Sample records for cell morphology changed

  1. Lipophilic organic pollutants induce changes in phospholipid and membrane protein composition leading to Vero cell morphological change.

    PubMed

    Liao, Ting T; Wang, Lei; Jia, Ru W; Fu, Xiao H; Chua, Hong

    2014-01-01

    Membrane damage related to morphological change in Vero cells is a sensitive index of the composite biotoxicity of trace lipophilic chemicals. However, judging whether the morphological change in Vero cells happens and its ratio are difficult because it is not a quantitative characteristic. To find biomarkers of cell morphological change for quantitatively representing the ratio of morphological changed cell, the mechanism of cell membrane damage driven by typical lipophilic chemicals, such as trichlorophenol (TCP) and perfluorooctanesulphonate (PFOS), was explored. The ratio of morphologically changed cells generally increased with increased TCP or PFOS concentrations, and the level of four major components of phospholipids varied with concentrations of TCP or PFOS, but only the ratio of phosphatidylcholine (PC)/phosphatidylethanolamine (PE) decreased regularly as TCP or PFOS concentrations increased. Analysis of membrane proteins showed that the level of vimentin in normal cell membranes is high, while it decreases or vanishes after TCP exposure. These variations in phospholipid and membrane protein components may result in membrane leakage and variation in rigid structure, which leads to changes in cell morphology. Therefore, the ratio of PC/PE and amount of vimentin may be potential biomarkers for representing the ratio of morphological changed Vero cell introduced by trace lipophilic compounds, thus their composite bio-toxicity.

  2. [Grape seed extract induces morphological changes of prostate cancer PC-3 cells].

    PubMed

    Shang, Xue-Jun; Yin, Hong-Lin; Ge, Jing-Ping; Sun, Yi; Teng, Wen-Hui; Huang, Yu-Feng

    2008-12-01

    To observe the morphological changes of prostate cancer PC-3 cells induced by grape seed extract (GSE). PC-3 cells were incubated with different concentrations of GSE (100, 200 and 300 microg/ml) for 24, 48 and 72 hours, and then observed for morphological changes by invert microscopy, HE staining and transmission electron microscopy. The incubated PC-3 cells appeared round, small, wrinkled and broken under the invert microscope and exhibited the classical morphological characteristics of cell death under the electron microscope, including cell atrophy, increased vacuoles, crumpled nuclear membrane, and chromosome aggregation. GSE can cause morphological changes and induce necrosis and apoptosis of PC-3 cells.

  3. Effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells investigated by atomic force microscopy.

    PubMed

    Li, Mi; Liu, LianQing; Xi, Ning; Wang, YueChao; Xiao, XiuBin; Zhang, WeiJing

    2015-09-01

    Cell mechanics plays an important role in cellular physiological activities. Recent studies have shown that cellular mechanical properties are novel biomarkers for indicating the cell states. In this article, temperature-controllable atomic force microscopy (AFM) was applied to quantitatively investigate the effects of temperature and cellular interactions on the mechanics and morphology of human cancer cells. First, AFM indenting experiments were performed on six types of human cells to investigate the changes of cellular Young's modulus at different temperatures and the results showed that the mechanical responses to the changes of temperature were variable for different types of cancer cells. Second, AFM imaging experiments were performed to observe the morphological changes in living cells at different temperatures and the results showed the significant changes of cell morphology caused by the alterations of temperature. Finally, by co-culturing human cancer cells with human immune cells, the mechanical and morphological changes in cancer cells were investigated. The results showed that the co-culture of cancer cells and immune cells could cause the distinct mechanical changes in cancer cells, but no significant morphological differences were observed. The experimental results improved our understanding of the effects of temperature and cellular interactions on the mechanics and morphology of cancer cells.

  4. Freezing behavior of adherent neuron-like cells and morphological change and viability of post-thaw cells.

    PubMed

    Uemura, Makoto; Ishiguro, Hiroshi

    2015-04-01

    Freezing of nerve cells forming a neuronal network has largely been neglected, despite the fact that the cryopreservation of nerve cells benefits the study of cells in the areas of medicine and poison screening. Freezing of nerve cells is also attractive for studying cell morphology because of the characteristic long, thread-like neurites extending from the cell body. In the present study, freezing of neuron-like cells adhering to the substrate (differentiated PC12 cells), in physiological saline, was investigated in order to understand the fundamental freezing and thawing characteristics of nerve cells with neurites. The microscopic freezing behavior of cells under different cooling rates was observed. Next, the post-thaw morphological changes in the cells, including the cytoskeleton, were investigated and post-thaw cell viability was evaluated by dye exclusion using propidium iodide. Two categories of morphological changes, beading and shortening of the neurites, were found and quantified. Also, the morphological changes of neurites due to osmotic stress from sodium chloride were studied to gain a better understanding of causation. The results showed that morphological changes and cell death were promoted with a decrease in end temperature during freezing. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Silencing of ATP11B by RNAi-Induced Changes in Neural Stem Cell Morphology.

    PubMed

    Wang, Jiao; Wang, Qian; Zhou, Fangfang; Wang, Dong; Wen, Tieqiao

    2017-01-01

    RNA interference (RNAi) technology is one of the main research tools in many studies of neural stem cells. This study describes effects of ATP11B on the morphology change of neural stem cells by using RNAi. ATP11B belongs to P4-ATPases family, which is preferential translocate phosphatidylserine of cell membrane. Although it exists in neural stem cells, its physiological function is poorly understood. By using RNAi technology to downregulate expression of ATP11B, we found distinct morphological changes in neural stem cells. More important, psiRNA-ATP11B-transfected cells displayed short neurite outgrowth compared to the control cells. These data strongly suggest that ATP11B plays a key role in the morphological change of neural stem cells.

  6. Double-Staining Method for Differentiation of Morphological Changes and Membrane Integrity of Campylobacter coli Cells

    PubMed Central

    Alonso, Jose L.; Mascellaro, Salvatore; Moreno, Yolanda; Ferrús, María A.; Hernández, Javier

    2002-01-01

    We developed a double-staining procedure involving NanoOrange dye (Molecular Probes, Eugene, Oreg.) and membrane integrity stains (LIVE/DEAD BacLight kit; Molecular Probes) to show the morphological and membrane integrity changes of Campylobacter coli cells during growth. The conversion from a spiral to a coccoid morphology via intermediary forms and the membrane integrity changes of the C. coli cells can be detected with the double-staining procedure. Our data indicate that young or actively growing cells are mainly spiral shaped (green-stained cells), but older cells undergo a degenerative change to coccoid forms (red-stained cells). Club-shaped transition cell forms were observed with NanoOrange stain. Chlorinated drinking water affected the viability but not the morphology of C. coli cells. PMID:12324366

  7. Morphological changes in human melanoma cells following irradiation with thermal neutrons.

    PubMed

    Barkla, D H; Allen, B J; Brown, J K; Mountford, M; Mishima, Y; Ichihashi, M

    1989-01-01

    Morphological changes in two human melanoma cell lines, MM96 and MM418, following irradiation with thermal neutrons, were studied using light and electron microscopy. The results show that the response of human malignant melanoma cells to neutron irradiation is both cell line dependent and dose dependent, and that in any given cell line, some cells are more resistant to irradiation than others, thus demonstrating heterogeneity in respect to radiosensitivity. Cells repopulating MM96 flasks after irradiation were morphologically similar to the cells of origin whereas in MM418 flasks cells differentiated into five morphologically distinct subgroups and showed increased melanization. The results also show that radiation causes distinctive morphological patterns of damage although ultrastructural changes unique to the high LET particles released from boron 10 neutron capture are yet to be identified.

  8. [cAMP mediates the morphological change of cultured olfactory ensheathing cells induced by serum].

    PubMed

    Wang, Ying; Huang, Zhi-Hui

    2011-02-25

    Olfactory ensheathing cells (OECs) are a unique type of glia with common properties of astrocyte and Schwann cells. Cultured OECs have two morphological phenotypes, astrocyte-like OECs and Schwann cell-like OECs. Reversible changes have been found between these two morphological phenotypes. However, the molecular mechanism underlying the regulation of these reversible changes is still unknown. The aim of this paper is to establish a method for the morphology plasticity of cultured OECs, and investigate the underlying mechanism. Using the primary culture of OECs and immunocytochemistry, the morphology of OECs was observed under serum, serum free media or dB-cAMP drug treatment. Statistical analysis was performed to test differences among the percentages of OEC subtypes under these conditions. The results showed that under serum free media, (95.2±3.7)% of OECs showed Schwann cell-like morphology, and (4.8±3.7)% of OECs showed astrocyte-like morphology; however, under 10% serum media, (42.5±10.4)% of OECs exhibited Schwann cell-like morphology, and (57.5±10.4)% of OECs exhibited astrocyte-like morphology. When media was changed back to serum free media for 24 h, (94.8±5.0)% of OECs showed Schwann cell-like morphology, and (5.2±5.0)% of OECs showed astrocyte-like morphology. Furthermore, culture condition with or without serum did not affect the expression of OEC cell marker, p-75 and S-100. Finally, dB-cAMP, an analog of cAMP, through inhibiting the formation of F-actin stress fibers and focal adhesion, induced the morphology switch from astrocyte-like to Schwann cell-like morphology under serum condition, promoted the branches and the growth of processes. These results suggest that serum induces the morphology plasticity of cultured OECs, which is mediated by cytoplasmic cAMP level through regulating the formation of F-actin stress fibers and focal adhesion.

  9. Effects of hypergravity on adipose-derived stem cell morphology, mechanical property and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tavakolinejad, Alireza; Rabbani, Mohsen, E-mail: m.rabbani@eng.ui.ac.ir; Janmaleki, Mohsen

    2015-08-21

    Alteration in specific inertial conditions can lead to changes in morphology, proliferation, mechanical properties and cytoskeleton of cells. In this report, the effects of hypergravity on morphology of Adipose-Derived Stem Cells (ADSCs) are indicated. ADSCs were repeatedly exposed to discontinuous hypergravity conditions of 10 g, 20 g, 40 g and 60 g by utilizing centrifuge (three times of 20 min exposure, with an interval of 40 min at 1 g). Cell morphology in terms of length, width and cell elongation index and cytoskeleton of actin filaments and microtubules were analyzed by image processing. Consistent changes observed in cell elongation index as morphological change. Moreover, cell proliferation wasmore » assessed and mechanical properties of cells in case of elastic modulus of cells were evaluated by Atomic Force Microscopy. Increase in proliferation and decrease in elastic modulus of cells are further results of this study. Staining ADSC was done to show changes in cytoskeleton of the cells associated to hypergravity condition specifically in microfilament and microtubule components. After exposing to hypergravity, significant changes were observed in microfilaments and microtubule density as components of cytoskeleton. It was concluded that there could be a relationship between changes in morphology and MFs as the main component of the cells. - Highlights: • Hypergravity (10 g, 20 g, 40 g and 60 g) affects on adipose derived stem cells (ADSCs). • ADSCs after exposure to the hypergravity are more slender. • The height of ADSCs increases in all test groups comparing their control group. • Hypergravity decreases ADSCs modulus of elasticity and cell actin fiber content. • Hypergravity enhances proliferation rate of ADSCs.« less

  10. On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change.

    PubMed

    Memmolo, Pasquale; Iannone, Maria; Ventre, Maurizio; Netti, Paolo Antonio; Finizio, Andrea; Paturzo, Melania; Ferraro, Pietro

    2012-12-17

    Digital Holography (DH) in microscopic configuration is a powerful tool for the imaging of micro-objects contained into a three dimensional (3D) volume, by a single-shot image acquisition. Many studies report on the ability of DH to track particle, microorganism and cells in 3D. However, very few investigations are performed with objects that change severely their morphology during the observation period. Here we study DH as a tool for 3D tracking an osteosarcoma cell line for which extensive changes in cell morphology are associated to cell motion. Due to the great unpredictable morphological change, retrieving cell's position in 3D can become a complicated issue. We investigate and discuss in this paper how the tridimensional position can be affected by the continuous change of the cells. Moreover we propose and test some strategies to afford the problems and compare it with others approaches. Finally, results on the 3D tracking and comments are reported and illustrated.

  11. Morphological Changes of Human Corneal Endothelial Cells after Rho-Associated Kinase Inhibitor Eye Drop (Ripasudil) Administration: A Prospective Open-Label Clinical Study

    PubMed Central

    Okumura, Naoki; Suganami, Hideki; Kinoshita, Shigeru

    2015-01-01

    Purpose To investigate the effect and safety of a selective Rho kinase inhibitor, ripasudil 0.4% eye drops, on corneal endothelial cells of healthy subjects. Design Prospective, interventional case series. Methods In this study, 6 healthy subjects were administered ripasudil 0.4% in the right eye twice daily for 1 week. Morphological changes and corneal endothelial cell density were examined by noncontact and contact specular microscopy. Central corneal thickness and corneal volume of 5 mm-diameter area of center cornea were analyzed by Pentacam Scheimpflug topography. All the above measurements were conducted in both eyes before administration, 1.5 and 6 hours after the initial administration on day 0; and in the same manner after the final administration on day 7. Results By noncontact specular microscopy, indistinct cell borders with pseudo guttae were observed, but by contact specular microscopy, morphological changes of corneal endothelial cells were mild and pseudo guttae was not observed after single and repeated administration of ripasudil in all subjects. These changes resolved prior to the next administration, and corneal endothelial cell density, central corneal thickness and corneal volume were not changed throughout the study period. Conclusion Transient morphological changes of corneal endothelial cells such as indistinct cell borders with pseudo guttae were observed by noncontact specular microscopy in healthy subjects after ripasudil administration. Corneal edema was not observed and corneal endothelial cell density did not decrease after 1 week repetitive administration. These morphological changes were reversible and corneal endothelial cell morphology returned to normal prior to the next administration. Trial Registration JAPIC Clinical Trials Information 142705 PMID:26367375

  12. Whole-Cell Chloride Currents in Rat Astrocytes Accompany Changes in Cell Morphology

    PubMed Central

    Lascola, Christopher D.; Kraig, Richard P.

    2009-01-01

    Astrocytes can change shape dramatically in response to increased physiological and pathological demands, yet the functional consequences of morphological change are unknown. We report the expression of Cl− currents after manipulations that alter astrocyte morphology. Whole-cell Cl− currents were elicited after (1) rounding up cells by brief exposure to trypsin; (2) converting cells from a flat polygonal to a process-bearing (stellate) morphology by exposure to serum-free Ringer’s solution; and (3) swelling cells by exposure to hypo-osmotic solution. Zero-current potentials approximated the Nernst for Cl−, and rectification usually followed that predicted by the constant-field equation. We observed heterogeneity in the activation and inactivation kinetics, as well as in the relative degree of outward versus inward rectification. Cl− conductances were inhibited by 4,4-diisothiocyanostilbene-2,2′-disulfonic acid (200 μM) and by Zn2+ (1 mM). Whole-cell Cl− currents were not expressed in cells without structural change. We investigated whether changes in cytoskeletal actin accompanying changes in astrocytic morphology play a role in the induction of shape-dependent Cl− currents. Cytochalasins, which disrupt actin polymers by enhancing actin-ATP hydrolysis, elicited whole-cell Cl− conductances in flat, polygonal astrocytes. In stellate cells, elevated intracellular Ca2+ (2 μM), which can depolymerize actin, enhanced Cl− currents, and high intracellular ATP (5 mM), required for repolymerization, reduced Cl− currents. Modulation of Cl− current by Ca2+ and ATP was blocked by concurrent whole-cell dialysis with phalloidin and DNase, respectively. Phalloidin stabilizes actin polymers and DNase inhibits actin polymerization. Dialysis with phalloidin also prevented hypo-osmotically activated Cl− currents. These results demonstrate how the expression of astrocyte Cl− currents can be dependent on cell morphology, the structure of actin, Ca2+ homeostasis, and metabolism. PMID:8786429

  13. Morphological changes in vascular and circulating blood cells following exposure to detergent sclerosants.

    PubMed

    Cooley-Andrade, O; Connor, D E; Ma, D D F; Weisel, J W; Parsi, K

    2016-04-01

    To investigate morphological changes in vascular and circulating blood cells following exposure to detergent sclerosants sodium tetradecyl sulfate and polidocanol. Samples of whole blood, isolated leukocytes, platelets, endothelial cells, and fibroblasts were incubated with varying concentrations of sclerosants. Whole blood smears were stained with Giemsa and examined by light and bright field microscopy. Phalloidin and Hoechst stains were used to analyze cytoplasmic and nuclear morphology by fluorescence microscopy. Endothelial cell and fibroblasts were analyzed by live cell imaging. Higher concentrations of sclerosants induced cell lysis. Morphological changes in intact cells were observed at sublytic concentrations of detergents. Low concentration sodium tetradecyl sulfate induced erythrocyte acanthocytosis and macrocytosis, while polidocanol induced Rouleaux formation and increased the population of target cells and stomatocytes. Leukocytes showed swelling, blebbing, vacuolation, and nuclear degradation following exposure to sodium tetradecyl sulfate, while polidocanol induced pseudopodia formation, chromatin condensation, and fragmentation. Platelets exhibited pseudopodia with sodium tetradecyl sulfate and a "fried egg" appearance with polidocanol. Exposure to sodium tetradecyl sulfate resulted in size shrinkage in both endothelial cell and fibroblasts, while endothelial cell developed distinct spindle morphology. Polidocanol induced cytoplasmic microfilament bundles in both endothelial cell and fibroblasts. Patchy chromatin condensation was observed following exposure of fibroblasts to either agent. Detergent sclerosants are biologically active at sublytic concentrations. The observed morphological changes are consistent with cell activation, apoptosis, and oncosis. The cellular response is concentration dependent, cell-specific, and sclerosant specific. © The Author(s) 2015.

  14. Comparison of DNA fragmentation and color thresholding for objective quantitation of apoptotic cells

    NASA Technical Reports Server (NTRS)

    Plymale, D. R.; Ng Tang, D. S.; Fermin, C. D.; Lewis, D. E.; Martin, D. S.; Garry, R. F.

    1995-01-01

    Apoptosis is a process of cell death characterized by distinctive morphological changes and fragmentation of cellular DNA. Using video imaging and color thresholding techniques, we objectively quantitated the number of cultured CD4+ T-lymphoblastoid cells (HUT78 cells, RH9 subclone) displaying morphological signs of apoptosis before and after exposure to gamma-irradiation. The numbers of apoptotic cells measured by objective video imaging techniques were compared to numbers of apoptotic cells measured in the same samples by sensitive apoptotic assays that quantitate DNA fragmentation. DNA fragmentation assays gave consistently higher values compared with the video imaging assays that measured morphological changes associated with apoptosis. These results suggest that substantial DNA fragmentation can precede or occur in the absence of the morphological changes which are associated with apoptosis in gamma-irradiated RH9 cells.

  15. Adaptation of a Simple Microfluidic Platform for High-Dimensional Quantitative Morphological Analysis of Human Mesenchymal Stromal Cells on Polystyrene-Based Substrates.

    PubMed

    Lam, Johnny; Marklein, Ross A; Jimenez-Torres, Jose A; Beebe, David J; Bauer, Steven R; Sung, Kyung E

    2017-12-01

    Multipotent stromal cells (MSCs, often called mesenchymal stem cells) have garnered significant attention within the field of regenerative medicine because of their purported ability to differentiate down musculoskeletal lineages. Given the inherent heterogeneity of MSC populations, recent studies have suggested that cell morphology may be indicative of MSC differentiation potential. Toward improving current methods and developing simple yet effective approaches for the morphological evaluation of MSCs, we combined passive pumping microfluidic technology with high-dimensional morphological characterization to produce robust tools for standardized high-throughput analysis. Using ultraviolet (UV) light as a modality for reproducible polystyrene substrate modification, we show that MSCs seeded on microfluidic straight channel devices incorporating UV-exposed substrates exhibited morphological changes that responded accordingly to the degree of substrate modification. Substrate modification also effected greater morphological changes in MSCs seeded at a lower rather than higher density within microfluidic channels. Despite largely comparable trends in morphology, MSCs seeded in microscale as opposed to traditional macroscale platforms displayed much higher sensitivity to changes in substrate properties. In summary, we adapted and qualified microfluidic cell culture platforms comprising simple straight channel arrays as a viable and robust tool for high-throughput quantitative morphological analysis to study cell-material interactions.

  16. Changes in neocortical and hippocampal microglial cells during hibernation.

    PubMed

    León-Espinosa, Gonzalo; Regalado-Reyes, Mamen; DeFelipe, Javier; Muñoz, Alberto

    2018-05-01

    Mammalian hibernation proceeds alongside a wide range of complex brain adaptive changes that appear to protect the brain from extreme hypoxia and hypothermia. Using immunofluorescence, confocal microscopy, quantitative analysis methods and intracellular injections, we have characterized microglia morphological changes that occur in the neocortex and hippocampus of the Syrian hamster during hibernation. In euthermic hamsters, microglial cells showed the typical ramified/resting morphology with multiple long, thin and highly-branched processes homogeneously immunostained for Iba-1. However, during torpor, microglial cell process numbers increase significantly accompanied by a shortening of the Iba-1 immunoreactive processes, which show a fragmented appearance. Adaptative changes of microglial cells during torpor coursed with no expression of microglial cell activation markers. We discuss the possibility that these morphological changes may contribute to neuronal damage prevention during hibernation.

  17. Three-dimensional confocal morphometry – a new approach for studying dynamic changes in cell morphology in brain slices

    PubMed Central

    Chvátal, Alexandr; Anděrová, Miroslava; Kirchhoff, Frank

    2007-01-01

    Pathological states in the central nervous system lead to dramatic changes in the activity of neuroactive substances in the extracellular space, to changes in ionic homeostasis and often to cell swelling. To quantify changes in cell morphology over a certain period of time, we employed a new technique, three-dimensional confocal morphometry. In our experiments, performed on enhanced green fluorescent protein/glial fibrillary acidic protein astrocytes in brain slices in situ and thus preserving the extracellular microenvironment, confocal morphometry revealed that the application of hypotonic solution evoked two types of volume change. In one population of astrocytes, hypotonic stress evoked small cell volume changes followed by a regulatory volume decrease, while in the second population volume changes were significantly larger without subsequent volume regulation. Three-dimensional cell reconstruction revealed that even though the total astrocyte volume increased during hypotonic stress, the morphological changes in various cell compartments and processes were more complex than have been previously shown, including swelling, shrinking and structural rearrangement. Our data show that astrocytes in brain slices in situ during hypotonic stress display complex behaviour. One population of astrocytes is highly capable of cell volume regulation, while the second population is characterized by prominent cell swelling, accompanied by plastic changes in morphology. It is possible to speculate that these two astrocyte populations play different roles during physiological and pathological states. PMID:17488344

  18. [The morphology of ciliated cells in nasal mucosa during a viral infection].

    PubMed

    Grabowska-Joachimiak, A

    1998-01-01

    Presentation of the morphological changes in virus-infected nasal ciliated cells was the aim of this report. The most typical abnormalities observed in nasal smears were: intracytoplasmic inclusions, multinucleated cells, absence of cilia, ciliocytophthoria, cytoplasm vacuolization, "naked nuclei" and changes in the cellular shape. Cytological pictures of the alterations connected with viral infection were demonstrated. Presented results were consistent with the observations of other authors. Morphological analysis of the epithelial cells is a very important element of cytological examination of the nasal mucosa.

  19. The antagonistic modulation of Arp2/3 activity by N-WASP, WAVE2 and PICK1 defines dynamic changes in astrocyte morphology.

    PubMed

    Murk, Kai; Blanco Suarez, Elena M; Cockbill, Louisa M R; Banks, Paul; Hanley, Jonathan G

    2013-09-01

    Astrocytes exhibit a complex, branched morphology, allowing them to functionally interact with numerous blood vessels, neighboring glial processes and neuronal elements, including synapses. They also respond to central nervous system (CNS) injury by a process known as astrogliosis, which involves morphological changes, including cell body hypertrophy and thickening of major processes. Following severe injury, astrocytes exhibit drastically reduced morphological complexity and collectively form a glial scar. The mechanistic details behind these morphological changes are unknown. Here, we investigate the regulation of the actin-nucleating Arp2/3 complex in controlling dynamic changes in astrocyte morphology. In contrast to other cell types, Arp2/3 inhibition drives the rapid expansion of astrocyte cell bodies and major processes. This intervention results in a reduced morphological complexity of astrocytes in both dissociated culture and in brain slices. We show that this expansion requires functional myosin II downstream of ROCK and RhoA. Knockdown of the Arp2/3 subunit Arp3 or the Arp2/3 activator N-WASP by siRNA also results in cell body expansion and reduced morphological complexity, whereas depleting WAVE2 specifically reduces the branching complexity of astrocyte processes. By contrast, knockdown of the Arp2/3 inhibitor PICK1 increases astrocyte branching complexity. Furthermore, astrocyte expansion induced by ischemic conditions is delayed by PICK1 knockdown or N-WASP overexpression. Our findings identify a new morphological outcome for Arp2/3 activation in restricting rather than promoting outwards movement of the plasma membrane in astrocytes. The Arp2/3 regulators PICK1, and N-WASP and WAVE2 function antagonistically to control the complexity of astrocyte branched morphology, and this mechanism underlies the morphological changes seen in astrocytes during their response to pathological insult.

  20. Temporal morphologic changes in human colorectal carcinomas following xenografting.

    PubMed

    Barkla, D H; Tutton, P J

    1983-03-01

    The temporal morphologic changes of human colorectal carcinomas following xenografting into immunosuppressed mice were investigated by the use of light and transmission electron microscopy. The results show that colorectal carcinomas undergo a series of morphologic changes during the initial 30-day period following transplantation. During the initial 1-5-day period the majority of tumor cells die, and during the following 5-10-day period the necrotic debris created during the 1-5-day period is removed by host-supplied inflammatory cells. Only small groups of peripherally placed tumor cells survived at the end of the first 10 days. During the 10-20-day period the tumor cell populations of xenografts were reestablished by a morphologically heterogeneous population of tumor cells, and during the 20-30 day period consolidation of this process continued and some xenografts showed macroscopic evidence of growth. The authors hypothesize that human colorectal carcinomas, like the antecedent epithelium, contain subpopulations of undifferentiated cells that give rise to populations of more-differentiated cells.

  1. Environmental enrichment alters dentate granule cell morphology in oldest-old rat.

    PubMed

    Darmopil, Sanja; Petanjek, Zdravko; Mohammed, Abdul H; Bogdanović, Nenad

    2009-08-01

    The hippocampus of aged rats shows marked age-related morphological changes that could cause memory deficits. Experimental evidence has established that environmental enrichment attenuates memory deficits in aged rats. We therefore studied whether environmental enrichment produces morphological changes on the dentate granule cells of aged rats. Fifteen male Sprague-Dawley rats, 24 months of age, were randomly distributed in two groups that were housed under standard (n = 7) or enriched (n = 8) environmental conditions for 26 days. Quantitative data of dendritic morphology from dentate gyrus granule cells were obtained on Golgi-Cox stained sections. Environmental enrichment significantly increased the complexity and size of dendritic tree (total number of segments increased by 61% and length by 116%), and spine density (88% increase). There were large interindividual differences within the enriched group, indicating differential individual responses to environmental stimulation. Previous studies in young animals have shown changes produced by environmental enrichment in the morphology of dentate gyrus granule cells. The results of the present study show that environmental enrichment can also produce changes in dentate granule cell morphology in the senescent brain. In conclusion, the hippocampus retains its neuroplastic capacity during aging, and enriched environmental housing conditions can attenuate age-related dendritic regression and synaptic loss, thus preserving memory functions.

  2. Menstruum induces changes in mesothelial cell morphology.

    PubMed

    Koks, C A; Demir Weusten, A Y; Groothuis, P G; Dunselman, G A; de Goeij, A F; Evers, J L

    2000-01-01

    In previous studies, we have shown that menstrual endometrium preferentially adheres to the subepithelial lining of the peritoneum. It remains to be elucidated, however, whether this damage is preexisting or inflicted by the menstrual tissue itself. We hypothesized that the menstrual tissue itself damages the peritoneum. To investigate this, the viability of menstrual endometrial tissue in peritoneal fluid (PF) was evaluated and the morphologic changes in the mesothelial cells were studied by in vitro cocultures of menstruum with mesothelial cell monolayers. Menstruum was collected with a menstrual cup. Endometrial tissue was isolated from the menstruum, resuspended in culture medium or in the cell-free fraction of PF and cultured for 24, 48 or 72 h. A 3(4, 5-dimethylthiazolyl-2)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed to obtain a relative measure of viable adhered endometrial cells. Mesothelial cells isolated from human omental tissue were cultured on Matrigel or uncoated plastic. At confluence, overnight cocultures were performed and scanning electron microscopy was used to evaluate the morphologic changes. The viability of endometrial fragments was 84% (n = 36, p < 0.05), 82% (n = 27, not significant) and 104% (n = 14, not significant) when cultured in the cell-free fraction of PF for 24, 48 and 72 h, respectively, when compared to medium with 10% fetal calf serum. Menstrual endometrial fragments or menstrual serum added to and cocultured with mesothelial cells induced severe morphologic alterations of the latter, including retraction, shrinking and gap formation. Similar morphologic changes were observed when mesothelial cells were cocultured with menstrual endometrial fragments in PF or in culture inserts. Incubation with conditioned medium from cultured menstrual endometrium induced similar but less pronounced changes in morphology. In conclusion, menstrual endometrial fragments remain viable in PF in vitro for at least 72 h. Antegradely shed menstruum induces changes in mesothelial cell morphology, including retraction and shrinking with exposure of the underlying surface. These findings suggest that menstruum is harmful to the peritoneal lining. Therefore, by local destruction of the mesothelial layer, menstrual endometrium is able to create sites for adhesion. Copyright 2000 S. Karger AG, Basel

  3. Morphological and ultrastructural changes in tobacco BY-2 cells exposed to microcystin-RR.

    PubMed

    Huang, Wenmin; Xing, Wei; Li, Dunhai; Liu, Yongding

    2009-08-01

    Tobacco BY-2 cells were exposed to microcystin-RR (MC-RR) at two concentrations, 60 microg mL(-1) and 120 microg mL(-1), to study the changes in morphology and ultrastructure of cells as a result of the exposure. Exposure to the lower concentration for 5 d led to typical apoptotic morphological changes including condensation of nuclear chromatin, creation of a characteristic 'half moon' structure, and cytoplasm shrinkage and decreased cell volume, as revealed through light microscopy, fluorescence microscopy, and transmission electron microscopy, respectively. Exposure to the higher concentration, on the other hand, led to morphological and ultrastructural changes typical of necrosis, such as rupture of the plasma membrane and the nuclear membrane and a marked swelling of cells. The presence of many vacuoles containing unusual deposits points to the involvement of vacuoles in detoxifying MC-RR. Results of the present study indicate that exposure of tobacco BY-2 cells to MC-RR at a lower concentration (60 microg mL(-1)) results in apoptosis and that to a higher concentration (120 microg mL(-1)), in necrosis.

  4. Cell wall staining with Trypan blue enables quantitative analysis of morphological changes in yeast cells.

    PubMed

    Liesche, Johannes; Marek, Magdalena; Günther-Pomorski, Thomas

    2015-01-01

    Yeast cells are protected by a cell wall that plays an important role in the exchange of substances with the environment. The cell wall structure is dynamic and can adapt to different physiological states or environmental conditions. For the investigation of morphological changes, selective staining with fluorescent dyes is a valuable tool. Furthermore, cell wall staining is used to facilitate sub-cellular localization experiments with fluorescently-labeled proteins and the detection of yeast cells in non-fungal host tissues. Here, we report staining of Saccharomyces cerevisiae cell wall with Trypan Blue, which emits strong red fluorescence upon binding to chitin and yeast glucan; thereby, it facilitates cell wall analysis by confocal and super-resolution microscopy. The staining pattern of Trypan Blue was similar to that of the widely used UV-excitable, blue fluorescent cell wall stain Calcofluor White. Trypan Blue staining facilitated quantification of cell size and cell wall volume when utilizing the optical sectioning capacity of a confocal microscope. This enabled the quantification of morphological changes during growth under anaerobic conditions and in the presence of chemicals, demonstrating the potential of this approach for morphological investigations or screening assays.

  5. Cell markers in the recognition of acute myeloblastic leukaemia subtypes.

    PubMed

    Andoljsek, Dusan; Preloznik Zupan, Irena; Zontar, Darja; Cernelc, Peter; Mlakar, Uros; Modic, Mojca; Pretnar, Joze; Zver, Samo

    2002-01-01

    The diagnosis of acute myeloblastic leukaemia (AML) is based on cell morphology, cytogenetic and molecular changes, cell markers and clinical data. Our aim was to establish whether morphology and cell markers are comparable in the evaluation of AML. Bone marrow smears were analysed, and flow cytometry and monoclonal antibodies were used to determine cell type and maturity. Morphology and cell markers correlated differently in different AML subtypes.

  6. [Proliferation and morphological differentiation of neurblastoma cells in cultured under the effect of avermectins].

    PubMed

    Miakisheva, S N; Kostenko, M A; Driniaev, V A; Mosin, V A

    2001-01-01

    The effect of natural avermectin complex (Aversectin C) and Abamectin on the processes of proliferation and morphological differentiation of the neural cells was studied using N1E-115 murine neuroblastoma cells (clone C-1300) as a model. Aversectin C in concentrations 10(-7)-10(-8) was shown to induce morphological differentiation of cultured nervous cells. Treatment with Abamectin resulted in the changes of proliferation pattern of the cells. Morphological differentiation of the cultured nervous cells treated with Aversectin C was associated with electrophysiological one.

  7. Twenty Four-Hour Exposure to a 0.12 THz Electromagnetic Field Does Not Affect the Genotoxicity, Morphological Changes, or Expression of Heat Shock Protein in HCE-T Cells.

    PubMed

    Koyama, Shin; Narita, Eijiro; Shimizu, Yoko; Shiina, Takeo; Taki, Masao; Shinohara, Naoki; Miyakoshi, Junji

    2016-08-05

    To investigate the cellular effects of terahertz (THz) exposure, human corneal epithelial (HCE-T) cells derived from human eye were exposed to 0.12 THz radiation at 5 mW/cm² for 24 h, then the genotoxicity, morphological changes, and heat shock protein (Hsp) expression of the cells were examined. There was no statistically significant increase in the micronucleus (MN) frequency of cells exposed to 0.12 THz radiation compared with sham-exposed controls and incubator controls, whereas the MN frequency of cells treated with bleomycin for 1 h (positive control) did increase significantly. Similarly, there were no significant morphological changes in cells exposed to 0.12 THz radiation compared to sham-exposed controls and incubator controls, and Hsp expression (Hsp27, Hsp70, and Hsp90α) was also not significantly different between the three treatments. These results indicate that exposure to 0.12 THz radiation using the present conditions appears to have no or very little effect on MN formation, morphological changes, and Hsp expression in cells derived from human eye.

  8. Modifications in astrocyte morphology and calcium signaling induced by a brain capillary endothelial cell line.

    PubMed

    Yoder, Elizabeth J

    2002-04-15

    Astrocytes extend specialized endfoot processes to perisynaptic and perivascular regions, and thus are positioned to mediate the bidirectional flow of metabolic, ionic, and other transmissive substances between neurons and the blood stream. While mutual structural and functional interactions between neurons and astrocytes have been documented, less is known about the interactions between astrocytes and cerebrovascular cells. For example, although the ability of astrocytes to induce structural and functional changes in endothelial cells is established, the reciprocity of brain endothelial cells to induce changes in astrocytes is undetermined. This issue is addressed in the present study. Changes in primary cultures of neonatal mouse cortical astrocytes were investigated following their coculture with mouse brain capillary endothelial (bEnd3) cells. The presence of bEnd3 cells altered the morphology of astrocytes by transforming them from confluent monolayers into networks of elongated multicellular columns. These columns did not occur when either bEnd3 cells or astrocytes were cocultured with other cell types, suggesting that astrocytes undergo specific morphological consequences when placed in close proximity to brain endothelial cells. In addition to these structural changes, the pharmacological profile of astrocytes was modified by coculture with bEnd3 cells. Astrocytes in the cocultures showed an increased Ca2+ responsiveness to bradykinin and glutamate, but no change in responsiveness to ATP, as compared to controls. Coculturing the astrocytes with a neuronal cell line resulted in increased responsiveness of the glial responses to glutamate but not to bradykinin. These studies indicate that brain endothelial cells induce changes in astrocyte morphology and pharmacology. Copyright 2002 Wiley-Liss, Inc.

  9. Morphological plasticity of bacteria—Open questions

    PubMed Central

    Shen, Jie-Pan

    2016-01-01

    Morphological plasticity of bacteria is a cryptic phenomenon, by which bacteria acquire adaptive benefits for coping with changing environments. Some environmental cues were identified to induce morphological plasticity, but the underlying molecular mechanisms remain largely unknown. Physical and chemical factors causing morphological changes in bacteria have been investigated and mostly associated with potential pathways linked to the cell wall synthetic machinery. These include starvation, oxidative stresses, predation effectors, antimicrobial agents, temperature stresses, osmotic shock, and mechanical constraints. In an extreme scenario of morphological plasticity, bacteria can be induced to be shapeshifters when the cell walls are defective or deficient. They follow distinct developmental pathways and transform into assorted morphological variants, and most of them would eventually revert to typical cell morphology. It is suggested that phenotypic heterogeneity might play a functional role in the development of morphological diversity and/or plasticity within an isogenic population. Accordingly, phenotypic heterogeneity and inherited morphological plasticity are found to be survival strategies adopted by bacteria in response to environmental stresses. Here, microfluidic and nanofabrication technology is considered to provide versatile solutions to induce morphological plasticity, sort and isolate morphological variants, and perform single-cell analysis including transcriptional and epigenetic profiling. Questions such as how morphogenesis network is modulated or rewired (if epigenetic controls of cell morphogenesis apply) to induce bacterial morphological plasticity could be resolved with the aid of micro-nanofluidic platforms and optimization algorithms, such as feedback system control. PMID:27375812

  10. Changes in neutrophil morphology and morphometry following exposure to cigarette smoke.

    PubMed Central

    Lannan, S.; McLean, A.; Drost, E.; Gillooly, M.; Donaldson, K.; Lamb, D.; MacNee, W.

    1992-01-01

    Acute cigarette smoking delays neutrophils within the pulmonary circulation in some smokers. Evidence from an in-vitro Micropore filter model of the pulmonary capillaries indicates that this may be due to a smoke induced decrease in cell deformability. In order to determine whether changes in cell shape are associated with the observed decrease in neutrophil deformability following smoke exposure, cell morphology, using scanning electron microscopy, and morphometric measurements, made using transmission electron microscopy, were performed on aliquots of neutrophils harvested from whole blood in non-smoking subjects before and after exposure in vitro to cigarette smoke. Smoke exposure increased the maximum diameter and circumference of neutrophils, without changing their area. There was also a change in the maximum to minimum cell diameter ratio, which indicated that the cells had become less spherical. Scanning electron microscopy showed that smoke exposed cells had developed blebbing of their surface membranes, suggestive of an oxidative injury to the cell membrane rather than the shape changes associated with cell activation. These changes in the morphology and morphometry of smoke exposed neutrophils may contribute to the reduction in cell deformability induced by cigarette smoke. Images Fig. 3 Fig. 4 Fig. 5 PMID:1571278

  11. Correlating yeast cell stress physiology to changes in the cell surface morphology: atomic force microscopic studies.

    PubMed

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2006-07-06

    Atomic Force Microscopy (AFM) has emerged as a powerful biophysical tool in biotechnology and medicine to investigate the morphological, physical, and mechanical properties of yeasts and other biological systems. However, properties such as, yeasts' response to environmental stresses, metabolic activities of pathogenic yeasts, cell-cell/cell-substrate adhesion, and cell-flocculation have rarely been investigated so far by using biophysical tools. Our recent results obtained by AFM on one strain each of Saccharomyces cerevisiae and Schizosaccharomyces pombe show a clear correlation between the physiology of environmentally stressed yeasts and the changes in their surface morphology. The future directions of the AFM related techniques in relation to yeasts are also discussed.

  12. 3D/4D multiscale imaging in acute lymphoblastic leukemia cells: visualizing dynamics of cell death

    NASA Astrophysics Data System (ADS)

    Sarangapani, Sreelatha; Mohan, Rosmin Elsa; Patil, Ajeetkumar; Lang, Matthew J.; Asundi, Anand

    2017-06-01

    Quantitative phase detection is a new methodology that provides quantitative information on cellular morphology to monitor the cell status, drug response and toxicity. In this paper the morphological changes in acute leukemia cells treated with chitosan were detected using d'Bioimager a robust imaging system. Quantitative phase image of the cells was obtained with numerical analysis. Results show that the average area and optical volume of the chitosan treated cells is significantly reduced when compared with the control cells, which reveals the effect of chitosan on the cancer cells. From the results it can be attributed that d'Bioimager can be used as a non-invasive imaging alternative to measure the morphological changes of the living cells in real time.

  13. The antagonistic modulation of Arp2/3 activity by N-WASP, WAVE2 and PICK1 defines dynamic changes in astrocyte morphology

    PubMed Central

    Murk, Kai; Blanco Suarez, Elena M.; Cockbill, Louisa M. R.; Banks, Paul; Hanley, Jonathan G.

    2013-01-01

    Summary Astrocytes exhibit a complex, branched morphology, allowing them to functionally interact with numerous blood vessels, neighboring glial processes and neuronal elements, including synapses. They also respond to central nervous system (CNS) injury by a process known as astrogliosis, which involves morphological changes, including cell body hypertrophy and thickening of major processes. Following severe injury, astrocytes exhibit drastically reduced morphological complexity and collectively form a glial scar. The mechanistic details behind these morphological changes are unknown. Here, we investigate the regulation of the actin-nucleating Arp2/3 complex in controlling dynamic changes in astrocyte morphology. In contrast to other cell types, Arp2/3 inhibition drives the rapid expansion of astrocyte cell bodies and major processes. This intervention results in a reduced morphological complexity of astrocytes in both dissociated culture and in brain slices. We show that this expansion requires functional myosin II downstream of ROCK and RhoA. Knockdown of the Arp2/3 subunit Arp3 or the Arp2/3 activator N-WASP by siRNA also results in cell body expansion and reduced morphological complexity, whereas depleting WAVE2 specifically reduces the branching complexity of astrocyte processes. By contrast, knockdown of the Arp2/3 inhibitor PICK1 increases astrocyte branching complexity. Furthermore, astrocyte expansion induced by ischemic conditions is delayed by PICK1 knockdown or N-WASP overexpression. Our findings identify a new morphological outcome for Arp2/3 activation in restricting rather than promoting outwards movement of the plasma membrane in astrocytes. The Arp2/3 regulators PICK1, and N-WASP and WAVE2 function antagonistically to control the complexity of astrocyte branched morphology, and this mechanism underlies the morphological changes seen in astrocytes during their response to pathological insult. PMID:23843614

  14. Optical coherence tomography spectral analysis for detecting apoptosis in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Giles, Anoja; Kolios, Michael C.; Czarnota, Gregory J.

    2015-12-01

    Apoptosis is a form of programmed cell death characterized by a series of predictable morphological changes at the subcellular level, which modify the light-scattering properties of cells. We present a spectroscopic optical coherence tomography (OCT) technique to detect changes in subcellular morphology related to apoptosis in vitro and in vivo. OCT data were acquired from acute myeloid leukemia (AML) cells treated with cisplatin over a 48-h period. The backscatter spectrum of the OCT signal acquired from the cell samples was characterized by calculating its in vitro integrated backscatter (IB) and spectral slope (SS). The IB increased with treatment duration, while the SS decreased, with the most significant changes occurring after 24 to 48 h of treatment. These changes coincided with striking morphological transformations in the cells and their nuclei. Similar trends in the spectral parameter values were observed in vivo in solid tumors grown from AML cells in mice, which were treated with chemotherapy and radiation. Our results provide a strong foundation from which future experiments may be designed to further understand the effect of cellular morphology and kinetics of apoptosis on the OCT signal and demonstrate the feasibility of using this technique in vivo.

  15. FoxP2 protein levels regulate cell morphology changes and migration patterns in the vertebrate developing telencephalon.

    PubMed

    Garcia-Calero, Elena; Botella-Lopez, Arancha; Bahamonde, Olga; Perez-Balaguer, Ariadna; Martinez, Salvador

    2016-07-01

    In the mammalian telencephalon, part of the progenitor cells transition from multipolar to bipolar morphology as they invade the mantle zone. This associates with changing patterns of radial migration. However, the molecules implicated in these morphology transitions are not well known. In the present work, we analyzed the function of FoxP2 protein in this process during telencephalic development in vertebrates. We analyzed the expression of FoxP2 protein and its relation with cell morphology and migratory patterns in mouse and chicken developing striatum. We observed FoxP2 protein expressed in a gradient from the subventricular zone to the mantle layer in mice embryos. In the FoxP2 low domain cells showed multipolar migration. In the striatal mantle layer where FoxP2 protein expression is higher, cells showed locomoting migration and bipolar morphology. In contrast, FoxP2 showed a high and homogenous expression pattern in chicken striatum, thus bipolar morphology predominated. Elevation of FoxP2 in the striatal subventricular zone by in utero electroporation promoted bipolar morphology and impaired multipolar radial migration. In mouse cerebral cortex we obtained similar results. FoxP2 promotes transition from multipolar to bipolar morphology by means of gradiental expression in mouse striatum and cortex. Together these results indicate a role of FoxP2 differential expression in cell morphology control of the vertebrate telencephalon.

  16. Morphological Changes and Antibiotic-Induced Thermal Resistance in Vegetative Cells of Bacillus subtilis

    PubMed Central

    Dul, Michael J.; McDonald, William C.

    1971-01-01

    The morphology and thermal resistance of vegetative cells of Bacillus subtilis W168 were examined after growth at 37 and 53 C. Vegetative cells grown at 37 C exhibited a typical trilaminar morphology, whereas cells grown at 53 C exhibited a cell wall which was apparently thicker and more loosely organized and had a poorly defined periphery. A concurrent increase in thermal resistance to a heat shock of 60 C occurs with the change in cell wall morphology. The change to the aberrant cell wall form, or its reversal to the normal form, is always accompanied by the gain or the loss of thermal resistance, respectively. The inhibition of protein synthesis by chloramphenicol has little effect upon the acquisition of thermal resistance at 53 C. Addition of the disaccharide pentapeptide subunit to the cell wall peptidoglycan is apparently essential to growth at 53 C and the acquisition of thermal resistance, since both growth and thermal resistance are inhibited by bacitracin. Two antibiotics, penicillin and cycloserine, which inhibit the final cross-linking of the cell wall peptidoglycan at two separate points, do not affect the acquisition of thermal resistance at 53 C. These same antibiotics induce a high degree of thermal resistance at 37 C. It is proposed that a change in the cell wall structure is related to an increased thermal resistance. Images PMID:4995654

  17. Monitoring cell morphology during necrosis and apoptosis by quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Mugnano, Martina; Calabuig, Alejandro; Grilli, Simonetta; Miccio, Lisa; Ferraro, Pietro

    2015-05-01

    Cellular morphology changes and volume alterations play significant roles in many biological processes and they are mirrors of cell functions. In this paper, we propose the Digital Holographic microscope (DH) as a non-invasive imaging technique for a rapid and accurate extraction of morphological information related to cell death. In particular, we investigate the morphological variations that occur during necrosis and apoptosis. The study of necrosis is extremely important because it is often associated with unwarranted loss of cells in human pathologies such as ischemia, trauma, and some forms of neurodegeneration; therefore, a better elucidation in terms of cell morphological changes could pave the way for new treatments. Also, apoptosis is extremely important because it's involved in cancer, both in its formation and in medical treatments. Because the inability to initiate apoptosis enhances tumour formation, current cancer treatments target this pathway. Within this framework, we have developed a transmission off-axis DH apparatus integrated with a micro incubator for investigation of living cells in a temperature and CO2 controlled environment. We employ DH to analyse the necrosis cell death induced by laser light (wavelength 473 nm, light power 4 mW). We have chosen as cellular model NIH 3T3 mouse embryonic fibroblasts because their adhesive features such as morphological changes, and the time needed to adhere and spread have been well characterized in the literature. We have monitored cell volume changes and morphological alterations in real time in order to study the necrosis process accurately and quantitatively. Cell volume changes were evaluated from the measured phase changes of light transmitted through cells. Our digital holographic experiments showed that after exposure of cells to laser light for 90-120 min., they swell and then take on a balloon-like shape until the plasma membrane ruptures and finally the cell volume decreases. Furthermore, we present a preliminary study on the variation of morphological parameters in case of cell apoptosis induced by exposure to 10 μM cadmium chloride. We employ the same cell line, monitoring the process for 18 hours. In the vast group of environmental pollutants, the toxic heavy metal cadmium is considered a likely candidate as a causative agent of several types of cancers. Widely distributed and used in industry, and with a broad range of target organs and a long half-life (10-30 years) in the human body, this element has been long known for its multiple adverse effects on human health, through occupational or environmental exposure. In apoptosis, we measure cell volume decrease and cell shrinking. Both data of apoptosis and necrosis were analysed by means of a Sigmoidal Statistical Distribution function, which allows several quantitative data to be established, such as swelling and cell death time, flux of intracellular material from inside to outside the cell, initial and final volume versus time. In addition, we can quantitatively study the cytoplasmatic granularity that occurs during necrosis. As a future application, DH could be employed as a non-invasive and label-free method to distinguish between apoptosis and necrosis in terms of morphological parameters.

  18. Integrated time-lapse and single-cell transcription studies highlight the variable and dynamic nature of human hematopoietic cell fate commitment

    PubMed Central

    Moussy, Alice; Cosette, Jérémie; Parmentier, Romuald; da Silva, Cindy; Corre, Guillaume; Richard, Angélique; Gandrillon, Olivier; Stockholm, Daniel

    2017-01-01

    Individual cells take lineage commitment decisions in a way that is not necessarily uniform. We address this issue by characterising transcriptional changes in cord blood-derived CD34+ cells at the single-cell level and integrating data with cell division history and morphological changes determined by time-lapse microscopy. We show that major transcriptional changes leading to a multilineage-primed gene expression state occur very rapidly during the first cell cycle. One of the 2 stable lineage-primed patterns emerges gradually in each cell with variable timing. Some cells reach a stable morphology and molecular phenotype by the end of the first cell cycle and transmit it clonally. Others fluctuate between the 2 phenotypes over several cell cycles. Our analysis highlights the dynamic nature and variable timing of cell fate commitment in hematopoietic cells, links the gene expression pattern to cell morphology, and identifies a new category of cells with fluctuating phenotypic characteristics, demonstrating the complexity of the fate decision process (which is different from a simple binary switch between 2 options, as it is usually envisioned). PMID:28749943

  19. Vacuolar morphology of Saccharomyces cerevisiae during the process of wine making and Japanese sake brewing.

    PubMed

    Izawa, Shingo; Ikeda, Kayo; Miki, Takeo; Wakai, Yoshinori; Inoue, Yoshiharu

    2010-09-01

    Although ethanol and osmotic stress affect the vacuolar morphology of Saccharomyces cerevisiae, little information is available about changes in vacuolar morphology during the processes of wine making and Japanese sake (rice wine) brewing. Here, we elucidated changes in the morphology of yeast vacuoles using Zrc1p-GFP, a vacuolar membrane protein, so as to better understand yeast physiology during the brewing process. Wine yeast cells (OC-2 and EC1118) contained highly fragmented vacuoles in the sake mash (moromi) as well as in the grape must. Although sake yeast cells (Kyokai no. 9 and no. 10) also contained highly fragmented vacuoles during the wine-making process, they showed quite a distinct vacuolar morphology during sake brewing. Since the environment surrounding sake yeast cells in the sake mash did not differ much from that surrounding wine yeast cells, the difference in vacuolar morphology during sake brewing between wine yeast and sake yeast was likely caused by innate characters.

  20. Investigation of diseases through red blood cells' shape using photoacoustic response technique

    NASA Astrophysics Data System (ADS)

    Biswas, Deblina; Gorey, Abhijeet; Chen, Goerge C. K.; Sharma, Norman; Vasudevan, Srivathsan

    2015-03-01

    Photoacoustic (PA) imaging is a non-invasive real-time technique, widely applied to many biomedical imaging studies in the recent years. While most of these studies have been focussed on obtaining an image after reconstruction, various features of time domain signal (e.g. amplitude, width, rise and relaxation time) would provide very high sensitivity in detecting morphological changes in cells during a biological study. Different haematological disorders (e.g., sickle cell anaemia, thalassemia) exhibit significant morphological cellular changes. In this context, this study explores the possibility of utilizing the developed photoacoustic response technique to apply onto blood samples. Results of our preliminary study demonstrate that there is a significant change in signal amplitude due to change in concentration of the blood. Thus it shows the sensitivity of the developed photoacoustic technique towards red blood cell count (related to haematological disease like anaemia). Subsequently, morphological changes in RBC (i.e. swollen and shrunk compared to normal RBC) induced by hypotonic and hypertonic solutions respectively were also experimented. The result shows a distinct change in PA signal amplitude. This would serve as a diagnostic signature for many future studies on cellular morphological disorders.

  1. Nuclear apoptotic volume decrease in individual cells: Confocal microscopy imaging and kinetic modeling.

    PubMed

    Khalo, Irina V; Konokhova, Anastasiya I; Orlova, Darya Y; Trusov, Konstantin V; Yurkin, Maxim A; Bartova, Eva; Kozubek, Stanislav; Maltsev, Valeri P; Chernyshev, Andrei V

    2018-05-30

    The dynamics of nuclear morphology changes during apoptosis remains poorly investigated and understood. Using 3D time-lapse confocal microscopy we performed a study of early-stage apoptotic nuclear morphological changes induced by etoposide in single living HepG2 cells. These observations provide a definitive evidence that nuclear apoptotic volume decrease (AVD) is occurring simultaneously with peripheral chromatin condensation (so called "apoptotic ring"). In order to describe quantitatively the dynamics of nuclear morphological changes in the early stage of apoptosis we suggest a general molecular kinetic model, which fits well the obtained experimental data in our study. Results of this work may clarify molecular mechanisms of nuclear morphology changes during apoptosis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Measuring sickle cell morphology in flow using spectrally encoded flow cytometry (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kviatkovsky, Inna; Zeidan, Adel; Yeheskely-Hayon, Daniella; Dann, Eldad J.; Yelin, Dvir

    2017-02-01

    During a sickle cell crisis in sickle cell anemia patients, deoxygenated red blood cells may change their mechanical properties and block small blood vessels, causing pain, local tissue damage and even organ failure. Measuring these cellular structural and morphological changes is important for understanding the factors contributing to vessel blockage and developing an effective treatment. In this work, we use spectrally encoded flow cytometry for confocal, high-resolution imaging of flowing blood cells from sickle cell anemia patients. A wide variety of cell morphologies were observed by analyzing the interference patterns resulting from reflections from the front and back faces of the cells' membrane. Using numerical simulation for calculating the two-dimensional reflection pattern from the cells, we propose an analytical expression for the three-dimensional shape of a characteristic sickle cell and compare it to a previous from the literature. In vitro spectrally encoded flow cytometry offers new means for analyzing the morphology of sickle cells in stress-free environment, and could provide an effective tool for studying the unique physiological properties of these cells.

  3. Dynamics of β-adrenergic/cAMP signaling and morphological changes in cultured astrocytes.

    PubMed

    Vardjan, Nina; Kreft, Marko; Zorec, Robert

    2014-04-01

    The morphology of astrocytes, likely regulated by cAMP, determines the structural association between astrocytes and the synapse, consequently modulating synaptic function. β-Adrenergic receptors (β-AR), which increase cytosolic cAMP concentration ([cAMP]i ), may affect cell morphology. However, the real-time dynamics of β-AR-mediated cAMP signaling in single live astrocytes and its effect on cell morphology have not been studied. We used the fluorescence resonance energy transfer (FRET)-based cAMP biosensor Epac1-camps to study time-dependent changes in [cAMP]i ; morphological changes in primary rat astrocytes were monitored by real-time confocal microscopy. Stimulation of β-AR by adrenaline, noradrenaline, and isoprenaline, a specific agonist of β-AR, rapidly increased [cAMP]i (∼15 s). The FRET signal response, mediated via β-AR, was faster than in the presence of forskolin (twofold) and dibutyryl-cAMP (>35-fold), which directly activate adenylyl cyclase and Epac1-camps, respectively, likely due to slow entry of these agents into the cytosol. Oscillations in [cAMP]i have not been recorded, indicating that cAMP-dependent processes operate in a slow time domain. Most Epac1-camps expressing astrocytes revealed a morphological change upon β-AR activation and attained a stellate morphology within 1 h. The morphological changes exhibited a bell-shaped dependency on [cAMP]i . The 5-10% decrease in cell cross-sectional area and the 30-50% increase in cell perimeter are likely due to withdrawal of the cytoplasm to the perinuclear region and the appearance of protrusions on the surface of astrocytes. Because astrocyte processes ensheath neurons, β-AR/cAMP-mediated morphological changes can modify the geometry of the extracellular space, affecting synaptic, neuronal, and astrocyte functions in health and disease. Copyright © 2014 Wiley Periodicals, Inc.

  4. Neuroglia in ageing and disease.

    PubMed

    Verkhratsky, Alexei; Rodríguez, José J; Parpura, Vladimir

    2014-08-01

    The proper operation of the mammalian brain requires dynamic interactions between neurones and glial cells. Various types of glial cells are susceptible to morpho-functional changes in a variety of brain pathological states, including toxicity, neurodevelopmental, neurodegenerative and psychiatric disorders. Morphological modifications include a change in the glial cell size and shape; the latter is evident by changes of the appearance and number of peripheral processes. The most blatant morphological change is associated with the alteration of the sheer number of neuroglia cells in the brain. Functionally, glial cells can undergo various metabolic and biochemical changes, the majority of which reflect upon homeostasis of neurotransmitters, in particular that of glutamate, as well as on defence mechanisms provided by neuroglia. Not only glial cells exhibit changes associated with the pathology of the brain but they also change with brain aging.

  5. The cytoskeletal arrangements necessary to neurogenesis

    PubMed Central

    Compagnucci, Claudia; Piemonte, Fiorella; Sferra, Antonella; Piermarini, Emanuela; Bertini, Enrico

    2016-01-01

    During the process of neurogenesis, the stem cell committed to the neuronal cell fate starts a series of molecular and morphological changes. The understanding of the physio-pathology of mechanisms controlling the molecular and morphological changes occurring during neuronal differentiation is fundamental to the development of effective therapies for many neurologic diseases. Unfortunately, our knowledge of the biological events occurring in the cell during neuronal differentiation is still poor. In this study, we focus preliminarily on the relevance of the cytoskeletal rearrangements, which earlier drive the morphology of the neuronal precursors, and later the migrating/mature neurons. In fact, neuritogenesis, neurite branching, outgrowth and retraction are seminal to the development of a fully functional nervous system. With this in mind, we highlight the importance of iPSC technology to study the processes of cytoskeletal-driven morphological changes during neuronal differentiation. PMID:26760504

  6. Cell death monitoring using quantitative optical coherence tomography methods

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Yang, Victor X. D.; Kolios, Michael C.; Czarnota, Gregory J.

    2011-03-01

    Cell death is characterized by a series of predictable morphological changes, which modify the light scattering properties of cells. We present a multi-parametric approach to detecting changes in subcellular morphology related to cell death using optical coherence tomography (OCT). Optical coherence tomography data were acquired from acute myeloid leukemia (AML) cells undergoing apoptosis over a period of 48 hours. Integrated backscatter (IB) and spectral slope (SS) were computed from OCT backscatter spectra and statistical parameters were extracted from a generalized gamma (GG) distribution fit to OCT signal intensity histograms. The IB increased by 2-fold over 48 hours with significant increases observed as early as 4 hours. The SS increased in steepness by 2.5-fold with significant changes at 12 hours, while the GG parameters were sensitive to apoptotic changes at 24 to 48 hours. Histology slides indicated nuclear condensation and fragmentation at 24 hours, suggesting the late scattering changes could be related to nuclear structure. A second series of measurements from AML cells treated with cisplatin, colchicine or ionizing radiation suggested that the GG parameters could potentially differentiate between modes of cell death. Distinct cellular morphology was observed in histology slides obtained from cells treated under each condition.

  7. Morphology-based optical separation of subpopulations from a heterogeneous murine breast cancer cell line.

    PubMed

    Tamura, Masato; Sugiura, Shinji; Takagi, Toshiyuki; Satoh, Taku; Sumaru, Kimio; Kanamori, Toshiyuki; Okada, Tomoko; Matsui, Hirofumi

    2017-01-01

    Understanding tumor heterogeneity is an urgent and unmet need in cancer research. In this study, we used a morphology-based optical cell separation process to classify a heterogeneous cancer cell population into characteristic subpopulations. To classify the cell subpopulations, we assessed their morphology in hydrogel, a three-dimensional culture environment that induces morphological changes according to the characteristics of the cells (i.e., growth, migration, and invasion). We encapsulated the murine breast cancer cell line 4T1E, as a heterogeneous population that includes highly metastatic cells, in click-crosslinkable and photodegradable gelatin hydrogels, which we developed previously. We observed morphological changes within 3 days of encapsulating the cells in the hydrogel. We separated the 4T1E cell population into colony- and granular-type cells by optical separation, in which local UV-induced degradation of the photodegradable hydrogel around the target cells enabled us to collect those cells. The obtained colony- and granular-type cells were evaluated in vitro by using a spheroid assay and in vivo by means of a tumor growth and metastasis assay. The spheroid assay showed that the colony-type cells formed compact spheroids in 2 days, whereas the granular-type cells did not form spheroids. The tumor growth assay in mice revealed that the granular-type cells exhibited lower tumor growth and a different metastasis behavior compared with the colony-type cells. These results suggest that morphology-based optical cell separation is a useful technique to classify a heterogeneous cancer cell population according to its cellular characteristics.

  8. Effects of hydrogen peroxide on vestibular hair cells in the guinea pig: importance of cell membrane impairment preceding cell death.

    PubMed

    Tanigawa, Tohru; Tanaka, Hirokazu; Hayashi, Ken; Nakayama, Meiho; Iwasaki, Satoshi; Banno, Shinya; Takumida, Masaya; Brodie, Hirally; Inafuku, Shigeru

    2008-11-01

    Our findings indicate that oxidative stress induces morphological changes in vestibular hair cells and subsequently leads to cell death after 2.5 h. The aim of this study was to confirm the direct effects of oxidative stress on vestibular hair cells. Vestibular hair cells isolated from guinea pigs were loaded with 1 or 10 mM H2O2, and morphological changes were observed. In addition, in a viability/cytotoxicity assay system, the numbers of dead cells in isolated cristae ampullares were counted 1, 3, and 5 h after loading with H2O2 or artificial perilymph (control). Reactive oxygen, in the form of H2O2, directly affects the cell membrane of isolated vestibular hair cells and causes swelling of the cell body, bleb formation, and shortening of the neck region. Morphological changes occur within 30 min after loading with H2O2, but a significant increase in the number of dead cells is noted only after 3 h.

  9. Effects of cholera toxin on human colon carcinoma cell lines.

    PubMed

    Barkla, D H; Whitehead, R H; Hayward, I P

    1992-10-01

    This study reports on changes in morphology and membrane transport in 5 human colon carcinoma cell lines treated with cholera toxin (CT). Three of the cell lines that grew as monolayers (LIM 1215, LIM 1899, LIM 2099) and 1 that grew as floating clumps (LIM 2408) did not show morphological changes after CT treatment. However, cell line LIM 1863 that grows as floating "crypt-like" organoids showed rapid and distinctive changes in morphology and membrane transport after CT treatment. At 1 and 6 hrs after CT treatment, light and transmission electron microscopy revealed rapid dilatation of the central lumen of organoids and the appearance of 2 populations of apical vesicular inclusions. The first population was unusual in being non-membrane bound and limited by fuzzy filamentous material. The second population was membrane bound. Scanning electron microscopy at 1-6 hr after CT treatment showed swelling and loss of surface microvilli on some, but not all, cells. At 24 hr after CT treatment the majority of organoids showed evidence of fluid accumulation and small apical vesicles coalesced to form large single vacuoles that obliterated normal cell morphology. By 48 hr, continued swelling produced extreme attenuation of the plasma membrane with cells taking on an "endothelial cell-like" appearance. The response to CT was dose-dependent. Uptake studies using 86Rubidium and blocking studies using ouabain and amiloride indicated that CT is acting on the Na+/K+ ATPase membrane pump to cause the increased fluid uptake by LIM 1863 cells. This study is the first to report specific morphological changes in intestine-derived cells in response to CT.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Temporal morphologic changes in human colorectal carcinomas following xenografting.

    PubMed Central

    Barkla, D. H.; Tutton, P. J.

    1983-01-01

    The temporal morphologic changes of human colorectal carcinomas following xenografting into immunosuppressed mice were investigated by the use of light and transmission electron microscopy. The results show that colorectal carcinomas undergo a series of morphologic changes during the initial 30-day period following transplantation. During the initial 1-5-day period the majority of tumor cells die, and during the following 5-10-day period the necrotic debris created during the 1-5-day period is removed by host-supplied inflammatory cells. Only small groups of peripherally placed tumor cells survived at the end of the first 10 days. During the 10-20-day period the tumor cell populations of xenografts were reestablished by a morphologically heterogeneous population of tumor cells, and during the 20-30 day period consolidation of this process continued and some xenografts showed macroscopic evidence of growth. The authors hypothesize that human colorectal carcinomas, like the antecedent epithelium, contain subpopulations of undifferentiated cells that give rise to populations of more-differentiated cells. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 PMID:6829710

  11. Stress tolerance and biocontrol performance of the yeast antagonist, Candida diversa, change with morphology transition.

    PubMed

    Li, Guangkun; Chi, Mengshan; Chen, Huizhen; Sui, Yuan; Li, Yan; Liu, Yongsheng; Zhang, Xiaojing; Sun, Zhiqiang; Liu, Guoqing; Wang, Qi; Liu, Jia

    2016-02-01

    As an eco-friendly management method, biological control of postharvest diseases, utilizing antagonistic yeasts, is a research topic receiving considerable attention. Detailed knowledge on the biology of yeast antagonists is crucial when considering their potential application and development as biocontrol products. Changes in the growth form, such as single-cell to pseudohyphae, have been associated with the mode of action in postharvest biocontrol yeasts. In this study, the antagonistic yeast, Candida diversa, reversibly shifted from a single-cell morphology on yeast peptone dextrose (YPD) medium with 2 % agar to a pseudohyphal morphology on YPD with 0.3 % agar. The tolerance of the pseudohyphal form to heat and oxidative stresses, as well as the biocontrol efficacy against Botrytis cinerea on apple and kiwifruit stored at 25 and 4 °C, was significantly higher as compared to the single-cell form. This study provides new information on the ability of C. diversa to change its morphology and the impact of the morphology shift on stress tolerance and biocontrol performance.

  12. Nanoscopic morphological changes in yeast cell surfaces caused by oxidative stress: an atomic force microscopic study.

    PubMed

    Canetta, Elisabetta; Walker, Graeme M; Adya, Ashok K

    2009-06-01

    Nanoscopic changes in the cell surface morphology of the yeasts Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354), due to their exposure to varying concentrations of hydrogen peroxide (oxidative stress), were investigated using an atomic force microscope (AFM). Increasing hydrogen peroxide concentration led to a decrease in cell viabilities and mean cell volumes, and an increase in the surface roughness of the yeasts. In addition, AFM studies revealed that oxidative stress caused cell compression in both S. cerevisiae and Schiz. pombe cells and an increase in the number of aged yeasts. These results confirmed the importance and usefulness of AFM in investigating the morphology of stressed microbial cells at the nanoscale. The results also provided novel information on the relative oxidative stress tolerance of S. cerevisiae and Schiz. pombe.

  13. Expression of orphan G-protein coupled receptor GPR174 in CHO cells induced morphological changes and proliferation delay via increasing intracellular cAMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sugita, Kazuya; Yamamura, Chiaki; Tabata, Ken-ichi

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Expression of GPR174 in CHO cells induces morphological changes and proliferation delay. Black-Right-Pointing-Pointer These are due to increase in intracellular cAMP concentration. Black-Right-Pointing-Pointer Lysophosphatidylserine was identified to stimulate GPR174 leading to activate ACase. Black-Right-Pointing-Pointer The potencies of fatty acid moiety on LysoPS were oleoyl Greater-Than-Or-Slanted-Equal-To stearoyl > palmitoyl. Black-Right-Pointing-Pointer We propose that GPR174 is a lysophosphatidylserine receptor. -- Abstract: We established cell lines that stably express orphan GPCR GPR174 using CHO cells, and studied physiological and pharmacological features of the receptor. GPR174-expressing cells showed cell-cell adhesion with localization of actin filaments to cell membrane, and revealed significant delaymore » of cell proliferation. Since the morphological changes of GPR174-cells were very similar to mock CHO cells treated with cholera toxin, we measured the concentration of intracellular cAMP. The results showed the concentration was significantly elevated in GPR174-cells. By measuring intracellular cAMP concentration in GPR174-cells, we screened lipids and nucleotides to identify ligands for GPR174. We found that lysophosphatidylserine (LysoPS) stimulated increase in intracellular cAMP in a dose-dependent manner. Moreover, phosphorylation of Erk was elevated by LysoPS in GPR174 cells. These LysoPS responses were inhibited by NF449, an inhibitor of G{alpha}{sub s} protein. These results suggested that GPR174 was a putative LysoPS receptor conjugating with G{alpha}{sub s}, and its expression induced morphological changes in CHO cells by constitutively activating adenylyl cycles accompanied with cell conjunctions and delay of proliferation.« less

  14. [Morphological characteristic of Langerhans cells from the human epidermis in case of general hypothermia].

    PubMed

    Stefanenko, E V; Miadelets, O D; Kukhnovets, O A; Miadelets, V O

    2009-01-01

    The objective of this work was to study morphological changes in the Langerhans cells of epidermis and epithelium of hair follicles from subjects who died as a result of general hypothermia. A total of 105 cadaveric skin samples from subjects of either gender aged from 19 to 83 years were available for analysis. Postmortem examination 1-2 days after death was performed at the Department of Forensic Medical Examination for the Vitebsk region. Skin samples were frozen in liquid nitrogen and studied as cryostat sections. Langerhans cells were detected using the ATPase assay as described by Wachstein and Meisel and modified by Robins and Brendon. The Langerhans cells of subjects who died from general hypothermia were shown to undergo marked morphological changes. Moreover, their number significantly decreased as a result of disintegration and transformation into fine-grain material. Surviving cells lost many of their outgrowths and exhibited enhanced ATPase activity in pericarion. The Langerhans cells from dorsal and ventral skin as well as from interfollicular epidermis and the outer sheath of hair follicles underwent virtually identical changes. A unique morphological feature of the skin in those who died from general hypothermia was formation of intraepidermal, subepidermal, and dermal blisters.

  15. Changes in cell morphology due to plasma membrane wounding by acoustic cavitation

    PubMed Central

    Schlicher, Robyn K.; Hutcheson, Joshua D.; Radhakrishna, Harish; Apkarian, Robert P.; Prausnitz, Mark R.

    2010-01-01

    Acoustic cavitation-mediated wounding (i.e., sonoporation) has great potential to improve medical and laboratory applications requiring intracellular uptake of exogenous molecules; however, the field lacks detailed understanding of cavitation-induced morphological changes in cells and their relative importance. Here, we present an in-depth study of the effects of acoustic cavitation on cells using electron and confocal microscopy coupled with quantitative flow cytometry. High resolution images of treated cells show that morphologically different types of blebs can occur after wounding conditions caused by ultrasound exposure as well as by mechanical shear and strong laser ablation. In addition, these treatments caused wound-induced non-lytic necrotic death resulting in cell bodies we call wound-derived perikarya (WD-P). However, only cells exposed to acoustic cavitation experienced ejection of intact nuclei and nearly instant lytic necrosis. Quantitative analysis by flow cytometry indicates that wound-derived perikarya are the dominant morphology of nonviable cells, except at the strongest wounding conditions, where nuclear ejection accounts for a significant portion of cell death after ultrasound exposure. PMID:20350691

  16. Chalcone Synthase (CHS) Gene Suppression in Flax Leads to Changes in Wall Synthesis and Sensing Genes, Cell Wall Chemistry and Stem Morphology Parameters

    PubMed Central

    Zuk, Magdalena; Działo, Magdalena; Richter, Dorota; Dymińska, Lucyna; Matuła, Jan; Kotecki, Andrzej; Hanuza, Jerzy; Szopa, Jan

    2016-01-01

    The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure. PMID:27446124

  17. Non-gynecologic cytology on liquid-based preparations: A morphologic review of facts and artifacts.

    PubMed

    Hoda, Rana S

    2007-10-01

    Liquid-based preparations (LBP) are increasingly being used both for gynecologic (gyn) and non-gynecologic (non-gyn) cytology including fine needle aspirations (FNA). The two FDA-approved LBP currently in use include ThinPrep (TP), (Cytyc Corp, Marlborough, MA) and SurePath (SP), (TriPath Imaging Inc., Burlington, NC). TP was approved for cervico-vaginal (Pap test) cytology in 1996 and SP in 1999 and both have since also been used for non-gyn cytology. In the LBP, instead of being smeared, cells are rinsed into a liquid preservative collection medium and processed on automated devices. Even after a decade of use, the morphological interpretation of LBP remains a diagnostic challenge because of somewhat altered morphology and artifacts or facts resulting from the fixation and processing techniques. These changes include cleaner background with altered or reduced background and extracellular elements; architectural changes such as smaller cell clusters and sheets, breakage of papillae; altered cell distribution with more dyscohesion and changes in cellular morphology with enhanced nuclear features, smaller cell size and slightly more three-dimensional (3-D) clusters. Herein, we review the published literature on morphological aspects of LBP for non-gyn cytology. (c) 2007 Wiley-Liss, Inc.

  18. Cell-Cell Contact Area Affects Notch Signaling and Notch-Dependent Patterning.

    PubMed

    Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A; Goodyear, Richard J; Richardson, Guy P; Chen, Christopher S; Sprinzak, David

    2017-03-13

    During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from micrometers to tens of micrometers. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Cell-cell contact area affects Notch signaling and Notch-dependent patterning

    PubMed Central

    Shaya, Oren; Binshtok, Udi; Hersch, Micha; Rivkin, Dmitri; Weinreb, Sheila; Amir-Zilberstein, Liat; Khamaisi, Bassma; Oppenheim, Olya; Desai, Ravi A.; Goodyear, Richard J.; Richardson, Guy P.; Chen, Christopher S.; Sprinzak, David

    2017-01-01

    Summary During development, cells undergo dramatic changes in their morphology. By affecting contact geometry, these morphological changes could influence cellular communication. However, it has remained unclear whether and how signaling depends on contact geometry. This question is particularly relevant for Notch signaling, which coordinates neighboring cell fates through direct cell-cell signaling. Using micropatterning with a receptor trans-endocytosis assay, we show that signaling between pairs of cells correlates with their contact area. This relationship extends across contact diameters ranging from microns to tens of microns. Mathematical modeling predicts that dependence of signaling on contact area can bias cellular differentiation in Notch-mediated lateral inhibition processes, such that smaller cells are more likely to differentiate into signal-producing cells. Consistent with this prediction, analysis of developing chick inner ear revealed that ligand-producing hair cell precursors have smaller apical footprints than non-hair cells. Together, these results highlight the influence of cell morphology on fate determination processes. PMID:28292428

  20. Segmentation and Morphometric Analysis of Cells from Fluorescence Microscopy Images of Cytoskeletons

    PubMed Central

    Ujihara, Yoshihiro; Nakamura, Masanori; Miyazaki, Hiroshi; Wada, Shigeo

    2013-01-01

    We developed a method to reconstruct cell geometry from confocal fluorescence microscopy images of the cytoskeleton. In the method, region growing was implemented twice. First, it was applied to the extracellular regions to differentiate them from intracellular noncytoskeletal regions, which both appear black in fluorescence microscopy imagery, and then to cell regions for cell identification. Analysis of morphological parameters revealed significant changes in cell shape associated with cytoskeleton disruption, which offered insight into the mechanical role of the cytoskeleton in maintaining cell shape. The proposed segmentation method is promising for investigations on cell morphological changes with respect to internal cytoskeletal structures. PMID:23762186

  1. Segmentation and morphometric analysis of cells from fluorescence microscopy images of cytoskeletons.

    PubMed

    Ujihara, Yoshihiro; Nakamura, Masanori; Miyazaki, Hiroshi; Wada, Shigeo

    2013-01-01

    We developed a method to reconstruct cell geometry from confocal fluorescence microscopy images of the cytoskeleton. In the method, region growing was implemented twice. First, it was applied to the extracellular regions to differentiate them from intracellular noncytoskeletal regions, which both appear black in fluorescence microscopy imagery, and then to cell regions for cell identification. Analysis of morphological parameters revealed significant changes in cell shape associated with cytoskeleton disruption, which offered insight into the mechanical role of the cytoskeleton in maintaining cell shape. The proposed segmentation method is promising for investigations on cell morphological changes with respect to internal cytoskeletal structures.

  2. Phenotypic and Physiological Characterization of the Epibiotic Interaction Between TM7x and Its Basibiont Actinomyces.

    PubMed

    Bor, Batbileg; Poweleit, Nicole; Bois, Justin S; Cen, Lujia; Bedree, Joseph K; Zhou, Z Hong; Gunsalus, Robert P; Lux, Renate; McLean, Jeffrey S; He, Xuesong; Shi, Wenyuan

    2016-01-01

    Despite many examples of obligate epibiotic symbiosis (one organism living on the surface of another) in nature, such an interaction has rarely been observed between two bacteria. Here, we further characterize a newly reported interaction between a human oral obligate parasitic bacterium TM7x (cultivated member of Candidatus Saccharimonas formerly Candidate Phylum TM7), and its basibiont Actinomyces odontolyticus species (XH001), providing a model system to study epiparasitic symbiosis in the domain Bacteria. Detailed microscopic studies indicate that both partners display extensive morphological changes during symbiotic growth. XH001 cells manifested as short rods in monoculture, but displayed elongated and hyphal morphology when physically associated with TM7x. Interestingly, these dramatic morphological changes in XH001 were also induced in oxygen-depleted conditions, even in the absence of TM7x. Targeted quantitative real-time PCR (qRT-PCR) analyses revealed that both the physical association with TM7x as well as oxygen depletion triggered up-regulation of key stress response genes in XH001, and in combination, these conditions act in an additive manner. TM7x and XH001 co-exist with relatively uniform cell morphologies under nutrient-replete conditions. However, upon nutrient depletion, TM7x-associated XH001 displayed a variety of cell morphologies, including swollen cell body, clubbed-ends, and even cell lysis, and a large portion of TM7x cells transformed from ultrasmall cocci into elongated cells. Our study demonstrates a highly dynamic interaction between epibiont TM7x and its basibiont XH001 in response to physical association or environmental cues such as oxygen level and nutritional status, as reflected by their morphological and physiological changes during symbiotic growth.

  3. [Morphological changes in tongue cancer after cryosurgery].

    PubMed

    Zhou, X D; Mao, T Q

    1993-01-01

    Tca 8113 (human tongue cancer cell line) cell transplanted tumors in nude mice were treated with cryosurgery for three freeze-thaw cycles. Tumor samples were obtained by biopsies pre- and post-cryosurgery for morphological study. The results showed intercellular adhesion damage, nuclear pyknosis, cell death, etc. One week after, the deep parts of the frozen samples were similar to that of the untreated ones. Our study indicates the change of biomembrance may be also important as of nuclei in cell death and may play an important role in the treatment of cancer by cryochemistry.

  4. The relationship between morphological changes of lens epithelial cells and intraocular lens optic material.

    PubMed

    Majima, K

    1998-01-01

    To examine the morphological changes of lens epithelial cells (LECs) occurring directly beneath and at regions contacting various intraocular lens (IOL) optic materials, human LECs were cultured on human anterior lens capsules and were further incubated upon placing above the cells lens optics made of polymethylmethacrylate, silicone, and soft acrylic material. Observations as to the morphological changes of LECs under phase-contrast microscope and scanning electron microscope were performed on the 14th day of incubation. Gatherings of LECs were observed at regions contacting the soft acrylic material under phase-contrast microscope, and gatherings of LECs were observed accurately at the same regions mentioned above under scanning electron microscope. On the other hand, LECs in contact with two other optic materials did not show morphological changes. The results suggest that LECs attached to and proliferated on not only the anterior lens capsules but also the soft acrylic IOL optics. The model used in this study may be useful in studying the relationship between cellular movement of LECs and IOL optic material.

  5. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  6. Rapid flow-induced responses in endothelial cells

    NASA Technical Reports Server (NTRS)

    Stamatas, G. N.; McIntire, L. V.

    2001-01-01

    Endothelial cells alter their morphology, growth rate, and metabolism in response to fluid shear stress. To study rapid flow-induced responses in the 3D endothelial cell morphology and calcium distribution, coupled fluorescence microscopy with optical sectioning, digital imaging, and numerical deconvolution techniques have been utilized. Results demonstrate that within the first minutes of flow application nuclear calcium is increasing. In the same time frame whole cell height and nuclear height are reduced by about 1 microm. Whole cell height changes may facilitate reduction of shear stress gradients on the luminal surface, whereas nuclear structural changes may be important for modulating endothelial growth rate and metabolism. To study the role of the cytoskeleton in these responses, endothelial cells have been treated with specific disrupters (acrylamide, cytochalasin D, and colchicine) of each of the cytoskeleton elements (intermediate filaments, microfilaments, and microtubules, respectively). None of these compounds had any effect on the shear-induced calcium response. Cytochalasin D and acrylamide did not affect the shear-induced nuclear morphology changes. Colchicine, however, completely abrogated the response, indicating that microtubules may be implicated in force transmission from the plasma membrane to the nucleus. A pedagogical model based on tensegrity theory principles is presented that is consistent with the results on the 3D endothelial morphology.

  7. Automated Morphological Analysis of Microglia After Stroke.

    PubMed

    Heindl, Steffanie; Gesierich, Benno; Benakis, Corinne; Llovera, Gemma; Duering, Marco; Liesz, Arthur

    2018-01-01

    Microglia are the resident immune cells of the brain and react quickly to changes in their environment with transcriptional regulation and morphological changes. Brain tissue injury such as ischemic stroke induces a local inflammatory response encompassing microglial activation. The change in activation status of a microglia is reflected in its gradual morphological transformation from a highly ramified into a less ramified or amoeboid cell shape. For this reason, the morphological changes of microglia are widely utilized to quantify microglial activation and studying their involvement in virtually all brain diseases. However, the currently available methods, which are mainly based on manual rating of immunofluorescent microscopic images, are often inaccurate, rater biased, and highly time consuming. To address these issues, we created a fully automated image analysis tool, which enables the analysis of microglia morphology from a confocal Z-stack and providing up to 59 morphological features. We developed the algorithm on an exploratory dataset of microglial cells from a stroke mouse model and validated the findings on an independent data set. In both datasets, we could demonstrate the ability of the algorithm to sensitively discriminate between the microglia morphology in the peri-infarct and the contralateral, unaffected cortex. Dimensionality reduction by principal component analysis allowed to generate a highly sensitive compound score for microglial shape analysis. Finally, we tested for concordance of results between the novel automated analysis tool and the conventional manual analysis and found a high degree of correlation. In conclusion, our novel method for the fully automatized analysis of microglia morphology shows excellent accuracy and time efficacy compared to traditional analysis methods. This tool, which we make openly available, could find application to study microglia morphology using fluorescence imaging in a wide range of brain disease models.

  8. Pinus Monophylla (Single Needled Pinyon Pine) show morphological changes in needle cell size and stomata over the past 100 years of rising CO2 in Western Arid Ecosystems.

    NASA Astrophysics Data System (ADS)

    Van De Water, P. K.

    2016-12-01

    The size, frequency, and morphology of leaf surface stomata is used to reconstruct past levels of atmospheric carbon dioxide over geologic time. This technique relies on measuring cell and cell-clusters to correlate with changes of known carbon dioxide levels in the atmosphere. Unfortunately, not all plants are suitable because the occurrence and placement of stomatal cell-complexes differ significantly between plant families. Monocot and dicot angiosperms exhibit different types of stomata and stomatal complexes that lack order and thus are unsuitable. But, in gymnosperms, the number and distribution of stomata and pavement cells is formalized and can be used to reconstruct past atmospheric carbon dioxide levels. However, characteristic of each plant species must still be considered. For example, conifers are useful but are divided into two-needle to five-needle pines, or have irregular surface morphology (Pseudotsuga sp. and Tsuga sp. needles). This study uses Pinus monophylla an undivided needle morphology, that being a cylinder has no interior surface cells. Pinus monophylla (single needle pinyon) needles were collected along Geiger Grade (Nevada State Highway 341, Reno) in 2005 and 2013 from 1500m to 2195m. Herbarium samples were also collected from 13 historic collections made between 1911 and 1994. The study determined changes with elevation and/or over time using in these populations. Using Pinus monophylla, insured needles represented a single surface with stomata, stomatal complex cells, and co-occurring pavement cell types. Results show decreased stomatal densities (stomata/area), stomatal index (stomata/stomata + epidermal cells) and stable stomata per row (stomata/row) . Epidermal cell density (Epidermal Cells /Area), and Pavement cell density (Pavement cell/area) track stomatal density similarly. Data comparison, using elevation in the 2005 and 2013 collections showed no-significant trends. Individual stomatal complexes show no differences in the size and shape over time or with elevation. Stomata morphology and the stomatal pores appear conservative. However some complex cells show a morphology suggesting they are not fully formed and functional. These characteristics appear often in the modern material suggesting some stomata never fully develop.

  9. First report of changes in leukocyte morphology in response to inflammatory conditions in Asian and African elephants (Elephas maximus and Loxodonta africana).

