Optimized microsystems-enabled photovoltaics
Cruz-Campa, Jose Luis; Nielson, Gregory N.; Young, Ralph W.; Resnick, Paul J.; Okandan, Murat; Gupta, Vipin P.
2015-09-22
Technologies pertaining to designing microsystems-enabled photovoltaic (MEPV) cells are described herein. A first restriction for a first parameter of an MEPV cell is received. Subsequently, a selection of a second parameter of the MEPV cell is received. Values for a plurality of parameters of the MEPV cell are computed such that the MEPV cell is optimized with respect to the second parameter, wherein the values for the plurality of parameters are computed based at least in part upon the restriction for the first parameter.
Automatic detection of malaria parasite in blood images using two parameters.
Kim, Jong-Dae; Nam, Kyeong-Min; Park, Chan-Young; Kim, Yu-Seop; Song, Hye-Jeong
2015-01-01
Malaria must be diagnosed quickly and accurately at the initial infection stage and treated early to cure it properly. The malaria diagnosis method using a microscope requires much labor and time of a skilled expert and the diagnosis results vary greatly between individual diagnosticians. Therefore, to be able to measure the malaria parasite infection quickly and accurately, studies have been conducted for automated classification techniques using various parameters. In this study, by measuring classification technique performance according to changes of two parameters, the parameter values were determined that best distinguish normal from plasmodium-infected red blood cells. To reduce the stain deviation of the acquired images, a principal component analysis (PCA) grayscale conversion method was used, and as parameters, we used a malaria infected area and a threshold value used in binarization. The parameter values with the best classification performance were determined by selecting the value (72) corresponding to the lowest error rate on the basis of cell threshold value 128 for the malaria threshold value for detecting plasmodium-infected red blood cells.
Fafin-Lefevre, Mélanie; Morlais, Fabrice; Guittet, Lydia; Clin, Bénédicte; Launoy, Guy; Galateau-Sallé, Françoise; Plancoulaine, Benoît; Herlin, Paulette; Letourneux, Marc
2011-08-01
To identify which morphologic or densitometric parameters are modified in cell nuclei from bronchopulmonary cancer based on 18 parameters involving shape, intensity, chromatin, texture, and DNA content and develop a bronchopulmonary cancer screening method relying on analysis of sputum sample cell nuclei. A total of 25 sputum samples from controls and 22 bronchial aspiration samples from patients presenting with bronchopulmonary cancer who were professionally exposed to cancer were used. After Feulgen staining, 18 morphologic and DNA content parameters were measured on cell nuclei, via image cytom- etry. A method was developed for analyzing distribution quantiles, compared with simply interpreting mean values, to characterize morphologic modifications in cell nuclei. Distribution analysis of parameters enabled us to distinguish 13 of 18 parameters that demonstrated significant differences between controls and cancer cases. These parameters, used alone, enabled us to distinguish two population types, with both sensitivity and specificity > 70%. Three parameters offered 100% sensitivity and specificity. When mean values offered high sensitivity and specificity, comparable or higher sensitivity and specificity values were observed for at least one of the corresponding quantiles. Analysis of modification in morphologic parameters via distribution analysis proved promising for screening bronchopulmonary cancer from sputum.
Dimensionless number is central to stress relaxation and expansive growth of the cell wall.
Ortega, Joseph K E
2017-06-07
Experiments demonstrate that both plastic and elastic deformation of the cell wall are necessary for wall stress relaxation and expansive growth of walled cells. A biophysical equation (Augmented Growth Equation) was previously shown to accurately model the experimentally observed wall stress relaxation and expansive growth rate. Here, dimensional analysis is used to obtain a dimensionless Augmented Growth Equation with dimensionless coefficients (groups of variables, or Π parameters). It is shown that a single Π parameter controls the wall stress relaxation rate. The Π parameter represents the ratio of plastic and elastic deformation rates, and provides an explicit relationship between expansive growth rate and the wall's mechanical properties. Values for Π are calculated for plant, algal, and fungal cells from previously reported experimental results. It is found that the Π values for each cell species are large and very different from each other. Expansive growth rates are calculated using the calculated Π values and are compared to those measured for plant and fungal cells during different growth conditions, after treatment with IAA, and in different developmental stages. The comparison shows good agreement and supports the claim that the Π parameter is central to expansive growth rate of walled cells.
Doherty, John E.; Fienen, Michael N.; Hunt, Randall J.
2011-01-01
Pilot points have been used in geophysics and hydrogeology for at least 30 years as a means to bridge the gap between estimating a parameter value in every cell of a model and subdividing models into a small number of homogeneous zones. Pilot points serve as surrogate parameters at which values are estimated in the inverse-modeling process, and their values are interpolated onto the modeling domain in such a way that heterogeneity can be represented at a much lower computational cost than trying to estimate parameters in every cell of a model. Although the use of pilot points is increasingly common, there are few works documenting the mathematical implications of their use and even fewer sources of guidelines for their implementation in hydrogeologic modeling studies. This report describes the mathematics of pilot-point use, provides guidelines for their use in the parameter-estimation software suite (PEST), and outlines several research directions. Two key attributes for pilot-point definitions are highlighted. First, the difference between the information contained in the every-cell parameter field and the surrogate parameter field created using pilot points should be in the realm of parameters which are not informed by the observed data (the null space). Second, the interpolation scheme for projecting pilot-point values onto model cells ideally should be orthogonal. These attributes are informed by the mathematics and have important ramifications for both the guidelines and suggestions for future research.
Streeter, Ian; Cheema, Umber
2011-10-07
Understanding the basal O(2) and nutrient requirements of cells is paramount when culturing cells in 3D tissue models. Any scaffold design will need to take such parameters into consideration, especially as the addition of cells introduces gradients of consumption of such molecules from the surface to the core of scaffolds. We have cultured two cell types in 3D native collagen type I scaffolds, and measured the O(2) tension at specific locations within the scaffold. By changing the density of cells, we have established O(2) consumption gradients within these scaffolds and using mathematical modeling have derived rates of consumption for O(2). For human dermal fibroblasts the average rate constant was 1.19 × 10(-17) mol cell(-1) s(-1), and for human bone marrow derived stromal cells the average rate constant was 7.91 × 10(-18) mol cell(-1) s(-1). These values are lower than previously published rates for similar cells cultured in 2D, but the values established in this current study are more representative of rates of consumption measured in vivo. These values will dictate 3D culture parameters, including maximum cell-seeding density and maximum size of the constructs, for long-term viability of tissue models.
Ecotoxicity evaluation of a liquid detergent using the automatic biotest ECOTOX.
Azizullah, Azizullah; Richter, Peter; Ullah, Waheed; Ali, Imran; Häder, Donat-Peter
2013-08-01
Synthetic detergents are common pollutants reaching aquatic environments in different ways after usage at homes, institutions and industries. In this study a liquid detergent, used for dish washing, was evaluated for its toxicity during long- and short-term tests using the automatic biotest ECOTOX. Different parameters of Euglena gracilis like motility, swimming velocity, gravitactic orientation, cell compactness and cell growth were used as end points. In short-term experiments, the maximum adverse effects on motility, velocity, cell shape and gravitaxis were observed after 1 h of exposure. With further increase in exposure time to the detergent a slight recovery of these parameters was observed. In long-term experiments, the detergent caused severe disturbances to E. gracilis. Motility, cell growth and cell compactness (shape) with EC50 values of 0.064, 0.18 and 2.05 %, respectively, were found as the most sensitive parameters to detergent stress. There was a slight positive effect on gravitactic orientation at the lowest two concentrations; at higher concentrations of the detergent cells orientation was highly impaired giving EC50 values of 1.75 and 2.52 % for upward swimming and r-value, respectively.
Surov, Alexey; Hamerla, Gordian; Meyer, Hans Jonas; Winter, Karsten; Schob, Stefan; Fiedler, Eckhard
2018-09-01
To analyze several histopathological features and their possible correlations with whole lesion histogram analysis derived from ADC maps in meningioma. The retrospective study involved 36 patients with primary meningiomas. For every tumor, the following histogram analysis parameters of apparent diffusion coefficient (ADC) were calculated: ADC mean , ADC max , ADC min , ADC median , ADC mode , ADC percentiles: P10, P25, P75, P90, as well kurtosis, skewness, and entropy. All measures were performed by two radiologists. Proliferation index KI 67, minimal, maximal and mean cell count, total nucleic area, and expression of water channel aquaporin 4 (AQP4) were estimated. Spearman's correlation coefficient was used to analyze associations between investigated parameters. A perfect interobserver agreement for all ADC values (0.84-0.97) was identified. All ADC values correlated inversely with tumor cellularity with the strongest correlation between P10, P25 and mean cell count (-0.558). KI 67 correlated inversely with all ADC values except ADC min . ADC parameters did not correlate with total nucleic area. All ADC values correlated statistically significant with expression of AQP4. ADC histogram analysis is a valid method with an excellent interobserver agreement. Cellularity parameters and proliferation potential are associated with different ADC values. Membrane permeability may play a greater role for water diffusion than cell count and proliferation activity. Copyright © 2018 Elsevier Inc. All rights reserved.
Comment on ``Correlated noise in a logistic growth model''
NASA Astrophysics Data System (ADS)
Behera, Anita; O'Rourke, S. Francesca C.
2008-01-01
We argue that the results published by Ai [Phys. Rev. E 67, 022903 (2003)] on “correlated noise in logistic growth” are not correct. Their conclusion that, for larger values of the correlation parameter λ , the cell population is peaked at x=0 , which denotes a high extinction rate, is also incorrect. We find the reverse behavior to their results, that increasing λ promotes the stable growth of tumor cells. In particular, their results for the steady-state probability, as a function of cell number, at different correlation strengths, presented in Figs. 1 and 2 of their paper show different behavior than one would expect from the simple mathematical expression for the steady-state probability. Additionally, their interpretation that at small values of cell number the steady-state probability increases as the correlation parameter is increased is also questionable. Another striking feature in their Figs. 1 and 3 is that, for the same values of the parameters λ and α , their simulation produces two different curves, both qualitatively and quantitatively.
Wang, Hai-yi; Su, Zi-hua; Xu, Xiao; Sun, Zhi-peng; Duan, Fei-xue; Song, Yuan-yuan; Li, Lu; Wang, Ying-wei; Ma, Xin; Guo, Ai-tao; Ma, Lin; Ye, Hui-yi
2016-01-01
Pharmacokinetic parameters derived from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) have been increasingly used to evaluate the permeability of tumor vessel. Histogram metrics are a recognized promising method of quantitative MR imaging that has been recently introduced in analysis of DCE-MRI pharmacokinetic parameters in oncology due to tumor heterogeneity. In this study, 21 patients with renal cell carcinoma (RCC) underwent paired DCE-MRI studies on a 3.0 T MR system. Extended Tofts model and population-based arterial input function were used to calculate kinetic parameters of RCC tumors. Mean value and histogram metrics (Mode, Skewness and Kurtosis) of each pharmacokinetic parameter were generated automatically using ImageJ software. Intra- and inter-observer reproducibility and scan–rescan reproducibility were evaluated using intra-class correlation coefficients (ICCs) and coefficient of variation (CoV). Our results demonstrated that the histogram method (Mode, Skewness and Kurtosis) was not superior to the conventional Mean value method in reproducibility evaluation on DCE-MRI pharmacokinetic parameters (K trans & Ve) in renal cell carcinoma, especially for Skewness and Kurtosis which showed lower intra-, inter-observer and scan-rescan reproducibility than Mean value. Our findings suggest that additional studies are necessary before wide incorporation of histogram metrics in quantitative analysis of DCE-MRI pharmacokinetic parameters. PMID:27380733
Davidson, P; Bigerelle, M; Bounichane, B; Giazzon, M; Anselme, K
2010-07-01
Contact guidance is generally evaluated by measuring the orientation angle of cells. However, statistical analyses are rarely performed on these parameters. Here we propose a statistical analysis based on a new parameter sigma, the orientation parameter, defined as the dispersion of the distribution of orientation angles. This parameter can be used to obtain a truncated Gaussian distribution that models the distribution of the data between -90 degrees and +90 degrees. We established a threshold value of the orientation parameter below which the data can be considered to be aligned within a 95% confidence interval. Applying our orientation parameter to cells on grooves and using a modelling approach, we established the relationship sigma=alpha(meas)+(52 degrees -alpha(meas))/(1+C(GDE)R) where the parameter C(GDE) represents the sensitivity of cells to groove depth, and R the groove depth. The values of C(GDE) obtained allowed us to compare the contact guidance of human osteoprogenitor (HOP) cells across experiments involving different groove depths, times in culture and inoculation densities. We demonstrate that HOP cells are able to identify and respond to the presence of grooves 30, 100, 200 and 500 nm deep and that the deeper the grooves, the higher the cell orientation. The evolution of the sensitivity (C(GDE)) with culture time is roughly sigmoidal with an asymptote, which is a function of inoculation density. The sigma parameter defined here is a universal parameter that can be applied to all orientation measurements and does not require a mathematical background or knowledge of directional statistics. Copyright 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
[What is the prognostic significance of histomorphology in small cell lung carcinoma?].
Facilone, F; Cimmino, A; Assennato, G; Sardelli, P; Colucci, G A; Resta, L
1993-01-01
What is the prognostic significant of the histomorphology in the small cell carcinomas of the lung? After the WHO classification of the lung cancer (1981), several studies criticized the subdivision of the small cell carcinoma in three sub-types (oat-cell, intermediate cell and combined types). The role of histology in the prognostic predition has been devaluated. In order to verify the prognostic value of the morphology of the small cell types of lung cancer, we performed a multivariate analysis in 62 patients. The survival rate was analytically compared with the following parameters: nuclear maximum diameter, nuclear form, nuclear chromatism, chromatine distribution, presence of nucleolus, evidence of cytoplasm. The results showed that none of these parameters are able to express a prognostic value. According to the recent studies, we think that the small cell carcinoma of the lung is a neoplasia with a multiform histologic pattern. Differences observed in clinical management are not correlate with the morphology, but with other biological parameters still unknown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ovchinnikov, Yu. N., E-mail: ovc@itp.ac.ru; Sigal, I. M.
2016-07-15
The “soft” transverse mode of gapless excitations related to the deformation of a triangular Abrikosov lattice with a single flux quantum per unit cell at an arbitrary value of the Ginzburg–Landau parameter κ is investigated. An Abrikosov lattice with the angle φ = π/3 between the unit cell vectors is shown to be unstable in a narrow range of values, 1 < κ < 1.000634. The excitation spectrum of the mode under consideration at low values of the momentum k (in the k{sup 2} approximation) is isotropic at k lying in a plane perpendicular to the magnetic field.
Winter, Karsten; Richter, Cindy; Hoehn, Anna-Kathrin
2018-01-01
Our purpose was to analyze associations between apparent diffusion coefficient (ADC) histogram analysis parameters and histopathologicalfeatures in head and neck squamous cell carcinoma (HNSCC). The study involved 32 patients with primary HNSCC. For every tumor, the following histogram analysis parameters were calculated: ADCmean, ADCmax, ADCmin, ADCmedian, ADCmode, P10, P25, P75, P90, kurtosis, skewness, and entropy. Furthermore, proliferation index KI 67, cell count, total and average nucleic areas were estimated. Spearman's correlation coefficient (p) was used to analyze associations between investigated parameters. In overall sample, all ADC values showed moderate inverse correlations with KI 67. All ADC values except ADCmax correlated inversely with tumor cellularity. Slightly correlations were identified between total/average nucleic area and ADCmean, ADCmin, ADCmedian, and P25. In G1/2 tumors, only ADCmode correlated well with Ki67. No statistically significant correlations between ADC parameters and cellularity were found. In G3 tumors, Ki 67 correlated with all ADC parameters except ADCmode. Cell count correlated well with all ADC parameters except ADCmax. Total nucleic area correlated inversely with ADCmean, ADCmin, ADCmedian, P25, and P90. ADC histogram parameters reflect proliferation potential and cellularity in HNSCC. The associations between histopathology and imaging depend on tumor grading. PMID:29805759
The application of the pilot points in groundwater numerical inversion model
NASA Astrophysics Data System (ADS)
Hu, Bin; Teng, Yanguo; Cheng, Lirong
2015-04-01
Numerical inversion simulation of groundwater has been widely applied in groundwater. Compared to traditional forward modeling, inversion model has more space to study. Zones and inversing modeling cell by cell are conventional methods. Pilot points is a method between them. The traditional inverse modeling method often uses software dividing the model into several zones with a few parameters needed to be inversed. However, distribution is usually too simple for modeler and result of simulation deviation. Inverse cell by cell will get the most actual parameter distribution in theory, but it need computational complexity greatly and quantity of survey data for geological statistical simulation areas. Compared to those methods, pilot points distribute a set of points throughout the different model domains for parameter estimation. Property values are assigned to model cells by Kriging to ensure geological units within the parameters of heterogeneity. It will reduce requirements of simulation area geological statistics and offset the gap between above methods. Pilot points can not only save calculation time, increase fitting degree, but also reduce instability of numerical model caused by numbers of parameters and other advantages. In this paper, we use pilot point in a field which structure formation heterogeneity and hydraulics parameter was unknown. We compare inversion modeling results of zones and pilot point methods. With the method of comparative analysis, we explore the characteristic of pilot point in groundwater inversion model. First, modeler generates an initial spatially correlated field given a geostatistical model by the description of the case site with the software named Groundwater Vistas 6. Defining Kriging to obtain the value of the field functions over the model domain on the basis of their values at measurement and pilot point locations (hydraulic conductivity), then we assign pilot points to the interpolated field which have been divided into 4 zones. And add range of disturbance values to inversion targets to calculate the value of hydraulic conductivity. Third, after inversion calculation (PEST), the interpolated field will minimize an objective function measuring the misfit between calculated and measured data. It's an optimization problem to find the optimum value of parameters. After the inversion modeling, the following major conclusion can be found out: (1) In a field structure formation is heterogeneity, the results of pilot point method is more real: better fitting result of parameters, more stable calculation of numerical simulation (stable residual distribution). Compared to zones, it is better of reflecting the heterogeneity of study field. (2) Pilot point method ensures that each parameter is sensitive and not entirely dependent on other parameters. Thus it guarantees the relative independence and authenticity of parameters evaluation results. However, it costs more time to calculate than zones. Key words: groundwater; pilot point; inverse model; heterogeneity; hydraulic conductivity
Parsons, Nola J; Schaefer, Adam M; van der Spuy, Stephen D; Gous, Tertius A
2015-03-25
There are few publications on the clinical haematology and biochemistry of African penguins (Spheniscus demersus) and these are based on captive populations. Baseline haematology and serum biochemistry parameters were analysed from 108 blood samples from wild, adult African penguins. Samples were collected from the breeding range of the African penguin in South Africa and the results were compared between breeding region and sex. The haematological parameters that were measured were: haematocrit, haemoglobin, red cell count and white cell count. The biochemical parameters that were measured were: sodium, potassium, chloride, calcium, inorganic phosphate, creatinine, cholesterol, serum glucose, uric acid, bile acid, total serum protein, albumin, aspartate transaminase and creatine kinase. All samples were serologically negative for selected avian diseases and no blood parasites were detected. No haemolysis was present in any of the analysed samples. Male African penguins were larger and heavier than females, with higher haematocrit, haemoglobin and red cell count values, but lower calcium and phosphate values. African penguins in the Eastern Cape were heavier than those in the Western Cape, with lower white cell count and globulin values and a higher albumin/globulin ratio, possibly indicating that birds are in a poorer condition in the Western Cape. Results were also compared between multiple penguin species and with African penguins in captivity. These values for healthy, wild, adult penguins can be used for future health and disease assessments.
[South American camelids in Switzerland. II. Reference values for blood parameters].
Hengrave Burri, I; Tschudi, P; Martig, J; Liesegang, A; Meylan, M
2005-08-01
In order to establish reference values for blood parameters of South American camelids in Switzerland, 273 blood samples were collected from 141 llamas and 132 alpacas. These animals were classified in three categories (young animals < six months, adult females and males). Forty-one parameters were measured (red blood cell count, white blood cell count, electrolytes, metabolites and enzymes). Significant differences between llamas and alpacas were evident for 26 parameters. This study also showed that differences between young animals, females and males must be taken into consideration. A comparison of blood values with the results of fecal analysis for parasite eggs showed that an infestation with Dicrocoelium dendriticum was associated with elevated activity of two liver enzymes (GLDH and gamma-GT) in the serum. In contrast, no differences were found in the results of blood analyses between animals shedding eggs of gastrointestinal strongyles or not.
An adaptive embedded mesh procedure for leading-edge vortex flows
NASA Technical Reports Server (NTRS)
Powell, Kenneth G.; Beer, Michael A.; Law, Glenn W.
1989-01-01
A procedure for solving the conical Euler equations on an adaptively refined mesh is presented, along with a method for determining which cells to refine. The solution procedure is a central-difference cell-vertex scheme. The adaptation procedure is made up of a parameter on which the refinement decision is based, and a method for choosing a threshold value of the parameter. The refinement parameter is a measure of mesh-convergence, constructed by comparison of locally coarse- and fine-grid solutions. The threshold for the refinement parameter is based on the curvature of the curve relating the number of cells flagged for refinement to the value of the refinement threshold. Results for three test cases are presented. The test problem is that of a delta wing at angle of attack in a supersonic free-stream. The resulting vortices and shocks are captured efficiently by the adaptive code.
Mathematical modeling of a thermovoltaic cell
NASA Technical Reports Server (NTRS)
White, Ralph E.; Kawanami, Makoto
1992-01-01
A new type of battery named 'Vaporvolt' cell is in the early stage of its development. A mathematical model of a CuO/Cu 'Vaporvolt' cell is presented that can be used to predict the potential and the transport behavior of the cell during discharge. A sensitivity analysis of the various transport and electrokinetic parameters indicates which parameters have the most influence on the predicted energy and power density of the 'Vaporvolt' cell. This information can be used to decide which parameters should be optimized or determined more accurately through further modeling or experimental studies. The optimal thicknesses of electrodes and separator, the concentration of the electrolyte, and the current density are determined by maximizing the power density. These parameter sensitivities and optimal design parameter values will help in the development of a better CuO/Cu 'Vaporvolt' cell.
Belviranli, Muaz; Okudan, Nilsel; Kabak, Banu
2017-07-19
The objective of the study was to determine the effects of acute high-intensity interval training (HIIT) on hematological parameters in sedentary men. Ten healthy, non-smoker, and sedentary men aged between 18 and 24 years participated in the study. All subjects performed four Wingate tests with 4 min intervals between the tests. Blood samples were collected at pre-exercise, immediately after, 3 and 6 h after the fourth Wingate test. Hematological parameters were analyzed in these samples. The results showed that hematocrit percentage, hemoglobin values, red cell count, mean cell volume, platelet count, total white cell count, and counts of the white cell subgroups increased immediately after the acute HIIT and their values began to return to resting levels 3 h after exercise, and completely returned to resting levels 6 h after exercise. In conclusion, acute HIIT causes an inflammatory response in blood.
Agwu, K K; Mgbor, S; Ogbu, S O I; Okeji, M
2007-01-01
To investigate the in-vivo effects of intravenous administration of sodium meglumine diatrizoate on some haematological parameters in a Nigerian population. Blood samples were collected before and one hour after intravenous injection of sodium-meglumine diatrizoate from 50 subjects undergoing intravenous urography examinations who had no history of and laboratory confirmed diseases that may affect haematological parameters. Standard laboratory methods were used to assay the haemoglobin concentration (Hb), packed cell volume (PCV), total white blood cell (WBC) count and differentials and blood film for any morphological changes in the red blood cells (RBC). Comparisons were made between the mean values of these haematological parameters before and one hour post injection using paired t-test for any statistically significant differences. There were statistically significant reductions in the mean values of Hb concentration and the neutrophil count one hour post injection compared with their pretest values (p < 0.05). The lymphocytes were also significantly increased post injection compared to the pretest values whereas 70% of the erythrocytes were morphologically altered from their approximately 100% normocytic shape at pre-test. Intravenous administration of sodium-meglumine diatrizoate causes in-vivo reduction in Hb concentration and neutrophil count in humans as well as poikilocytosis of the erythrocytes. Some of these effects have the potential of triggering or exacerbating crisis in a sickle cell anaemia subject which is endemic in our locality. Caution should therefore be exercised in the choice and administration of radiological contrast agents to sickle cell subjects. Preparations that are iso-osmolar with plasma and have less probability in precipitating crises should be preferred instead.
Surov, Alexey; Meyer, Hans Jonas; Winter, Karsten; Richter, Cindy; Hoehn, Anna-Kathrin
2018-05-04
Our purpose was to analyze associations between apparent diffusion coefficient (ADC) histogram analysis parameters and histopathologicalfeatures in head and neck squamous cell carcinoma (HNSCC). The study involved 32 patients with primary HNSCC. For every tumor, the following histogram analysis parameters were calculated: ADCmean, ADCmax, ADC min , ADC median , ADC mode , P10, P25, P75, P90, kurtosis, skewness, and entropy. Furthermore, proliferation index KI 67, cell count, total and average nucleic areas were estimated. Spearman's correlation coefficient (p) was used to analyze associations between investigated parameters. In overall sample, all ADC values showed moderate inverse correlations with KI 67. All ADC values except ADCmax correlated inversely with tumor cellularity. Slightly correlations were identified between total/average nucleic area and ADC mean , ADC min , ADC median , and P25. In G1/2 tumors, only ADCmode correlated well with Ki67. No statistically significant correlations between ADC parameters and cellularity were found. In G3 tumors, Ki 67 correlated with all ADC parameters except ADCmode. Cell count correlated well with all ADC parameters except ADCmax. Total nucleic area correlated inversely with ADC mean , ADC min , ADC median , P25, and P90. ADC histogram parameters reflect proliferation potential and cellularity in HNSCC. The associations between histopathology and imaging depend on tumor grading.
Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale.
Hecht, Fabian M; Rheinlaender, Johannes; Schierbaum, Nicolas; Goldmann, Wolfgang H; Fabry, Ben; Schäffer, Tilman E
2015-06-21
We developed force clamp force mapping (FCFM), an atomic force microscopy (AFM) technique for measuring the viscoelastic creep behavior of live cells with sub-micrometer spatial resolution. FCFM combines force-distance curves with an added force clamp phase during tip-sample contact. From the creep behavior measured during the force clamp phase, quantitative viscoelastic sample properties are extracted. We validate FCFM on soft polyacrylamide gels. We find that the creep behavior of living cells conforms to a power-law material model. By recording short (50-60 ms) force clamp measurements in rapid succession, we generate, for the first time, two-dimensional maps of power-law exponent and modulus scaling parameter. Although these maps reveal large spatial variations of both parameters across the cell surface, we obtain robust mean values from the several hundreds of measurements performed on each cell. Measurements on mouse embryonic fibroblasts show that the mean power-law exponents and the mean modulus scaling parameters differ greatly among individual cells, but both parameters are highly correlated: stiffer cells consistently show a smaller power-law exponent. This correlation allows us to distinguish between wild-type cells and cells that lack vinculin, a dominant protein of the focal adhesion complex, even though the mean values of viscoelastic properties between wildtype and knockout cells did not differ significantly. Therefore, FCFM spatially resolves viscoelastic sample properties and can uncover subtle mechanical signatures of proteins in living cells.
Thornton, B S; Hung, W T; Irving, J
1991-01-01
The response decay data of living cells subject to electric polarization is associated with their relaxation distribution function (RDF) and can be determined using the inverse Laplace transform method. A new polynomial, involving a series of associated Laguerre polynomials, has been used as the approximating function for evaluating the RDF, with the advantage of avoiding the usual arbitrary trial values of a particular parameter in the numerical computations. Some numerical examples are given, followed by an application to cervical tissue. It is found that the average relaxation time and the peak amplitude of the RDF exhibit higher values for tumorous cells than normal cells and might be used as parameters to differentiate them and their associated tissues.
NASA Technical Reports Server (NTRS)
Duval, R. W.; Bahrami, M.
1985-01-01
The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission systm from the fuselage. A mathematical model relating applied rotor loads and inertial loads of the rotor/transmission system to the load cell response is required to allow the load cells to be used to estimate rotor loads from flight data. Such a model is derived analytically by applying a force and moment balance to the isolated rotor/transmission system. The model is tested by comparing its estimated values of applied rotor loads with measured values obtained from a ground based shake test. Discrepancies in the comparison are used to isolate sources of unmodeled external loads. Once the structure of the mathematical model has been validated by comparison with experimental data, the parameters must be identified. Since the parameters may vary with flight condition it is desirable to identify the parameters directly from the flight data. A Maximum Likelihood identification algorithm is derived for this purpose and tested using a computer simulation of load cell data. The identification is found to converge within 10 samples. The rapid convergence facilitates tracking of time varying parameters of the load cell model in flight.
Armando García-Miranda, L; Contreras, I; Estrada, J A
2014-04-01
To determine reference values for full blood count parameters in a population of children 8 to 12 years old, living at an altitude of 2760 m above sea level. Our sample consisted of 102 individuals on whom a full blood count was performed. The parameters included: total number of red blood cells, platelets, white cells, and a differential count (millions/μl and %) of neutrophils, lymphocytes, monocytes, eosinophils and basophils. Additionally, we obtained values for hemoglobin, hematocrit, mean corpuscular volume, mean corpuscular hemoglobin, concentration of corpuscular hemoglobin and red blood cell distribution width. The results were statistically analyzed with a non-parametric test, to divide the sample in quartiles and obtain the lower and upper limits for our intervals. Moreover, the values for the intervals obtained from this analysis were compared to intervals obtained estimating+- 2 standard deviations above and below from our mean values. Our results showed significant differences compared to normal interval values reported for the adult Mexican population in most of the parameters studied. The full blood count is an important laboratory test used routinely for the initial assessment of a patient. Values of full blood counts in healthy individuals vary according to gender, age and geographic location; therefore, each population should have its own reference values. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.
Aslanidi, K B; Miakisheva, S N
2010-01-01
The values of the parameters of serum-free media (concentration of Na+, amino acids, and carbohydrates, as well as the pH values) have been determined at which the rate of the differentiation of neuroblastoma cells is minimal, and the rate of proliferation is maximal. It was shown that media inducing the differentiation of 70% of cells during the cell cycle provide the maximal time of survival of differentiated cells.
Stewart, Frank M.; Levin, Bruce R.
1977-01-01
A mathematical model for the population dynamics of conjugationally transmitted plasmids in bacterial populations is presented and its properties analyzed. Consideration is given to nonbacteriocinogenic factors that are incapable of incorporation into the chromosome of their host cells, and to bacterial populations maintained in either continuous (chemostat) or discrete (serial transfer) culture. The conditions for the establishment and maintenance of these infectious extrachromosomal elements and equilibrium frequencies of cells carrying them are presented for different values of the biological parameters: population growth functions, conjugational transfer and segregation rate constants. With these parameters in a biologically realistic range, the theory predicts a broad set of physical conditions, resource concentrations and dilution rates, where conjugationally transmitted plasmids can become established and where cells carrying them will maintain high frequencies in bacterial populations. This can occur even when plasmid-bearing cells are much less fit (i.e., have substantially lower growth rates) than cells free of these factors. The implications of these results and the reality and limitations of the model are discussed and the values of its parameters in natural populations speculated upon. PMID:17248761
NASA Astrophysics Data System (ADS)
Domanskyi, Sergii; Schilling, Joshua E.; Gorshkov, Vyacheslav; Libert, Sergiy; Privman, Vladimir
2016-09-01
We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model we describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of "stiff" equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.
NASA Astrophysics Data System (ADS)
Domanskyi, Sergii; Schilling, Joshua; Gorshkov, Vyacheslav; Libert, Sergiy; Privman, Vladimir
We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model we describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of ``stiff'' equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peeler, C; Bronk, L; UT Graduate School of Biomedical Sciences at Houston, Houston, TX
2015-06-15
Purpose: High throughput in vitro experiments assessing cell survival following proton radiation indicate that both the alpha and the beta parameters of the linear quadratic model increase with increasing proton linear energy transfer (LET). We investigated the relative biological effectiveness (RBE) of double-strand break (DSB) induction as a means of explaining the experimental results. Methods: Experiments were performed with two lung cancer cell lines and a range of proton LET values (0.94 – 19.4 keV/µm) using an experimental apparatus designed to irradiate cells in a 96 well plate such that each column encounters protons of different dose-averaged LET (LETd). Traditionalmore » linear quadratic survival curve fitting was performed, and alpha, beta, and RBE values obtained. Survival curves were also fit with a model incorporating RBE of DSB induction as the sole fit parameter. Fitted values of the RBE of DSB induction were then compared to values obtained using Monte Carlo Damage Simulation (MCDS) software and energy spectra calculated with Geant4. Other parameters including alpha, beta, and number of DSBs were compared to those obtained from traditional fitting. Results: Survival curve fitting with RBE of DSB induction yielded alpha and beta parameters that increase with proton LETd, which follows from the standard method of fitting; however, relying on a single fit parameter provided more consistent trends. The fitted values of RBE of DSB induction increased beyond what is predicted from MCDS data above proton LETd of approximately 10 keV/µm. Conclusion: In order to accurately model in vitro proton irradiation experiments performed with high throughput methods, the RBE of DSB induction must increase more rapidly than predicted by MCDS above LETd of 10 keV/µm. This can be explained by considering the increased complexity of DSBs or the nature of intra-track pairwise DSB interactions in this range of LETd values. NIH Grant 2U19CA021239-35.« less
Development of Cell Analysis Software for Cultivated Corneal Endothelial Cells.
Okumura, Naoki; Ishida, Naoya; Kakutani, Kazuya; Hongo, Akane; Hiwa, Satoru; Hiroyasu, Tomoyuki; Koizumi, Noriko
2017-11-01
To develop analysis software for cultured human corneal endothelial cells (HCECs). Software was designed to recognize cell borders and to provide parameters such as cell density, coefficient of variation, and polygonality of cultured HCECs based on phase contrast images. Cultured HCECs with high or low cell density were incubated with Ca-free and Mg-free phosphate-buffered saline for 10 minutes to reveal the cell borders and were then analyzed with software (n = 50). Phase contrast images showed that cell borders were not distinctly outlined, but these borders became more distinctly outlined after phosphate-buffered saline treatment and were recognized by cell analysis software. The cell density value provided by software was similar to that obtained using manual cell counting by an experienced researcher. Morphometric parameters, such as the coefficient of variation and polygonality, were also produced by software, and these values were significantly correlated with cell density (Pearson correlation coefficients -0.62 and 0.63, respectively). The software described here provides morphometric information from phase contrast images, and it enables subjective and noninvasive quality assessment for tissue engineering therapy of the corneal endothelium.
Reference values for clinical laboratory parameters in young adults in Maputo, Mozambique.
Tembe, Nelson; Joaquim, Orvalho; Alfai, Eunice; Sitoe, Nádia; Viegas, Edna; Macovela, Eulalia; Gonçalves, Emilia; Osman, Nafissa; Andersson, Sören; Jani, Ilesh; Nilsson, Charlotta
2014-01-01
Clinical laboratory reference values from North American and European populations are currently used in most Africans countries due to the absence of locally derived reference ranges, despite previous studies reporting significant differences between populations. Our aim was to define reference ranges for both genders in 18 to 24 year-old Mozambicans in preparation for clinical vaccine trials. A cross-sectional study including 257 volunteers (102 males and 155 females) between 18 and 24 years was performedat a youth clinic in Maputo, Mozambique. All volunteers were clinically healthy and human immunodeficiency virus, Hepatitis B virus and syphilis negative.Median and 95% reference ranges were calculated for immunological, hematological and chemistry parameters. Ranges were compared with those reported based on populations in other African countries and the US. The impact of applying US NIH Division of AIDS (DAIDS) toxicity tables was assessed. The immunology ranges were comparable to those reported for the US and western Kenya.There were significant gender differences in CD4+ T cell values 713 cells/µL in males versus 824 cells/µL in females (p<0.0001). Hematologic values differed from the US values but were similar to reports of populations in western Kenya and Uganda. The lower and upper limits of the ranges for hemoglobin, hematocrit, red blood cells, white blood cells and lymphocytes were somewhat lower than those from these African countries. The chemistry values were comparable to US values, with few exceptions. The upper limits for ALT, AST, bilirubin, cholesterol and triglycerides were higher than those from the US. DAIDStables for adverse events predicted 297 adverse events and 159 (62%) of the volunteers would have been excluded. This study is the first to determine normal laboratory parameters in Mozambique. Our results underscore the necessity of establishing region-specific clinical reference ranges for proper patient management and safe conduct of clinical trials.
Applying a Hypoxia-Incorporating TCP Model to Experimental Data on Rat Sarcoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ruggieri, Ruggero, E-mail: ruggieri.ruggero@gmail.com; Stavreva, Nadejda; Naccarato, Stefania
2012-08-01
Purpose: To verify whether a tumor control probability (TCP) model which mechanistically incorporates acute and chronic hypoxia is able to describe animal in vivo dose-response data, exhibiting tumor reoxygenation. Methods and Materials: The investigated TCP model accounts for tumor repopulation, reoxygenation of chronic hypoxia, and fluctuating oxygenation of acute hypoxia. Using the maximum likelihood method, the model is fitted to Fischer-Moulder data on Wag/Rij rats, inoculated with rat rhabdomyosarcoma BA1112, and irradiated in vivo using different fractionation schemes. This data set is chosen because two of the experimental dose-response curves exhibit an inverse dose behavior, which is interpreted as duemore » to reoxygenation. The tested TCP model is complex, and therefore, in vivo cell survival data on the same BA1112 cell line from Reinhold were added to Fischer-Moulder data and fitted simultaneously with a corresponding cell survival function. Results: The obtained fit to the combined Fischer-Moulder-Reinhold data was statistically acceptable. The best-fit values of the model parameters for which information exists were in the range of published values. The cell survival curves of well-oxygenated and hypoxic cells, computed using the best-fit values of the radiosensitivities and the initial number of clonogens, were in good agreement with the corresponding in vitro and in situ experiments of Reinhold. The best-fit values of most of the hypoxia-related parameters were used to recompute the TCP for non-small cell lung cancer patients as a function of the number of fractions, TCP(n). Conclusions: The investigated TCP model adequately describes animal in vivo data exhibiting tumor reoxygenation. The TCP(n) curve computed for non-small cell lung cancer patients with the best-fit values of most of the hypoxia-related parameters confirms previously obtained abrupt reduction in TCP for n < 10, thus warning against the adoption of severely hypofractionated schedules.« less
Cálculo del esfuerzo ideal de metales nobles mediante primeros principios en la dirección <100>
NASA Astrophysics Data System (ADS)
Bautista-Hernández, A.; López-Fuentes, M.; Pacheco-Espejel, V.; Rivas-Silva, J. F.
2005-04-01
We present calculations of the ideal strength on the < 100 > direction for noble metals (Cu, Ag and Au), by means of first principles calculations. First, we obtain the structural parameters (cell parameters, bulk modulus) for each studied metal. We deform on the < 100 > direction calculating the total energy and the stress tensor through the Hellman-Feynman theorem, by the relaxation of the unit cell in the perpendicular directions to the deformation one. The calculated cell constants differ 1.3 % from experimental data. The maximum ideal strength are 29.6, 17 and 19 GPa for Cu, Ag and Au respectively. Meanwhile, the calculated elastic modulus are 106 (Cu), 71 (Ag), and 45 GPa (Au) and are in agreement with the experimental values for polycrystalline samples. The values of maximum strength are explained by the optimum volume values due to the atomic radius size for each element.
Phenol biodegradation by immobilized Pseudomonas putida FNCC-0071 cells in alginate beads
NASA Astrophysics Data System (ADS)
Hakim, Lukman Nul; Rochmadi, Sutijan
2017-06-01
Phenol is one of industrial liquid waste which is harmful to the environment, so it must be degraded. It can be degraded by immobilized Pseudomonas putida FNCC-0071 cells. It needs the kinetics and mass transfer data to design this process which can be estimated by the proposed dynamic model in this study. This model involves simultaneous diffusion and reaction in the alginate bead and liquid bulk. The preliminary stage of phenol biodegradation process was acclimatization cells. This is the stage where cells were acclimated to phenol as carbon source (substrate). Then the acclimated cells were immobilized in alginate beads by extrusion method. The variation of the initial phenol concentration in the solution is 350 to 850 ppm where 60 g alginate bead contained by cells loaded into its solution in reactor batch, so then biodegradation occurs. In this study, the average radius of alginate bead was 0.152 cm. The occurred kinetic reaction process can be explained by Blanch kinetic model with the decreasing of parameter μmax' while the increasing values of initial phenol concentration in the same time, but the parameters KM, KM', and kt were increasing by the rising values of initial phenol concentration. The value of the parameter β is almost zero. Effective diffusivity of phenol and cells are 1.11 × 10-5±4.5% cm2 s-1 and 1.39 × 10-7± 0.04% cm2 s-1. The partition coefficient of phenol and cells are 0.39 ± 15% and 2.22 ± 18%.
García-Rodríguez, Rodrigo; Villanueva-Cab, Julio; Anta, Juan A.; Oskam, Gerko
2016-01-01
The influence of the thickness of the nanostructured, mesoporous TiO2 film on several parameters determining the performance of a dye-sensitized solar cell is investigated both experimentally and theoretically. We pay special attention to the effect of the exchange current density in the dark, and we compare the values obtained by steady state measurements with values extracted from small perturbation techniques. We also evaluate the influence of exchange current density, the solar cell ideality factor, and the effective absorption coefficient of the cell on the optimal film thickness. The results show that the exchange current density in the dark is proportional to the TiO2 film thickness, however, the effective absorption coefficient is the parameter that ultimately defines the ideal thickness. We illustrate the importance of the exchange current density in the dark on the determination of the current–voltage characteristics and we show how an important improvement of the cell performance can be achieved by decreasing values of the total series resistance and the exchange current density in the dark. PMID:28787833
Dependence and independence of survival parameters on linear energy transfer in cells and tissues
Ando, Koichi; Goodhead, Dudley T.
2016-01-01
Carbon-ion radiotherapy has been used to treat more than 9000 cancer patients in the world since 1994. Spreading of the Bragg peak is necessary for carbon-ion radiotherapy, and is designed based on the linear–quadratic model that is commonly used for photon therapy. Our recent analysis using in vitro cell kills and in vivo mouse tissue reaction indicates that radiation quality affects mainly the alpha terms, but much less the beta terms, which raises the question of whether this is true in other biological systems. Survival parameters alpha and beta for 45 in vitro mammalian cell lines were obtained by colony formation after irradiation with carbon ions, fast neutrons and X-rays. Relationships between survival parameters and linear energy transfer (LET) below 100 keV/μm were obtained for 4 mammalian cell lines. Mouse skin reaction and tumor growth delay were measured after fractionated irradiation. The Fe-plot provided survival parameters of the tissue reactions. A clear separation between X-rays and high-LET radiation was observed for alpha values, but not for beta values. Alpha values/terms increased with increasing LET in any cells and tissues studied, while beta did not show a systematic change. We have found a puzzle or contradiction in common interpretations of the linear-quadratic model that causes us to question whether the model is appropriate for interpreting biological effectiveness of high-LET radiation up to 500 keV/μm, probably because of inconsistency in the concept of damage interaction. A repair saturation model proposed here was good enough to fit cell kill efficiency by radiation of wide-ranged LET. A model incorporating damage complexity and repair saturation would be suitable for heavy-ion radiotherapy. PMID:27380803
[Colocalization of nucleoli in cell nuclei of HeLa line].
