-21 enhances neurotrophin signaling and controls neuronal differentiation induced by Ngf. Notably, in a situation mimicking neurodegeneration-differentiated neurons deprived of Ngf-this microRNA is able to preserve the neurite network and to support viability of the neurons. These findings uncover a broad role of microRNAs in regulating neurotrophin signaling and suggest that aberrant expression of one or more Ngf-modulated miRs may be involved in neurodegenerative diseases.
Space Station Freedom Solar Array design development
NASA Technical Reports Server (NTRS)
Winslow, Cindy; Bilger, Kevin; Baraona, Cosmo R.
1989-01-01
The Space Station Freedom Solar Array Program is required to provide a 75 kW power module that uses eight solar array (SA) wings over a four-year period in low Earth orbit (LEO). Each wing will be capable of providing 23.4 kW at the 4-year design point. Lockheed Missles and Space Company, Inc. (LMSC) is providing the flexible substrate SAs that must survive exposure to the space environment, including atomic oxygen, for an operating life of fifteen years. Trade studies and development testing, important for evolving any design to maturity, are presently underway at LMSC on the flexible solar array. The trade study and development areas being investigated include solar cell module size, solar cell weld pads, panel stiffener frames, materials inherently resistant to atomic oxygen, and weight reduction design alternatives.
Douglas, David R; Tennant, Christopher
2015-11-10
A modulated-bending recirculating system that avoids CSR-driven breakdown in emittance compensation by redistributing the bending along the beamline. The modulated-bending recirculating system includes a) larger angles of bending in initial FODO cells, thereby enhancing the impact of CSR early on in the beam line while the bunch is long, and 2) a decreased bending angle in the final FODO cells, reducing the effect of CSR while the bunch is short. The invention describes a method for controlling the effects of CSR during recirculation and bunch compression including a) correcting chromatic aberrations, b) correcting lattice and CSR-induced curvature in the longitudinal phase space by compensating T.sub.566, and c) using lattice perturbations to compensate obvious linear correlations x-dp/p and x'-dp/p.
Investigation of candidate genes for osteoarthritis based on gene expression profiles.
Dong, Shuanghai; Xia, Tian; Wang, Lei; Zhao, Qinghua; Tian, Jiwei
2016-12-01
To explore the mechanism of osteoarthritis (OA) and provide valid biological information for further investigation. Gene expression profile of GSE46750 was downloaded from Gene Expression Omnibus database. The Linear Models for Microarray Data (limma) package (Bioconductor project, http://www.bioconductor.org/packages/release/bioc/html/limma.html) was used to identify differentially expressed genes (DEGs) in inflamed OA samples. Gene Ontology function enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways enrichment analysis of DEGs were performed based on Database for Annotation, Visualization and Integrated Discovery data, and protein-protein interaction (PPI) network was constructed based on the Search Tool for the Retrieval of Interacting Genes/Proteins database. Regulatory network was screened based on Encyclopedia of DNA Elements. Molecular Complex Detection was used for sub-network screening. Two sub-networks with highest node degree were integrated with transcriptional regulatory network and KEGG functional enrichment analysis was processed for 2 modules. In total, 401 up- and 196 down-regulated DEGs were obtained. Up-regulated DEGs were involved in inflammatory response, while down-regulated DEGs were involved in cell cycle. PPI network with 2392 protein interactions was constructed. Moreover, 10 genes including Interleukin 6 (IL6) and Aurora B kinase (AURKB) were found to be outstanding in PPI network. There are 214 up- and 8 down-regulated transcription factor (TF)-target pairs in the TF regulatory network. Module 1 had TFs including SPI1, PRDM1, and FOS, while module 2 contained FOSL1. The nodes in module 1 were enriched in chemokine signaling pathway, while the nodes in module 2 were mainly enriched in cell cycle. The screened DEGs including IL6, AGT, and AURKB might be potential biomarkers for gene therapy for OA by being regulated by TFs such as FOS and SPI1, and participating in the cell cycle and cytokine-cytokine receptor interaction pathway. Copyright © 2016 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.
Small-Molecule Sigma1 Modulator Induces Autophagic Degradation of PD-L1.
Maher, Christina M; Thomas, Jeffrey D; Haas, Derick A; Longen, Charles G; Oyer, Halley M; Tong, Jane Y; Kim, Felix J
2018-02-01
Emerging evidence suggests that Sigma1 ( SIGMAR1 , also known as sigma-1 receptor) is a unique ligand-regulated integral membrane scaffolding protein that contributes to cellular protein and lipid homeostasis. Previously, we demonstrated that some small-molecule modulators of Sigma1 alter endoplasmic reticulum (ER)-associated protein homeostasis pathways in cancer cells, including the unfolded protein response and autophagy. Programmed death-ligand 1 (PD-L1) is a type I integral membrane glycoprotein that is cotranslationally inserted into the ER and is processed and transported through the secretory pathway. Once at the surface of cancer cells, PD-L1 acts as a T-cell inhibitory checkpoint molecule and suppresses antitumor immunity. Here, we demonstrate that in Sigma1-expressing triple-negative breast and androgen-independent prostate cancer cells, PD-L1 protein levels were suppressed by RNAi knockdown of Sigma1 and by small-molecule inhibition of Sigma1. Sigma1-mediated action was confirmed by pharmacologic competition between Sigma1-selective inhibitor and activator ligands. When administered alone, the Sigma1 inhibitor decreased cell surface PD-L1 expression and suppressed functional interaction of PD-1 and PD-L1 in a coculture of T cells and cancer cells. Conversely, the Sigma1 activator increased PD-L1 cell surface expression, demonstrating the ability to positively and negatively modulate Sigma1 associated PD-L1 processing. We discovered that the Sigma1 inhibitor induced degradation of PD-L1 via autophagy, by a mechanism distinct from bulk macroautophagy or general ER stress-associated autophagy. Finally, the Sigma1 inhibitor suppressed IFNγ-induced PD-L1. Our data demonstrate that small-molecule Sigma1 modulators can be used to regulate PD-L1 in cancer cells and trigger its degradation by selective autophagy. Implications: Sigma1 modulators sequester and eliminate PD-L1 by autophagy, thus preventing functional PD-L1 expression at the cell surface. This posits Sigma1 modulators as novel therapeutic agents in PD-L1/PD-1 blockade strategies that regulate the tumor immune microenvironment. Visual Overview: http://mcr.aacrjournals.org/content/molcanres/16/2/243/F1.large.jpg Mol Cancer Res; 16(2); 243-55. ©2017 AACR . ©2017 American Association for Cancer Research.
Džinić, Tamara; Hartwig, Sonja; Lehr, Stefan; Dencher, Norbert A
2016-12-01
Cytotoxic effects, including oxidative stress, of low linear energy transfer (LET)-ionizing radiation are often underestimated and studies of their mechanisms using cell culture models are widely conducted with cells cultivated at atmospheric oxygen that does not match its physiological levels in body tissues. Also, cell differentiation status plays a role in the outcome of experiments. We compared effects of 2 Gy X-ray irradiation on the physiology and mitochondrial proteome of nondifferentiated and human neuroblastoma (SH-SY5Y) cells treated with retinoic acid cultivated at 21% and 5% O 2 . Irradiation did not affect the amount of subunits of OxPhos complexes and other non-OxPhos mitochondrial proteins, except for heat shock protein 70, which was increased depending on oxygen level and differentiation status. These two factors were proven to modulate mitochondrial membrane potential and the bioenergetic status of cells. We suggest, moreover, that oxygen plays a role in the differentiation of human SH-SY5Y cells.
Mitochondrial Regulation of Cell Cycle and Proliferation
Antico Arciuch, Valeria Gabriela; Elguero, María Eugenia; Poderoso, Juan José
2012-01-01
Abstract Eukaryotic mitochondria resulted from symbiotic incorporation of α-proteobacteria into ancient archaea species. During evolution, mitochondria lost most of the prokaryotic bacterial genes and only conserved a small fraction including those encoding 13 proteins of the respiratory chain. In this process, many functions were transferred to the host cells, but mitochondria gained a central role in the regulation of cell proliferation and apoptosis, and in the modulation of metabolism; accordingly, defective organelles contribute to cell transformation and cancer, diabetes, and neurodegenerative diseases. Most cell and transcriptional effects of mitochondria depend on the modulation of respiratory rate and on the production of hydrogen peroxide released into the cytosol. The mitochondrial oxidative rate has to remain depressed for cell proliferation; even in the presence of O2, energy is preferentially obtained from increased glycolysis (Warburg effect). In response to stress signals, traffic of pro- and antiapoptotic mitochondrial proteins in the intermembrane space (B-cell lymphoma-extra large, Bcl-2-associated death promoter, Bcl-2 associated X-protein and cytochrome c) is modulated by the redox condition determined by mitochondrial O2 utilization and mitochondrial nitric oxide metabolism. In this article, we highlight the traffic of the different canonical signaling pathways to mitochondria and the contributions of organelles to redox regulation of kinases. Finally, we analyze the dynamics of the mitochondrial population in cell cycle and apoptosis. Antioxid. Redox Signal. 16, 1150–1180. PMID:21967640
Lightweight fuel cell powerplant components program
NASA Technical Reports Server (NTRS)
Martin, R. E.
1980-01-01
A lightweight hydrogen-oxygen alkaline fuel cell incorporated into the design of a lightweight fuel cell powerplant (LFCP) was analytically and experimentally developed. The powerplant operates with passive water removal which contributes to a lower system weight and extended operating life. A preliminary LFCP specification and design table were developed along with a lightweight power section for the LFCP design, consisting of repeating two-cell modules was designed. Two, four-cell modules were designed incorporating 0.508 sq ft active area space shuttle technology fuel cells. Over 1,200 hours of single-cell and over 8,800 hours of two-cell module testing was completed. The 0.25 sq ft active area lightweight cell design was shown to be capable of operating on propellant purity reactants out to a current density of 600ASF. Endurance testing of the two-cell module configuration exceeded the 2,500-hour LFCP voltage requirements out to 3700-hours. A two-cell module capable of operating at increased reactant pressure completed 1000 hours of operation at a 30 psia reactant pressure. A lightweight power section consisting of fifteen, two-cell modules connected electrically in series was fabricated.
Automated solar module assembly line
NASA Technical Reports Server (NTRS)
Bycer, M.
1980-01-01
The solar module assembly machine which Kulicke and Soffa delivered under this contract is a cell tabbing and stringing machine, and capable of handling a variety of cells and assembling strings up to 4 feet long which then can be placed into a module array up to 2 feet by 4 feet in a series of parallel arrangement, and in a straight or interdigitated array format. The machine cycle is 5 seconds per solar cell. This machine is primarily adapted to 3 inch diameter round cells with two tabs between cells. Pulsed heat is used as the bond technique for solar cell interconnects. The solar module assembly machine unloads solar cells from a cassette, automatically orients them, applies flux and solders interconnect ribbons onto the cells. It then inverts the tabbed cells, connects them into cell strings, and delivers them into a module array format using a track mounted vacuum lance, from which they are taken to test and cleaning benches prior to final encapsulation into finished solar modules. Throughout the machine the solar cell is handled very carefully, and any contact with the collector side of the cell is avoided or minimized.
Stackpole, C W
1980-04-01
Exposure of mouse leukemia cells bearing thymus-leukemia (TL) surface antigens to whole TL alloantiserum has previously been shown to desensitize the cells to subsequent lysis by guinea pig complement (C) and fresh antiserum (antigenic modulation) and to correlate with the ability of cells to escape immune destruction in mice immunized against TL antigens. Tested in vitro, IgG of TL.1,2,3,5 antiserum modulated RADA1 leukemia cells (TL.1,2,3,5) completely within 2 hours at 37 degrees C when fully sensitizing amounts were used, with normal mouse serum as a source of C3. Similar results were obtained with IgG1, IgG2a, and IgG2b fractions of TL antiserum. An IgG2a monoclonal TL.3 antibody also completely modulated TL.3 antigens and partially modulated all antigens detected with TL.1,2,3,5 antiserum. IgM anti-TL.1,2,3,5 failed to modulate RADA1 cells even after 6 hours in vitro when fully sensitizing amounts of antibody were used. An IgM monoclonal TL antibody also failed to induce modulation. Modulation did occur on cells incubated with fully sensitizing amounts of IgG and IgM TL.1,2,3,5 antibody simultaneously, and nearly all cell-bound immunoglobulins were IgG. In mice passively immunized with IgG TL antibody, RADA1 cells modulated completely within 24 hours, whereas no modulation occurred during 4 days in mice immunized with IgM antibody. However, in both instances, tumor cells grew actively, which indicated that tumor escape did not depend on achievement of a modulated state.
Potential Antitumor Effects of Pomegranates and Its Ingredients
Rahmani, Arshad H.; Alsahli, Mohammed A.; Almatroodi, Saleh A.
2017-01-01
The treatment based on plant or plant derivatives is a promising strategy in the killing of cancers cells. Moreover, wide-ranging finding has established that medicinal plant and its ingredient modulate several cells signaling pathways or inhibiting the carcinogenesis process. In this vista, pomegranates fruits, seeds and peels illustrate cancer preventive role seems to be due to rich source of antioxidant and other valuable ingredients. Furthermore, anti-tumour activities of pomegranates have been evidences through the modulation of cell signaling pathways including transcription factor, apoptosis and angiogenesis. In this review article, anti-tumor activity of pomegranates and its components or its different type of extracts are described to understand the mechanism of action of pomegranates in cancer therapy. PMID:28989248
Aliyev, R M; Geiger, G
2012-03-01
In addition to the routine therapy, the patients with lateral epicondylitis included into experimental group were subjected to a 12-week cell-stimulation therapy with low-intensity frequency-modulated electric current. The control group received the same routine therapy and sham stimulation (the therapeutic apparatus was not energized). The efficiency of this microcurrent therapy was estimated by comparing medical indices before therapy and at the end of a 12-week therapeutic course using a 10-point pain severity numeric rating scale (NRS) and Roles-Maudsley pain score. The study revealed high therapeutic efficiency of cell-stimulation with low-intensity electric current resulting probably from up-regulation of intracellular transmitters, interleukins, and prostaglandins playing the key role in the regulation of inflammation.
Performance improvement of PEFC modules with cell containing low amount of platinum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyake, Y.; Kadowaki, M.; Hamada, A.
1996-12-31
Cell components of the PEFC module were studied to improve the module performance. The cell performance in a high air utilization region was improved by selecting an air channel design of the separator in which high air flow speed was obtained. Optimization of Teflon{reg_sign} amount on the cathode backing carbon paper also contributed the cell performance. Modifications of the gas channel design and the backing carbon paper were carried out in a 200 cm{sup 2} x 20-cell module and 36-cell module. Dependence of air utilization on module performance was remarkably improved and power density of more than 0.3 W/cm{sup 2}more » was achieved in spite of the platinum amount in the cells was decreased to 1.1 Mg/cm{sup 2}.« less
The chemokine receptor CCR1 is identified in mast cell-derived exosomes.
Liang, Yuting; Qiao, Longwei; Peng, Xia; Cui, Zelin; Yin, Yue; Liao, Huanjin; Jiang, Min; Li, Li
2018-01-01
Mast cells are important effector cells of the immune system, and mast cell-derived exosomes carrying RNAs play a role in immune regulation. However, the molecular function of mast cell-derived exosomes is currently unknown, and here, we identify differentially expressed genes (DEGs) in mast cells and exosomes. We isolated mast cells derived exosomes through differential centrifugation and screened the DEGs from mast cell-derived exosomes, using the GSE25330 array dataset downloaded from the Gene Expression Omnibus database. Biochemical pathways were analyzed by Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on the online tool DAVID. DEGs-associated protein-protein interaction networks (PPIs) were constructed using the STRING database and Cytoscape software. The genes identified from these bioinformatics analyses were verified by qRT-PCR and Western blot in mast cells and exosomes. We identified 2121 DEGs (843 up and 1278 down-regulated genes) in HMC-1 cell-derived exosomes and HMC-1 cells. The up-regulated DEGs were classified into two significant modules. The chemokine receptor CCR1 was screened as a hub gene and enriched in cytokine-mediated signaling pathway in module one. Seven genes, including CCR1, CD9, KIT, TGFBR1, TLR9, TPSAB1 and TPSB2 were screened and validated through qRT-PCR analysis. We have achieved a comprehensive view of the pivotal genes and pathways in mast cells and exosomes and identified CCR1 as a hub gene in mast cell-derived exosomes. Our results provide novel clues with respect to the biological processes through which mast cell-derived exosomes modulate immune responses.
Tobo, Ayaka; Tobo, Masayuki; Nakakura, Takashi; Ebara, Masashi; Tomura, Hideaki; Mogi, Chihiro; Im, Dong-Soon; Murata, Naoya; Kuwabara, Atsushi; Ito, Saki; Fukuda, Hayato; Arisawa, Mitsuhiro; Shuto, Satoshi; Nakaya, Michio; Kurose, Hitoshi; Sato, Koichi; Okajima, Fumikazu
2015-01-01
G protein-coupled receptor 4 (GPR4), previously proposed as the receptor for sphingosylphosphorylcholine, has recently been identified as the proton-sensing G protein-coupled receptor (GPCR) coupling to multiple intracellular signaling pathways, including the Gs protein/cAMP and G13 protein/Rho. In the present study, we characterized some imidazopyridine compounds as GPR4 modulators that modify GPR4 receptor function. In the cells that express proton-sensing GPCRs, including GPR4, OGR1, TDAG8, and G2A, extracellular acidification stimulates serum responsive element (SRE)-driven transcriptional activity, which has been shown to reflect Rho activity, with different proton sensitivities. Imidazopyridine compounds inhibited the moderately acidic pH-induced SRE activity only in GPR4-expressing cells. Acidic pH-stimulated cAMP accumulation, mRNA expression of inflammatory genes, and GPR4 internalization within GPR4-expressing cells were all inhibited by the GPR4 modulator. We further compared the inhibition property of the imidazopyridine compound with psychosine, which has been shown to selectively inhibit actions induced by proton-sensing GPCRs, including GPR4. In the GPR4 mutant, in which certain histidine residues were mutated to phenylalanine, proton sensitivity was significantly shifted to the right, and psychosine failed to further inhibit acidic pH-induced SRE activation. On the other hand, the imidazopyridine compound almost completely inhibited acidic pH-induced action in mutant GPR4. We conclude that some imidazopyridine compounds show specificity to GPR4 as negative allosteric modulators with a different action mode from psychosine, an antagonist susceptible to histidine residues, and are useful for characterizing GPR4-mediated acidic pH-induced biological actions. PMID:26070068
Tobo, Ayaka; Tobo, Masayuki; Nakakura, Takashi; Ebara, Masashi; Tomura, Hideaki; Mogi, Chihiro; Im, Dong-Soon; Murata, Naoya; Kuwabara, Atsushi; Ito, Saki; Fukuda, Hayato; Arisawa, Mitsuhiro; Shuto, Satoshi; Nakaya, Michio; Kurose, Hitoshi; Sato, Koichi; Okajima, Fumikazu
2015-01-01
G protein-coupled receptor 4 (GPR4), previously proposed as the receptor for sphingosylphosphorylcholine, has recently been identified as the proton-sensing G protein-coupled receptor (GPCR) coupling to multiple intracellular signaling pathways, including the Gs protein/cAMP and G13 protein/Rho. In the present study, we characterized some imidazopyridine compounds as GPR4 modulators that modify GPR4 receptor function. In the cells that express proton-sensing GPCRs, including GPR4, OGR1, TDAG8, and G2A, extracellular acidification stimulates serum responsive element (SRE)-driven transcriptional activity, which has been shown to reflect Rho activity, with different proton sensitivities. Imidazopyridine compounds inhibited the moderately acidic pH-induced SRE activity only in GPR4-expressing cells. Acidic pH-stimulated cAMP accumulation, mRNA expression of inflammatory genes, and GPR4 internalization within GPR4-expressing cells were all inhibited by the GPR4 modulator. We further compared the inhibition property of the imidazopyridine compound with psychosine, which has been shown to selectively inhibit actions induced by proton-sensing GPCRs, including GPR4. In the GPR4 mutant, in which certain histidine residues were mutated to phenylalanine, proton sensitivity was significantly shifted to the right, and psychosine failed to further inhibit acidic pH-induced SRE activation. On the other hand, the imidazopyridine compound almost completely inhibited acidic pH-induced action in mutant GPR4. We conclude that some imidazopyridine compounds show specificity to GPR4 as negative allosteric modulators with a different action mode from psychosine, an antagonist susceptible to histidine residues, and are useful for characterizing GPR4-mediated acidic pH-induced biological actions.
Advanced photovoltaic power systems using tandem GaAs/GaSb concentrator modules
NASA Technical Reports Server (NTRS)
Fraas, L. M.; Kuryla, M. S.; Pietila, D. A.; Sundaram, V. S.; Gruenbaum, P. E.; Avery, J. E.; Dihn, V.; Ballantyne, R.; Samuel, C.
1992-01-01
In 1989, Boeing announced the fabrication of a tandem gallium concentrator solar cell with an energy conversion efficiency of 30 percent. This research breakthrough has now led to panels which are significantly smaller, lighter, more radiation resistant, and potentially less expensive than the traditional silicon flat plate electric power supply. The new Boeing tandem concentrator (BTC) module uses an array of lightweight silicone Fresnel lenses mounted on the front side of a light weight aluminum honeycomb structure to focus sunlight onto small area solar cells mounted on a thin back plane. This module design is shown schematically. The tandem solar cell in this new module consists of a gallium arsenide light sensitive cell with a 24 percent energy conversion efficiency stacked on top of a gallium antimonide infrared sensitive cell with a conversion efficiency of 6 percent. This gives a total efficiency 30 percent for the cell-stack. The lens optical efficiency is typically 85 percent. Discounting for efficiency losses associated with lens packing, cell wiring, and cell operating temperature still allows for a module efficiency of 22 percent which leads to a module power density of 300 Watts/sq. m. This performance provides more than twice the power density available from a single crystal silicon flat plate module and at least four times the power density available from amorphous silicon modules. The fact that the lenses are only 0.010 ft. thick and the aluminum foil back plane is only 0.003 ft. thick leads to a very lightweight module. Although the cells are an easy to handle thickness of 0.020 ft., the fact that they are small, occupying one-twenty-fifth of the module area, means that they add little to the module weight. After summing all the module weights and given the high module power, we find that we are able to fabricate BTC modules with specific power of 100 watts/kg.
Johnson, Jeffrey S.; Yin, Pingbo; O'Connor, Kevin N.
2012-01-01
Amplitude modulation (AM) is a common feature of natural sounds, and its detection is biologically important. Even though most sounds are not fully modulated, the majority of physiological studies have focused on fully modulated (100% modulation depth) sounds. We presented AM noise at a range of modulation depths to awake macaque monkeys while recording from neurons in primary auditory cortex (A1). The ability of neurons to detect partial AM with rate and temporal codes was assessed with signal detection methods. On average, single-cell synchrony was as or more sensitive than spike count in modulation detection. Cells are less sensitive to modulation depth if tested away from their best modulation frequency, particularly for temporal measures. Mean neural modulation detection thresholds in A1 are not as sensitive as behavioral thresholds, but with phase locking the most sensitive neurons are more sensitive, suggesting that for temporal measures the lower-envelope principle cannot account for thresholds. Three methods of preanalysis pooling of spike trains (multiunit, similar to convergence from a cortical column; within cell, similar to convergence of cells with matched response properties; across cell, similar to indiscriminate convergence of cells) all result in an increase in neural sensitivity to modulation depth for both temporal and rate codes. For the across-cell method, pooling of a few dozen cells can result in detection thresholds that approximate those of the behaving animal. With synchrony measures, indiscriminate pooling results in sensitive detection of modulation frequencies between 20 and 60 Hz, suggesting that differences in AM response phase are minor in A1. PMID:22422997
Lee, Hye-Yeon; Kim, Juri; Ryu, Jae-Sook; Park, Soon-Jung
2017-08-01
Trichomonas vaginalis is a pathogen that triggers severe immune responses in hosts. T. vaginalis α-actinin 2, Tvα-actinin 2, has been used to diagnose trichomoniasis. This study was undertaken to examine the role of Tvα-actinin 2 as an antigenic molecule to induce immune responses from humans. Western blot analysis using anti-Tvα-actinin 2 antibodies indicated its presence in the secreted proteins of T. vaginalis. ELISA was employed to measure cytokine production by vaginal epithelial cells, prostate cells, mouse dendritic cells (DCs), or T cells stimulated with T. vaginalis or Tvα-actinin 2 protein. Both T. vaginalis and rTvα-actinin 2 induced cytokine production from epithelial cell lines, including IL-10. Moreover, CD4+CD25- regulatory T cells (Treg cells) incubated with rTvα-actinin 2-treated DCs produced high levels of IL-10. These data indicate that Tvα-actinin 2 modulates immune responses via IL-10 production by Treg cells.
Chang, Heng-Kwei
2015-01-01
Retinoic acid (RA), an active metabolite converted from vitamin A, plays an active role in immune function, such as defending against infections and immune regulation. Although RA affects various types of immune cells, including antigen-presenting cells, B lymphocytes, and T lymphocytes, whether it affects natural killer T (NKT) cells remain unknown. In this study, we found that RA decreased interferon (IFN)-γ production by activated NKT cells through T-cell receptor (TCR) and CD28. We also found that RA reduced extracellular signal-regulated kinase (ERK) phosphorylation, but increased phosphatase 2A (PP2A) activity in TCR/CD28-stimulated NKT cells. The increased PP2A activity, at least partly, contributed to the reduction of ERK phosphorylation. Since inhibition of ERK activation decreases IFN-γ production by TCR/CD28-stimulated NKT cells, RA may downregulate IFN-γ production by TCR/CD28-stimulated NKT cells through the PP2A-ERK pathway. Our results demonstrated a novel function of RA in modulating the IFN-γ expression by activated NKT cells. PMID:25343668
New Advanced Technologies in Stem Cell Therapy
2012-09-01
directions for this project include investigating modulation of the IKK/NF-kB pathway as a means to rejuvenate the phenotype of aged muscle stem and...Reference 1. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young...the influence that age plays on the regeneration capacity of the cells. Study Design: We will investigate the effects of cell survival, proliferation
Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes.
Overmiller, Andrew M; Pierluissi, Jennifer A; Wermuth, Peter J; Sauma, Sami; Martinez-Outschoorn, Ubaldo; Tuluc, Madalina; Luginbuhl, Adam; Curry, Joseph; Harshyne, Larry A; Wahl, James K; South, Andrew P; Mahoney, Mỹ G
2017-08-01
Extracellular vesicles (EVs) are nanoscale membrane-derived vesicles that serve as intercellular messengers carrying lipids, proteins, and genetic material. Substantial evidence has shown that cancer-derived EVs, secreted by tumor cells into the blood and other bodily fluids, play a critical role in modulating the tumor microenvironment and affecting the pathogenesis of cancer. Here we demonstrate for the first time that squamous cell carcinoma (SCC) EVs were enriched with the C-terminal fragment of desmoglein 2 (Dsg2), a desmosomal cadherin often overexpressed in malignancies. Overexpression of Dsg2 increased EV release and mitogenic content including epidermal growth factor receptor and c-Src. Inhibiting ectodomain shedding of Dsg2 with the matrix metalloproteinase inhibitor GM6001 resulted in accumulation of full-length Dsg2 in EVs and reduced EV release. When cocultured with Dsg2/green fluorescence protein-expressing SCC cells, green fluorescence protein signal was detected by fluorescence-activated cell sorting analysis in the CD90 + fibroblasts. Furthermore, SCC EVs activated Erk1/2 and Akt signaling and enhanced fibroblast cell proliferation. In vivo, Dsg2 was highly up-regulated in the head and neck SCCs, and EVs isolated from sera of patients with SCC were enriched in Dsg2 C-terminal fragment and epidermal growth factor receptor. This study defines a mechanism by which Dsg2 expression in cancer cells can modulate the tumor microenvironment, a step critical for tumor progression.-Overmiller, A. M., Pierluissi, J. A., Wermuth, P. J., Sauma, S., Martinez-Outschoorn, U., Tuluc, M., Luginbuhl, A., Curry, J., Harshyne, L. A., Wahl, J. K. III, South, A. P., Mahoney, M. G. Desmoglein 2 modulates extracellular vesicle release from squamous cell carcinoma keratinocytes. © FASEB.
Solar Cell Modules with Parallel Oriented Interconnections
NASA Technical Reports Server (NTRS)
1979-01-01
Twenty-four solar modules, half of which were 48 cells in an all-series electrical configuration and half of a six parallel cells by eight series cells were provided. Upon delivery of environmentally tested modules, low power outputs were discovered. These low power modules were determined to have cracked cells which were thought to cause the low output power. The cracks tended to be linear or circular which were caused by different stressing mechanisms. These stressing mechanisms were fully explored. Efforts were undertaken to determine the causes of cell fracture. This resulted in module design and process modifications. The design and process changes were subsequently implemented in production.
Hot-spot qualification testing of concentrator modules
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Sugimura, R. S.; Ross, R. G., Jr.
1987-01-01
Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current, forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator-module hot-spot qualification test is the test developed for flat-plate modules, issues such as providing cell illumination introduce additional complexities into the testing procedure. The results indicate that the same general guidelines apply to protecting concentrator modules from hot-spot stressing as apply to flat-plate modules, and recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. A method for determining the cell temperature in the laboratory or in the field is discussed.
Design and research of focusable secondary microprism in concentrating photovoltaic module
NASA Astrophysics Data System (ADS)
Guo, Limin; Liu, Youqiang; Zhao, Guoming; Wang, Zhiyong
2017-09-01
Low tracking accuracy of tracker, wind induced vibration of structure and lens deformation by temperature lead to non-vertical incident irradiation to the Fresnel lens, which necessitates a secondary concentrator in actual engineering application of concentrating photovoltaic module. This paper adds a secondary focusable microprism between Fresnel lens and solar cells in order to improve optical efficiency. The 3D model of microprism is established by SOLIDWORDS and main parameters are optimized using ZEMAX. Results show that combination of Fresnel lens and focusable microprism achieves a higher energy when the secondary microprism upper spherical diameter is 18mm, the opposite side face included angle is 116°, and the side length of the bottom is 2.15mm. The highest energy of solar cell surface can reach 2.4998W, improving 33.2%, and the module height with the secondary microprism is 88mm, which reduces by 5.5mm without secondary microprism. Experimental results show that the optical efficiency of 400X concentrating module system is 88.67%, the acceptance angle is ±1.2°, the 400X module maximum output power is 144.7W.
Liquid crystal modulator with ultra-wide dynamic range and adjustable driving voltage.
Wang, Xing-jun; Huang, Zhang-di; Feng, Jing; Chen, Xiang-fei; Liang, Xiao; Lu, Yan-qing
2008-08-18
We demonstrated a reflective-type liquid crystal (LC) intensity modulator in 1550 nm telecomm band. An effective way to compensate the residual phase of a LC cell is proposed. With the adjustment of a true zero-order quarter wave plate and enhanced by total internal reflection induced birefringence, over 53 dB dynamic range was achieved, which is much desired for some high-end optical communication, infrared scene projection applications. In addition, the driving voltages were decreased and adjustable. Mechanical and spectral tolerance measurements show that our LC modulator is quite stable. Further applications of our experimental setup were discussed including bio-sensors and high speed modulators.
Concentrator hot-spot testing, phase 1
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.
1987-01-01
Results of a study to determine the hot-spot susceptibility of concentrator cells, to provide a hot-spot qualification test for concentrator modules, and to provide guidelines for reducing hot-spot susceptibility are presented. Hot-spot heating occurs in a photovoltaic module when the short-circuit current of a cell is lower than the string operating current forcing the cell into reverse bias with a concurrent power dissipation. Although the basis for the concentrator module hot-spot qualification test is the test developed for flat-plate modules, issues, such as providing cell illumination, introduce additional complexities into the testing procedure. The same general guidelines apply for protecting concentrator modules from hot-spot stressing as apply to flat-plate modules. Therefore, recommendations are made on the number of bypass diodes required per given number of series cells per module or source circuit. In addition, a new method for determining the cell temperature in the laboratory or in the field is discussed.
Flexible, FEP-Teflon covered solar cell module development
NASA Technical Reports Server (NTRS)
Rauschenbach, H. S.; Cannady, M. D.
1976-01-01
Techniques and equipment were developed for the large scale, low-cost fabrication of lightweight, roll-up and fold-up, FEP-Teflon encapsulated solar cell modules. Modules were fabricated by interconnecting solderless single-crystal silicon solar cells and heat laminating them at approximately 300 C between layers of optically clear FEP and to a loadbearing Kapton substrate sheet. Modules were fabricated from both conventional and wraparound contact solar cells. A heat seal technique was developed for mechanically interconnecting modules into an array. The electrical interconnections for both roll-up and fold-up arrays were also developed. The use of parallel-gap resistance welding, ultrasonic bonding, and thermocompression bonding processes for attaching interconnects to solar cells were investigated. Parallel-gap welding was found to be best suited for interconnecting the solderless solar cells into modules. Details of the fabrication equipment, fabrication processes, module and interconnect designs, environmental test equipment, and test results are presented.
Caveolae: a regulatory platform for nutritional modulation of inflammatory diseases
Layne, Joseph; Majkova, Zuzana; Smart, Eric J.; Toborek, Michal; Hennig, Bernhard
2010-01-01
Dietary intervention strategies have proven to be an effective means of decreasing several risk factors associated with the development of atherosclerosis. Endothelial cell dysfunction influences vascular inflammation and is involved in promoting the earliest stages of lesion formation. Caveolae are lipid raft microdomains abundant within the plasma membrane of endothelial cells and are responsible for mediating receptor-mediated signal transduction. Caveolae have been implicated in the regulation of enzymes associated with several key signaling pathways capable of determining intracellular redox status. Diet and plasma-derived nutrients may modulate an inflammatory outcome by interacting with and altering caveolae-associated cellular signaling. For example, omega-3 fatty acids and several polyphenolics have been shown to improve endothelial cell function by decreasing the formation of ROS and increasing NO bioavailability, events associated with altered caveolae composition. Thus, nutritional modulation of caveolae-mediated signaling events may provide an opportunity to ameliorate inflammatory signaling pathways capable of promoting the formation of vascular diseases, including atherosclerosis. PMID:21292468
THP-1 cell line: an in vitro cell model for immune modulation approach.
Chanput, Wasaporn; Mes, Jurriaan J; Wichers, Harry J
2014-11-01
THP-1 is a human leukemia monocytic cell line, which has been extensively used to study monocyte/macrophage functions, mechanisms, signaling pathways, and nutrient and drug transport. This cell line has become a common model to estimate modulation of monocyte and macrophage activities. This review attempts to summarize and discuss recent publications related to the THP-1 cell model. An overview on the biological similarities and dissimilarities between the THP-1 cell line and human peripheral blood mononuclear cell (PBMC) derived-monocytes and macrophages, as well as the advantages and disadvantages of the use of THP-1 cell line, is included. The review summarizes different published co-cultivation studies of THP-1 cells with other cell types, for instance, intestinal cells, adipocytes, T-lymphocytes, platelets, and vascular smooth muscle cells, which can be an option to study cell-cell interaction in vitro and can be an approach to better mimic in vivo conditions. Macrophage polarization is a relatively new topic which gains interest for which the THP-1 cell line also may be relevant. Besides that an overview of newly released commercial THP-1 engineered-reporter cells and THP-1 inflammasome test-cells is also given. Evaluation of recent papers leads to the conclusion that the THP-1 cell line has unique characteristics as a model to investigate/estimate immune-modulating effects of compounds in both activated and resting conditions of the cells. Although the THP-1 response can hint to potential responses that might occur ex vivo or in vivo, these should be, however, validated by in vivo studies to draw more definite conclusions. Copyright © 2013. Published by Elsevier B.V.