    PubMed

    Stacy, Nicole I; Isaza, Ramiro; Wiedner, Ellen

    2017-01-01

    Although the hematology of healthy elephants has been well-described, published information on hematological changes during disease is limited. The objective of this study was to describe qualitative morphological changes in the leukocytes of Asian and African elephants (Elephas maximus and Loxodonta africana) diagnosed with a variety of inflammatory conditions. Twenty-five of 27 elephants had morphological changes in their leukocytes, although only 16 of these had a concurrent inflammatory leukogram. Morphological changes included heterophil left-shifting with or without concurrent dysgranulopoiesis, toxicity, or hypersegmentation, reactive lymphocytes, plasma cells, and/or vacuolated monocytes. Although the observed leukocyte morphological changes are non-specific, their early recognition upon blood film evaluation may provide important, clinically-relevant information, particularly if the leukogram is normal. This case series is the first description of qualitative morphological changes in the leukocytes of elephants in association with inflammation.

  10. First report of changes in leukocyte morphology in response to inflammatory conditions in Asian and African elephants (Elephas maximus and Loxodonta africana)

    PubMed Central

    Isaza, Ramiro; Wiedner, Ellen

    2017-01-01

    Although the hematology of healthy elephants has been well-described, published information on hematological changes during disease is limited. The objective of this study was to describe qualitative morphological changes in the leukocytes of Asian and African elephants (Elephas maximus and Loxodonta africana) diagnosed with a variety of inflammatory conditions. Twenty-five of 27 elephants had morphological changes in their leukocytes, although only 16 of these had a concurrent inflammatory leukogram. Morphological changes included heterophil left-shifting with or without concurrent dysgranulopoiesis, toxicity, or hypersegmentation, reactive lymphocytes, plasma cells, and/or vacuolated monocytes. Although the observed leukocyte morphological changes are non-specific, their early recognition upon blood film evaluation may provide important, clinically-relevant information, particularly if the leukogram is normal. This case series is the first description of qualitative morphological changes in the leukocytes of elephants in association with inflammation. PMID:28934325

  11. Carbon nanowall scaffold to control culturing of cervical cancer cells

    NASA Astrophysics Data System (ADS)

    Watanabe, Hitoshi; Kondo, Hiroki; Okamoto, Yukihiro; Hiramatsu, Mineo; Sekine, Makoto; Baba, Yoshinobu; Hori, Masaru

    2014-12-01

    The effect of carbon nanowalls (CNWs) on the culturing rate and morphological control of cervical cancer cells (HeLa cells) was investigated. CNWs with different densities were grown using plasma-enhanced chemical vapor deposition and subjected to post-growth plasma treatment for modification of the surface terminations. Although the surface wettability of the CNWs was not significantly dependent on the CNW densities, the cell culturing rates were significantly dependent. Morphological changes of the cells were not significantly dependent on the density of CNWs. These results indicate that plasma-induced surface morphology and chemical terminations enable nanobio applications using carbon nanomaterials.

  12. [Morphological fibroblastic changes in cytomegalovirus infection].

    PubMed

    Parkhomenko, Iu V; Solnyshkova, T G; Tishkivich, O A; Shakhgil'dian, V I; Nikonova, E A

    2006-01-01

    Cytomegalovirus (CMV) infection is widely spread among population. While immunocompetent patients suffer rarely from this virus, it can lead to a lethal outcome in immunocompromised patients. An electron microscopic study has detected fibroblastic morphological changes of a definite cytodestructive character. The nuclei of some fibroblasts have chromatine condensation. A clear zone arising due to vacuolization near this inclusion may reflect nuclear rearrangement leading to further CMV metamorphosis of the cell. This metamorphosis is characteristic of the changes developing in the cells of different parenchymatous organs.

  13. Investigations on the change of texture of plant cells due to preservative treatments by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Vora, Priyanka; Anand, Arun

    2014-10-01

    Texture change is observed in preserved fruits and vegetables. Responsible factors for texture change during preservative treatments are cell morphology, cell wall structure, cell turger, water content and some biochemical components, and also the environmental conditions. Digital Holographic microscopy (DHM) is a quantitative phase contrast imaging technique, which provides three dimensional optical thickness profiles of transparent specimen. Using DHM the morphology of plant cells preserved by refrigeration or stored in vinegar or in sodium chloride can be obtained. This information about the spatio-temporal evolution of optical volume and thickness can be an important tool in area of food processing. Also from the three dimensional images, the texture of the cell can be retrieved and can be investigated under varying conditions.

  14. Identification of a nuclear-localized nuclease from wheat cells undergoing programmed cell death that is able to trigger DNA fragmentation and apoptotic morphology on nuclei from human cells

    PubMed Central

    Domínguez, Fernando; Cejudo, Francisco J.

    2006-01-01

    PCD (programmed cell death) in plants presents important morphological and biochemical differences compared with apoptosis in animal cells. This raises the question of whether PCD arose independently or from a common ancestor in plants and animals. In the present study we describe a cell-free system, using wheat grain nucellar cells undergoing PCD, to analyse nucleus dismantling, the final stage of PCD. We have identified a Ca2+/Mg2+ nuclease and a serine protease localized to the nucleus of dying nucellar cells. Nuclear extracts from nucellar cells undergoing PCD triggered DNA fragmentation and other apoptotic morphology in nuclei from different plant tissues. Inhibition of the serine protease did not affect DNA laddering. Furthermore, we show that the nuclear extracts from plant cells triggered DNA fragmentation and apoptotic morphology in nuclei from human cells. The inhibition of the nucleolytic activity with Zn2+ or EDTA blocked the morphological changes of the nucleus. Moreover, nuclear extracts from apoptotic human cells triggered DNA fragmentation and apoptotic morphology in nuclei from plant cells. These results show that degradation of the nucleus is morphologically and biochemically similar in plant and animal cells. The implication of this finding on the origin of PCD in plants and animals is discussed. PMID:16613587

  15. Effects of SPORL and dilute acid pretreatment on substrate morphology, cell physical and chemical wall structures, and subsequent enzymatic hydrolysis of lodgepole pine

    Treesearch

    Xinping Li; Xiaolin Luo; Kecheng Li; J.Y. Zhu; J. Dennis Fougere; Kimberley Clarke

    2012-01-01

    The effects of pretreatment by dilute acid and sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) on substrate morphology, cell wall physical and chemical structures, along with the subsequent enzymatic hydrolysis of lodgepole pine substrate were investigated. FE-SEM and TEM images of substrate structural morphological changes showed that SPORL...

  16. Tween-20 transiently changes the surface morphology of PK-15 cells and improves PCV2 infection.

    PubMed

    Hua, Tao; Zhang, Xuehua; Tang, Bo; Chang, Chen; Liu, Guoyang; Feng, Lei; Yu, Yang; Zhang, Daohua; Hou, Jibo

    2018-04-24

    Low concentrations of nonionic surfactants can change the physical properties of cell membranes, and thus and in turn increase drug permeability. Porcine circovirus 2 (PCV2) is an extremely slow-growing virus, and PCV2 infection of PK-15 cells yields very low viral titers. The present study investigates the effect of various nonionic surfactants, namely, Tween-20, Tween-28, Tween-40, Tween-80, Brij-30, Brij-35, NP-40, and Triton X-100 on PCV2 infection and yield in PK-15 cells. Significantly increased PCV2 infection was observed in cells treated with Tween-20 compared to those treated with Tween-28, Tween-40, Brij-30, Brij-35, NP-40, and Triton X-100 (p < 0.01). Furthermore, 24 h incubation with 0.03% Tween-20 has shown to induce significant cellular morphologic changes (cell membrane underwent slight intumescence and bulged into a balloon, and the number of microvilli decreased), as well as to increase caspase-3 activity and to decrease cell viability in PCV2-infected PK-15 cells cmpared to control group; all these changes were restored to normal after Tween-20 has been washed out from the plate. Our data demonstrate that Tween-20 transiently changes the surface morphology of PK-15 cells and improves PCV2 infection. The findings of the present study may be utilized in the development of a PCV2 vaccine.

  17. The fungicide mancozeb induces toxic effects on mammalian granulosa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paro, Rita; Tiboni, Gian Mario; Buccione, Roberto

    2012-04-15

    The ethylene-bis-dithiocarbamate mancozeb is a widely used fungicide with low reported toxicity in mammals. In mice, mancozeb induces embryo apoptosis, affects oocyte meiotic spindle morphology and impairs fertilization rate even when used at very low concentrations. We evaluated the toxic effects of mancozeb on the mouse and human ovarian somatic granulosa cells. We examined parameters such as cell morphology, induction of apoptosis, and p53 expression levels. Mouse granulosa cells exposed to mancozeb underwent a time- and dose-dependent modification of their morphology, and acquired the ability to migrate but not to proliferate. The expression level of p53, in terms of mRNAmore » and protein content, decreased significantly in comparison with unexposed cells, but no change in apoptosis was recorded. Toxic effects could be attributed, at least in part, to the presence of ethylenthiourea (ETU), the main mancozeb catabolite, which was found in culture medium. Human granulosa cells also showed dose-dependent morphological changes and reduced p53 expression levels after exposure to mancozeb. Altogether, these results indicate that mancozeb affects the somatic cells of the mammalian ovarian follicles by inducing a premalignant-like status, and that such damage occurs to the same extent in both mouse and human GC. These results further substantiate the concept that mancozeb should be regarded as a reproductive toxicant. Highlights: ► The fungicide mancozeb affects oocyte spindle morphology and fertilization rate. ► We investigated the toxic effects of mancozeb on mouse and human granulosa cells. ► Granulosa cells modify their morphology and expression level of p53. ► Mancozeb induces a premalignant-like status in exposed cells.« less

  18. Stimulation of Cl- uptake and morphological changes in gill mitochondria-rich cells in freshwater tilapia (Oreochromis mossambicus).

    PubMed

    Chang, Il-Chi; Wei, Yuan-Yaw; Chou, Fong-In; Hwang, Pung-Pung

    2003-01-01

    The purpose of the present article is to examine the relationships between ion uptakes and morphologies of gill mitochondria-rich (MR) cells in freshwater tilapia. Tilapia were acclimated to three different artificial freshwaters (high Na [10 mM], high Cl [7.5 mM]; high Na, low Cl [0.02-0.07 mM], and low Na [0.5 mM], low Cl) for 1 wk, and then morphological measurements of gill MR cells were made and ion influxes were determined. The number and the apical size of wavy-convex MR cells positively associated with the level of Cl(-) influx. Conversely, Na(+) influx showed no positive correlation with the morphologies of MR cells. The dominant MR cell type in tilapia gills changed from deep-hole to wavy-convex within 6 h after acute transfer from a high-Cl(-) to a low-Cl(-) environment. Deep-hole MR cells became dominant 24-96 h after acute transfer from a low-Cl(-) to a high-Cl(-) environment. We conclude that wavy-convex MR cells associate with Cl(-) uptake but not Na(+) uptake, and the rapid formation of wavy-convex MR cells reflects the timely stimulation of Cl(-) uptake to recover the homeostasis of internal Cl(-) levels on acute challenge with low environmental Cl(-).

  19. Preparation of nano-hydroxyapatite particles with different morphology and their response to highly malignant melanoma cells in vitro

    NASA Astrophysics Data System (ADS)

    Li, Bo; Guo, Bo; Fan, Hongsong; Zhang, Xingdong

    2008-11-01

    To investigate the effects of nano-hydroxyapatite (HA) particles with different morphology on highly malignant melanoma cells, three kinds of HA particles with different morphology were synthesized and co-cultured with highly malignant melanoma cells using phosphate-buffered saline (PBS) as control. A precipitation method with or without citric acid addition as surfactant was used to produce rod-like hydroxyapatite (HA) particles with nano- and micron size, respectively, and a novel oil-in-water emulsion method was employed to prepare ellipse-like nano-HA particles. Particle morphology and size distribution of the as prepared HA powders were characterized by transmission electron microscope (TEM) and dynamic light scattering technique. The nano- and micron HA particles with different morphology were co-cultured with highly malignant melanoma cells. Immunofluorescence analysis and MTT assay were employed to evaluate morphological change of nucleolus and proliferation of tumour cells, respectively. To compare the effects of HA particles on cell response, the PBS without HA particles was used as control. The experiment results indicated that particle nanoscale effect rather than particle morphology of HA was more effective for the inhibition on highly malignant melanoma cells proliferation.

  20. Altered Calcium Dynamics in Cardiac Cells Grown on Silane-Modified Surfaces

    PubMed Central

    Ravenscroft-Chang, Melissa S.; Stohlman, Jayna; Molnar, Peter; Natarajan, Anupama; Canavan, Heather E.; Teliska, Maggie; Stancescu, Maria; Krauthamer, Victor; Hickman, J.J.

    2013-01-01

    Chemically defined surfaces were created using self-assembled monolayers (SAMs) of hydrophobic and hydrophilic silanes as models for implant coatings, and the morphology and physiology of cardiac myocytes plated on these surfaces were studied in vitro. We focused on changes in intracellular Ca2+ because of its essential role in regulating heart cell function. The SAM-modified coverslips were analyzed using X-ray Photoelectron Spectroscopy to verify composition. The morphology and physiology of the cardiac cells were examined using fluorescence microscopy and intracellular Ca2+ imaging. The imaging experiments used the fluorescent ratiometric dye fura-2, AM to establish both the resting Ca2+ concentration and the dynamic responses to electrical stimulation. A significant difference in excitation-induced Ca2+ changes on the different silanated surfaces was observed. However, no significant change was noted based on the morphological analysis. This result implies a difference in internal Ca2+ dynamics, and thus cardiac function, occurs when the composition of the surface is different, and this effect is independent of cellular morphology. This finding has implications for histological examination of tissues surrounding implants, the choice of materials that could be beneficial as implant coatings and understanding of cell-surface interactions in cardiac systems. PMID:19828193

  1. Substance P Induces Rapid and Transient Membrane Blebbing in U373MG Cells in a p21-Activated Kinase-Dependent Manner

    PubMed Central

    Meshki, John; Douglas, Steven D.; Hu, Mingyue; Leeman, Susan E.; Tuluc, Florin

    2011-01-01

    U373MG astrocytoma cells endogenously express the full-length neurokinin 1 receptor (NK1R). Substance P (SP), the natural ligand for NK1R, triggers rapid and transient membrane blebbing and we report that these morphological changes have different dynamics and intracellular signaling as compared to the changes that we have previously described in HEK293-NK1R cells. In both cell lines, the SP-induced morphological changes are Gq-independent, and they require the Rho, Rho-associated coiled-coil kinase (ROCK) signaling pathway. Using confocal microscopy we have demonstrated that tubulin is phosphorylated subsequent to cell stimulation with SP and that tubulin accumulates inside the blebs. Colchicine, a tubulin polymerization inhibitor, blocked SP-induced blebbing in U373MG but not in HEK293-NK1R cells. Although p21-activated kinase (PAK) is expressed in both cell lines, SP induced rapid phosphorylation of PAK in U373MG, but failed to phosphorylate PAK in HEK293-NK1R cells. The cell-permeable Rho inhibitor C3 transferase inhibited SP-induced PAK phosphorylation, but the ROCK inhibitor Y27632 had no effect on PAK phosphorylation, suggesting that Rho activates PAK in a ROCK-independent manner. Our study demonstrates that SP triggers rapid changes in cell morphology mediated by distinct intracellular signaling mechanisms in U373MG versus HEK293-NK1R cells. PMID:21966499

  2. Morphological and Hydrodynamic Correlations with Increasing Outflow Facility by Rho-Kinase Inhibitor Y-27632

    PubMed Central

    Yang, Chen-Yuan Charlie

    2014-01-01

    Abstract Rho-kinase inhibitors affect actomyosin cytoskeletal networks and have been shown to significantly increase outflow facility and lower intraocular pressure in various animal models and human eyes. This article summarizes common morphological changes in the trabecular meshwork induced by Rho-kinase inhibitors and specifically compares the morphological and hydrodynamic correlations with increased outflow facility by Rho-kinase inhibitor, Y-27632, in bovine, monkey, and human eyes under similar experimental conditions. Interspecies comparison has shown that morphological changes in the juxtacanalicular connective tissue (JCT) of these 3 species were different. However, these different morphological changes in the JCT, no matter if it's separation between the JCT and inner wall in bovine eyes, or separation between the JCT cells or between the JCT cells and their matrix in monkey eyes, or even no separation between the inner wall and the JCT but a more subtle expansion of the JCT in human eyes, appear to correlate with the increased percent change of outflow facility. More importantly, these different morphological changes all resulted in an increase in effective filtration area, which was positively correlated with increased outflow facility in all 3 species. These results suggest a link among changes in outflow facility, tissue architecture, and aqueous outflow pattern. Y-27632 increases outflow facility by redistributing aqueous outflow through a looser and larger area in the JCT. PMID:24460021

  3. Quantification of a thermal damage threshold for astrocytes using infrared laser generated heat gradients.

    PubMed

    Liljemalm, Rickard; Nyberg, Tobias

    2014-04-01

    The response of cells and tissues to elevated temperatures is highly important in several research areas, especially in the area of infrared neural stimulation. So far, only the heat response of neurons has been considered. In this study, primary rat astrocytes were exposed to infrared laser pulses of various pulse lengths and the resulting cell morphology changes and cell migration was studied using light microscopy. By using a finite element model of the experimental setup the temperature distribution was simulated and the temperatures and times to induce morphological changes and migration were extracted. These threshold temperatures were used in the commonly used first-order reaction model according to Arrhenius to extract the kinetic parameters, i.e., the activation energy, E a, and the frequency factor, A c, for the system. A damage signal ratio threshold was defined and calculated to be 6% for the astrocytes to change morphology and start migrating.

  4. Analysis of poration-induced changes in cells from laser-activated plasmonic substrates

    PubMed Central

    Saklayen, Nabiha; Kalies, Stefan; Madrid, Marinna; Nuzzo, Valeria; Huber, Marinus; Shen, Weilu; Sinanan-Singh, Jasmine; Heinemann, Dag; Heisterkamp, Alexander; Mazur, Eric

    2017-01-01

    Laser-exposed plasmonic substrates permeabilize the plasma membrane of cells when in close contact to deliver cell-impermeable cargo. While studies have determined the cargo delivery efficiency and viability of laser-exposed plasmonic substrates, morphological changes in a cell have not been quantified. We porated myoblast C2C12 cells on a plasmonic pyramid array using a 532-nm laser with 850-ps pulse length and time-lapse fluorescence imaging to quantify cellular changes. We obtain a poration efficiency of 80%, viability of 90%, and a pore radius of 20 nm. We quantified area changes in the plasma membrane attached to the substrate (10% decrease), nucleus (5 – 10% decrease), and cytoplasm (5 – 10% decrease) over 1 h after laser treatment. Cytoskeleton fibers show a change of 50% in the alignment, or coherency, of fibers, which stabilizes after 10 mins. We investigate structural and morphological changes due to the poration process to enable the safe development of this technique for therapeutic applications. PMID:29082100

  5. Cytotoxicity Effects of Different Surfactant Molecules Conjugated to Carbon Nanotubes on Human Astrocytoma Cells

    NASA Astrophysics Data System (ADS)

    Dong, Lifeng; Witkowski, Colette M.; Craig, Michael M.; Greenwade, Molly M.; Joseph, Katherine L.

    2009-12-01

    Phase contrast and epifluorescence microscopy were utilized to monitor morphological changes in human astrocytoma cells during a time-course exposure to single-walled carbon nanotube (SWCNT) conjugates with different surfactants and to investigate sub-cellular distribution of the nanotube conjugates, respectively. Experimental results demonstrate that cytotoxicity of the nanotube/surfactant conjugates is related to the toxicity of surfactant molecules attached on the nanotube surfaces. Both sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate (SDBS) are toxic to cells. Exposure to CNT/SDS conjugates (0.5 mg/mL) for less than 5 min caused changes in cell morphology resulting in a distinctly spherical shape compared to untreated cells. In contrast, sodium cholate (SC) and CNT/SC did not affect cell morphology, proliferation, or growth. These data indicate that SC is an environmentally friendly surfactant for the purification and dispersion of SWCNTs. Epifluorescence microscopy analysis of CNT/DNA conjugates revealed distribution in the cytoplasm of cells and did not show adverse effects on cell morphology, proliferation, or viability during a 72-h incubation. These observations suggest that the SWCNTs could be used as non-viral vectors for diagnostic and therapeutic molecules across the blood-brain barrier to the brain and the central nervous system.

  6. New approaches for the analysis of confluent cell layers with quantitative phase digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Pohl, L.; Kaiser, M.; Ketelhut, S.; Pereira, S.; Goycoolea, F.; Kemper, Björn

    2016-03-01

    Digital holographic microscopy (DHM) enables high resolution non-destructive inspection of technical surfaces and minimally-invasive label-free live cell imaging. However, the analysis of confluent cell layers represents a challenge as quantitative DHM phase images in this case do not provide sufficient information for image segmentation, determination of the cellular dry mass or calculation of the cell thickness. We present novel strategies for the analysis of confluent cell layers with quantitative DHM phase contrast utilizing a histogram based-evaluation procedure. The applicability of our approach is illustrated by quantification of drug induced cell morphology changes and it is shown that the method is capable to quantify reliable global morphology changes of confluent cell layers.

  7. Real-time monitoring of the budding index in Saccharomyces cerevisiae batch cultivations with in situ microscopy.

    PubMed

    Marbà-Ardébol, Anna-Maria; Emmerich, Jörn; Muthig, Michael; Neubauer, Peter; Junne, Stefan

    2018-05-15

    The morphology of yeast cells changes during budding, depending on the growth rate and cultivation conditions. A photo-optical microscope was adapted and used to observe such morphological changes of individual cells directly in the cell suspension. In order to obtain statistically representative samples of the population without the influence of sampling, in situ microscopy (ISM) was applied in the different phases of a Saccharomyces cerevisiae batch cultivation. The real-time measurement was performed by coupling a photo-optical probe to an automated image analysis based on a neural network approach. Automatic cell recognition and classification of budding and non-budding cells was conducted successfully. Deviations between automated and manual counting were considerably low. A differentiation of growth activity across all process stages of a batch cultivation in complex media became feasible. An increased homogeneity among the population during the growth phase was well observable. At growth retardation, the portion of smaller cells increased due to a reduced bud formation. The maturation state of the cells was monitored by determining the budding index as a ratio between the number of cells, which were detected with buds and the total number of cells. A linear correlation between the budding index as monitored with ISM and the growth rate was found. It is shown that ISM is a meaningful analytical tool, as the budding index can provide valuable information about the growth activity of a yeast cell, e.g. in seed breeding or during any other cultivation process. The determination of the single-cell size and shape distributions provided information on the morphological heterogeneity among the populations. The ability to track changes in cell morphology directly on line enables new perspectives for monitoring and control, both in process development and on a production scale.

  8. Proteomic and morphological changes produced by subinhibitory concentration of isoniazid in Mycobacterium tuberculosis.

    PubMed

    Campanerut-Sá, Paula Az; Ghiraldi-Lopes, Luciana D; Meneguello, Jean E; Fiorini, Adriana; Evaristo, Geisa Pc; Siqueira, Vera Ld; Scodro, Regiane Bl; Patussi, Eliana V; Donatti, Lucélia; Souza, Emanuel M; Cardoso, Rosilene F

    2016-09-01

    To study the proteomic and morphological changes in Mycobacterium tuberculosis H37Rv exposed to subinhibitory concentration of isoniazid (INH). The bacillus was exposed to ½ MIC of INH at 12, 24 and 48 h. The samples' cells were submitted to scanning electron microscopy. The proteins were separated by 2D gel electrophoresis and identified by MS. INH exposure was able to alter the format, the multiplication and causing a cell swelling in the bacillus. The major altered proteins were related to the virulence, detoxification, adaptation, intermediary metabolism and lipid metabolism. The protein and morphological changes in M. tuberculosis induced by ½ MIC INH were related to defense mechanism of the bacillus or the action of INH therein.

  9. Atomic force microscopic study of the effects of ethanol on yeast cell surface morphology.

    PubMed

    Canetta, Elisabetta; Adya, Ashok K; Walker, Graeme M

    2006-02-01

    The detrimental effects of ethanol toxicity on the cell surface morphology of Saccharomyces cerevisiae (strain NCYC 1681) and Schizosaccharomyces pombe (strain DVPB 1354) were investigated using an atomic force microscope (AFM). In combination with culture viability and mean cell volume measurements AFM studies allowed us to relate the cell surface morphological changes, observed on nanometer lateral resolution, with the cellular stress physiology. Exposing yeasts to increasing stressful concentrations of ethanol led to decreased cell viabilities and mean cell volumes. Together with the roughness and bearing volume analyses of the AFM images, the results provided novel insight into the relative ethanol tolerance of S. cerevisiae and Sc. pombe.

  10. Data on the detail information of influence of substrate temperature on the film morphology and photovoltaic performance of non-fullerene organic solar cells.

    PubMed

    Zhang, Jicheng; Xie, SuFei; Lu, Zhen; Wu, Yang; Xiao, Hongmei; Zhang, Xuejuan; Li, Guangwu; Li, Cuihong; Chen, Xuebo; Ma, Wei; Bo, Zhishan

    2017-10-01

    This data contains additional data related to the article "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" (Jicheng Zhang et al., In press) [1]. Data include measurement and characterization instruments and condition, detail condition to fabricate norfullerene solar cell devices, hole-only and electron-only devices. Detail condition about how to control the film morphology of devices via tuning the temperature of substrates was also displayed. More information and more convincing data about the change of film morphology for active layers fabricated from different temperature, which is attached to the research article of "Influence of Substrate Temperature on the Film Morphology and Photovoltaic Performance of Non-fullerene Organic Solar Cells" was given.

  11. Fungal cell gigantism during mammalian infection.

    PubMed

    Zaragoza, Oscar; García-Rodas, Rocío; Nosanchuk, Joshua D; Cuenca-Estrella, Manuel; Rodríguez-Tudela, Juan Luis; Casadevall, Arturo

    2010-06-17

    The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 microm in diameter and capsules resistant to stripping with gamma-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20-50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens.

  12. The effect of fibrin on cultured vascular endothelial cells.

    PubMed

    Kadish, J L; Butterfield, C E; Folkman, J

    1979-01-01

    The normal cobblestone monolayer architecture of cultured vascular endothelium becomes rapidly disorganized after contact of the cell layer with a fibrin clot. The cells of a confluent endothelial monolayer separate into individual migratory cells in 4--6 hr after contact with fibrin. The effect is reversible in that removal of the fibrin clot results in resumption of the normal morphology within about 2 hr. No other cell type tested exhibits the same change in organization when exposed to fibrin. A similar morphological change in endothelium does occur after the cell layer is overlaid with a collagen fibril gel but a gel of methylcellulose has no effect. It is proposed that the change in behavior of endothelial cells in response to contact with fibrin may represent a cellular component of fibrinolysis. The implications of this finding for the pathophysiology of disease states involving intravascular fibrin deposition are discussed.

  13. [Studies on minimum antibiotic concentration of cephapirin against clinically isolated strain SMK-101 of Klebsiella pneumoniae].

    PubMed

    Takahashi, M; Usui, Y; Ichiman, Y; Yoshida, K; Yonaha, T

    1985-01-01

    Using strain SMK-101 of K. pneumoniae its nephelometric absorbencies, viable cell numbers and morphological changes were studied during the time course cultured in a broth medium containing cephapirin (CEPR), and following results were obtained. After 1 to 3 hours culture in the presence of varying concentration of the antibiotic, the absorbency increased in spite of without change in the viable cell number. Morphologically, elongation and swelling of central portion of the cells were observed though differences of the degree of these findings varied depending upon the concentration of the antibiotic. At the concentration higher than 1/4 MIC, indistinct structure was shown in cytoplasm. After 6 hours culture, 3 directions of absorbence curves, ascending, descending and no change, and 2 directions of viable cell numbers, decreasing and increasing were shown. As the morphological changes of the cells, filamentation, leaking of intracellular components were shown in rather upper concentration of the antibiotic. Fission was demonstrated around the end of cells cultured in rather lower concentration of the antibiotic. After 9 hours culture, absorbency and viable cell number were parallel. In this period, structural findings of cytoplasm became clear and fission was also demonstrated by light microscope except for the cells cultured in more than 1 MIC of the antibiotic. After 24 hours culture, both absorbency and viable cell number increased again and fission was observed in the cell which showed filamentation in 1 MIC of the antibiotic.

  14. Biological Effects of Protracted Exposure to Ionizing Radiation: Review, Analysis, and Model Development

    DTIC Science & Technology

    1991-11-01

    dynamics, physiological changes, morphologi- cal changes, cell/tissue damage and recovery mechanisms, and existing radiobiological injury and recovery...humans and the ferret. The gut injury model (GIM) is a three-compartment hierarchial- type tissue model to simulate radiation-induced changes in the...Prodromal Symptoms Diarrhea Gastrointestinal Symptoms Dose Rate Cell Survival Intestinal Injury Fatigability Cell Damage Cell Repair Cell Proliferation

  15. Physiological and morphological changes during early and later stages of fruit growth in Capsicum annuum.

    PubMed

    Tiwari, Aparna; Vivian-Smith, Adam; Ljung, Karin; Offringa, Remko; Heuvelink, Ep

    2013-03-01

    Fruit-set involves a series of physiological and morphological changes that are well described for tomato and Arabidopsis, but largely unknown for sweet pepper (Capsicum annuum). The aim of this paper is to investigate whether mechanisms of fruit-set observed in Arabidopsis and tomato are also applicable to C. annuum. To do this, we accurately timed the physiological and morphological changes in a post-pollinated and un-pollinated ovary. A vascular connection between ovule and replum was observed in fertilized ovaries that undergo fruit development, and this connection was absent in unfertilized ovaries that abort. This indicates that vascular connection between ovule and replum is an early indicator for successful fruit development after pollination and fertilization. Evaluation of histological changes in the carpel of a fertilized and unfertilized ovary indicated that increase in cell number and cell diameter both contribute to early fruit growth. Cell division contributes more during early fruit growth while cell expansion contributes more at later stages of fruit growth in C. annuum. The simultaneous occurrence of a peak in auxin concentration and a strong increase in cell diameter in the carpel of seeded fruits suggest that indole-3-acetic acid stimulates a major increase in cell diameter at later stages of fruit growth. The series of physiological and morphological events observed during fruit-set in C. annuum are similar to what has been reported for tomato and Arabidopsis. This indicates that tomato and Arabidopsis are suitable model plants to understand details of fruit-set mechanisms in C. annuum. Copyright © Physiologia Plantarum 2012.

  16. Development and Maturation of the Neuromuscular Junciton in Cell Culture Under Conditions of Simulated Zero-gravity

    NASA Technical Reports Server (NTRS)

    Gruener, R.

    1985-01-01

    Alterations in gravitational conditions which alter the normal development and interactions of nerve and muscle cells grown in culture is examined. Clinostat conditions, similating Og, which produce changes in cell morphology and growth patterns is studied. Data show that rotation of cocultures of nerve and muscle cells results in morphologic changes which are predicted to significantly alter the functional interactions between the elements of a prototypic synapse. It is further predicted that similar alterations may occur in central synapses which may therefore affect the development of the central nervous system when subjected to altered gravitational conditions.

  17. PtCo Cathode Catalyst Morphological and Compositional Changes after PEM Fuel Cell Accelerated Stress Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sneed, Brian T.; Cullen, David A.; Mukundan, R.

    Development of Pt catalysts alloyed with transition metals has led to a new class of state-of-the-art electrocatalysts for oxygen reduction at the cathode of proton exchange membrane fuel cells; however, the durability of Pt-based alloy catalysts is challenged by poor structural and chemical stability. There is a need for better understanding of the morphological and compositional changes that occur to the catalyst under fuel cell operation. In this work, we report in-depth characterization results of a Pt-Co electrocatalyst incorporated in the cathode of membrane electrode assemblies, which were evaluated before and after accelerated stress tests designed specifically to enhance catalystmore » degradation. Electron microscopy, spectroscopy, and 3D electron tomography analyses of the Pt-Co nanoparticle structures suggest that the small- and intermediate-sized Pt-Co particles, which are typically Pt-rich in the fresh condition, undergo minimal morphological changes, whereas intermediate- and larger-sized Pt-Co nanoparticles that exhibit a porous “spongy” morphology and initially have a higher Co content, transform into hollowed-out shells, which is driven by continuous leaching of Co from the Pt-Co catalysts. We further show how these primary Pt-Co nanoparticle morphologies group toward a lower Co, larger size portion of the size vs. composition distribution, and provide details of their nanoscale morphological features.« less

  18. PtCo Cathode Catalyst Morphological and Compositional Changes after PEM Fuel Cell Accelerated Stress Testing

    DOE PAGES

    Sneed, Brian T.; Cullen, David A.; Mukundan, R.; ...

    2018-03-01

    Development of Pt catalysts alloyed with transition metals has led to a new class of state-of-the-art electrocatalysts for oxygen reduction at the cathode of proton exchange membrane fuel cells; however, the durability of Pt-based alloy catalysts is challenged by poor structural and chemical stability. There is a need for better understanding of the morphological and compositional changes that occur to the catalyst under fuel cell operation. In this work, we report in-depth characterization results of a Pt-Co electrocatalyst incorporated in the cathode of membrane electrode assemblies, which were evaluated before and after accelerated stress tests designed specifically to enhance catalystmore » degradation. Electron microscopy, spectroscopy, and 3D electron tomography analyses of the Pt-Co nanoparticle structures suggest that the small- and intermediate-sized Pt-Co particles, which are typically Pt-rich in the fresh condition, undergo minimal morphological changes, whereas intermediate- and larger-sized Pt-Co nanoparticles that exhibit a porous “spongy” morphology and initially have a higher Co content, transform into hollowed-out shells, which is driven by continuous leaching of Co from the Pt-Co catalysts. We further show how these primary Pt-Co nanoparticle morphologies group toward a lower Co, larger size portion of the size vs. composition distribution, and provide details of their nanoscale morphological features.« less

  19. Changes in cell proliferation and morphology in the large intestine of normal and DMH-treated rats following colostomy.

    PubMed

    Barkla, D H; Tutton, P J

    1987-04-01

    Colostomies were formed in the midcolon of normal and DMH-treated rats. Changes in cell proliferation in the mucosa adjacent to the colostomy and in the defunctioned distal segment were measured at seven, 14, 30, and 72 days using a stathmokinetic technique. Animals were given intraperitoneal injections of vinblastine and sacrificed three hours later; counts of mitotic and nonmitotic cells were made in tissue sections, and three-hour accumulated mitotic indexes were estimated. The results show that, except at seven days in DMH-treated rats, cell proliferation was unchanged in the colon proximal to the colostomy. Morphologic evidence of hyperplasia was seen in some animals at seven and 14 days. The defunctioned segment showed rapid atrophy of both mucosa and muscularis and a gradual but progressive decrease in cell proliferation. The morphology of the mucosa adjacent to the suture line in both functioning and defunctioned segments in normal and DMH-treated rats was abnormal in many animals. Abnormalities that were seen included collections of dysplastic epithelial cells in the submucosa, focal adenomatous changes, and intramural carcinoma formation. Aggregates of lymphoid tissue often were associated with carcinomas.

  20. The morphological change of supporting cells in the olfactory epithelium after bulbectomy.

    PubMed

    Makino, Nobuko; Ookawara, Shigeo; Katoh, Kazuo; Ohta, Yasushi; Ichikawa, Masumi; Ichimura, Keiichi

    2009-02-01

    Transmission electron microscopy was used to study the responses of the supporting cells of the olfactory epithelium at 1-5 days after surgical ablation of the olfactory bulb (bulbectomy). In intact olfactory epithelium, lamellar smooth endoplasmic reticulum and rod-shaped mitochondria were distinctly observed in the supporting cells. On the first day after bulbectomy, bending of the microvilli and an increase in the smooth endoplasmic reticulum were observed. Cristae of the mitochondria became obscure, and the density of the mitochondrial matrix decreased. On the second day after bulbectomy, the number of microvilli decreased, broad cytoplasmic projections that contained cytoplasmic organelles protruded into the luminal side, and the mitochondria were swollen. On the fifth day after bulbectomy, microvilli seemed to be normal and some cells had large cytoplasmic projections that protruded toward the lumen of the nasal cavity. Within the cytoplasmic projections of the supporting cells, a large lamellar and reticular-shaped smooth endoplasmic reticulum was evident. Mitochondria exhibited almost normal morphology. The current findings demonstrate that morphological changes occur in the supporting cells after bulbectomy. This new evidence hypothesizes that these changes represent events that contribute to the regeneration of the olfactory epithelium after bulbectomy.

  1. Novel cell population data from a haematology analyzer can predict timing and efficiency of stem cell transplantation.

    PubMed

    Golubeva, Vera; Mikhalevich, Juliana; Novikova, Julia; Tupizina, Olga; Trofimova, Svetlana; Zueva, Yekaterina

    2014-02-01

    Autologous hematopoietic stem cell transplantation (AHSCT) is a necessary component for many oncohematological diseases treatment. For a successful result of AHSCT a sufficient quantity of hematopoietic stem cells (HSCs) is needed. It has been proposed that morphological changes of myeloid cells could reflect the processes of bone marrow stimulation and may provide useful information to predict the stimulation efficiency and expected outcome of CD34(+) stem cells. The Beckman Coulter Cellular Analysis System DxH800 performs Flow Cytometric Digital Morphology analysis of leukocytes. All leukocyte cellular measurements can be reported as numerical values called Cell Population Data (CPD), which are able to detect morphological changes in the cell size and distribution of neutrophils. Our findings suggest that the changes in neutrophil CPD were detectable 2-4days before the observed increase in CD34(+) count in the peripheral blood and can potentially improve the management of patients. There was also a good correlation between MN-V-NE and ImmNeIndex with the CD34(+) count suggesting they can be used as a surrogate for the CD34(+) count (r=0.67 and 0.65 p<0.005 respectively). Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  2. On-command on/off switching of progenitor cell and cancer cell polarized motility and aligned morphology via a cytocompatible shape memory polymer scaffold.

    PubMed

    Wang, Jing; Quach, Andy; Brasch, Megan E; Turner, Christopher E; Henderson, James H

    2017-09-01

    In vitro biomaterial models have enabled advances in understanding the role of extracellular matrix (ECM) architecture in the control of cell motility and polarity. Most models are, however, static and cannot mimic dynamic aspects of in vivo ECM remodeling and function. To address this limitation, we present an electrospun shape memory polymer scaffold that can change fiber alignment on command under cytocompatible conditions. Cellular response was studied using the human fibrosarcoma cell line HT-1080 and the murine mesenchymal stem cell line C3H/10T1/2. The results demonstrate successful on-command on/off switching of cell polarized motility and alignment. Decrease in fiber alignment causes a change from polarized motility along the direction of fiber alignment to non-polarized motility and from aligned to unaligned morphology, while increase in fiber alignment causes a change from non-polarized to polarized motility along the direction of fiber alignment and from unaligned to aligned morphology. In addition, the findings are consistent with the hypothesis that increased fiber alignment causes increased cell velocity, while decreased fiber alignment causes decreased cell velocity. On-command on/off switching of cell polarized motility and alignment is anticipated to enable new study of directed cell motility in tumor metastasis, in cell homing, and in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Microarray analysis on gene regulation by estrogen, progesterone and tamoxifen in human endometrial stromal cells.

    PubMed

    Ren, Chun-E; Zhu, Xueqiong; Li, Jinping; Lyle, Christian; Dowdy, Sean; Podratz, Karl C; Byck, David; Chen, Hai-Bin; Jiang, Shi-Wen

    2015-03-13

    Epithelial stromal cells represent a major cellular component of human uterine endometrium that is subject to tight hormonal regulation. Through cell-cell contacts and/or paracrine mechanisms, stromal cells play a significant role in the malignant transformation of epithelial cells. We isolated stromal cells from normal human endometrium and investigated the morphological and transcriptional changes induced by estrogen, progesterone and tamoxifen. We demonstrated that stromal cells express appreciable levels of estrogen and progesterone receptors and undergo different morphological changes upon hormonal stimulation. Microarray analysis indicated that both estrogen and progesterone induced dramatic alterations in a variety of genes associated with cell structure, transcription, cell cycle, and signaling. However, divergent patterns of changes, and in some genes opposite effects, were observed for the two hormones. A large number of genes are identified as novel targets for hormonal regulation. These hormone-responsive genes may be involved in normal uterine function and the development of endometrial malignancies.

  4. [Phloretin induces apoptosis of BEL-7402 cells in vitro].

    PubMed

    Luo, Hui; Wang, Ya-jun; Chen, Jie; Liu, Jiang-qin; Zhang, Hai-tao

    2008-07-01

    To examine the effect of phloretin on apoptosis of BEL-7402 cells. The viability changes of BEL- 7402 cells as a result of phloretin-induced toxicity were analyzed using MTT assay, and the cell morphology changes were observed with fluorescence microscope. Flow cytometry was used to analyze the cell cycle and mitochondrial membrane potential changes, and chromogenic substrate assay performed to detect caspase activity. Phloretin induced obvious cytotoxicity against BEL-7402 cells with IC50 of 89.23 microg/mL. The growth curve demonstrated decreased growth of the cells as phloretin concentration increased. Cell apoptosis occurred 24 h after treatment with 40-160 microg/mL phloretin. Morphological, the cells exposed to phloretin exhibited nuclear chromatin condensation and increased fluorescence intensity. The activity of caspase-9 reached the peak level 12 h after phloretin exposure, and leak levels of caspase-6 and caspase-3 activities occurred 18 and 24 h after the exposure, respectively. Phloretin can induce BEL-7402 cell apoptosis though the mitochondrial pathway.

  5. Wavelength-dependent backscattering measurements for quantitative real-time monitoring of apoptosis in living cells

    NASA Astrophysics Data System (ADS)

    Mulvey, Christine S.; Sherwood, Carly A.; Bigio, Irving J.

    2009-11-01

    Apoptosis-programmed cell death-is a cellular process exhibiting distinct biochemical and morphological changes. An understanding of the early morphological changes that a cell undergoes during apoptosis can provide the opportunity to monitor apoptosis in tissue, yielding diagnostic and prognostic information. There is avid interest regarding the involvement of apoptosis in cancer. The initial response of a tumor to successful cancer treatment is often massive apoptosis. Current apoptosis detection methods require cell culture disruption. Our aim is to develop a nondisruptive optical method to monitor apoptosis in living cells and tissues. This would allow for real-time evaluation of apoptotic progression of the same cell culture over time without alteration. Elastic scattering spectroscopy (ESS) is used to monitor changes in light-scattering properties of cells in vitro due to apoptotic morphology changes. We develop a simple instrument capable of wavelength-resolved ESS measurements from cell cultures in the backward direction. Using Mie theory, we also develop an algorithm that extracts the size distribution of scatterers in the sample. The instrument and algorithm are validated with microsphere suspensions. For cell studies, Chinese hamster ovary (CHO) cells are cultured to confluence on plates and are rendered apoptotic with staurosporine. Backscattering measurements are performed on pairs of treated and control samples at a sequence of times up to 6-h post-treatment. Initial results indicate that ESS is capable of discriminating between treated and control samples as early as 10- to 15-min post-treatment, much earlier than is sensed by standard assays for apoptosis. Extracted size distributions from treated and control samples show a decrease in Rayleigh and 150-nm scatterers, relative to control samples, with a corresponding increase in 200-nm particles. Work continues to correlate these size distributions with underlying morphology. To our knowledge, this is the first report of the use of backscattering spectral measurements to quantitatively monitor apoptosis in viable cell cultures in vitro.

  6. Morphological changes in paraurethral area after introduction of tissue engineering construct on the basis of adipose tissue stromal cells.

    PubMed

    Makarov, A V; Arutyunyan, I V; Bol'shakova, G B; Volkov, A V; Gol'dshtein, D V

    2009-10-01

    We studied morphological changes in the paraurethral area of Wistar rats after introduction of tissue engineering constructs on the basis of multipotent mesenchymal stem cells and gelatin sponge. The tissue engineering construct containing autologous culture of the stromal fraction of the adipose tissue was most effective. After introduction of this construct we observed more rapid degradation of the construct matrix and more intensive formation of collagen fibers.

  7. Glial cell morphological and density changes through the lifespan of rhesus macaques.

    PubMed

    Robillard, Katelyn N; Lee, Kim M; Chiu, Kevin B; MacLean, Andrew G

    2016-07-01

    How aging impacts the central nervous system (CNS) is an area of intense interest. Glial morphology is known to affect neuronal and immune function as well as metabolic and homeostatic balance. Activation of glia, both astrocytes and microglia, occurs at several stages during development and aging. The present study analyzed changes in glial morphology and density through the entire lifespan of rhesus macaques, which are physiologically and anatomically similar to humans. We observed apparent increases in gray matter astrocytic process length and process complexity as rhesus macaques matured from juveniles through adulthood. These changes were not attributed to cell enlargement because they were not accompanied by proportional changes in soma or process volume. There was a decrease in white matter microglial process length as rhesus macaques aged. Aging was shown to have a significant effect on gray matter microglial density, with a significant increase in aged macaques compared with adults. Overall, we observed significant changes in glial morphology as macaques age indicative of astrocytic activation with subsequent increase in microglial density in aged macaques. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Ectopic expression of aquaporin-5 in noncancerous epithelial MDCK cells changes cellular morphology and actin fiber formation without inducing epithelial-to-mesenchymal transition.

    PubMed

    Jensen, Helene H; Holst, Mikkel R; Login, Frédéric H; Morgen, Jeanette J; Nejsum, Lene N

    2018-06-01

    Aquaporin-5 (AQP5) is a plasma membrane water channel mainly expressed in secretory glands. Increased expression of AQP5 is observed in multiple cancers, including breast cancer, where high expression correlates with the degree of metastasis and poor prognosis. Moreover, studies in cancer cells have suggested that AQP5 activates Ras signaling, drives morphological changes, and in particular increased invasiveness. To design intervention strategies, it is of utmost importance to characterize and dissect the cell biological changes induced by altered AQP5 expression. To isolate the effect of AQP5 overexpression from the cancer background, AQP5 was overexpressed in normal epithelial MDCK cells which have no endogenous AQP5 expression. AQP5 overexpression promoted actin stress fiber formation and lamellipodia dynamics. Moreover, AQP5 decreased cell circularity. Phosphorylation of AQP5 on serine 156 in the second intracellular loop has been shown to activate the Ras pathway. When serine 156 was mutated to alanine to mimic the nonphosphorylated state, the decrease in cell circularity was reversed, indicating that the AQP5-Ras axis is involved in the effect on cell shape. Interestingly, the cellular changes mediated by AQP5 were not associated with induction of epithelial-to-mesenchymal transition. Thus, AQP5 may contribute to cancer by altering cellular morphology and actin organization, which increase the metastatic potential.

  9. Influence of airway wall compliance on epithelial cell injury and adhesion during interfacial flows

    PubMed Central

    Higuita-Castro, Natalia; Mihai, Cosmin; Hansford, Derek J.

    2014-01-01

    Interfacial flows during cyclic airway reopening are an important source of ventilator-induced lung injury. However, it is not known how changes in airway wall compliance influence cell injury during airway reopening. We used an in vitro model of airway reopening in a compliant microchannel to investigate how airway wall stiffness influences epithelial cell injury. Epithelial cells were grown on gel substrates with different rigidities, and cellular responses to substrate stiffness were evaluated in terms of metabolic activity, mechanics, morphology, and adhesion. Repeated microbubble propagations were used to simulate cyclic airway reopening, and cell injury and detachment were quantified via live/dead staining. Although cells cultured on softer gels exhibited a reduced elastic modulus, these cells experienced less plasma membrane rupture/necrosis. Cells on rigid gels exhibited a minor, but statistically significant, increase in the power law exponent and also exhibited a significantly larger height-to-length aspect ratio. Previous studies indicate that this change in morphology amplifies interfacial stresses and, therefore, correlates with the increased necrosis observed during airway reopening. Although cells cultured on stiff substrates exhibited more plasma membrane rupture, these cells experienced significantly less detachment and monolayer disruption during airway reopening. Western blotting and immunofluorescence indicate that this protection from detachment and monolayer disruption correlates with increased focal adhesion kinase and phosphorylated paxillin expression. Therefore, changes in cell morphology and focal adhesion structure may govern injury responses during compliant airway reopening. In addition, these results indicate that changes in airway compliance, as occurs during fibrosis or emphysema, may significantly influence cell injury during mechanical ventilation. PMID:25213636

  10. SEM Imaging for Observation of Morphological Changes in Anaemic Human Blood Cell

    NASA Astrophysics Data System (ADS)

    Datta, Triparna; Roychoudhury, Uttam

    Scanning Electron Microscopy (SEM) is utilized to elucidate the morphological changes in anaemic human red blood cells. Haemoglobin concentration in human blood is in the range of 11.5-13.5 g/dl in healthy adults. Haemoglobin concentration in anaemic red blood is below the lower limit of normal range. Sometimes, the nature of the abnormal shape of the blood cell determines the cause of anaemia. Normally, there occurs a variation in the diameter of the red blood cell (RBC) for different types of anaemia. Increased variation of size in blood cell is termed anisocytosis (a type of anaemia) (Mohan H, Text book of pathology, New Delhi). In case of anisocytosis, diameter of cells larger than normal cell is observed. The classification of anaemia by the size of blood cell is logical, i.e. common morphological abnormality of human blood cell (Davidson's principle and practice of medicine, Publisher Churchill Livingstone, London). Cells are studied under ZEISS SEM with different magnification and applied potential of kV range. Thus the diameters of RBCs in SEM have been compared with RBCs photographed with light microscope. Anaemic cells are observed overlapped with each other with increasing diameter.

  11. Metamorphosis of mesothelial cells with active horizontal motility in tissue culture.

    PubMed

    Nagai, Hirotaka; Chew, Shan Hwu; Okazaki, Yasumasa; Funahashi, Satomi; Namba, Takashi; Kato, Takuya; Enomoto, Atsushi; Jiang, Li; Akatsuka, Shinya; Toyokuni, Shinya

    2013-01-01

    Mesothelial cells, which have diverse roles in physiology and pathology, constitute the mesothelium along with connective tissue and the basement membrane; the mesothelium serves to shield the somatic cavities. After mesothelial injury, mesothelial cells undergo tissue recovery. However, the mechanism of mesothelial regeneration remains poorly understood. In this study, we used confocal time-lapse microscopy to demonstrate that transformed mesothelial cells (MeT5A) and mouse peritoneal mesothelial cells can randomly migrate between cells in cell culture and in ex vivo tissue culture, respectively. Moreover, peritoneal mesothelial cells changed their morphology from a flattened shape to a cuboidal one prior to the migration. Conversely, MDCKII epithelial cells forming tight cell-cell contacts with one another do not alter the arrangement of adjacent cells during movement. Our evidence complements the current hypotheses of mesothelial regeneration and suggests that certain types of differentiated mesothelial cells undergo morphological changes before initiating migration to repair injured sites.

  12. Chemotaxis of Dictyostelium discoideum: Collective Oscillation of Cellular Contacts

    PubMed Central

    Schäfer, Edith; Tarantola, Marco; Polo, Elena; Westendorf, Christian; Oikawa, Noriko; Bodenschatz, Eberhard; Geil, Burkhard; Janshoff, Andreas

    2013-01-01

    Chemotactic responses of Dictyostelium discoideum cells to periodic self-generated signals of extracellular cAMP comprise a large number of intricate morphological changes on different length scales. Here, we scrutinized chemotaxis of single Dictyostelium discoideum cells under conditions of starvation using a variety of optical, electrical and acoustic methods. Amebas were seeded on gold electrodes displaying impedance oscillations that were simultaneously analyzed by optical video microscopy to relate synchronous changes in cell density, morphology, and distance from the surface to the transient impedance signal. We found that starved amebas periodically reduce their overall distance from the surface producing a larger impedance and higher total fluorescence intensity in total internal reflection fluorescence microscopy. Therefore, we propose that the dominant sources of the observed impedance oscillations observed on electric cell-substrate impedance sensing electrodes are periodic changes of the overall cell-substrate distance of a cell. These synchronous changes of the cell-electrode distance were also observed in the oscillating signal of acoustic resonators covered with amebas. We also found that periodic cell-cell aggregation into transient clusters correlates with changes in the cell-substrate distance and might also contribute to the impedance signal. It turned out that cell-cell contacts as well as cell-substrate contacts form synchronously during chemotaxis of Dictyostelium discoideum cells. PMID:23349816

  13. A hemolytic factor from Haemonchus contortus alters erythrocyte morphology.

    PubMed

    Fetterer, R H; Rhoads, M L

    1998-12-15

    A hemolytic factor from adult Haemonchus contortus caused distinct morphological changes in the surface of sheep red blood cells (RBCs). After a 15 min exposure to the hemolytic factor, hemolysis was not detected in incubation media, but RBCs were spherical in shape with numerous surface projections compared to control cells that were smooth-surfaced biconcave disks. After 30 min, a time at which significant hemolysis occurred, echinocytes were formed, and after 90 min, cells were severely disrupted with many visible holes in membranes. No RBC ghosts were observed. RBCs from four other mammalian species were lysed by the H. contortus hemolytic factor. However, the rate of hemolysis varied with a relative order of sheep approximately rabbit>goat>pig>calf. The morphology of RBCs from all four species was significantly altered after 30 min incubation with the degree of morphological changes related to the degree of hemolysis. These results support the hypothesis that the hemolytic factor acts as a pore-forming agent, although a phospholipase or other enzyme might play a role in solubilization of cell membranes.

  14. Wavelength-dependent backscattering measurements for quantitative monitoring of apoptosis, Part 1: early and late spectral changes are indicative of the presence of apoptosis in cell cultures

    NASA Astrophysics Data System (ADS)

    Mulvey, Christine S.; Zhang, Kexiong; Liu, Wei-Han Bobby; Waxman, David J.; Bigio, Irving J.

    2011-11-01

    Apoptosis, a form of programmed cell death with unique morphological and biochemical features, is dysregulated in cancer and is activated by many cancer chemotherapeutic drugs. Noninvasive assays for apoptosis in cell cultures can aid in screening of new anticancer agents. We have previously demonstrated that elastic scattering spectroscopy can monitor apoptosis in cell cultures. In this report we present data on monitoring the detailed time-course of scattering changes in a Chinese hamster ovary (CHO) and PC-3 prostate cancer cells treated with staurosporine to induce apoptosis. Changes in the backscattering spectrum are detectable within 10 min, and continue to progress up to 48 h after staurosporine treatment, with the magnitude and kinetics of scattering changes dependent on inducer concentration. Similar responses were observed in CHO cells treated with several other apoptosis-inducing protocols. Early and late scattering changes were observed under conditions shown to induce apoptosis via caspase activity assay and were absent under conditions where apoptosis was not induced. Finally, blocking caspase activity and downstream apoptotic morphology changes prevented late scattering changes. These observations demonstrate that early and late changes in wavelength-dependent backscattering correlate with the presence of apoptosis in cell cultures and that the late changes are specific to apoptosis.

  15. Quantification of mammalian tumor cell state plasticity with digital holographic cytometry

    NASA Astrophysics Data System (ADS)

    Hejna, Miroslav; Jorapur, Aparna; Zhang, Yuntian; Song, Jun S.; Judson, Robert L.

    2018-02-01

    Individual cells within isogenic tumor populations can exhibit distinct cellular morphologies, behaviors, and molecular profiles. Cell state plasticity refers to the propensity of a cell to transition between these different morphologies and behaviors. Elevation of cell state plasticity is thought to contribute to critical stages in tumor evolution, including metastatic dissemination and acquisition of therapeutic resistance. However, methods for quantifying general plasticity in mammalian cells remain limited. Working with a HoloMonitor M4 digital holographic cytometry platform, we have established a machine learning-based pipeline for high accuracy and label-free classification of adherent cells. We use twenty-six morphological and optical density-derived features for label-free identification of cell state in heterogeneous cultures. The system is housed completely within a mammalian cell incubator, permitting the monitoring of changes in cell state over time. Here we present an application of our approach for studying cell state plasticity. Human melanoma cell lines of known metastatic potential were monitored in standard growth conditions. The rate of feature change was quantified for each individual cell in the populations. We observed that cells of higher metastatic potential exhibited more rapid fluctuation of cell state in homeostatic conditions. The approach we demonstrate will be advantageous for further investigations into the factors that influence cell state plasticity.

  16. Stepwise morphological changes and cytoskeletal reorganization of human mesenchymal stem cells treated by short-time cyclic uniaxial stretch.

    PubMed

    Parandakh, Azim; Tafazzoli-Shadpour, Mohammad; Khani, Mohammad-Mehdi

    2017-06-01

    This study aimed to investigate stepwise remodeling of human mesenchymal stem cells (hMSCs) in response to cyclic stretch through rearrangement and alignment of cells and cytoskeleton regulation toward smooth muscle cell (SMC) fate in different time spans. Image analysis techniques were utilized to calculate morphological parameters. Cytoskeletal reorganization was observed by investigating F-actin filaments using immunofluorescence staining, and expression level of contractile SMC markers was followed by a quantitative polymerase chain reaction method. Applying cyclic uniaxial stretch on cultured hMSCs, utilizing a costume-made device, led to alteration in fractal dimension (FD) and cytoskeleton structure toward continuous alignment and elongation of cells by elevation of strain duration. Actin filaments became more aligned perpendicular to the axis of mechanical stretch by increasing uniaxial loading duration. At first, FD met a significant decrease in 4 h loading duration then increased significantly by further loading up to 16 h, followed by another decrease up to 1 d of uniaxial stretching. HMSCs subjected to 24 h cyclic uniaxial stretching significantly expressed early and intermediate contractile SM markers. It was hypothesized that the increase in FD after 4 h while cells continuously became more aligned and elongated was due to initiation of change in phenotype that influenced arrangement of cells. At this point, change in cell phenotype started leading to change in morphology while mechanical loading still caused cell alignment and rearrangement. Results can be helpful when optimized engineered cells are needed based on mechanical condition for functional engineered tissue and cell therapy.

  17. Ontogeny and function of the fifth limb in Cypridocopain ostracods.

    PubMed

    Kaji, Tomonari

    2010-08-01

    The exoskeleton of arthropods undergoes reformation at every molting. Accordingly, external morphology can metamorphose through molting. In some crustaceans, the function of appendages is modified through ontogeny. These morphological modifications require accordant modification of the correlation between different body parts because the morphological function depends on the combined correlation between different parts. In the case of crustacean morphology, exoskeleton and muscles are correlated to each other. The functional morphology of the fifth limb of cypridoid ostracods transforms from "walking leg + mouthparts (+ possibly respiratory parts)" to "mouthparts + respiratory parts + grasping hook (in males only)" through ontogeny. In this study, the three-dimensional structures of the exoskeleton and muscular systems were observed by confocal laser-scanning microscopy in some species of suborder Cypridocopina. The muscular system is reportedly not changed by the ontogeny of appendages in females, but it does change in males. Furthermore, regional cell proliferation, which was detected previously, represented the causal factor of exoskeletal modification. I therefore conclude that the enlarged endite in the female fifth limb is produced by exoskeletal modification based on regional cell proliferation, rather than by a change in the muscular system. In contrast, modification in the male requires a change in the muscular system in addition to exoskeletal modification.

  18. Localized movement and morphology of UBF1-positive nucleolar regions are changed by γ-irradiation in G2 phase of the cell cycle

    PubMed Central

    Sorokin, Dmitry V; Stixová, Lenka; Sehnalová, Petra; Legartová, Soňa; Suchánková, Jana; Šimara, Pavel; Kozubek, Stanislav; Matula, Pavel; Skalníková, Magdalena; Raška, Ivan; Bártová, Eva

    2015-01-01

    The nucleolus is a well-organized site of ribosomal gene transcription. Moreover, many DNA repair pathway proteins, including ATM, ATR kinases, MRE11, PARP1 and Ku70/80, localize to the nucleolus (Moore et al., 2011). We analyzed the consequences of DNA damage in nucleoli following ultraviolet A (UVA), C (UVC), or γ-irradiation in order to test whether and how radiation-mediated genome injury affects local motion and morphology of nucleoli. Because exposure to radiation sources can induce changes in the pattern of UBF1-positive nucleolar regions, we visualized nucleoli in living cells by GFP-UBF1 expression for subsequent morphological analyses and local motion studies. UVA radiation, but not 5 Gy of γ-rays, induced apoptosis as analyzed by an advanced computational method. In non-apoptotic cells, we observed that γ-radiation caused nucleolar re-positioning over time and changed several morphological parameters, including the size of the nucleolus and the area of individual UBF1-positive foci. Radiation-induced nucleoli re-arrangement was observed particularly in G2 phase of the cell cycle, indicating repair of ribosomal genes in G2 phase and implying that nucleoli are less stable, thus sensitive to radiation, in G2 phase. PMID:26208041

  19. Separation anxiety: Stress, tension and cytokinesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohan, Krithika; Iglesias, Pablo A., E-mail: pi@jhu.edu; Robinson, Douglas N., E-mail: dnr@jhmi.edu

    Cytokinesis, the physical separation of a mother cell into two daughter cells, progresses through a series of well-defined changes in morphology. These changes involve distinct biochemical and mechanical processes. Here, we review the mechanical features of cells during cytokinesis, discussing both the material properties as well as sources of stresses, both active and passive, which lead to the observed changes in morphology. We also describe a mechanosensory feedback control system that regulates protein localization and shape progression during cytokinesis. -- Highlights: Black-Right-Pointing-Pointer Cytokinesis progresses through three distinct mechanical phases. Black-Right-Pointing-Pointer Cortical tension initially resists deformation of mother cell. Black-Right-Pointing-Pointer Latemore » in cytokinesis, cortical tension provides stress, enabling furrow ingression. Black-Right-Pointing-Pointer A mechanosensory feedback control system regulates cytokinesis.« less

  20. Changes in morphology of retinal ganglion cells with eccentricity in retinal degeneration.

    PubMed

    Anderson, E E; Greferath, U; Fletcher, E L

    2016-05-01

    Ganglion cells are the output neurons of the retina and are known to remodel during the subtle plasticity changes that occur following the death of photoreceptors in inherited retinal degeneration. We examine the influence of retinal eccentricity on anatomical remodelling and ganglion cell morphology well after photoreceptor loss. Rd1 mice that have a mutation in the β subunit of phosphodiesterase 6 were used as a model of retinal degeneration and gross remodelling events were examined by processing serial sections for immunocytochemistry. Retinal wholemounts from rd1-Thy1 and control Thy1 mice that contained a fluorescent protein labelling a subset of ganglion cells were processed for immunohistochemistry at 11 months of age. Ganglion cells were classified based on their soma size, dendritic field size and dendritic branching pattern and their dendritic fields were analysed for their length, area and quantity of branching points. Overall, more remodelling was found in the central compared with the peripheral retina. In addition, the size and complexity of A2, B1, C1 and D type ganglion cells located in the central region of the retina decreased. We propose that the changes in ganglion cell morphology are correlated with remodelling events in these regions and impact the function of retinal circuitry in the degenerated retina.

  1. The ultrastructural surface morphology of oral cancer cells and keratinocytes after exposure to chitosan

    NASA Astrophysics Data System (ADS)

    Fatimah; Sarsito, A. S.; Wimardhani, Y. S.

    2017-08-01

    Low-molecular-weight chitosan (LMWC) has the same selective cytotoxic effects on oral cancer cells as cisplatin. The cell deaths caused by the anticancer characteristics of chitosan show that apoptosis is not the death pathway of the primary cells involved. The interactions between LMWC and the cells need to be explored. The objective of this study was to compare the ultrastructural morphology of oral Squamous Cell Carcinoma (SCC Ca)-922 and noncancer keratinocyte HaCaT cell lines after exposure to LMWC and cisplatin. The cells were treated with LMWC and cisplatin, and their ultrastructural morphology was analyzed using scanning electron micrographs. Features of early apoptosis, seen as the loss of microvilli, were detected in the LMWC-exposed Ca9-22 cells, and there was a material surrounding the cells. In contrast, the LMWC-exposed HaCaT cells showed no changes related to apoptosis. The results were the opposite when cisplatin was used. This study confirms that there are differences in the ultrastructural surface morphology of LMWC-exposed and cisplatin-exposed oral cancer cells and keratinocytes that could be correlated with their biological activity.

  2. A morphological study of the changes in the ultrastructure of a bacterial biofilm disrupted by an ac corona discharge in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stepanova, Olga, E-mail: o.m.stepanova@spbu.ru; Astafiev, Alexander; Kudryavtsev, Anatoly

    The morphology of bacterial cells and biofilms subjected to a low frequency (∼10{sup 5} Hz) ac (∼10{sup −1} A) corona discharge was investigated using electron microscopy. A low-frequency ac corona discharge in air is shown to have a bactericidal and bacteriostatic effect on Escherichia coli M17 culture at both the cellular and population levels. Corona exposure inhibits the formation of a microbial community and results in the destruction of formed biofilms. This paper presents data on changes in the ultrastructure of cells and biofilms after corona treatment. Our results suggest that the E. coli M17 cells inside biofilms are affectedmore » with results similar to sub-lethal and lethal thermal exposure. Some of the biological aspects of colony and biofilm cells death are evaluated. Morphological changes in the ultrastructure of the biofilms under corona treatment are described. Our results indicate that the heating effect is the main factor responsible for the corona-induced inactivation of bacteria.« less

  3. Control of dental-derived induced pluripotent stem cells through modified surfaces for dental application.

    PubMed

    Choi, Hyunmin; Park, Kyu-Hyung; Lee, Ah-Reum; Mun, Chin Hee; Shin, Yong Dae; Park, Yong-Beom; Park, Young-Bum

    2017-07-01

    The aim of this study is to investigate the behaviour of iPSc derived from dental stem cells in terms of initial adhesion, differentiation potential on differently surface-treated titanium disc. iPSc derived from human gingival fibroblasts (hGFs) were established using 4-reprogramming factors transduction with Sendai virus. The hGF-iPSc established in this study exhibited the morphology and growth properties similar to human embryonic stem (ES) cells and expressed pluripotency makers. Alkaline Phosphatase (AP) staining, Embryoid Body (EB) formation and in vitro differentiation and karyotyping further confirmed pluripotency of hGF-iPSc. Then, hGF-iPSc were cultured on machined- and Sandblasted and acid etched (SLA)-treated titanium discs with osteogenic induction medium and their morphological as well as quantitative changes according to different surface types were investigated using Alizrin Red S staining, Scanning electron microscopy (SEM), Flow cytometry and RT-PCR. Time-dependent and surface-dependent morphological changes as well as quantitative change in osteogenic differentiation of hGF-iPSc were identified and osteogenic gene expression of hGF-iPSc cultured on SLA-treated titanium disc found to be greater than machined titanium disc, suggesting the fate of hGF-iPSc may be determined by the characteristics of surface to which hGF-iPSc first adhere. iPSc derived from dental stem cell can be one of the most promising and practical cell sources for personalized regenerative dentistry and their morphological change as well as quantitative change in osteogenic differentiation according to different surface types may be further utilized for future clinical application incorporated with dental implant.

  4. Sigma Receptor Ligand, (+)-Pentazocine, Suppresses Inflammatory Responses of Retinal Microglia

    PubMed Central

    Zhao, Jing; Ha, Yonju; Liou, Gregory I.; Gonsalvez, Graydon B.; Smith, Sylvia B.; Bollinger, Kathryn E.

    2014-01-01

    Purpose. To evaluate the effects of the σ 1 receptor (σR1) agonist, (+)-pentazocine, on lipopolysaccharide (LPS)–induced inflammatory changes in retinal microglia cells. Methods. Retinal microglia cells were isolated from Sprague-Dawley rat pups. Cells were treated with LPS with or without (+)-pentazocine and with or without the σR1 antagonist BD1063. Morphologic changes were assayed. Cell viability was assessed by using MTT assay. Supernatant levels of tumor necrosis factor α (TNF-α), interleukin 10, (IL-10), monocyte chemoattractant protein-1 (MCP-1), and nitric oxide (NO) were determined. Reactive oxygen species (ROS) formation was assayed, and levels of mitogen-activated protein kinases (MAPKs) were analyzed by using Western blot. Results. The σR1 protein was expressed in retinal microglia. Incubation with LPS and/or (+)-pentazocine did not alter cell viability or σR1 protein levels. Incubation with LPS for 24 hours induced a marked change in microglial morphology and a significant increase in secreted levels of TNF-α, IL-10, MCP-1, and NO. Pretreatment with (+)-pentazocine inhibited the LPS-induced morphologic changes. Release of TNF-α, IL-10, MCP-1, and NO was reduced with (+)-pentazocine. Intracellular ROS formation was suppressed with (+)-pentazocine. Phosphorylation of extracellular signal–regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) was reduced in the presence of (+)-pentazocine. The σR1 antagonist BD1063 blocked the (+)-pentazocine–mediated inhibition of LPS-induced morphologic changes. In addition, BD1063 treatment blocked (+)-pentazocine–mediated suppression of LPS-induced TNF-α, IL-10, MCP-1, NO, and intracellular ROS release. Conclusions. Treatment with (+)-pentazocine suppressed inflammatory responses of retinal microglia and inhibited LPS-induced activation of ERK/JNK MAPK. In neurodegenerative disease, (+)-pentazocine may exert neuroprotective effects through manipulation of microglia. PMID:24812552

  5. Morphological changes in human neural cells following tick-borne encephalitis virus infection.

    PubMed

    Růzek, Daniel; Vancová, Marie; Tesarová, Martina; Ahantarig, Arunee; Kopecký, Jan; Grubhoffer, Libor

    2009-07-01

    Tick-borne encephalitis (TBE) is one of the leading and most dangerous human viral neuroinfections in Europe and north-eastern Asia. The clinical manifestations include asymptomatic infections, fevers and debilitating encephalitis that might progress into chronic disease or fatal infection. To understand TBE pathology further in host nervous systems, three human neural cell lines, neuroblastoma, medulloblastoma and glioblastoma, were infected with TBE virus (TBEV). The susceptibility and virus-mediated cytopathic effect, including ultrastructural and apoptotic changes of the cells, were examined. All the neural cell lines tested were susceptible to TBEV infection. Interestingly, the neural cells produced about 100- to 10,000-fold higher virus titres than the conventional cell lines of extraneural origin, indicating the highly susceptible nature of neural cells to TBEV infection. The infection of medulloblastoma and glioblastoma cells was associated with a number of major morphological changes, including proliferation of membranes of the rough endoplasmic reticulum and extensive rearrangement of cytoskeletal structures. The TBEV-infected cells exhibited either necrotic or apoptotic morphological features. We observed ultrastructural apoptotic signs (condensation, margination and fragmentation of chromatin) and other alterations, such as vacuolation of the cytoplasm, dilatation of the endoplasmic reticulum cisternae and shrinkage of cells, accompanied by a high density of the cytoplasm. On the other hand, infected neuroblastoma cells did not exhibit proliferation of membranous structures. The virions were present in both the endoplasmic reticulum and the cytoplasm. Cells were dying preferentially by necrotic mechanisms rather than apoptosis. The neuropathological significance of these observations is discussed.

  6. How well can morphology assess cell death modality? A proteomics study

    PubMed Central

    Chernobrovkin, Alexey L; Zubarev, Roman A

    2016-01-01

    While the focus of attempts to classify cell death programs has finally shifted in 2010s from microscopy-based morphological characteristics to biochemical assays, more recent discoveries have put the underlying assumptions of many such assays under severe stress, mostly because of the limited specificity of the assays. On the other hand, proteomics can quantitatively measure the abundances of thousands of proteins in a single experiment. Thus proteomics could develop a modern alternative to both semiquantitative morphology assessment as well as single-molecule biochemical assays. Here we tested this hypothesis by analyzing the proteomes of cells dying after been treated with various chemical agents. The most striking finding is that, for a multivariate model based on the proteome changes in three cells lines, the regulation patterns of the 200–500 most abundant proteins typically attributed to household type more accurately reflect that of the proteins directly interacting with the drug than any other protein subset grouped by common function or biological process, including cell death. This is in broad agreement with the 'rigid cell death mechanics' model where drug action mechanism and morphological changes caused by it are bijectively linked. This finding, if confirmed, will open way for a broad use of proteomics in death modality assessment. PMID:27752363

  7. Detecting cell death with optical coherence tomography and envelope statistics

    NASA Astrophysics Data System (ADS)

    Farhat, Golnaz; Yang, Victor X. D.; Czarnota, Gregory J.; Kolios, Michael C.

    2011-02-01

    Currently no standard clinical or preclinical noninvasive method exists to monitor cell death based on morphological changes at the cellular level. In our past work we have demonstrated that quantitative high frequency ultrasound imaging can detect cell death in vitro and in vivo. In this study we apply quantitative methods previously used with high frequency ultrasound to optical coherence tomography (OCT) to detect cell death. The ultimate goal of this work is to use these methods for optically-based clinical and preclinical cancer treatment monitoring. Optical coherence tomography data were acquired from acute myeloid leukemia cells undergoing three modes of cell death. Significant increases in integrated backscatter were observed for cells undergoing apoptosis and mitotic arrest, while necrotic cells induced a decrease. These changes appear to be linked to structural changes observed in histology obtained from the cell samples. Signal envelope statistics were analyzed from fittings of the generalized gamma distribution to histograms of envelope intensities. The parameters from this distribution demonstrated sensitivities to morphological changes in the cell samples. These results indicate that OCT integrated backscatter and first order envelope statistics can be used to detect and potentially differentiate between modes of cell death in vitro.

  8. Phase imaging microscopy for the diagnostics of plasma-cell interaction

    NASA Astrophysics Data System (ADS)

    Ohene, Yolanda; Marinov, Ilya; de Laulanié, Lucie; Dupuy, Corinne; Wattelier, Benoit; Starikovskaia, Svetlana

    2015-06-01

    Phase images of biological specimens were obtained by the method of Quadriwave Lateral Shearing Interferometry (QWLSI). The QWLSI technique produces, at high resolution, phase images of the cells having been exposed to a plasma treatment and enables the quantitative analysis of the changes in the surface area of the cells over time. Morphological changes in the HTori normal thyroid cells were demonstrated using this method. There was a comparison of the cell behaviour between control cells, cells treated by plasma of a nanosecond dielectric barrier discharge, including cells pre-treated by catalase, and cells treated with an equivalent amount of H2O2. The major changes in the cell membrane morphology were observed at only 5 min after the plasma treatment. The primary role of reactive oxygen species (ROS) in this degradation is suggested. Deformation and condensation of the cell nucleus were observed 2-3 h after the treatment and are supposedly related to apoptosis induction. The coupling of the phase QWLSI with immunofluorescence imaging would give a deeper insight into the mechanisms of plasma induced cell death.

  9. Dependence of Impedance of Embedded Single Cells on Cellular Behaviour

    PubMed Central

    Cho, Sungbo; Castellarnau, Marc; Samitier, Josep; Thielecke, Hagen

    2008-01-01

    Non-invasive single cell analyses are increasingly required for the medical diagnostics of test substances or the development of drugs and therapies on the single cell level. For the non-invasive characterisation of cells, impedance spectroscopy which provides the frequency dependent electrical properties has been used. Recently, microfludic systems have been investigated to manipulate the single cells and to characterise the electrical properties of embedded cells. In this article, the impedance of partially embedded single cells dependent on the cellular behaviour was investigated by using the microcapillary. An analytical equation was derived to relate the impedance of embedded cells with respect to the morphological and physiological change of extracellular interface. The capillary system with impedance measurement showed a feasibility to monitor the impedance change of embedded single cells caused by morphological and physiological change of cell during the addition of DMSO. By fitting the derived equation to the measured impedance of cell embedded at different negative pressure levels, it was able to extrapolate the equivalent gap and gap conductivity between the cell and capillary wall representing the cellular behaviour. PMID:27879760

  10. Effect of three months of soft contact lens wear on conjunctival cytology.

    PubMed

    Sapkota, Kishor; Franco, Sandra; Sampaio, Paula; Lira, Madalena

    2016-07-01

    The purpose of this study was to investigate the effect of three months of soft contact lens wear on conjunctival goblet cell density and epithelial cell morphology. This was a longitudinal clinical trial. Conjunctival impression cytology was performed on the superior palpebral conjunctiva in fifty-four eyes of twenty-seven neophyte contact lens wearers before and after three months of contact lens wear. Goblet cell density was determined by optical microscopy and epithelial cell morphology was classified according to the Tseng classification. Changes in goblet cell density as well as epithelial cell grading were determined. The effects of lens material and wearing modality on cytological changes were also investigated. Goblet cell density reduced significantly by 85 ± 151 cells/mm(2) (p < 0.001) after three months of contact lens wear. Reduction in goblet cell density was associated with lens materials; it was higher in conventional hydrogel lenses in comparison to silicone-hydrogel lenses (p = 0.008). The highest reduction in goblet cell density was found with Nelfilcon A lens wear (p = 0.002) and the lowest with Comfilcon A lens wear (p = 0.414). There was no statistically significant difference in grading of epithelial metaplasia before and after three months of contact lens wear (p = 0.075). Age was not correlated with the reduction in goblet cell density (r = -0.196, p = 0.160) but it was associated with the change in epithelial cell morphology (p = 0.036). Three months of soft contact lens wear statistically significantly reduced goblet cell density; however, no significant changes were found in the grading of epithelial metaplasia. Contact lenses with lower oxygen permeability, higher Young modulus and higher thickness highly affected the conjunctival cytology. © 2016 Optometry Australia.

  11. Surface topography during neural stem cell differentiation regulates cell migration and cell morphology.

    PubMed

    Czeisler, Catherine; Short, Aaron; Nelson, Tyler; Gygli, Patrick; Ortiz, Cristina; Catacutan, Fay Patsy; Stocker, Ben; Cronin, James; Lannutti, John; Winter, Jessica; Otero, José Javier

    2016-12-01

    We sought to determine the contribution of scaffold topography to the migration and morphology of neural stem cells by mimicking anatomical features of scaffolds found in vivo. We mimicked two types of central nervous system scaffolds encountered by neural stem cells during development in vitro by constructing different diameter electrospun polycaprolactone (PCL) fiber mats, a substrate that we have shown to be topographically similar to brain scaffolds. We compared the effects of large fibers (made to mimic blood vessel topography) with those of small-diameter fibers (made to mimic radial glial process topography) on the migration and differentiation of neural stem cells. Neural stem cells showed differential migratory and morphological reactions with laminin in different topographical contexts. We demonstrate, for the first time, that neural stem cell biological responses to laminin are dependent on topographical context. Large-fiber topography without laminin prevented cell migration, which was partially reversed by treatment with rock inhibitor. Cell morphology complexity assayed by fractal dimension was inhibited in nocodazole- and cytochalasin-D-treated neural precursor cells in large-fiber topography, but was not changed in small-fiber topography with these inhibitors. These data indicate that cell morphology has different requirements on cytoskeletal proteins dependent on the topographical environment encountered by the cell. We propose that the physical structure of distinct scaffolds induces unique signaling cascades that regulate migration and morphology in embryonic neural precursor cells. J. Comp. Neurol. 524:3485-3502, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. ATF6α regulates morphological changes associated with senescence in human fibroblasts

    PubMed Central

    Martin, Nathalie; Saas, Laure; Cormenier, Johanna; Malaquin, Nicolas; Huot, Ludovic; Slomianny, Christian; Bouali, Fatima; Vercamer, Chantal; Hot, David; Pourtier, Albin; Chevet, Eric; Abbadie, Corinne; Pluquet, Olivier

    2016-01-01

    Cellular senescence is known as an anti-tumor barrier and is characterized by a number of determinants including cell cycle arrest, senescence associated β-galactosidase activity and secretion of pro-inflammatory mediators. Senescent cells are also subjected to enlargement, cytoskeleton-mediated shape changes and organelle alterations. However, the underlying molecular mechanisms responsible for these last changes remain still uncharacterized. Herein, we have identified the Unfolded Protein Response (UPR) as a player controlling some morphological aspects of the senescent phenotype. We show that senescent fibroblasts exhibit ER expansion and mild UPR activation, but conserve an ER stress adaptive capacity similar to that of exponentially growing cells. By genetically invalidating the three UPR sensors in senescent fibroblasts, we demonstrated that ATF6α signaling dictates senescence-associated cell shape modifications. We also show that ER expansion and increased secretion of the pro-inflammatory mediator IL6 were partly reversed by silencing ATF6α in senescent cells. Moreover, ATF6α drives the increase of senescence associated-β-galactosidase activity. Collectively, these findings unveil a novel and central role for ATF6α in the establishment of morphological features of senescence in normal human primary fibroblasts. PMID:27563820

  13. ATF6α regulates morphological changes associated with senescence in human fibroblasts.

    PubMed

    Druelle, Clémentine; Drullion, Claire; Deslé, Julie; Martin, Nathalie; Saas, Laure; Cormenier, Johanna; Malaquin, Nicolas; Huot, Ludovic; Slomianny, Christian; Bouali, Fatima; Vercamer, Chantal; Hot, David; Pourtier, Albin; Chevet, Eric; Abbadie, Corinne; Pluquet, Olivier

    2016-10-18

    Cellular senescence is known as an anti-tumor barrier and is characterized by a number of determinants including cell cycle arrest, senescence associated β-galactosidase activity and secretion of pro-inflammatory mediators. Senescent cells are also subjected to enlargement, cytoskeleton-mediated shape changes and organelle alterations. However, the underlying molecular mechanisms responsible for these last changes remain still uncharacterized. Herein, we have identified the Unfolded Protein Response (UPR) as a player controlling some morphological aspects of the senescent phenotype. We show that senescent fibroblasts exhibit ER expansion and mild UPR activation, but conserve an ER stress adaptive capacity similar to that of exponentially growing cells. By genetically invalidating the three UPR sensors in senescent fibroblasts, we demonstrated that ATF6α signaling dictates senescence-associated cell shape modifications. We also show that ER expansion and increased secretion of the pro-inflammatory mediator IL6 were partly reversed by silencing ATF6α in senescent cells. Moreover, ATF6α drives the increase of senescence associated-β-galactosidase activity. Collectively, these findings unveil a novel and central role for ATF6α in the establishment of morphological features of senescence in normal human primary fibroblasts.

  14. Effect of platelet activating factor with and without receptor antagonist (WEB2170) on morphology of isolated cochlear outer hair cells.

    PubMed

    Jung, Timothy T K; John, Earnest O; Park, Seong Kook; Park, Yong Soo; Rhee, Chong-Ku

    2004-02-01

    Platelet activating factor (PAF), generated from biologically active phospholipids, has been implicated as a potent inflammatory mediator and has been shown to be involved in many pathological processes, especially in inflammation and allergy. It has been suspected that PAF may be one of the inflammatory mediators in middle ear effusion that can induce sensorineural hearing loss, as observed in chronic otitis media. The PAF receptor antagonist WEB2170 has been studied extensively, and its inhibitory effects against various PAF actions are well proven in otologic systems. The purpose of our study was to determine the effect of superfusion of PAF and WEB2170 on morphological changes in isolated cochlear outer hair cells (OHCs). Isolated OHCs from adult chinchilla cochleas were exposed to albumin-phosphate-buffered saline solution (1 mg/mL), WEB2170 (5 mg/30 mL), PAF (1 micromol/L), or both PAF (I micromol/L) and WEB2170 (5 mg/30 mL). All experiments were performed at an osmolality of 305 +/- 5 mOsm at room temperature for 30 minutes. The cells were observed with an inverted microscope; the images were stored and analyzed on the Image Pro-Plus program. The OHCs exposed to control albumin-phosphate-buffered saline solution or to WEB2170 did not show any significant change in cell shape or length. The cells exposed to 1 micromol/L of PAF showed ballooning and significant shortening of the mean cell length in 15 to 20 minutes. These morphological changes in OHCs can be prevented by pretreating OHCs with WEB2170. This study demonstrated that exposure to PAF causes morphological changes in isolated OHCs that can be prevented by the PAF receptor antagonist WEB2170.

  15. Live morphological analysis of taxol-induced cytoplasmic vacuolization [corrected] in human lung adenocarcinoma cells.

    PubMed

    Wang, Xiao-Ping; Chen, Tong-Sheng; Sun, Lei; Cai, Ji-Ye; Wu, Ming-Qian; Mok, Martin

    2008-12-01

    Taxol (paclitaxel), one of the most active cancer chemotherapeutic agents, can cause programmed cell death (PCD) and cytoplasmic vacuolization. The objective of this study was to analyze the morphological characteristics induced by taxol. Human lung adenocarcinoma (ASTC-a-1) cells were exposed to various concentration of taxol. CCK-8 was used to assay the cell viability. Atomic force microscopy (AFM), plasmid transfection and confocal fluorescence microscopy were performed to image the cells morphological change induced by taxol. Fluorescence resonance energy transfer (FRET) was used to monitor the caspase-3 activation in living cells during taxol-induced cell death. Cells treated with taxol exhibited significant swelling and cytoplasmic vacuolization which may be due to endoplasmic reticulum (ER) vacuolization. Caspase-3 was not activated during taxol-induced cytoplasmic vacuolization and cell death. These findings suggest that taxol induces caspase-3-independent cytoplasmic vacuolization, cell swelling and cell death through ER vacuolization.

  16. Ellagic Acid-Changed Epigenome of Ribosomal Genes and Condensed RPA194-Positive Regions of Nucleoli in Tumour Cells.

    PubMed

    Legartová, S; Sbardella, G; Kozubek, S; Bártová, E

    2015-01-01

    We studied the effect of ellagic acid (EA) on the morphology of nucleoli and on the pattern of major proteins of the nucleolus. After EA treatment of HeLa cells, we observed condensation of nucleoli as documented by the pattern of argyrophilic nucleolar organizer regions (AgNORs). EA also induced condensation of RPA194-positive nucleolar regions, but no morphological changes were observed in nucleolar compartments positive for UBF1/2 proteins or fibrillarin. Studied morphological changes induced by EA were compared with the morphology of control, non-treated cells and with pronounced condensation of all nucleolar domains caused by actinomycin D (ACT-D) treatment. Similarly as ACT-D, but in a lesser extent, EA induced an increased number of 53BP1-positive DNA lesions. However, the main marker of DNA lesions, γH2AX, was not accumulated in body-like nuclear structures. An increased level of γH2AX was found by immunofluorescence and Western blots only after EA treatment. Intriguingly, the levels of fibrillarin, UBF1/2 and γH2AX were increased at the promoters of ribosomal genes, while 53BP1 and CARM1 levels were decreased by EA treatment at these genomic regions. In the entire genome, EA reduced H3R17 dimethylation. Taken together, ellagic acid is capable of significantly changing the nucleolar morphology and protein levels inside the nucleolus.