Petrov, Iu P; Neguliaev, Iu A; Tsupkina, N V
2014-01-01
The pattern of localization of nucleoli relative to each other and to cell nucleus was studied in M-HeLa cell line. For this puspose, the following morphometric parameters were introduced. For the two-nucleolar cells: 1) the ratio of the nucleus long axis to the length of a segment between the centers of the nucleoli, and 2) the angle between the segment connecting the centers of the nucleoli and a longitudinal axis of cell nucleus. For the three-nucleolar cells: the ratio perimeter of the nucleus to perimeter of a triangle with vertexes in the centre of nucleoli. We have shown that the values of these parameters are individual for each cell but their values remain constant for the cell in spite of the changes in cell shape. These results allow us to conclude that, on the one hand, the nucleoli colocalization is individual for each cell, and, on the other hand, location of nucleoli in relation to nucleus is not changed during interphase. Thereby, the distance between nucleoli increases proportionally with nucleus growth.
Hedberg, P; Lehto, T
2009-02-01
This study presents the results of an aging stability study of complete blood count (CBC) and leukocyte differential parameters using the Abbott CELL-DYN Sapphire hematology analyzer. Stability studies showed no substantial change in CBC parameters up to 24-48 h at +23 +/- 2 degrees C (room temperature), except for optical platelet count (PLTo). For specimens aged over 24, the value of impedance platelet count yielded more reliable results than the routine PLTo. White blood cell (WBC) differential parameters, except eosinophils, were stable for up to 48 h at +23 +/- 2 degrees C. CBC parameters were stable for 72 h, except mean platelet volume, which slightly increased between 48 and 72 h, at +4 degrees C. WBC differentials were stable 48-72 h, with a slight decrease observed in absolute neutrophils and lymphocytes at +4 degrees C.
HeLa cells response to photodynamic treatment with Radachlorin at various irradiation parameters
NASA Astrophysics Data System (ADS)
Belashov, A. V.; Zhikhoreva, A. A.; Belyaeva, T. N.; Kornilova, E. S.; Petrov, N. V.; Salova, A. V.; Semenova, I. V.; Vasyutinskii, O. S.
2017-07-01
Measurements of average phase shifts introduced by living HeLa cells to probe wave front were carried out. Variations of this value were monitored in the course of morphological changes caused by photodynamic treatment at various irradiation doses. Observations of changes in living cells were also performed by means of far field optical microscopy and confocal fluorescent microscopy. Quantitative analysis of the data obtained shows that average phase shift introduced by the cells may either increase or decrease depending upon major parameters of the treatment.
Ulaczyk, Jan; Morawiec, Krzysztof; Zabierowski, Paweł; Drobiazg, Tomasz; Barreau, Nicolas
2017-09-01
A data mining approach is proposed as a useful tool for the control parameters analysis of the 3-stage CIGSe photovoltaic cell production process, in order to find variables that are the most relevant for cell electric parameters and efficiency. The analysed data set consists of stage duration times, heater power values as well as temperatures for the element sources and the substrate - there are 14 variables per sample in total. The most relevant variables of the process have been found based on the so-called random forest analysis with the application of the Boruta algorithm. 118 CIGSe samples, prepared at Institut des Matériaux Jean Rouxel, were analysed. The results are close to experimental knowledge on the CIGSe cells production process. They bring new evidence to production parameters of new cells and further research. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Barua, Nabanita; Sitaraman, Chitra; Goel, Sonu; Chakraborti, Chandana; Mukherjee, Sonai; Parashar, Hemandra
2016-01-01
Context: Analysis of diagnostic ability of macular ganglionic cell complex and retinal nerve fiber layer (RNFL) in glaucoma. Aim: To correlate functional and structural parameters and comparing predictive value of each of the structural parameters using Fourier-domain (FD) optical coherence tomography (OCT) among primary open angle glaucoma (POAG) and ocular hypertension (OHT) versus normal population. Setting and Design: Single centric, cross-sectional study done in 234 eyes. Materials and Methods: Patients were enrolled in three groups: POAG, ocular hypertensive and normal (40 patients in each group). After comprehensive ophthalmological examination, patients underwent standard automated perimetry and FD-OCT scan in optic nerve head and ganglion cell mode. The relationship was assessed by correlating ganglion cell complex (GCC) parameters with mean deviation. Results were compared with RNFL parameters. Statistical Analysis: Data were analyzed with SPSS, analysis of variance, t-test, Pearson's coefficient, and receiver operating curve. Results: All parameters showed strong correlation with visual field (P < 0.001). Inferior GCC had highest area under curve (AUC) for detecting glaucoma (0.827) in POAG from normal population. However, the difference was not statistically significant (P > 0.5) when compared with other parameters. None of the parameters showed significant diagnostic capability to detect OHT from normal population. In diagnosing early glaucoma from OHT and normal population, only inferior GCC had statistically significant AUC value (0.715). Conclusion: In this study, GCC and RNFL parameters showed equal predictive capability in perimetric versus normal group. In early stage, inferior GCC was the best parameter. In OHT population, single day cross-sectional imaging was not valuable. PMID:27221682
DOE Office of Scientific and Technical Information (OSTI.GOV)
Domanskyi, Sergii; Schilling, Joshua E.; Privman, Vladimir, E-mail: privman@clarkson.edu
We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model wemore » describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of “stiff” equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.« less
NASA Astrophysics Data System (ADS)
Vladimirov, A. P.; Malygin, A. S.; Mikhailova, J. A.; Borodin, E. M.; Bakharev, A. A.; Poryvayeva, A. P.
2014-09-01
Earlier we reported developing a speckle interferometry technique and a device designed to assess the metabolic activity of a cell monolayer cultivated on a glass substrate. This paper aimed at upgrading the technique and studying its potential for real-time assessment of herpes virus development process. Speckle dynamics was recorded in the image plane of intact and virus-infected cell monolayer. HLE-3, L-41 and Vero cells were chosen as research targets. Herpes simplex virus-1-(HSV-1)- infected cell cultures were studied. For 24 h we recorded the digital value of optical signal I in one pixel and parameter η characterizing change in the distribution of the optical signal on 10 × 10-pixel areas. The coefficient of multiple determination calculated by η time dependences for three intact cell cultures equals 0.94. It was demonstrated that the activity parameters are significantly different for intact and virus-infected cells. The difference of η value for intact and HSV-1-infected cells is detectable 10 minutes from the experiment start.
Statistical moments of the Strehl ratio
NASA Astrophysics Data System (ADS)
Yaitskova, Natalia; Esselborn, Michael; Gladysz, Szymon
2012-07-01
Knowledge of the statistical characteristics of the Strehl ratio is essential for the performance assessment of the existing and future adaptive optics systems. For full assessment not only the mean value of the Strehl ratio but also higher statistical moments are important. Variance is related to the stability of an image and skewness reflects the chance to have in a set of short exposure images more or less images with the quality exceeding the mean. Skewness is a central parameter in the domain of lucky imaging. We present a rigorous theory for the calculation of the mean value, the variance and the skewness of the Strehl ratio. In our approach we represent the residual wavefront as being formed by independent cells. The level of the adaptive optics correction defines the number of the cells and the variance of the cells, which are the two main parameters of our theory. The deliverables are the values of the three moments as the functions of the correction level. We make no further assumptions except for the statistical independence of the cells.
Amah-Tariah, F S; Ojeka, S O; Dapper, D V
2011-12-20
Previous studies on the normal values of serum iron, unsaturated iron binding capacity, total iron binding capacity, serum transferrin, percent transferrin saturation, red cell distribution width, and various platelet indices: Platelet count, mean platelet volume, platelet distribution width, plateletcrit and platelet larger cell ratio in pregnant subjects in Nigeria are relatively scanty. Present study aims to determine the values of these parameters in apparently healthy pregnant subjects residing in Port Harcourt south eastern Nigeria; and help establish normal reference ranges of these parameters for the population under reference. Cross sectional prospective study involving 220 female subjects attending for the first time, the ante-natal clinics of a tertiary health care facility in Port Harcourt. Subjects were divided into 73, 75 and 72 subjects in the first, second and third trimester of pregnancy respectively. Serum iron and unsaturated iron binding capacity, red cell distribution width, platelet count and platelet distribution width were determined by automated methods; total iron binding capacity, serum transferrin concentrations, percent transferrin saturation, mean platelet volume and plateletcrit were calculated using appropriate formulas. The values of serum iron, unsaturated iron binding capacity, total iron binding capacity and serum transferrin concentrations were found to show significant variations between the various trimesters of pregnancy. However, while serum iron showed significant decreases during pregnancy; unsaturated iron binding capacity, total iron binding capacity and serum transferrin concentrations were found to show significant increases during pregnancy amongst our subjects (p<0.05). By contrast the values of red cell distribution width, platelet count, mean platelet volume, platelet distribution width, plateletcrit and platelet larger cell ratio did not show any significant differences at the different trimesters of pregnancy in our subjects (p>0.05). The present study reports, for the first time, normative values for these parameters in apparently healthy pregnant subjects in Port Harcourt south eastern Nigeria. Apparently, increases in unsaturated and total iron binding capacity and serum transferrin values seen amongst our subjects with increasing gestation may perhaps be a mechanism to ensure a fetal adequate iron delivery on account of the decreasing serum iron concentration with gestation in our subjects. The study suggests that values of serum transferrin are perhaps a more useful screening tool for iron deficiency anemia during pregnancy amongst our subjects.
Parameter estimation and sensitivity analysis for a mathematical model with time delays of leukemia
NASA Astrophysics Data System (ADS)
Cândea, Doina; Halanay, Andrei; Rǎdulescu, Rodica; Tǎlmaci, Rodica
2017-01-01
We consider a system of nonlinear delay differential equations that describes the interaction between three competing cell populations: healthy, leukemic and anti-leukemia T cells involved in Chronic Myeloid Leukemia (CML) under treatment with Imatinib. The aim of this work is to establish which model parameters are the most important in the success or failure of leukemia remission under treatment using a sensitivity analysis of the model parameters. For the most significant parameters of the model which affect the evolution of CML disease during Imatinib treatment we try to estimate the realistic values using some experimental data. For these parameters, steady states are calculated and their stability is analyzed and biologically interpreted.
Homeostatic enhancement of active mechanotransduction
NASA Astrophysics Data System (ADS)
Milewski, Andrew; O'Maoiléidigh, Dáibhid; Hudspeth, A. J.
2018-05-01
Our sense of hearing boasts exquisite sensitivity to periodic signals. Experiments and modeling imply, however, that the auditory system achieves this performance for only a narrow range of parameter values. As a result, small changes in these values could compromise the ability of the mechanosensory hair cells to detect stimuli. We propose that, rather than exerting tight control over parameters, the auditory system employs a homeostatic mechanism that ensures the robustness of its operation to variation in parameter values. Through analytical techniques and computer simulations we investigate whether a homeostatic mechanism renders the hair bundle's signal-detection ability more robust to alterations in experimentally accessible parameters. When homeostasis is enforced, the range of values for which the bundle's sensitivity exceeds a threshold can increase by more than an order of magnitude. The robustness of cochlear function based on somatic motility or hair bundle motility may be achieved by employing the approach we describe here.
The 4-parameter Compressible Packing Model (CPM) including a critical cavity size ratio
NASA Astrophysics Data System (ADS)
Roquier, Gerard
2017-06-01
The 4-parameter Compressible Packing Model (CPM) has been developed to predict the packing density of mixtures constituted by bidisperse spherical particles. The four parameters are: the wall effect and the loosening effect coefficients, the compaction index and a critical cavity size ratio. The two geometrical interactions have been studied theoretically on the basis of a spherical cell centered on a secondary class bead. For the loosening effect, a critical cavity size ratio, below which a fine particle can be inserted into a small cavity created by touching coarser particles, is introduced. This is the only parameter which requires adaptation to extend the model to other types of particles. The 4-parameter CPM demonstrates its efficiency on frictionless glass beads (300 values), spherical particles numerically simulated (20 values), round natural particles (125 values) and crushed particles (335 values) with correlation coefficients equal to respectively 99.0%, 98.7%, 97.8%, 96.4% and mean deviations equal to respectively 0.007, 0.006, 0.007, 0.010.
Choi, Yoon Seong; Park, Mina; Kwon, Hyeong Ju; Koh, Yoon Woo; Lee, Seung-Koo; Kim, Jinna
2016-02-01
The objective of this study was to investigate differences in dynamic contrast-enhanced MRI (DCE-MRI) parameters on the basis of the status of human papillomavirus (HPV) and epidermal growth factor receptor (EGFR) biomarkers in patients with squamous cell carcinoma (SCC) of the oral cavity and oropharynx by use of histogram analysis. A total of 22 consecutive patients with oral cavity and oropharyngeal SCC underwent DCE-MRI before receiving treatment. DCE parameter maps of the volume transfer constant (K(trans)), the flux rate constant (kep), and the extravascular extracellular volume fraction (ve) were obtained. The histogram parameters were calculated using the entire enhancing tumor volume and were compared between the patient subgroups on the basis of HPV and EGFR biomarker statuses. The cumulative histogram parameters of K(trans) and kep showed lower values in the HPV-negative and EFGR-overexpression group than in the HPV-positive EGFR-negative group. These differences were statistically significant for the mean (p = 0.009), 25th, 50th, and 75th percentile values of K(trans) and for the 25th percentile value of kep when correlated with HPV status in addition to the mean K(trans) value (p = 0.047) and kep value (p = 0.004) when correlated with EGFR status. No statistically significant difference in ve was found on the basis of HPV and EGFR status. DCE-MRI is useful for the assessment of the tumor microenvironment associated with HPV and EGFR biomarkers before treatment of patients with oral cavity and oropharyngeal SCC.
Chen, Hui; Zhou, Wei; Chen, Weixian; Xie, Wei; Jiang, Liping; Liang, Qinlang; Huang, Mingjun; Wu, Zongwen; Wang, Qiang
2017-04-01
Primary productivity in water environment relies on the photosynthetic production of microalgae. Chlorophyll fluorescence is widely used to detect the growth status and photosynthetic efficiency of microalgae. In this study, a method was established to determine the Chl a content, cell density of microalgae, and water primary productivity by measuring chlorophyll fluorescence parameter Fo. A significant linear relationship between chlorophyll fluorescence parameter Fo and Chl a content of microalgae, as well as between Fo and cell density, was observed under pure-culture conditions. Furthermore, water samples collected from natural aquaculture ponds were used to validate the correlation between Fo and water primary productivity, which is closely related to Chl a content in water. Thus, for a given pure culture of microalgae or phytoplankton (mainly microalgae) in aquaculture ponds or other natural ponds for which the relationship between the Fo value and Chl a content or cell density could be established, Chl a content or cell density could be determined by measuring the Fo value, thereby making it possible to calculate the water primary productivity. It is believed that this method can provide a convenient way of efficiently estimating the primary productivity in natural aquaculture ponds and bringing economic value in limnetic ecology assessment, as well as in algal bloom monitoring. Copyright © 2017 Elsevier GmbH. All rights reserved.
Use of a corrugated surface to enhance radiation tolerance in a GaAs solar cell
NASA Technical Reports Server (NTRS)
Leon, Rosa P.; Piszczor, Michael F., Jr.
1985-01-01
The use of a corrugated surface on a GaAs solar cell and its effects on radiation resistance were studied. A compute code was developed to determine the performance of the cell for various geometric parameters. The large optical absorption coefficient of GaAs allows grooves to be only 4-5 micrometers deep. Using accepted material parameters for GaAs solar cells the theoretical performances were compared for various corrugated cells before and after minority carrier diffusion length degradation. The total power output was maximized for both n(+)/p and p(+)/n cells. Optimum values of 1.0-1.5 and 5.0 micrometers for groove and ridge widths respectively were determined.
NASA Technical Reports Server (NTRS)
Misiakos, K.; Lindholm, F. A.
1986-01-01
Several parameters of certain three-dimensional semiconductor devices including diodes, transistors, and solar cells can be determined without solving the actual boundary-value problem. The recombination current, transit time, and open-circuit voltage of planar diodes are emphasized here. The resulting analytical expressions enable determination of the surface recombination velocity of shallow planar diodes. The method involves introducing corresponding one-dimensional models having the same values of these parameters.
Koley, Sananda; Chakrabarti, Srabani; Pathak, Swapan; Manna, Asim Kumar; Basu, Siddhartha
2015-12-01
Our study was done to assess the cytological changes due to oncotherapy in breast carcinoma especially on morphometry and proliferative activity. Cytological aspirates were collected from a total of 32 cases of invasive ductal carcinoma both before and after oncotherapy. Morphometry was done on the stained cytological smears to assess the different morphological parameters of cell dimension by using the ocular morphometer and the software AutoCAD 2007. Staining was done with Ki-67 and proliferating cell nuclear antigen (PCNA) as proliferative markers. Different morphological parameters were compared before and after oncotherapy by unpaired Student's t test. Statistically significant differences were found in morphometric parameters, e.g., mean nuclear diameter, mean nuclear area, mean cell diameter, and mean cell area, and in the expression of proliferative markers (Ki-67 and PCNA). Statistical analysis was done by obtaining p values. There are statistically significant differences between morphological parameter of breast carcinoma cells before and after oncotherapy.
Immunohistological features related to functional impairment in lymphangioleiomyomatosis.
Nascimento, Ellen Caroline Toledo do; Baldi, Bruno Guedes; Mariani, Alessandro Wasum; Annoni, Raquel; Kairalla, Ronaldo Adib; Pimenta, Suzana Pinheiro; da Silva, Luiz Fernando Ferraz; Carvalho, Carlos Roberto Ribeiro; Dolhnikoff, Marisa
2018-05-08
Lymphangioleiomyomatosis (LAM) is a low-grade neoplasm characterized by the pulmonary infiltration of smooth muscle-like cells (LAM cells) and cystic destruction. Patients usually present with airway obstruction in pulmonary function tests (PFTs). Previous studies have shown correlations among histological parameters, lung function abnormalities and prognosis in LAM. We investigated the lung tissue expression of proteins related to the mTOR pathway, angiogenesis and enzymatic activity and its correlation with functional parameters in LAM patients. We analyzed morphological and functional parameters of thirty-three patients. Two groups of disease severity were identified according to FEV1 values. Lung tissue from open biopsies or lung transplants was immunostained for SMA, HMB-45, mTOR, VEGF-D, MMP-9 and D2-40. Density of cysts, density of nodules and protein expression were measured by image analysis and correlated with PFT parameters. There was no difference in the expression of D2-40 between the more severe and the less severe groups. All other immunohistological parameters showed significantly higher values in the more severe group (p ≤ 0.002). The expression of VEGF-D, MMP-9 and mTOR in LAM cells was associated with the density of both cysts and nodules. The density of cysts and nodules as well as the expression of MMP-9 and VEGF-D were associated with the impairment of PFT parameters. Severe LAM represents an active phase of the disease with high expression of VEGF-D, mTOR, and MMP-9, as well as LAM cell infiltration. Our findings suggest that the tissue expression levels of VEGF-D and MMP-9 are important parameters associated with the loss of pulmonary function and could be considered as potential severity markers in open lung biopsies of LAM patients.
Micro FT-IR Characterization Of Human Lung Tumor Cells
NASA Astrophysics Data System (ADS)
Benedetti, Enzo; Teodori, L.; Vergamini, Piergiorgio; Trinca, M. L.; Mauro, F.; Salvati, F.; Spremolla, Giuliano
1989-12-01
FT-IR spectroscopy has opened up a new approach to the analytical study of cell transformation. Investigations carried out in normal and leukemic lymphocytes have evidenced an increase in DNA with respect to proteic components in neoplastic cells.(1) The evaluation of the ratio of the integrated areas(A) of the bands at 1080 cm-1 (mainly DNA) and at 1540 cm-1 (proteic components) has allowed us to establish a parameter which indicates, for values above 1.5, the neoplastic nature of cells. Recently, this approach has been applied to the study of human lung tumor cells. Several monocellular suspension procedures of the tissue fragment (mechanical and/or chemical) were tested to obtain reproducible and reliable spectra able to differentiate clearly between normal and patological cells. Chemical treatment (EDTA, Pepsin, Collagenase, etc.) produced additional bands in the spectra of the cells causing distortion of the profiles of some absorptions, and as a result, mechanical treatment was preferred. The normal and neoplastic cells homogeneously distributed by cytospin preparation on BaF2 windows were examined by means of FT-IR microscopy. An examination of several microareas of each sample yielded reproducible spectra, with values of the A 1080 cm-1 / A 1540 cm-1 parameter within a very narrow range for each sample, even if certain differences still remained among the different cases, in good agreement with the results obtained for leukemic cells.(1) The value of this parameter was found to be lower for cells isolated from the normal area of lung, than in the case of those corresponding to the tumoral area, meaning that an increase occurs in DNA with respect to the proteic components. These insights, which provide a basis to obtain indications at the molecular level, can open up new possibilities in clinical practice, in order to obtain diagnosis confirmation, to detect early stages of disease and to offer additional indications in cases of dubious interpretation.
Urdapilleta, E; Bellotti, M; Bonetto, F J
2006-10-01
In this paper we present a model to describe the electrical properties of a confluent cell monolayer cultured on gold microelectrodes to be used with electric cell-substrate impedance sensing technique. This model was developed from microscopic considerations (distributed effects), and by assuming that the monolayer is an element with mean electrical characteristics (specific lumped parameters). No assumptions were made about cell morphology. The model has only three adjustable parameters. This model and other models currently used for data analysis are compared with data we obtained from electrical measurements of confluent monolayers of Madin-Darby Canine Kidney cells. One important parameter is the cell-substrate height and we found that estimates of this magnitude strongly differ depending on the model used for the analysis. We analyze the origin of the discrepancies, concluding that the estimates from the different models can be considered as limits for the true value of the cell-substrate height.
NASA Astrophysics Data System (ADS)
Szymczak, Sonja; Hetzer, Timo; Bräuning, Achim; Joachimski, Michael M.; Leuschner, Hanns-Hubert; Kuhlemann, Joachim
2014-10-01
We present a new multi-parameter dataset from Corsican black pine growing on the island of Corsica in the Western Mediterranean basin covering the period AD 1410-2008. Wood parameters measured include tree-ring width, latewood width, earlywood width, cell lumen area, cell width, cell wall thickness, modelled wood density, as well as stable carbon and oxygen isotopes. We evaluated the relationships between different parameters and determined the value of the dataset for climate reconstructions. Correlation analyses revealed that carbon isotope ratios are influenced by cell parameters determining cell size, whereas oxygen isotope ratios are influenced by cell parameters determining the amount of transportable water in the xylem. A summer (June to August) precipitation reconstruction dating back to AD 1185 was established based on tree-ring width. No long-term trends or pronounced periods with extreme high/low precipitation are recorded in our reconstruction, indicating relatively stable moisture conditions over the entire time period. By comparing the precipitation reconstruction with a summer temperature reconstruction derived from the carbon isotope chronologies, we identified summers with extreme climate conditions, i.e. warm-dry, warm-wet, cold-dry and cold-wet. Extreme climate conditions during summer months were found to influence cell parameter characteristics. Cold-wet summers promote the production of broad latewood composed of wide and thin-walled tracheids, while warm-wet summers promote the production of latewood with small thick-walled cells. The presented dataset emphasizes the potential of multi-parameter wood analysis from one tree species over long time scales.
Bravo, Rafael; Axelrod, David E
2013-11-18
Normal colon crypts consist of stem cells, proliferating cells, and differentiated cells. Abnormal rates of proliferation and differentiation can initiate colon cancer. We have measured the variation in the number of each of these cell types in multiple crypts in normal human biopsy specimens. This has provided the opportunity to produce a calibrated computational model that simulates cell dynamics in normal human crypts, and by changing model parameter values, to simulate the initiation and treatment of colon cancer. An agent-based model of stochastic cell dynamics in human colon crypts was developed in the multi-platform open-source application NetLogo. It was assumed that each cell's probability of proliferation and probability of death is determined by its position in two gradients along the crypt axis, a divide gradient and in a die gradient. A cell's type is not intrinsic, but rather is determined by its position in the divide gradient. Cell types are dynamic, plastic, and inter-convertible. Parameter values were determined for the shape of each of the gradients, and for a cell's response to the gradients. This was done by parameter sweeps that indicated the values that reproduced the measured number and variation of each cell type, and produced quasi-stationary stochastic dynamics. The behavior of the model was verified by its ability to reproduce the experimentally observed monocolonal conversion by neutral drift, the formation of adenomas resulting from mutations either at the top or bottom of the crypt, and by the robust ability of crypts to recover from perturbation by cytotoxic agents. One use of the virtual crypt model was demonstrated by evaluating different cancer chemotherapy and radiation scheduling protocols. A virtual crypt has been developed that simulates the quasi-stationary stochastic cell dynamics of normal human colon crypts. It is unique in that it has been calibrated with measurements of human biopsy specimens, and it can simulate the variation of cell types in addition to the average number of each cell type. The utility of the model was demonstrated with in silico experiments that evaluated cancer therapy protocols. The model is available for others to conduct additional experiments.
Gardner, Shea Nicole
2007-10-23
A method and system for tailoring treatment regimens to individual patients with diseased cells exhibiting evolution of resistance to such treatments. A mathematical model is provided which models rates of population change of proliferating and quiescent diseased cells using cell kinetics and evolution of resistance of the diseased cells, and pharmacokinetic and pharmacodynamic models. Cell kinetic parameters are obtained from an individual patient and applied to the mathematical model to solve for a plurality of treatment regimens, each having a quantitative efficacy value associated therewith. A treatment regimen may then be selected from the plurlaity of treatment options based on the efficacy value.
Theoretical Study of Molecular Transport Through a Permeabilized Cell Membrane in a Microchannel.
Mahboubi, Masoumeh; Movahed, Saeid; Hosseini Abardeh, Reza; Hoshyargar, Vahid
2017-06-01
A two-dimensional model is developed to study the molecular transport into an immersed cell in a microchannel and to investigate the effects of finite boundary (a cell is suspended in a microchannel), amplitude of electric pulse, and geometrical parameter (microchannel height and size of electrodes) on cell uptake. Embedded electrodes on the walls of the microchannel generate the required electric pulse to permeabilize the cell membrane, pass the ions through the membrane, and transport them into the cell. The shape of electric pulses is square with the time span of 6 ms; their intensities are in the range of 2.2, 2.4, 2.6, 3 V. Numerical simulations have been performed to comprehensively investigate the molecular uptake into the cell. The obtained results of the current study demonstrate that calcium ions enter the cell from the anodic side (the side near positive electrode); after a while, the cell faces depletion of the calcium ions on a positive electrode-facing side within the microchannel; the duration of depletion depends on the amplitude of electric pulse and geometry that lasts from microseconds to milliseconds. By keeping geometrical parameters and time span constant, increment of a pulse intensity enhances molecular uptake and rate of propagation inside the cell. If a ratio of electrode size to cell diameter is larger than 1, the transported amount of Ca 2+ into the cell, as well as the rate of propagation, will be significantly increased. By increasing the height of the microchannel, the rate of uptake is decreased. In an infinite domain, the peak concentration becomes constant after reaching the maximum value; this value depends on the intra-extracellular conductivity and diffusion coefficient of interior and exterior domains of the cell. In comparison, the maximum concentration is changed by geometrical parameters in the microchannel. After reaching the maximum value, the peak concentration reduces due to the depletion of Ca 2+ ions within the microchannel. Electrophoretic velocity has a significant effect on the cell uptake.
Effects of α-thalassaemia mutations on the haematological parameters of β-thalassaemia carriers.
Saleh-Gohari, Nasrollah; Khademi Bami, Maryam; Nikbakht, Roya; Karimi-Maleh, Hassan
2015-07-01
Thalassaemia is a haemoglobin disorder caused by a reduction in, or a complete absence of, the production of α- or β-globin genes. Detection of β-thalassaemia carriers is the first step in the prenatal diagnosis of the disease and is based primarily on the differences between levels of blood cell indices. Since co-inheritance of β- and α-thalassaemia mutations modulates the haematological parameters of heterozygote β-thalassaemia indices, understanding the influence of this interaction is helpful for identification of disease carriers. To determine the effects of α-thalassaemia mutations on the haematological parameters of β-thalassaemia carriers. We used gap-PCR and amplification refractory mutation system techniques to find any α- and/or β-thalassaemia mutations in 270 subjects who were suspected to be thalassaemia carriers. The mean values of the haematological parameters in α, β-thalassaemia and β-thalassaemia carriers were compared. Significant differences in mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and HbA2 were found between the two groups. Patients who were α, β-thalassaemia carriers had higher mean values of MCV and MCH, whereas HbA2 levels were higher in simple β-thalassaemia. No marked differences were found in mean cell haemoglobin (Hb) concentration and Hb blood cell indices. The value of MCV, MCH and HbA2 were significantly different between α,β-thalassaemia and simple β-thalassaemia in men and women, but the mean values of Hb in the two groups differed markedly only in men. We conclude that co-inheritance of α- and β-thalassaemia mutations may result in misdiagnosis of β-thalassaemia carriers. Therefore, in genetic counselling of patients with a near-normal range of blood cell indices the possibility that they may carry α, β-thalassaemia mutations must be considered. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Three year performance of the NTS-2 solar cell experiment
NASA Technical Reports Server (NTRS)
Statler, R. L.; Walker, D. H.
1980-01-01
Twelve different solar cell modules from the NTS 2 experiment are functioning after more than three years in a severe trapped radiation orbit of 20,367 km (10,990 nm) circular, 63 deg inclination. The rate of maximum power degradation may be fit to a predicted rate which is based on twice the value of 1 MeV electron equivalent damage fluence calculated from the space electron model AEI 7. The photovoltaic parameters of the cells are compared to their original values to demonstrate rank order of performance.
Sadaie, Wakako; Harada, Yoshie; Matsuda, Michiyuki
2014-01-01
Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)–Ras–extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction. PMID:24958104
Paeng, Jin Chul; Keam, Bhumsuk; Kim, Tae Min; Kim, Dong-Wan; Heo, Dae Seog
2018-01-01
Intratumoral heterogeneity has been suggested to be an important resistance mechanism leading to treatment failure. We hypothesized that radiologic images could be an alternative method for identification of tumor heterogeneity. We tested heterogeneity textural parameters on pretreatment FDG-PET/CT in order to assess the predictive value of target therapy. Recurred or metastatic non-small cell lung cancer (NSCLC) subjects with an activating EGFR mutation treated with either gefitinib or erlotinib were reviewed. An exploratory data set (n = 161) and a validation data set (n = 21) were evaluated, and eight parameters were selected for survival analysis. The optimal cutoff value was determined by the recursive partitioning method, and the predictive value was calculated using Harrell’s C-index. Univariate analysis revealed that all eight parameters showed an increased hazard ratio (HR) for progression-free survival (PFS). The highest HR was 6.41 (P<0.01) with co-occurrence (Co) entropy. Increased risk remained present after adjusting for initial stage, performance status (PS), and metabolic volume (MV) (aHR: 4.86, P<0.01). Textural parameters were found to have an incremental predictive value of early EGFR tyrosine kinase inhibitor (TKI) failure compared to that of the base model of the stage and PS (C-index 0.596 vs. 0.662, P = 0.02, by Co entropy). Heterogeneity textural parameters acquired from pretreatment FDG-PET/CT are highly predictive factors for PFS of EGFR TKI in EGFR-mutated NSCLC patients. These parameters are easily applicable to the identification of a subpopulation at increased risk of early EGFR TKI failure. Correlation to genomic alteration should be determined in future studies. PMID:29385152
Comparison of Boron diffused emitters from BN, BSoD and H3BO3 dopants
NASA Astrophysics Data System (ADS)
Singha, Bandana; Singh Solanki, Chetan
2016-12-01
In this work, we are comparing different limited boron dopant sources for the emitter formation in n-type c-Si solar cells. High purity boric acid solution, commercially available boron spin on dopant and boron nitride solid source are used for comparison of emitter doping profiles for the same time and temperature conditions of diffusion. The characterizations done for the similar sheet resistance values for all the dopant sources show different surface morphologies and different device parameters. The measured emitter saturation current densities (Joe) are more than 20 fA cm-2 for all the dopant sources. The bulk carrier lifetimes measured for different diffusion conditions and different solar cell parameters for the similar sheet resistance values show the best result for boric acid diffusion and the least for BN solid source. So, different dopant sources result in different emitter and cell performances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sirenko, Oksana, E-mail: oksana.sirenko@moldev.com; Cromwell, Evan F., E-mail: evan.cromwell@moldev.com; Crittenden, Carole
2013-12-15
Human induced pluripotent stem cell (iPSC)-derived cardiomyocytes show promise for screening during early drug development. Here, we tested a hypothesis that in vitro assessment of multiple cardiomyocyte physiological parameters enables predictive and mechanistically-interpretable evaluation of cardiotoxicity in a high-throughput format. Human iPSC-derived cardiomyocytes were exposed for 30 min or 24 h to 131 drugs, positive (107) and negative (24) for in vivo cardiotoxicity, in up to 6 concentrations (3 nM to 30 uM) in 384-well plates. Fast kinetic imaging was used to monitor changes in cardiomyocyte function using intracellular Ca{sup 2+} flux readouts synchronous with beating, and cell viability. Amore » number of physiological parameters of cardiomyocyte beating, such as beat rate, peak shape (amplitude, width, raise, decay, etc.) and regularity were collected using automated data analysis. Concentration–response profiles were evaluated using logistic modeling to derive a benchmark concentration (BMC) point-of-departure value, based on one standard deviation departure from the estimated baseline in vehicle (0.3% dimethyl sulfoxide)-treated cells. BMC values were used for cardiotoxicity classification and ranking of compounds. Beat rate and several peak shape parameters were found to be good predictors, while cell viability had poor classification accuracy. In addition, we applied the Toxicological Prioritization Index (ToxPi) approach to integrate and display data across many collected parameters, to derive “cardiosafety” ranking of tested compounds. Multi-parameter screening of beating profiles allows for cardiotoxicity risk assessment and identification of specific patterns defining mechanism-specific effects. These data and analysis methods may be used widely for compound screening and early safety evaluation in drug development. - Highlights: • Induced pluripotent stem cell-derived cardiomyocytes are promising in vitro models. • We tested if evaluation of cardiotoxicity is possible in a high-throughput format. • The assay shows benefits of automated data integration across multiple parameters. • Quantitative assessment of concentration–response is possible using iPSCs. • Multi-parametric screening allows for cardiotoxicity risk assessment.« less
Dolka, B; Włodarczyk, R; Zbikowski, A; Dolka, I; Szeleszczuk, P; Kluciński, W
2014-06-01
The knowledge of the correct morphological and biochemical parameters in mute swans is an important indicator of their health status, body condition, adaptation to habitat and useful diagnostic tools in veterinary practice and ecological research. The aim of the study was to obtain hematological parameters in relation to age, sex and serum biochemistry values in wild-living mute swans. We found the significant differences in the erythrocyte count, hematocrit, hemoglobin concentration and erythrocyte sedimentation rate in relation to age of mute swans. There were no differences in hematological values between males and females. The leukogram and H/L ratio did not vary by age and sex in swans. Among of biochemical parameters the slightly increased AST, ALP, CK, K, urea, decreased CHOL and TG values were recorded. As far as we know, this is the first study in which the morphometric parameters of blood cells in mute swans were presented. We found extremely low concentration of lead in blood (at subthreshold level). No blood parasites were found in blood smears. The analysis of body mass and biometric parameters revealed a significant differences dependent on age and sex. No differences in the scaled mass index were found. Our results represent a normal hematologic and blood chemistry values and age-sex related changes, as reference values for the mute swan.
Order parameters from image analysis: a honeycomb example
NASA Astrophysics Data System (ADS)
Kaatz, Forrest H.; Bultheel, Adhemar; Egami, Takeshi
2008-11-01
Honeybee combs have aroused interest in the ability of honeybees to form regular hexagonal geometric constructs since ancient times. Here we use a real space technique based on the pair distribution function (PDF) and radial distribution function (RDF), and a reciprocal space method utilizing the Debye-Waller Factor (DWF) to quantify the order for a range of honeycombs made by Apis mellifera ligustica. The PDFs and RDFs are fit with a series of Gaussian curves. We characterize the order in the honeycomb using a real space order parameter, OP 3 , to describe the order in the combs and a two-dimensional Fourier transform from which a Debye-Waller order parameter, u, is derived. Both OP 3 and u take values from [0, 1] where the value one represents perfect order. The analyzed combs have values of OP 3 from 0.33 to 0.60 and values of u from 0.59 to 0.69. RDF fits of honeycomb histograms show that naturally made comb can be crystalline in a 2D ordered structural sense, yet is more ‘liquid-like’ than cells made on ‘foundation’ wax. We show that with the assistance of man-made foundation wax, honeybees can manufacture highly ordered arrays of hexagonal cells. This is the first description of honeycomb utilizing the Debye-Waller Factor, and provides a complete analysis of the order in comb from a real-space order parameter and a reciprocal space order parameter. It is noted that the techniques used are general in nature and could be applied to any digital photograph of an ordered array.
Crystallography of some lunar plagioclases
Stewart, D.B.; Appleman, D.E.; Huebner, J.S.; Clark, J.R.
1970-01-01
Crystals of calcic bytownite from type B rocks have space group U with c ??? 14 angstroms. Bytownite crystals from type A rocks are more sodic and have space group C1, c ??? 7 angstroms. Cell parameters of eight bulk feldspar separates from crystalline rocks indicate that the range of angle gamma is about 23 times the standard error of measurement, and its value might be useful for estimation of composition. Cell parameters of seven ilmenites are close to those of pure FeTiO3.
Parameter estimation for lithium ion batteries
NASA Astrophysics Data System (ADS)
Santhanagopalan, Shriram
With an increase in the demand for lithium based batteries at the rate of about 7% per year, the amount of effort put into improving the performance of these batteries from both experimental and theoretical perspectives is increasing. There exist a number of mathematical models ranging from simple empirical models to complicated physics-based models to describe the processes leading to failure of these cells. The literature is also rife with experimental studies that characterize the various properties of the system in an attempt to improve the performance of lithium ion cells. However, very little has been done to quantify the experimental observations and relate these results to the existing mathematical models. In fact, the best of the physics based models in the literature show as much as 20% discrepancy when compared to experimental data. The reasons for such a big difference include, but are not limited to, numerical complexities involved in extracting parameters from experimental data and inconsistencies in interpreting directly measured values for the parameters. In this work, an attempt has been made to implement simplified models to extract parameter values that accurately characterize the performance of lithium ion cells. The validity of these models under a variety of experimental conditions is verified using a model discrimination procedure. Transport and kinetic properties are estimated using a non-linear estimation procedure. The initial state of charge inside each electrode is also maintained as an unknown parameter, since this value plays a significant role in accurately matching experimental charge/discharge curves with model predictions and is not readily known from experimental data. The second part of the dissertation focuses on parameters that change rapidly with time. For example, in the case of lithium ion batteries used in Hybrid Electric Vehicle (HEV) applications, the prediction of the State of Charge (SOC) of the cell under a variety of road conditions is important. An algorithm to predict the SOC in time intervals as small as 5 ms is of critical demand. In such cases, the conventional non-linear estimation procedure is not time-effective. There exist methodologies in the literature, such as those based on fuzzy logic; however, these techniques require a lot of computational storage space. Consequently, it is not possible to implement such techniques on a micro-chip for integration as a part of a real-time device. The Extended Kalman Filter (EKF) based approach presented in this work is a first step towards developing an efficient method to predict online, the State of Charge of a lithium ion cell based on an electrochemical model. The final part of the dissertation focuses on incorporating uncertainty in parameter values into electrochemical models using the polynomial chaos theory (PCT).
Dewez, David; Didur, Olivier; Vincent-Héroux, Jonathan; Popovic, Radovan
2008-01-01
Photosynthetic-fluorescence parameters were investigated to be used as valid biomarkers of toxicity when alga Scenedesmus obliquus was exposed to isoproturon [3-(4-isopropylphenyl)-1,1-dimethylurea] effect. Chlorophyll fluorescence induction of algal cells treated with isoproturon showed inactivation of photosystem II (PSII) reaction centers and strong inhibition of PSII electron transport. A linear correlation was found (R2>or=0.861) between the change of cells density affected by isoproturon and the change of effective PSII quantum yield (PhiM'), photochemical quenching (qP) and relative photochemical quenching (qP(rel)) values. The cells density was also linearly dependent (R2=0.838) on the relative unquenched fluorescence parameter (UQF(rel)). Non-linear correlation was found (R2=0.937) only between cells density and the energy transfer efficiency from absorbed light to PSII reaction center (ABS/RC). The order of sensitivity determined by the EC-50% was: UQF(rel)>PhiM'>qP>qP(rel)>ABS/RC. Correlations between cells density and those photosynthetic-fluorescence parameters provide supporting evidence to use them as biomarkers of toxicity for environmental pollutants.
A Computational Approach for Model Update of an LS-DYNA Energy Absorbing Cell
NASA Technical Reports Server (NTRS)
Horta, Lucas G.; Jackson, Karen E.; Kellas, Sotiris
2008-01-01
NASA and its contractors are working on structural concepts for absorbing impact energy of aerospace vehicles. Recently, concepts in the form of multi-cell honeycomb-like structures designed to crush under load have been investigated for both space and aeronautics applications. Efforts to understand these concepts are progressing from tests of individual cells to tests of systems with hundreds of cells. Because of fabrication irregularities, geometry irregularities, and material properties uncertainties, the problem of reconciling analytical models, in particular LS-DYNA models, with experimental data is a challenge. A first look at the correlation results between single cell load/deflection data with LS-DYNA predictions showed problems which prompted additional work in this area. This paper describes a computational approach that uses analysis of variance, deterministic sampling techniques, response surface modeling, and genetic optimization to reconcile test with analysis results. Analysis of variance provides a screening technique for selection of critical parameters used when reconciling test with analysis. In this study, complete ignorance of the parameter distribution is assumed and, therefore, the value of any parameter within the range that is computed using the optimization procedure is considered to be equally likely. Mean values from tests are matched against LS-DYNA solutions by minimizing the square error using a genetic optimization. The paper presents the computational methodology along with results obtained using this approach.
The effect of dimethylsulfoxide on the water transport response of rat hepatocytes during freezing.