Gao, Bo; Shao, Qin; Choudhry, Hani; Marcus, Victoria; Dong, Kung; Ragoussis, Jiannis; Gao, Zu-Hua
2016-09-01
Approximately 9% of cancer-related deaths are caused by colorectal cancer (CRC). CRC patients are prone to liver metastasis, which is the most important cause for the high CRC mortality rate. Understanding the molecular mechanism of CRC liver metastasis could help us to find novel targets for the effective treatment of this deadly disease. Using weighted gene co-expression network analysis on the sequencing data of CRC with and with metastasis, we identified 5 colorectal cancer liver metastasis related modules which were labeled as brown, blue, grey, yellow and turquoise. In the brown module, which represents the metastatic tumor in the liver, gene ontology (GO) analysis revealed functions including the G-protein coupled receptor protein signaling pathway, epithelial cell differentiation and cell surface receptor linked signal transduction. In the blue module, which represents the primary CRC that has metastasized, GO analysis showed that the genes were mainly enriched in GO terms including G-protein coupled receptor protein signaling pathway, cell surface receptor linked signal transduction, and negative regulation of cell differentiation. In the yellow and turquoise modules, which represent the primary non-metastatic CRC, 13 downregulated CRC liver metastasis-related candidate miRNAs were identified (e.g. hsa-miR-204, hsa-miR-455, etc.). Furthermore, analyzing the DrugBank database and mining the literature identified 25 and 12 candidate drugs that could potentially block the metastatic processes of the primary tumor and inhibit the progression of metastatic tumors in the liver, respectively. Data generated from this study not only furthers our understanding of the genetic alterations that drive the metastatic process, but also guides the development of molecular-targeted therapy of colorectal cancer liver metastasis.
Post-transcriptional modifications in development and stem cells.
Frye, Michaela; Blanco, Sandra
2016-11-01
Cells adapt to their environment by linking external stimuli to an intricate network of transcriptional, post-transcriptional and translational processes. Among these, mechanisms that couple environmental cues to the regulation of protein translation are not well understood. Chemical modifications of RNA allow rapid cellular responses to external stimuli by modulating a wide range of fundamental biochemical properties and processes, including the stability, splicing and translation of messenger RNA. In this Review, we focus on the occurrence of N 6 -methyladenosine (m 6 A), 5-methylcytosine (m 5 C) and pseudouridine (Ψ) in RNA, and describe how these RNA modifications are implicated in regulating pluripotency, stem cell self-renewal and fate specification. Both post-transcriptional modifications and the enzymes that catalyse them modulate stem cell differentiation pathways and are essential for normal development. © 2016. Published by The Company of Biologists Ltd.
Dron, M; Modjtahedi, N; Brison, O; Tovey, M G
1986-01-01
Treatment of interferon-sensitive Daudi cell with electrophoretically pure human interferon alpha markedly reduced the level of c-myc mRNA, increased the level of class I histocompatibility antigen (HLA) mRNA, and did not affect the level of actin mRNA within the same cells. In contrast, the level of c-myc mRNA or HLA mRNA did not change significantly following interferon treatment in different clones of Daudi cells selected for resistance to the antiproliferative action of interferon. These cells possessed interferon receptors, however, and responded to interferon modulation of other genes, including 2',5' oligoisoadenylate synthetase (M. G. Tovey, M. Dron, K. E. Mogensen, B. Lebleu, N. Metchi, and J. Begon-Lours, Guymarho, J. Gen. Virol., 64:2649-2653, 1983; M. Dron, M. G. Tovey, and P. Eid, J. Gen. Virol., 66:787-795, 1985). A clone of interferon-resistant Daudi cells which had reverted to almost complete sensitivity to both the antiproliferative action of interferon and the interferon-enhanced expression of HLA mRNA remained refractory, however, to interferon modulation of c-myc expression, suggesting that a reduced level of c-myc mRNA may not be a prerequisite for inhibition of cell proliferation in interferon-treated cells. Our results do not exclude the possibility, however, that posttranscriptional modification(s) of c-myc expression may precede an inhibition of cell proliferation in interferon-treated cells. Images PMID:3785169
Excoffon, Katherine J D Ashbourne; Hruska-Hageman, Alesia; Klotz, Michael; Traver, Geri L; Zabner, Joseph
2004-09-01
The coxsackie and adenovirus receptor (CAR) plays a role in viral infection, maintenance of the junction adhesion complex in polarized epithelia, and modulation of cellular growth properties. As a viral receptor, the C-terminus appears to play no role indicating that the major function of CAR is to tether the virus to the cell. By contrast, the C-terminus is known to play a role in cellular localization and probably has a significant function in CAR-mediated adhesion and cell growth properties. We hypothesized that the CAR PDZ (PSD-95/Disc-large/ZO-1) binding motif interacts with PDZ-domain-containing proteins to modulate the cellular phenotype. CAR was modified by deleting the last four amino acids (CARDeltaGSIV) and evaluated for cell-cell adhesion in polarized primary human airway epithelia and growth characteristics in stably transfected L-cells. Although ablation of the CAR PDZ-binding motif did not affect adenoviral infection, it did have a significant effect both on cell-cell adhesion and on cell growth. Expression of CARDeltaGSIV failed to increase the transepithelial resistance in polarized epithelia to the same degree as wild-type CAR and failed to act as a growth modulator in L-cells. Furthermore, we provide evidence for three new CAR interacting partners, including MAGI-1b, PICK1 and PSD-95. CAR appears to interact with several distinct PDZ-domain-containing proteins and may exert its biological function through these interactions.
Solar Cell Efficiency Tables (Version 51)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Levi, Dean H; Green, Martin A.; Hishikawa, Yoshihiro
Consolidated tables showing an extensive listing of the highest independently confirmed efficiencies for solar cells and modules are presented. Guidelines for inclusion of results into these tables are outlined and new entries since July 2017 are reviewed, together with progress over the last 25 years. Appendices are included documenting area definitions and also listing recognised test centres.
Theory-Driven Models for Correcting Fight or Flight Imbalance in Gulf War Illness
2013-09-01
models require the inclusion of positive receptor feedback dynamics 483 to produce mutlistability, these effects become inherent in more coarse, but...separately. In this modified immune module innate immune cells (ICells) produce cytokines that regulate the innate immune response (IIR) including...Th1 type adaptive immune response (T1Cell), producing Th1 pro-inflammatory cytokines (T1Cyt) including IL-2, interferon-gamma (IFN-γ), and tumor
Laminated photovoltaic modules using back-contact solar cells
Gee, James M.; Garrett, Stephen E.; Morgan, William P.; Worobey, Walter
1999-09-14
Photovoltaic modules which comprise back-contact solar cells, such as back-contact crystalline silicon solar cells, positioned atop electrically conductive circuit elements affixed to a planar support so that a circuit capable of generating electric power is created. The modules are encapsulated using encapsulant materials such as EVA which are commonly used in photovoltaic module manufacture. The module designs allow multiple cells to be electrically connected in a single encapsulation step rather than by sequential soldering which characterizes the currently used commercial practices.
An Effective Model of the Retinoic Acid Induced HL-60 Differentiation Program.
Tasseff, Ryan; Jensen, Holly A; Congleton, Johanna; Dai, David; Rogers, Katharine V; Sagar, Adithya; Bunaciu, Rodica P; Yen, Andrew; Varner, Jeffrey D
2017-10-30
In this study, we present an effective model All-Trans Retinoic Acid (ATRA)-induced differentiation of HL-60 cells. The model describes reinforcing feedback between an ATRA-inducible signalsome complex involving many proteins including Vav1, a guanine nucleotide exchange factor, and the activation of the mitogen activated protein kinase (MAPK) cascade. We decomposed the effective model into three modules; a signal initiation module that sensed and transformed an ATRA signal into program activation signals; a signal integration module that controlled the expression of upstream transcription factors; and a phenotype module which encoded the expression of functional differentiation markers from the ATRA-inducible transcription factors. We identified an ensemble of effective model parameters using measurements taken from ATRA-induced HL-60 cells. Using these parameters, model analysis predicted that MAPK activation was bistable as a function of ATRA exposure. Conformational experiments supported ATRA-induced bistability. Additionally, the model captured intermediate and phenotypic gene expression data. Knockout analysis suggested Gfi-1 and PPARg were critical to the ATRAinduced differentiation program. These findings, combined with other literature evidence, suggested that reinforcing feedback is central to hyperactive signaling in a diversity of cell fate programs.
Topographical maps as complex networks
NASA Astrophysics Data System (ADS)
da Fontoura Costa, Luciano; Diambra, Luis
2005-02-01
The neuronal networks in the mammalian cortex are characterized by the coexistence of hierarchy, modularity, short and long range interactions, spatial correlations, and topographical connections. Particularly interesting, the latter type of organization implies special demands on developing systems in order to achieve precise maps preserving spatial adjacencies, even at the expense of isometry. Although the object of intensive biological research, the elucidation of the main anatomic-functional purposes of the ubiquitous topographical connections in the mammalian brain remains an elusive issue. The present work reports on how recent results from complex network formalism can be used to quantify and model the effect of topographical connections between neuronal cells over the connectivity of the network. While the topographical mapping between two cortical modules is achieved by connecting nearest cells from each module, four kinds of network models are adopted for implementing intramodular connections, including random, preferential-attachment, short-range, and long-range networks. It is shown that, though spatially uniform and simple, topographical connections between modules can lead to major changes in the network properties in some specific cases, depending on intramodular connections schemes, fostering more effective intercommunication between the involved neuronal cells and modules. The possible implications of such effects on cortical operation are discussed.
Modeling Stochastic Kinetics of Molecular Machines at Multiple Levels: From Molecules to Modules
Chowdhury, Debashish
2013-01-01
A molecular machine is either a single macromolecule or a macromolecular complex. In spite of the striking superficial similarities between these natural nanomachines and their man-made macroscopic counterparts, there are crucial differences. Molecular machines in a living cell operate stochastically in an isothermal environment far from thermodynamic equilibrium. In this mini-review we present a catalog of the molecular machines and an inventory of the essential toolbox for theoretically modeling these machines. The tool kits include 1), nonequilibrium statistical-physics techniques for modeling machines and machine-driven processes; and 2), statistical-inference methods for reverse engineering a functional machine from the empirical data. The cell is often likened to a microfactory in which the machineries are organized in modular fashion; each module consists of strongly coupled multiple machines, but different modules interact weakly with each other. This microfactory has its own automated supply chain and delivery system. Buoyed by the success achieved in modeling individual molecular machines, we advocate integration of these models in the near future to develop models of functional modules. A system-level description of the cell from the perspective of molecular machinery (the mechanome) is likely to emerge from further integrations that we envisage here. PMID:23746505
Light adaptation alters inner retinal inhibition to shape OFF retinal pathway signaling
Mazade, Reece E.
2016-01-01
The retina adjusts its signaling gain over a wide range of light levels. A functional result of this is increased visual acuity at brighter luminance levels (light adaptation) due to shifts in the excitatory center-inhibitory surround receptive field parameters of ganglion cells that increases their sensitivity to smaller light stimuli. Recent work supports the idea that changes in ganglion cell spatial sensitivity with background luminance are due in part to inner retinal mechanisms, possibly including modulation of inhibition onto bipolar cells. To determine how the receptive fields of OFF cone bipolar cells may contribute to changes in ganglion cell resolution, the spatial extent and magnitude of inhibitory and excitatory inputs were measured from OFF bipolar cells under dark- and light-adapted conditions. There was no change in the OFF bipolar cell excitatory input with light adaptation; however, the spatial distributions of inhibitory inputs, including both glycinergic and GABAergic sources, became significantly narrower, smaller, and more transient. The magnitude and size of the OFF bipolar cell center-surround receptive fields as well as light-adapted changes in resting membrane potential were incorporated into a spatial model of OFF bipolar cell output to the downstream ganglion cells, which predicted an increase in signal output strength with light adaptation. We show a prominent role for inner retinal spatial signals in modulating the modeled strength of bipolar cell output to potentially play a role in ganglion cell visual sensitivity and acuity. PMID:26912599
Shen, Haoran; Liang, Zhou; Zheng, Saihua; Li, Xuelian
2017-11-01
The purpose of this study was to identify promising candidate genes and pathways in polycystic ovary syndrome (PCOS). Microarray dataset GSE345269 obtained from the Gene Expression Omnibus database includes 7 granulosa cell samples from PCOS patients, and 3 normal granulosa cell samples. Differentially expressed genes (DEGs) were screened between PCOS and normal samples. Pathway enrichment analysis was conducted for DEGs using ClueGO and CluePedia plugin of Cytoscape. A Reactome functional interaction (FI) network of the DEGs was built using ReactomeFIViz, and then network modules were extracted, followed by pathway enrichment analysis for the modules. Expression of DEGs in granulosa cell samples was measured using quantitative RT-PCR. A total of 674 DEGs were retained, which were significantly enriched with inflammation and immune-related pathways. Eight modules were extracted from the Reactome FI network. Pathway enrichment analysis revealed significant pathways of each module: module 0, Regulation of RhoA activity and Signaling by Rho GTPases pathways shared ARHGAP4 and ARHGAP9; module 2, GlycoProtein VI-mediated activation cascade pathway was enriched with RHOG; module 3, Thromboxane A2 receptor signaling, Chemokine signaling pathway, CXCR4-mediated signaling events pathways were enriched with LYN, the hub gene of module 3. Results of RT-PCR confirmed the finding of the bioinformatic analysis that ARHGAP4, ARHGAP9, RHOG and LYN were significantly upregulated in PCOS. RhoA-related pathways, GlycoProtein VI-mediated activation cascade pathway, ARHGAP4, ARHGAP9, RHOG and LYN may be involved in the pathogenesis of PCOS.
Sanderson, Julie; Dartt, Darlene A.; Trinkaus-Randall, Vickery; Pintor, Jesus; Civan, Mortimer M.; Delamere, Nicholas A.; Fletcher, Erica L.; Salt, Thomas E.; Grosche, Antje; Mitchell, Claire H.
2014-01-01
This review highlights recent findings that describe how purines modulate the physiological and pathophysiological responses of ocular tissues. For example, in lacrimal glands the cross-talk between P2X7 receptors and both M3 muscarinic receptors and α1D-adrenergic receptors can influence tear secretion. In the cornea, purines lead to post-translational modification of EGFR and structural proteins that participate in wound repair in the epithelium and influence the expression of matrix proteins in the stroma. Purines act at receptors on both the trabecular meshwork and ciliary epithelium to modulate intraocular pressure (IOP); ATP-release pathways of inflow and outflow cells differ, possibly permitting differential modulation of adenosine delivery. Modulators of trabecular meshwork cell ATP release include cell volume, stretch, extracellular Ca2+ concentration, oxidation state, actin remodeling and possibly endogenous cardiotonic steroids. In the lens, osmotic stress leads to ATP release following TRPV4 activation upstream of hemichannel opening. In the anterior eye, diadenosine polyphosphates such as Ap4A act at P2 receptors to modulate the rate and composition of tear secretion, impact corneal wound healing and lower IOP. The Gq11-coupled P2Y1-receptor contributes to volume control in Müller cells and thus the retina. P2X receptors are expressed in neurons in the inner and outer retina and contribute to visual processing as well as the demise of retinal ganglion cells. In RPE cells, the balance between extracellular ATP and adenosine may modulate lysosomal pH and the rate of lipofuscin formation. In optic nerve head astrocytes, mechanosensitive ATP release via pannexin hemichannels, coupled with stretch-dependent upregulation of pannexins, provides a mechanism for ATP signaling in chronic glaucoma. With so many receptors linked to divergent functions throughout the eye, ensuring the transmitters remain local and stimulation is restricted to the intended target may be a key issue in understanding how physiological signaling becomes pathological in ocular disease. PMID:25151301
Lewis Research Center battery overview
NASA Technical Reports Server (NTRS)
Odonnell, Patricia
1993-01-01
The topics covered are presented in viewgraph form and include the following: the Advanced Communications Technology Satellite; the Space Station Freedom (SSF) photovoltaic power module division; Ni/H2 battery and cell design; individual pressure vessel (IPV) nickel-hydrogen cell testing SSF support; the LeRC Electrochemical Technology Branch; improved design IPV nickel-hydrogen cells; advanced technology for IPV nickel-hydrogen flight cells; a lightweight nickel-hydrogen cell; bipolar nickel-hydrogen battery development and technology; aerospace nickel-metal hydride cells; the NASA Sodium-Sulfur Cell Technology Flight Experiment; and the lithium-carbon dioxide battery thermodynamic model.
Modulation of lens cell adhesion molecules by particle beams
NASA Technical Reports Server (NTRS)
McNamara, M. P.; Bjornstad, K. A.; Chang, P. Y.; Chou, W.; Lockett, S. J.; Blakely, E. A.
2001-01-01
Cell adhesion molecules (CAMs) are proteins which anchor cells to each other and to the extracellular matrix (ECM), but whose functions also include signal transduction, differentiation, and apoptosis. We are testing a hypothesis that particle radiations modulate CAM expression and this contributes to radiation-induced lens opacification. We observed dose-dependent changes in the expression of beta 1-integrin and ICAM-1 in exponentially-growing and confluent cells of a differentiating human lens epithelial cell model after exposure to particle beams. Human lens epithelial (HLE) cells, less than 10 passages after their initial culture from fetal tissue, were grown on bovine corneal endothelial cell-derived ECM in medium containing 15% fetal bovine serum and supplemented with 5 ng/ml basic fibroblast growth factor (FGF-2). Multiple cell populations at three different stages of differentiation were prepared for experiment: cells in exponential growth, and cells at 5 and 10 days post-confluence. The differentiation status of cells was characterized morphologically by digital image analysis, and biochemically by Western blotting using lens epithelial and fiber cell-specific markers. Cultures were irradiated with single doses (4, 8 or 12 Gy) of 55 MeV protons and, along with unirradiated control samples, were fixed using -20 degrees C methanol at 6 hours after exposure. Replicate experiments and similar experiments with helium ions are in progress. The intracellular localization of beta 1-integrin and ICAM-1 was detected by immunofluorescence using monoclonal antibodies specific for each CAM. Cells known to express each CAM were also processed as positive controls. Both exponentially-growing and confluent, differentiating cells demonstrated a dramatic proton-dose-dependent modulation (upregulation for exponential cells, downregulation for confluent cells) and a change in the intracellular distribution of the beta 1-integrin, compared to unirradiated controls. In contrast, there was a dose-dependent increase in ICAM-1 immunofluorescence in confluent, but not exponentially-growing cells. These results suggest that proton irradiation downregulates beta 1-integrin and upregulates ICAM-1, potentially contributing to cell death or to aberrant differentiation via modulation of anchorage and/or signal transduction functions. Quantification of the expression levels of the CAMs by Western analysis is in progress.
LeBouder, Emmanuel; Rey-Nores, Julia E; Raby, Anne-Catherine; Affolter, Michael; Vidal, Karine; Thornton, Catherine A; Labéta, Mario O
2006-03-15
The mechanisms controlling innate microbial recognition in the neonatal gut are still to be fully understood. We have sought specific regulatory mechanisms operating in human breast milk relating to TLR-mediated microbial recognition. In this study, we report a specific and differential modulatory effect of early samples (days 1-5) of breast milk on ligand-induced cell stimulation via TLRs. Although a negative modulation was exerted on TLR2 and TLR3-mediated responses, those via TLR4 and TLR5 were enhanced. This effect was observed in human adult and fetal intestinal epithelial cell lines, monocytes, dendritic cells, and PBMC as well as neonatal blood. In the latter case, milk compensated for the low capacity of neonatal plasma to support responses to LPS. Cell stimulation via the IL-1R or TNFR was not modulated by milk. This, together with the differential effect on TLR activation, suggested that the primary effect of milk is exerted upstream of signaling proximal to TLR ligand recognition. The analysis of TLR4-mediated gene expression, used as a model system, showed that milk modulated TLR-related genes differently, including those coding for signal intermediates and regulators. A proteinaceous milk component of > or =80 kDa was found to be responsible for the effect on TLR4. Notably, infant milk formulations did not reproduce the modulatory activity of breast milk. Together, these findings reveal an unrecognized function of human milk, namely, its capacity to influence neonatal microbial recognition by modulating TLR-mediated responses specifically and differentially. This in turn suggests the existence of novel mechanisms regulating TLR activation.
Minutoli, Letteria; Rinaldi, Mariagrazia; Marini, Herbert; Irrera, Natasha; Crea, Giovanni; Lorenzini, Cesare; Puzzolo, Domenico; Valenti, Andrea; Pisani, Antonina; Adamo, Elena B.; Altavilla, Domenica; Squadrito, Francesco; Micali, Antonio
2016-01-01
Benign prostatic hyperplasia (BPH) is a chronic condition common in older men that can result in bothersome lower urinary tract symptoms. The molecular mechanisms and networks underlying the development and the progression of the disease are still far from being fully understood. BPH results from smooth muscle cell and epithelial cell proliferation, primarily within the transition zone of the prostate. Apoptosis and inflammation play important roles in the control of cell growth and in the maintenance of tissue homeostasis. Disturbances in molecular mechanisms of apoptosis machinery have been linked to BPH. Increased levels of the glycoprotein Dickkopf-related protein 3 in BPH cause an inhibition of the apoptosis machinery through a reduction in B cell lymphoma (Bcl)-2 associated X protein (Bax) expression. Inhibitors of apoptosis proteins influence cell death by direct inhibition of caspases and modulation of the transcription factor nuclear factor-κB. Current pharmacotherapy targets either the static component of BPH, including finasteride and dutasteride, or the dynamic component of BPH, including α-adrenoceptor antagonists such as tamsulosin and alfuzosin. Both these classes of drugs significantly interfere with the apoptosis machinery. Furthermore, phytotherapic supplements and new drugs may also modulate several molecular steps of apoptosis. PMID:27529214
Minutoli, Letteria; Rinaldi, Mariagrazia; Marini, Herbert; Irrera, Natasha; Crea, Giovanni; Lorenzini, Cesare; Puzzolo, Domenico; Valenti, Andrea; Pisani, Antonina; Adamo, Elena B; Altavilla, Domenica; Squadrito, Francesco; Micali, Antonio
2016-08-11
Benign prostatic hyperplasia (BPH) is a chronic condition common in older men that can result in bothersome lower urinary tract symptoms. The molecular mechanisms and networks underlying the development and the progression of the disease are still far from being fully understood. BPH results from smooth muscle cell and epithelial cell proliferation, primarily within the transition zone of the prostate. Apoptosis and inflammation play important roles in the control of cell growth and in the maintenance of tissue homeostasis. Disturbances in molecular mechanisms of apoptosis machinery have been linked to BPH. Increased levels of the glycoprotein Dickkopf-related protein 3 in BPH cause an inhibition of the apoptosis machinery through a reduction in B cell lymphoma (Bcl)-2 associated X protein (Bax) expression. Inhibitors of apoptosis proteins influence cell death by direct inhibition of caspases and modulation of the transcription factor nuclear factor-κB. Current pharmacotherapy targets either the static component of BPH, including finasteride and dutasteride, or the dynamic component of BPH, including α-adrenoceptor antagonists such as tamsulosin and alfuzosin. Both these classes of drugs significantly interfere with the apoptosis machinery. Furthermore, phytotherapic supplements and new drugs may also modulate several molecular steps of apoptosis.
Electrical isolation of component cells in monolithically interconnected modules
Wanlass, Mark W.
2001-01-01
A monolithically interconnected photovoltaic module having cells which are electrically connected which comprises a substrate, a plurality of cells formed over the substrate, each cell including a primary absorber layer having a light receiving surface and a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, and a cell isolation diode layer having a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, the diode layer intervening the substrate and the absorber layer wherein the absorber and diode interfacial regions of a same conductivity type orientation, the diode layer having a reverse-breakdown voltage sufficient to prevent inter-cell shunting, and each cell electrically isolated from adjacent cells with a vertical trench trough the pn-junction of the diode layer, interconnects disposed in the trenches contacting the absorber regions of adjacent cells which are doped an opposite conductivity type, and electrical contacts.
Block 2 solar cell module environmental test program
NASA Technical Reports Server (NTRS)
Holloway, K. L.
1978-01-01
Environmental tests were performed of on 76 solar cell modules produced by four different manufacturers. The following tests were performed: (1) 28 day temperature and humidity; (2) rain and icing; (3) salt fog; (4) sand and dust; (5) vacuum/steam/pressure; (6) fungus; (7) temperature/altitude; and (8) thermal shock. Environmental testing of the solar cell modules produced cracked cells, cracked encapsulant and encapsulant delaminations on various modules. In addition, there was some minor cell and frame corrosion.
IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells.
Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana
2016-11-07
The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK -shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK -shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3'- and 5'-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.
IBTK Differently Modulates Gene Expression and RNA Splicing in HeLa and K562 Cells
Fiume, Giuseppe; Scialdone, Annarita; Rizzo, Francesca; De Filippo, Maria Rosaria; Laudanna, Carmelo; Albano, Francesco; Golino, Gaetanina; Vecchio, Eleonora; Pontoriero, Marilena; Mimmi, Selena; Ceglia, Simona; Pisano, Antonio; Iaccino, Enrico; Palmieri, Camillo; Paduano, Sergio; Viglietto, Giuseppe; Weisz, Alessandro; Scala, Giuseppe; Quinto, Ileana
2016-01-01
The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3′- and 5′-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein. PMID:27827994
Degradation of Silicone Encapsulants in CPV Optics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Can; Miller, David C.; Tappan, Ian A.
High efficiency multijunction solar cells in terrestrial concentrator photovoltaic (CPV) modules are becoming an increasingly cost effective and viable option in utility scale power generation. As with other utility scale photovoltaics, CPV modules need to guarantee operational lifetimes of at least 25 years. The reliability of optical elements in CPV modules poses a unique materials challenge due to the increased UV irradiance and enhanced temperature cycling associated with concentrated solar flux. The polymeric and thin film materials used in the optical elements are especially susceptible to UV damage, diurnal temperature cycling and active chemical species from the environment. We usedmore » fracture mechanics approaches to study the degradation modes including: the adhesion between the encapsulant and the cell or secondary optical element; and the cohesion of the encapsulant itself. Understanding the underlying mechanisms of materials degradation under elevated stress conditions is critical for commercialization of CPV technology and can offer unique insights into degradation modes in similar encapsulants used in other photovoltaic modules.« less
Degradation of Silicone Encapsulants in CPV Optics: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miller, David C.; Tappan, Ian A.; Cai, Can
High efficiency multijunction solar cells in terrestrial concentrator photovoltaic (CPV) modules are becoming an increasingly cost effective and viable option in utility scale power generation. As with other utility scale photovoltaics, CPV modules need to guarantee operational lifetimes of at least 25 years. The reliability of optical elements in CPV modules poses a unique materials challenge due to the increased UV irradiance and enhanced temperature cycling associated with concentrated solar flux. The polymeric and thin film materials used in the optical elements are especially susceptible to UV damage, diurnal temperature cycling and active chemical species from the environment. We usedmore » fracture mechanics approaches to study the degradation modes including: the adhesion between the encapsulant and the cell or secondary optical element; and the cohesion of the encapsulant itself. Understanding the underlying mechanisms of materials degradation under elevated stress conditions is critical for commercialization of CPV technology and can offer unique insights into degradation modes in similar encapsulants used in other photovoltaic modules.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-25
... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Preliminary... crystalline silicon photovoltaic cells, whether or not assembled into modules (``solar cells''), from the... names of these companies in the table in the ``Preliminary Determination'' section in the solar cells...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guha, S.
This report describes the research program intended to expand, enhance, and accelerate knowledge and capabilities for developing high-performance, two-terminal multijunction amorphous silicon (a-Si) alloy cells, and modules with low manufacturing cost and high reliability. United Solar uses a spectrum-splitting, triple-junction cell structure. The top cell uses an amorphous silicon alloy of {approx}1.8-eV bandgap to absorb blue photons. The middle cell uses an amorphous silicon germanium alloy ({approx}20% germanium) of {approx}1.6-eV bandgap to capture green photons. The bottom cell has {approx}40% germanium to reduce the bandgap to {approx}1.4-eV to capture red photons. The cells are deposited on a stainless-steel substrate withmore » a predeposited silver/zinc oxide back reflector to facilitate light-trapping. A thin layer of antireflection coating is applied to the top of the cell to reduce reflection loss. The major research activities conducted under this program were: (1) Fundamental studies to improve our understanding of materials and devices; the work included developing and analyzing a-Si alloy and a-SiGe alloy materials prepared near the threshold of amorphous-to-microcrystalline transition and studying solar cells fabricated using these materials. (2) Deposition of small-area cells using a radio-frequency technique to obtain higher deposition rates. (3) Deposition of small-area cells using a modified very high frequency technique to obtain higher deposition rates. (4) Large-area cell research to obtain the highest module efficiency. (5) Optimization of solar cells and modules fabricated using production parameters in a large-area reactor.« less
C-terminal tyrosine residues modulate the fusion activity of the Hendra virus fusion protein
Popa, Andreea; Pager, Cara Teresia; Dutch, Rebecca Ellis
2011-01-01
The paramyxovirus family includes important human pathogens such as measles, mumps, respiratory syncytial virus and the recently emerged, highly pathogenic Hendra and Nipah viruses. The viral fusion (F) protein plays critical roles in infection, promoting both the viral-cell membrane fusion events needed for viral entry as well as cell-cell fusion events leading to syncytia formation. We describe the surprising finding that addition of the short epitope HA tag to the cytoplasmic tail (CT) of the Hendra virus F protein leads to a significant increase in cell-cell membrane fusion. This increase was not due to alterations in surface expression, cleavage state, or association with lipid microdomains. Addition of a Myc tag of similar length did not alter Hendra F fusion activity, indicating that the observed stimulation was not solely a result of lengthening the CT. Three tyrosine residues within the HA tag were critical for the increase in fusion, suggesting C-terminal tyrosines may modulate Hendra fusion activity. The effects of HA tag addition varied with other fusion proteins, as parainfluenza virus 5 F-HA showed decreased surface expression and no stimulation in fusion. These results indicate that additions to the C-terminal end of the F protein CT can modulate protein function in a sequence specific manner, reinforcing the need for careful analysis of epitope tagged glycoproteins. In addition, our results implicate C-terminal tyrosine residues in modulation of the membrane fusion reaction promoted by these viral glycoproteins. PMID:21175223
Toward a convergence of regenerative medicine, rehabilitation, and neuroprosthetics.
Aravamudhan, Shyam; Bellamkonda, Ravi V
2011-11-01
No effective therapeutic interventions exist for severe neural pathologies, despite significant advances in regenerative medicine, rehabilitation, and neuroprosthetics. Our current hypothesis is that a specific combination of tissue engineering, pharmacology, cell replacement, drug delivery, and electrical stimulation, together with plasticity-promoting and locomotor training (neurorehabilitation) is necessary to interact synergistically in order to activate and enable all damaged circuits. We postulate that various convergent themes exist among the different therapeutic fields. Therefore, the objective of this review is to highlight the convergent themes, which we believe have a common goal of restoring function after neural damage. The convergent themes discussed in this review include modulation of inflammation and secondary damage, encouraging endogenous repair/regeneration (using scaffolds, cell transplantation, and drug delivery), application of electrical fields to modulate healing and/or activity, and finally modulation of plasticity.
Anticancer Natural Compounds as Epigenetic Modulators of Gene Expression
Ratovitski, Edward A.
2017-01-01
Abstract: Accumulating evidence shows that hallmarks of cancer include: “genetic and epigenetic alterations leading to inactivation of cancer suppressors, overexpression of oncogenes, deregulation of intracellular signaling cascades, alterations of cancer cell metabolism, failure to undergo cancer cell death, induction of epithelial to mesenchymal transition, invasiveness, metastasis, deregulation of immune response and changes in cancer microenvironment, which underpin cancer development”. Natural compounds as bioactive ingredients isolated from natural sources (plants, fungi, marine life forms) have revolutionized the field of anticancer therapeutics and rapid developments in preclinical studies are encouraging. Natural compounds could affect the epigenetic molecular mechanisms that modulate gene expression, as well as DNA damage and repair mechanisms. The current review will describe the latest achievements in using naturally produced compounds targeting epigenetic regulators and modulators of gene transcription in vitro and in vivo to generate novel anticancer therapeutics. PMID:28367075
NASA Technical Reports Server (NTRS)
Gonzalez, C. C.; Weaver, R. W.; Ross, R. G., Jr.; Spencer, R.; Arnett, J. C.
1984-01-01
Part of the effort of the Jet Propulsion Laboratory (JPL) Flat-Plate Solar Array Project (FSA) includes a program to improve module and array reliability. A collaborative activity with industry dealing with the problem of hot-spot heating due to the shadowing of photovoltaic cells in modules and arrays containing several paralleled cell strings is described. The use of multiparallel strings in large central-station arrays introduces the likelihood of unequal current sharing and increased heating levels. Test results that relate power dissipated, current imbalance, cross-strapping frequency, and shadow configuration to hot-spot heating levels are presented. Recommendations for circuit design configurations appropriate to central-station applications that reduce the risk of hot-spot problems are offered. Guidelines are provided for developing hot-spot tests for arrays when current imbalance is a threat.
Quantifying Solar Cell Cracks in Photovoltaic Modules by Electroluminescence Imaging
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spataru, Sergiu; Hacke, Peter; Sera, Dezso
2015-06-14
This article proposes a method for quantifying the percentage of partially and totally disconnected solar cell cracks by analyzing electroluminescence images of the photovoltaic module taken under high- and low-current forward bias. The method is based on the analysis of the module's electroluminescence intensity distribution, applied at module and cell level. These concepts are demonstrated on a crystalline silicon photovoltaic module that was subjected to several rounds of mechanical loading and humidity-freeze cycling, causing increasing levels of solar cell cracks. The proposed method can be used as a diagnostic tool to rate cell damage or quality of modules after transportation.more » Moreover, the method can be automated and used in quality control for module manufacturers, installers, or as a diagnostic tool by plant operators and diagnostic service providers.« less
Wu, Ning
2017-01-01
Glucocorticoids rapidly stimulate endocannabinoid synthesis and modulation of synaptic transmission in hypothalamic neuroendocrine cells via a nongenomic signaling mechanism. The endocannabinoid actions are synapse-constrained by astrocyte restriction of extracellular spatial domains. Exogenous cannabinoids have been shown to modulate postsynaptic potassium currents, including the A-type potassium current (IA), in different cell types. The activity of magnocellular neuroendocrine cells is shaped by a prominent IA. We tested for a rapid glucocorticoid modulation of the postsynaptic IK and IA in magnocellular neuroendocrine cells of the hypothalamic paraventricular nucleus (PVN) using whole-cell recordings in rat brain slices. Application of the synthetic glucocorticoid dexamethasone (Dex) had no rapid effect on the IK or IA amplitude, voltage dependence, or kinetics in magnocellular neurons in slices from untreated rats. In magnocellular neurons from salt-loaded rats, however, Dex application caused a rapid suppression of the IA and a depolarizing shift in IA voltage dependence. Exogenously applied endocannabinoids mimicked the rapid Dex modulation of the IA, and CB1 receptor antagonists and agonists blocked and occluded the Dex-induced changes in the IA, respectively, suggesting an endocannabinoid dependence of the rapid glucocorticoid effect. Preincubation of control slices in a gliotoxin resulted in the partial recapitulation of the glucocorticoid-induced rapid suppression of the IA. These findings demonstrate a glucocorticoid suppression of the postsynaptic IA in PVN magnocellular neurons via an autocrine endocannabinoid-dependent mechanism following chronic dehydration, and suggest a possible role for astrocytes in the control of the autocrine endocannabinoid actions. PMID:28966975
Plasmacytoid dendritic cells play a major role in apoptotic leukocyte-induced immune modulation.