  17. Electrical stimulation of schwann cells promotes sustained increases in neurite outgrowth.

    PubMed

    Koppes, Abigail N; Nordberg, Andrea L; Paolillo, Gina M; Goodsell, Nicole M; Darwish, Haley A; Zhang, Linxia; Thompson, Deanna M

    2014-02-01

    Endogenous electric fields are instructive during embryogenesis by acting to direct cell migration, and postnatally, they can promote axonal growth after injury (McCaig 1991, Al-Majed 2000). However, the mechanisms for these changes are not well understood. Application of an appropriate electrical stimulus may increase the rate and success of nerve repair by directly promoting axonal growth. Previously, DC electrical stimulation at 50 mV/mm (1 mA, 8 h duration) was shown to promote neurite outgrowth and a more pronounced effect was observed if both peripheral glia (Schwann cells) and neurons were co-stimulated. If electrical stimulation is delivered to an injury site, both the neurons and all resident non-neuronal cells [e.g., Schwann cells, endothelial cells, fibroblasts] will be treated and this biophysical stimuli can influence axonal growth directly or indirectly via changes to the resident, non-neuronal cells. In this work, non-neuronal cells were electrically stimulated, and changes in morphology and neuro-supportive cells were evaluated. Schwann cell response (morphology and orientation) was examined after an 8 h stimulation over a range of DC fields (0-200 mV/mm, DC 1 mA), and changes in orientation were observed. Electrically prestimulating Schwann cells (50 mV/mm) promoted 30% more neurite outgrowth relative to co-stimulating both Schwann cells with neurons, suggesting that electrical stimulation modifies Schwann cell phenotype. Conditioned medium from the electrically prestimulated Schwann cells promoted a 20% increase in total neurite outgrowth and was sustained for 72 h poststimulation. An 11-fold increase in nerve growth factor but not brain-derived neurotrophic factor or glial-derived growth factor was found in the electrically prestimulated Schwann cell-conditioned medium. No significant changes in fibroblast or endothelial morphology and neuro-supportive behavior were observed poststimulation. Electrical stimulation is widely used in clinical settings; however, the rational application of this cue may directly impact and enhance neuro-supportive behavior, improving nerve repair.

  18. Modifications in plasma membrane lipid composition and morphological features of AH-130 hepatoma cells by polyenylphosphatidylcholine in vivo treatment.

    PubMed

    Cinosi, Vincenzo; Antonini, Roberto; Crateri, Pasqualina; Arancia, Giuseppe

    2011-07-01

    The plasma membrane lipid composition in AH-130 hepatoma cells was found to change remarkably after polyenylphosphatidylcholine (PPC) treatment. Plasma membranes from cells grown in rats treated for 7 days i.v. with 20 mg/kg/day PPC, when compared to those of control cells, did not show significantly different amounts of cholesterol or phospholipids relative to protein content, but, surprisingly, the individual phospholipid distribution inside the two membrane leaflets changed dramatically. Phosphatidylcholine (PC), the major phospholipid in the external membrane leaflet, increased ~47% (p<0.001). By contrast, phosphatidylethanolamine (PE), the most important component of the inner leaflet, decreased nearly 37% (p<0.001), while sphingomyelin (SM) also decreased ~17%, (p=0.1). Tumor cells collected from control rats at the same time interval and observed by scanning electron microscopy, exhibited a spherical shape with numerous and randomly distributed long microvilli, the same morphological and ultrastructural features displayed by the implanted cells. Conversely, tumor cells from PPC-treated rats no longer showed the roundish cell profile, and microvilli appeared shortened and enlarged, with the formation of surface blebs. Transmission electron microscopy observations confirmed the morphological and ultrastructural cell changes, mainly seen as loss of microvilli and intense cytoplasmic vacuolization. Taken together, these results indicate that the new phospholipid class distribution in the plasma membrane leaflets, modifying tumor cell viable structures, produced heavy cell damage and in many cases brought about complete cellular disintegration.

  19. Phenethyl isothiocyanate triggers apoptosis in human malignant melanoma A375.S2 cells through reactive oxygen species and the mitochondria-dependent pathways.

    PubMed

    Huang, S-H; Hsu, M-H; Hsu, S-C; Yang, J-S; Huang, W-W; Huang, A-C; Hsiao, Y-P; Yu, C-C; Chung, J-G

    2014-03-01

    We have reported previously that phenethyl isothiocyanate (PEITC) induces apoptosis in human osteosarcoma U-2 OS cells. Cytotoxic activity of PEITC towards other cancer cells such as human malignant melanoma and skin cancer cells has not been reported. In this study, the anticancer activity of PEITC towards human malignant melanoma cancer A375.S2 cells was investigated. To determine the mechanisms of PEITC inhibition of cell growth, the following end points were determined in A375.S2 cells: cell morphological changes, cell cycle arrest, DNA damage and fragmentation assays and morphological assessment of nuclear change, reactive oxygen species (ROS) and Ca(2+) generations, mitochondrial membrane potential disruption, and nitric oxide and 10-N-nonyl acridine orange productions, expression and activation of caspase-3 and -9, B-cell lymphoma 2 (Bcl-2)-associated X protein (Bax), Bcl-2, poly (adenosine diphosphate-ribose) polymerase, and cytochrome c release, apoptosis-inducing factor and endonuclease G. PEITC induced morphological changes in time- and dose-dependent manner. PEITC induced G2/M phase arrest and induced apoptosis via endoplasmic reticulum stress-mediated mitochondria-dependent pathway. Western blot analysis showed that PEITC promoted Bax expression and inhibited Bcl-2 expression associated with the disintegration of the outer mitochondrial membrane causing cytochrome c release, and activation of caspase-9 and -3 cascade leading to apoptosis. We conclude that PEITC-triggered apoptotic death in A375.S2 cells occurs through ROS-mediated mitochondria-dependent pathways.

  20. Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077.

    PubMed

    Pancha, Imran; Chokshi, Kaumeel; George, Basil; Ghosh, Tonmoy; Paliwal, Chetan; Maurya, Rahulkumar; Mishra, Sandhya

    2014-03-01

    The aim of present study was to investigate the effects of nitrogen limitation as well as sequential nitrogen starvation on morphological and biochemical changes in Scenedesmus sp. CCNM 1077. The results revealed that the nitrogen limitation and sequential nitrogen starvation conditions significantly decreases the photosynthetic activity as well as crude protein content in the organism, while dry cell weight and biomass productivity are largely unaffected up to nitrate concentration of about 30.87mg/L and 3 days nitrate limitation condition. Nitrate stress was found to have a significant effect on cell morphology of Scenedesmus sp. CCNM 1077. Total removal of nitrate from the growth medium resulted in highest lipid (27.93%) and carbohydrate content (45.74%), making it a potential feed stock for biodiesel and bio-ethanol production. This is a unique approach to understand morphological and biochemical changes in freshwater microalgae under nitrate limitation as well as sequential nitrate removal conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. [EFFECT OF PULSE-PERIODIC CORONA DISCHARGE ON VIABILITY OF ESCHERICHIA COLI M17 CELLS IN BIOFILMS].

    PubMed

    Rybalchenko, O V; Stepanova, O M; Orlova, O G; Astafiev, A M; Kudryavtsev, A A; Kapustina, V V

    2015-01-01

    Detection of bactericidal effect of pulse-periodic corona discharge (PPCD) on cells and biofilms of Escherichia coli M17. A gas-discharge device was created based on PPCD in air with power supply parameters: amplitude values of voltage of 30 - 60 kV, pulse repetition rate of 250 - 400 kHz. Ultrastructure changes in cells and biofilms of E. coli M17, affected by PPCD, generated in air, were studied by typical methods of transmission electron microscopy. Disturbances of integrity of surface and abyssal structures of biofilms, as well as changes of morphological properties of E. coli M17 cells, characteristic for sub-lethal heat impact, were detected. Destructive changes of bacterial cells were developed by formation of focal disturbance of cytoplasmic membrane, extension of periplasmic space, formation of globular structures, characteristic for heat effect, and destruction of cytoplasm. Bactericidal effect of PPCD on E. coli M17 cells as part of biofilms was shown. Destructive morphological changes in cells and biofilms of E. coli M17 after the effect of PPCD were detected for the first time on electron-microscopic level.

  2. Wide-range high-resolution transmission electron microscopy reveals morphological and distributional changes of endomembrane compartments during log to stationary transition of growth phase in tobacco BY-2 cells.

    PubMed

    Toyooka, Kiminori; Sato, Mayuko; Kutsuna, Natsumaro; Higaki, Takumi; Sawaki, Fumie; Wakazaki, Mayumi; Goto, Yumi; Hasezawa, Seiichiro; Nagata, Noriko; Matsuoka, Ken

    2014-09-01

    Rapid growth of plant cells by cell division and expansion requires an endomembrane trafficking system. The endomembrane compartments, such as the Golgi stacks, endosome and vesicles, are important in the synthesis and trafficking of cell wall materials during cell elongation. However, changes in the morphology, distribution and number of these compartments during the different stages of cell proliferation and differentiation have not yet been clarified. In this study, we examined these changes at the ultrastructural level in tobacco Bright yellow 2 (BY-2) cells during the log and stationary phases of growth. We analyzed images of the BY-2 cells prepared by the high-pressure freezing/freeze substitution technique with the aid of an auto-acquisition transmission electron microscope system. We quantified the distribution of secretory and endosomal compartments in longitudinal sections of whole cells by using wide-range gigapixel-class images obtained by merging thousands of transmission electron micrographs. During the log phase, all Golgi stacks were composed of several thick cisternae. Approximately 20 vesicle clusters (VCs), including the trans-Golgi network and secretory vesicle cluster, were observed throughout the cell. In the stationary-phase cells, Golgi stacks were thin with small cisternae, and only a few VCs were observed. Nearly the same number of multivesicular body and small high-density vesicles were observed in both the stationary and log phases. Results from electron microscopy and live fluorescence imaging indicate that the morphology and distribution of secretory-related compartments dramatically change when cells transition from log to stationary phases of growth. © The Author 2014. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  3. Micropipette force probe to quantify single-cell force generation: application to T-cell activation

    PubMed Central

    Sawicka, Anna; Babataheri, Avin; Dogniaux, Stéphanie; Barakat, Abdul I.; Gonzalez-Rodriguez, David; Hivroz, Claire; Husson, Julien

    2017-01-01

    In response to engagement of surface molecules, cells generate active forces that regulate many cellular processes. Developing tools that permit gathering mechanical and morphological information on these forces is of the utmost importance. Here we describe a new technique, the micropipette force probe, that uses a micropipette as a flexible cantilever that can aspirate at its tip a bead that is coated with molecules of interest and is brought in contact with the cell. This technique simultaneously allows tracking the resulting changes in cell morphology and mechanics as well as measuring the forces generated by the cell. To illustrate the power of this technique, we applied it to the study of human primary T lymphocytes (T-cells). It allowed the fine monitoring of pushing and pulling forces generated by T-cells in response to various activating antibodies and bending stiffness of the micropipette. We further dissected the sequence of mechanical and morphological events occurring during T-cell activation to model force generation and to reveal heterogeneity in the cell population studied. We also report the first measurement of the changes in Young’s modulus of T-cells during their activation, showing that T-cells stiffen within the first minutes of the activation process. PMID:28931600

  4. The ROCK isoforms differentially regulate the morphological characteristics of carcinoma cells.

    PubMed

    Jerrell, Rachel J; Leih, Mitchell J; Parekh, Aron

    2017-06-26

    Rho-associated kinase (ROCK) activity drives cell migration via actomyosin contractility. During invasion, individual cancer cells can transition between 2 modes of migration, mesenchymal and amoeboid. Changes in ROCK activity can cause a switch between these migration phenotypes which are defined by distinct morphologies. However, recent studies have shown that the ROCK isoforms are not functionally redundant as previously thought. Therefore, it is unclear whether the ROCK isoforms play different roles in regulating migration phenotypes. Here, we found that ROCK1 and ROCK2 differentially regulate carcinoma cell morphology resulting in intermediate phenotypes that share some mesenchymal and amoeboid characteristics. These findings suggest that the ROCK isoforms play unique roles in the phenotypic plasticity of mesenchymal carcinoma cells which may have therapeutic implications.

  5. Raman spectrum reveals the cell cycle arrest of Triptolide-induced leukemic T-lymphocytes apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Daosen; Feng, Yanyan; Zhang, Qinnan; Su, Xin; Lu, Xiaoxu; Liu, Shengde; Zhong, Liyun

    2015-04-01

    Triptolide (TPL), a traditional Chinese medicine extract, possesses anti-inflammatory and anti-tumor properties. Though some research results have implicated that Triptolide (TPL) can be utilized in the treatment of leukemia, it remains controversial about the mechanism of TPL-induced leukemic T-lymphocytes apoptosis. In this study, combining Raman spectroscopic data, principal component analysis (PCA) and atomic force microscopy (AFM) imaging, both the biochemical changes and morphological changes during TPL-induced cell apoptosis were presented. In contrast, the corresponding data during Daunorubicin (DNR)-induced cell apoptosis was also exhibited. The obtained results showed that Raman spectral changes during TPL-induced cell apoptosis were greatly different from DNR-induced cell apoptosis in the early stage of apoptosis but revealed the high similarity in the late stage of apoptosis. Moreover, above Raman spectral changes were respectively consistent with the morphological changes of different stages during TPL-induced apoptosis or DNR-induced apoptosis, including membrane shrinkage and blebbing, chromatin condensation and the formation of apoptotic bodies. Importantly, it was found that Raman spectral changes with TPL-induced apoptosis or DNR-induced apoptosis were respectively related with the cell cycle G1 phase arrest or G1 and S phase arrest.

  6. A COMPREHENSIVE STUDY ON APOPTOSIS INDUCTION BY AZADIRACHTIN IN Spodoptera frugiperda CULTURED CELL LINE Sf9.

    PubMed

    Shu, Benshui; Wang, Wenxiang; Hu, Qingbo; Huang, Jingfei; Hu, Meiying; Zhong, Guohua

    2015-07-01

    The induction of apoptosis by azadirachtin, a well-known botanical tetranortriterpenoid isolated from the neem tree (Azadirachta indica A. Juss) and other members of the Meliaceae, was investigated in Spodoptera frugiperda cultured cell line (Sf9). Morphological changes in Sf9 cells treated by various concentrations of azadirachtin were observed at different times under light microscopy. Morphological and biochemical analysis indicated that Sf9 cells treated by 1.5 μg/mL azadirachtin showed typical morphological changes, which were indicative of apoptosis and a clear DNA ladder. The flow cytometry analysis showed the apoptosis rate reached a maximum value of 32.66% at 24 h with 1.5 μg/mL azadirachtin in Sf9 cells. The inhibition of Sf9 cell proliferation suggested that the effect of azadirachtin was dose dependent and the EC50 at 48 and 72 h was 2.727 × 10(-6) and 6.348 × 10(-9) μg/mL, respectively. The treatment of azadirachtin in Sf9 cells could significantly increase the activity of Sf caspase-1, but showed no effect on the activity of Topo I, suggesting that the apoptosis induced by azadirachtinin Sf9 cells is through caspase-dependent pathway. These results provided not only a series of morphological, biochemical, and toxicological comprehensive evidences for induction of apoptosis by azadirachtin, but also a reference model for screening insect cell apoptosis inducers from natural compounds. © 2015 Wiley Periodicals, Inc.

  7. Distinct roles of cell wall biogenesis in yeast morphogenesis as revealed by multivariate analysis of high-dimensional morphometric data

    PubMed Central

    Okada, Hiroki; Ohnuki, Shinsuke; Roncero, Cesar; Konopka, James B.; Ohya, Yoshikazu

    2014-01-01

    The cell wall of budding yeast is a rigid structure composed of multiple components. To thoroughly understand its involvement in morphogenesis, we used the image analysis software CalMorph to quantitatively analyze cell morphology after treatment with drugs that inhibit different processes during cell wall synthesis. Cells treated with cell wall–affecting drugs exhibited broader necks and increased morphological variation. Tunicamycin, which inhibits the initial step of N-glycosylation of cell wall mannoproteins, induced morphologies similar to those of strains defective in α-mannosylation. The chitin synthase inhibitor nikkomycin Z induced morphological changes similar to those of mutants defective in chitin transglycosylase, possibly due to the critical role of chitin in anchoring the β-glucan network. To define the mode of action of echinocandin B, a 1,3-β-glucan synthase inhibitor, we compared the morphology it induced with mutants of Fks1 that contains the catalytic domain for 1,3-β-glucan synthesis. Echinocandin B exerted morphological effects similar to those observed in some fks1 mutants, with defects in cell polarity and reduced glucan synthesis activity, suggesting that echinocandin B affects not only 1,3-β-glucan synthesis, but also another functional domain. Thus our multivariate analyses reveal discrete functions of cell wall components and increase our understanding of the pharmacology of antifungal drugs. PMID:24258022

  8. Scanning and transmission electron microscopic observations of the acute morphological response of the mouse urinary bladder to 4-ethylsulfonylnaphthalene-1-sulfonamide.

    PubMed

    Frith, C H; Ayres, P H; Shinohara, Y; West, R

    1986-01-01

    A total of 75 BALB/cStCrlfC3H/Nctr male weanling mice were administered either 0 or 250 ppm of 4 ethylsulfonylnaphthalene-1-sulfonamide (ENS) in the diet for periods up to 14 days to evaluate the early morphological changes of the transitional epithelium of the urinary bladder with scanning (SEM) and transmission (TEM) electron microscopy. Primary TEM changes included hyperplasia of the epithelium, loosening of the intercellular junctions, autophagic vacuoles and electron dense granules in the mitochondria. Primary SEM changes included sloughing of epithelial cells, irregularity in the size and shape of the transitional epithelial cells and the presence of microvilli. Although pleomorphic microvilli were present after only three days of treatment with ENS, it appears that they are a transient observation in a series of morphological changes. The reversibility or transient nature of the pleomorphic microvilli may indicate that they are an acute toxic response and may not necessarily indicate a preneoplastic change.

  9. [Effects of fibronectin on cytodifferentiation (T56) of human squamous cell carcinoma of tongue].

    PubMed

    Huang, Y; Yang, F

    1994-12-01

    Fibronectin (FN) are large glycoproteins that have been implicated in a wide variety of cellular properties, including cell adhesion, morphology, cytoskeletal organization, migration, differentiation, and oncogenic transformation. T56 cells were treated with 20, 50, and 100 micrograms/ml of FN for 48 h, and the changes in cells were analysed qualitatively and quantitatively with the methods of transmission electron microscopy, enzyme cytochemistry, and cell electrophoresis, etc. The studies were made to test the effects of FN on T56 cells in biological behaviour in terms of cell growth, multiplication, cell metabolism, cell electrophoresis and surface morphology. The results indicated that FN could partially restore T56 cell normal epidermic cell's phenotype, inhibit cell mitosis, increase contact of cells, decrease the number of microvilli and ruffles, and promote cell oxybiotic metabolism. These results suggest that FN might relate in many aspects to the biological behaviour of T56 cell and could affect changes in the behaviour.

  10. Physicochemical Constraints on the Distribution of Benthic Foraminiferal Cell Morphology in the Modern Ocean

    NASA Astrophysics Data System (ADS)

    Keating-Bitonti, C.; Payne, J.

    2016-02-01

    Patterns in the sizes and shapes of marine organisms often occur across latitude and water depth gradients as a function of metabolic constraints dictated by the physical environment. However, the environmental factors that maintain these gradients in morphology remain incompletely understood because several oceanographic variables of biological importance are intimately correlated, such as temperature, dissolved oxygen concentration, particulate organic carbon (POC) flux, and carbonate saturation. Benthic foraminifera, a diverse group of single-celled protists that occur in nearly all marine environments, provide an ideal opportunity to test statistically among the various hypothesized environmental controls on cell morphology. Here, we use over 7,000 occurrences of 541 species of recent benthic foraminifera that span more than 60 degrees of latitude and 1,600 meters of water depth around the North American continental margin to assess the relative contributions of temperature, oxygen availability, carbonate saturation, and POC flux on their size and volume-to-surface area ratio in the modern ocean. Seawater temperature and dissolved oxygen concentrations best predict both measures of benthic foraminiferal cell morphology from the North American continental margin. These same variables also explain morphological variations from the Pacific continental margin in isolation, but dissolved oxygen is absent from the best model for the Atlantic. Because our results concur with predictions from first principles of cell physiology, we interpret these findings to reflect the physiological selective pressures on cell morphology as determined by the physical environment. Moreover, these findings suggest that warming waters and the expansion of hypoxic zones associated with anthropogenic-induced climate change are more likely to impact benthic foraminiferal communities than changes in primary productivity or ocean acidification.

  11. Expression of the invertebrate sea urchin P16 protein into mammalian MC3T3 osteoblasts transforms and reprograms them into "osteocyte-like" cells.

    PubMed

    Alvares, Keith; Ren, Yinshi; Feng, Jian Q; Veis, Arthur

    2016-01-01

    P16 is an acidic phosphoprotein important in both sea urchin embryonic spicule development and transient mineralization during embryogenesis, syncytium formation, and mineralization in mature urchin tooth. Anti-P16 has been used to localize P16 to the syncytial membranes and the calcite mineral. Specific amino acid sequence motifs in P16 are similar to sequences in DSPP, a protein common to all vertebrate teeth, and crucial for their mineralization. Here, we examine the effect of P16 on vertebrate fibroblastic NIH3T3 cells and osteoblastic MC3T3 cells. Transfection of NIH3T3 cells with P16 cDNA resulted in profound changes in the morphology of the cells. In culture, the transfected cells sent out long processes that contacted processes from neighboring cells forming networks or syncytia. There was a similar change in morphology in cultured osteoblastic MC3T3 cells. In addition, the MC3T3 developed numerous dendrites as found in osteocytes. Importantly, there was also a change in the expression of the osteoblast and osteocyte specific genes. MC3T3 cells transfected with P16 showed an 18-fold increase in expression of the osteocyte specific Dentin matrix protein (DMP1) gene, accompanied by decreased expression of osteoblast specific genes: Bone sialoprotein (BSP), osteocalcin (OCN), and β-catenin decreased by 70%, 64%, and 68 %, respectively. Thus, invertebrate urchin P16 with no previously known analog in vertebrates was able to induce changes in both cell morphology and gene expression, converting vertebrate-derived osteoblast-like precursor cells to an "osteocyte-like" phenotype, an important process in bone biology. The mechanisms involved are presently under study. © 2015 Wiley Periodicals, Inc.

  12. Expression of the invertebrate sea urchin P16 protein into mammalian MC3T3 osteoblasts transforms and reprograms them into “osteocyte-like” cells

    PubMed Central

    Alvares, Keith; Ren, Yinshi; Feng, Jian Q.; Veis, Arthur

    2015-01-01

    P16 is an acidic phosphoprotein important in both sea urchin embryonic spicule development and transient mineralization during embryogenesis, and syncytium formation and mineralization in mature urchin tooth. Anti-P16 has been used to localize P16 to the syncytial membranes and the calcite mineral. Specific amino acid sequence motifs in P16 are similar to sequences in DSPP a protein common to all vertebrate teeth, and crucial for their mineralization. Here we examine the effect of P16 on vertebrate fibroblastic NIH3T3 cells and osteoblastic MC3T3 cells. Transfection of NIH3T3 cells with P16 cDNA resulted in profound changes in the morphology of the cells. In culture the transfected cells sent out long processes that contacted processes from neighboring cells forming networks or syncytia. There was a similar change in morphology in cultured osteoblastic MC3T3 cells. In addition, the MC3T3 developed numerous dendrites as found in osteocytes. Importantly, there was also a change in the expression of the osteoblast and osteocyte specific genes. MC3T3 cells transfected with P16 showed an 18 fold increase in expression of the osteocyte specific Dentin matrix protein (DMP1) gene, accompanied by decreased expression of osteoblast specific genes: Bone sialoprotein (BSP), osteocalcin (OCN) and β-catenin decreased by 70%, 64% and 68 %, respectively. Thus, invertebrate urchin P16 with no previously known analog in vertebrates was able to induce changes in both cell morphology and gene expression, converting vertebrate-derived osteoblast-like precursor cells to an “osteocyte-like” phenotype, an important process in bone biology. The mechanisms involved are presently under study. PMID:26581835

  13. Morphological observation and analysis using automated image cytometry for the comparison of trypan blue and fluorescence-based viability detection method.

    PubMed

    Chan, Leo Li-Ying; Kuksin, Dmitry; Laverty, Daniel J; Saldi, Stephanie; Qiu, Jean

    2015-05-01

    The ability to accurately determine cell viability is essential to performing a well-controlled biological experiment. Typical experiments range from standard cell culturing to advanced cell-based assays that may require cell viability measurement for downstream experiments. The traditional cell viability measurement method has been the trypan blue (TB) exclusion assay. However, since the introduction of fluorescence-based dyes for cell viability measurement using flow or image-based cytometry systems, there have been numerous publications comparing the two detection methods. Although previous studies have shown discrepancies between TB exclusion and fluorescence-based viability measurements, image-based morphological analysis was not performed in order to examine the viability discrepancies. In this work, we compared TB exclusion and fluorescence-based viability detection methods using image cytometry to observe morphological changes due to the effect of TB on dead cells. Imaging results showed that as the viability of a naturally-dying Jurkat cell sample decreased below 70 %, many TB-stained cells began to exhibit non-uniform morphological characteristics. Dead cells with these characteristics may be difficult to count under light microscopy, thus generating an artificially higher viability measurement compared to fluorescence-based method. These morphological observations can potentially explain the differences in viability measurement between the two methods.

  14. Fungal Cell Gigantism during Mammalian Infection

    PubMed Central

    Zaragoza, Oscar; García-Rodas, Rocío; Nosanchuk, Joshua D.; Cuenca-Estrella, Manuel; Rodríguez-Tudela, Juan Luis; Casadevall, Arturo

    2010-01-01

    The interaction between fungal pathogens with the host frequently results in morphological changes, such as hyphae formation. The encapsulated pathogenic fungus Cryptococcus neoformans is not considered a dimorphic fungus, and is predominantly found in host tissues as round yeast cells. However, there is a specific morphological change associated with cryptococcal infection that involves an increase in capsule volume. We now report another morphological change whereby gigantic cells are formed in tissue. The paper reports the phenotypic characterization of giant cells isolated from infected mice and the cellular changes associated with giant cell formation. C. neoformans infection in mice resulted in the appearance of giant cells with cell bodies up to 30 µm in diameter and capsules resistant to stripping with γ-radiation and organic solvents. The proportion of giant cells ranged from 10 to 80% of the total lung fungal burden, depending on infection time, individual mice, and correlated with the type of immune response. When placed on agar, giant cells budded to produce small daughter cells that traversed the capsule of the mother cell at the speed of 20–50 m/h. Giant cells with dimensions that approximated those in vivo were observed in vitro after prolonged culture in minimal media, and were the oldest in the culture, suggesting that giant cell formation is an aging-dependent phenomenon. Giant cells recovered from mice displayed polyploidy, suggesting a mechanism by which gigantism results from cell cycle progression without cell fission. Giant cell formation was dependent on cAMP, but not on Ras1. Real-time imaging showed that giant cells were engaged, but not engulfed by phagocytic cells. We describe a remarkable new strategy for C. neoformans to evade the immune response by enlarging cell size, and suggest that gigantism results from replication without fission, a phenomenon that may also occur with other fungal pathogens. PMID:20585557

  15. Apoptosis-Like Death in Bacteria Induced by HAMLET, a Human Milk Lipid-Protein Complex

    PubMed Central

    Hakansson, Anders P.; Roche-Hakansson, Hazeline; Mossberg, Ann-Kristin; Svanborg, Catharina

    2011-01-01

    Background Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. Methodology/Principal Findings We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death. Conclusions/Significance Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells. PMID:21423701

  16. Apoptosis-like death in bacteria induced by HAMLET, a human milk lipid-protein complex.

    PubMed

    Hakansson, Anders P; Roche-Hakansson, Hazeline; Mossberg, Ann-Kristin; Svanborg, Catharina

    2011-03-10

    Apoptosis is the primary means for eliminating unwanted cells in multicellular organisms in order to preserve tissue homeostasis and function. It is characterized by distinct changes in the morphology of the dying cell that are orchestrated by a series of discrete biochemical events. Although there is evidence of primitive forms of programmed cell death also in prokaryotes, no information is available to suggest that prokaryotic death displays mechanistic similarities to the highly regulated programmed death of eukaryotic cells. In this study we compared the characteristics of tumor and bacterial cell death induced by HAMLET, a human milk complex of alpha-lactalbumin and oleic acid. We show that HAMLET-treated bacteria undergo cell death with mechanistic and morphologic similarities to apoptotic death of tumor cells. In Jurkat cells and Streptococcus pneumoniae death was accompanied by apoptosis-like morphology such as cell shrinkage, DNA condensation, and DNA degradation into high molecular weight fragments of similar sizes, detected by field inverse gel electrophoresis. HAMLET was internalized into tumor cells and associated with mitochondria, causing a rapid depolarization of the mitochondrial membrane and bound to and induced depolarization of the pneumococcal membrane with similar kinetic and magnitude as in mitochondria. Membrane depolarization in both systems required calcium transport, and both tumor cells and bacteria were found to require serine protease activity (but not caspase activity) to execute cell death. Our results suggest that many of the morphological changes and biochemical responses associated with apoptosis are present in prokaryotes. Identifying the mechanisms of bacterial cell death has the potential to reveal novel targets for future antimicrobial therapy and to further our understanding of core activation mechanisms of cell death in eukaryote cells.

  17. Microfluidic measurement of effects of ACF7/MACF1 gene on the mechanics of primary cortical neurons

    NASA Astrophysics Data System (ADS)

    Lee, Donghee; Ka, Minhan; Kim, Woo-Yang; Ryu, Sangjin

    2014-03-01

    Actin filaments and microtubules play important roles in determining the mechanics of cells, and ACF7/MACF1 (Actin Crosslinking Family 7/Microtubule And Actin Crosslinking Factor 1) gene seems to be closely related to connections between actin filaments and microtubules. To identify such roles of the ACF7/MACF1 gene of primary cortical neurons, we isolated neuronal cells from the cerebral cortex of the embryonic mouse brain, which is important in memory, language and perception. We exerted viscous shear flow to normal neuronal cells and ACF7/MACF1 gene knockout neuronal cells using rectangular microfluidic channels. While changing viscous shear stress on the cells, we recorded changes in the morphology of the two cell types using video microscopy. Having analyzed the deformation of the cells, we could quantitatively correlate differences in the morphological change between the both normal and ACF7/MACF1 gene knockout neuronal cells to the applied shear force, which will contribute toward identifying cell mechanical roles of the ACF7/MACF1 gene.

  18. Morphological changes of the red blood cells treated with metal oxide nanoparticles.

    PubMed

    Kozelskaya, A I; Panin, A V; Khlusov, I A; Mokrushnikov, P V; Zaitsev, B N; Kuzmenko, D I; Vasyukov, G Yu

    2016-12-01

    The toxic effect of Al 2 O 3 , SiО 2 and ZrО 2 nanoparticles on red blood cells of Wistar rats was studied in vitro using the atomic force microscopy and the fluorescence analysis. Transformation of discocytes into echinocytes and spherocytes caused by the metal oxide nanoparticles was revealed. It was shown that only extremely high concentration of the nanoparticles (2mg/ml) allows correct estimating of their effect on the cell morphology. Besides, it was found out that the microviscosity changes of red blood cell membranes treated with nanoparticles began long before morphological modifications of the cells. On the contrary, the negatively charged ZrO 2 and SiO 2 nanoparticles did not affect ghost microviscosity up to concentrations of 1μg/ml and 0.1mg/ml, correspondingly. In its turn, the positively charged Al 2 O 3 nanoparticles induced structural changes in the lipid bilayer of the red blood cells already at a concentration of 0.05μg/ml. A decrease in microviscosity of the erythrocyte ghosts treated with Al 2 O 3 and SiO 2 nanoparticles was shown. It was detected that the interaction of ZrO 2 nanoparticles with the cells led to an increase in the membrane microviscosity and cracking of swollen erythrocytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Quercetin Induces Dose-Dependent Differential Morphological and Proliferative Changes in Rat Uteri in the Presence and in the Absence of Estrogen

    PubMed Central

    Shahzad, Huma; Giribabu, Nelli; Sekaran, Muniandy

    2015-01-01

    Abstract Quercetin could have profound effects on uterine morphology and proliferation, which are known to be influenced by estrogen. This study investigated the effect of quercetin on these uterine parameters in the presence and in the absence of estrogen. Ovariectomized adult female rats received peanut oil, quercetin (10, 50, and 100 mg/kg/day), estrogen, or estrogen+quercetin (10, 50, or 100 mg/kg/day) treatment for 7 consecutive days. At the end of the treatment, uteri were harvested for histological and molecular biological analyses. Distribution of proliferative cell nuclear antigen (PCNA) protein in the uterus was observed by immunohistochemistry. Levels of expression of PCNA protein and mRNA in uterine tissue homogenates were determined by Western blotting and real-time polymerase chain reaction, respectively. Our findings indicated that administration of 10 mg/kg/day of quercetin either alone or with estrogen resulted in decreased uterine expression of PCNA protein and mRNA with the percentage of PCNA-positive cells in uterine luminal and glandular epithelia markedly reduced compared with estrogen-only treatment. Changes in uterine morphology were the opposite of changes observed following estrogen treatment. Treatment with 100 mg/kg/day of quercetin either alone or with estrogen resulted in elevated PCNA protein and mRNA expression. In addition, the percentages of PCNA-positive cells in the epithelia, which line the lumen and glands, were increased with morphological features mimicking changes that occur following estrogen treatment. Following 50 mg/kg/day quercetin treatment, the changes observed were in between those changes that occur following 10 and 100 mg/kg/day quercetin treatment. In conclusion, changes in uterine morphology and proliferation following 10 mg/kg/day quercetin treatment could be attributed to quercetin's antiestrogenic properties, while changes that occur following 100 mg/kg/day quercetin treatment could be attributed to quercetin's estrogenic properties. PMID:26135605

  20. Olfactory ensheathing cells but not fibroblasts reduce the duration of autonomic dysreflexia in spinal cord injured rats.

    PubMed

    Cloutier, Frank; Kalincik, Tomas; Lauschke, Jenny; Tuxworth, Gervase; Cavanagh, Brenton; Meedeniya, Adrian; Mackay-Sim, Alan; Carrive, Pascal; Waite, Phil

    2016-12-01

    Autonomic dysreflexia is a common complication after high level spinal cord injury and can be life-threatening. We have previously shown that the acute transplantation of olfactory ensheathing cells into the lesion site of rats transected at the fourth thoracic spinal cord level reduced autonomic dysreflexia up to 8weeks after spinal cord injury. This beneficial effect was correlated with changes in the morphology of sympathetic preganglionic neurons despite the olfactory cells surviving no longer than 3weeks. Thus the transitory presence of olfactory ensheathing cells at the injury site initiated long-term functional as well as morphological changes in the sympathetic preganglionic neurons. The primary aim of the present study was to evaluate whether olfactory ensheathing cells survive after transplantation within the parenchyma close to sympathetic preganglionic neurons and whether, in this position, they still reduce the duration of autonomic dysreflexia and modulate sympathetic preganglionic neuron morphology. The second aim was to quantify the density of synapses on the somata of sympathetic preganglionic neurons with the hypothesis that the reduction of autonomic dysreflexia requires synaptic changes. As a third aim, we evaluated the cell type-specificity of olfactory ensheathing cells by comparing their effects with a control group transplanted with fibroblasts. Animals transplanted with OECs had a faster recovery from hypertension induced by colorectal distension at 6 and 7weeks but not at 8weeks after T4 spinal cord transection. Olfactory ensheathing cells survived for at least 8weeks and were observed adjacent to sympathetic preganglionic neurons whose overall number of primary dendrites was reduced and the synaptic density on the somata increased, both caudal to the lesion site. Our results showed a long term cell type-specific effects of olfactory ensheathing cells on sympathetic preganglionic neurons morphology and on the synaptic density on their somata, and a transient cell type-specific reduction of autonomic dysreflexia. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Measurement of red blood cell mechanics during morphological changes

    PubMed Central

    Park, YongKeun; Best, Catherine A.; Badizadegan, Kamran; Dasari, Ramachandra R.; Feld, Michael S.; Kuriabova, Tatiana; Henle, Mark L.; Levine, Alex J.; Popescu, Gabriel

    2010-01-01

    The human red blood cell (RBC) membrane, a fluid lipid bilayer tethered to an elastic 2D spectrin network, provides the principal control of the cell’s morphology and mechanics. These properties, in turn, influence the ability of RBCs to transport oxygen in circulation. Current mechanical measurements of RBCs rely on external loads. Here we apply a noncontact optical interferometric technique to quantify the thermal fluctuations of RBC membranes with 3 nm accuracy over a broad range of spatial and temporal frequencies. Combining this technique with a new mathematical model describing RBC membrane undulations, we measure the mechanical changes of RBCs as they undergo a transition from the normal discoid shape to the abnormal echinocyte and spherical shapes. These measurements indicate that, coincident with this morphological transition, there is a significant increase in the membrane’s shear, area, and bending moduli. This mechanical transition can alter cell circulation and impede oxygen delivery. PMID:20351261

  2. High-throughput analysis of yeast replicative aging using a microfluidic system

    PubMed Central

    Jo, Myeong Chan; Liu, Wei; Gu, Liang; Dang, Weiwei; Qin, Lidong

    2015-01-01

    Saccharomyces cerevisiae has been an important model for studying the molecular mechanisms of aging in eukaryotic cells. However, the laborious and low-throughput methods of current yeast replicative lifespan assays limit their usefulness as a broad genetic screening platform for research on aging. We address this limitation by developing an efficient, high-throughput microfluidic single-cell analysis chip in combination with high-resolution time-lapse microscopy. This innovative design enables, to our knowledge for the first time, the determination of the yeast replicative lifespan in a high-throughput manner. Morphological and phenotypical changes during aging can also be monitored automatically with a much higher throughput than previous microfluidic designs. We demonstrate highly efficient trapping and retention of mother cells, determination of the replicative lifespan, and tracking of yeast cells throughout their entire lifespan. Using the high-resolution and large-scale data generated from the high-throughput yeast aging analysis (HYAA) chips, we investigated particular longevity-related changes in cell morphology and characteristics, including critical cell size, terminal morphology, and protein subcellular localization. In addition, because of the significantly improved retention rate of yeast mother cell, the HYAA-Chip was capable of demonstrating replicative lifespan extension by calorie restriction. PMID:26170317

  3. Proliferative and morphologic changes in rat colon following bypass surgery.

    PubMed

    Barkla, D H; Tutton, P J

    1985-06-01

    In this study the proliferative and morphologic changes that occur in the colon of normal and dimethylhydrazine-treated rats following surgical bypass of the middle third of the colon are reported. Proliferative changes were measured by estimating accumulated mitotic indexes following vinblastine treatment and morphologic changes were observed with the use of light microscopy and scanning electron microscopy. Data were collected on Days 0, 7, 14, 30, and 72 after surgery. The results show that surgical bypass produces contrasting effects in the segments proximal to and distal to the suture line. In the proximal segment there was morphologic evidence of hyperplasia, although proliferative activity was unchanged except for an increase at 7 days in normal rats. In the distal segment there was a long-lived increase in the mitotic index, although morphologic changes were not seen. The results for DMH-treated rats were similar to those in normal rats. Groups of isolated dysplastic epithelial cells were often seen in the submucosa adjacent to sutures up to 72 days after surgery. Increased lymphoid infiltration was seen in segments proximal to but not distal to the suture line. It is hypothesized that the different responses of the proximal and distal segments may be related to the different embryologic origins of those segments. It is also hypothesized that the seeding of the submucosa with epithelial cells during suturing may be a factor in tumor recurrence.

  4. Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra

    1997-01-01

    Endothelial cell migration is important to vascular wall regeneration following injury or stress. However, the mechanism(s) governing this response is not well understood. The microgravity environment of space may complicate the response of these cells to injury. To date, there are no reports in this area. We examined how bovine aortic (BAEC) and pulmonary (BPEC) endothelial cells respond to denudation injury under hypergravity (HGrav) and simulated microgravity (MGrav), using image analysis. In 10% FBS, the migration of confluent BAEC and BPEC into the denuded area was not affected by HGrav or MGrav. However, in low FBS (0.5%), signficantly retarded migration under MGrav, and increased migration under HGrav was found. MGrav also decreased the migration of postconfluent BPEC while HGrav showed no difference. Both MGrav and HGrav strongly decreased the migration of postconfluent BAEC. Also, both cell lines showed significant morphological changes by scanning electron microscopy. These studies indicate that endothelial cell function is affected by changes in gravity.

  5. METABOLIC AND MORPHOLOGICAL OBSERVATIONS ON THE EFFECT OF SURFACE-ACTIVE AGENTS ON LEUKOCYTES

    PubMed Central

    Graham, R. C.; Karnovsky, M. J.; Shafer, A. W.; Glass, E. A.; Karnovsky, Manfred L.

    1967-01-01

    Morphological and metabolic observations have been made on the effects of endotoxin, deoxycholate, and digitonin (at less than 50 µg/ml) on polymorphonuclear leukocytes and mononuclear cells. The agents stimulate the respiration and glucose oxidation of these cells in a manner similar to that seen during phagocytosis. Electron microscopy revealed no morphological changes with the first two agents, but dramatic membrane changes were seen in the case of digitonin. Here tubular projections of characteristic size and shape formed on and split off the membrane. All the agents stimulated uptake of inulin, but efforts to demonstrate increased pinocytosis by electron microscopy have not so far succeeded, probably due to limitations in present experimental techniques. PMID:6034482

  6. CHANGES IN THE MORPHOLOGY AND POLYSACCHARIDE CONTENT OF MICROCYSTIS AERUGINOSA (CYANOBACTERIA) DURING FLAGELLATE GRAZING(1).

    PubMed

    Yang, Zhou; Kong, Fanxiang; Shi, Xiaoli; Zhang, Min; Xing, Peng; Cao, Huansheng

    2008-06-01

    To investigate the changes in the morphology and polysaccharide content of Microcystis aeruginosa (Kütz.) Kütz. during flagellate grazing, cultures of M. aeruginosa were exposed to grazing Ochromonas sp. for a period of 9 d under controlled laboratory conditions. M. aeruginosa responded actively to flagellate grazing and formed colonies, most of which were made up of several or dozens of cells, suggesting that flagellate grazing may be one of the biotic factors responsible for colony formation in M. aeruginosa. When colonies were formed, the cell surface ultrastructure changed, and the polysaccharide layer on the surface of the cell wall became thicker. This change indicated that synthesis and secretion of extracellular polysaccharide (EPS) of M. aeruginosa cells increased under flagellate grazing pressure. The contents of soluble extracellular polysaccharide (sEPS), bound extracellular polysaccharide (bEPS), and total polysaccharide (TPS) in colonial cells of M. aeruginosa increased significantly compared with those in single cells. This finding suggested that the increased amount of EPS on the cell surface may play a role in keeping M. aeruginosa cells together to form colonies. © 2008 Phycological Society of America.

  7. Craniofacial divergence by distinct prenatal growth patterns in Fgfr2 mutant mice

    PubMed Central

    2014-01-01

    Background Differences in cranial morphology arise due to changes in fundamental cell processes like migration, proliferation, differentiation and cell death driven by genetic programs. Signaling between fibroblast growth factors (FGFs) and their receptors (FGFRs) affect these processes during head development and mutations in FGFRs result in congenital diseases including FGFR-related craniosynostosis syndromes. Current research in model organisms focuses primarily on how these mutations change cell function local to sutures under the hypothesis that prematurely closing cranial sutures contribute to skull dysmorphogenesis. Though these studies have provided fundamentally important information contributing to the understanding of craniosynostosis conditions, knowledge of changes in cell function local to the sutures leave change in overall three-dimensional cranial morphology largely unexplained. Here we investigate growth of the skull in two inbred mouse models each carrying one of two gain-of-function mutations in FGFR2 on neighboring amino acids (S252W and P253R) that in humans cause Apert syndrome, one of the most severe FGFR-related craniosynostosis syndromes. We examine late embryonic skull development and suture patency in Fgfr2 Apert syndrome mice between embryonic day 17.5 and birth and quantify the effects of these mutations on 3D skull morphology, suture patency and growth. Results We show in mice what studies in humans can only infer: specific cranial growth deviations occur prenatally and worsen with time in organisms carrying these FGFR2 mutations. We demonstrate that: 1) distinct skull morphologies of each mutation group are established by E17.5; 2) cranial suture patency patterns differ between mice carrying these mutations and their unaffected littermates; 3) the prenatal skull grows differently in each mutation group; and 4) unique Fgfr2-related cranial morphologies are exacerbated by late embryonic growth patterns. Conclusions Our analysis of mutation-driven changes in cranial growth provides a previously missing piece of knowledge necessary for explaining variation in emergent cranial morphologies and may ultimately be helpful in managing human cases carrying these same mutations. This information is critical to the understanding of craniofacial development, disease and evolution and may contribute to the evaluation of incipient therapeutic strategies. PMID:24580805

  8. Cortical astrocytes exposed to tributyltin undergo morphological changes in vitro.

    PubMed

    Mizuhashi, S; Ikegaya, Y; Nishiyama, N; Matsuki, N

    2000-11-01

    We investigated the effect of tributyltin (TBT), an endocrine-disrupting chemical, on the morphology and viability of cultured rat cortical astrocytes. Cultured astrocytes exhibited smooth and planiform morphology under normal conditions. Following exposure to TBT, however, they showed rapid morphological changes that are characterized by asteriated cell bodies and process formation in a time- and concentration-dependent manner. Higher concentrations of TBT produced progressive cell death of the astrocytes. In serum-free medium, TBT at a concentration as low as 200 nM induced the stellation. Pharmacological studies revealed that the morphological changes were alleviated by application of diverse free radical scavengers or antioxidants such as catalase, superoxide dismutase, Trolox, ascorbic acid and N-acetyl-L-cysteine, suggesting that TBT-induced stellation is caused by oxidative stress involving free radicals, particularly reactive oxygen species. Furthermore, we found that the astrocyte stellation was abolished by treatment with inhibitors of phospholipase C, mitogen-activated protein kinase kinase or tyrosine phosphatase. The data suggest that TBT causes the stellation through intracellular signaling cascades rather than its non-specific toxicity. These findings provide an important insight for reconciling the problems in assumed aversive actions of this environmental pollutant for mammals.

  9. Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid

    PubMed Central

    2013-01-01

    Background Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. Results We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Conclusion Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity. PMID:23597229

  10. Morphological and functional differentiation in BE(2)-M17 human neuroblastoma cells by treatment with Trans-retinoic acid.

    PubMed

    Andres, Devon; Keyser, Brian M; Petrali, John; Benton, Betty; Hubbard, Kyle S; McNutt, Patrick M; Ray, Radharaman

    2013-04-18

    Immortalized neuronal cell lines can be induced to differentiate into more mature neurons by adding specific compounds or growth factors to the culture medium. This property makes neuronal cell lines attractive as in vitro cell models to study neuronal functions and neurotoxicity. The clonal human neuroblastoma BE(2)-M17 cell line is known to differentiate into a more prominent neuronal cell type by treatment with trans-retinoic acid. However, there is a lack of information on the morphological and functional aspects of these differentiated cells. We studied the effects of trans-retinoic acid treatment on (a) some differentiation marker proteins, (b) types of voltage-gated calcium (Ca2+) channels and (c) Ca2+-dependent neurotransmitter ([3H] glycine) release in cultured BE(2)-M17 cells. Cells treated with 10 μM trans-retinoic acid (RA) for 72 hrs exhibited marked changes in morphology to include neurite extensions; presence of P/Q, N and T-type voltage-gated Ca2+ channels; and expression of neuron specific enolase (NSE), synaptosomal-associated protein 25 (SNAP-25), nicotinic acetylcholine receptor α7 (nAChR-α7) and other neuronal markers. Moreover, retinoic acid treated cells had a significant increase in evoked Ca2+-dependent neurotransmitter release capacity. In toxicity studies of the toxic gas, phosgene (CG), that differentiation of M17 cells with RA was required to see the changes in intracellular free Ca2+ concentrations following exposure to CG. Taken together, retinoic acid treated cells had improved morphological features as well as neuronal characteristics and functions; thus, these retinoic acid differentiated BE(2)-M17 cells may serve as a better neuronal model to study neurobiology and/or neurotoxicity.

  11. Overexpression of interleukin-6 and -8, cell growth inhibition and morphological changes in 2-hydroxyethyl methacrylate-treated human dental pulp mesenchymal stem cells.

    PubMed

    Trubiani, O; Cataldi, A; De Angelis, F; D'Arcangelo, C; Caputi, S

    2012-01-01

    To evaluate morphological features, cell growth and interleukin-6 (IL-6) and interleukin-8 (IL-8) secretion in expanded ex vivo human dental pulp mesenchymal stem cells (DP-MSCs) after exposure to 2-hydroxyethyl methacrylate (HEMA).   Dental pulp mesenchymal stem cells were derived from the dental pulps of 10 young donors. After in vitro isolation, DP-MSCs were treated with 3 and 5 mmol L(-1) HEMA, and after 24, 48 and 72 h of incubation, their morphological features, cell growth, IL-6 and IL-8 secretion were analysed. Differences in the cell growth and in the interleukin secretion were analysed for statistical significance with two-way anova tests and the Holm-Sidak method for multiple comparisons.   Dental pulp mesenchymal stem cells revealed a decrease in cell growth with both treatments (P < 0.05), more evident at 5 mmol L(-1) . Microscopic analysis displayed extensive cytotoxic effects in treated cells, which lost their fibroblastoid features and became retracted, even roundish, with a large number of granules. An up-regulation of IL-6 and IL-8 in treated cells cytokines was evident (P < 0.05).   2-Hydroxyethyl methacrylate exhibited cytotoxicity, inhibited cell growth and induced morphological changes in cultured DP-MSCs. Moreover, in treated samples, an up-regulation of soluble mediators of inflammation such as IL-6 and IL-8 cytokines was found. The direct application of HEMA potentially induces an inflammation process that could be the starting point for toxic response and cell damage in DP-MSCs. © 2011 International Endodontic Journal.

  12. MOLECULAR AND MORPHOLOGICAL CHANGES IN ZEBRAFISH FOLLOWING TRANSIENT ETHANOL EXPOSURE DURING DEFINED DEVELOPMENTAL STAGES

    PubMed Central

    Zhang, Chengjin; Frazier, Jared M.; Chen, Hao; Liu, Yao; Lee, Ju-Ahng; Cole, Gregory J.

    2014-01-01

    Alcohol is a teratogen that has diverse effects on brain and craniofacial development, leading to a constellation of developmental disorders referred to as fetal alcohol spectrum disorder (FASD). The molecular basis of ethanol insult remains poorly understood, as does the relationship between molecular and behavioral changes as a consequence of prenatal ethanol exposure. Zebrafish embryos were exposed to a range of ethanol concentrations (0.5–5.0%) during defined developmental stages, and examined for morphological phenotypes characteristic of FASD. Embryos were also analyzed by in situ hybridization for changes in expression of defined cell markers for neural cell types that are sonic hedgehog-dependent. We show that transient binge-like ethanol exposures during defined developmental stages, such as early gastrulation and early neurulation, result in a range of phenotypes and changes in expression of Shh-dependent genes. The severity of fetal alcohol syndrome (FAS) morphological phenotypes, such as microphthalmia, depends on the embryonic stage and concentration of alcohol exposure, as does diminution of retinal Pax6a or forebrain and hindbrain GAD1 gene expression. We also show that changes in eye and brain morphology correlate with changes in Pax6a and GAD1 gene expression. Our results therefore show that transient binge-like ethanol exposures in zebrafish embryos produce the stereotypical morphological phenotypes of FAS, with the severity of phenotypes depending on the developmental stage and alcohol concentration of exposure. PMID:24929233

  13. Macronuclear Cytology of Synchronized Tetrahymena pyriformis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cameron, I. L.; Padilla, G. M.; Miller, Jr., O. L.

    1966-05-01

    Elliott, Kennedy and Bak ('62) and Elliott ('63) followed fine structural changes in macronuclei of Tetrahymena pyriformis which were synchronized by the heat shock method of Scherbaum and Zeuthen ('54). Using Elliott's morphological descriptions as a basis, we designed our investigations with two main objectives: First, to again study the. morphological changes which occur in the macronucleus of Tetrahymena synchronized by the heat shock method. The second objective was to compare these observations with Tetrahymena synchronized by an alternate method recently reported by Padilla and Cameron ('64). Therefore, we were able to compare the results from two different synchronization methodsmore » and to contrast these findings with the macronuclear cytology of Tetrahymena taken from a logarithmically growing culture. Comparison of cells treated in these three different ways enables us to evaluate the two different synchronization methods and to gain more information on the structural changes taking place in the macronucleus of Tetrahymena as a function of the cell cycle. Our observations were confined primarily to nucleolar morphology. The results indicate that cells synchronized by the Padilla and Cameron method more closely resemble logarithmically growing Tetrahymena in the macronuclear structure than do cells obtained by the Scherbaum and·Zeuthen synchronization method. .« less

  14. Structural changes in endometrial basal glands during menstruation.

    PubMed

    Garry, R; Hart, R; Karthigasu, K A; Burke, C

    2010-09-01

    To prospectively observe the changes occurring in endometrial glandular morphology during menstrual shedding and regeneration. Prospective observational study. The academic gynaecological endoscopy unit of a university teaching hospital. Population Thirteen patients investigated for a variety of benign, non-infective gynaecological disorders during the active bleeding phase of the menstrual cycle. The morphological appearances of concurrent histological and scanning electron microscopic images of endometrium taken at different stages of the active bleeding phase of menstruation were studied and correlated with the simultaneous immunohistochemical expression of the Ki-67 proliferation marker and the CD68 marker of macrophage activity. Change in morphology of endometrial glands at various stages of menstruation. Endometrial glands within the basalis show evidence of apoptosis and associated macrophage activity immediately before and during menstruation. There is subsequent destruction and removal of old secretory glandular epithelial elements, and rapid replacement with new narrow glands lined with small epithelial cells. There is no evidence of mitotic cell division or expression of Ki-67 in the glandular cells during this replacement process, but there is evidence of marked macrophage activity prior to glandular cell loss. Early endometrial epithelial repair after menstruation is not a consequence of mitotic cell division. It occurs without evidence of Ki-67 expression. There is structural evidence of programmed cell death and intense macrophage activity associated with glandular remodelling. Dead epithelial cells are shed from the glands and accumulate within the endometrial cavity to be replaced by new small epithelial cells that appear to arise by differentiation of the surrounding stromal cells. We propose that these stromal cells are endometrial progenitor/stem cells.

  15. Mitochondrial gene expression changes in cultured human skin cells following simulated sunlight irradiation.

    PubMed

    Kelly, J; Murphy, J E

    2018-02-01

    Exposure of skin to simulated sunlight irradiation (SSI) has being extensively researched and shown to be the main cause for changes in the skin including changes in cellular function and generation of reactive oxygen species (ROS). This oxidative stress can subsequently exert downstream effects and the subcellular compartments most affected by this oxidative stress are mitochondria. The importance of functional mitochondrial morphology is apparent as morphological defects are related to many human diseases including diabetes mellitus, liver disease, neurodegenerative diseases, aging and cancer. The main objective of this study was to evaluate solar radiation-induced changes in mitochondrial gene expression in human skin cells using a Q-Sun solar simulator to deliver a close match to the intensity of summer sunlight. Spontaneously immortalised human skin epidermal keratinocytes (HaCaT) and Human Dermal Fibroblasts (HDFn) were divided into two groups. Group A were irradiated once and Group B twice 7days apart; following irradiation, mitochondrial gene expression was evaluated 1, 4 and 7days post primary exposure for group A and 1, 4, 7 and 14days post-secondary exposure for group B. Both the epidermal and dermal cells displayed significant reduced expression of the genes analysed for mitochondrial morphology and function; however, epidermal cells displayed this reduction post SSI earlier then dermal cells at multiple time points. The data presented here reinforces the fact that epidermal cells, while displaying a heightened sensitivity to sunlight, are less prone to changes in gene expression, while dermal cells, which appear to be more resilient are possibly more prone to genomic instability and mitochondrial damage. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. The Usefulness of Selected Physicochemical Indices, Cell Membrane Integrity and Sperm Chromatin Structure in Assessments of Boar Semen Sensitivity

    PubMed Central

    Wysokińska, A.; Kondracki, S.; Iwanina, M.

    2015-01-01

    The present work describes experiments undertaken to evaluate the usefulness of selected physicochemical indices of semen, cell membrane integrity and sperm chromatin structure for the assessment of boar semen sensitivity to processes connected with pre-insemination procedures. The experiments were carried out on 30 boars: including 15 regarded as providers of sensitive semen and 15 regarded as providers of semen that is little sensitive to laboratory processing. The selection of boars for both groups was based on sperm morphology analyses, assuming secondary morphological change incidence in spermatozoa as the criterion. Two ejaculates were manually collected from each boar at an interval of 3 to 4 months. The following analyses were carried out for each ejaculate: sperm motility assessment, sperm pH measurement, sperm morphology assessment, sperm chromatin structure evaluation and cell membrane integrity assessment. The analyses were performed three times. Semen storage did not cause an increase in the incidence of secondary morphological changes in the group of boars considered to provide sperm of low sensitivity. On the other hand, with continued storage there was a marked increase in the incidence of spermatozoa with secondary morphological changes in the group of boars regarded as producing more sensitive semen. Ejaculates of group I boars evaluated directly after collection had an approximately 6% smaller share of spermatozoa with undamaged cell membranes than the ejaculates of boars in group II (p≤0.05). In the process of time the percentage of spermatozoa with undamaged cell membranes decreased. The sperm of group I boars was characterised with a lower sperm motility than the semen of group II boars. After 1 hour of storing diluted semen, the sperm motility of boars producing highly sensitive semen was already 4% lower (p≤0.05), and after 24 hours of storage it was 6.33% lower than that of the boars that produced semen with a low sensitivity. Factors that confirm the accuracy of insemination male selection can include a low rate of sperm motility decrease during the storage of diluted semen, low and contained incidence of secondary morphological changes in spermatozoa during semen storage and a high frequency of spermatozoa with undamaged cell membranes. PMID:26580438

  17. Cutaneous Malignant Melanoma With Rhabdoid Morphology and Smooth Muscle Differentiation: A Challenging Histopathologic Diagnosis.

    PubMed

    Prieto-Torres, Lucía; Alegría-Landa, Victoria; Llanos, Concepción; Córdoba, Alicia; Kutzner, Heinz; Requena, Luis

    2017-05-01

    Divergent differentiation or metaplastic change is a rare feature exhibited occasionally in malignant melanoma (MM), which is characterized by the development of morphologically, immunochemically, and/or ultrastructurally nonmelanocytic cells within the tumor. Smooth muscle differentiation in MM is an exceedingly rare phenomenon reported only in a few cases in the literature. We report the case of a 69-year-old woman who presented with a pure dermal amelanotic MM with smooth muscle cell differentiation and an area of rhabdoid morphology, which made the accurate histopathologic diagnostic of MM challenging.

  18. Induction of a gradual, reversible morphogenesis of its host's epithelial brush border by Vibrio fischeri.

    PubMed

    Lamarcq, L H; McFall-Ngai, M J

    1998-02-01

    Bacteria exert a variety of influences on the morphology and physiology of animal cells whether they are pathogens or cooperative partners. The association between the luminous bacterium Vibrio fischeri and the sepiolid squid Euprymna scolopes provides an experimental model for the study of the influence of extracellular bacteria on the development of host epithelia. In this study, we analyzed bacterium-induced changes in the brush borders of the light organ crypt epithelia during the initial hours following colonization of this tissue. Transmission electron microscopy of the brush border morphology in colonized and uncolonized hosts revealed that the bacteria effect a fourfold increase in microvillar density over the first 4 days of the association. Estimates of the proportions of bacterial cells in contact with host microvilli showed that the intimacy of the bacterial cells with animal cell surfaces increases significantly during this time. Antibiotic curing of the organ following colonization showed that sustained interaction with bacteria is essential for the retention of the induced morphological changes. Bacteria that are defective in either light production or colonization efficiency produced changes similar to those by the parent strain. Conventional fluorescence and confocal scanning laser microscopy revealed that the brush border is supported by abundant filamentous actin. However, in situ hybridization with beta-actin probes did not show marked bacterium-induced increases in beta-actin gene expression. These experiments demonstrate that the E. scolopes-V. fischeri system is a viable model for the experimental study of bacterium-induced changes in host brush border morphology.

  19. Induction of a Gradual, Reversible Morphogenesis of Its Host’s Epithelial Brush Border by Vibrio fischeri

    PubMed Central

    Lamarcq, Laurence H.; McFall-Ngai, Margaret J.

    1998-01-01

    Bacteria exert a variety of influences on the morphology and physiology of animal cells whether they are pathogens or cooperative partners. The association between the luminous bacterium Vibrio fischeri and the sepiolid squid Euprymna scolopes provides an experimental model for the study of the influence of extracellular bacteria on the development of host epithelia. In this study, we analyzed bacterium-induced changes in the brush borders of the light organ crypt epithelia during the initial hours following colonization of this tissue. Transmission electron microscopy of the brush border morphology in colonized and uncolonized hosts revealed that the bacteria effect a fourfold increase in microvillar density over the first 4 days of the association. Estimates of the proportions of bacterial cells in contact with host microvilli showed that the intimacy of the bacterial cells with animal cell surfaces increases significantly during this time. Antibiotic curing of the organ following colonization showed that sustained interaction with bacteria is essential for the retention of the induced morphological changes. Bacteria that are defective in either light production or colonization efficiency produced changes similar to those by the parent strain. Conventional fluorescence and confocal scanning laser microscopy revealed that the brush border is supported by abundant filamentous actin. However, in situ hybridization with β-actin probes did not show marked bacterium-induced increases in β-actin gene expression. These experiments demonstrate that the E. scolopes-V. fischeri system is a viable model for the experimental study of bacterium-induced changes in host brush border morphology. PMID:9453641

  20. Reversible changes in cell morphology due to cytoskeletal rearrangements measured in real-time by QCM-D.

    PubMed

    Tymchenko, Nina; Nilebäck, Erik; Voinova, Marina V; Gold, Julie; Kasemo, Bengt; Svedhem, Sofia

    2012-12-01

    The mechanical properties and responses of cells to external stimuli (including drugs) are closely connected to important phenomena such as cell spreading, motility, activity, and potentially even differentiation. Here, reversible changes in the viscoelastic properties of surface-attached fibroblasts were induced by the cytoskeleton-perturbing agent cytochalasin D, and studied in real-time by the quartz crystal microbalance with dissipation (QCM-D) technique. QCM-D is a surface sensitive technique that measures changes in (dynamically coupled) mass and viscoelastic properties close to the sensor surface, within a distance into the cell that is usually only a fraction of its size. In this work, QCM-D was combined with light microscopy to study in situ cell attachment and spreading. Overtone-dependent changes of the QCM-D responses (frequency and dissipation shifts) were first recorded, as fibroblast cells attached to protein-coated sensors in a window equipped flow module. Then, as the cell layer had stabilised, morphological changes were induced in the cells by injecting cytochalasin D. This caused changes in the QCM-D signals that were reversible in the sense that they disappeared upon removal of cytochalasin D. These results are compared to other cell QCM-D studies. Our results stress the combination of QCM-D and light microscopy to help interpret QCM-D results obtained in cell assays and thus suggests a direction to develop the QCM-D technique as an even more useful tool for real-time cell studies.

  1. Monitoring the change of mitochondrial morphology and its metabolism of the breast cancer cells with the treatment of Hsp70 inhibitor during heat shock by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Yu, Biying; Yang, Hongqin; Zhang, Xiaoman; Li, Hui

    2016-10-01

    Heat shock (HS) is one of the best-studied exogenous cellular stresses, and all cellular compartments and metabolic processes are involved in HS response. The heat shock proteins (Hsps) expression enhanced during HS mainly localized in subcellular compartments, such as cytosol, endoplasmic reticulum and mitochandria. The major inducible heat shock protein 70 (Hsp70) modulate cellular homeostasis and promote cellular survival by blocking a caspase independent cell death through its association with apoptosis inducing factor. Mitochondria as the critical elements of HS response that participate in key metabolic reactions, and the changes in mitochonrial morphology may impact on mitochondrial metabolism. In this paper, the changes of mitorchondrial morphology in breast cancer cell have been monitored in real time after heat shock (43 °) by the fluorescence imaging, and the influence of Hsp70 inhibitor on mitochandrial structures have also been investigated. Then the information of mitochondrial metabolism which can be characterized by the level of the mitochondrial membrane potential has also been obtained wihout/with the treatment of Hsp70 inhibitor. Our data indicated that the mitochandrial morphology were related with the mitochandrial membrane potential, and the mitochandrial membrane potential was influenced significantly with the treatment of Hsp70 inhibitor during HS.

  2. Morphologic diversity of syringocystadenocarcinoma papilliferum based on a clinicopathologic study of 6 cases and review of the literature.

    PubMed

    Kazakov, Dmitry V; Requena, Luis; Kutzner, Heinz; Fernandez-Figueras, Maria Teresa; Kacerovska, Denisa; Mentzel, Thomas; Schwabbauer, Peter; Michal, Michal

    2010-06-01

    Syringocystadenocarcinoma papilliferum is an extremely rare cutaneous adnexal neoplasm. The purpose of our investigation was to study a series of syringocystadenocarcinoma papilliferum to document morphologic variations of the neoplasm. This is a light-microscopic study of 6 cases of syringocystadenocarcinoma papilliferum obtained from the combined archival, institutional, and consultations files of the authors over 60 years, complemented by a literature review. Syringocystadenocarcinoma papilliferum invariably occurred in association with syringocystadenoma papilliferum and presented as an in situ adenocarcinoma and/or invasive adenocarcinoma. Additionally, an invasive component was represented by squamous cell carcinoma. Variable present features included pagetoid migration of the neoplastic cells, dirty necrosis, mucinous ductal metaplasia, and ductal changes analogous to those seen in the breast. The ductal changes included patterns identical to columnar cell change (flat epithelial atypia), usual ductal hyperplasia, atypical ductal hyperplasia, and ductal carcinoma in situ. A combination of the above patterns in a single lesion was noted. It is concluded that morphologic diversity of syringocystadenocarcinoma papilliferum is substantial. Its association with the benign counterpart and ductal changes suggests a transformation that may involve usual ductal hyperplasia-atypical ductal hyperplasia-(ductal) adenocarcinoma in situ-invasive adenocarcinoma pathway.

  3. Morphofunctional alterations in ventral tegmental area dopamine neurons in acute and prolonged opiates withdrawal. A computational perspective.

    PubMed

    Enrico, P; Migliore, M; Spiga, S; Mulas, G; Caboni, F; Diana, M

    2016-05-13

    Dopamine (DA) neurons of the ventral tegmental area (VTA) play a key role in the neurobiological basis of goal-directed behaviors and addiction. Morphine (MOR) withdrawal induces acute and long-term changes in the morphology and physiology of VTA DA cells, but the mechanisms underlying these modifications are poorly understood. Because of their predictive value, computational models are a powerful tool in neurobiological research, and are often used to gain further insights and deeper understanding on the molecular and physiological mechanisms underlying the development of various psychiatric disorders. Here we present a biophysical model of a DA VTA neuron based on 3D morphological reconstruction and electrophysiological data, showing how opiates withdrawal-driven morphological and electrophysiological changes could affect the firing rate and discharge pattern. The model findings suggest how and to what extent a change in the balance of GABA/GLU inputs can take into account the experimentally observed hypofunction of VTA DA neurons during acute and prolonged withdrawal, whereas morphological changes may play a role in the increased excitability of VTA DA cell to opiate administration observed during opiate withdrawal. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Functionalization of nanotextured substrates for enhanced identification of metastatic breast cancer cells

    NASA Astrophysics Data System (ADS)

    Mansur, Nuzhat; Raziul Hasan, Mohammad; Kim, Young-tae; Iqbal, Samir M.

    2017-09-01

    Metastasis is the major cause of low survival rates among cancer patients. Once cancer cells metastasize, it is extremely difficult to contain the disease. We report on a nanotextured platform for enhanced detection of metastatic cells. We captured metastatic (MDA-MDB-231) and non-metastatic (MCF-7) breast cancer cells on anti-EGFR aptamer modified plane and nanotextured substrates. Metastatic cells were seen to change their morphology at higher rates when captured on nanotextured substrates than on plane substrates. Analysis showed statistically different morphological behaviors of metastatic cells that were very pronounced on the nanotextured substrates. Several distance matrices were calculated to quantify the dissimilarity of cell shape change. Nanotexturing increased the dissimilarity of the metastatic cells and as a result the contrast between metastatic and non-metastatic cells increased. Jaccard distance measurements found that the shape change ratio of the non-metastatic and metastatic cells was enhanced from 1:1.01 to 1:1.81, going from plane to nanotextured substrates. The shape change ratio of the non-metastatic to metastatic cells improved from 1:1.48 to 1:2.19 for the Hausdorff distance and from 1:1.87 to 1:4.69 for the Mahalanobis distance after introducing nanotexture. Distance matrix analysis showed that nanotexture increased the shape change ratios of non-metastatic and metastatic cells. Hence, the detectability of metastatic cells increased. These calculated matrices provided clear and explicit measures to discriminate single cells for their metastatic state on functional nanotextured substrates.

  5. Features of morfological changes in primary thyroid gland CTLL cultures of rats descendants prenatally exposed by radioisotopes of iodine-131.

    PubMed

    Boiko, O A; Lavrenchuk, H Yo; Lypska, A I; Talko, V V; Asmolkov, V S

    2017-12-01

    to investigate morphological changes in the primary thyroid cell culture of rat infants whose parents were prenatally exposed by radioisotope iodine 131. obtaining and culturing of thyroid tissue primary cell cultures of newborn rats, cytological (receipt and analysis of cell cultures agents for optical microscopy), biophysical (flow cytometry), statistics. It was shown that cells in thyroid primary culture of offspring rats prenatally exposed by radioisotopes of iodine 131 signs of destructive degenerative changes were observed mostly when animals of both sexes were irra diated. Increased number of two and three nuclear cells and induction of ring like cells is an evidence of signifi cant genotoxic violation and points to the genome instability in offspring of animals exposed by radioisotope iodine 131. Analysis and quantitative morphological parameters of cells in thyroid primary culture of newborn rats whose parents were exposed prenatally by radioisotopes of iodine 131 showed that upon exposure to radiation thy roid undergoes destructive changes at the cellular level and, even in the second generation of offspring, leads to disruption of its functions. O. A. Boiko, H. Yo. Lavrenchuk, A. I. Lypska, V. V. Talko, V. S. Asmolkov.

  6. Passage-dependent morphological and phenotypical changes of a canine histiocytic sarcoma cell line (DH82 cells).

    PubMed

    Heinrich, Franziska; Contioso, Vanessa Bono; Stein, Veronika M; Carlson, Regina; Tipold, Andrea; Ulrich, Reiner; Puff, Christina; Baumgärtner, Wolfgang; Spitzbarth, Ingo

    2015-01-15

    DH82 cells represent a permanent macrophage cell line isolated from a dog with histiocytic sarcoma (HS) and are commonly used in various fields of research upon infection and cancer, respectively. Despite its frequent use, data on cell surface antigen expression of this cell line are fragmentary and in part inconsistent. We therefore aimed at a detailed morphological and antigenic characterization of DH82 cells with respect to passage-dependent differences. Cellular morphology of early (≤ 13) and late (≥ 66) passages of DH82 cells was evaluated via scanning electron microscopy. Moreover, cells were labelled with 10 monoclonal antibodies directed against CD11c, CD14, CD18, CD44, CD45, CD80, CD86, MHC-I, MHC-II, and ICAM-1 for flow cytometric analysis. Early passage cells were characterized by round cell bodies with abundant small cytoplasmic projections whereas later passages exhibited a spindle-shaped morphology with large processes. The percentage of CD11c-, CD14-, CD18-, CD45-, and CD80 positive cells significantly decreased in late passages whereas the expression of CD44, CD86, MHC-I, MHC-II and ICAM-1 remained unchanged. DH82 cells represent a remarkably heterogeneous cell line with divergent antigenic and morphologic properties. The present findings have important implications for future studies, which should consider distinct characteristics with regard to the used passage. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Implications for osmorespiratory compromise by anatomical remodeling in the gills of Arapaima gigas.

    PubMed

    Ramos, Cleverson Agner; Fernandes, Marisa Narciso; da Costa, Oscar Tadeu Ferreira; Duncan, Wallice Paxiuba

    2013-10-01

    The gill structure of the Amazonian fish Arapaima gigas, an obligatory air breather, was investigated during its transition from water breathing to the obligatory air breathing modes of respiration. The gill structure of A. gigas larvae is similar to that of most teleost fish; however, the morphology of the gills changes as the fish grow. The main morphological changes in the gill structure of a growing fish include the following: (1) intense cell proliferation in the filaments and lamellae, resulting in increasing epithelial thickness and decreasing interlamellar distance; (2) pillar cell system atrophy, which reduces the blood circulation through the lamellae; (3) the generation of long cytoplasmic processes from the epithelial cells into the intercellular space, resulting in continuous and sinuous paracellular channels between the epithelial cells of the filament and lamella that may be involved in gas, ion, and nutrient transport to epithelial cells; and (4) intense mitochondria-rich cell (MRC) proliferation in the lamellar epithelium. All of these morphological changes in the gills contribute to a low increase of the respiratory surface area for gas exchange and an increase in the water-blood diffusion distance increasing their dependence on air-breathing as fish developed. The increased proliferation of MRCs may contribute to increased ion uptake, which favors the regulation of ion content and pH equilibrium. Copyright © 2013 Wiley Periodicals, Inc.

  8. Myasthenia gravis sera have no effect on cardiomyocytes in vitro.

    PubMed

    Helgeland, Geir; Luckman, Steven P; Romi, Fredrik R; Jonassen, Anne K; Gilhus, Nils Erik

    2008-09-15

    Myasthenia gravis (MG) is an autoimmune disorder primarily caused by circulating autoantibodies targeting the nicotinic acetylcholine receptor. Several studies have suggested a link between MG and heart disease. Girardi heart cells were treated with MG sera, measuring cytotoxic effects using flow cytometry, adenylate kinase (AK) release and evaluating morphology. MG sera did not induce morphological changes in the cells. AK release from cells treated with MG sera did not exceed controls and flow cytometric examination did not reveal any increase in dead or apoptotic cells. We conclude that MG sera have no cytotoxic effect in our heart cell culture system.

  9. Volume regulation and shape bifurcation in the cell nucleus

    PubMed Central

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M.; Wirtz, Denis; Sun, Sean X.

    2015-01-01

    ABSTRACT Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. PMID:26243474

  10. Volume regulation and shape bifurcation in the cell nucleus.

    PubMed

    Kim, Dong-Hwee; Li, Bo; Si, Fangwei; Phillip, Jude M; Wirtz, Denis; Sun, Sean X

    2015-09-15

    Alterations in nuclear morphology are closely associated with essential cell functions, such as cell motility and polarization, and correlate with a wide range of human diseases, including cancer, muscular dystrophy, dilated cardiomyopathy and progeria. However, the mechanics and forces that shape the nucleus are not well understood. Here, we demonstrate that when an adherent cell is detached from its substratum, the nucleus undergoes a large volumetric reduction accompanied by a morphological transition from an almost smooth to a heavily folded surface. We develop a mathematical model that systematically analyzes the evolution of nuclear shape and volume. The analysis suggests that the pressure difference across the nuclear envelope, which is influenced by changes in cell volume and regulated by microtubules and actin filaments, is a major factor determining nuclear morphology. Our results show that physical and chemical properties of the extracellular microenvironment directly influence nuclear morphology and suggest that there is a direct link between the environment and gene regulation. © 2015. Published by The Company of Biologists Ltd.

  11. Phototodynamic activity of zinc monocarboxyphenoxy phthalocyane (ZnMCPPc) conjugated to gold silver (AuAg) nanoparticles in melanoma cancer cells

    NASA Astrophysics Data System (ADS)

    Manoto, Sello L.; Oluwole, David O.; Malabi, Rudzani; Maphanga, Charles; Ombinda-Lemboumba, Saturnin; Nyokong, Tebello; Mthunzi-Kufa, Patience

    2017-02-01

    Photodynamic therapy (PDT) is a minimally invasive therapeutic modality for the treatment of neoplastic and non-neoplastic diseases. In PDT of cancer, irradiation with light of a specific wavelength leads to activation of a photosensitizer which results in generation of reactive oxygen species (ROS) which induces cell death. Many phthalocyanine photosensitizers are hydrophobic and insoluble in water, which limits their therapeutic efficiency. Consequently, advanced delivery systems and strategies are needed to improve the effectiveness of these photosensitizers. Nanoparticles have shown promising results in increasing aqueous solubility, bioavailability, stability and delivery of photosensitizers to their target. This study investigated the photodynamic activity of zinc monocarboxyphenoxy phthalocyanine (ZnMCPPc) conjugated to gold silver (AuAg) nanoparticles in melanoma cancer cells. The photodynamic activity of ZnMCPPc conjugated to AuAg nanoparticles were evaluated using cellular morphology, viability, proliferation and cytotoxicity. Untreated cells showed no changes in cellular morphology, proliferation and cytotoxicity. However, photoactivated ZnMCPPc conjugated to AuAg nanoparticles showed changes in cell morphology and a dose dependent decrease in cellular viability, proliferation and an increase in cell membrane damage. The ZnMCPPc conjugated to AuAg nanoparticles used in this study was highly effective in inducing cell death of melanoma cancer cells.

  12. [Facial nerve injuries cause changes in central nervous system microglial cells].

    PubMed

    Cerón, Jeimmy; Troncoso, Julieta

    2016-12-01

    Our research group has described both morphological and electrophysiological changes in motor cortex pyramidal neurons associated with contralateral facial nerve injury in rats. However, little is known about those neural changes, which occur together with changes in surrounding glial cells. To characterize the effect of the unilateral facial nerve injury on microglial proliferation and activation in the primary motor cortex. We performed immunohistochemical experiments in order to detect microglial cells in brain tissue of rats with unilateral facial nerve lesion sacrificed at different times after the injury. We caused two types of lesions: reversible (by crushing, which allows functional recovery), and irreversible (by section, which produces permanent paralysis). We compared the brain tissues of control animals (without surgical intervention) and sham-operated animals with animals with lesions sacrificed at 1, 3, 7, 21 or 35 days after the injury. In primary motor cortex, the microglial cells of irreversibly injured animals showed proliferation and activation between three and seven days post-lesion. The proliferation of microglial cells in reversibly injured animals was significant only three days after the lesion. Facial nerve injury causes changes in microglial cells in the primary motor cortex. These modifications could be involved in the generation of morphological and electrophysiological changes previously described in the pyramidal neurons of primary motor cortex that command facial movements.

  13. Hepatocyte Paraffin 1 Antigen as a Biomarker for Early Diagnosis of Barrett Esophagus

    PubMed Central

    Jeung, Jennifer A.; Coran, Justin J.; Liu, Chen; Cardona, Diana M.

    2013-01-01

    We evaluated hepatocyte paraffin 1 (HepPar1) antigen expression, a sensitive marker of small intestinal differentiation, in combination with morphologic features to demonstrate intestinal differentiation in cases equivocal for Barrett esophagus (BE). Clinicopathologic features and HepPar1 expression were recorded for 54 BE cases, 45 consistent with reflux esophagitis (RE) cases, and 65 “suspicious” for BE (SBE) cases. The SBE category included RE cases with 2 or more morphologic changes associated with BE or metaplastic reaction to injury (eg, multilayered epithelium, squamous islands, goblet cell mimickers, pancreatic metaplasia). HepPar1 was expressed in all 54 BE cases, 4 of 45 RE cases, and 24 of 65 SBE cases. In SBE cases, 2 or more morphologic changes were associated with HepPar1 expression in 37% of cases (24/65), 3 or more features in 59% (13/22), and 4 or more features in 100% (4/4) (P ≤ .004). The combination of certain morphologic changes and HepPar1 expression in clinically suspicious distal esophageal biopsy cases without goblet cells supports the presence of evolving intestinal metaplasia. PMID:22180484

  14. Cyclic mechanical stretch contributes to network development of osteocyte-like cells with morphological change and autophagy promotion but without preferential cell alignment in rat.

    PubMed

    Inaba, Nao; Kuroshima, Shinichiro; Uto, Yusuke; Sasaki, Muneteru; Sawase, Takashi

    2017-09-01

    Osteocytes play important roles in controlling bone quality as well as preferential alignment of biological apatite c -axis/collagen fibers. However, the relationship between osteocytes and mechanical stress remains unclear due to the difficulty of three-dimensional (3D) culture of osteocytes in vitro . The aim of this study was to investigate the effect of cyclic mechanical stretch on 3D-cultured osteocyte-like cells. Osteocyte-like cells were established using rat calvarial osteoblasts cultured in a 3D culture system. Cyclic mechanical stretch (8% amplitude at a rate of 2 cycles min -1 ) was applied for 24, 48 and 96 consecutive hours. Morphology, cell number and preferential cell alignment were evaluated. Apoptosis- and autophagy-related gene expression levels were measured using quantitative PCR. 3D-cultured osteoblasts became osteocyte-like cells that expressed osteocyte-specific genes such as Dmp1 , Cx43 , Sost , Fgf23 and RANKL , with morphological changes similar to osteocytes. Cell number was significantly decreased in a time-dependent manner under non-loaded conditions, whereas cyclic mechanical stretch significantly prevented decreased cell numbers with increased expression of anti-apoptosis-related genes. Moreover, cyclic mechanical stretch significantly decreased cell size and ellipticity with increased expression of autophagy-related genes, LC3b and atg7 . Interestingly, preferential cell alignment did not occur, irrespective of mechanical stretch. These findings suggest that an anti-apoptotic effect contributes to network development of osteocyte-like cells under loaded condition. Spherical change of osteocyte-like cells induced by mechanical stretch may be associated with autophagy upregulation. Preferential alignment of osteocytes induced by mechanical load in vivo may be partially predetermined before osteoblasts differentiate into osteocytes and embed into bone matrix.

  15. Relationship between increasing concentrations of two carcinogens and statistical image descriptors of foci morphology in the cell transformation assay.

    PubMed

    Callegaro, Giulia; Corvi, Raffaella; Salovaara, Susan; Urani, Chiara; Stefanini, Federico M

    2017-06-01

    Cell Transformation Assays (CTAs) have long been proposed for the identification of chemical carcinogenicity potential. The endpoint of these in vitro assays is represented by the phenotypic alterations in cultured cells, which are characterized by the change from the non-transformed to the transformed phenotype. Despite the wide fields of application and the numerous advantages of CTAs, their use in regulatory toxicology has been limited in part due to concerns about the subjective nature of visual scoring, i.e. the step in which transformed colonies or foci are evaluated through morphological features. An objective evaluation of morphological features has been previously obtained through automated digital processing of foci images to extract the value of three statistical image descriptors. In this study a further potential of the CTA using BALB/c 3T3 cells is addressed by analysing the effect of increasing concentrations of two known carcinogens, benzo[a]pyrene and NiCl 2 , with different modes of action on foci morphology. The main result of our quantitative evaluation shows that the concentration of the considered carcinogens has an effect on foci morphology that is statistically significant for the mean of two among the three selected descriptors. Statistical significance also corresponds to visual relevance. The statistical analysis of variations in foci morphology due to concentration allowed to quantify morphological changes that can be visually appreciated but not precisely determined. Therefore, it has the potential of providing new quantitative parameters in CTAs, and of exploiting all the information encoded in foci. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. Comparative study of the effect of chloro-, dichloro-, bromo-, and dibromoacetic acid on necrotic, apoptotic and morphological changes in human peripheral blood mononuclear cells (in vitro study).

    PubMed

    Michałowicz, Jaromir; Wróblewski, Wojciech; Mokra, Katarzyna; Maćczak, Aneta; Kwiatkowska, Marta

    2015-10-01

    In this study, the effect of monochloroacetic acid (MCAA), dichloroacetic acid (DCAA), monobromoacetic acid (MBAA) and dibromoacetic acid (DBAA) on human peripheral blood mononuclear cells (PBMCs) was assessed. HAAs studied induced at millimolar concentrations necrotic alterations in PBMCs with the strongest effect noted for MBAA and DBAA. Chloro- and bromoacetic acids also provoked changes in PBMCs morphology because they caused a strong decrease in cell size (particularly DCAA and DBAA) and increase in cell granulation (mainly MBAA and DBAA). All HAAs studied, and DCAA and DBAA in particular (at lower concentrations than those, which caused necrosis) induced apoptotic changes, which was confirmed by analysis of alterations in cell membrane permeability and caspase 8, 9 and 3 activation. Moreover, HAAs examined (mainly dihalogenated acids) strongly increased transmembrane mitochondrial potential and enhanced ROS (mainly hydroxyl radical) formation, which was possibly associated with apoptotic changes provoked by those substances. The results showed that DBAA exhibited the strongest effects on PBMCs. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Morphological, anatomical, and ultrastructural changes (visualized through scanning electron microscopy) induced in Triticum aestivum by Pb²⁺ treatment.

    PubMed

    Kaur, Gurpreet; Singh, Harminder Pal; Batish, Daizy Rani; Kohli, Ravinder Kumar

    2014-11-01

    Lead (Pb) causes severe damage to crops, ecosystems, and humans, and alters the physiology and biochemistry of various plant species. It is hypothesized that Pb-induced metabolic alterations could manifest as structural variations in the roots of plants. In light of this, the morphological, anatomical, and ultrastructural variations (through scanning electron microscopy, SEM) were studied in 4-day-old seedlings of Triticum aestivum grown under Pb stress (0, 8, 16, 40, and 80 mg Pb(2+) l(-1); mild to highly toxic). The toxic effect was more pronounced in radicle growth than on the plumule growth. The SEM of the root of T. aestivum depicted morphological alterations and surface ultrastructural changes. Compared to intact and uniform surface cells in the control roots, cells were irregular and desiccated in Pb(2+)-treated roots. In Pb(2+)-treated roots, the number of root hairs increased manifold, showing dense growth, and these were apparently longer. Apart from the deformity in surface morphology and anatomy of the roots in response to Pb(2+) toxicity, considerable anatomical alterations were also observed. Pb(2+)-treated root exhibited signs of injury in the form of cell distortion, particularly in the cortical cells. The endodermis and pericycle region showed loss of uniformity post Pb(2+) exposure (at 80 mg l(-1) Pb(2+)). The cells appeared to be squeezed with greater depositions observed all over the tissue. The study concludes that Pb(2+) treatment caused structural anomalies and induced anatomical and surface ultrastructural changes in T. aestivum.