Smith, D J; Schulte, M; Bischof, J C
1998-10-01
Successful improvement of cryopreservation protocols for cells in suspension requires knowledge of how such cells respond to the biophysical stresses of freezing (intracellular ice formation, water transport) while in the presence of a cryoprotective agent (CPA). This work investigates the biophysical water transport response in a clinically important cell type--isolated hepatocytes--during freezing in the presence of dimethylsulfoxide (DMSO). Sprague-Dawley rat liver hepatocytes were frozen in Williams E media supplemented with 0, 1, and 2 M DMSO, at rates of 5, 10, and 50 degrees C/min. The water transport was measured by cell volumetric changes as assessed by cryomicroscopy and image analysis. Assuming that water is the only species transported under these conditions, a water transport model of the form dV/dT = f(Lpg([CPA]), ELp([CPA]), T(t)) was curve-fit to the experimental data to obtain the biophysical parameters of water transport--the reference hydraulic permeability (Lpg) and activation energy of water transport (ELp)--for each DMSO concentration. These parameters were estimated two ways: (1) by curve-fitting the model to the average volume of the pooled cell data, and (2) by curve-fitting individual cell volume data and averaging the resulting parameters. The experimental data showed that less dehydration occurs during freezing at a given rate in the presence of DMSO at temperatures between 0 and -10 degrees C. However, dehydration was able to continue at lower temperatures (< -10 degrees C) in the presence of DMSO. The values of Lpg and ELp obtained using the individual cell volume data both decreased from their non-CPA values--4.33 x 10(-13) m3/N-s (2.69 microns/min-atm) and 317 kJ/mol (75.9 kcal/mol), respectively--to 0.873 x 10(-13) m3/N-s (0.542 micron/min-atm) and 137 kJ/mol (32.8 kcal/mol), respectively, in 1 M DMSO and 0.715 x 10(-13) m3/N-s (0.444 micron/min-atm) and 107 kJ/mol (25.7 kcal/mol), respectively, in 2 M DMSO. The trends in the pooled volume values for Lpg and ELp were very similar, but the overall fit was considered worse than for the individual volume parameters. A unique way of presenting the curve-fitting results supports a clear trend of reduction of both biophysical parameters in the presence of DMSO, and no clear trend in cooling rate dependence of the biophysical parameters. In addition, these results suggest that close proximity of the experimental cell volume data to the equilibrium volume curve may significantly reduce the efficiency of the curve-fitting process.
Ferreira, Tatiane Anunciação; Machado, Vinícius Ramos; Perdiz, Marya Izadora; Lyra, Isa Menezes; Nascimento, Valma Lopes; Boa-Sorte, Ney; Andrade, Bruno B.; Ladeia, Ana Marice
2017-01-01
Background Hematological changes can drive damage of endothelial cells, which potentially lead to an early endothelial dysfunction in patients with sickle cell anemia (SCA). An association may exist between endothelial dysfunction and several clinical manifestations of SCA. The present study aims to evaluate the links between changes in endothelial function and clinical and laboratory parameters in children and adolescents with SCA. Methods This study included 40 children and adolescents with stable SCA as well as 25 healthy children; aged 6–18 years. All study subjects were evaluated for endothelial function using Doppler ultrasonography. In addition, a number of laboratory assays were performed, including reticulocyte and leukocyte counts as well as measurement of circulating levels of total bilirubin, C-reactive protein (CRP), glucose, lipoproteins and peripheral oxyhemoglobin saturation. These parameters were also compared between SCA patients who were undertaking hydroxyurea (HU) and those who were not. Results Flow-mediated vasodilation (FMD) values were found to be reduced in SCA patients compared with those detected in healthy controls. SCA individuals with lower FMD values exhibited higher number of hospital admissions due to vaso-occlusive events. Additional analyses revealed that patients who had decreased FMD values exhibited higher odds of acute chest syndrome (ACS) episodes. A preliminary analysis with limited number of individuals failed to demonstrate significant differences in FMD values between SCA individuals who were treated with HU and those who were not. Conclusions Children and adolescents with SCA exhibit impaired endothelial function. Reductions in FMD values are associated with ACS. These findings underline the potential use of FMD as screening strategy of SCA patients with severe prognosis at early stages. PMID:28863145
Kim, Ho Soong; Yang, Heon; Lee, Tae Heon; Lee, Kyung Heon
2016-06-01
To determine the diagnostic value of the ganglion cell-inner plexiform layer (GCIPL) thickness in glaucomatous eyes with superior or inferior visual hemifield defects. Eighty-five patients with glaucoma (42 isolated superior hemifield defects and 43 isolated inferior hemifield defects) and 46 normal subjects were enrolled. All patients underwent Cirrus high-definition optical coherence tomography and standard automated perimetry. The area under the receiver operating characteristic curve (AUC) was calculated to determine the diagnostic ability of the GCIPL and peripapillary retinal nerve fiber layer (pRNFL). In the superior hemifield defect glaucoma group, the best parameters for discriminating normal eyes from glaucomatous eyes were the inferotemporal GCIPL thickness (0.942), inferior quadrant RNFL thickness (0.974), and 7 o'clock sector RNFL thickness (0.999). For diagnosing inferior hemifield defect glaucoma, the AUCs of all GCIPL parameters (0.331 to 0.702) were significantly lower than that of the superior quadrant RNFL thickness (0.866, P<0.05). The diagnostic ability of GCIPL parameters was similar to that of the pRNFL parameters in superior hemifield defect glaucoma. However, the diagnostic performance of the GCIPL parameters was significantly inferior to those of the pRNFL parameters in eyes with inferior hemifield defect glaucoma.
Temperature and pressure dependent thermodynamic behavior of 2H-CuInO2
NASA Astrophysics Data System (ADS)
Bhamu, K. C.
2018-05-01
Density functional theory and quasi-harmonic Debye model has been used to study the thermodynamic properties of 2H-CuInO2. At the optimized structural parameters, pressure (0 to 80 GPa) dependent variation in the various thermodynamic properties, i.e. unit cell volume (V), bulk modulus (B), specific heat (Cv), Debye temperature (θD), Grüneisen parameter (γ) and thermal expansion coefficient (α) are calculated for various temperature values. The results predict that the pressure has significant effect on unit cell volume and bulk modulus while the temperature shows negligible effect on both parameters. With increasing temperature thermal expansion coefficient increase while with increasing pressure it decreases. The specific heat remains close to zero for ambient pressure and temperature values and it increases with increasing temperature. It is observed that the pressure has high impact on Debye temperature and Grüneisen parameter instead of temperature. Debye temperature and Grüneisen parameter both remains almost constant for the temperature range (0-300K) while Grüneisen parameter decrease with increasing pressure at constant temperature and Debye temperature increases rapidly with increasing pressure. An increase in Debye temperature with respect to pressure shows that the thermal vibration frequency changes rapidly.
Toxicity assessment of a common laundry detergent using the freshwater flagellate Euglena gracilis.
Azizullah, Azizullah; Richter, Peter; Häder, Donat-Peter
2011-09-01
Synthetic detergents are among the commonly used chemicals in everyday life. Detergents, reaching aquatic environments through domestic and municipal wastewater, can cause many different effects in aquatic organisms. The present study was aimed at the toxicity evaluation of a commonly used laundry detergent, Ariel, using the freshwater flagellate Euglena gracilis as a biotest organism. Different parameters of the flagellate like motility, swimming velocity, cell shape, gravitactic orientation, photosynthesis and concentration of light harvesting pigments were used as end points for the toxicity assessment. No Observed Effect Concentration (NOEC) and EC(50) values were calculated for the end point parameters at four different incubation times, i.e. 0, 6, 24 and 72 h. After 72 h incubation, swimming velocity of the cells was found to be the most sensitive parameter giving NOEC and EC(50) values of 10.8 and 34 mg L(-1), respectively. After 72 h exposure to the detergent, chlorophyll a and total carotenoids were significantly decreased in cultures treated with Ariel at concentrations of 50 mg L(-1) and above while chlorophyll b significantly decreased at concentrations above 750 mg L(-1). The maximum inhibitory effect on the quantum yield of photosystem II was observed after 24 h exposure and thereafter a recovery trend was observed. Motility, gravitaxis and cell shape were strongly impaired immediately upon exposure to the detergent, but with increasing exposure time these parameters showed acclimatization to the stress and thus the NOEC values obtained after 72 h were higher than those immediately after exposure. Copyright © 2011 Elsevier Ltd. All rights reserved.
Automated inference procedure for the determination of cell growth parameters
NASA Astrophysics Data System (ADS)
Harris, Edouard A.; Koh, Eun Jee; Moffat, Jason; McMillen, David R.
2016-01-01
The growth rate and carrying capacity of a cell population are key to the characterization of the population's viability and to the quantification of its responses to perturbations such as drug treatments. Accurate estimation of these parameters necessitates careful analysis. Here, we present a rigorous mathematical approach for the robust analysis of cell count data, in which all the experimental stages of the cell counting process are investigated in detail with the machinery of Bayesian probability theory. We advance a flexible theoretical framework that permits accurate estimates of the growth parameters of cell populations and of the logical correlations between them. Moreover, our approach naturally produces an objective metric of avoidable experimental error, which may be tracked over time in a laboratory to detect instrumentation failures or lapses in protocol. We apply our method to the analysis of cell count data in the context of a logistic growth model by means of a user-friendly computer program that automates this analysis, and present some samples of its output. Finally, we note that a traditional least squares fit can provide misleading estimates of parameter values, because it ignores available information with regard to the way in which the data have actually been collected.
Koyama, Kento; Hokunan, Hidekazu; Hasegawa, Mayumi; Kawamura, Shuso; Koseki, Shigenobu
2016-12-01
We investigated a bacterial sample preparation procedure for single-cell studies. In the present study, we examined whether single bacterial cells obtained via 10-fold dilution followed a theoretical Poisson distribution. Four serotypes of Salmonella enterica, three serotypes of enterohaemorrhagic Escherichia coli and one serotype of Listeria monocytogenes were used as sample bacteria. An inoculum of each serotype was prepared via a 10-fold dilution series to obtain bacterial cell counts with mean values of one or two. To determine whether the experimentally obtained bacterial cell counts follow a theoretical Poisson distribution, a likelihood ratio test between the experimentally obtained cell counts and Poisson distribution which parameter estimated by maximum likelihood estimation (MLE) was conducted. The bacterial cell counts of each serotype sufficiently followed a Poisson distribution. Furthermore, to examine the validity of the parameters of Poisson distribution from experimentally obtained bacterial cell counts, we compared these with the parameters of a Poisson distribution that were estimated using random number generation via computer simulation. The Poisson distribution parameters experimentally obtained from bacterial cell counts were within the range of the parameters estimated using a computer simulation. These results demonstrate that the bacterial cell counts of each serotype obtained via 10-fold dilution followed a Poisson distribution. The fact that the frequency of bacterial cell counts follows a Poisson distribution at low number would be applied to some single-cell studies with a few bacterial cells. In particular, the procedure presented in this study enables us to develop an inactivation model at the single-cell level that can estimate the variability of survival bacterial numbers during the bacterial death process. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Daud, T.; Cheng, L. J.
1981-01-01
The role of surface recombination velocity in the design and fabrication of silicon solar cells is discussed. A scanning electron microscope with pulsed electron beam was used to measure this parameter of silicon surfaces. It is shown that the surface recombination velocity, s, increases by an order of magnitude when an etched surface degrades, probably as a result of environmental reaction. A textured front-surface-field cell with a high-low junction near the surface shows the effect of minority carrier reflection and an apparent reduction of s, whereas a tandem-junction cell shows an increasing s value. Electric fields at junction interfaces in front-surface-field and tandem-junction cells acting as minority carrier reflectors or sinks tend to alter the value of effective surface recombination velocity for different beam penetration depths. A range of values of s was calculated for different surfaces.
Leite Figueiredo, Débora Alvares; Branco, Paola Cristina; Dos Santos, Douglas Amaral; Emerenciano, Andrews Krupinski; Iunes, Renata Stecca; Shimada Borges, João Carlos; Machado Cunha da Silva, José Roberto
2016-11-01
The rising concentration of atmospheric CO 2 by anthropogenic activities is changing the chemistry of the oceans, resulting in a decreased pH. Several studies have shown that the decrease in pH can affect calcification rates and reproduction of marine invertebrates, but little attention has been drawn to their immune response. Thus this study evaluated in two adult tropical sea urchin species, Lytechinus variegatus and Echinometra lucunter, the effects of ocean acidification over a period of 24h and 5days, on parameters of the immune response, the extracellular acid base balance, and the ability to recover these parameters. For this reason, the phagocytic capacity (PC), the phagocytic index (PI), the capacity of cell adhesion, cell spreading, cell spreading area of phagocytic amebocytes in vitro, and the coelomic fluid pH were analyzed in animals exposed to a pH of 8.0 (control group), 7.6 and 7.3. Experimental pH's were predicted by IPCC for the future of the two species. Furthermore, a recovery test was conducted to verify whether animals have the ability to restore these physiological parameters after being re-exposed to control conditions. Both species presented a significant decrease in PC, in the pH of coelomic fluid and in the cell spreading area. Besides that, Echinometra lucunter showed a significant decrease in cell spreading and significant differences in coelomocyte proportions. The recovery test showed that the PC of both species increased, also being below the control values. Even so, they were still significantly higher than those exposed to acidified seawater, indicating that with the re-establishment of the pH value the phagocytic capacity of cells tends to restore control conditions. These results demonstrate that the immune system and the coelomic fluid pH of these animals can be affected by ocean acidification. However, the effects of a short-term exposure can be reversible if the natural values are re-established. Thus, the effects of ocean acidification could lead to consequences for pathogen resistance and survival of these sea urchin species. Copyright © 2016 Elsevier B.V. All rights reserved.
Sadaie, Wakako; Harada, Yoshie; Matsuda, Michiyuki; Aoki, Kazuhiro
2014-09-01
Computer-assisted simulation is a promising approach for clarifying complicated signaling networks. However, this approach is currently limited by a deficiency of kinetic parameters determined in living cells. To overcome this problem, we applied fluorescence cross-correlation spectrometry (FCCS) to measure dissociation constant (Kd) values of signaling molecule complexes in living cells (in vivo Kd). Among the pairs of fluorescent molecules tested, that of monomerized enhanced green fluorescent protein (mEGFP) and HaloTag-tetramethylrhodamine was most suitable for the measurement of in vivo Kd by FCCS. Using this pair, we determined 22 in vivo Kd values of signaling molecule complexes comprising the epidermal growth factor receptor (EGFR)-Ras-extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase pathway. With these parameters, we developed a kinetic simulation model of the EGFR-Ras-ERK MAP kinase pathway and uncovered a potential role played by stoichiometry in Shc binding to EGFR during the peak activations of Ras, MEK, and ERK. Intriguingly, most of the in vivo Kd values determined in this study were higher than the in vitro Kd values reported previously, suggesting the significance of competitive bindings inside cells. These in vivo Kd values will provide a sound basis for the quantitative understanding of signal transduction. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Recovering metal values hydrometallurgically from spent dry battery cells
NASA Astrophysics Data System (ADS)
Rabah, M. A.; Barakat, M. A.; Mahrous, Y. Sh.
1999-12-01
A hydro-pyrometallurgical method was used to recover metal values from spent dry battery cells. Water-soluble ingredients were filtered, and solid residue was sorted by magnetic separation and water flotation. Parameters affecting the recovery efficiency were also studied. Results revealed that metallic parts, carbon rods, and paper were safely recovered; pure NH4Cl, MnO2, and ZnCl2 salts were obtained. Maximum recovery efficiencies reached 93 percent for manganese and 99.5 percent for zinc and NH4.
NASA Astrophysics Data System (ADS)
Zhan, Shuiqing; Wang, Junfeng; Wang, Zhentao; Yang, Jianhong
2018-02-01
The effects of different cell design and operating parameters on the gas-liquid two-phase flows and bubble distribution characteristics under the anode bottom regions in aluminum electrolysis cells were analyzed using a three-dimensional computational fluid dynamics-population balance model. These parameters include inter-anode channel width, anode-cathode distance (ACD), anode width and length, current density, and electrolyte depth. The simulations results show that the inter-anode channel width has no significant effect on the gas volume fraction, electrolyte velocity, and bubble size. With increasing ACD, the above values decrease and more uniform bubbles can be obtained. Different effects of the anode width and length can be concluded in different cell regions. With increasing current density, the gas volume fraction and electrolyte velocity increase, but the bubble size keeps nearly the same. Increasing electrolyte depth decreased the gas volume fraction and bubble size in particular areas and the electrolyte velocity increased.
Masoli, Stefano; Rizza, Martina F; Sgritta, Martina; Van Geit, Werner; Schürmann, Felix; D'Angelo, Egidio
2017-01-01
In realistic neuronal modeling, once the ionic channel complement has been defined, the maximum ionic conductance (G i-max ) values need to be tuned in order to match the firing pattern revealed by electrophysiological recordings. Recently, selection/mutation genetic algorithms have been proposed to efficiently and automatically tune these parameters. Nonetheless, since similar firing patterns can be achieved through different combinations of G i-max values, it is not clear how well these algorithms approximate the corresponding properties of real cells. Here we have evaluated the issue by exploiting a unique opportunity offered by the cerebellar granule cell (GrC), which is electrotonically compact and has therefore allowed the direct experimental measurement of ionic currents. Previous models were constructed using empirical tuning of G i-max values to match the original data set. Here, by using repetitive discharge patterns as a template, the optimization procedure yielded models that closely approximated the experimental G i-max values. These models, in addition to repetitive firing, captured additional features, including inward rectification, near-threshold oscillations, and resonance, which were not used as features. Thus, parameter optimization using genetic algorithms provided an efficient modeling strategy for reconstructing the biophysical properties of neurons and for the subsequent reconstruction of large-scale neuronal network models.
Mitov, Mario; Bardarov, Ivo; Mandjukov, Petko; Hubenova, Yolina
2015-12-01
The electrical parameters of nine freshwater sediment microbial fuel cells (SMFCs) were monitored for a period of over 20 months. The developed SMFCs, divided into three groups, were started up and continuously operated under different constant loads (100, 510 and 1100 Ω) for 2.5 months. At this stage of the experiment, the highest power density values, reaching 1.2 ± 0.2 mW/m(2), were achieved by the SMFCs loaded with 510 Ω. The maximum power obtained at periodical polarization during the rest period, however, ranged between 26.2 ± 2.8 and 35.3 ± 2.8 mW/m(2), strongly depending on the internal cell resistance. The statistical evaluation of data derived from the polarization curves shows that after 300 days of operation all examined SMFCs reached a steady-state and the system might be assumed as homoscedastic. The estimated values of standard and expanded uncertainties of the electric parameters indicate a high repeatability and reproducibility of the SMFCs' performance. Results obtained in subsequent discharge-recovery cycles reveal the opportunity for practical application of studied SMFCs as autonomous power sources.
Exact solutions of a two parameter flux model and cryobiological applications.
Benson, James D; Chicone, Carmen C; Critser, John K
2005-06-01
Solute-solvent transmembrane flux models are used throughout biological sciences with applications in plant biology, cryobiology (transplantation and transfusion medicine), as well as circulatory and kidney physiology. Using a standard two parameter differential equation model of solute and solvent transmembrane flux described by Jacobs [The simultaneous measurement of cell permeability to water and to dissolved substances, J. Cell. Comp. Physiol. 2 (1932) 427-444], we determine the functions that describe the intracellular water volume and moles of intracellular solute for every time t and every set of initial conditions. Here, we provide several novel biophysical applications of this theory to important biological problems. These include using this result to calculate the value of cell volume excursion maxima and minima along with the time at which they occur, a novel result that is of significant relevance to the addition and removal of permeating solutes during cryopreservation. We also present a methodology that produces extremely accurate sum of squares estimates when fitting data for cellular permeability parameter values. Finally, we show that this theory allows a significant increase in both accuracy and speed of finite element methods for multicellular volume simulations, which has critical clinical biophysical applications in cryosurgical approaches to cancer treatment.
Influence of parameter values on the oscillation sensitivities of two p53-Mdm2 models.
Cuba, Christian E; Valle, Alexander R; Ayala-Charca, Giancarlo; Villota, Elizabeth R; Coronado, Alberto M
2015-09-01
Biomolecular networks that present oscillatory behavior are ubiquitous in nature. While some design principles for robust oscillations have been identified, it is not well understood how these oscillations are affected when the kinetic parameters are constantly changing or are not precisely known, as often occurs in cellular environments. Many models of diverse complexity level, for systems such as circadian rhythms, cell cycle or the p53 network, have been proposed. Here we assess the influence of hundreds of different parameter sets on the sensitivities of two configurations of a well-known oscillatory system, the p53 core network. We show that, for both models and all parameter sets, the parameter related to the p53 positive feedback, i.e. self-promotion, is the only one that presents sizeable sensitivities on extrema, periods and delay. Moreover, varying the parameter set values to change the dynamical characteristics of the response is more restricted in the simple model, whereas the complex model shows greater tunability. These results highlight the importance of the presence of specific network patterns, in addition to the role of parameter values, when we want to characterize oscillatory biochemical systems.
SU-E-T-429: Uncertainties of Cell Surviving Fractions Derived From Tumor-Volume Variation Curves
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A
2014-06-01
Purpose: To evaluate uncertainties of cell surviving fraction reconstructed from tumor-volume variation curves during radiation therapy using sensitivity analysis based on linear perturbation theory. Methods: The time dependent tumor-volume functions V(t) have been calculated using a twolevel cell population model which is based on the separation of entire tumor cell population in two subpopulations: oxygenated viable and lethally damaged cells. The sensitivity function is defined as S(t)=[δV(t)/V(t)]/[δx/x] where δV(t)/V(t) is the time dependent relative variation of the volume V(t) and δx/x is the relative variation of the radiobiological parameter x. The sensitivity analysis was performed using direct perturbation method wheremore » the radiobiological parameter x was changed by a certain error and the tumor-volume was recalculated to evaluate the corresponding tumor-volume variation. Tumor volume variation curves and sensitivity functions have been computed for different values of cell surviving fractions from the practically important interval S{sub 2}=0.1-0.7 using the two-level cell population model. Results: The sensitivity functions of tumor-volume to cell surviving fractions achieved a relatively large value of 2.7 for S{sub 2}=0.7 and then approached zero as S{sub 2} is approaching zero Assuming a systematic error of 3-4% we obtain that the relative error in S{sub 2} is less that 20% in the range S2=0.4-0.7. This Resultis important because the large values of S{sub 2} are associated with poor treatment outcome should be measured with relatively small uncertainties. For the very small values of S2<0.3, the relative error can be larger than 20%; however, the absolute error does not increase significantly. Conclusion: Tumor-volume curves measured during radiotherapy can be used for evaluation of cell surviving fractions usually observed in radiation therapy with conventional fractionation.« less
Specific light uptake rates can enhance astaxanthin productivity in Haematococcus lacustris.
Lee, Ho-Sang; Kim, Z-Hun; Park, Hanwool; Lee, Choul-Gyun
2016-05-01
Lumostatic operation was applied for efficient astaxanthin production in autotrophic Haematococcus lacustris cultures using 0.4-L bubble column photobioreactors. The lumostatic operation in this study was performed with three different specific light uptake rates (q(e)) based on cell concentration, cell projection area, and fresh weight as one-, two- and three-dimensional characteristics values, respectively. The q(e) value from the cell concentration (q(e1D)) obtained was 13.5 × 10⁻⁸ μE cell⁻¹ s⁻¹, and the maximum astaxanthin concentration was increased to 150 % compared to that of a control with constant light intensity. The other optimum q e values by cell projection area (q(e2D)) and fresh weight (q( e3D)) were determined to be 195 μE m⁻² s⁻¹ and 10.5 μE g⁻¹ s⁻¹ for astaxanthin production, respectively. The maximum astaxanthin production from the lumostatic cultures using the parameters controlled by cell projection area (2D) and fresh weight (3D) also increased by 36 and 22% over that of the controls, respectively. When comparing the optimal q e values among the three different types, the lumostatic cultures using q(e) based on fresh weight showed the highest astaxanthin productivity (22.8 mg L⁻¹ day⁻¹), which was a higher level than previously reported. The lumostatic operations reported here demonstrated that more efficient and effective astaxanthin production was obtained by H. lacustris than providing a constant light intensity, regardless of which parameter is used to calculate the specific light uptake rate.
[The effect of vegetarian diet on selected biochemical and blood morphology parameters].
Nazarewicz, Rafał
2007-01-01
The objective was to examine whether vegetarian diet influence biochemical parameters of blood and plasma urea in selective vegetarian group. The investigation covered 41 subject, 22 of them had been applying vegetarian diet and 19 were omnivorous. The study shows statistically significant lower values of white blood cells, % and amounts of neutrocytes and insignificant lower level of red blood cells, hemoglobine, hematocrit and platelet in vegetarian group. Significant lower plasma urea level was observed in that group. These changes indicate that high quality deficiency protein was due to vegetarian diet.
Electrochemical energy storage subsystems study, volume 1
NASA Technical Reports Server (NTRS)
Miller, F. Q.; Richardson, P. W.; Graff, C. L.; Jordan, M. V.; Patterson, V. L.
1981-01-01
The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models define baseline designs and costs. The major design and performance parameters are each varied to determine their influence on LCC around the baseline values.
Electrochemical Energy Storage Subsystems Study, Volume 2
NASA Technical Reports Server (NTRS)
Miller, F. Q.; Richardson, P. W.; Graff, C. L.; Jordan, M. V.; Patterson, V. L.
1981-01-01
The effects on life cycle costs (LCC) of major design and performance technology parameters for multi kW LEO and GEO energy storage subsystems using NiCd and NiH2 batteries and fuel cell/electrolysis cell devices were examined. Design, performance and LCC dynamic models are developed based on mission and system/subsystem requirements and existing or derived physical and cost data relationships. The models are exercised to define baseline designs and costs. Then the major design and performance parameters are each varied to determine their influence on LCC around the baseline values.
Meyer, Hans Jonas; Leifels, Leonard; Schob, Stefan; Garnov, Nikita; Surov, Alexey
2018-01-01
Nowadays, multiparametric investigations of head and neck squamous cell carcinoma (HNSCC) are established. These approaches can better characterize tumor biology and behavior. Diffusion weighted imaging (DWI) can by means of apparent diffusion coefficient (ADC) quantitatively characterize different tissue compartments. Dynamic contrast-enhanced magnetic resonance imaging (DCE MRI) reflects perfusion and vascularization of tissues. Recently, a novel approach of data acquisition, namely histogram analysis of different images is a novel diagnostic approach, which can provide more information of tissue heterogeneity. The purpose of this study was to analyze possible associations between DWI, and DCE parameters derived from histogram analysis in patients with HNSCC. Overall, 34 patients, 9 women and 25 men, mean age, 56.7±10.2years, with different HNSCC were involved in the study. DWI was obtained by using of an axial echo planar imaging sequence with b-values of 0 and 800s/mm 2 . Dynamic T1w DCE sequence after intravenous application of contrast medium was performed for estimation of the following perfusion parameters: volume transfer constant (K trans ), volume of the extravascular extracellular leakage space (Ve), and diffusion of contrast medium from the extravascular extracellular leakage space back to the plasma (Kep). Both ADC and perfusion parameters maps were processed offline in DICOM format with custom-made Matlab-based application. Thereafter, polygonal ROIs were manually drawn on the transferred maps on each slice. For every parameter, mean, maximal, minimal, and median values, as well percentiles 10th, 25th, 75th, 90th, kurtosis, skewness, and entropy were estimated. Сorrelation analysis identified multiple statistically significant correlations between the investigated parameters. Ve related parameters correlated well with different ADC values. Especially, percentiles 10 and 75, mode, and median values showed stronger correlations in comparison to other parameters. Thereby, the calculated correlation coefficients ranged from 0.62 to 0.69. Furthermore, K trans related parameters showed multiple slightly to moderate significant correlations with different ADC values. Strongest correlations were identified between ADC P75 and K trans min (p=0.58, P=0.0007), and ADC P75 and K trans P10 (p=0.56, P=0.001). Only four K ep related parameters correlated statistically significant with ADC fractions. Strongest correlation was found between K ep max and ADC mode (p=-0.47, P=0.008). Multiple statistically significant correlations between, DWI and DCE MRI parameters derived from histogram analysis were identified in HNSCC. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Wells, J. R.; Kim, J. B.
2011-12-01
Parameters in dynamic global vegetation models (DGVMs) are thought to be weakly constrained and can be a significant source of errors and uncertainties. DGVMs use between 5 and 26 plant functional types (PFTs) to represent the average plant life form in each simulated plot, and each PFT typically has a dozen or more parameters that define the way it uses resource and responds to the simulated growing environment. Sensitivity analysis explores how varying parameters affects the output, but does not do a full exploration of the parameter solution space. The solution space for DGVM parameter values are thought to be complex and non-linear; and multiple sets of acceptable parameters may exist. In published studies, PFT parameters are estimated from published literature, and often a parameter value is estimated from a single published value. Further, the parameters are "tuned" using somewhat arbitrary, "trial-and-error" methods. BIOMAP is a new DGVM created by fusing MAPSS biogeography model with Biome-BGC. It represents the vegetation of North America using 26 PFTs. We are using simulated annealing, a global search method, to systematically and objectively explore the solution space for the BIOMAP PFTs and system parameters important for plant water use. We defined the boundaries of the solution space by obtaining maximum and minimum values from published literature, and where those were not available, using +/-20% of current values. We used stratified random sampling to select a set of grid cells representing the vegetation of the conterminous USA. Simulated annealing algorithm is applied to the parameters for spin-up and a transient run during the historical period 1961-1990. A set of parameter values is considered acceptable if the associated simulation run produces a modern potential vegetation distribution map that is as accurate as one produced by trial-and-error calibration. We expect to confirm that the solution space is non-linear and complex, and that multiple acceptable parameter sets exist. Further we expect to demonstrate that the multiple parameter sets produce significantly divergent future forecasts in NEP, C storage, and ET and runoff; and thereby identify a highly important source of DGVM uncertainty
Design of landfill daily cells.
Panagiotakopoulos, D; Dokas, I
2001-08-01
The objective of this paper is to study the behaviour of the landfill soil-to-refuse (S/R) ratio when size, geometry and operating parameters of the daily cell vary over realistic ranges. A simple procedure is presented (1) for calculating the cell parameters values which minimise the S/R ratio and (2) for studying the sensitivity of this minimum S/R ratio to variations in cell size, final refuse density, working face length, lift height and cover thickness. In countries where daily soil cover is required, savings in landfill space could be realised following this procedure. The sensitivity of minimum S/R to variations in cell dimensions decreases with cell size. Working face length and lift height affect the S/R ratio significantly. This procedure also offers the engineer an additional tool for comparing one large daily cell with two or more smaller ones, at two different working faces within the same landfill.
Development of a Kinetic Assay for Late Endosome Movement.
Esner, Milan; Meyenhofer, Felix; Kuhn, Michael; Thomas, Melissa; Kalaidzidis, Yannis; Bickle, Marc
2014-08-01
Automated imaging screens are performed mostly on fixed and stained samples to simplify the workflow and increase throughput. Some processes, such as the movement of cells and organelles or measuring membrane integrity and potential, can be measured only in living cells. Developing such assays to screen large compound or RNAi collections is challenging in many respects. Here, we develop a live-cell high-content assay for tracking endocytic organelles in medium throughput. We evaluate the added value of measuring kinetic parameters compared with measuring static parameters solely. We screened 2000 compounds in U-2 OS cells expressing Lamp1-GFP to label late endosomes. All hits have phenotypes in both static and kinetic parameters. However, we show that the kinetic parameters enable better discrimination of the mechanisms of action. Most of the compounds cause a decrease of motility of endosomes, but we identify several compounds that increase endosomal motility. In summary, we show that kinetic data help to better discriminate phenotypes and thereby obtain more subtle phenotypic clustering. © 2014 Society for Laboratory Automation and Screening.
Ha, Phuc Thi; Moon, Hyunsoo; Kim, Byung Hong; Ng, How Yong; Chang, In Seop
2010-03-15
An alternative method for determining the charge transfer resistance and double-layer capacitance of microbial fuel cells (MFCs), easily implemented without a potentiostat, was developed. A dynamic model with two parameters, the charge transfer resistance and double-layer capacitance of electrodes, was derived from a linear differential equation to depict the current generation with respect to activation overvoltage. This model was then used to fit the transient cell voltage response to the current step change during the continuous operation of a flat-plate type MFC fed with acetate. Variations of the charge transfer resistance and the capacitance value with respect to the MFC design conditions (biocatalyst existence and electrode area) and operating parameters (acetate concentration and buffer strength in the catholyte) were then determined to elucidate the validity of the proposed method. This model was able to describe the dynamic behavior of the MFC during current change in the activation loss region; having an R(2) value of over 0.99 in most tests. Variations of the charge transfer resistance value (thousands of Omega) according to the change of the design factors and operational factors were well-correlated with the corresponding MFC performances. However, though the capacitance values (approximately 0.02 F) reflected the expected trend according to the electrode area change and catalyst property, they did not show significant variation with changes in either the acetate concentration or buffer strength. (c) 2009 Elsevier B.V. All rights reserved.
Min, Xiangde; Feng, Zhaoyan; Wang, Liang; Cai, Jie; Yan, Xu; Li, Basen; Ke, Zan; Zhang, Peipei; You, Huijuan
2018-01-01
To assess the values of parameters derived from whole-lesion histograms of the apparent diffusion coefficient (ADC) at 3T for the characterization of testicular germ cell tumors (TGCTs). A total of 24 men with TGCTs underwent 3T diffusion-weighted imaging. Fourteen tumors were pathologically confirmed as seminomas, and ten tumors were pathologically confirmed as nonseminomas. Whole-lesion histogram analysis of the ADC values was performed. A Mann-Whitney U test was employed to compare the differences in ADC histogram parameters between seminomas and nonseminomas. Receiver operating characteristic analysis was used to identify the cutoff values for each parameter for differentiating seminomas from nonseminomas; furthermore, the area under the curve (AUC) was calculated to evaluate the diagnostic accuracy. The median of 10th, 25th, 50th, 75th, and 90th percentiles and mean, minimum and maximum ADC values were all significantly reduced for seminomas compared with nonseminomas (p<0.05 for all). In contrast, the median of kurtosis and skewness of ADC values of seminomas were both significantly increased compared with those of nonseminomas (p=0.003 and 0.001, respectively). For differentiating nonseminomas from seminomas, the 10th percentile ADC yielded the highest AUC with a sensitivity and specificity of 100% and 92.86%, respectively. Whole-lesion histogram analysis of ADCs might be used for preoperative characterization of TGCTs. Copyright © 2017 Elsevier B.V. All rights reserved.
Targeted Proteomics-Driven Computational Modeling of Macrophage S1P Chemosensing*
Manes, Nathan P.; Angermann, Bastian R.; Koppenol-Raab, Marijke; An, Eunkyung; Sjoelund, Virginie H.; Sun, Jing; Ishii, Masaru; Germain, Ronald N.; Meier-Schellersheim, Martin; Nita-Lazar, Aleksandra
2015-01-01
Osteoclasts are monocyte-derived multinuclear cells that directly attach to and resorb bone. Sphingosine-1-phosphate (S1P)1 regulates bone resorption by functioning as both a chemoattractant and chemorepellent of osteoclast precursors through two G-protein coupled receptors that antagonize each other in an S1P-concentration-dependent manner. To quantitatively explore the behavior of this chemosensing pathway, we applied targeted proteomics, transcriptomics, and rule-based pathway modeling using the Simmune toolset. RAW264.7 cells (a mouse monocyte/macrophage cell line) were used as model osteoclast precursors, RNA-seq was used to identify expressed target proteins, and selected reaction monitoring (SRM) mass spectrometry using internal peptide standards was used to perform absolute abundance measurements of pathway proteins. The resulting transcript and protein abundance values were strongly correlated. Measured protein abundance values, used as simulation input parameters, led to in silico pathway behavior matching in vitro measurements. Moreover, once model parameters were established, even simulated responses toward stimuli that were not used for parameterization were consistent with experimental findings. These findings demonstrate the feasibility and value of combining targeted mass spectrometry with pathway modeling for advancing biological insight. PMID:26199343
Bifurcation and Spike Adding Transition in Chay-Keizer Model
NASA Astrophysics Data System (ADS)
Lu, Bo; Liu, Shenquan; Liu, Xuanliang; Jiang, Xiaofang; Wang, Xiaohui
Electrical bursting is an activity which is universal in excitable cells such as neurons and various endocrine cells, and it encodes rich physiological information. As burst delay identifies that the signal integration has reached the threshold at which it can generate an action potential, the number of spikes in a burst may have essential physiological implications, and the transition of bursting in excitable cells is associated with the bifurcation phenomenon closely. In this paper, we focus on the transition of the spike count per burst of the pancreatic β-cells within a mathematical model and bifurcation phenomenon in the Chay-Keizer model, which is utilized to simulate the pancreatic β-cells. By the fast-slow dynamical bifurcation analysis and the bi-parameter bifurcation analysis, the local dynamics of the Chay-Keizer system around the Bogdanov-Takens bifurcation is illustrated. Then the variety of the number of spikes per burst is discussed by changing the settings of a single parameter and bi-parameter. Moreover, results on the number of spikes within a burst are summarized in ISIs (interspike intervals) sequence diagrams, maximum and minimum, and the number of spikes under bi-parameter value changes.
Reaction-Diffusion-Delay Model for EPO/TNF-α Interaction in articular cartilage lesion abatement
2012-01-01
Background Injuries to articular cartilage result in the development of lesions that form on the surface of the cartilage. Such lesions are associated with articular cartilage degeneration and osteoarthritis. The typical injury response often causes collateral damage, primarily an effect of inflammation, which results in the spread of lesions beyond the region where the initial injury occurs. Results and discussion We present a minimal mathematical model based on known mechanisms to investigate the spread and abatement of such lesions. The first case corresponds to the parameter values listed in Table 1, while the second case has parameter values as in Table 2. In particular we represent the "balancing act" between pro-inflammatory and anti-inflammatory cytokines that is hypothesized to be a principal mechanism in the expansion properties of cartilage damage during the typical injury response. We present preliminary results of in vitro studies that confirm the anti-inflammatory activities of the cytokine erythropoietin (EPO). We assume that the diffusion of cytokines determine the spatial behavior of injury response and lesion expansion so that a reaction diffusion system involving chemical species and chondrocyte cell state population densities is a natural way to represent cartilage injury response. We present computational results using the mathematical model showing that our representation is successful in capturing much of the interesting spatial behavior of injury associated lesion development and abatement in articular cartilage. Further, we discuss the use of this model to study the possibility of using EPO as a therapy for reducing the amount of inflammation induced collateral damage to cartilage during the typical injury response. Table 1 Model Parameter Values for Results in Figure 5 Table of Parameter Values Corresponding to Simulations in Figure 5 Parameter Value Units Reason D R 0.1 c m 2 day Determined from [13] D M 0.05 c m 2 day Determined from [13] D F 0.05 c m 2 day Determined from [13] D P 0.005 c m 2 day Determined from [13] δ R 0.01 1 day Approximated δ M 0.6 1 day Approximated δ F 0.6 1 day Approximated δ P 0.0087 1 day Approximated δ U 0.0001 1 day Approximated σ R 0.0001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ M 0.00001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ F 0.0001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ P 0 micromolar ⋅ c m 2 day ⋅ cells Case with no anti-inflammatory response Λ 10 micromolar Approximated λ R 10 micromolar Approximated λ M 10 micromolar Approximated λ F 10 micromolar Approximated λ P 10 micromolar Approximated α 0 1 day Case with no anti-inflammatory response β 1 100 1 day Approximated Β 2 50 1 day Approximated γ 10 1 day Approximated ν 0.5 1 day Approximated μ S A 1 1 day Approximated μ D N 0.5 1 day Approximated τ 1 0.5 days Taken from [5] τ 2 1 days Taken from [5] Table 2 Model Parameter Values for Results in Figure 6 Table of Parameter Values Corresponding to Simulations in Figure 6 Parameter Value Units Reason D R 0.1 c m 2 day Determined from [13] D M 0.05 c m 2 day Determined from [13] D F 0.05 c m 2 day Determined from [13] DP 0.005 c m 2 day Determined from [13] δ R 0.01 1 day Approximated δ M 0.6 1 day Approximated δ F 0.6 1 day Approximated δ P 0.0087 1 day Approximated δ U 0.0001 1 day Approximated σ R 0.0001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ M 0.00001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ F 0.0001 micromolar ⋅ c m 2 day ⋅ cells Approximated σ P 0.001 micromolar ⋅ c m 2 day ⋅ cells Approximated Λ 10 micromolar Approximated λ R 10 micromolar Approximated λ M 10 micromolar Approximated λ F 10 micromolar Approximated λ P 10 micromolar Approximated α 10 1 day Approximated β 1 100 1 day Approximated β 2 50 1 day Approximated γ 10 1 day Approximated ν 0.5 1 day Approximated μ S A 1 1 day Approximated μ D N 0.5 1 day Approximated τ 1 0.5 days Taken from [5] τ 2 1 days Taken from [5] Conclusions The mathematical model presented herein suggests that not only are anti-inflammatory cy-tokines, such as EPO necessary to prevent chondrocytes signaled by pro-inflammatory cytokines from entering apoptosis, they may also influence how chondrocytes respond to signaling by pro-inflammatory cytokines. Reviewers This paper has been reviewed by Yang Kuang, James Faeder and Anna Marciniak-Czochra. PMID:22353555
Use of solid phase extraction (SPE) to evaluate in vitro skin permeation of aescin.
Montenegro, L; Carbone, C; Giannone, I; Puglisi, G
2007-05-01
The aim of this work was to evaluate the feasibility of assessing aescin in vitro permeation through human skin by determining the amount of aescin permeated using conventional HPLC procedures after extraction of skin permeation samples by means of solid phase extraction (SPE). Aescin in vitro skin permeation was assessed from aqueous solutions and gels using both Franz-type diffusion cells and flow-through diffusion cells. The SPE method used was highly accurate (mean accuracy 99.66%), highly reproducible (intra-day and inter-day variations lower than 2.3% and 2.2%, respectively) and aescin recovery from normal saline was greater than 99%. The use of Franz-type diffusion cells did not allow us to determine aescin flux values through excised human skin, therefore aescin skin permeation parameters could be calculated only using flow-through diffusion cells. Plotting the cumulative amount of aescin permeated as a function of time, linear relationships were obtained from both aqueous solution and gel using flow-through diffusion cells. Aescin flux values through excised human skin from aqueous gel were significantly lower than those observed from aqueous solution (p < 0.05). Calculating aescin percutaneous absorption parameters we evidenced that aescin partition coefficient was lower from the aqueous gel with respect to the aqueous solution. Therefore, the SPE method used in this study was suitable to determine aescin in vitro skin permeation parameters from aqueous solutions and gels using a conventional HPLC method for the analysis of the skin permeation samples.
Dana, Saswati; Nakakuki, Takashi; Hatakeyama, Mariko; Kimura, Shuhei; Raha, Soumyendu
2011-01-01
Mutation and/or dysfunction of signaling proteins in the mitogen activated protein kinase (MAPK) signal transduction pathway are frequently observed in various kinds of human cancer. Consistent with this fact, in the present study, we experimentally observe that the epidermal growth factor (EGF) induced activation profile of MAP kinase signaling is not straightforward dose-dependent in the PC3 prostate cancer cells. To find out what parameters and reactions in the pathway are involved in this departure from the normal dose-dependency, a model-based pathway analysis is performed. The pathway is mathematically modeled with 28 rate equations yielding those many ordinary differential equations (ODE) with kinetic rate constants that have been reported to take random values in the existing literature. This has led to us treating the ODE model of the pathways kinetics as a random differential equations (RDE) system in which the parameters are random variables. We show that our RDE model captures the uncertainty in the kinetic rate constants as seen in the behavior of the experimental data and more importantly, upon simulation, exhibits the abnormal EGF dose-dependency of the activation profile of MAP kinase signaling in PC3 prostate cancer cells. The most likely set of values of the kinetic rate constants obtained from fitting the RDE model into the experimental data is then used in a direct transcription based dynamic optimization method for computing the changes needed in these kinetic rate constant values for the restoration of the normal EGF dose response. The last computation identifies the parameters, i.e., the kinetic rate constants in the RDE model, that are the most sensitive to the change in the EGF dose response behavior in the PC3 prostate cancer cells. The reactions in which these most sensitive parameters participate emerge as candidate drug targets on the signaling pathway. 2011 Elsevier Ireland Ltd. All rights reserved.