Bonnefoy, Francis; Perruche, Sylvain; Couturier, Mélanie; Sedrati, Abdeslem; Sun, Yunwei; Tiberghien, Pierre; Gaugler, Béatrice; Saas, Philippe
2011-05-15
Several APCs participate in apoptotic cell-induced immune modulation. Whether plasmacytoid dendritic cells (PDCs) are involved in this process has not yet been characterized. Using a mouse model of allogeneic bone marrow engraftment, we demonstrated that donor bone marrow PDCs are required for both donor apoptotic cell-induced engraftment and regulatory T cell (Treg) increase. We confirmed in naive mice receiving i.v. syngeneic apoptotic cell infusion that PDCs from the spleen induce ex vivo Treg commitment. We showed that PDCs did not interact directly with apoptotic cells. In contrast, in vivo macrophage depletion experiments using clodronate-loaded liposome infusion and coculture experiments with supernatant from macrophages incubated with apoptotic cells showed that PDCs required macrophage-derived soluble factors--including TGF-β--to exert their immunomodulatory functions. Overall, PDCs may be considered as the major APC involved in Treg stimulation/generation in the setting of an immunosuppressive environment obtained by apoptotic cell infusion. These findings show that like other APCs, PDC functions are influenced, at least indirectly, by exposure to blood-borne apoptotic cells. This might correspond with an additional mechanism preventing unwanted immune responses against self-antigens clustered at the cell surface of apoptotic cells occurring during normal cell turnover.
Lin, Na; Li, Zhiping; Wang, Deli; Zheng, Kewen; Wu, Yiyan; Wang, Huiqi
2018-01-01
Plant secondary metabolites including alkaloids, demonstrate a complex diversity in their molecular scaffolds and exhibit tremendous pharmacological potential as anti-cancerous therapeutics. The present study aimed to evaluate the anticancer activity of a natural alkaloid, mecambridine, against human oral squamous cell carcinoma (OSCC). An MTT assay was used to evaluate cytotoxic effects of mecambridine on HSC-3 oral squamous cell carcinoma cells. Effects of mecambridine on autophagy-associated proteins were analyzed by western blotting. Effects on reactive oxygen species (ROS) and mitochondrial membrane potential were assessed by flow cytometry. Results indicated that mecambridine exhibited an IC50 value of 50 µM and exerted its cytotoxic effects in a dose dependent manner on OSCC HSC-3 cells. Furthermore, it was observed that mecambridine decreases cell viability and induces autophagy in a dose-dependent manner. The underlying mechanism for the induction of autophagy was demonstrated to be associated with ROS-mediated alterations in mitochondrial membrane potential and modulation of the mechanistic target of rapamycin/phosphoinositide 3-kinase/protein kinase B (m-TOR/PI3K/Akt) signaling pathway in HSC-3 at the IC50. In conclusion, the present study suggests that mecambridine exhibits substantial anticancer activity against OSCC HSC-3 cells by induction of autophagy and modulates the expression of the mTOR/PI3K/Akt signaling cascade which is considered a potential target pathway for anti-cancer agents. PMID:29422960
Jeon, Chanoh; Kang, Soowon; Park, Seungbeom; Lim, Kyungtaek; Hwang, Kwang Woo; Min, Hyeyoung
2011-11-01
Myeloid-derived suppressor cells (MDSCs) actively suppress immune cells and have been considered as an impediment to successful cancer immunotherapy. Many approaches have been made to overcome such immunosuppressive factors and to exert effective anti-tumor effects, but the possibility of using medicinal plants for this purpose has been overlooked. Korean red ginseng (KRG) is widely known to possess a variety of pharmacological properties, including immunoboosting and anti-tumor activities. However, little has been done to assess the anti-tumor activity of KRG on MDSCs. Therefore, we examined the effects of KRG on MDSCs in tumor-bearing mice and evaluated immunostimulatory and anti-tumor activities of KRG through MDSC modulation. The data show that intraperitoneal administration of KRG compromises MDSC function and induces T cell proliferation and the secretion of IL-2 and IFN-γ, while it does not exhibit direct cytotoxicity on tumor cells and reduced MDSC accumulation. MDSCs isolated from KRG-treated mice also express significantly lower levels of inducible nitric oxide synthase and IL-10 accompanied by a decrease in nitric oxide production compared with control. Taken together, the present study demonstrates that KRG enhances T cell function by inhibiting the immunosuppressive activity of MDSCs and suggests that although KRG alone does not exhibit direct anti-tumor effects, the use of KRG together with conventional chemo- or immunotherapy may provide better outcomes to cancer patients through MDSC modulation.
Ross, Ewan A; Flores-Langarica, Adriana; Bobat, Saeeda; Coughlan, Ruth E; Marshall, Jennifer L; Hitchcock, Jessica R; Cook, Charlotte N; Carvalho-Gaspar, Manuela M; Mitchell, Andrea M; Clarke, Mary; Garcia, Paloma; Cobbold, Mark; Mitchell, Tim J; Henderson, Ian R; Jones, Nick D; Anderson, Graham; Buckley, Christopher D; Cunningham, Adam F
2014-01-01
The generation of immune cells from BM precursors is a carefully regulated process. This is essential to limit the potential for oncogenesis and autoimmunity yet protect against infection. How infection modulates this is unclear. Salmonella can colonize systemic sites including the BM and spleen. This resolving infection has multiple IFN-γ-mediated acute and chronic effects on BM progenitors, and during the first week of infection IFN-γ is produced by myeloid, NK, NKT, CD4+ T cells, and some lineage-negative cells. After infection, the phenotype of BM progenitors rapidly but reversibly alters, with a peak ∼30-fold increase in Sca-1hi progenitors and a corresponding loss of Sca-1lo/int subsets. Most strikingly, the capacity of donor Sca-1hi cells to reconstitute an irradiated host is reduced; the longer donor mice are exposed to infection, and Sca-1hic-kitint cells have an increased potential to generate B1a-like cells. Thus, Salmonella can have a prolonged influence on BM progenitor functionality not directly related to bacterial persistence. These results reflect changes observed in leucopoiesis during aging and suggest that BM functionality can be modulated by life-long, periodic exposure to infection. Better understanding of this process could offer novel therapeutic opportunities to modulate BM functionality and promote healthy aging. PMID:24825601
Customized color patterning of photovoltaic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cruz-Campa, Jose Luis; Nielson, Gregory N.; Okandan, Murat
Photovoltaic cells and photovoltaic modules, as well as methods of making and using such photovoltaic cells and photovoltaic modules, are disclosed. More particularly, embodiments of the photovoltaic cells selectively reflect visible light to provide the photovoltaic cells with a colorized appearance. Photovoltaic modules combining colorized photovoltaic cells may be used to harvest solar energy while providing a customized appearance, e.g., an image or pattern.
NASA welding assessment program
NASA Technical Reports Server (NTRS)
Patterson, R. E.
1985-01-01
A program was conducted to demonstrate the cycle life capability of welded solar cell modules relative to a soldered solar cell module in a simulated low earth orbit thermal environment. A total of five 18-cell welded (parallel gap resistance welding) modules, three 18-cell soldered modules, and eighteen single cell samples were fabricated using 2 x 4 cm silicon solar cells from ASEC, fused silica cover glass from OCLI, silver plated Invar interconnectors, DC 93-500 adhesive, and Kapton-Kevlar-Kapton flexible substrate material. Zero degree pull strength ranged from 2.4 to 5.7 lbs for front welded contacts (40 samples), and 3.5 to 6.2 lbs for back welded contacts (40 samples). Solar cell cross sections show solid state welding on both front and rear contacts. The 18-cell welded modules have a specific power of 124 W/kg and an area power density of 142 W/sq m (both at 28 C). Three welded and one soldered module were thermal cycle tested in a thermal vacuum chamber simulating a low earth orbit thermal environment.
Barmack, N H; Yakhnitsa, V
2015-10-01
Climbing and mossy fibers comprise two distinct afferent paths to the cerebellum. Climbing fibers directly evoke a large multispiked action potential in Purkinje cells termed a "complex spike" (CS). By logical exclusion, the other class of Purkinje cell action potential, termed "simple spike" (SS), has often been attributed to activity conveyed by mossy fibers and relayed to Purkinje cells through granule cells. Here, we investigate the relative importance of climbing and mossy fiber pathways in modulating neuronal activity by recording extracellularly from Purkinje cells, as well as from mossy fiber terminals and interneurons in folia 8-10. Sinusoidal roll-tilt vestibular stimulation vigorously modulates the discharge of climbing and mossy fiber afferents, Purkinje cells, and interneurons in folia 9-10 in anesthetized mice. Roll-tilt onto the side ipsilateral to the recording site increases the discharge of both climbing fibers (CSs) and mossy fibers. However, the discharges of SSs decrease during ipsilateral roll-tilt. Unilateral microlesions of the beta nucleus (β-nucleus) of the inferior olive blocks vestibular modulation of both CSs and SSs in contralateral Purkinje cells. The blockage of SSs occurs even though primary and secondary vestibular mossy fibers remain intact. When mossy fiber afferents are damaged by a unilateral labyrinthectomy (UL), vestibular modulation of SSs in Purkinje cells ipsilateral to the UL remains intact. Two inhibitory interneurons, Golgi and stellate cells, could potentially contribute to climbing fiber-induced modulation of SSs. However, during sinusoidal roll-tilt, only stellate cells discharge appropriately out of phase with the discharge of SSs. Golgi cells discharge in phase with SSs. When the vestibularly modulated discharge is blocked by a microlesion of the inferior olive, the modulated discharge of CSs and SSs is also blocked. When the vestibular mossy fiber pathway is destroyed, vestibular modulation of ipsilateral CSs and SSs persists. We conclude that climbing fibers are primarily responsible for the vestibularly modulated discharge of both CSs and SSs. Modulation of the discharge of SSs is likely caused by climbing fiber-evoked stellate cell inhibition.
Potential roles of cholinergic modulation in the neural coding of location and movement speed
Dannenberg, Holger; Hinman, James R.; Hasselmo, Michael E.
2016-01-01
Behavioral data suggest that cholinergic modulation may play a role in certain aspects of spatial memory, and neurophysiological data demonstrate neurons that fire in response to spatial dimensions, including grid cells and place cells that respond on the basis of location and running speed. These neurons show firing responses that depend upon the visual configuration of the environment, due to coding in visually-responsive regions of the neocortex. This review focuses on the physiological effects of acetylcholine that may influence the sensory coding of spatial dimensions relevant to behavior. In particular, the local circuit effects of acetylcholine within the cortex regulate the influence of sensory input relative to internal memory representations, via presynaptic inhibition of excitatory and inhibitory synaptic transmission, and the modulation of intrinsic currents in cortical excitatory and inhibitory neurons. In addition, circuit effects of acetylcholine regulate the dynamics of cortical circuits including oscillations at theta and gamma frequencies. These effects of acetylcholine on local circuits and network dynamics could underlie the role of acetylcholine in coding of spatial information for the performance of spatial memory tasks. PMID:27677935
Maffucci, Jacqueline A.; Gore, Andrea C.
2009-01-01
The hypothalamic-pituitary-gonadal (HPG) axis undergoes a number of changes throughout the reproductive life cycle that are responsible for the development, puberty, adulthood, and senescence of reproductive systems. This natural progression is dictated by the neural network controlling the hypothalamus including the cells that synthesize and release gonadotropin-releasing hormone (GnRH) and their regulatory neurotransmitters. Glutamate and GABA are the primary excitatory and inhibitory neurotransmitters in the central nervous system, and as such contribute a great deal to modulating this axis throughout the lifetime via their actions on receptors in the hypothalamus, both directly on GnRH neurons as well as indirectly though other hypothalamic neural networks. Interactions among GnRH neurons, glutamate, and GABA, including the regulation of GnRH gene and protein expression, hormone release, and modulation by estrogen, are critical to age-appropriate changes in reproductive function. Here, we present evidence for the modulation of GnRH neurosecretory cells by the balance of glutamate and GABA in the hypothalamus, and the functional consequences of these interactions on reproductive physiology across the life cycle. PMID:19349036
Terrestrial photovoltaic collector technology trends
NASA Technical Reports Server (NTRS)
Shimada, K.; Costogue, E.
1984-01-01
Following the path of space PV collector development in its early stages, terrestrial PV technologies based upon single-crystal silicon have matured rapidly. Currently, terrestrial PV cells with efficiencies approaching space cell efficiencies are being fabricated into modules at a fraction of the space PV module cost. New materials, including CuInSe2 and amorphous silicon, are being developed for lowering the cost, and multijunction materials for achieving higher efficiency. Large grid-interactive, tracking flat-plate power systems and concentrator PV systems totaling about 10 MW, are already in operation. Collector technology development both flat-plate and concentrator, will continue under an extensive government and private industry partnership.
PV Reliability Development Lessons from JPL's Flat Plate Solar Array Project
NASA Technical Reports Server (NTRS)
Ross, Ronald G., Jr.
2013-01-01
Key reliability and engineering lessons learned from the 20-year history of the Jet Propulsion Laboratory's Flat-Plate Solar Array Project and thin film module reliability research activities are presented and analyzed. Particular emphasis is placed on lessons applicable to evolving new module technologies and the organizations involved with these technologies. The user-specific demand for reliability is a strong function of the application, its location, and its expected duration. Lessons relative to effective means of specifying reliability are described, and commonly used test requirements are assessed from the standpoint of which are the most troublesome to pass, and which correlate best with field experience. Module design lessons are also summarized, including the significance of the most frequently encountered failure mechanisms and the role of encapsulate and cell reliability in determining module reliability. Lessons pertaining to research, design, and test approaches include the historical role and usefulness of qualification tests and field tests.
Immune-modulating therapy in acute pancreatitis: Fact or fiction
Akinosoglou, Karolina; Gogos, Charalambos
2014-01-01
Acute pancreatitis (AP) is one of the most common diseases of the gastrointestinal tract, bearing significant morbidity and mortality worldwide. Current treatment of AP remains unspecific and supportive and is mainly targeted to aggressively prevent systemic complications and organ failure by intensive care. As acute pancreatitis shares an indistinguishable profile of inflammation with sepsis, therapeutic approaches have turned towards modulating the systemic inflammatory response. Targets, among others, have included pro- and anti-inflammatory modulators, cytokines, chemokines, immune cells, adhesive molecules and platelets. Even though, initial results in experimental models have been encouraging, clinical implementation of immune-regulating therapies in acute pancreatitis has had a slow progress. Main reasons include difficulty in clinical translation of experimental data, poor understanding of inflammatory response time-course, flaws in experimental designs, need for multimodal approaches and commercial drawbacks. Whether immune-modulation in acute pancreatitis remains a fact or just fiction remains to be seen in the future. PMID:25386069
Engineering Hydrogel Microenvironments to Recapitulate the Stem Cell Niche.
Madl, Christopher M; Heilshorn, Sarah C
2018-06-04
Stem cells are a powerful resource for many applications including regenerative medicine, patient-specific disease modeling, and toxicology screening. However, eliciting the desired behavior from stem cells, such as expansion in a naïve state or differentiation into a particular mature lineage, remains challenging. Drawing inspiration from the native stem cell niche, hydrogel platforms have been developed to regulate stem cell fate by controlling microenvironmental parameters including matrix mechanics, degradability, cell-adhesive ligand presentation, local microstructure, and cell-cell interactions. We survey techniques for modulating hydrogel properties and review the effects of microenvironmental parameters on maintaining stemness and controlling differentiation for a variety of stem cell types. Looking forward, we envision future hydrogel designs spanning a spectrum of complexity, ranging from simple, fully defined materials for industrial expansion of stem cells to complex, biomimetic systems for organotypic cell culture models.
2014-06-06
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA and Lockheed Martin engineers and technicians monitor the progress as a crane lowers the Orion service module into the Final Assembly and System Testing, or FAST, cell. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, before rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
2014-06-06
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA and Lockheed Martin technicians and engineers prepare to move the Orion service module to the Final Assembly and System Testing, or FAST, cell further down the aisle. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, prior to rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
2014-06-06
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, a Lockheed Martin technician monitors the progress as a crane lowers the Orion service module into the Final Assembly and System Testing, or FAST, cell further down the aisle. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, before rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
2014-06-06
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA and Lockheed Martin engineers and technicians help guide the Orion service module into the Final Assembly and System Testing, or FAST, cell. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, before rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
2014-06-06
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA and Lockheed Martin engineers and technicians monitor the progress as a crane lowers the Orion service module into the Final Assembly and System Testing, or FAST, cell. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, before rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
The development of alignment turning system for precision len cells
NASA Astrophysics Data System (ADS)
Huang, Chien-Yao; Ho, Cheng-Fang; Wang, Jung-Hsing; Chung, Chien-Kai; Chen, Jun-Cheng; Chang, Keng-Shou; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi
2017-08-01
In general, the drop-in and cell-mounted assembly are used for standard and high performance optical system respectively. The optical performance is limited by the residual centration error and position accuracy of the conventional assembly. Recently, the poker chip assembly with high precision lens barrels that can overcome the limitation of conventional assembly is widely applied to ultra-high performance optical system. ITRC also develops the poker chip assembly solution for high numerical aperture objective lenses and lithography projection lenses. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module including a non-contact displacement sensor and an autocollimator can measure centration errors of the top and the bottom surface of a lens respectively. The alignment module comprising tilt and translation stages can align the optical axis of the lens to the rotating axis of the vertical lathe. The key specifications of the ATS are maximum lens diameter, 400mm, and radial and axial runout of the rotary table < 2 μm. The cutting performances of the ATS are surface roughness Ra < 1 μm, flatness < 2 μm, and parallelism < 5 μm. After measurement, alignment and turning processes on our ATS, the centration error of a lens cell with 200mm in diameter can be controlled in 10 arcsec. This paper also presents the thermal expansion of the hydrostatic rotating table. A poker chip assembly lens cell with three sub-cells is accomplished with average transmission centration error in 12.45 arcsec by fresh technicians. The results show that ATS can achieve high assembly efficiency for precision optical systems.
User handbook for block IV silicon solar cell modules
NASA Technical Reports Server (NTRS)
Smokler, M. I.
1982-01-01
The essential electrical and mechanical characteristics of block 4 photovoltaic solar cell modules are described. Such module characteristics as power output, nominal operating voltage, current-voltage characteristics, nominal operating cell temperature, and dimensions are tabulated. The limits of the environmental and other stress tests to which the modules are subjected are briefly described.
Friesen, Cody A.; Krishnan, Ramkumar; Tang, Toni; Wolfe, Derek
2014-08-19
An electrochemical cell comprising an electrolyte comprising water and a hydrophobic ionic liquid comprising positive ions and negative ions. The electrochemical cell also includes an air electrode configured to absorb and reduce oxygen. A hydrophilic or hygroscopic additive modulates the hydrophobicity of the ionic liquid to maintain a concentration of the water in the electrolyte is between 0.001 mol % and 25 mol %.
Substrate effect modulates adhesion and proliferation of fibroblast on graphene layer.
Lin, Feng; Du, Feng; Huang, Jianyong; Chau, Alicia; Zhou, Yongsheng; Duan, Huiling; Wang, Jianxiang; Xiong, Chunyang
2016-10-01
Graphene is an emerging candidate for biomedical applications, including biosensor, drug delivery and scaffold biomaterials. Cellular functions and behaviors on different graphene-coated substrates, however, still remain elusive to a great extent. This paper explored the functional responses of cells such as adhesion and proliferation, to different kinds of substrates including coverslips, silicone, polydimethylsiloxane (PDMS) with different curing ratios, PDMS treated with oxygen plasma, and their counterparts coated with single layer graphene (SLG). Specifically, adherent cell number, spreading area and cytoskeleton configuration were exploited to characterize cell-substrate adhesion ability, while MTT assay was employed to test the proliferation capability of fibroblasts. Experimental outcome demonstrated graphene coating had excellent cytocompatibility, which could lead to an increase in early adhesion, spreading, proliferation, and remodeling of cytoskeletons of fibroblast cells. Notably, it was found that the underlying substrate effect, e.g., stiffness of substrate materials, could essentially regulate the adhesion and proliferation of cells cultured on graphene. The stiffer the substrates were, the stronger the abilities of adhesion and proliferation of fibroblasts were. This study not only deepens our understanding of substrate-modulated interfacial interactions between live cells and graphene, but also provides a valuable guidance for the design and application of graphene-based biomaterials in biomedical engineering. Copyright © 2016 Elsevier B.V. All rights reserved.
Dinicola, Simona; Proietti, Sara; Cucina, Alessandra; Bizzarri, Mariano; Fuso, Andrea
2017-09-26
Alpha-lipoic acid (ALA) is a pleiotropic molecule with antioxidant and anti-inflammatory properties, of which the effects are exerted through the modulation of NF-kB. This nuclear factor, in fact, modulates different inflammatory cytokines, including IL-1b and IL-6, in different tissues and cell types. We recently showed that IL-1b and IL-6 DNA methylation is modulated in the brain of Alzheimer's disease patients, and that IL-1b expression is associated to DNA methylation in the brain of patients with tuberous sclerosis complex. These results prompted us to ask whether ALA-induced repression of IL-1b and IL-6 was dependent on DNA methylation. Therefore, we profiled DNA methylation in the 5'-flanking region of the two aforementioned genes in SK-N-BE human neuroblastoma cells cultured in presence of ALA 0.5 mM. Our experimental data pointed out that the two promoters are hypermethylated in cells supplemented with ALA, both at CpG and non-CpG sites. Moreover, the observed hypermethylation is associated with decreased mRNA expression and decreased cytokine release. These results reinforce previous findings indicating that IL-1b and IL-6 undergo DNA methylation-dependent modulation in neural models and pave the road to study the epigenetic mechanisms triggered by ALA.
22.7% efficient PERL silicon solar cell module with a textured front surface
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, J.; Wang, A.; Campbell, P.
1997-12-31
This paper describes a solar cell module efficiency of 22.7% independently measured at Sandia National Laboratories. This is the highest ever confirmed efficiency for a photovoltaic module of this size achieved by cells made from any material. This 778-cm{sup 2} module used 40 large-area double layer antireflection coated PERL (passivated emitter, rear locally-diffused) silicon cells of average efficiency of 23.1%. A textured front module surface considerably improve the module efficiency. Also reported is an independently confirmed efficiency of 23.7% for a 21.6 cm{sup 2} cell of the type used in the module. Using these PERL cells in the 1996 Worldmore » Solar Challenge solar car race from Darwin to Adelaide across Australia, Honda`s Dream and Aisin Seiki`s Aisol III were placed first and third, respectively. Honda also set a new record by reaching Adelaide in four days with an average speed of 90km/h over the 3010 km course.« less
Cell adhesion molecules in context
2011-01-01
Cell adhesion molecules (CAMs) are now known to mediate much more than adhesion between cells and between cells and the extracellular matrix. Work by many researchers has illuminated their roles in modulating activation of molecules such as receptor tyrosine kinases, with subsequent effects on cell survival, migration and process extension. CAMs are also known to serve as substrates for proteases that can create diffusible fragments capable of signaling independently from the CAM. The diversity of interactions is further modulated by membrane rafts, which can co-localize or separate potential signaling partners to affect the likelihood of a given signaling pathway being activated. Given the ever-growing number of known CAMs and the fact that their heterophilic binding in cis or in trans can affect their interactions with other molecules, including membrane-bound receptors, one would predict a wide range of effects attributable to a particular CAM in a particular cell at a particular stage of development. The function(s) of a given CAM must therefore be considered in the context of the history of the cell expressing it and the repertoire of molecules expressed both by that cell and its neighbors. PMID:20948304
Implications of Differential Stress Response Activation Following Non-Frozen Hepatocellular Storage
Corwin, William L.; Baust, John G.; Van Buskirk, Robert G.
2013-01-01
Hepatocytes are critical for numerous cell therapies and in vitro investigations. A limiting factor for their use in these applications is the ability to process and preserve them without loss of viability or functionality. Normal rat hepatocytes (NHEPs) and human hepatoma (C3A) cells were stored at either 4°C or 37°C to examine post-processing stress responses. Resveratrol and salubrinal were used during storage to determine how targeted molecular stress pathway modulation would affect cell survival. This study revealed that storage outcome is dependent upon numerous factors including: cell type, storage media, storage length, storage temperature, and chemical modulator. These data implicate a molecular-based stress response that is not universal but is specific to the set of conditions under which cells are stored. Further, these findings allude to the potential for targeted protection or destruction of particular cell types for numerous applications, from diagnostic cell selection to cell-based therapy. Ultimately, this study demonstrates the need for further in-depth molecular investigations into the cellular stress response to bioprocessing and preservation. PMID:24845253
Evidence that Meningeal Mast Cells Can Worsen Stroke Pathology in Mice
Arac, Ahmet; Grimbaldeston, Michele A.; Nepomuceno, Andrew R.B.; Olayiwola, Oluwatobi; Pereira, Marta P.; Nishiyama, Yasuhiro; Tsykin, Anna; Goodall, Gregory J.; Schlecht, Ulrich; Vogel, Hannes; Tsai, Mindy; Galli, Stephen J.; Bliss, Tonya M.; Steinberg, Gary K.
2015-01-01
Stroke is the leading cause of adult disability and the fourth most common cause of death in the United States. Inflammation is thought to play an important role in stroke pathology, but the factors that promote inflammation in this setting remain to be fully defined. An understudied but important factor is the role of meningeal-located immune cells in modulating brain pathology. Although different immune cells traffic through meningeal vessels en route to the brain, mature mast cells do not circulate but are resident in the meninges. With the use of genetic and cell transfer approaches in mice, we identified evidence that meningeal mast cells can importantly contribute to the key features of stroke pathology, including infiltration of granulocytes and activated macrophages, brain swelling, and infarct size. We also obtained evidence that two mast cell-derived products, interleukin-6 and, to a lesser extent, chemokine (C-C motif) ligand 7, can contribute to stroke pathology. These findings indicate a novel role for mast cells in the meninges, the membranes that envelop the brain, as potential gatekeepers for modulating brain inflammation and pathology after stroke. PMID:25134760
Safety Limitations Associated with Commercial 18650 Lithium-ion Cells
NASA Technical Reports Server (NTRS)
Jeevarajan, Judith A.
2010-01-01
In the past decade, NASA-JSC battery group has carried out several tests on the safety of li-ion cells, modules and battery packs. The hazards associated with using commercial li-ion cells in high voltage and high capacity batteries have been determined to be different from those associated with the use of the same cells in low voltage, low capacity packs (less than 15 V and 60 Wh). Tests carried out included overcharge, overdischarge, external and internal short circuits with destructive physical analysis included in most cases. Chemical analysis, X-rays and in some cases CT scans were used for post-test analysis.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-30
... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Alignment of... crystalline silicon photovoltaic cells, whether or not assembled into modules (solar cells) from the People's... Department initiated the AD and CVD investigations of solar cells from the PRC.\\1\\ On March 26, 2012, the...
Popa, Laurentiu S.; Streng, Martha L.
2017-01-01
Abstract Most hypotheses of cerebellar function emphasize a role in real-time control of movements. However, the cerebellum’s use of current information to adjust future movements and its involvement in sequencing, working memory, and attention argues for predicting and maintaining information over extended time windows. The present study examines the time course of Purkinje cell discharge modulation in the monkey (Macaca mulatta) during manual, pseudo-random tracking. Analysis of the simple spike firing from 183 Purkinje cells during tracking reveals modulation up to 2 s before and after kinematics and position error. Modulation significance was assessed against trial shuffled firing, which decoupled simple spike activity from behavior and abolished long-range encoding while preserving data statistics. Position, velocity, and position errors have the most frequent and strongest long-range feedforward and feedback modulations, with less common, weaker long-term correlations for speed and radial error. Position, velocity, and position errors can be decoded from the population simple spike firing with considerable accuracy for even the longest predictive (-2000 to -1500 ms) and feedback (1500 to 2000 ms) epochs. Separate analysis of the simple spike firing in the initial hold period preceding tracking shows similar long-range feedforward encoding of the upcoming movement and in the final hold period feedback encoding of the just completed movement, respectively. Complex spike analysis reveals little long-term modulation with behavior. We conclude that Purkinje cell simple spike discharge includes short- and long-range representations of both upcoming and preceding behavior that could underlie cerebellar involvement in error correction, working memory, and sequencing. PMID:28413823
Distinct speed dependence of entorhinal island and ocean cells, including respective grid cells
Sun, Chen; Kitamura, Takashi; Yamamoto, Jun; Martin, Jared; Pignatelli, Michele; Kitch, Lacey J.; Schnitzer, Mark J.; Tonegawa, Susumu
2015-01-01
Entorhinal–hippocampal circuits in the mammalian brain are crucial for an animal’s spatial and episodic experience, but the neural basis for different spatial computations remain unknown. Medial entorhinal cortex layer II contains pyramidal island and stellate ocean cells. Here, we performed cell type-specific Ca2+ imaging in freely exploring mice using cellular markers and a miniature head-mounted fluorescence microscope. We found that both oceans and islands contain grid cells in similar proportions, but island cell activity, including activity in a proportion of grid cells, is significantly more speed modulated than ocean cell activity. We speculate that this differential property reflects island cells’ and ocean cells’ contribution to different downstream functions: island cells may contribute more to spatial path integration, whereas ocean cells may facilitate contextual representation in downstream circuits. PMID:26170279
Failure propagation in multi-cell lithium ion batteries
Lamb, Joshua; Orendorff, Christopher J.; Steele, Leigh Anna M.; ...
2014-10-22
Traditionally, safety and impact of failure concerns of lithium ion batteries have dealt with the field failure of single cells. However, large and complex battery systems require the consideration of how a single cell failure will impact the system as a whole. Initial failure that leads to the thermal runaway of other cells within the system creates a much more serious condition than the failure of a single cell. This work examines the behavior of small modules of cylindrical and stacked pouch cells after thermal runaway is induced in a single cell through nail penetration trigger [1] within the module.more » Cylindrical cells are observed to be less prone to propagate, if failure propagates at all, owing to the limited contact between neighboring cells. However, the electrical connectivity is found to be impactful as the 10S1P cylindrical cell module did not show failure propagation through the module, while the 1S10P module had an energetic thermal runaway consuming the module minutes after the initiation failure trigger. Modules built using pouch cells conversely showed the impact of strong heat transfer between cells. In this case, a large surface area of the cells was in direct contact with its neighbors, allowing failure to propagate through the entire battery within 60-80 seconds for all configurations (parallel or series) tested. This work demonstrates the increased severity possible when a point failure impacts the surrounding battery system.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-31
... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Second... preliminary determination of the countervailing duty investigation of crystalline silicon photovoltaic cells... February 13, 2012.\\1\\ \\1\\ See Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules...
Dong, Zhaojun; Shang, Haixiao; Chen, Yong Q.; Pan, Li-Long
2016-01-01
Acute pancreatitis (AP) is characterized by early activation of intra-acinar proteases followed by acinar cell death and inflammation. Cellular oxidative stress is a key mechanism underlying these pathological events. Sulforaphane (SFN) is a natural organosulfur antioxidant with undescribed effects on AP. Here we investigated modulatory effects of SFN on cellular oxidation and inflammation in AP. AP was induced by cerulean hyperstimulation in BALB/c mice. Treatment group received a single dose of 5 mg/kg SFN for 3 consecutive days before AP. We found that SFN administration attenuated pancreatic injury as evidenced by serum amylase, pancreatic edema, and myeloperoxidase, as well as by histological examination. SFN administration reverted AP-associated dysregulation of oxidative stress markers including pancreatic malondialdehyde and redox enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx). In acinar cells, SFN treatment upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes including quinoneoxidoreductase-1, heme oxidase-1, SOD1, and GPx1. In addition, SFN selectively suppressed cerulein-induced activation of the nucleotide-binding domain leucine-rich repeat containing family, pyrin domain-containing 3 (NLRP3) inflammasome, in parallel with reduced nuclear factor- (NF-) κB activation and modulated NF-κB-responsive cytokine expression. Together, our data suggested that SFN modulates Nrf2-mediated oxidative stress and NLRP3/NF-κB inflammatory pathways in acinar cells, thereby protecting against AP. PMID:27847555
Dong, Zhaojun; Shang, Haixiao; Chen, Yong Q; Pan, Li-Long; Bhatia, Madhav; Sun, Jia
2016-01-01
Acute pancreatitis (AP) is characterized by early activation of intra-acinar proteases followed by acinar cell death and inflammation. Cellular oxidative stress is a key mechanism underlying these pathological events. Sulforaphane (SFN) is a natural organosulfur antioxidant with undescribed effects on AP. Here we investigated modulatory effects of SFN on cellular oxidation and inflammation in AP. AP was induced by cerulean hyperstimulation in BALB/c mice. Treatment group received a single dose of 5 mg/kg SFN for 3 consecutive days before AP. We found that SFN administration attenuated pancreatic injury as evidenced by serum amylase, pancreatic edema, and myeloperoxidase, as well as by histological examination. SFN administration reverted AP-associated dysregulation of oxidative stress markers including pancreatic malondialdehyde and redox enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx). In acinar cells, SFN treatment upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression and Nrf2-regulated redox genes including quinoneoxidoreductase-1, heme oxidase-1, SOD1, and GPx1. In addition, SFN selectively suppressed cerulein-induced activation of the nucleotide-binding domain leucine-rich repeat containing family, pyrin domain-containing 3 (NLRP3) inflammasome, in parallel with reduced nuclear factor- (NF-) κ B activation and modulated NF- κ B-responsive cytokine expression. Together, our data suggested that SFN modulates Nrf2-mediated oxidative stress and NLRP3/NF- κ B inflammatory pathways in acinar cells, thereby protecting against AP.
Notch Signaling in Myeloid Cells as a Regulator of Tumor Immune Responses
Hossain, Fokhrul; Majumder, Samarpan; Ucar, Deniz A.; Rodriguez, Paulo C.; Golde, Todd E.; Minter, Lisa M.; Osborne, Barbara A.; Miele, Lucio
2018-01-01
Cancer immunotherapy, which stimulates or augments host immune responses to treat malignancies, is the latest development in the rapidly advancing field of cancer immunology. The basic principles of immunotherapies are either to enhance the functions of specific components of the immune system or to neutralize immune-suppressive signals produced by cancer cells or tumor microenvironment cells. When successful, these approaches translate into long-term survival for patients. However, durable responses are only seen in a subset of patients and so far, only in some cancer types. As for other cancer treatments, resistance to immunotherapy can also develop. Numerous research groups are trying to understand why immunotherapy is effective in some patients but not others and to develop strategies to enhance the effectiveness of immunotherapy. The Notch signaling pathway is involved in many aspects of tumor biology, from angiogenesis to cancer stem cell maintenance to tumor immunity. The role of Notch in the development and modulation of the immune response is complex, involving an intricate crosstalk between antigen-presenting cells, T-cell subpopulations, cancer cells, and other components of the tumor microenvironment. Elegant studies have shown that Notch is a central mediator of tumor-induced T-cell anergy and that activation of Notch1 in CD8 T-cells enhances cancer immunotherapy. Tumor-infiltrating myeloid cells, including myeloid-derived suppressor cells, altered dendritic cells, and tumor-associated macrophages along with regulatory T cells, are major obstacles to the development of successful cancer immunotherapies. In this article, we focus on the roles of Notch signaling in modulating tumor-infiltrating myeloid cells and discuss implications for therapeutic strategies that modulate Notch signaling to enhance cancer immunotherapy.