  18. Nuclear events of apoptosis in vitro in cell-free mitotic extracts: a model system for analysis of the active phase of apoptosis

    PubMed Central

    1993-01-01

    We have developed a cell-free system that induces the morphological transformations characteristic of apoptosis in isolated nuclei. The system uses extracts prepared from mitotic chicken hepatoma cells following a sequential S phase/M phase synchronization. When nuclei are added to these extracts, the chromatin becomes highly condensed into spherical domains that ultimately extrude through the nuclear envelope, forming apoptotic bodies. The process is highly synchronous, and the structural changes are completed within 60 min. Coincident with these morphological changes, the nuclear DNA is cleaved into a nucleosomal ladder. Both processes are inhibited by Zn2+, an inhibitor of apoptosis in intact cells. Nuclear lamina disassembly accompanies these structural changes in added nuclei, and we show that lamina disassembly is a characteristic feature of apoptosis in intact cells of mouse, human and chicken. This system may provide a powerful means of dissecting the biochemical mechanisms underlying the final stages of apoptosis. PMID:8408207

  19. Vitreous-induced cytoskeletal rearrangements via the Rac1 GTPase-dependent signaling pathway in human retinal pigment epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xionggao; Department of Ophthalmology, Hainan Medical College, Haikou; Wei, Yantao

    2012-03-09

    Highlights: Black-Right-Pointing-Pointer Vitreous induces morphological changes and cytoskeletal rearrangements in RPE cells. Black-Right-Pointing-Pointer Rac1 is activated in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition prevents morphological changes in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer Rac inhibition suppresses cytoskeletal rearrangements in vitreous-transformed RPE cells. Black-Right-Pointing-Pointer The vitreous-induced effects are mediated by a Rac1 GTPase/LIMK1/cofilin pathway. -- Abstract: Proliferative vitreoretinopathy (PVR) is mainly caused by retinal pigment epithelial (RPE) cell migration, invasion, proliferation and transformation into fibroblast-like cells that produce the extracellular matrix (ECM). The vitreous humor is known to play an important role in PVR. An epithelial-to-mesenchymal transdifferentiation (EMT) of human RPE cells inducedmore » by 25% vitreous treatment has been linked to stimulation of the mesenchymal phenotype, migration and invasion. Here, we characterized the effects of the vitreous on the cell morphology and cytoskeleton in human RPE cells. The signaling pathway that mediates these effects was investigated. Serum-starved RPE cells were incubated with 25% vitreous, and the morphological changes were examined by phase-contrast microscopy. Filamentous actin (F-actin) was examined by immunofluorescence and confocal microscopy. Protein phosphorylation of AKT, ERK1/2, Smad2/3, LIM kinase (LIMK) 1 and cofilin was analyzed by Western blot analysis. Vitreous treatment induced cytoskeletal rearrangements, activated Rac1 and enhanced the phosphorylation of AKT, ERK1/2 and Smad2/3. When the cells were treated with a Rac activation-specific inhibitor, the cytoskeletal rearrangements were prevented, and the phosphorylation of Smad2/3 was blocked. Vitreous treatment also enhanced the phosphorylation of LIMK1 and cofilin and the Rac inhibitor blocked this effect. We propose that vitreous-transformed human RPE cells undergo cytoskeletal rearrangements via Rac1 GTPase-dependent pathways that modulate LIMK1 and cofilin activity. The TGF{beta}-like activity of the vitreous may participate in this effect. Actin polymerization causes the cytoskeletal rearrangements that lead to the plasticity of vitreous-transformed RPE cells in PVR.« less

  20. Confocal micrographs: automated segmentation and quantitative shape analysis of neuronal cells treated with ostreolysin A/pleurotolysin B pore-forming complex.

    PubMed

    Kopanja, Lazar; Kovacevic, Zorana; Tadic, Marin; Žužek, Monika Cecilija; Vrecl, Milka; Frangež, Robert

    2018-04-23

    Detailed shape analysis of cells is important to better understand the physiological mechanisms of toxins and determine their effects on cell morphology. This study aimed to develop a procedure for accurate morphological analysis of cell shape and use it as a tool to estimate toxin activity. With the aim of optimizing the method of cell morphology analysis, we determined the influence of ostreolysin A and pleurotolysin B complex (OlyA/PlyB) on the morphology of murine neuronal NG108-15 cells. A computational method was introduced and successfully applied to quantify morphological attributes of the NG108-15 cell line before and after 30 and 60 min exposure to OlyA/PlyB using confocal microscopy. The modified circularity measure [Formula: see text] for shape analysis was applied, which defines the degree to which the shape of the neuron differs from a perfect circle. It enables better detection of small changes in the shape of cells, making the outcome easily detectable numerically. Additionally, we analyzed the influence of OlyA/PlyB on the cell area, allowing us to detect the cells with blebs. This is important because the formation of plasma membrane protrusions such as blebs often reflects cell injury that leads to necrotic cell death. In summary, we offer a novel analytical method of neuronal cell shape analysis and its correlation with the toxic effects of the pore-forming OlyA/PlyB toxin in situ.

  1. [Apoptosis and activity changes of telomerase induced by essential oil from pine needles in HepG2 cell line].

    PubMed

    Wei, Feng-xiang; Li, Mei-yu; Song, Yu-hong; Li, Hong-zhi

    2008-08-01

    To study the effects of essential oil extracted from pine needles on HepG2 cell line. HepG2 cells were treated with essential oil extracted from pine needles. Cell growth rate was determined with MTF assay, cell morphologic changes were examined under transmission electromicroscope and HE straining. Flow cytometry was used to exmine apoptotic cells. Bcl-2 gene expression was determined by flow cytometry and telomerase activity by TRAP assay. Essential oils from pine needles could not only repress the growth of HepG2 cells significantly, but also induce apoptosis to them. Both dose-effect and time-effect relationship could be confirmed. Typical morphology changes of apoptosis such as nuclear enrichment and karyorrhexis were observed through transmission electromicroscope and HE straining. Telomerase activity was down regulated in the essential oil extracted from pine needles induced apoptotic cells. The expression of bcl-2 gene was suppressed after the essential oil from pine needles treatement. The essential oil extracted from pine needles can inhibit cell growth of HepG2 cell line and induce apoptosis, which may associate with inhibition of telomerase activity and bcl-2 may be involved in the regulation of telomerase activity.

  2. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae

    PubMed Central

    Frye, Mitchell D.; Yang, Weiping; Zhang, Celia; Xiong, Binbin; Hu, Bo Hua

    2016-01-01

    In the sensory epithelium, macrophages have been identified on the scala tympani side of the basilar membrane. These basilar membrane macrophages are the spatially closest immune cells to sensory cells and are able to directly respond to and influence sensory cell pathogenesis. While basilar membrane macrophages have been studied in acute cochlear stresses, their behavior in response to chronic sensory cell degeneration is largely unknown. Here we report a systematic observation of the variance in phenotypes, the changes in morphology and distribution of basilar membrane tissue macrophages in different age groups of C57BL/6J mice, a mouse model of age-related sensory cell degeneration. This study reveals that mature, fully differentiated tissue macrophages, not recently infiltrated monocytes, are the major macrophage population for immune responses to chronic sensory cell death. These macrophages display dynamic changes in their numbers and morphologies as age increases, and the changes are related to the phases of sensory cell degeneration. Notably, macrophage activation precedes sensory cell pathogenesis, and strong macrophage activity is maintained until sensory cell degradation is complete. Collectively, these findings suggest that mature tissue macrophages on the basilar membrane are a dynamic group of cells that are capable of vigorous adaptation to changes in the local sensory epithelium environment influenced by sensory cell status. PMID:27837652

  3. Dynamic activation of basilar membrane macrophages in response to chronic sensory cell degeneration in aging mouse cochleae.

    PubMed

    Frye, Mitchell D; Yang, Weiping; Zhang, Celia; Xiong, Binbin; Hu, Bo Hua

    2017-02-01

    In the sensory epithelium, macrophages have been identified on the scala tympani side of the basilar membrane. These basilar membrane macrophages are the spatially closest immune cells to sensory cells and are able to directly respond to and influence sensory cell pathogenesis. While basilar membrane macrophages have been studied in acute cochlear stresses, their behavior in response to chronic sensory cell degeneration is largely unknown. Here we report a systematic observation of the variance in phenotypes, the changes in morphology and distribution of basilar membrane tissue macrophages in different age groups of C57BL/6J mice, a mouse model of age-related sensory cell degeneration. This study reveals that mature, fully differentiated tissue macrophages, not recently infiltrated monocytes, are the major macrophage population for immune responses to chronic sensory cell death. These macrophages display dynamic changes in their numbers and morphologies as age increases, and the changes are related to the phases of sensory cell degeneration. Notably, macrophage activation precedes sensory cell pathogenesis, and strong macrophage activity is maintained until sensory cell degradation is complete. Collectively, these findings suggest that mature tissue macrophages on the basilar membrane are a dynamic group of cells that are capable of vigorous adaptation to changes in the local sensory epithelium environment influenced by sensory cell status. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Quantifying the effect of electric current on cell adhesion studied by single-cell force spectroscopy.

    PubMed

    Jaatinen, Leena; Young, Eleanore; Hyttinen, Jari; Vörös, János; Zambelli, Tomaso; Demkó, László

    2016-03-20

    This study presents the effect of external electric current on the cell adhesive and mechanical properties of the C2C12 mouse myoblast cell line. Changes in cell morphology, viability, cytoskeleton, and focal adhesion structure were studied by standard staining protocols, while single-cell force spectroscopy based on the fluidic force microscopy technology provided a rapid, serial quantification and detailed analysis of cell adhesion and its dynamics. The setup allowed measurements of adhesion forces up to the μN range, and total detachment distances over 40 μm. Force-distance curves have been fitted with a simple elastic model including a cell detachment protocol in order to estimate the Young's modulus of the cells, as well as to reveal changes in the dynamic properties as functions of the applied current dose. While the cell spreading area decreased monotonously with increasing current doses, small current doses resulted only in differences related to cell elasticity. Current doses above 11 As/m(2), however, initiated more drastic changes in cell morphology, viability, cellular structure, as well as in properties related to cell adhesion. The observed differences, eventually leading to cell death toward higher doses, might originate from both the decrease in pH and the generation of reactive oxygen species.

  5. Quantitative investigation of red blood cell three-dimensional geometric and chemical changes in the storage lesion using digital holographic microscopy.

    PubMed

    Jaferzadeh, Keyvan; Moon, Inkyu

    2015-11-01

    Quantitative phase information obtained by digital holographic microscopy (DHM) can provide new insight into the functions and morphology of single red blood cells (RBCs). Since the functionality of a RBC is related to its three-dimensional (3-D) shape, quantitative 3-D geometric changes induced by storage time can help hematologists realize its optimal functionality period. We quantitatively investigate RBC 3-D geometric changes in the storage lesion using DHM. Our experimental results show that the substantial geometric transformation of the biconcave-shaped RBCs to the spherocyte occurs due to RBC storage lesion. This transformation leads to progressive loss of cell surface area, surface-to-volume ratio, and functionality of RBCs. Furthermore, our quantitative analysis shows that there are significant correlations between chemical and morphological properties of RBCs.

  6. Thyroid status alters gill ionic metabolism and chloride cell morphology as evidenced by scanning electron microscopy in a teleost Anabas testudineus (Bloch): short and long term in vivo study.

    PubMed

    Sreejith, P; Beyo, R S; Prasad, G; Sunny, F; Oommen, O V

    2007-12-01

    Gill is the main organ of osmotic regulation in teleosts and chloride cells are the sites of ion transport across gill epithelium. Thyroid hormones are implicated in the regulation of osmotic balance in teleosts also. Treatment with 6-propyl thiouracil (6-PTU) inhibited the membrane bound enzyme Na+K+ ATPase in the gill while triiodothyronine (T3) injection stimulated it in a short-term in vivo study in the teleost Anabas testudineus. Na+, K+ and Ca2+ ions were also decreased in the 6-PTU treated fish and the T3 treatment increased their concentrations in the gill lamellae. The gill morphology also changed according to the thyroid status in the long term study. 6-PTU treatment altered the typical serrated morphology of the gill lamellae, while the T3 treatment reversed it. T3 injection increased the density of pavement and chloride cells as evidenced by scanning electron microscopy. The results demonstrate that physiological status of the thyroid influences gill Na+ pump activity and chloride cell morphological changes. Further, the study suggests a regulatory role of T3 on gill ions (Na+, K+ and Ca2+), Na+K+ and Ca2+ ATPase activity and the different gill cell types in A. testudineus.

  7. [The morphology of the peripheral blood erythrocytes in patients with tetralogy of Fallot before and after its surgical correction].

    PubMed

    Guliamov, D S; Vorozheĭkin, V M; Ikmatov, A A; Abdumadzhidov, Kh A

    1995-01-01

    Quantitative changes in red cells were studied by dark field scanning electron microscopy of native preparations obtained from patients with Fallot's tetralogy of varying severity and duration. Mainly echinocytic transformation of red cells was revealed that directly depended on the disease duration. Morphologic findings have confirmed the efficacy of surgical correction and drug therapy of Fallot's tetralogy.

  8. Carbon Ion-Irradiated Hepatoma Cells Exhibit Coupling Interplay between Apoptotic Signaling and Morphological and Mechanical Remodeling

    PubMed Central

    Zhang, Baoping; Li, Long; Li, Zhiqiang; Liu, Yang; Zhang, Hong; Wang, Jizeng

    2016-01-01

    A apoptotic model was established based on the results of five hepatocellular carcinoma cell (HCC) lines irradiated with carbon ions to investigate the coupling interplay between apoptotic signaling and morphological and mechanical cellular remodeling. The expression levels of key apoptotic proteins and the changes in morphological characteristics and mechanical properties were systematically examined in the irradiated HCC lines. We observed that caspase-3 was activated and that the Bax/Bcl-2 ratio was significantly increased over time. Cellular morphology and mechanics analyses indicated monotonic decreases in spatial sizes, an increase in surface roughness, a considerable reduction in stiffness, and disassembly of the cytoskeletal architecture. A theoretical model of apoptosis revealed that mechanical changes in cells induce the characteristic cellular budding of apoptotic bodies. Statistical analysis indicated that the projected area, stiffness, and cytoskeletal density of the irradiated cells were positively correlated, whereas stiffness and caspase-3 expression were negatively correlated, suggesting a tight coupling interplay between the cellular structures, mechanical properties, and apoptotic protein levels. These results help to clarify a novel arbitration mechanism of cellular demise induced by carbon ions. This biomechanics strategy for evaluating apoptosis contributes to our understanding of cancer-killing mechanisms in the context of carbon ion radiotherapy. PMID:27731354

  9. MORPHOLOGIC ANALYSIS CORRELATES WITH GENE EXPRESSION CHANGES IN CULTURED F344 RAT MESOTHELIAL CELLS

    EPA Science Inventory

    The gene expression pattern of mesothelial cells in vitro was determined after 4 or 12 h exposure to the rat mesothelial, kidney and thyroid carcinogen, and oxidative stressor potassium bromate (KBr03). Gene expression changes observed using cDNA arrays indicated oxidative stres...

  10. Experimental study on fulminant angitis with fibrinoid-like degeneration.

    PubMed

    Yamaguchi, H; Morisada, M

    1985-01-01

    Administration of high doses of Na2EDTA or feeding animals a low calcium diet leads to angiolytic changes of the mesenteric arteries as reported in previous papers. Slight inflammatory reactions in the arterial wall including leucocytic infiltration and exudation could be demonstrated. The reason is thought to be the lack of morphological changes of the endothelium. As far as the endothelium was concerned a lift up phenomenon of the endothelial cells and the formation of subendothelial vacuoles was observed, but no endothelial gap formation or desquamation. Administration of Na2EDTA resulted in rapid removal of calcium ions from living animals, but injurious effects on the morphology of the cells did not occur except of changes of the cellular shape, both of endothelial and smooth muscle cells. Without any morpho-functional alterations of the endothelial lining cells, severe exudation and leucocytic trapping could not be induced. The morphological changes of the vascular wall following the above procedures are said to be angiolytic and not angitic. In this experiment, dysproteinemia was provoked in Na2EDTA treated animals by repeated administration of bovine serum albumin (BSA). As a result, angitis-like lesions with severe exudation, similar to those of fibrinoid degeneration and leucocytic reaction against it, were demonstrated. These facts showed that angitis is not merely due to exogenous factors and hostal predisposition.

  11. Quantitative evaluation of morphological changes in activated platelets in vitro using digital holographic microscopy.

    PubMed

    Kitamura, Yutaka; Isobe, Kazushige; Kawabata, Hideo; Tsujino, Tetsuhiro; Watanabe, Taisuke; Nakamura, Masayuki; Toyoda, Toshihisa; Okudera, Hajime; Okuda, Kazuhiro; Nakata, Koh; Kawase, Tomoyuki

    2018-06-18

    Platelet activation and aggregation have been conventionally evaluated using an aggregometer. However, this method is suitable for short-term but not long-term quantitative evaluation of platelet aggregation, morphological changes, and/or adhesion to specific materials. The recently developed digital holographic microscopy (DHM) has enabled the quantitative evaluation of cell size and morphology without labeling or destruction. Thus, we aim to validate its applicability in quantitatively evaluating changes in cell morphology, especially in the aggregation and spreading of activated platelets, thus modifying typical image analysis procedures to suit aggregated platelets. Freshly prepared platelet-rich plasma was washed with phosphate-buffered saline and treated with 0.1% CaCl 2 . Platelets were then fixed and subjected to DHM, scanning electron microscopy (SEM), atomic force microscopy, optical microscopy, and flow cytometry (FCM). Tightly aggregated platelets were identified as single cells. Data obtained from time-course experiments were plotted two-dimensionally according to the average optical thickness versus attachment area and divided into four regions. The majority of the control platelets, which supposedly contained small and round platelets, were distributed in the lower left region. As activation time increased, however, this population dispersed toward the upper right region. The distribution shift demonstrated by DHM was essentially consistent with data obtained from SEM and FCM. Therefore, DHM was validated as a promising device for testing platelet function given that it allows for the quantitative evaluation of activation-dependent morphological changes in platelets. DHM technology will be applicable to the quality assurance of platelet concentrates, as well as diagnosis and drug discovery related to platelet functions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Evaluation of anemia diagnosis based on elastic light scattering (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Tong, Lieshu; Wang, Xinrui; Xie, Dengling; Chen, Xiaoya; Chu, Kaiqin; Dou, Hu; Smith, Zachary J.

    2017-03-01

    Currently, one-third of humanity is still suffering from anemia. In China the most common forms of anemia are iron deficiency and Thalassemia minor. Differentiating these two is the key to effective treatment. Iron deficiency is caused by malnutrition and can be cured by iron supplementation. Thalassemia is a hereditary disease in which the hemoglobin β chain is lowered or absent. Iron therapy is not effective, and there is evidence that iron therapy may be harmful to patients with Thalassemia. Both anemias can be diagnosed using red blood cell morphology: Iron deficiency presents a smaller mean cell volume compared to normal cells, but with a wide distribution; Thalassemia, meanwhile, presents a very small cell size and tight particle size distribution. Several researchers have proposed diagnostic indices based on red cell morphology to differentiate these two diseases. However, these indices lack sensitivity and specificity and are constructed without statistical rigor. Using multivariate methods we demonstrate a new classification method based on red cell morphology that diagnoses anemia in a Chinese population with enough accuracy for its use as a screening method. We further demonstrate a low cost instrument that precisely measures red cell morphology using elastic light scattering. This instrument is combined with an automated analysis program that processes scattering data to report red cell morphology without the need for user intervention. Despite using consumer-grade components, when comparing our experimental results with gold-standard measurements, the device can still achieve the high precision required for sensing clinically significant changes in red cell morphology.

  13. Induction of temporally dissociated morphological and physiological differentiation of N1E-115 cells.

    PubMed

    Cosgrove, C; Cobbett, P

    1991-07-01

    Clonal cells derived from neural tumors have been widely used to study the processes of neuronal differentiation in vitro. The murine neuroblastoma clone N1E-115 has recently been shown to differentiate morphologically in response to removal of serum from the culture medium. In the present study, the nature and time course of electrophysiological differentiation of N1E-115 cells maintained in serum-free medium was examined. Differentiated cells had a higher resting potential and lower input conductance than nondifferentiated cells. Differentiated but not nondifferentiated cells generated current evoked action potentials, and differentiated cells fired spontaneous, repetitive action potentials after 13 days in serum-free medium. The rate of potential change during the depolarizing and repolarizing phases of the action potential became faster as the duration of maintenance of cells in serum-free medium increased. Remarkably, morphological differentiation appeared to be complete after exposure to serum-free medium for 5 days but electrophysiological differentiation was not complete until 13 days in this medium.

  14. Superresolving dendritic spine morphology with STED microscopy under holographic photostimulation

    PubMed Central

    Lauterbach, Marcel Andreas; Guillon, Marc; Desnos, Claire; Khamsing, Dany; Jaffal, Zahra; Darchen, François; Emiliani, Valentina

    2016-01-01

    Abstract. Emerging all-optical methods provide unique possibilities for noninvasive studies of physiological processes at the cellular and subcellular scale. On the one hand, superresolution microscopy enables observation of living samples with nanometer resolution. On the other hand, light can be used to stimulate cells due to the advent of optogenetics and photolyzable neurotransmitters. To exploit the full potential of optical stimulation, light must be delivered to specific cells or even parts of cells such as dendritic spines. This can be achieved with computer generated holography (CGH), which shapes light to arbitrary patterns by phase-only modulation. We demonstrate here in detail how CGH can be incorporated into a stimulated emission depletion (STED) microscope for photostimulation of neurons and monitoring of nanoscale morphological changes. We implement an original optical system to allow simultaneous holographic photostimulation and superresolution STED imaging. We present how synapses can be clearly visualized in live cells using membrane stains either with lipophilic organic dyes or with fluorescent proteins. We demonstrate the capabilities of this microscope to precisely monitor morphological changes of dendritic spines after stimulation. These all-optical methods for cell stimulation and monitoring are expected to spread to various fields of biological research in neuroscience and beyond. PMID:27413766

  15. Effect of temperature on the formation of creep substructure in sodium chloride single crystals

    NASA Technical Reports Server (NTRS)

    Raj, Sai V.; Pharr, George M.

    1992-01-01

    The effect of temperature on the substructure morphology and the cell and subgrain size was investigated experimentally in NaCl single crystals under creep in the temperature range 573-873 K. It is found that the effect of temperature on the cell and subgrain sizes is weak in comparison with the effect of stress. However, there was a qualitative change in the substructure morphology with temperature, with the cells and subgrains better defined at higher temperatures. The volume fraction of the cell boundaries decreased with increasing temperature, thereby indicating a refinement of the microstructure at higher temperatures.

  16. Systematic evaluation of markers used for the identification of human induced pluripotent stem cells

    PubMed Central

    Bharathan, Sumitha Prameela; Manian, Kannan Vrindavan; Aalam, Syed Mohammed Musheer; Palani, Dhavapriya; Deshpande, Prashant Ajit; Pratheesh, Mankuzhy Damodaran; Srivastava, Alok

    2017-01-01

    ABSTRACT Low efficiency of somatic cell reprogramming and heterogeneity among human induced pluripotent stem cells (hiPSCs) demand extensive characterization of isolated clones before their use in downstream applications. By monitoring human fibroblasts undergoing reprogramming for their morphological changes and expression of fibroblast (CD13), pluripotency markers (SSEA-4 and TRA-1-60) and a retrovirally expressed red fluorescent protein (RV-RFP), we compared the efficiency of these features to identify bona fide hiPSC colonies. The co-expression kinetics of fibroblast and pluripotency markers in the cells being reprogrammed and the emerging colonies revealed the heterogeneity within SSEA-4+ and TRA-1-60+ cells, and the inadequacy of these commonly used pluripotency markers for the identification of bona fide hiPSC colonies. The characteristic morphological changes in the emerging hiPSC colonies derived from fibroblasts expressing RV-RFP showed a good correlation between hiPSC morphology acquisition and silencing of RV-RFP and facilitated the easy identification of hiPSCs. The kinetics of retroviral silencing and pluripotency marker expression in emerging colonies suggested that combining both these markers could demarcate the stages of reprogramming with better precision than with pluripotency markers alone. Our results clearly demonstrate that the pluripotency markers that are routinely analyzed for the characterization of established iPSC colonies are not suitable for the isolation of pluripotent cells in the early stages of reprogramming, and silencing of retrovirally expressed reporter genes helps in the identification of colonies that have attained a pluripotent state and the morphology of human embryonic stem cells (hESCs). PMID:28089995

  17. Microbial examination of anaerobic sludge adaptation to animal slurry.

    PubMed

    Moset, V; Cerisuelo, A; Ferrer, P; Jimenez, A; Bertolini, E; Cambra-López, M

    2014-01-01

    The objective of this study was to evaluate changes in the microbial population of anaerobic sludge digesters during the adaptation to pig slurry (PS) using quantitative real-time polymerase chain reaction (qPCR) and qualitative scanning electron microscopy (SEM). Additionally, the relationship between microbial parameters and sludge physicochemical composition and methane yield was examined. Results showed that the addition of PS to an unadapted thermophilic anaerobic digester caused an increase in volatile fatty acids (VFA) concentration, a decrease in removal efficiency and CH4 yield. Additionally, increases in total bacteria and total archaea were observed using qPCR. Scanning electron micrographs provided a general overview of the sludge's cell morphology, morphological diversity and degree of organic matter degradation. A change in microbial morphotypes from homogeneous cell morphologies to a higher morphological diversity, similar to that observed in PS, was observed with the addition of PS by SEM. Therefore, the combination of qPCR and SEM allowed expanding the knowledge about the microbial adaptation to animal slurry in thermophilic anaerobic digesters.

  18. Phototoxic effects of free phthalocyanine and phthalocyanine conjugated to gold nanoparticles for targeted photodynamic therapy of melanoma cancer

    NASA Astrophysics Data System (ADS)

    Manoto, Sello L.; Oluwole, David O.; Malabi, Rudzani; Maphanga, Charles; Ombinda-Lemboumba, Saturnin; Nyokong, Tebello; Mthunzi-Kufa, Patience

    2017-02-01

    Photodynamic therapy (PDT) has emerged as an effective treatment modality for various malignant neoplasia and diseases. In PDT, the photochemical interaction of photosensitizer (PS), light and molecular oxygen produces singlet oxygen which can lead to tumour cell apoptosis, necrosis or autophagy. The success of PDT is limited by the hydrophobic characteristic of the PS which hinders treatment administration and efficiency. To circumvent this limitation, PS can be incorporated in nanostructured drug delivery systems such as gold nanoparticles (AuNPs). In this study, we investigated the effectiveness of free zinc monocarboxyphenoxy phthalocyanine (ZnMCPPc) and ZnMCPPc conjugated to AuNPs. Commercially purchased melanoma cancer cells cultured as cell monolayers were used in this study. Changes in cellular response were evaluated using cellular morphology, viability, proliferation and cytotoxicity. Untreated cells showed no changes in cellular morphology, proliferation and cytotoxicity. However, photoactivated free ZnMCPPc and ZnMCPPc conjugated to AuNPs showed changes in cellular morphology and a dose dependent decrease in cellular viability and proliferation as well as an increase in cell membrane. ZnMCPPc conjugated to AuNPs showed an improved efficiency in PDT as compared to free ZnMCPPc, which might be as a result of the vehicle effect of AuNPs. Both PSs used in this study were effective in inducing cell death with ZnMCPPc conjugated to AuNPs showing great potential as an effective PS for PDT.

  19. Postchemotherapy changes in testicular germ cell tumours: biology and morphology.

    PubMed

    Berney, Daniel M; Lu, Yong-Jie; Shamash, Jonathan; Idrees, Muhammad

    2017-01-01

    Advances in modern chemotherapy and targeted treatments have resulted in lengthened survival in a variety of tumour types in the last decade. Increasingly in the 21st century, postchemotherapy resections are considered as a possible mode of treatment. Due to their exquisite chemosensitivity, resection of postchemotherapy masses has long been part of the armamentarium of treatment in testicular germ cell neoplasia, which has resulted in a variety of new morphological variants being described after treatment. Here we discuss the possible reasons for germ cell tumour chemosensitivity and hypotheses on the biological pathways leading to resistance to treatment, as well as an outline of the diverse morphology of those tumours which prove recalcitrant to standard treatment methods. The large range of morphologies and their diagnostic challenges may throw light upon the future problems to be encountered in non-germ cell solid tumour pathology, as the resection of postchemotherapy masses becomes increasingly important in patient management. © 2016 John Wiley & Sons Ltd.

  20. The extracellular adherence protein (Eap) of Staphylococcus aureus acts as a proliferation and migration repressing factor that alters the cell morphology of keratinocytes.

    PubMed

    Eisenbeis, Janina; Peisker, Henrik; Backes, Christian S; Bur, Stephanie; Hölters, Sebastian; Thewes, Nicolas; Greiner, Markus; Junker, Christian; Schwarz, Eva C; Hoth, Markus; Junker, Kerstin; Preissner, Klaus T; Jacobs, Karin; Herrmann, Mathias; Bischoff, Markus

    2017-02-01

    Staphyloccocus aureus is a major human pathogen and a common cause for superficial and deep seated wound infections. The pathogen is equipped with a large arsenal of virulence factors, which facilitate attachment to various eukaryotic cell structures and modulate the host immune response. One of these factors is the extracellular adherence protein Eap, a member of the "secretable expanded repertoire adhesive molecules" (SERAM) protein family that possesses adhesive and immune modulatory properties. The secreted protein was previously shown to impair wound healing by interfering with host defense and neovascularization. However, its impact on keratinocyte proliferation and migration, two major steps in the re-epithelialization process of wounds, is not known. Here, we report that Eap affects the proliferation and migration capacities of keratinocytes by altering their morphology and adhesive properties. In particular, treatment of non-confluent HaCaT cell cultures with Eap resulted in cell morphology changes as well as a significant reduction in cell proliferation and migration. Eap-treated HaCaT cells changed their appearance from an oblong via a trapezoid to an astral-like shape, accompanied by decreases in cell volume and cell stiffness, and exhibited significantly increased cell adhesion. Eap had a similar influence on endothelial and cancer cells, indicative for a general effect of Eap on eukaryotic cell morphology and functions. Specifically, Eap was found to interfere with growth factor-stimulated activation of the mitogen-activated protein kinase (MAPK) pathway that is known to be responsible for cell shape modulation, induction of proliferation and migration of epithelial cells. Western blot analyses revealed that Eap blocked the phosphorylation of extracellular signal-regulated kinase 1 and 2 (Erk1/2) in keratinocyte growth factor (KGF)-stimulated HaCaT cells. Together, these data add another antagonistic mechanism of Eap in wound healing, whereby the bacterial protein interferes with keratinocyte migration and proliferation. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea

    PubMed Central

    Fukushima, Kenji; Fujita, Hironori; Yamaguchi, Takahiro; Kawaguchi, Masayoshi; Tsukaya, Hirokazu; Hasebe, Mitsuyasu

    2015-01-01

    Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf. PMID:25774486

  2. Oriented cell division shapes carnivorous pitcher leaves of Sarracenia purpurea.

    PubMed

    Fukushima, Kenji; Fujita, Hironori; Yamaguchi, Takahiro; Kawaguchi, Masayoshi; Tsukaya, Hirokazu; Hasebe, Mitsuyasu

    2015-03-16

    Complex morphology is an evolutionary outcome of phenotypic diversification. In some carnivorous plants, the ancestral planar leaf has been modified to form a pitcher shape. However, how leaf development was altered during evolution remains unknown. Here we show that the pitcher leaves of Sarracenia purpurea develop through cell division patterns of adaxial tissues that are distinct from those in bifacial and peltate leaves, subsequent to standard expression of adaxial and abaxial marker genes. Differences in the orientation of cell divisions in the adaxial domain cause bifacial growth in the distal region and adaxial ridge protrusion in the middle region. These different growth patterns establish pitcher morphology. A computer simulation suggests that the cell division plane is critical for the pitcher morphogenesis. Our results imply that tissue-specific changes in the orientation of cell division underlie the development of a morphologically complex leaf.

  3. Multi-classification of cell deformation based on object alignment and run length statistic.

    PubMed

    Li, Heng; Liu, Zhiwen; An, Xing; Shi, Yonggang

    2014-01-01

    Cellular morphology is widely applied in digital pathology and is essential for improving our understanding of the basic physiological processes of organisms. One of the main issues of application is to develop efficient methods for cell deformation measurement. We propose an innovative indirect approach to analyze dynamic cell morphology in image sequences. The proposed approach considers both the cellular shape change and cytoplasm variation, and takes each frame in the image sequence into account. The cell deformation is measured by the minimum energy function of object alignment, which is invariant to object pose. Then an indirect analysis strategy is employed to overcome the limitation of gradual deformation by run length statistic. We demonstrate the power of the proposed approach with one application: multi-classification of cell deformation. Experimental results show that the proposed method is sensitive to the morphology variation and performs better than standard shape representation methods.

  4. Transactivation of TrkB by Sigma-1 receptor mediates cocaine-induced changes in dendritic spine density and morphology in hippocampal and cortical neurons

    PubMed Central

    Ka, Minhan; Kook, Yeon-Hee; Liao, Ke; Buch, Shilpa; Kim, Woo-Yang

    2016-01-01

    Cocaine is a highly addictive narcotic associated with dendritic spine plasticity in the striatum. However, it remains elusive whether cocaine modifies spines in a cell type-specific or region-specific manner or whether it alters different types of synapses in the brain. In addition, there is a paucity of data on the regulatory mechanism(s) involved in cocaine-induced modification of spine density. In the current study, we report that cocaine exposure differentially alters spine density, spine morphology, and the types of synapses in hippocampal and cortical neurons. Cocaine exposure in the hippocampus resulted in increased spine density, but had no significant effect on cortical neurons. Although cocaine exposure altered spine morphology in both cell types, the patterns of spine morphology were distinct for each cell type. Furthermore, we observed that cocaine selectively affects the density of excitatory synapses. Intriguingly, in hippocampal neurons cocaine-mediated effects on spine density and morphology involved sigma-1 receptor (Sig-1 R) and its downstream TrkB signaling, which were not the case in cortical neurons. Furthermore, pharmacological inhibition of Sig-1 R prevented cocaine-induced TrkB activation in hippocampal neurons. Our findings reveal a novel mechanism by which cocaine induces selective changes in spine morphology, spine density, and synapse formation, and could provide insights into the cellular basis for the cognitive impairment observed in cocaine addicts. PMID:27735948

  5. Repeated folding stress-induced morphological changes in the dermal equivalent.

    PubMed

    Arai, Koji Y; Sugimoto, Mami; Ito, Kanako; Ogura, Yuki; Akutsu, Nobuko; Amano, Satoshi; Adachi, Eijiro; Nishiyama, Toshio

    2014-11-01

    Repeated mechanical stresses applied to the same region of the skin are thought to induce morphological changes known as wrinkle. However, the underlying mechanisms are not fully understood. To study the mechanisms, we examined effects of repeated mechanical stress on the dermal equivalent. We developed a novel device to apply repeated folding stress to the dermal equivalent. After applying the mechanical stress, morphological changes of the dermal equivalent and expression of several genes related to extracellular matrix turn over and cell contraction were examined. The repeated folding stress induced a noticeable decrease in the width of the dermal equivalent. The mechanical stress altered orientations of collagen fibrils. Hydroxyproline contents, dry weights and cell viability of the dermal equivalents were not affected by the mechanical stress. On the other hand, Rho-associated coiled-coil-containing kinase (ROCK) specific inhibitor Y27632 completely suppressed the decrease in the width of the dermal equivalent. The present results revealed that either degradation of collagen or changes in the number of cells were not responsible for the decrease in the width of the dermal equivalent and indicate that the repeated mechanical stress induces unidirectional contraction in the dermal equivalent through the RhoA-ROCK signaling pathway. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Plasma cell morphology in multiple myeloma and related disorders.

    PubMed

    Ribourtout, B; Zandecki, M

    2015-06-01

    Normal and reactive plasma cells (PC) are easy to ascertain on human bone marrow films, due to their small mature-appearing nucleus and large cytoplasm, the latter usually deep blue after Giemsa staining. Cytoplasm is filled with long strands of rough endoplasmic reticulum and one large Golgi apparatus (paranuclear hof), demonstrating that PC are dedicated mainly to protein synthesis and excretion (immunoglobulin). Deregulation of the genome may induce clonal expansion of one PC that will lead to immunoglobulin overproduction and eventually to one among the so-called PC neoplasms. In multiple myeloma (MM), the number of PC is over 10% in most patients studied. Changes in the morphology of myeloma PC may be inconspicuous as compared to normal PC (30-50% patients). In other instances PC show one or several morphological changes. One is related to low amount of cytoplasm, defining lymphoplasmacytoid myeloma (10-15% patients). In other cases (40-50% patients), named immature myeloma cases, nuclear-cytoplasmic asynchrony is observed: presence of one nucleolus, finely dispersed chromatin and/or irregular nuclear contour contrast with a still large and blue (mature) cytoplasm. A peculiar morphological change, corresponding to the presence of very immature PC named plasmablasts, is observed in 10-15% cases. Several prognostic morphological classifications have been published, as mature myeloma is related to favorable outcome and immature myeloma, peculiarly plasmablastic myeloma, is related to dismal prognosis. However, such classifications are no longer included in current prognostic schemes. Changes related to the nucleus are very rare in monoclonal gammopathy of unknown significance (MGUS). In contrast, anomalies related to the cytoplasm of PC, including color (flaming cells), round inclusions (Mott cells, Russell bodies), Auer rod-like or crystalline inclusions, are reported in myeloma cases as well as in MGUS and at times in reactive disorders. They do not correspond to malignant changes of PC but are related to abnormal synthesis, trafficking, or excretion of the immunoglobulin that is stored in excess within the cytoplasm. Occurrence of crystalline inclusions within PC may be the first anomaly leading to the diagnosis of adult Fanconi syndrome. After a historical perspective, the authors report on the various morphological aspects of PC that may occur in multiple myeloma and related disorders, and discuss about their clinical and pathophysiological significance. Today, morphological identification and accurate determination of % PC within bone marrow remain ancillary criteria for the diagnosis of MM and help for the diagnosis of rare renal disorders. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  7. Transformation and radiosensitivity of human diploid skin fibroblasts transfected with activated ras oncogene and SV40 T-antigen.

    PubMed

    Su, L N; Little, J B

    1992-08-01

    Three normal human diploid cell strains were transfected with an activated Ha-ras oncogene (EJ ras) or SV40 T-antigen. Multiple clones were examined for morphological alterations, growth requirements, ability to grow under anchorage independent conditions, immortality and tumorigenicity in nude mice. Clones expressing SV40 T-antigen alone or in combination with ras protein p21 were significantly radioresistant as compared with their parent cells or clones transfected with the neo gene only. This radioresistant phenotype persisted in post-crisis, immortalized cell lines. Cells transfected with EJ ras alone showed no morphological alterations nor significant changes in radiosensitivity. Cell clones expressing ras and/or SV40 T-antigen showed a reduced requirement for serum supplements, an increase in aneuploidy and chromosomal aberrations, and enhanced growth in soft agar as an early cellular response to SV40 T-antigen expression. The sequential order of transfection with SV40 T-antigen and ras influenced radio-sensitivity but not the induction of morphological changes. These data suggest that expression of the SV40 T-antigen but not activated Ha-ras plays an important role in the radiosensitivity of human diploid cells. The radioresistant phenotype in SV40 T transfected cells was not related to the enhanced level of genetic instability seen in pre-crisis and newly immortalized cells, nor to the process of immortalization itself.

  8. Cytomorphometric and Morphological Analysis in Women with Trichomonas vaginalis Infection: Micronucleus Frequency in Exfoliated Cervical Epithelial Cells.

    PubMed

    Safi Oz, Zehra; Doğan Gun, Banu; Gun, Mustafa Ozkan; Ozdamar, Sukru Oguz

    2015-01-01

    The aim of this study was to explore the cytomorphometric and morphological effects of Trichomonas vaginalis in exfoliated epithelial cells. Ninety-six Pap-stained cervical smears were divided into a study group and two control groups as follows: T. vaginalis cases, a first control group with inflammation, and a second control group without inflammation. Micronucleated, binucleated, karyorrhectic, karyolytic, and karyopyknotic cells and cells with perinuclear halos per 1,000 epithelial cells were counted. Nuclear and cellular areas were evaluated in 70 clearly defined cells in each smear using image analysis. The frequencies of morphological parameters in the T. vaginalis cases were higher than the values of the two control groups, and the difference among groups was found to be significant (p < 0.05). The nuclear and cytoplasmic areas of epithelial cells were diminished in patients with trichomoniasis. The mean nucleus/cytoplasm ratio in T. vaginalis patients was higher than the value in the control groups, and the difference between the study group and control group 1 was significant. However, there was no statistically significant increase between the study group and control group 2. T. vaginalis exhibited significant changes in the cellular size and nuclear structure of the cells. The rising frequency of micronuclei, nuclear abnormalities, and changing nucleus/cytoplasm ratio may reflect genotoxic damage in trichomoniasis. © 2015 S. Karger AG, Basel.

  9. Alteration in the ultrastructural morphology of mycelial hyphae and the dynamics of transcriptional activity of lytic enzyme genes during basidiomycete morphogenesis.

    PubMed

    Vetchinkina, Elena; Kupryashina, Maria; Gorshkov, Vladimir; Ageeva, Marina; Gogolev, Yuri; Nikitina, Valentina

    2017-04-01

    The morphogenesis of macromycetes is a complex multilevel process resulting in a set of molecular-genetic, physiological-biochemical, and morphological-ultrastructural changes in the cells. When the xylotrophic basidiomycetes Lentinus edodes, Grifola frondosa, and Ganoderma lucidum were grown on wood waste as the substrate, the ultrastructural morphology of the mycelial hyphal cell walls differed considerably between mycelium and morphostructures. As the macromycetes passed from vegetative to generative development, the expression of the tyr1, tyr2, chi1, chi2, exg1, exg2, and exg3 genes was activated. These genes encode enzymes such as tyrosinase, chitinase, and glucanase, which play essential roles in cell wall growth and morphogenesis.

  10. Pleiotropic effect of sigE over-expression on cell morphology, photosynthesis and hydrogen production in Synechocystis sp. PCC 6803.

    PubMed

    Osanai, Takashi; Kuwahara, Ayuko; Iijima, Hiroko; Toyooka, Kiminori; Sato, Mayuko; Tanaka, Kan; Ikeuchi, Masahiko; Saito, Kazuki; Hirai, Masami Yokota

    2013-11-01

    Over-expression of sigE, a gene encoding an RNA polymerase sigma factor in the unicellular cyanobacterium Synechocystis sp. PCC 6803, is known to activate sugar catabolism and bioplastic production. In this study, we investigated the effects of sigE over-expression on cell morphology, photosynthesis and hydrogen production in this cyanobacterium. Transmission electron and scanning probe microscopic analyses revealed that sigE over-expression increased the cell size, possibly as a result of aberrant cell division. Over-expression of sigE reduced respiration and photosynthesis activities via changes in gene expression and chlorophyll fluorescence. Hydrogen production under micro-oxic conditions is enhanced in sigE over-expressing cells. Despite these pleiotropic phenotypes, the sigE over-expressing strain showed normal cell viability under both nitrogen-replete and nitrogen-depleted conditions. These results provide insights into the inter-relationship among metabolism, cell morphology, photosynthesis and hydrogen production in this unicellular cyanobacterium. © 2013 The Authors The Plant Journal © 2013 John Wiley & Sons Ltd.

  11. Effect of nagilactone E on cell morphology and glucan biosynthesis in budding yeast Saccharomyces cerevisiae.

    PubMed

    Hayashi, Kengo; Yamaguchi, Yoshihiro; Ogita, Akira; Tanaka, Toshio; Kubo, Isao; Fujita, Ken-Ichi

    2018-05-14

    Nagilactones are norditerpene dilactones isolated from the root bark of Podocarpus nagi. Although nagilactone E has been reported to show antifungal activities, its activity is weaker than that of antifungals on the market. Nagilactone E enhances the antifungal activity of phenylpropanoids such as anethole and isosafrole against nonpathogenic Saccharomyces cerevisiae and pathogenic Candida albicans. However, the detailed mechanisms underlying the antifungal activity of nagilactone E itself have not yet been elucidated. Therefore, we investigated the antifungal mechanisms of nagilactone E using S. cerevisiae. Although nagilactone E induced lethality in vegetatively growing cells, it did not affect cell viability in non-growing cells. Nagilactone E-induced morphological changes in the cells, such as inhomogeneous thickness of the glucan layer and leakage of cytoplasm. Furthermore, a dose-dependent decrease in the amount of newly synthesized (1, 3)-β-glucan was detected in the membrane fractions of the yeast incubated with nagilactone E. These results suggest that nagilactone E exhibits an antifungal activity against S. cerevisiae by depending on cell wall fragility via the inhibition of (1, 3)-β-glucan biosynthesis. Additionally, we confirmed nagilactone E-induced morphological changes of a human pathogenic fungus Aspergillus fumigatus. Therefore, nagilactone E is a potential antifungal drug candidate with fewer adverse effects. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage.

    PubMed

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Han, Li; Thostenson, Jeff D; Almeida, Maria; O'Brien, Charles A

    2016-04-11

    Autophagy maintains cell function and homeostasis by recycling intracellular components. This process is also required for morphological changes associated with maturation of some cell types. Osteoblasts are bone forming cells some of which become embedded in bone and differentiate into osteocytes. This transformation includes development of long cellular projections and a reduction in endoplasmic reticulum and mitochondria. We examined the role of autophagy in osteoblasts by deleting Atg7 using an Osterix1-Cre transgene, which causes recombination in osteoblast progenitors and their descendants. Mice lacking Atg7 in the entire osteoblast lineage had low bone mass and fractures associated with reduced numbers of osteoclasts and osteoblasts. Suppression of autophagy also reduced the amount of osteocyte cellular projections and led to retention of endoplasmic reticulum and mitochondria in osteocytes. These results demonstrate that autophagy in osteoblasts contributes to skeletal homeostasis and to the morphological changes associated with osteocyte formation.

  13. Antiproliferative effects of cinobufacini on human hepatocellular carcinoma HepG2 cells detected by atomic force microscopy

    PubMed Central

    Wu, Qing; Lin, Wei-Dong; Liao, Guan-Qun; Zhang, Li-Guo; Wen, Shun-Qian; Lin, Jia-Ying

    2015-01-01

    AIM: To investigate the antiproliferative activity of cinobufacini on human hepatocellular carcinoma HepG2 cells and the possible mechanism of its action. METHODS: HepG2 cells were treated with different concentrations of cinobufacini. Cell viability was measured by methylthiazolyl tetrazolium (MTT) assay. Cell cycle distribution was analyzed by flow cytometry (FCM). Cytoskeletal and nuclear alterations were observed by fluorescein isothiocyanate-phalloidin and DAPI staining under a laser scanning confocal microscope. Changes in morphology and ultrastructure of cells were detected by atomic force microscopy (AFM) at the nanoscale level. RESULTS: MTT assay indicated that cinobufacini significantly inhibited the viability of HepG2 cells in a dose-dependent manner. With the concentration of cinobufacini increasing from 0 to 0.10 mg/mL, the cell viability decreased from 74.9% ± 2.7% to 49.41% ± 2.2% and 39.24% ± 2.1% (P < 0.05). FCM analysis demonstrated cell cycle arrest at S phase induced by cinobufacini. The immunofluorescence studies of cytoskeletal and nuclear morphology showed that after cinobufacini treatment, the regular reorganization of actin filaments in HepG2 cells become chaotic, while the nuclei were not damaged seriously. Additionally, high-resolution AFM imaging revealed that cell morphology and ultrastructure changed a lot after treatment with cinobufacini. It appeared as significant shrinkage and deep pores in the cell membrane, with larger particles and a rougher cell surface. CONCLUSION: Cinobufacini inhibits the viability of HepG2 cells via cytoskeletal destruction and cell membrane toxicity. PMID:25624718

  14. Beach morphology monitoring in the Columbia River Littoral Cell: 1997-2005

    USGS Publications Warehouse

    Ruggiero, Peter; Eshleman, Jodi L.; Kingsley, Etienne; Thompson, David M.; Voigt, Brian; Kaminsky, George M.; Gelfenbaum, Guy

    2007-01-01

    This report describes methods used, data collected, and results of the Beach Morphology Monitoring Program in the Columbia River Littoral Cell (CRLC) from 1997 to 2005. A collaborative group primarily consisting of the US Geological Survey and the Washington State Department of Ecology performed this work. Beach Monitoring efforts consisted of collecting topographic and bathymetric horizontal and vertical position data using a Real Time Kinematic Differential Global Positioning System (RTK-DGPS). Sediment size distribution data was also collected as part of this effort. The monitoring program was designed to: 1) quantify the short- to medium-term (seasonal to interannual) beach change rates and morphological variability along the CRLC and assess the processes responsible for these changes; 2) collect beach state data (i.e., grain size, beach slope, and dune/sandbar height/position) to enhance the conceptual understanding of CRLC functioning and refine predictions of future coastal change and hazards; 3) compare and contrast the scales of environmental forcing and beach morphodynamics in the CRLC to other coastlines of the world; and 4) provide beach change data in a useful format to land use managers.

  15. Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats.

    PubMed

    Ren, Yi-Ming; Weng, Chuan-Huang; Zhao, Cong-Jian; Yin, Zheng-Qin

    2018-01-01

    To evaluate the intrinsic excitability of retinal ganglion cells (RGCs) in degenerated retinas. The intrinsic excitability of various morphologically defined RGC types using a combination of patch-clamp recording and the Lucifer yellow tracer in retinal whole-mount preparations harvested from Royal College of Surgeons (RCS) rats, a common retinitis pigmentosa (RP) model, in a relatively late stage of retinal degeneration (P90) were investigated. Several parameters of RGC morphologies and action potentials (APs) were measured and compared to those of non-dystrophic control rats, including dendritic stratification, dendritic field diameter, peak amplitude, half width, resting membrane potential, AP threshold, depolarization to threshold, and firing rates. Compared with non-dystrophic control RGCs, more depolarizations were required to reach the AP threshold in RCS RGCs with low spontaneous spike rates and in RCS OFF cells (especially A2o cells), and RCS RGCs maintained their dendritic morphologies, resting membrane potentials and capabilities to generate APs. RGCs are relatively well preserved morphologically and functionally, and some cells are more susceptible to decreased excitability during retinal degeneration. These findings provide valuable considerations for optimizing RP therapeutic strategies.

  16. Role of dynamin-related protein 1-mediated mitochondrial fission in resistance of mouse C2C12 myoblasts to heat injury.

    PubMed

    Yu, Tianzheng; Deuster, Patricia; Chen, Yifan

    2016-12-15

    Understanding how skeletal muscles respond to high temperatures may help develop strategies for improving exercise tolerance and preventing heat injury. Mitochondria regulate cell survival by constantly changing their morphology through fusion and fission in response to environmental stimuli. Little is known about the involvement of mitochondrial dynamics in tolerance of skeletal muscle against heat stress. Mild heat acclimation and moderate heat shock appear to have different effects on the mitochondrial morphology and fission protein Drp1 in skeletal muscle cells. Mitochondrial integrity plays a key role in cell survival under heat stress. The regulation of mitochondrial morphology is closely coupled to cell survival during stress. We examined changes in the mitochondrial morphology of mouse C2C12 skeletal muscle cells in response to heat acclimation and heat shock exposure. Acclimated cells showed a greater survival rate during heat shock exposure than non-acclimated cells, and were characterized by long interconnected mitochondria and reduced expression of dynamin-related protein 1 (Drp1) for their mitochondrial fractions. Exposure of C2C12 muscle cells to heat shock led to apoptotic death featuring activation of caspase 3/7, release of cytochrome c and loss of cell membrane integrity. Heat shock also caused excessive mitochondrial fragmentation, loss of mitochondrial membrane potential and production of reactive oxygen species in C2C12 cells. Western blot and immunofluorescence image analysis revealed translocation of Drp1 to mitochondria from the cytosol in C2C12 cells exposed to heat shock. Mitochondrial division inhibitor 1 or Drp1 gene silencer reduced mitochondrial fragmentation and increased cell viability during exposure to heat shock. These results suggest that Drp1-dependent mitochondrial fission may regulate susceptibility to heat-induced apoptosis in muscle cells and that Drp1 may serve as a target for the prevention of heat-related injury. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.

  17. Role of dynamin‐related protein 1‐mediated mitochondrial fission in resistance of mouse C2C12 myoblasts to heat injury

    PubMed Central

    Yu, Tianzheng; Deuster, Patricia

    2016-01-01

    Key points Understanding how skeletal muscles respond to high temperatures may help develop strategies for improving exercise tolerance and preventing heat injury.Mitochondria regulate cell survival by constantly changing their morphology through fusion and fission in response to environmental stimuli. Little is known about the involvement of mitochondrial dynamics in tolerance of skeletal muscle against heat stress.Mild heat acclimation and moderate heat shock appear to have different effects on the mitochondrial morphology and fission protein Drp1 in skeletal muscle cells. Mitochondrial integrity plays a key role in cell survival under heat stress. Abstract The regulation of mitochondrial morphology is closely coupled to cell survival during stress. We examined changes in the mitochondrial morphology of mouse C2C12 skeletal muscle cells in response to heat acclimation and heat shock exposure. Acclimated cells showed a greater survival rate during heat shock exposure than non‐acclimated cells, and were characterized by long interconnected mitochondria and reduced expression of dynamin‐related protein 1 (Drp1) for their mitochondrial fractions. Exposure of C2C12 muscle cells to heat shock led to apoptotic death featuring activation of caspase 3/7, release of cytochrome c and loss of cell membrane integrity. Heat shock also caused excessive mitochondrial fragmentation, loss of mitochondrial membrane potential and production of reactive oxygen species in C2C12 cells. Western blot and immunofluorescence image analysis revealed translocation of Drp1 to mitochondria from the cytosol in C2C12 cells exposed to heat shock. Mitochondrial division inhibitor 1 or Drp1 gene silencer reduced mitochondrial fragmentation and increased cell viability during exposure to heat shock. These results suggest that Drp1‐dependent mitochondrial fission may regulate susceptibility to heat‐induced apoptosis in muscle cells and that Drp1 may serve as a target for the prevention of heat‐related injury. PMID:27730652

  18. Acute myelogenous leukemia cells with the MLL-ELL translocation convert morphologically and functionally into adherent myofibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tashiro, Haruko; Mizutani-Noguchi, Mitsuho; Shirasaki, Ryosuke

    2010-01-01

    Bone marrow-myofibroblasts, a major component of bone marrow-stroma, are reported to originate from hematopoietic stem cells. We show in this paper that non-adherent leukemia blasts can change into myofibroblasts. When myeloblasts from two cases of acute myelogenous leukemia with a fusion product comprising mixed lineage leukemia and RNA polymerase II elongation factor, were cultured long term, their morphology changed to that of myofibroblasts with similar molecular characteristics to the parental myeloblasts. The original leukemia blasts, when cultured on the leukemia blast-derived myofibroblasts, grew extensively. Leukemia blasts can create their own microenvironment for proliferation.

  19. LRSAM1 Depletion Affects Neuroblastoma SH-SY5Y Cell Growth and Morphology: The LRSAM1 c.2047-1G>A Loss-of-Function Variant Fails to Rescue The Phenotype.

    PubMed

    Minaidou, Anna; Nicolaou, Paschalis; Christodoulou, Kyproula

    2018-10-01

    Deleterious variants in LRSAM1, a RING finger ubiquitin ligase which is also known as TSG101-associated ligase (TAL), have recently been associated with Charcot-Marie-Tooth disease type 2P (CMT2P). The mechanism by which mutant LRSAM1 contributes to the development of neuropathy is currently unclear. The aim of this study was to induce LRSAM1 deficiency in a neuronal cell model, observe its effect on cell growth and morphology and attempt to rescue the phenotype with ancestral and mutant LRSAM1 transfections. In this experimental study, we investigated the effect of LRSAM1 downregulation on neuroblastoma SH-SY5Y cells by siRNA technology where cells were transfected with siRNA against LRSAM1. The effects on the expression levels of TSG101, the only currently known LRSAM1 interacting molecule, were also examined. An equal dosage of ancestral or mutant LRSAM1 construct was transfected in LRSAM1-downregulated cells to investigate its effect on the phenotype of the cells and whether cell proliferation and morphology could be rescued. A significant reduction in TSG101 levels was observed with the downregulation of LRSAM1. In addition, LRSAM1 knockdown significantly decreased the growth rate of SH-SY5Y cells which is caused by a decrease in cell proliferation. An effect on cell morphology was also observed. Furthermore, we overexpressed the ancestral and the c.2047-1G>A mutant LRSAM1 in knocked down cells. Ancestral LRSAM1 recovered cell proliferation and partly the morphology, however, the c.2047-1G>A mutant did not recover cell proliferation and further aggravated the observed changes in cell morphology. Our findings suggest that depletion of LRSAM1 affects neuroblastoma cells growth and morphology and that overexpression of the c.2047-1G>A mutant form, unlike the ancestral LRSAM1, fails to rescue the phenotype. Copyright© by Royan Institute. All rights reserved.

  20. Time resolved impedance spectroscopy analysis of lithium phosphorous oxynitride - LiPON layers under mechanical stress

    NASA Astrophysics Data System (ADS)

    Glenneberg, Jens; Bardenhagen, Ingo; Langer, Frederieke; Busse, Matthias; Kun, Robert

    2017-08-01

    In this paper we present investigations on the morphological and electrochemical changes of lithium phosphorous oxynitride (LiPON) under mechanically bent conditions. Therefore, two types of electrochemical cells with LiPON thin films were prepared by physical vapor deposition. First, symmetrical cells with two blocking electrodes (Cu/LiPON/Cu) were fabricated. Second, to simulate a more application-related scenario cells with one blocking and one non-blocking electrode (Cu/LiPON/Li/Cu) were analyzed. In order to investigate mechanical distortion induced transport property changes in LiPON layers the cells were deposited on a flexible polyimide substrate. Morphology of the as-prepared samples and deviations from the initial state after applying external stress by bending the cells over different radii were investigated by Focused Ion Beam- Scanning Electron Microscopy (FIB-SEM) cross-section and surface images. Mechanical stress induced changes in the impedance were evaluated by time-resolved electrochemical impedance spectroscopy (EIS). Due to the formation of a stable, ion-conducting solid electrolyte interphase (SEI), cells with lithium show decreased impedance values. Furthermore, applying mechanical stress to the cells results in a further reduction of the electrolyte resistance. These results are supported by finite element analysis (FEA) simulations.

  1. Predicting Future Morphological Changes of Lesions from Radiotracer Uptake in 18F-FDG-PET Images

    PubMed Central

    Bagci, Ulas; Yao, Jianhua; Miller-Jaster, Kirsten; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We introduce a novel computational framework to enable automated identification of texture and shape features of lesions on 18F-FDG-PET images through a graph-based image segmentation method. The proposed framework predicts future morphological changes of lesions with high accuracy. The presented methodology has several benefits over conventional qualitative and semi-quantitative methods, due to its fully quantitative nature and high accuracy in each step of (i) detection, (ii) segmentation, and (iii) feature extraction. To evaluate our proposed computational framework, thirty patients received 2 18F-FDG-PET scans (60 scans total), at two different time points. Metastatic papillary renal cell carcinoma, cerebellar hemongioblastoma, non-small cell lung cancer, neurofibroma, lymphomatoid granulomatosis, lung neoplasm, neuroendocrine tumor, soft tissue thoracic mass, nonnecrotizing granulomatous inflammation, renal cell carcinoma with papillary and cystic features, diffuse large B-cell lymphoma, metastatic alveolar soft part sarcoma, and small cell lung cancer were included in this analysis. The radiotracer accumulation in patients' scans was automatically detected and segmented by the proposed segmentation algorithm. Delineated regions were used to extract shape and textural features, with the proposed adaptive feature extraction framework, as well as standardized uptake values (SUV) of uptake regions, to conduct a broad quantitative analysis. Evaluation of segmentation results indicates that our proposed segmentation algorithm has a mean dice similarity coefficient of 85.75±1.75%. We found that 28 of 68 extracted imaging features were correlated well with SUVmax (p<0.05), and some of the textural features (such as entropy and maximum probability) were superior in predicting morphological changes of radiotracer uptake regions longitudinally, compared to single intensity feature such as SUVmax. We also found that integrating textural features with SUV measurements significantly improves the prediction accuracy of morphological changes (Spearman correlation coefficient = 0.8715, p<2e-16). PMID:23431398

  2. The natural insect peptide Neb-colloostatin induces ovarian atresia and apoptosis in the mealworm Tenebrio molitor.

    PubMed

    Czarniewska, Elżbieta; Rosiński, Grzegorz; Gabała, Elżbieta; Kuczer, Mariola

    2014-01-30

    The injection of Neb-colloostatin into T. molitor females causes gonadoinhibitory effects on ovarian development. This peptide inhibits intercellular space formation (patency) in follicular epithelium and results in slowed vitellogenesis, delayed ovulation, reduced number of eggs laid and presumably cell death in the terminal follicles. However, as does the form of cell death in the terminal follicle, the mode of action of Neb-colloostatin remains unknown. We tested Neb-colloostatin for a sterilizing effect on females of Tenebrio molitor. We report that injection of nanomolar doses of Neb-colloostatin induce ovarian follicle atresia in 4-day old females during their first gonadotropic cycle. Light microscope observations revealed morphological changes in the ovary: after Neb-colloostatin injection the terminal oocytes are significantly smaller and elicit massive follicle resorption, but the control terminal follicles possess translucent ooplasm in oocytes at different stages of vitellogenesis. A patency is visible in follicular epithelium of the control vitellogenic oocytes, whereas peptide injection inhibits intercellular space formation and, in consequence, inhibits vitellogenesis. Confocal and electron microscope examination showed that peptide injection causes changes in the morphology indicating death of follicular cells. We observed F-actin cytoskeleton disorganization, induction of caspase activity, changes in chromatin organization and autophagic vacuole formation. Moreover, the apical cytoplasm of follicular cells is filled with numerous free ribosomes, probably indicating a higher demand for protein biosynthesis, especially in preparation for autophagic vacuole formation. On the other hand, the process of polyribosomes formation is inhibited, indicating the contributing effect of this hormone. Neb-colloostatin induces atresia in the mealworm ovary. Degeneration of T. molitor follicles includes changes in morphology and viability of follicular cells, and oosorption as a consequence of these changes.

  3. The natural insect peptide Neb-colloostatin induces ovarian atresia and apoptosis in the mealworm Tenebrio molitor

    PubMed Central

    2014-01-01

    Background The injection of Neb-colloostatin into T. molitor females causes gonadoinhibitory effects on ovarian development. This peptide inhibits intercellular space formation (patency) in follicular epithelium and results in slowed vitellogenesis, delayed ovulation, reduced number of eggs laid and presumably cell death in the terminal follicles. However, as does the form of cell death in the terminal follicle, the mode of action of Neb-colloostatin remains unknown. Results We tested Neb-colloostatin for a sterilizing effect on females of Tenebrio molitor. We report that injection of nanomolar doses of Neb-colloostatin induce ovarian follicle atresia in 4-day old females during their first gonadotropic cycle. Light microscope observations revealed morphological changes in the ovary: after Neb-colloostatin injection the terminal oocytes are significantly smaller and elicit massive follicle resorption, but the control terminal follicles possess translucent ooplasm in oocytes at different stages of vitellogenesis. A patency is visible in follicular epithelium of the control vitellogenic oocytes, whereas peptide injection inhibits intercellular space formation and, in consequence, inhibits vitellogenesis. Confocal and electron microscope examination showed that peptide injection causes changes in the morphology indicating death of follicular cells. We observed F-actin cytoskeleton disorganization, induction of caspase activity, changes in chromatin organization and autophagic vacuole formation. Moreover, the apical cytoplasm of follicular cells is filled with numerous free ribosomes, probably indicating a higher demand for protein biosynthesis, especially in preparation for autophagic vacuole formation. On the other hand, the process of polyribosomes formation is inhibited, indicating the contributing effect of this hormone. Conclusion Neb-colloostatin induces atresia in the mealworm ovary. Degeneration of T. molitor follicles includes changes in morphology and viability of follicular cells, and oosorption as a consequence of these changes. PMID:24479487

  4. Effect of Overproduction of Mitochondrial Uncoupling Protein 2 on Cos7 Cells: Induction of Senescent-like Morphology and Oncotic Cell Death.

    PubMed

    Nishio, Koji; Ma, Qian

    2016-01-01

    The maintenance of mitochondrial membrane potential is essential for cell growth and survival. Mitochondrial uncoupling protein 2 plays the most important roles in uncoupling oxidative phosphorylation and decreasing mitochondrial O2- production by regulating the mitochondrial membrane potential. We propose that mouse UCP2 has two glycine-rich motifs, motif 1: EGIRGLWKG (170-178) and a known Walker A-like motif 2: EGPRAFYKG (264-272). These motifs seem to be important for the function of UCP2. We investigated the biological effects of overproduced-UCP2 and its physiological consequence in Cos7 cells. We introduced several amino acid changes in the motif 1. The expression vectors of the green fluorescent protein (GFP)-fused UCP2 and mutant UCP2 were constructed and expressed in Cos7 cells. The UCP2-GFP-expressed cells significantly down-regulated the mitochondrial membrane potentials and induced the enlarged cell shapes. Next we generated the stably UCP2-GFP-expressed Cos7 cells by selection with the antibiotic Genecitin (G418). Within the first few weeks following G418-selection, the stably UCP2-GFP-expressed cells could not divide well and gradually manifested the irregular and enlarged senescent-like cell morphology. The UCP2/K177E- or UCP2/G174L-expressed cells did not induce the enlarged cell shapes. Hence, UCP2/K177E and UCP2/G174L produced the functional incompetence of the glycine-rich motif 1. The senescent-like cells significantly decreased the mitochondrial membrane potentials and finally died nearly one month. Overproduction of UCP2 irreversibly reduces the mitochondrial membrane potentials and induces the senescent-like morphology and finally oncotic cell death in Cos7 cells. These changes seem to occur from the irreversible metabolic changes following total loss of cellular ATP.

  5. Proliferative and morphologic changes in rat colon following bypass surgery.

    PubMed Central

    Barkla, D. H.; Tutton, P. J.

    1985-01-01

    In this study the proliferative and morphologic changes that occur in the colon of normal and dimethylhydrazine-treated rats following surgical bypass of the middle third of the colon are reported. Proliferative changes were measured by estimating accumulated mitotic indexes following vinblastine treatment and morphologic changes were observed with the use of light microscopy and scanning electron microscopy. Data were collected on Days 0, 7, 14, 30, and 72 after surgery. The results show that surgical bypass produces contrasting effects in the segments proximal to and distal to the suture line. In the proximal segment there was morphologic evidence of hyperplasia, although proliferative activity was unchanged except for an increase at 7 days in normal rats. In the distal segment there was a long-lived increase in the mitotic index, although morphologic changes were not seen. The results for DMH-treated rats were similar to those in normal rats. Groups of isolated dysplastic epithelial cells were often seen in the submucosa adjacent to sutures up to 72 days after surgery. Increased lymphoid infiltration was seen in segments proximal to but not distal to the suture line. It is hypothesized that the different responses of the proximal and distal segments may be related to the different embryologic origins of those segments. It is also hypothesized that the seeding of the submucosa with epithelial cells during suturing may be a factor in tumor recurrence. Images Figure 19 Figure 20 Figure 21 Figure 22 Figure 7 Figure 8 Figure 9 Figure 10 Figure 11 Figure 12 Figure 13 Figure 14 Figure 15 Figure 16 Figure 17 Figure 18 PMID:4014432

  6. Morphogenetic changes occurring in the regenerating newt tail under changed gravity conditions

    NASA Astrophysics Data System (ADS)

    Radugina, Elena A.; Grigoryan, Eleonora N.; Dvorochkin, Natasha; Almeida, Eduardo

    2012-07-01

    It is widely accepted that gravity greatly affects animal physiology, development, and alters gene expression. Recently it became apparent that it can also affect tissue morphogenesis. In our work, we developed special laboratory conditions that allow us to produce the gravity-dependent alterations in tail regenerates of the newt Pleurodeles waltl. We examined the dynamic morphogenetic changes during 50-day tail regeneration using computer morphometric analysis. Changes that we observed under these conditions were comparable with those found earlier in our spaceflight experiments. The newts kept in aquarium deep water (low g) after 1/3 tail amputation developed normal lanceolate regenerates. In contrast, the animals that stayed on the moist mat (1g) developed tail regenerates curved ventrally, with tips almost touching the mat. The similar results were obtained with a 12-day centrifugation at 2g. The study of the regenerate morphology in low g, 1g, and 2g animal groups allowed us to determine the stage at which the morphological changes in regenerates become apparent, and to detect the main morphological events associated with the development of tail curve, such as bending of ependymal tube and reorientation of the forming cartilage. We describe cellular processes foregoing observed tissue morphogenetic changes, such as cell migration, condensation in cell population, and unequal proliferation in different areas of epidermis and blastema. Cell proliferation in epidermis and blastema of tails regenerated under the conditions of different gravitational load was evaluated by BrdU assay. In 1g newts, cell proliferation increased within the dorso-apical region of the regenerates compared with that in low g group. These results provide us with a valuable insight into the regenerative tissue homostasis that involves cell division, cell death, and migration in the newt regenerating tail. In addition, these findings could provide us with better understanding of the mechanisms mediating morphogenetic response of regenerating tissues to the modified gravity vector.

  7. Form matters: morphological aspects of lateral root development

    PubMed Central

    Szymanowska-Pułka, Joanna

    2013-01-01

    Background The crucial role of roots in plant nutrition, and consequently in plant productivity, is a strong motivation to study the growth and functioning of various aspects of the root system. Numerous studies on lateral roots, as a major determinant of the root system architecture, mostly focus on the physiological and molecular bases of developmental processes. Unfortunately, little attention is paid either to the morphological changes accompanying the formation of a lateral root or to morphological defects occurring in lateral root primordia. The latter are observed in some mutants and occasionally in wild-type plants, but may also result from application of external factors. Scope and Conclusions In this review various morphological aspects of lateral branching in roots are analysed. Morphological events occurring during the formation of a typical lateral root are described. This process involves dramatic changes in the geometry of the developing organ that at early stages are associated with oblique cell divisions, leading to breaking of the symmetry of the cell pattern. Several types of defects in the morphology of primordia are indicated and described. Computer simulations show that some of these defects may result from an unstable field of growth rates. Significant changes in both primary and lateral root morphology may also be a consequence of various mutations, some of which are auxin-related. Examples reported in the literature are considered. Finally, lateral root formation is discussed in terms of mechanics. In this approach the primordium is considered as a physical object undergoing deformation and is characterized by specific mechanical properties. PMID:24190952

  8. Imaging the Effects of Prostaglandin Analogues on Cultured Trabecular Meshwork Cells by Coherent Anti-Stokes Raman Scattering

    PubMed Central

    Lei, Tim C.; Masihzadeh, Omid; Kahook, Malik Y.; Ammar, David A.

    2013-01-01

    Purpose. The aim of this study was to nondestructively monitor morphological changes to the lipid membranes of primary cultures of living human trabecular meshwork cells (hTMC) without the application of exogenous label. Methods. Live hTMC were imaged using two nonlinear optical techniques: coherent anti-Stokes Raman scattering (CARS) and two-photon autofluorescence (TPAF). The hTMC were treated with a commercial formulation of latanoprost (0.5 μg/mL) for 24 hours before imaging. Untreated cells and cells treated with vehicle containing the preservative benzalkonium chloride (BAK; 2 μg/mL) were imaged as controls. After CARS/TPAF imaging, hTMC were fixed, stained with the fluorescent lipid dye Nile Red, and imaged by conventional confocal microscopy to verify lipid membrane structures. Results. Analysis of CARS/TPAF images of hTMC treated with latanoprost revealed multiple intracellular lipid membranes absent from untreated or BAK-treated hTMC. Treatment of hTMC with sodium fluoride or ouabain, agents shown to cause morphological changes to hTMC, also did not induce formation of intracellular lipid membranes. Conclusions. CARS microscopy detected changes in living hTMC morphology that were validated by subsequent histological stain. Prostaglandin-induced changes to hTMC involved rearrangement of lipid membranes within these cells. These in vitro results identify a novel biological response to a class of antiglaucoma drugs, and further experiments are needed to establish how this effect is involved in the hypotensive action of prostaglandin analogues in vivo. PMID:23900606

  9. Examining live cell cultures during apoptosis by digital holographic phase imaging and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Khmaladze, Alexander

    2017-11-01

    Cellular apoptosis is a unique, organized series of events, leading to programmed cell death. In this work, we present a combined digital holography/Raman spectroscopy technique to study live cell cultures during apoptosis. Digital holographic microscopy measurements of live cell cultures yield information about cell shape and volume, changes to which are indicative of alterations in cell cycle and initiation of cell death mechanisms. Raman spectroscopic measurements provide complementary information about cells, such as protein, lipid and nucleic acid content, and the spectral signatures associated with structural changes in molecules. Our work indicates that the chemical changes in proteins, which were detected by Raman measurements, preceded morphological changes, which were seen with digital holographic microscopy.

  10. Induction of morphological changes in death-induced cancer cells monitored by holographic microscopy.

    PubMed

    El-Schich, Zahra; Mölder, Anna; Tassidis, Helena; Härkönen, Pirkko; Falck Miniotis, Maria; Gjörloff Wingren, Anette

    2015-03-01

    We are using the label-free technique of holographic microscopy to analyze cellular parameters including cell number, confluence, cellular volume and area directly in the cell culture environment. We show that death-induced cells can be distinguished from untreated counterparts by the use of holographic microscopy, and we demonstrate its capability for cell death assessment. Morphological analysis of two representative cell lines (L929 and DU145) was performed in the culture flasks without any prior cell detachment. The two cell lines were treated with the anti-tumour agent etoposide for 1-3days. Measurements by holographic microscopy showed significant differences in average cell number, confluence, volume and area when comparing etoposide-treated with untreated cells. The cell volume of the treated cell lines was initially increased at early time-points. By time, cells decreased in volume, especially when treated with high doses of etoposide. In conclusion, we have shown that holographic microscopy allows label-free and completely non-invasive morphological measurements of cell growth, viability and death. Future applications could include real-time monitoring of these holographic microscopy parameters in cells in response to clinically relevant compounds. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Antimicrobial activity of syringic acid against Cronobacter sakazakii and its effect on cell membrane.

    PubMed

    Shi, Chao; Sun, Yi; Zheng, Zhiwei; Zhang, Xiaorong; Song, Kaikuo; Jia, Zhenyu; Chen, Yifei; Yang, Miaochun; Liu, Xin; Dong, Rui; Xia, Xiaodong

    2016-04-15

    Syringic acid (SA) has been reported to exhibit antibacterial ability against various microorganisms, but little work has been done on its effect on Cronobacter sakazakii. In this study, minimum inhibitory concentrations (MICs) of SA against various C. sakazakii strains were determined. Moreover, changes in intracellular ATP concentration, intracellular pH (pHin), membrane potential and membrane integrity were measured to evaluate the influence of SA on cell membrane. Finally, field emission scanning electron microscope (FESEM) was used to assess the morphological changes of bacterial cells caused by SA. It was shown that the MICs of SA against all tested C. sakazakii strains were 5mg/mL. SA retarded bacterial growth, and caused cell membrane dysfunction, which was evidenced by intracellular ATP concentration decrease, pHin reduction, cell membrane hyperpolarization and changes in cellular morphology. These findings indicated that SA has potential to be developed as a natural preservative to control C. sakazakii in foods associated with this pathogen and prevent related infections. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Influence of long-term gravity vector changes on mesenchymal stem cells in vitro

    NASA Astrophysics Data System (ADS)

    Buravkova, L. B.; Merzlikina, N. V.; Romanov, Yu. A.; Buravkov, S. V.

    2005-08-01

    In vivo and in vitro studies have identified the bone marrow as the primary source of a multipotential mesenchymal stem cells (MSC) that give rise to progenitors for several mesenchymal tissues, including bone, cartilage, tendon, adipose, muscle and hematopoietic-supporting stroma. It is known that MSC are sensitive to chemical signals and mechanical stimuli. It was also suggested that microgravity may influence on progenitor cells and induce abnormalities in cellular differentiation in muscle and skeletal components leading to the changes in physiological regeneration of these tissues. To prove gravitational sensitivity of MSC, we studied the effects of prolonged clinorotation on cultured human MSC (hMSC) morphology, actin cytoskeleton organization and phenotype. It was found that the proliferation rate was significantly decreased during clinorotation but augmented during recovery. The cell cytoskeleton displayed actin filament thinning and altered morphology at clinorotation. The production of interleukin-6 was increased and expression of surface molecules was modified by simulated microgravity. Observed changes of cultured hMSC behavior suggest the gravitational sensitivity of human stromal progenitor cells.

  13. Fine Structure of Changes Produced in Cultured Cells Sampled at Specified Intervals During a Single Growth Cycle of Polio Virus

    PubMed Central

    Kallman, Frances; Williams, Robley C.; Dulbecco, Renato; Vogt, Marguerite

    1958-01-01

    Primary suspended cultures of rhesus monkey kidney cells were infected with poliomyelitis virus, type 1 (Brunhilde strain). The release of virus from these cells over a one-step growth curve was correlated with their change in fine structure, as seen in the electron microscope. Most of the cells were infected nearly simultaneously, and morphological changes developed in the cells were sufficiently synchronous to be classified into three stages. The earliest change (stage I) became visible at a time when virus release into the culture fluid begins, some 3 hours after adsorption. Accentuation of the abnormal characteristics soon occurs, at 4 to 7 hours after adsorption, and results in stage II. Stage III represents the appearance of cells after their rate of virus release had passed its maximum, and probably the abnormal morphology of these cells reflects non-specific physiological damage. There seems to be consistency between the previously described cellular changes as seen under the light microscope and the finer scale changes reported here. Cytoplasmic bodies, called U bodies, were seen in large number at the time when the virus release was the most rapid (stage II). While these bodies are not of proper size to be considered polio virus, they seem to be specifically related to the infection. No evidence was found for the presence of particles that could even be presumptively identified with those of polio virus. PMID:13549502

  14. Cholecystokinin-producing (I) cells of intestinal mucosa in dexamethasone-treated rats.

    PubMed

    Glišić, Radmila; Koko, Vesna; Cvijić, Gordana; Milošević, Maja Čakić; Obradović, Jasmina

    2011-11-10

    The aim of this study was to investigate the morphological, immunohistochemical and ultrastructural changes of cholecystokinin-producing (I) cells of gastrointestinal mucosa in dexamethasone-treated rats (D). After 12-daily intraperitoneal administration of 2mg/kg dexamethasone, rats developed diabetes similar to human diabetes mellitus type 2. The mean diameter of the duodenum was significantly decreased due to significant reduction of volume fraction and profile area of lamina propria. There was a decrease in volume fraction and number of cholecystokinin (CCK)-producing cells per mm(2) of mucosa, as well as their numerical density, but without statistical significance. Also, dexamethasone induced appearance of hyperactive duodenal I-cells with small number of granules and dilated endoplasmic reticulum. In conclusion, the present study showed that morphological changes in duodenum cholecystokinin-producing (I) cells occurred in diabetic rats, in a manner which, suggests compensatory effort of CCK cells in diabetic condition. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Expression pattern and function of tyrosine receptor kinase B isoforms in rat mesenteric arterial smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Otani, Kosuke; Okada, Muneyoshi; Yamawaki, Hideyuki, E-mail: yamawaki@vmas.kitasato-u.ac.jp

    Tyrosine receptor kinaseB (TrkB) is a high affinity receptor for brain-derived neurotrophic factor (BDNF). TrkB isoforms involve full length TrkB (TrkB FL) and truncated TrkB type1 (TrkB T1) and type 2 (TrkB T2) in rats. The aim of present study was to explore their expression pattern and function in mesenteric arterial smooth muscle cells (MASMCs). The expression of TrkB isoform protein and mRNA was examined by Western blotting, immunofluorescence and quantitative RT-PCR analyses. Cell proliferation was measured by a bromodeoxyuridine (BrdU) incorporation assay. Cell migration was measured by a Boyden chamber assay. Cell morphology was observed with a phase-contrast microscope.more » Protein and mRNA expression of BDNF and TrkB isoforms was confirmed in MASMCs. Expression level of TrkB FL was less, while that of TrkB T1 was the highest in MASMCs. Although BDNF increased phosphorylation of ERK, it had no influence on migration and proliferation of MASMCs. TrkB T1 gene knockdown by a RNA interference induced morphological changes and reduced expression level of α-smooth muscle actin (α-SMA) in MASMCs. Similar morphological changes and reduced α-SMA expression were induced in MASMCs by a Rho kinase inhibitor, Y-27632. In conclusion, we for the first time demonstrate that TrkB T1 expressed highly in MASMCs contributes to maintain normal cell morphology possibly via regulation of Rho activity. This study firstly defined expression level of TrkB isoforms and partly revealed their functions in peripheral vascular cells. - Highlights: • BDNF-TrkB axis mediates neurogenesis, growth, differentiation and survival. • Expression pattern and function of TrkB in vascular smooth muscle remain unclear. • Expression of TrkB FL is low, while that of TrkB T1 is the highest. • TrkB T1 contributes to maintain normal morphology possibly via activating Rho.« less

  16. Micropipette force probe to quantify single-cell force generation: application to T-cell activation.

    PubMed

    Sawicka, Anna; Babataheri, Avin; Dogniaux, Stéphanie; Barakat, Abdul I; Gonzalez-Rodriguez, David; Hivroz, Claire; Husson, Julien

    2017-11-07

    In response to engagement of surface molecules, cells generate active forces that regulate many cellular processes. Developing tools that permit gathering mechanical and morphological information on these forces is of the utmost importance. Here we describe a new technique, the micropipette force probe, that uses a micropipette as a flexible cantilever that can aspirate at its tip a bead that is coated with molecules of interest and is brought in contact with the cell. This technique simultaneously allows tracking the resulting changes in cell morphology and mechanics as well as measuring the forces generated by the cell. To illustrate the power of this technique, we applied it to the study of human primary T lymphocytes (T-cells). It allowed the fine monitoring of pushing and pulling forces generated by T-cells in response to various activating antibodies and bending stiffness of the micropipette. We further dissected the sequence of mechanical and morphological events occurring during T-cell activation to model force generation and to reveal heterogeneity in the cell population studied. We also report the first measurement of the changes in Young's modulus of T-cells during their activation, showing that T-cells stiffen within the first minutes of the activation process. © 2017 Sawicka et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Authentication of Chinese Materia Medica decoction dregs, part 1: comparison of morphological and microscopic features of four Chinese Materia Medica before and after decoction.

    PubMed

    Wong, Lailai; Liang, Zhitao; Chen, Hubiao; Zhao, Zhongzhen

    2011-04-01

    Chinese Materia Medica (CMM) decoction dregs are the residues of medicinal materials after decoction. Accurate identification of CMM in decoction dregs will be helpful for exploring the causes of poisoning or other medical incidents arising after the ingestion of CMM decoctions. To determine how decoction affects the characteristics used to authenticate specific CMM, a systematic study was carried out. In this study, two pairs of Materia Medica that are commonly confused-namely, Baizhu (Atractylodis Macrocephalae Rhizoma) and Cangzhu (Atractylodis Rhizoma), Baishao (Paeoniae Alba Radix) and Chishao (Paeoniae Rubra Radix)-were chosen for investigation. Each pair of Materia Medica has similar morphology in appearance, but they have different functions in Chinese clinic. After decoction, with regard to gross morphological characters, the results showed that bark and wood could be easily distinguished. The striation of vessels and fibers became more prominent because of the contraction of parenchymatous cells, but the lignified cells did not. As for the microscopic characteristics, the cells with thickened walls, such as stone cells and fibers, were basically stable. Most of the parenchymatous cells were broken. Crystals of calcium oxalate showed no changes as they were insoluble in water. Starch granules were gelatinized and aggregated in parenchymatous cells. Inulins were substantially reduced in number as they dissolved in water during decoction. According to these changes in morphological and microscopic characteristics after decoction, the dregs of two pairs of Materia Medica could be distinguished. Copyright © 2010 Wiley-Liss, Inc.