Li, Dai-Xi; Liu, Bao-Lin; Liu, Yi-shu; Chen, Cheng-lung
2008-04-01
Vitrification is proposed to be the best way for the cryopreservation of organs. The glass transition temperature (T(g)) of vitrification solutions is a critical parameter of fundamental importance for cryopreservation by vitrification. The instruments that can detect the thermodynamic, mechanical and dielectric changes of a substance may be used to determine the glass transition temperature. T(g) is usually measured by using differential scanning calorimetry (DSC). In this study, the T(g) of the glycerol-aqueous solution (60%, wt/%) was determined by isothermal-isobaric molecular dynamic simulation (NPT-MD). The software package Discover in Material Studio with the Polymer Consortium Force Field (PCFF) was used for the simulation. The state parameters of heat capacity at constant pressure (C(p)), density (rho), amorphous cell volume (V(cell)) and specific volume (V(specific)) and radial distribution function (rdf) were obtained by NPT-MD in the temperature range of 90-270K. These parameters showed a discontinuity at a specific temperature in the plot of state parameter versus temperature. The temperature at the discontinuity is taken as the simulated T(g) value for glycerol-water binary solution. The T(g) values determined by simulation method were compared with the values in the literatures. The simulation values of T(g) (160.06-167.51K) agree well with the DSC results (163.60-167.10K) and the DMA results (159.00K). We drew the conclusion that molecular dynamic simulation (MDS) is a potential method for investigating the glass transition temperature (T(g)) of glycerol-water binary cryoprotectants and may be used for other vitrification solutions.
Choi, Sang Hyun; Lee, Jeong Hyun; Choi, Young Jun; Park, Ji Eun; Sung, Yu Sub; Kim, Namkug; Baek, Jung Hwan
2017-01-01
This study aimed to explore the added value of histogram analysis of the ratio of initial to final 90-second time-signal intensity AUC (AUCR) for differentiating local tumor recurrence from contrast-enhancing scar on follow-up dynamic contrast-enhanced T1-weighted perfusion MRI of patients treated for head and neck squamous cell carcinoma (HNSCC). AUCR histogram parameters were assessed among tumor recurrence (n = 19) and contrast-enhancing scar (n = 27) at primary sites and compared using the t test. ROC analysis was used to determine the best differentiating parameters. The added value of AUCR histogram parameters was assessed when they were added to inconclusive conventional MRI results. Histogram analysis showed statistically significant differences in the 50th, 75th, and 90th percentiles of the AUCR values between the two groups (p < 0.05). The 90th percentile of the AUCR values (AUCR 90 ) was the best predictor of local tumor recurrence (AUC, 0.77; 95% CI, 0.64-0.91) with an estimated cutoff of 1.02. AUCR 90 increased sensitivity by 11.7% over that of conventional MRI alone when added to inconclusive results. Histogram analysis of AUCR can improve the diagnostic yield for local tumor recurrence during surveillance after treatment for HNSCC.
Veeraselvam, M.; Sridhar, R.; Perumal, P.; Jayathangaraj, M. G.
2014-01-01
The present study was conducted to define the physiological responses of captive sloth bears immobilized with ketamine hydrochloride and xylazine hydrochloride and to determine and compare the values of hematology and serum biochemical parameters between sexes. A total of 15 sloth bears were immobilized using combination of ketamine hydrochloride and xylazine hydrochloride drugs at the dose rate of 5.0 milligram (mg) per kg body weight and 2.0 mg per kg body weight, respectively. The use of combination of these drugs was found satisfactory for the chemical immobilization of captive sloth bears. There were no significant differences observed in induction time and recovery time and physiological parameters such as heart rate, respiratory rate, and rectal temperature between sexes. Health related parameters comprising hematological values like packed cell volume (PCV), hemoglobin (Hb), red blood cell count (RBC), erythrocyte indices, and so forth and biochemical values like total protein, blood urea nitrogen (BUN), creatinine, alkaline amino-transferase (ALT), aspartate amino-transferase (AST), and so forth were estimated in 11 (5 males and 6 females) apparently healthy bears. Comparison between sexes revealed significant difference in PCV (P < 0.05) and mean corpuscular hemoglobin concentration (MCHC) (P < 0.05). The study might help to evaluate health profiles of sloth bears for appropriate line treatment. PMID:24876990
Study of the properties of silicon-based semiconductor converters for betavoltaic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polikarpov, M. A.; Yakimov, E. B., E-mail: yakimov@iptm.ru
2015-06-15
Silicon p-i-n diodes are studied in a scanning electron microscope under conditions simulating the β-radiation from a radioactive Ni{sup 63} source with an activity of 10 mCi/cm{sup 2}. The attainable parameters of β-voltaic cells with a source of this kind and a silicon-based converter of β-particle energy to electric current are estimated. It is shown that the power of elements of this kind can reach values of ∼10 nW/cm{sup 2} even for a cell with an area of one centimeter, which is rather close to the calculated value.
Geary, Una; Lopez-Villalobos, Nicolas; O'Brien, Bernadette; Garrick, Dorian J; Shalloo, Laurence
2014-05-01
The impact of mastitis on milk value per litre independent of the effect of mastitis on milk volume, was quantified for Ireland using a meta-analysis and a processing sector model. Changes in raw milk composition, cheese processing and composition associated with increased bulk milk somatic cell count (BMSCC) were incorporated into the model. Processing costs and market values were representative of current industry values. It was assumed that as BMSCC increased (i) milk fat and milk protein increased and milk lactose decreased, (ii) fat and protein recoveries decreased, (iii) cheese protein decreased and cheese moisture increased. Five BMSCC categories were examined from ⩽100 000 to >400 000 cells/ml. The analysis showed that as BMSCC increased the production quantities reduced. An increase in BMSCC from 100 000 to >400 000 cells/ml saw a reduction in net revenue of 3·2% per annum (€51·3 million) which corresponded to a reduction in the value of raw milk of €0·0096 cents/l.
A hematologic survey of captive waterfowl
Shave, H.J.; Howard, V.
1976-01-01
Hematologic parameters were studied in giant Canada geese (Branta canadensis maxima), mallard ducks (Anas platyrhynchos platyrhynchos) and various species of diving ducks at seasonal intervals throughout the year. Highest values for packed cell volume, hemoglobin content and erythrocyte counts were found in the winter and pre-nesting periods. Mean corpuscular volume and mean corpuscular hemoglobin varied inversely with these values.
Hudson, John M; Bailey, Colleen; Atri, Mostafa; Stanisz, Greg; Milot, Laurent; Williams, Ross; Kiss, Alex; Burns, Peter N; Bjarnason, Georg A
2018-06-01
To identify dynamic contrast-enhanced (DCE) imaging parameters from MRI, CT and US that are prognostic and predictive in patients with metastatic renal cell cancer (mRCC) receiving sunitinib. Thirty-four patients were monitored by DCE imaging on day 0 and 14 of the first course of sunitinib treatment. Additional scans were performed with DCE-US only (day 7 or 28 and 2 weeks after the treatment break). Perfusion parameters that demonstrated a significant correlation (Spearman p < 0.05) with progression-free survival (PFS) and overall survival (OS) were investigated using Cox proportional hazard models/ratios (HR) and Kaplan-Meier survival analysis. A higher baseline and day 14 value for Ktrans (DCE-MRI) and a lower pre-treatment vascular heterogeneity (DCE-US) were significantly associated with a longer PFS (HR, 0.62, 0.37 and 5.5, respectively). A larger per cent decrease in blood volume on day 14 (DCE-US) predicted a longer OS (HR, 1.45). We did not find significant correlations between any of the DCE-CT parameters and PFS/OS, unless a cut-off analysis was used. DCE-MRI, -CT and ultrasound produce complementary parameters that reflect the prognosis of patients receiving sunitinib for mRCC. Blood volume measured by DCE-US was the only parameter whose change during early anti-angiogenic therapy predicted for OS and PFS. • DCE-CT, -MRI and ultrasound are complementary modalities for monitoring anti-angiogenic therapy. • The change in blood volume measured by DCE-US was predictive of OS/PFS. • Baseline vascular heterogeneity by DCE-US has the strongest prognostic value for PFS.
Kiss, F; Toth, E; Peto, K; Miko, I; Nemeth, N
2015-12-01
Among the haemorheological parameters, red blood cell (RBC) aggregation shows the largest interspecies diversity, and often controversial data can be found in the literature, besides the methodology-dependent issues. In this present investigation, we compared four experimental/laboratory animal species' RBC aggregation by two different photometric methods for better revealing the differences. Blood samples (K3-EDTA, 1.5 mg/ml) were taken from female animals: 16 inbred mice (Mus musculus, cardiac puncture), 15 outbred rats (Rattus norvegicus, caudal caval vein puncture), 15 beagle dogs (Canis canis, cephalic vein) and 23 juvenile pigs (Sus scrofa domesticus, medial saphenous vein). Haematological parameters (microcell counter) and RBC aggregation (light transmission and syllectometry-laser backscatter methods) were determined within 2 h after sampling. Describing the first 5-10 s of the aggregation process, additional parameters were calculated out of the syllectometric raw data. Standardized difference was calculated to determine the sensitivity of the two devices. Parameters describing the extent and magnitude of red blood cell aggregation showed the lowest values in the rat and the highest in the pig and canine blood. In turn, parameters describing the kinetics of aggregation showed the lowest values in the mouse and the highest in the rat. The standardized difference values for the laser backscattering method were 2-4 times larger vs. the light transmission one. The magnitude of the differences was not consequent in the aggregation parameters. These comparative results show that the laser backscattering method can detect the RBC aggregation differences between the investigated species more sensitively than the light transmission method. Journal of Animal Physiology and Animal Nutrition © 2015 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Pîslaru-Dănescu, Lucian; Chitanu, Elena; El-Leathey, Lucia-Andreea; Marinescu, Virgil; Marin, Dorian; Sbârcea, Beatrice-Gabriela
2018-05-01
The paper proposes a new and complex process for the synthesis of ZnO nanoparticles for antireflective coating corresponding to silicone solar cells applications. The process consists of two major steps: preparation of seed layer and hydrothermal growth of ZnO nanoparticles. Due to the fact that the seed layer morphology influences the ZnO nanoparticles proprieties, the process optimization of the seed layer preparation is necessary. Following the hydrothermal growth of the ZnO nanoparticles, antireflective coating of silicone solar cells is achieved. After determining the functional parameters of the solar cells provided either with glass or with ZnO, it is concluded that all the parameters values are superior in the case of solar cells with ZnO antireflection coating and are increasing along with the solar irradiance.
Dong, Xinzhe; Xing, Ligang; Wu, Peipei; Fu, Zheng; Wan, Honglin; Li, Dengwang; Yin, Yong; Sun, Xiaorong; Yu, Jinming
2013-01-01
To explore the relationship of a new PET image parameter, (18)F-fluorodeoxyglucose ((18)F-FDG) uptake heterogeneity assessed by texture analysis, with maximum standardized uptake value (SUV(max)) and tumor TNM staging. Forty consecutive patients with esophageal squamous cell carcinoma were enrolled. All patients underwent whole-body preoperative (18)F-FDG PET/CT. Heterogeneity of intratumoral (18)F-FDG uptake was assessed on the basis of the textural features (entropy and energy) of the three-dimensional images using MATLAB software. The correlations between the textural parameters and SUV(max), histological grade, tumor location, and TNM stage were analyzed. Tumors with higher SUV(max) were seen to be more heterogenous on (18)F-FDG uptake. Significant correlations were observed between T stage and SUV(max) (r(s)=0.390, P=0.013), entropy (rs=0.693, P<0.001), and energy (r(s)=-0.469, P=0.002). Correlations were also found between SUV(max), entropy, energy, and N stage (r(s)=0.326, P=0.04; r(s)=0.501, P=0.001; r(s)=-0.413, P=0.008). The American Joint Committee on Cancer stage correlated significantly with all metabolic parameters. The receiver-operating characteristic curve demonstrated an entropy of 4.699 as the optimal cutoff point for detecting tumors above stage II(b) with an areas under the ROC curve of 0.789 (P<0.001). This study provides initial evidence for the relationship between the new parameter of tumor uptake heterogeneity and the commonly used simplistic parameter of SUV and tumor stage. Our findings suggest a complementary role of these parameters in the staging and prognosis of esophageal squamous cell carcinoma.
Lenfestey, Robert W; Smith, P Brian; Moody, M Anthony; Clark, Reese H; Cotten, C Michael; Seed, Patrick C; Benjamin, Daniel K
2007-09-01
Infection is a common and potentially devastating complication following placement of ventriculoperitoneal (VP) shunts and cerebrospinal fluid (CSF) reservoirs in neonates. The goal of this study was to determine the normal ranges for cell count parameters in neonates with VP shunts and CSF reservoirs, as well as to determine the predictive value of CSF parameters as markers of infection. The authors evaluated neonates from 150 different neonatal intensive care units of the Pediatrix Medical Group who had undergone a lumbar puncture, VP shunt insertion, or CSF reservoir placement between 1997 and 2004. Data were collected from 9704 neonates with a mean birthweight of 2573 g and a mean gestational age of 35 weeks. Of these neonates, 181 had VP shunt insertions or CSF reservoir placements. In neonates with negative CSF cultures, significant differences were found between those with and without VP shunts or CSF reservoirs when comparing red blood cell (RBC) count (620/mm' compared with 155/mm3, p < 0.05), absolute eosinophil count (4/mm3 compared with 2/mm3, p < 0.001), protein levels (179 mg/dl compared with 115 mg/dl, p < 0.001), and glucose levels (27.5 mg/dl compared with 49 mg/dl, p < 0.001). No significant difference was found between white blood cell (WBC) counts in neonates with or without VP shunts who had negative CSF cultures. The sensitivity and specificity of a cutoff value of 20 WBCs/mm3 for diagnosing meningitis in neonates with positive cultures and intraventricular drainage devices were 67% and 62%, respectively. Although differences exist between CSF parameters found in neonates with or without VP shunts or CSF reservoirs, only the difference in RBC count is large enough to be clinically significant. The authors found that the utility of CSF parameters in neonates with VP shunts or CSF reservoirs was limited due to poor diagnostic sensitivity and specificity.
Yang, Yongji; Moser, Michael A J; Zhang, Edwin; Zhang, Wenjun; Zhang, Bing
2018-01-01
The aim of this study was to develop a statistical model for cell death by irreversible electroporation (IRE) and to show that the statistic model is more accurate than the electric field threshold model in the literature using cervical cancer cells in vitro. HeLa cell line was cultured and treated with different IRE protocols in order to obtain data for modeling the statistical relationship between the cell death and pulse-setting parameters. In total, 340 in vitro experiments were performed with a commercial IRE pulse system, including a pulse generator and an electric cuvette. Trypan blue staining technique was used to evaluate cell death after 4 hours of incubation following IRE treatment. Peleg-Fermi model was used in the study to build the statistical relationship using the cell viability data obtained from the in vitro experiments. A finite element model of IRE for the electric field distribution was also built. Comparison of ablation zones between the statistical model and electric threshold model (drawn from the finite element model) was used to show the accuracy of the proposed statistical model in the description of the ablation zone and its applicability in different pulse-setting parameters. The statistical models describing the relationships between HeLa cell death and pulse length and the number of pulses, respectively, were built. The values of the curve fitting parameters were obtained using the Peleg-Fermi model for the treatment of cervical cancer with IRE. The difference in the ablation zone between the statistical model and the electric threshold model was also illustrated to show the accuracy of the proposed statistical model in the representation of ablation zone in IRE. This study concluded that: (1) the proposed statistical model accurately described the ablation zone of IRE with cervical cancer cells, and was more accurate compared with the electric field model; (2) the proposed statistical model was able to estimate the value of electric field threshold for the computer simulation of IRE in the treatment of cervical cancer; and (3) the proposed statistical model was able to express the change in ablation zone with the change in pulse-setting parameters.
NASA Astrophysics Data System (ADS)
Chvetsov, Alevei V.; Sandison, George A.; Schwartz, Jeffrey L.; Rengan, Ramesh
2015-11-01
The main objective of this article is to improve the stability of reconstruction algorithms for estimation of radiobiological parameters using serial tumor imaging data acquired during radiation therapy. Serial images of tumor response to radiation therapy represent a complex summation of several exponential processes as treatment induced cell inactivation, tumor growth rates, and the rate of cell loss. Accurate assessment of treatment response would require separation of these processes because they define radiobiological determinants of treatment response and, correspondingly, tumor control probability. However, the estimation of radiobiological parameters using imaging data can be considered an inverse ill-posed problem because a sum of several exponentials would produce the Fredholm integral equation of the first kind which is ill posed. Therefore, the stability of reconstruction of radiobiological parameters presents a problem even for the simplest models of tumor response. To study stability of the parameter reconstruction problem, we used a set of serial CT imaging data for head and neck cancer and a simplest case of a two-level cell population model of tumor response. Inverse reconstruction was performed using a simulated annealing algorithm to minimize a least squared objective function. Results show that the reconstructed values of cell surviving fractions and cell doubling time exhibit significant nonphysical fluctuations if no stabilization algorithms are applied. However, after applying a stabilization algorithm based on variational regularization, the reconstruction produces statistical distributions for survival fractions and doubling time that are comparable to published in vitro data. This algorithm is an advance over our previous work where only cell surviving fractions were reconstructed. We conclude that variational regularization allows for an increase in the number of free parameters in our model which enables development of more-advanced parameter reconstruction algorithms.
NASA Astrophysics Data System (ADS)
Hana, M. M.; Ramzun, M. R.; Nabela, Z.; Zahirah, N. A. N.; Razak, Nik Noor Ashikin Nik Abdul; Azhar, A. R.; Iskandar, S. M.; Nursakinah, S.
2018-04-01
Tremendous changes in hematological values were noticed throughout trimesters of pregnancy. This study is aimed to provide a reference for hematological values based on trimesters, focused on the parameter of red blood cell (RBCs) and platelets (PLTs). There were 4075 local Saudi pregnant women were involved, attending the Maternity and Children Hospital in Dammam and King Fahad University Hospital in Al-Khobar, between 2013 to 2015. The statistical analysis, such as frequency and descriptive were performed. Overall, this study revealed a decline in RBCs and PLTs throughout pregnancy. The RBC, HCT, MPV and MCH mean values were found decreases in the 2nd trimester but increased in the 3rd trimester. On the contrary, the MCV, MCHC, and RDW showed increases in the 2nd trimester and decreased in the 3rd trimester. The changes of the RBCs parameters in 3rd trimester compared to 1st trimester shows increased for MCV while the RBC, HCT, MCH and MCHC decreased. Besides that, most of the respondent suffering from anemia. The hematological values after delivery show decreased for RBC, HCT, MCV, MCH and MPV but an increase in the MCHC, RDW and PLT. Thus, it is highly recommended to request for a complete blood cell screening during pregnancy to provide a better healthcare of the maternal and fetus.
Simple Model for Identifying Critical Regions in Atrial Fibrillation
NASA Astrophysics Data System (ADS)
Christensen, Kim; Manani, Kishan A.; Peters, Nicholas S.
2015-01-01
Atrial fibrillation (AF) is the most common abnormal heart rhythm and the single biggest cause of stroke. Ablation, destroying regions of the atria, is applied largely empirically and can be curative but with a disappointing clinical success rate. We design a simple model of activation wave front propagation on an anisotropic structure mimicking the branching network of heart muscle cells. This integration of phenomenological dynamics and pertinent structure shows how AF emerges spontaneously when the transverse cell-to-cell coupling decreases, as occurs with age, beyond a threshold value. We identify critical regions responsible for the initiation and maintenance of AF, the ablation of which terminates AF. The simplicity of the model allows us to calculate analytically the risk of arrhythmia and express the threshold value of transversal cell-to-cell coupling as a function of the model parameters. This threshold value decreases with increasing refractory period by reducing the number of critical regions which can initiate and sustain microreentrant circuits. These biologically testable predictions might inform ablation therapies and arrhythmic risk assessment.
Amin, Morteza Moradi; Kermani, Saeed; Talebi, Ardeshir; Oghli, Mostafa Ghelich
2015-01-01
Acute lymphoblastic leukemia is the most common form of pediatric cancer which is categorized into three L1, L2, and L3 and could be detected through screening of blood and bone marrow smears by pathologists. Due to being time-consuming and tediousness of the procedure, a computer-based system is acquired for convenient detection of Acute lymphoblastic leukemia. Microscopic images are acquired from blood and bone marrow smears of patients with Acute lymphoblastic leukemia and normal cases. After applying image preprocessing, cells nuclei are segmented by k-means algorithm. Then geometric and statistical features are extracted from nuclei and finally these cells are classified to cancerous and noncancerous cells by means of support vector machine classifier with 10-fold cross validation. These cells are also classified into their sub-types by multi-Support vector machine classifier. Classifier is evaluated by these parameters: Sensitivity, specificity, and accuracy which values for cancerous and noncancerous cells 98%, 95%, and 97%, respectively. These parameters are also used for evaluation of cell sub-types which values in mean 84.3%, 97.3%, and 95.6%, respectively. The results show that proposed algorithm could achieve an acceptable performance for the diagnosis of Acute lymphoblastic leukemia and its sub-types and can be used as an assistant diagnostic tool for pathologists.
Mathew, B; Schmitz, A; Muñoz-Descalzo, S; Ansari, N; Pampaloni, F; Stelzer, E H K; Fischer, S C
2015-06-08
Due to the large amount of data produced by advanced microscopy, automated image analysis is crucial in modern biology. Most applications require reliable cell nuclei segmentation. However, in many biological specimens cell nuclei are densely packed and appear to touch one another in the images. Therefore, a major difficulty of three-dimensional cell nuclei segmentation is the decomposition of cell nuclei that apparently touch each other. Current methods are highly adapted to a certain biological specimen or a specific microscope. They do not ensure similarly accurate segmentation performance, i.e. their robustness for different datasets is not guaranteed. Hence, these methods require elaborate adjustments to each dataset. We present an advanced three-dimensional cell nuclei segmentation algorithm that is accurate and robust. Our approach combines local adaptive pre-processing with decomposition based on Lines-of-Sight (LoS) to separate apparently touching cell nuclei into approximately convex parts. We demonstrate the superior performance of our algorithm using data from different specimens recorded with different microscopes. The three-dimensional images were recorded with confocal and light sheet-based fluorescence microscopes. The specimens are an early mouse embryo and two different cellular spheroids. We compared the segmentation accuracy of our algorithm with ground truth data for the test images and results from state-of-the-art methods. The analysis shows that our method is accurate throughout all test datasets (mean F-measure: 91%) whereas the other methods each failed for at least one dataset (F-measure≤69%). Furthermore, nuclei volume measurements are improved for LoS decomposition. The state-of-the-art methods required laborious adjustments of parameter values to achieve these results. Our LoS algorithm did not require parameter value adjustments. The accurate performance was achieved with one fixed set of parameter values. We developed a novel and fully automated three-dimensional cell nuclei segmentation method incorporating LoS decomposition. LoS are easily accessible features that ensure correct splitting of apparently touching cell nuclei independent of their shape, size or intensity. Our method showed superior performance compared to state-of-the-art methods, performing accurately for a variety of test images. Hence, our LoS approach can be readily applied to quantitative evaluation in drug testing, developmental and cell biology.
Lesesve, J-F; Asnafi, V; Braun, F; Zini, G
2012-12-01
The diagnosis of thrombotic microangiopathies (TMA) or disorders that may mimic their features remains difficult. Mechanical hemolytic anemia with the detection of shistocytes on the blood smear is a cornerstone finding to assess the diagnosis, but microscopic evaluation of shistocytes is still problematic with wide interobserver variations. Some of the latest generation automated blood cell counters (ABCC) propose an original quantitative approach of fragmented red cells (FRC), aiming to be equivalent to the microscopic count. This parameter has been poorly evaluated. To assess the predictive value (PV) of this test, we conducted studies comparing automated and microscopic counts of FRC/schistocytes, based on the analysis of thousands samples in four university hospitals and using the 2 ABCC currently available (Siemens ADVIA series, Sysmex XE-2100). Reference range for FRC was <0.3% for the ADVIA and <0.5% for the XE-2100. The presence of FRC below a threshold determined at 1% (ADVIA and XE-2100) had a negative PV close to 100% to exclude the presence of schistocyte on the blood smear, but in relationship with a poor PV value. Our study validated the utility of the immediately available FRC parameter on ABCC to exclude schistocytes and the diagnosis of TMA. © 2012 Blackwell Publishing Ltd.
Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation
Vo, Brenda N.; Drovandi, Christopher C.; Pettitt, Anthony N.; Pettet, Graeme J.
2015-01-01
In vitro studies and mathematical models are now being widely used to study the underlying mechanisms driving the expansion of cell colonies. This can improve our understanding of cancer formation and progression. Although much progress has been made in terms of developing and analysing mathematical models, far less progress has been made in terms of understanding how to estimate model parameters using experimental in vitro image-based data. To address this issue, a new approximate Bayesian computation (ABC) algorithm is proposed to estimate key parameters governing the expansion of melanoma cell (MM127) colonies, including cell diffusivity, D, cell proliferation rate, λ, and cell-to-cell adhesion, q, in two experimental scenarios, namely with and without a chemical treatment to suppress cell proliferation. Even when little prior biological knowledge about the parameters is assumed, all parameters are precisely inferred with a small posterior coefficient of variation, approximately 2–12%. The ABC analyses reveal that the posterior distributions of D and q depend on the experimental elapsed time, whereas the posterior distribution of λ does not. The posterior mean values of D and q are in the ranges 226–268 µm2h−1, 311–351 µm2h−1 and 0.23–0.39, 0.32–0.61 for the experimental periods of 0–24 h and 24–48 h, respectively. Furthermore, we found that the posterior distribution of q also depends on the initial cell density, whereas the posterior distributions of D and λ do not. The ABC approach also enables information from the two experiments to be combined, resulting in greater precision for all estimates of D and λ. PMID:26642072
Investigation of the photovoltaic cell/ thermoelectric element hybrid system performance
NASA Astrophysics Data System (ADS)
Cotfas, D. T.; Cotfas, P. A.; Machidon, O. M.; Ciobanu, D.
2016-06-01
The PV/TEG hybrid system, consisting of the photovoltaic cells and thermoelectric element, is presented in the paper. The dependence of the PV/TEG hybrid system parameters on the illumination levels and the temperature is analysed. The maxim power values of the photovoltaic cell, of the thermoelectric element and of the PV/TEG system are calculated and a comparison between them is presented and analysed. An economic analysis is also presented.
Large area, low cost space solar cells with optional wraparound contacts
NASA Technical Reports Server (NTRS)
Michaels, D.; Mendoza, N.; Williams, R.
1981-01-01
Design parameters for two large area, low cost solar cells are presented, and electron irradiation testing, thermal alpha testing, and cell processing are discussed. The devices are a 2 ohm-cm base resistivity silicon cell with an evaporated aluminum reflector produced in a dielectric wraparound cell, and a 10 ohm-cm silicon cell with the BSF/BSR combination and a conventional contact system. Both cells are 5.9 x 5.9 cm and require 200 micron thick silicon material due to mission weight constraints. Normalized values for open circuit voltage, short circuit current, and maximum power calculations derived from electron radiation testing are given. In addition, thermal alpha testing values of absorptivity and emittance are included. A pilot cell processing run produced cells averaging 14.4% efficiencies at AMO 28 C. Manufacturing for such cells will be on a mechanized process line, and the area of coverslide application technology must be considered in order to achieve cost effective production.
A mathematical model of electrolyte and fluid transport across corneal endothelium.
Fischbarg, J; Diecke, F P J
2005-01-01
To predict the behavior of a transporting epithelium by intuitive means can be complex and frustrating. As the number of parameters to be considered increases beyond a few, the task can be termed impossible. The alternative is to model epithelial behavior by mathematical means. For that to be feasible, it has been presumed that a large amount of experimental information is required, so as to be able to use known values for the majority of kinetic parameters. However, in the present case, we are modeling corneal endothelial behavior beginning with experimental values for only five of eleven parameters. The remaining parameter values are calculated assuming cellular steady state and using algebraic software. With that as base, as in preceding treatments but with a distribution of channels/transporters suited to the endothelium, temporal cell and tissue behavior are computed by a program written in Basic that monitors changes in chemical and electrical driving forces across cell membranes and the paracellular pathway. We find that the program reproduces quite well the behaviors experimentally observed for the translayer electrical potential difference and rate of fluid transport, (a) in the steady state, (b) after perturbations by changes in ambient conditions HCO3-, Na+, and Cl- concentrations), and (c) after challenge by inhibitors (ouabain, DIDS, Na+- and Cl(-)-channel inhibitors). In addition, we have used the program to compare predictions of translayer fluid transport by two competing theories, electro-osmosis and local osmosis. Only predictions using electro-osmosis fit all the experimental data.
Structural Physics of Bee Honeycomb
NASA Astrophysics Data System (ADS)
Kaatz, Forrest; Bultheel, Adhemar; Egami, Takeshi
2008-03-01
Honeybee combs have aroused interest in the ability of honeybees to form regular hexagonal geometric constructs since ancient times. Here we use a real space technique based on the pair distribution function (PDF) and radial distribution function (RDF), and a reciprocal space method utilizing the Debye-Waller Factor (DWF) to quantify the order for a range of honeycombs made by Apis mellifera. The PDFs and RDFs are fit with a series of Gaussian curves. We characterize the order in the honeycomb using a real space order parameter, OP3, to describe the order in the combs and a two-dimensional Fourier transform from which a Debye-Waller order parameter, u, is derived. Both OP3 and u take values from [0, 1] where the value one represents perfect order. The analyzed combs have values of OP3 from 0.33 to 0.60 and values of u from 0.83 to 0.98. RDF fits of honeycomb histograms show that naturally made comb can be crystalline in a 2D ordered structural sense, yet is more `liquid-like' than cells made on `foundation' wax. We show that with the assistance of man-made foundation wax, honeybees can manufacture highly ordered arrays of hexagonal cells.
Jaferzadeh, Keyvan; Gholami, Samaneh; Moon, Inkyu
2016-12-20
In this paper, we evaluate lossless and lossy compression techniques to compress quantitative phase images of red blood cells (RBCs) obtained by an off-axis digital holographic microscopy (DHM). The RBC phase images are numerically reconstructed from their digital holograms and are stored in 16-bit unsigned integer format. In the case of lossless compression, predictive coding of JPEG lossless (JPEG-LS), JPEG2000, and JP3D are evaluated, and compression ratio (CR) and complexity (compression time) are compared against each other. It turns out that JP2k can outperform other methods by having the best CR. In the lossy case, JP2k and JP3D with different CRs are examined. Because some data is lost in a lossy way, the degradation level is measured by comparing different morphological and biochemical parameters of RBC before and after compression. Morphological parameters are volume, surface area, RBC diameter, sphericity index, and the biochemical cell parameter is mean corpuscular hemoglobin (MCH). Experimental results show that JP2k outperforms JP3D not only in terms of mean square error (MSE) when CR increases, but also in compression time in the lossy compression way. In addition, our compression results with both algorithms demonstrate that with high CR values the three-dimensional profile of RBC can be preserved and morphological and biochemical parameters can still be within the range of reported values.
Zhukov, V A; Shishkina, L N; Safatov, A S; Sergeev, A A; P'iankov, O V; Petrishchenko, V A; Zaĭtsev, B N; Toporkov, V S; Sergeev, A N; Nesvizhskiĭ, Iu V; Vorob'ev, A A
2010-01-01
The paper presents results of testing a modified algorithm for predicting virus ID50 values in a host of interest by extrapolation from a model host taking into account immune neutralizing factors and thermal inactivation of the virus. The method was tested for A/Aichi/2/68 influenza virus in SPF Wistar rats, SPF CD-1 mice and conventional ICR mice. Each species was used as a host of interest while the other two served as model hosts. Primary lung and trachea cells and secretory factors of the rats' airway epithelium were used to measure parameters needed for the purpose of prediction. Predicted ID50 values were not significantly different (p = 0.05) from those experimentally measured in vivo. The study was supported by ISTC/DARPA Agreement 450p.
Dynamic characteristics of organic bulk-heterojunction solar cells
NASA Astrophysics Data System (ADS)
Babenko, S. D.; Balakai, A. A.; Moskvin, Yu. L.; Simbirtseva, G. V.; Troshin, P. A.
2010-12-01
Transient characteristics of organic bulk-heterojunction solar cells have been studied using pulsed laser probing. An analysis of the photoresponse waveforms of a typical solar cell measured by varying load resistance within broad range at different values of the bias voltage provided detailed information on the photocell parameters that characterize electron-transport properties of active layers. It is established that the charge carrier mobility is sufficient to ensure high values of the fill factor (˜0.6) in the obtained photocells. On approaching the no-load voltage, the differential capacitance of the photocell exhibits a sixfold increase as compared to the geometric capacitance. A possible mechanism of recombination losses in the active medium is proposed.
Some numerical methods for the Hele-Shaw equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, N.
1994-03-01
Tryggvason and Aref used a boundary integral method and the vortex-in-cell method to evolve the interface between two fluids in a Hele-Shaw cell. The method gives excellent results for intermediate values of the nondimensional surface tension parameter. The results are different from the predicted results of McLean and Saffman for small surface tension. For large surface tension, there are some numerical problems. In this paper, we implement the method of Tryggvason and Aref but use the point vortex method instead of the vortex-in-cell method. A parametric spline is used to represent the interface. The finger widths obtained agree well withmore » those predicted by McLean and Saffman. We conclude the the method of Tryggvason and Aref can provide excellent results but that the vortex-in-cell method may not be the method of choice for extreme values of the surface tension parameter. In a second method, we represent the interface with a Fourier representation. In addition, an alternative way of discretizing the boundary integral is used. Our results are compared to the linearized theory and the results of McLean and Saffman and are shown to be highly accurate. 21 refs., 4 figs., 2 tabs.« less
Jahid, Iqbal Kabir; Ha, Sang-Do
2014-05-01
The present article focuses on the inactivation kinetics of various disinfectants including ethanol, sodium hypochlorite, hydrogen peroxide, peracetic acid, and benzalkonium chloride against Aeromonas hydrophila biofilms and planktonic cells. Efficacy was determined by viable plate count and compared using a modified Weibull model. The removal of the biofilms matrix was determined by the crystal violet assay and was confirmed by field-emission scanning electron microscope. The results revealed that all the experimental data and calculated Weibull α (scale) and β (shape) parameters had a good fit, as the R(2) values were between 0.88 and 0.99. Biofilms are more resistant to disinfectants than planktonic cells. Ethanol (70%) was the most effective in killing cells in the biofilms and significantly reduced (p<0.05) the biofilms matrix. The Weibull parameter b-value correlated (R(2)=0.6835) with the biofilms matrix removal. The present findings deduce that the Weibull model is suitable to determine biofilms matrix reduction as well as the effectiveness of chemical disinfectants on biofilms. The study showed that the Weibull model could successfully be used on food and food contact surfaces to determine the exact contact time for killing biofilms-forming foodborne pathogens.
Albenzio, Marzia; Santillo, Antonella; Caroprese, Mariangela; Schena, Laura; Russo, Donatella Esterina; Sevi, Agostino
2011-11-01
This study was undertaken to assess the effect of somatic cell count in ewe milk on i) composition and hygienic traits; ii) plasmin, cathepsin and elastase activities; iii) leukocyte differential count; iv) renneting parameters. Individual ewe milk samples were grouped according to somatic cell count (SCC) into five classes: SC300 (<300 000 cells/ml), SC500 (from 301 000 to 500 000 cells/ml), SC1000 (from 501 000 to 1 000 000 cells/ml), SC2000 (from 1 001 000 to 2 000 000 cells/ml) and SC>2000 (>2 001 000 cells/ml). Individual milk samples were analysed for pH, chemical composition, microbial features, indigenous proteolytic enzymes, differential leukocyte population, and renneting parameters. Milk yield, lactose, protein, non casein nitrogen, microbial features were affected by SCC level. Plasmin and elastase activities were the highest in samples with more than 1 000 000 cells/ml; plasmin had intermediate values in samples with 300 000 to 1 000 000 cells/ml and the lowest in samples with less than 300 000 cells/ml of milk. Cathepsin D showed significantly lower values in SC300 and SC1000 classes than in SC500, SC2000 and SC>2000 classes. The highest percentages of lymphocyte were found in samples with less than 1 000 000 cells/ml, while the highest levels of polymorphonuclear leukocyte were found in samples with more than 1 000 000 cells/ml of milk. Longer clotting time was found in SC>2000 samples, while reduced clot firmness was observed in SC500 and SC>2000 samples. Results on milk yield and on compositional parameters evidenced an impairment of udder efficiency in ewe milk samples starting from 300 000 cells/ml. Plasmin activity in milk can be considered as a marker of the synthetic and secreting ability of the mammary gland; furthermore plasmin and elastase were consistent with the health status of the udder. Finally cathepsin D played a role in the worsening of renneting properties of ewe milk.
Some Physical Parameters to Effect the Production of Heamatococcus pluvialis
NASA Astrophysics Data System (ADS)
Akpolat, O.; Eristurk, S.
The aim of this study is to optimize the physical parameters affecting the production of Haematococcus pluvialis in photobioreactors and to simulate the process. Heamatococcus pluvialis is a green microalgea to have a great interest for production of natural astaxanthin and it can be cultivated in a closed photobiorector system under controlled conditions. Biomass composition, growth rate and high value product spectra like polyunsaturated fatty acids, pigments, poly saccariydes or vitamins depend on strongly the parameters of cultivation process. These are composition of cultivation medium, mixing model and aeration rate, hydrodynamic stress of medium which can be changed by adding some chemicals, cultivation temperature, pH, carbon dioxide and oxygen supply and most important of all: illumination. One of the most important problems during the cultivation is that cells have sensitivity to shear stress very much and the shear stress created by aeration and mixing effects the growth rate of the cell negatively and decreases yield. In this study, physical parameters such as; the rate of the air fed into the reactor, the mixing type, the reduction of the hydrodynamic stress by CMC addition, the effect of the cell size on the cell production and the flocculation speed of the culture, were investigated.
Robust adaptive control for a hybrid solid oxide fuel cell system
NASA Astrophysics Data System (ADS)
Snyder, Steven
2011-12-01
Solid oxide fuel cells (SOFCs) are electrochemical energy conversion devices. They offer a number of advantages beyond those of most other fuel cells due to their high operating temperature (800-1000°C), such as internal reforming, heat as a byproduct, and faster reaction kinetics without precious metal catalysts. Mitigating fuel starvation and improving load-following capabilities of SOFC systems are conflicting control objectives. However, this can be resolved by the hybridization of the system with an energy storage device, such as an ultra-capacitor. In this thesis, a steady-state property of the SOFC is combined with an input-shaping method in order to address the issue of fuel starvation. Simultaneously, an overall adaptive system control strategy is employed to manage the energy sharing between the elements as well as to maintain the state-of-charge of the energy storage device. The adaptive control method is robust to errors in the fuel cell's fuel supply system and guarantees that the fuel cell current and ultra-capacitor state-of-charge approach their target values and remain uniformly, ultimately bounded about these target values. Parameter saturation is employed to guarantee boundedness of the parameters. The controller is validated through hardware-in-the-loop experiments as well as computer simulations.
NASA Astrophysics Data System (ADS)
Girdyuk, A. E.; Gorshkov, A. N.; Egorov, V. V.; Kolikov, V. A.; Snetov, V. N.; Shneerson, G. A.
2018-02-01
The aim of this study is to determine the optimal parameters of the electric pulses and shock waves generated by them for the soft destruction of the virus and yeast envelopes with no changes in the structure of antigenic surface albumin and in the cell morphology in order to use them to produce antivirus vaccines and in biotechnology. The pulse electric discharges in water have been studied for different values of amplitude, pulse duration and the rate of the rise in the current. A mathematical model has been developed to estimate the optimal parameters of pulsed electric charges and shock waves for the complete destruction of the yeast cell envelopes and virus particles at a minimum of pulses.
Refractive indices of layers and optical simulations of Cu(In,Ga)Se2 solar cells
Avancini, Enrico; Losio, Paolo A.; Figi, Renato; Schreiner, Claudia; Bürki, Melanie; Bourgeois, Emilie; Remes, Zdenek; Nesladek, Milos; Tiwari, Ayodhya N.
2018-01-01
Abstract Cu(In,Ga)Se2 based solar cells have reached efficiencies close to 23%. Further knowledge-driven improvements require accurate determination of the material properties. Here, we present refractive indices for all layers in Cu(In,Ga)Se2 solar cells with high efficiency. The optical bandgap of Cu(In,Ga)Se2 does not depend on the Cu content in the explored composition range, while the absorption coefficient value is primarily determined by the Cu content. An expression for the absorption spectrum is proposed, with Ga and Cu compositions as parameters. This set of parameters allows accurate device simulations to understand remaining absorption and carrier collection losses and develop strategies to improve performances. PMID:29785230
Kitamura, Ryunosuke; Inagaki, Tetsuya; Tsuchikawa, Satoru
2016-02-22
The true absorption coefficient (μa) and reduced scattering coefficient (μ´s) of the cell wall substance in Douglas fir were determined using time-of-flight near infrared spectroscopy. Samples were saturated with hexane, toluene or quinolone to minimize the multiple reflections of light on the boundary between pore-cell wall substance in wood. μ´s exhibited its minimum value when the wood was saturated with toluene because the refractive index of toluene is close to that of the wood cell wall substance. The optical parameters of the wood cell wall substance calculated were μa = 0.030 mm(-1) and μ´s= 18.4 mm(-1). Monte Carlo simulations using these values were in good agreement with the measured time-resolved transmittance profiles.
Garre, Alberto; Huertas, Juan Pablo; González-Tejedor, Gerardo A; Fernández, Pablo S; Egea, Jose A; Palop, Alfredo; Esnoz, Arturo
2018-02-02
This contribution presents a mathematical model to describe non-isothermal microbial inactivation processes taking into account the acclimation of the microbial cell to thermal stress. The model extends the log-linear inactivation model including a variable and model parameters quantifying the induced thermal resistance. The model has been tested on cells of Escherichia coli against two families of non-isothermal profiles with different constant heating rates. One of the families was composed of monophasic profiles, consisting of a non-isothermal heating stage from 35 to 70°C; the other family was composed of biphasic profiles, consisting of a non-isothermal heating stage followed by a holding period at constant temperature of 57.5°C. Lower heating rates resulted in a higher thermal resistance of the bacterial population. This was reflected in a higher D-value. The parameter estimation was performed in two steps. Firstly, the D and z-values were estimated from the isothermal experiments. Next, the parameters describing the acclimation were estimated using one of the biphasic profiles. This set of parameters was able to describe the remaining experimental data. Finally, a methodology for the construction of diagrams illustrating the magnitude of the induced thermal resistance is presented. The methodology has been illustrated by building it for a biphasic temperature profile with a linear heating phase and a holding phase. This diagram provides a visualization of how the shape of the temperature profile (heating rate and holding temperature) affects the acclimation of the cell to the thermal stress. This diagram can be used for the design of inactivation treatments by industry taking into account the acclimation of the cell to the thermal stress. Copyright © 2017 Elsevier B.V. All rights reserved.