The chemokine receptor CCR1 is identified in mast cell-derived exosomes
Liang, Yuting; Qiao, Longwei; Peng, Xia; Cui, Zelin; Yin, Yue; Liao, Huanjin; Jiang, Min; Li, Li
2018-01-01
Mast cells are important effector cells of the immune system, and mast cell-derived exosomes carrying RNAs play a role in immune regulation. However, the molecular function of mast cell-derived exosomes is currently unknown, and here, we identify differentially expressed genes (DEGs) in mast cells and exosomes. We isolated mast cells derived exosomes through differential centrifugation and screened the DEGs from mast cell-derived exosomes, using the GSE25330 array dataset downloaded from the Gene Expression Omnibus database. Biochemical pathways were analyzed by Gene ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway on the online tool DAVID. DEGs-associated protein-protein interaction networks (PPIs) were constructed using the STRING database and Cytoscape software. The genes identified from these bioinformatics analyses were verified by qRT-PCR and Western blot in mast cells and exosomes. We identified 2121 DEGs (843 up and 1278 down-regulated genes) in HMC-1 cell-derived exosomes and HMC-1 cells. The up-regulated DEGs were classified into two significant modules. The chemokine receptor CCR1 was screened as a hub gene and enriched in cytokine-mediated signaling pathway in module one. Seven genes, including CCR1, CD9, KIT, TGFBR1, TLR9, TPSAB1 and TPSB2 were screened and validated through qRT-PCR analysis. We have achieved a comprehensive view of the pivotal genes and pathways in mast cells and exosomes and identified CCR1 as a hub gene in mast cell-derived exosomes. Our results provide novel clues with respect to the biological processes through which mast cell-derived exosomes modulate immune responses. PMID:29511430
2017-01-01
The superior colliculus (SC) receives direct input from the retina and integrates it with information about sound, touch, and state of the animal that is relayed from other parts of the brain to initiate specific behavioral outcomes. The superficial SC layers (sSC) contain cells that respond to visual stimuli, whereas the deep SC layers (dSC) contain cells that also respond to auditory and somatosensory stimuli. Here, we used a large-scale silicon probe recording system to examine the visual response properties of SC cells of head-fixed and alert male mice. We found cells with diverse response properties including: (1) orientation/direction-selective (OS/DS) cells with a firing rate that is suppressed by drifting sinusoidal gratings (negative OS/DS cells); (2) suppressed-by-contrast cells; (3) cells with complex-like spatial summation nonlinearity; and (4) cells with Y-like spatial summation nonlinearity. We also found specific response properties that are enriched in different depths of the SC. The sSC is enriched with cells with small RFs, high evoked firing rates (FRs), and sustained temporal responses, whereas the dSC is enriched with the negative OS/DS cells and with cells with large RFs, low evoked FRs, and transient temporal responses. Locomotion modulates the activity of the SC cells both additively and multiplicatively and changes the preferred spatial frequency of some SC cells. These results provide the first description of the negative OS/DS cells and demonstrate that the SC segregates cells with different response properties and that the behavioral state of a mouse affects SC activity. SIGNIFICANCE STATEMENT The superior colliculus (SC) receives visual input from the retina in its superficial layers (sSC) and induces eye/head-orientating movements and innate defensive responses in its deeper layers (dSC). Despite their importance, very little is known about the visual response properties of dSC neurons. Using high-density electrode recordings and novel model-based analysis, we found several novel visual response properties of the SC cells, including encoding of a cell's preferred orientation or direction by suppression of the firing rate. The sSC and the dSC are enriched with cells with different visual response properties. Locomotion modulates the cells in the SC. These findings contribute to our understanding of how the SC processes visual inputs, a critical step in comprehending visually guided behaviors. PMID:28760858
Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant
Zafred, Paolo R.; Dederer, Jeffrey T.; Gillett, James E.; Basel, Richard A.; Antenucci, Annette B.
1996-01-01
A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas, (O) and pressurized fuel gas, (F), into fuel cell modules, (10 and 12), containing fuel cells, where the modules are each enclosed by a module housing (18), surrounded by an axially elongated pressure vessel (64), where there is a purge gas volume, (62), between the module housing and pressure vessel; passing pressurized purge gas, (P), through the purge gas volume, (62), to dilute any unreacted fuel gas from the modules; and passing exhaust gas, (82), and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transpatable when the pressure vessel (64) is horizontally disposed, providing a low center of gravity.
Cell Survival Signaling in Neuroblastoma
Megison, Michael L.; Gillory, Lauren A.; Beierle, Elizabeth A.
2013-01-01
Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Neuroblastoma tumorigenesis and malignant transformation is driven by overexpression and dominance of cell survival pathways and a lack of normal cellular senescence or apoptosis. Therefore, manipulation of cell survival pathways may decrease the malignant potential of these tumors and provide avenues for the development of novel therapeutics. This review focuses on several facets of cell survival pathways including protein kinases (PI3K, AKT, ALK, and FAK), transcription factors (NF-κB, MYCN and p53), and growth factors (IGF, EGF, PDGF, and VEGF). Modulation of each of these factors decreases the growth or otherwise hinders the malignant potential of neuroblastoma, and many therapeutics targeting these pathways are already in the clinical trial phase of development. Continued research and discovery of effective modulators of these pathways will revolutionize the treatment of neuroblastoma. PMID:22934706
Precision lens assembly with alignment turning system
NASA Astrophysics Data System (ADS)
Ho, Cheng-Fang; Huang, Chien-Yao; Lin, Yi-Hao; Kuo, Hui-Jean; Kuo, Ching-Hsiang; Hsu, Wei-Yao; Chen, Fong-Zhi
2017-10-01
The poker chip assembly with high precision lens barrels is widely applied to ultra-high performance optical system. ITRC applies the poker chip assembly technology to the high numerical aperture objective lenses and lithography projection lenses because of its high efficiency assembly process. In order to achieve high precision lens cell for poker chip assembly, an alignment turning system (ATS) is developed. The ATS includes measurement, alignment and turning modules. The measurement module is equipped with a non-contact displacement sensor (NCDS) and an autocollimator (ACM). The NCDS and ACM are used to measure centration errors of the top and the bottom surface of a lens respectively; then the amount of adjustment of displacement and tilt with respect to the rotational axis of the turning machine for the alignment module can be determined. After measurement, alignment and turning processes on the ATS, the centration error of a lens cell with 200 mm in diameter can be controlled within 10 arcsec. Furthermore, a poker chip assembly lens cell with three sub-cells is demonstrated, each sub-cells are measured and accomplished with alignment and turning processes. The lens assembly test for five times by each three technicians; the average transmission centration error of assembly lens is 12.45 arcsec. The results show that ATS can achieve high assembly efficiency for precision optical systems.
Clinical status of benzoporphyrin derivative
NASA Astrophysics Data System (ADS)
Levy, Julia G.; Chan, Agnes H.; Strong, H. Andrew
1996-01-01
Benzoporphyrin derivative monoacid ring A (BPD) is currently in Phase II clinical trials for the treatment of cutaneous malignancies (basal cell carcinoma and cutaneous metastases) and psoriasis. Results to date suggest that this photosensitizer has potential in both of these areas. Recently, a clinical trial with BPD was initiated for the treatment of age related macular degeneration, a neovascular condition in the eye which leads to blindness. BPD is a lipophilic photosensitizer which is rapidly taken up by activated cells and the vascular endothelium of neovasculature. The PDT effects seen with BPD appear to be a combination of vascular occlusion and direct killing of target cells. Since many diseases involve either activated cells and/or neovasculature, PDT with photosensitizer with characteristics like those of BPD, has applications far wider than oncology. A new area of interest involving photosensitizers is that of immune modulation. A number of photosensitizers have been shown to effect immune modulation in animal models of immune dysfunction including autoimmunity (rheumatoid arthritis, lupus), cutaneous hypersensitivity and allografts. BPD and PHOTOFRINR have both been shown to be effective in ameliorating arthritic symptoms in a number of animal models. The mechanisms by which immune modulation is affected in these studies still remains to be resolved.
Sato, Brian K; Kadandale, Pavan; He, Wenliang; Murata, Paige M N; Latif, Yama; Warschauer, Mark
2014-01-01
Primary literature is essential for scientific communication and is commonly utilized in undergraduate biology education. Despite this, there is often little time spent training our students how to critically analyze a paper. To address this, we introduced a primary literature module in multiple upper-division laboratory courses. In this module, instructors conduct classroom discussions that dissect a paper as researchers do. While previous work has identified classroom interventions that improve primary literature comprehension within a single course, our goal was to determine whether including a scientific paper module in our classes could produce long-term benefits. On the basis of performance in an assessment exam, we found that our module resulted in longitudinal gains, including increased comprehension and critical-thinking abilities in subsequent lab courses. These learning gains were specific to courses utilizing our module, as no longitudinal gains were seen in students who had taken other upper-division labs that lacked extensive primary literature discussion. In addition, we assessed whether performance on our assessment correlated with a variety of factors, including grade point average, course performance, research background, and self-reported confidence in understanding of the article. Furthermore, all of the study conclusions are independent of biology disciplines, as we observe similar trends within each course. © 2014 B. K. Sato et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).
Bobela, David C.; Gedvilas, Lynn; Woodhouse, Michael; ...
2016-09-05
Here, tandem modules combining a III-V top cell with a Si bottom cell offer the potential to increase the solar energy conversion efficiency of one-sun photovoltaic modules beyond 25%, while fully utilizing the global investment that has been made in Si photovoltaics manufacturing. At present, the cost of III-V cells is far too high for this approach to be competitive for one-sun terrestrial power applications. We investigated the system-level economic benefits of both GaAs/Si and InGaP/Si tandem modules in favorable future scenarios where the cost of III-V cells is substantially reduced, perhaps to less than the cost of Si cells.more » We found, somewhat unexpectedly, that these tandems can reduce installed system cost only when the area-related balance-of-system cost is high, such as for area-constrained residential rooftop systems in the USA. When area-related balance-of-system cost is lower, such as for utility-scale systems, the tandem module offers no benefit. This is because a system using tandem modules is more expensive than one using single-junction Si modules when III-V cells are expensive, and a system using tandem modules is more expensive than one using single-junction III-V modules when III-V cells are inexpensive.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bobela, David C.; Gedvilas, Lynn; Woodhouse, Michael
Here, tandem modules combining a III-V top cell with a Si bottom cell offer the potential to increase the solar energy conversion efficiency of one-sun photovoltaic modules beyond 25%, while fully utilizing the global investment that has been made in Si photovoltaics manufacturing. At present, the cost of III-V cells is far too high for this approach to be competitive for one-sun terrestrial power applications. We investigated the system-level economic benefits of both GaAs/Si and InGaP/Si tandem modules in favorable future scenarios where the cost of III-V cells is substantially reduced, perhaps to less than the cost of Si cells.more » We found, somewhat unexpectedly, that these tandems can reduce installed system cost only when the area-related balance-of-system cost is high, such as for area-constrained residential rooftop systems in the USA. When area-related balance-of-system cost is lower, such as for utility-scale systems, the tandem module offers no benefit. This is because a system using tandem modules is more expensive than one using single-junction Si modules when III-V cells are expensive, and a system using tandem modules is more expensive than one using single-junction III-V modules when III-V cells are inexpensive.« less
Temperature compensated photovoltaic array
Mosher, D.M.
1997-11-18
A temperature compensated photovoltaic module comprises a series of solar cells having a thermally activated switch connected in parallel with several of the cells. The photovoltaic module is adapted to charge conventional batteries having a temperature coefficient differing from the temperature coefficient of the module. The calibration temperatures of the switches are chosen whereby the colder the ambient temperature for the module, the more switches that are on and form a closed circuit to short the associated solar cells. By shorting some of the solar cells as the ambient temperature decreases, the battery being charged by the module is not excessively overcharged at lower temperatures. PV module is an integrated solution that is reliable and inexpensive. 2 figs.
Barbolina, Maria V; Adley, Brian P; Kelly, David L; Shepard, Jaclyn; Fought, Angela J; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D; Stack, M Sharon
2009-08-15
Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancies, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intraperitoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hr of 3D collagen culture) coupled with confirmatory real-time reverse-transcriptase polymerase chain reaction, multiple 3D cell culture matrices, Western blot, immunostaining, adhesion, migration and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion- mimicking conditions (3D Type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n = 41), but was present in 100% of normal ovarian epithelium samples (n = 7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using alpha6beta1 and alpha3beta1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion.
Barbolina, Maria V.; Adley, Brian P.; Kelly, David L.; Shepard, Jaclyn; Fought, Angela J.; Scholtens, Denise; Penzes, Peter; Shea, Lonnie D.; Sharon Stack, M
2010-01-01
Epithelial ovarian carcinoma (EOC) is a leading cause of death from gynecologic malignancy, due mainly to the prevalence of undetected metastatic disease. The process of cell invasion during intra-peritoneal anchoring of metastatic lesions requires concerted regulation of many processes, including modulation of adhesion to the extracellular matrix and localized invasion. Exploratory cDNA microarray analysis of early response genes (altered after 4 hours of 3-dimensional collagen culture) coupled with confirmatory real-time RT-PCR, multiple three-dimensional cell culture matrices, Western blot, immunostaining, adhesion, migration, and invasion assays were used to identify modulators of adhesion pertinent to EOC progression and metastasis. cDNA microarray analysis indicated a dramatic downregulation of connective tissue growth factor (CTGF) in EOC cells placed in invasion-mimicking conditions (3-dimensional type I collagen). Examination of human EOC specimens revealed that CTGF expression was absent in 46% of the tested samples (n=41), but was present in 100% of normal ovarian epithelium samples (n=7). Reduced CTGF expression occurs in many types of cells and may be a general phenomenon displayed by cells encountering a 3D environment. CTGF levels were inversely correlated with invasion such that downregulation of CTGF increased, while its upregulation reduced, collagen invasion. Cells adhered preferentially to a surface comprised of both collagen I and CTGF relative to either component alone using α6β1 and α3β1 integrins. Together these data suggest that downregulation of CTGF in EOC cells may be important for cell invasion through modulation of cell-matrix adhesion. PMID:19382180
Direct 3D cell-printing of human skin with functional transwell system.
Kim, Byoung Soo; Lee, Jung-Seob; Gao, Ge; Cho, Dong-Woo
2017-06-06
Three-dimensional (3D) cell-printing has been emerging as a promising technology with which to build up human skin models by enabling rapid and versatile design. Despite the technological advances, challenges remain in the development of fully functional models that recapitulate complexities in the native tissue. Moreover, although several approaches have been explored for the development of biomimetic human skin models, the present skin models based on multistep fabrication methods using polydimethylsiloxane chips and commercial transwell inserts could be tackled by leveraging 3D cell-printing technology. In this paper, we present a new 3D cell-printing strategy for engineering a 3D human skin model with a functional transwell system in a single-step process. A hybrid 3D cell-printing system was developed, allowing for the use of extrusion and inkjet modules at the same time. We began by revealing the significance of each module in engineering human skin models; by using the extrusion-dispensing module, we engineered a collagen-based construct with polycaprolactone (PCL) mesh that prevented the contraction of collagen during tissue maturation; the inkjet-based dispensing module was used to uniformly distribute keratinocytes. Taking these features together, we engineered a human skin model with a functional transwell system; the transwell system and fibroblast-populated dermis were consecutively fabricated by using the extrusion modules. Following this process, keratinocytes were uniformly distributed onto the engineered dermis by the inkjet module. Our transwell system indicates a supportive 3D construct composed of PCL, enabling the maturation of a skin model without the aid of commercial transwell inserts. This skin model revealed favorable biological characteristics that included a stabilized fibroblast-stretched dermis and stratified epidermis layers after 14 days. It was also observed that a 50 times reduction in cost was achieved and 10 times less medium was used than in a conventional culture. Collectively, because this single-step process opens up chances for versatile designs, we envision that our cell-printing strategy could provide an attractive platform in engineering various human skin models.
Array Automated Assembly Task Low Cost Silicon Solar Array Project, Phase 2
NASA Technical Reports Server (NTRS)
Rhee, S. S.; Jones, G. T.; Allison, K. L.
1978-01-01
Progress in the development of solar cells and module process steps for low-cost solar arrays is reported. Specific topics covered include: (1) a system to automatically measure solar cell electrical performance parameters; (2) automation of wafer surface preparation, printing, and plating; (3) laser inspection of mechanical defects of solar cells; and (4) a silicon antireflection coating system. Two solar cell process steps, laser trimming and holing automation and spray-on dopant junction formation, are described.
Lipid Rafts in Mast Cell Biology
Silveira e Souza, Adriana Maria Mariano; Mazucato, Vivian Marino; Jamur, Maria Célia; Oliver, Constance
2011-01-01
Mast cells have long been recognized to have a direct and critical role in allergic and inflammatory reactions. In allergic diseases, these cells exert both local and systemic responses, including allergic rhinitis and anaphylaxis. Mast cell mediators are also related to many chronic inflammatory conditions. Besides the roles in pathological conditions, the biological functions of mast cells include roles in innate immunity, involvement in host defense mechanisms against parasites, immunomodulation of the immune system, tissue repair, and angiogenesis. Despite their growing significance in physiological and pathological conditions, much still remains to be learned about mast cell biology. This paper presents evidence that lipid rafts or raft components modulate many of the biological processes in mast cells, such as degranulation and endocytosis, play a role in mast cell development and recruitment, and contribute to the overall preservation of mast cell structure and organization. PMID:21490812
Automated assembly of Gallium Arsenide and 50-micron thick silicon solar cell modules
NASA Technical Reports Server (NTRS)
Mesch, H. G.
1984-01-01
The TRW automated solar array assembly equipment was used for the module assembly of 300 GaAs solar cells and 300 50 micron thick silicon solar cells (2 x 4 cm in size). These cells were interconnected with silver plated Invar tabs by means of welding. The GaAs cells were bonded to Kapton graphite aluminum honeycomb graphite substrates and the thin silicon cells were bonded to 0.002 inch thick single layer Kapton substrates. The GaAs solar cell module assembly resulted in a yield of 86% and the thin cell assembly produced a yield of 46% due to intermittent sticking of weld electrodes during the front cell contact welding operation. (Previously assembled thin cell solar modules produced an overall assembly yield of greater than 80%).
Investigation of test methods, material properties and processes for solar cell encapsulants
NASA Technical Reports Server (NTRS)
Willis, P. B.
1985-01-01
The historical development of ethylene vinyl acetate (EVA) is presented, including the functional requirements, polymer selection, curing, stabilization, production and module processing. The construction and use of a new method for the accelerated aging of polymers is detailed. The method more closely resembles the conditions that may be encountered in actual module field exposure and additionally may permit service life to be predicted accurately. The use of hardboard as a low cost candidate substrate material is studied. The performance of surface antisoiling treatments useful for imparting a self cleaning property to modules is updated.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-10-17
... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Final... (solar cells) from the People's Republic of China (PRC). The Department further determines that there... Cells, Whether or Not Assembled Into Modules, from the People's Republic of China (Decision Memorandum...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-22
... Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of China: Postponement of... determination in the countervailing duty investigation of crystalline silicon photovoltaic cells, whether or not... Crystalline Silicon Photovoltaic Cells, Whether or Not Assembled Into Modules, From the People's Republic of...
Salzman, Gary C.; Mullaney, Paul F.
1976-01-01
The disclosure relates to a system incorporating an ellipsoidal flow chamber having light reflective walls for low level light detection in practicing cellular analysis. The system increases signal-to-noise ratio by a factor of ten over prior art systems. In operation, laser light passes through the primary focus of the ellipsoid. A controlled flow of cells simultaneously passes through this focus so that the laser light impinges on the cells and is modulated by the cells. The reflective walls of the ellipsoid reflect the cell-modulated light to the secondary focus of the ellipsoid. A tapered light guide at the secondary focus picks up a substantial portion of modulated reflective light and directs it onto a light detector to produce a signal. The signal is processed to obtain the intensity distribution of the modulated light and hence sought after characteristics of the cells. In addition, cells may be dyed so as to fluoresce in response to the laser light and their fluorescence may be processed as cell-modulated light above described. A light discriminating filter would be used to distinguish reflected modulated laser light from reflected fluorescent light.
Evidence of Rentian Scaling of Functional Modules in Diverse Biological Networks.
How, Javier J; Navlakha, Saket
2018-06-12
Biological networks have long been known to be modular, containing sets of nodes that are highly connected internally. Less emphasis, however, has been placed on understanding how intermodule connections are distributed within a network. Here, we borrow ideas from engineered circuit design and study Rentian scaling, which states that the number of external connections between nodes in different modules is related to the number of nodes inside the modules by a power-law relationship. We tested this property in a broad class of molecular networks, including protein interaction networks for six species and gene regulatory networks for 41 human and 25 mouse cell types. Using evolutionarily defined modules corresponding to known biological processes in the cell, we found that all networks displayed Rentian scaling with a broad range of exponents. We also found evidence for Rentian scaling in functional modules in the Caenorhabditis elegans neural network, but, interestingly, not in three different social networks, suggesting that this property does not inevitably emerge. To understand how such scaling may have arisen evolutionarily, we derived a new graph model that can generate Rentian networks given a target Rent exponent and a module decomposition as inputs. Overall, our work uncovers a new principle shared by engineered circuits and biological networks.
The Neural Crest in Cardiac Congenital Anomalies
Keyte, Anna; Hutson, Mary Redmond
2012-01-01
This review discusses the function of neural crest as they relate to cardiovascular defects. The cardiac neural crest cells are a subpopulation of cranial neural crest discovered nearly 30 years ago by ablation of premigratory neural crest. The cardiac neural crest cells are necessary for normal cardiovascular development. We begin with a description of the crest cells in normal development, including their function in remodeling the pharyngeal arch arteries, outflow tract septation, valvulogenesis, and development of the cardiac conduction system. The cells are also responsible for modulating signaling in the caudal pharynx, including the second heart field. Many of the molecular pathways that are known to influence specification, migration, patterning and final targeting of the cardiac neural crest cells are reviewed. The cardiac neural crest cells play a critical role in the pathogenesis of various human cardiocraniofacial syndromes such as DiGeorge, Velocardiofacial, CHARGE, Fetal Alcohol, Alagille, LEOPARD, and Noonan syndromes, as well as Retinoic Acid Embryopathy. The loss of neural crest cells or their dysfunction may not always directly cause abnormal cardiovascular development, but are involved secondarily because crest cells represent a major component in the complex tissue interactions in the head, pharynx and outflow tract. Thus many of the human syndromes linking defects in the heart, face and brain can be better understood when considered within the context of a single cardiocraniofacial developmental module with the neural crest being a key cell type that interconnects the regions. PMID:22595346
Vlasits, Anna L.; Simon, Julian A.; Raible, David W.; Rubel, Edwin W; Owens, Kelly N.
2012-01-01
Loss of mechanosensory hair cells in the inner ear accounts for many hearing loss and balance disorders. Several beneficial pharmaceutical drugs cause hair cell death as a side effect. These include aminoglycoside antibiotics, such as neomycin, kanamycin and gentamicin, and several cancer chemotherapy drugs, such as cisplatin. Discovering new compounds that protect mammalian hair cells from toxic insults is experimentally difficult because of the inaccessibility of the inner ear. We used the zebrafish lateral line sensory system as an in vivo screening platform to survey a library of FDA-approved pharmaceuticals for compounds that protect hair cells from neomycin, gentamicin, kanamycin and cisplatin. Ten compounds were identified that provide protection from at least two of the four toxins. The resulting compounds fall into several drug classes, including serotonin and dopamine-modulating drugs, adrenergic receptor ligands, and estrogen receptor modulators. The protective compounds show different effects against the different toxins, supporting the idea that each toxin causes hair cell death by distinct, but partially overlapping, mechanisms. Furthermore, some compounds from the same drug classes had different protective properties, suggesting that they might not prevent hair cell death by their known target mechanisms. Some protective compounds blocked gentamicin uptake into hair cells, suggesting that they may block mechanotransduction or other routes of entry. The protective compounds identified in our screen will provide a starting point for studies in mammals as well as further research discovering the cellular signaling pathways that trigger hair cell death. PMID:22967486
Glycan Engineering for Cell and Developmental Biology.
Griffin, Matthew E; Hsieh-Wilson, Linda C
2016-01-21
Cell-surface glycans are a diverse class of macromolecules that participate in many key biological processes, including cell-cell communication, development, and disease progression. Thus, the ability to modulate the structures of glycans on cell surfaces provides a powerful means not only to understand fundamental processes but also to direct activity and elicit desired cellular responses. Here, we describe methods to sculpt glycans on cell surfaces and highlight recent successes in which artificially engineered glycans have been employed to control biological outcomes such as the immune response and stem cell fate. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lunar Module ECS (Environmental Control System) - Design Considerations and Failure Modes. Part 1
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
Design considerations and failure modes for the Lunar Module (LM) Environmental Control System (ECS) are described. An overview of the the oxygen supply and cabin pressurization, atmosphere revitalization, water management and heat transport systems are provided. Design considerations including reliability, flight instrumentation, modularization and the change to the use of batteries instead of fuel cells are discussed. A summary is provided for the LM ECS general testing regime.
Benitez, Cecil M.; Qu, Kun; Sugiyama, Takuya; Pauerstein, Philip T.; Liu, Yinghua; Tsai, Jennifer; Gu, Xueying; Ghodasara, Amar; Arda, H. Efsun; Zhang, Jiajing; Dekker, Joseph D.; Tucker, Haley O.; Chang, Howard Y.; Kim, Seung K.
2014-01-01
The regulatory logic underlying global transcriptional programs controlling development of visceral organs like the pancreas remains undiscovered. Here, we profiled gene expression in 12 purified populations of fetal and adult pancreatic epithelial cells representing crucial progenitor cell subsets, and their endocrine or exocrine progeny. Using probabilistic models to decode the general programs organizing gene expression, we identified co-expressed gene sets in cell subsets that revealed patterns and processes governing progenitor cell development, lineage specification, and endocrine cell maturation. Purification of Neurog3 mutant cells and module network analysis linked established regulators such as Neurog3 to unrecognized gene targets and roles in pancreas development. Iterative module network analysis nominated and prioritized transcriptional regulators, including diabetes risk genes. Functional validation of a subset of candidate regulators with corresponding mutant mice revealed that the transcription factors Etv1, Prdm16, Runx1t1 and Bcl11a are essential for pancreas development. Our integrated approach provides a unique framework for identifying regulatory genes and functional gene sets underlying pancreas development and associated diseases such as diabetes mellitus. PMID:25330008
The Emerging Role of Epigenetics in Stroke
Qureshi, Irfan A.; Mehler, Mark F.
2013-01-01
The transplantation of exogenous stem cells and the activation of endogenous neural stem and progenitor cells (NSPCs) are promising treatments for stroke. These cells can modulate intrinsic responses to ischemic injury and may even integrate directly into damaged neural networks. However, the neuroprotective and neural regenerative effects that can be mediated by these cells are limited and may even be deleterious. Epigenetic reprogramming represents a novel strategy for enhancing the intrinsic potential of the brain to protect and repair itself by modulating pathologic neural gene expression and promoting the recapitulation of seminal neural developmental processes. In fact, recent evidence suggests that emerging epigenetic mechanisms are critical for orchestrating nearly every aspect of neural development and homeostasis, including brain patterning, neural stem cell maintenance, neurogenesis and gliogenesis, neural subtype specification, and synaptic and neural network connectivity and plasticity. In this review, we survey the therapeutic potential of exogenous stem cells and endogenous NSPCs and highlight innovative technological approaches for designing, developing, and delivering epigenetic therapies for targeted reprogramming of endogenous pools of NSPCs, neural cells at risk, and dysfunctional neural networks to rescue and restore neurologic function in the ischemic brain. PMID:21403016
Bougdour, Alexandre; Durandau, Eric; Brenier-Pinchart, Marie-Pierre; Ortet, Philippe; Barakat, Mohamed; Kieffer, Sylvie; Curt-Varesano, Aurélie; Curt-Bertini, Rose-Laurence; Bastien, Olivier; Coute, Yohann; Pelloux, Hervé; Hakimi, Mohamed-Ali
2013-04-17
After invading host cells, Toxoplasma gondii multiplies within a parasitophorous vacuole (PV) that is maintained by parasite proteins secreted from organelles called dense granules. Most dense granule proteins remain within the PV, and few are known to access the host cell cytosol. We identify GRA16 as a dense granule protein that is exported through the PV membrane and reaches the host cell nucleus, where it positively modulates genes involved in cell-cycle progression and the p53 tumor suppressor pathway. GRA16 binds two host enzymes, the deubiquitinase HAUSP and PP2A phosphatase, which exert several functions, including regulation of p53 and the cell cycle. GRA16 alters p53 levels in a HAUSP-dependent manner and induces nuclear translocation of the PP2A holoenzyme. Additionally, certain GRA16-deficient strains exhibit attenuated virulence, indicating the importance of these host alterations in pathogenesis. Therefore, GRA16 represents a potentially emerging subfamily of exported dense granule proteins that modulate host function. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Geum, Dongil T.; Kim, Beum Jun; Chang, Audrey E.; Hall, Matthew S.; Wu, Mingming
2016-01-01
The receptor of epidermal growth factor (EGFR) critically regulates tumor cell invasion and is a potent therapeutic target for treatment of many types of cancers, including carcinomas and glioblastomas. It is known that EGF regulates cell motility when tumor cells are embedded within a 3D biomatrix. However, roles of EGF in modulating tumor cell motility phenotype are largely unknown. In this article, we report that EGF promotes a mesenchymal over an amoeboid motility phenotype using a malignant breast tumor cell line, MDA-MB-231, embedded within a 3D collagen matrix. Amoeboid cells are rounded in shape, while mesenchymal cells are elongated, and their migrations are governed by a distinctly different set of biomolecules. Using single cell tracking analysis, we also show that EGF promotes cell dissemination through a significant increase in cell persistence along with a moderate increase of speed. The increase of persistence is correlated with the increase of the percentage of the mesenchymal cells within the population. Our work reveals a novel role of microenvironmental cue, EGF, in modulating heterogeneity and plasticity of tumor cell motility phenotype. In addition, it suggests a potential visual cue for diagnosing invasive states of breast cancer cells. This work can be easily extended beyond breast cancer cells.
NASA Technical Reports Server (NTRS)
Sachse, Glen W. (Inventor); Wang, Liang-Guo (Inventor)
1992-01-01
A non-mechanical optical switch is developed for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.
Modulation of the immune response in rheumatoid arthritis with strategically released rapamycin.
Shao, Ping; Ma, Linxiao; Ren, Yile; Liu, Huijie
2017-10-01
Rheumatoid arthritis (RA) is a chronic inflammatory disease, which is associated with symptoms, including synovial membrane inflammatory pain, joint synovitis and stiffness. However, there are no effective methods available to cure this disease. In the present study, rapamycin was used to modulate immunity in RA. To limit the cytotoxicity of rapamycin, rapamycin was loaded into well‑characterized biocompatible nanoparticles. In vitro, rapamycin particles downregulated the activation of dendritic cell surface markers, including CD80+ and CD40+, upon interacting with macrophages. The rapamycin particles reduced the secretion of inflammatory cytokines, including interleukin (IL)‑6, tumor necrosis factor (TNF) and IL‑1β, which are characteristic of RA. In vivo, the rapamycin particles decreased the symptoms of RA in mice, and the production of inflammatory cytokines was associated with the occurrence of RA. The present study partially revealed the interactions between rapamycin and two types of immune cell in RA disease, and may potentially offer a solution to improve the treatment of RA.
Thermal proximity coaggregation for system-wide profiling of protein complex dynamics in cells.
Tan, Chris Soon Heng; Go, Ka Diam; Bisteau, Xavier; Dai, Lingyun; Yong, Chern Han; Prabhu, Nayana; Ozturk, Mert Burak; Lim, Yan Ting; Sreekumar, Lekshmy; Lengqvist, Johan; Tergaonkar, Vinay; Kaldis, Philipp; Sobota, Radoslaw M; Nordlund, Pär
2018-03-09
Proteins differentially interact with each other across cellular states and conditions, but an efficient proteome-wide strategy to monitor them is lacking. We report the application of thermal proximity coaggregation (TPCA) for high-throughput intracellular monitoring of protein complex dynamics. Significant TPCA signatures observed among well-validated protein-protein interactions correlate positively with interaction stoichiometry and are statistically observable in more than 350 annotated human protein complexes. Using TPCA, we identified many complexes without detectable differential protein expression, including chromatin-associated complexes, modulated in S phase of the cell cycle. Comparison of six cell lines by TPCA revealed cell-specific interactions even in fundamental cellular processes. TPCA constitutes an approach for system-wide studies of protein complexes in nonengineered cells and tissues and might be used to identify protein complexes that are modulated in diseases. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Zou, Yanfen; Yu, Xiang; Lu, Jing; Jiang, Ziyan; Zuo, Qing; Fan, Mingsong; Huang, Shiyun
2015-01-01
Preeclampsia (PE) is a unique complication of pregnancy, the pathogenesis of which has been generally accepted to be associated with the dysfunctions of extravillous trophoblast (EVT) including proliferation, apoptosis, and migration and invasion. Decorin (DCN) has been proved to be a decidua-derived TGF-binding proteoglycan, which negatively regulates proliferation, migration, and invasiveness of human extravillous trophoblast cells. In this study, we identified a higher expression level of decorin in severe PE placentas by both real-time reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). And an inhibitory effect of decorin on proliferation, migration, and invasion and an enhanced effect on apoptosis in trophoblast cells HTR-8/SVneo and JEG-3 were validated in vitro. Also the modulations of decorin on trophoblast cells' metastasis and invasion functions were detected through regulating the matrix metalloproteinases (MMP2 and MMP9). Thus, we suggested that the contribution of decorin to the modulation of trophoblast cells might have implications for the pathogenesis of preeclampsia. PMID:26357650
Stirling, Peter C.; Srayko, Martin; Takhar, Karam S.; Pozniakovsky, Andrei; Hyman, Anthony A.
2007-01-01
The C haperonin Containing Tcp1 (CCT) maintains cellular protein folding homeostasis in the eukaryotic cytosol by assisting the biogenesis of many proteins, including actins, tubulins, and regulators of the cell cycle. Here, we demonstrate that the essential and conserved eukaryotic phosducin-like protein 2 (PhLP2/PLP2) physically interacts with CCT and modulates its folding activity. Consistent with this functional interaction, temperature-sensitive alleles of Saccharomyces cerevisiae PLP2 exhibit cytoskeletal and cell cycle defects. We uncovered several high-copy suppressors of the plp2 alleles, all of which are associated with G1/S cell cycle progression but which do not appreciably affect cytoskeletal protein function or fully rescue the growth defects. Our data support a model in which Plp2p modulates the biogenesis of several CCT substrates relating to cell cycle and cytoskeletal function, which together contribute to the essential function of PLP2. PMID:17429077
The immunological synapse as a pharmacological target.
Francesca, Finetti; Baldari, Cosima T
2018-06-10
The development of T cell mediated immunity relies on the assembly of a highly specialized interface between T cell and antigen presenting cell (APC), known as the immunological synapse (IS). IS assembly is triggered when the T cell receptor (TCR) binds to specific peptide antigen presented in association to the major histocompatibility complex (MHC) by the APC, and is followed by the spatiotemporal dynamic redistribution of TCR, integrins, co-stimulatory receptors and signaling molecules, allowing for the fine-tuning and integration of the signals that lead to T cell activation. The knowledge acquired to date about the mechanisms of IS assembly underscores this structure as a robust pharmacological target. The activity of molecules involved in IS assembly and function can be targeted by specific compounds to modulate the immune response in a number of disorders, including cancers and autoimmune diseases, or in transplanted patients. Here, we will review the state-of-the art of the current therapies which exploit the IS to modulate the immune response. Copyright © 2018. Published by Elsevier Ltd.
Methods For Improving Polymeric Materials For Use In Solar Cell Applications
Hanoka, Jack I.
2003-07-01
A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.
Methods For Improving Polymeric Materials For Use In Solar Cell Applications
Hanoka, Jack I.