  18. HABP1/p32/gC1qR induces aberrant growth and morphology in Schizosaccharomyces pombe through its N-terminal {alpha} helix

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mallick, Jaideep; Datta, Kasturi

    2005-10-01

    Hyaluronan binding protein (HABP1), located on human chromosome 17p13.3, was identified and characterized as being involved in cellular signaling from our laboratory. Here, we demonstrate that HABP1 expression in Schizosaccharomyces pombe induces growth inhibition, morphological abnormalities like elongation, multinucleation and aberrant cell septum formation in several strains of S. pombe, implicating its role in cell cycle progression and cytokinesis. This argument is further strengthened by an observed delay in the maximal expression of cell cycle regulatory proteins like CDC 2 and CDC 25 coupled to the direct interaction of HABP1 with CDC 25. In order to pinpoint the interacting domainmore » of HABP1, its N- and C-terminal truncated variants ({delta}N.HABP1 and {delta}C.HABP1, respectively) were utilized which revealed that while expression of the former did not alter the phenotype, the latter generated morphological changes similar to those imparted upon HABP1 expression. It was also noted that along with HABP1, {delta}C.HABP1 too directly interacts with CDC 25 while {delta}N.HABP1 does not. Taken together, these data suggest that HABP1 induces morphological changes and modulates the cell cycle by interacting with proteins like CDC 25 through its N-terminal {alpha}-helix.« less

  19. Reconstitution of the NF1 GAP-related domain in NF1-deficient human Schwann cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thomas, Stacey L.; Neuroscience Program, Loyola University Medical Center, Maywood, IL; Department of Anatomy and Cell Biology, University of Illinois Chicago, Chicago, IL

    Schwann cells derived from peripheral nerve sheath tumors from individuals with Neurofibromatosis Type 1 (NF1) are deficient for the protein neurofibromin, which contains a GAP-related domain (NF1-GRD). Neurofibromin-deficient Schwann cells have increased Ras activation, increased proliferation in response to certain growth stimuli, increased angiogenic potential, and altered cell morphology. This study examined whether expression of functional NF1-GRD can reverse the transformed phenotype of neurofibromin-deficient Schwann cells from both benign and malignant peripheral nerve sheath tumors. We reconstituted the NF1-GRD using retroviral transduction and examined the effects on cell morphology, growth potential, and angiogenic potential. NF1-GRD reconstitution resulted in morphologic changes,more » a 16-33% reduction in Ras activation, and a 53% decrease in proliferation in neurofibromin-deficient Schwann cells. However, NF1-GRD reconstitution was not sufficient to decrease the in vitro angiogenic potential of the cells. This study demonstrates that reconstitution of the NF1-GRD can at least partially reverse the transformation of human NF1 tumor-derived Schwann cells.« less

  20. Low-level lasers affect Escherichia coli cultures in hyperosmotic stress

    NASA Astrophysics Data System (ADS)

    Pinheiro, C. C.; Barboza, L. L.; Paoli, F.; Fonseca, A. S.

    2015-08-01

    Physical characteristics and practical properties have made lasers of interest for biomedical applications. Effects of low-level lasers on biological tissues could occur or be measurable depending on cell type, presence of a pathologic process or whether the cells are in an adverse environment. The objective of this work was to evaluate the survival, morphology and filamentation of E. coli cells proficient and deficient in the repair of oxidative DNA lesions exposed low-level red and infrared lasers submitted to hyperosmotic stress. Wild type and endonuclease VIII deficient E. coli cells in exponential and stationary growth phase were exposed to red and infrared lasers and submitted to hyperosmotic stress. Cell viability, filamentation phenotype and cell morphology were evaluated. Cell viability was not significantly altered but previous laser exposure induced filamentation and an altered area of stressed cells depending on physiologic condition and presence of the DNA repair. Results suggest that previous exposure to low-level red and infrared lasers could not affect viability but induced morphologic changes in cells submitted to hyperosmotic stress depending on physiologic conditions and repair of oxidative DNA lesions.

  1. Effects of chlorhexidine, essential oils and herbal medicines (Salvia, Chamomile, Calendula) on human fibroblast in vitro.

    PubMed

    Wyganowska-Swiatkowska, Marzena; Urbaniak, Paulina; Szkaradkiewicz, Anna; Jankun, Jerzy; Kotwicka, Malgorzata

    2016-01-01

    Antiseptic rinses have been successfully used in inflammatory states of the gums and oral cavity mucosa. Antibacterial effects of chlorhexidine, essential oils and some herbs are well documented. Reaction of host tissue to these substances has much poorer documentation. The aim of the study was to analyse the influence of chlorhexidine (CHX), essential oil (EO: thymol, 0.064%; eucalyptol, 0.092%; methyl salicylate, 0.060%; menthol, 0.042%) mouth rinses and salvia, chamomile and calendula brews on fibroblast biology in vitro. The human fibroblast CCD16 line cells were cultured in incubation media which contained the examined substances. After 24 and 48 hours, the cell morphology, relative growth and apoptosis were evaluated. Exposure of fibroblasts to CHX, EO or salvia caused various changes in cell morphology. Cells cultured for 48 hours with CHX revealed a noticeably elongated shape of while cells cultured in high EO concentration or with salvia were considerably smaller and contracted with fewer projections. Chlorhexidine, EO and salvia reduced the fibroblast proliferation rate and stimulated cell death. Both reactions to EO were dose dependent. Cells exposure to chamomile or calendula brews did not change morphology or proliferation of fibroblasts. The results of this in vitro study showed that in contrast to chamomile and calendula, the brews of EO, CHX or salvia had a negative influence on fibroblast biology.

  2. Effects of chlorhexidine, essential oils and herbal medicines (Salvia, Chamomile, Calendula) on human fibroblast in vitro

    PubMed Central

    Urbaniak, Paulina; Szkaradkiewicz, Anna; Jankun, Jerzy; Kotwicka, Malgorzata

    2016-01-01

    Antiseptic rinses have been successfully used in inflammatory states of the gums and oral cavity mucosa. Antibacterial effects of chlorhexidine, essential oils and some herbs are well documented. Reaction of host tissue to these substances has much poorer documentation. The aim of the study was to analyse the influence of chlorhexidine (CHX), essential oil (EO: thymol, 0.064%; eucalyptol, 0.092%; methyl salicylate, 0.060%; menthol, 0.042%) mouth rinses and salvia, chamomile and calendula brews on fibroblast biology in vitro. The human fibroblast CCD16 line cells were cultured in incubation media which contained the examined substances. After 24 and 48 hours, the cell morphology, relative growth and apoptosis were evaluated. Exposure of fibroblasts to CHX, EO or salvia caused various changes in cell morphology. Cells cultured for 48 hours with CHX revealed a noticeably elongated shape of while cells cultured in high EO concentration or with salvia were considerably smaller and contracted with fewer projections. Chlorhexidine, EO and salvia reduced the fibroblast proliferation rate and stimulated cell death. Both reactions to EO were dose dependent. Cells exposure to chamomile or calendula brews did not change morphology or proliferation of fibroblasts. The results of this in vitro study showed that in contrast to chamomile and calendula, the brews of EO, CHX or salvia had a negative influence on fibroblast biology. PMID:27536196

  3. Overexpression of the lamina proteins Lamin and Kugelkern induces specific ultrastructural alterations in the morphology of the nuclear envelope of intestinal stem cells and enterocytes.

    PubMed

    Petrovsky, Roman; Krohne, Georg; Großhans, Jörg

    2018-03-01

    The nuclear envelope has a stereotypic morphology consisting of a flat double layer of the inner and outer nuclear membrane, with interspersed nuclear pores. Underlying and tightly linked to the inner nuclear membrane is the nuclear lamina, a proteinous layer of intermediate filament proteins and associated proteins. Physiological, experimental or pathological alterations in the constitution of the lamina lead to changes in nuclear morphology, such as blebs and lobulations. It has so far remained unclear whether the morphological changes depend on the differentiation state and the specific lamina protein. Here we analysed the ultrastructural morphology of the nuclear envelope in intestinal stem cells and differentiated enterocytes in adult Drosophila flies, in which the proteins Lam, Kugelkern or a farnesylated variant of LamC were overexpressed. Surprisingly, we detected distinct morphological features specific for the respective protein. Lam induced envelopes with multiple layers of membrane and lamina, surrounding the whole nucleus whereas farnesylated LamC induced the formation of a thick fibrillary lamina. In contrast, Kugelkern induced single-layered and double-layered intranuclear membrane structures, which are likely be derived from infoldings of the inner nuclear membrane or of the double layer of the envelope. Copyright © 2018 Elsevier GmbH. All rights reserved.

  4. Living matter—nexus of physics and biology in the 21st century

    PubMed Central

    Gardel, Margaret L.

    2012-01-01

    Cells are made up of complex assemblies of cytoskeletal proteins that facilitate force transmission from the molecular to cellular scale to regulate cell shape and force generation. The “living matter” formed by the cytoskeleton facilitates versatile and robust behaviors of cells, including their migration, adhesion, division, and morphology, that ultimately determine tissue architecture and mechanics. Elucidating the underlying physical principles of such living matter provides great opportunities in both biology and physics. For physicists, the cytoskeleton provides an exceptional toolbox to study materials far from equilibrium. For biologists, these studies will provide new understanding of how molecular-scale processes determine cell morphological changes. PMID:23112229

  5. A new concept for risk assessment of the hazards of non-genotoxic chemicals--electronmicroscopic studies of the cell surface. Evidence for the action of lipophilic chemicals on the Ca2+ signaling system.

    PubMed

    Gartzke, J; Lange, K; Brandt, U; Bergmann, J

    1997-06-20

    Recently, we presented evidence for the localization of components of the cellular Ca2+ signaling pathway in microvilli. On stimulation of this pathway, microvilli undergo characteristic morphological changes which can be detected by scanning electron microscopy (SEM) of the cell surface. Here we show that both receptor-mediated (vasopressin) and unspecific stimulation of the Ca2+ signaling system by the lipophilic tumor promoters thapsigargin (TG) and phorbolmyristateacetate (PMA) are accompanied by the same type of morphological changes of the cell surface. Since stimulated cell proliferation accelerates tumor development and sustained elevation of the intracellular Ca2+ concentrations is a precondition for stimulated cell proliferation, activated Ca2+ signaling is one possible mechanism of non-genomic tumor promotion. Using isolated rat hepatocytes we show that all tested lipophilic chemicals with known tumor promoter action, caused characteristic microvillar shape changes. On the other hand, lipophilic solvents that were used as differentiating agents in cell cultures such as dimethylsulfoxide (DMSO) and dimethylformamide also, failed to change the microvillar shapes. Instead DMSO stabilized the original appearance of microvilli. The used technique provides a convenient method for the evaluation of non-genomic carcinogenicity of chemicals prior to their industrial application.

  6. Effects of zinc deficiency on the vallate papillae and taste buds in rats.

    PubMed

    Chou, H C; Chien, C L; Huang, H L; Lu, K S

    2001-05-01

    Zinc deficiency is associated with multiple clinical complications, including taste disturbance, anorexia, growth retardation, skin changes, and hypogonadism. We investigated the zinc-deficiency-induced morphologic changes in the vallate taste buds of weanling and young adult male Wistar rats. A total of 24 weanling and 30 young adult rats were used. Each age group was further divided into a control group fed a zinc-adequate (50 ppm) diet, a zinc-deficient (< 1 ppm) diet group, and a zinc-adequate pair-fed group who were fed the same amount of food as that taken by the zinc-deficient group. Weanling rats were fed for 4 weeks and young adult rats were fed for 6 weeks. The morphometry and morphologic changes of vallate taste buds were analyzed using light and transmission electron microscopy. Light microscopy revealed no significant difference in papilla size and morphology among the various groups. In both weanling and young adult rats in the zinc-deficient diet and pair-fed groups, the number of taste buds per papilla (per animal) and the average profile area of the taste bud were significantly smaller than those of the corresponding controls (p < 0.05). Ultrastructural changes were seen only in the taste buds of weanling rats fed the zinc-deficient diet, with derangement of the architecture of the taste bud and widening of the intercellular space between taste bud cells. The proportion of type I taste bud cells in the taste buds of weanling rats fed the zinc-deficient diet decreased from 59% to 39%, and that of type II taste bud cells decreased from 25% to 12%. No obvious changes in the ultrastructure of type III taste bud cells were observed. The main effects of zinc deficiency in weanling and young adult rats and in adequate diet pair-fed rats were changes in the number and size of taste buds, and fine structure changes in the taste bud cells, especially during the accelerated growth stage after weaning.

  7. Docosapentaenoic acid (DPA) is a critical determinant of cubic membrane formation in amoeba Chaos mitochondria.

    PubMed

    Deng, Yuru; Almsherqi, Zakaria A; Shui, Guanghou; Wenk, Markus R; Kohlwein, Sepp D

    2009-09-01

    Very long-chain polyunsaturated fatty acids (VLC-PUFAs), such as docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA), have recently made it to the realm of "magical molecules" based on their multiple presumably beneficial effects in biological systems, making these PUFAs particularly interesting in biomedicine. Their specific biological functions, however, remain enigmatic. Here we provide evidence derived from studies in the amoeba Chaos that indicates a structural role for omega-6 DPA in cell membrane organization, which may help to explain the multiple diverse effects of VLC-PUFA in healthy and diseased states. Amoeba Chaos mitochondria undergo a remarkable and reversible morphological transition into cubic morphology on starvation. This morphological transition is reflected in major changes in fatty acid and lipid composition, as determined by gas liquid chromatography and mass spectrometry, in particular by a drastic increase in C22:5 modified phosphatidylcholine plasmalogen, phosphatidylethanolamine plasmalogen, and phosphatidylinositol species. Liposomes produced in vitro from lipids of starved amoeba cells show a high propensity to form hexagonal tubular and cubic morphologies. Addition of omega-6 DPA, but not of omega-3 DPA, to the cell culture also induced mitochondrial membrane transformation into cubic morphology in fed cells, demonstrating for the first time an important structural role of omega-6 DPA-containing lipids in cell membrane organization.

  8. Cadherin-11 modulates cell morphology and collagen synthesis in periodontal ligament cells under mechanical stress.

    PubMed

    Feng, Lishu; Zhang, Yimei; Kou, Xiaoxing; Yang, Ruili; Liu, Dawei; Wang, Xuedong; Song, Yang; Cao, Haifeng; He, Danqing; Gan, Yehua; Zhou, Yanheng

    2017-03-01

    To examine the role of cadherin-11, an integral membrane adhesion molecule, in periodontal ligament cells (PDLCs) under mechanical stimulation. Human PDLCs were cultured and subjected to mechanical stress. Cadherin-11 expression and cell morphology of PDLCs were investigated via immunofluorescence staining. The mRNA and protein expressions of cadherin-11 and type I collagen (Col-I) of PDLCs were evaluated by quantitative real-time polymerase chain reaction and Western blot, respectively. Small interfering RNA was used to knock down cadherin-11 expression in PDLCs. The collagen matrix of PDLCs was examined using toluidine blue staining. Cadherin-11 was expressed in PDLCs. Mechanical stress suppressed cadherin-11 expression in PDLCs with prolonged force treatment time and increased force intensity, accompanied by suppressed β-catenin expression. Simultaneously, mechanical stress altered cell morphology and repressed Col-I expression in a time- and dose-dependent manner in PDLCs. Moreover, knockdown of cadherin-11 with suppressed β-catenin expression resulted in altered PDLC morphology and repressed collagen expression, which were consistent with the changes observed under mechanical stress. Results of this study suggest that cadherin-11 is expressed in PDLCs and modulates PDLC morphology and collagen synthesis in response to mechanical stress, which may play an important role in the homeostasis and remodeling of the PDL under mechanical stimulation.

  9. Transmission and scanning electron microscopy study of the characteristics and morphology of pericytes and novel desmin-immunopositive perivascular cells before and after castration in rat anterior pituitary gland.

    PubMed

    Jindatip, Depicha; Fujiwara, Ken; Kouki, Tom; Yashiro, Takashi

    2012-09-01

    Pericytes are perivascular cells associated with microcirculation. Typically, they are localized close to the capillary wall, underneath the basement membrane, and have sparse cytoplasm and poorly developed cell organelles. However, the specific properties of pericytes vary by organ and the conditions within organs. We recently demonstrated that pericytes in rat anterior pituitary gland produce type I and III collagens. The present study attempted to determine the morphological characteristics of these pituitary pericytes. Castrated rats were used as a model of hormonal and vascular changes in the gland. Pericytes, as determined by desmin immunohistochemistry, were more numerous and stained more intensely in castrated rats. Transmission electron microscopy revealed that pituitary pericytes displayed the typical characteristics of pericytes. In pituitary sections from castrated rats, the Golgi apparatus of pericytes was well developed and the rough endoplasmic reticulum was elongated. Additionally, scanning electron microscopy revealed four pericyte shapes: oval, elongate, triangular, and multiangular. As compared with normal rats, the proportion of oval pericytes was lower, and the proportions of the other three shapes were higher, in castrated rats. These results suggest that pericytes change their fine structure and cell shape in response to hormonal and vascular changes in the anterior pituitary gland. In addition, a novel type of perivascular cell was found by desmin immunoelectron microscopy. The morphological properties of these cells were dissimilar to those of pericytes. The cells were localized in the perivascular space, had no basement membrane, and contained dilated rough endoplasmic reticulum. This new cell type will require further study of its origin and characteristics.

  10. Application of image flow cytometry for the characterization of red blood cell morphology

    NASA Astrophysics Data System (ADS)

    Pinto, Ruben N.; Sebastian, Joseph A.; Parsons, Michael; Chang, Tim C.; Acker, Jason P.; Kolios, Michael C.

    2017-02-01

    Red blood cells (RBCs) stored in hypothermic environments for the purpose of transfusion have been documented to undergo structural and functional changes over time. One sign of the so-called RBC storage lesion is irreversible damage to the cell membrane. Consequently, RBCs undergo a morphological transformation from regular, deformable biconcave discocytes to rigid spheroechinocytes. The spherically shaped RBCs lack the deformability to efficiently enter microvasculature, thereby reducing the capacity of RBCs to oxygenate tissue. Blood banks currently rely on microscope techniques that include fixing, staining and cell counting in order to morphologically characterize RBC samples; these methods are labor intensive and highly subjective. This study presents a novel, high-throughput RBC morphology characterization technique using image flow cytometry (IFC). An image segmentation template was developed to process 100,000 images acquired from the IFC system and output the relative spheroechinocyte percentage. The technique was applied on samples extracted from two blood bags to monitor the morphological changes of the RBCs during in vitro hypothermic storage. The study found that, for a given sample of RBCs, the IFC method was twice as fast in data acquisition, and analyzed 250-350 times more RBCs than the conventional method. Over the lifespan of the blood bags, the mean spheroechinocyte population increased by 37%. Future work will focus on expanding the template to segregate RBC images into more subpopulations for the validation of the IFC method against conventional techniques; the expanded template will aid in establishing quantitative links between spheroechinocyte increase and other RBC storage lesion characteristics.

  11. Sequential evolution of bacterial morphology by co-option of a developmental regulator.

    PubMed

    Jiang, Chao; Brown, Pamela J B; Ducret, Adrien; Brun, Yves V

    2014-02-27

    What mechanisms underlie the transitions responsible for the diverse shapes observed in the living world? Although bacteria exhibit a myriad of morphologies, the mechanisms responsible for the evolution of bacterial cell shape are not understood. We investigated morphological diversity in a group of bacteria that synthesize an appendage-like extension of the cell envelope called the stalk. The location and number of stalks varies among species, as exemplified by three distinct subcellular positions of stalks within a rod-shaped cell body: polar in the genus Caulobacter and subpolar or bilateral in the genus Asticcacaulis. Here we show that a developmental regulator of Caulobacter crescentus, SpmX, is co-opted in the genus Asticcacaulis to specify stalk synthesis either at the subpolar or bilateral positions. We also show that stepwise evolution of a specific region of SpmX led to the gain of a new function and localization of this protein, which drove the sequential transition in stalk positioning. Our results indicate that changes in protein function, co-option and modularity are key elements in the evolution of bacterial morphology. Therefore, similar evolutionary principles of morphological transitions apply to both single-celled prokaryotes and multicellular eukaryotes.

  12. [Essential oil from Artemisia lavandulaefolia induces apoptosis and necrosis of HeLa cells].

    PubMed

    Zhang, Lu-min; Lv, Xue-wei; Shao, Lin-xiang; Ma, Yan-fang; Cheng, Wen-zhao; Gao, Hai-tao

    2013-12-01

    To investigate the effects of Artemisia lavandulaefolia essential oil on apoptosis and necrosis of HeLa cells. Cell viability was assayed using MTT method. The morphological and structure alterations in HeLa cells were observed by microscopy. Furthermore, cell apoptosis was measured by DNA Ladder and flow cytometry. DNA damage was measured by comet assay, and the protein expression was examined by Western blot analysis. MTT assay displayed essential oil from Artemisia lavandulaefolia could inhibit the proliferation of HeLa cells in a dose-dependent manner. After treated with essential oil of Artemisia lavadulaefolia for 24 h, HeLa cells in 100 and 200 microg/mL experiment groups exhibited the typical morphology changes of undergoing apoptosis, such as cell shrinkage and nucleus chromatin condensed. However, the cells in the 400 microg/mL group showed the necrotic morphology changes including cytomembrane rupture and cytoplasm spillover. In addition, DNA Ladder could be demonstrated by DNA electrophoresis in each experiment group. Apoptosis peak was also evident in flow cytometry in each experiment group. After treating the HeLa cells with essential oil of Artemisia lavadulaefolia for 6 h, comet tail was detected by comet assay. Moreover, western blotting analysis showed that caspase-3 was activated and the cleavage of PARP was inactivated. Essential oil from Artemisia lavadulaefolia can inhibit the proliferation of HeLa cells in vitro. Low concentration of essential oil from Artemisia lavadulaefolia can induce apoptosis, whereas high concentration of the compounds result in necrosis of HeLa cells. And,the mechanism may be related to the caspase-3-mediated-PARP apoptotic signal pathway.

  13. A transmission electron microscopy study of the diversity of Candida albicans cells induced by Euphorbia hirta L. leaf extract in vitro

    PubMed Central

    Basma, Abu Arra; Zuraini, Zakaria; Sasidharan, Sreenivasan

    2011-01-01

    Objective To determine the major changes in the microstructure of Candida albicans (C. albicans) after treatment with Euphorbia hirta (E. hirta) L. leaf extract. Methods Transmission electron microscopy was used to study the ultrastructural changes caused by E. hirta extract on C. albicans cells at various exposure time. Results It was found that the main abnormalities were the alterations in morphology, lysis and complete collapse of the yeast cells after 36 h of exposure to the extract. Whereas the control cultures showed a typical morphology of Candida with a uniform central density, typically structured nucleus, and a cytoplasm with several elements of endomembrane system and enveloped by a regular, intact cell wall. Conclusions The significant antifungal activity shown by this methanol extract of E. hirta L. suggests its potential against infections caused by C. albicans. The extract may be developed as an anticandidal agent. PMID:23569719

  14. On the morphology of the central nervous system in larval stages of Carcinus maenas L. (Decapoda, Brachyura)

    NASA Astrophysics Data System (ADS)

    Harzsch, S.; Dawirs, R. R.

    1993-02-01

    We investigated the morphology of the central nervous system throughout the larval development of Carcinus maenas. For that purpose single larvae were reared in the laboratory from hatching through metamorphosis. Complete series of whole mout semithin sections were obtained from individuals of all successive larval stages and analysed with a light microscope. Morphological feature and spatial arrangement of discernable neural cell clusters, fibre tracts and neuropile are described and compared with the adult pattern. We found that most of the morphological features characterizing the adult nervous system are already present in the zoea-1. Nevertheless, there are marked differences with respect to the arrangement of nerve cell bodies, organization of cerebral neuropile, and disposition of ganglia in the ventral nerve cord. It appears that complexity of the central nervous neuropile is selectively altered during postmetamorphotic development, probably reflecting adaptive changes of sensory-motor integration in response to behavioural maturation. In contrast, during larval development there was little change in the overall structural organization of the central nervous system despite some considerable growth. However, the transition from zoea-4 to megalopa brings about multiple fundamental changes in larval morphology and behavioural pattern. Since central nervous integration should properly adapt to the altered behavioural repertoire of the megalopa, it seems necessary to ask in which respect synaptic rearrangement might characterize development of the central nervous system.

  15. Insights into embryo defenses of the invasive apple snail Pomacea canaliculata: egg mass ingestion affects rat intestine morphology and growth.

    PubMed

    Dreon, Marcos S; Fernández, Patricia E; Gimeno, Eduardo J; Heras, Horacio

    2014-06-01

    The spread of the invasive snail Pomacea canaliculata is expanding the rat lungworm disease beyond its native range. Their toxic eggs have virtually no predators and unusual defenses including a neurotoxic lectin and a proteinase inhibitor, presumably advertised by a warning coloration. We explored the effect of egg perivitellin fluid (PVF) ingestion on the rat small intestine morphology and physiology. Through a combination of biochemical, histochemical, histopathological, scanning electron microscopy, cell culture and feeding experiments, we analyzed intestinal morphology, growth rate, hemaglutinating activity, cytotoxicity and cell proliferation after oral administration of PVF to rats. PVF adversely affects small intestine metabolism and morphology and consequently the standard growth rate, presumably by lectin-like proteins, as suggested by PVF hemaglutinating activity and its cytotoxic effect on Caco-2 cell culture. Short-term effects of ingested PVF were studied in growing rats. PVF-supplemented diet induced the appearance of shorter and wider villi as well as fused villi. This was associated with changes in glycoconjugate expression, increased cell proliferation at crypt base, and hypertrophic mucosal growth. This resulted in a decreased absorptive surface after 3 days of treatment and a diminished rat growth rate that reverted to normal after the fourth day of treatment. Longer exposure to PVF induced a time-dependent lengthening of the small intestine while switching to a control diet restored intestine length and morphology after 4 days. Ingestion of PVF rapidly limits the ability of potential predators to absorb nutrients by inducing large, reversible changes in intestinal morphology and growth rate. The occurrence of toxins that affect intestinal morphology and absorption is a strategy against predation not recognized among animals before. Remarkably, this defense is rather similar to the toxic effect of plant antipredator strategies. This defense mechanism may explain the near absence of predators of apple snail eggs.

  16. Flagellum Density Regulates Proteus mirabilis Swarmer Cell Motility in Viscous Environments

    PubMed Central

    Tuson, Hannah H.; Copeland, Matthew F.; Carey, Sonia; Sacotte, Ryan

    2013-01-01

    Proteus mirabilis is an opportunistic pathogen that is frequently associated with urinary tract infections. In the lab, P. mirabilis cells become long and multinucleate and increase their number of flagella as they colonize agar surfaces during swarming. Swarming has been implicated in pathogenesis; however, it is unclear how energetically costly changes in P. mirabilis cell morphology translate into an advantage for adapting to environmental changes. We investigated two morphological changes that occur during swarming—increases in cell length and flagellum density—and discovered that an increase in the surface density of flagella enabled cells to translate rapidly through fluids of increasing viscosity; in contrast, cell length had a small effect on motility. We found that swarm cells had a surface density of flagella that was ∼5 times larger than that of vegetative cells and were motile in fluids with a viscosity that inhibits vegetative cell motility. To test the relationship between flagellum density and velocity, we overexpressed FlhD4C2, the master regulator of the flagellar operon, in vegetative cells of P. mirabilis and found that increased flagellum density produced an increase in cell velocity. Our results establish a relationship between P. mirabilis flagellum density and cell motility in viscous environments that may be relevant to its adaptation during the infection of mammalian urinary tracts and movement in contact with indwelling catheters. PMID:23144253

  17. A Nonsynonymous Mutation in the Transcriptional Regulator lbh Is Associated with Cichlid Craniofacial Adaptation and Neural Crest Cell Development

    PubMed Central

    Powder, Kara E.; Cousin, Hélène; McLinden, Gretchen P.; Craig Albertson, R.

    2014-01-01

    Since the time of Darwin, biologists have sought to understand the origins and maintenance of life’s diversity of form. However, the nature of the exact DNA mutations and molecular mechanisms that result in morphological differences between species remains unclear. Here, we characterize a nonsynonymous mutation in a transcriptional coactivator, limb bud and heart homolog (lbh), which is associated with adaptive variation in the lower jaw of cichlid fishes. Using both zebrafish and Xenopus, we demonstrate that lbh mediates migration of cranial neural crest cells, the cellular source of the craniofacial skeleton. A single amino acid change that is alternatively fixed in cichlids with differing facial morphologies results in discrete shifts in migration patterns of this multipotent cell type that are consistent with both embryological and adult craniofacial phenotypes. Among animals, this polymorphism in lbh represents a rare example of a coding change that is associated with continuous morphological variation. This work offers novel insights into the development and evolution of the craniofacial skeleton, underscores the evolutionary potential of neural crest cells, and extends our understanding of the genetic nature of mutations that underlie divergence in complex phenotypes. PMID:25234704

  18. Analysis of Factors Limiting Bacterial Growth in PDMS Mother Machine Devices.

    PubMed

    Yang, Da; Jennings, Anna D; Borrego, Evalynn; Retterer, Scott T; Männik, Jaan

    2018-01-01

    The microfluidic mother machine platform has attracted much interest for its potential in studies of bacterial physiology, cellular organization, and cell mechanics. Despite numerous experiments and development of dedicated analysis software, differences in bacterial growth and morphology in narrow mother machine channels compared to typical liquid media conditions have not been systematically characterized. Here we determine changes in E. coli growth rates and cell dimensions in different sized dead-end microfluidic channels using high resolution optical microscopy. We find that E. coli adapt to the confined channel environment by becoming narrower and longer compared to the same strain grown in liquid culture. Cell dimensions decrease as the channel length increases and width decreases. These changes are accompanied by increases in doubling times in agreement with the universal growth law. In channels 100 μm and longer, cell doublings can completely stop as a result of frictional forces that oppose cell elongation. Before complete cessation of elongation, mechanical stresses lead to substantial deformation of cells and changes in their morphology. Our work shows that mechanical forces rather than nutrient limitation are the main growth limiting factor for bacterial growth in long and narrow channels.

  19. Nanostructure and force spectroscopy analysis of human peripheral blood CD4+ T cells using atomic force microscopy.

    PubMed

    Hu, Mingqian; Wang, Jiongkun; Cai, Jiye; Wu, Yangzhe; Wang, Xiaoping

    2008-09-12

    To date, nanoscale imaging of the morphological changes and adhesion force of CD4(+) T cells during in vitro activation remains largely unreported. In this study, we used atomic force microscopy (AFM) to study the morphological changes and specific binding forces in resting and activated human peripheral blood CD4(+) T cells. The AFM images revealed that the volume of activated CD4(+) T cells increased and the ultrastructure of these cells also became complex. Using a functionalized AFM tip, the strength of the specific binding force of the CD4 antigen-antibody interaction was found to be approximately three times that of the unspecific force. The adhesion forces were not randomly distributed over the surface of a single activated CD4(+) T cell, indicated that the CD4 molecules concentrated into nanodomains. The magnitude of the adhesion force of the CD4 antigen-antibody interaction did not change markedly with the activation time. Multiple bonds involved in the CD4 antigen-antibody interaction were measured at different activation times. These results suggest that the adhesion force involved in the CD4 antigen-antibody interaction is highly selective and of high affinity.

  20. Analysis of Factors Limiting Bacterial Growth in PDMS Mother Machine Devices

    DOE PAGES

    Yang, Da; Jennings, Anna D.; Borrego, Evalynn; ...

    2018-05-01

    The microfluidic mother machine platform has attracted much interest for its potential in studies of bacterial physiology, cellular organization, and cell mechanics. Despite numerous experiments and development of dedicated analysis software, differences in bacterial growth and morphology in narrow mother machine channels compared to typical liquid media conditions have not been systematically characterized. Here we determine changes in E. coli growth rates and cell dimensions in different sized dead-end microfluidic channels using high resolution optical microscopy. We find that E. coli adapt to the confined channel environment by becoming narrower and longer compared to the same strain grown in liquidmore » culture. Cell dimensions decrease as the channel length increases and width decreases. These changes are accompanied by increases in doubling times in agreement with the universal growth law. In channels 100 μm and longer, cell doublings can completely stop as a result of frictional forces that oppose cell elongation. Before complete cessation of elongation, mechanical stresses lead to substantial deformation of cells and changes in their morphology. Lastly, our work shows that mechanical forces rather than nutrient limitation are the main growth limiting factor for bacterial growth in long and narrow channels.« less

  1. Analysis of Factors Limiting Bacterial Growth in PDMS Mother Machine Devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Da; Jennings, Anna D.; Borrego, Evalynn

    The microfluidic mother machine platform has attracted much interest for its potential in studies of bacterial physiology, cellular organization, and cell mechanics. Despite numerous experiments and development of dedicated analysis software, differences in bacterial growth and morphology in narrow mother machine channels compared to typical liquid media conditions have not been systematically characterized. Here we determine changes in E. coli growth rates and cell dimensions in different sized dead-end microfluidic channels using high resolution optical microscopy. We find that E. coli adapt to the confined channel environment by becoming narrower and longer compared to the same strain grown in liquidmore » culture. Cell dimensions decrease as the channel length increases and width decreases. These changes are accompanied by increases in doubling times in agreement with the universal growth law. In channels 100 μm and longer, cell doublings can completely stop as a result of frictional forces that oppose cell elongation. Before complete cessation of elongation, mechanical stresses lead to substantial deformation of cells and changes in their morphology. Lastly, our work shows that mechanical forces rather than nutrient limitation are the main growth limiting factor for bacterial growth in long and narrow channels.« less

  2. Electrodeformation of multi-bilayer spherical concentric membranes by AC electric fields

    NASA Astrophysics Data System (ADS)

    Lira-Escobedo, J.; Arauz-Lara, J.; Aranda-Espinoza, H.; Adlerz, K.; Viveros-Mendez, P. X.; Aranda-Espinoza, S.

    2017-09-01

    It is now well established that external stresses alter the behaviour of cells, where such alterations can be as profound as changes in gene expression. A type of stresses of particular interest are those due to alternating-current (AC) electric fields. The effect of AC fields on cells is still not well understood, in particular it is not clear how these fields affect the cell nucleus and other organelles. Here, we propose that one possible mechanism is through the deformation of the membranes. In order to investigate the effect of AC fields on the morphological changes of the cell organelles, we modelled the cell as two concentric bilayer membranes. This model allows us to obtain the deformations induced by the AC field by balancing the elastic energy and the work done by the Maxwell stresses. Morphological phase diagrams are obtained as a function of the frequency and the electrical properties of the media and membranes. We demonstrate that the organelle shapes can be changed without modifying the shape of the external cell membrane and that the organelle deformation transitions can be used to measure, for example, the conductivity of the nucleus.

  3. General morphological and biological features of neoplasms: integration of molecular findings.

    PubMed

    Diaz-Cano, S J

    2008-07-01

    This review highlights the importance of morphology-molecular correlations for a proper implementation of new markers. It covers both general aspects of tumorigenesis (which are normally omitted in papers analysing molecular pathways) and the general mechanisms for the acquired capabilities of neoplasms. The mechanisms are also supported by appropriate diagrams for each acquired capability that include overlooked features such as mobilization of cellular resources and changes in chromatin, transcription and epigenetics; fully accepted oncogenes and tumour suppressor genes are highlighted, while the pathways are also presented as activating or inactivating with appropriate colour coding. Finally, the concepts and mechanisms presented enable us to understand the basic requirements for the appropriate implementation of molecular tests in clinical practice. In summary, the basic findings are presented to serve as a bridge to clinical applications. The current definition of neoplasm is descriptive and difficult to apply routinely. Biologically, neoplasms develop through acquisition of capabilities that involve tumour cell aspects and modified microenvironment interactions, resulting in unrestricted growth due to a stepwise accumulation of cooperative genetic alterations that affect key molecular pathways. The correlation of these molecular aspects with morphological changes is essential for better understanding of essential concepts as early neoplasms/precancerous lesions, progression/dedifferentiation, and intratumour heterogeneity. The acquired capabilities include self-maintained replication (cell cycle dysregulation), extended cell survival (cell cycle arrest, apoptosis dysregulation, and replicative lifespan), genetic instability (chromosomal and microsatellite), changes of chromatin, transcription and epigenetics, mobilization of cellular resources, and modified microenvironment interactions (tumour cells, stromal cells, extracellular, endothelium). The acquired capabilities defining neoplasms are the hallmarks of cancer, but they also comprise useful tools to improve diagnosis and prognosis, as well as potential therapeutic targets. The application of these concepts in oncological pathology leads to consideration of the molecular test requirements (Molecular Test Score System) for reliable implementation; these requirements should cover biological effects, molecular pathway, biological validation, and technical validation. Sensible application of molecular markers in tumour pathology always needs solid morphological support.

  4. Structural and morphological changes in supramolecular-structured polymer electrolyte membrane fuel cell on addition of phosphoric acid

    NASA Astrophysics Data System (ADS)

    Hendrana, S.; Pryliana, R. F.; Natanael, C. L.; Rahayu, I.

    2018-03-01

    Phosphoric acid is one agents used in membrane fuel cell to modify ionic conductivity. Therefore, its distribution in membrane is a key parameter to gain expected conductivity. Efforts have been made to distribute phosphoric acid in a supramolecular-structured membrane prepared with a matrix. To achieve even distribution across bulk of the membrane, the inclusion of the polyacid is carried out under pressurized chamber. Image of scanning electron microscopy (SEM) shows better phosphoric acid distribution for one prepared in pressurized state. It also leads in better performing in ionic conductivity. Moreover, data from differential scanning calorimetry (DSC) indicate that the addition of phosphoric acid is prominent in the change of membrane structure, while morphological changes are captured in SEM images.

  5. Alterations in zebrafish development induced by simvastatin: Comprehensive morphological and physiological study, focusing on muscle

    PubMed Central

    Campos, Laise M; Rios, Eduardo A; Guapyassu, Livia; Midlej, Victor; Atella, Georgia C; Herculano-Houzel, Suzana; Benchimol, Marlene; Mermelstein, Claudia

    2016-01-01

    The cholesterol synthesis inhibitor simvastatin, which is used to treat cardiovascular diseases, has severe collateral effects. We decided to comprehensively study the effects of simvastatin in zebrafish development and in myogenesis, because zebrafish has been used as a model to human diseases, due to its handling easiness, the optical clarity of its embryos, and the availability of physiological and structural methodologies. Furthermore, muscle is an important target of the drug. We used several simvastatin concentrations at different zebrafish developmental stages and studied survival rate, morphology, and physiology of the embryos. Our results show that high levels of simvastatin induce structural damage whereas low doses induce minor structural changes, impaired movements, and reduced heart beating. Morphological alterations include changes in embryo and somite size and septa shape. Physiological changes include movement reduction and slower heartbeat. These effects could be reversed by the addition of exogenous cholesterol. Moreover, we quantified the total cell number during zebrafish development and demonstrated a large reduction in cell number after statin treatment. Since we could classify the alterations induced by simvastatin in three distinct phenotypes, we speculate that simvastatin acts through more than one mechanism and could affect both cell replication and/or cell death and muscle function. Our data can contribute to the understanding of the molecular and cellular basis of the mechanisms of action of simvastatin. PMID:27444151

  6. Alterations in zebrafish development induced by simvastatin: Comprehensive morphological and physiological study, focusing on muscle.

    PubMed

    Campos, Laise M; Rios, Eduardo A; Guapyassu, Livia; Midlej, Victor; Atella, Georgia C; Herculano-Houzel, Suzana; Benchimol, Marlene; Mermelstein, Claudia; Costa, Manoel L

    2016-11-01

    The cholesterol synthesis inhibitor simvastatin, which is used to treat cardiovascular diseases, has severe collateral effects. We decided to comprehensively study the effects of simvastatin in zebrafish development and in myogenesis, because zebrafish has been used as a model to human diseases, due to its handling easiness, the optical clarity of its embryos, and the availability of physiological and structural methodologies. Furthermore, muscle is an important target of the drug. We used several simvastatin concentrations at different zebrafish developmental stages and studied survival rate, morphology, and physiology of the embryos. Our results show that high levels of simvastatin induce structural damage whereas low doses induce minor structural changes, impaired movements, and reduced heart beating. Morphological alterations include changes in embryo and somite size and septa shape. Physiological changes include movement reduction and slower heartbeat. These effects could be reversed by the addition of exogenous cholesterol. Moreover, we quantified the total cell number during zebrafish development and demonstrated a large reduction in cell number after statin treatment. Since we could classify the alterations induced by simvastatin in three distinct phenotypes, we speculate that simvastatin acts through more than one mechanism and could affect both cell replication and/or cell death and muscle function. Our data can contribute to the understanding of the molecular and cellular basis of the mechanisms of action of simvastatin. © 2016 by the Society for Experimental Biology and Medicine.

  7. Ultrastructural study on the differentiation and the fate of M cells in follicle-associated epithelium of rat Peyer's patch.

    PubMed

    Onishi, Sachiko; Yokoyama, Toshifumi; Chin, Keigi; Yuji, Midori; Inamoto, Tetsurou; Qi, Wang-Mei; Warita, Katsuhiko; Hoshi, Nobuhiko; Kitagawa, Hiroshi

    2007-05-01

    The differentiation process of immature microvillous epithelial cells to M cells and the fate of M cells in the follicle-associated epithelium (FAE) of the mucosa-associated lymphoid tissues are still unclear. In this study, the differentiation process and the fate of M cells were clarified in rat Peyer's patches under a transmission electron microscope. Almost all immature epithelial cells were found to possess long, slender microvilli, which gradually shortened, thickened and dispersed as the immature epithelial cells migrated away from the crypt orifices. These morphological changes started in the centers and moved to the peripheries of the apical surfaces of epithelial cells, accompanied by the protrusion of apical cytoplasm out of the terminal web. During these changes, the bundles of microfilaments of microvilli never shortened, and both small vesicles in the apical cytoplasm and tiny invaginations of the apical membranes were found. The intraepithelial migrating cells gradually accumulated to form typical intraepithelial pockets. In all FAE, there was no morphological sign of cell death in M cells. The rearrangement of microfilament bundles, the reconstruction of microvilli and the disappearance of pockets resulted in the transformation of M cells into microvillous epithelial cells. These serial ultrastructural changes suggest that M cells are a temporal and transitional cell type caused by the active engulfment of luminal substances and that when the engulfment ceases, the M cells transform into mature microvillous epithelial cells.

  8. A Reliable and Reproducible Model for Assessing the Effect of Different Concentrations of α-Solanine on Rat Bone Marrow Mesenchymal Stem Cells.

    PubMed

    Ordóñez-Vásquez, Adriana; Jaramillo-Gómez, Lorenza; Duran-Correa, Camilo; Escamilla-García, Erandi; De la Garza-Ramos, Myriam Angélica; Suárez-Obando, Fernando

    2017-01-01

    Αlpha-solanine ( α -solanine) is a glycoalkaloid present in potato (Solanum tuberosum) . It has been of particular interest because of its toxicity and potential teratogenic effects that include abnormalities of the central nervous system, such as exencephaly, encephalocele, and anophthalmia. Various types of cell culture have been used as experimental models to determine the effect of α -solanine on cell physiology. The morphological changes in the mesenchymal stem cell upon exposure to α -solanine have not been established. This study aimed to describe a reliable and reproducible model for assessing the structural changes induced by exposure of mouse bone marrow mesenchymal stem cells (MSCs) to different concentrations of α -solanine for 24 h. The results demonstrate that nonlethal concentrations of α -solanine (2-6  μ M) changed the morphology of the cells, including an increase in the number of nucleoli, suggesting elevated protein synthesis, and the formation of spicules. In addition, treatment with α -solanine reduced the number of adherent cells and the formation of colonies in culture. Immunophenotypic characterization and staining of MSCs are proposed as a reproducible method that allows description of cells exposed to the glycoalkaloid, α -solanine.

  9. A Reliable and Reproducible Model for Assessing the Effect of Different Concentrations of α-Solanine on Rat Bone Marrow Mesenchymal Stem Cells

    PubMed Central

    Ordóñez-Vásquez, Adriana; Jaramillo-Gómez, Lorenza; Duran-Correa, Camilo

    2017-01-01

    Αlpha-solanine (α-solanine) is a glycoalkaloid present in potato (Solanum tuberosum). It has been of particular interest because of its toxicity and potential teratogenic effects that include abnormalities of the central nervous system, such as exencephaly, encephalocele, and anophthalmia. Various types of cell culture have been used as experimental models to determine the effect of α-solanine on cell physiology. The morphological changes in the mesenchymal stem cell upon exposure to α-solanine have not been established. This study aimed to describe a reliable and reproducible model for assessing the structural changes induced by exposure of mouse bone marrow mesenchymal stem cells (MSCs) to different concentrations of α-solanine for 24 h. The results demonstrate that nonlethal concentrations of α-solanine (2–6 μM) changed the morphology of the cells, including an increase in the number of nucleoli, suggesting elevated protein synthesis, and the formation of spicules. In addition, treatment with α-solanine reduced the number of adherent cells and the formation of colonies in culture. Immunophenotypic characterization and staining of MSCs are proposed as a reproducible method that allows description of cells exposed to the glycoalkaloid, α-solanine. PMID:29201465

  10. Changes in the cornea related to sickle cell disease: a pilot investigation.

    PubMed

    Coşkun, Mesut; İlhan, Özgür; İlhan, Nilüfer; Tuzcu, Esra Ayhan; Daglioğlu, Mutlu Cihan; Kahraman, Hilal; Elbeyli, Ahmet; Yarbağ, Abdulhekim; Helvaci, Mehmet Rami

    2015-01-01

    To investigate corneal structural changes (central corneal thickness, endothelial cell count, and cellular morphology) in patients with sickle cell disease (SCD). This prospective study included 56 patients with SCD and 50 age- and sex-matched healthy subjects without any eye disease aside from refractive errors. Endothelial cell density (ECD), percentage of hexagonality, and the coefficient of variation in cell size (CV) were measured using noncontact specular microscopy, and central corneal thickness (CCT) was measured by pachymetry. The mean CCT value was 509.6 ± 20.7 μm in the study group and 520.8 ± 23.6 μm in the control group. The mean ECD, CV, and percentage of hexagonality values in the study group were 2712 ± 335 cells/mm², 34.5 ± 5.3%, and 57.2 ± 6.6%, respectively, and 3030 ± 247 cells/mm², 31.6 ± 5.0%, and 60.4 ± 6.9% in the control group, respectively. Endothelial cell density (p = 0.001), CCT (p = 0.011), CV (p = 0.005), and percentage of hexagonality values (p = 0.018) were significantly different between the study and control groups. The results of the current study indicate that patients with SCD had considerable morphologic changes in the structure of the cornea when compared to healthy subjects.

  11. Organization and dynamics of yeast mitochondrial nucleoids

    PubMed Central

    MIYAKAWA, Isamu

    2017-01-01

    Mitochondrial DNA (mtDNA) is packaged by association with specific proteins in compact DNA-protein complexes named mitochondrial nucleoids (mt-nucleoids). The budding yeast Saccharomyces cerevisiae is able to grow either aerobically or anaerobically. Due to this characteristic, S. cerevisiae has been extensively used as a model organism to study genetics, morphology and biochemistry of mitochondria for a long time. Mitochondria of S. cerevisiae frequently fuse and divide, and perform dynamic morphological changes depending on the culture conditions and the stage of life cycle of the yeast cells. The mt-nucleoids also dynamically change their morphology, accompanying morphological changes of mitochondria. The mt-nucleoids have been isolated morphologically intact and functional analyses of mt-nucleoid proteins have been extensively performed. These studies have revealed that the functions of mt-nucleoid proteins are essential for maintenance of mtDNA. The aims of this review are to summarize the history on the research of yeast mt-nucleoids as well as recent findings on the organization of the mt-nucleoids and mitochondrial dynamics. PMID:28496055

  12. Image analysis applied to luminescence microscopy

    NASA Astrophysics Data System (ADS)

    Maire, Eric; Lelievre-Berna, Eddy; Fafeur, Veronique; Vandenbunder, Bernard

    1998-04-01

    We have developed a novel approach to study luminescent light emission during migration of living cells by low-light imaging techniques. The equipment consists in an anti-vibration table with a hole for a direct output under the frame of an inverted microscope. The image is directly captured by an ultra low- light level photon-counting camera equipped with an image intensifier coupled by an optical fiber to a CCD sensor. This installation is dedicated to measure in a dynamic manner the effect of SF/HGF (Scatter Factor/Hepatocyte Growth Factor) both on activation of gene promoter elements and on cell motility. Epithelial cells were stably transfected with promoter elements containing Ets transcription factor-binding sites driving a luciferase reporter gene. Luminescent light emitted by individual cells was measured by image analysis. Images of luminescent spots were acquired with a high aperture objective and time exposure of 10 - 30 min in photon-counting mode. The sensitivity of the camera was adjusted to a high value which required the use of a segmentation algorithm dedicated to eliminate the background noise. Hence, image segmentation and treatments by mathematical morphology were particularly indicated in these experimental conditions. In order to estimate the orientation of cells during their migration, we used a dedicated skeleton algorithm applied to the oblong spots of variable intensities emitted by the cells. Kinetic changes of luminescent sources, distance and speed of migration were recorded and then correlated with cellular morphological changes for each spot. Our results highlight the usefulness of the mathematical morphology to quantify kinetic changes in luminescence microscopy.

  13. Real-time QCM-D monitoring of cancer cell death early events in a dynamic context.

    PubMed

    Nowacki, Laetitia; Follet, Julie; Vayssade, Muriel; Vigneron, Pascale; Rotellini, Laura; Cambay, Florian; Egles, Christophe; Rossi, Claire

    2015-02-15

    Since a few years, the acoustic sensing of whole cell is the focus of increasing interest for monitoring the cytoskeletal cellular response to morphological modulators. We aimed at illustrating the potentialities of the quartz crystal microbalance with dissipation (QCM-D) technique for the real-time detection of the earliest morphological changes that occur at the cell-substrate interface during programmed cell death. Human breast cancer cells (MCF-7) grown on serum protein-coated gold sensors were placed in dynamic conditions under a continuous medium flow. The mass and viscoelasticity changes of the cells were tracked by monitoring the frequency and dissipation shifts during the first 4h of cell exposure to staurosporine, a well-known apoptosis inducer. We have identified a QCM-D signature characteristic of morphological modifications and cell detachment from the sensing surface that are related to the pro-apoptotic treatment. In particular, for low staurosporine doses below 1 µM, we showed that recording the dissipation shift allows to detect an early cell response which is undetectable after the same duration by the classical analytical techniques in cell biology. Furthermore, this sensing method allows quantifying the efficiency of the drug effect in less than 4h without requiring labeling and without interfering in the system, thus preventing any loss of information. In the actual context of targeted cancer therapy development, we believe that these results bring new insights in favor of the use of the non invasive QCM-D technique for quickly probing the cancer cell sensitivity to death inducer drugs. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. The clustering and morphology of chondrocytes in normal and mildly degenerate human femoral head cartilage studied by confocal laser scanning microscopy.

    PubMed

    Karim, Asima; Amin, Anish K; Hall, Andrew C

    2018-04-01

    Chondrocytes are the major cell type present in hyaline cartilage and they play a crucial role in maintaining the mechanical resilience of the tissue through a balance of the synthesis and breakdown of extracellular matrix macromolecules. Histological assessment of cartilage suggests that articular chondrocytes in situ typically occur singly and demonstrate a rounded/elliptical morphology. However, there are suggestions that their grouping and fine shape is more complex and that these change with cartilage degeneration as occurs in osteoarthritis. In the present study we have used confocal laser scanning microscopy and fluorescently labelled in situ human chondrocytes and advanced imaging software to visualise chondrocyte clustering and detailed morphology within grade-0 (non-degenerate) and grade-1 (mildly degenerate) cartilage from human femoral heads. Graded human cartilage explants were incubated with 5-chloromethylfluorescein diacetate and propidium iodide to identify the morphology and viability, respectively, of in situ chondrocytes within superficial, mid- and deep zones. In grade-0 cartilage, the analysis of confocal microscope images showed that although the majority of chondrocytes were single and morphologically normal, clusters (i.e. three or more chondrocytes within the enclosed lacunar space) were occasionally observed in the superficial zone, and 15-25% of the cell population exhibited at least one cytoplasmic process of ~ 5 μm in length. With degeneration, cluster number increased (~ 50%) but not significantly; however, the number of cells/cluster (P < 0.001) and the percentage of cells forming clusters increased (P = 0.0013). In the superficial zone but not the mid- or deep zones, the volume of clusters and average volume of chondrocytes in clusters increased (P < 0.001 and P < 0.05, respectively). The percentage of chondrocytes with processes, the number of processes/cell and the length of processes/cell increased in the superficial zone of grade-1 cartilage (P = 0.0098, P = 0.02 and P < 0.001, respectively). Processes were categorised based on length (L0 - no cytoplasmic processes; L1 < 5 μm; 5 < L2 ≤ 10 μm; 10 < L3 ≤ 15 μm; L4 > 15 μm). With cartilage degeneration, for chondrocytes in all zones, there was a significant decrease (P = 0.015) in the percentage of chondrocytes with 'normal' morphology (i.e. L0), with no change in the percentage of cells with L1 processes; however, there were significant increases in the other categories. In grade-0 cartilage, chondrocyte clustering and morphological abnormalities occurred and with degeneration these were exacerbated, particularly in the superficial zone. Chondrocyte clustering and abnormal morphology are associated with aberrant matrix metabolism, suggesting that these early changes to chondrocyte properties may be associated with cartilage degeneration. © 2017 Anatomical Society.

  15. Morphology characterization of organic solar cell materials and blends

    NASA Astrophysics Data System (ADS)

    Roehling, John Daniel

    The organization of polymers and fullerenes, both in their pure states and mixed together, have a large impact on their macroscopic properties. For mixtures used in organic solar cells, the morphology of the mixture has a very large impact upon the mixture's ability to efficiently convert sunlight into useful electrical energy. Understanding how the morphology can change under certain processing conditions and in turn, affect the characteristics of the solar cell is therefore important to improving the function of organic solar cells. Conventional poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells have served as a staple system to study organic solar cell function for nearly a decade. Much of the understanding of how to make these "poorly"conductive organic materials efficiently convert sunlight into electricity has come from the study of P3HT:PCBM. It has long been understood that in order for a polymer:fullerene (electron donor and acceptor, respectively) mixture to function well as a solar cell, two major criteria for the morphology must be met; first, the interface between the two materials must be large to efficiently create charges, and secondly, there must be continous pathways through the "pure" materials for charges to be efficiently collected at the electrodes. This makes it advantageous for OPV materials to phase-separate into interconnected domains with very small domain sizes, a structure that P3HT:PCBM seems to naturally self-assemble. Despite P3HT:PCBM's ability to reach an optimal morphology, a complete understanding of exactly how the morphology affects device performance has not been realized. Completely different morphological models can end up predicting the same device performance characteristics. Much of the problem comes from the assumed morphology within a particular model, which can often be incorrect. The problem lies in the fact that obtaining real, accurate morphological information is difficult. An often neglected morphological feature is the existence of a third mixed phase, which is often unaccounted for because much about its composition and location are poorly understood. Obtaining this information and measuring the full morphology of OPV layers would therefore enable further understanding of device function. It is the aim of this thesis to demonstrate a technique which can measure the morphology of OPV layers accurately, accounting for the third phase and its composition. By using a scanning transmission electron microscope (STEM) in conjunction with electron tomography (ET) and an easily resolved fullerene component, the morphology of P3HT:fullerene layers are herein investigated. The combination of materials and techniques are demonstrated to accurately measure the morphology, illustrated by results which corroborate previous studies in the literature. It will be shown that not only can the position of each of the three phases present be measured, but their compositions can also be determined. Through this technique, morphologies formed under different processing conditions are quantitatively compared. The technique reveals differences between conventional processing methods that are not obvious through other measurements. Differences in the materials distribution throughout the thickness of the layer are also demonstrated and shown to give implications toward device function. Additionally, the precise changes in morphology which occur from different processing conditions are determined and shown to have a significant impact upon the properties of an OPV layer as a solar energy harvester. Not only does the morphology of the mixed materials affect the solar cell properties, but the local structure of the component materials themselves can strongly influence the macroscopic properties. By removing the fullerene component and forming pure domains of P3HT, the effects of internal structure on the properties of P3HT and how the structure is formed is also herein investigated. Through these techniques, the morphology and structure of different organic solar cell mixtures can now be thoroughly investigated. Through this work and future studies, the exact effects of morphology can be more fully understood. With the availability of accurate morphological data, it may now be possible to decouple morphology from other factors which govern device function.

  16. Quantitative assessment of neurite outgrowth in human embryonic stem cell derived hN2 cells using automated high-content image analysis

    EPA Science Inventory

    Throughout development neurons undergo a number of morphological changes including neurite outgrowth from the cell body. Exposure to neurotoxic chemicals that interfere with this process may result in permanent deficits in nervous system function. Traditionally, rodent primary ne...

  17. Sporothrix schenckii sensu stricto and Sporothrix brasiliensis Are Differentially Recognized by Human Peripheral Blood Mononuclear Cells

    PubMed Central

    Martínez-Álvarez, José A.; Pérez-García, Luis A.; Mellado-Mojica, Erika; López, Mercedes G.; Martínez-Duncker, Iván; Lópes-Bezerra, Leila M.; Mora-Montes, Héctor M.

    2017-01-01

    Sporothrix schenckii sensu stricto and S. brasiliensis are usually associated to sporotrichosis, a subcutaneous mycosis worldwide distributed. Comparative analyses between these two species indicate they contain genetic and physiological differences that are likely to impact the interaction with host cells. Here, we study the composition of the cell wall from conidia, yeast-like cells and germlings of both species and found they contained the same sugar composition. The carbohydrate proportion in the S. schenckii sensu stricto wall was similar across the three cell morphologies, with exception in the chitin content, which was significantly different in the three morphologies. The cell wall from germlings showed lower rhamnose content and higher glucose levels than other cell morphologies. In S. brasiliensis, the wall sugars were constant in the three morphologies, but glucose was lower in yeast-like cells. In S. schenckii sensu stricto cells most of chitin and β1,3-glucan were underneath wall components, but in S. brasiliensis germlings, chitin was exposed at the cell surface, and β1,3-glucan was found in the outer part of the conidia wall. We also compared the ability of these cells to stimulate cytokine production by human peripheral blood mononuclear cells. The three S. schenckii sensu stricto morphologies stimulated increased levels of pro-inflammatory cytokines, when compared to S. brasiliensis cells; while the latter, with exception of conidia, stimulated higher IL-10 levels. Dectin-1 was a key receptor for cytokine production during stimulation with the three morphologies of S. schenckii sensu stricto, but dispensable for cytokine production stimulated by S. brasiliensis germlings. TLR2 and TLR4 were also involved in the sensing of Sporothrix cells, with a major role for the former during cytokine stimulation. Mannose receptor had a minor contribution during cytokine stimulation by S. schenckii sensu stricto yeast-like cells and germlings, but S. schenckii sensu stricto conidia and S. brasiliensis yeast-like cells stimulated pro-inflammatory cytokines via this receptor. In conclusion, S. brasiliensis and S. schenckii sensu stricto, have similar wall composition, which undergoes changes depending on the cell morphology. These differences in the cell wall composition, are likely to influence the contribution of immune receptors during cytokine stimulation by human monocytes. PMID:28539922

  18. Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer's disease.

    PubMed

    Davies, Danielle S; Ma, Jolande; Jegathees, Thuvarahan; Goldsbury, Claire

    2017-11-01

    Changes in microglia function are involved in Alzheimer's disease (AD) for which ageing is the major risk factor. We evaluated microglial cell process morphologies and their gray matter coverage (arborized area) during ageing and in the presence and absence of AD pathology in autopsied human neocortex. Microglial cell processes were reduced in length, showed less branching and reduced arborized area with aging (case range 52-98 years). This occurred during normal ageing and without microglia dystrophy or changes in cell density. There was a larger reduction in process length and arborized area in AD compared to aged-matched control microglia. In AD cases, on average, 49%-64% of microglia had discontinuous and/or punctate Iba1 labeled processes instead of continuous Iba1 distribution. Up to 16% of aged-matched control microglia displayed discontinuous or punctate features. There was no change in the density of microglial cell bodies in gray matter during ageing or AD. This demonstrates that human microglia show progressive cell process retraction without cell loss during ageing. Additional changes in microglia occur with AD including Iba1 protein puncta and discontinuity. We suggest that reduced microglial arborized area may be an aging-related correlate of AD in humans. These variations in microglial cells during ageing and in AD could reflect changes in neural-glial interactions which are emerging as key to mechanisms involved in ageing and neurodegenerative disease. © 2016 International Society of Neuropathology.

  19. Aluminium oxide nanoparticles induced morphological changes, cytotoxicity and oxidative stress in Chinook salmon (CHSE-214) cells.

    PubMed

    Srikanth, Koigoora; Mahajan, Amit; Pereira, Eduarda; Duarte, Armando Costa; Venkateswara Rao, Janapala

    2015-10-01

    Aluminium oxide nanoparticles (Al2 O3 NPs) are increasingly used in diverse applications that has raised concern about their safety. Recent studies suggested that Al2 O3 NPs induced oxidative stress may be the cause of toxicity in algae, Ceriodaphnia dubia, Caenorhabditis elegans and Danio rerio. However, there is paucity on the toxicity of Al2 O3 NPs on fish cell lines. The current study was aimed to investigate Al2 O3 NPs induced cytotoxicity, oxidative stress and morphological abnormality of Chinnok salmon cells (CHSE-214). A dose-dependent decline in cell viability was observed in CHSE-214 cells exposed to Al2 O3 NPs. Oxidative stress induced by Al2 O3 NPs in CHSE-214 cells has resulted in the significant reduction of superoxide dismutase, catalase and glutathione in a dose-dependent manner. However, a significant increase in glutathione sulfo-transferase and lipid peroxidation was observed in CHSE-214 cells exposed to Al2 O3 NPs in a dose-dependent manner. Significant morphological changes in CHSE-214 cells were observed when exposed to Al2 O3 NPs at 6, 12 and 24 h. The cells started to detach and appear spherical at 6 h followed by loss of cellular contents resulting in the shrinking of the cells. At 24 h, the cells started to disintegrate and resulted in cell death. Our data demonstrate that Al2 O3 NPs induce cytotoxicity and oxidative stress in a dose-dependent manner in CHSE-214 cells. Thus, our current work may serve as a base-line study for future evaluation of toxicity studies using CHSE-214 cells. Copyright © 2015 John Wiley & Sons, Ltd.

  20. Membrane translocation of t-SNARE protein syntaxin-4 abrogates ground-state pluripotency in mouse embryonic stem cells

    PubMed Central

    Hagiwara-Chatani, Natsumi; Shirai, Kota; Kido, Takumi; Horigome, Tomoatsu; Yasue, Akihiro; Adachi, Naoki; Hirai, Yohei

    2017-01-01

    Embryonic stem (ES) and induced pluripotent stem (iPS) cells are attractive tools for regenerative medicine therapies. However, aberrant cell populations that display flattened morphology and lose ground-state pluripotency often appear spontaneously, unless glycogen synthase kinase 3β (GSK3β) and mitogen-activated protein kinase kinase (MEK1/2) are inactivated. Here, we show that membrane translocation of the t-SNARE protein syntaxin-4 possibly is involved in this phenomenon. We found that mouse ES cells cultured without GSK3β/MEK1/2 inhibitors (2i) spontaneously extrude syntaxin-4 at the cell surface and that artificial expression of cell surface syntaxin-4 induces appreciable morphological changes and mesodermal differentiation through dephosphorylation of Akt. Transcriptome analyses revealed several candidate elements responsible for this, specifically, an E-to P-cadherin switch and a marked downregulation of Zscan4 proteins, which are DNA-binding proteins essential for ES cell pluripotency. Embryonic carcinoma cell lines F9 and P19CL6, which maintain undifferentiated states independently of Zscan4 proteins, exhibited similar cellular behaviors upon stimulation with cell surface syntaxin-4. The functional ablation of E-cadherin and overexpression of P-cadherin reproduced syntaxin-4-induced cell morphology, demonstrating that the E- to P-cadherin switch executes morphological signals from cell surface syntaxin-4. Thus, spontaneous membrane translocation of syntaxin-4 emerged as a critical element for maintenance of the stem-cell niche. PMID:28057922

  1. Dichromatic and monochromatic laser radiation effects on survival and morphology of Pantoea agglomerans

    NASA Astrophysics Data System (ADS)

    Thomé, A. M. C.; Souza, B. P.; Mendes, J. P. M.; Soares, L. C.; Trajano, E. T. L.; Fonseca, A. S.

    2017-05-01

    Despite the beneficial effects of low-level lasers on wound healing, their application for treatment of infected injuries is controversial because low-level lasers could stimulate bacterial growth exacerbating the infectious process. Thus, the aim of this work was to evaluate in vitro effects of low-level lasers on survival, morphology and cell aggregation of Pantoea agglomerans. P. agglomerans samples were isolated from human pressure injuries and cultures were exposed to low-level monochromatic and simultaneous dichromatic laser radiation to study the survival, cell aggregation, filamentation and morphology of bacterial cells in exponential and stationary growth phases. Fluence, wavelength and emission mode were those used in therapeutic protocols for wound healing. Data show no changes in morphology and cell aggregation, but dichromatic laser radiation decreased bacterial survival in exponential growth phase and monochromatic red and infrared lasers increased bacterial survival at the same fluence. Simultaneous dichromatic laser radiation induces biological effects that differ from those induced by monochromatic laser radiation and simultaneous dichromatic laser could be the option for treatment of infected pressure injuries by Pantoea agglomerans.

  2. [The age-related changes in hemolymph cellular composition and in the spectrum of cytomorphological traits of hemocyte genetic damages in snail Lymnaea stagnalis].

    PubMed

    Koneva, O Iu; Afonin, V Iu; Dromashko, S E

    2006-01-01

    The age-related changes in hemolymph cellular composition of snail Lymnaea stagnalis (Gastropoda, Pulmonata) obtained from individuals of a natural population (the river Pripayt, Gomel region, Belarus) as well as in the spectrum of cytomorphological traits of hemocyte genetic damages have been studied. The percentage of the distinguished hemolymph cell types during the chosen age period was not revealed to change. The percentage of cells with different morphological attributes of cell death varied during ageing. The tendency to increase in the total level of dying cells was observed.

  3. Morphological changes of the filamentous fungus Mucor mucedo and inhibition of chitin synthase activity induced by anethole.

    PubMed

    Yutani, Masahiro; Hashimoto, Yukie; Ogita, Akira; Kubo, Isao; Tanaka, Toshio; Fujita, Ken-ichi

    2011-11-01

    trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum with antimicrobial activity relatively weaker than those of well-known antibiotics, and significantly enhances the antifungal activity of polygodial and dodecanol against the baker's yeast Saccharomyces cerevisiae and human pathogenic yeast Candida albicans. However, the antifungal mechanism of anethole is unresolved. Anethole demonstrated antifungal activity against the filamentous fungus, Mucor mucedo IFO 7684, accompanied by hyphal morphological changes such as swollen hyphae at the tips. Its minimum growth inhibitory concentration was 0.625 mM. A hyperosmotic condition (1.2 M sorbitol) restricted the induction of morphological changes, while hypoosmotic treatment (distilled water) induced bursting of hyphal tips and leakage of cytoplasmic constituents. Furthermore, anethole dose-dependently inhibited chitin synthase (CHS) activity in permeabilized hyphae in an uncompetitive manner. These results suggest that the morphological changes of M. mucedo could be explained by the fragility of cell walls caused by CHS inhibition. Copyright © 2011 John Wiley & Sons, Ltd.

  4. Morphological changes in the cellulose and lignin components of biomass occur at different stages of steam pretreatment

    DOE PAGES

    Pingali, Sai Venkatesh; O'Neill, Hugh Michael; Nishiyama, Yoshiharu; ...

    2014-01-09

    Morphological changes to the different components of lignocellulosic biomass were observed as they occurred during steam pretreatment by placing a pressure reaction cell in a neutron beam and collecting time-resolved neutron scattering data. Changes to cellulose morphology occurred mainly in the heating phase, whereas changes in lignin morphology occurred mainly in the holding and cooling phases. During the heating stage, water is irreversibly expelled from cellulose microfibrils as the elementary fibrils coalesce. During the holding phase lignin aggregates begin to appear and they increase in size most noticeably during the cooling phase. This experiment demonstrates the unique information that inmore » situ small angle neutron scattering studies of pretreatment can provide. This approach is potentially useful in optimizing the heating, holding and cooling stages of pretreatments to allow the exact size and nature of lignin aggregates to be controlled in order to enhance enzyme accessibility to cellulose and therefore the efficiency of biomass conversion.« less

  5. Automated Quantification and Integrative Analysis of 2D and 3D Mitochondrial Shape and Network Properties

    PubMed Central

    Nikolaisen, Julie; Nilsson, Linn I. H.; Pettersen, Ina K. N.; Willems, Peter H. G. M.; Lorens, James B.; Koopman, Werner J. H.; Tronstad, Karl J.

    2014-01-01

    Mitochondrial morphology and function are coupled in healthy cells, during pathological conditions and (adaptation to) endogenous and exogenous stress. In this sense mitochondrial shape can range from small globular compartments to complex filamentous networks, even within the same cell. Understanding how mitochondrial morphological changes (i.e. “mitochondrial dynamics”) are linked to cellular (patho) physiology is currently the subject of intense study and requires detailed quantitative information. During the last decade, various computational approaches have been developed for automated 2-dimensional (2D) analysis of mitochondrial morphology and number in microscopy images. Although these strategies are well suited for analysis of adhering cells with a flat morphology they are not applicable for thicker cells, which require a three-dimensional (3D) image acquisition and analysis procedure. Here we developed and validated an automated image analysis algorithm allowing simultaneous 3D quantification of mitochondrial morphology and network properties in human endothelial cells (HUVECs). Cells expressing a mitochondria-targeted green fluorescence protein (mitoGFP) were visualized by 3D confocal microscopy and mitochondrial morphology was quantified using both the established 2D method and the new 3D strategy. We demonstrate that both analyses can be used to characterize and discriminate between various mitochondrial morphologies and network properties. However, the results from 2D and 3D analysis were not equivalent when filamentous mitochondria in normal HUVECs were compared with circular/spherical mitochondria in metabolically stressed HUVECs treated with rotenone (ROT). 2D quantification suggested that metabolic stress induced mitochondrial fragmentation and loss of biomass. In contrast, 3D analysis revealed that the mitochondrial network structure was dissolved without affecting the amount and size of the organelles. Thus, our results demonstrate that 3D imaging and quantification are crucial for proper understanding of mitochondrial shape and topology in non-flat cells. In summary, we here present an integrative method for unbiased 3D quantification of mitochondrial shape and network properties in mammalian cells. PMID:24988307

  6. Serotonin-producing enterochromaffin (EC) cells of gastrointestinal mucosa in dexamethasone-treated rats.

    PubMed

    Glisić, Radmila; Koko, Vesna; Todorović, Vera; Drndarević, Neda; Cvijić, Gordana

    2006-09-11

    The aim of our study was to investigate the morphological, immunohistochemical and ultrastructural changes of rat serotonin-producing enterochromaffin (EC) cells of gastrointestinal mucosa in dexamethasone-treated rats (D). After 12-daily intraperitoneal administration of 2 mg/kg dexamethasone, rats developed diabetes similar to human diabetes type 2. Stomach, small and large intestines were examined. Large serotonin positive EC cells appeared in the corpus mucosa epithelium of D group of rats, although these cells were not present in control (C) rats. Both volume fraction and the number of EC cells per mm(2) of mucosa were significantly increased only in the duodenum. However, the number of EC cells per circular sections of both antrum and small intestine was increased, but reduced both in the ascending and descending colon in D group. The dexamethasone treatment caused a strong reduction in number of granules in the antral EC cells, while it was gradually increased beginning from the jejunum to descending colon. The mean granular content was reduced in the antral EC cells but increased in the jejunal EC cells in D group. In conclusion, the present study showed that morphological changes in gut serotonin-producing EC cells occurred in diabetic rats.

  7. Visualizing red blood cell sickling and the effects of inhibition of sphingosine kinase 1 using soft X-ray tomography

    DOE PAGES

    Darrow, Michele C.; Zhang, Yujin; Cinquin, Bertrand P.; ...

    2016-08-09

    Sickle cell disease is a destructive genetic disorder characterized by the formation of fibrils of deoxygenated hemoglobin, leading to the red blood cell (RBC) morphology changes that underlie the clinical manifestations of this disease. Here, using cryogenic soft X-ray tomography (SXT), we characterized the morphology of sickled RBCs in terms of volume and the number of protrusions per cell. We were able to identify statistically a relationship between the number of protrusions and the volume of the cell, which is known to correlate to the severity of sickling. This structural polymorphism allows for the classification of the stages of themore » sickling process. Recent studies have shown that elevated sphingosine kinase 1 (Sphk1)-mediated sphingosine 1-phosphate production contributes to sickling. Here, we further demonstrate that compound 5C, an inhibitor of Sphk1, has anti-sickling properties. Additionally, the variation in cellular morphology upon treatment suggests that this drug acts to delay the sickling process. SXT is an effective tool that can be used to identify the morphology of the sickling process and assess the effectiveness of potential therapeutics.« less

  8. Visualizing red blood cell sickling and the effects of inhibition of sphingosine kinase 1 using soft X-ray tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Darrow, Michele C.; Zhang, Yujin; Cinquin, Bertrand P.

    Sickle cell disease is a destructive genetic disorder characterized by the formation of fibrils of deoxygenated hemoglobin, leading to the red blood cell (RBC) morphology changes that underlie the clinical manifestations of this disease. Here, using cryogenic soft X-ray tomography (SXT), we characterized the morphology of sickled RBCs in terms of volume and the number of protrusions per cell. We were able to identify statistically a relationship between the number of protrusions and the volume of the cell, which is known to correlate to the severity of sickling. This structural polymorphism allows for the classification of the stages of themore » sickling process. Recent studies have shown that elevated sphingosine kinase 1 (Sphk1)-mediated sphingosine 1-phosphate production contributes to sickling. Here, we further demonstrate that compound 5C, an inhibitor of Sphk1, has anti-sickling properties. Additionally, the variation in cellular morphology upon treatment suggests that this drug acts to delay the sickling process. SXT is an effective tool that can be used to identify the morphology of the sickling process and assess the effectiveness of potential therapeutics.« less

  9. Changes in intrinsic excitability of ganglion cells in degenerated retinas of RCS rats

    PubMed Central

    Ren, Yi-Ming; Weng, Chuan-Huang; Zhao, Cong-Jian; Yin, Zheng-Qin

    2018-01-01

    AIM To evaluate the intrinsic excitability of retinal ganglion cells (RGCs) in degenerated retinas. METHODS The intrinsic excitability of various morphologically defined RGC types using a combination of patch-clamp recording and the Lucifer yellow tracer in retinal whole-mount preparations harvested from Royal College of Surgeons (RCS) rats, a common retinitis pigmentosa (RP) model, in a relatively late stage of retinal degeneration (P90) were investigated. Several parameters of RGC morphologies and action potentials (APs) were measured and compared to those of non-dystrophic control rats, including dendritic stratification, dendritic field diameter, peak amplitude, half width, resting membrane potential, AP threshold, depolarization to threshold, and firing rates. RESULTS Compared with non-dystrophic control RGCs, more depolarizations were required to reach the AP threshold in RCS RGCs with low spontaneous spike rates and in RCS OFF cells (especially A2o cells), and RCS RGCs maintained their dendritic morphologies, resting membrane potentials and capabilities to generate APs. CONCLUSION RGCs are relatively well preserved morphologically and functionally, and some cells are more susceptible to decreased excitability during retinal degeneration. These findings provide valuable considerations for optimizing RP therapeutic strategies. PMID:29862172

  10. Cytological Study of Breast Carcinoma Before and After Oncotherapy with Special Reference to Morphometry and Proliferative Activity.

    PubMed

    Koley, Sananda; Chakrabarti, Srabani; Pathak, Swapan; Manna, Asim Kumar; Basu, Siddhartha

    2015-12-01

    Our study was done to assess the cytological changes due to oncotherapy in breast carcinoma especially on morphometry and proliferative activity. Cytological aspirates were collected from a total of 32 cases of invasive ductal carcinoma both before and after oncotherapy. Morphometry was done on the stained cytological smears to assess the different morphological parameters of cell dimension by using the ocular morphometer and the software AutoCAD 2007. Staining was done with Ki-67 and proliferating cell nuclear antigen (PCNA) as proliferative markers. Different morphological parameters were compared before and after oncotherapy by unpaired Student's t test. Statistically significant differences were found in morphometric parameters, e.g., mean nuclear diameter, mean nuclear area, mean cell diameter, and mean cell area, and in the expression of proliferative markers (Ki-67 and PCNA). Statistical analysis was done by obtaining p values. There are statistically significant differences between morphological parameter of breast carcinoma cells before and after oncotherapy.

  11. Characterization of neutrophils and macrophages from ex vivo cultured murine bone marrow for morphologic maturation and functional responses by imaging flow cytometry

    PubMed Central

    Pelletier, Margery G. H.; Szymczak, Klaudia; Barbeau, Anna M.; Prata, Gianna N.; O’Fallon, Kevin S.; Gaines, Peter

    2016-01-01

    Neutrophils and macrophages differentiate from common myeloid progenitors in the bone marrow, where they undergo nuclear morphologic changes during maturation. During this process, both cell types acquire critical innate immune functions that include phagocytosis of pathogens, and for neutrophils the release of nuclear material called nuclear extracellular traps (NETs). Primary cells used to study these functions are typically purified from mature mouse tissues, but bone marrow-derived ex vivo cultures provide more abundant numbers of progenitors and functionally mature cells. Routine analyses of these cells use conventional microscopy and flow cytometry, which present limitations; microscopy is laborious and subjective, whereas flow cytometry lacks spatial resolution. Here we describe methods to generate enriched populations of neutrophils or macrophages from cryopreserved mouse bone marrow cultured ex vivo, and to use imaging flow cytometry that combines the resolution of microscopy with flow cytometry to analyze cells for morphologic features, phagocytosis, and NETosis. PMID:27663441

  12. 3D printing of biomimetic microstructures for cancer cell migration.

    PubMed

    Huang, Tina Qing; Qu, Xin; Liu, Justin; Chen, Shaochen

    2014-02-01

    To understand the physical behavior and migration of cancer cells, a 3D in vitro micro-chip in hydrogel was created using 3D projection printing. The micro-chip has a honeycomb branched structure, aiming to mimic 3D vascular morphology to test, monitor, and analyze differences in the behavior of cancer cells (i.e. HeLa) vs. non-cancerous cell lines (i.e. 10 T1/2). The 3D Projection Printing system can fabricate complex structures in seconds from user-created designs. The fabricated microstructures have three different channel widths of 25, 45, and 120 microns wide to reflect a range of blood vessel diameters. HeLa and 10 T1/2 cells seeded within the micro-chip were then analyzed for morphology and cell migration speed. 10 T1/2 cells exhibited greater changes in morphology due to channel size width than HeLa cells; however, channel width had a limited effect on 10 T1/2 cell migration while HeLa cancer cell migration increased as channel width decreased. This physiologically relevant 3D cancer tissue model has the potential to be a powerful tool for future drug discoveries and cancer migration studies.

  13. Developmental studies of the lamprey and hierarchical evolutionary steps towards the acquisition of the jaw

    PubMed Central

    Kuratani, Shigeru

    2005-01-01

    The evolution of animal morphology can be understood as a series of changes in developmental programs. Among vertebrates, some developmental stages are conserved across species, representing particular developmental constraints. One of the most conserved stages is the vertebrate pharyngula, in which similar embryonic morphology is observed and the Hox code is clearly expressed. The oral developmental program also appears to be constrained to some extent, as both its morphology and the the Hox-code-default state of the oropharyngeal region are well conserved between the lamprey and gnathostome embryos. These features do not by themselves explain the evolution of jaws, but should be regarded as a prerequisite for evolutionary diversification of the mandibular arch. By comparing the pharyngula morphology of the lamprey and gnathostomes, it has become clear that the oral pattern is not entirely identical; in particular, the positional differentiation of the rostral ectomesenchyme is shifted between these animals. Therefore, the jaw seems to have arisen as an evolutionary novelty by overriding ancestral constraints, a process in which morphological homologies are partially lost. This change involves the heterotopic shift of tissue interaction, which appears to have been preceded by the transition from monorhiny to diplorhiny, as well as separation of the hypophysis. When gene expression patterns are compared between the lamprey and gnathostomes, cell-autonomously functioning genes tend to be associated with identical cell types or equivalent anatomical domains, whereas growth-factor-encoding genes have changed their expression domains during evolution. Thus, the heterotopic evolution may be based on changes in the regulation of signalling-molecule-encoding genes. PMID:16313390

  14. Agrobacterium-derived cytokinin influences plastid morphology and starch accumulation in Nicotiana benthamiana during transient assays

    PubMed Central

    2014-01-01

    Background Agrobacterium tumefaciens-based transient assays have become a common tool for answering questions related to protein localization and gene expression in a cellular context. The use of these assays assumes that the transiently transformed cells are observed under relatively authentic physiological conditions and maintain ‘normal’ sub-cellular behaviour. Although this premise is widely accepted, the question of whether cellular organization and organelle morphology is altered in Agrobacterium-infiltrated cells has not been examined in detail. The first indications of an altered sub-cellular environment came from our observation that a common laboratory strain, GV3101(pMP90), caused a drastic increase in stromule frequency. Stromules, or ‘stroma-filled-tubules’ emanate from the surface of plastids and are sensitive to a variety of biotic and abiotic stresses. Starting from this observation, the goal of our experiments was to further characterize the changes to the cell resulting from short-term bacterial infestation, and to identify the factor responsible for eliciting these changes. Results Using a protocol typical of transient assays we evaluated the impact of GV3101(pMP90) infiltration on chloroplast behaviour and morphology in Nicotiana benthamiana. Our experiments confirmed that GV3101(pMP90) consistently induces stromules and alters plastid position relative to the nucleus. These effects were found to be the result of strain-dependant secretion of cytokinin and its accumulation in the plant tissue. Bacterial production of the hormone was found to be dependant on the presence of a trans-zeatin synthase gene (tzs) located on the Ti plasmid of GV3101(pMP90). Bacteria-derived cytokinins were also correlated with changes to both soluble sugar level and starch accumulation. Conclusion Although we have chosen to focus on how transient Agrobacterium infestation alters plastid based parameters, these changes to the morphology and position of a single organelle, combined with the measured increases in sugar and starch content, suggest global changes to cell physiology. This indicates that cells visualized during transient assays may not be as ‘normal’ as was previously assumed. Our results suggest that the impact of the bacteria can be minimized by choosing Agrobacterium strains devoid of the tzs gene, but that the alterations to sub-cellular organization and cell carbohydrate status cannot be completely avoided using this strategy. PMID:24886417

  15. INHIBITION OF INDUCED DIFFERENTIATION OF C3H/1OT 1/2 CLONE 8 MOUSE EMBRYO CELLS BY TUMOR PROMOTERS

    EPA Science Inventory

    C3H/10T 1/2 cells were induced to differentiate into muscle cells by treatment with 5-azacytidine, and the effects of tumor promoters, nonpromoters, and inhibitors of tumor promotion on this induced differentiation were investigated. Cell morphology was dramatically changed withi...

  16. CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1) Reveals Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1) Cells.

    PubMed

    Haraguchi, Misako; Sato, Masahiro; Ozawa, Masayuki

    2015-01-01

    Snail1 is a transcription factor that induces the epithelial to mesenchymal transition (EMT). During EMT, epithelial cells lose their junctions, reorganize their cytoskeletons, and reprogram gene expression. Although Snail1 is a prominent repressor of E-cadherin transcription, its precise roles in each of the phenomena of EMT are not completely understood, particularly in cytoskeletal changes. Previous studies have employed gene knockdown systems to determine the functions of Snail1. However, incomplete protein knockdown is often associated with these systems, which may cause incorrect interpretation of the data. To more precisely evaluate the functions of Snail1, we generated a stable cell line with a targeted ablation of Snail1 (Snail1 KO) by using the CRISPR/Cas9n system. Snail1 KO cells show increased cell-cell adhesion, decreased cell-substrate adhesion and cell migration, changes to their cytoskeletal organization that include few stress fibers and abundant cortical actin, and upregulation of epithelial marker genes such as E-cadherin, occludin, and claudin-1. However, morphological changes were induced by treatment of Snail1 KO cells with TGF-beta. Other transcription factors that induce EMT were also induced by treatment with TGF-beta. The precise deletion of Snail1 by the CRISPR/Cas9n system provides clear evidence that loss of Snail1 causes changes in the actin cytoskeleton, decreases cell-substrate adhesion, and increases cell-cell adhesion. Treatment of RMG1 cells with TGF-beta suggests redundancy among the transcription factors that induce EMT.

  17. Mitochondrial and Morphologic Alterations in Native Human Corneal Endothelial Cells Associated With Diabetes Mellitus.

    PubMed

    Aldrich, Benjamin T; Schlötzer-Schrehardt, Ursula; Skeie, Jessica M; Burckart, Kimberlee A; Schmidt, Gregory A; Reed, Cynthia R; Zimmerman, M Bridget; Kruse, Friedrich E; Greiner, Mark A

    2017-04-01

    To characterize changes in the energy-producing metabolic activity and morphologic ultrastructure of corneal endothelial cells associated with diabetes mellitus. Transplant suitable corneoscleral tissue was obtained from donors aged 50 to 75 years. We assayed 3-mm punches of endothelium-Descemet membrane for mitochondrial respiration and glycolysis activity using extracellular flux analysis of oxygen and pH, respectively. Transmission electron microscopy was used to assess qualitative and quantitative ultrastructural changes in corneal endothelial cells and associated Descemet membrane. For purposes of analysis, samples were divided into four groups based on a medical history of diabetes regardless of type: (1) nondiabetic, (2) noninsulin-dependent diabetic, (3) insulin-dependent diabetic, and (4) insulin-dependent diabetic with specified complications due to diabetes (advanced diabetic). In total, 229 corneas from 159 donors were analyzed. Insulin-dependent diabetic samples with complications due to diabetes displayed the lowest spare respiratory values compared to all other groups (P ≤ 0.002). The remaining mitochondrial respiration and glycolysis metrics did not differ significantly among groups. Compared to nondiabetic controls, the endothelium from advanced diabetic samples had alterations in mitochondrial morphology, pronounced Golgi bodies associated with abundant vesicles, accumulation of lysosomal bodies/autophagosomes, and focal production of abnormal long-spacing collagen. Extracellular flux analysis suggests that corneal endothelial cells of donors with advanced diabetes have impaired mitochondrial function. Metabolic findings are supported by observed differences in mitochondrial morphology of advanced diabetic samples but not controls. Additional studies are needed to determine the precise mechanism(s) by which mitochondria become impaired in diabetic corneal endothelial cells.

  18. Morphology, antigenicity, and nucleic acid content of the Bacteroides sp. used in the culture of Entamoeba histolytica.