Alterations in malondialdehyde levels and laboratory parameters among methamphetamine abusers.
Suriyaprom, Kanjana; Tanateerabunjong, Rossukon; Tungtrongchitr, Anchalee; Tungtrongchitr, Rungsunn
2011-12-01
To determine the concentrations of malondialdehyde, biochemical, and hematological parameters among methamphetamine abusers compared with a healthy control group and to evaluate the association between malondialdehyde and biochemical-hematological parameters. The concentrations of malondialdehyde, lipids, liver enzymes, albumin, blood urea nitrogen, creatinine, and hematological measurements were determined in 60 methamphetamine abusers and 60 controls. Significantly higher levels of malondialdehyde were found in the methamphetamine abusers than the controls [2.45 (2.12-2.81) vs. 1.41 (1.15-2.08)]. The levels ofalanine aminotransferase and alkaline phosphatase and white blood cell and platelet counts of the methamphetamine abusers were significantly elevated (p-value < 0.05) compared with the controls. Meanwhile, the levels of hemoglobin, hematocrit, albumin and body mass index were significantly lower among the methamphetamine-abusing group than the control group (p-value < 0.05). It was found that higher numbers of methamphetamine tablets per day were associated with higher malondialdehyde concentrations in methamphetamine abusers, and that malondialdehyde concentration inversely correlated with albumin level (r = -0.458, p-value < 0.05). Stepwise multiple regression analysis revealed that number of methamphetamine tablets per day, white blood cell count and albumin level were independent predictors of malondialdehyde level (p-value < 0.05). Methamphetamine abuse is related to increased lipid peroxidation, changes in inflammatory marker level, increase in liver enzymes, and decrease in hemoglobin and hematocrit concentrations. These effects may be early signs of the development of diseases associated with methamphetamine abuse.
Kadima, Bertin Tshimanga; Gini-Ehungu, Jean Lambert; Mbutiwi, Fiston Ikwa Ndol; Bahati, John Tunda; Aloni, Michel Ntetani
2017-11-01
In the Democratic Republic of Congo, the incidence of sickle cell anemia (SCA) is estimated around 40 000 neonates per year. However, it is notoriously difficult to perform conventional electrophoresis in all hospitals and laboratories, especially at peripheral levels and rural area. A panel of multiple clinical and laboratory features that would enhance sickle cell disease were assessed for the detection of the disease in highly resource-scarce settings. A prospective study was conducted in Kinshasa. Venous blood samples were drawn from each study participant in order to determine the hematologic parameters, the peripheral smears, and the hemoglobin electrophoresis. We used Cohen's κ statistic to examine the agreement of each variable and diagnosis of sickle cell disease. A total of 807 patients were screened for sickle cell disease. Among these 807 children, 36 (4.5%) were homozygous for Hb S disease. The presence of at least 8% erythroblasts (PPV: 91%, NPV: 99%, sensitivity: 83.3%, specificity: 99.6%, κ value: .86) and sickle cells (PPV:100%, NPV: 98%, sensitivity: 50%, specificity: 100%, κ value: .66) in the peripheral blood smear had an acceptable agreement for sickle cell disease. These two biological markers may guide the clinician in the decision-making to initiate the management of the children as a sickle cell patient, pending confirmation of the disease by electrophoresis techniques. © 2017 Wiley Periodicals, Inc.
Charles-Smith, Lauren E; Rutledge, M Elizabeth; Meek, Caroline J; Baine, Katherine; Massey, Elizabeth; Ellsaesser, Laura N; DePerno, Christopher S; Moorman, Christopher E; Degernes, Laurel A
2014-03-01
Large flocks of wild, nonmigratory Canada geese (Branta canadensis) have established permanent residence throughout the eastern United States and have become a public concern. Few studies have assessed the hematologic parameters for these populations, which could provide useful information for monitoring individual and population health of Canada geese. This study measured the hematologic parameters and detected the presence of hemoparasites from 146 wild, nonmigratory Canada geese in central North Carolina, USA, during their annual molt. The age class, sex, and weight of each bird were recorded at capture. Values for packed cell volume (PCV), estimated white blood cell count, white blood cell differentials, and heterophil: lymphocyte ratios were calculated for each bird. Adults and female geese had higher estimated white blood cell counts compared with juveniles and males, respectively. The PCV increased with weight and age class. Adult geese had higher percentages of heterophils and heterophil: lymphocyte ratios, whereas juvenile geese had higher percentages of lymphocytes. Relative eosinophil counts in adults increased with decreasing bird weight, and relative monocyte counts in juveniles increased with increasing weight. Three percent of geese were infected with species of Hemoproteus blood parasites. Atypical lymphocyte morphology, including pseudopods, split nuclei, and cytoplasmic granules, was observed in 5% of the birds. The hematologic values reported for adult and juvenile nonmigratory Canada geese in this study may serve as reference intervals for ecological studies and veterinary care of wild and captive Canada geese.
Dynamics of morphological evolution in experimental Escherichia coli populations.
Cui, F; Yuan, B
2016-08-30
Here, we applied a two-stage clonal expansion model of morphological (cell-size) evolution to a long-term evolution experiment with Escherichia coli. Using this model, we derived the incidence function of the appearance of cell-size stability, the waiting time until this morphological stability, and the conditional and unconditional probabilities of morphological stability. After assessing the parameter values, we verified that the calculated waiting time was consistent with the experimental results, demonstrating the effectiveness of the two-stage model. According to the relative contributions of parameters to the incidence function and the waiting time, cell-size evolution is largely determined by the promotion rate, i.e., the clonal expansion rate of selectively advantageous organisms. This rate plays a prominent role in the evolution of cell size in experimental populations, whereas all other evolutionary forces were found to be less influential.
Chaos in an Eulerian Based Model of Sickle Cell Blood Flow
NASA Astrophysics Data System (ADS)
Apori, Akwasi; Harris, Wesley
2001-11-01
A novel Eulerian model describing the manifestation of sickle cell blood flow in the capillaries has been formulated to study the apparently chaotic onset of sickle cell crises. This Eulerian model was based on extending previous models of sickle cell blood flow which were limited due to their Lagrangian formulation. Oxygen concentration, red blood cell velocity, cell stiffness, and plasma viscosity were modeled as system state variables. The governing equations of the system were expressed in canonical form. The non-linear coupling of velocity-viscosity and viscosity- stiffness proved to be the origin of chaos in the system. The system was solved with respect to a control parameter representing the unique rheology of the sickle cell erythrocytes. Results of chaos tests proved positive for various ranges of the control parameter. The results included con-tinuous patterns found in the Poincare section, spectral broadening of the Fourier power spectrum, and positive Lyapunov exponent values. The onset of chaos predicted by this sickle cell flow model as the control parameter was varied appeared to coincide with the change from a healthy state to a crisis state in a sickle cell patient. This finding that sickle cell crises may be caused from the well understood change of a solution from a steady state to chaotic could point to new ways in preventing and treating crises and should be validated in clinical trials.
Demol, Jan; Lambrechts, Dennis; Geris, Liesbet; Schrooten, Jan; Van Oosterwyck, Hans
2011-01-01
The in vitro culture of hydrogel-based constructs above a critical size is accompanied by problems of unequal cell distribution when diffusion is the primary mode of oxygen transfer. In this study, an experimentally-informed mathematical model was developed to relate cell proliferation and death inside fibrin hydrogels to the local oxygen tension in a quantitative manner. The predictive capacity of the resulting model was tested by comparing its outcomes to the density, distribution and viability of human periosteum derived cells (hPDCs) that were cultured inside fibrin hydrogels in vitro. The model was able to reproduce important experimental findings, such as the formation of a multilayered cell sheet at the hydrogel periphery and the occurrence of a cell density gradient throughout the hydrogel. In addition, the model demonstrated that cell culture in fibrin hydrogels can lead to complete anoxia in the centre of the hydrogel for realistic values of oxygen diffusion and consumption. A sensitivity analysis also identified these two parameters, together with the proliferation parameters of the encapsulated cells, as the governing parameters for the occurrence of anoxia. In conclusion, this study indicates that mathematical models can help to better understand oxygen transport limitations and its influence on cell behaviour during the in vitro culture of cell-seeded hydrogels. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Choe, Yong; Magnasco, Marcelo O.; Hudspeth, A. J.
1998-12-01
Amplification of auditory stimuli by hair cells augments the sensitivity of the vertebrate inner ear. Cell-body contractions of outer hair cells are thought to mediate amplification in the mammalian cochlea. In vertebrates that lack these cells, and perhaps in mammals as well, active movements of hair bundles may underlie amplification. We have evaluated a mathematical model in which amplification stems from the activity of mechanoelectrical-transduction channels. The intracellular binding of Ca2+ to channels is posited to promote their closure, which increases the tension in gating springs and exerts a negative force on the hair bundle. By enhancing bundle motion, this force partially compensates for viscous damping by cochlear fluids. Linear stability analysis of a six-state kinetic model reveals Hopf bifurcations for parameter values in the physiological range. These bifurcations signal conditions under which the system's behavior changes from a damped oscillatory response to spontaneous limit-cycle oscillation. By varying the number of stereocilia in a bundle and the rate constant for Ca2+ binding, we calculate bifurcation frequencies spanning the observed range of auditory sensitivity for a representative receptor organ, the chicken's cochlea. Simulations using prebifurcation parameter values demonstrate frequency-selective amplification with a striking compressive nonlinearity. Because transduction channels occur universally in hair cells, this active-channel model describes a mechanism of auditory amplification potentially applicable across species and hair-cell types.
NASA Technical Reports Server (NTRS)
Giver, L. P.; Brown, L. R.; Wattson, R. B.; Spencer, M. N.; Chackerian, C., Jr.; Strawa, Anthony W. (Technical Monitor)
1995-01-01
Rotationless band intensities and Herman-Wallis parameters are listed in HITRAN tabulations for several hundred CO2 overtone-combination bands. These parameters are based on laboratory measurements when available, and on DND calculations for the unmeasured bands. The DND calculations for the Fermi interacting nv(sub 1) + v(sub 3) polyads show the a(sub 2) Herman-Wallis parameter varying smoothly from a negative value for the first member of the polyad to a positive value for the final member. Measurements of the v(sub 1) + v(sub 3) dyad are consistent with the DND calculations for the a(sub 2) parameter, as are our recent measurements of the 4v(sub 1) + v(sub 3) pentad. However, the measurement-based values in the HITRAN tables for the 2v(sub 1) + v(sub 3) triad and the 3v(sub 1) + v(sub 3) tetrad do not support the DND calculated values for the a(sub 2) parameters. We therefore decided to make new measurements to improve some of these intensity parameters. With the McMath FTS at Kitt Peak National Observatory/National Solar Observatory we recorded several spectra of the. 4000 to 8000 cm(exp -1) region of pure CO2 at 0.011 cm(exp -1) resolution using the 6 meter White absorption cell. The signal/noise and absorbance of the first and fourth bands of the 3v(sub 1) + v(sub 3) tetrad of C-12O-16 were ideal on these spectra for measuring line intensities and broadening widths. Our selfbroadening results agree with the HITRAN parameterization, while our measurements of the rotationless band intensities are about 15% less than the HITRAN values. We find a negative value of a(sub 2) for the 30011-00001 band and a positive value for the 30014-00001 band, whereas the HITRAN values of a(sub 2) are positive for all four tetrad bands. Our a(sub 1) and a(sub 2) Herman-Wallis parameters are closer to DND calculated values than the 1992 HITRAN values for both the 30011-00001 and the 30014-00001 band.
Junge, Randall E; Dutton, Christopher J; Knightly, Felicia; Williams, Cathy V; Rasambainarivo, Fidisoa T; Louis, Edward E
2008-12-01
Health and nutritional assessments of wildlife are important management tools and can provide a means to evaluate ecosystem health. Such examinations were performed on 37 white-fronted brown lemurs (Eulemur fulvus albifrons) from four sites in Madagascar. Comparison of health parameters between sites revealed statistically significant differences in body weight, body temperature, respiratory rate, hematology parameters (white cell count, hematocrit, segmented neutrophil count, and lymphocyte count), serum chemistry parameters (aspartate aminotransferase, alanine aminotransferase, serum alkaline phosphatase, total protein, albumin, phosphorus, calcium, sodium, chloride, and creatinine phosphokinase), and nutrition parameters (copper, zinc, ferritin, retinol, tocopherol, and 25-hydroxycholecalciferol). Two of 10 lemurs tested were positive for toxoplasmosis; none of 10 were positive for Cryptosporidium or Giardia. Enteric bacteria and endo- and ectoparasites were typical. Statistically different values in hematology and chemistry values probably do not reflect clinically significant differences, whereas nutrition parameter differences are likely related to season, soil, and forage availability.
Simpson, Matthew J; Lo, Kai-Yin; Sun, Yung-Shin
2017-03-17
Directed cell migration can be driven by a range of external stimuli, such as spatial gradients of: chemical signals (chemotaxis); adhesion sites (haptotaxis); or temperature (thermotaxis). Continuum models of cell migration typically include a diffusion term to capture the undirected component of cell motility and an advection term to capture the directed component of cell motility. However, there is no consensus in the literature about the form that the advection term takes. Some theoretical studies suggest that the advection term ought to include receptor saturation effects. However, others adopt a much simpler constant coefficient. One of the limitations of including receptor saturation effects is that it introduces several additional unknown parameters into the model. Therefore, a relevant research question is to investigate whether directed cell migration is best described by a simple constant tactic coefficient or a more complicated model incorporating saturation effects. We study directed cell migration using an experimental device in which the directed component of the cell motility is driven by a spatial gradient of electric potential, which is known as electrotaxis. The electric field (EF) is proportional to the spatial gradient of the electric potential. The spatial variation of electric potential across the experimental device varies in such a way that there are several subregions on the device in which the EF takes on different values that are approximately constant within those subregions. We use cell trajectory data to quantify the motion of 3T3 fibroblast cells at different locations on the device to examine how different values of the EF influences cell motility. The undirected (random) motility of the cells is quantified in terms of the cell diffusivity, D, and the directed motility is quantified in terms of a cell drift velocity, v. Estimates D and v are obtained under a range of four different EF conditions, which correspond to normal physiological conditions. Our results suggest that there is no anisotropy in D, and that D appears to be approximately independent of the EF and the electric potential. The drift velocity increases approximately linearly with the EF, suggesting that the simplest linear advection term, with no additional saturation parameters, provides a good explanation of these physiologically relevant data. We find that the simplest linear advection term in a continuum model of directed cell motility is sufficient to describe a range of different electrotaxis experiments for 3T3 fibroblast cells subject to normal physiological values of the electric field. This is useful information because alternative models that include saturation effects involve additional parameters that need to be estimated before a partial differential equation model can be applied to interpret or predict a cell migration experiment.
Moderate summer heat stress does not modify immunological parameters of Holstein dairy cows
NASA Astrophysics Data System (ADS)
Lacetera, Nicola; Bernabucci, Umberto; Ronchi, Bruno; Scalia, Daniela; Nardone, Alessandro
2002-02-01
The study was undertaken during spring and summer months in a territory representative of the Mediterranean climate to assess the effects of season on some immunological parameters of dairy cows. Twenty Holstein cows were used. Eleven of those cows gave birth during spring; the remaining nine cows gave birth in summer. The two groups of cows were homogeneous for parity. Values of air temperatures and relative humidity were recorded both during spring and summer, and were utilized to calculate the temperature humidity index (THI). One week before the expected calving, rectal temperatures and respiratory rates of the cows were recorded (1500 hours), and cell-mediated immunity was assessed by measuring the proliferation of mitogen-stimulated peripheral blood mononuclear cells (PBMC). Within 3 h of calving, one colostrum sample was taken from each cow and analysed to determine content of immunoglobulin (Ig) G1, IgG2, IgM and IgA. At 48 h after birth, passive immunization of the calves was assessed by measuring total serum IgG. During summer, daytime (0900-2000 hours) THI values were above the upper critical value of 72 [75.2, (SD 2.6)] indicating conditions that could represent moderate heat stress. That THI values were able to predict heat stress was confirmed by the values of rectal temperatures and respiratory rates, which were higher ( P < 0.05 and P < 0.001 respectively) during summer. Proliferation of PBMC, the colostral concentration of Ig fractions and serum levels of IgG in their respective offspring did not differ between spring and summer cows. Results indicated that moderate heat stress due to the hot Mediterranean summer does not modify cell-mediated immunity, the protective value of colostrum and passive immunization of the offspring in dairy cows.
Dang, Hao Dan; Chen, Yu; Shi, Xiao Hua; Hou, Bo; Xing, Hai Qun; Zhang, Tao; Chen, Xing Ming; Zhang, Zhu Hua; Xue, Hua Dan; Jin, Zheng Yu
2018-04-28
Objective To evaluate the correlation of the positron emission tomography/magnetic resonance imaging (PET/MR) parameters with the pathological differentiation of head and neck squamous cell carcinoma(HNSCC) and the diagnostic efficiencies of PET/MR parameters. Methods Patients with clinical suspicion of HNSCC were included and underwent PET/MR scan. HNSCC was pathologically confirmed in all these patients. The PET/MR examination included PET and MR sequences of diffusion-weighted imaging (DWI) and T2-and T1-weighted imaging. The multiple parameters of PET/MR included the mean values of apparent diffusion coefficient(ADC mean ) and the maximum and mean values of standardized uptake value (SUV max and SUV mean ) were measured and estimated. The correlations of all the parameters and distribution between the different tumor differentiation groups were analyzed. Logistic regression was utilized to build the model as the PET/MR combined parameter for predicting the differentiation by multiple parameters of PET/MR. The receiver operating characteristic curve was calculated for each parameter and the combination. Results Totally 23 patients were included in this study:9 patients (9 males and 0 female) had well-differentiated tumor,with an average age of (61.0±6.8)years;14 cases had moderately-differentiated (n=10) or poorly-differentiated tumors (n=4),with an average age of (62.0±9.1) years. All the patients were males. There was statistical correlation between SUV mean and SUV max (P<0.001);however,ADC mean showed no statistical correlation with SUV max and with SUV mean (P=0.42,P=0.13). ADC mean and SUV mean showed significant difference between well-differentiated group and moderately-poorly-differentiated group (P=0.005,P=0.007). Compared with the individual parameters,the combination of PET/MR parameters with SUV mean and ADC mean had higher efficacy in predicting tumor differentiation,with an area under curve of 0.84. Conclusions The distributions of ADC mean ,SUV max and SUV mean differ among HNSCC with different pathological differentiation. Compared with the individual parameters,the combination of the PET/MR parameters has higher efficiency in predicting tumor differentiation.
NASA Technical Reports Server (NTRS)
Kleis, Stanley J.; Truong, Tuan; Goodwin, Thomas J,
2004-01-01
This report is a documentation of a fluid dynamic analysis of the proposed Automated Static Culture System (ASCS) cell module mixing protocol. The report consists of a review of some basic fluid dynamics principles appropriate for the mixing of a patch of high oxygen content media into the surrounding media which is initially depleted of oxygen, followed by a computational fluid dynamics (CFD) study of this process for the proposed protocol over a range of the governing parameters. The time histories of oxygen concentration distributions and mechanical shear levels generated are used to characterize the mixing process for different parameter values.
NASA Astrophysics Data System (ADS)
Ivanova, A.; Tokmakov, A.; Lebedeva, K.; Roze, M.; Kaulachs, I.
2017-08-01
Organometal halide perovskites are promising materials for lowcost, high-efficiency solar cells. The method of perovskite layer deposition and the interfacial layers play an important role in determining the efficiency of perovskite solar cells (PSCs). In the paper, we demonstrate inverted planar perovskite solar cells where perovskite layers are deposited by two-step modified interdiffusion and one-step methods. We also demonstrate how PSC parameters change by doping of charge transport layers (CTL). We used dimethylsupoxide (DMSO) as dopant for the hole transport layer (PEDOT:PSS) but for the electron transport layer [6,6]-phenyl C61 butyric acid methyl ester (PCBM)) we used N,N-dimethyl-N-octadecyl(3-aminopropyl)trimethoxysilyl chloride (DMOAP). The highest main PSC parameters (PCE, EQE, VOC) were obtained for cells prepared by the one-step method with fast crystallization and doped CTLs but higher fill factor (FF) and shunt resistance (Rsh) values were obtained for cells prepared by the two-step method with undoped CTLs.
Kulkarni, Ankur H; Ghosh, Prasenjit; Seetharaman, Ashwin; Kondaiah, Paturu; Gundiah, Namrata
2018-05-09
Traction forces exerted by adherent cells are quantified using displacements of embedded markers on polyacrylamide substrates due to cell contractility. Fourier Transform Traction Cytometry (FTTC) is widely used to calculate tractions but has inherent limitations due to errors in the displacement fields; these are mitigated through a regularization parameter (γ) in the Reg-FTTC method. An alternate finite element (FE) approach computes tractions on a domain using known boundary conditions. Robust verification and recovery studies are lacking but essential in assessing the accuracy and noise sensitivity of the traction solutions from the different methods. We implemented the L2 regularization method and defined a maximum curvature point in the traction with γ plot as the optimal regularization parameter (γ*) in the Reg-FTTC approach. Traction reconstructions using γ* yield accurate values of low and maximum tractions (Tmax) in the presence of up to 5% noise. Reg-FTTC is hence a clear improvement over the FTTC method but is inadequate to reconstruct low stresses such as those at nascent focal adhesions. FE, implemented using a node-by-node comparison, showed an intermediate reconstruction compared to Reg-FTTC. We performed experiments using mouse embryonic fibroblast (MEF) and compared results between these approaches. Tractions from FTTC and FE showed differences of ∼92% and 22% as compared to Reg-FTTC. Selection of an optimum value of γ for each cell reduced variability in the computed tractions as compared to using a single value of γ for all the MEF cells in this study.
Comparison of Several Methods for Determining the Internal Resistance of Lithium Ion Cells
Schweiger, Hans-Georg; Obeidi, Ossama; Komesker, Oliver; Raschke, André; Schiemann, Michael; Zehner, Christian; Gehnen, Markus; Keller, Michael; Birke, Peter
2010-01-01
The internal resistance is the key parameter for determining power, energy efficiency and lost heat of a lithium ion cell. Precise knowledge of this value is vital for designing battery systems for automotive applications. Internal resistance of a cell was determined by current step methods, AC (alternating current) methods, electrochemical impedance spectroscopy and thermal loss methods. The outcomes of these measurements have been compared with each other. If charge or discharge of the cell is limited, current step methods provide the same results as energy loss methods. PMID:22219678
NASA Astrophysics Data System (ADS)
Kromp, Florian; Taschner-Mandl, Sabine; Schwarz, Magdalena; Blaha, Johanna; Weiss, Tamara; Ambros, Peter F.; Reiter, Michael
2015-02-01
We propose a user-driven method for the segmentation of neuroblastoma nuclei in microscopic fluorescence images involving the gradient energy tensor. Multispectral fluorescence images contain intensity and spatial information about antigene expression, fluorescence in situ hybridization (FISH) signals and nucleus morphology. The latter serves as basis for the detection of single cells and the calculation of shape features, which are used to validate the segmentation and to reject false detections. Accurate segmentation is difficult due to varying staining intensities and aggregated cells. It requires several (meta-) parameters, which have a strong influence on the segmentation results and have to be selected carefully for each sample (or group of similar samples) by user interactions. Because our method is designed for clinicians and biologists, who may have only limited image processing background, an interactive parameter selection step allows the implicit tuning of parameter values. With this simple but intuitive method, segmentation results with high precision for a large number of cells can be achieved by minimal user interaction. The strategy was validated on handsegmented datasets of three neuroblastoma cell lines.
Lebedev, S V; Karasev, A V; Chekhonin, V P; Savchenko, E A; Viktorov, I V; Chelyshev, Yu A; Shaimardanova, G F
2010-09-01
Human ensheating neural stem cells of the olfactory epithelium were transplanted to adult male rats immediately after contusion trauma of the spinal cord at T9 level rostrally and caudally to the injury. Voluntary movements (by a 21-point BBB scale), rota-rod performance, and walking along a narrowing beam were monitored weekly over 60 days. In rats receiving cell transplantation, the mean BBB score significantly increased by 11% by the end of the experiment. The mean parameters of load tests also regularly surpassed the corresponding parameters in controls. The efficiency of transplantation (percent of animals with motor function recovery parameters surpassing the corresponding mean values in the control groups) was 62% by the state of voluntary motions, 37% by the rota-rod test, and 32% by the narrowing beam test. Morphometry revealed considerable shrinking of the zone of traumatic damage in the spinal cord and activation of posttraumatic remyelination in animals receiving transplantation of human neural stem cells.
Front Instabilities and Invasiveness of Simulated Avascular Tumors
Popławski, Nikodem J.; Agero, Ubirajara; Gens, J. Scott; Swat, Maciej; Glazier, James A.; Anderson, Alexander R. A.
2009-01-01
We study the interface morphology of a 2D simulation of an avascular tumor composed of identical cells growing in an homogeneous healthy tissue matrix (TM), in order to understand the origin of the morphological changes often observed during real tumor growth. We use the GlazierGraner-Hogeweg model, which treats tumor cells as extended, deformable objects, to study the effects of two parameters: a dimensionless diffusion-limitation parameter defined as the ratio of the tumor consumption rate to the substrate transport rate, and the tumor-TM surface tension. We model TM as a nondiffusing field, neglecting the TM pressure and haptotactic repulsion acting on a real growing tumor; thus our model is appropriate for studying tumors with highly motile cells, e.g., gliomas. We show that the diffusion-limitation parameter determines whether the growing tumor develops a smooth (noninvasive) or fingered (invasive) interface, and that the sensitivity of tumor morphology to tumor-TM surface tension increases with the size of the dimensionless diffusion-limitation parameter. For large diffusion-limitation parameters we find a transition (missed in previous work) between dendritic structures, produced when tumor-TM surface tension is high, and seaweed-like structures, produced when tumor-TM surface tension is low. This observation leads to a direct analogy between the mathematics and dynamics of tumors and those observed in nonbiological directional solidification. Our results are also consistent with biological observation that hypoxia promotes invasive growth of tumor cells by inducing higher levels of receptors for scatter factors that weaken cell-cell adhesion and increase cell motility. These findings suggest that tumor morphology may have value in predicting the efficiency of antiangiogenic therapy in individual patients. PMID:19234746
Melchardt, Thomas; Troppan, Katharina; Weiss, Lukas; Hufnagl, Clemens; Neureiter, Daniel; Tränkenschuh, Wolfgang; Schlick, Konstantin; Huemer, Florian; Deutsch, Alexander; Neumeister, Peter; Greil, Richard; Pichler, Martin; Egle, Alexander
2015-12-01
Several serum parameters have been evaluated for adding prognostic value to clinical scoring systems in diffuse large B-cell lymphoma (DLBCL), but none of the reports used multivariate testing of more than one parameter at a time. The goal of this study was to validate widely available serum parameters for their independent prognostic impact in the era of the National Comprehensive Cancer Network-International Prognostic Index (NCCN-IPI) score to determine which were the most useful. This retrospective bicenter analysis includes 515 unselected patients with DLBCL who were treated with rituximab and anthracycline-based chemoimmunotherapy between 2004 and January 2014. Anemia, high C-reactive protein, and high bilirubin levels had an independent prognostic value for survival in multivariate analyses in addition to the NCCN-IPI, whereas neutrophil-to-lymphocyte ratio, high gamma-glutamyl transferase levels, and platelets-to-lymphocyte ratio did not. In our cohort, we describe the most promising markers to improve the NCCN-IPI. Anemia and high C-reactive protein levels retain their power in multivariate testing even in the era of the NCCN-IPI. The negative role of high bilirubin levels may be associated as a marker of liver function. Further studies are warranted to incorporate these markers into prognostic models and define their role opposite novel molecular markers. Copyright © 2015 by the National Comprehensive Cancer Network.
Highly Multiplexed, Single Cell Transcriptomic Analysis of T-Cells by Microfluidic PCR.
Dominguez, Maria; Roederer, Mario; Chattopadhyay, Pratip K
2017-01-01
Recently, technologies have been developed to measure expression of 96 (or more) mRNA transcripts at once from a single cell. Here we describe methods and important considerations for use of Fluidigm's BioMark platform for multiplexed single cell gene expression. We describe how to qualify primer/probes, select genes to examine in 96-parameter panels, perform the reverse transcription/cDNA synthesis step, and operate the instrument. In addition, we describe data analysis considerations. This technology has enormous value for characterizing the heterogeneity of T-cells, thereby providing a useful tool for immune monitoring.
Chaotic and stable perturbed maps: 2-cycles and spatial models
NASA Astrophysics Data System (ADS)
Braverman, E.; Haroutunian, J.
2010-06-01
As the growth rate parameter increases in the Ricker, logistic and some other maps, the models exhibit an irreversible period doubling route to chaos. If a constant positive perturbation is introduced, then the Ricker model (but not the classical logistic map) experiences period doubling reversals; the break of chaos finally gives birth to a stable two-cycle. We outline the maps which demonstrate a similar behavior and also study relevant discrete spatial models where the value in each cell at the next step is defined only by the values at the cell and its nearest neighbors. The stable 2-cycle in a scalar map does not necessarily imply 2-cyclic-type behavior in each cell for the spatial generalization of the map.
Tune-stabilized, non-scaling, fixed-field, alternating gradient accelerator
Johnstone, Carol J [Warrenville, IL
2011-02-01
A FFAG is a particle accelerator having turning magnets with a linear field gradient for confinement and a large edge angle to compensate for acceleration. FODO cells contain focus magnets and defocus magnets that are specified by a number of parameters. A set of seven equations, called the FFAG equations relate the parameters to one another. A set of constraints, call the FFAG constraints, constrain the FFAG equations. Selecting a few parameters, such as injection momentum, extraction momentum, and drift distance reduces the number of unknown parameters to seven. Seven equations with seven unknowns can be solved to yield the values for all the parameters and to thereby fully specify a FFAG.
Effect of cell thickness on the electrical and optical properties of thin film silicon solar cell
NASA Astrophysics Data System (ADS)
Zaki, A. A.; El-Amin, A. A.
2017-12-01
In this work Electrical and optical properties of silicon thin films with different thickness were measured. The thickness of the Si films varied from 100 to 800 μm. The optical properties of the cell were studied at different thickness. A maximum achievable current density (MACD) generated by a planar solar cell, was measured for different values of the cell thickness which was performed by using photovoltaic (PV) optics method. It was found that reducing the values of the cell thickness improves the open-circuit voltage (VOC) and the fill factor (FF) of the solar cell. The optical properties were measured for thin film Si (TF-Si) at different thickness by using the double beam UV-vis-NIR spectrophotometer in the wavelength range of 300-2000 nm. Some of optical parameters such as refractive index with dispersion relation, the dispersion energy, the oscillator energy, optical band gap energy were calculated by using the spectra for the TF-Si with different thickness.
de Gooijer, C D; Wijffels, R H; Tramper, J
1991-07-01
The modeling of the growth of Nitrobacter agilis cell immobilized in kappa-carrageenan is presented. A detailed description is given of the modeling of internal diffusion and growth of cells in the support matrix in addition to external mass transfer resistance. The model predicts the substrate and biomass profiles in the support as well as the macroscopic oxygen consumption rate of the immobilized biocatalyst in time. The model is tested by experiments with continuously operated airlift loop reactors containing cells immobilized in kappa-carrageenan. The model describes experimental data very well. It is clearly shown that external mass transfer may not be neglected. Furthermore, a sensitivity analysis of the parameters at their values during the experiments revealed that apart from the radius of the spheres and the substrate bulk concentration, the external mass transfer resistance coefficient is the most sensitive parameter for our case.
Melloni, G; Gajate, A M S; Sestini, S; Gallivanone, F; Bandiera, A; Landoni, C; Muriana, P; Gianolli, L; Zannini, P
2013-11-01
The recurrence rate for stage I non-small cell lung cancer is high, with 20-40% of patients that relapse after surgery. The aim of this study was to evaluate new F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) derived parameters, such as standardized uptake value index (SUVindex), metabolic tumor volume (MTV) and total lesion glycolysis (TLG), as predictive factors for recurrence in resected stage I non-small cell lung cancer. We retrospectively reviewed 99 resected stage I non-small cell lung cancer patients that were grouped by SUVindex, TLG and MTV above or below their median value. Disease free survival was evaluated as primary end point. The 5-year overall survival and the 5-year disease free survival rates were 62% and 73%, respectively. The median SUVindex, MTL and TLG were 2.73, 2.95 and 9.61, respectively. Patients with low SUVindex, MTV and TLG were more likely to have smaller tumors (p ≤ 0.001). Univariate analysis demonstrated that SUVindex (p = 0.027), MTV (p = 0.014) and TLG (p = 0.006) were significantly related to recurrence showing a better predictive performance than SUVmax (p = 0.031). The 5-year disease free survival rates in patients with low and high SUVindex, MTV and TLG were 84% and 59%, 86% and 62% and 88% and 60%, respectively. The multivariate analysis showed that only TLG was an independent prognostic factor (p = 0.014) with a hazard ratio of 4.782. Of the three PET-derived parameters evaluated, TLG seems to be the most accurate in stratifying surgically treated stage I non-small cell lung cancer patients according to their risk of recurrence. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sanz-Peláez, O; Angel-Moreno, A; Tapia-Martín, M; Conde-Martel, A; Carranza-Rodríguez, C; Carballo-Rastrilla, S; Soria-López, A; Pérez-Arellano, J L
2008-09-01
The progressive increase in the number of immigrants to Spain in recent years has made it necessary for health-care professionals to be aware about the specific characteristics of this population. An attempt is made in this study to define the normal range of common laboratory values in healthy sub-Saharan adults. Common laboratory values were studied (blood cell counts, clotting tests and blood biochemistry values) and were measured in 150 sub-Saharan immigrants previously defined as healthy according to a complete health evaluation that included a clinical history, physical examination, serologic tests and study of stool parasites. These results were compared to those from a control group consisting of 81 age-and-sex matched healthy blood donors taken from the Spanish native population. Statistically significant differences were obtained in the following values. Mean corpuscular volume (MCV), red cell distribution width (RDW), total leukocytes, and serum levels of creatinine, uric acid, total protein content, creatin-kinase (CK), aspartate aminotransferase (AST), gamma-glutamyl-transpeptidase (GGT), Immunoglobulin G (IgG) and M (IgM). If evaluated according to the normal values in native people, a considerable percentage of healthy sub-Saharan immigrants would present
Geometrical shape design of nanophotonic surfaces for thin film solar cells.
Nam, W I; Yoo, Y J; Song, Y M
2016-07-11
We present the effect of geometrical parameters, particularly shape, on optical absorption enhancement for thin film solar cells based on crystalline silicon (c-Si) and gallium arsenide (GaAs) using a rigorous coupled wave analysis (RCWA) method. It is discovered that the "sweet spot" that maximizes efficiency of solar cells exists for the design of nanophotonic surfaces. For the case of ultrathin, rod array is practical due to the effective optical resonances resulted from the optimum geometry whereas parabola array is viable for relatively thicker cells owing to the effective graded index profile. A specific value of thickness, which is the median value of other two devices tailored by rod and paraboloid, is optimized by truncated shape structure. It is therefore worth scanning the optimum shape of nanostructures in a given thickness in order to achieve high performance.
Louis, E; Degli Esposti Boschi, C; Ortega, G; Andreu, E; Fernández, E; Sánchez-Andrés, J V
2002-04-19
Electrical properties of gap-junction connected cells (input voltage and length constant) are shown to depend strongly on fluctuations in membrane and contact conductances. This opens new possibilities and incorporates a further difficulty to the analysis of electrophysiological data, since four, instead of two, parameters (the average values and the magnitude of fluctuations of the two conductances) have to be used in fitting the experimental data. The discussion is illustrated by investigating the effects of dopamine on signal spreading in horizontal cells of turtle retina, assuming a linear cell arrangement. It is shown that while a standard fitting with the average values of the two conductances leads to the conclusion that both are equally affected by dopamine, including fluctuations allows fitting the data by varying just the average contact conductance plus the magnitude of fluctuations.
Hall, Sheldon K.; Ooi, Ean H.; Payne, Stephen J.
2015-01-01
Abstract Purpose: A sensitivity analysis has been performed on a mathematical model of radiofrequency ablation (RFA) in the liver. The purpose of this is to identify the most important parameters in the model, defined as those that produce the largest changes in the prediction. This is important in understanding the role of uncertainty and when comparing the model predictions to experimental data. Materials and methods: The Morris method was chosen to perform the sensitivity analysis because it is ideal for models with many parameters or that take a significant length of time to obtain solutions. A comprehensive literature review was performed to obtain ranges over which the model parameters are expected to vary, crucial input information. Results: The most important parameters in predicting the ablation zone size in our model of RFA are those representing the blood perfusion, electrical conductivity and the cell death model. The size of the 50 °C isotherm is sensitive to the electrical properties of tissue while the heat source is active, and to the thermal parameters during cooling. Conclusions: The parameter ranges chosen for the sensitivity analysis are believed to represent all that is currently known about their values in combination. The Morris method is able to compute global parameter sensitivities taking into account the interaction of all parameters, something that has not been done before. Research is needed to better understand the uncertainties in the cell death, electrical conductivity and perfusion models, but the other parameters are only of second order, providing a significant simplification. PMID:26000972
Rao, Harsha L; Addepalli, Uday K; Yadav, Ravi K; Senthil, Sirisha; Choudhari, Nikhil S; Garudadri, Chandra S
2014-03-01
To evaluate the effect of scan quality on the diagnostic accuracies of optic nerve head (ONH), retinal nerve fiber layer (RNFL), and ganglion cell complex (GCC) parameters of spectral-domain optical coherence tomography (SD OCT) in glaucoma. Cross-sectional study. Two hundred fifty-two eyes of 183 control subjects (mean deviation [MD]: -1.84 dB) and 207 eyes of 159 glaucoma patients (MD: -7.31 dB) underwent ONH, RNFL, and GCC scanning with SD OCT. Scan quality of SD OCT images was based on signal strength index (SSI) values. Influence of SSI on diagnostic accuracy of SD OCT was evaluated by receiver operating characteristic (ROC) regression. Diagnostic accuracies of all SD OCT parameters were better when the SSI values were higher. This effect was statistically significant (P < .05) for ONH and RNFL but not for GCC parameters. In mild glaucoma (MD of -5 dB), area under ROC curve (AUC) for rim area, average RNFL thickness, and average GCC thickness parameters improved from 0.651, 0.678, and 0.726, respectively, at an SSI value of 30 to 0.873, 0.962, and 0.886, respectively, at an SSI of 70. AUCs of the same parameters in advanced glaucoma (MD of -15 dB) improved from 0.747, 0.890, and 0.873, respectively, at an SSI value of 30 to 0.922, 0.994, and 0.959, respectively, at an SSI of 70. Diagnostic accuracies of SD OCT parameters in glaucoma were significantly influenced by the scan quality even when the SSI values were within the manufacturer-recommended limits. These results should be considered while interpreting the SD OCT scans for glaucoma. Copyright © 2014 Elsevier Inc. All rights reserved.
Major, Rebeka D; Kluge, Martin; Jara, Maximilian; Nösser, Maximilian; Horner, Rosa; Gassner, Joseph; Struecker, Benjamin; Tang, Peter; Lippert, Steffen; Reutzel-Selke, Anja; Geisel, Dominik; Denecke, Timm; Stockmann, Martin; Pratschke, Johann; Sauer, Igor M; Raschzok, Nathanael
2018-03-01
The need for primary human hepatocytes is constantly growing for basic research, as well as for therapeutic applications. However, the isolation outcome strongly depends on the quality of liver tissue, and we are still lacking a preoperative test that allows the prediction of the hepatocyte isolation outcome. In this study, we evaluated the "maximal liver function capacity test" (LiMAx) as predictive test for the quantitative and qualitative outcome of hepatocyte isolation. This test is already used in clinical routine to measure preoperative and to predict postoperative liver function. The patient's preoperative mean LiMAx was obtained from the patient records, and preoperative computed tomography and magnetic resonance images were used to calculate the whole liver volume to adjust the mean LiMAx. The outcome parameters of the hepatocyte isolation procedures were analyzed in correlation with the adjusted mean LiMAx. Primary human hepatocytes were isolated from partial hepatectomies (n = 64). From these 64 hepatectomies we included 48 to our study and correlated their isolation outcome parameters with volume corrected LiMAx values. From a total of 11 hepatocyte isolation procedures, metabolic parameters (albumin, urea, and aspartate aminotransferase or AST) were assessed during the hepatocyte cultivation period of 5 days. The volume adjusted mean LiMAx showed a significant positive correlation with the total cell yield (p = 0.049; r = 0.242; n = 48). The correlations of volume adjusted LiMAx values with viable cell yield and cell viability did not reach statistical significance. To create a more homogenous study group regarding tumor entities, subgroup analyses were performed. A subgroup analysis of isolations from patients with colorectal metastasis revealed a significant correlation between volume adjusted mean LiMAx and total cell yield (p = 0.012; r = 0.488; n = 21) and viable cell yield (p = 0.034; r = 0.405; n = 21), whereas a subgroup analysis of isolations of patients with carcinoma of the biliary tree showed significant correlations of volume adjusted mean LiMAx with cell viability (r = 0.387; p = 0.046; n = 20) and lacked significant correlations with total cell yield (r = -0.060; p = 0.401; n = 20) and viable cell yield (r = 0.012; p = 0.480; n = 20). The volume-adjusted mean LiMAx did not show a significant correlation with any of the metabolic parameters. In conclusion, the LiMAx test might be a useful tool to predict the quantitative outcome of hepatocyte isolation, as long as underlying liver disease is taken into consideration.
NASA Astrophysics Data System (ADS)
Atanasov, Atanas Todorov
2016-12-01
Here is developed the hypothesis that the cell parameters of unicellular organisms (Prokaryotes and Eukaryotes) are determined by the gravitational constant (G, N.m2 /kg2), Planck constant (h, J.s) and growth rate of cells. By scaling analyses it was shown that the growth rate vgr(m/s) of unicellular bacteria and protozoa is relatively constant parameter, ranging in a narrow window of 10-12 - 10-10 m/s, in comparison to the diapason of cell mass, ranging 10 orders of magnitudes from 10-17 kg in bacteria to 10-7 kg in amoebas. By dimensional analyses it was shown that the combination between the growth rate of cells, gravitational constant and Planck constant gives equations with dimension of mass M(vgr)=(h.vgr/G)½ in kg, length L(v gr)=(hṡG/vgr3)1/2 in meter, time T(vgr)=(hṡG/vgr5)1/2 in seconds, and density ρ ((vgr)=vgr.3.5/hG2 in kg/m3 . For growth rate vgr in diapason of 1×10-11 m/s - 1×10-9.5 m/s the calculated numerical values for mass (3×10-18 -1×10-16 kg), length (5×10-8 -1×10-5 m), time (1×102 -1×106 s) and density (1×10-1 - 1×104 kg/m3) overlaps with diapason of experimentally measured values for cell mass (3×10-18 -1×10-15 kg), volume to surface ratio (1×10-7 -1×10-4 m), doubling time (1×103 -1×107 s), and density (1050 - 1300 kg/m3) in bacteria and protozoa. These equations show that appearance of the first living cells could be mutually connected to the physical constants.