2001-11-20
A method of manufacturing a solar cell module includes the use of low cost polymeric materials with improved mechanical properties. A transparent encapsulant layer is placed adjacent a rear surface of a front support layer. Interconnected solar cells are positioned adjacent a rear surface of the transparent encapsulant layer to form a solar cell assembly. A backskin layer is placed adjacent a rear surface of the solar cell assembly. At least one of the transparent encapsulant layer and the backskin layer are predisposed to electron beam radiation.
Optimization of active cell area on the dye-sensitized solar cell efficiency
NASA Astrophysics Data System (ADS)
Putri, A. W.; Nurosyid, F.; Supriyanto, Agus
2017-11-01
This study is aimed to obtain optimal active area producing high efficiency of DSSC module. The DSSC structure is constructed of TiO2 as working electrode, dye as photosensitizer, platinum as counter electrode, and electrolyte as electron transfer media. TiO2 paste was deposited on Fluorine-doped Tin Oxide (FTO) by screen printing method. Meanwhile, platinum was also coated on FTO via brush painting method. Keithley I-V meter was performed to characterize DSSC electrical property. The active area of each cell was varied of 4.5 cm2, 9 cm2, and 13.5 cm2. Each cell was assembled into a module using an external series connection of Z type. The module was consisted of 12 cells, 6 cells, and 4 cells with module active area of 54 cm2. The optimal active area of DSSC cell is 4.5 cm2 resulting 0.4149% efficiency. In addition, the highest efficiency of DSSC module is 0.2234% acquired by 6 cells assembling.
NASA Astrophysics Data System (ADS)
Dhawan, Udesh; Wang, Ssu-Meng; Chu, Ying Hao; Huang, Guewha S.; Lin, Yan Ren; Hung, Yao Ching; Chen, Wen Liang
2016-08-01
Nanotopography modulates cell characteristics and cell behavior. Nanotopological cues can be exploited to investigate the in-vivo modulation of cell characteristics by the cellular microenvironment. However, the studies explaining the modulation of tumor cell characteristics and identifying the transition step in cancer progressiveness are scarce. Here, we engineered nanochips comprising of Tantalum oxide nanodot arrays of 10, 50, 100 and 200 nm as artificial microenvironments to study the modulation of cancer cell behavior. Clinical samples of different types of Ovarian cancer at different stages were obtained, primary cultures were established and then seeded on different nanochips. Immunofluorescence (IF) was performed to compare the morphologies and cell characteristics. Indices corresponding to cell characteristics were defined. A statistical comparison of the cell characteristics in response to the nanochips was performed. The cells displayed differential growth parameters. Morphology, Viability, focal adhesions, microfilament bundles and cell area were modulated by the nanochips which can be used as a measure to study the cancer progressiveness. The ease of fabrication of nanochips ensures mass-production. The ability of the nanochips to act as artificial microenvironments and modulate cell behavior may lead to further prospects in the markerless monitoring of the progressiveness and ultimately, improving the prognosis of Ovarian cancer.
Castelnovo, Luca F; Magnaghi, Valerio; Thomas, Peter
2017-09-28
The role played by progestogens in modulating Schwann cell pathophysiology is well established. Progestogens exert their effects in these cells through both classical genomic and non-genomic mechanisms, the latter mediated by the GABA-A receptor. However, there is evidence that other receptors may be involved. Membrane progesterone receptors (mPRs) are novel 7-transmembrane receptors coupled to G proteins that have been characterized in different tissues and cells, including the central nervous system (CNS). The mPRs were shown to mediate some of progestogens' neuroprotective effects in the CNS, and to be upregulated in glial cells after traumatic brain injury. Based on this evidence, this paper investigated the possible involvement of mPRs in mediating progestogen actions in S42 Schwann cells. All five mPR isoforms and progesterone receptor membrane component 1 (PGRMC1) were detected in Schwann cells, and were present on the cell membrane. Progesterone and the mPR-specific agonist, Org-OD-02-0 (02) bound to these membranes, indicating the presence of functional mPRs. The mPR agonist 02 rapidly increased cell migration in an in vitro assay, suggesting a putative role of mPRs in the nerve regeneration process. Treatment with pertussis toxin and 8-Br-cAMP blocked 02-induced cell migration, suggesting this progestogen action is mediated by activation of an inhibitory G protein, leading to a decrease in intracellular cAMP levels. In contrast, long-term mPR activation led to increased expression levels of myelin associated glycoprotein (MAG). Taken together, these findings show that mPRs are present and active in Schwann cells and have a role in modulating their physiological processes. Copyright © 2017 Elsevier Inc. All rights reserved.
Dehydrated human amnion/chorion membrane regulates stem cell activity in vitro
Massee, Michelle; Chinn, Kathryn; Lei, Jennifer; Lim, Jeremy J.; Young, Conan S.
2015-01-01
Abstract Human‐derived placental tissues have been shown in randomized clinical trials to be effective for healing chronic wounds, and have also demonstrated the ability to recruit stem cells to the wound site in vitro and in vivo. In this study, PURION® Processed dehydrated human amnion/chorion membrane allografts (dHACM, EpiFix®, MiMedx Group, Marietta, GA) were evaluated for their ability to alter stem cell activity in vitro. Human bone marrow mesenchymal stem cells (BM‐MSCs), adipose derived stem cells (ADSCs), and hematopoietic stem cells (HSCs) were treated with soluble extracts of dHACM tissue, and were evaluated for cellular proliferation, migration, and cytokine secretion. Stem cells were analyzed for cell number by DNA assay after 24 h, closure of an acellular zone using microscopy over 3 days, and soluble cytokine production in the medium of treated stem cells was analyzed after 3 days using a multiplex ELISA array. Treatment with soluble extracts of dHACM tissue stimulated BM‐MSCs, ADSCs, and HSCs to proliferate with a significant increase in cell number after 24 h. dHACM treatment accelerated closure of an acellular zone by ADSCs and BM‐MSCs after 3 days, compared to basal medium. BM‐MSCs, ADSCs, and HSCs also modulated endogenous production of a number of various soluble signals, including regulators of inflammation, mitogenesis, and wound healing. dHACM treatment promoted increased proliferation and migration of ADSCs, BM‐MSCs, and HSCs, along with modulation of secreted proteins from those cells. Therefore, dHACM may impact wound healing by amplifying host stem cell populations and modulating their responses in treated wound tissues. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1495–1503, 2016. PMID:26175122
DOE Office of Scientific and Technical Information (OSTI.GOV)
Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.
2000-08-25
This report describes results achieved during phase 1 of a three-phase subcontract to develop and understand thin-film solar cell technology associated to CuInSe{sub 2} and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scalemore » equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.« less
Modeling stochastic kinetics of molecular machines at multiple levels: from molecules to modules.
Chowdhury, Debashish
2013-06-04
A molecular machine is either a single macromolecule or a macromolecular complex. In spite of the striking superficial similarities between these natural nanomachines and their man-made macroscopic counterparts, there are crucial differences. Molecular machines in a living cell operate stochastically in an isothermal environment far from thermodynamic equilibrium. In this mini-review we present a catalog of the molecular machines and an inventory of the essential toolbox for theoretically modeling these machines. The tool kits include 1), nonequilibrium statistical-physics techniques for modeling machines and machine-driven processes; and 2), statistical-inference methods for reverse engineering a functional machine from the empirical data. The cell is often likened to a microfactory in which the machineries are organized in modular fashion; each module consists of strongly coupled multiple machines, but different modules interact weakly with each other. This microfactory has its own automated supply chain and delivery system. Buoyed by the success achieved in modeling individual molecular machines, we advocate integration of these models in the near future to develop models of functional modules. A system-level description of the cell from the perspective of molecular machinery (the mechanome) is likely to emerge from further integrations that we envisage here. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Evans, Richard Mark; Scholze, Martin; Kortenkamp, Andreas
2012-01-01
A growing body of experimental evidence indicates that the in vitro effects of mixtures of estrogenic chemicals can be well predicted from the estrogenicity of their components by the concentration addition (CA) concept. However, some studies have observed small deviations from CA. Factors affecting the presence or observation of deviations could include: the type of chemical tested; number of mixture components; mixture design; and assay choice. We designed mixture experiments that address these factors, using mixtures with high numbers of components, chemicals from diverse chemical groups, assays with different in vitro endpoints and different mixture designs and ratios. Firstly, the effects of mixtures composed of up to 17 estrogenic chemicals were examined using estrogenicity assays with reporter-gene (ERLUX) and cell proliferation (ESCREEN) endpoints. Two mixture designs were used: 1) a 'balanced' design with components present in proportion to a common effect concentration (e.g. an EC(10)) and 2) a 'non-balanced' design with components in proportion to potential human tissue concentrations. Secondly, the individual and simultaneous ability of 16 potential modulator chemicals (each with minimal estrogenicity) to influence the assay outcome produced by a reference mixture of estrogenic chemicals was examined. Test chemicals included plasticizers, phthalates, metals, PCBs, phytoestrogens, PAHs, heterocyclic amines, antioxidants, UV filters, musks, PBDEs and parabens. In all the scenarios tested, the CA concept provided a good prediction of mixture effects. Modulation studies revealed that chemicals possessing minimal estrogenicity themselves could reduce (negatively modulate) the effect of a mixture of estrogenic chemicals. Whether the type of modulation we observed occurs in practice most likely depends on the chemical concentrations involved, and better information is required on likely human tissue concentrations of estrogens and of potential modulators. Successful prediction of the effects of diverse chemical combinations might be more likely if chemical profiling included consideration of effect modulation.
Evans, Richard Mark; Scholze, Martin; Kortenkamp, Andreas
2012-01-01
A growing body of experimental evidence indicates that the in vitro effects of mixtures of estrogenic chemicals can be well predicted from the estrogenicity of their components by the concentration addition (CA) concept. However, some studies have observed small deviations from CA. Factors affecting the presence or observation of deviations could include: the type of chemical tested; number of mixture components; mixture design; and assay choice. We designed mixture experiments that address these factors, using mixtures with high numbers of components, chemicals from diverse chemical groups, assays with different in vitro endpoints and different mixture designs and ratios. Firstly, the effects of mixtures composed of up to 17 estrogenic chemicals were examined using estrogenicity assays with reporter-gene (ERLUX) and cell proliferation (ESCREEN) endpoints. Two mixture designs were used: 1) a ‘balanced’ design with components present in proportion to a common effect concentration (e.g. an EC10) and 2) a ‘non-balanced’ design with components in proportion to potential human tissue concentrations. Secondly, the individual and simultaneous ability of 16 potential modulator chemicals (each with minimal estrogenicity) to influence the assay outcome produced by a reference mixture of estrogenic chemicals was examined. Test chemicals included plasticizers, phthalates, metals, PCBs, phytoestrogens, PAHs, heterocyclic amines, antioxidants, UV filters, musks, PBDEs and parabens. In all the scenarios tested, the CA concept provided a good prediction of mixture effects. Modulation studies revealed that chemicals possessing minimal estrogenicity themselves could reduce (negatively modulate) the effect of a mixture of estrogenic chemicals. Whether the type of modulation we observed occurs in practice most likely depends on the chemical concentrations involved, and better information is required on likely human tissue concentrations of estrogens and of potential modulators. Successful prediction of the effects of diverse chemical combinations might be more likely if chemical profiling included consideration of effect modulation. PMID:22912892
Exploring the Transcriptome of Ciliated Cells Using In Silico Dissection of Human Tissues
Ivliev, Alexander E.; 't Hoen, Peter A. C.; van Roon-Mom, Willeke M. C.; Peters, Dorien J. M.; Sergeeva, Marina G.
2012-01-01
Cilia are cell organelles that play important roles in cell motility, sensory and developmental functions and are involved in a range of human diseases, known as ciliopathies. Here, we search for novel human genes related to cilia using a strategy that exploits the previously reported tendency of cell type-specific genes to be coexpressed in the transcriptome of complex tissues. Gene coexpression networks were constructed using the noise-resistant WGCNA algorithm in 12 publicly available microarray datasets from human tissues rich in motile cilia: airways, fallopian tubes and brain. A cilia-related coexpression module was detected in 10 out of the 12 datasets. A consensus analysis of this module's gene composition recapitulated 297 known and predicted 74 novel cilia-related genes. 82% of the novel candidates were supported by tissue-specificity expression data from GEO and/or proteomic data from the Human Protein Atlas. The novel findings included a set of genes (DCDC2, DYX1C1, KIAA0319) related to a neurological disease dyslexia suggesting their potential involvement in ciliary functions. Furthermore, we searched for differences in gene composition of the ciliary module between the tissues. A multidrug-and-toxin extrusion transporter MATE2 (SLC47A2) was found as a brain-specific central gene in the ciliary module. We confirm the localization of MATE2 in cilia by immunofluorescence staining using MDCK cells as a model. While MATE2 has previously gained attention as a pharmacologically relevant transporter, its potential relation to cilia is suggested for the first time. Taken together, our large-scale analysis of gene coexpression networks identifies novel genes related to human cell cilia. PMID:22558177
Bai, Xiao-Hui; Chen, Hui-Jie; Jiang, Yong-Liang; Wen, Zhensong; Huang, Yubin; Cheng, Wang; Li, Qiong; Qi, Lei; Zhang, Jing-Ren; Chen, Yuxing; Zhou, Cong-Zhao
2014-01-01
Streptococcus pneumoniae causes a series of devastating infections in humans. Previous studies have shown that the endo-β-N-acetylglucosaminidase LytB is critical for pneumococcal cell division and nasal colonization, but the biochemical mechanism of LytB action remains unknown. Here we report the 1.65 Å crystal structure of the catalytic domain (residues Lys-375–Asp-658) of LytB (termed LytBCAT), excluding the choline binding domain. LytBCAT consists of three structurally independent modules: SH3b, WW, and GH73. These modules form a “T-shaped” pocket that accommodates a putative tetrasaccharide-pentapeptide substrate of peptidoglycan. Structural comparison and simulation revealed that the GH73 module of LytB harbors the active site, including the catalytic residue Glu-564. In vitro assays of hydrolytic activity indicated that LytB prefers the peptidoglycan from the lytB-deficient pneumococci, suggesting the existence of a specific substrate of LytB in the immature peptidoglycan. Combined with in vitro cell-dispersing and in vivo cell separation assays, we demonstrated that all three modules are necessary for the optimal activity of LytB. Further functional analysis showed that the full catalytic activity of LytB is required for pneumococcal adhesion to and invasion into human lung epithelial cells. Structure-based alignment indicated that the unique modular organization of LytB is highly conserved in its orthologs from Streptococcus mitis group and Gemella species. These findings provided structural insights into the pneumococcal cell wall remodeling and novel hints for the rational design of therapeutic agents against pneumococcal growth and thereby the related diseases. PMID:25002590
Prandini, Paola; De Logu, Francesco; Fusi, Camilla; Provezza, Lisa; Nassini, Romina; Montagner, Giulia; Materazzi, Serena; Munari, Silvia; Gilioli, Eliana; Bezzerri, Valentino; Finotti, Alessia; Lampronti, Ilaria; Tamanini, Anna; Dechecchi, Maria Cristina; Lippi, Giuseppe; Ribeiro, Carla M; Rimessi, Alessandro; Pinton, Paolo; Gambari, Roberto; Geppetti, Pierangelo; Cabrini, Giulio
2016-11-01
Pseudomonas aeruginosa colonization, prominent inflammation with massive expression of the neutrophil chemokine IL-8, and luminal infiltrates of neutrophils are hallmarks of chronic lung disease in patients with cystic fibrosis (CF). The nociceptive transient receptor potential ankyrin (TRPA) 1 calcium channels have been recently found to be involved in nonneurogenic inflammation. Here, we investigate the role of TRPA1 in CF respiratory inflammatory models in vitro. Expression of TRPA1 was evaluated in CF lung tissue sections and cells by immunohistochemistry and immunofluorescence. Epithelial cell lines (A549, IB3-1, CuFi-1, CFBE41o - ) and primary cells from patients with CF were used to: (1) check TRPA1 function modulation, by Fura-2 calcium imaging; (2) down-modulate TRPA1 function and expression, by pharmacological inhibitors (HC-030031 and A-967079) and small interfering RNA silencing; and (3) assess the effect of TRPA1 down-modulation on expression and release of cytokines upon exposure to proinflammatory challenges, by quantitative RT-PCR and 27-protein Bioplex assay. TRPA1 channels are expressed in the CF pseudostratified columnar epithelium facing the bronchial lumina exposed to bacteria, where IL-8 is coexpressed. Inhibition of TRPA1 expression results in a relevant reduction of release of several cytokines, including IL-8 and the proinflammatory cytokines IL-1β and TNF-α, in CF primary bronchial epithelial cells exposed to P. aeruginosa and to the supernatant of mucopurulent material derived from the chronically infected airways of patients with CF. In conclusion, TRPA1 channels are involved in regulating the extent of airway inflammation driven by CF bronchial epithelial cells.
Thin film solar cell including a spatially modulated intrinsic layer
Guha, Subhendu; Yang, Chi-Chung; Ovshinsky, Stanford R.
1989-03-28
One or more thin film solar cells in which the intrinsic layer of substantially amorphous semiconductor alloy material thereof includes at least a first band gap portion and a narrower band gap portion. The band gap of the intrinsic layer is spatially graded through a portion of the bulk thickness, said graded portion including a region removed from the intrinsic layer-dopant layer interfaces. The band gap of the intrinsic layer is always less than the band gap of the doped layers. The gradation of the intrinsic layer is effected such that the open circuit voltage and/or the fill factor of the one or plural solar cell structure is enhanced.
NASA Technical Reports Server (NTRS)
1978-01-01
Six photovoltaic modules using solar cells fabricated from silicon ribbons were assembled and delivered to JPL. Each module was comprised of four separate submodules which were parallel connected. The submodules contained 45 EFG cells which were series interconnected by a shingle or overlapping design. The inherent rectangular shape of the cells allowed a high packing factor to be achieved. The average efficiency of the six modules, corrected to AM1 at 28 C was 8.7%, which indicates that the average encapsulated cell efficiency was 10.0%.
High-Power, High-Speed Electro-Optic Pockels Cell Modulator
NASA Technical Reports Server (NTRS)
Hawthorne, Justin; Battle, Philip
2013-01-01
Electro-optic modulators rely on a change in the index of refraction for the optical wave as a function of an applied voltage. The corresponding change in index acts to delay the wavefront in the waveguide. The goal of this work was to develop a high-speed, high-power waveguide- based modulator (phase and amplitude) and investigate its use as a pulse slicer. The key innovation in this effort is the use of potassium titanyl phosphate (KTP) waveguides, making the highpower, polarization-based waveguide amplitude modulator possible. Furthermore, because it is fabricated in KTP, the waveguide component will withstand high optical power and have a significantly higher RF modulation figure of merit (FOM) relative to lithium niobate. KTP waveguides support high-power TE and TM modes - a necessary requirement for polarization-based modulation as with a Pockels cell. High-power fiber laser development has greatly outpaced fiber-based modulators in terms of its maturity and specifications. The demand for high-performance nonlinear optical (NLO) devices in terms of power handling, efficiency, bandwidth, and useful wavelength range has driven the development of bulk NLO options, which are limited in their bandwidth, as well as waveguide based LN modulators, which are limited by their low optical damage threshold. Today, commercially available lithium niobate (LN) modulators are used for laser formatting; however, because of photorefractive damage that can reduce transmission and increase requirements on bias control, LN modulators cannot be used with powers over several mW, dependent on wavelength. The high-power, high-speed modulators proposed for development under this effort will enable advancements in several exciting fields including lidarbased remote sensing, atomic interferometry, free-space laser communications, and others.
Development of a shingle-type solar cell module
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.; Sanchez, L. E.
1978-01-01
The development of a solar cell module, which is suitable for use in place of shingles on the sloping roofs of residental or commercial buildings, is reported. The design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packed hexagon configuration. The shingle solar cell module consists of two basic functional parts: an exposed rigid portion which contains the solar cell assembly, and a semi-flexible portion which is overlapped by the higher courses of the roof installation. Consideration is given to the semi-flexible substrate configuration and solar cell and module-to-module interconnectors. The results of an electrical performance analysis are given and it is noted that high specific power output can be attributed to the efficient packing of the circular cells within the hexagon shape. The shingle should function for at least 15 years, with a specific power output of 98 W/sq w.
Progress in developing ultrathin solar cell blanket technology
NASA Technical Reports Server (NTRS)
Patterson, R. E.; Mesch, H. G.; Scott-Monck, J.
1984-01-01
A program was conducted to develop technologies for welding interconnects to three types of 50-micron-thick, 2 by 2-cm solar cells. Parallel-gap resistance welding was used for interconnect attachment. Weld schedules were independently developed for each of the three cell types and were coincidentally identical. Six 48-cell modules were assembled with 50-micron (nominal) thick cells, frosted fused-silica covers, silver-plated Invar interconnectors, and four different substrate designs. Three modules (one for each cell type) have single-layer Kapton (50-micron-thick) substrates. The other three modules each have a different substrate (Kapton-Kevlar-Kapton, Kapton-graphite-Kapton, and Kapton-graphite-aluminum honeycomb-graphite). All six modules were subjected to 4112 thermal cycles from -175 to 65 C (corresponding to over 40 years of simulated geosynchronous orbit thermal cycling) and experienced only negligible electrical degradation (1.1 percent average of six 48-cell modules).
A BK (Slo1) channel journey from molecule to physiology
Contreras, Gustavo F; Castillo, Karen; Enrique, Nicolás; Carrasquel-Ursulaez, Willy; Castillo, Juan Pablo; Milesi, Verónica; Neely, Alan; Alvarez, Osvaldo; Ferreira, Gonzalo; González, Carlos; Latorre, Ramón
2013-01-01
Calcium and voltage-activated potassium (BK) channels are key actors in cell physiology, both in neuronal and non-neuronal cells and tissues. Through negative feedback between intracellular Ca2+ and membrane voltage, BK channels provide a damping mechanism for excitatory signals. Molecular modulation of these channels by alternative splicing, auxiliary subunits and post-translational modifications showed that these channels are subjected to many mechanisms that add diversity to the BK channel α subunit gene. This complexity of interactions modulates BK channel gating, modifying the energetic barrier of voltage sensor domain activation and channel opening. Regions for voltage as well as Ca2+ sensitivity have been identified, and the crystal structure generated by the 2 RCK domains contained in the C-terminal of the channel has been described. The linkage of these channels to many intracellular metabolites and pathways, as well as their modulation by extracellular natural agents, has been found to be relevant in many physiological processes. This review includes the hallmarks of BK channel biophysics and its physiological impact on specific cells and tissues, highlighting its relationship with auxiliary subunit expression. PMID:24025517
Immunomodulation and Anti-Inflammatory Effects of Garlic Compounds
Arreola, Rodrigo; Quintero-Fabián, Saray; López-Roa, Rocío Ivette; Flores-Gutiérrez, Enrique Octavio; Reyes-Grajeda, Juan Pablo; Carrera-Quintanar, Lucrecia; Ortuño-Sahagún, Daniel
2015-01-01
The benefits of garlic to health have been proclaimed for centuries; however, only recently have Allium sativum and its derivatives been proposed as promising candidates for maintaining the homeostasis of the immune system. The complex biochemistry of garlic makes it possible for variations in processing to yield different preparations with differences in final composition and compound proportion. In this review, we assess the most recent experimental results, which indicate that garlic appears to enhance the functioning of the immune system by stimulating certain cell types, such as macrophages, lymphocytes, natural killer (NK) cells, dendritic cells, and eosinophils, by mechanisms including modulation of cytokine secretion, immunoglobulin production, phagocytosis, and macrophage activation. Finally, because immune dysfunction plays an important role in the development and progress of several diseases, we critically examined immunoregulation by garlic extracts and compounds isolated, which can contribute to the treatment and prevention of pathologies such as obesity, metabolic syndrome, cardiovascular disorders, gastric ulcer, and even cancer. We concluded that A. sativum modulates cytokine secretion and that such modulation may provide a mechanism of action for many of their therapeutic effects. PMID:25961060
Immunomodulation and anti-inflammatory effects of garlic compounds.
Arreola, Rodrigo; Quintero-Fabián, Saray; López-Roa, Rocío Ivette; Flores-Gutiérrez, Enrique Octavio; Reyes-Grajeda, Juan Pablo; Carrera-Quintanar, Lucrecia; Ortuño-Sahagún, Daniel
2015-01-01
The benefits of garlic to health have been proclaimed for centuries; however, only recently have Allium sativum and its derivatives been proposed as promising candidates for maintaining the homeostasis of the immune system. The complex biochemistry of garlic makes it possible for variations in processing to yield different preparations with differences in final composition and compound proportion. In this review, we assess the most recent experimental results, which indicate that garlic appears to enhance the functioning of the immune system by stimulating certain cell types, such as macrophages, lymphocytes, natural killer (NK) cells, dendritic cells, and eosinophils, by mechanisms including modulation of cytokine secretion, immunoglobulin production, phagocytosis, and macrophage activation. Finally, because immune dysfunction plays an important role in the development and progress of several diseases, we critically examined immunoregulation by garlic extracts and compounds isolated, which can contribute to the treatment and prevention of pathologies such as obesity, metabolic syndrome, cardiovascular disorders, gastric ulcer, and even cancer. We concluded that A. sativum modulates cytokine secretion and that such modulation may provide a mechanism of action for many of their therapeutic effects.
Marzano, Valeria; Santini, Simonetta; Rossi, Claudia; Zucchelli, Mirco; D'Alessandro, Annamaria; Marchetti, Carlo; Mingardi, Michele; Stagni, Venturina; Barilà, Daniela; Urbani, Andrea
2012-01-01
Ataxia Telangiectasia Mutated (ATM) protein kinase is a key effector in the modulation of the functionality of some important stress responses, including DNA damage and oxidative stress response, and its deficiency is the hallmark of Ataxia Telangiectasia (A-T), a rare genetic disorder. ATM modulates the activity of hundreds of target proteins, essential for the correct balance between proliferation and cell death. The aim of this study is to evaluate the phenotypic adaptation at the protein level both in basal condition and in presence of proteasome blockage in order to identify the molecules whose level and stability are modulated through ATM expression. We pursued a comparative analysis of ATM deficient and proficient lymphoblastoid cells by label-free shotgun proteomic experiments comparing the panel of proteins differentially expressed. Through a non-supervised comparative bioinformatic analysis these data provided an insight on the functional role of ATM deficiency in cellular carbohydrate metabolism's regulation. This hypothesis has been demonstrated by targeted metabolic fingerprint analysis SRM (Selected Reaction Monitoring) on specific thermodynamic checkpoints of glycolysis. This article is part of a Special Issue entitled: Translational Proteomics. PMID:22641158
Jin, Byung-Ju; Ko, Eun-A; Namkung, Wan; Verkman, A S
2013-10-07
We previously developed cell-based kinetics assays of chloride channel modulators utilizing genetically encoded yellow fluorescent proteins. Fluorescence platereader-based high-throughput screens yielded small-molecule activators and inhibitors of the cAMP-activated chloride channel CFTR and calcium-activated chloride channels, including TMEM16A. Here, we report a microfluidics platform for single-shot determination of concentration-activity relations in which a 1.5 × 1.5 mm square area of adherent cultured cells is exposed for 5-10 min to a pseudo-logarithmic gradient of test compound generated by iterative, two-component channel mixing. Cell fluorescence is imaged following perfusion with an iodide-containing solution to give iodide influx rate at each location in the image field, thus quantifying modulator effects over a wide range of concentrations in a single measurement. IC50 determined for CFTR and TMEM16A activators and inhibitors by single-shot microfluidics were in agreement with conventional plate reader measurements. The microfluidics approach developed here may accelerate the discovery and characterization of chloride channel-targeted drugs.
Wagner, Marc C.E.
2011-01-01
Extracellular adenosine triphosphate (eATP) is a potent molecule that has the capacity to modulate various aspects of cell functions including gene expression. This element of modulation is essential to the role of ATP as a therapeutic agent. The hypothesis presented is that ATP can have an important impact on the treatment of HIV infection. This is supported in part by published research, although a much greater role for ATP is suggested than prior authors ever thought possible. ATP has the ability to enhance the immune system and could thus improve the host’s own defense mechanisms to eradicate the virus-infected cells and restore normal immune function. This could provide effective therapy when used in conjunction with highly active antiretroviral therapies (HAART) to eliminate the latently infected cells. The key lies in applying ATP through the methodology described. This article presents a strategy for using ATP therapeutically along with background evidence to substantiate the importance of using ATP in the treatment of HIV infection. PMID:21675943
Hsp70-Bag3 interactions regulate cancer-related signaling networks
Colvin, T.A.; Gabai, V.L.; Gong, J.; Calderwood, S.K.; Li, H.; Gummuluru, S.; Matchuk, O.N; Smirnova, S.G; Orlova, N.V; Zamulaeva, I.A; Garcia-Marcos, M.; Li, X.; Young, Z.T.; Rauch, J.N.; Gestwicki, J.E.; Takayama, S.; Sherman, M.Y.
2014-01-01
Bag3, a nucleotide exchange factor of the heat shock protein Hsp70, has been implicated in cell signaling. Here we report that Bag3 interacts with the SH3 domain of Src, thereby mediating the effects of Hsp70 on Src signaling. Using several complementary approaches, we established that the Hsp70-Bag3 module is a broad-acting regulator of cancer cell signaling, including by modulating the activity of the transcription factors NF-kB, FoxM1 and Hif1α, the translation regulator HuR and the cell cycle regulators p21 and survivin. We also identified a small molecule inhibitor, YM-1, that disrupts Hsp70-Bag3 interaction. YM-1 mirrored the effects of Hsp70 depletion on these signaling pathways, and in vivo administration of this drug was sufficient to suppress tumor growth in mice. Overall, our results defined Bag3 as a critical factor in Hsp70-modulated signaling and offered a preclinical proof-of-concept that the Hsp70-Bag3 complex may offer an appealing anti-cancer target. PMID:24994713
Purge gas protected transportable pressurized fuel cell modules and their operation in a power plant
Zafred, P.R.; Dederer, J.T.; Gillett, J.E.; Basel, R.A.; Antenucci, A.B.
1996-11-12
A fuel cell generator apparatus and method of its operation involves: passing pressurized oxidant gas and pressurized fuel gas into modules containing fuel cells, where the modules are each enclosed by a module housing surrounded by an axially elongated pressure vessel, and where there is a purge gas volume between the module housing and pressure vessel; passing pressurized purge gas through the purge gas volume to dilute any unreacted fuel gas from the modules; and passing exhaust gas and circulated purge gas and any unreacted fuel gas out of the pressure vessel; where the fuel cell generator apparatus is transportable when the pressure vessel is horizontally disposed, providing a low center of gravity. 11 figs.
Temperature compensated photovoltaic array
Mosher, Dan Michael
1997-11-18
A temperature compensated photovoltaic module (20) comprised of a series of solar cells (22) having a thermally activated switch (24) connected in parallel with several of the cells (22). The photovoltaic module (20) is adapted to charge conventional batteries having a temperature coefficient (TC) differing from the temperature coefficient (TC) of the module (20). The calibration temperatures of the switches (24) are chosen whereby the colder the ambient temperature for the module (20), the more switches that are on and form a closed circuit to short the associated solar cells (22). By shorting some of the solar cells (22) as the ambient temperature decreases, the battery being charged by the module (20) is not excessively overcharged at lower temperatures. PV module (20) is an integrated solution that is reliable and inexpensive.
ERIC Educational Resources Information Center
Bax, Christopher; Baggott, Glenn; Howey, Ellen; Pellet-Many, Carolyn; Rayne, Richard; Neonaki, Maria; Bax, Bridget E.; White, Christopher Branford
2006-01-01
This study was carried out to examine students' responses to the use of on-line assessments that included feedback. First year BSc students taking a Cell Biology module undertook such an assessment and were then asked to evaluate the test by completing an anonymous questionnaire. Answers were analysed in light of the respondents' ethnicity and…
Raudies, Florian; Hasselmo, Michael E.
2015-01-01
Firing fields of grid cells in medial entorhinal cortex show compression or expansion after manipulations of the location of environmental barriers. This compression or expansion could be selective for individual grid cell modules with particular properties of spatial scaling. We present a model for differences in the response of modules to barrier location that arise from different mechanisms for the influence of visual features on the computation of location that drives grid cell firing patterns. These differences could arise from differences in the position of visual features within the visual field. When location was computed from the movement of visual features on the ground plane (optic flow) in the ventral visual field, this resulted in grid cell spatial firing that was not sensitive to barrier location in modules modeled with small spacing between grid cell firing fields. In contrast, when location was computed from static visual features on walls of barriers, i.e. in the more dorsal visual field, this resulted in grid cell spatial firing that compressed or expanded based on the barrier locations in modules modeled with large spacing between grid cell firing fields. This indicates that different grid cell modules might have differential properties for computing location based on visual cues, or the spatial radius of sensitivity to visual cues might differ between modules. PMID:26584432
Self-balanced modulation and magnetic rebalancing method for parallel multilevel inverters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Hui; Shi, Yanjun
A self-balanced modulation method and a closed-loop magnetic flux rebalancing control method for parallel multilevel inverters. The combination of the two methods provides for balancing of the magnetic flux of the inter-cell transformers (ICTs) of the parallel multilevel inverters without deteriorating the quality of the output voltage. In various embodiments a parallel multi-level inverter modulator is provide including a multi-channel comparator to generate a multiplexed digitized ideal waveform for a parallel multi-level inverter and a finite state machine (FSM) module coupled to the parallel multi-channel comparator, the FSM module to receive the multiplexed digitized ideal waveform and to generate amore » pulse width modulated gate-drive signal for each switching device of the parallel multi-level inverter. The system and method provides for optimization of the output voltage spectrum without influence the magnetic balancing.« less
NASA Astrophysics Data System (ADS)
Loubert, Joseph William
This thesis consists of two parts. In the first we prove that the Khovanov-Lauda-Rouquier algebras Ralpha of finite type are (graded) affine cellular in the sense of Koenig and Xi. In fact, we establish a stronger property, namely that the affine cell ideals in Ralpha are generated by idempotents. This in particular implies the (known) result that the global dimension of Ralpha is finite. In the second part we use the presentation of the Specht modules given by Kleshchev-Mathas-Ram to derive results about Specht modules. In particular, we determine all homomorphisms from an arbitrary Specht module to a fixed Specht module corresponding to any hook partition. Along the way, we give a complete description of the action of the standard KLR generators on the hook Specht module. This work generalizes a result of James. This dissertation includes previously published coauthored material.
Jeon, Chanoh; Kang, Soowon; Park, Seungbeom; Lim, Kyungtaek; Hwang, Kwang Woo; Min, Hyeyoung
2011-01-01
Myeloid-derived suppressor cells (MDSCs) actively suppress immune cells and have been considered as an impediment to successful cancer immunotherapy. Many approaches have been made to overcome such immunosuppressive factors and to exert effective anti-tumor effects, but the possibility of using medicinal plants for this purpose has been overlooked. Korean red ginseng (KRG) is widely known to possess a variety of pharmacological properties, including immunoboosting and anti-tumor activities. However, little has been done to assess the anti-tumor activity of KRG on MDSCs. Therefore, we examined the effects of KRG on MDSCs in tumor-bearing mice and evaluated immunostimulatory and anti-tumor activities of KRG through MDSC modulation. The data show that intraperitoneal administration of KRG compromises MDSC function and induces T cell proliferation and the secretion of IL-2 and IFN-γ, while it does not exhibit direct cytotoxicity on tumor cells and reduced MDSC accumulation. MDSCs isolated from KRG-treated mice also express significantly lower levels of inducible nitric oxide synthase and IL-10 accompanied by a decrease in nitric oxide production compared with control. Taken together, the present study demonstrates that KRG enhances T cell function by inhibiting the immunosuppressive activity of MDSCs and suggests that although KRG alone does not exhibit direct anti-tumor effects, the use of KRG together with conventional chemo- or immunotherapy may provide better outcomes to cancer patients through MDSC modulation. PMID:23717093
Solid-state energy storage module employing integrated interconnect board
Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.