    PubMed

    Albach, R A; Shaffer, J G; Watson, R H

    1965-10-01

    Albach, Richard A. (Lutheran General Hospital, Park Ridge, Ill.), James G. Shaffer, and Robert H. Watson. Morphology, antigenicity, and nucleic acid content of the Bacteroides sp. used in the culture of Entamoeba histolytica. J. Bacteriol. 90:1045-1053. 1965.-Certain changes in morphology, antigenicity, and nucleic acid content that occur in a culture of Bacteroides sp. in the presence of penicillin G in CLG medium are described. This "variant" is one of seven recovered in several laboratories, all of which are descendants of the original Bacteroides isolated by Shaffer and Frye. Penicillin-inhibited cells of this culture are currently being used in the routine propagation of Entamoeba histolytica in CLG medium. Evidence is presented for the loss of ability to react with antibody in these penicillin-inhibited bacteria in CLG medium, when studied by fluorescent-antibody techniques. The implications of the antigenic changes observed as they pertain to similar antigenic studies of the amoebas are discussed. A pronounced reduction in the ribonucleic acid (RNA) content of such penicillin-inhibited cells was also observed. The potential importance of the changes that occur in the RNA of these cells with respect to considerations of the growth requirements of the amoebas is also discussed.

  19. Lipid deregulation in UV irradiated skin cells: Role of 25-hydroxycholesterol in keratinocyte differentiation during photoaging.

    PubMed

    Olivier, Elodie; Dutot, Mélody; Regazzetti, Anne; Dargère, Delphine; Auzeil, Nicolas; Laprévote, Olivier; Rat, Patrice

    2017-05-01

    Skin photoaging due to UV irradiation is a degenerative process that appears more and more as a growing concern. Lipids, including oxysterols, are involved in degenerative processes; as skin cells contain various lipids, the aim of our study was to evaluate first, changes in keratinocyte lipid levels induced by UV exposure and second, cellular effects of oxysterols in cell morphology and several hallmarks of keratinocyte differentiation. Our mass spectrometry results demonstrated that UV irradiation induces changes in lipid profile of cultured keratinocytes; in particular, ceramides and oxysterols, specifically 25-hydroxycholesterol (25-OH), were increased. Using holography and confocal microscopy analyses, we highlighted cell thickening and cytoskeletal disruption after incubation of keratinocytes with 25-OH. These alterations were associated with keratinocyte differentiation patterns: autophagy stimulation and intracellular calcium increase as measured by cytofluorometry, and increased involucrin level detected by immunocytochemistry. To conclude, oxysterol deregulation could be considered as a common marker of degenerative disorders. During photoaging, 25-OH seems to play a key role inducing morphological changes and keratinocyte differentiation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Time course of apoptotic cell death in guinea pig cochlea following intratympanic gentamicin application.

    PubMed

    Suzuki, Mitsuya; Ushio, Munetaka; Yamasoba, Tatsuya

    2008-07-01

    The present study showed that the molecular signal that promotes the death of cochlear hair cells (HCs) induced by intratympanic gentamicin application is significant before the manifestation of morphological and functional changes. The effect of agents that protect the HCs from aminoglycoside ototoxicity is influenced by the timing of their administration. However, morphological, functional and molecular changes in the cochlea in the early stage following aminoglycoside application have rarely been studied. Therefore, we examined the chronological changes in the cochlea following intratympanic gentamicin application. Small pieces of gelatin sponge soaked with gentamicin (40 mg/ml) were placed on the round window membrane of mature guinea pigs, and the tympanic bulla was filled with gentamicin solution. They were euthanized at 6, 12, 18, 24, and 48 h following gentamicin application. Auditory brainstem responses (ABRs) were measured before gentamicin application and immediately before euthanasia, and the extent of missing and TUNEL-positive HCs was evaluated. ABR thresholds significantly increased 18 h or later following gentamicin application, and the loss of HCs was seen at 24 and 48 h. While functional and morphological changes were not evident until 18 h after gentamicin application, substantial amounts of TUNEL-positive HCs appeared at 12 h.

  1. Time-Dependent Changes in Morphology and Composition of Solid Particles Collected From Heavy Water Electrolyte after Electrolysis with a Palladium Cathode

    NASA Astrophysics Data System (ADS)

    Dash, John; Wang, Q.

    2009-03-01

    Recently, we have observed particles floating on the surfaces of electrolytes after electrolysis, in four cells, each of which contained a heavy water electrolyte and a Pd cathode. Solid particles were unexpected from electrolysis, so it seemed important to characterize these particles. Cu grids were used to collect particles from the electrolyte surface. Then, a scanning electron microscope ( SEM ) and an energy dispersive spectrometer ( EDS ) were used to study the surfaces of these particles and to record time-dependent changes which were occurring. The morphology and composition of the particles were determined . After storage at ambient for 11 days, there were large changes in the morphology and composition of the particles. For example, one portion of the particles contained a large number of microspheres. A typical microsphere contained mostly carbon and palladium, whereas the matrix near the microsphere contained mostly palladium with less carbon and a significant amount of silver. One day later the same microsphere had increased carbon and reduced palladium, but there was no significant change in the composition of the matrix. Results for other particles from other cells will also be presented.

  2. Ultraviolet microscopy aids in cytological and biomedical research

    NASA Technical Reports Server (NTRS)

    Schlenk, F.; Svihla, B.

    1967-01-01

    Ultraviolet microscopy is used by cytologists and biochemists to study the morphological and physiological changes in the living cell under varied culture conditions. The yeast cell is used because of its content of ultraviolet absorbing materials and its lack of motility.

  3. Mutagenic and morphologic impacts of 1.8GHz radiofrequency radiation on human peripheral blood lymphocytes (hPBLs) and possible protective role of pre-treatment with Ginkgo biloba (EGb 761).

    PubMed

    Esmekaya, Meric Arda; Aytekin, Ebru; Ozgur, Elcin; Güler, Göknur; Ergun, Mehmet Ali; Omeroğlu, Suna; Seyhan, Nesrin

    2011-12-01

    The mutagenic and morphologic effects of 1.8GHz Global System for Mobile Communications (GSM) modulated RF (radiofrequency) radiation alone and in combination with Ginkgo biloba (EGb 761) pre-treatment in human peripheral blood lymphocytes (hPBLs) were investigated in this study using Sister Chromatid Exchange (SCE) and electron microscopy. Cell viability was assessed with 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) reduction assay. The lymphocyte cultures were exposed to GSM modulated RF radiation at 1.8GHz for 6, 8, 24 and 48h with and without EGb 761. We observed morphological changes in pulse-modulated RF radiated lymphocytes. Longer exposure periods led to destruction of organelle and nucleus structures. Chromatin change and the loss of mitochondrial crista occurred in cells exposed to RF for 8h and 24h and were more pronounced in cells exposed for 48h. Cytoplasmic lysis and destruction of membrane integrity of cells and nuclei were also seen in 48h RF exposed cells. There was a significant increase (p<0.05) in SCE frequency in RF exposed lymphocytes compared to sham controls. EGb 761 pre-treatment significantly decreased SCE from RF radiation. RF radiation also inhibited cell viability in a time dependent manner. The inhibitory effects of RF radiation on the growth of lymphoctes were marked in longer exposure periods. EGb 761 pre-treatment significantly increased cell viability in RF+EGb 761 treated groups at 8 and 24h when compared to RF exposed groups alone. The results of our study showed that RF radiation affects cell morphology, increases SCE and inhibits cell proliferation. However, EGb 761 has a protective role against RF induced mutagenity. We concluded that RF radiation induces chromosomal damage in hPBLs but this damage may be reduced by EGb 761 pre-treatment. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Quantification of Dynamic Morphological Drug Responses in 3D Organotypic Cell Cultures by Automated Image Analysis

    PubMed Central

    Härmä, Ville; Schukov, Hannu-Pekka; Happonen, Antti; Ahonen, Ilmari; Virtanen, Johannes; Siitari, Harri; Åkerfelt, Malin; Lötjönen, Jyrki; Nees, Matthias

    2014-01-01

    Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional (3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12 prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion, challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation, apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects cellular cAMP/cGMP accumulation. Our approach supports the growing needs for user-friendly, straightforward solutions that facilitate large-scale, cell-based 3D assays in basic research, drug discovery, and target validation. PMID:24810913

  5. [Morphofunctional properties of the peripheral blood and bone marrow cells of rats following a flight on board the Kosmos-936 biosatellite].

    PubMed

    Kozinets, G I; Korol'kov, V I; Britvan, I I; Bykova, I A; Spitsyna, N E

    1983-01-01

    Morphofunctional properties of peripheral blood cells of Cosmos-936 rats were examined, using morphological, interferometric and electron microscopic techniques. As follows from the morphological data, immediately after recovery the weightless rats showed symptoms of a stress reaction which disappeared by R+3. The centrifuged rats exhibited less expressed symptoms of this sort. The percentage of bone marrow cell distribution was shifted towards enhanced myelopoiesis and diminished erythropoiesis. By the end of the readaptation period the ratio of bone marrow cell composition returned to normal. Interferometric and electron microscopic examinations did not reveal any irreversible changes in the structure and function of cells that may be caused by zero-g.

  6. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Lin, Jian; Zheng, Wei; Wang, Zi; Huang, Zhiwei

    2014-09-01

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  7. Label-free three-dimensional imaging of cell nucleus using third-harmonic generation microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Jian; Zheng, Wei; Wang, Zi

    2014-09-08

    We report the implementation of the combined third-harmonic generation (THG) and two-photon excited fluorescence (TPEF) microscopy for label-free three-dimensional (3-D) imaging of cell nucleus morphological changes in liver tissue. THG imaging shows regular spherical shapes of normal hepatocytes nuclei with inner chromatin structures while revealing the condensation of chromatins and nuclear fragmentations in hepatocytes of diseased liver tissue. Colocalized THG and TPEF imaging provides complementary information of cell nuclei and cytoplasm in tissue. This work suggests that 3-D THG microscopy has the potential for quantitative analysis of nuclear morphology in cells at a submicron-resolution without the need for DNA staining.

  8. Myosin IIA-related Actomyosin Contractility Mediates Oxidative Stress-induced Neuronal Apoptosis

    PubMed Central

    Wang, Yan; Xu, Yingqiong; Liu, Qian; Zhang, Yuanyuan; Gao, Zhen; Yin, Mingzhu; Jiang, Nan; Cao, Guosheng; Yu, Boyang; Cao, Zhengyu; Kou, Junping

    2017-01-01

    Oxidative stress-induced neuronal apoptosis plays an important role in the progression of central nervous system (CNS) diseases. In our study, when neuronal cells were exposed to hydrogen peroxide (H2O2), an exogenous oxidant, cell apoptosis was observed with typical morphological changes including membrane blebbing, neurite retraction and cell contraction. The actomyosin system is considered to be responsible for the morphological changes, but how exactly it regulates oxidative stress-induced neuronal apoptosis and the distinctive functions of different myosin II isoforms remain unclear. We demonstrate that myosin IIA was required for neuronal contraction, while myosin IIB was required for neuronal outgrowth in normal conditions. During H2O2-induced neuronal apoptosis, myosin IIA, rather than IIB, interacted with actin filaments to generate contractile forces that lead to morphological changes. Moreover, myosin IIA knockout using clustered regularly interspaced short palindromic repeats/CRISPR-associated protein-9 nuclease (CRISPR/Cas9) reduced H2O2-induced neuronal apoptosis and the associated morphological changes. We further demonstrate that caspase-3/Rho-associated kinase 1 (ROCK1) dependent phosphorylation of myosin light chain (MLC) was required for the formation of the myosin IIA-actin complex. Meanwhile, either inhibition of myosin II ATPase with blebbistatin or knockdown of myosin IIA with siRNA reversely attenuated caspase-3 activation, suggesting a positive feedback loop during oxidative stress-induced apoptosis. Based on our observation, myosin IIA-actin complex contributes to actomyosin contractility and is associated with the positive feedback loop of caspase-3/ROCK1/MLC pathway. This study unravels the biochemical and mechanistic mechanisms during oxidative stress-induced neuronal apoptosis and may be applicable for the development of therapies for CNS diseases. PMID:28352215

  9. Characterization of morphological response of red cells in a sucrose solution.

    PubMed

    Rudenko, Sergey V

    2009-01-01

    The dynamics of red cell shape changes following transfer into sucrose media having a low chloride content was studied. Based on a large number of measurements, six types of morphological response (MR), differing both in the degree of shape changes and the time course of the process, were identified. The most prominent type of response is a triphasic sequence of shape changes consisting of a fast transformation into a sphere (phase 1), followed by restoration of the discoid shape (phase 2) and final transformation into spherostomatocytes (phase 3), with individual parameters which could vary significantly. It was found that individual morphological response exhibited day to day variations, depending on the initial state of the red blood cells and the donor, but to a larger extent depended on the composition of the sucrose solution, such as concentration and type of buffers, the presence of EDTA, calcium, as well as very small amounts of extracellular hemoglobin. MR shows strong pH and ionic strength dependence. Low pH inhibited phase 1 and high pH changed dramatically the time course of the response. Increasing ionic strength inhibited all phases of MR, and at concentrations above 10-20 mM NaCl it was fully suppressed. Tris and phosphate were also inhibitory whereas HEPES, MOPS and Tricine were less effective. MR occurred also in hypertonic or hypotonic sucrose solutions, with exception of extreme hypotonicity due to volume restrictions. It is concluded that strong membrane depolarization per se is not a causal factor leading to MR, and its different phases could be regulated independently. For some types of morphological response the fast shape transformation from sphere to disc and back to sphere occurs within a 10 s time interval and could be accelerated several fold in the presence of a small amount of hemoglobin. It is suggested that MR represents a type of general cell reaction that occurs upon exposure to low ionic strength.

  10. Low bone mass and changes in the osteocyte network in mice lacking autophagy in the osteoblast lineage

    PubMed Central

    Piemontese, Marilina; Onal, Melda; Xiong, Jinhu; Han, Li; Thostenson, Jeff D.; Almeida, Maria; O’Brien, Charles A.

    2016-01-01

    Autophagy maintains cell function and homeostasis by recycling intracellular components. This process is also required for morphological changes associated with maturation of some cell types. Osteoblasts are bone forming cells some of which become embedded in bone and differentiate into osteocytes. This transformation includes development of long cellular projections and a reduction in endoplasmic reticulum and mitochondria. We examined the role of autophagy in osteoblasts by deleting Atg7 using an Osterix1-Cre transgene, which causes recombination in osteoblast progenitors and their descendants. Mice lacking Atg7 in the entire osteoblast lineage had low bone mass and fractures associated with reduced numbers of osteoclasts and osteoblasts. Suppression of autophagy also reduced the amount of osteocyte cellular projections and led to retention of endoplasmic reticulum and mitochondria in osteocytes. These results demonstrate that autophagy in osteoblasts contributes to skeletal homeostasis and to the morphological changes associated with osteocyte formation. PMID:27064143

  11. Humidity-dependent bacterial cells functional morphometry investigations using atomic force microscope.

    PubMed

    Nikiyan, Hike; Vasilchenko, Alexey; Deryabin, Dmitry

    2010-01-01

    The effect of a relative humidity (RH) in a range of 93-65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH

  12. Effect of total hydroalcholic extract of Nigella sativa and its n-hexane and ethyl acetate fractions on ACHN and GP-293 cell lines.

    PubMed

    Shahraki, Samira; Khajavirad, Abolfazl; Shafei, Mohammad Naser; Mahmoudi, Mahmoud; Tabasi, Nafisa Sadat

    2016-01-01

    Medicinal plants are noted for their many advantages including the ability to treat diseases such as cancer. In this study, we examined the antitumor effect of the medicinal plant Nigella sativa on the morphology, survival, and apoptosis of ACHN (human renal adenocarcinoma) and GP-293 (normal renal epithelial) cell lines. From a hydroalcoholic extract of N. sativa, n-hexane and ethyl acetate fractions were extracted. Cells were treated with various concentrations of total hydroalcholic extract and n-hexane and ethyl acetate fractions; cell viability, morphological changes, and apoptosis were then determined. Results were presented as mean ± standard error of the mean (SEM). One-way analysis of variance (ANOVA) was applied for the statistical analysis of the data. The total extract and the fractions in a dose- and time-dependent manner reduced the cell viability in ACHN with no effect on the GP-293 cell line. In addition, the total extract resulted in more morphological changes in the ACHN cells compared to the GP-293 cells. The effect of the total extract in inducing apoptosis after 48 hours in the ACHN cell line was greater than in GP-293. In addition, the effect of the two fractions was lower than the total extract at all used concentrations. Therefore, the effect of total extract and n-hexane and ethyl acetate fractions of N. sativa on cell viability and apoptosis in the ACHN cell line is greater than in the GP-293 cell line. However, the effect of the total extract is higher than either of the two fractions on their own.

  13. Subinhibitory Doses of Aminoglycoside Antibiotics Induce Changes in the Phenotype of Mycobacterium abscessus

    PubMed Central

    Tsai, Sheng-Hui; Lai, Hsin-Chih

    2015-01-01

    Subinhibitory doses of antibiotics have been shown to cause changes in bacterial morphology, adherence ability, and resistance to antibiotics. In this study, the effects of subinhibitory doses of aminoglycoside antibiotics on Mycobacterium abscessus were investigated. The treatment of M. abscessus cells with subinhibitory doses of amikacin was found to change their colony from a smooth to a rough morphotype and increase their ability to adhere to a polyvinylchloride plate, aggregate in culture, and resist phagocytosis and killing by macrophages. M. abscessus cells treated with a subinhibitory dose of amikacin also became more potent in Toll-like receptor 2 (TLR-2) stimulation, leading to increased tumor necrosis factor alpha (TNF-α) production by macrophages. The MAB_3508c gene was shown to play a role in mediating these phenotypic changes, as its expression in M. abscessus cells was increased when they were treated with a subinhibitory dose of amikacin. In addition, overexpression of MAB_3508c in M. abscessus cells caused changes similar to those induced by subinhibitory doses of amikacin, including a switch from smooth to rough colony morphology, increased ability to aggregate in liquid culture, decreased motility, and increased resistance to killing by macrophages. These findings suggest the importance of using sufficient doses of antibiotics for the treatment of M. abscessus infections. PMID:26195529

  14. Integrated Raman and angular scattering microscopy reveals chemical and morphological differences between activated and nonactivated CD8+ T lymphocytes

    PubMed Central

    Smith, Zachary J.; Wang, Jyh-Chiang E.; Quataert, Sally A.; Berger, Andrew J.

    2010-01-01

    Integrated Raman and angular-scattering microscopy (IRAM) is a multimodal platform capable of noninvasively probing both the chemistry and morphology of a single cell without prior labeling. Using this system, we are able to detect activation-dependent changes in the Raman and elastic-scattering signals from CD8+ T cells stimulated with either Staphylococcal enterotoxin B (SEB) or phorbol myristate acetate (PMA). In both cases, results obtained from the IRAM instrument correlate well with results obtained from traditional fluorescence-based flow cytometry for paired samples. SEB-mediated activation was distinguished from resting state in CD8+ T cells by an increase in the number and mean size of small (∼500-nm) elastic scatterers as well as a decrease in Raman bands, indicating changes in nuclear content. PMA-mediated activation induced a different profile in CD8+ T cells from SEB, showing a similar increase in small elastic scatterers but a different Raman change, with elevation of cellular protein and lipid bands. These results suggest the potential of this multimodal, label-free optical technique for studying processes in single cells. PMID:20615023

  15. Manipulation of morphology and structure of the top of GaAs nanowires grown by molecular-beam epitaxy

    NASA Astrophysics Data System (ADS)

    Li, Lixia; Pan, Dong; Yu, Xuezhe; So, Hyok; Zhao, Jianhua

    2017-10-01

    Self-catalyzed GaAs nanowires (NWs) are grown on Si (111) substrates by molecular-beam epitaxy. The effect of different closing sequences of the Ga and As cell shutters on the morphology and structural phase of GaAs NWs is investigated. For the sequences of closing the Ga and As cell shutters simultaneously or closing the As cell shutter 1 min after closing the Ga cell shutter, the NWs grow vertically to the substrate surface. In contrast, when the As cell shutter is closed first, maintaining the Ga flux is found to be critical for the following growth of GaAs NWs, which can change the growth direction from [111] to < 11\\bar{1}> . The evolution of the morphology and structural phase transition at the tips of these GaAs NWs confirm that the triple-phase-line shift mode is at work even for the growth with different cell shutter closing sequences. Our work will provide new insights for better understanding of the growth mechanism and realizing of the morphology and structure control of the GaAs NWs. Project supported partly by the MOST of China (No. 2015CB921503), the National Natural Science Foundation of China (Nos. 61504133, 61334006, 61404127), and Youth Innovation Promotion Association, CAS (No. 2017156).

  16. High hydrostatic pressure-induced cell death in human chondrocytes and chondrosarcoma cells.

    PubMed

    Naal, Florian-Dominique; Mengele, Karin; Schauwecker, Johannes; Gollwitzer, Hans; Gerdesmeyer, Ludger; Reuning, Ute; Mittelmeier, Wolfram; Gradinger, Reiner; Schmitt, Manfred; Diehl, Peter

    2005-01-01

    In orthopedic surgery, sterilization of bone used for reconstruction of osteoarticular defects caused by malignant tumors is carried out in different ways. At present, to devitalize tumor-bearing osteochondral segments, extracorporal irradiation or autoclaving is mainly used, although both methods have substantial disadvantages, e.g. loss of biomechanical and/or biological integrity of the bone and destabilization of the articular surface. In this regard, high hydrostatic pressure (HHP) treatment of bone is a new, advancing technology, now being used in preclinical testing to inactivate tumor cells. To find out if this technique is also suited for extracorporal inactivation of chondrocytes and chondral tumor cells, the effect of HHP on cell viability and morphology of human chondrocytes / chondrosarcoma cells was investigated in the present study. SW1353 chondrosarcoma cells and chondrocytes were subjected to HHP in the range of 50 to 350 MPa (10 min, 37 degrees C) and, subsequently, cell viability and cell morphology assessed. After exposure at 350 MPa, all HHP-treated chondral cells showed explicit morphological changes, evident by membrane ruffling and bleb formation; chondrosarcoma cells treated this way were irreversibly damaged and not alive. We anticipate that, in orthopedic surgery, HHP eventually can serve as a novel, promising technical approach for cell inactivation (including tumor cells) and allow subsequent reimplantation of the osteoarticular autograft.

  17. Low-intensity vibrations normalize adipogenesis-induced morphological and molecular changes of adult mesenchymal stem cells.

    PubMed

    Baskan, Oznur; Mese, Gulistan; Ozcivici, Engin

    2017-02-01

    Bone marrow mesenchymal stem cells that are committed to adipogenesis were exposed daily to high-frequency low-intensity mechanical vibrations to understand molecular, morphological and ultrastructural adaptations to mechanical signals during adipogenesis. D1-ORL-UVA mouse bone marrow mesenchymal stem cells were cultured with either growth or adipogenic medium for 1 week. Low-intensity vibration signals (15 min/day, 90 Hz, 0.1 g) were applied to one group of adipogenic cells, while the other adipogenic group served as a sham control. Cellular viability, lipid accumulation, ultrastructure and morphology were determined with MTT, Oil-Red-O staining, phalloidin staining and atomic force microscopy. Semiquantitative reverse transcription polymerase chain reaction showed expression profile of the genes responsible for adipogenesis and ultrastructure of cells. Low-intensity vibration signals increased viability of the cells in adipogenic culture that was reduced significantly compared to quiescent controls. Low-intensity vibration signals also normalized the effects of adipogenic condition on cell morphology, including area, perimeter, circularization and actin cytoskeleton. Furthermore, low-intensity vibration signals reduced the expression of some adipogenic markers significantly. Mesenchymal stem cells are sensitive and responsive to mechanical loads, but debilitating conditions such as aging or obesity may steer mesenchymal stem cells toward adipogenesis. Here, daily application of low-intensity vibration signals partially neutralized the effects of adipogenic induction on mesenchymal stem cells, suggesting that these signals may provide an alternative and/or complementary option to reduce fat deposition.

  18. DNA fragmentation and cell cycle arrest: a hallmark of apoptosis induced by Ruta graveolens in human colon cancer cells.

    PubMed

    Arora, Shagun; Tandon, Simran

    2015-01-01

    In the present study, we investigated the anti-cancer effect of various potencies of Ruta graveolens (Ruta) on COLO-205 cell line, as evidenced by cytotoxicity, migration, clonogenecity, morphological and biochemical changes and modification in the levels of genes associated with apoptosis and cell cycle. On treatment of COLO-205 cells maximal effects were seen with mother tincture (MT) and 30C potencies, wherein decrease in cell viability along with reduced clonogenecity and migration capabilities were noted. In addition morphological and biochemical alterations such as nuclear changes (fragmented nuclei with condensed chromatin) and DNA ladder-like pattern (increased amount of fragmented DNA) in COLO-205 cells indicating apoptotic related cell death were seen. The expression of apoptosis and cell-cycle related regulatory genes assessed by reverse transcriptase-PCR revealed an up-regulation of caspase 9, caspase-3, Bax, p21 and p27 expression and down-regulation of Bcl-2 expression in treated cells. The mode of cell death was suggestive of intrinsic apoptotic pathway along with cell cycle arrest at the G2/M of the cell cycle. Our findings indicate that phytochemicals present in Ruta showed potential for natural therapeutic product development for colon carcinoma. Copyright © 2014 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  19. The Alternaria alternata Mycotoxin Alternariol Suppresses Lipopolysaccharide-Induced Inflammation

    PubMed Central

    Grover, Shivani; Lawrence, Christopher B.

    2017-01-01

    The Alternaria mycotoxins alternariol (AOH) and alternariol monomethyl ether (AME) have been shown to possess genotoxic and cytotoxic properties. In this study, the ability of AOH and AME to modulate innate immunity in the human bronchial epithelial cell line (BEAS-2B) and mouse macrophage cell line (RAW264.7) were investigated. During these studies, it was discovered that AOH and to a lesser extent AME potently suppressed lipopolysaccharide (LPS)-induced innate immune responses in a dose-dependent manner. Treatment of BEAS-2B cells with AOH resulted in morphological changes including a detached pattern of growth as well as elongated arms. AOH/AME-related immune suppression and morphological changes were linked to the ability of these mycotoxins to cause cell cycle arrest at the G2/M phase. This model was also used to investigate the AOH/AME mechanism of immune suppression in relation to aryl hydrocarbon receptor (AhR). AhR was not found to be important for the immunosuppressive properties of AOH/AME, but appeared important for the low levels of cell death observed in BEAS-2B cells. PMID:28726766

  20. Hibernating myocardium, morphological studies on intraoperatory myocardial biopsies and on chronic ischemia experimental model.

    PubMed

    Laky, D; Parascan, Liliana

    2007-01-01

    Hibernating myocardium represent a prolonged but potentially reversible myocardial contractile dysfunction, an incomplete adaptation caused by chronic myocardial ischemia and persisting at least until blood flow restored. The purpose of this study was to investigate the morphological changes and weather relations exist among function, metabolism and structure in left ventricular hibernating myocardium. Material and methods. Experimental study is making on 12 dogs incomplete coronary obstruction during six weeks for morphologic studies of ischemic zones. On 48 patients with coronary stenosis myocardial biopsies was effectuated during aorto-coronarian bypass graft. On 60 patients with valvular disease associated with segmental coronary atherosclerotic obstructions during surgical interventions on a effectuated repeatedly biopsies from ischemic zones. Dyskinetic ischemic areas was identified by angiography, scintigraphy, low dose dobutamine echography to identify the cells viability. On myocardial biopsies various histological, histoenzymological, immunohistochemical and ultrastructural methods were performed. The morphological cardiomyocytic changes can summarized: loss of myofilaments, accumulation of glycogen, small mitochondria with reversible lesions, decrease of smooth reticulum, absence of T tubules, depression of titin in puncted pattern, loss of cardiotonin, disorganization of cytoskeleton, dispersed nuclear heterochromatin, embryofetal dedifferentiation, and persistence of viability. Extracellular matrix is enlarged with early matrix protein such fibronectin, tenascin, fibroblasts. In experimental material the morphological changes present similarities with the human biopsies, but intermixed with postinfarction scar tissue. Redifferentiation of hibernanting cells end remodeling of extracellular matrix is possible after quigle revascularization through aorto-coronary bypass grafts.

  1. NanoTopoChip: High-throughput nanotopographical cell instruction.

    PubMed

    Hulshof, Frits F B; Zhao, Yiping; Vasilevich, Aliaksei; Beijer, Nick R M; de Boer, Meint; Papenburg, Bernke J; van Blitterswijk, Clemens; Stamatialis, Dimitrios; de Boer, Jan

    2017-10-15

    Surface topography is able to influence cell phenotype in numerous ways and offers opportunities to manipulate cells and tissues. In this work, we develop the Nano-TopoChip and study the cell instructive effects of nanoscale topographies. A combination of deep UV projection lithography and conventional lithography was used to fabricate a library of more than 1200 different defined nanotopographies. To illustrate the cell instructive effects of nanotopography, actin-RFP labeled U2OS osteosarcoma cells were cultured and imaged on the Nano-TopoChip. Automated image analysis shows that of many cell morphological parameters, cell spreading, cell orientation and actin morphology are mostly affected by the nanotopographies. Additionally, by using modeling, the changes of cell morphological parameters could by predicted by several feature shape parameters such as lateral size and spacing. This work overcomes the technological challenges of fabricating high quality defined nanoscale features on unprecedented large surface areas of a material relevant for tissue culture such as PS and the screening system is able to infer nanotopography - cell morphological parameter relationships. Our screening platform provides opportunities to identify and study the effect of nanotopography with beneficial properties for the culture of various cell types. The nanotopography of biomaterial surfaces can be modified to influence adhering cells with the aim to improve the performance of medical implants and tissue culture substrates. However, the necessary knowledge of the underlying mechanisms remains incomplete. One reason for this is the limited availability of high-resolution nanotopographies on relevant biomaterials, suitable to conduct systematic biological studies. The present study shows the fabrication of a library of nano-sized surface topographies with high fidelity. The potential of this library, called the 'NanoTopoChip' is shown in a proof of principle HTS study which demonstrates how cells are affected by nanotopographies. The large dataset, acquired by quantitative high-content imaging, allowed us to use predictive modeling to describe how feature dimensions affect cell morphology. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. Cytomorphological effects of mitomycin C on urothelial cells: eosinophils may be clue to the drug-induced changes.

    PubMed

    Guler Simsek, Gulcin; Vargol, Erdem; Simsek, Hulya

    2014-01-01

    Cytomorphological changes of mitomycin C on urothelial cells may be misinterpreted as a neoplastic process. A 60-year old male patient who was given an eight-week course of intravesical mitomycin C due to non-invasive low grade transitional cell carcinoma. During his follow-up care, the findings of a urine cytology exam were as follows: nuclear enlargement of cells, wrinkled nuclear membranes, little hyperchromasia, pleomorphism, abnormal nuclear morphology and disordered orientation of the urothelium. Furthermore, there were eosinophils nearby the atypical cells. This report aimed at reminding the cytomorphologic changes of mitomycin C may be misinterpreted as carcinoma, so the presence of eosinophils is required to predict the drug-induced changes.

  3. Arecoline Alters Taste Bud Cell Morphology, Reduces Body Weight, and Induces Behavioral Preference Changes in Gustatory Discrimination in C57BL/6 Mice.

    PubMed

    Peng, Wei-Hau; Chau, Yat-Pang; Lu, Kuo-Shyan; Kung, Hsiu-Ni

    2016-01-01

    Arecoline, a major alkaloid in areca nuts, is involved in the pathogenesis of oral diseases. Mammalian taste buds are the structural unit for detecting taste stimuli in the oral cavity. The effects of arecoline on taste bud morphology are poorly understood. Arecoline was injected intraperitoneally (IP) into C57BL/6 mice twice daily for 1-4 weeks. After arecoline treatment, the vallate papillae were processed for electron microscopy and immunohistochemistry analysis of taste receptor proteins (T1R2, T1R3, T1R1, and T2R) and taste associated proteins (α-gustducin, PLCβ2, and SNAP25). Body weight, food intake and water consumption were recorded. A 2-bottle preference test was also performed. The results demonstrated that 1) arecoline treatment didn't change the number and size of the taste buds or taste bud cells, 2) electron microscopy revealed the change of organelles and the accumulation of autophagosomes in type II cells, 3) immunohistochemistry demonstrated a decrease of taste receptor T1R2- and T1R3-expressing cells, 4) the body weight and food intake were markedly reduced, and 5) the sweet preference behavior was reduced. We concluded that the long-term injection of arecoline alters the morphology of type II taste bud cells, retards the growth of mice, and affects discrimination competencies for sweet tastants. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. Reorganization of polymerized actin: a possible trigger for induction of procollagenase in fibroblasts cultured in and on collagen gels.

    PubMed

    Unemori, E N; Werb, Z

    1986-09-01

    Changes in cell shape are postulated to modulate gene expression during differentiation of a number of cell types, including rabbit synovial fibroblasts, which are inducible for expression of the zymogen form of the metalloendopeptidase, collagenase. In the work presented here, fibroblasts cultured on and within hydrated collagen gels were allowed to contract by release of the gels from the sides of the culture dish. Within 24 h of cell release, synthesis and secretion of procollagenase was initiated in the absence of any chemical manipulation. Fibroblasts grown in and on collagen also responded to 12-O-tetradecanoylphorbol-13-acetate and cytochalasin B with morphologic change and induced procollagenase. However, colchicine, which altered morphology to varying degrees in cells on plastic, on collagen, and within collagen gels, did not induce procollagenase expression. In all cases, the enzyme was induced only after reorganization of polymerized actin, rather than after a change in cellular morphology per se. As a first approach to identifying other aspects of the stimulated phenotype that could affect collagen turnover, the expression of collagen and endogenous metalloproteinase inhibitors in relation to procollagenase secretion was investigated. Collagen secretion by fibroblasts decreased when procollagenase secretion was induced by the pharmacologic agents, but not when cells were stimulated by contraction on or within collagen gels. The expression of two endogenous inhibitors was not coordinately regulated with induction of procollagenase. Therefore, the extracellular matrix and the cellular actin cytoskeleton may transduce signals that modulate the tissue remodeling phenotype of fibroblasts.

  5. Platinum Nanoparticles Induce Apoptosis on Raw 264.7 Macrophage Cells.

    PubMed

    Loan, Ta Thi; Do, Le Thanh; Yoo, Hoon

    2018-02-01

    The cellular effects of platinum nanoparticles (PNP05, average size of 5 nm, and PNP30, average size of 30 nm) were investigated on murine leukemia Raw 264.7 cells. Cells treated with various concentrations of PNPs showed size-dependent cytotoxicity in an MTT assay with PNP5 of smaller nanoparticles higher toxicity than PNP30. Investigations on cell morphology, Annexin V assay, DNA fragmentation and the activity of caspase-3/-7 showed that PNPs induced apoptosis on Raw 264.7 cells by changing cell morphology and density, increasing cell population in apoptosis and causing nucleus fragmentation. Further study on caspase activity by Western blotting revealed that the apoptosis was induced by the activation of caspase-3 and -7. In addition, PNPs inactivated DNA repair system, generating dose-dependent DNA ladder bands on agarose gel electrophoresis. Taken together, PNPs triggered cytotoxicity on Raw 264.7 cells by suppressing cell growth/survival and inducing apoptosis.

  6. Separation of integrin-dependent adhesion from morphological changes based on differential PLC specificities.

    PubMed

    Wooten, D K; Teague, T K; McIntyre, B W

    1999-01-01

    In normal lymphocytes an inside-out signal up-regulating integrin adhesion is followed by a ligand-mediated outside-in cell spreading signal. Protein kinase C (PKC) inhibition blocks lymphocyte adherence to and spreading on fibronectin. In contrast, putative PLC inhibitors yield distinct differences with respect to adhesion and morphology. The phosphatidylinositol-specific phospholipase C (PLC) inhibitor neomycin blocked spreading of CD3/CD28-activated T cells on fibronectin by disrupting adhesion. Furthermore, when an additional inside-out signal for fibronectin adhesion is unnecessary such as with HPB-ALL T leukemic or phorbol-myristate-acetate-treated normal T cells, neomycin treatment does not alter adhesion or morphology. However, the phosphatidylcholine-specific PLC inhibitor D609 abrogates cell spreading without affecting adhesion to fibronectin in these cells as well as the CD3/CD28-activated T cells. These results strongly suggest that inside-out signaling for the integrin alpha4beta1 in lymphocytes proceeds through phosphatidylinositol-specific PLC and PKC, whereas the outside-in signal utilizes phosphatidylcholine-specific PLC and PKC.

  7. Release of superoxide and change in morphology by neutrophils in response to phorbol esters: antagonism by inhibitors of calcium-binding proteins

    PubMed Central

    1985-01-01

    The ability of phorbol derivatives to function as stimulating agents for superoxide (O2-) release by guinea pig neutrophils has been evaluated and compared to the known ability of each compound to activate protein kinase C. Those that activate the kinase also stimulate O2- release, while those that are inactive with respect to the kinase have no effect on O2- release. The same correlation was observed with respect to the ability of phorbol esters to induce morphological changes in neutrophils, i.e., vesiculation and reduction in granule content. Certain phenothiazines and naphthalene sulfonamides that are known antagonists of calcium-binding proteins blocked both phorbol ester-induced O2- release and morphological changes in these cells. PMID:2993312

  8. Effects of Angular Frequency During Clinorotation on Mesenchymal Stem Cell Morphology and Migration

    NASA Technical Reports Server (NTRS)

    Luna, Carlos; Yew, Alvin G.; Hsieh, Adam H.

    2015-01-01

    Background/Objectives: Ground-based microgravity simulation can reproduce the apparent effects of weightlessness in spaceflight using clinostats that continuously reorient the gravity vector on a specimen, creating a time-averaged nullification of gravity. In this work, we investigated the effects of clinorotation speed on the morphology, cytoarchitecture, and migration behavior of human mesenchymal stem cells (hMSCs). Methods: We compared cell responses at clinorotation speeds of 0, 30, 60, and 75 rpm over 8 hours in a recently developed lab-on-chip-based clinostat system. Time lapse light microscopy was used to visualize changes in cell morphology during and after cessation of clinorotation. Cytoarchitecture was assessed by actin and vinculin staining, and chemotaxis was examined using time lapse light microscopy of cells in NGF (100 ng/ml) gradients. Results: Among clinorotated groups, cell area distributions indicated a greater inhibition of cell spreading with higher angular frequency (p is less than 0.005), though average cell area at 30 rpm after 8 hours became statistically similar to control (p = 0.794). Cells at 75rpm clinorotation remained viable and were able to re-spread after clinorotation. In chemotaxis chambers clinorotation did not alter migration patterns in elongated cells, but most clinorotated cells exhibited cell retraction, which strongly compromised motility.

  9. Fabrication of hydrogels with elasticity changed by alkaline phosphatase for stem cell culture.

    PubMed

    Toda, Hiroyuki; Yamamoto, Masaya; Uyama, Hiroshi; Tabata, Yasuhiko

    2016-01-01

    The objective of this study is to design hydrogels whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture and evaluate the effect of hydrogel elasticity on an osteogenic gene expression of cells. Hydrogels were prepared by the radical polymerization of acrylamide (AAm), N,N'-methylenebisacrylamide (BIS), and Phosmer™M containing phosphate groups (PE-PAAm hydrogels). The storage modulus of PE-PAAm hydrogels prepared was changed by the preparation conditions. When human mesenchymal stem cells (hMSC) were cultured on the ALP-responsive PE-PAAm hydrogels in the presence or absence of ALP, the morphology of hMSC was observed and one of the osteogenic differentiation markers, Runx2, was evaluated. By ALP addition into the culture medium, the morphology of hMSC was changed into an elongated shape without cell damage. ALP addition modified the level of Runx2 gene expression, which was influenced by the modulus of PE-PAAm hydrogels. It is concluded that the elasticity change of hydrogel substrates in cell culture had an influence on the Runx2 gene expression of hMSC. Stem cells sense the surface elasticity of culture substrates, and their differentiation fate is biologically modified by substrate properties. Most of experiments have been performed in static conditions during cell culture, while the in vivo microenvironment is dynamically changed. In this study, we established to design an enzyme-responsive hydrogel whose elasticity can be changed by alkaline phosphatase (ALP) in cell culture to mimic in vivo conditions. As a result, the cells were deformed and the gene expression level of an osteogenic maker, Runx2, was modified by ALP treatment. This is the novel report describing to demonstrate that the dynamic alteration of hydrogel substrate elasticity could modulate the osteoblastic gene expression of human MSC in vitro. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. Microplasma Induced Cell Morphological Changes and Apoptosis of Ex Vivo Cultured Human Anterior Lens Epithelial Cells – Relevance to Capsular Opacification

    PubMed Central

    Hojnik, Nataša; Filipič, Gregor; Lazović, Saša; Vesel, Alenka; Primc, Gregor; Mozetič, Miran; Hawlina, Marko; Petrovski, Goran; Cvelbar, Uroš

    2016-01-01

    Inducing selective or targeted cell apoptosis without affecting large number of neighbouring cells remains a challenge. A plausible method for treatment of posterior capsular opacification (PCO) due to remaining lens epithelial cells (LECs) by reactive chemistry induced by localized single electrode microplasma discharge at top of a needle-like glass electrode with spot size ~3 μm is hereby presented. The focused and highly-localized atmospheric pressure microplasma jet with electrode discharge could induce a dose-dependent apoptosis in selected and targeted individual LECs, which could be confirmed by real-time monitoring of the morphological and structural changes at cellular level. Direct cell treatment with microplasma inside the medium appeared more effective in inducing apoptosis (caspase 8 positivity and DNA fragmentation) at a highly targeted cell level compared to treatment on top of the medium (indirect treatment). Our results show that single cell specific micropipette plasma can be used to selectively induce demise in LECs which remain in the capsular bag after cataract surgery and thus prevent their migration (CXCR4 positivity) to the posterior lens capsule and PCO formation. PMID:27832099

  11. [Effects of Aptamer-siRNA Nucleic Acid Compound on Growth and Apoptosis in Myeloid Leukemia Cell Line K562].

    PubMed

    Ping, Juan; Shen, Zhi-Hui; Wang, Bao-Quan; Zhao, Na; Li, Rui; Li, Mian; Pang, Xiao-Bin; Chen, Chuan-Bo

    2015-04-01

    To explore the effects of aptamer-siRNA nucleic acid compound on growth and apoptosis in myeloid leukemia cell line K562. the changes of cellular morphology and structure were observed by using fluorescence microscope, laser confocal microscope, JEM-4000EX transmission electron microscopy; MTT assay were performed to evaluate the sensibility of K562 cells to aptamer-siRNA compound, the apoptosis was detected by DNA gel electro-phoresis. The remarkably changes of morphology and structure of K562 cells treated with 200 µmol/L aptamer-siRNA were observed under fluorescence microscopy and electromicroscopy. As compared with control, the aptamer-siRNA compound showed more inhibitory effect on K562 cells and there was significant difference (P<0.05). The MTT assay showed that the IC50 value of aptamer-siRNA compound for K562 cells was 150 µmol/L. According to agarose gel electrophoresis observation, when the aptamer-siRNA compound showed effect on K562 cells, the typical DNA lader could be observed. The aptamer-siRNA compound can significantly induce K562 cell apoptosis, and provide reference for gene therapy of patients with chronic myelocytic lenkemia.

  12. Hippocampus-based contextual memory alters the morphological characteristics of astrocytes in the dentate gyrus.

    PubMed

    Choi, Moonseok; Ahn, Sangzin; Yang, Eun-Jeong; Kim, Hyunju; Chong, Young Hae; Kim, Hye-Sun

    2016-07-26

    Astrocytes have been reported to exist in two states, the resting and the reactive states. Morphological changes in the reactive state of astrocytes include an increase in thickness and number of processes, and an increase in the size of the cell body. Molecular changes also occur, such as an increase in the expression of glial fibrillary acidic protein (GFAP). However, the morphological and molecular changes during the process of learning and memory have not been elucidated. In the current study, we subjected Fvb/n mice to contextual fear conditioning, and checked for morphological and molecular changes in astrocytes. 1 h after fear conditioning, type II and type III astrocytes exhibited a unique status with an increased number of processes and decreased GFAP expression which differed from the typical resting or reactive state. In addition, the protein level of excitatory excitatory amino acid transporter 2 (EAAT2) was increased 1 h to 24 h after contextual fear conditioning while EAAT1 did not show any alterations. Connexin 43 (Cx43) protein was found to be increased at 24 h after fear conditioning. These data suggest that hippocampus-based contextual memory process induces changes in the status of astrocytes towards a novel status different from typical resting or reactive states. These morphological and molecular changes may be in line with functional changes.

  13. Chromatin remodeling in somatic cells injected into mature pig oocytes.

    PubMed

    Bui, Hong-Thuy; Van Thuan, Nguyen; Wakayama, Teruhiko; Miyano, Takashi

    2006-06-01

    We examined the involvement of histone H3 modifications in the chromosome condensation and decondensation of somatic cell nuclei injected into mature pig oocytes. Nuclei of pig granulosa cells were transferred into in vitro matured intact pig oocytes, and histone H3 phosphorylation, acetylation, and methylation were examined by immunostaining with specific antibodies in relation to changes in chromosome morphology. In the condensed chromosomes of pig oocytes at metaphase II, histone H3 was phosphorylated at serine 10 (H3-S10) and serine 28 (H3-S28), and methylated at lysine 9 (H3-K9), but was not acetylated at lysine 9, 14 and 18 (H3-K9, H3-K14 and H3-K18). During the first 2 h after nuclear transfer, a series of events were observed in the somatic nuclei: nuclear membrane disassembly; chromosome condensation to form a metaphase-like configuration; an increase in histone H3 phosphorylation levels (H3-S10 and H3-S28). Next, pig oocytes injected with nuclei of somatic cells were electroactivated and the chromosome morphology of oocytes and somatic cells was examined along with histone modifications. Generally, chromosomes of the somatic cells showed a similar progression of cell cycle stage to that of oocytes, through anaphase II- and telophase II-like stages then formed pronucleus-like structures, although the morphology of the spindles differed from that of oocyte spindles. The chromosomes of somatic cells also showed changes in histone H3 dephosphorylation and reacetylation, similar to oocytes. In contrast, histone H3 methylation (H3-K9) of somatic cell nuclei did not show any significant change after injection and electroactivation of the oocytes. These results suggest that nuclear remodeling including histone H3 phosphorylation and acetylation of injected somatic nuclei took place in the oocytes under regulation by the oocyte cytoplasm.

  14. T-cell-restricted intracellular antigen 1 facilitates mitochondrial fragmentation by enhancing the expression of mitochondrial fission factor

    PubMed Central

    Tak, Hyosun; Eun, Jung Woo; Kim, Jihye; Park, So Jung; Kim, Chongtae; Ji, Eunbyul; Lee, Heejin; Kang, Hoin; Cho, Dong-Hyung; Lee, Kyungbun; Kim, Wook; Nam, Suk Woo; Lee, Eun Kyung

    2017-01-01

    Mitochondrial morphology is dynamically regulated by the formation of small fragmented units or interconnected mitochondrial networks, and this dynamic morphological change is a pivotal process in normal mitochondrial function. In the present study, we identified a novel regulator responsible for the regulation of mitochondrial dynamics. An assay using CHANG liver cells stably expressing mitochondrial-targeted yellow fluorescent protein (mtYFP) and a group of siRNAs revealed that T-cell intracellular antigen protein-1 (TIA-1) affects mitochondrial morphology by enhancing mitochondrial fission. The function of TIA-1 in mitochondrial dynamics was investigated through various biological approaches and expression analysis in human specimen. Downregulation of TIA-1-enhanced mitochondrial elongation, whereas ectopic expression of TIA-1 resulted in mitochondria fragmentation. In addition, TIA-1 increased mitochondrial activity, including the rate of ATP synthesis and oxygen consumption. Further, we identified mitochondrial fission factor (MFF) as a direct target of TIA-1, and showed that TIA-1 promotes mitochondrial fragmentation by enhancing MFF translation. TIA-1 null cells had a decreased level of MFF and less mitochondrial Drp1, a critical factor for mitochondrial fragmentation, thereby enhancing mitochondrial elongation. Taken together, our results indicate that TIA-1 is a novel factor that facilitates mitochondrial dynamics by enhancing MFF expression and contributes to mitochondrial dysfunction. PMID:27612012

  15. Biocompatibility of modified ultra-high-molecular-weight polyethylene

    NASA Astrophysics Data System (ADS)

    Novotná, Z.; Lacmanová, V.; Rimpelová, S.; Juřik, P.; Polívková, M.; Å vorčik, V.

    2016-09-01

    Ultra-high-molecular-weight polyethylene (UHMWPE, PE) is a synthetic polymer used for biomedical applications because of its high impact resistance, ductility and stability in contact with physiological fluids. Therefore this material is being used in human orthopedic implants such as total joint replacements. Surface modification of this material relates to changes of its surface hydrophilicity, energy, microstructure, roughness, and morphology, all influencing its biological response. In our recent work, PE was treated by an Ar+ plasma discharge and then grafted with biologically active polyethylene glycol in order to enhance adhesion and proliferation of mouse fibroblast (L929). The surface properties of pristine PE and its grafted counterparts were studied by goniometry (surface wettability). Furthermore, Atomic Force Microscopy was used to determine the surface morphology and roughness. The biological response of the L929 cell lines seeded on untreated and plasma treated PE matrices was quantified in terms of the cell adhesion, density, and metabolic activity. Plasma treatment leads to the ablation of the polymer surface layers. Plasma treatment and subsequent poly(ethylene glycol) grafting lead to dramatic changes in the polymer surface morphology and roughness. Biological tests, performed in vitro, show increased adhesion and proliferation of cells on modified polymers. Grafting with poly(ethylene glycol) increases cell proliferation compared to plasma treatment.

  16. Simian immunodeficiency virus infection of the gastrointestinal tract of rhesus macaques. Functional, pathological, and morphological changes.

    PubMed Central

    Heise, C.; Vogel, P.; Miller, C. J.; Halsted, C. H.; Dandekar, S.

    1993-01-01

    Gastrointestinal dysfunction and wasting are frequent complications of human immunodeficiency virus (HIV) infection. Nutrient malabsorption, decreased digestive enzymes and HIV transcripts have been documented in jejunal mucosa of HIV-infected patients; however, the pathogenesis of this enteropathy is not understood. Rhesus macaques infected with simian immunodeficiency virus (SIV) also exhibit diarrhea and weight loss; therefore, we investigated the use of this animal model to study HIV-associated intestinal abnormalities. A retrospective study of intestinal tissues from 15 SIV-infected macaques was performed to determine the cellular targets of the virus and examine the effect of SIV infection on jejunal mucosal morphology and function. Pathological and morphological changes included inflammatory infiltrates, villus blunting, and crypt hyperplasia. SIV-infected cells were detected by in situ hybridization in stomach, duodenum, jejunum, ileum, cecum, and colon. Using combined immunohistochemistry and in situ hybridization, the cellular targets were identified as T lymphocytes and macrophages. The jejunum of SIV-infected animals had depressed digestive enzyme activities and abnormal morphometry, suggestive of a maturational defect in proliferating epithelial cells. Our results suggest that SIV infection of mononuclear inflammatory cells in intestinal mucosa may alter development and function of absorptive epithelial cells and lead to jejunal dysfunction. Images Figure 1 Figure 2 Figure 5 PMID:8506946

  17. Morphological Changes of Myoepithelial Cells in the Rat Submandibular Gland Following the Application of Surgical Stimuli.

    PubMed

    Kawabe, Yoshihiro; Mizobe, Kenich; Bando, Yasuhiko; Sakiyama, Koji; Taira, Fuyoko; Tomomura, Akito; Araki, Hisao; Amano, Osamu

    2016-12-28

    Myoepithelial cells (MECs) exist on the basal surface of acini in major exocrine glands, include myofilaments and various constructive proteins, and share characteristics with smooth muscle and epithelial cells. MECs project several ramified processes to invest acini, and possibly contract to compress acini to support the secretion by the glandular cells. However, the functional roles of MECs in salivary secretion are still unclear. We investigated morphological changes in immunostained MECs using the anti-α-smooth muscle actin (αSMA) antibody in operated or non-operated contralateral (NC) submandibular glands after partial or total resection. Furthermore, we investigated and discuss other salivary glands of rats. MECs in the parotid, sublingual and submandibular gland of adult rats exhibited different shapes and localizations. After surgery, in both operated and NC glands, the number of MECs and αSMA-immunopositive areas increased significantly. Three-dimensional analysis using a confocal laser-scanning microscope revealed that substantial and significant enhancement became evident in the number, length, and thickness of MEC-processes covering acini of the operated and NC submandibular glands. The preset findings indicate that MECs alter the morphology of their processes in operated and NC glands after surgery of the partial or total resection. It is suggested that MECs promote salivary secretion using elongated, thickened, and more ramified processes.

  18. 27 T ultra-high static magnetic field changes orientation and morphology of mitotic spindles in human cells

    PubMed Central

    Zhang, Lei; Hou, Yubin; Li, Zhiyuan; Ji, Xinmiao; Wang, Ze; Wang, Huizhen; Tian, Xiaofei; Yu, Fazhi; Yang, Zhenye; Pi, Li; Mitchison, Timothy J; Lu, Qingyou; Zhang, Xin

    2017-01-01

    Purified microtubules have been shown to align along the static magnetic field (SMF) in vitro because of their diamagnetic anisotropy. However, whether mitotic spindle in mammalian cells can be aligned by magnetic field has not been experimentally proved. In particular, the biological effects of SMF of above 20 T (Tesla) on mammalian cells have never been reported. Here we found that in both CNE-2Z and RPE1 human cells spindle orients in 27 T SMF. The direction of spindle alignment depended on the extent to which chromosomes were aligned to form a planar metaphase plate. Our results show that the magnetic torque acts on both microtubules and chromosomes, and the preferred direction of spindle alignment relative to the field depends more on chromosome alignment than microtubules. In addition, spindle morphology was also perturbed by 27 T SMF. This is the first reported study that investigated the mammalian cellular responses to ultra-high magnetic field of above 20 T. Our study not only found that ultra-high magnetic field can change the orientation and morphology of mitotic spindles, but also provided a tool to probe the role of spindle orientation and perturbation in developmental and cancer biology. DOI: http://dx.doi.org/10.7554/eLife.22911.001 PMID:28244368

  19. Morphological and physiological changes exhibited by a Cd-resistant Dictyosphaerium chlorelloides strain and its cadmium removal capacity.

    PubMed

    Bartolomé, M C; Cortés, A A; Sánchez-Fortún, A; Garnica-Romo, M G; Sánchez-Carrillo, S; Sánchez-Fortún, Sebastián

    2016-12-01

    Changes induced on freshwater microalga Dictyosphaerium chlorelloides (Dc(wt)) acclimated in the laboratory until their survival in culture media enriched with cadmium 100 µM have been studied. Cadmium removal by living cells of this Cd-resistant (Dc(CdR100)) strain was tested in cultures exposed to 100 µM Cd during 30 days. Cell dimensions were measured under light microscopy, and cell growth was studied. Photosynthetic yield (ΦPSII) was analyzed and the photosynthetic oxygen development and respiration response was obtained. Results show that Dc(CdR100) strain exhibited significant cell morphology changes in comparison to Dc(wt) cells, which affected both surface area and cell biovolume. Malthusian fitness analysis showed that Dc(CdR100) strain living in Cd-enriched culture had developed a lower capacity of nearly 50% growth, and its photosynthetic oxygen development and respiration response were significantly reduced in both light and dark photosynthetic phases. Dc(CdR100) strain showed a very high capacity to remove cadmium from the aquatic environment (over 90%), although most of the removed heavy metal (≈70%) is adhered to the cell wall. These specific characteristics of Dc(CdR100) cells suggest the possibility of using this strain in conjunction with Dc(wt) strain as bioelements into a dual-head biosensor, and in bioremediation processes on freshwater polluted with Cd.

  20. Changes of the elemental distributions in marine diatoms as a reporter of sample preparation artefacts. A nuclear microscopy application

    NASA Astrophysics Data System (ADS)

    Godinho, R. M.; Cabrita, M. T.; Alves, L. C.; Pinheiro, T.

    2015-04-01

    Studies of the elemental composition of whole marine diatoms cells have high interest as they constitute a direct measurement of environmental changes, and allow anticipating consequences of anthropogenic alterations to organisms, ecosystems and global marine geochemical cycles. Nuclear microscopy is a powerful tool allowing direct measurement of whole cells giving qualitative imaging of distribution, and quantitative determination of intracellular concentration. Major obstacles to the analysis of marine microalgae are high medium salinity and the recurrent presence of extracellular exudates produced by algae to maintain colonies in natural media and in vitro. The objective of this paper was to optimize the methodology of sample preparation of marine unicellular algae for elemental analysis with nuclear microscopy, allowing further studies on cellular response to metals. Primary cultures of Coscinodiscus wailesii maintained in vitro were used to optimize protocols for elemental analysis with nuclear microscopy techniques. Adequate cell preparation procedures to isolate the cells from media components and exudates were established. The use of chemical agents proved to be inappropriate for elemental determination and for intracellular morphological analysis. The assessment of morphology and elemental partitioning in cell compartments obtained with nuclear microscopy techniques enabled to infer their function in natural environment and imbalances in exposure condition. Exposure to metal affected C. wailesii morphology and internal elemental distribution.

  1. A turbulence-induced switch in phytoplankton swimming behavior

    NASA Astrophysics Data System (ADS)

    Carrara, Francesco; Sengupta, Anupam; Stocker, Roman

    2015-11-01

    Phytoplankton, unicellular photosynthetic organisms that form the basis of life in aquatic environments, are frequently exposed to turbulence, which has long been known to affect phytoplankton fitness and species succession. Yet, mechanisms by which phytoplankton may adapt to turbulence have remained unknown. Here we present a striking behavioral response of a motile species - the red-tide-producing raphidophyte Heterosigma akashiwo - to hydrodynamic cues mimicking those experienced in ocean turbulence. In the absence of turbulence, H. akashiwo exhibits preferential upwards swimming (`negative gravitaxis'), observable as a strong accumulation of cells at the top of an experimental container. When cells were exposed to overturning in an automated chamber - representing a minimum experimental model of rotation by Kolmogorov-scale turbulent eddies - the population robustly split in two nearly equi-abundant subpopulations, one swimming upward and one swimming downward. Microscopic observations at the single-cell level showed that the behavioral switch was accompanied by a rapid morphological change. A mechanistic model that takes into account cell shape confirms that modulation of morphology can alter the hydrodynamic stress distribution over the cell body, which, in turn, triggers the observed switch in phytoplankton migration direction. This active response to fluid flow, whereby microscale morphological changes influence ocean-scale migration dynamics, could be part of a bet-hedging strategy to maximize the chances of at least a fraction of the population evading high-turbulence microzones.

  2. Nanostructure and force spectroscopy analysis of human peripheral blood CD4{sup +} T cells using atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu Mingqian; Wang Jiongkun; Cai Jiye

    2008-09-12

    To date, nanoscale imaging of the morphological changes and adhesion force of CD4{sup +} T cells during in vitro activation remains largely unreported. In this study, we used atomic force microscopy (AFM) to study the morphological changes and specific binding forces in resting and activated human peripheral blood CD4{sup +} T cells. The AFM images revealed that the volume of activated CD4{sup +} T cells increased and the ultrastructure of these cells also became complex. Using a functionalized AFM tip, the strength of the specific binding force of the CD4 antigen-antibody interaction was found to be approximately three times thatmore » of the unspecific force. The adhesion forces were not randomly distributed over the surface of a single activated CD4{sup +} T cell, indicated that the CD4 molecules concentrated into nanodomains. The magnitude of the adhesion force of the CD4 antigen-antibody interaction did not change markedly with the activation time. Multiple bonds involved in the CD4 antigen-antibody interaction were measured at different activation times. These results suggest that the adhesion force involved in the CD4 antigen-antibody interaction is highly selective and of high affinity.« less

  3. Immediate and long-term effects in the hematopoietic system and the morphology of the respiratory system in experimental animals under chronic combined action of external gamma exposure and inhalation exposure.

    NASA Astrophysics Data System (ADS)

    Tatarkin, Sergey; Moukhamedieva, Lana; Aleksandr, Shafirkin; Barantseva, Maria; Ivanova, Svetlana

    The need to solve hygiene problems valuation of environmental factors in the implementation of the projected manned interplanetary missions, determined the relevance of studying the effect of external gamma-irradiation with inhalation of mixtures of chemicals on the parameters of major critical body systems: hematopoiesis and respiratory (morphological and morphometric parameters) in the short and long periods. The study conducted on 504 male mice F1 (CBA × C57BL6) under chronic fractional gamma-irradiation (within 10 weeks at a total dose 350sGr) and then under inhalation by mixtures of chemicals in low concentrations. Duration of the experiment (124 days) and 90 -day recovery period. Displaying adaptive reorganization in hematopoietic system, which was characterized by a tension of regulatory systems of animals and by a proliferation of bone marrow cells and by dynamic changes in amount of lymphoid cells in peripheral blood, elevated levels of the antioxidant activity of red blood cells, and morphological manifestations of "incomplete recovery " of the spleen, which are retained in the recovery period. Morphological changes in the respiratory organs of animals testified about immunogenesis activation and development of structural changes as a chronic inflammatory process. Increase of fibrous connective tissue in the walls of the trachea, bronchus and lung, against reduction of loose fibrous connective tissue (more pronounced in respiratory parts of the respiratory system) in experimental animals, which may indicate a reduction of the functional reserves of the body and increase the risk of adverse long-term effects.

  4. Various fates of neuronal progenitor cells observed on several different chemical functional groups

    NASA Astrophysics Data System (ADS)

    Liu, Xi; Wang, Ying; He, Jin; Wang, Xiu-Mei; Cui, Fu-Zhai; Xu, Quan-Yuan

    2011-12-01

    Neuronal progenitor cells cultured on gold-coated glass surfaces modified by different chemical functional groups, including hydroxyl (-OH), carboxyl (-COOH), amino (-NH2), bromo (-Br), mercapto (-SH), - Phenyl and methyl (-CH3), were studied here to investigate the influence of surface chemistry on the cells' adhesion, morphology, proliferation and functional gene expression. Focal adhesion staining indicated in the initial culture stage cells exhibited morphological changes in response to different chemical functional groups. Cells cultured on -NH2 grafted surface displayed focal adhesion plaque and flattened morphology and had the largest contact area. However, their counter parts on -CH3 grafted surface displayed no focal adhesion and rounded morphology and had the smallest contact area. After 6 days culture, the proliferation trend was as follows: -NH2 > -SH> -COOH> - Phenyl > - Br > -OH> -CH3. To determine the neural functional properties of the cells affected by surface chemistry, the expression of glutamate decarboxylase (GAD67), nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) were characterized. An increase of GAD67 expression was observed on -NH2, -COOH and -SH grafted surfaces, while no increase in NGF and BDNF expression was observed on any chemical surfaces. These results highlight the importance of surface chemistry in the fate determination of neuronal progenitor cells, and suggest that surface chemistry must be considered in the design of biomaterials for neural tissue engineering.

  5. Genetic backgrounds and redox conditions influence morphological characteristics and cell differentiation of osteoclasts in mice.

    PubMed

    Narahara, Shun; Matsushima, Haruna; Sakai, Eiko; Fukuma, Yutaka; Nishishita, Kazuhisa; Okamoto, Kuniaki; Tsukuba, Takayuki

    2012-04-01

    Osteoclasts (OCLs) are multinucleated giant cells and are formed by the fusion of mononuclear progenitors of monocyte/macrophage lineage. It is known that macrophages derived from different genetic backgrounds exhibit quite distinct characteristics of immune responses. However, it is unknown whether OCLs from different genetic backgrounds show distinct characteristics. In this study, we showed that bone-marrow macrophages (BMMs) derived from C57BL/6, BALB/c and ddY mice exhibited considerably distinct morphological characteristics and cell differentiation into OCLs. The differentiation of BMMs into OCLs was comparatively quicker in the C57BL/6 and ddY mice, while that of BALB/c mice was rather slow. Morphologically, ddY OCLs showed a giant cell with a round shape, C57BL/6 OCLs were of a moderate size with many protrusions and BALB/c OCLs had the smallest size with fewer nuclei. The intracellular signaling of differentiation and expression levels of marker proteins of OCLs were different in the respective strains. Treatment of BMMs from the three different strains with the reducing agent N-acetylcysteine (NAC) or with the oxidation agent hydrogen peroxide (H(2)O(2)) induced changes in the shape and sizes of the cells and caused distinct patterns of cell differentiation and survival. Thus, genetic backgrounds and redox conditions regulate the morphological characteristics and cell differentiation of OCLs.

  6. Light responses and morphology of bNOS-immunoreactive neurons in the mouse retina

    PubMed Central

    Pang, Ji-Jie; Gao, Fan; Wu, Samuel M.

    2010-01-01

    Nitric oxide (NO), produced by NO synthase (NOS), modulates the function of all retinal neurons and ocular blood vessels and participates in the pathogenesis of ocular diseases. To further understand the regulation of ocular NO release, we systematically studied the morphology, topography and light responses of NOS-containing amacrine cells (NOACs) in dark-adapted mouse retina. Immunohistological staining for neuronal NOS (bNOS), combined with retrograde labeling of ganglion cells (GCs) with Neurobiotin (NB, a gap junction permeable dye) and Lucifer yellow (LY, a less permeable dye), was used to identify NOACs. The light responses of ACs were recorded under whole-cell voltage clamp conditions and cell morphology was examined with a confocal microscope. We found that in dark-adapted conditions bNOS-immunoreactivity (IR) was present primarily in the inner nuclear layer and the ganglion cell layer. bNOS-IR somas were negative for LY, thus they were identified as ACs; nearly 6 % of the cells were labeled by NB but not by LY, indicating that they were dye-coupled with GCs. Three morphological subtypes of NOACs (NI, NII and displaced) were identified. The cell density, inter-cellular distance and the distribution of NOACs were studied in whole retinas. Light evoked depolarizing highly sensitive ON-OFF responses in NI cells and less sensitive OFF responses in NII cells. Frequent (1 to 2 Hz) or abrupt change of light-intensity evoked larger peak responses. The possibility for light to modify NO release from NOACs is discussed. PMID:20503422

  7. HeLa cells response to photodynamic treatment with Radachlorin at various irradiation parameters

    NASA Astrophysics Data System (ADS)

    Belashov, A. V.; Zhikhoreva, A. A.; Belyaeva, T. N.; Kornilova, E. S.; Petrov, N. V.; Salova, A. V.; Semenova, I. V.; Vasyutinskii, O. S.

    2017-07-01

    Measurements of average phase shifts introduced by living HeLa cells to probe wave front were carried out. Variations of this value were monitored in the course of morphological changes caused by photodynamic treatment at various irradiation doses. Observations of changes in living cells were also performed by means of far field optical microscopy and confocal fluorescent microscopy. Quantitative analysis of the data obtained shows that average phase shift introduced by the cells may either increase or decrease depending upon major parameters of the treatment.

  8. A quantitative spatiotemporal analysis of microglia morphology during ischemic stroke and reperfusion

    PubMed Central

    2013-01-01

    Background Microglia cells continuously survey the healthy brain in a ramified morphology and, in response to injury, undergo progressive morphological and functional changes that encompass microglia activation. Although ideally positioned for immediate response to ischemic stroke (IS) and reperfusion, their progressive morphological transformation into activated cells has not been quantified. In addition, it is not well understood if diverse microglia morphologies correlate to diverse microglia functions. As such, the dichotomous nature of these cells continues to confound our understanding of microglia-mediated injury after IS and reperfusion. The purpose of this study was to quantitatively characterize the spatiotemporal pattern of microglia morphology during the evolution of cerebral injury after IS and reperfusion. Methods Male C57Bl/6 mice were subjected to focal cerebral ischemia and periods of reperfusion (0, 8 and 24 h). The microglia process length/cell and number of endpoints/cell was quantified from immunofluorescent confocal images of brain regions using a skeleton analysis method developed for this study. Live cell morphology and process activity were measured from movies acquired in acute brain slices from GFP-CX3CR1 transgenic mice after IS and 24-h reperfusion. Regional CD11b and iNOS expressions were measured from confocal images and Western blot, respectively, to assess microglia proinflammatory function. Results Quantitative analysis reveals a significant spatiotemporal relationship between microglia morphology and evolving cerebral injury in the ipsilateral hemisphere after IS and reperfusion. Microglia were both hyper- and de-ramified in striatal and cortical brain regions (respectively) after 60 min of focal cerebral ischemia. However, a de-ramified morphology was prominent when ischemia was coupled to reperfusion. Live microglia were de-ramified, and, in addition, process activity was severely blunted proximal to the necrotic core after IS and 24 h of reperfusion. CD11b expression, but not iNOS expression, was increased in regions of hyper- and de-ramified microglia during the course of ischemic stroke and 24 h of reperfusion. Conclusions Our findings illustrate that microglia activation after stroke includes both increased and decreased cell ramification. Importantly, quantitative analyses of microglial morphology and activity are feasible and, in future studies, would assist in the comprehensive identification and stratification of their dichotomous contribution toward cerebral injury and recovery during IS and reperfusion. PMID:23311642

  9. [An in vitro study on toxic effect of vanadium-titanium-magnetite dust on alveolar macrophage in rabbits].

    PubMed

    Song, Y; Chen, Q; Guan, Y

    1998-11-01

    To study the toxic effect of vanadium-titanium-magnetite (VTM) dust on alveolar macrophage (AM) and its hazardous extent. Survival rates, morphology and function of AM were compared in rabbits exposed to dust of VTM, vanadium oxide, titanium dioxide and silica in various doses and length of time with in vitro cell culture and putamen membrane cover glass transmission electron microscopy, and changes in activities of lactic dehydrogenase (LDH) and acid phosphatase (ACP) in cell culture were measured. Exposure to all the four kinds of dust could lead to decrease in survival rate of AM, increase in activities of LDH and ACP in the cell culture, and changes in their morphology and function to the extent dependent on the nature of dust. Toxic effect of exposure to VTM dust was lower than that to vanadium oxide and silica, but higher than that to titanium dioxide, which had slight toxic effect.

  10. Nutrient-induced intestinal adaption and its effect in obesity.

    PubMed

    Dailey, Megan J

    2014-09-01

    Obese and lean individuals respond differently to nutrients with changes in digestion, absorption and hormone release. This may be a result of differences in intestinal epithelial morphology and function driven by the hyperphagia or the type of diet associated with obesity. It is well known that the maintenance and growth of the intestine is driven by the amount of luminal nutrients, with high nutrient content resulting in increases in cell number, villi length and crypt depth. In addition, the type of nutrient appears to contribute to alterations in the morphology and function of the epithelial cells. This intestinal adaptation may be what is driving the differences in nutrient processing in lean versus obese individuals. This review describes how nutrients may be able to induce changes in intestinal epithelial cell proliferation, differentiation and function and the link between intestinal adaptation and obesity. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Gap Junctional Blockade Stochastically Induces Different Species-Specific Head Anatomies in Genetically Wild-Type Girardia dorotocephala Flatworms

    PubMed Central

    Emmons-Bell, Maya; Durant, Fallon; Hammelman, Jennifer; Bessonov, Nicholas; Volpert, Vitaly; Morokuma, Junji; Pinet, Kaylinnette; Adams, Dany S.; Pietak, Alexis; Lobo, Daniel; Levin, Michael

    2015-01-01

    The shape of an animal body plan is constructed from protein components encoded by the genome. However, bioelectric networks composed of many cell types have their own intrinsic dynamics, and can drive distinct morphological outcomes during embryogenesis and regeneration. Planarian flatworms are a popular system for exploring body plan patterning due to their regenerative capacity, but despite considerable molecular information regarding stem cell differentiation and basic axial patterning, very little is known about how distinct head shapes are produced. Here, we show that after decapitation in G. dorotocephala, a transient perturbation of physiological connectivity among cells (using the gap junction blocker octanol) can result in regenerated heads with quite different shapes, stochastically matching other known species of planaria (S. mediterranea, D. japonica, and P. felina). We use morphometric analysis to quantify the ability of physiological network perturbations to induce different species-specific head shapes from the same genome. Moreover, we present a computational agent-based model of cell and physical dynamics during regeneration that quantitatively reproduces the observed shape changes. Morphological alterations induced in a genomically wild-type G. dorotocephala during regeneration include not only the shape of the head but also the morphology of the brain, the characteristic distribution of adult stem cells (neoblasts), and the bioelectric gradients of resting potential within the anterior tissues. Interestingly, the shape change is not permanent; after regeneration is complete, intact animals remodel back to G. dorotocephala-appropriate head shape within several weeks in a secondary phase of remodeling following initial complete regeneration. We present a conceptual model to guide future work to delineate the molecular mechanisms by which bioelectric networks stochastically select among a small set of discrete head morphologies. Taken together, these data and analyses shed light on important physiological modifiers of morphological information in dictating species-specific shape, and reveal them to be a novel instructive input into head patterning in regenerating planaria. PMID:26610482

  12. Garlic-derived compound S-allylmercaptocysteine (SAMC) is active against anaplastic thyroid cancer cell line 8305C (HPACC).

    PubMed

    Liu, Yuexin; Yan, Jinyin; Han, Xiaochen; Hu, Wanning

    2015-01-01

    Epidemiological and experimental carcinogenesis studies provide evidence that components of garlic have anticancer activity. In this study, the apoptotic effects of Garlic-derived compound S-allylmercaptocysteine (SAMC) were investigated in 8305C human anaplastic thyroid carcinoma cells. The cell line 8305C (HPACC) were treated with SAMC and the MTT assay, flow cytometry (FCM), electron microscope method were used to test cell cycle, inhibitory rate and morphologic changes respectively. HPACC-8305C cells were suppressed after exposure to SAMC of 0.02 mg/ml, 0.06 mg/ml, and 0.1 mg/ml for 48 h. Compared with the control, the difference was significant (P< 0.05). SAMC could induce apoptosis of the cells in a dose-dependent and non-linear manner and increase the proportion of cells in the G2/M phase. Compared with the control, the difference was significant in terms of the percentage of cells in the G2/M phase (P< 0.05). After exposure to SAMC at 0.02 mg/ml for 24 hours, HPACC-8305C cells showed typical morphologic change. SAMC inhibits the growth of HPACC-8305C cells by induction of apoptotic cell death and inhibit telomerase activity, which appears to account for its anti-cancer activity.

  13. [Expression of integrin alpha5 and actin in the cells of intervertebral disc under cyclic hydrostatic pressure in vitro].

    PubMed

    Yu, Sheng-ji; Qiu, Gui-xing; Burton, Yang; Sandra, Roth; Cari, Whyne; Albert, Yee

    2005-12-15

    To investigate the expression of integrin alpha5 and actin in the cells of intervertebral disc under cyclic hydrostatic pressure in vitro. The porcine lumbar intervertebral disc cells were isolated and cultured in vitro, and the cells underwent cyclic hydrostatic loading. After that, the expression of integrin alpha5 and actin in intervertebral disc cells were studied by means of morphology observing, Western blot and immunohistochemistry staining. The morphology of intervertebral disc cells were changed into smaller and flatten shape, and the expression of integrin alpha5 and actin were decreased after loading. The expression of integrin alpha5 decreases under cyclic hydrostatic pressure, and the actin is affected at the same time when signals are transferred into the cells by integrin alpha5. That may be one of the important mechanisms of the mechanotransduction in the cells of intervertebral disc.

  14. Adipose tissue-deprived stem cells acquire cementoblast features treated with dental follicle cell conditioned medium containing dentin non-collagenous proteins in vitro

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wen, Xiujie; Nie, Xin; Zhang, Li

    Highlights: {yields} In this study we examine the effects of dental follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs) on differentiation of ADSCs. {yields} We examined that ADSCs treated with dNCPs/DFCCM underwent morphological changes and significantly lost their proliferative capacity. {yields} dNCPs/DFCCM enhanced the mineralization behaviour and mineralization-related marker expression of ADSCs. {yields} ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment. -- Abstract: Adipose tissue-derived stem cells (ADSCs), which are easily harvested and show excellent pluripotency potential, have generated considerable interest in regenerative medicine. In this study, the differentiation of ADSCs was assessed after treatment with dentalmore » follicle cell conditioned medium (DFCCM) containing dentin non-collagenous proteins (dNCPs). ADSCs exhibited a fibroblast-like morphology and high proliferative capacity. However, after treatment with dNCPs/DFCCM, ADSCs changed from a fibroblast-like to cementoblast-like morphology and significantly lost their proliferative capacity. Alkaline phosphatase activity and in vitro mineralization behaviour of ADSCs were significantly enhanced. Mineralization-related markers including cementum attachment protein, bone sialoprotein, osteocalcin, osteopontin and osteonectin were detected at mRNA or protein levels, whereas dentin sialophosphoprotein and dentin sialoprotein were not detected, implying a cementoblast-like phenotype. These results demonstrate that ADSCs acquired cementoblast features in vitro with dNCPs/DFCCM treatment and could be a potential source of cementogenic cells for periodontal regeneration.« less

  15. [Changes of lastids in virus-infected cells of the attraction-zone from Sarracenia purpurea L].

    PubMed

    Barckhaus, R H; Weinert, H

    1975-01-01

    Viruslike particles 300-350 nm long and 70 nm in diameter were found in ultrathin sections of attraction-zone from Sarracenia purpurea. Epidermal- and mesophyll cells contained the bacilliform particles. The membrane-bound particles-most virions occured within ER-like membranes-consisted of an outer coat 70-90 A thick, an inner membrane and an axial core. The plastids of infected cells in which virus particles were localized show morphologicals changes of the organells.

  16. High infusion pressure in conjunction with vitreous surgery alters the morphology and function of the retina of rabbits.

    PubMed

    Minami, Masahiro; Oku, Hidehiro; Okuno, Takashi; Fukuhara, Masayuki; Ikeda, Tsunehiko

    2007-09-01

    To investigate the effects of high infusion pressure in conjunction with pars plana vitrectomy (PPV) on retinal morphology and function in rabbits. Pars plana vitrectomy was performed under urethane (0.8 mg/kg) anaesthesia in the right eye of albino rabbits following phacoemulsification and aspiration (PEA). The left eyes were not touched. After PEA, the animals were divided into two groups. In six eyes, intraocular pressure (IOP) was increased to 80 mmHg for 30 mins (high-pressure group) and in five eyes IOP was maintained at 40 mmHg for 30 mins (low-pressure group). The IOPs were regulated by the height of the bottle of balanced salt solution (BSS) and monitored with a pressure transducer. After the pressure elevation, vitreous fluid was collected to measure the glutamate concentration. Then, PPV was performed for 15 mins in both groups under an infusion pressure of 40 mmHg. In five additional rabbits, PEA alone was performed in the right eye, and vitreous fluid was collected (PEA group). Functional alterations were assessed by recording visual evoked potentials (VEPs) and electroretinograms (ERGs). Ten days after the IOP changes, the animals were killed with intravenous pentobarbital sodium and the eyes were prepared for histological analysis. Damage to retinal ganglion cells (RGCs) was quantified by counting the number of cells in the ganglion cell layer (GCL). The contralateral eyes in the high-pressure group served as controls (n = 6). The mean implicit time (IT) of the VEPs in the high-pressure group was significantly longer than that before the IOP elevation, by 114-124% (p < 0.05, paired t-test), and also than that of control eyes (p < 0.05, anova followed by t-test). No significant changes in the VEPs were detected in either the low-pressure group or the PEA group. There were significantly fewer cells in the GCL in the high-pressure group (24.7/mm) than in the control animals (41.4/mm; p < 0.05, Dunnett's test). The number of cells in the GCL in the low-pressure and PEA groups did not significantly differ to that in the controls. The amplitudes of the ERG a- and b-waves were not significantly changed (p > 0.05, paired t-test). These results suggest that high infusion pressure in conjunction with PPV leads to morphological and functional changes in the retina. The absence of ERG changes and presence of VEP changes suggest that these changes were due to damage to RGCs, which supports the morphological observations.

  17. Proteinase-activated receptor 4 stimulation-induced epithelial-mesenchymal transition in alveolar epithelial cells

    PubMed Central

    Ando, Seijitsu; Otani, Hitomi; Yagi, Yasuhiro; Kawai, Kenzo; Araki, Hiromasa; Fukuhara, Shirou; Inagaki, Chiyoko

    2007-01-01

    Background Proteinase-activated receptors (PARs; PAR1–4) that can be activated by serine proteinases such as thrombin and neutrophil catepsin G are known to contribute to the pathogenesis of various pulmonary diseases including fibrosis. Among these PARs, especially PAR4, a newly identified subtype, is highly expressed in the lung. Here, we examined whether PAR4 stimulation plays a role in the formation of fibrotic response in the lung, through alveolar epithelial-mesenchymal transition (EMT) which contributes to the increase in myofibroblast population. Methods EMT was assessed by measuring the changes in each specific cell markers, E-cadherin for epithelial cell, α-smooth muscle actin (α-SMA) for myofibroblast, using primary cultured mouse alveolar epithelial cells and human lung carcinoma-derived alveolar epithelial cell line (A549 cells). Results Stimulation of PAR with thrombin (1 U/ml) or a synthetic PAR4 agonist peptide (AYPGKF-NH2, 100 μM) for 72 h induced morphological changes from cobblestone-like structure to elongated shape in primary cultured alveolar epithelial cells and A549 cells. In immunocytochemical analyses of these cells, such PAR4 stimulation decreased E-cadherin-like immunoreactivity and increased α-SMA-like immunoreactivity, as observed with a typical EMT-inducer, tumor growth factor-β (TGF-β). Western blot analyses of PAR4-stimulated A549 cells also showed similar changes in expression of these EMT-related marker proteins. Such PAR4-mediated changes were attenuated by inhibitors of epidermal growth factor receptor (EGFR) kinase and Src. PAR4-mediated morphological changes in primary cultured alveolar epithelial cells were reduced in the presence of these inhibitors. PAR4 stimulation increased tyrosine phosphorylated EGFR or tyrosine phosphorylated Src level in A549 cells, and the former response being inhibited by Src inhibitor. Conclusion PAR4 stimulation of alveolar epithelial cells induced epithelial-mesenchymal transition (EMT) as monitored by cell shapes, and epithelial or myofibroblast marker at least partly through EGFR transactivation via receptor-linked Src activation. PMID:17433115

  18. [Morphologic changes in cultures of different tissues exposed to the toxins of C1. perfringens types B, C, E and F].

    PubMed

    Ermakova, M P; Zemlianitskaia, E P

    1975-11-01

    There were revealed morphological peculiarities of the action of C1. perfringens toxins, types B, C, D, E and F on the cultures of fibroblasts of chick embryo, amniotic cells and intestinal tissue. The toxin type B was characterized by a marked vocuolization of the cell cytoplasm; the action of the toxin of type C was expressed in the swelling of the nuclei and the lysis of the chromatine substance, the toxin of type E casued kariorhexis, and the toxin of type F--hyperchromatosis of the nuclei. All the cultures proved to be insensitive to the toxin of type D. Peculiarity of the morphological affection of the cells permitted to differentiate toxin of type B in the cultures of the fibroblasts of chick embryo, whereas the toxins of types C, E and F--in the cultures of the amniotic cells under control of the reaction of neutralization with the homologous antitoxic sera.

  19. Humidity-Dependent Bacterial Cells Functional Morphometry Investigations Using Atomic Force Microscope

    PubMed Central

    Nikiyan, Hike; Vasilchenko, Alexey; Deryabin, Dmitry

    2010-01-01

    The effect of a relative humidity (RH) in a range of 93–65% on morphological and elastic properties of Bacillus cereus and Escherichia coli cells was evaluated using atomic force microscopy. It is shown that gradual dehumidification of bacteria environment has no significant effect on cell dimensional features and considerably decreases them only at 65% RH. The increasing of the bacteria cell wall roughness and elasticity occurs at the same time. Observed changes indicate that morphological properties of B. cereus are rather stable in wide range of relative humidity, whereas E. coli are more sensitive to drying, significantly increasing roughness and stiffness parameters at RH ≤ 84% RH. It is discussed the dependence of the response features on differences in cell wall structure of gram-positive and gram-negative bacterial cells. PMID:20652040

  20. Stem cell behavior on tailored porous oxide surface coatings.

    PubMed

    Lavenus, Sandrine; Poxson, David J; Ogievetsky, Nika; Dordick, Jonathan S; Siegel, Richard W

    2015-07-01

    Nanoscale surface topographies are known to have a profound influence on cell behavior, including cell guidance, migration, morphology, proliferation, and differentiation. In this study, we have observed the behavior of human mesenchymal stem cells cultured on a range of tailored porous SiO2 and TiO2 nanostructured surface coatings fabricated via glancing angle electron-beam deposition. By controlling the physical vapor deposition angle during fabrication, we could control systematically the deposited coating porosity, along with associated topographic features. Immunocytochemistry and image analysis quantitatively revealed the number of adherent cells, as well as their basic cellular morphology, on these surfaces. Signaling pathway studies showed that even with subtle changes in nanoscale surface structures, the behavior of mesenchymal stem cells was strongly influenced by the precise surface structures of these porous coatings. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Exploring Statistical Characterizations of Morphologic Change and Variability: Fire Island, New York

    NASA Astrophysics Data System (ADS)

    Lentz, E. E.; Hapke, C. J.

    2012-12-01

    A comprehensive understanding of coastal barrier behavior requires high-resolution observations that capture a wide range of morphological changes occurring over a range of spatial and temporal scales. Fire Island National Seashore, located along the coast of Long Island, New York, is a well studied barrier island coast where understanding how morphological changes contribute to barrier island vulnerability have important implications for coastal land management. Previous work has shown that morphologic differences in eastern and western reaches are attributable to the underlying geology and variations sediment transport in the system. In this study, we further explore western and eastern differences and variability with lidar-derived topographic surfaces to provide a unique and comprehensive investigation of dune-beach change at Fire Island, New York. Continuous topographic surfaces generated from 12 lidar surveys collected between 1998 and 2011 are used to examine the three-dimensional variability over a range of time periods over the 50 km long island. Because surveys were collected over a range of seasons and in response to a number of storm events, we explore morphologic configurations reflecting the seasonality, post-storm configuration, and replenishment response to the system through the generation of a representative or average surface. These averaged surfaces provide the context for what would be an expected or typical coastal configuration under certain conditions, and through comparison with an individual event, can be used to derive an event-specific spatial-change signature. To investigate anthropogenic influences, differences in morphology between a survey collected after a substantial beach replenishment project and a typical fair-weather configuration averaged from six surveys are determined. Storm response variations are also explored by assessing differences between Tropical Storm Irene (2011), Nor'Ida (2009), and a typical post-storm configuration averaged from five post-storm surveys. In addition to averaged surfaces, surveys are combined to generate a new raster surface reflecting cell by cell standard deviations over a defined period. Standard deviation surfaces are generated to highlight 1) where areas of highest and lowest morphologic variation are located over the entire period, and 2) whether spatial similarities exist in variability between storm and non-storm morphologies. Results show there are distinct and variable responses in eastern and western reaches attributable to wave climate, profile gradient, and offshore bathymetry, as well as to a general along-coast increase in sediment availability.