NASA Astrophysics Data System (ADS)
Xu, Liangfei; Hu, Junming; Cheng, Siliang; Fang, Chuan; Li, Jianqiu; Ouyang, Minggao; Lehnert, Werner
2017-07-01
A scheme for designing a second-order sliding-mode (SOSM) observer that estimates critical internal states on the cathode side of a polymer electrolyte membrane (PEM) fuel cell system is presented. A nonlinear, isothermal dynamic model for the cathode side and a membrane electrolyte assembly are first described. A nonlinear observer topology based on an SOSM algorithm is then introduced, and equations for the SOSM observer deduced. Online calculation of the inverse matrix produces numerical errors, so a modified matrix is introduced to eliminate the negative effects of these on the observer. The simulation results indicate that the SOSM observer performs well for the gas partial pressures and air stoichiometry. The estimation results follow the simulated values in the model with relative errors within ± 2% at stable status. Large errors occur during the fast dynamic processes (<1 s). Moreover, the nonlinear observer shows good robustness against variations in the initial values of the internal states, but less robustness against variations in system parameters. The partial pressures are more sensitive than the air stoichiometry to system parameters. Finally, the order of effects of parameter uncertainties on the estimation results is outlined and analyzed.
NASA Astrophysics Data System (ADS)
Gomez, Jamie; Nelson, Ruben; Kalu, Egwu E.; Weatherspoon, Mark H.; Zheng, Jim P.
2011-05-01
Equivalent circuit model (EMC) of a high-power Li-ion battery that accounts for both temperature and state of charge (SOC) effects known to influence battery performance is presented. Electrochemical impedance measurements of a commercial high power Li-ion battery obtained in the temperature range 20 to 50 °C at various SOC values was used to develop a simple EMC which was used in combination with a non-linear least squares fitting procedure that used thirteen parameters for the analysis of the Li-ion cell. The experimental results show that the solution and charge transfer resistances decreased with increase in cell operating temperature and decreasing SOC. On the other hand, the Warburg admittance increased with increasing temperature and decreasing SOC. The developed model correlations that are capable of being used in process control algorithms are presented for the observed impedance behavior with respect to temperature and SOC effects. The predicted model parameters for the impedance elements Rs, Rct and Y013 show low variance of 5% when compared to the experimental data and therefore indicates a good statistical agreement of correlation model to the actual experimental values.
In-vivo singlet oxygen threshold doses for PDT
Zhu, Timothy C.; Kim, Michele M.; Liang, Xing; Finlay, Jarod C.; Busch, Theresa M.
2015-01-01
Objective Dosimetry of singlet oxygen (1O2) is of particular interest because it is the major cytotoxic agent causing biological effects for type-II photosensitizers during photodynamic therapy (PDT). An in-vivo model to determine the singlet oxygen threshold dose, [1O2]rx,sh, for PDT was developed. Material and methods An in-vivo radiation-induced fibrosarcoma (RIF) tumor mouse model was used to correlate the radius of necrosis to the calculation based on explicit PDT dosimetry of light fluence distribution, tissue optical properties, and photosensitizer concentrations. Inputs to the model include five photosensitizer-specific photochemical parameters along with [1O2]rx,sh. Photosensitizer-specific model parameters were determined for benzoporphyrin derivative monoacid ring A (BPD) and compared with two other type-II photosensitizers, Photofrin® and m-tetrahydroxyphenylchlorin (mTHPC) from the literature. Results The mean values (standard deviation) of the in-vivo [1O2]rx,sh are approximately 0.56 (0.26) and 0.72 (0.21) mM (or 3.6×107 and 4.6×107 singlet oxygen per cell to reduce the cell survival to 1/e) for Photofrin® and BPD, respectively, assuming that the fraction of generated singlet oxygen that interacts with the cell is 1. While the values for the photochemical parameters (ξ, σ, g, β) used for BPD were preliminary and may need further refinement, there is reasonable confidence for the values of the singlet oxygen threshold doses. Discussion In comparison, the [1O2]rx,sh value derived from in-vivo mouse study was reported to be 0.4 mM for mTHPC-PDT. However, the singlet oxygen required per cell is reported to be 9×108 per cell per 1/e fractional kill in an in-vitro mTHPC-PDT study on a rat prostate cancer cell line (MLL cells) and is reported to be 7.9 mM for a multicell in-vitro EMT6/Ro spheroid model for mTHPC-PDT. A theoretical analysis is provided to relate the number of in-vitro singlet oxygen required per cell to reach cell killing of 1/e to in-vivo singlet oxygen threshold dose (in mM). The sensitivity of threshold singlet oxygen dose for our experiment is examined. The possible influence of vascular vs. apoptotic cell killing mechanisms on the singlet oxygen threshold dose is discussed by comparing [1O2]rx,sh for BPD with 3 hr and 15 min drug-light-intervals, with the later being known to have a dominantly vascular effect. Conclusions The experimental results of threshold singlet oxygen concentration in an in-vivo RIF tumor model for Photofrin®, BPD, and mTHPC are about 20 times smaller than those observed in vitro. These results are consistent with knowledge that factors other than singlet oxygen-mediated tumor cell killing can contribute to PDT damage in-vivo. PMID:25927018
In-vivo singlet oxygen threshold doses for PDT.
Zhu, Timothy C; Kim, Michele M; Liang, Xing; Finlay, Jarod C; Busch, Theresa M
2015-02-01
Dosimetry of singlet oxygen ( 1 O 2 ) is of particular interest because it is the major cytotoxic agent causing biological effects for type-II photosensitizers during photodynamic therapy (PDT). An in-vivo model to determine the singlet oxygen threshold dose, [ 1 O 2 ] rx,sh , for PDT was developed. An in-vivo radiation-induced fibrosarcoma (RIF) tumor mouse model was used to correlate the radius of necrosis to the calculation based on explicit PDT dosimetry of light fluence distribution, tissue optical properties, and photosensitizer concentrations. Inputs to the model include five photosensitizer-specific photochemical parameters along with [ 1 O 2 ] rx,sh . Photosensitizer-specific model parameters were determined for benzoporphyrin derivative monoacid ring A (BPD) and compared with two other type-II photosensitizers, Photofrin ® and m-tetrahydroxyphenylchlorin (mTHPC) from the literature. The mean values (standard deviation) of the in-vivo [ 1 O 2 ] rx,sh are approximately 0.56 (0.26) and 0.72 (0.21) mM (or 3.6×10 7 and 4.6×10 7 singlet oxygen per cell to reduce the cell survival to 1/e) for Photofrin ® and BPD, respectively, assuming that the fraction of generated singlet oxygen that interacts with the cell is 1. While the values for the photochemical parameters (ξ, σ, g , β) used for BPD were preliminary and may need further refinement, there is reasonable confidence for the values of the singlet oxygen threshold doses. In comparison, the [ 1 O 2 ] rx,sh value derived from in-vivo mouse study was reported to be 0.4 mM for mTHPC-PDT. However, the singlet oxygen required per cell is reported to be 9×10 8 per cell per 1/ e fractional kill in an in-vitro mTHPC-PDT study on a rat prostate cancer cell line (MLL cells) and is reported to be 7.9 mM for a multicell in-vitro EMT6/Ro spheroid model for mTHPC-PDT. A theoretical analysis is provided to relate the number of in-vitro singlet oxygen required per cell to reach cell killing of 1/ e to in-vivo singlet oxygen threshold dose (in mM). The sensitivity of threshold singlet oxygen dose for our experiment is examined. The possible influence of vascular vs. apoptotic cell killing mechanisms on the singlet oxygen threshold dose is discussed by comparing [ 1 O 2 ] rx,sh for BPD with 3 hr and 15 min drug-light-intervals, with the later being known to have a dominantly vascular effect. The experimental results of threshold singlet oxygen concentration in an in-vivo RIF tumor model for Photofrin ® , BPD, and mTHPC are about 20 times smaller than those observed in vitro . These results are consistent with knowledge that factors other than singlet oxygen-mediated tumor cell killing can contribute to PDT damage in-vivo .
Bone marrow mesenchymal stem cell response to nano-structured oxidized and turned titanium surfaces.
Annunziata, Marco; Oliva, Adriana; Buosciolo, Antonietta; Giordano, Michele; Guida, Agostino; Guida, Luigi
2012-06-01
The aim of this study was to analyse the topographic features of a novel nano-structured oxidized titanium implant surface and to evaluate its effect on the response of human bone marrow mesenchymal stem cells (BM-MSC) compared with a traditional turned surface. The 10 × 10 × 1 mm turned (control) and oxidized (test) titanium samples (P.H.I. s.r.l.) were examined by scanning electron microscopy (SEM) and atomic force microscopy (AFM) and characterized by height, spatial and hybrid roughness parameters at different dimensional ranges of analysis. Primary cultures of BM-MSC were seeded on titanium samples and cell morphology, adhesion, proliferation and osteogenic differentiation, in terms of alkaline phosphatase activity, osteocalcin synthesis and extracellular matrix mineralization, were evaluated. At SEM and AFM analyses turned samples were grooved, whereas oxidized surfaces showed a more complex micro- and nano-scaled texture, with higher values of roughness parameters. Cell adhesion and osteogenic parameters were greater on oxidized (P<0.05 at least) vs. turned surfaces, whereas the cell proliferation rate was similar on both samples. Although both control and test samples were in the range of average roughness proper of smooth surfaces, they exhibited significantly different topographic properties in terms of height, spatial and, mostly, of hybrid parameters. This different micro- and nano-structure resulted in an enhanced adhesion and differentiation of cells plated onto the oxidized surfaces. © 2011 John Wiley & Sons A/S.
Tola, Esra Nur; Mungan, Muhittin Tamer; Uğuz, Abdülhadi Cihangir; Naziroğlu, Mustafa
2013-01-01
Oxidative stress is important for promoting oocyte maturation and ovulation within the follicle through calcium ion (Ca(2+)) influx. The relationship between antioxidant and cytosolic Ca(2+) levels and oocyte quality and fertilisation rate in the granulosa cells of patients undergoing in vitro fertilisation was investigated. Granulosa cells were collected from 33 patients. Cytosolic free Ca(2+) ([Ca(2+)]i) concentration, lipid peroxidation, reduced glutathione, glutathione peroxidase and oocyte quality were measured in the granulosa cells. The relationship between two drug protocols was also examined (gonadotrophin-releasing hormone antagonist and agonist protocols) and the same parameters investigated. The [Ca(2+)]i concentration (P<0.001), glutathione (P<0.05) and oocyte quality (P<0.001) values were significantly higher in the fertilised group than in the non-fertilised group, although glutathione peroxidase activity was significantly (P<0.05) higher in the non-fertilised group than in the fertilised group. The [Ca(2+)]i concentrations were also higher (P<0.001) in the good-quality oocyte groups than in the poor-quality oocyte group. There was no correlation between the two drug protocols and investigated parameters. In conclusion, it was observed that high glutathione and cytosolic Ca(2+) concentrations in granulosa cells of patients undergoing in vitro fertilisation tended to increase the fertilisation potential of oocytes.
Kihara, Takanori; Kashitani, Kosuke; Miyake, Jun
2017-07-14
Cell proliferation is a key characteristic of eukaryotic cells. During cell proliferation, cells interact with each other. In this study, we developed a cellular automata model to estimate cell-cell interactions using experimentally obtained images of cultured cells. We used four types of cells; HeLa cells, human osteosarcoma (HOS) cells, rat mesenchymal stem cells (MSCs), and rat smooth muscle A7r5 cells. These cells were cultured and stained daily. The obtained cell images were binarized and clipped into squares containing about 10 4 cells. These cells showed characteristic cell proliferation patterns. The growth curves of these cells were generated from the cell proliferation images and we determined the doubling time of these cells from the growth curves. We developed a simple cellular automata system with an easily accessible graphical user interface. This system has five variable parameters, namely, initial cell number, doubling time, motility, cell-cell adhesion, and cell-cell contact inhibition (of proliferation). Within these parameters, we obtained initial cell numbers and doubling times experimentally. We set the motility at a constant value because the effect of the parameter for our simulation was restricted. Therefore, we simulated cell proliferation behavior with cell-cell adhesion and cell-cell contact inhibition as variables. By comparing growth curves and proliferation cell images, we succeeded in determining the cell-cell interaction properties of each cell. Simulated HeLa and HOS cells exhibited low cell-cell adhesion and weak cell-cell contact inhibition. Simulated MSCs exhibited high cell-cell adhesion and positive cell-cell contact inhibition. Simulated A7r5 cells exhibited low cell-cell adhesion and strong cell-cell contact inhibition. These simulated results correlated with the experimental growth curves and proliferation images. Our simulation approach is an easy method for evaluating the cell-cell interaction properties of cells.
Okamoto, Hiroyuki; Kanai, Tatsuaki; Kase, Yuki; Matsumoto, Yoshitaka; Furusawa, Yoshiya; Fujita, Yukio; Saitoh, Hidetoshi; Itami, Jun; Kohno, Toshiyuki
2011-01-01
Our cell survival data showed the obvious dependence of RBE on photon energy: The RBE value for 200 kV X-rays was approximately 10% greater than those for mega-voltage photon beams. In radiation therapy using mega-voltage photon beams, the photon energy distribution outside the field is different with that in the radiation field because of a large number of low energy scattering photons. Hence, the RBE values outside the field become greater. To evaluate the increase in RBE, the method of deriving the RBE using the Microdosimetric Kinetic model (MK model) was proposed in this study. The MK model has two kinds of the parameters, tissue-specific parameters and the dose-mean lineal energy derived from the lineal energy distributions measured with a Tissue-Equivalent Proportional Counter (TEPC). The lineal energy distributions with the same geometries of the cell irradiations for 200 kV X-rays, (60)Co γ-rays, and 6 MV X-rays were obtained with the TEPC and Monte Carlo code GEANT4. The measured lineal energy distribution for 200 kV X-rays was quite different from those for mega-voltage photon beams. The dose-mean lineal energy of 200 kV X-rays showed the greatest value, 4.51 keV/µm, comparing with 2.34 and 2.36 keV/µm for (60)Co γ-rays and 6 MV X-rays, respectively. By using the results of the TEPC and cell irradiations, the tissue-specific parameters in the MK model were determined. As a result, the RBE of the photon beams (y(D): 2~5 keV/µm) in arbitrary conditions can be derived by the measurements only or the calculations only of the dose-mean lineal energy.
Parks, David R; Roederer, Mario; Moore, Wayne A
2006-06-01
In immunofluorescence measurements and most other flow cytometry applications, fluorescence signals of interest can range down to essentially zero. After fluorescence compensation, some cell populations will have low means and include events with negative data values. Logarithmic presentation has been very useful in providing informative displays of wide-ranging flow cytometry data, but it fails to adequately display cell populations with low means and high variances and, in particular, offers no way to include negative data values. This has led to a great deal of difficulty in interpreting and understanding flow cytometry data, has often resulted in incorrect delineation of cell populations, and has led many people to question the correctness of compensation computations that were, in fact, correct. We identified a set of criteria for creating data visualization methods that accommodate the scaling difficulties presented by flow cytometry data. On the basis of these, we developed a new data visualization method that provides important advantages over linear or logarithmic scaling for display of flow cytometry data, a scaling we refer to as "Logicle" scaling. Logicle functions represent a particular generalization of the hyperbolic sine function with one more adjustable parameter than linear or logarithmic functions. Finally, we developed methods for objectively and automatically selecting an appropriate value for this parameter. The Logicle display method provides more complete, appropriate, and readily interpretable representations of data that includes populations with low-to-zero means, including distributions resulting from fluorescence compensation procedures, than can be produced using either logarithmic or linear displays. The method includes a specific algorithm for evaluating actual data distributions and deriving parameters of the Logicle scaling function appropriate for optimal display of that data. It is critical to note that Logicle visualization does not change the data values or the descriptive statistics computed from them. Copyright 2006 International Society for Analytical Cytology.
Long-range intercellular Ca2+ wave patterns
NASA Astrophysics Data System (ADS)
Tabi, C. B.; Maïna, I.; Mohamadou, A.; Ekobena, H. P. F.; Kofané, T. C.
2015-10-01
Modulational instability is utilized to investigate intercellular Ca2+ wave propagation in an array of diffusively coupled cells. Cells are supposed to be connected via paracrine signaling, where long-range effects, due to the presence of extracellular messengers, are included. The multiple-scale expansion is used to show that the whole dynamics of Ca2+ waves, from the endoplasmic reticulum to the cytosol, can be reduced to a single differential-difference nonlinear equation whose solutions are assumed to be plane waves. Their linear stability analysis is studied, with emphasis on the impact of long-range coupling, via the range parameter s. It is shown that s, as well as the number of interacting cells, importantly modifies the features of modulational instability, as small values of s imply a strong coupling, and increasing its value rather reduces the problem to a first-neighbor one. Our theoretical findings are numerically tested, as the generic equations are fully integrated, leading to the emergence of nonlinear patterns of Ca2+ waves. Strong long-range coupling is pictured by extended trains of breather-like structures whose frequency decreases with increasing s. We also show numerically that the number of interacting cells plays on the spatio-temporal formation of Ca2+ patterns, whilst the quasi-perfect intercellular communication depends on the paracrine coupling parameter.
Oldenkamp, Rik; Huijbregts, Mark A J; Ragas, Ad M J
2016-05-01
The selection of priority APIs (Active Pharmaceutical Ingredients) can benefit from a spatially explicit approach, since an API might exceed the threshold of environmental concern in one location, while staying below that same threshold in another. However, such a spatially explicit approach is relatively data intensive and subject to parameter uncertainty due to limited data. This raises the question to what extent a spatially explicit approach for the environmental prioritisation of APIs remains worthwhile when accounting for uncertainty in parameter settings. We show here that the inclusion of spatially explicit information enables a more efficient environmental prioritisation of APIs in Europe, compared with a non-spatial EU-wide approach, also under uncertain conditions. In a case study with nine antibiotics, uncertainty distributions of the PAF (Potentially Affected Fraction) of aquatic species were calculated in 100∗100km(2) environmental grid cells throughout Europe, and used for the selection of priority APIs. Two APIs have median PAF values that exceed a threshold PAF of 1% in at least one environmental grid cell in Europe, i.e., oxytetracycline and erythromycin. At a tenfold lower threshold PAF (i.e., 0.1%), two additional APIs would be selected, i.e., cefuroxime and ciprofloxacin. However, in 94% of the environmental grid cells in Europe, no APIs exceed either of the thresholds. This illustrates the advantage of following a location-specific approach in the prioritisation of APIs. This added value remains when accounting for uncertainty in parameter settings, i.e., if the 95th percentile of the PAF instead of its median value is compared with the threshold. In 96% of the environmental grid cells, the location-specific approach still enables a reduction of the selection of priority APIs of at least 50%, compared with a EU-wide prioritisation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bi, Xiwen; Yang, Hang; An, Xin; Wang, Fenghua; Jiang, Wenqi
2016-01-01
Background We propose a novel prognostic parameter for esophageal squamous cell carcinoma (ESCC)—hemoglobin/red cell distribution width (HB/RDW) ratio. Its clinical prognostic value and relationship with other clinicopathological characteristics were investigated in ESCC patients. Results The optimal cut-off value was 0.989 for the HB/RDW ratio. The HB/RDW ratio (P= 0.035), tumor depth (P = 0.020) and lymph node status (P<0.001) were identified to be an independent prognostic factors of OS by multivariate analysis, which was validated by bootstrap resampling. Patients with a low HB/RDW ratio had a 1.416 times greater risk of dying during follow-up compared with those with a high HB/RDW (95% CI = 1.024–1.958, P = 0.035). Materials and Methods We retrospectively analyzed 362 patients who underwent curative treatment at a single institution between January 2007 and December 2008. The chi-square test was used to evaluate relationships between the HB/RDW ratio and other clinicopathological variables; the Kaplan–Meier method was used to analyze the 5-year overall survival (OS); and the Cox proportional hazards models were used for univariate and multivariate analyses of variables related to OS. Conclusion A significant association was found between the HB/RDW ratio and clinical characteristics and survival outcomes in ESCC patients. Based on these findings, we believe that the HB/RDW ratio is a novel and promising prognostic parameter for ESCC patients. PMID:27223088
Barbosa, Maritza Cavalcante; dos Santos, Talyta Ellen Jesus; de Souza, Geane Félix; de Assis, Lívia Coêlho; Freitas, Max Victor Carioca; Gonçalves, Romélia Pinheiro
2013-01-01
Objective The aim of this study was to evaluate the impact of iron overload on the profile of interleukin-10 levels, biochemical parameters and oxidative stress in sickle cell anemia patients. Methods A cross-sectional study was performed of 30 patients with molecular diagnosis of sickle cell anemia. Patients were stratified into two groups, according to the presence of iron overload: Iron overload (n = 15) and Non-iron overload (n = 15). Biochemical analyses were performed utilizing the Wiener CM 200 automatic analyzer. The interleukin-10 level was measured by capture ELISA using the BD OptEIAT commercial kit. Oxidative stress parameters were determined by spectrophotometry. Statistical analysis was performed using GraphPad Prism software (version 5.0) and statistical significance was established for p-values < 0.05 in all analyses. Results Biochemical analysis revealed significant elevations in the levels of uric acid, triglycerides, very low-density lipoprotein (VLDL), alanine aminotransferase (ALT), lactate dehydrogenase (LDH), urea and creatinine in the Iron overload Group compared to the Non-iron overload Group and significant decreases in the high-density lipoprotein (HDL) and low-density lipoprotein (LDL). Ferritin levels correlated positively with uric acid concentrations (p-value < 0.05). The Iron overload Group showed lower interleukin-10 levels and catalase activity and higher nitrite and malondialdehyde levels compared with the Non-iron overload Group. Conclusion The results of this study are important to develop further consistent studies that evaluate the effect of iron overload on the inflammatory profile and oxidative stress of patients with sickle cell anemia. PMID:23580881
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lloyd-George, I.; Chang, T.M.S.
1995-12-20
The whole cell tyrosine phenol-lyase activity of Erwinia herbicola was microencapsulated. The authors studied the use of this for the conversion of ammonia and pyruvate along with phenol or catechol, respectively, into L-tyrosine or dihydroxyphenyl-L-alanine (L-dopa). The reactions are relevant to the development of new methods for the production of L-tyrosine and L-dopa. The growth of E. herbicola at temperatures from 22 C to 32 C is stable, since at these temperatures the cells grow up to the stationary phase and remain there for at least 10 h. At 37 C the cells grow rapidly, but they also enter themore » death phase rapidly. There is only limited growth of E. herbicola at 42 C. Whole cells of E. herbicola were encapsulated within alginate-polylysine-alginate microcapsules (916 {+-} 100 {micro}m, mean {+-} std. dev.). The TPL activity of the cells catalyzed the production of L-tyrosine or dihydroxyphenol-L-alanine (L-dopa) from ammonia, pyruvate, and phenol or catechol, respectively. In the production of tyrosine, an integrated equation based on an ordered ter-uni rapid equilibrium mechanism can be used to find the kinetic parameters of TPL. In an adequately stirred system, the apparent values of the kinetic parameters of whole cell TPL are equal whether the cells are free or encapsulated. The apparent K{sub M} of tyrosine varies with the amount of whole cells in the system, ranging from 0.2 to 0.3 mM. The apparent K{sub M} for phenol is 0.5 mM. The apparent K{sub M} values for pyruvate and ammonia are an order of magnitude greater for whole cells than they are for the cell free enzyme.« less
Steady state and transient simulation of anion exchange membrane fuel cells
NASA Astrophysics Data System (ADS)
Dekel, Dario R.; Rasin, Igal G.; Page, Miles; Brandon, Simon
2018-01-01
We present a new model for anion exchange membrane fuel cells. Validation against experimental polarization curve data is obtained for current densities ranging from zero to above 2 A cm-2. Experimental transient data is also successfully reproduced. The model is very flexible and can be used to explore the system's sensitivity to a wide range of material properties, cell design specifications, and operating parameters. We demonstrate the impact of gas inlet relative humidity (RH), operating current density, ionomer loading and ionomer ion exchange capacity (IEC) values on cell performance. In agreement with the literature, high air RH levels are shown to improve cell performance. At high current densities (>1 A cm-2) this effect is observed to be especially significant. Simulated hydration number distributions across the cell reveal the related critical dependence of cathode hydration on air RH and current density values. When exploring catalyst layer design, optimal intermediate ionomer loading values are demonstrated. The benefits of asymmetric (cathode versus anode) electrode design are revealed, showing enhanced performance using higher cathode IEC levels. Finally, electrochemical reaction profiles across the electrodes uncover inhomogeneous catalyst utilization. Specifically, at high current densities the cathodic reaction is confined to a narrow region near the membrane.
Development of a new score to estimate clinical East Coast Fever in experimentally infected cattle.
Schetters, Th P M; Arts, G; Niessen, R; Schaap, D
2010-02-10
East Coast Fever is a tick-transmitted disease in cattle caused by Theileria parva protozoan parasites. Quantification of the clinical disease can be done by determining a number of variables, derived from parasitological, haematological and rectal temperature measurements as described by Rowlands et al. (2000). From a total of 13 parameters a single ECF-score is calculated that allows categorization of infected cattle in five different classes that correlate with the severity of clinical signs. This score is complicated not only by the fact that it requires estimation of 13 parameters but also because of the subsequent mathematics. The fact that the values are normalised over a range of 0-10 for each experiment makes it impossible to compare results from different experiments. Here we present an alternative score based on the packed cell volume and the number of piroplasms in the circulation and that is calculated using a simple equation; ECF-score=PCV(relday0)/log(PE+10). In this equation the packed cell volume is expressed as a value relative to that of the day on infection (PCV(relday0)) and the number of piroplasms is expressed as the logarithmic value of the number of infected red blood cells (=PE) in a total of 1000 red blood cells. To allow PE to be 0, +10 is added in the denominator. We analysed a data set of 54 cattle from a previous experiment and found a statistically significant linear correlation between the ECF-score value reached during the post-infection period and the Rowlands' score value. The new score is much more practical than the Rowlands score as it only requires daily blood sampling. From these blood samples both PCV and number of piroplasms can be determined, and the score can be calculated daily. This allows monitoring the development of ECF after infection, which was hitherto not possible. In addition, the new score allows for easy comparison of results from different experiments.
Improvement of Heart Failure by Human Amniotic Mesenchymal Stromal Cell Transplantation in Rats.
Razavi Tousi, Seyed Mohammad Taghi; Faghihi, Mahdieh; Nobakht, Maliheh; Molazem, Mohammad; Kalantari, Elham; Darbandi Azar, Amir; Aboutaleb, Nahid
2016-07-06
Background: Recently, stem cells have been considered for the treatment of heart diseases, but no marked improvement has been recorded. This is the first study to examine the functional and histological effects of the transplantation of human amniotic mesenchymal stromal cells (hAMSCs) in rats with heart failure (HF). Methods: This study was conducted in the years 2014 and 2015. 35 male Wistar rats were randomly assigned into 5 equal experimental groups (7 rats each) as 1- Control 2- Heart Failure (HF) 3- Sham 4- Culture media 5- Stem Cell Transplantation (SCT). Heart failure was induced using 170 mg/kg/d of isoproterenol subcutaneously injection in 4 consecutive days. The failure confirmed by the rat cardiac echocardiography on day 28. In SCT group, 3×10 6 cells in 150 µl of culture media were transplanted to the myocardium. At the end, echocardiographic and hemodynamic parameters together with histological evaluation were done. Results: Echocardiography results showed that cardiac ejection fraction in HF group increased from 58/73 ± 9% to 81/25 ± 6/05% in SCT group (p value < 0.001). Fraction shortening in HF group was increased from 27/53 ± 8/58% into 45/55 ± 6/91% in SCT group (p value < 0.001). Furthermore, hAMSCs therapy significantly improved mean diastolic blood pressure, mean arterial pressure, left ventricular systolic pressure, rate pressure product, and left ventricular end-diastolic pressure compared to those in the HF group, with the values reaching the normal levels in the control group. A marked reduction in fibrosis tissue was also found in the SCT group (p value < 0.001) compared with the animals in the HF group. Conclusion: The transplantation of hAMSCs in rats with heart failure not only decreased the level of fibrosis but also conferred significant improvement in heart performance in terms of echocardiographic and hemodynamic parameters.
Blood gases, biochemistry and haematology of Galápagos marine iguanas (Amblyrhynchus cristatus)
Lewbart, Gregory A.; Hirschfeld, Maximilian; Brothers, J. Roger; Muñoz-Pérez, Juan Pablo; Denkinger, Judith; Vinueza, Luis; García, Juan; Lohmann, Kenneth J.
2015-01-01
The marine iguana, Amblyrhynchus cristatus, is an iconic lizard endemic to the Galápagos Islands of Ecuador, but surprisingly little information exists on baseline health parameters for this species. We analysed blood samples drawn from 35 marine iguanas captured at three locations on San Cristóbal Island. A portable blood analyser (iSTAT) was used to obtain near-immediate field results for pH, lactate, partial pressure of O2, partial pressure of CO2, bicarbonate (HCO3−), percentage O2 saturation, haematocrit, haemoglobin, sodium, potassium, ionized calcium and glucose. Parameter values affected by temperature were auto-corrected by the iSTAT. Standard laboratory haematology techniques were employed for differential white blood cell counts and haematocrit determination; resulting values were also compared with the haematocrit values generated by the iSTAT. Body temperature, heart rate, respiratory rate and body measurements were also recorded. Body length was positively correlated with several blood chemistry values (HCO3− and glucose) and two haematology parameters (haemoglobin and manually determined haematocrit). A notable finding was the unusually high blood sodium level; the mean value of 178 mg/dl is among the highest known for any reptile. This value is likely to be a conservative estimate because some samples exceeded the maximal value the iSTAT can detect. For haematocrit determination, the iSTAT blood analyser yielded results significantly lower than those obtained with high-speed centrifugation. The values reported in this study provide baseline data that may be useful in comparisons among populations and in detecting changes in health status among marine iguanas affected by natural disturbances or anthropogenic threats. The findings might also be helpful in future efforts to demonstrate associations between specific biochemical parameters and disease. PMID:27293719
Song, Yoon S; Koontz, John L; Juskelis, Rima O; Zhao, Yang
2013-01-01
The migration of low molecular weight organic compounds through polyethylene terephthalate (PET) films was determined by using a custom permeation cell assembly. Fatty food simulant (Miglyol 812) was added to the receptor chamber, while the donor chamber was filled with 1% and 10% (v/v) migrant compounds spiked in simulant. The permeation cell was maintained at 40°C, 66°C, 100°C or 121°C for up to 25 days of polymer film exposure time. Migrants in Miglyol were directly quantified without a liquid-liquid extraction step by headspace-GC-MS analysis. Experimental diffusion coefficients (DP) of toluene, benzyl alcohol, ethyl butyrate and methyl salicylate through PET film were determined. Results from Limm's diffusion model showed that the predicted DP values for PET were all greater than the experimental values. DP values predicted by Piringer's diffusion model were also greater than those determined experimentally at 66°C, 100°C and 121°C. However, Piringer's model led to the underestimation of benzyl alcohol (Áp = 3.7) and methyl salicylate (Áp = 4.0) diffusion at 40°C with its revised "upper-bound" Áp value of 3.1 at temperatures below the glass transition temperature (Tg) of PET (<70°C). This implies that input parameters of Piringer's model may need to be revised to ensure a margin of safety for consumers. On the other hand, at temperatures greater than the Tg, both models appear too conservative and unrealistic. The highest estimated Áp value from Piringer's model was 2.6 for methyl salicylate, which was much lower than the "upper-bound" Áp value of 6.4 for PET. Therefore, it may be necessary further to refine "upper-bound" Áp values for PET such that Piringer's model does not significantly underestimate or overestimate the migration of organic compounds dependent upon the temperature condition of the food contact material.
Density and fluence dependence of lithium cell damage and recovery characteristics
NASA Technical Reports Server (NTRS)
Faith, T. J.
1971-01-01
Experimental results on lithium-containing solar cells point toward the lithium donor density gradient dN sub L/dw as being the crucial parameter in the prediction of cell behavior after irradiation by electrons. Recovery measurements on a large number of oxygen-rich and oxygen-lean lithium cells have confirmed that cell recovery speed is directly proportional to the value of the lithium gradient for electron fluences. Gradient measurements have also been correlated with lithium diffusion schedules. Results have shown that long diffusion times (25 h) with a paint-on source result in large cell-to-cell variations in gradient, probably due to a loss of the lithium source with time.
Optimal experimental design for parameter estimation of a cell signaling model.
Bandara, Samuel; Schlöder, Johannes P; Eils, Roland; Bock, Hans Georg; Meyer, Tobias
2009-11-01
Differential equation models that describe the dynamic changes of biochemical signaling states are important tools to understand cellular behavior. An essential task in building such representations is to infer the affinities, rate constants, and other parameters of a model from actual measurement data. However, intuitive measurement protocols often fail to generate data that restrict the range of possible parameter values. Here we utilized a numerical method to iteratively design optimal live-cell fluorescence microscopy experiments in order to reveal pharmacological and kinetic parameters of a phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) second messenger signaling process that is deregulated in many tumors. The experimental approach included the activation of endogenous phosphoinositide 3-kinase (PI3K) by chemically induced recruitment of a regulatory peptide, reversible inhibition of PI3K using a kinase inhibitor, and monitoring of the PI3K-mediated production of PIP(3) lipids using the pleckstrin homology (PH) domain of Akt. We found that an intuitively planned and established experimental protocol did not yield data from which relevant parameters could be inferred. Starting from a set of poorly defined model parameters derived from the intuitively planned experiment, we calculated concentration-time profiles for both the inducing and the inhibitory compound that would minimize the predicted uncertainty of parameter estimates. Two cycles of optimization and experimentation were sufficient to narrowly confine the model parameters, with the mean variance of estimates dropping more than sixty-fold. Thus, optimal experimental design proved to be a powerful strategy to minimize the number of experiments needed to infer biological parameters from a cell signaling assay.
Li, Anqin; Xing, Wei; Li, Haojie; Hu, Yao; Hu, Daoyu; Li, Zhen; Kamel, Ihab R
2018-05-29
The purpose of this article is to evaluate the utility of volumetric histogram analysis of apparent diffusion coefficient (ADC) derived from reduced-FOV DWI for small (≤ 4 cm) solid renal mass subtypes at 3-T MRI. This retrospective study included 38 clear cell renal cell carcinomas (RCCs), 16 papillary RCCs, 18 chromophobe RCCs, 13 minimal fat angiomyolipomas (AMLs), and seven oncocytomas evaluated with preoperative MRI. Volumetric ADC maps were generated using all slices of the reduced-FOV DW images to obtain histogram parameters, including mean, median, 10th percentile, 25th percentile, 75th percentile, 90th percentile, and SD ADC values, as well as skewness, kurtosis, and entropy. Comparisons of these parameters were made by one-way ANOVA, t test, and ROC curves analysis. ADC histogram parameters differentiated eight of 10 pairs of renal tumors. Three subtype pairs (clear cell RCC vs papillary RCC, clear cell RCC vs chromophobe RCC, and clear cell RCC vs minimal fat AML) were differentiated by mean ADC. However, five other subtype pairs (clear cell RCC vs oncocytoma, papillary RCC vs minimal fat AML, papillary RCC vs oncocytoma, chromophobe RCC vs minimal fat AML, and chromophobe RCC vs oncocytoma) were differentiated by histogram distribution parameters exclusively (all p < 0.05). Mean ADC, median ADC, 75th and 90th percentile ADC, SD ADC, and entropy of malignant tumors were significantly higher than those of benign tumors (all p < 0.05). Combination of mean ADC with histogram parameters yielded the highest AUC (0.851; sensitivity, 80.0%; specificity, 86.1%). Quantitative volumetric ADC histogram analysis may help differentiate various subtypes of small solid renal tumors, including benign and malignant lesions.
Baseline hematology and serum biochemistry results for Indian leopards (Panthera pardus fusca)
Shanmugam, Arun Attur; Muliya, Sanath Krishna; Deshmukh, Ajay; Suresh, Sujay; Nath, Anukul; Kalaignan, Pa; Venkataravanappa, Manjunath; Jose, Lyju
2017-01-01
Aim: The aim of the study was to establish the baseline hematology and serum biochemistry values for Indian leopards (Panthera pardus fusca), and to assess the possible variations in these parameters based on age and gender. Materials and Methods: Hemato-biochemical test reports from a total of 83 healthy leopards, carried out as part of routine health evaluation in Bannerghatta Biological Park and Manikdoh Leopard Rescue Center, were used to establish baseline hematology and serum biochemistry parameters for the subspecies. The hematological parameters considered for the analysis included hemoglobin (Hb), packed cell volume, total erythrocyte count (TEC), total leukocyte count (TLC), mean corpuscular volume (MCV), mean corpuscular Hb (MCH), and MCH concentration. The serum biochemistry parameters considered included total protein (TP), albumin, globulin, aspartate aminotransferase, alanine aminotransferase (ALT), blood urea nitrogen, creatinine, triglycerides, calcium, and phosphorus. Results: Even though few differences were observed in hematologic and biochemistry values between male and female Indian leopards, the differences were statistically not significant. Effects of age, however, were evident in relation to many hematologic and biochemical parameters. Sub-adults had significantly greater values for Hb, TEC, and TLC compared to adults and geriatric group, whereas they had significantly lower MCV and MCH compared to adults and geriatric group. Among, serum biochemistry parameters the sub-adult age group was observed to have significantly lower values for TP and ALT than adult and geriatric leopards. Conclusion: The study provides a comprehensive analysis of hematologic and biochemical parameters for Indian leopards. Baselines established here will permit better captive management of the subspecies, serve as a guide to assess the health and physiological status of the free ranging leopards, and may contribute valuable information for making effective management decisions during translocation or rehabilitation process. PMID:28831229
Assessment of Some Immune Parameters in Occupationally Exposed Nuclear Power Plants Workers
Panova, Delyana; Djounova, Jana; Rupova, Ivanka; Penkova, Kalina
2015-01-01
The purpose of this article is to analyze the results of a 10-year survey of the radiation effects of some immune parameters of occupationally exposed personnel from the Nuclear Power Plant “Kozloduy”, Bulgaria. 438 persons working in NPP with cumulative doses between 0.06 mSv and 766.36mSv and a control group with 65 persons were studied. Flow cytometry measurements of T, B, natural killer (NK) and natural killer T (NKT) cell lymphocyte populations were performed. Data were interpreted with regard to cumulative doses, length of service and age. The average values of the studied parameters of cellular immunity were in the reference range relative to age and for most of the workers were not significantly different from the control values. Low doses of ionizing radiation showed some trends of change in the number of CD3+CD4+ helper-inducer lymphocytes, CD3+ CD8+ and NKT cell counts. The observed changes in some of the studied parameters could be interpreted in terms of adaptation processes at low doses. At doses above 100–200 mSv, compensatory mechanisms might be involved to balance deviations in lymphocyte subsets. The observed variations in some cases could not be attributed only to the radiation exposure because of the impact of a number of other exogenous and endogenous factors on the immune system. PMID:26675014
Aldemir, Mustafa; Karaguzel, Ersagun; Okulu, Emrah; Gudeloglu, Ahmet; Ener, Kemal; Ozayar, Asim; Erel, Ozcan
2015-01-01
We evaluated and compared the serum oxidative stress and antioxidant enzymes in patients with renal cell carcinoma (RCC) and the control group. The prospective study consisted of 97 patients with RCC (Group 1) and 80 age and sex matched healthy volunteers (Group 2). Group 1 and 2 were compared concerning serum mean total oxidant status (TOS), total antioxidant capacity (TAC), paraoxonase-1 (PON-1), arylesterase, total thiol, catalase (CAT), myeloperoxidase (MPO) and ceruloplasmin. Patients' mean age was 58.5 ±12.3 and 56.9 ±15.8 years, respectively, in Group 1 and 2. No statistically significant differences were detected between the groups in terms of oxidative stress parameters and antioxidant capacity measured in the serum of patients including, TOS, TAC, PON1, arylesterase, total thiol, CAT, MPO, and ceruloplasmin levels (p >0.05 for all parameters). The PON-1 value was significantly higher in patients with pT1 stage than pT3 stage (p = 0.007). The arylesterase value was significantly higher in patients with Fuhrman's nuclear grade 3 than grade 2 (p = 0.035). There was no correlation between these parameters level and Fuhrman's nuclear grade, stage, or histopathological tumor type. Our results demonstrated that evaluation of these parameters in the serum of patients with localized RCC may not be used as a marker to discriminate between patients with RCC and healthy people.
Wu, Jun Jie; Wu, Weiju; Tholozan, Frederique M.; Saunter, Christopher D.; Girkin, John M.; Quinlan, Roy A.
2015-01-01
We present a mathematical (ordered pull-through; OPT) model of the cell-density profile for the mammalian lens epithelium together with new experimental data. The model is based upon dimensionless parameters, an important criterion for inter-species comparisons where lens sizes can vary greatly (e.g. bovine (approx. 18 mm); mouse (approx. 2 mm)) and confirms that mammalian lenses scale with size. The validated model includes two parameters: β/α, which is the ratio of the proliferation rate in the peripheral and in the central region of the lens; and γGZ, a dimensionless pull-through parameter that accounts for the cell transition and exit from the epithelium into the lens body. Best-fit values were determined for mouse, rat, rabbit, bovine and human lens epithelia. The OPT model accounts for the peak in cell density at the periphery of the lens epithelium, a region where cell proliferation is concentrated and reaches a maximum coincident with the germinative zone. The β/α ratio correlates with the measured FGF-2 gradient, a morphogen critical to lens cell survival, proliferation and differentiation. As proliferation declines with age, the OPT model predicted age-dependent changes in cell-density profiles, which we observed in mouse and human lenses. PMID:26236824
Hartveit, Espen; Veruki, Margaret Lin
2010-03-15
Accurate measurement of the junctional conductance (G(j)) between electrically coupled cells can provide important information about the functional properties of coupling. With the development of tight-seal, whole-cell recording, it became possible to use dual, single-electrode voltage-clamp recording from pairs of small cells to measure G(j). Experiments that require reduced perturbation of the intracellular environment can be performed with high-resistance pipettes or the perforated-patch technique, but an accompanying increase in series resistance (R(s)) compromises voltage-clamp control and reduces the accuracy of G(j) measurements. Here, we present a detailed analysis of methodologies available for accurate determination of steady-state G(j) and related parameters under conditions of high R(s), using continuous or discontinuous single-electrode voltage-clamp (CSEVC or DSEVC) amplifiers to quantify the parameters of different equivalent electrical circuit model cells. Both types of amplifiers can provide accurate measurements of G(j), with errors less than 5% for a wide range of R(s) and G(j) values. However, CSEVC amplifiers need to be combined with R(s)-compensation or mathematical correction for the effects of nonzero R(s) and finite membrane resistance (R(m)). R(s)-compensation is difficult for higher values of R(s) and leads to instability that can damage the recorded cells. Mathematical correction for R(s) and R(m) yields highly accurate results, but depends on accurate estimates of R(s) throughout an experiment. DSEVC amplifiers display very accurate measurements over a larger range of R(s) values than CSEVC amplifiers and have the advantage that knowledge of R(s) is unnecessary, suggesting that they are preferable for long-duration experiments and/or recordings with high R(s). Copyright (c) 2009 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sobieszuk, Paweł; Zamojska-Jaroszewicz, Anna; Makowski, Łukasz
2017-12-01
The influence of the organic loading rate (also known as active anodic chamber volume) on bioelectricity generation in a continuous, two-chamber microbial fuel cell for the treatment of synthetic wastewater, with glucose as the only carbon source, was examined. Ten sets of experiments with different combinations of hydraulic retention times (0.24-1.14 d) and influent chemical oxygen demand concentrations were performed to verify the impact of organic loading rate on the voltage generation capacity of a simple dual-chamber microbial fuel cell working in continuous mode. We found that there is an optimal hydraulic retention time value at which the maximum voltage is generated: 0.41 d. However, there were no similar effects, in terms of voltage generation, when a constant hydraulic retention time with different influent chemical oxygen demand of wastewater was used. The obtained maximal voltage value (600 mV) has also been compared to literature data. Computational fluid dynamics (CFD) was used to calculate the fluid flow and the exit age distribution of fluid elements in the reactor to explain the obtained experimental results and identify the crucial parameters for the design of bioreactors on an industrial scale.