2004-09-28
An electrochemical energy storage device includes a number of solid-state thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electro-mechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.
Hydrogen storage and integrated fuel cell assembly
Gross, Karl J.
2010-08-24
Hydrogen is stored in materials that absorb and desorb hydrogen with temperature dependent rates. A housing is provided that allows for the storage of one or more types of hydrogen-storage materials in close thermal proximity to a fuel cell stack. This arrangement, which includes alternating fuel cell stack and hydrogen-storage units, allows for close thermal matching of the hydrogen storage material and the fuel cell stack. Also, the present invention allows for tailoring of the hydrogen delivery by mixing different materials in one unit. Thermal insulation alternatively allows for a highly efficient unit. Individual power modules including one fuel cell stack surrounded by a pair of hydrogen-storage units allows for distribution of power throughout a vehicle or other electric power consuming devices.
BIOLOGICAL AND BIOPHYSICAL PROPERTIES OF VASCULAR CONNEXIN CHANNELS
Johnstone, Scott; Isakson, Brant; Locke, Darren
2010-01-01
Intercellular channels formed by connexin proteins play a pivotal role in the direct movement of ions and larger cytoplasmic solutes between vascular endothelial cells, between vascular smooth muscle cells, and between endothelial and smooth muscle cells. Multiple genetic and epigenetic factors modulate connexin expression levels and/or channel function, including cell type-independent and cell type-specific transcription factors, posttranslational modification and localized membrane targeting. Additionally, differences in protein-protein interactions, including those between connexins, significantly contribute to both vascular homeostasis and disease progression. The biophysical properties of the connexin channels identified in the vasculature, those formed by Cx37, Cx40, Cx43 and/or Cx45 proteins, are discussed in this review in the physiological and pathophysiological context of vessel function. PMID:19815177
[Oxygen and the superoxide anion. Modulation of NADPH oxidase?].
Delbosc, S; Cristol, J P; Descomps, B; Chénard, J; Sirois, P
2001-01-01
Oxidative stress which results from an imbalance between oxidant production and antioxidant defense mechanisms can promote modifications of lipids, proteins and nucleic acids. This review focuses on the different pathways leading to Reactive Oxygen Species (ROS) production in particular on NADPH oxidase activation. This enzyme is localized in numerous cells including phagocytes and vascular cells and composed of membrane and cytosolic sub-units. The activation of the NADPH oxidase is largely involved in inflammation associated diseases such as asthma, Systemic Inflammatory Response Syndrome and aging associated diseases such as atherosclerosis and neurodeneratives diseases. The modulation of NADPH oxidase could be a way to limit or prevent the development of these diseases.
Cell Proliferation, Reactive Oxygen and Cellular Glutathione
Day, Regina M.; Suzuki, Yuichiro J.
2005-01-01
A variety of cellular activities, including metabolism, growth, and death, are regulated and modulated by the redox status of the environment. A biphasic effect has been demonstrated on cellular proliferation with reactive oxygen species (ROS)—especially hydrogen peroxide and superoxide—in which low levels (usually submicromolar concentrations) induce growth but higher concentrations (usually >10–30 micromolar) induce apoptosis or necrosis. This phenomenon has been demonstrated for primary, immortalized and transformed cell types. However, the mechanism of the proliferative response to low levels of ROS is not well understood. Much of the work examining the signal transduction by ROS, including H2O2, has been performed using doses in the lethal range. Although use of higher ROS doses have allowed the identification of important signal transduction pathways, these pathways may be activated by cells only in association with ROS-induced apoptosis and necrosis, and may not utilize the same pathways activated by lower doses of ROS associated with increased cell growth. Recent data has shown that low levels of exogenous H2O2 up-regulate intracellular glutathione and activate the DNA binding activity toward antioxidant response element. The modulation of the cellular redox environment, through the regulation of cellular glutathione levels, may be a part of the hormetic effect shown by ROS on cell growth. PMID:18648617
Palchesko, Rachelle N; Szymanski, John M; Sahu, Amrita; Feinberg, Adam W
2014-09-01
Cell-matrix interactions are important for the physical integration of cells into tissues and the function of insoluble, mechanosensitive signaling networks. Studying these interactions in vitro can be difficult because the extracellular matrix (ECM) proteins that adsorb to in vitro cell culture surfaces do not fully recapitulate the ECM-dense basement membranes to which cells such as cardiomyocytes and endothelial cells adhere to in vivo . Towards addressing this limitation, we have developed a surface-initiated assembly process to engineer ECM proteins into nanostructured, microscale sheets that can be shrink wrapped around single cells and small cell ensembles to provide a functional and instructive matrix niche. Unlike current cell encapsulation technology using alginate, fibrin or other hydrogels, our engineered ECM is similar in density and thickness to native basal lamina and can be tailored in structure and composition using the proteins fibronectin, laminin, fibrinogen, and/or collagen type IV. A range of cells including C2C12 myoblasts, bovine corneal endothelial cells and cardiomyocytes survive the shrink wrapping process with high viability. Further, we demonstrate that, compared to non-encapsulated controls, the engineered ECM modulates cytoskeletal structure, stability of cell-matrix adhesions and cell behavior in 2D and 3D microenvironments.
Palchesko, Rachelle N.; Szymanski, John M.; Sahu, Amrita; Feinberg, Adam W.
2014-01-01
Cell-matrix interactions are important for the physical integration of cells into tissues and the function of insoluble, mechanosensitive signaling networks. Studying these interactions in vitro can be difficult because the extracellular matrix (ECM) proteins that adsorb to in vitro cell culture surfaces do not fully recapitulate the ECM-dense basement membranes to which cells such as cardiomyocytes and endothelial cells adhere to in vivo. Towards addressing this limitation, we have developed a surface-initiated assembly process to engineer ECM proteins into nanostructured, microscale sheets that can be shrink wrapped around single cells and small cell ensembles to provide a functional and instructive matrix niche. Unlike current cell encapsulation technology using alginate, fibrin or other hydrogels, our engineered ECM is similar in density and thickness to native basal lamina and can be tailored in structure and composition using the proteins fibronectin, laminin, fibrinogen, and/or collagen type IV. A range of cells including C2C12 myoblasts, bovine corneal endothelial cells and cardiomyocytes survive the shrink wrapping process with high viability. Further, we demonstrate that, compared to non-encapsulated controls, the engineered ECM modulates cytoskeletal structure, stability of cell-matrix adhesions and cell behavior in 2D and 3D microenvironments. PMID:25530816
Designing Birefringent Filters For Solid-State Lasers
NASA Technical Reports Server (NTRS)
Monosmith, Bryan
1992-01-01
Mathematical model enables design of filter assembly of birefringent plates as integral part of resonator cavity of tunable solid-state laser. Proper design treats polarization eigenstate of entire resonator as function of wavelength. Program includes software modules for variety of optical elements including Pockels cell, laser rod, quarter- and half-wave plates, Faraday rotator, and polarizers.
Mitsiades, Constantine S.; Rouleau, Cecile; Echart, Cinara; Menon, Krishna; Teicher, Beverly; Distaso, Maria; Palumbo, Antonio; Boccadoro, Mario; Anderson, Kenneth C.; Iacobelli, Massimo; Richardson, Paul G.
2015-01-01
Purpose of the study Defibrotide (DF), an orally bioavailable polydisperse oligonucleotide has promising activity in hepatic veno-occlusive disease (VOD), a stem cell transplantation-related toxicity, characterized by microangiopathy. The anti-thrombotic properties of DF and its minimal hemorrhagic risk could serve for treatment of cancer-associated thrombotic complications. Given its cytoprotective effect on endothelium, we investigated whether DF protects tumor cells from cytotoxic anti-tumor agents. Further, given its anti-adhesive properties, we evaluated whether DF modulates the protection conferred to multiple myeloma (MM) cells by bone marrow stromal cells (BMSCs). Methods-Results DF lacks significant single-agent in vitro cytotoxicity on MM or solid tumor cells and does not attenuate their in vitro response to dexamethasone, bortezomib, immunomodulatory thalidomide derivatives, and conventional chemotherapeutics, including melphalan and cyclophosphamide. Importantly, DF enhances in vivo chemosensitivity of MM and mammary carcinoma xenografts in animal models. In co-cultures of MM cells with BMSCs in vitro, DF enhances the MM cell sensitivity to melphalan and dexamethasone, decreases MM-BMSC adhesion and its sequelae, including NF-κB activation in MM and BMSCs, and associated cytokine production. Moreover, DF inhibits expression and/or function of key mediators of MM interaction with BMSC and endothelium, including heparanase, angiogenic cytokines and adhesion molecules. Conclusion Defibrotide’s in vivo chemosensitizing properties and lack of direct in vitro activity against tumor cells suggest that it favorably modulates antitumor interactions between BMSC and endothelia in the tumor microenvironment. These data support clinical studies of DF in combination with conventional and novel therapies to potentially improve patient outcome in MM and other malignancies. PMID:19228727
Serotonin modulates the population activity profile of olfactory bulb external tufted cells
Liu, Shaolin; Aungst, Jason L.; Puche, Adam C.
2012-01-01
Serotonergic neurons in the raphe nuclei constitute one of the most prominent neuromodulatory systems in the brain. Projections from the dorsal and median raphe nuclei provide dense serotonergic innervation of the glomeruli of olfactory bulb. Odor information is initially processed by glomeruli, thus serotonergic modulation of glomerular circuits impacts all subsequent odor coding in the olfactory system. The present study discloses that serotonin (5-HT) produces excitatory modulation of external tufted (ET) cells, a pivotal neuron in the operation of glomerular circuits. The modulation is due to a transient receptor potential (TRP) channel-mediated inward current induced by activation of 5-HT2A receptors. This current produces membrane depolarization and increased bursting frequency in ET cells. Interestingly, the magnitude of the inward current and increased bursting inversely correlate with ET cell spontaneous (intrinsic) bursting frequency: slower bursting ET cells are more strongly modulated than faster bursting cells. Serotonin thus differentially impacts ET cells such that the mean bursting frequency of the population is increased. This centrifugal modulation could impact odor processing by: 1) increasing ET cell excitatory drive on inhibitory neurons to increase presynaptic inhibition of olfactory sensory inputs and postsynaptic inhibition of mitral/tufted cells; and/or 2) coordinating ET cell bursting with exploratory sniffing frequencies (5–8 Hz) to facilitate odor coding. PMID:22013233
Previte, Dana M; O'Connor, Erin C; Novak, Elizabeth A; Martins, Christina P; Mollen, Kevin P; Piganelli, Jon D
2017-01-01
The immune system is necessary for protecting against various pathogens. However, under certain circumstances, self-reactive immune cells can drive autoimmunity, like that exhibited in type 1 diabetes (T1D). CD4+ T cells are major contributors to the immunopathology in T1D, and in order to drive optimal T cell activation, third signal reactive oxygen species (ROS) must be present. However, the role ROS play in mediating this process remains to be further understood. Recently, cellular metabolic programs have been shown to dictate the function and fate of immune cells, including CD4+ T cells. During activation, CD4+ T cells must transition metabolically from oxidative phosphorylation to aerobic glycolysis to support proliferation and effector function. As ROS are capable of modulating cellular metabolism in other models, we sought to understand if blocking ROS also regulates CD4+ T cell activation and effector function by modulating T cell metabolism. To do so, we utilized an ROS scavenging and potent antioxidant manganese metalloporphyrin (MnP). Our results demonstrate that redox modulation during activation regulates the mTOR/AMPK axis by maintaining AMPK activation, resulting in diminished mTOR activation and reduced transition to aerobic glycolysis in diabetogenic splenocytes. These results correlated with decreased Myc and Glut1 upregulation, reduced glucose uptake, and diminished lactate production. In an adoptive transfer model of T1D, animals treated with MnP demonstrated delayed diabetes progression, concurrent with reduced CD4+ T cell activation. Our results demonstrate that ROS are required for driving and sustaining T cell activation-induced metabolic reprogramming, and further support ROS as a target to minimize aberrant immune responses in autoimmunity.
Nepal, Saroj; Shrestha, Anup; Park, Pil-Hoon
2015-09-05
Adiponectin and leptin, both produced from adipose tissue, cause cell cycle arrest and progression, respectively in cancer cells. Ubiquitin specific protease-2 (USP-2), a deubiquitinating enzyme, is known to impair proteasome-induced degradation of cyclin D1, a critical cell cycle regulator. Herein, we investigated the effects of these adipokines on USP-2 expression and its potential role in the modulation of cell cycle. Treatment with globular adiponectin (gAcrp) decreased, whereas leptin increased USP-2 expression both in human hepatoma and breast cancer cells. In addition, overexpression or gene silencing of USP-2 affected cyclin D1 expression and cell cycle progression/arrest by adipokines. Adiponectin and leptin also modulated in vitro proteasomal activity, which was partially dependent on USP-2 expression. Taken together, our results reveal that modulation of USP-2 expression plays a crucial role in cell cycle regulation by adipokines. Thus, USP-2 would be a promising therapeutic target for the modulation of cancer cell growth by adipokines. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Final Technical Report for Automated Manufacturing of Innovative CPV/PV Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okawa, David
Cogenra’s Dense Cell Interconnect system was designed to use traditional front-contact cells and string them together into high efficiency and high reliability “supercells”. This novel stringer allows one to take advantage of the ~100 GW/year of existing cell production capacity and create a solar product for the customer that will produce more power and last longer than traditional PV products. The goal for this program was for Cogenra Solar to design and develop a first-of-kind automated solar manufacturing line that produces strings of overlapping cells or “supercells” based on Cogenra’s Dense Cell Interconnect (DCI) technology for their Low Concentration Photovoltaicmore » (LCPV) systems. This will enable the commercialization of DCI technology to improve the efficiency, reliability and economics for their Low Concentration Photovoltaic systems. In this program, Cogenra Solar very successfully designed, developed, built, installed, and started up the ground-breaking manufacturing tools required to assemble supercells. Cogenra then successfully demonstrated operation of the integrated line at high yield and throughput far exceeding expectations. The development of a supercell production line represents a critical step toward a high volume and low cost Low Concentration Photovoltaic Module with Dense Cell Interconnect technology and has enabled the evaluation of the technology for reliability and yield. Unfortunately, performance and cost headwinds on Low Concentration Photovoltaics systems including lack of diffuse capture (10-15% hit) and more expensive tracker requirements resulted in a move away from LCPV technology. Fortunately, the versatility of Dense Cell Interconnect technology allows for application to flat plate module technology as well and Cogenra has worked with the DOE to utilize the learning from this grant to commercialize DCI technology for the solar market through the on-going grant: Catalyzing PV Manufacturing in the US With Cogenra Solar’s Next-Generation Dense Cell Interconnect PV Module Manufacturing Technology. This program is now very successfully building off of this work and commercializing the technology to enable increased solar adoption.« less
Connections for solid oxide fuel cells
Collie, Jeffrey C.
1999-01-01
A connection for fuel cell assemblies is disclosed. The connection includes compliant members connected to individual fuel cells and a rigid member connected to the compliant members. Adjacent bundles or modules of fuel cells are connected together by mechanically joining their rigid members. The compliant/rigid connection permits construction of generator fuel cell stacks from basic modular groups of cells of any desired size. The connections can be made prior to installation of the fuel cells in a generator, thereby eliminating the need for in-situ completion of the connections. In addition to allowing pre-fabrication, the compliant/rigid connections also simplify removal and replacement of sections of a generator fuel cell stack.
CFTR modulates RPS27 gene expression using chloride anion as signaling effector.
Valdivieso, Ángel G; Mori, Consuelo; Clauzure, Mariángeles; Massip-Copiz, Macarena; Santa-Coloma, Tomás A
2017-11-01
In Cystic Fibrosis (CF), the impairment of the CFTR channel activity leads to a variety of alterations, including differential gene expression. However, the CFTR signaling mechanisms remain unclear. Recently, culturing IB3-1 CF cells under different intracellular Cl - concentrations ([Cl - ] i ), we observed several Cl - -dependent genes and further characterized one of them as RPS27. Thus, we hypothesized that Cl - might act as a signaling effector for CFTR signaling. Here, to test this idea, we study RPS27 expression in T84 cells modulating the CFTR activity by using CFTR inhibitors. First, we observed that incubation of T84 cells with increasing concentrations of the CFTR inhibitors CFTR(inh)-172 or GlyH-101 determined a progressive increase in the relative [Cl - ] i (using the Cl - fluorescent probe SPQ). The [Cl - ] i rise was concomitant with a dose-dependent down-regulation of RPS27. These results imply that CFTR inhibition produce Cl - accumulation and that RPS27 expression can be modulated by CFTR inhibition. Therefore, Cl - behaves as a signaling effector for CFTR in the modulation of RPS27 expression. In addition, the IL-1β receptor antagonist IL1RN or the JNK inhibitor SP600125, both restored the down-regulation of RPS27 induced by CFTRinh-172, implying a role of autocrine IL-1β and JNK signaling downstream of Cl - in RPS27 modulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Alkaline regenerative fuel cell systems for energy storage
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Reid, M. A.; Martin, R. E.
1981-01-01
A description is presented of the results of a preliminary design study of a regenerative fuel cell energy storage system for application to future low-earth orbit space missions. The high energy density storage system is based on state-of-the-art alkaline electrolyte cell technology and incorporates dedicated fuel cell and electrolysis cell modules. In addition to providing energy storage, the system can provide hydrogen and oxygen for attitude control of the satellite and for life support. During the daylight portion of the orbit the electrolysis module uses power provided by the solar array to generate H2 and O2 from the product water produced by the fuel cell module. The fuel cell module supplies electrical power during the dark period of the orbit.
Potential of thin-film solar cell module technology
NASA Technical Reports Server (NTRS)
Shimada, K.; Ferber, R. R.; Costogue, E. N.
1985-01-01
During the past five years, thin-film cell technology has made remarkable progress as a potential alternative to crystalline silicon cell technology. The efficiency of a single-junction thin-film cell, which is the most promising for use in flat-plate modules, is now in the range of 11 percent with 1-sq cm cells consisting of amorphous silicon, CuInSe2 or CdTe materials. Cell efficiencies higher than 18 percent, suitable for 15 percent-efficient flat plate modules, would require a multijunction configuration such as the CdTe/CuInSe2 and tandem amorphous-silicon (a-Si) alloy cells. Assessments are presented of the technology status of thin-film-cell module research and the potential of achieving the higher efficiencies required for large-scale penetration into the photovoltaic (PV) energy market.
Development of High Efficiency (14%) Solar Cell Array Module
NASA Technical Reports Server (NTRS)
Iles, P. A.; Khemthong, S.; Olah, S.; Sampson, W. J.; Ling, K. S.
1979-01-01
High efficiency solar cells required for the low cost modules was developed. The production tooling for the manufacture of the cells and modules was designed. The tooling consisted of: (1) back contact soldering machine; (2) vacuum pickup; (3) antireflective coating tooling; and (4) test fixture.
Long-range, full-duplex, modulated-reflector cell phone for voice/data transmission
Neagley, Daniel L.; Briles, Scott D.; Coates, Don M.; Freund, Samuel M.
2002-01-01
A long-range communications apparatus utilizing modulated-reflector technology is described. The apparatus includes an energy-transmitting base station and remote units that do not emit radiation in order to communicate with the base station since modulated-reflector technology is used whereby information is attached to an RF carrier wave originating from the base station which is reflected by the remote unit back to the base station. Since the remote unit does not emit radiation, only a low-power power source is required for its operation. Information from the base station is transmitted to the remote unit using a transmitter and receiver, respectively. The range of such a communications system is determined by the properties of a modulated-reflector half-duplex link.
Presence of claudins mRNA in the brain. Selective modulation of expression by kindling epilepsy.
Lamas, Mónica; González-Mariscal, Lorenza; Gutiérrez, Rafael
2002-08-15
In the central nervous system, the junctional types that establish and maintain tissue architecture include gap junctions, for cytoplasmic connectivity, and tight junctions, for paracellular and/or cell polarity barriers. Connexins are the integral membrane proteins of gap junctions, whereas occludin and members of the multigene family of claudins form tight junctions. In the brain, there are no transendothelial pathways, as continuous tight junctions are present between the endothelial cells. Thus, they provide a continuous cellular barrier between the blood and the insterstitial fluid. However, several brain pathologies, including epilepsy, are known to alter the permeability of the blood-brain barrier and to cause edema. Therefore, since claudins, as constitutive proteins of tight junctions are likely candidates for modulation under pathological states, we explored their normal pattern of expression in the brain and its modulation by seizures. We found that several members of this family are normally expressed in the hippocampus and cortex. Interestingly, claudin-7 is expressed in the hippocampus but not in the cortex. On the other hand, the expression of claudin-8 is selectively down-regulated in the hippocampus as kindling evolves. These results link for the first time the modulation of expression of a tight junction protein to abnormal neuronal synchronization that could probably be reflected in permeability changes of the blood-brain barrier or edema.
2014-06-06
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, a Lockheed Martin technician monitors the progress as a crane is used to lift the Orion service module from a test stand and move it to the Final Assembly and System Testing, or FAST, cell further down the aisle. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, prior to rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
2014-06-06
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA and Lockheed Martin engineers and technicians monitor the progress as a crane is used to move the Orion service module to the Final Assembly and System Testing, or FAST, cell further down the aisle. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, before rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
2014-06-06
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA and Lockheed Martin engineers and technicians monitor the progress as a crane is used to move the Orion service module to the Final Assembly and System Testing, or FAST, cell further down the aisle. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, before rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
2014-06-06
CAPE CANAVERAL, Fla. -- Inside the Operations and Checkout Building high bay at NASA's Kennedy Space Center in Florida, NASA and Lockheed Martin technicians and engineers monitor the progress as a crane is used to lift the Orion service module from a test stand and move it to the Final Assembly and System Testing, or FAST, cell further down the aisle. The Orion crew module will be stacked on the service module in the FAST cell and then both modules will be put through their final system tests for Exploration Flight Test-1, or EFT-1, before rolling out of the facility for integration with the United Launch Alliance Delta IV Heavy rocket. Orion is the exploration spacecraft designed to carry astronauts to destinations not yet explored by humans, including an asteroid and Mars. It will have emergency abort capability, sustain the crew during space travel and provide safe re-entry from deep space return velocities. The first unpiloted test flight of Orion, EFT-1, is scheduled to launch later this year atop a Delta IV rocket from Cape Canaveral Air Force Station in Florida to an altitude of 3,600 miles above the Earth's surface. The two-orbit, four-hour flight test will help engineers evaluate the systems critical to crew safety including the heat shield, parachute system and launch abort system. For more information, visit http://www.nasa.gov/orion. Photo credit: NASA/Glenn Benson
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Seong-Su, E-mail: seong-su-han@uiowa.edu; Han, Sangwoo; Kamberos, Natalie L.
Highlights: • PL inhibits the proliferation of B-ALL cell lines irrespective of GC-resistance. • PL selectively kills B-ALL cells by increasing ROS, but not normal counterpart. • PL does not sensitize majority of B-ALL cells to DEX. • PL represses the network of constitutively activated TFs and modulates their target genes. • PL may serve as a new therapeutic molecule for GC-resistant B-ALL. - Abstract: Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL onmore » the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL.« less
Circuit analysis method for thin-film solar cell modules
NASA Technical Reports Server (NTRS)
Burger, D. R.
1985-01-01
The design of a thin-film solar cell module is dependent on the probability of occurrence of pinhole shunt defects. Using known or assumed defect density data, dichotomous population statistics can be used to calculate the number of defects expected in a module. Probability theory is then used to assign the defective cells to individual strings in a selected series-parallel circuit design. Iterative numerical calculation is used to calcuate I-V curves using cell test values or assumed defective cell values as inputs. Good and shunted cell I-V curves are added to determine the module output power and I-V curve. Different levels of shunt resistance can be selected to model different defect levels.
The modulation of apoptosis by oncogenic viruses
2013-01-01
Transforming viruses can change a normal cell into a cancer cell during their normal life cycle. Persistent infections with these viruses have been recognized to cause some types of cancer. These viruses have been implicated in the modulation of various biological processes, such as proliferation, differentiation and apoptosis. The study of infections caused by oncogenic viruses had helped in our understanding of several mechanisms that regulate cell growth, as well as the molecular alterations leading to cancer. Therefore, transforming viruses provide models of study that have enabled the advances in cancer research. Viruses with transforming abilities, include different members of the Human Papillomavirus (HPV) family, Hepatitis C virus (HCV), Human T-cell Leukemia virus (HTLV-1), Epstein Barr virus (EBV) and Kaposi’s Sarcoma Herpesvirus (KSHV). Apoptosis, or programmed cell death, is a tightly regulated process that plays an important role in development and homeostasis. Additionally, it functions as an antiviral defense mechanism. The deregulation of apoptosis has been implicated in the etiology of diverse diseases, including cancer. Oncogenic viruses employ different mechanisms to inhibit the apoptotic process, allowing the propagation of infected and damaged cells. During this process, some viral proteins are able to evade the immune system, while others can directly interact with the caspases involved in apoptotic signaling. In some instances, viral proteins can also promote apoptosis, which may be necessary for an accurate regulation of the initial stages of infection. PMID:23741982
Immune modules shared by innate lymphoid cells and T cells.
Robinette, Michelle L; Colonna, Marco
2016-11-01
In recent years, innate lymphoid cells (ILCs) have emerged as innate correlates to T cells. The similarities between ILCs and T cells indicate that lymphocytes of fundamentally distinct lineages can share core "immune modules" that encompass transcriptional circuitry and effector functions while using nonredundant complementary mechanisms of pattern recognition to enact these functions. We review modules currently recognized to be shared between ILCs and T cells. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Long life Regenerative Fuel Cell technology development plan
NASA Technical Reports Server (NTRS)
Littman, Franklin D.; Cataldo, Robert L.; Mcelroy, James F.; Stedman, Jay K.
1992-01-01
This paper summarizes a technology roadmap for completing advanced development of a Proton Exchange Membrane (PEM) Regenerative Fuel Cell (RFC) to meet long life (20,000 hrs at 50 percent duty cycle) mobile or portable power system applications on the surface of the moon and Mars. Development of two different sized RFC power system modules is included in this plan (3 and 7.5 kWe). A conservative approach was taken which includes the development of a Ground Engineering System, Qualification Unit, and Flight Unit. This paper includes a concept description, technology assessment, development issues, development tasks, and development schedule.
Guan, Hongjing; Zhu, Lihua; Fu, Mingyue; Yang, Da; Tian, Song; Guo, Yuanyuan; Cui, Changping; Wang, Lang; Jiang, Hong
2012-01-01
Background 3, 3′diindolylmethane (DIM), a natural phytochemical, has shown inhibitory effects on the growth and migration of a variety of cancer cells; however, whether DIM has similar effects on vascular smooth muscle cells (VSMCs) remains unknown. The purpose of this study was to assess the effects of DIM on the proliferation and migration of cultured VSMCs and neointima formation in a carotid injury model, as well as the related cell signaling mechanisms. Methodology/Principal Findings DIM dose-dependently inhibited the platelet-derived growth factor (PDGF)-BB-induced proliferation of VSMCs without cell cytotoxicity. This inhibition was caused by a G0/G1 phase cell cycle arrest demonstrated by fluorescence-activated cell-sorting analysis. We also showed that DIM-induced growth inhibition was associated with the inhibition of the expression of cyclin D1 and cyclin-dependent kinase (CDK) 4/6 as well as an increase in p27Kip1 levels in PDGF-stimulated VSMCs. Moreover, DIM was also found to modulate migration of VSMCs and smooth muscle-specific contractile marker expression. Mechanistically, DIM negatively modulated PDGF-BB-induced phosphorylation of PDGF-recptorβ (PDGF-Rβ) and the activities of downstream signaling molecules including Akt/glycogen synthase kinase(GSK)3β, extracellular signal-regulated kinase1/2 (ERK1/2), and signal transducers and activators of transcription 3 (STAT3). Our in vivo studies using a mouse carotid arterial injury model revealed that treatment with 150 mg/kg DIM resulted in significant reduction of the neointima/media ratio and proliferating cell nuclear antigen (PCNA)-positive cells, without affecting apoptosis of vascular cells and reendothelialization. Infiltration of inflammatory cells was also inhibited by DIM administration. Conclusion These results demonstrate that DIM can suppress the phenotypic modulation of VSMCs and neointima hyperplasia after vascular injury. These beneficial effects on VSMCs were at least partly mediated by the inhibition of PDGF-Rβ and the activities of downstream signaling pathways. The results suggest that DIM has the potential to be a candidate for the prevention of restenosis. PMID:22506059
2001-01-24
Interior of a Spacehab module showing the type of rack mounting that will be used, and crew working space that will be available, on the STS-107 Research 1 mission in 2002. Experiments plarned for the mission include soil mechanics, combustion physics, and cell science.
Apollo Lunar Module Electrical Power System Overview
NASA Technical Reports Server (NTRS)
Interbartolo, Michael
2009-01-01
Objectives include: a) Describe LM Electrical System original specifications; b) Describe the decision to change from fuel cells to batteries and other changes; c) Describe the Electrical system; and d) Describe the Apollo 13 failure from the LM perspective.
Orthogonal Cas9 proteins for RNA-guided gene regulation and editing
Church, George M.; Esvelt, Kevin; Mali, Prashant
2017-03-07
Methods of modulating expression of a target nucleic acid in a cell are provided including use of multiple orthogonal Cas9 proteins to simultaneously and independently regulate corresponding genes or simultaneously and independently edit corresponding genes.
2012-03-13
Source Approach Part II. Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing 14. ABSTRACT 16. SECURITY CLASSIFICATION OF...Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Testing Report Title ABSTRACT This final report for Contract W911NF-09-C-0135 transmits the...prototype development. The second (Part II.) is "Altairnano Lithium Ion Nano-scaled Titanate Oxide Cell and Module Abuse Test Report". The
Results of the 2000 JPL Balloon Flight Solar Cell Calibration Program
NASA Technical Reports Server (NTRS)
Anspaugh, B. E.; Mueller, R. L.; Weiss, R. S.
2001-01-01
The 2000 solar cell calibration balloon flight campaign consisted of two flights, which occurred on June 27, 2000, and July 5, 2000. All objectives of the flight program were met. Sixty-two modules were carried to an altitude of approximately 120,000 ft (36.6 km). Full I-V curves were measured on sixteen of these modules, and output at a fixed load was measured on thirty-seven modules (forty-six cells), with some modules repeated on the second flight. Nine modules were flown for temperature measurement only. This data was corrected to 28 C and to 1 AU (1.496x10(exp 8) km). The calibrated cells have been returned to their owners and can now be used as reference standards in simulator testing of cells and arrays.
Nardelli, Jeannette; Catala, Martin; Charnay, Patrick
2003-09-15
Neuroepithelial b2T cells were derived from the hindbrain and the spinal cord of mouse transgenic embryos, which expressed SV40 T antigen under the control of a Hoxb2 enhancer. Strikingly, b2T cell lines of either origin exhibit a very similar gene expression pattern, including markers of the hindbrain and the spinal cord, such as Hox genes, but not of more anterior cephalic regions. In addition, the broad expression pattern of b2T cells, probably linked to culture conditions, appeared to be appropriately modulated when the cells were reimplanted at different longitudinal levels into chick host embryos, suggesting that these cells are responsive to exogenous signalling mechanisms. Further support for these allegations was obtained by culturing b2T cells in defined medium and by assessing the expression of Krox20, an odd-numbered rhombomere marker, which appeared to be modulated by a complex interplay between FGF, retinoic acid (RA), and noggin. With respect to these as yet unique properties, b2T cells constitute an original alternative tool to in vivo models for the analysis of molecular pathways involved in the patterning of the neural tube. Copyright 2003 Wiley-Liss, Inc.
MS4a4B, a CD20 homologue in T cells, inhibits T cell propagation by modulation of cell cycle.
Xu, Hui; Yan, Yaping; Williams, Mark S; Carey, Gregory B; Yang, Jingxian; Li, Hongmei; Zhang, Guang-Xian; Rostami, Abdolmohamad
2010-11-01
MS4a4B, a CD20 homologue in T cells, is a novel member of the MS4A gene family in mice. The MS4A family includes CD20, FcεRIβ, HTm4 and at least 26 novel members that are characterized by their structural features: with four membrane-spanning domains, two extracellular domains and two cytoplasmic regions. CD20, FcεRIβ and HTm4 have been found to function in B cells, mast cells and hematopoietic cells respectively. However, little is known about the function of MS4a4B in T cell regulation. We demonstrate here that MS4a4B negatively regulates mouse T cell proliferation. MS4a4B is highly expressed in primary T cells, natural killer cells (NK) and some T cell lines. But its expression in all malignant T cells, including thymoma and T hybridoma tested, was silenced. Interestingly, its expression was regulated during T cell activation. Viral vector-driven overexpression of MS4a4B in primary T cells and EL4 thymoma cells reduced cell proliferation. In contrast, knockdown of MS4a4B accelerated T cell proliferation. Cell cycle analysis showed that MS4a4B regulated T cell proliferation by inhibiting entry of the cells into S-G2/M phase. MS4a4B-mediated inhibition of cell cycle was correlated with upregulation of Cdk inhibitory proteins and decreased levels of Cdk2 activity, subsequently leading to inhibition of cell cycle progression. Our data indicate that MS4a4B negatively regulates T cell proliferation. MS4a4B, therefore, may serve as a modulator in the negative-feedback regulatory loop of activated T cells.
Giffin, Louise; West, John A.
2015-01-01
ABSTRACT Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of human Kaposi’s sarcoma, a tumor that arises from endothelial cells, as well as two B cell lymphoproliferative diseases, primary effusion lymphoma and multicentric Castleman’s disease. KSHV utilizes a variety of mechanisms to evade host immune responses and promote cellular transformation and growth in order to persist for the life of the host. A viral homolog of human interleukin-6 (hIL-6) named viral interleukin-6 (vIL-6) is encoded by KSHV and expressed in KSHV-associated cancers. Similar to hIL-6, vIL-6 is secreted, but the majority of vIL-6 is retained within the endoplasmic reticulum, where it can initiate functional signaling through part of the interleukin-6 receptor complex. We sought to determine how intracellular vIL-6 modulates the host endothelial cell environment by analyzing vIL-6’s impact on the endothelial cell transcriptome. vIL-6 significantly altered the expression of many cellular genes associated with cell migration. In particular, vIL-6 upregulated the host factor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) at the protein and message levels. CEACAM1 has been implicated in tumor invasion and metastasis and promotes migration and vascular remodeling in endothelial cells. We report that vIL-6 upregulates CEACAM1 by a STAT3-dependent mechanism and that CEACAM1 promotes vIL-6-mediated migration. Furthermore, latent and de novo KSHV infections of endothelial cells also induce CEACAM1 expression. Collectively, our data suggest that vIL-6 modulates endothelial cell migration by upregulating the expression of cellular factors, including CEACAM1. PMID:26646010
Environmental testing of block 2 solar cell modules
NASA Technical Reports Server (NTRS)
Griffith, J. S.
1979-01-01
The testing procedures and results of samples of the LSA Project Block 2 procurement of silicon solar cell modules are described. Block 2 was the second large scale procurement of silicon solar cell modules made by the JPL Low-cost Solar Array Project with deliveries in 1977 and early 1978. The results showed that the Block 2 modules were greatly improved over Block 1 modules. In several cases it was shown that design improvements were needed to reduce environmental test degradation. These improvements were incorporated during this production run.
Oncostatic action of melatonin: facts and question marks.