  2. Biomolecular Mechanisms of Adaptive Reflectance and Related Biophotonic Systems in Molluscs

    DTIC Science & Technology

    2015-01-09

    From Silica Skeletons of Sponges to Dynamically Tunable Photonics in Squid: Bio-inspired Materials Open New Horizons for Marine Biodiscovery...both types of reflective cells, the morphologies and dimensions of the dehydrated vesicles dictate that omnidirectional, broadband Mie scattering...family of synthetic polymeric thin films that exhibit electrically driven simultaneous changes in morphology and refractive index. The lesson we

  3. Inductions of granulosa cell luteinization and cumulus expansion are dependent on the fibronectin-integrin pathway during ovulation process in mice.

    PubMed

    Kitasaka, Hiroya; Kawai, Tomoko; Hoque, S A Masudul; Umehara, Takashi; Fujita, Youko; Shimada, Masayuki

    2018-01-01

    It has been known that EGF-like factor secreted from LH-stimulated granuloma cells acts on granulosa cells and cumulus cells to induce ovulation process. Granulosa cells are changed the morphology with differentiating cell functions to produce progesterone. Cumulus cells are detached to make a space between the cells to accumulate hyaluronan rich matrix. LH also changes extracellular matrix (ECM) components including fibronectin in the follicular walls and granulosa cell layers. EGF like factor and fibronectin synergistically play important roles in numerous cell functions, especially cancer cell migration, estimating that fibronectin would impact on granulosa cells and cumulus cells. To clear this hypothesis, the localizations of fibronectin and its receptor integrin were observed by immunofluorescence technique. The functions were monitored by the detection of downstream signaling pathway, focal adhesion kinase (FAK). The pharmacological approach in both in vivo and in vitro were used for analyzing the physiological roles of FAK during ovulation process. The immunofluorescence staining revealed that fibronectin and integrin were observed in granulosa cells, cumulus cells and the space between cumulus cells and oocyte at 4 and 8 h after hCG injection. Concomitantly with the changes of fibronectin-integrin localization, FAK was phosphorylated in periovulatory follicles. The injection of FAK inhibitor suppressed not only ovulation but also luteinization of granulosa cells and cumulus expansion. In cultured-granulosa cells, fibronectin-integrin synergistically activated FAK with amphiregulin (AREG). Such cooperative stimulations induced a morphological change in granulosa cells, which resulted in the maximum level of progesterone production via the induction of Hsd3b. When cumulus-oocyte complexes (COCs) were cultured with AREG in the presence of serum, the maximum level of cumulus expansion was observed. The AREG-induced cumulus expansion was also suppressed by FAK inhibitor. Thus, it is concluded that fibronectin and AREG synergistically activate FAK not only in granulosa cells and cumulus cells to induce successful ovulation process.

  4. [Effects of electromagnetic pulse exposure on the morphological change and excretion function of BV-2 cells and possible mechanism].

    PubMed

    Yang, Long-long; Zhou, Yan; Li, Hai-juan; Guo, Juan; Zhang, Yan-jun; Ding, Gui-rong; Guo, Guo-zhen

    2012-03-01

    To study the effects of electromagnetic pulse (EMP) exposure on the morphological change and excretion functions of mouse microglia (BV-2) cells and possible mechanism. BV-2 cells were divided into two groups: the group exposed to EMP at 200 kV/m for 200 pulses and sham exposure group. At 1, 6, 12 and 24 hour after exposure the cells and culture supernatant were collected. Cellular morphological change was observed under invert microscope, the levels of TNF-α, IL-1β and IL-10 in culture supernatant were determined by enzyme-linked immunosorbent assay (ELISA), nitric oxide (NO) and reactive oxygen species (ROS) were detected by nitrate reductase method and DCFH-DA probe, respectively. The protein and phosphorylation levels of ERK, JNK and p38 were measured by Western Blot method. After the cells pre-treated with the inhibitor of p38 (SB203580) were exposed to EMP, the levels of NO and ROS in culture supernatant were detected. It was found that the large ameboid shape appeared in some microglia cells exposed to EMP for 1, 6 and 12 h. Moreover, the number of microglia cells with ameboid shape increased significantly at 1 h, 6 h and 12 h after EMP exposure compared with sham group (P < 0.05). The levels of cytokines, such as TNF-α, IL-1β and IL-10, in culture supernatant did not change obviously after EMP exposure. The levels of NO and ROS increased significantly at 1h after EMP exposure, reached the peak at 6 h, began to recover at 12 h and recovered to sham group level at 24 h (P < 0.05). Western blot results showed that the protein and protein phosphorylation levels of ERK and JNK did not change significantly after EMP exposure, however, the protein and protein phosphorylation levels of p38 increased obviously at 1 h and 6 h after EMP exposure, compared with sham group (P < 0.05). In addition, the pretreatment of p38 inhibitor (SB203580) significantly decreased NO and ROS production induced by EMP. EMP exposure may activate microglia cells and promote the production of NO and ROS in mouse microglia cells, and p38 pathway is involved in this process.

  5. Effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells.

    PubMed

    Sun, Li; Wang, Xu

    2003-09-01

    To investigate the effects of allicin on both telomerase activity and apoptosis in gastric cancer SGC-7901 cells. The gastric cancer SGC-7901 adenocarcinoma cells were treated with allicin and the cell cycle, inhibitory rate, apoptosis, telomerase activity and morphologic changes were studied by MTT assay, flow cytometry (FCM), TRAP-PCR-ELISA assay, light microscope, electron microscope respectively. Results were compared with that of AZT (3'-Azido-3'-deoxythymidine). SGC-7901 cells were suppressed after exposure to allicin of 0.016 mg/ml, 0.05 mg/ml, and 0.1 mg/ml for 48 h. Compared with the control, the difference was significant (P<0.05). Allicin could induce apoptosis of the cells in a dose-dependent and non-linear manner and increase the proportion of cells in the G(2)/M phase. Compared with the control, the difference was significant in terms of the percentage of cells in the G2/M phase (P<0.05). Allicin could inhibit telomerase activity in a time-dependent and dose-dependent pattern. After exposure to allicin at 0.016 mg/ml for 24 hours, SGC-7901 cells showed typical morphologic change. Allicin can inhibit telomerase activity and induce apoptosis of gastric cancer SGC-7901 cells. Allicin may be more effective than AZT.

  6. Water extract of Semecarpus parvifolia Thw. leaves inhibits cell proliferation and induces apoptosis on HEp-2 cells.

    PubMed

    Soysa, Preethi; Jayarthne, Panchima; Ranathunga, Imali

    2018-03-05

    Semecarpus parvifolia Thw is used as an ingredient of poly herbal decoctions to treat cancer in traditional medicine. The present study aims to investigate the antiproliferative activity on HEp 2 cells by the water extract of S. parvifolia leaves and to evaluate potential mechanisms. The plant extract was exposed to S. parvifolia for 24 hours and antiproliferative activity was quantified by Sulforhodamine B (SRB), 3-(4, 5-dimethythiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) and Lactate dehydrogenase (LDH) assays. Morphological changes were observed after staining cells with ethidium bromide/acridine orange (EB/AO) and Giemsa dye. Comet assay was performed to evaluate the DNA damage. The toxicity of the plant extract was determined by brine shrimp lethality assay. S. parvifolia leaves reduced the cell proliferation in a dose and time dependent manner. A two fold increase in NO level was observed at higher concentrations. Morphological changes characteristic to apoptosis were observed in light microscopy, Giemsa and EB/AO stained cells. Fragmented DNA further confirmed its capacity to induce apoptosis. No lethality was observed with brine shrimps. The results suggest that Semecarpus parvifolia Thw induces apoptosis in HEp-2 cells through a NO dependent pathway.

  7. Identification of tumor cells infiltrating into connective tissue in esophageal cancer by multiphoton microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Jian; Jiang, Liwei; Kang, Deyong; Wu, Xuejing; Xu, Meifang; Zhuo, Shuangmu; Zhu, Xiaoqin; Lin, Jiangbo; Chen, Jianxin

    2016-10-01

    Esophageal cancer is one of the most common malignancies of the gastrointestinal cancers and carries poorer prognosis than other gastrointestinal cancers. In general practice, the depth of tumor infiltration in esophageal wall is crucial to establishing appropriate treatment plan which is established by detecting the tumor infiltration depth. Connective tissue is one of the main structures that form the esophageal wall. So, identification of tumor cells infiltrating into connective tissue is helping for detecting the tumor infiltration depth. Our aim is to evaluate whether multiphoton microscopy (MPM) can be used to detect tumor cells infiltrating into connective tissue in the esophageal cancer. MPM is well-suited for real-time detecting morphologic and cellular changes in fresh tissues since many endogenous fluorophores of fresh tissues are excited through two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). In this work, microstructure of tumor cells and connective tissue are first studied. Then, morphological changes of collagen fibers after the infiltration of tumor cells are shown. These results show that MPM has the ability to detect tumor cells infiltrating into connective tissue in the esophageal cancer. In the future, MPM may be a promising imaging technique for detecting tumor cells in esophageal cancer.

  8. S179D prolactin diminishes the effects of UV light on epidermal gamma delta T cells

    PubMed Central

    Guzmán, Esther A.; Langowski, John L.; De Guzman, Ariel; Konrad Muller, H.; Walker, Ameae M.; Owen, Laurie B.

    2008-01-01

    Epidermal gamma delta T cells (γδ T) and Langerhans cells (LC) are immune cells altered by exposure to ultraviolet radiation (UVB), a powerful stressor resulting in immune suppression. Prolactin (PRL) has been characterized as an immunomodulator, particularly during stress. In this study, we have asked whether separate administration of the two major forms of prolactin, unmodified and phosphorylated, to groups of 15 mice (3 experiments, each with 5 mice per treatment group) affected the number and morphology of these epidermal immune cells under control conditions, and following UV irradiation. Under control conditions, both PRLs reduced the number of γδ T, but a molecular mimic of phosphorylated PRL (S179D PRL) was more effective, resulting in a 30% reduction. In the irradiated group, however, S179D PRL was protective against a UV-induced reduction in γδ T number and change in morphology (halved the reduction and normalized the morphology). In addition, S179D PRL, but not unmodified (U-PRL), maintained a normal LC: γδ T ratio and sustained the dendritic morphology of LC after UV exposure. These findings suggest that S179D PRL may have an overall protective effect, countering UV-induced cellular alterations in the epidermis. PMID:17945411

  9. High LET Radiation Can Enhance TGF(Beta) Induced EMT and Cross-Talk with ATM Pathways

    NASA Technical Reports Server (NTRS)

    Wang, Minli; Hada, Megumi; Huff, Janice; Pluth, Janice M.; Anderson, Janniffer; ONeill, Peter; Cucinotta, Francis A.

    2010-01-01

    The TGF(Beta) pathway has been shown to regulate or directly interact with the ATM pathway in the response to radiation in mammary epithelial cells. We investigated possible interactions between the TGF(Beta) and ATM pathways following simulated space radiation using hTERT immortalized human esophageal epithelial cells (EPC-hTERT), mink lung epithelial cells (Mv1lu), and several human fibroblast cell lines. TGF(Beta) is a key modulator of the Epithelial-Mesenchymal Transition (EMT), important in cancer progression and metastasis. The implication of EMT by radiation also has several lines of developing evidence, however is poorly understood. The identification of TGF(Beta) induced EMT can be shown in changes to morphology, related gene over expression or down regulation, which can be detected by RT-PCR, and immunostaining and western blotting. In this study, we have observed morphologic and molecular alternations consistent with EMT after Mv1lu cells were treated with TGF(Beta) High LET radiation enhanced TGF(Beta) mediated EMT with a dose as low as 0.1Gy. In order to consider the TGF(Beta) interaction with ATM we used a potent ATM inhibitor Ku55933 and investigated gene expression changes and Smad signaling kinetics. Ku559933 was observed to reverse TGF(Beta) induced EMT, while this was not observed in dual treated cells (radiation+TGF(Beta)). In EPC-hTERT cells, TGF(Beta) alone was not able to induce EMT after 3 days of application. A combined treatment with high LET, however, significantly caused the alteration of EMT markers. To study the function of p53 in the process of EMT, we knocked down P53 through RNA interference. Morphology changes associated with EMT were observed in epithelial cells with silenced p53. Our study indicates: high LET radiation can enhance TGF(Beta) induced EMT; while ATM is triggering the process of TGF(Beta)-induced EMT, p53 might be an essential repressor for EMT phenotypes.

  10. In vitro mesenchymal stem cell responses on laser-welded NiTi alloy.

    PubMed

    Chan, C W; Hussain, I; Waugh, D G; Lawrence, J; Man, H C

    2013-04-01

    The biocompatibility of NiTi after laser welding was studied by examining the in vitro (mesenchymal stem cell) MSC responses at different sets of time varying from early (4 to 12h) to intermediate phases (1 and 4 days) of cell culture. The effects of physical (surface roughness and topography) and chemical (surface Ti/Ni ratio) changes as a consequence of laser welding in different regions (WZ, HAZ, and BM) on the cell morphology and cell coverage were studied. The results in this research indicated that the morphology of MSCs was affected primarily by the topographical factors in the WZ: the well-defined and directional dendritic pattern and the presence of deeper grooves. The morphology of MSCs was not significantly modulated by surface roughness. Despite the possible initial Ni release in the medium during the cell culture, no toxic effect seemed to cause to MSCs as evidenced by the success of adhesion and spreading of the cells onto different regions in the laser weldment. The good biocompatibility of the NiTi laser weldment has been firstly reported in this study. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Compound 49b Prevents Diabetes-Induced Apoptosis through Increased IGFBP-3 Levels

    PubMed Central

    Zhang, Qiuhua; Guy, Kimberly; Pagadala, Jayaprakash; Jiang, Youde; Walker, Robert J; Liu, Luhong; Soderland, Carl; Kern, Timothy S; Ferry, Robert; He, Hui; Yates, C. Ryan; Miller, Duane D; Steinle, Jena J

    2012-01-01

    Purpose. To determine whether Compound 49b, a novel PKA-activating drug, can prevent diabetic-like changes in the rat retina through increased insulin-like growth factor binding protein-3 (IGFBP-3) levels. Methods. For the cell culture studies, we used both human retinal endothelial cells (REC) and retinal Müller cells in either 5 mM (normal) or 25 mM (high) glucose. Cells were treated with 50 nM Compound 49b alone of following treatment with protein kinase A (PKA) siRNA or IGFBP-3 siRNA. Western blotting and ELISA analyses were done to verify PKA and IGFBP-3 knockdown, as well as to measure apoptotic markers. For animal studies, we used streptozotocin-treated rats after 2 and 8 months of diabetes. Some rats were treated topically with 1 mM Compound 49b. Analyses were done for retinal thickness, cell numbers in the ganglion cell layer, pericyte ghosts, and numbers of degenerate capillaries, as well as electroretinogram and heart morphology. Results. Compound 49b requires active PKA and IGFBP-3 to prevent apoptosis of REC. Compound 49b significantly reduced the numbers of degenerate capillaries and pericyte ghosts, while preventing the decreased retinal thickness and loss of cells in the ganglion cell layer. Compound 49b maintained a normal electroretinogram, with no changes in blood pressure, intraocular pressure, or heart morphological changes. Conclusions. Topical Compound 49b is able to prevent diabetic-like changes in the rat retina, without producing systemic changes. Compound 49b is able to prevent REC apoptosis through increasing IGFBP-3 levels, which are reduced in response to hyperglycemia. PMID:22467575

  12. The sow endosalpinx at different stages of the oestrous cycle and at anoestrus: studies on morphological changes and infiltration by cells of the immune system.

    PubMed

    Jiwakanon, J; Persson, E; Kaeoket, K; Dalin, A-M

    2005-02-01

    The aim of this study was to investigate the morphological changes of the sow endosalpinx and the distribution of leukocytes throughout the oestrous cycle and at anoestrus. Nineteen crossbred sows (Swedish Landrace x Swedish Yorkshire) at late dioestrus (three), prooestrus (three), oestrus (three), early dioestrus (three), dioestrus (three) and anoestrus (four) were used. Oviductal samples from three different parts (isthmus, ampulla and infundibulum), taken immediately after slaughter, were fixed, embedded in plastic resin and stained with toluidine blue or stored in a freezer at -70 degrees C until analysed by immunohistochemistry (prooestrus and anoestrus) with an avidin-biotin peroxidase method. Quantitative and qualitative examinations of oviductal epithelium and subepithelial connective tissue were performed by light microscopy. During all stages, a lower degree of morphological changes (pseudostratification, mitosis and secretory granules) was found in the isthmus compared with ampulla and infundibulum. In ampulla and infundibulum, pseudostratification, mitotic activity and secretory granules of the epithelium were high at prooestrus/oestrus. Cytoplasmic protrusions of epithelial cells with some extruded nuclei were prominent in ampulla and infundibulum at all stages except for oestrus and early dioestrus. Lymphocytes as well as CD2- and CD3-positive cells were the predominant immune cells in the epithelial layer. The numbers of lymphocytes and CD3-positive cells did not differ among segments and stages. Numbers of CD2-positive cells did not differ between prooestrus and anoestrus while the numbers were significantly higher in the infundibulum than in ampulla and isthmus. Neutrophils were only occasionally found and mainly in the infundibulum. In the subepithelial connective tissue layer, the two most commonly observed immune cell types were lymphocytes and plasma cells. The numbers of lymphocytes as well as CD2- and CD3-positive cells was lower in isthmus than in the other segments (p < or = 0.001). Higher numbers of plasma cells (p < or = 0.001) were found in infundibulum than in ampulla and isthmus. The numbers of lymphocytes and plasma cells were not significantly different between stages of the oestrous cycle. However, the number of neutrophils differed and were highest at prooestrus in ampulla and infundibulum. The numbers of CD2-, CD3- and CD79-positive cells did not differ between prooestrus and anoestrus whereas for CD14- and SWC3-positive cells, the numbers were higher at prooestrus (p < or = 0.05) than at anoestrus. In the oviduct, the morphology differed in ampulla and infundibulum with oestrous cycle stages, which indicates an effect by ovarian steroid hormones. The immune cell infiltration was less influenced by cyclic changes. However, the immune cell infiltration (in the connective tissue) in the upper part, especially infundibulum, differed significantly from the one in the lower part, isthmus, indicating different immune functions within various parts of the oviduct.

  13. Buwchitin: a ruminal peptide with antimicrobial potential against Enterococcus faecalis

    NASA Astrophysics Data System (ADS)

    Oyama, Linda B.; Crochet, Jean-Adrien; Edwards, Joan E.; Girdwood, Susan E.; Cookson, Alan R.; Fernandez-Fuentes, Narcis; Hilpert, Kai; Golyshin, Peter N.; Golyshina, Olga V.; Privé, Florence; Hess, Matthias; Mantovani, Hilario C.; Creevey, Christopher J.; Huws, Sharon A.

    2017-07-01

    Antimicrobial peptides (AMPs) are gaining popularity as alternatives for treatment of bacterial infections and recent advances in omics technologies provide new platforms for AMP discovery. We sought to determine the antibacterial activity of a novel antimicrobial peptide, buwchitin, against Enterococcus faecalis. Buwchitin was identified from a rumen bacterial metagenome library, cloned, expressed and purified. The antimicrobial activity of the recombinant peptide was assessed using a broth microdilution susceptibility assay to determine the peptide's killing kinetics against selected bacterial strains. The killing mechanism of buwchitin was investigated further by monitoring its ability to cause membrane depolarization (diSC3(5) method) and morphological changes in E. faecalis cells. Transmission electron micrographs of buwchitin treated E. faecalis cells showed intact outer membranes with blebbing, but no major damaging effects and cell morphology changes. Buwchitin had negligible cytotoxicity against defibrinated sheep erythrocytes. Although no significant membrane leakage and depolarization was observed, buwchitin at minimum inhibitory concentration (MIC) was bacteriostatic against E. faecalis cells and inhibited growth in vitro by 70% when compared to untreated cells. These findings suggest that buwchitin, a rumen derived peptide, has potential for antimicrobial activity against E. faecalis.

  14. Morphological changes of plasma membrane and protein assembly during clathrin-mediated endocytosis

    PubMed Central

    Yoshida, Aiko; Sakai, Nobuaki; Uekusa, Yoshitsugu; Imaoka, Yuka; Itagaki, Yoshitsuna; Suzuki, Yuki

    2018-01-01

    Clathrin-mediated endocytosis (CME) proceeds through a series of morphological changes of the plasma membrane induced by a number of protein components. Although the spatiotemporal assembly of these proteins has been elucidated by fluorescence-based techniques, the protein-induced morphological changes of the plasma membrane have not been fully clarified in living cells. Here, we visualize membrane morphology together with protein localizations during CME by utilizing high-speed atomic force microscopy (HS-AFM) combined with a confocal laser scanning unit. The plasma membrane starts to invaginate approximately 30 s after clathrin starts to assemble, and the aperture diameter increases as clathrin accumulates. Actin rapidly accumulates around the pit and induces a small membrane swelling, which, within 30 s, rapidly covers the pit irreversibly. Inhibition of actin turnover abolishes the swelling and induces a reversible open–close motion of the pit, indicating that actin dynamics are necessary for efficient and irreversible pit closure at the end of CME. PMID:29723197

  15. Data supporting mitochondrial morphological changes by SPG13-associated HSPD1 mutants.

    PubMed

    Miyamoto, Yuki; Megumi, Funakoshi-Tago; Hasegawa, Nanami; Eguchi, Takahiro; Tanoue, Akito; Tamura, Hiroomi; Yamauchi, Junji

    2016-03-01

    The data is related to the research article entitled "Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics" [1]. In addition to hypomyelinating leukodystrophy (HLD) 4 (OMIM no. 612233), it is known that spastic paraplegia (SPG) 13 (OMIM no. 605280) is caused by HSPD1's amino acid mutation. Two amino acid mutations Val-98-to-Ile (V98I) and Gln-461-to-Glu (Q461E) are associated with SPG13 [2]. In order to investigate the effects of HSPD1's V98I or Q461E mutant on mitochondrial morphological changes, we transfected each of the respective mutant-encoding genes into Cos-7 cells. Either of V98I or Q461E mutant exhibited increased number of mitochondria and short length mitochondrial morphologies. Using MitoTracker dye-incorporating assay, decreased mitochondrial membrane potential was also observed in both cases. The data described here supports that SPG13-associated HSPD1 mutant participates in causing aberrant mitochondrial morphological changes with decreased activities.

  16. Neuroendocrine control of reproductive aging: roles of GnRH neurons.

    PubMed

    Yin, Weiling; Gore, Andrea C

    2006-03-01

    The process of reproductive senescence in many female mammals, including humans, is characterized by a gradual transition from regular reproductive cycles to irregular cycles to eventual acyclicity, and ultimately a loss of fertility. In the present review, the role of the hypothalamic gonadotropin-releasing hormone (GnRH) neurons is considered in this context. GnRH neurons provide the primary driving force upon the other levels of the reproductive axis. With respect to aging, GnRH cells undergo changes in biosynthesis, processing and release of the GnRH decapeptide. GnRH neurons also exhibit morphologic and ultrastructural alterations that appear to underlie these biosynthetic properties. Thus, functional and morphologic changes in the GnRH neurosecretory system may play causal roles in the transition to acyclicity. In addition, GnRH neurons are regulated by numerous inputs from neurotransmitters, neuromodulators and glia. The relationship among GnRH cells and their inputs at the cell body (thereby affecting GnRH biosynthesis) and the neuroterminal (thereby affecting GnRH neurosecretion) is crucial to the function of the GnRH system, with age-related changes in these relationships contributing to the reproductive senescent process. Therefore, the aging hypothalamus is characterized by changes intrinsic to the GnRH cell, as well as its regulatory inputs, which summate to contribute to a loss of reproductive competence in aging females.

  17. Chondroptosis in Alkaptonuric Cartilage

    PubMed Central

    Millucci, Lia; Giorgetti, Giovanna; Viti, Cecilia; Ghezzi, Lorenzo; Gambassi, Silvia; Braconi, Daniela; Marzocchi, Barbara; Paffetti, Alessandro; Lupetti, Pietro; Bernardini, Giulia; Orlandini, Maurizio

    2015-01-01

    Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of treatment is palliative and little is known about AKU physiopathology. Chondroptosis, a peculiar type of cell death in cartilage, has been so far reported to occur in osteoarthritis, a rheumatic disease that shares some features with AKU. In the present work, we wanted to assess if chondroptosis might also occur in AKU. Electron microscopy was used to detect the morphological changes of chondrocytes in damaged cartilage distinguishing apoptosis from its variant termed chondroptosis. We adopted histological observation together with Scanning Electron Microscopy and Transmission Electron Microscopy to evaluate morphological cell changes in AKU chondrocytes. Lipid peroxidation in AKU cartilage was detected by fluorescence microscopy. Using the above‐mentioned techniques, we performed a morphological analysis and assessed that AKU chondrocytes undergo phenotypic changes and lipid oxidation, resulting in a progressive loss of articular cartilage structure and function, showing typical features of chondroptosis. To the best of our knowledge, AKU is the second chronic pathology, following osteoarthritis, where chondroptosis has been documented. Our results indicate that Golgi complex plays an important role in the apoptotic process of AKU chondrocytes and suggest a contribution of chondroptosis in AKU pathogenesis. These findings also confirm a similarity between osteoarthritis and AKU. J. Cell. Physiol. 230: 1148–1157, 2015. © 2014 The Authors. Journal of Cellular Physiology Published by Wiley Periodicals, Inc. PMID:25336110

  18. Enhanced adherence of mouse fibroblast and vascular cells to plasma modified polyethylene.

    PubMed

    Reznickova, Alena; Novotna, Zdenka; Kolska, Zdenka; Kasalkova, Nikola Slepickova; Rimpelova, Silvie; Svorcik, Vaclav

    2015-01-01

    Since the last decade, tissue engineering has shown a sensational promise in providing more viable alternatives to surgical procedures for harvested tissues, implants and prostheses. Biomedical polymers, such as low-density polyethylene (LDPE), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE), were activated by Ar plasma discharge. Degradation of polymer chains was examined by determination of the thickness of ablated layer. The amount of an ablated polymer layer was measured by gravimetry. Contact angle, measured by goniometry, was studied as a function of plasma exposure and post-exposure aging times. Chemical structure of modified polymers was characterized by angle resolved X-ray photoelectron spectroscopy. Surface chemistry and polarity of the samples were investigated by electrokinetic analysis. Changes in surface morphology were followed using atomic force microscopy. Cytocompatibility of plasma activated polyethylene foils was studied using two distinct model cell lines; VSMCs (vascular smooth muscle cells) as a model for vascular graft testing and connective tissue cells L929 (mouse fibroblasts) approved for standardized material cytotoxicity testing. Specifically, the cell number, morphology, and metabolic activity of the adhered and proliferated cells on the polyethylene matrices were studied in vitro. It was found that the plasma treatment caused ablation of the polymers, resulting in dramatic changes in their surface morphology and roughness. ARXPS and electrokinetic measurements revealed oxidation of the polymer surface. It was found that plasma activation has a positive effect on the adhesion and proliferation of VSMCs and L929 cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Development of endosperm transfer cells in barley.

    PubMed

    Thiel, Johannes

    2014-01-01

    Endosperm transfer cells (ETCs) are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell (TC) morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection (LM)-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS) pathways in ETC development of barley emerged from this analysis. Correlative data provide evidence for abscisic acid and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for ETC specification.

  20. Development of endosperm transfer cells in barley

    PubMed Central

    Thiel, Johannes

    2014-01-01

    Endosperm transfer cells (ETCs) are positioned at the intersection of maternal and filial tissues in seeds of cereals and represent a bottleneck for apoplasmic transport of assimilates into the endosperm. Endosperm cellularization starts at the maternal-filial boundary and generates the highly specialized ETCs. During differentiation barley ETCs develop characteristic flange-like wall ingrowths to facilitate effective nutrient transfer. A comprehensive morphological analysis depicted distinct developmental time points in establishment of transfer cell (TC) morphology and revealed intracellular changes possibly associated with cell wall metabolism. Embedded inside the grain, ETCs are barely accessible by manual preparation. To get tissue-specific information about ETC specification and differentiation, laser microdissection (LM)-based methods were used for transcript and metabolite profiling. Transcriptome analysis of ETCs at different developmental stages by microarrays indicated activated gene expression programs related to control of cell proliferation and cell shape, cell wall and carbohydrate metabolism reflecting the morphological changes during early ETC development. Transporter genes reveal distinct expression patterns suggesting a switch from active to passive modes of nutrient uptake with the onset of grain filling. Tissue-specific RNA-seq of the differentiating ETC region from the syncytial stage until functionality in nutrient transfer identified a high number of novel transcripts putatively involved in ETC differentiation. An essential role for two-component signaling (TCS) pathways in ETC development of barley emerged from this analysis. Correlative data provide evidence for abscisic acid and ethylene influences on ETC differentiation and hint at a crosstalk between hormone signal transduction and TCS phosphorelays. Collectively, the data expose a comprehensive view on ETC development, associated pathways and identified candidate genes for ETC specification. PMID:24723929

  1. Dark Endothelial Spots After Descemet Membrane Endothelial Keratoplasty May Appear as Recurrent Fuchs Dystrophy or Herald Graft Failure or Rejection.

    PubMed

    Zygoura, Vasiliki; Baydoun, Lamis; Monnereau, Claire; Satué, Maria; Oellerich, Silke; Melles, Gerrit R J

    2017-12-01

    To evaluate the clinical significance of dark spots in the donor endothelial cell layer as observed with specular microscopy, in patients who underwent Descemet membrane endothelial keratoplasty (DMEK) for Fuchs endothelial dystrophy (FED). Specular microscopy images of 83 consecutive eyes up to 7 years after DMEK were retrospectively reviewed in a masked fashion for the presence of dark spots and morphologic changes in the endothelial cell layer and processed for endothelial cell density (ECD) measurements. A normal endothelial cell layer was found in 52/83 eyes (62.7%) (group 0). In the remaining 31/83 eyes, various dark discolorations with or without altered endothelial cell morphology were categorized into 4 groups. Dark spots were classified as artifacts in 10/83 (12.0%) eyes (group I) and as "superimposed" dots in 10/83 (12.0%) eyes (group II), that is, optical irregularities slightly anterior to a healthy endothelial cell layer. In 11/83 (13.3%) eyes, endothelial stress was characterized by dark grayish discolorations and/or nuclear activation (group III). Most of the latter eyes also had a significant ECD decrease; 3 of these eyes later developed secondary graft failure, of which one was preceded by allograft rejection. None of the eyes showed recurrent guttae typical for FED (group IV). Dark endothelial spots after DMEK for FED may not represent a recurrent disease, but tissue irregularities just anterior to the graft. However, if associated with changes in endothelial cell morphology, nuclear activation and/or ECD decrease, dark discolorations may reflect "cellular stress" heralding secondary graft failure or (subclinical) allograft rejection.

  2. Role of 4- tert -Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Shen; Sina, Mahsa; Parikh, Pritesh

    2016-09-14

    Hybrid organic-inorganic materials for high efficiency, low cost photovoltaic devices have seen rapid progress since the introduction of lead based perovskites and solid-state hole transport layers. Although majority of the materials used for perovskite solar cells (PSC) are introduced from dye-sensitized solar cells (DSSCs), the presence of a perovskite capping layer as opposed to a single dye molecule (in DSSCs) changes the interactions between the various layers in perovskite solar cells. 4-tert-butylpyridine (tBP), commonly used in PSCs, is assumed to function as a charge recombination inhibitor, similar to DSSCs. However, the presence of a perovskite capping layer calls for amore » re-evaluation of its function in PSCs. Using TEM (transmission electron microscopy), we first confirm the role of tBP as a HTL morphology controller in PSCs. Our observations suggest that tBP significantly improves the uniformity of the HTL and avoids accumulation of Li salt. We also study degradation pathways by using FTIR (Fourier transform infrared spectroscopy) and APT (atom probe tomography) to investigate and visualize in 3-dimensions the moisture content associated with the Li salt. Long term effects, over 1000 hours, due to evaporation of tBP have also been studied. Based on our findings, a PSC failure mechanism associated with the morphological change of the HTL is proposed. tBP, the morphology controller in HTL, plays a key role in this process and thus this study highlights the need for additive materials with higher boiling points for consistent long term performance of PSCs.« less

  3. Role of 4-tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells.

    PubMed

    Wang, Shen; Sina, Mahsa; Parikh, Pritesh; Uekert, Taylor; Shahbazian, Brian; Devaraj, Arun; Meng, Ying Shirley

    2016-09-14

    Hybrid organic-inorganic materials for high-efficiency, low-cost photovoltaic devices have seen rapid progress since the introduction of lead based perovskites and solid-state hole transport layers. Although majority of the materials used for perovskite solar cells (PSC) are introduced from dye-sensitized solar cells (DSSCs), the presence of a perovskite capping layer as opposed to a single dye molecule (in DSSCs) changes the interactions between the various layers in perovskite solar cells. 4-tert-Butylpyridine (tBP), commonly used in PSCs, is assumed to function as a charge recombination inhibitor, similar to DSSCs. However, the presence of a perovskite capping layer calls for a re-evaluation of its function in PSCs. Using TEM (transmission electron microscopy), we first confirm the role of tBP as a HTL morphology controller in PSCs. Our observations suggest that tBP significantly improves the uniformity of the HTL and avoids accumulation of Li salt. We also study degradation pathways by using FTIR (Fourier transform infrared spectroscopy) and APT (atom probe tomography) to investigate and visualize in 3-dimensions the moisture content associated with the Li salt. Long-term effects, over 1000 h, due to evaporation of tBP have also been studied. Based on our findings, a PSC failure mechanism associated with the morphological change of the HTL is proposed. tBP, the morphology controller in HTL, plays a key role in this process, and thus this study highlights the need for additive materials with higher boiling points for consistent long-term performance of PSCs.

  4. Application of a coupled smoothed particle hydrodynamics (SPH) and coarse-grained (CG) numerical modelling approach to study three-dimensional (3-D) deformations of single cells of different food-plant materials during drying.

    PubMed

    Rathnayaka, C M; Karunasena, H C P; Senadeera, W; Gu, Y T

    2018-03-14

    Numerical modelling has gained popularity in many science and engineering streams due to the economic feasibility and advanced analytical features compared to conventional experimental and theoretical models. Food drying is one of the areas where numerical modelling is increasingly applied to improve drying process performance and product quality. This investigation applies a three dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) and Coarse-Grained (CG) numerical approach to predict the morphological changes of different categories of food-plant cells such as apple, grape, potato and carrot during drying. To validate the model predictions, experimental findings from in-house experimental procedures (for apple) and sources of literature (for grape, potato and carrot) have been utilised. The subsequent comaprison indicate that the model predictions demonstrate a reasonable agreement with the experimental findings, both qualitatively and quantitatively. In this numerical model, a higher computational accuracy has been maintained by limiting the consistency error below 1% for all four cell types. The proposed meshfree-based approach is well-equipped to predict the morphological changes of plant cellular structure over a wide range of moisture contents (10% to 100% dry basis). Compared to the previous 2-D meshfree-based models developed for plant cell drying, the proposed model can draw more useful insights on the morphological behaviour due to the 3-D nature of the model. In addition, the proposed computational modelling approach has a high potential to be used as a comprehensive tool in many other tissue morphology related investigations.

  5. Microglia Morphological Categorization in a Rat Model of Neuroinflammation by Hierarchical Cluster and Principal Components Analysis.

    PubMed

    Fernández-Arjona, María Del Mar; Grondona, Jesús M; Granados-Durán, Pablo; Fernández-Llebrez, Pedro; López-Ávalos, María D

    2017-01-01

    It is known that microglia morphology and function are closely related, but only few studies have objectively described different morphological subtypes. To address this issue, morphological parameters of microglial cells were analyzed in a rat model of aseptic neuroinflammation. After the injection of a single dose of the enzyme neuraminidase (NA) within the lateral ventricle (LV) an acute inflammatory process occurs. Sections from NA-injected animals and sham controls were immunolabeled with the microglial marker IBA1, which highlights ramifications and features of the cell shape. Using images obtained by section scanning, individual microglial cells were sampled from various regions (septofimbrial nucleus, hippocampus and hypothalamus) at different times post-injection (2, 4 and 12 h). Each cell yielded a set of 15 morphological parameters by means of image analysis software. Five initial parameters (including fractal measures) were statistically different in cells from NA-injected rats (most of them IL-1β positive, i.e., M1-state) compared to those from control animals (none of them IL-1β positive, i.e., surveillant state). However, additional multimodal parameters were revealed more suitable for hierarchical cluster analysis (HCA). This method pointed out the classification of microglia population in four clusters. Furthermore, a linear discriminant analysis (LDA) suggested three specific parameters to objectively classify any microglia by a decision tree. In addition, a principal components analysis (PCA) revealed two extra valuable variables that allowed to further classifying microglia in a total of eight sub-clusters or types. The spatio-temporal distribution of these different morphotypes in our rat inflammation model allowed to relate specific morphotypes with microglial activation status and brain location. An objective method for microglia classification based on morphological parameters is proposed. Main points Microglia undergo a quantifiable morphological change upon neuraminidase induced inflammation.Hierarchical cluster and principal components analysis allow morphological classification of microglia.Brain location of microglia is a relevant factor.

  6. Microglia Morphological Categorization in a Rat Model of Neuroinflammation by Hierarchical Cluster and Principal Components Analysis

    PubMed Central

    Fernández-Arjona, María del Mar; Grondona, Jesús M.; Granados-Durán, Pablo; Fernández-Llebrez, Pedro; López-Ávalos, María D.

    2017-01-01

    It is known that microglia morphology and function are closely related, but only few studies have objectively described different morphological subtypes. To address this issue, morphological parameters of microglial cells were analyzed in a rat model of aseptic neuroinflammation. After the injection of a single dose of the enzyme neuraminidase (NA) within the lateral ventricle (LV) an acute inflammatory process occurs. Sections from NA-injected animals and sham controls were immunolabeled with the microglial marker IBA1, which highlights ramifications and features of the cell shape. Using images obtained by section scanning, individual microglial cells were sampled from various regions (septofimbrial nucleus, hippocampus and hypothalamus) at different times post-injection (2, 4 and 12 h). Each cell yielded a set of 15 morphological parameters by means of image analysis software. Five initial parameters (including fractal measures) were statistically different in cells from NA-injected rats (most of them IL-1β positive, i.e., M1-state) compared to those from control animals (none of them IL-1β positive, i.e., surveillant state). However, additional multimodal parameters were revealed more suitable for hierarchical cluster analysis (HCA). This method pointed out the classification of microglia population in four clusters. Furthermore, a linear discriminant analysis (LDA) suggested three specific parameters to objectively classify any microglia by a decision tree. In addition, a principal components analysis (PCA) revealed two extra valuable variables that allowed to further classifying microglia in a total of eight sub-clusters or types. The spatio-temporal distribution of these different morphotypes in our rat inflammation model allowed to relate specific morphotypes with microglial activation status and brain location. An objective method for microglia classification based on morphological parameters is proposed. Main points Microglia undergo a quantifiable morphological change upon neuraminidase induced inflammation.Hierarchical cluster and principal components analysis allow morphological classification of microglia.Brain location of microglia is a relevant factor. PMID:28848398

  7. Sequential changes from minimal pancreatic inflammation to advanced alcoholic pancreatitis.

    PubMed

    Noronha, M; Dreiling, D A; Bordalo, O

    1983-11-01

    A correlation of several clinical parameters and pancreatitis morphological alterations observed in chronic alcoholics with and without pancreatic is presented. Three groups of patients were studied: asymptomatic chronic alcoholics (24); non-alcoholic controls (10); and cases with advanced chronic pancreatitis (6). Clinical, biochemical and functional studies were performed. Morphological studies were made on surgical biopsy specimens in light and electron microscopy. The results of this study showed: 1) fat accumulates within pancreatic acinar cells in alcoholics drinking more than 80 g of ethanol per day; 2) ultrastructural changes found in acinar cells of the alcoholics are similar to those described for liver cells; 3) the alterations found in alcoholics without pancreatitis are also observed in those with advanced chronic pancreatitis. An attempt to correlate the sequential changes in the histopathology of alcoholic pancreatic disease with the clinical picture and secretory patterns was made. According to these observations, admitting the ultrastructural similarities between the liver and the pancreas and the recently demonstrated abnormalities of lipid metabolism in pancreatic cells in experimental animal research, the authors postulate a toxic-metabolic mechanism as a likely hypothesis for the pathogenesis of chronic alcoholic inflammation of the pancreas.

  8. Effects of Corroded and Non-Corroded Biodegradable Mg and Mg Alloys on Viability, Morphology and Differentiation of MC3T3-E1 Cells Elicited by Direct Cell/Material Interaction

    PubMed Central

    Mostofi, Sepideh; Bonyadi Rad, Ehsan; Wiltsche, Helmar; Fasching, Ulrike; Szakacs, Gabor; Ramskogler, Claudia; Srinivasaiah, Sriveena; Ueçal, Muammer; Willumeit, Regine; Weinberg, Annelie-Martina; Schaefer, Ute

    2016-01-01

    This study investigated the effect of biodegradable Mg and Mg alloys on selected properties of MC3T3-E1 cells elicited by direct cell/material interaction. The chemical composition and morphology of the surface of Mg and Mg based alloys (Mg2Ag and Mg10Gd) were analysed by scanning electron microscopy (SEM) and EDX, following corrosion in cell culture medium for 1, 2, 3 and 8 days. The most pronounced difference in surface morphology, namely crystal formation, was observed when Pure Mg and Mg2Ag were immersed in cell medium for 8 days, and was associated with an increase in atomic % of oxygen and a decrease of surface calcium and phosphorous. Crystal formation on the surface of Mg10Gd was, in contrast, negligible at all time points. Time-dependent changes in oxygen, calcium and phosphorous surface content were furthermore not observed for Mg10Gd. MC3T3-E1 cell viability was reduced by culture on the surfaces of corroded Mg, Mg2Ag and Mg10Gd in a corrosion time-independent manner. Cells did not survive when cultured on 3 day pre-corroded Pure Mg and Mg2Ag, indicating crystal formation to be particular detrimental in this regard. Cell viability was not affected when cells were cultured on non-corroded Mg and Mg alloys for up to 12 days. These results suggest that corrosion associated changes in surface morphology and chemical composition significantly hamper cell viability and, thus, that non-corroded surfaces are more conducive to cell survival. An analysis of the differentiation potential of MC3T3-E1 cells cultured on non-corroded samples based on measurement of Collagen I and Runx2 expression, revealed a down-regulation of these markers within the first 6 days following cell seeding on all samples, despite persistent survival and proliferation. Cells cultured on Mg10Gd, however, exhibited a pronounced upregulation of collagen I and Runx2 between days 8 and 12, indicating an enhancement of osteointegration by this alloy that could be valuable for in vivo orthopedic applications. PMID:27459513

  9. Visualizing Morphological Changes of Abscission Zone Cells in Arabidopsis by Scanning Electron Microscope.

    PubMed

    Shi, Chun-Lin; Butenko, Melinka A

    2018-01-01

    Scanning electron microscope (SEM) is a type of electron microscope which produces detailed images of surface structures. It has been widely used in plants and animals to study cellular structures. Here, we describe a detailed protocol to prepare samples of floral abscission zones (AZs) for SEM, as well as further image analysis. We show that it is a powerful tool to detect morphologic changes at the cellular level during the course of abscission in wild-type plants and to establish the details of phenotypic alteration in abscission mutants.

  10. Vitamin E modifies the ultrastructure of testis and epididymis in mice exposed to lead intoxication.

    PubMed

    Fahim, Mohamed A; Tariq, Saeed; Adeghate, Ernest

    2013-05-01

    Lead (Pb) is known to cause abnormal function of several systems including the male reproductive system, where it has been shown to reduce sperm count. In order to examine the morphological basis of the reduction in sperm count and a possible effect of vitamin E, lead acetate (1 mg/kg body weight) was given to control and vitamin E-treated mice daily, intraperitoneally for 3 weeks. The testis and body of epididymis of the mice were subjected to electron microscopy study. Pb caused degenerative changes in spermatids inducing vacuolization and a reduction in the number of cytoplasmic organelles in Leydig cells. Pb also destroyed the stereocilia of epididymal epithelium. The addition of vitamin E ameliorated the severity of these morphological changes. In conclusion, Pb-induced reduction in sperm count may be due to changes in the ultrastructure of spermatids, epididymal epithelia and Leydig cells. These changes can be reduced by vitamin E. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Morphological changes in woody stem of Prunus jamasakura under simulated microgravity

    NASA Technical Reports Server (NTRS)

    Yoneyama, Emi; Ishimoto-Negishi, Yoko; Sano, Yuzou; Funada, Ryo; Yamada, Mitsuhiro; Nakamura, Teruko

    2004-01-01

    When the four-week-old woody stem of Prunus jamasakura was grown under simulated microgravity condition on a three-dimensional clinostat, it bent at growth, and width of its secondary xylem decreased due to the reduction of fiber cell numbers and a smaller microfibril angle in the secondary cell wall, as reported in our previous paper. Gravity induces the development of the secondary xylem that supports the stem upward against the action of gravity. In this study, morphological changes of the tissues and cells were microscopically observed. Disorder was found in the concentric structure of tissues that organize the stem. The radial arrangement of the cells was also disturbed in the secondary xylem, and in the secondary phloem secondary cell walls of the bast fiber cells were undeveloped. These findings suggest that differentiation and development of the secondary xylem and the bast fiber cells are strongly controlled by terrestrial gravity. These tissue and cells functions to support the stem under the action of gravity. Furthermore, clinorotation induced disorder in the straight joint of vessel elements and the lattice-like structure of radial parenchyma cells, which is responsible for water transportation and storage, respectively. Gravity is an essential factor for keeping the division and differentiation normal in woody stem.

  12. Intrinsic anticarcinogenic effects of Piper sarmentosum ethanolic extract on a human hepatoma cell line

    PubMed Central

    Zainal Ariffin, Shahrul Hisham; Wan Omar, Wan Haifa Haryani; Zainal Ariffin, Zaidah; Safian, Muhd Fauzi; Senafi, Sahidan; Megat Abdul Wahab, Rohaya

    2009-01-01

    Background Piper sarmentosum, locally known as kaduk is belonging to the family of Piperaceae. It is our interest to evaluate their effect on human hepatoma cell line (HepG2) for the potential of anticarcinogenic activity. Results The anticarcinogenic activity of an ethanolic extract from Piper sarmentosum in HepG2 and non-malignant Chang's liver cell lines has been previously determined using (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium bromide) (MTT) assays, where the IC50 value was used as a parameter for cytotoxicity. The ethanolic extract that showed anticarcinogenic properties in HepG2 cells had an IC50 of 12.5 μg mL-1, while IC50 values in the non-malignant Chang's liver cell line were greater than 30 μg mL-1. Apoptotic morphological changes in HepG2 cells were observed using an inverted microscope and showed chromatin condensation, cell shrinkage and apoptotic bodies following May-Grunwald-Giemsa's staining. The percentage of apoptotic cells in the overall population (apoptotic index) showed a continuously significant increase (p < 0.05) in 12.5 μg mL-1 ethanolic extract-treated cells at 24, 48 and 72 hours compared to controls (untreated cells). Following acridine orange and ethidium bromide staining, treatment with 10, 12 and 14 μg mL-1 of ethanolic extracts caused typical apoptotic morphological changes in HepG2 cells. Molecular analysis of DNA fragmentation was used to examine intrinsic apoptosis induced by the ethanolic extracts. These results showed a typical intrinsic apoptotic characterisation, which included fragmentation of nuclear DNA in ethanolic extract-treated HepG2 cells. However, the non-malignant Chang's liver cell line produced no DNA fragmentation. In addition, the DNA genome was similarly intact for both the untreated non-malignant Chang's liver and HepG2 cell lines. Conclusion Therefore, our results suggest that the ethanolic extract from P. sarmentosum induced anticarcinogenic activity through an intrinsic apoptosis pathway in HepG2 cells in vitro. PMID:19257877

  13. The effects of prolonged oral administration of gold nanoparticles on the morphology of hematopoietic and lymphoid organs

    NASA Astrophysics Data System (ADS)

    Bucharskaya, Alla B.; Pakhomy, Svetlana S.; Zlobina, Olga V.; Maslyakova, Galina N.; Navolokin, Nikita A.; Matveeva, Olga V.; Khlebtsov, Boris N.; Bogatyrev, Vladimir A.; Khlebtsov, Nikolai G.; Tuchin, Valery V.

    2017-02-01

    Currently, the usage of gold nanoparticles as photosensitizers and immunomodulators for plasmonic photothermal therapy has attracted a great attention of researches and end-users. In our work, the influence of prolonged peroral administration of gold nanoparticles (GNPs) with different sizes on the morphological changes of hematopoietic and lymphoid organs was investigated. The 24 white outbred male rats weighing 180-220 g were randomly divided into groups and administered orally for 30 days the suspension of gold nanospheres with diameters of 2, 15 and 50 nm at a dosage of 190 μg/kg of animal body weight. To prevent GNPs aggregation in a tissue and enhance biocompatibility, they were functionalized with thiolated polyethylene glycol. The withdrawal of the animals from the experiment and sampling of spleen, lymph nodes and bone marrow tissues for morphological study were performed a day after the last administration. In the spleen the boundary between the red and white pulp was not clearly differ in all experimental groups, lymphoid follicles were significantly increased in size, containing bright germinative centers represented by large blast cells. The stimulation of lymphocyte and myelocytic series of hematopoiesis was recorded at morphological study of the bone marrow. The number of immunoblasts and large lymphocytes was increased in all structural zones of lymph nodes. The more pronounced changes were found in the group with administration of 15 nm nanoparticles. Thus, the morphological changes of cellular components of hematopoietic organs have size-dependent character and indicate the activation of the migration, proliferation and differentiation of immune cells after prolonged oral administration of GNPs.

  14. Collagen V expression is crucial in regional development of the supraspinatus tendon.

    PubMed

    Connizzo, Brianne K; Adams, Sheila M; Adams, Thomas H; Birk, David E; Soslowsky, Louis J

    2016-12-01

    Manipulations in cell culture and mouse models have demonstrated that reduction of collagen V results in altered fibril structure and matrix assembly. A tissue-dependent role for collagen V in determining mechanical function was recently established, but its role in determining regional properties has not been addressed. The objective of this study was to define the role(s) of collagen V expression in establishing the site-specific properties of the supraspinatus tendon. The insertion and midsubstance of tendons from wild type, heterozygous and tendon/ligament-specific null mice were assessed for crimp morphology, fibril morphology, cell morphology, as well as total collagen and pyridinoline cross-link (PYD) content. Fibril morphology was altered at the midsubstance of both groups with larger, but fewer, fibrils and no change in cell morphology or collagen compared to the wild type controls. In contrast, a significant disruption of fibril assembly was observed at the insertion site of the null group with the presence of structurally aberrant fibrils. Alterations were also present in cell density and PYD content. Altogether, these results demonstrate that collagen V plays a crucial role in determining region-specific differences in mouse supraspinatus tendon structure. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2154-2161, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Odorous Compounds from Poultry Manure Induce DNA Damage, Nuclear Changes, and Decrease Cell Membrane Integrity in Chicken Liver Hepatocellular Carcinoma Cells

    PubMed Central

    Matusiak, Katarzyna; Gałęcki, Remigiusz; Borowski, Sebastian; Gutarowska, Beata

    2017-01-01

    Animal breeding and management of organic wastes pose a serious problem to the health of livestock and workers, as well as the nearby residents. The aim of the present study was to determine the mechanisms of toxicity of selected common odorous compounds from poultry manure, including ammonia, dimethylamine (DMA), trimethylamine (TMA), butyric acid, phenol, and indole. We measured their genotoxic and cytotoxic activity in the model chicken cell line (LMH), in vitro, by comet assay and lactate dehydrogenase assay, respectively. We also made microscopic observations of any morphological changes in these cells by DAPI staining. Four compounds, namely ammonia, DMA, TMA, and butyric acid increased DNA damage in a dose-dependent manner (p < 0.05), reaching genotoxicity as high as 73.2 ± 1.9%. Phenol and indole induced extensive DNA damage independent of the concentration used. Ammonia, DMA, and TMA caused a dose-dependent release of lactate dehydrogenase (p < 0.05). The IC50 values were 0.02%, 0.05%, and 0.1% for DMA, ammonia and TMA, respectively. These compounds also induced nuclear morphological changes, such as chromatin condensation, shrinkage, nuclear fragmentation (apoptotic bodies), and chromatin lysis. Our study exhibited the damaging effects of odorous compounds in chick LMH cell line. PMID:28820500

  16. Plasticity of spontaneous excitatory and inhibitory synaptic activity in morphologically defined vestibular nuclei neurons during early vestibular compensation

    PubMed Central

    Shao, Mei; Hirsch, June C.

    2012-01-01

    After unilateral peripheral vestibular lesions, the brain plasticity underlying early recovery from the static symptoms is not fully understood. Principal cells of the chick tangential nucleus offer a subset of morphologically defined vestibular nuclei neurons to study functional changes after vestibular lesions. Chickens show posture and balance deficits immediately after unilateral vestibular ganglionectomy (UVG), but by 3 days most subjects begin to recover, although some remain uncompensated. With the use of whole cell voltage-clamp, spontaneous excitatory and inhibitory postsynaptic currents (sEPSCs and sIPSCs) and miniature excitatory and inhibitory postsynaptic currents (mEPSCs and mIPSCs) were recorded from principal cells in brain slices 1 and 3 days after UVG. One day after UVG, sEPSC frequency increased on the lesion side and remained elevated at 3 days in uncompensated chickens only. Also by 3 days, sIPSC frequency increased on the lesion side in all operated chickens due to major increases in GABAergic events. Significant change also occurred in decay time of the events. To determine whether fluctuations in frequency and kinetics influenced overall excitatory or inhibitory synaptic drive, synaptic charge transfer was calculated. Principal cells showed significant increase in excitatory synaptic charge transfer only on the lesion side of uncompensated chickens. Thus compensation continues when synaptic charge transfer is in balance bilaterally. Furthermore, excessive excitatory drive in principal cells on the lesion side may prevent vestibular compensation. Altogether, this work is important for it defines the time course and excitatory and inhibitory nature of changing spontaneous synaptic inputs to a morphologically defined subset of vestibular nuclei neurons during critical early stages of recovery after UVG. PMID:21957228

  17. CARM1 modulators affect epigenome of stem cells and change morphology of nucleoli.

    PubMed

    Franek, M; Legartová, S; Suchánková, J; Milite, C; Castellano, S; Sbardella, G; Kozubek, S; Bártová, E

    2015-01-01

    CARM1 interacts with numerous transcription factors to mediate cellular processes, especially gene expression. This is important for the maintenance of ESC pluripotency or intervention to tumorigenesis. Here, we studied epigenomic effects of two potential CARM1 modulators: an activator (EML159) and an inhibitor (ellagic acid dihydrate, EA). We examined nuclear morphology in human and mouse embryonic stem cells (hESCs, mESCs), as well as in iPS cells. The CARM1 modulators did not function similarly in all cell types. EA decreased the levels of the pluripotency markers, OCT4 and NANOG, particularly in iPSCs, whereas the levels of these proteins increased after EML159 treatment. EML159 treatment of mouse ESCs led to decreased levels of OCT4 and NANOG, which was accompanied by an increased level of Endo-A. The same trend was observed for NANOG and Endo-A in hESCs affected by EML159. Interestingly, EA mainly changed epigenetic features of nucleoli because a high level of arginine asymmetric di-methylation in the nucleoli of hESCs was reduced after EA treatment. ChIP-PCR of ribosomal genes confirmed significantly reduced levels of H3R17me2a, in both the promoter region of ribosomal genes and rDNA encoding 28S rRNA, after EA addition. Moreover, EA treatment changed the nuclear pattern of AgNORs (silver-stained nucleolus organizer regions) in all cell types studied. In EA-treated ESCs, AgNOR pattern was similar to the pattern of AgNORs after inhibition of RNA pol I by actinomycin D. Together, inhibitory effect of EA on arginine methylation and effect on related morphological parameters was especially observed in compartment of nucleoli.

  18. Quantitative assessment of neurite outgrowth in human embryonic stem-cell derived neurons using automated high-content image analysis

    EPA Science Inventory

    During development neurons undergo a number of morphological changes including neurite outgrowth from the cell body. Exposure to neurotoxicants that interfere with this process may cause in permanent deficits in nervous system function. While many studies have used rodent primary...

  19. Effect of hyaluronic acid on morphological changes to dentin surfaces and subsequent effect on periodontal ligament cell survival, attachment, and spreading.

    PubMed

    Mueller, Andrea; Fujioka-Kobayashi, Masako; Mueller, Heinz-Dieter; Lussi, Adrian; Sculean, Anton; Schmidlin, Patrick R; Miron, Richard J

    2017-05-01

    Hyaluronic acid (HA) is a natural constituent of connective tissues and plays an important role in their development, maintenance, and regeneration. Recently, HA has been shown to improve wound healing. However, no basic in vitro study to date has investigated its mode of action. Therefore, the purpose of this study was to examine morphological changes of dentin surfaces following HA coating and thereafter investigate the influence of periodontal ligament (PDL) cell survival, attachment, and spreading to dentin discs. HA was coated onto dentin discs utilizing either non-cross-linked (HA) or cross-linked (HA cl) delivery systems. Morphological changes to dentin discs were then assessed using scanning electron microscopy (SEM). Thereafter, human PDL cells were seeded under three in vitro conditions including (1) dilution of HA (1:100), (2) dilution of HA (1:10), and (3) HA coated directly to dentin discs. Samples were then investigated for PDL cell survival, attachment, and spreading using a live/dead assay, cell adhesion assay, and SEM imaging, respectively. While control dentin discs demonstrated smooth surfaces both at low and high magnification, the coating of HA altered surface texture of dentin discs by increasing surface roughness. HA cl further revealed greater surface texture/roughness likely due to the cross-linking carrier system. Thereafter, PDL cells were seeded on control and HA coated dentin discs and demonstrated a near 100 % survival rate for all samples demonstrating high biocompatibility of HA at dilutions of both 1:100 and 1:10. Interestingly, non-cross-linked HA significantly increased cell numbers at 8 h, whereas cross-linked HA improved cell spreading as qualitatively assessed by SEM. The results from the present study demonstrate that both carrier systems for HA were extremely biocompatible and demonstrated either improved cell numbers or cell spreading onto dentin discs. Future in vitro and animal research is necessary to further characterize the optimal delivery system of HA for improved clinical use. HA is a highly biocompatible material that may improve PDL cell attachment or spreading on dentin.

  20. Microenvironment Induced Spheroid to Sheeting Transition of Immortalized Human Keratinocytes (HaCaT) Cultured in Microbubbles Formed in Polydimethylsiloxane

    PubMed Central

    Chandrasekaran, Siddarth; Giang, Ut-Binh; King, Michael R.; DeLouise, Lisa A

    2011-01-01

    The in vivo cellular microenvironment is regulated by a complex interplay of soluble factors and signaling molecules secreted by cells and it plays a critical role in the growth and development of normal and diseased tissues. In vitro systems that can recapitulate the microenvironment at the cellular level are needed to investigate the influence of autocrine signaling and extracellular matrix effects on tissue homeostasis, regeneration, and disease development and progression. In this study we report the use of microbubble technology as a means to culture cells in a controlled microenvironment in which cells can influence their function through autocrine signaling. Microbubbles (MB) are small spherical cavities about 100–300 µm in diameter formed in hydrophobic polymer polydimethylsiloxane (PDMS) with ~60–100 µm circular openings and aspect ratio ~3.5. We demonstrate that the unique architecture of the microbubble compartment is advantaged for cell culture using HaCaT cells, an immortalized keratinocyte cell line. We observe that HaCaT cells, seeded in microbubbles (15–20 cells / MB) and cultured under standard conditions, adopt a compact 3-D spheroidal morphology. Within 2–3 days, the cells transition to a sheeting morphology. Through experimentation and simulation we show that this transition in morphology is due to the unique architecture of the microbubble compartment which enables cells to condition their local microenvironment. The small media volume per cell and the development of shallow concentration gradients allow factors secreted by the cells to rise to bioactive levels. The kinetics of the morphology transition depends on the number of cells seeded per microbubble; higher cell seeding induces a more rapid transition. HaCaT cells seeded onto PDMS cured in 96-well plates also form compact spheroids but they do not transition to a sheeting morphology even after several weeks of culture. The importance of soluble factor accumulation in driving this morphology transition in microbubbles is supported by the observation that spheroids do not form when cells - seeded into microbubbles or onto PDMS cured in 96 well plates - are cultured in media conditioned by HaCaT cells grown in standard tissue culture plate. We observed that the addition of TGF-β1 to the growth media induced cells to proliferate in a sheeting morphology from the onset both on PDMS cured in 96-well plates and in microbubbles. TGF-β1 is a morphogen known to regulate epithelial-to-mesenchymal transition (EMT). Studies of the role of Ca2+ concentration and changes in Ecadherin expression additionally support an EMT-like HaCaT morphology transition. These findings taken together validate the microbubble compartment as a unique cell culture platform that can potentially transform investigative studies in cell biology and in particular the tumor microenvironment. Targeting the tumor microenvironment is an emerging area of anti-cancer therapy. PMID:21724250

  1. Telomere dysfunction and chromosome structure modulate the contribution of individual chromosomes in abnormal nuclear morphologies.

    PubMed

    Pampalona, J; Soler, D; Genescà, A; Tusell, L

    2010-01-05

    The cytokinesis-block micronucleus assay has emerged as a biomarker of chromosome damage relevant to cancer. Although it was initially developed to measure micronuclei, it is also useful for measuring nucleoplasmic bridges and nuclear buds. Abnormal nuclear morphologies are frequently observed in malignant tissues and short-term tumour cell cultures. Changes in chromosome structure and number resulting from chromosome instability are important factors in oncogenesis. Telomeres have become key players in the initiation of chromosome instability related to carcinogenesis by means of breakage-fusion-bridge cycles. To better understand the connection between telomere dysfunction and the appearance of abnormal nuclear morphologies, we have characterised the presence of micronuclei, nucleoplasmic bridges and nuclear buds in human mammary primary epithelial cells. These cells can proliferate beyond the Hayflick limit by spontaneously losing expression of the p16(INK4a) protein. Progressive telomere shortening leads to the loss of the capping function, and the appearance of end-to-end chromosome fusions that can enter into breakage-fusion-bridge cycles generating massive chromosomal instability. In human mammary epithelial cells, different types of abnormal nuclear morphologies were observed, however only nucleoplasmatic bridges and buds increased significantly with population doublings. Fluorescent in situ hybridisation using centromeric and painting specific probes for chromosomes with eroded telomeres has revealed that these chromosomes are preferentially included in the different types of abnormal nuclear morphologies observed, thus reflecting their common origin. Accordingly, real-time imaging of cell divisions enabled us to determine that anaphase bridge resolution was mainly through chromatin breakage and the formation of symmetric buds in daughter nuclei. Few micronuclei emerged in this cell system thus validating the scoring of nucleoplasmic bridges and nuclear buds for measuring chromosome instability in telomere-dysfunction cell environments.

  2. Shiga Toxin Mediated Neurologic Changes in Murine Model of Disease.

    PubMed

    Pradhan, Suman; Pellino, Christine; MacMaster, Kayleigh; Coyle, Dennis; Weiss, Alison A

    2016-01-01

    Seizures and neurologic involvement have been reported in patients infected with Shiga toxin (Stx) producing E. coli , and hemolytic uremic syndrome (HUS) with neurologic involvement is associated with more severe outcome. We investigated the extent of renal and neurologic damage in mice following injection of the highly potent form of Stx, Stx2a, and less potent Stx1. As observed in previous studies, Stx2a brought about moderate to acute tubular necrosis of proximal and distal tubules in the kidneys. Brain sections stained with hematoxylin and eosin (H&E) appeared normal, although some red blood cell congestion was observed. Microglial cell responses to neural injury include up-regulation of surface-marker expression (e.g., Iba1) and stereotypical morphological changes. Mice injected with Stx2a showed increased Iba1 staining, mild morphological changes associated with microglial activation (thickening of processes), and increased microglial staining per unit area. Microglial changes were observed in the cortex, hippocampus, and amygdala regions, but not the nucleus. Magnetic resonance imaging (MRI) of Stx2a-treated mice revealed no hyper-intensities in the brain, although magnetic resonance spectroscopy (MRS) revealed significantly decreased levels of phosphocreatine in the thalamus. Less dramatic changes were observed following Stx1 challenge. Neither immortalized microvascular endothelial cells from the cerebral cortex of mice (bEnd.3) nor primary human brain microvascular endothelial cells were found to be susceptible to Stx1 or Stx2a. The lack of susceptibility to Stx for both cell types correlated with an absence of receptor expression. These studies indicate Stx causes subtle, but identifiable changes in the mouse brain.

  3. Three dimensional culture of the murine osteoblastic cell line OCT-1 on collagen coated microcarriers

    NASA Astrophysics Data System (ADS)

    Lau, P.; Hellweg, C. E.; Kirchner, S.; Baumstark-Khan, C.

    2005-08-01

    During long-term space missions, astronauts suffer from the loss of minerals especially from weightbearing bones due to prolonged sojourn under microgravity. Bone loss during space flight is about 1-2% per month. Bone is continually being remodelled under the influence of three types of highly specialized cells. Osteoblasts, the bone forming cells, osteoclasts, the bone resorbing cells and finally osteocytes preserve the homeostasis of bone formation and resorption. In vitro 3- dimensional cell culture of osteoblastic cell lines on microcarrier beads might be a better model to evaluate changes in bone cell morphology, function and differentiation under influence of spaceflight related factors than the conventional 2-D monolayer culture technique. Furthermore, it allows production of a greater amount of cells compared to the monolayer culture. Aim of this study is to examine the effects of culturing the immortalized murine osteoblastic cell line OCT-1 in a 3- dimensional environment on cell morphology and proliferation rate.

  4. Aeromonas hydrophila exotoxin induces cytoplasmic vacuolation and cell death in VERO cells.

    PubMed

    Di Pietro, Angela; Picerno, Isa; Visalli, Giuseppa; Chirico, Cristina; Spataro, Pasquale; Cannavò, Giuseppe; Scoglio, Maria E

    2005-07-01

    Many organisms are able to cause cell vacuolation, but it is unclear if this can be considered a step of apoptosis or necrosis, or a distinct form of cell death. In this study VERO cells were used to evaluate the relationship between vacuolation and cell death pattern caused by exotoxins produced by environmental strains of A. hydrophila. Cell damage has been evaluated morphologically as well as biochemically. Cytotoxic and vacuolating titres were strictly correlated and the vacuolation has to be considered an early indicator of cytotoxicity that causes cell apoptosis or necrosis in relation to the dose. Signs of apoptosis (chromatin condensation and blebbing) were observed at low concentration and TGase activity, referable to apoptosis induction, confirms morphological observations. In fact, putrescine incorporation was related both to cytotoxin concentration and time of incubation. Moreover, the observed doubling cells with necrotic features permit us to suppose that cell sensitivity and death pattern could change during the different phases of cellular cycle.

  5. Phosphoproteome analysis reveals a critical role for hedgehog signalling in osteoblast morphological transitions.

    PubMed

    Marumoto, Ariane; Milani, Renato; da Silva, Rodrigo A; da Costa Fernandes, Célio Junior; Granjeiro, José Mauro; Ferreira, Carmen V; Peppelenbosch, Maikel P; Zambuzzi, Willian F

    2017-10-01

    The reciprocal and adaptive interactions between cells and substrates governing morphological transitions in the osteoblast compartment remain largely obscure. Here we show that osteoblast cultured in basement membrane matrix (Matrigel™) exhibits significant morphological changes after ten days of culture, and we decided to exploit this situation to investigate the molecular mechanisms responsible for guiding osteoblast morphological transitions. As almost all aspects of cellular physiology are under control of kinases, we generated more or less comprehensive cellular kinome profiles employing PepChip peptide arrays that contain over 1000 consensus substrates of kinase peptide. The results obtained were used to construct interactomes, and these revealed an important role for FoxO in mediating morphological changes of osteoblast, which was validated by Western blot technology when FoxO was significantly up-expressed in response to Matrigel™. As FoxO is a critical protein in canonical hedgehog signalling, we decided to explore the possible involvement of hedgehog signalling during osteoblast morphological changes. It appeared that osteoblast culture in Matrigel™ stimulates release of a substantial amounts Shh while concomitantly inducing upregulation of the expression of the bona fide hedgehog target genes Gli-1 and Patched. Functional confirmation of the relevance of these results for osteoblast morphological transitions came from experiments in which Shh hedgehog signalling was inhibited using the well-established pathway inhibitor cyclopamine (Cyc). In the presence of Cyc, culture of osteoblasts in Matrigel™ is not capable of inducing morphological changes but appears to provoke a proliferative response as evident from the upregulation of Cyclin D3 and cdk4. The most straightforward interpretation of our results is that hedgehog signalling is both necessary and sufficient for membrane matrix-based morphological transitions. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Biophysics Model of Heavy-Ion Degradation of Neuron Morphology in Mouse Hippocampal Granular Cell Layer Neurons.

    PubMed

    Alp, Murat; Cucinotta, Francis A

    2018-03-01

    Exposure to heavy-ion radiation during cancer treatment or space travel may cause cognitive detriments that have been associated with changes in neuron morphology and plasticity. Observations in mice of reduced neuronal dendritic complexity have revealed a dependence on radiation quality and absorbed dose, suggesting that microscopic energy deposition plays an important role. In this work we used morphological data for mouse dentate granular cell layer (GCL) neurons and a stochastic model of particle track structure and microscopic energy deposition (ED) to develop a predictive model of high-charge and energy (HZE) particle-induced morphological changes to the complex structures of dendritic arbors. We represented dendrites as cylindrical segments of varying diameter with unit aspect ratios, and developed a fast sampling method to consider the stochastic distribution of ED by δ rays (secondary electrons) around the path of heavy ions, to reduce computational times. We introduce probabilistic models with a small number of parameters to describe the induction of precursor lesions that precede dendritic snipping, denoted as snip sites. Predictions for oxygen ( 16 O, 600 MeV/n) and titanium ( 48 Ti, 600 MeV/n) particles with LET of 16.3 and 129 keV/μm, respectively, are considered. Morphometric parameters to quantify changes in neuron morphology are described, including reduction in total dendritic length, number of branch points and branch numbers. Sholl analysis is applied for single neurons to elucidate dose-dependent reductions in dendritic complexity. We predict important differences in measurements from imaging of tissues from brain slices with single neuron cell observations due to the role of neuron death through both soma apoptosis and excessive dendritic length reduction. To further elucidate the role of track structure, random segment excision (snips) models are introduced and a sensitivity study of the effects of the modes of neuron death in predictions of morphometric parameters is described. An important conclusion of this study is that δ rays play a major role in neuron morphological changes due to the large spatial distribution of damage sites, which results in a reduced dependence on LET, including modest difference between 16 O and 48 Ti, compared to damages resulting from ED in localized damage sites.

  7. Development of an ultralow-light-level luminescence image analysis system for dynamic measurements of transcriptional activity in living and migrating cells.

    PubMed

    Maire, E; Lelièvre, E; Brau, D; Lyons, A; Woodward, M; Fafeur, V; Vandenbunder, B

    2000-04-10

    We have developed an approach to study in single living epithelial cells both cell migration and transcriptional activation, which was evidenced by the detection of luminescence emission from cells transfected with luciferase reporter vectors. The image acquisition chain consists of an epifluorescence inverted microscope, connected to an ultralow-light-level photon-counting camera and an image-acquisition card associated to specialized image analysis software running on a PC computer. Using a simple method based on a thin calibrated light source, the image acquisition chain has been optimized following comparisons of the performance of microscopy objectives and photon-counting cameras designed to observe luminescence. This setup allows us to measure by image analysis the luminescent light emitted by individual cells stably expressing a luciferase reporter vector. The sensitivity of the camera was adjusted to a high value, which required the use of a segmentation algorithm to eliminate the background noise. Following mathematical morphology treatments, kinetic changes of luminescent sources were analyzed and then correlated with the distance and speed of migration. Our results highlight the usefulness of our image acquisition chain and mathematical morphology software to quantify the kinetics of luminescence changes in migrating cells.

  8. Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy.

    PubMed

    Gianoncelli, A; Vaccari, L; Kourousias, G; Cassese, D; Bedolla, D E; Kenig, S; Storici, P; Lazzarino, M; Kiskinova, M

    2015-05-14

    Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies.

  9. Soft X-Ray Microscopy Radiation Damage On Fixed Cells Investigated With Synchrotron Radiation FTIR Microscopy

    PubMed Central

    Gianoncelli, A.; Vaccari, L.; Kourousias, G.; Cassese, D.; Bedolla, D. E.; Kenig, S.; Storici, P.; Lazzarino, M.; Kiskinova, M.

    2015-01-01

    Radiation damage of biological samples remains a limiting factor in high resolution X-ray microscopy (XRM). Several studies have attempted to evaluate the extent and the effects of radiation damage, proposing strategies to minimise or prevent it. The present work aims to assess the impact of soft X-rays on formalin fixed cells on a systematic manner. The novelty of this approach resides on investigating the radiation damage not only with XRM, as often reported in relevant literature on the topic, but by coupling it with two additional independent non-destructive microscopy methods: Atomic Force Microscopy (AFM) and FTIR Microscopy (FTIRM). Human Embryonic Kidney 293 cells were exposed to different radiation doses at 1 keV. In order to reveal possible morphological and biochemical changes, the irradiated cells were systematically analysed with AFM and FTIRM before and after. Results reveal that while cell morphology is not substantially affected, cellular biochemical profile changes significantly and progressively when increasing dose, resulting in a severe breakdown of the covalent bonding network. This information impacts most soft XRM studies on fixed cells and adds an in-depth understanding of the radiation damage for developing better prevention strategies. PMID:25974639

  10. [The mechanism of docetaxel-induced apoptosis in human lung cancer cells].

    PubMed

    Li, Y; Shi, T; Zhao, W

    2000-05-01

    To study the mechanism of docetaxel-induced apoptosis. Morphological study, DNA gel electrophoresis, flow cytometry and fluorescin labeled Annexin V to detect apoptosis, RT-PCR to detect the gene related with apoptosis. Human lung cancer A549 cells treated with docetaxel induced cell cycle arrest at G2M phase, leading to apoptosis. The morphology of A549 showed nuclear chromatine condensation and fragmentation. Typical ladder pattern of DNA fragmentation was observed. Sub-G1 peak was found by flow cytometry. Transcription of Fas gene was enhanced, while no change in c-myc and bcl-2 genes. Annexin labeling results revealed the co-existence of cell apoptosis and necrosis in docetaxel-treated A549 cells. Docetaxel induces apoptosis and necrosis of human lung cancer. The induction of apoptosis may be related to expression of Fas.

  11. An EMT–Driven Alternative Splicing Program Occurs in Human Breast Cancer and Modulates Cellular Phenotype

    PubMed Central

    Flytzanis, Nicholas C.; Balsamo, Michele; Condeelis, John S.; Oktay, Maja H.; Burge, Christopher B.; Gertler, Frank B.

    2011-01-01

    Epithelial-mesenchymal transition (EMT), a mechanism important for embryonic development, plays a critical role during malignant transformation. While much is known about transcriptional regulation of EMT, alternative splicing of several genes has also been correlated with EMT progression, but the extent of splicing changes and their contributions to the morphological conversion accompanying EMT have not been investigated comprehensively. Using an established cell culture model and RNA–Seq analyses, we determined an alternative splicing signature for EMT. Genes encoding key drivers of EMT–dependent changes in cell phenotype, such as actin cytoskeleton remodeling, regulation of cell–cell junction formation, and regulation of cell migration, were enriched among EMT–associated alternatively splicing events. Our analysis suggested that most EMT–associated alternative splicing events are regulated by one or more members of the RBFOX, MBNL, CELF, hnRNP, or ESRP classes of splicing factors. The EMT alternative splicing signature was confirmed in human breast cancer cell lines, which could be classified into basal and luminal subtypes based exclusively on their EMT–associated splicing pattern. Expression of EMT–associated alternative mRNA transcripts was also observed in primary breast cancer samples, indicating that EMT–dependent splicing changes occur commonly in human tumors. The functional significance of EMT–associated alternative splicing was tested by expression of the epithelial-specific splicing factor ESRP1 or by depletion of RBFOX2 in mesenchymal cells, both of which elicited significant changes in cell morphology and motility towards an epithelial phenotype, suggesting that splicing regulation alone can drive critical aspects of EMT–associated phenotypic changes. The molecular description obtained here may aid in the development of new diagnostic and prognostic markers for analysis of breast cancer progression. PMID:21876675

  12. Complex Changes in the Innate and Adaptive Immunity Accompany Progressive Degeneration of the Nigrostriatal Pathway Induced by Intrastriatal Injection of 6-Hydroxydopamine in the Rat.

    PubMed

    Ambrosi, Giulia; Kustrimovic, Natasa; Siani, Francesca; Rasini, Emanuela; Cerri, Silvia; Ghezzi, Cristina; Dicorato, Giuseppe; Caputo, Sofia; Marino, Franca; Cosentino, Marco; Blandini, Fabio

    2017-07-01

    We investigated changes in innate and adaptive immunity paralleling the progressive nigrostriatal damage occurring in a neurotoxic model of Parkinson's disease (PD) based on unilateral infusion of 6-hydroxydopamine (6-OHDA) into the rat striatum. A time-course analysis was conducted to assess changes in morphology (activation) and cell density of microglia and astrocytes, microglia polarization (M1 vs. M2 phenotype), lymphocyte infiltration in the lesioned substantia nigra pars compacta (SNc), and modifications of CD8+ and subsets of CD4+ T cell in peripheral blood accompanying nigrostriatal degeneration. Confirming previous results, we observed slightly different profiles of activation for astrocytes and microglia paralleling nigral neuronal loss. For astrocytes, morphological changes and cell density increases were mostly evident at the latest time points (14 and 28 days post-surgery), while moderate microglia activation was present since the earliest time point. For the first time, in this model, we described the time-dependent profile of microglia polarization. Activated microglia clearly expressed the M2 phenotype in the earlier phase of the experiment, before cell death became manifest, gradually shifting to the M1 phenotype as SNc cell death started. In parallel, a reduction in the percentage of circulating CD4+ T regulatory (Treg) cells, starting as early as day 3 post-6-OHDA injection, was detected in 6-OHDA-injected rats. Our data show that nigrostriatal degeneration is associated with complex changes in central and peripheral immunity. Microglia activation and polarization, Treg cells, and the factors involved in their cross-talk should be further investigated as targets for the development of therapeutic strategies for disease modification in PD.

  13. Further observations on inclusion-bearing cells in urinary sediment in infectious diseases

    PubMed Central

    Boyd, J. F.; Nedelkoska, Nada

    1967-01-01

    A study of the cytology of the urinary sediment in 43 patients with known viral diseases has revealed a variety of inclusion-bearing cells in 28. The morphology of the cells suggest that the changes recorded may be due to the viral infections, at least in some instances, bearing in mind the findings of workers quoted in our 1964 report that cellular changes very similar to those induced by virus infections can be initiated by non-viral stimuli. Multinucleate giant cells are occasionally found in chickenpox, measles, herpes simplex infection, and in mumps. Images PMID:5614069

  14. Ecdysone has an effect on the regeneration of midgut epithelial cells that is distinct from 20-hydroxyecdysone in the silkworm Bombyx mori.

    PubMed

    Tanaka, Y; Yukuhiro, F

    1999-12-01

    We investigated the effects of two ecdysteroids, ecdysone (E) and 20-hydroxyecdysone (20E), on silkworm larval development. Silkworm larvae, Bombyx mori, were fed an artificial diet supplemented with 20E during the fourth instar to promote premature molting. At the onset of the fifth instar, these precocious fifth-instar larvae were fed diets supplemented with either E or 20E to determine the effects of the two ecdysteroids on the morphology of midgut epithelial cells. Regeneration of midgut epithelial cells normally occurs only during the molting period. However, in larvae fed E, complete replacement of midgut epithelial cells was observed 24 h before the larvae entered apolysis. In larvae fed 20E, the morphology of midgut epithelial cells was disrupted, leading to death of the larvae during the fifth instar. We also observed similar differences in the effects of the two ecdysteroids in an in vitro experiment. These results suggest that E has a specific effect on the morphological change of midgut epithelial cells in precocious fifth-instar larvae that is distinct from 20E. Copyright 1999 Academic Press.

  15. KSHV-TK is a tyrosine kinase that disrupts focal adhesions and induces Rho-mediated cell contraction

    PubMed Central

    Gill, Michael B; Turner, Rachel; Stevenson, Philip G; Way, Michael

    2015-01-01

    Paradoxically, the thymidine kinase (TK) encoded by Kaposi sarcoma-associated herpesvirus (KSHV) is an extremely inefficient nucleoside kinase, when compared to TKs from related herpesviruses. We now show that KSHV-TK, in contrast to HSV1-TK, associates with the actin cytoskeleton and induces extensive cell contraction followed by membrane blebbing. These dramatic changes in cell morphology depend on the auto-phosphorylation of tyrosines 65, 85 and 120 in the N-terminus of KSHV-TK. Phosphorylation of tyrosines 65/85 and 120 results in an interaction with Crk family proteins and the p85 regulatory subunit of PI3-Kinase, respectively. The interaction of Crk with KSHV-TK leads to tyrosine phoshorylation of this cellular adaptor. Auto-phosphorylation of KSHV-TK also induces a loss of FAK and paxillin from focal adhesions, resulting in activation of RhoA-ROCK signalling to myosin II and cell contraction. In the absence of FAK or paxillin, KSHV-TK has no effect on focal adhesion integrity or cell morphology. Our observations demonstrate that by acting as a tyrosine kinase, KSHV-TK modulates signalling and cell morphology. PMID:25471072

  16. Morphological Effect of the New Antifungal Agent ME1111 on Hyphal Growth of Trichophyton mentagrophytes, Determined by Scanning and Transmission Electron Microscopy.

    PubMed

    Nishiyama, Yayoi; Takahata, Sho; Abe, Shigeru

    2017-01-01

    The effects of ME1111, a novel antifungal agent, on the hyphal morphology and ultrastructure of Trichophyton mentagrophytes were investigated by using scanning and transmission electron microscopy. Structural changes, such as pit formation and/or depression of the cell surface, and degeneration of intracellular organelles and plasmolysis were observed after treatment with ME1111. Our results suggest that the inhibition of energy production by ME1111 affects the integrity and function of cellular membranes, leading to fungal cell death. Copyright © 2016 American Society for Microbiology.

  17. Chronic nerve compression alters Schwann cell myelin architecture in a murine model

    PubMed Central

    Gupta, Ranjan; Nassiri, Nima; Hazel, Antony; Bathen, Mary; Mozaffar, Tahseen

    2011-01-01

    Introduction Myelinating Schwann cells compartmentalize their outermost layer to form actin-rich channels known as Cajal bands. Here, we investigate changes in Schwann cell architecture and cytoplasmic morphology in a novel mouse model of carpal tunnel syndrome. Methods Chronic nerve compression (CNC) injury was created in wild-type and slow-Wallerian degeneration (WldS) mice. Over 12 weeks, nerves were electrodiagnostically assessed, and Schwann cell morphology was thoroughly evaluated. Results A decline in nerve conduction velocity and increase in g-ratio is observed without early axonal damage. Schwann cells display shortened internodal lengths and severely disrupted Cajal bands. Quite surprisingly, the latter is reconstituted without improvements to nerve conduction velocity. Discussion Chronic entrapment injuries like carpal tunnel syndrome are primarily mediated by the Schwann cell response, wherein decreases in internodal length and myelin thickness disrupt the efficiency of impulse propagation. Restitution of Cajal bands is not sufficient for remyelination post-CNC injury. PMID:22246880

  18. MreB drives de novo rod morphogenesis in Caulobacter crescentus via remodeling of the cell wall.

    PubMed

    Takacs, Constantin N; Poggio, Sebastian; Charbon, Godefroid; Pucheault, Mathieu; Vollmer, Waldemar; Jacobs-Wagner, Christine

    2010-03-01

    MreB, the bacterial actin-like cytoskeleton, is required for the rod morphology of many bacterial species. Disruption of MreB function results in loss of rod morphology and cell rounding. Here, we show that the widely used MreB inhibitor A22 causes MreB-independent growth inhibition that varies with the drug concentration, culture medium conditions, and bacterial species tested. MP265, an A22 structural analog, is less toxic than A22 for growth yet equally efficient for disrupting the MreB cytoskeleton. The action of A22 and MP265 is enhanced by basic pH of the culture medium. Using this knowledge and the rapid reversibility of drug action, we examined the restoration of rod shape in lemon-shaped Caulobacter crescentus cells pretreated with MP265 or A22 under nontoxic conditions. We found that reversible restoration of MreB function after drug removal causes extensive morphological changes including a remarkable cell thinning accompanied with elongation, cell branching, and shedding of outer membrane vesicles. We also thoroughly characterized the composition of C. crescentus peptidoglycan by high-performance liquid chromatography and mass spectrometry and showed that MreB disruption and recovery of rod shape following restoration of MreB function are accompanied by considerable changes in composition. Our results provide insight into MreB function in peptidoglycan remodeling and rod shape morphogenesis and suggest that MreB promotes the transglycosylase activity of penicillin-binding proteins.