Genetic parameters for test day somatic cell score in Brazilian Holstein cattle.
Costa, C N; Santos, G G; Cobuci, J A; Thompson, G; Carvalheira, J G V
2015-12-29
Selection for lower somatic cell count has been included in the breeding objectives of several countries in order to increase resistance to mastitis. Genetic parameters of somatic cell scores (SCS) were estimated from the first lactation test day records of Brazilian Holstein cows using random-regression models with Legendre polynomials (LP) of the order 3-5. Data consisted of 87,711 TD produced by 10,084 cows, sired by 619 bulls calved from 1993 to 2007. Heritability estimates varied from 0.06 to 0.14 and decreased from the beginning of the lactation up to 60 days in milk (DIM) and increased thereafter to the end of lactation. Genetic correlations between adjacent DIM were very high (>0.83) but decreased to negative values, obtained with LP of order four, between DIM in the extremes of lactation. Despite the favorable trend, genetic changes in SCS were not significant and did not differ among LP. There was little benefit of fitting an LP of an order >3 to model animal genetic and permanent environment effects for SCS. Estimates of variance components found in this study may be used for breeding value estimation for SCS and selection for mastitis resistance in Holstein cattle in Brazil.
Subcellular Biological Effects of Nanosecond Pulsed Electric Fields
NASA Astrophysics Data System (ADS)
Kolb, Juergen F.; Stacey, Michael
Membranes of biological cells can be charged by exposure to pulsed electric fields. After the potential difference across the barrier reaches critical values on the order of 1 V, pores will form. For moderate pulse parameters of duration and amplitude, the effect is limited to the outer cell membrane. With the exposure to nanosecond pulses of several tens of kilovolts per centimeter, a similar effect is also expected for subcellular membranes and structures. Cells will respond to the disruption by different biochemical processes. This offers possibilities for the development of novel medical therapies, the manipulation of cells and microbiological decontamination.
Kinetics of Escherichia coli destruction by microwave irradiation.
Fujikawa, H; Ushioda, H; Kudo, Y
1992-01-01
The kinetics of destruction of Escherichia coli cells suspended in a solution by microwave irradiation with a microwave oven were studied. During radiation at several powers, the temperature of 0.01 M phosphate buffer (PB), pH 7.0, in a glass beaker increased linearly at a rate of A (degrees Centigrade per second) according to the exposure time. When E. coli cells suspended in PB were exposed in the same beaker, the number of viable cells decreased according to the exposure time and the power used. The survival curve was approximated to a set of three linear parts. For each part, a rate constant of destruction (k) and an extrapolated starting temperature (T0) at several powers were estimated. Thereafter, the relationships between A and k and between A and T0 were studied. When a flat petri dish was used, the A value of exposed PB was lower and bacterial destruction was inhibited; the survival curve was similar to a curve predicted from the A value by using the relationships between the parameters. As the concentration of salt in the solution increased (from 0 to 1.35 M), the A value decreased and bacterial destruction was more suppressed. No remarkable difference between the destruction profiles for microwave exposure and conventional heating, which had the potential to generate an equal A value, was detected. These results showed that the parameter A of an irradiated solution is essential when kinetics of bacterial destruction by microwave exposure are studied and that the destruction profile can be interpreted mostly by means of thermal effects. PMID:1575494
Semi-analytical solutions of the Schnakenberg model of a reaction-diffusion cell with feedback
NASA Astrophysics Data System (ADS)
Al Noufaey, K. S.
2018-06-01
This paper considers the application of a semi-analytical method to the Schnakenberg model of a reaction-diffusion cell. The semi-analytical method is based on the Galerkin method which approximates the original governing partial differential equations as a system of ordinary differential equations. Steady-state curves, bifurcation diagrams and the region of parameter space in which Hopf bifurcations occur are presented for semi-analytical solutions and the numerical solution. The effect of feedback control, via altering various concentrations in the boundary reservoirs in response to concentrations in the cell centre, is examined. It is shown that increasing the magnitude of feedback leads to destabilization of the system, whereas decreasing this parameter to negative values of large magnitude stabilizes the system. The semi-analytical solutions agree well with numerical solutions of the governing equations.
Dynamic Modeling of Cell-Free Biochemical Networks Using Effective Kinetic Models
2015-03-16
sensitivity value was the maximum uncertainty in that value estimated by the Sobol method. 2.4. Global Sensitivity Analysis of the Reduced Order Coagulation...sensitivity analysis, using the variance-based method of Sobol , to estimate which parameters controlled the performance of the reduced order model [69]. We...Environment. Comput. Sci. Eng. 2007, 9, 90–95. 69. Sobol , I. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates
Rasnick, David
2002-07-01
The autocatalyzed progression of aneuploidy accounts for all cancer-specific phenotypes, the Hayflick limit of cultured cells, carcinogen-induced tumors in mice, the age distribution of human cancer, and multidrug-resistance. Here aneuploidy theory addresses tumor formation. The logistic equation, phi(n)(+1) = rphi(n) (1 - phi(n)), models the autocatalyzed progression of aneuploidy in vivo and in vitro. The variable phi(n)(+1) is the average aneuploid fraction of a population of cells at the n+1 cell division and is determined by the value at the nth cell division. The value r is the growth control parameter. The logistic equation was used to compute the probability distribution for values of phi after numerous divisions of aneuploid cells. The autocatalyzed progression of aneuploidy follows the laws of deterministic chaos, which means that certain values of phi are more probable than others. The probability map of the logistic equation shows that: 1) an aneuploid fraction of at least 0.30 is necessary to sustain a population of cancer cells; and 2) the most likely aneuploid fraction after many population doublings is 0.70, which is equivalent to a DNA(index)=1.7, the point of maximum disorder of the genome that still sustains life. Aneuploidy theory also explains the lack of immune surveillance and the failure of chemotherapy.
Rodríguez-Montaño, Óscar L; Cortés-Rodríguez, Carlos Julio; Uva, Antonio E; Fiorentino, Michele; Gattullo, Michele; Monno, Giuseppe; Boccaccio, Antonio
2018-07-01
Enhancing the performance of scaffolds for bone regeneration requires a multidisciplinary approach involving competences in the fields of Biology, Medicine and Engineering. A number of studies have been conducted to investigate the influence of scaffolds design parameters on their mechanical and biological response. The possibilities offered by the additive manufacturing techniques to fabricate sophisticated and very complex microgeometries that until few years ago were just a geometrical abstraction, led many researchers to design scaffolds made from different unit cell geometries. The aim of this work is to find, based on mechanobiological criteria and for different load regimes, the optimal geometrical parameters of scaffolds made from beam-based repeating unit cells, namely, truncated cuboctahedron, truncated cube, rhombic dodecahedron and diamond. The performance, -expressed in terms of percentage of the scaffold volume occupied by bone-, of the scaffolds based on these unit cells was compared with that of scaffolds based on other unit cell geometries such as: hexahedron and rhombicuboctahedron. A very intriguing behavior was predicted for the truncated cube unit cell that allows the formation of large amounts of bone for low load values and of very small amounts for the medium-high ones. For high values of load, scaffolds made from hexahedron unit cells were predicted to favor the formation of the largest amounts of bone. In a clinical context where medical solutions become more and more customized, this study offers a support to the surgeon in the choice of the best scaffold to be implanted in a patient-specific anatomic region. Copyright © 2018 Elsevier Ltd. All rights reserved.
Effect of spatial coherence of light on the photoregulation processes in cells
NASA Astrophysics Data System (ADS)
Budagovsky, A. V.; Solovykh, N. V.; Yankovskaya, M. B.; Maslova, M. V.; Budagovskaya, O. N.; Budagovsky, I. A.
2016-07-01
The effect of the statistical properties of light on the value of the photoinduced reaction of the biological objects, which differ in the morphological and physiological characteristics, the optical properties, and the size of cells, was studied. The fruit of apple trees, the pollen of cherries, the microcuttings of blackberries in vitro, and the spores and the mycelium of fungi were irradiated by quasimonochromatic light fluxes with identical energy parameters but different values of coherence length and radius of correlation. In all cases, the greatest stimulation effect occurred when the cells completely fit in the volume of the coherence of the field, while both temporal and spatial coherence have a significant and mathematically certain impact on the physiological activity of cells. It was concluded that not only the spectral, but also the statistical (coherent) properties of the acting light play an important role in the photoregulation process.
NASA Astrophysics Data System (ADS)
Oyarbide, E.; Bernal, C.; Molina, P.; Jiménez, L. A.; Gálvez, R.; Martínez, A.
2016-01-01
Ultracapacitors are low voltage devices and therefore, for practical applications, they need to be used in modules of series-connected cells. Because of the inherent manufacturing tolerance of the capacitance parameter of each cell, and as the maximum voltage value cannot be exceeded, the module requires inter-cell voltage equalization. If the intended application suffers repeated fast charging/discharging cycles, active equalization circuits must be rated to full power, and thus the module becomes expensive. Previous work shows that a series connection of several sets of paralleled ultracapacitors minimizes the dispersion of equivalent capacitance values, and also the voltage differences between capacitors. Thus the overall life expectancy is improved. This paper proposes a method to distribute ultracapacitors with a number partitioning-based strategy to reduce the dispersion between equivalent submodule capacitances. Thereafter, the total amount of stored energy and/or the life expectancy of the device can be considerably improved.
Parametric Phase-Sensitive Detector Using Two-cell SQUID
2010-08-01
an attenuator of -20 dB. The microwave was fed into the coplanar resonator by a coplanar capacitance of 9 fF, and corresponding response was coupled...transmission line between the two coupled coplanar capacitances . With a network analyzer, the resonant frequency was confirmed to be 8.985 GHz and the...microwave directional sensors based on two-cell SQUIDs. Two SQUID circuits with different values of McCumber parameter βc have been tested. Observed
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chvetsov, A; Sandison, G; Schwartz, J
Purpose: Combination of serial tumor imaging with radiobiological modeling can provide more accurate information on the nature of treatment response and what underlies resistance. The purpose of this article is to improve the algorithms related to imaging-based radiobilogical modeling of tumor response. Methods: Serial imaging of tumor response to radiation therapy represents a sum of tumor cell sensitivity, tumor growth rates, and the rate of cell loss which are not separated explicitly. Accurate treatment response assessment would require separation of these radiobiological determinants of treatment response because they define tumor control probability. We show that the problem of reconstruction ofmore » radiobiological parameters from serial imaging data can be considered as inverse ill-posed problem described by the Fredholm integral equation of the first kind because it is governed by a sum of several exponential processes. Therefore, the parameter reconstruction can be solved using regularization methods. Results: To study the reconstruction problem, we used a set of serial CT imaging data for the head and neck cancer and a two-level cell population model of tumor response which separates the entire tumor cell population in two subpopulations of viable and lethally damage cells. The reconstruction was done using a least squared objective function and a simulated annealing algorithm. Using in vitro data for radiobiological parameters as reference data, we shown that the reconstructed values of cell surviving fractions and potential doubling time exhibit non-physical fluctuations if no stabilization algorithms are applied. The variational regularization allowed us to obtain statistical distribution for cell surviving fractions and cell number doubling times comparable to in vitro data. Conclusion: Our results indicate that using variational regularization can increase the number of free parameters in the model and open the way to development of more advanced algorithms which take into account tumor heterogeneity, for example, related to hypoxia.« less
The effect of pulsed IR-light on the rheological parameters of blood in vitro.
Nawrocka-Bogusz, Honorata; Marcinkowska-Gapińska, Anna
2014-01-01
In this study we attempted to assess the effect of light of 855 nm wavelength (IR-light) on the rheological parameters of blood in vitro. As an anticoagulant, heparin was used. The source of IR-light was an applicator connected to the special generator--Viofor JPS®. The blood samples were irradiated for 30 min. During the irradiation the energy density was growing at twelve-second intervals starting from 1.06 J/cm2 to 8.46 J/cm2, then the energy density dropped to the initial value; the process was repeated cyclically. The study of blood viscosity was carried out with a Contraves LS40 oscillatory-rotational rheometer, with a decreasing shearing rate from 100 to 0.01 s⁻¹ over 5 min (flow curve) and applying constant frequency oscillations f=0.5 Hz with decreasing shear amplitude ˙γ0 (viscoelasticity measurements). The analysis of the results of rotational measurements was based on the assessment of hematocrit, plasma viscosity, whole blood viscosity at four selected shear rates and on the basis of the numerical values of parameters from Quemada's rheological model: k0 (indicating red cell aggregability), k∞ (indicating red cell rigidity) and ˙γc (the value of the shear rate for which the rouleaux formation begins). In oscillatory experiments we estimated viscous and elastic components of the complex blood viscosity in the same groups of patients. We observed a decrease of the viscous component of complex viscosity (η') at ˙γ0=0.2 s⁻¹, while other rheological parameters, k0, k∞, and relative blood viscosity at selected shear rates showed only a weak tendency towards smaller values after irradiation. The IR-light effect on the rheological properties of blood in vitro turned out to be rather neutral in the studied group of patients.
NASA Astrophysics Data System (ADS)
Nakayama, Masaki; Katano, Hiroaki; Sato, Haruki
2014-05-01
A precise determination of the critical temperature and density for technically important fluids would be possible on the basis of the digital image for the visual observation of the phase boundary in the vicinity of the critical point since the sensitivity and resolution are higher than those of naked eyes. In addition, the digital image can avoid the personal uncertainty of an observer. A strong density gradient occurs in a sample cell at the critical point due to gravity. It was carefully assessed to determine the critical density, where the density profile in the sample cell can be observed from the luminance profile of a digital image. The density-gradient profile becomes symmetric at the critical point. One of the best fluids, whose thermodynamic properties have been measured with the highest reliability among technically important fluids, would be carbon dioxide. In order to confirm the reliability of the proposed method, the critical temperature and density of carbon dioxide were determined using the digital image. The critical temperature and density values of carbon dioxide are ( and ( kg m, respectively. The critical temperature and density values agree with the existing best values within estimated uncertainties. The reliability of the method was confirmed. The critical pressure, 7.3795 MPa, corresponding to the determined critical temperature of 304.143 K is also proposed. A new set of parameters for the vapor-pressure equation is also provided.
A real-time measurement system for parameters of live biology metabolism process with fiber optics
NASA Astrophysics Data System (ADS)
Tao, Wei; Zhao, Hui; Liu, Zemin; Cheng, Jinke; Cai, Rong
2010-08-01
Energy metabolism is one of the basic life activities of cellular in which lactate, O2 and CO2 will be released into the extracellular environment. By monitoring the quantity of these parameters, the mitochondrial performance will be got. A continuous measurement system for the concentration of O2, CO2 and PH value is introduced in this paper. The system is made up of several small-sized fiber optics biosensors corresponding to the container. The setup of the system and the principle of measurement of several parameters are explained. The setup of the fiber PH sensor based on principle of light absorption is also introduced in detail and some experimental results are given. From the results we can see that the system can measure the PH value precisely suitable for cell cultivation. The linear and repeatable accuracies are 3.6% and 6.7% respectively, which can fulfill the measurement task.
The evolution of phase holographic imaging from a research idea to publicly traded company
NASA Astrophysics Data System (ADS)
Egelberg, Peter
2018-02-01
Recognizing the value and unmet need for label-free kinetic cell analysis, Phase Holograhic Imaging defines its market segment as automated, easy to use and affordable time-lapse cytometry. The process of developing new technology, meeting customer expectations, sources of corporate funding and R&D adjustments prompted by field experience will be reviewed. Additionally, it is discussed how relevant biological information can be extracted from a sequence of quantitative phase images, with negligible user assistance and parameter tweaking, to simultaneously provide cell culture characteristics such as cell growth rate, viability, division rate, mitosis duration, phagocytosis rate, migration, motility and cell-cell adherence without requiring any artificial cell manipulation.
Computing the motor torque of Escherichia coli.
Das, Debasish; Lauga, Eric
2018-06-13
The rotary motor of bacteria is a natural nano-technological marvel that enables cell locomotion by powering the rotation of semi-rigid helical flagellar filaments in fluid environments. It is well known that the motor operates essentially at constant torque in counter-clockwise direction but past work have reported a large range of values of this torque. Focusing on Escherichia coli cells that are swimming and cells that are stuck on a glass surface for which all geometrical and environmental parameters are known (N. C. Darnton et al., J. Bacteriol., 2007, 189, 1756-1764), we use two validated numerical methods to compute the value of the motor torque consistent with experiments. Specifically, we use (and compare) a numerical method based on the boundary integral representation of Stokes flow and also develop a hybrid method combining boundary element and slender body theory to model the cell body and flagellar filament, respectively. Using measured rotation speed of the motor, our computations predict a value of the motor torque in the range 440 pN nm to 829 pN nm, depending critically on the distance between the flagellar filaments and the nearby surface.
Physical-mechanical image of the cell surface on the base of AFM data in contact mode
NASA Astrophysics Data System (ADS)
Starodubtseva, M. N.; Starodubtsev, I. E.; Yegorenkov, N. I.; Kuzhel, N. S.; Konstantinova, E. E.; Chizhik, S. A.
2017-10-01
Physical and mechanical properties of the cell surface are well-known markers of a cell state. The complex of the parameters characterizing the cell surface properties, such as the elastic modulus (E), the parameters of adhesive (Fa), and friction (Ff) forces can be measured using atomic force microscope (AFM) in a contact mode and form namely the physical-mechanical image of the cell surface that is a fundamental element of the cell mechanical phenotype. The paper aims at forming the physical-mechanical images of the surface of two types of glutaraldehyde-fixed cancerous cells (human epithelial cells of larynx carcinoma, HEp-2c cells, and breast adenocarcinoma, MCF-7 cells) based on the data obtained by AFM in air and revealing the basic difference between them. The average values of friction, elastic and adhesive forces, and the roughness of lateral force maps, as well as dependence of the fractal dimension of lateral force maps on Z-scale factor have been studied. We have revealed that the response of microscale areas of the HEp-2c cell surface having numerous microvilli to external mechanical forces is less expressed and more homogeneous in comparison with the response of MCF-7 cell surface.
Lin, Yong-Chin; Tayag, Carina Miranda; Huang, Chien-Lun; Tsui, Wen-Ching; Chen, Jiann-Chu
2010-12-01
White shrimp Litopenaeus vannamei which had been immersed in seawater (35‰, pH 8.2) containing the hot-water extract of Spirulina platensis at 0 (control), 200, 400, and 600 mg L(-1) for 3 h, were transferred to seawater at pH 6.8, and the immune parameters and transcripts of the lipopolysaccharide- and β-glucan-binding protein (LGBP), peroxinectin (PX), and integrin β (IB) were examined 6-96 h post-transfer. Shrimp with no exposure to the hot-water extract and no pH change served as the background control. Results indicated that the hyaline cells, granular cells (including semi-granular cells), total haemocyte count, phenoloxidase activity, respiratory burst, superoxide dismutase activity, glutathione peroxidase activity, and lysozyme activity of shrimp transferred to seawater at pH 6.8 significantly decreased to the lowest at 6 h post-transfer. These immune parameters of shrimp immersed in 600 mg L(-1) of the extract were significantly higher than those of control shrimp at 24-96 h post-transfer, and had returned to the background values earlier at 48-72 h post-transfer with significant transcripts of LGBP, PX, and IB at 24, 6, and 24 h, respectively, whereas these parameters of control shrimp returned to the original values at ≥96 h post-transfer. Copyright © 2010 Elsevier Ltd. All rights reserved.
Mechanistic equivalent circuit modelling of a commercial polymer electrolyte membrane fuel cell
NASA Astrophysics Data System (ADS)
Giner-Sanz, J. J.; Ortega, E. M.; Pérez-Herranz, V.
2018-03-01
Electrochemical impedance spectroscopy (EIS) has been widely used in the fuel cell field since it allows deconvolving the different physic-chemical processes that affect the fuel cell performance. Typically, EIS spectra are modelled using electric equivalent circuits. In this work, EIS spectra of an individual cell of a commercial PEM fuel cell stack were obtained experimentally. The goal was to obtain a mechanistic electric equivalent circuit in order to model the experimental EIS spectra. A mechanistic electric equivalent circuit is a semiempirical modelling technique which is based on obtaining an equivalent circuit that does not only correctly fit the experimental spectra, but which elements have a mechanistic physical meaning. In order to obtain the aforementioned electric equivalent circuit, 12 different models with defined physical meanings were proposed. These equivalent circuits were fitted to the obtained EIS spectra. A 2 step selection process was performed. In the first step, a group of 4 circuits were preselected out of the initial list of 12, based on general fitting indicators as the determination coefficient and the fitted parameter uncertainty. In the second step, one of the 4 preselected circuits was selected on account of the consistency of the fitted parameter values with the physical meaning of each parameter.
Micronuclei versus Chromosomal Aberrations Induced by X-Ray in Radiosensitive Mammalian Cells.
Plamadeala, Cristina; Wojcik, Andrzej; Creanga, Dorina
2015-03-01
An experimental study was accomplished to compare estimation methods of ionizing radiations genotoxicity in mammalian cell cultures by means of two cytogenetic parameters with focus on aberrant cells characterized by multiple chromosomal damages. In vitro study was carried out on the genotoxicity of low-medium doses of 190 kV X-rays absorbed in Chinese hamster ovary cell cultures. Micronuclei and ten types of chromosomal aberrations were identified with Giemsa dying and optical microscope screening. The first parameter consisting in micronuclei relative frequency has led to higher linear correlation coefficient than the second one consistent with chromosomal aberrations relative frequency. However, the latter parameter estimated as the sum of all chromosomal aberrations appeared to be more sensitive to radiation dose increasing in the studied dose range, from 0 to 3 Gy. The number of micronuclei occurring simultaneously in a single cell was not higher than 3, while the number of chromosomal aberrations observed in the same cell reached the value of 5 for doses over 1 Gy. Polynomial dose-response curves were evidenced for cells with Ni micronuclei (i=1,3) while non-monotonic curves were evidenced through detailed analysis of aberrant cells with Ni chromosomal changes [Formula: see text] - in concordance with in vitro studies from literature. The investigation could be important for public health issues where micronucleus screening is routinely applied but also for research purposes where various chromosomal aberrations could be of particular interest.
Micronuclei versus Chromosomal Aberrations Induced by X-Ray in Radiosensitive Mammalian Cells
PLAMADEALA, Cristina; WOJCIK, Andrzej; CREANGA, Dorina
2015-01-01
Background: An experimental study was accomplished to compare estimation methods of ionizing radiations genotoxicity in mammalian cell cultures by means of two cytogenetic parameters with focus on aberrant cells characterized by multiple chromosomal damages. Methods: In vitro study was carried out on the genotoxicity of low-medium doses of 190 kV X-rays absorbed in Chinese hamster ovary cell cultures. Micronuclei and ten types of chromosomal aberrations were identified with Giemsa dying and optical microscope screening. Results: The first parameter consisting in micronuclei relative frequency has led to higher linear correlation coefficient than the second one consistent with chromosomal aberrations relative frequency. However, the latter parameter estimated as the sum of all chromosomal aberrations appeared to be more sensitive to radiation dose increasing in the studied dose range, from 0 to 3 Gy. The number of micronuclei occurring simultaneously in a single cell was not higher than 3, while the number of chromosomal aberrations observed in the same cell reached the value of 5 for doses over 1 Gy. Conclusion: Polynomial dose-response curves were evidenced for cells with Ni micronuclei (i=1,3) while non-monotonic curves were evidenced through detailed analysis of aberrant cells with Ni chromosomal changes (i=(1,5)¯) - in concordance with in vitro studies from literature. The investigation could be important for public health issues where micronucleus screening is routinely applied but also for research purposes where various chromosomal aberrations could be of particular interest. PMID:25905075
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hosking, Jonathan R. M.; Natarajan, Ramesh
The computer creates a utility demand forecast model for weather parameters by receiving a plurality of utility parameter values, wherein each received utility parameter value corresponds to a weather parameter value. Determining that a range of weather parameter values lacks a sufficient amount of corresponding received utility parameter values. Determining one or more utility parameter values that corresponds to the range of weather parameter values. Creating a model which correlates the received and the determined utility parameter values with the corresponding weather parameters values.
Quantitative regulation of B cell division destiny by signal strength.
Turner, Marian L; Hawkins, Edwin D; Hodgkin, Philip D
2008-07-01
Differentiation to Ab secreting and isotype-switched effector cells is tightly linked to cell division and therefore the degree of proliferation strongly influences the nature of the immune response. The maximum number of divisions reached, termed the population division destiny, is stochastically distributed in the population and is an important parameter in the quantitative outcome of lymphocyte responses. In this study, we further assessed the variables that regulate B cell division destiny in vitro in response to T cell- and TLR-dependent stimuli. Both the concentration and duration of stimulation were able to regulate the average maximum number of divisions undergone for each stimulus. Notably, a maximum division destiny was reached during provision of repeated saturating stimulation, revealing that an intrinsic limit to proliferation exists even under these conditions. This limit was linked directly to division number rather than time of exposure to stimulation and operated independently of the survival regulation of the cells. These results demonstrate that a B cell population's division destiny is regulable by the stimulatory conditions up to an inherent maximum value. Division destiny is a crucial parameter in regulating the extent of B cell responses and thereby also the nature of the immune response mounted.
Maioli, Maria Christina Paixão; Soares, Andrea Ribeiro; Bedirian, Ricardo; Alves, Ursula David; de Lima Marinho, Cirlene; Lopes, Agnaldo José
2015-01-01
Objective To evaluate the association between clinical, pulmonary, and cardiovascular findings in patients with sickle cell disease and, secondarily, to compare these findings between sickle cell anemia patients and those with other sickle cell diseases. Methods Fifty-nine adults were included in this cross-sectional study; 47 had sickle cell anemia, and 12 had other sickle cell diseases. All patients underwent pulmonary function tests, chest computed tomography, and echocardiography. Results Abnormalities on computed tomography, echocardiography, and pulmonary function tests were observed in 93.5%, 75.0%; and 70.2% of patients, respectively. A higher frequency of restrictive abnormalities was observed in patients with a history of acute chest syndrome (85% vs. 21.6%; p-value < 0.0001) and among patients with increased left ventricle size (48.2% vs. 22.2%; p-value = 0.036), and a higher frequency of reduced respiratory muscle strength was observed in patients with a ground-glass pattern (33.3% vs. 4.3%; p-value = 0.016). Moreover, a higher frequency of mosaic attenuation was observed in patients with elevated tricuspid regurgitation velocity (61.1% vs. 24%; p-value = 0.014). Compared to patients with other sickle cell diseases, sickle cell anemia patients had suffered increased frequencies of acute pain episodes, and acute chest syndrome, and exhibited mosaic attenuation on computed tomography, and abnormalities on echocardiography. Conclusion A significant interrelation between abnormalities of the pulmonary and cardiovascular systems was observed in sickle cell disease patients. Furthermore, the severity of the cardiopulmonary parameters among patients with sickle cell anemia was greater than that of patients with other sickle cell diseases. PMID:26969771
Reimann, R; Rübenthaler, J; Hristova, P; Staehler, M; Reiser, M; Clevert, D A
2015-10-16
The aim of this study was to analyze the histological subtypes of clear cell renal cell carcinoma (RCC) examined by means of contrast-enhanced ultrasound (CEUS) and a second generation blood pool agent (SonoVue®, Bracco, Milan, Italy) during the pre-operative phase. 29 patients with histologically proven subtypes of clear cell RCC were examined. A total of three patients were diagnosed with highly differentiated clear cell RCC, 21 out of 29 cases with moderately differentiated clear cell RCC and five out of 29 patients had insufficiently differentiated clear cell RCC. An experienced radiologist examined the patients with CEUS. The following parameters were analyzed: maximum signal intensity (PEAK), time elapsed until PEAK is reached (MTT), local blood flow (RBF), area under the time intensity curve (AUC) and the signal intensity (SI) during the course of time. For the groups all comparisons are made based on healthy renal parenchyma. In the clear cell RCC significant differences (significance level p < 0.05) between cancerous tissue and the healthy renal parenchyma were noticed in all four parameters. Therefore, the clear cell RCC stands out due to its reduced blood volume. However, it reached the PEAK reading relatively rapidly and its signal intensity was always lower than that of the healthy renal parenchyma. In the arterial phase retarded absorption of the contrast agent was observed, followed by fast washing out of the contrast agent bubbles.In all three histological subgroups no significant differences were noticed in PEAK and SI. However, the diagrams showed the possible bias, that the group of the insufficiently differentiated clear cell RCC had the highest PEAK-value and the highest signal intensity when compared with highly and moderately differentiated clear cell RCC. Our study suggests that CEUS may be an additional tool for non-invasive characterisation and differentiation of the three histological subtypes of clear cell RCC. Furthermore, it seems to have an additional diagnostic value in daily clinical.
Stress assessment in captive greylag geese (Anser anser).
Scheiber, I B R; Sterenborg, M; Komdeur, J
2015-05-01
Chronic stress--or, more appropriately, "allostatic overload"--may be physiologically harmful and can cause death in the most severe cases. Animals in captivity are thought to be particularly vulnerable to allostatic overload due to artificial housing and group makeup. Here we attempted to determine if captive greylag geese (Anser anser), housed lifelong in captivity, showed elevated levels of immunoreactive corticosterone metabolites (CORT) and ectoparasites in dropping samples as well as some hematological parameters (hematocrit, packed cell volume, total white blood cell count [TWBC], and heterophil:lymphocyte ratio [H:L]). All of these have been measured as indicators of chronic stress. Furthermore, we correlated the various stress parameters within individuals. Captive geese showed elevated values of CORT and ectoparasites relative to a wild population sampled in the vicinity of the area where the captive flock is held. The elevated levels, however, were by no means at a pathological level and fall well into the range of other published values in wild greylag geese. We found no correlations between any of the variables measured from droppings with any of the ones collected from blood. Among the blood parameters, only the H:L negatively correlated with TWBC. We examine the problem of inferring allostatic overload when measuring only 1 stress parameter, as there is no consistency between various measurements taken. We discuss the different aspects of each of the parameters measured and the extensive individual variation in response to stress as well as the timing at which different systems respond to a stressor and what is actually measured at the time of data collection. We conclude that measuring only 1 stress parameter often is insufficient to evaluate the well-being of both wild and captively housed animals and that collecting behavioral data on stress might be a suitable addition.
NASA Astrophysics Data System (ADS)
Senthil, S.; Madhavan, J.
2015-02-01
In the present paper, attempts were made to grow good quality metaNitroaniline (mNA) and N-3-Nitrophenyl (3-NAA) single crystals. The lattice parameter values from the Powder X-ray diffraction pattern confirms that mNA belongs to orthorhombic crystal system with the unit cell parameter values of a = 6.501 Å, b = 19.330 Å and c = 5.082 Å with space group Pbc21. Similarly the powder XRD data indicates that 3-NAA crystal retained its monoclinic structure with lattice parameter values a = 9.762 Å, b =13.287 Å, c =13.226 Å, and β = 102.99°. Investigation has been carried out to assign the vibrational frequencies of the grown crystals by Fourier Transform infrared spectroscopy technique. The SHG efficiency of mNA and 3NAA was determined by Kurtz and Perry powder technique. The Optical absorption study confirms the suitability of the crystals for device applications. The mechanical properties of the grown crystals have been studied using Vickers microhardness tester.
Atlan, Philippe; Bayar, Mohamed Amine; Lanoy, Emilie; Besse, Benjamin; Planchard, David; Ramon, Jordy; Raynard, Bruno; Antoun, Sami
2017-11-01
Advanced non-small cell lung cancer (NSCLC) is associated with weight loss which may reflect skeletal muscle mass (SMM) and/or total adipose tissue (TAT) depletion. This study aimed to describe changes in body composition (BC) parameters and to identify the factors unrelated to the tumor which modulate them. SMM, TAT, and the proportion of SMM to SMM + TAT were assessed with computed tomography. Estimates of each BC parameter at follow-up initiation and across time were derived from a mixed linear model of repeated measurements with a random intercept and a random slope. The same models were used to assess the independent effect of gender, age, body mass index (BMI), and initial values on changes in each BC parameter. Sixty-four patients with stage III or IV NSCLC were reviewed. The mean ± SD decreases in body weight and SMM were respectively 59 ± 3 g/week (P < 0.03) and 7 mm 2 /m 2 /week (P = 0.0003). During follow-up, no changes were identified in TAT nor in muscle density or in the proportion of SMM to SMM + TAT, estimated at 37 ± 2% at baseline. SMM loss was influenced by initial BMI (P < 0.0001) and SMM values (P = 0.0002): the higher the initial BMI or SMM values, the greater the loss observed. Weight loss was greater when the initial weight was heavier (P < 0.0001). Our results demonstrate that SMM wasting in NSCLC is lower when initial SMM and BMI values are low. These exploratory findings after our attempt to better understand the intrinsic factors associated with muscle mass depletion need to be confirmed in larger studies.
Articular cartilage degeneration classification by means of high-frequency ultrasound.
Männicke, N; Schöne, M; Oelze, M; Raum, K
2014-10-01
To date only single ultrasound parameters were regarded in statistical analyses to characterize osteoarthritic changes in articular cartilage and the potential benefit of using parameter combinations for characterization remains unclear. Therefore, the aim of this work was to utilize feature selection and classification of a Mankin subset score (i.e., cartilage surface and cell sub-scores) using ultrasound-based parameter pairs and investigate both classification accuracy and the sensitivity towards different degeneration stages. 40 punch biopsies of human cartilage were previously scanned ex vivo with a 40-MHz transducer. Ultrasound-based surface parameters, as well as backscatter and envelope statistics parameters were available. Logistic regression was performed with each unique US parameter pair as predictor and different degeneration stages as response variables. The best ultrasound-based parameter pair for each Mankin subset score value was assessed by highest classification accuracy and utilized in receiver operating characteristics (ROC) analysis. The classifications discriminating between early degenerations yielded area under the ROC curve (AUC) values of 0.94-0.99 (mean ± SD: 0.97 ± 0.03). In contrast, classifications among higher Mankin subset scores resulted in lower AUC values: 0.75-0.91 (mean ± SD: 0.84 ± 0.08). Variable sensitivities of the different ultrasound features were observed with respect to different degeneration stages. Our results strongly suggest that combinations of high-frequency ultrasound-based parameters exhibit potential to characterize different, particularly very early, degeneration stages of hyaline cartilage. Variable sensitivities towards different degeneration stages suggest that a concurrent estimation of multiple ultrasound-based parameters is diagnostically valuable. In-vivo application of the present findings is conceivable in both minimally invasive arthroscopic ultrasound and high-frequency transcutaneous ultrasound. Copyright © 2014 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Mermod, Maxime; Bongiovanni, Massimo; Petrova, Tatiana V; Dubikovskaya, Elena A; Simon, Christian; Tolstonog, Genrich; Monnier, Yan
2016-09-01
The use of lymphatic vessel density as a predictor of occult lymph node metastasis (OLNM) in head and neck squamous cell carcinoma (HNSCC) has never been reported. Staining of the specific lymphatic endothelial cells nuclear marker, PROX1, as an indicator of lymphatic vessel density was determined by counting the number of positive cells in squamous cell carcinomas (SCCs) of the oral cavity and the oropharynx with clinically negative necks. Correlation with histopathological data was established. Peritumoral PROX1 lymphatic nuclear count significantly correlated with the detection of OLNM in multivariate analysis (p < .005). The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of this parameter was 60%, 95%, 85%, and 90%, respectively. Peritumoral PROX1 lymphatic nuclear count in primary SCCs of the oral cavity and the oropharynx allows accurate prediction of occult lymph node metastasis. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1407-1415, 2016. © 2016 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
La Russa, D
Purpose: The purpose of this project is to develop a robust method of parameter estimation for a Poisson-based TCP model using Bayesian inference. Methods: Bayesian inference was performed using the PyMC3 probabilistic programming framework written in Python. A Poisson-based TCP regression model that accounts for clonogen proliferation was fit to observed rates of local relapse as a function of equivalent dose in 2 Gy fractions for a population of 623 stage-I non-small-cell lung cancer patients. The Slice Markov Chain Monte Carlo sampling algorithm was used to sample the posterior distributions, and was initiated using the maximum of the posterior distributionsmore » found by optimization. The calculation of TCP with each sample step required integration over the free parameter α, which was performed using an adaptive 24-point Gauss-Legendre quadrature. Convergence was verified via inspection of the trace plot and posterior distribution for each of the fit parameters, as well as with comparisons of the most probable parameter values with their respective maximum likelihood estimates. Results: Posterior distributions for α, the standard deviation of α (σ), the average tumour cell-doubling time (Td), and the repopulation delay time (Tk), were generated assuming α/β = 10 Gy, and a fixed clonogen density of 10{sup 7} cm−{sup 3}. Posterior predictive plots generated from samples from these posterior distributions are in excellent agreement with the observed rates of local relapse used in the Bayesian inference. The most probable values of the model parameters also agree well with maximum likelihood estimates. Conclusion: A robust method of performing Bayesian inference of TCP data using a complex TCP model has been established.« less
Wedenberg, Minna; Lind, Bengt K; Hårdemark, Björn
2013-04-01
The biological effects of particles are often expressed in relation to that of photons through the concept of relative biological effectiveness, RBE. In proton radiotherapy, a constant RBE of 1.1 is usually assumed. However, there is experimental evidence that RBE depends on various factors. The aim of this study is to develop a model to predict the RBE based on linear energy transfer (LET), dose, and the tissue specific parameter α/β of the linear-quadratic model for the reference radiation. Moreover, the model should capture the basic features of the RBE using a minimum of assumptions, each supported by experimental data. The α and β parameters for protons were studied with respect to their dependence on LET. An RBE model was proposed where the dependence of LET is affected by the (α/β)phot ratio of photons. Published cell survival data with a range of well-defined LETs and cell types were selected for model evaluation rendering a total of 10 cell lines and 24 RBE values. A statistically significant relation was found between α for protons and LET. Moreover, the strength of that relation varied significantly with (α/β)phot. In contrast, no significant relation between β and LET was found. On the whole, the resulting RBE model provided a significantly improved fit (p-value < 0.01) to the experimental data compared to the standard constant RBE. By accounting for the α/β ratio of photons, clearer trends between RBE and LET of protons were found, and our results suggest that late responding tissues are more sensitive to LET changes than early responding tissues and most tumors. An advantage with the proposed RBE model in optimization and evaluation of treatment plans is that it only requires dose, LET, and (α/β)phot as input parameters. Hence, no proton specific biological parameters are needed.
Seguel, Mauricio; Muñoz, Francisco; Keenan, Alessandra; Perez-Venegas, Diego J; DeRango, Eugene; Paves, Hector; Gottdenker, Nicole; Müller, Ananda
2016-07-01
The establishment of clinical pathology baseline data is critical to evaluate temporal and spatial changes in marine mammal groups. Despite increased availability of studies on hematology and biochemistry of marine mammals, reference ranges are lacking for many populations, especially among fur seal species. During the austral summers of 2014 and 2015, we evaluated basic hematologic and biochemical parameters in clinically healthy, physically restrained South American fur seal ( Arctocephalus australis ) lactating females and 2-mo-old pups. We also assessed the temporal variation of hematology parameters on the pups during their first 2 mo of life. Reference ranges of lactating females were similar to those previously reported in other fur seal species. In the case of pups, reference ranges are similar to values previously reported in sea lion species. As expected, most biochemical and hematologic values differ significantly between adult females and pups. As in other otariids, South American fur seals pups are born with higher values of total red blood cells, hemoglobin, and packed cell volume, and lower numbers of total leukocytes, neutrophils, lymphocytes, and eosinophils. To the best of our knowledge, data on hematology reference values for South American fur seals has not been previously reported and is useful for continued health monitoring of this species, as well as for comparisons with other otariid groups.
Li, Hua; Jiang, Xiaoyu; Xie, Jingping; Gore, John C; Xu, Junzhong
2017-06-01
To investigate the influence of transcytolemmal water exchange on estimates of tissue microstructural parameters derived from diffusion MRI using conventional PGSE and IMPULSED methods. Computer simulations were performed to incorporate a broad range of intracellular water life times τ in (50-∞ ms), cell diameters d (5-15 μm), and intrinsic diffusion coefficient D in (0.6-2 μm 2 /ms) for different values of signal-to-noise ratio (SNR) (10 to 50). For experiments, murine erythroleukemia (MEL) cancer cells were cultured and treated with saponin to selectively change cell membrane permeability. All fitted microstructural parameters from simulations and experiments in vitro were compared with ground-truth values. Simulations showed that, for both PGSE and IMPULSED methods, cell diameter d can be reliably fit with sufficient SNR (≥ 50), whereas intracellular volume fraction f in is intrinsically underestimated due to transcytolemmal water exchange. D in can be reliably fit only with sufficient SNR and using the IMPULSED method with short diffusion times. These results were confirmed with those obtained in the cell culture experiments in vitro. For the sequences and models considered in this study, transcytolemmal water exchange has minor effects on the fittings of d and D in with physiologically relevant membrane permeabilities if the SNR is sufficient (> 50), but f in is intrinsically underestimated. Magn Reson Med 77:2239-2249, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.
Atrrog, Abubaker A B; Natić, Maja; Tosti, Tomislav; Milojković-Opsenica, Dusanka; Dordević, Iris; Tesević, Vele; Jadranin, Milka; Milosavljević, Slobodan; Lazić, Milan; Radulović, Sinisa; Tesić, Zivoslav
2009-03-01
In this study 10 guaianolide-type sesquiterpene gamma-lactones named amphoricarpolides, isolated from the aerial parts of two endemic subspecies of Amphoricarpos neumayeri (ssp. neumayeri and ssp. murbeckii Bosnjak), were investigated by means of reversed-phase thin-layer chromatography. Methanol-water and tetrahydrofuran-water binary mixtures were used as mobile phase in order to determine lipophilicity parameters R (0) (M) and C(0). Some of the investigated compounds were screened for their cytotoxic activity against HeLa and B16 cells. Chromatographically obtained lipophilicity parameters were correlated with calculated logP values and IC(50) values. Principal component analysis identified the dominant pattern in the chromatographically obtained data. 2008 John Wiley & Sons, Ltd.