Pawlikowski, Marek; Winczyk, Katarzyna; Karasek, Michal
2002-04-01
The paper presents the data concerning the in vivo effects of melatonin on experimentally-induced tumors in animals and the in vitro effects on animal and human tumor cells. The majority of experimental tumors responded to the melatonin treatment with growth inhibition. However, some negative or opposite results (i.e. stimulation of tumor instead of inhibition) were also reported. Some of the negative results can be attributed to the improper timing of melatonin administration. Melatonin was also shown to inhibit the growth of several animal and human tumor cell lines in vitro. On the basis of these experiments, a hypothesis of the oncostatic action of melatonin was put forward. The mechanism of the postulated action is complex and probably includes: 1) modulation of the endocrine system; 2) modulation of the immune system; 3) the direct oncostatic action of melatonin on tumor cells. The latter includes the recently discovered anti-oxidative action which probably plays an important role in the countering the DNA damage during the radiation challenge or the exposure to chemical carcinogens. It also includes the antiproliferative and pro-apoptotic effects exerted via melatonin receptors expressed by tumor cells. The involvement of the membrane melatonin receptors is mainly assumed. However, the recent data from our and other laboratories suggest also the involvement of RZR/ROR receptors (the putative melatonin nuclear receptors) in both melatonin-induced proliferation inhibition and apoptosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billings, Amanda N; Siuti, Piro; Bible, Amber
2011-01-01
To compete in complex microbial communities, bacteria must quickly sense environmental changes and adjust cellular functions for optimal growth. Chemotaxis-like signal transduction pathways are implicated in the modulation of multiple cellular responses, including motility, EPS production, and cell-to-cell interactions. Recently, the Che1 chemotaxis-like pathway from Azospirillum brasilense was shown to modulate flocculation. In A. brasilense, cell surface properties, including EPS production, are thought to play a direct role in promoting flocculation. Using atomic force microscopy (AFM), we have detected distinct changes in the surface morphology of flocculating A. brasilense Che1 mutant strains that are absent in the wild type strain.more » Whereas the wild type strain produces a smooth mucosal extracellular matrix, the flocculating Che1 mutant strains produce distinctive extracellular fibril structures. Further analyses using flocculation inhibition and lectin-binding assays suggest that the composition of EPS components in the extracellular matrix differs between the cheA1 and cheY1 mutants, despite an apparent similarity in the macroscopic floc structures. Collectively, these data indicate that mutations in the Che1 pathway that result in increased flocculation are correlated with distinctive changes in the extracellular matrix structure produced by the mutants, including likely changes in the EPS structure and/or composition.« less
Miyashita, Y; Nagao, S
1984-01-01
Ionophoretic application of bicuculline, an antagonist of gamma-aminobutyric acid (GABA), was used to examine the contribution of intracortical inhibition to vestibular responses of Purkinje cells in the cerebellar flocculus of alert rabbits. Purkinje cells were sampled extracellularly (with triple-barrelled micropipettes) from the floccular area where electrical stimulation through the micro-electrode evoked abduction of the ipsilateral eye, indicating its close functional relationship to the horizontal vestibulo-ocular reflex. These cells exhibited frequency modulation of simple spike discharges in-phase or out-phase with sinusoidal head rotation (0.5 cycles/s, 5 degrees peak-to-peak) in the horizontal plane. Bicuculline was ejected ionophoretically through one barrel with a 20-60 nA current. The pharmacological effectiveness of the ejected bicuculline was confirmed for each Purkinje cell by its blocking action upon the depressant action of GABA applied ionophoretically through another barrel. Bicuculline usually shifted the simple spike modulation in the in-phase direction: it reduced the amplitude of out-phase modulation in three cells, converted out-phase modulation to the in-phase type in four cells, and increased in-phase modulation in five cells. In three other cells, however, bicuculline shifted the modulation in the out-phase direction. Because bicuculline application usually increased the resting discharge level of a Purkinje cell, ionophoretic application of DL-homocysteate was used in ten Purkinje cells to control for the effect of a generalized increase in excitability. In contrast to bicuculline, DL-homocysteate generally induced a slight increase of the simple spike modulation regardless of the phase relationship. Since frequency modulation of the simple spike discharges of flocculus Purkinje cells is presumed to contribute to the control of vestibulo-ocular reflexes, these results point to an important functional role of intracortical post-synaptic inhibition in the cerebellar cortex. PMID:6611408
Planar photovoltaic solar concentrator module
Chiang, Clement J.
1992-01-01
A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.
Planar photovoltaic solar concentrator module
Chiang, C.J.
1992-12-01
A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.
Flat-plate solar array project. Volume 7: Module encapsulation
NASA Astrophysics Data System (ADS)
Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.
1986-10-01
The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.
Flat-plate solar array project. Volume 7: Module encapsulation
NASA Technical Reports Server (NTRS)
Cuddihy, E.; Coulbert, C.; Gupta, A.; Liang, R.
1986-01-01
The objective of the Encapsulation Task was to develop, demonstrate, and qualify photovoltaic (PV) module encapsulation systems that would provide 20 year (later decreased to 30 year) life expectancies in terrestrial environments, and which would be compatible with the cost and performance goals of the Flat-Plate Solar Array (FSA) Project. The scope of the Encapsulation Task included the identification, development, and evaluation of material systems and configurations required to support and protect the optically and electrically active solar cell circuit components in the PV module operating environment. Encapsulation material technologies summarized include the development of low cost ultraviolet protection techniques, stable low cost pottants, soiling resistant coatings, electrical isolation criteria, processes for optimum interface bonding, and analytical and experimental tools for evaluating the long term durability and structural adequacy of encapsulated modules. Field testing, accelerated stress testing, and design studies have demonstrated that encapsulation materials, processes, and configurations are available that meet the FSA cost and performance goals.
Development of a unit cell for a Ge:Ga detector array
NASA Technical Reports Server (NTRS)
1988-01-01
Two modules of gallium-doped germanium (Ge:Ga) infrared detectors with integrated multiplexing readouts and supporting drive electronics were designed and tested. This development investigated the feasibility of producing two-dimensional Ge:Ga arrays by stacking linear modules in a housing capable of providing uniaxial stress for enhanced long-wavelength response. Each module includes 8 detectors (1x1x2 mm) mounted to a sapphire board. The element spacing is 12 microns. The back faces of the detector elements are beveled with an 18 deg angle, which was proved to significantly enhance optical absorption. Each module includes a different silicon metal-oxide semiconductor field effect transistor (MOSFET) readout. The first circuit was built from discrete MOSFET components; the second incorporated devices taken from low-temperature integrated circuit multiplexers. The latter circuit exhibited much lower stray capacitance and improved stability. Using these switched-FET circuits, it was demonstrated that burst readout, with multiplexer active only during the readout period, could successfully be implemented at approximately 3.5 K.
Development and Testing of Shingle-type Solar Cell Modules
NASA Technical Reports Server (NTRS)
Shepard, N. F., Jr.
1979-01-01
The design, development, fabrication and testing of a shingle-type terrestrial solar cell module which produces 98 watts/sq m of exposed module area at 1 kW/sq m insolation and 61 C are reported. These modules make it possible to easily incorporate photovoltaic power generation into the sloping roofs of residential or commercial buildings by simply nailing the modules to the plywood roof sheathing. This design consists of nineteen series-connected 53 mm diameter solar cells arranged in a closely packed hexagon configuration. These cells are individually bonded to the embossed surface of a 3 mm thick thermally tempered hexagon-shaped piece of glass. Polyvinyl butyral is used as the laminating adhesive.
Historical Analysis of Champion Photovoltaic Module Efficiencies
Kurtz, Sarah; Repins, Ingrid; Metzger, Wyatt K.; ...
2018-02-14
Champion photovoltaic (PV) cell and module efficiencies have been reported in Progress in PV since 1993. Following the evolution of these efficiencies enables researchers to track the progress of various technologies. National Renewable Energy Laboratory has maintained a historical chart of the champion cell efficiencies, but has not published a similar chart of champion module efficiencies. Here, we analyze champion module efficiencies and compare them to champion cell efficiencies to better understand technology trends over the last three decades, highlighting that, in some cases, module efficiencies exceed 90% of cell efficiencies. Recommendations are provided on how to change the datamore » collection and reporting for champion efficiencies to increase the value of these records.« less
Historical Analysis of Champion Photovoltaic Module Efficiencies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurtz, Sarah; Repins, Ingrid; Metzger, Wyatt K.
Champion photovoltaic (PV) cell and module efficiencies have been reported in Progress in PV since 1993. Following the evolution of these efficiencies enables researchers to track the progress of various technologies. National Renewable Energy Laboratory has maintained a historical chart of the champion cell efficiencies, but has not published a similar chart of champion module efficiencies. Here, we analyze champion module efficiencies and compare them to champion cell efficiencies to better understand technology trends over the last three decades, highlighting that, in some cases, module efficiencies exceed 90% of cell efficiencies. Recommendations are provided on how to change the datamore » collection and reporting for champion efficiencies to increase the value of these records.« less
Jacouton, Elsa; Mach, Núria; Cadiou, Julie; Lapaque, Nicolas; Clément, Karine; Doré, Joël; van Hylckama Vlieg, Johan E. T.; Smokvina, Tamara; Blottière, Hervé M
2015-01-01
Background and Objectives Identification of new targets for metabolic diseases treatment or prevention is required. In this context, FIAF/ANGPTL4 appears as a crucial regulator of energy homeostasis. Lactobacilli are often considered to display beneficial effect for their hosts, acting on different regulatory pathways. The aim of the present work was to study the effect of several lactobacilli strains on Fiaf gene expression in human intestinal epithelial cells (IECs) and on mice tissues to decipher the underlying mechanisms. Subjects and Methods Nineteen lactobacilli strains have been tested on HT–29 human intestinal epithelial cells for their ability to regulate Fiaf gene expression by RT-qPCR. In order to determine regulated pathways, we analysed the whole genome transcriptome of IECs. We then validated in vivo bacterial effects using C57BL/6 mono-colonized mice fed with normal chow. Results We identified one strain (Lactobacillus rhamnosus CNCMI–4317) that modulated Fiaf expression in IECs. This regulation relied potentially on bacterial surface-exposed molecules and seemed to be PPAR-γ independent but PPAR-α dependent. Transcriptome functional analysis revealed that multiple pathways including cellular function and maintenance, lymphoid tissue structure and development, as well as lipid metabolism were regulated by this strain. The regulation of immune system and lipid and carbohydrate metabolism was also confirmed by overrepresentation of Gene Ontology terms analysis. In vivo, circulating FIAF protein was increased by the strain but this phenomenon was not correlated with modulation Fiaf expression in tissues (except a trend in distal small intestine). Conclusion We showed that Lactobacillus rhamnosus CNCMI–4317 induced Fiaf expression in human IECs, and increased circulating FIAF protein level in mice. Moreover, this effect was accompanied by transcriptome modulation of several pathways including immune response and metabolism in vitro. PMID:26439630
Czerucka, Dorota; Dahan, Stephanie; Mograbi, Baharia; Rossi, Bernard; Rampal, Patrick
2000-01-01
Use of the nonpathogenic yeast Saccharomyces boulardii in the treatment of infectious diarrhea has attracted growing interest. The present study designed to investigate the effect of this yeast on enteropathogenic Escherichia coli (EPEC)-associated disease demonstrates that S. boulardii abrogated the alterations induced by an EPEC strain on transepithelial resistance, [3H]inulin flux, and ZO-1 distribution in T84 cells. Moreover, EPEC-mediated apoptosis of epithelial cells was delayed in the presence of S. boulardii. The yeast did not modify the number of adherent bacteria but lowered by 50% the number of intracellular bacteria. Infection by EPEC induced tyrosine phosphorylation of several proteins in T84 cells, including p46 and p52 SHC isoforms, that was attenuated in the presence of S. boulardii. Similarly, EPEC-induced activation of the ERK1/2 mitogen-activated protein (MAP) kinase pathway was diminished in the presence of the yeast. Interestingly, inhibition of the ERK1/2 pathway with the specific inhibitor PD 98059 decreased EPEC internalization, suggesting that modulation of the ERK1/2 MAP pathway might account for the lowering of the number of intracellular bacteria observed in the presence of S. boulardii. Altogether, this study demonstrated that S. boulardii exerts a protective effect on epithelial cells after EPEC adhesion by modulating the signaling pathway induced by bacterial infection. PMID:10992512
CAPNS1 Regulates USP1 Stability and Maintenance of Genome Integrity
Cataldo, Francesca; Peche, Leticia Y.; Klaric, Enio; Brancolini, Claudio; Myers, Michael P.
2013-01-01
Calpains regulate a wide spectrum of biological functions, including migration, adhesion, apoptosis, secretion, and autophagy, through the modulating cleavage of specific substrates. Ubiquitous microcalpain (μ-calpain) and millicalpain (m-calpain) are heterodimers composed of catalytic subunits encoded, respectively, by CAPN1 and CAPN2 and a regulatory subunit encoded by CAPNS1. Here we show that calpain is required for the stability of the deubiquitinating enzyme USP1 in several cell lines. USP1 modulates DNA replication polymerase choice and repair by deubiquitinating PCNA. The ubiquitinated form of the USP1 substrate PCNA is stabilized in CAPNS1-depleted U2OS cells and mouse embryonic fibroblasts (MEFs), favoring polymerase-η loading on chromatin and increased mutagenesis. USP1 degradation directed by the cell cycle regulator APC/Ccdh1, which marks USP1 for destruction in the G1 phase, is upregulated in CAPNS1-depleted cells. USP1 stability can be rescued upon forced expression of calpain-activated Cdk5/p25, previously reported as a cdh1 repressor. These data suggest that calpain stabilizes USP1 by activating Cdk5, which in turn inhibits cdh1 and, consequently, USP1 degradation. Altogether these findings point to a connection between the calpain system and the ubiquitin pathway in the regulation of DNA damage response and place calpain at the interface between cell cycle modulation and DNA repair. PMID:23589330
Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation
Tang, Liang; Cheng, Pengle
2017-01-01
Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigid body. To solve this critical engineering problem, a general method to establish a computational homogenized model for the cylindrical battery module is proposed. A single battery cell model is developed and validated through radial compression and bending experiments. To analyze the homogenized mechanical properties of the module, a representative unit cell (RUC) is extracted with the periodic boundary condition applied on it. An elastic–plastic constitutive model is established to describe the computational homogenized model for the module. Two typical packing modes, i.e., cubic dense packing and hexagonal packing for the homogenized equivalent battery module (EBM) model, are targeted for validation compression tests, as well as the models with detailed single cell description. Further, the homogenized EBM model is confirmed to agree reasonably well with the detailed battery module (DBM) model for different packing modes with a length scale of up to 15 × 15 cells and 12% deformation where the short circuit takes place. The suggested homogenized model for battery module makes way for battery module and pack safety evaluation for full-size electric vehicle crashworthiness analysis. PMID:28746390
Homogenized modeling methodology for 18650 lithium-ion battery module under large deformation.
Tang, Liang; Zhang, Jinjie; Cheng, Pengle
2017-01-01
Effective lithium-ion battery module modeling has become a bottleneck for full-size electric vehicle crash safety numerical simulation. Modeling every single cell in detail would be costly. However, computational accuracy could be lost if the module is modeled by using a simple bulk material or rigid body. To solve this critical engineering problem, a general method to establish a computational homogenized model for the cylindrical battery module is proposed. A single battery cell model is developed and validated through radial compression and bending experiments. To analyze the homogenized mechanical properties of the module, a representative unit cell (RUC) is extracted with the periodic boundary condition applied on it. An elastic-plastic constitutive model is established to describe the computational homogenized model for the module. Two typical packing modes, i.e., cubic dense packing and hexagonal packing for the homogenized equivalent battery module (EBM) model, are targeted for validation compression tests, as well as the models with detailed single cell description. Further, the homogenized EBM model is confirmed to agree reasonably well with the detailed battery module (DBM) model for different packing modes with a length scale of up to 15 × 15 cells and 12% deformation where the short circuit takes place. The suggested homogenized model for battery module makes way for battery module and pack safety evaluation for full-size electric vehicle crashworthiness analysis.
Alteration and modulation of protein activity by varying post-translational modification
Thompson, David N; Reed, David W; Thompson, Vicki S; Lacey, Jeffrey A; Apel, William A
2015-03-03
Embodiments of the invention include methods of altering the enzymatic activity or solubility of an extremophilic enzyme or post-translationally modifying a protein of interest via using isolated or partially purified glycosyltransferases and/or post-translational modification proteins, extracts of cells comprising glycosyltransferases and/or post-translational modification proteins, and/or in cells comprising one or more glycosyltransferases and/or post-translational modification proteins.
Alteration and modulation of protein activity by varying post-translational modification
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, David N.; Reed, David W.; Thompson, Vicki S.
Embodiments of the invention include methods of altering the enzymatic activity or solubility of an extremophilic enzyme or post-translationally modifying a protein of interest via using isolated or partially purified glycosyltransferases and/or post-translational modification proteins, extracts of cells comprising glycosyltransferases and/or post-translational modification proteins, and/or in cells comprising one or more glycosyltransferases and/or post-translational modification proteins.
Alkaline water electrolysis technology for Space Station regenerative fuel cell energy storage
NASA Technical Reports Server (NTRS)
Schubert, F. H.; Hoberecht, M. A.; Le, M.
1986-01-01
The regenerative fuel cell system (RFCS), designed for application to the Space Station energy storage system, is based on state-of-the-art alkaline electrolyte technology and incorporates a dedicated fuel cell system (FCS) and water electrolysis subsystem (WES). In the present study, emphasis is placed on the WES portion of the RFCS. To ensure RFCS availability for the Space Station, the RFCS Space Station Prototype design was undertaken which included a 46-cell 0.93 cu m static feed water electrolysis module and three integrated mechanical components.
Performance degradation of grid-tied photovoltaic modules in a hot-dry climatic condition
NASA Astrophysics Data System (ADS)
Suleske, Adam; Singh, Jaspreet; Kuitche, Joseph; Tamizh-Mani, Govindasamy
2011-09-01
The crystalline silicon photovoltaic (PV) modules under open circuit conditions typically degrade at a rate of about 0.5% per year. However, it is suspected that the modules in an array level may degrade, depending on equipment/frame grounding and array grounding, at higher rates because of higher string voltage and increased module mismatch over the years of operation in the field. This paper compares and analyzes the degradation rates of grid-tied photovoltaic modules operating over 10-17 years in a desert climatic condition of Arizona. The nameplate open-circuit voltages of the arrays ranged between 400 and 450 V. Six different types/models of crystalline silicon modules with glass/glass and glass/polymer constructions were evaluated. About 1865 modules were inspected using an extended visual inspection checklist and infrared (IR) scanning. The visual inspection checklist included encapsulant discoloration, cell/interconnect cracks, delamination and corrosion. Based on the visual inspection and IR studies, a large fraction of these modules were identified as allegedly healthy and unhealthy modules and they were electrically isolated from the system for currentvoltage (I-V) measurements of individual modules. The annual degradation rate for each module type is determined based on the I-V measurements.
Yakhnitsa, V.
2013-01-01
Cerebellar Purkinje cells are excited by two afferent pathways: climbing and mossy fibers. Climbing fibers evoke large “complex spikes” (CSs) that discharge at low frequencies. Mossy fibers synapse on granule cells whose parallel fibers excite Purkinje cells and may contribute to the genesis of “simple spikes” (SSs). Both afferent systems convey vestibular information to folia 9c–10. After making a unilateral labyrinthectomy (UL) in mice, we tested how the discharge of CSs and SSs was changed by the loss of primary vestibular afferent mossy fibers during sinusoidal roll tilt. We recorded from cells identified by juxtacellular neurobiotin labeling. The UL preferentially reduced vestibular modulation of CSs and SSs in folia 8–10 contralateral to the UL. The effects of a UL on Purkinje cell discharge were similar in folia 9c–10, to which vestibular primary afferents project, and in folia 8–9a, to which they do not project, suggesting that vestibular primary afferent mossy fibers were not responsible for the UL-induced alteration of SS discharge. UL also induced reduced vestibular modulation of stellate cell discharge contralateral to the UL. We attribute the decreased modulation to reduced vestibular modulation of climbing fibers. In summary, climbing fibers modulate CSs directly and SSs indirectly through activation of stellate cells. Whereas vestibular primary afferent mossy fibers cannot account for the modulated discharge of SSs or stellate cells, the nonspecific excitation of Purkinje cells by parallel fibers may set an operating point about which the discharges of SSs are sculpted by climbing fibers. PMID:23966673
Song, Jae-Jun; Kwon, Jee Young; Park, Moo Kyun; Seo, Young Rok
2013-10-01
The primary aim of this study is to reveal the effect of particulate matter (PM) on the human middle ear epithelial cell (HMEEC). The HMEEC was treated with PM (300 μg/ml) for 24 h. Total RNA was extracted and used for microarray analysis. Molecular pathways among differentially expressed genes were further analyzed by using Pathway Studio 9.0 software. For selected genes, the changes in gene expression were confirmed by real-time PCR. A total of 611 genes were regulated by PM. Among them, 366 genes were up-regulated, whereas 245 genes were down-regulated. Up-regulated genes were mainly involved in cellular processes, including reactive oxygen species generation, cell proliferation, apoptosis, cell differentiation, inflammatory response and immune response. Down-regulated genes affected several cellular processes, including cell differentiation, cell cycle, proliferation, apoptosis and cell migration. A total of 21 genes were discovered as crucial components in potential signaling networks containing 2-fold up regulated genes. Four genes, VEGFA, IL1B, CSF2 and HMOX1 were revealed as key mediator genes among the up-regulated genes. A total of 25 genes were revealed as key modulators in the signaling pathway associated with 2-fold down regulated genes. Four genes, including IGF1R, TIMP1, IL6 and FN1, were identified as the main modulator genes. We identified the differentially expressed genes in PM-treated HMEEC, whose expression profile may provide a useful clue for the understanding of environmental pathophysiology of otitis media. Our work indicates that air pollution, like PM, plays an important role in the pathogenesis of otitis media. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Seyhan, Attila A; Varadarajan, Usha; Choe, Sung; Liu, Yan; McGraw, John; Woods, Matthew; Murray, Stuart; Eckert, Amy; Liu, Wei; Ryan, Terence E
2011-06-01
ErbB2 is frequently activated in tumors, and influences a wide array of cellular functions, including proliferation, apoptosis, cell motility and adhesion. HKI-272 (neratinib) is a small molecule pan-kinase inhibitor of the ErbB family of receptor tyrosine kinases, and shows strong antiproliferative activity in ErbB2-overexpressing breast cancer cells. We undertook a genome-wide pooled lentiviral RNAi screen to identify synthetic lethal or enhancer (synthetic modulator screen) genes that interact with neratinib in a human breast cancer cell line (SKBR-3). These genes upon knockdown would modulate cell viability in the presence of subeffective concentrations of neratinib. We discovered a diverse set of genes whose depletion selectively impaired or enhanced the viability of SKBR-3 cells in the presence of neratinib. We observed diverse pathways including EGFR, hypoxia, cAMP, and protein ubiquitination that, when co-treated with RNAi and neratinib, resulted in arrest of cell proliferation. Examining the changes of these genes and their protein products also led to a rationale for clinically relevant drug combination treatments. Treatment of cells with either paclitaxel or cytarabine in combination with neratinib resulted in a strong antiproliferative effect. The identification of novel mediators of cellular response to neratinib and the development of potential drug combination treatments have expanded our understanding of neratinib's mode-of-action for the development of more effective therapeutic regimens. Notably, our findings support a paclitaxel and neratinib phase III clinical trial in breast cancer patients.
NASA Astrophysics Data System (ADS)
Yustisia, I.; Jusman, S. W. A.; Wanandi, S. I.
2017-08-01
Cancer stem cells have been reported to maintain stemness under certain extracellular changes. This study aimed to analyze the effect of extracellular O2 level modulation on the glucose metabolism of human CD24-/CD44+ breast cancer stem cells (BCSCs). The primary BCSCs (CD24-/CD44+ cells) were cultured under hypoxia (1% O2) for 0.5, 4, 6, 24 and 48 hours. After each incubation period, HIF1α, GLUT1 and CA9 expressions, as well as glucose metabolism status, including glucose consumption, lactate production, O2 consumption and extracellular pH (pHe) were analyzed using qRT-PCR, colorimetry, fluorometry, and enzymatic reactions, respectively. Hypoxia caused an increase in HIF1α mRNA expressions and protein levels and shifted the metabolic states to anaerobic glycolysis, as demonstrated by increased glucose consumption and lactate production, as well as decreased O2 consumption and pHe. Furthermore, we demonstrated that GLUT1 and CA9 mRNA expressions simultaneously increased, in line with HIF1α expression. In conclusion, modulation of the extracellular environment of human BCSCs through hypoxia shifedt the metabolic state of BCSCs to anaerobic glycolysis, which might be associated with GLUT1 and CA9 expressions regulated by HIFlα transcription factor.
Nativelle-Serpentini, C; Richard, S; Séralini, G-E; Sourdaine, P
2003-08-01
Aromatase is the cytochrome P-450 involved in converting androgens to estrogens. The cytochrome P-450 family plays a central role in the oxidative metabolism of compounds including environmental pollutants. Since lindane and bisphenol-A (BPA) are two well-characterized endocrine disruptors that have been detected in animals and humans, it was important to learn whether they could affect aromatase activity and consequently estrogen biosynthesis. The present study investigates the effects of BPA and lindane on cytotoxicity, aromatase activity and mRNA levels in human placental JEG-3 cells and transfected human embryonal kidney 293 cells. Both cell lines were exposed to increasing concentrations of lindane (25, 50 and 75 microM) and bisphenol-A (25, 50 and 100 microM) over different time periods (10 min-18 h). As a result, none of these concentrations showed cytotoxicity. After short pre-incubation times (10 min-6 h), aromatase activity was enhanced by both compounds. Longer time incubation (18 h), however, produced dose-related inhibition. Lindane and BPA had no significant effects on CYP19 mRNA levels. Therefore, lindane and BPA modulate aromatase activity suggesting an interaction with the cytochrome P-450 aromatase. This study highlights the endocrine-modulating properties of lindane and bisphenol-A.
Solar-powered unmanned aerial vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reinhardt, K.C.; Lamp, T.R.; Geis, J.W.
1996-12-31
An analysis was performed to determine the impact of various power system components and mission requirements on the size of solar-powered high altitude long endurance (HALE)-type aircraft. The HALE unmanned aerial vehicle (UAV) has good potential for use in many military and civil applications. The primary power system components considered in this study were photovoltaic (PV) modules for power generation and regenerative fuel cells for energy storage. The impact of relevant component performance on UAV size and capability were considered; including PV module efficiency and mass, power electronics efficiency, and fuel cell specific energy. Mission parameters such as time ofmore » year, flight altitude, flight latitude, and payload mass and power were also varied to determine impact on UAV size. The aircraft analysis method used determines the required aircraft wing aspect ratio, wing area, and total mass based on maximum endurance or minimum required power calculations. The results indicate that the capacity of the energy storage system employed, fuel cells in this analysis, greatly impacts aircraft size, whereas the impact of PV module efficiency and mass is much less important. It was concluded that an energy storage specific energy (total system) of 250--500 Whr/kg is required to enable most useful missions, and that PV cells with efficiencies greater than {approximately} 12% are suitable for use.« less
Miconi, Thomas; VanRullen, Rufin
2016-02-01
Visual attention has many effects on neural responses, producing complex changes in firing rates, as well as modifying the structure and size of receptive fields, both in topological and feature space. Several existing models of attention suggest that these effects arise from selective modulation of neural inputs. However, anatomical and physiological observations suggest that attentional modulation targets higher levels of the visual system (such as V4 or MT) rather than input areas (such as V1). Here we propose a simple mechanism that explains how a top-down attentional modulation, falling on higher visual areas, can produce the observed effects of attention on neural responses. Our model requires only the existence of modulatory feedback connections between areas, and short-range lateral inhibition within each area. Feedback connections redistribute the top-down modulation to lower areas, which in turn alters the inputs of other higher-area cells, including those that did not receive the initial modulation. This produces firing rate modulations and receptive field shifts. Simultaneously, short-range lateral inhibition between neighboring cells produce competitive effects that are automatically scaled to receptive field size in any given area. Our model reproduces the observed attentional effects on response rates (response gain, input gain, biased competition automatically scaled to receptive field size) and receptive field structure (shifts and resizing of receptive fields both spatially and in complex feature space), without modifying model parameters. Our model also makes the novel prediction that attentional effects on response curves should shift from response gain to contrast gain as the spatial focus of attention drifts away from the studied cell.
Microenvironment Influences Interaction of Signaling Molecules | Center for Cancer Research
Tumor progression depends not only on events that occur within cancer cells but also on the interaction of cancer cells with their environment, which can regulate tumor growth and metastasis and modulate the formation of new blood vessels to nourish the tumor. All cells communicate with other cells around them, including endothelial cells (the cells that make up blood vessels). They also interact with the extracellular matrix (ECM), a network of sugars and proteins that supports cells. Communication between neighboring cells and molecules often occurs through interaction among and between molecules on the cell surface and molecules of the ECM. Defining these interactions should facilitate the development of novel approaches to limit tumor progression.
Radiation-Induced Immunogenic Modulation Enhances T-Cell Killing | Center for Cancer Research
For many types of cancer, including breast, lung, and prostate carcinomas, radiation therapy is the standard of care. However, limits placed on the tolerable levels of radiation exposure coupled with heterogeneity of biological tissue result in cases where not all tumor cells receive a lethal dose of radiation. Preclinical studies have shown that exposing tumor cells to lethal doses of radiation can elicit cell death while inducing some antitumor immunity, described as immunogenic cell death (ICD). However, in a clinical setting, immune responses elicited by radiation alone rarely result in protective immunity, as tumor relapse often occurs.
Integrin-linked kinase interactions with ELMO2 modulate cell polarity.
Ho, Ernest; Irvine, Tames; Vilk, Gregory J A; Lajoie, Gilles; Ravichandran, Kodi S; D'Souza, Sudhir J A; Dagnino, Lina
2009-07-01
Cell polarization is a key prerequisite for directed migration during development, tissue regeneration, and metastasis. Integrin-linked kinase (ILK) is a scaffold protein essential for cell polarization, but very little is known about the precise mechanisms whereby ILK modulates polarization in normal epithelia. Elucidating these mechanisms is essential to understand tissue morphogenesis, transformation, and repair. Here we identify a novel ILK protein complex that includes Engulfment and Cell Motility 2 (ELMO2). We also demonstrate the presence of RhoG in ILK-ELMO2 complexes, and the localization of this multiprotein species specifically to the leading lamellipodia of polarized cells. Significantly, the ability of RhoG to bind ELMO is crucial for ILK induction of cell polarization, and the joint expression of ILK and ELMO2 synergistically promotes the induction of front-rear polarity and haptotactic migration. This places RhoG-ELMO2-ILK complexes in a key position for the development of cell polarity and forward movement. Although ILK is a component of many diverse multiprotein species that may contribute to cell polarization, expression of dominant-negative ELMO2 mutants is sufficient to abolish the ability of ILK to promote cell polarization. Thus, its interaction with ELMO2 and RhoG is essential for the ability of ILK to induce front-rear cell polarity.
Integrin-linked Kinase Interactions with ELMO2 Modulate Cell Polarity
Ho, Ernest; Irvine, Tames; Vilk, Gregory J.A.; Lajoie, Gilles; Ravichandran, Kodi S.; D'Souza, Sudhir J.A.
2009-01-01
Cell polarization is a key prerequisite for directed migration during development, tissue regeneration, and metastasis. Integrin-linked kinase (ILK) is a scaffold protein essential for cell polarization, but very little is known about the precise mechanisms whereby ILK modulates polarization in normal epithelia. Elucidating these mechanisms is essential to understand tissue morphogenesis, transformation, and repair. Here we identify a novel ILK protein complex that includes Engulfment and Cell Motility 2 (ELMO2). We also demonstrate the presence of RhoG in ILK–ELMO2 complexes, and the localization of this multiprotein species specifically to the leading lamellipodia of polarized cells. Significantly, the ability of RhoG to bind ELMO is crucial for ILK induction of cell polarization, and the joint expression of ILK and ELMO2 synergistically promotes the induction of front-rear polarity and haptotactic migration. This places RhoG–ELMO2–ILK complexes in a key position for the development of cell polarity and forward movement. Although ILK is a component of many diverse multiprotein species that may contribute to cell polarization, expression of dominant-negative ELMO2 mutants is sufficient to abolish the ability of ILK to promote cell polarization. Thus, its interaction with ELMO2 and RhoG is essential for the ability of ILK to induce front-rear cell polarity. PMID:19439446
Mast cell: an emerging partner in immune interaction.
Gri, Giorgia; Frossi, Barbara; D'Inca, Federica; Danelli, Luca; Betto, Elena; Mion, Francesca; Sibilano, Riccardo; Pucillo, Carlo
2012-01-01
Mast cells (MCs) are currently recognized as effector cells in many settings of the immune response, including host defense, immune regulation, allergy, chronic inflammation, and autoimmune diseases. MC pleiotropic functions reflect their ability to secrete a wide spectrum of preformed or newly synthesized biologically active products with pro-inflammatory, anti-inflammatory and/or immunosuppressive properties, in response to multiple signals. Moreover, the modulation of MC effector phenotypes relies on the interaction of a wide variety of membrane molecules involved in cell-cell or cell-extracellular-matrix interaction. The delivery of co-stimulatory signals allows MC to specifically communicate with immune cells belonging to both innate and acquired immunity, as well as with non-immune tissue-specific cell types. This article reviews and discusses the evidence that MC membrane-expressed molecules play a central role in regulating MC priming and activation and in the modulation of innate and adaptive immune response not only against host injury, but also in peripheral tolerance and tumor-surveillance or -escape. The complex expression of MC surface molecules may be regarded as a measure of connectivity, with altered patterns of cell-cell interaction representing functionally distinct MC states. We will focalize our attention on roles and functions of recently discovered molecules involved in the cross-talk of MCs with other immune partners.
Smith, I M; Baker, A; Arneborg, N; Jespersen, L
2015-11-01
The human gastrointestinal epithelium makes up the largest barrier separating the body from the external environment. Whereas invasive pathogens cause epithelial barrier disruption, probiotic micro-organisms modulate tight junction regulation and improve epithelial barrier function. In addition, probiotic strains may be able to reduce epithelial barrier disruption caused by pathogenic species. The aim of this study was to explore non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Benchmarking against established probiotic strains, we evaluated the ability of four nonpathogenic yeast species to modulate transepithelial electrical resistance (TER) across a monolayer of differentiated human colonocytes (Caco-2 cells). Further, we assessed yeast modulation of a Salmonella Typhimurium-induced epithelial cell barrier function insult. Our findings demonstrate distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function. While the established probiotic yeast Saccharomyces boulardii increased TER across a Caco-2 monolayer by 30%, Kluyveromyces marxianus exhibited significantly stronger properties of TER enhancement (50% TER increase). In addition, our data demonstrate significant yeast-mediated modulation of Salmonella-induced epithelial cell barrier disruption and identify K. marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study demonstrates distinct patterns of non-Saccharomyces yeast modulation of epithelial cell barrier function in vitro. Further, our data demonstrate significant yeast-mediated modulation of Salmonella Typhimurium-induced epithelial cell barrier disruption and identify Kluyveromyces marxianus and Metschnikowia gruessii as two non-Saccharomyces yeasts capable of protecting human epithelial cells from pathogen invasion. This study is the first to demonstrate significant non-Saccharomyces yeast-mediated epithelial cell barrier protection from Salmonella invasion, thus encouraging future efforts aimed at confirming the observed effects in vivo and driving further strain development towards novel yeast probiotics. © 2015 The Society for Applied Microbiology.
Solid-state energy storage module employing integrated interconnect board
Rouillard, Jean; Comte, Christophe; Daigle, Dominik; Hagen, Ronald A.; Knudson, Orlin B.; Morin, Andre; Ranger, Michel; Ross, Guy; Rouillard, Roger; St-Germain, Philippe; Sudano, Anthony; Turgeon, Thomas A.