  19. Growth and morphology of thermophilic dairy starters in alginate beads.

    PubMed

    Lamboley, Laurence; St-Gelais, Daniel; Champagne, Claude P; Lamoureux, Maryse

    2003-06-01

    The aim of this research was to produce concentrated biomasses of thermophilic lactic starters using immobilized cell technology (ICT). Fermentations were carried out in milk using pH control with cells microentrapped in alginate beads. In the ICT fermentations, beads represented 17% of the weight. Some assays were carried out with free cells without pH control, in order to compare the ICT populations with those of classical starters. With Streptococcus thermophilus, overall populations in the fermentor were similar, but maximum bead population for (8.2 x 10(9) cfu/g beads) was 13 times higher than that obtained in a traditional starter (4.9 x 10(8) cfu/ml). For both Lactobacillus helveticus strains studied, immobilized-cell populations were about 3 x 10(9) cfu/g beads. Production of immobilized Lb. bulgaricus 210R strain was not possible, since no increases in viable counts occurred in beads. Therefore, production of concentrated cell suspension in alginate beads was more effective for S. thermophilus. Photomicrographs of cells in alginate beads demonstrated that, while the morphology of S. thermophilus remained unchanged during the ICT fermentation, immobilized cells of Lb. helveticus appeared wider. In addition, cells of Lb. bulgaricus were curved and elongated. These morphological changes would also impair the growth of immobilized lactobacilli.

  20. The morphology and classification of α ganglion cells in the rat retinae: a fractal analysis study.

    PubMed

    Jelinek, Herbert F; Ristanović, Dušan; Milošević, Nebojša T

    2011-09-30

    Rat retinal ganglion cells have been proposed to consist of a varying number of subtypes. Dendritic morphology is an essential aspect of classification and a necessary step toward understanding structure-function relationships of retinal ganglion cells. This study aimed at using a heuristic classification procedure in combination with the box-counting analysis to classify the alpha ganglion cells in the rat retinae based on the dendritic branching pattern and to investigate morphological changes with retinal eccentricity. The cells could be divided into two groups: cells with simple dendritic pattern (box dimension lower than 1.390) and cells with complex dendritic pattern (box dimension higher than 1.390) according to their dendritic branching pattern complexity. Both were further divided into two subtypes due to the stratification within the inner plexiform layer. In the present study we have shown that the alpha rat RCGs can be classified further by their dendritic branching complexity and thus extend those of previous reports that fractal analysis can be successfully used in neuronal classification, particularly that the fractal dimension represents a robust and sensitive tool for the classification of retinal ganglion cells. A hypothesis of possible functional significance of our classification scheme is also discussed. Copyright © 2011 Elsevier B.V. All rights reserved.

  1. Connexins and Cadherin Cross-talk in the Pathogenesis of Prostate Cancer

    DTIC Science & Technology

    2014-09-01

    switching: essential for behavioral but not morphological changes during an epithelium -to-mesenchyme transition . J Cell Sci 118, 873-887 30. Cotrina, M...Jourdan, J., and Gourdie, R. G. (2011) Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1. Molecular biology of the cell...Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Gap junctions are conglomerations of cell-cell channels that are formed

  2. Cytotoxicity of peracetic acid: evaluation of effects on metabolism, structure and cell death.

    PubMed

    Viola, K S; Rodrigues, E M; Tanomaru-Filho, M; Carlos, I Z; Ramos, S G; Guerreiro-Tanomaru, J M; Faria, G

    2017-01-30

    To evaluate the cytotoxicity and the mechanism of cell aggression of peracetic acid (PA) in comparison with sodium hypochlorite (NaOCl). L929 fibroblasts were exposed to 1% PA and 2.5% NaOCl, at several dilutions for 10 min. The following parameters were evaluated: cell metabolism by methylthiazol tetrazolium assay, external morphology by scanning electron microscopy, ultrastructure by transmission electron microscopy, the cytoskeleton by means of actin and α-tubulin labelling, and the type of cell death by flow cytometry (apoptosis/necrosis). The data were analysed by two-way anova and the Bonferroni post-test (α = 0.05). The PA group had lower cell viability and a higher percentage of necrotic cells than the NaOCl group (P < 0.05). Both solutions diminished cell metabolism, led to destructuring of the cytoskeleton, created changes in the external morphology, resulted in the accumulation of proteins in the rough endoplasmic reticulum and induced cell death predominantly by necrosis. However, these changes were observed in lower doses of PA when compared with NaOCl. Although they had the same mechanism of cytotoxicity, 1% PA had greater cytotoxic potential than 2.5% NaOCl. © 2017 International Endodontic Journal. Published by John Wiley & Sons Ltd.

  3. Dextran and Polymer Polyethylene Glycol (PEG) Coating Reduce Both 5 and 30 nm Iron Oxide Nanoparticle Cytotoxicity in 2D and 3D Cell Culture

    PubMed Central

    Yu, Miao; Huang, Shaohui; Yu, Kevin Jun; Clyne, Alisa Morss

    2012-01-01

    Superparamagnetic iron oxide nanoparticles are widely used in biomedical applications, yet questions remain regarding the effect of nanoparticle size and coating on nanoparticle cytotoxicity. In this study, porcine aortic endothelial cells were exposed to 5 and 30 nm diameter iron oxide nanoparticles coated with either the polysaccharide, dextran, or the polymer polyethylene glycol (PEG). Nanoparticle uptake, cytotoxicity, reactive oxygen species (ROS) formation, and cell morphology changes were measured. Endothelial cells took up nanoparticles of all sizes and coatings in a dose dependent manner, and intracellular nanoparticles remained clustered in cytoplasmic vacuoles. Bare nanoparticles in both sizes induced a more than 6 fold increase in cell death at the highest concentration (0.5 mg/mL) and led to significant cell elongation, whereas cell viability and morphology remained constant with coated nanoparticles. While bare 30 nm nanoparticles induced significant ROS formation, neither 5 nm nanoparticles (bare or coated) nor 30 nm coated nanoparticles changed ROS levels. Furthermore, nanoparticles were more toxic at lower concentrations when cells were cultured within 3D gels. These results indicate that both dextran and PEG coatings reduce nanoparticle cytotoxicity, however different mechanisms may be important for different size nanoparticles. PMID:22754315

  4. Changes in global gene expression during in vitro decidualization of rat endometrial stromal cells

    PubMed Central

    Vallejo, Griselda; Maschi, Darío; Citrinovitz, Ana Cecilia Mestre; Aiba, Kazuhiro; Maronna, Ricardo; Yohai, Victor; Ko, Minoru S. H.; Beato, Miguel; Saragüeta, Patricia

    2009-01-01

    During the preimplantation phase of pregnancy the endometrial stroma differentiates into decidua, a process that implies numerous morphological changes and is an example of physiological transdifferentiation. Here we show that UIII rat endometrial stromal cells cultured in the presence of calf serum acquired morphological features of decidual cells and expressed decidual markers. To identify genes involved in decidualization we compared gene expression patterns of control and decidualized UIII cells using cDNA microarray. We found 322 annotated genes exhibiting significant differences in expression (>3 fold, FDR > 0.005), of which 312 have not been previously related to decidualization. Analysis of overrepresented functions revealed that protein synthesis, gene expression and chromatin architecture and remodeling are the most relevant modified functions during decidualization. Relevant genes are also found in the functional terms differentiation, cell proliferation, signal transduction, and matrix/structural proteins. Several of these new genes involved in decidualization (Csdc2, Trim27, Eef1a1, Bmp1, Wt1, Aes, Gna12, and Men1) are shown to be also regulated in uterine decidua during normal pregnancy. Thus, the UIII cell culture model will allow future mechanistic studies to define the transcriptional network regulating reprogramming of stromal cells into decidual cells. PMID:19780023

  5. Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

    DOE PAGES

    Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang; ...

    2015-07-03

    In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC 60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer andmore » increased solubility of PC 70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC 60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC 70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC 70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC 70BM than PC 60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC 70BM and PC 60BM based active layers was observed. Photo-CELIV experiment showed larger extracted charge carrier density and mobility in PC 70BM/DIO film.« less

  6. Improved performance by morphology control via fullerenes in PBDT-TBT-alkoBT based organic solar cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khatiwada, Devendra; Venkatesan, Swaminathan; Chen, QIliang

    In this work, we report improved performance by controlling morphology using different fullerene derivatives in poly{2-octyldodecyloxy-benzo[1,2-b;3,4-b]dithiophene-alt-5,6-bis(dodecyloxy)-4,7- di(thieno[3,2-b]thiophen-2-yl)-benzo[c][1,2,5]thiadiazole} (PBDT-TBT-alkoBT) based organic solar cells. PC60BM and PC70BM fullerenes were used to investigate the characteristic change in morphology and device performance. Fullerene affects device efficiency by changing active layer morphology. PC70BM with broader absorption than PC 60BM resulted in reduced device performance which was elucidated by the intermixed granular morphology separating each larger grain in the PC70BM/polymer composite layer which created higher density of traps. However after adding additive 1,8-diiodooctane (DIO), the fibrous morphology was observed due to reduced solubility of polymer andmore » increased solubility of PC 70BM in chloroform. The fibrous morphology improved charge transport leading to increase in overall device performance. Atomic force microscopies (AFM), photo induced charge extraction by linearly increasing voltage (photo-CELIV), and Kelvin prove force microscope (KPFM) were used to investigate nanoscale morphology of active layer with different fullerene derivatives. For PC 60BM based active layer, AFM images revealed dense fibrous morphology and more distinct fibrous morphology was observed by adding DIO. The PC 70BM based active layer only exhibited intermixed granular morphology instead of fibrous morphology observed in PC60BM based active layer. However, addition of DIO in PC 70BM based active layer led to fibrous morphology. When additive DIO was not used, a wider distribution of surface potential was observed for PC 70BM than PC 60BM based active layer by KPFM measurements, indicating 2 polymer and fullerene domains are separated. When DIO was used, narrower distribution of surface potential for both PC 70BM and PC 60BM based active layers was observed. Photo-CELIV experiment showed larger extracted charge carrier density and mobility in PC 70BM/DIO film.« less

  7. Growth and potential damage of human bone-derived cells on fresh and aged fullerene c60 films.

    PubMed

    Kopova, Ivana; Bacakova, Lucie; Lavrentiev, Vasily; Vacik, Jiri

    2013-04-26

    Fullerenes are nanoparticles composed of carbon atoms arranged in a spherical hollow cage-like structure. Numerous studies have evaluated the therapeutic potential of fullerene derivates against oxidative stress-associated conditions, including the prevention or treatment of arthritis. On the other hand, fullerenes are not only able to quench, but also to generate harmful reactive oxygen species. The reactivity of fullerenes may change in time due to the oxidation and polymerization of fullerenes in an air atmosphere. In this study, we therefore tested the dependence between the age of fullerene films (from one week to one year) and the proliferation, viability and metabolic activity of human osteosarcoma cells (lines MG-63 and U-2 OS). We also monitored potential membrane and DNA damage and morphological changes of the cells. After seven days of cultivation, we did not observe any cytotoxic morphological changes, such as enlarged cells or cytosolic vacuole formation. Furthermore, there was no increased level of DNA damage. The increasing age of the fullerene films did not cause enhancement of cytotoxicity. On the contrary, it resulted in an improvement in the properties of these materials, which are more suitable for cell cultivation. Therefore, fullerene films could be considered as a promising material with potential use as a bioactive coating of cell carriers for bone tissue engineering.

  8. Effects of Dracontomelon duperreanum defoliation extract on Microcystis aeruginosa: physiological and morphological aspects.

    PubMed

    Wang, Xiaoxiong; Jiang, Chenchun; Szeto, Yim-Tong; Li, Ho-Kin; Yam, Kwei-Lam; Wang, Xiaojun

    2016-05-01

    Harmful cyanobacteria bloom contributes to economic loss as well as the threat to human health. Agricultural waste products, particularly straw, have been used to control bloom while arbor plant is the potential candidate for limiting antialgal activity. This study investigated the use of Dracontomelon duperreanum defoliation extract (DDDE) to inhibit the activity of Microcystis aeruginosa. The primary goal of the research was to explore the solution to control cyanobacterial bloom. The photosynthetic activity, cell morphology, membrane integrity, and esterase activity of M. aeruginosa were determined using phytoplankton analyzer pulse amplitude modulation (Phyto-PAM) and flow cytometry before and after exposure to DDDE. The inhibitory rate of M. aeruginosa was about 99.6 % on day 15 when exposed to 2.0 g L(-1). A reduction of chlorophyll a (Chl-a) activity and changes in cell membrane suggested the algistatic property of DDDE. Inhibition of photosynthetic activity was reflected by changing mean Chl-a fluorescence intensity (MFI) which was about 52.5 % on day 15 when exposed to 2.0 g L(-1) DDDE as well as relative electron transport rates (rETRs) of algal cell. These changes might contribute to the suppression of M. aeruginosa. Algal cell exposed to DDDE may lead to cell volume reduction or slow growth. This resulted in a decreased proportion of normal or swollen granular cells after DDDE treatment.

  9. Spectroscopic study of antileishmanial drug incubated in the promastigotes of Leishmania mexicana

    NASA Astrophysics Data System (ADS)

    Hung, J.; Castillo, J.; Jiménez, G.; Hasegawa, M.; Rodriguez, M.

    2003-11-01

    In this work we present spectroscopic study of Boldine (aporphine alkaloid) that possesses important biological activities, in particular, in interaction with the promastigotes of Leishmania mexicana. The results show the applicability of autofluorescence of this drug to determinate the possible mechanism of its biological action. The blue shift and hyperchromic effect in the emission spectrum of the drug in interaction with the parasite cells indicate an energy transference process between them. The morphological change of cell shape of the promastigotes treated with the drug is observed using confocal microscopy. This morphological cell-shape transformation evidences an important interaction between the drug studied and some protein of the parasite cell. Here we describe for the first time the fluorescence properties of the Boldine in the promastigotes of L. mexicana.

  10. Sub-Inhibitory Concentration of Piperacillin-Tazobactam May be Related to Virulence Properties of Filamentous Escherichia coli.

    PubMed

    de Andrade, João Paulo Lopes; de Macêdo Farias, Luiz; Ferreira, João Fernando Gonçalves; Bruna-Romero, Oscar; da Glória de Souza, Daniele; de Carvalho, Maria Auxiliadora Roque; dos Santos, Kênia Valéria

    2016-01-01

    Sub-inhibitory concentrations of antibiotics are always generated as a consequence of antimicrobial therapy and the effects of such residual products in bacterial morphology are well documented, especially the filamentation generated by beta-lactams. The aim of this study was to investigate some morphological and pathological aspects (virulence factors) of Escherichia coli cultivated under half-minimum inhibitory concentration (1.0 µg/mL) of piperacillin-tazobactam (PTZ sub-MIC). PTZ sub-MIC promoted noticeable changes in the bacterial cells which reach the peak of morphological alterations (filamentation) and complexity at 16 h of antimicrobial exposure. Thereafter the filamentous cells and a control one, not treated with PTZ, were comparatively tested for growth curve; biochemical profile; oxidative stress tolerance; biofilm production and cell hydrophobicity; motility and pathogenicity in vivo. PTZ sub-MIC attenuated the E. coli growth rate, but without changes in carbohydrate fermentation or in traditional biochemical tests. Overall, the treatment of E. coli with sub-MIC of PTZ generated filamentous forms which were accompanied by the inhibition of virulence factors such as the oxidative stress response, biofilm formation, cell surface hydrophobicity, and motility. These results are consistent with the reduced pathogenicity observed for the filamentous E. coli in the murine model of intra-abdominal infection. In other words, the treatment of E. coli with sub-MIC of PTZ suggests a decrease in their virulence.

  11. Protective effect of NSA on intestinal epithelial cells in a necroptosis model

    PubMed Central

    Dong, Wei; Zhang, Min; Zhu, Yaxi; Chen, Yuanhan; Zhao, Xingchen; Li, Ruizhao; Zhang, Li; Ye, Zhiming; Liang, Xingling

    2017-01-01

    Objective This study aimed to investigate the protective effect of the necroptosis inhibitor necrosulfonamide (NSA) on intestinal epithelial cells using a novel in vitro necroptosis model that mimics inflammatory bowel disease (IBD). Methods 2,4,6-trinitrobenzenesulfonic acid (TNBS) was perfused into the rectum of BALB/c mice to established a colitis model. Pathologic injury and cell death were evaluated. A novel in vitro model of necroptosis was established in Caco-2 cells using TNF-α and Z-VAD-fmk, and the cells were treated with or without NSA. Morphologic changes, manner of cell death and the levels of phosphorylation of receptor-interacting protein kinase 3 (p-RIPK3) and mixed-lineage kinase domain-like (p-MLKL) were detected. Results In the TNBS-induced colitis in mice, TUNEL-positive and caspase-3-negative cells were observed in the intestinal mucosa, and p-RIPK3 was found to be elevated. Under the stimulation of TNF-α and Z-VAD-fmk, the morphologic damage in the Caco-2 cells was aggravated, the proportion of necrosis was increased, and the level of p-RIPK3 and p-MLKL were increased, confirming that the regulated cell death was necroptosis. NSA reversed the morphological abnormalities and reduced necrotic cell death induced by TNF-α and Z-VAD-fmk. Conclusion NSA can inhibit necroptosis in intestinal epithelial cells in vitro and might confer a potential protective effect against IBD. PMID:29156831

  12. Protective effect of NSA on intestinal epithelial cells in a necroptosis model.

    PubMed

    Dong, Wei; Zhang, Min; Zhu, Yaxi; Chen, Yuanhan; Zhao, Xingchen; Li, Ruizhao; Zhang, Li; Ye, Zhiming; Liang, Xingling

    2017-10-17

    This study aimed to investigate the protective effect of the necroptosis inhibitor necrosulfonamide (NSA) on intestinal epithelial cells using a novel in vitro necroptosis model that mimics inflammatory bowel disease (IBD). 2,4,6-trinitrobenzenesulfonic acid (TNBS) was perfused into the rectum of BALB/c mice to established a colitis model. Pathologic injury and cell death were evaluated. A novel in vitro model of necroptosis was established in Caco-2 cells using TNF- α and Z-VAD-fmk, and the cells were treated with or without NSA. Morphologic changes, manner of cell death and the levels of phosphorylation of receptor-interacting protein kinase 3 (p-RIPK3) and mixed-lineage kinase domain-like (p-MLKL) were detected. In the TNBS-induced colitis in mice, TUNEL-positive and caspase-3-negative cells were observed in the intestinal mucosa, and p-RIPK3 was found to be elevated. Under the stimulation of TNF- α and Z-VAD-fmk, the morphologic damage in the Caco-2 cells was aggravated, the proportion of necrosis was increased, and the level of p-RIPK3 and p-MLKL were increased, confirming that the regulated cell death was necroptosis. NSA reversed the morphological abnormalities and reduced necrotic cell death induced by TNF- α and Z-VAD-fmk. NSA can inhibit necroptosis in intestinal epithelial cells in vitro and might confer a potential protective effect against IBD.

  13. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells☆

    PubMed Central

    Nalluri, Sandeep M.; Krishnan, G. Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A.; Yang, Shuying; Sarkar, Debanjan

    2016-01-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell–matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell–cell and cell–matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell–matrix interaction, and cell–cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. PMID:26046282

  14. Effects of naringin on the expression of miR-19b and cell apoptosis in human hepatocellular carcinoma

    PubMed Central

    Xie, Dafei; Yuan, Peiwen; Wang, Dong; Jin, Hua; Chen, Hui

    2017-01-01

    The effects of naringin on the expression of miR-19b and cell apoptosis were investigated in the human hepatocellular carcinoma cell line HepG2. HepG2 cells were treated with varied concentrations of naringin. The effects of naringin on the proliferation of HepG2 cells were observed by an MTT assay, morphological changes of cells were observed by an inverted microscope, cell apoptosis was detected by DAPI staining, miR-19b mRNA levels were determined with RT-PCR, and the expression of Bax and Bcl-2 proteins was examined by western blot assay. MTT results showed that naringin significantly inhibited the proliferation of HepG2 cells. Apoptotic HepG2 cells showed obvious changes in morphology under inverted microscope. DAPI staining suggested that naringin could induce cell shrinkage and nuclear chromatin condensation. RT-PCR results showed that naringin could upregulate the expression of miR-19b mRNA. Finally, western blot suggested that naringin upregulated the expression of Bax protein, but downregulated the expression of Bcl-2 protein. In conclusion, naringin can upregulate the expression of miR-19b mRNA and induce HepG2 cell apoptosis. In addition, it can also upregulate the expression of Bax protein and downregulate the expression of Bcl-2 protein during the process of apoptosis. PMID:28789364

  15. Effects of naringin on the expression of miR-19b and cell apoptosis in human hepatocellular carcinoma.

    PubMed

    Xie, Dafei; Yuan, Peiwen; Wang, Dong; Jin, Hua; Chen, Hui

    2017-08-01

    The effects of naringin on the expression of miR-19b and cell apoptosis were investigated in the human hepatocellular carcinoma cell line HepG2. HepG2 cells were treated with varied concentrations of naringin. The effects of naringin on the proliferation of HepG2 cells were observed by an MTT assay, morphological changes of cells were observed by an inverted microscope, cell apoptosis was detected by DAPI staining, miR-19b mRNA levels were determined with RT-PCR, and the expression of Bax and Bcl-2 proteins was examined by western blot assay. MTT results showed that naringin significantly inhibited the proliferation of HepG2 cells. Apoptotic HepG2 cells showed obvious changes in morphology under inverted microscope. DAPI staining suggested that naringin could induce cell shrinkage and nuclear chromatin condensation. RT-PCR results showed that naringin could upregulate the expression of miR-19b mRNA. Finally, western blot suggested that naringin upregulated the expression of Bax protein, but downregulated the expression of Bcl-2 protein. In conclusion, naringin can upregulate the expression of miR-19b mRNA and induce HepG2 cell apoptosis. In addition, it can also upregulate the expression of Bax protein and downregulate the expression of Bcl-2 protein during the process of apoptosis.

  16. Potential role of voltage-sensing phosphatases in regulation of cell structure through the production of PI(3,4)P2.

    PubMed

    Yamaguchi, Shinji; Kurokawa, Tatsuki; Taira, Ikuko; Aoki, Naoya; Sakata, Souhei; Okamura, Yasushi; Homma, Koichi J

    2014-04-01

    Voltage-sensing phosphatase, VSP, consists of the transmembrane domain, operating as the voltage sensor, and the cytoplasmic domain with phosphoinositide-phosphatase activities. The voltage sensor tightly couples with the cytoplasmic phosphatase and membrane depolarization induces dephosphorylation of several species of phosphoinositides. VSP gene is conserved from urochordate to human. There are some diversities among VSP ortholog proteins; range of voltage of voltage sensor motions as well as substrate selectivity. In contrast with recent understandings of biophysical mechanisms of VSPs, little is known about its physiological roles. Here we report that chick ortholog of VSP (designated as Gg-VSP) induces morphological feature of cell process outgrowths with round cell body in DF-1 fibroblasts upon its forced expression. Expression of the voltage sensor mutant, Gg-VSPR153Q with shifted voltage dependence to a lower voltage led to more frequent changes of cell morphology than the wild-type protein. Coexpression of PTEN that dephosphorylates PI(3,4)P2 suppressed this effect by Gg-VSP, indicating that the increase of PI(3,4)P2 leads to changes of cell shape. In addition, visualization of PI(3,4)P2 with the fluorescent protein fused with the TAPP1-derived pleckstrin homology (PH) domain suggested that Gg-VSP influenced the distribution of PI(3,4)P2 . These findings raise a possibility that one of the VSP's functions could be to regulate cell morphology through voltage-sensitive tuning of phosphoinositide profile. © 2013 Wiley Periodicals, Inc.

  17. Catecholamines of the adrenal medula and their morphological changes during adaptation to repeated immobilization stress

    NASA Technical Reports Server (NTRS)

    Kvetnansky, R.; Mitro, A.; Mikulaj, L.; Hocman, G.

    1980-01-01

    Changes of the adrenal medulla of rats were studied in the course of adaptation to repeated immobilization stress. An increase in the number of cells in the adrenal medulla was found in the adapted animals; this increase was confirmed by weight indices of the medulla and by cell counts per surface unit. Simultaneous karyometric measurements of the nuclei of adrenal medulla cells and an analysis of the catecholamine contents in the adrenals explain the increased activity of the adrenal medulla in the course of adaptation.

  18. Hydrophilic polyurethane matrix promotes chondrogenesis of mesenchymal stem cells.

    PubMed

    Nalluri, Sandeep M; Krishnan, G Rajesh; Cheah, Calvin; Arzumand, Ayesha; Yuan, Yuan; Richardson, Caley A; Yang, Shuying; Sarkar, Debanjan

    2015-09-01

    Segmental polyurethanes exhibit biphasic morphology and can control cell fate by providing distinct matrix guided signals to increase the chondrogenic potential of mesenchymal stem cells (MSCs). Polyethylene glycol (PEG) based hydrophilic polyurethanes can deliver differential signals to MSCs through their matrix phases where hard segments are cell-interactive domains and PEG based soft segments are minimally interactive with cells. These coordinated communications can modulate cell-matrix interactions to control cell shape and size for chondrogenesis. Biphasic character and hydrophilicity of polyurethanes with gel like architecture provide a synthetic matrix conducive for chondrogenesis of MSCs, as evidenced by deposition of cartilage-associated extracellular matrix. Compared to monophasic hydrogels, presence of cell interactive domains in hydrophilic polyurethanes gels can balance cell-cell and cell-matrix interactions. These results demonstrate the correlation between lineage commitment and the changes in cell shape, cell-matrix interaction, and cell-cell adhesion during chondrogenic differentiation which is regulated by polyurethane phase morphology, and thus, represent hydrophilic polyurethanes as promising synthetic matrices for cartilage regeneration. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Evaluation of PBS Treatment and PEI Coating Effects on Surface Morphology and Cellular Response of 3D-Printed Alginate Scaffolds.

    PubMed

    Mendoza García, María A; Izadifar, Mohammad; Chen, Xiongbiao

    2017-11-01

    Three-dimensional (3D) printing is an emerging technology for the fabrication of scaffolds to repair/replace damaged tissue/organs in tissue engineering. This paper presents our study on 3D printed alginate scaffolds treated with phosphate buffered saline (PBS) and polyethyleneimine (PEI) coating and their impacts on the surface morphology and cellular response of the printed scaffolds. In our study, sterile alginate was prepared by means of the freeze-drying method and then, used to prepare the hydrogel for 3D printing into calcium chloride, forming 3D scaffolds. Scaffolds were treated with PBS for a time period of two days and seven days, respectively, and PEI coating; then they were seeded with Schwann cells (RSC96) for the examination of cellular response (proliferation and differentiation). In addition, swelling and stiffness (Young's modulus) of the treated scaffolds was evaluated, while their surface morphology was assessed using scanning electron microscopy (SEM). SEM images revealed significant changes in scaffold surface morphology due to degradation caused by the PBS treatment over time. Our cell proliferation assessment over seven days showed that a two-day PBS treatment could be more effective than seven-day PBS treatment for improving cell attachment and elongation. While PEI coating of alginate scaffolds seemed to contribute to cell growth, Schwann cells stayed round on the surface of alginate over the period of cell culture. In conclusion, PBS-treatment may offer the potential to induce surface physical cues due to degradation of alginate, which could improve cell attachment post cell-seeding of 3D-printed alginate scaffolds.

  20. Mitochondrial Dynamics in Diabetic Cardiomyopathy

    PubMed Central

    Galloway, Chad A.

    2015-01-01

    Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID:25738230

  1. Morphological adaptations in breast cancer cells as a function of prolonged passaging on compliant substrates

    PubMed Central

    Syed, Sana; Schober, Joseph; Blanco, Alexandra

    2017-01-01

    Standard tissue culture practices involve propagating cells on tissue culture polystyrene (TCP) dishes, which are flat, 2-dimensional (2D) and orders of magnitude stiffer than most tissues in the body. Such simplified conditions lead to phenotypical cell changes and altered cell behaviors. Hence, much research has been focused on developing novel biomaterials and culture conditions that more closely emulate in vivo cell microenvironments. In particular, biomaterial stiffness has emerged as a key property that greatly affects cell behaviors such as adhesion, morphology, proliferation and motility among others. Here we ask whether cells that have been conditioned to TCP, would still show significant dependence on substrate stiffness if they are first pre-adapted to a more physiologically relevant environment. We used two commonly utilized breast cancer cell lines, namely MDA-MB-231 and MCF-7, and examined the effect of prolonged cell culturing on polyacrylamide substrates of varying compliance. We followed changes in cell adhesion, proliferation, shape factor, spreading area and spreading rate. After pre-adaptation, we noted diminished differences in cell behaviors when comparing between soft (1 kPa) and stiff (103 kPa) gels as well as rigid TCP control. Prolonged culturing of cells on complaint substrates further influenced responses of pre-adapted cells when transferred back to TCP. Our results have implications for the study of stiffness-dependent cell behaviors and indicate that cell pre-adaptation to the substrate needs consideration. PMID:29136040

  2. A morphological and electrophysiological study on the postnatal development of oligodendrocyte precursor cells in the rat brain.

    PubMed

    Chen, Peng-hui; Cai, Wen-qin; Wang, Li-yan; Deng, Qi-yue

    2008-12-03

    A widespread population of cells in CNS is identified by specific expression of the NG2 chondroitin sulphate proteoglycan and named as oligodendrocyte precursor cell (OPC). OPCs may possess stem cell-like characteristics, including multipotentiality in vitro and in vivo. It was proposed that OPCs in the CNS parenchyma comprise a unique population of glia, distinct from oligodendrocytes and astrocytes. This study confirmed that NG2 immunoreactive OPCs were continuously distributed in cerebral cortex and hippocampus during different postnatal developmental stages. These cells rapidly increased in number over the postnatal 7 days and migrate extensively to populate with abundant processes both in developing cortex and hippocampus. The morphology of OPCs exhibited extremely complex changes with the distribution of long distance primary process gradually increased from neonatal to adult CNS. Immunohistochemical studies showed that OPCs exhibited the morphological properties that can be distinguished from astrocytes. The electrophysiological properties showed that OPCs expressed a small amount of inward Na(+) currents which was distinguished from Na(+) currents in neurons owing to their lower Na-to-K conductance ratio and higher command voltage step depolarized maximum Na(+) current amplitude. These observations suggest that OPCs can be identified as the third type of macroglia because of their distribution in the CNS, the morphological development in process diversity and the electrophysiological difference from astrocyte.

  3. Short-term effects of overnight orthokeratology on corneal cell morphology and corneal thickness.

    PubMed

    Nieto-Bona, Amelia; González-Mesa, Ana; Nieto-Bona, Ma Paz; Villa-Collar, César; Lorente-Velázquez, Amalia

    2011-06-01

    To examine the morphological and biometric corneal changes produced over periods of 15 days and 1 month after overnight orthokeratology (OK). Prospective, single-center, longitudinal trial. Twenty-seven right eyes of 27 subjects (group 1) with low to moderate myopia wore OK lenses for 1 month. Ten right eyes of 10 subjects (group 2) with emmetropia to low myopia who did not wear any type of contact lens served as controls. Corneal morphometric measurements were obtained in vivo using a confocal microscope to examine the central and midperipheral cornea. Thickness measurements in the peripheral cornea were obtained by optical coherence tomography. Changes in visual acuity, refractive error, and corneal topography were also analyzed. No significant changes in either endothelial cell or stromal cell density were observed after 1 month of OK. Basal epithelial cells were, however, significantly reduced (P < 0.01), and epithelial wing and superficial cells showed enhanced visibility (P < 0.05). Superficial cells increased in height and width, the width increase after 1 month being significant (P < 0.01). Epithelial thickness was significantly reduced in the central cornea and 2 mm around the center. Corneal pachymetry increased significantly in the band from 5 to 10 mm from the corneal apex (P < 0.01). OK lenses for myopia induce significant structural and optical changes particularly in the central epithelium after 15 days or 1 month of wear. The central corneal epithelium responds to OK wear by undergoing significant epithelial cell shape and size alterations with no effects, however, on the cells of the corneal endothelium or the corneal stroma. Peripheral corneal thickness increased with respect to baseline values. These findings suggest that the corneal epithelium is the principal structure affected by the mechanical forces exerted by the OK lenses.

  4. The role of reactive oxygen species in WP 631-induced death of human ovarian cancer cells: a comparison with the effect of doxorubicin.

    PubMed

    Rogalska, Aneta; Gajek, Arkadiusz; Szwed, Marzena; Jóźwiak, Zofia; Marczak, Agnieszka

    2011-12-01

    In the present study, we investigated the anticancer activity of WP 631, a new anthracycline analog, in weakly doxorubicin-resistant SKOV-3 ovarian cancer cells. We studied the time-course of apoptotic and necrotic events: the production of reactive oxygen species (ROS) and changes in the mitochondrial membrane potential in human ovarian cancer cells exposed to WP 631 in the presence and absence of an antioxidant, N-acetylcysteine (NAC). The effect of WP 631 was compared with the activity of doxorubicin (DOX), the best known first-generation anthracycline. Cytotoxic activity was determined by the MTT assay. The morphological changes characteristic of apoptosis and necrosis in drug-treated cells were analyzed by double staining with Hoechst 33258 and propidium iodide (PI) using fluorescence microscopy. The production of reactive oxygen species and changes in mitochondrial membrane potential were studied using specific fluorescence probes: DCFH2-DA and JC-1, respectively. The experiments showed that WP 631 was three times more cytotoxic than DOX in the tested cell line. It was found that the new anthracycline analog induced mainly apoptosis and, marginally, necrosis. Apoptotic cell death was associated with morphological changes and a decrease in mitochondrial membrane potential. In comparison to DOX, the novel bisanthracycline induced a significantly higher level of ROS and a greater drop in the membrane potential. The results provide direct evidence that the novel anthracycline WP 631 is considerably more cytotoxic to human SKOV-3 ovarian cancer cells than doxorubicin. The drug can produce ROS, which are immediately involved in the induction of apoptotic cell death. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Canine corneal epithelial cells possess a sustained proliferative capacity and generate a spontaneously derived cell line.

    PubMed

    Morita, Maresuke; Fujita, Naoki; Abe, Momoko; Hayashimoto, Koji; Nakagawa, Takayuki; Nishimura, Ryohei; Tsuzuki, Keiko

    2018-06-01

    We have previously reported characteristics of canine corneal epithelial cells in vitro and found that canine corneal epithelial cells could maintain their proliferative capacity even after continuous culture without the use of feeder cells and growth promoting additives. The objective of this study was to elucidate proliferative characteristics of canine corneal epithelial cells independent of feeder cells and growth promoting additives, with the aim of developing a spontaneously derived corneal epithelial cell line. Canine and rabbit corneal epithelial cells were harvested from the limbus and cultured with, or without, feeder cells and growth promoting additives, and both were passaged continuously until growth arrest. Canine corneal epithelial cells could proliferate independently, and could be passaged more times than rabbit cells. A canine corneal epithelial cell line, cCEpi, which could be passaged more than 100 times without using feeder cells and growth promoting additives, was established. cCEpi cells maintained a cell morphology close to the primary culture and expressed p63, cytokeratin 15 (K15), and K3. Although changes in colony morphology, shortening of the population doubling time and a heteroploid karyotype were observed, cCEpi was not tumorigenic. Stratified cell sheets cultured from cCEpi were morphologically and immunohistologically similar to sheets cultivated from early passage cells. In conclusion, canine corneal epithelial cells can proliferate independent of feeder cells and growth promoting additives. cCEpi maintains properties similar to normal corneal epithelial cells and could be a useful source for studies in cellular biology and for developing novel therapies. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Morphologic study of the effect of iron on pseudocyst formation in Trichomonas vaginalis and its interaction with human epithelial cells.

    PubMed

    Dias-Lopes, Geovane; Saboia-Vahia, Leonardo; Margotti, Eliane Trindade; Fernandes, Nilma de Souza; Castro, Cássia Luana de Faria; Oliveira, Francisco Odencio; Peixoto, Juliana Figueiredo; Britto, Constança; Silva, Fernando Costa E; Cuervo, Patricia; Jesus, José Batista de

    2017-10-01

    Trichomonas vaginalis is the aetiological agent of human trichomoniasis, which is one of the most prevalent sexually transmitted diseases in humans. Iron is an important element for the survival of this parasite and the colonisation of the host urogenital tract. In this study, we investigated the effects of iron on parasite proliferation in the dynamics of pseudocyst formation and morphologically characterised iron depletion-induced pseudocysts. We performed structural and ultrastructural analyses using light microscopy, scanning electron microscopy and transmission electron microscopy. It was observed that iron depletion (i) interrupts the proliferation of T. vaginalis, (ii) induces morphological changes in typical multiplicative trophozoites to spherical non-proliferative, non-motile pseudocysts, and (iii) induces the arrest of cell division at different stages of the cell cycle; (iv) iron is the fundamental element for the maintenance of typical trophozoite morphology; (v) pseudocysts induced by iron depletion are viable and reversible forms; and, finally, (vi) we demonstrated that pseudocysts induced by iron depletion are able to interact with human epithelial cells maintaining their spherical forms. Together, these data suggest that pseudocysts could be induced as a response to iron nutritional stress and could have a potential role in the transmission and infection of T. vaginalis.

  7. Morphologic study of the effect of iron on pseudocyst formation in Trichomonas vaginalis and its interaction with human epithelial cells

    PubMed Central

    Dias-Lopes, Geovane; Saboia-Vahia, Leonardo; Margotti, Eliane Trindade; Fernandes, Nilma de Souza; Castro, Cássia Luana de Faria; Oliveira, Francisco Odencio; Peixoto, Juliana Figueiredo; Britto, Constança; Silva, Fernando Costa e; Cuervo, Patricia; de Jesus, José Batista

    2017-01-01

    BACKGROUND Trichomonas vaginalis is the aetiological agent of human trichomoniasis, which is one of the most prevalent sexually transmitted diseases in humans. Iron is an important element for the survival of this parasite and the colonisation of the host urogenital tract. OBJECTIVES In this study, we investigated the effects of iron on parasite proliferation in the dynamics of pseudocyst formation and morphologically characterised iron depletion-induced pseudocysts. METHODS We performed structural and ultrastructural analyses using light microscopy, scanning electron microscopy and transmission electron microscopy. FINDINGS It was observed that iron depletion (i) interrupts the proliferation of T. vaginalis, (ii) induces morphological changes in typical multiplicative trophozoites to spherical non-proliferative, non-motile pseudocysts, and (iii) induces the arrest of cell division at different stages of the cell cycle; (iv) iron is the fundamental element for the maintenance of typical trophozoite morphology; (v) pseudocysts induced by iron depletion are viable and reversible forms; and, finally, (vi) we demonstrated that pseudocysts induced by iron depletion are able to interact with human epithelial cells maintaining their spherical forms. MAIN CONCLUSIONS Together, these data suggest that pseudocysts could be induced as a response to iron nutritional stress and could have a potential role in the transmission and infection of T. vaginalis. PMID:28953994

  8. Patient-specific modeling and analysis of dynamic behavior of individual sickle red blood cells under hypoxic conditions

    NASA Astrophysics Data System (ADS)

    Li, Xuejin; Du, E.; Li, Zhen; Tang, Yu-Hang; Lu, Lu; Dao, Ming; Karniadakis, George

    2015-11-01

    Sickle cell anemia is an inherited blood disorder exhibiting heterogeneous morphology and abnormal dynamics under hypoxic conditions. We developed a time-dependent cell model that is able to simulate the dynamic processes of repeated sickling and unsickling of red blood cells (RBCs) under physiological conditions. By using the kinetic cell model with parameters derived from patient-specific data, we present a mesoscopic computational study of the dynamic behavior of individual sickle RBCs flowing in a microfluidic channel with multiple microgates. We investigate how individual sickle RBCs behave differently from healthy ones in channel flow, and analyze the alteration of cellular behavior and response to single-cell capillary obstruction induced by cell rheologic rigidification and morphological change due to cell sickling under hypoxic conditions. We also simulate the flow dynamics of sickle RBCs treated with hydroxyurea (HU) and quantify the relative enhancement of hemodynamic performance of HU. This work was supported by the National Institutes of Health (NIH) Grant U01HL114476.

  9. Induction of apoptosis of liver cancer cells by nanosecond pulsed electric fields (nsPEFs).

    PubMed

    He, Ling; Xiao, Deyou; Feng, Jianguo; Yao, Chenguo; Tang, Liling

    2017-02-01

    The application of nanosecond pulsed electric fields (nsPEFs) is a novel method to induce the death of cancer cells. NsPEFs could directly function on the cell membrane and activate the apoptosis pathways, then induce apoptosis in various cell lines. However, the nsPEFs-inducing-apoptosis action sites and the exact pathways are not clear now. In this study, nsPEFs were applied to the human liver cancer cells HepG2 with different parameters. By apoptosis assay, morphological observation, detecting the mitochondrial membrane potential (ΔΨ m ), intracellular calcium ion concentration ([Ca 2+ ]i) and the expressions of key apoptosis factors, we demonstrated that nsPEFs could induce the morphology of cell apoptosis, the change in ΔΨ m , [Ca 2+ ]i and the upregulation of some key apoptosis factors, which revealed the responses of liver cancer cells and indicated that cells may undergo apoptosis through the mitochondria-dependent pathway after nsPEFs were applied.

  10. Response of Chondrocytes to Local Mechanical Injury in an Ex Vivo Model

    PubMed Central

    Lyman, Jeffrey R.; Chappell, Jonathan D.; Kelley, Scott S.; Lee, Greta M.

    2012-01-01

    Background: Our goal was to set up an ex vivo culture system to assess whether cartilage wounding (partial-thickness defects) can induce morphological changes in neighboring chondrocytes and whether these cells can translocate to the surface of the defect. Methods: Two-millimeter partial-depth defects were created in human osteochondral explants followed by culture for up to 4 weeks. Frozen sections of defects and defect-free regions were labeled using immunofluorescence for a plasma membrane protein, CD44, and actin with TRITC-phalloidin. Viable nuclei were detected with Hoechst 33342. Differential interference contrast (DIC), confocal, and transmission electron microscopy (TEM) were used to examine process extension. Results: Significant changes in cell morphology occurred in response to wounding in the superficial and deep cartilage zones. These included cell flattening, polarization of the actin cytoskeleton, extension of pseudopods projecting towards the edge of the defect, and interactions of these filopodia with collagen fibers. Cell density decreased progressively in the 300-µm zone adjacent to the defect to an average of approximately 25% to 35% after 3 weeks. Concomitant increases in cell density in the defect margin were observed. By contrast, minimal changes were seen in the middle cartilage zone. Conclusions: These novel observations strongly suggest active cartilage cell responses and movements in response to wounding. It is proposed that cartilage cells use contact guidance on fibrillated collagen to move into and populate defect areas in the superficial and deep zones. PMID:26069619

  11. Shape Changes and Interaction Mechanism of Escherichia coli Cells Treated with Sericin and Use of a Sericin-Based Hydrogel for Wound Healing

    PubMed Central

    Xue, Rui; Liu, Yalong; Liang, Congcong; Qin, Huazhen; Liu, Pengfei; Wang, Ke; Zhang, Xiaoyong; Chen, Li

    2016-01-01

    ABSTRACT To verify the interaction mechanism between sericin and Escherichia coli, especially the morphological and structural changes in the bacterial cells, the antimicrobial activity of sericin against E. coli as a model for Gram-negative bacteria was investigated. The antibacterial activity of sericin on E. coli and the interaction mechanism were investigated in this study by analyzing the growth, integrity, and morphology of the bacterial cells following treatment with sericin. The changes in morphology and cellular compositions of bacterial cells treated with sericin were observed by an inverted fluorescence microscope, scanning electron microscopy, and transmission electron microscopy. Changes in electrical conductivity, total sugar concentration of the broth for the bacteria, and protein expression of the bacteria were determined to investigate the permeability of the cell membrane. A sericin-based hydrogel was prepared for an in vivo study of wound dressing. The results showed that the antibacterial activity of the hydrogel increased with the increase in the concentration of sericin from 10 g/liter to 40 g/liter. The introduction of sericin induces membrane blebbing of E. coli cells caused by antibiotic action on the cell membrane. The cytoplasm shrinkage phenomenon was accompanied by blurring of the membrane wall boundaries. When E. coli cells were treated with sericin, release of intracellular components quickly increased. The electrical conductivity assay indicated that the charged ions are reduced after exposure to sericin so that the integrity of the cell membrane is weakened and metabolism is blocked. In addition, sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that sericin hinders the expression of bacterial protein. Sericin may damage the integrity of the bacterial cell membrane, thereby eventually inhibiting the growth and reproduction of E. coli. Compared to sterile gauze, the sericin-based hydrogel promoted fibroblast cell proliferation and accelerated the formation of granulation tissues and neovessels. IMPORTANCE The specific relationship and interaction mechanism between sericin and E. coli cells were investigated and elucidated. The results show that after 12 h of treatment, sericin molecules induce membrane blebbing of E. coli cells, and the bacteria show decreases in liquidity and permeability of biological membrane, resulting in alterations in the conductivity of the culture medium and the integrity of the outer membrane. The subsequent in vivo results demonstrate that the sericin-poly(N-isopropylacrylamide-N,N′-methylene-bis-acrylamide [NIPAm-MBA]) hydrogel accelerated wound healing compared to that with sterile gauze, which is a beneficial result for future applications in clinical medicine and the textile, food, and coating industries. PMID:27235427

  12. Morphologic and Histologic Comparison of Hypertrophic Scar in Nude Mice, T-Cell Receptor, and Recombination Activating Gene Knockout Mice.

    PubMed

    Momtazi, Moein; Ding, Jie; Kwan, Peter; Anderson, Colin C; Honardoust, Dariush; Goekjian, Serge; Tredget, Edward E

    2015-12-01

    Proliferative scars in nude mice have demonstrated morphologic and histologic similarities to human hypertrophic scar. Gene knockout technology provides the opportunity to study the effect of deleting immune cells in various disease processes. The authors' objective was to test whether grafting human skin onto T-cell receptor (TCR) αβ-/-γδ-/-, recombination activating gene (RAG)-1-/-, and RAG-2γ-/-c-/- mice results in proliferative scars consistent with human hypertrophic scar and to characterize the morphologic, histologic, and cellular changes that occur after removing immune cells. Nude TCRαβ-/-γδ-/-, RAG-1-/-, and RAG-2-/-γc-/- mice (n = 20 per strain) were grafted with human skin and euthanized at 30, 60, 120, and 180 days. Controls (n = 5 per strain) were autografted with mouse skin. Scars and normal skin were harvested at each time point. Sections were stained with hematoxylin and eosin, Masson's trichrome, and immunohistochemistry for anti-human leukocyte antigen-ABC, α-smooth muscle actin, decorin, and biglycan. TCRαβ-/-γδ-/-, RAG-1-/-, and RAG-2-/-γc-/- mice grafted with human skin developed firm, elevated scars with histologic and immunohistochemical similarities to human hypertrophic scar. Autografted controls showed no evidence of pathologic scarring. Knockout animals demonstrated a capacity for scar remodeling not observed in nude mice where reductions in α-smooth muscle actin staining pattern and scar thickness occurred over time. Human skin transplanted onto TCRαβ-/-γδ-/-, RAG-1-/-, and RAG-2-/-γc-/- mice results in proliferative scars with morphologic and histologic features of human hypertrophic scar. Remodeling of proliferative scars generated in knockout animals is analogous to changes in human hypertrophic scar. These animal models may better represent the natural history of human hypertrophic scar.

  13. [Morphological changes on cochlear hair cells of rats in simulated weightlessness and inboard noise].

    PubMed

    2017-06-18

    To observe the morphological changes on cochlear hair cells of rats in simulated weightlessness and inboard noise and to investigate the different changes in three turns of hair cells. Thirty-two healthy SD rats, all males, were randomly divided into four groups: control group, weightlessness group, noise group and weightlessness+noise groups (n=8). Then rats were exposed to -30° head down tilt as simulated weightlessness and inboard noise including steady-state noise which was (72±2) dB SPL and impulse noise up to 160 dB SPL in spaceship environment. The control group was kept in normal condition for 8 weeks. Bilateral auditory brainstem response (ABR) thresholds were tested before and after exposure respectively, and immunofluorescence staining and scanning electron microscopy (SEMs) of basilar membrane were applied after exposure. ABR threshold shifts of each group were higher after exposure. There was difference between ABRs of the experiment groups before and after exposure (P<0.05). IF showed that the inner hair cells (IHCs) missing was the main damage in the basal turn of weightlessness group, the hair cells in the middle turn were swell and in the top turn, the hair cells were not clear. In noise group, the main loss happened in the outer hair cells (OHCs) of the outermost layer. In weightlessness+noise group, the nuclear missing in the basal turn was apparent, and mainly happened at the outermost layer. Meanwhile, the missing of hair cells in the middle turn and top turn was seen at the innermost layer. SEM showed that the cilia in the basal turn of weightlessness group were serious lodging, and occasional absence. Furthermore, the basal cilia in noise group became lodged and absent, and the other two turns were seriously missing. And in weightlessness+noise group, the cilia missing in the basal turn was apparently seen. The damage degree of the four groups: weightlessness+noise group>noise group>weightlessness group>control group and the damage degree of the four turns of hair cells: basal turn>mid turn>top turn. The rats exposed to the above environment for 2 weeks displayed obvious changes in cochlea morphology, and the weightlessness +noise group had the most obvious damage.

  14. Composite nanowire networks for biological sensor platforms

    NASA Astrophysics Data System (ADS)

    Jabal, Jamie Marie Francisco

    The main goal of this research is to design, fabricate, and test a nanomaterial-based platform adequate for the measurement of physiological changes in living cells. The two primary objectives toward this end are (1) the synthesis and selection of a suitable nanomaterial and (2) the demonstration of cellular response to a direct stimulus. Determining a useful nanomaterial morphology and behavior within a sensor configuration presented challenges based on cellular integration and access to electrochemical characterization. The prospect for feasible optimization and eventual scale-up in technology were also significant. Constraining criteria are that the nanomaterial detector must (a) be cheap and relatively easy to fabricate controllably, (b) encourage cell attachment, (c) exhibit consistent wettability over time, and (d) facilitate electrochemical processes. The ultimate goal would be to transfer a proof-of-principle and proof-of-design for a whole-cell sensor technology that is cost effective and has a potential for hand-held packaging. Initial tasks were to determine an effective and highly-functional nanomaterial for biosensors by assessing wettability, morphology and conductivity behavior of several candidate materials: gallium nitride nanowires, silicon dioxide nanosprings and nanowires, and titania nanofibers. Electrospinning poly(vinyl pyrrolidone)-coated titania nano- and microfibers (O20 nm--2 microm) into a pseudo-random network is controllable to a uniformity of 1--2° in contact angle. The final electrode can be prepared with a precise wettability ranging from partial wetting to ultrahydrophobic (170°) on a variety of substrates: glass, indium tin oxide, silicon, and aluminum. Fiber mats exhibit excellent mechanical stability against rinsing, and support the incubation of epithelial (skin) and pancreatic cells. Impedance spectroscopy on the whole-cell sensor shows resistive changes attributed to cell growth as well as complex frequency-dependent behavior that can be interpreted as simple RCL circuit behavior with changing component parameters. Upon addition of lactic acid, some cell death is evident but complex impedance measurements indicate competing cell growth with adjustment to media pH. The surface impedance of the PVP-titania fiber-ITO electrode has been used in a novel measurement method to reveal significant qualitative and quantitative materials response characteristics associated with changes in solution environment, fiber mat morphology, and the state of the cells' attachment, proliferation and death.

  15. Endothelial Cell Morphology and Migration are Altered by Changes in Gravitational Fields

    NASA Technical Reports Server (NTRS)

    Melhado, Caroline; Sanford, Gary; Harris-Hooker, Sandra

    1997-01-01

    Many of the physiological changes of the cardiovascular system during space flight may originate from the dysfunction of basic biological mechanisms caused by microgravity. The weightlessness affects the system when blood and other fluids move to the upper body causing the heart to enlarge to handle the increased blood flow to the upper extremities and decrease circulating volume. Increase arterial pressure triggers baroreceptors which signal the brain to adjust heart rate. Hemodynarnic studies indicate that the microgravity-induced headward fluid redistribution results in various cardiovascular changes such as; alteration of vascular permeability resulting in lipid accumulation in the lumen of the vasculature and degeneration of the the vascular wall, capillary alteration with extensive endothelial invagination. Achieving a true microgravity environment in ground based studies for prolonged periods is virtually impossible. The application of vector-averaged gravity to mammalian cells using horizontal clinostat produces alterations of cellular behavior similar to those observed in microgravity. Similarly, the low shear, horizontally rotating bioreactor (originally designed by NASA) also duplicates several properties of microgravity. Additionally, increasing gravity, i.e., hypcrgravity is easily achieved. Hypergravity has been found to increase the proliferation of several different cell lines (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. The effect of altered gravity on cells maybe similar to those of other physical forces, i.e. shear stress. Previous studies examining laminar flow and shear stress on endothelial cells found that the cells elongate, orient with the direction of flow, and reorganize their F-actin structure, with concomitant increase in cell stiffness. These studies suggest that alterations in the gravity environment will change the behavior of most cells, including vascular cells. However, few studies have been directed at assessing the effect of altered gravitational field on vascular cell fiction and metabolism, Using image analysis we examined how bovine aortic endothelial cells altered their morphological characteristics and their response to a denudation injury when cells were subjected to simulated microgravity and hypergravity.

  16. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate

    NASA Astrophysics Data System (ADS)

    Dalby, Matthew J.; Gadegaard, Nikolaj; Oreffo, Richard O. C.

    2014-06-01

    Stem cells respond to nanoscale surface features, with changes in cell growth and differentiation mediated by alterations in cell adhesion. The interaction of nanotopographical features with integrin receptors in the cells' focal adhesions alters how the cells adhere to materials surfaces, and defines cell fate through changes in both cell biochemistry and cell morphology. In this Review, we discuss how cell adhesions interact with nanotopography, and we provide insight as to how materials scientists can exploit these interactions to direct stem cell fate and to understand how the behaviour of stem cells in their niche can be controlled. We expect knowledge gained from the study of cell-nanotopography interactions to accelerate the development of next-generation stem cell culture materials and implant interfaces, and to fuel discovery of stem cell therapeutics to support regenerative therapies.

  17. Oxidative stress induction by (+)-cordiaquinone J triggers both mitochondria-dependent apoptosis and necrosis in leukemia cells.

    PubMed

    Marinho-Filho, José Delano B; Bezerra, Daniel P; Araújo, Ana J; Montenegro, Raquel C; Pessoa, Claudia; Diniz, Jaécio C; Viana, Francisco A; Pessoa, Otília D L; Silveira, Edilberto R; de Moraes, Manoel O; Costa-Lotufo, Letícia V

    2010-02-12

    (+)-Cordiaquinone J is a 1,4-naphthoquinone isolated from the roots of Cordia leucocephala that has antifungal and larvicidal effects. However, the cytotoxic effects of (+)-cordiaquinone J have never being explored. In the present study, the effect of (+)-cordiaquinone J on tumor cells viability was investigated, showing IC(50) values in the range of 2.7-6.6muM in HL-60 and SF-295 cells, respectively. Studies performed in HL-60 leukemia cells indicated that (+)-cordiaquinone J (1.5 and 3.0muM) reduces cell viability and 5-bromo-2-deoxyuridine incorporation after 24h of incubation. (+)-Cordiaquinone J showed rapid induction of apoptosis, as indicated by phosphatidylserine externalization, caspase activation, DNA fragmentation, morphologic changes, and rapid induction of necrosis, as indicated by the loss of membrane integrity and morphologic changes. (+)-Cordiaquinone J altered the redox potential of cells by inducing the depletion of reduced GSH intracellular content, the generation of reactive oxygen species and the loss of mitochondrial membrane potential. However, pre-treatment of cells with N-acetyl-l-cysteine abolished most of the observed effects related to (+)-cordiaquinone J treatment, including those involving apoptosis and necrosis induction. Copyright (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  18. Litsea cubeba leaf essential oil from Vietnam: chemical diversity and its impacts on antibacterial activity.

    PubMed

    Nguyen, H V; Meile, J-C; Lebrun, M; Caruso, D; Chu-Ky, S; Sarter, S

    2018-03-01

    The threat of bacterial resistance to antibiotics has created an urgent need to develop new antimicrobials. The aim of this study was to characterize the chemical diversity of Litsea cubeba leaf essential oil (EO) and its impacts on the antibacterial activity against pathogenic bacteria. Essential oils collected from seven provinces in North Vietnam (n = 25) were characterized by their high content in either 1,8-cineole or linalool. Linalool-type EOs were more effective against the eight bacterial strains tested than 1,8-cineole-type. Oil samples, LC19 (50% 1,8-cineole) and BV27 (94% linalool), were selected to investigate their antibacterial mechanisms against Escherichia coli. A strong bactericidal effect was observed after 4 and 2 h of exposure respectively. Microscopic analysis of treated E. coli cultures clearly showed that EOs caused changes in cell morphology, loss of integrity and permeability of the cell membrane, as well as DNA loss. However, the effects of both EOs were distinct. LC19 mostly affected cell membrane, led to a significant cell filamentation rate and altered cell width, whereas BV27 damaged cell membrane integrity leading to cell permeabilization and altered nucleoid morphology with the appearance of spot and visibly altered compaction. This study aimed to characterize the chemical diversity of Litsea cubeba leaf essential oil (EO) and its impacts on its antibacterial activity. Two major chemotypes (1,8-cineole or linalool rich) were identified in North Vietnam and both were bactericidal against several pathogenic bacteria. A distinct inhibitory effect of EO samples on Escherichia coli was observed. 1,8-cineole-rich sample (LC19) affected cell membrane, led to cell filamentation and perturbation of cell width, while the linalool-rich one (BV27) induced damages in the cell membrane and changes in the nucleoid morphology. The study demonstrates the importance of considering chemotype variations in terms of chemical composition as well as the mode of action. © 2017 The Society for Applied Microbiology.

  19. Connexins and Cadherin Crosstalk in the Pathogenesis of Prostate Cancer

    DTIC Science & Technology

    2014-09-01

    not morphological changes during an epithelium -to-mesenchyme transition . J Cell Sci 118, 873-887 30. Cotrina, M. L., and Nedergaard, M. (2009...Rhett, J. M., Jourdan, J., and Gourdie, R. G. (2011) Connexin 43 connexon to gap junction transition is regulated by zonula occludens-1. Molecular...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Gap junctions are conglomerations of cell-cell channels that are

  20. Non-Invasive Cell-Based Therapy for Traumatic Optic Neuropathy

    DTIC Science & Technology

    2015-06-01

    Morphological and Functional Changes in an Animal Model of Retinitis Pigmentosa . Vis Neurosci, 2013: 1-13. Bin Lu, Catherine W. Morgans, Sergey Girman...of human retinal progenitor cells for treatment of retinitis pigmentosa 2013, ARVO, A0106. Benjamin Bakondi; YuChun Tsai; Bin Lu; Sergey...Systemic administration of MSCs significantly preserved retinal ganglion cell survival after TON. (d) Systemic administration of MSCs also promote limited

  1. Morphological changes in cultured bovine lymphoid cell lines associated with bovine viral diarrhea virus (BVDV) single and dual infections with bovine leukemia virus (BLV)

    USDA-ARS?s Scientific Manuscript database

    Currently, American Type Culture Collection (ATCC) makes available two cell lines derived from the same lymphoblast-like suspension cell that have been confirmed by next-generation sequencing and RT-PCR to have either a single contaminate of BVDV2a (CRL-8037) or dual contaminates of both BVDV and BL...

  2. Histopathology and pathogenesis of caerulein-, duct ligation-, and arginine-induced acute pancreatitis in Sprague-Dawley rats and C57BL6 mice.

    PubMed

    Zhang, Jun; Rouse, Rodney L

    2014-09-01

    Three classical rodent models of acute pancreatitis were created in an effort to identify potential pre-clinical models of drug-induced pancreatitis (DIP) and candidate non-invasive biomarkers for improved detection of DIP. Study objectives included designing a lexicon to minimize bias by capturing normal variation and spontaneous and injury-induced changes while maintaining the ability to statistically differentiate degrees of change, defining morphologic anchors for novel pancreatic injury biomarkers, and improved understanding of mechanisms responsible for pancreatitis. Models were created in male Sprague-Dawley rats and C57BL6 mice through: 1) administration of the cholecystokinin analog, caerulein; 2) administration of arginine; 3) surgical ligation of the pancreatic duct. Nine morphologically detectable processes were used in the lexicon; acinar cell hypertrophy; acinar cell autophagy; acinar cell apoptosis; acinar cell necrosis; vascular injury; interstitial edema, inflammation and hemorrhage; fat necrosis; ductal changes; acinar cell atrophy. Criteria were defined for scoring levels (0 = absent, 1 = mild, 2 = moderate, 3 = severe) for each lexicon component. Consistent with previous studies, histopathology scores were significant greater in rats compared to mice at baseline and after treatment. The histopathology scores in caerulein and ligation-treated rats and mice were significantly greater than those of arginine-treated rats and mice. The present study supports a multifaceted pathogenesis for acute pancreatitis in which intra-acinar trypsinogen activation, damage to acinar cells, fat cells, and vascular cells as well as activation/degranulation of mast cells and activated macrophages all contribute to the initiation and/or progression of acute inflammation of the exocrine pancreas.

  3. [Morphological structure of suprarenal glands in experimental vibration-induced pathology].

    PubMed

    Kapanadze, N A; Abzianidze, E N; Sumbadze, Ts M; Korkiia, I I; Amiranidze, M V

    2009-01-01

    Technical progress has caused development of vibration-induced pathology, which is determined by harmful factors or environmental effects. The harmful factors include physical factors--noise, mechanical vibrations, low temperature, high humidity of the air and incorrect lighting. The aim of our study was the investigation of morphological changes in suprarenal glands under condition of vibration-induced pathology. The experiment was conducted on 20 grown-up white male rats weighting 180-200 g. The animals were daily under an hour vibration during 2 months. The vibration frequency was modulated by means of a general vibration. After an experiment, animals were decapitated in condition of general anesthesia. The experiment revealed important changes in the morphological structure of suprarenal glands. The vibration pathology causes following changes: vessels' and sinusoid capillaries' uneven widening, develop the infiltrate cells, bleeding areas, necrosis and other changes. Based on above-stated it is supposed that technical progress and introduction of new technologies is one of the risk factors, which can cause neurohumoral disorders.

  4. The increase in the number of astrocytes in the total cerebral ischemia model in rats

    NASA Astrophysics Data System (ADS)

    Kudabayeva, M.; Kisel, A.; Chernysheva, G.; Smol'yakova, V.; Plotnikov, M.; Khodanovich, M.

    2017-08-01

    Astrocytes are the most abundant cell class in the CNS. Astrocytic therapies have a huge potential for neuronal repair after stroke. The majority of brain stroke studies address the damage to neurons. Modern studies turn to the usage of morphological and functional changes in astroglial cells after stroke in regenerative medicine. Our study is focused on the changes in the number of astrocytes in the hippocampus (where new glia cells divide) after brain ischemia. Ischemia was modeled by occlusion of tr. brachiocephalicus, a. subclavia sin., a. carotis communis sin. Astrocytes were determined using immunohistochemical labeling with anti GFAP antibody. We found out that the number of astrocytes increased on the 10th and 30th days after stroke in the CA1, CA2 fields, the granular layer of dentate gyrus (GrDG) and hilus. The morphology of astrocytes became reactive in these regions. Therefore, our results revealed long-term reactive astrogliosis in the hippocampus region after total ischemia in rats.

  5. Influence of freezing stress on morphological alteration and biofilm formation by Listeria monocytogenes: relationship with cell surface hydrophobicity and membrane fluidity.

    PubMed

    Miladi, Hanene; Ammar, Emna; Ben Slama, Rihab; Sakly, Nawfel; Bakhrouf, Amina

    2013-11-01

    The morphological changes and adhesive property of three Listeria monocytogenes strains submitted to freezing stress (-20 °C) were studied. The atomic force micrographs showed a reduction in the cell size and an evolution to coccoid shape. The phenotypic slime production of L. monocytogenes and the expression of the adhesive gene were investigated before and after 10 months of incubation in salmon at -20°. Our results showed that after ten months, stressed stains become more adherent and able to produce slime. In addition, we noted that this pathogen presents same physiological changes to adapt to starvation conditions. The cellular fatty acids composition of adhered and floating cells of three L. monocytogenes strains was taken into consideration. The stressed strains presented different chain lengths and therefore an increase in the hydrophobicity level. Moreover, we noted that the adhesive property of L. monocytogenes strains affects the Benzalkonium chloride bacterial sensitivity which increased after biofilm formation.

  6. Forced swimming sabotages the morphological and synaptic maturation of newborn granule neurons and triggers a unique pro-inflammatory milieu in the hippocampus.

    PubMed

    Llorens-Martín, María; Jurado-Arjona, Jerónimo; Bolós, Marta; Pallas-Bazarra, Noemí; Ávila, Jesús

    2016-03-01

    Recent experimental data suggest that mood disorders are related to inflammatory phenomena and have led to the "inflammatory hypothesis of depression". Given that the hippocampus is one of the most affected areas in these disorders, we used a model of acute stress (the Porsolt test) to evaluate the consequences of forced swimming on two crucial events related to the pathophysiology of major depression: the functional maturation of newborn granule neurons; and the hippocampal inflammatory milieu. Using PSD95:GFP-expressing retroviruses, we found that forced swimming selectively alters the dendritic morphology of newborn neurons and impairs their connectivity by reducing the number and volume of their postsynaptic densities. In addition, acute stress triggered a series of morphological changes in microglial cells, together with an increase in microglial CD68 expression, thus suggesting the functional and morphological activation of this cell population. Furthermore, we observed an intriguing change in the hippocampal inflammatory milieu in response to forced swimming. Importantly, the levels of several molecules affected by acute stress (such as Interleukin-6 and eotaxin) have been described to also be altered in patients with depression and other mood disorders. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. IR spectroscopic characteristics of cell cycle and cell death probed by synchrotron radiation based Fourier transform IR spectromicroscopy

    NASA Technical Reports Server (NTRS)

    Holman, H. Y.; Martin, M. C.; Blakely, E. A.; Bjornstad, K.; McKinney, W. R.

    2000-01-01

    Synchrotron radiation based Fourier transform IR (SR-FTIR) spectromicroscopy allows the study of individual living cells with a high signal to noise ratio. Here we report the use of the SR-FTIR technique to investigate changes in IR spectral features from individual human lung fibroblast (IMR-90) cells in vitro at different points in their cell cycle. Clear changes are observed in the spectral regions corresponding to proteins, DNA, and RNA as a cell changes from the G(1)-phase to the S-phase and finally into mitosis. These spectral changes include markers for the changing secondary structure of proteins in the cell, as well as variations in DNA/RNA content and packing as the cell cycle progresses. We also observe spectral features that indicate that occasional cells are undergoing various steps in the process of cell death. The dying or dead cell has a shift in the protein amide I and II bands corresponding to changing protein morphologies, and a significant increase in the intensity of an ester carbonyl C===O peak at 1743 cm(-1) is observed. Copyright John Wiley & Sons, Inc. Biopolymers (Biospectroscopy) 57: 329-335, 2000.

  8. [Improving Primary Culture of Pulmonary Microvascular Endothelial Cells of Rats].

    PubMed

    Jiang, Ling; Hu, Yuan-Dong; Xu, Fei-Fei; Wang, Ting-Hua

    2016-09-01

    To improve the culturing method of pulmonary microvascular endothelial cells (PMEVCs) of SD rats. The culturing processes in regard to obtaining peripheral lung tissue, attaching tissue block,preparing medium and subculturing were modified.These included an injection of heparin sodium before anesthesia, abdominal bleeding, opening of chest when breathing stopped, improvement of operational details, reduction of pollution by adding penicillin and streptomycin, discard of tissues after 48 h of primary culturing, remove of fibroblasts by a second digestion, and identification of cells using a fluorescence microscope for binding with lectin from BSI (FITC-BSI).An inverted microscope was used to observe the morphological characteristics of PMEVCs. Purified PMEVCs were obtained,which displayed a polygon or short fusiform, exhibiting a typical cobblestone-like morphology. The morphology of PMVECs turned into swirling or long fusiform following subculture or changes in culture conditions. The results of FITC-BSI assay showed that more than 90% cells were stained with green fluorescence. Purified PMEVCs with a good growth state and subculture stability can be obtained using the modified method.

  9. Direct transdifferentiation of spermatogonial stem cells to morphological, phenotypic and functional hepatocyte-like cells via the ERK1/2 and Smad2/3 signaling pathways and the inactivation of cyclin A, cyclin B and cyclin E

    PubMed Central

    2013-01-01

    Background Severe shortage of liver donors and hepatocytes highlights urgent requirement of extra-liver and stem cell source of hepatocytes for treating liver-related diseases. Here we hypothesized that spermatogonial stem cells (SSCs) can directly transdifferentiate to hepatic stem-like cells capable of differentiating into mature hepatocyte-like cells in vitro without an intervening pluripotent state. Results SSCs first changed into hepatic stem-like cells since they resembled hepatic oval cells in morphology and expressed Ck8, Ck18, Ck7, Ck19, OV6, and albumin. Importantly, they co-expressed CK8 and CK19 but not ES cell markers. Hepatic stem-like cells derived from SSCs could differentiate into small hepatocytes based upon their morphological features and expression of numerous hepatic cell markers but lacking of bile epithelial cell hallmarks. Small hepatocytes were further coaxed to differentiate into mature hepatocyte-like cells, as identified by their morphological traits and strong expression of Ck8, Ck18, Cyp7a1, Hnf3b, Alb, Tat, Ttr, albumin, and CYP1A2 but not Ck7 or CK19. Notably, these differentiated cells acquired functional attributes of hepatocyte-like cells because they secreted albumin, synthesized urea, and uptake and released indocyanine green. Moreover, phosphorylation of ERK1/2 and Smad2/3 rather than Akt was activated in hepatic stem cells and mature hepatocytes. Additionally, cyclin A, cyclin B and cyclin E transcripts and proteins but not cyclin D1 or CDK1 and CDK2 transcripts or proteins were reduced in mature hepatocyte-like cells or hepatic stem-like cells derived from SSCs compared to SSCs. Conclusions SSCs can transdifferentiate to hepatic stem-like cells capable of differentiating into cells with morphological, phenotypic and functional characteristics of mature hepatocytes via the activation of ERK1/2 and Smad2/3 signaling pathways and the inactivation of cyclin A, cyclin B and cyclin E. This study thus provides an invaluable source of mature hepatocytes for treating liver-related diseases and drug toxicity screening and offers novel insights into mechanisms of liver development and cell reprogramming. PMID:24047406

  10. [Quantitative morphological characteristics of the changes in the effector component of the immune system in dyshormonal hyperplasias and breast cancer].

    PubMed

    Abrakova, E L

    1982-01-01

    The effector component of immune system was studied in 39 cases of fibroadenomatosis by morphometric and histochemical methods. Signs of immunosuppression (decreased fraction of free cells of stroma and disturbances in their cooperation) were identified in cases of precancerous changes and cancer. A considerable difference in nucleic acid level in fibroadenomatosis and cancer was established. It is suggested that quantitative morphological study of the effector component of immune system may provide more diagnostic criteria for identification of prognostically unfavorable forms of fibroadenomatosis and cancer.

  11. Cellular target of streptomycin in the internal ear.

    PubMed

    Meza, G; López, I; Paredes, M A; Peñaloza, Y; Poblano, A

    1989-01-01

    The cellular target of streptomycin (STP) was investigated by analyzing the activity of glutamate decarboxylase (GAD) or choline acetyltransferase (ChAT) enzymes of synthesis of GABA and acetylcholine (Ach), respectively, [supposedly located in hair cells (GAD) or efferent terminals (ChAT)] in control and in 50 day-STP-treated colored guinea pig vestibular homogenates. Vestibular and auditory function were assessed by measuring postrotatory nystagmus response (PNR) and auditory brainstem evoked potentials (ABP). Morphological changes were followed by light and electron microscopy. STP-treated animals exhibited a GAD decrease of 83.6% with respect to controls whereas ChAT did not suffer any change. Assessment of PNR and ABP showed that STP affected only the former since animals lost it between the 20th and the 30th day of treatment, whereas ABP was not modified. Morphological experiments detected vestibular hair cell deterioration as the only cell type affected by STP. These results confirm the predilection of STP to affect vestibular function by damage to hair cells and show that this effect can be followed by measurement of GAD and ChAT in the vestibule as markers for hair cells and efferent terminals, respectively.

  12. A high-content image-based method for quantitatively studying context-dependent cell population dynamics

    PubMed Central

    Garvey, Colleen M.; Spiller, Erin; Lindsay, Danika; Chiang, Chun-Te; Choi, Nathan C.; Agus, David B.; Mallick, Parag; Foo, Jasmine; Mumenthaler, Shannon M.

    2016-01-01

    Tumor progression results from a complex interplay between cellular heterogeneity, treatment response, microenvironment and heterocellular interactions. Existing approaches to characterize this interplay suffer from an inability to distinguish between multiple cell types, often lack environmental context, and are unable to perform multiplex phenotypic profiling of cell populations. Here we present a high-throughput platform for characterizing, with single-cell resolution, the dynamic phenotypic responses (i.e. morphology changes, proliferation, apoptosis) of heterogeneous cell populations both during standard growth and in response to multiple, co-occurring selective pressures. The speed of this platform enables a thorough investigation of the impacts of diverse selective pressures including genetic alterations, therapeutic interventions, heterocellular components and microenvironmental factors. The platform has been applied to both 2D and 3D culture systems and readily distinguishes between (1) cytotoxic versus cytostatic cellular responses; and (2) changes in morphological features over time and in response to perturbation. These important features can directly influence tumor evolution and clinical outcome. Our image-based approach provides a deeper insight into the cellular dynamics and heterogeneity of tumors (or other complex systems), with reduced reagents and time, offering advantages over traditional biological assays. PMID:27452732

  13. A high-content image-based method for quantitatively studying context-dependent cell population dynamics

    NASA Astrophysics Data System (ADS)

    Garvey, Colleen M.; Spiller, Erin; Lindsay, Danika; Chiang, Chun-Te; Choi, Nathan C.; Agus, David B.; Mallick, Parag; Foo, Jasmine; Mumenthaler, Shannon M.

    2016-07-01

    Tumor progression results from a complex interplay between cellular heterogeneity, treatment response, microenvironment and heterocellular interactions. Existing approaches to characterize this interplay suffer from an inability to distinguish between multiple cell types, often lack environmental context, and are unable to perform multiplex phenotypic profiling of cell populations. Here we present a high-throughput platform for characterizing, with single-cell resolution, the dynamic phenotypic responses (i.e. morphology changes, proliferation, apoptosis) of heterogeneous cell populations both during standard growth and in response to multiple, co-occurring selective pressures. The speed of this platform enables a thorough investigation of the impacts of diverse selective pressures including genetic alterations, therapeutic interventions, heterocellular components and microenvironmental factors. The platform has been applied to both 2D and 3D culture systems and readily distinguishes between (1) cytotoxic versus cytostatic cellular responses; and (2) changes in morphological features over time and in response to perturbation. These important features can directly influence tumor evolution and clinical outcome. Our image-based approach provides a deeper insight into the cellular dynamics and heterogeneity of tumors (or other complex systems), with reduced reagents and time, offering advantages over traditional biological assays.

  14. The genetics of reproductive organ morphology in two Petunia species with contrasting pollination syndromes.

    PubMed

    Hermann, Katrin; Klahre, Ulrich; Venail, Julien; Brandenburg, Anna; Kuhlemeier, Cris

    2015-05-01

    Switches between pollination syndromes have happened frequently during angiosperm evolution. Using QTL mapping and reciprocal introgressions, we show that changes in reproductive organ morphology have a simple genetic basis. In animal-pollinated plants, flowers have evolved to optimize pollination efficiency by different pollinator guilds and hence reproductive success. The two Petunia species, P. axillaris and P. exserta, display pollination syndromes adapted to moth or hummingbird pollination. For the floral traits color and scent, genetic loci of large phenotypic effect have been well documented. However, such large-effect loci may be typical for shifts in simple biochemical traits, whereas the evolution of morphological traits may involve multiple mutations of small phenotypic effect. Here, we performed a quantitative trait locus (QTL) analysis of floral morphology, followed by an in-depth study of pistil and stamen morphology and the introgression of individual QTL into reciprocal parental backgrounds. Two QTLs, on chromosomes II and V, are sufficient to explain the interspecific difference in pistil and stamen length. Since most of the difference in organ length is caused by differences in cell number, genes underlying these QTLs are likely to be involved in cell cycle regulation. Interestingly, conservation of the locus on chromosome II in a different P. axillaris subspecies suggests that the evolution of organ elongation was initiated on chromosome II in adaptation to different pollinators. We recently showed that QTLs for pistil and stamen length on chromosome II are tightly linked to QTLs for petal color and volatile emission. Linkage of multiple traits will enable major phenotypic change within a few generations in hybridizing populations. Thus, the genomic architecture of pollination syndromes in Petunia allows for rapid responses to changing pollinator availability.

  15. Antibacterial activity and morphological changes of Pseudomonas aeruginosa cells after exposure to Vernonia cinerea extract.

    PubMed

    Latha, Lachimanan Yoga; Darah, Ibrahim; Kassim, Mohd Jain Noordin Mohd; Sasidharan, Sreenivasan

    2010-08-01

    The antibacterial activity of Vernonia cinerea (L.) extract was investigated using the broth dilution method. The extract showed a favorable antimicrobial activity against Pseudomonas aeruginosa with a minimum inhibition concentration (MIC) value of 3.13 mg/mL. V. cinerea extract at (1/2), 1, or 2 times the MIC significantly inhibited bacterial growth with a noticeable drop in optical density (OD) of the bacterial culture, thus confirming the antibacterial activity of the extract on P. aeruginosa. Imaging using scanning (SEM) and transmission (TEM) electron microscopy was done to determine the major alterations in the microstructure of the extract-treated P. aeruginosa. The main abnormalities noted via SEM and TEM studies were the alteration in morphology of the bacterial cells. The main reason for this destruction was the severe alterations of the cell wall with the formation of holes, invaginations, and morphological disorganization caused by the extract. The authors conclude that the extract may be used as a candidate for the development of antimicrobial agents.

  16. A Complex Interaction Between Reduced Reelin Expression and Prenatal Organophosphate Exposure Alters Neuronal Cell Morphology.

    PubMed

    Mullen, Brian R; Ross, Brennan; Chou, Joan Wang; Khankan, Rana; Khialeeva, Elvira; Bui, Kimberly; Carpenter, Ellen M

    2016-06-01

    Genetic and environmental factors are both likely to contribute to neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and major depressive disorders. Prior studies from our laboratory and others have demonstrated that the combinatorial effect of two factors-reduced expression of reelin protein and prenatal exposure to the organophosphate pesticide chlorpyrifos oxon-gives rise to acute biochemical effects and to morphological and behavioral phenotypes in adolescent and young adult mice. In the current study, we examine the consequences of these factors on reelin protein expression and neuronal cell morphology in adult mice. While the cell populations that express reelin in the adult brain appear unchanged in location and distribution, the levels of full length and cleaved reelin protein show persistent reductions following prenatal exposure to chlorpyrifos oxon. Cell positioning and organization in the hippocampus and cerebellum are largely normal in animals with either reduced reelin expression or prenatal exposure to chlorpyrifos oxon, but cellular complexity and dendritic spine organization is altered, with a skewed distribution of immature dendritic spines in adult animals. Paradoxically, combinatorial exposure to both factors appears to generate a rescue of the dendritic spine phenotypes, similar to the mitigation of behavioral and morphological changes observed in our prior study. Together, our observations support an interaction between reelin expression and chlorpyrifos oxon exposure that is not simply additive, suggesting a complex interplay between genetic and environmental factors in regulating brain morphology. © The Author(s) 2016.

  17. Quantitative phase imaging of platelet: assessment of cell morphology and function

    NASA Astrophysics Data System (ADS)

    Vasilenko, Irina; Vlasova, Elizaveta; Metelin, Vladislav; Agadzhanjan, B.; Lyfenko, R.

    2017-02-01

    It is well known that platelets play a central role in hemostasis and thrombosis, they also mediate tumor cell growth, dissemination and angiogenesis. The purpose of the present experiment was to evaluate living platelet size, function and morphology simultaneously in unactivated and activated states using Phase-Interference Microscope "Cytoscan" (Moscow, Russia). We enrolled 30 healthy volunteers, who had no past history of aeteriosclerosis-related disorders, such as coronary heart disease, cerebrovascular disease, hypertention, diabetes or hyperlipidemia and 30 patients with oropharynx cancer. We observed the optic-geometrical parameters of each isolated living cell and the distribution of platelets by sizes have been analysed to detect the dynamics of cell population heterogeneity. Simultaneously we identified 4 platelet forms that have different morphological features and different parameters of size distribution. We noticed that morphological platelet types correlate with morphometric platelet parameters. The data of polymorphisms of platelet reactivity in tumor progression can be used to improve patient outcomes in the cancer prevention and treatment. Moreover morphometric and functional platelet parameters can serve criteria of the efficiency of the radio- and chemotherapy carried out. In conclusion the computer phase-interference microscope provides rapid and effective analysis of living platelet morphology and function at the same time. The use of the computer phase-interference microscope could be an easy and fast method to check the state of platelets in patients with changed platelet activation and to follow a possible pharmacological therapy to reduce this phenomenon.

  18. Dynamic Reorganization of the Cytoskeleton during Apoptosis: The Two Coffins Hypothesis.

    PubMed

    Povea-Cabello, Suleva; Oropesa-Ávila, Manuel; de la Cruz-Ojeda, Patricia; Villanueva-Paz, Marina; de la Mata, Mario; Suárez-Rivero, Juan Miguel; Álvarez-Córdoba, Mónica; Villalón-García, Irene; Cotán, David; Ybot-González, Patricia; Sánchez-Alcázar, José A

    2017-11-11

    During apoptosis, cells undergo characteristic morphological changes in which the cytoskeleton plays an active role. The cytoskeleton rearrangements have been mainly attributed to actinomyosin ring contraction, while microtubule and intermediate filaments are depolymerized at early stages of apoptosis. However, recent results have shown that microtubules are reorganized during the execution phase of apoptosis forming an apoptotic microtubule network (AMN). Evidence suggests that AMN is required to maintain plasma membrane integrity and cell morphology during the execution phase of apoptosis. The new "two coffins" hypothesis proposes that both AMN and apoptotic cells can adopt two morphological patterns, round or irregular, which result from different cytoskeleton kinetic reorganization during the execution phase of apoptosis induced by genotoxic agents. In addition, round and irregular-shaped apoptosis showed different biological properties with respect to AMN maintenance, plasma membrane integrity and phagocyte responses. These findings suggest that knowing the type of apoptosis may be important to predict how fast apoptotic cells undergo secondary necrosis and the subsequent immune response. From a pathological point of view, round-shaped apoptosis can be seen as a physiological and controlled type of apoptosis, while irregular-shaped apoptosis can be considered as a pathological type of cell death closer to necrosis.

  19. Dynamic Reorganization of the Cytoskeleton during Apoptosis: The Two Coffins Hypothesis

    PubMed Central

    Povea-Cabello, Suleva; Oropesa-Ávila, Manuel; de la Cruz-Ojeda, Patricia; Villanueva-Paz, Marina; de la Mata, Mario; Álvarez-Córdoba, Mónica; Villalón-García, Irene; Cotán, David; Ybot-González, Patricia

    2017-01-01

    During apoptosis, cells undergo characteristic morphological changes in which the cytoskeleton plays an active role. The cytoskeleton rearrangements have been mainly attributed to actinomyosin ring contraction, while microtubule and intermediate filaments are depolymerized at early stages of apoptosis. However, recent results have shown that microtubules are reorganized during the execution phase of apoptosis forming an apoptotic microtubule network (AMN). Evidence suggests that AMN is required to maintain plasma membrane integrity and cell morphology during the execution phase of apoptosis. The new “two coffins” hypothesis proposes that both AMN and apoptotic cells can adopt two morphological patterns, round or irregular, which result from different cytoskeleton kinetic reorganization during the execution phase of apoptosis induced by genotoxic agents. In addition, round and irregular-shaped apoptosis showed different biological properties with respect to AMN maintenance, plasma membrane integrity and phagocyte responses. These findings suggest that knowing the type of apoptosis may be important to predict how fast apoptotic cells undergo secondary necrosis and the subsequent immune response. From a pathological point of view, round-shaped apoptosis can be seen as a physiological and controlled type of apoptosis, while irregular-shaped apoptosis can be considered as a pathological type of cell death closer to necrosis. PMID:29137119

  20. Clinicopathological features of pulmonary cryptococcosis with cryptococcal titan cells: a comparative analysis of 27 cases.

    PubMed

    Wang, Jing-Mei; Zhou, Qiang; Cai, Hou-Rong; Zhuang, Yi; Zhang, Yi-Fen; Xin, Xiao-Yan; Meng, Fan-Qing; Wang, Ya-Ping

    2014-01-01

    In addition to the typical size, Cryptococcus neoformans can enlarge its size to form titan cells during infection, and its diameter can reach up to 100 μm. Clinical reports about cryptococcal titan cells are rare. Most studies focus on aspects of animal models of infection with titan cells. Herein, we report the clinical and imaging characteristics and histopathologic features of 3 patients with titan cells and 27 patients with pathogens of typical size, and describe the morphological characteristics of titan cells in details. Histologically, 3 patients with titan cells show necrosis, fibrosis and macrophage accumulation. The titan cells appear in necrotic tissue and between macrophages, and have thick wall with unstained halo around them and diameters range from 20 to 80 μm with characteristic of narrow-necked single budding. There are also organisms with typical size. All 27 patients with normal pathogens show epithelioid granulomatous lesions. There is no significantly difference in clinical and imaging feature between the two groups. Cryptococcus neoformans exhibits a striking morphological change for the formation of titan cells during pulmonary infection, which will result in misdiagnosis and under diagnosis. The histopathological changes may be new manifestation, which need to be further confirmed by the study with animal models of infection and the observation of more clinical cases. Careful observation of the tissue sections is necessary.

Top