2003-11-04
The present invention is directed to an improved electrochemical energy storage device. The electrochemical energy storage device includes a number of solid-state, thin-film electrochemical cells which are selectively interconnected in series or parallel through use of an integrated interconnect board. The interconnect board is typically disposed within a sealed housing which also houses the electrochemical cells, and includes a first contact and a second contact respectively coupled to first and second power terminals of the energy storage device. The interconnect board advantageously provides for selective series or parallel connectivity with the electrochemical cells, irrespective of electrochemical cell position within the housing. Fuses and various electrical and electromechanical devices, such as bypass, equalization, and communication devices for example, may also be mounted to the interconnect board and selectively connected to the electrochemical cells.
TALE transcription factors during early development of the vertebrate brain and eye.
Schulte, Dorothea; Frank, Dale
2014-01-01
Our brain's cognitive performance arises from the coordinated activities of billions of nerve cells. Despite a high degree of morphological and functional differences, all neurons of the vertebrate central nervous system (CNS) arise from a common field of multipotent progenitors. Cell fate specification and differentiation are directed by multistep processes that include inductive/external cues, such as the extracellular matrix or growth factors, and cell-intrinsic determinants, such as transcription factors and epigenetic modulators of proteins and DNA. Here we review recent findings implicating TALE-homeodomain proteins in these processes. Although originally identified as HOX-cofactors, TALE proteins also contribute to many physiological processes that do not require HOX-activity. Particular focus is, therefore, given to HOX-dependent and -independent functions of TALE proteins during early vertebrate brain development. Additionally, we provide an overview about known upstream and downstream factors of TALE proteins in the developing vertebrate brain and discuss general concepts of how TALE proteins function to modulate neuronal cell fate specification. Copyright © 2013 Wiley Periodicals, Inc.
Kim, Yongsoo; Yang, Guangyu Robert; Pradhan, Kith; Venkataraju, Kannan Umadevi; Bota, Mihail; García Del Molino, Luis Carlos; Fitzgerald, Greg; Ram, Keerthi; He, Miao; Levine, Jesse Maurica; Mitra, Partha; Huang, Z Josh; Wang, Xiao-Jing; Osten, Pavel
2017-10-05
The stereotyped features of neuronal circuits are those most likely to explain the remarkable capacity of the brain to process information and govern behaviors, yet it has not been possible to comprehensively quantify neuronal distributions across animals or genders due to the size and complexity of the mammalian brain. Here we apply our quantitative brain-wide (qBrain) mapping platform to document the stereotyped distributions of mainly inhibitory cell types. We discover an unexpected cortical organizing principle: sensory-motor areas are dominated by output-modulating parvalbumin-positive interneurons, whereas association, including frontal, areas are dominated by input-modulating somatostatin-positive interneurons. Furthermore, we identify local cell type distributions with more cells in the female brain in 10 out of 11 sexually dimorphic subcortical areas, in contrast to the overall larger brains in males. The qBrain resource can be further mined to link stereotyped aspects of neuronal distributions to known and unknown functions of diverse brain regions. Copyright © 2017 Elsevier Inc. All rights reserved.
Göbel, Kerstin; Pankratz, Susann; Asaridou, Chloi-Magdalini; Herrmann, Alexander M.; Bittner, Stefan; Merker, Monika; Ruck, Tobias; Glumm, Sarah; Langhauser, Friederike; Kraft, Peter; Krug, Thorsten F.; Breuer, Johanna; Herold, Martin; Gross, Catharina C.; Beckmann, Denise; Korb-Pap, Adelheid; Schuhmann, Michael K.; Kuerten, Stefanie; Mitroulis, Ioannis; Ruppert, Clemens; Nolte, Marc W.; Panousis, Con; Klotz, Luisa; Kehrel, Beate; Korn, Thomas; Langer, Harald F.; Pap, Thomas; Nieswandt, Bernhard; Wiendl, Heinz; Chavakis, Triantafyllos; Kleinschnitz, Christoph; Meuth, Sven G.
2016-01-01
Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. PMID:27188843
Wu, Xiaoming; Shell, Steven M.; Yang, Zhengguan; Zou, Yue
2006-01-01
DNA damage triggers complex cellular responses in eukaryotic cells, including initiation of DNA repair and activation of cell cycle checkpoints. In addition to inducing cell cycle arrest, checkpoint also has been suggested to modulate a variety of other cellular processes in response to DNA damage. In this study, we present evidence showing that the cellular function of xeroderma pigmentosum group A (XPA), a major nucleotide excision repair (NER) factor, could be modulated by checkpoint kinase ataxia-telangiectasia mutated and Rad3-related (ATR) in response to UV irradiation. We observed the apparent interaction and colocalization of XPA with ATR in response to UV irradiation. We showed that XPA was a substrate for in vitro phosphorylation by phosphatidylinositol-3-kinase-related kinase family kinases whereas in cells XPA was phosphorylated in an ATR-dependent manner and stimulated by UV irradiation. The Ser196 of XPA was identified as a biologically significant residue to be phosphorylated in vivo. The XPA-deficient cells complemented with XPA-S196A mutant, in which Ser196 was substituted with an alanine, displayed significantly higher UV sensitivity compared with the XPA cells complemented with wild-type XPA. Moreover, substitution of Ser196 with aspartic acid for mimicking the phosphorylation of XPA increased the cell survival to UV irradiation. Taken together, our results revealed a potential physical and functional link between NER and the ATR-dependent checkpoint pathway in human cells and suggested that the ATR checkpoint pathway could modulate the cellular activity of NER through phosphorylation of XPA at Ser196 on UV irradiation. PMID:16540648
2014-01-01
Background The transcription factor Pax8 is expressed during thyroid development and is involved in the morphogenesis of the thyroid gland and maintenance of the differentiated phenotype. In particular, Pax8 has been shown to regulate genes that are considered markers of thyroid differentiation. Recently, the analysis of the gene expression profile of FRTL-5 differentiated thyroid cells after the silencing of Pax8 identified Wnt4 as a novel target. Like the other members of the Wnt family, Wnt4 has been implicated in several developmental processes including regulation of cell fate and patterning during embryogenesis. To date, the only evidence on Wnt4 in thyroid concerns its down-regulation necessary for the progression of thyroid epithelial tumors. Results Here we demonstrate that Pax8 is involved in the transcriptional modulation of Wnt4 gene expression directly binding to its 5’-flanking region, and that Wnt4 expression in FRTL-5 cells is TSH-dependent. Interestingly, we also show that in thyroid cells a reduced expression of Wnt4 correlates with the alteration of the epithelial phenotype and that the overexpression of Wnt4 in thyroid cancer cells is able to inhibit cellular migration. Conclusions We have identified and characterized a functional Pax8 binding site in the 5’-flanking region of the Wnt4 gene and we show that Pax8 modulates the expression of Wnt4 in thyroid cells. Taken together, our results suggest that in thyroid cells Wnt4 expression correlates with the integrity of the epithelial phenotype and is reduced when this integrity is perturbed. In the end, we would like to suggest that the overexpression of Wnt4 in thyroid cancer cells is able to revert the mesenchymal phenotype. PMID:25270402
Silicon solar cells with a total power capacity of 30 kilowatts
NASA Technical Reports Server (NTRS)
1977-01-01
The bulk of the contract effort was carried out in the following two phases: Phase 1 -- module design, Pre-production module fabrication, inspection and test. Phase 2 -- Production, test and delivery. Effort during the first two months of the contract concentrated on design of a solar module to meet specification. Basic module design resulting from this effort is as follows: (1) frame design; (2) cell pan design; (3) cell interconnection; (4) encapsulation; (5) electrical performance.
Resendes, Karen K
2015-01-01
Incorporating scientific literacy into inquiry driven research is one of the most effective mechanisms for developing an undergraduate student's strength in writing. Additionally, discovery-based laboratories help develop students who approach science as critical thinkers. Thus, a three-week laboratory module for an introductory cell and molecular biology course that couples inquiry-based experimental design with extensive scientific writing was designed at Westminster College to expose first year students to these concepts early in their undergraduate career. In the module students used scientific literature to design and then implement an experiment on the effect of cellular stress on protein expression in HeLa cells. In parallel the students developed a research paper in the style of the undergraduate journal BIOS to report their results. HeLa cells were used to integrate the research experience with the Westminster College "Next Chapter" first year program, in which the students explored the historical relevance of HeLa cells from a sociological perspective through reading The Immortal Life of Henrietta Lacks by Rebecca Skloot. In this report I detail the design, delivery, student learning outcomes, and assessment of this module, and while this exercise was designed for an introductory course at a small primarily undergraduate institution, suggestions for modifications at larger universities or for upper division courses are included. Finally, based on student outcomes suggestions are provided for improving the module to enhance the link between teaching students skills in experimental design and execution with developing student skills in information literacy and writing. © 2015 The International Union of Biochemistry and Molecular Biology.
Resistance to Cell Death and Its Modulation in Cancer Stem Cells
Safa, Ahmad R.
2017-01-01
Accumulating evidence has demonstrated that human cancers arise from various tissues of origin that initiate from cancer stem cells (CSCs) or cancer-initiating cells. The extrinsic and intrinsic apoptotic pathways are dysregulated in CSCs, and these cells play crucial roles in tumor initiation, progression, cell death resistance, chemo- and radiotherapy resistance, and tumor recurrence. Understanding CSC-specific signaling proteins and pathways is necessary to identify specific therapeutic targets that may lead to the development of more efficient therapies selectively targeting CSCs. Several signaling pathways—including the phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), maternal embryonic leucine zipper kinase (MELK), NOTCH1, and Wnt/β-catenin—and expression of the CSC markers CD133, CD24, CD44, Oct4, Sox2, Nanog, and ALDH1A1 maintain CSC properties. Studying such pathways may help to understand CSC biology and lead to the development of potential therapeutic interventions to render CSCs more sensitive to cell death triggered by chemotherapy and radiation therapy. Moreover, recent demonstrations of dedifferentiation of differentiated cancer cells into CSC-like cells have created significant complexity in the CSCs hypothesis. Therefore, any successful therapeutic agent or combination of drugs for cancer therapy must eliminate not only CSCs but differentiated cancer cells and the entire bulk of tumor cells. This review article expands on the CSC hypothesis and paradigm with respect to major signaling pathways and effectors that regulate CSC apoptosis resistance. Moreover, selective CSC apoptotic modulators and their therapeutic potential for making tumors more responsive to therapy are discussed. The use of novel therapies, including small-molecule inhibitors of specific proteins in signaling pathways that regulate stemness, proliferation and migration of CSCs, immunotherapy, and noncoding microRNAs may provide better means of treating CSCs. PMID:27915972
Weinstein, Nathan; Ortiz-Gutiérrez, Elizabeth; Muñoz, Stalin; Rosenblueth, David A; Álvarez-Buylla, Elena R; Mendoza, Luis
2015-03-13
There are recent experimental reports on the cross-regulation between molecules involved in the control of the cell cycle and the differentiation of the vulval precursor cells (VPCs) of Caenorhabditis elegans. Such discoveries provide novel clues on how the molecular mechanisms involved in the cell cycle and cell differentiation processes are coordinated during vulval development. Dynamic computational models are helpful to understand the integrated regulatory mechanisms affecting these cellular processes. Here we propose a simplified model of the regulatory network that includes sufficient molecules involved in the control of both the cell cycle and cell differentiation in the C. elegans vulva to recover their dynamic behavior. We first infer both the topology and the update rules of the cell cycle module from an expected time series. Next, we use a symbolic algorithmic approach to find which interactions must be included in the regulatory network. Finally, we use a continuous-time version of the update rules for the cell cycle module to validate the cyclic behavior of the network, as well as to rule out the presence of potential artifacts due to the synchronous updating of the discrete model. We analyze the dynamical behavior of the model for the wild type and several mutants, finding that most of the results are consistent with published experimental results. Our model shows that the regulation of Notch signaling by the cell cycle preserves the potential of the VPCs and the three vulval fates to differentiate and de-differentiate, allowing them to remain completely responsive to the concentration of LIN-3 and lateral signal in the extracellular microenvironment.
Li, Xueling; Zhu, Min; Brasier, Allan R; Kudlicki, Andrzej S
2015-04-01
How different pathways lead to the activation of a specific transcription factor (TF) with specific effects is not fully understood. We model context-specific transcriptional regulation as a modulatory network: triplets composed of a TF, target gene, and modulator. Modulators usually affect the activity of a specific TF at the posttranscriptional level in a target gene-specific action mode. This action may be classified as enhancement, attenuation, or inversion of either activation or inhibition. As a case study, we inferred, from a large collection of expression profiles, all potential modulations of NF-κB/RelA. The predicted modulators include many proteins previously not reported as physically binding to RelA but with relevant functions, such as RNA processing, cell cycle, mitochondrion, ubiquitin-dependent proteolysis, and chromatin modification. Modulators from different processes exert specific prevalent action modes on distinct pathways. Modulators from noncoding RNA, RNA-binding proteins, TFs, and kinases modulate the NF-κB/RelA activity with specific action modes consistent with their molecular functions and modulation level. The modulatory networks of NF-κB/RelA in the context epithelial-mesenchymal transition (EMT) and burn injury have different modulators, including those involved in extracellular matrix (FBN1), cytoskeletal regulation (ACTN1), and metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a long intergenic nonprotein coding RNA, and tumor suppression (FOXP1) for EMT, and TXNIP, GAPDH, PKM2, IFIT5, LDHA, NID1, and TPP1 for burn injury.
Pressurized solid oxide fuel cell integral air accumular containment
Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.
2004-02-10
A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.
Process of making solar cell module
Packer, M.; Coyle, P.J.
1981-03-09
A process is presented for the manufacture of solar cell modules. A solution comprising a highly plasticized polyvinyl butyral is applied to a solar cell array. The coated array is dried and sandwiched between at last two sheets of polyvinyl butyral and at least two sheets of a rigid transparent member. The sandwich is laminated by the application of heat and pressure to cause fusion and bonding of the solar cell array with the rigid transparent members to produce a solar cell module.
The Citrus Flavanone Naringenin Protects Myocardial Cells against Age-Associated Damage
Costa, Barbara; Cavallini, Chiara; Testai, Lara; Martelli, Alma; Calderone, Vincenzo; Martini, Claudia
2017-01-01
In recent years, the health-promoting effects of the citrus flavanone naringenin have been examined. The results have provided evidence for the modulation of some key mechanisms involved in cellular damage by this compound. In particular, naringenin has been revealed to have protective properties such as an antioxidant effect in cardiometabolic disorders. Very recently, beneficial effects of naringenin have been demonstrated in old rats. Because aging has been demonstrated to be directly related to the occurrence of cardiac disorders, in the present study, the ability of naringenin to prevent cardiac cell senescence was investigated. For this purpose, a cellular model of senescent myocardial cells was set up and evaluated using colorimetric, fluorimetric, and immunometric techniques. Relevant cellular senescence markers, such as X-gal staining, cell cycle regulator levels, and the percentage of cell cycle-arrested cells, were found to be reduced in the presence of naringenin. In addition, cardiac markers of aging-induced damage, including radical oxidative species levels, mitochondrial metabolic activity, mitochondrial calcium buffer capacity, and estrogenic signaling functions, were also modulated by the compound. These results suggested that naringenin has antiaging effects on myocardial cells. PMID:28386313
Identification of ion-channel modulators that protect against aminoglycoside-induced hair cell death
Kenyon, Emma J.; Kirkwood, Nerissa K.; Kitcher, Siân R.; O’Reilly, Molly; Cantillon, Daire M.; Goodyear, Richard J.; Secker, Abigail; Baxendale, Sarah; Bull, James C.; Waddell, Simon J.; Whitfield, Tanya T.; Ward, Simon E.; Kros, Corné J.; Richardson, Guy P.
2017-01-01
Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red–conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem. PMID:29263311
Kenyon, Emma J; Kirkwood, Nerissa K; Kitcher, Siân R; O'Reilly, Molly; Derudas, Marco; Cantillon, Daire M; Goodyear, Richard J; Secker, Abigail; Baxendale, Sarah; Bull, James C; Waddell, Simon J; Whitfield, Tanya T; Ward, Simon E; Kros, Corné J; Richardson, Guy P
2017-12-21
Aminoglycoside antibiotics are used to treat life-threatening bacterial infections but can cause deafness due to hair cell death in the inner ear. Compounds have been described that protect zebrafish lateral line hair cells from aminoglycosides, but few are effective in the cochlea. As the aminoglycosides interact with several ion channels, including the mechanoelectrical transducer (MET) channels by which they can enter hair cells, we screened 160 ion-channel modulators, seeking compounds that protect cochlear outer hair cells (OHCs) from aminoglycoside-induced death in vitro. Using zebrafish, 72 compounds were identified that either reduced loading of the MET-channel blocker FM 1-43FX, decreased Texas red-conjugated neomycin labeling, or reduced neomycin-induced hair cell death. After testing these 72 compounds, and 6 structurally similar compounds that failed in zebrafish, 13 were found that protected against gentamicin-induced death of OHCs in mouse cochlear cultures, 6 of which are permeant blockers of the hair cell MET channel. None of these compounds abrogated aminoglycoside antibacterial efficacy. By selecting those without adverse effects at high concentrations, 5 emerged as leads for developing pharmaceutical otoprotectants to alleviate an increasing clinical problem.
Immunostimulatory properties and antitumor activities of glucans
VANNUCCI, LUCA; KRIZAN, JIRI; SIMA, PETR; STAKHEEV, DMITRY; CAJA, FABIAN; RAJSIGLOVA, LENKA; HORAK, VRATISLAV; SAIEH, MUSTAFA
2013-01-01
New foods and natural biological modulators have recently become of scientific interest in the investigation of the value of traditional medical therapeutics. Glucans have an important part in this renewed interest. These fungal wall components are claimed to be useful for various medical purposes and they are obtained from medicinal mushrooms commonly used in traditional Oriental medicine. The immunotherapeutic properties of fungi extracts have been reported, including the enhancement of anticancer immunity responses. These properties are principally related to the stimulation of cells of the innate immune system. The discovery of specific receptors for glucans on dendritic cells (dectin-1), as well as interactions with other receptors, mainly expressed by innate immune cells (e.g., Toll-like receptors, complement receptor-3), have raised new attention toward these products as suitable therapeutic agents. We briefly review the characteristics of the glucans from mycelial walls as modulators of the immunity and their possible use as antitumor treatments. PMID:23739801
Dietary Nutrients and Bioactive Substances Modulate Heat Shock Protein (HSP) Expression: A Review.
Moura, Carolina Soares; Lollo, Pablo Christiano Barboza; Morato, Priscila Neder; Amaya-Farfan, Jaime
2018-05-28
Interest in the heat shock proteins (HSPs), as a natural physiological toolkit of living organisms, has ranged from their chaperone function in nascent proteins to the remedial role following cell stress. As part of the defence system, HSPs guarantee cell tolerance against a variety of stressors, including exercise, oxidative stress, hyper and hypothermia, hyper and hypoxia and improper diets. For the past couple of decades, research on functional foods has revealed a number of substances likely to trigger cell protection through mechanisms that involve the induction of HSP expression. This review will summarize the occurrence of the most easily inducible HSPs and describe the effects of dietary proteins, peptides, amino acids, probiotics, high-fat diets and other food-derived substances reported to induce HSP response in animals and humans studies. Future research may clarify the mechanisms and explore the usefulness of this natural alternative of defense and the modulating mechanism of each substance.
A global interaction network maps a wiring diagram of cellular function
Costanzo, Michael; VanderSluis, Benjamin; Koch, Elizabeth N.; Baryshnikova, Anastasia; Pons, Carles; Tan, Guihong; Wang, Wen; Usaj, Matej; Hanchard, Julia; Lee, Susan D.; Pelechano, Vicent; Styles, Erin B.; Billmann, Maximilian; van Leeuwen, Jolanda; van Dyk, Nydia; Lin, Zhen-Yuan; Kuzmin, Elena; Nelson, Justin; Piotrowski, Jeff S.; Srikumar, Tharan; Bahr, Sondra; Chen, Yiqun; Deshpande, Raamesh; Kurat, Christoph F.; Li, Sheena C.; Li, Zhijian; Usaj, Mojca Mattiazzi; Okada, Hiroki; Pascoe, Natasha; Luis, Bryan-Joseph San; Sharifpoor, Sara; Shuteriqi, Emira; Simpkins, Scott W.; Snider, Jamie; Suresh, Harsha Garadi; Tan, Yizhao; Zhu, Hongwei; Malod-Dognin, Noel; Janjic, Vuk; Przulj, Natasa; Troyanskaya, Olga G.; Stagljar, Igor; Xia, Tian; Ohya, Yoshikazu; Gingras, Anne-Claude; Raught, Brian; Boutros, Michael; Steinmetz, Lars M.; Moore, Claire L.; Rosebrock, Adam P.; Caudy, Amy A.; Myers, Chad L.; Andrews, Brenda; Boone, Charles
2017-01-01
We generated a global genetic interaction network for Saccharomyces cerevisiae, constructing over 23 million double mutants, identifying ~550,000 negative and ~350,000 positive genetic interactions. This comprehensive network maps genetic interactions for essential gene pairs, highlighting essential genes as densely connected hubs. Genetic interaction profiles enabled assembly of a hierarchical model of cell function, including modules corresponding to protein complexes and pathways, biological processes, and cellular compartments. Negative interactions connected functionally related genes, mapped core bioprocesses, and identified pleiotropic genes, whereas positive interactions often mapped general regulatory connections among gene pairs, rather than shared functionality. The global network illustrates how coherent sets of genetic interactions connect protein complex and pathway modules to map a functional wiring diagram of the cell. PMID:27708008
Myeloid-derived suppressor cells modulate B-cell responses.
Lelis, Felipe J N; Jaufmann, Jennifer; Singh, Anurag; Fromm, Katja; Teschner, Annkathrin Chiara; Pöschel, Simone; Schäfer, Iris; Beer-Hammer, Sandra; Rieber, Nikolaus; Hartl, Dominik
2017-08-01
Myeloid-derived suppressor cells (MDSCs) are key regulators of adaptive immunity by suppressing T-cell functions. However, their potential action on or interaction with B cells remained poorly understood. Here we demonstrate that human polymorphonuclear MDSCs differentially modulate B-cell function by suppressing B-cell proliferation and antibody production. We further demonstrate that this MDSC-mediated effect is cell contact dependent and involves established mediators such as arginase-1, nitric oxide (NO), reactive oxygen species (ROS) as well as B-cell death. Collectively, our studies provide novel evidence that human MDSCs modulate B cells, which could have future implications for immunotherapy approaches. Copyright © 2017 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.
A gene expression biomarker accurately predicts estrogen ...
The EPA’s vision for the Endocrine Disruptor Screening Program (EDSP) in the 21st Century (EDSP21) includes utilization of high-throughput screening (HTS) assays coupled with computational modeling to prioritize chemicals with the goal of eventually replacing current Tier 1 screening tests. The ToxCast program currently includes 18 HTS in vitro assays that evaluate the ability of chemicals to modulate estrogen receptor α (ERα), an important endocrine target. We propose microarray-based gene expression profiling as a complementary approach to predict ERα modulation and have developed computational methods to identify ERα modulators in an existing database of whole-genome microarray data. The ERα biomarker consisted of 46 ERα-regulated genes with consistent expression patterns across 7 known ER agonists and 3 known ER antagonists. The biomarker was evaluated as a predictive tool using the fold-change rank-based Running Fisher algorithm by comparison to annotated gene expression data sets from experiments in MCF-7 cells. Using 141 comparisons from chemical- and hormone-treated cells, the biomarker gave a balanced accuracy for prediction of ERα activation or suppression of 94% or 93%, respectively. The biomarker was able to correctly classify 18 out of 21 (86%) OECD ER reference chemicals including “very weak” agonists and replicated predictions based on 18 in vitro ER-associated HTS assays. For 114 chemicals present in both the HTS data and the MCF-7 c
Winkler, Dirk; Beconi, Maria; Toledo-Sherman, Leticia M; Prime, Michael; Ebneth, Andreas; Dominguez, Celia; Muñoz-Sanjuan, Ignacio
2013-09-01
Kynurenine monooxygenase (KMO) catalyzes the conversion of kynurenine to 3-hydroxykynurenine. Modulation of KMO activity has been implicated in several neurodegenerative diseases, including Huntington disease. Our goal is to develop potent and selective small-molecule KMO inhibitors with suitable pharmacokinetic characteristics for in vivo proof-of-concept studies and subsequent clinical development. We developed a comprehensive panel of biochemical and cell-based assays that use liquid chromatography/tandem mass spectrometry to quantify unlabeled kynurenine and 3-hydroxykynurenine. We describe assays to measure KMO inhibition in cell and tissue extracts, as well as cellular assays including heterologous cell lines and primary rat microglia and human peripheral blood mononuclear cells.
Ponnath, Abhilash; Farris, Hamilton E.
2014-01-01
Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3–10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene. PMID:25120437
Ponnath, Abhilash; Farris, Hamilton E
2014-01-01
Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jang, Eun Hyang; Jang, Soon Young; Cho, In-Hye
Human estrogen receptor α (ERα) is a nuclear transcription factor that is a major therapeutic target in breast cancer. The transcriptional activity of ERα is regulated by certain estrogen-receptor modulators. Hispolon, isolated from Phellinus linteus, a traditional medicinal mushroom called Sanghwang in Korea, has been used to treat various pathologies, such as inflammation, gastroenteric disorders, lymphatic diseases, and cancers. In this latter context, Hispolon has been reported to exhibit therapeutic efficacy against various cancer cells, including melanoma, leukemia, hepatocarcinoma, bladder cancer, and gastric cancer cells. However, ERα regulation by Hispolon has not been reported. In this study, we investigated themore » effects of Hispolon on the growth of breast cancer cells. We found that Hispolon decreased expression of ERα at both mRNA and the protein levels in MCF7 and T47D human breast cancer cells. Luciferase reporter assays showed that Hispolon decreased the transcriptional activity of ERα. Hispolon treatment also inhibited expression of the ERα target gene pS2. We propose that Hispolon, an anticancer drug extracted from natural sources, inhibits cell growth through modulation of ERα in estrogen-positive breast cancer cells and is a candidate for use in human breast cancer chemotherapy. - Highlights: • Hispolon decreased ERα expression at both mRNA and protein levels. • Hispolon decreased ERα transcriptional activity. • Hispolon treatment inhibited expression of ERα target gene pS2. • Shikonin is a candidate chemotherapeutic target in the treatment of human breast cancer.« less
Optimal configurations of spatial scale for grid cell firing under noise and uncertainty
Towse, Benjamin W.; Barry, Caswell; Bush, Daniel; Burgess, Neil
2014-01-01
We examined the accuracy with which the location of an agent moving within an environment could be decoded from the simulated firing of systems of grid cells. Grid cells were modelled with Poisson spiking dynamics and organized into multiple ‘modules’ of cells, with firing patterns of similar spatial scale within modules and a wide range of spatial scales across modules. The number of grid cells per module, the spatial scaling factor between modules and the size of the environment were varied. Errors in decoded location can take two forms: small errors of precision and larger errors resulting from ambiguity in decoding periodic firing patterns. With enough cells per module (e.g. eight modules of 100 cells each) grid systems are highly robust to ambiguity errors, even over ranges much larger than the largest grid scale (e.g. over a 500 m range when the maximum grid scale is 264 cm). Results did not depend strongly on the precise organization of scales across modules (geometric, co-prime or random). However, independent spatial noise across modules, which would occur if modules receive independent spatial inputs and might increase with spatial uncertainty, dramatically degrades the performance of the grid system. This effect of spatial uncertainty can be mitigated by uniform expansion of grid scales. Thus, in the realistic regimes simulated here, the optimal overall scale for a grid system represents a trade-off between minimizing spatial uncertainty (requiring large scales) and maximizing precision (requiring small scales). Within this view, the temporary expansion of grid scales observed in novel environments may be an optimal response to increased spatial uncertainty induced by the unfamiliarity of the available spatial cues. PMID:24366144
NASA Technical Reports Server (NTRS)
Brown, William (Inventor); Yu, Zhenhong (Inventor); Kebabian, Paul L. (Inventor); Assif, James (Inventor)
2017-01-01
In one embodiment, a photoacoustic effect measurement instrument for measuring a species (e.g., a species of PM) in a gas employs a pair of differential acoustic cells including a sample cell that receives sample gas including the species, and a reference cell that receives a filtered version of the sample gas from which the species has been substantially removed. An excitation light source provides an amplitude modulated beam to each of the acoustic cells. An array of multiple microphones is mounted to each of the differential acoustic cells, and measures an acoustic wave generated in the respective acoustic cell by absorption of light by sample gas therein to produce a respective signal. The microphones are isolated from sample gas internal to the acoustic cell by a film. A preamplifier determines a differential signal and a controller calculates concentration of the species based on the differential signal.
A Practical Irradiance Model for Bifacial PV Modules
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marion, Bill; MacAlpine, Sara; Deline, Chris
2017-06-21
A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be added tomore » the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using ray tracing software.« less
Crystalline-silicon reliability lessons for thin-film modules
NASA Technical Reports Server (NTRS)
Ross, R. G., Jr.
1985-01-01
The reliability of crystalline silicon modules has been brought to a high level with lifetimes approaching 20 years, and excellent industry credibility and user satisfaction. The transition from crystalline modules to thin film modules is comparable to the transition from discrete transistors to integrated circuits. New cell materials and monolithic structures will require new device processing techniques, but the package function and design will evolve to a lesser extent. Although there will be new encapsulants optimized to take advantage of the mechanical flexibility and low temperature processing features of thin films, the reliability and life degradation stresses and mechanisms will remain mostly unchanged. Key reliability technologies in common between crystalline and thin film modules include hot spot heating, galvanic and electrochemical corrosion, hail impact stresses, glass breakage, mechanical fatigue, photothermal degradation of encapsulants, operating temperature, moisture sorption, circuit design strategies, product safety issues, and the process required to achieve a reliable product from a laboratory prototype.
A Practical Irradiance Model for Bifacial PV Modules: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Marion, Bill; MacAlpine, Sara; Deline, Chris
2017-06-15
A model, suitable for a row or multiple rows of photovoltaic (PV) modules, is presented for estimating the backside irradiance for bifacial PV modules. The model, which includes the effects of shading by the PV rows, is based on the use of configuration factors (CFs) to determine the fraction of a source of irradiance that is received by the backside of the PV module. Backside irradiances are modeled along the sloped height of the PV module, but assumed not to vary along the length of the PV row. The backside irradiances are corrected for angle-of-incidence losses and may be addedmore » to the front side irradiance to determine the total irradiance resource for the PV cell. Model results are compared with the measured backside irradiances for NREL and Sandia PV systems, and with results when using the RADIANCE ray tracing program.« less
Importance of inverse correlation between ALDH3A1 and PPARγ in tumor cells and tissue regeneration.
Oraldi, M; Saracino, S; Maggiora, M; Chiaravalloti, A; Buemi, C; Martinasso, G; Paiuzzi, E; Thompson, D; Vasiliou, V; Canuto, R A
2011-05-30
Aldehyde dehydrogenase (ALDH) enzymes are involved in maintaining cellular homeostasis by metabolizing both endogenous and exogenous reactive aldehydes. They modulate several cell functions including proliferation, differentiation, survival as well as cellular response to oxidative stress. We previously reported that ALDH3A1 expression is inversely correlated with the activation of PPARs (Peroxisome Proliferators-Activated Receptors), a category of orphan nuclear hormone receptors, in both rat and human cells. PPARγ is involved in cell proliferation. In this study, we have used PPARγ transfection and inhibition to examine the relationship between ALDH3A1 and PPARγ and their role as regulators of cell proliferation. Induction of PPARγ in A549 and NCTC 2544 cells by transfection caused a decrease in ALDH3A1 and inhibition of cell proliferation, a result we obtained previously using ligands that induce PPARγ. A reduction of PPARγ expression using siRNA increased ALDH3A1 expression and cell proliferation. In cells induced to proliferate in a model of tissue regeneration, ALDH3A1 expression increased during the period of proliferation, whereas PPARγ expression decreased. In conclusion, through modulation of PPARγ or ALDH3A1, it may be possible to reduce cell proliferation in tumor cells or stimulate cell proliferation in normal cells during tissue regeneration. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Thyroid Hormone Differentially Modulates Warburg Phenotype in Breast Cancer Cells
Suhane, Sonal; Ramanujan, V Krishnan
2011-01-01
Sustenance of cancer cells in vivo critically depends on a variety of genetic and metabolic adaptations. Aerobic glycolysis or Warburg effect has been a defining biochemical hallmark of transformed cells for more than five decades although a clear molecular basis of this observation is emerging only in recent years. In this study, we present our findings that thyroid hormone exerts its non-genomic and genomic actions in two model human breast cancer cell lines differentially. By laying a clear foundation for experimentally monitoring the Warburg phenotype in living cancer cells, we demonstrate that thyroid hormone-induced modulation of bioenergetic profiles in these two model cell lines depends on the degree of Warburg phenotype that they display. Further we also show that thyroid hormone can sensitize mitochondria in aggressive, triple-negative breast cancer cells favorably to increase the chemotherapeutic efficacy in these cells. Even though the role of thyroid hormone in modulating mitochondrial metabolism has been known, the current study accentuates the critical role it plays in modulating Warburg phenotype in breast cancer cells. The clinical significance of this finding is the possibility to devise strategies for metabolically modulating aggressive triple-negative tumors so as to enhance their chemosensitivity in vivo. PMID:21945435
Electroluminescence of thin-film CdTe solar cells and modules
NASA Astrophysics Data System (ADS)
Raguse, John Michael
Thin-film photovoltaics has the potential to be a major source of world electricity. Mitigation of non-uniformities in thin-film solar cells and modules may help improve photovoltaic conversion efficiencies. In this manuscript, a measurement technique is discussed in detail which has the capability of detecting such non-uniformities in a form useful for analysis. Thin-film solar cells emit radiation while operating at forward electrical bias, analogous to an LED, a phenomena known as electroluminescence (EL). This process relatively is inefficient for polycrystalline CdTe devices, on the order of 10-4%, as most of the energy is converted into heat, but still strong enough for many valuable measurements. A EL system was built at the Colorado State University Photovoltaics Laboratory to measure EL from CdTe cells and modules. EL intensity normalized to exposure time and injection current density has been found to correlate very well with the difference between ideal and measured open-circuit voltage from devices that include a GaAs cell, an AlGaAs LED, and several CdTe cells with variations in manufacturing. Furthermore, these data points were found to be in good agreement when overlaid with calibrated data from two additional sources. The magnitude of the inverse slope of the fit is in agreement with the thermal voltage and the intercept was found to have a value near unity, in agreement with theory. The expanded data set consists of devices made from one of seven different band gaps and spans eight decades of EQELED efficiencies. As expected, cells which exhibit major failure of light-dark J-V superposition did not follow trend of well-behaved cells. EL images of selected defects from CdTe cells and modules are discussed and images are shown to be highly sensitive to defects in devices, since the intensity depends exponentially on the cells' voltages. The EL technique has proven to be a useful high-throughput tool for screening of cells. In addition to EL images, other opto-electronics characterization techniques were used to analyze defects in cells and modules such as weak-diode areas, cell delineation near substrate edge, non-uniform chlorine passivation, holes in back contact, high-resistance foreign layer, high back-contact sheet resistance, a discontinuous P3 line scribe (intercell shunt) and shunt through a cell (intracell shunt). Although EL images are proficient at illustrating the location and severity of defects with potentially high spatial resolution and short measurement times, their ability to identify the cause of such defects is limited. EL in concert with Light-Beam-Induced Current (LBIC), however, makes for a powerful ensemble as LBIC can probe different film layers at arbitrary voltage bias conditions, albeit with increased measurement times and potentially reduced spatial resolution.