Quantitative Structure-Cytotoxicity Relationship of Cinnamic Acid Phenetyl Esters.
Uesawa, Yoshihiro; Sakagami, Hiroshi; Okudaira, Noriyuki; Toda, Kazuhiro; Takao, Koichi; Kagaya, Hajime; Sugita, Yoshiaki
2018-02-01
Many phenolic acid phenethyl esters possess diverse biological effects including antioxidant, cytoprotective, anti-inflammation and anti-tumor activities. However, most previous antitumor studies have not considered the cytotoxicity against normal cells. Ten cinnamic acid phenetyl esters were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity and tumor-specificity, in order to find their new biological activities. Cytotoxicity against four human oral squamous cell carcinoma cell lines and three oral normal mesenchymal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor specificity (TS) was evaluated by the ratio of the mean 50% cytotoxic concentration (CC 50 ) against normal oral cells to that against human oral squamous cell carcinoma cell lines. Potency-selectivity expression (PSE) value was calculated by dividing the TS value by CC 50 against tumor cells. Apoptosis markers were detected by western blot analysis. Physicochemical, structural and quantum-chemical parameters were calculated based on the conformations optimized by force-field minimization. Western blot analysis demonstrated that [ 9 ] stimulated the cleavage of caspase-3, suggesting the induction of apoptosis. QSAR analysis demonstrated that TS values were correlated with shape, size and ionization potential. Chemical modification of the lead compound may be a potential choice for designing a new type of anticancer drugs. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Cell damage of hepatoma-22 cells exposed to continuous wave ultrasound.
Wang, Pan; Wang, Xiaobing; Liu, Quanhong
2012-01-01
The cellular response of hepatoma-22 cells to ultrasonic irradiation and the potential cause for the action were evaluated. Hepatoma-22 cells were subjected to ultrasound irradiation at a frequency of 2.17 MHz and a spatial average intensity of 1.6 W/cm2 for variable periods of time, and several biological parameters were analyzed. The terephthalic acid (TA) dosimetry method was used to evaluate the efficacies of irradiation parameters on the acoustic cavitation activity by monitoring hydroxyl radical (OH) production. Lactate dehydrogenase (LDH) leakage was assayed to investigate cell membrane integrity. The polarization value of fluorescent probe 1,6-diphenyl-1,3,5-hexatriene (DPH) was measured to monitor plasma membrane fluidity. The malonaldehyde content in cells was determined to reflect lipid peroxidation. Trypan blue exclusion was used to detect cell viability. Additionally, electron microscopy was used to observe morphological changes. The generation of intracellular reactive oxygen species, mitochondria swelling and the loss of mitochondria membrane potential were also investigated. The results showed that 1) the concentration of ·OH production by ultrasonic irradiation in air-saturated cell suspensions increased as ultrasound exposure time increased; 2) compared with control, lactate dehydrogenase leakage, the polarization value of 1,6-diphenyl-1,3,5-hexatriene, malonaldehyde content and cell lysis were significantly elevated when cells were treated by ultrasound for 60 s; 3) cytotoxicity by ultrasound irradiation was also accompanied by an increase in production of intracellular reactive oxygen species and dissipation of mitochondria membrane potential as well as by mitochondria swelling. Presently available information indicates that the plasma membrane and mitochondria are the main targets for ultrasound treatment, and free radicals formation such as ·OH due to ultrasound cavitation may play an important role in mediating these cellular response processes. Moreover the mechanical effect might also be involved in inducing cell damage because there was significant mitochondria membrane potential loss and no visible ROS detection when cells were exposed to ultrasound for 30 s.
Different binarization processes validated against manual counts of fluorescent bacterial cells.
Tamminga, Gerrit G; Paulitsch-Fuchs, Astrid H; Jansen, Gijsbert J; Euverink, Gert-Jan W
2016-09-01
State of the art software methods (such as fixed value approaches or statistical approaches) to create a binary image of fluorescent bacterial cells are not as accurate and precise as they should be for counting bacteria and measuring their area. To overcome these bottlenecks, we introduce biological significance to obtain a binary image from a greyscale microscopic image. Using our biological significance approach we are able to automatically count about the same number of cells as an individual researcher would do by manual/visual counting. Using the fixed value or statistical approach to obtain a binary image leads to about 20% less cells in automatic counting. In our procedure we included the area measurements of the bacterial cells to determine the right parameters for background subtraction and threshold values. In an iterative process the threshold and background subtraction values were incremented until the number of particles smaller than a typical bacterial cell is less than the number of bacterial cells with a certain area. This research also shows that every image has a specific threshold with respect to the optical system, magnification and staining procedure as well as the exposure time. The biological significance approach shows that automatic counting can be performed with the same accuracy, precision and reproducibility as manual counting. The same approach can be used to count bacterial cells using different optical systems (Leica, Olympus and Navitar), magnification factors (200× and 400×), staining procedures (DNA (Propidium Iodide) and RNA (FISH)) and substrates (polycarbonate filter or glass). Copyright © 2016 Elsevier B.V. All rights reserved.
Bodgi, Larry; Canet, Aurélien; Pujo-Menjouet, Laurent; Lesne, Annick; Victor, Jean-Marc; Foray, Nicolas
2016-04-07
Cell survival is conventionally defined as the capability of irradiated cells to produce colonies. It is quantified by the clonogenic assays that consist in determining the number of colonies resulting from a known number of irradiated cells. Several mathematical models were proposed to describe the survival curves, notably from the target theory. The Linear-Quadratic (LQ) model, which is to date the most frequently used model in radiobiology and radiotherapy, dominates all the other models by its robustness and simplicity. Its usefulness is particularly important because the ratio of the values of the adjustable parameters, α and β, on which it is based, predicts the occurrence of post-irradiation tissue reactions. However, the biological interpretation of these parameters is still unknown. Throughout this review, we revisit and discuss historically, mathematically and biologically, the different models of the radiation action by providing clues for resolving the enigma of the LQ model. Copyright © 2016 Elsevier Ltd. All rights reserved.
Infrared Multiphoton Dissociation for Quantitative Shotgun Proteomics
Ledvina, Aaron R.; Lee, M. Violet; McAlister, Graeme C.; Westphall, Michael S.; Coon, Joshua J.
2012-01-01
We modified a dual-cell linear ion trap mass spectrometer to perform infrared multiphoton dissociation (IRMPD) in the low pressure trap of a dual-cell quadrupole linear ion trap (dual cell QLT) and perform large-scale IRMPD analyses of complex peptide mixtures. Upon optimization of activation parameters (precursor q-value, irradiation time, and photon flux), IRMPD subtly, but significantly outperforms resonant excitation CAD for peptides identified at a 1% false-discovery rate (FDR) from a yeast tryptic digest (95% confidence, p = 0.019). We further demonstrate that IRMPD is compatible with the analysis of isobaric-tagged peptides. Using fixed QLT RF amplitude allows for the consistent retention of reporter ions, but necessitates the use of variable IRMPD irradiation times, dependent upon precursor mass-to-charge (m/z). We show that IRMPD activation parameters can be tuned to allow for effective peptide identification and quantitation simultaneously. We thus conclude that IRMPD performed in a dual-cell ion trap is an effective option for the large-scale analysis of both unmodified and isobaric-tagged peptides. PMID:22480380
Calculation of near optimum design of InP/In(0.53)Ga(0.47)As monolithic tandem solar cells
NASA Technical Reports Server (NTRS)
Renaud, P.; Vilela, M. F.; Freundlich, A.; Medelci, N.; Bensaoula, A.
1994-01-01
An analysis of InP/GaAs tandem solar cell structure has been undertaken to allow for maximum AMO conversion efficiencies (space applications) while still taking into account both the theoretical and technological limitations. The dependence of intrinsic and extrinsic parameters such as diffusion lengths and generation-recombination (GR) lifetimes on N/P and P/N devices performances are clearly demonstrated. We also report for the first time the improvement attainable through the use of a new patterned tunnel junction as the inter cell ohmic interconnect. Such a design minimizes the light absorption in the interconnect region and leads to a noticeable increase in the cell efficiency. Our computations predict 27 percent AMO efficiency for N/P tandems with ideality factor gamma = 2 (GR lifetimes approximately equal 1 micron), and 36 percent for gamma = 1 (GR lifetimes approximately equals 100 microns). The method of optimization and the values of the physical and optical parameters are discussed.
Diagnostic ability of macular ganglion cell asymmetry for glaucoma.
Hwang, Young Hoon; Ahn, Sang Il; Ko, Sung Ju
2015-11-01
Using spectral-domain optical coherence tomography (OCT), this study aims to investigate the glaucoma diagnostic ability of macular ganglion cell asymmetry analysis. A cross-sectional study was conducted. This study was performed to investigate glaucoma diagnostic ability of macular ganglion cell asymmetry analysis in eyes with various degrees of glaucoma. We enrolled 181 healthy eyes and 265 glaucomatous eyes. Glaucomatous eyes were subdivided into pre-perimetric, early, moderate and advanced-to-severe glaucoma based on visual field test results. For each eye, macular ganglion cell-inner plexiform layer (GCIPL) thickness was measured using OCT. Average GCIPL thickness, GCIPL thicknesses in superior and inferior hemispheres, absolute difference in GCIPL thickness between superior and inferior hemispheres and GCIPL asymmetry index calculated as the absolute value of log10 (inferior hemisphere thickness/superior hemisphere thickness) were analysed. Areas under the receiver operating characteristics curves (AUCs) of GCIPL parameter were calculated and compared. All of the GCIPL parameters showed good glaucoma diagnostic ability (AUCs ≥ 0.817, P < 0.01). AUCs of average, superior and inferior GCIPL thickness increased as the severity of glaucoma increased. GCIPL thickness difference and asymmetry index showed the highest AUCs in early and moderate glaucoma and lower AUCs in pre-perimetric and advanced-to-severe glaucoma. GCIPL thickness difference and asymmetry index showed better glaucoma diagnostic ability than other GCIPL parameters only in early stage of glaucoma (P < 0.05); in other stages, these parameters had similar to or worse glaucoma diagnostic ability than other GCIPL parameters. Macular ganglion cell asymmetry analysis showed good glaucoma diagnostic ability, especially in early-stage glaucoma. However, it has limited usefulness in other stages of glaucoma. © 2015 Royal Australian and New Zealand College of Ophthalmologists.
Mechanics of Fluid-Filled Interstitial Gaps. II. Gap Characteristics in Xenopus Embryonic Ectoderm.
Barua, Debanjan; Parent, Serge E; Winklbauer, Rudolf
2017-08-22
The ectoderm of the Xenopus embryo is permeated by a network of channels that appear in histological sections as interstitial gaps. We characterized this interstitial space by measuring gap sizes, angles formed between adjacent cells, and curvatures of cell surfaces at gaps. From these parameters, and from surface-tension values measured previously, we estimated the values of critical mechanical variables that determine gap sizes and shapes in the ectoderm, using a general model of interstitial gap mechanics. We concluded that gaps of 1-4 μm side length can be formed by the insertion of extracellular matrix fluid at three-cell junctions such that cell adhesion is locally disrupted and a tension difference between cell-cell contacts and the free cell surface at gaps of 0.003 mJ/m 2 is generated. Furthermore, a cell hydrostatic pressure of 16.8 ± 1.7 Pa and an interstitial pressure of 3.9 ± 3.6 Pa, relative to the central blastocoel cavity of the embryo, was found to be consistent with the observed gap size and shape distribution. Reduction of cell adhesion by the knockdown of C-cadherin increased gap volume while leaving intracellular and interstitial pressures essentially unchanged. In both normal and adhesion-reduced ectoderm, cortical tension of the free cell surfaces at gaps does not return to the high values characteristic of the free surface of the whole tissue. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Sakuta, Juri; Ito, Yoshikazu; Kimura, Yukihiko; Park, Jinho; Tokuuye, Koichi; Ohyashiki, Kazuma
2010-12-01
Cardiac dysfunction due to transfusional iron overload is one of the most critical complications for patients with transfusion-dependent hematological disorders. Clinical parameters such as total red blood cell (RBC) transfusion units and serum ferritin level are usually considered as indicators for initiation of iron chelation therapy. We used MRI-T2*, MRI-R2* values, and left ventricular ejection fraction in 19 adult patients with blood transfusion-dependent hematological disorders without consecutive oral iron chelation therapy, and propose possible formulae of cardiac function using known parameters, such as total RBC transfusion units and serum ferritin levels. We found a positive correlation in all patients between both R2* values (reciprocal values of T2*) and serum ferritin levels (r = 0.81) and also total RBC transfusion volume (r = 0.90), but not when we analyzed subgroups of patients whose T2* values were over 30 ms (0.52). From the formulae of the R2*, we concluded that approximately 50 Japanese units or 2,900 pmol/L ferritin might be the cutoff value indicating possible future cardiac dysfunction.
Characterizing steady states of genome-scale metabolic networks in continuous cell cultures.
Fernandez-de-Cossio-Diaz, Jorge; Leon, Kalet; Mulet, Roberto
2017-11-01
In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced.
Characterizing steady states of genome-scale metabolic networks in continuous cell cultures
Leon, Kalet; Mulet, Roberto
2017-01-01
In the continuous mode of cell culture, a constant flow carrying fresh media replaces culture fluid, cells, nutrients and secreted metabolites. Here we present a model for continuous cell culture coupling intra-cellular metabolism to extracellular variables describing the state of the bioreactor, taking into account the growth capacity of the cell and the impact of toxic byproduct accumulation. We provide a method to determine the steady states of this system that is tractable for metabolic networks of arbitrary complexity. We demonstrate our approach in a toy model first, and then in a genome-scale metabolic network of the Chinese hamster ovary cell line, obtaining results that are in qualitative agreement with experimental observations. We derive a number of consequences from the model that are independent of parameter values. The ratio between cell density and dilution rate is an ideal control parameter to fix a steady state with desired metabolic properties. This conclusion is robust even in the presence of multi-stability, which is explained in our model by a negative feedback loop due to toxic byproduct accumulation. A complex landscape of steady states emerges from our simulations, including multiple metabolic switches, which also explain why cell-line and media benchmarks carried out in batch culture cannot be extrapolated to perfusion. On the other hand, we predict invariance laws between continuous cell cultures with different parameters. A practical consequence is that the chemostat is an ideal experimental model for large-scale high-density perfusion cultures, where the complex landscape of metabolic transitions is faithfully reproduced. PMID:29131817
Robust peptidoglycan growth by dynamic and variable multi-protein complexes.
Pazos, Manuel; Peters, Katharina; Vollmer, Waldemar
2017-04-01
In Gram-negative bacteria such as Escherichia coli the peptidoglycan sacculus resides in the periplasm, a compartment that experiences changes in pH value, osmolality, ion strength and other parameters depending on the cell's environment. Hence, the cell needs robust peptidoglycan growth mechanisms to grow and divide under different conditions. Here we propose a model according to which the cell achieves robust peptidoglycan growth by employing dynamic multi-protein complexes, which assemble with variable composition from freely diffusing sets of peptidoglycan synthases, hydrolases and their regulators, whereby the composition of the active complexes depends on the cell cycle state - cell elongation or division - and the periplasmic growth conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.
On the Reliability of Photovoltaic Short-Circuit Current Temperature Coefficient Measurements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterwald, Carl R.; Campanelli, Mark; Kelly, George J.
2015-06-14
The changes in short-circuit current of photovoltaic (PV) cells and modules with temperature are routinely modeled through a single parameter, the temperature coefficient (TC). This parameter is vital for the translation equations used in system sizing, yet in practice is very difficult to measure. In this paper, we discuss these inherent problems and demonstrate how they can introduce unacceptably large errors in PV ratings. A method for quantifying the spectral dependence of TCs is derived, and then used to demonstrate that databases of module parameters commonly contain values that are physically unreasonable. Possible ways to reduce measurement errors are alsomore » discussed.« less
Zhukov, V A; Shishkina, L N; Sergeev, A A; Malkova, E M; Riabchikova, E I; Petrishchenko, V A; Sergeev, A N; Ustiuzhanina, N V; Nesvizhskiĭ, Iu V; Vorob'ev, A A
2008-01-01
The levels of susceptibility to influenza virus A/Aichi/2/68 H3N2 and the virus yield were determined using primary cells of the trachea and lungs of CD-1 mice and Wistar rats, and for 3 sets of cells obtained from primary lung cells of the both species by centrifugation in the gradient of density and by sedimentation on a surface. The values of ID50 virus dose for 10(6) cells and virus yield per 1 infected cell determined for primary mice cells were 4.0+/-0.47 and 3.2+/-0.27 IgEID50 (lung cells), 3.8+/-0.17 and 3.3+/-0.20 IgEID50 (tracheal cells), and those determined for primary rat cells were 4.0+/-0.35 and 2.1+/-0.24 IgEID50 (lung cells), 3.7+/-0.27 and 2.2+/-0.46 IgEID50 (tracheal cells). The values of ID50 and yield measured for mixtures of cells obtained from primary lung cells by centrifugation in gradient of density and by sedimentation on a surface differed insignificantly (p = 0.05) from the values of the corresponding parameters measured for lung and tracheal cells for both rats and mice. The analysis of data on the variation of the concentrations of different cell types in the experimental cell mixtures shows that type 1 and 2 alveolocytes possess significantly lower (p = 0.05) susceptibility and productivity vs. ciliated cells of the both species. The investigation was conducted within the frame of the ISTC/DARPA#450p project.
Evaluation of oxidative stress status and antioxidant capacity in patients with renal cell carcinoma
Karaguzel, Ersagun; Okulu, Emrah; Gudeloglu, Ahmet; Ener, Kemal; Ozayar, Asim; Erel, Ozcan
2015-01-01
Introduction We evaluated and compared the serum oxidative stress and antioxidant enzymes in patients with renal cell carcinoma (RCC) and the control group. Material and methods The prospective study consisted of 97 patients with RCC (Group 1) and 80 age and sex matched healthy volunteers (Group 2). Group 1 and 2 were compared concerning serum mean total oxidant status (TOS), total antioxidant capacity (TAC), paraoxonase-1 (PON-1), arylesterase, total thiol, catalase (CAT), myeloperoxidase (MPO) and ceruloplasmin. Results Patients’ mean age was 58.5 ±12.3 and 56.9 ±15.8 years, respectively, in Group 1 and 2. No statistically significant differences were detected between the groups in terms of oxidative stress parameters and antioxidant capacity measured in the serum of patients including, TOS, TAC, PON1, arylesterase, total thiol, CAT, MPO, and ceruloplasmin levels (p >0.05 for all parameters). The PON-1 value was significantly higher in patients with pT1 stage than pT3 stage (p = 0.007). The arylesterase value was significantly higher in patients with Fuhrman's nuclear grade 3 than grade 2 (p = 0.035). There was no correlation between these parameters level and Fuhrman's nuclear grade, stage, or histopathological tumor type. Conclusions Our results demonstrated that evaluation of these parameters in the serum of patients with localized RCC may not be used as a marker to discriminate between patients with RCC and healthy people. PMID:26855793
Manire, Charles A; Reiber, C Melanie; Gaspar, Cécile; Rhinehart, Howard L; Byrd, Lynne; Sweeney, Jay; West, Kristi L
2018-01-01
Rehabilitation efforts for live stranded marine mammals are guided by diagnostic measures of blood chemistry and hematology parameters obtained from each individual undergoing treatment. Despite the widespread use of blood parameters, reference values are not available in the literature from healthy rough-toothed dolphins ( Steno bredanensis) with which to infer the health status of an animal. We examined serum or plasma chemistry and hematology data from 17 rough-toothed dolphins either housed at Dolphin Quest French Polynesia or during their rehabilitation at the Dolphin and Whale Hospital in Sarasota, Florida, US between 1994 and 2005. Blood parameters were compared among healthy animals, rehabilitation animals that were eventually released, and rehabilitation animals that died. This study indicated significant differences in many blood parameters for the poorly known rough-toothed dolphin that are likely to vary between healthy and sick animals. These included aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, bicarbonate, and globulins, which were greater in sick dolphins, and alkaline phosphatase and total protein which were greater in healthy individuals. Total white blood cell counts were lower in healthy animals as were the absolute numbers of neutrophils, monocytes, and eosinophils. Analysis of first blood sample levels for glucose, sodium, and erythrocyte sedimentation rate may have value for triage and prognostic evaluation.
[Combined internal-external radiotherapy (CIERT) in a cell model].
Oehme, Liane; Bartzsch, Thomas; Maucksch, Ute; Freudenberg, Robert; Wunderlich, Gerd; Kotzerke, Jörg
2018-06-01
Combined internal-external radiotherapy (CIERT) requires a unified assessment of biologic radiation effects in addition to the total dose. The concept of biological effective dose (BED) was evaluated in a cell model. The thyroid NIS-positive cell line FRTL-5 was irradiated with X-ray and the radiotracer Tc-99m pertechnetate either alone or in combination. The cellular uptake of the radionuclide during the incubation time of 24 h was controlled by the presence or absence of perchlorate. Dose calculation was performed based on measured uptake values. Cell specific radiobiologic parameters were derived from dose effect curves using the colony forming assay as biological endpoint. For the combination of the radiation qualities the sequence and time difference were varied. Cell survival was compared with the prediction of the BED model. The radiobiologic parameters from X-ray dose response were α = (0.22 ± 0.02) Gy -1 and β = (0.021 ± 0.001) Gy -2 . The half life for repair was (1.51 ± 0.21) h. These values could also explain the dose response curves for Tc-99m-irradiation with exponential decreasing dose rate. CIERT experiments showed no significant differences in cell survival regarding sequence and irradiation break. When the radionuclide uptake was not prevented the cell survival for the combination of X-ray and Tc-99m was lower than the prediction by BED calculations. The validity of the BED formalism for different dose rates and radiation qualities was verified. Supraaddive effects measured in the combination of X-ray and intracellular Tc-99m might be caused by Auger and conversion electrons, however further experiments are necessary. Schattauer GmbH.
Kang, Kyungsu; Lee, Hee Ju; Yoo, Ji-Hye; Jho, Eun Hye; Kim, Chul Young; Kim, Minkyun; Nho, Chu Won
2011-08-01
Arctigenin is a natural plant lignan previously shown to induce G(2)/M arrest in SW480 human colon cancer cells as well as AGS human gastric cancer cells, suggesting its use as a possible cancer chemopreventive agent. Changes in cell and nuclear size often correlate with the functionality of cancer-treating agents. Here, we report that arctigenin induces cell and nuclear enlargement of SW480 cells. Arctigenin clearly induced the formation of giant nuclear shapes in SW480, as demonstrated by fluorescence microscopic observation and quantitative determination of nuclear size. Cell and nuclear size were further assessed by flow cytometric analysis of light scattering and fluorescence pulse width after propidium iodide staining. FSC-H and FL2-W values (parameters referring to cell and nuclear size, respectively) significantly increased after arctigenin treatment; the mean values of FSC-H and FL2-W in arctigenin-treated SW480 cells were 572.6 and 275.1, respectively, whereas those of control cells were 482.0 and 220.7, respectively. Our approach may provide insights into the mechanism behind phytochemical-induced cell and nuclear enlargement as well as functional studies on cancer-treating agents.
Impact of cell phone use on men's semen parameters.
Gutschi, T; Mohamad Al-Ali, B; Shamloul, R; Pummer, K; Trummer, H
2011-10-01
The objective of the present retrospective study was to report our experience concerning the effects of cell phone usage on semen parameters. We examined 2110 men attending our infertility clinic from 1993 to October 2007. Semen analysis was performed in all patients. Serum free testosterone (T), follicle stimulating hormone (FSH), luteinising hormone (LH) and prolactin (PRL) were collected from all patients. The information on cell phone use of the patients was recorded and the subjects were divided into two groups according to their cell phone use: group A: cell phone use (n = 991); group B: no use (n = 1119). Significant difference was observed in sperm morphology between the two groups. In the patients of group A, 68.0% of the spermatozoa featured a pathological morphology compared to only 58.1% in the subjects of group B. Patients with cell phone usage showed significantly higher T and lower LH levels than those who did not use cell phone. No significant difference between the two groups was observed regarding FSH and PRL values. Our results showed that cell phone use negatively affects sperm quality in men. Further studies with a careful design are needed to determine the effect of cell phone use on male fertility. © 2011 Blackwell Verlag GmbH.
Ji, Chao-Neng; Cai, Zai-Long; Cao, Gen-Tao; Yin, Gang; Jiao, Bing-Hua; Jiang, Tao; Shu, Guang; Mao, Ji-Fang; Xie, Yi; Mao, Yu-Min
2002-12-01
Human augmenter of liver regeneration has been expressed in Escherichia coli, purified and crystallized. The crystals belong to space group C222, with unit-cell parameters a=51.7 A, b=78.8 A, c=63.7 A. Diffraction data were collected to 2.80 A with a completeness of 99.9% (99.9% for the last shell), a R(sym) value of 0.092(0.236) and an I/sigma(I) value of 6.2(2.7).
Chen, Yu-Yuan; Chen, Jiann-Chu; Lin, Yong-Chin; Yeh, Su-Tuen; Huang, Chien-Lun
2015-06-05
White shrimp Litopenaeus vannamei immersed in seawater (35‰) containing Gracilaria tenuistipitata extract (GTE) at 0 (control), 400, and 600 mg/L for 3 h were exposed to 5 mg/L ammonia-N (ammonia as nitrogen), and immune parameters including hyaline cells (HCs), granular cells (GCs, including semi-granular cells), total hemocyte count (THC), phenoloxidase (PO) activity, respiratory bursts (RBs), superoxide dismutase (SOD) activity, lysozyme activity, and hemolymph protein level were examined 24~120 h post-stress. The immune parameters of shrimp immersed in 600 mg/L GTE returned to original values earlier, at 96~120 h post-stress, whereas in control shrimp they did not. In another experiment, shrimp were immersed in seawater containing GTE at 0 and 600 mg/L for 3 h and examined for transcript levels of immune-related genes at 24 h post-stress. Transcript levels of lipopolysaccharide and β-1,3-glucan binding protein (LGBP), peroxinectin (PX), cytMnSOD, mtMnSOD, and HSP70 were up-regulated at 24 h post-stress in GTE receiving shrimp. We concluded that white shrimp immersed in seawater containing GTE exhibited a capability for maintaining homeostasis by regulating cellular and humoral immunity against ammonia stress as evidenced by up-regulated gene expression and earlier recovery of immune parameters.
Soman, Gopalan; Yang, Xiaoyi; Jiang, Hengguang; Giardina, Steve; Vyas, Vinay; Mitra, George; Yovandich, Jason; Creekmore, Stephen P; Waldmann, Thomas A; Quiñones, Octavio; Alvord, W Gregory
2009-08-31
A colorimetric cell proliferation assay using soluble tetrazolium salt [(CellTiter 96(R) Aqueous One Solution) cell proliferation reagent, containing the (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) and an electron coupling reagent phenazine ethosulfate], was optimized and qualified for quantitative determination of IL-15 dependent CTLL-2 cell proliferation activity. An in-house recombinant Human (rHu)IL-15 reference lot was standardized (IU/mg) against an international reference standard. Specificity of the assay for IL-15 was documented by illustrating the ability of neutralizing anti-IL-15 antibodies to block the product specific CTLL-2 cell proliferation and the lack of blocking effect with anti-IL-2 antibodies. Under the defined assay conditions, the linear dose-response concentration range was between 0.04 and 0.17ng/ml of the rHuIL-15 produced in-house and 0.5-3.0IU/ml for the international standard. Statistical analysis of the data was performed with the use of scripts written in the R Statistical Language and Environment utilizing a four-parameter logistic regression fit analysis procedure. The overall variation in the ED(50) values for the in-house reference standard from 55 independent estimates performed over the period of 1year was 12.3% of the average. Excellent intra-plate and within-day/inter-plate consistency was observed for all four parameter estimates in the model. Different preparations of rHuIL-15 showed excellent intra-plate consistency in the parameter estimates corresponding to the lower and upper asymptotes as well as to the 'slope' factor at the mid-point. The ED(50) values showed statistically significant differences for different lots and for control versus stressed samples. Three R-scripts improve data analysis capabilities allowing one to describe assay variations, to draw inferences between data sets from formal statistical tests, and to set up improved assay acceptance criteria based on comparability and consistency in the four parameters of the model. The assay is precise, accurate and robust and can be fully validated. Applications of the assay were established including process development support, release of the rHuIL-15 product for pre-clinical and clinical studies, and for monitoring storage stability.
Hematology and erythrocyte osmotic fragility of the Franquet's fruit bat (Epomops franqueti).
Ekeolu, Oyetunde Kazeem; Adebiyi, Olamide Elizabeth
2018-03-15
Hematological parameters are vital diagnostic tools for understanding health dynamics of humans and animals. Franquet's fruit bat (Epomops franqueti) is host to several parasites such as protozoa, bacteria, viruses and mites. Yet, studies exploring the values of its blood components with interest for research or food purposes are scarce. Thus, this study was carried out to investigate the hematological values of the adult E. franqueti. Seventeen (nine female and eight male) apparently healthy adult E. franqueti were captured from their roosting colony. Blood samples were collected for determination of erythrocyte indices [red blood cell count (RBC), packed cell volume (PCV), hemoglobin (Hb) concentration, mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH) and mean corpuscular hemoglobin concentration (MCHC)] and leukocyte indices [total white blood cell counts (WBC), lymphocytes, eosinophil, monocytes, neutrophil count and erythrocytes osmotic fragility]. There were no significant (p≥0.05) sex-related differences in RBC, PCV, Hb concentration, MCV, MCH, MCHC and total and differential WBC of E. franqueti. Erythrocyte osmotic fragility was significantly higher in female than in male E. franqueti at 0.1% NaCl. These considerations are critical in establishing reference ranges of blood parameters for E. franqueti and may provide insight to why they serve as reservoir hosts for several microorganisms.
Statistics of cosmic density profiles from perturbation theory
NASA Astrophysics Data System (ADS)
Bernardeau, Francis; Pichon, Christophe; Codis, Sandrine
2014-11-01
The joint probability distribution function (PDF) of the density within multiple concentric spherical cells is considered. It is shown how its cumulant generating function can be obtained at tree order in perturbation theory as the Legendre transform of a function directly built in terms of the initial moments. In the context of the upcoming generation of large-scale structure surveys, it is conjectured that this result correctly models such a function for finite values of the variance. Detailed consequences of this assumption are explored. In particular the corresponding one-cell density probability distribution at finite variance is computed for realistic power spectra, taking into account its scale variation. It is found to be in agreement with Λ -cold dark matter simulations at the few percent level for a wide range of density values and parameters. Related explicit analytic expansions at the low and high density tails are given. The conditional (at fixed density) and marginal probability of the slope—the density difference between adjacent cells—and its fluctuations is also computed from the two-cell joint PDF; it also compares very well to simulations. It is emphasized that this could prove useful when studying the statistical properties of voids as it can serve as a statistical indicator to test gravity models and/or probe key cosmological parameters.
Nishiura, Akiko; Sasaki, Osamu; Aihara, Mitsuo; Takeda, Hisato; Satoh, Masahiro
2015-12-01
We estimated the genetic parameters of fat-to-protein ratio (FPR) and the genetic correlations between FPR and milk yield or somatic cell score in the first three lactations in dairy cows. Data included 3,079,517 test-day records of 201,138 Holstein cows in Japan from 2006 to 2011. Genetic parameters were estimated with a multiple-trait random regression model in which the records within and between parities were treated as separate traits. The phenotypic values of FPR increased soon after parturition and peaked at 10 to 20 days in milk, then decreased slowly in mid- and late lactation. Heritability estimates for FPR yielded moderate values. Genetic correlations of FPR among parities were low in early lactation. Genetic correlations between FPR and milk yield were positive and low in early lactation, but only in the first lactation. Genetic correlations between FPR and somatic cell score were positive in early lactation and decreased to become negative in mid- to late lactation. By using these results for genetic evaluation it should be possible to improve energy balance in dairy cows. © 2015 Japanese Society of Animal Science.
An evaluation of the ELT-8 hematology analyzer.
Raik, E; McPherson, J; Barton, L; Hewitt, B S; Powell, E G; Gordon, S
1982-04-01
The TMELT-8 Hematology Analyzer is a fully automated cell counter which utilizes laser light scattering and hydrodynamic focusing to provide an 8 parameter whole blood count. The instrument consists of a sample handler with ticket printer, and a data handler with visual display unit, It accepts 100 microliter samples of venous or capillary blood and prints the values for WCC, RCC, Hb, Hct, MCV, MCH, MCHC and platelet count on to a standard result card. All operational and quality control functions, including graphic display of relative cell size distribution, can be obtained from the visual display unit and can also be printed as a permanent record if required. In a limited evaluation of the ELT-8, precision, linearity, accuracy, lack of sample carry-over and user acceptance were excellent. Reproducible values were obtained for all parameters after overnight storage of samples. Reagent usage and running costs were lower than for the Coulter S and the Coulter S Plus. The ease of processing capillary samples was considered to be a major advantage. The histograms served to alert the operator to a number of abnormalities, some of which were clinically significant.
NASA Astrophysics Data System (ADS)
Muti Mohamed, Norani; Bashiri, Robabeh; Kait, Chong Fai; Sufian, Suriati
2018-04-01
we investigated the influence of fluctuating the preparation variables of TiO2 on the efficiency of photocatalytic water splitting in photoelectrochemical (PEC) cell. Hydrothermal associated sol-gel technique was applied to synthesis modified TiO2 with nickel and copper oxide. The variation of water (mL), acid (mL) and total metal loading (%) were mathematically modelled using central composite design (CCD) from the response surface method (RSM) to explore the single and combined effects of parameters on the system performance. The experimental data were fitted using quadratic polynomial regression model from analysis of variance (ANOVA). The coefficient of determination value of 98% confirms the linear relationship between the experimental and predicted values. The amount of water had maximum effect on the photoconversion efficiency due to a direct effect on the crystalline and the number of defects on the surface of photocatalyst. The optimal parameter ratios with maximum photoconversion efficiency were 16 mL, 3 mL and 5 % for water, acid and total metal loading, respectively.
Optimal Cytoplasmic Transport in Viral Infections
D'Orsogna, Maria R.; Chou, Tom
2009-01-01
For many viruses, the ability to infect eukaryotic cells depends on their transport through the cytoplasm and across the nuclear membrane of the host cell. During this journey, viral contents are biochemically processed into complexes capable of both nuclear penetration and genomic integration. We develop a stochastic model of viral entry that incorporates all relevant aspects of transport, including convection along microtubules, biochemical conversion, degradation, and nuclear entry. Analysis of the nuclear infection probabilities in terms of the transport velocity, degradation, and biochemical conversion rates shows how certain values of key parameters can maximize the nuclear entry probability of the viral material. The existence of such “optimal” infection scenarios depends on the details of the biochemical conversion process and implies potentially counterintuitive effects in viral infection, suggesting new avenues for antiviral treatment. Such optimal parameter values provide a plausible transport-based explanation of the action of restriction factors and of experimentally observed optimal capsid stability. Finally, we propose a new interpretation of how genetic mutations unrelated to the mechanism of drug action may nonetheless confer novel types of overall drug resistance. PMID:20046829
Talaiekhozani, Amirreza; Jafarzadeh, Nematollah; Fulazzaky, Mohamad Ali; Talaie, Mohammad Reza; Beheshti, Masoud
2015-01-01
Pollution associated with crude oil (CO) extraction degrades the quality of waters, threatens drinking water sources and may ham air quality. The systems biology approach aims at learning the kinetics of substrate utilization and bacterial growth for a biological process for which very limited knowledge is available. This study uses the Pseudomonas aeruginosa to degrade CO and determines the kinetic parameters of substrate utilization and bacterial growth modeled from a completely mixed batch reactor. The ability of Pseudomonas aeruginosa can remove 91 % of the total petroleum hydrocarbons and 83 % of the aromatic compounds from oily environment. The value k of 9.31 g of substrate g(-1) of microorganism d(-1) could be far higher than the value k obtained for petrochemical wastewater treatment and that for municipal wastewater treatment. The production of new cells of using CO as the sole carbon and energy source can exceed 2(3) of the existing cells per day. The kinetic parameters are verified to contribute to improving the biological removal of CO from oily environment.
NASA Astrophysics Data System (ADS)
Stepanova, L. V.
2017-12-01
Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-Scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is the Embedded Atom Method (EAM) potential. Plane specimens with an initial central crack are subjected to mixed-mode loadings. The simulation cell contains 400,000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide range of temperatures (from 0.1 K to 800 K) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields. The multi-parameter fracture criteria are based on the multi-parameter stress field description taking into account the higher order terms of the Williams series expansion of the crack tip fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oita, M; Department of Life System, Institute of Technology and Science, Graduate School, The Tokushima University; Uto, Y
Purpose: The aim of this study was to evaluate the distribution of uncertainty of cell survival by radiation, and assesses the usefulness of stochastic biological model applying for gaussian distribution. Methods: For single cell experiments, exponentially growing cells were harvested from the standard cell culture dishes by trypsinization, and suspended in test tubes containing 1 ml of MEM(2x10{sup 6} cells/ml). The hypoxic cultures were treated with 95% N{sub 2}−5% CO{sub 2} gas for 30 minutes. In vitro radiosensitization was also measured in EMT6/KU single cells to add radiosensitizer under hypoxic conditions. X-ray irradiation was carried out by using an Xraymore » unit (Hitachi X-ray unit, model MBR-1505R3) with 0.5 mm Al/1.0 mm Cu filter, 150 kV, 4 Gy/min). In vitro assay, cells on the dish were irradiated with 1 Gy to 24 Gy, respectively. After irradiation, colony formation assays were performed. Variations of biological parameters were investigated at standard cell culture(n=16), hypoxic cell culture(n=45) and hypoxic cell culture(n=21) with radiosensitizers, respectively. The data were obtained by separate schedule to take account for the variation of radiation sensitivity of cell cycle. Results: At standard cell culture, hypoxic cell culture and hypoxic cell culture with radiosensitizers, median and standard deviation of alpha/beta ratio were 37.1±73.4 Gy, 9.8±23.7 Gy, 20.7±21.9 Gy, respectively. Average and standard deviation of D{sub 50} were 2.5±2.5 Gy, 6.1±2.2 Gy, 3.6±1.3 Gy, respectively. Conclusion: In this study, we have challenged to apply these uncertainties of parameters for the biological model. The variation of alpha values, beta values, D{sub 50} as well as cell culture might have highly affected by probability of cell death. Further research is in progress for precise prediction of the cell death as well as tumor control probability for treatment planning.« less
Temperature effects on gallium arsenide 63Ni betavoltaic cell.
Butera, S; Lioliou, G; Barnett, A M
2017-07-01
A GaAs 63 Ni radioisotope betavoltaic cell is reported over the temperature range 70°C to -20°C. The temperature effects on the key cell parameters were investigated. The saturation current decreased with decreased temperature; whilst the open circuit voltage, the short circuit current, the maximum power and the internal conversion efficiency values decreased with increased temperature. A maximum output power and an internal conversion efficiency of 1.8pW (corresponding to 0.3μW/Ci) and 7% were observed at -20°C, respectively. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
1975-12-01
rise in Hb, Hct. and red cells, to compensate for the anoxic stress induced by higher carboxyhemoglobin levels (HbCO). Inhalation of CO2 in higher...expected to cause an equilibrium value of 8-50% carboxyhemoglobin (HbCO). Under these conditions, Schulte (1961) did not find any gross changes in...according to Stewart (1974). Carboxyhemoglobin levels of 1-5% cause an increased blood Cow to vital organs, which compensates for the loss of oxygen
Sah, Bert-Ram; Leissing, Christian A; Delso, Gaspar; Ter Voert, Edwin E; Krieg, Stefan; Leibl, Sebastian; Schneider, Paul M; Reiner, Cäcilia S; Hüllner, Martin W; Veit-Haibach, Patrick
2018-05-10
Positron emission tomography (PET) / computed tomography (CT) is among the most frequently used imaging modalities for initial staging of gastro-oesophageal (GE) cancer, whereas CT-perfusion (CTP) provides different multiparametric information. This proof of concept study compares CTP- and PET-parameters in patients with GE cancer to evaluate correlations and a possible prognostic value of a combined PET/CTP imaging procedure. A total of 31 patients with F-18-FDG-PET/CT and CTP studies were prospectively analysed. Patients had adenocarcinoma (n = 22) and oesophageal squamous cell carcinoma (SCC, n = 9). Imaging was performed before start of treatment. CTP parameters [blood flow (BF), blood volume (BV), mean transit time (MTT)] and metabolic parameters [(maximum and mean standardised uptake values and standard deviation (SUVmax, SUVmean, SUVsd), metabolic tumour volume (MTV) and tumour lesion glycolysis (TLG)], as well as flow metabolic product [FMP (BF × SUVmax)] were determined and their relationship was compared. Additionally their association to clinical parameters (differentiation grading, staging, HER2-status, follow-up status) and to histopathological regression (post-neoadjuvant regression grading) was evaluated. Correlation between parameters of both modalities was significant between MTT and MTV (r = 0.375, p = 0.038); no other significant correlation was found. Patients with complete histopathological regression showed significantly lower BF and BV than patients with nearly complete or partial response. TLG and regression grading showed significant correlation with staging. All other quantitative parameters for CTP and PET data did not correlate significantly with histopathological regression grading, differentiation or staging. The combination of PET and CTP parameters (FMP) showed no significant prognostic value. Significant correlations were only found between MTT and MTV, which indicates a possible perfusional/metabolic coupling. Therefore, pre-therapeutic CTP and PET- parameters provide complementary information about the pre-therapeutic tumour status and are not interchangeable. Only CTP parameters might be able to predict complete histopathological regression. On the other hand, only PET parameters are correlated with staging.
Anderman, Evan R.; Hill, Mary Catherine
2001-01-01
Observations of the advective component of contaminant transport in steady-state flow fields can provide important information for the calibration of ground-water flow models. This report documents the Advective-Transport Observation (ADV2) Package, version 2, which allows advective-transport observations to be used in the three-dimensional ground-water flow parameter-estimation model MODFLOW-2000. The ADV2 Package is compatible with some of the features in the Layer-Property Flow and Hydrogeologic-Unit Flow Packages, but is not compatible with the Block-Centered Flow or Generalized Finite-Difference Packages. The particle-tracking routine used in the ADV2 Package duplicates the semi-analytical method of MODPATH, as shown in a sample problem. Particles can be tracked in a forward or backward direction, and effects such as retardation can be simulated through manipulation of the effective-porosity value used to calculate velocity. Particles can be discharged at cells that are considered to be weak sinks, in which the sink applied does not capture all the water flowing into the cell, using one of two criteria: (1) if there is any outflow to a boundary condition such as a well or surface-water feature, or (2) if the outflow exceeds a user specified fraction of the cell budget. Although effective porosity could be included as a parameter in the regression, this capability is not included in this package. The weighted sum-of-squares objective function, which is minimized in the Parameter-Estimation Process, was augmented to include the square of the weighted x-, y-, and z-components of the differences between the simulated and observed advective-front locations at defined times, thereby including the direction of travel as well as the overall travel distance in the calibration process. The sensitivities of the particle movement to the parameters needed to minimize the objective function are calculated for any particle location using the exact sensitivity-equation approach; the equations are derived by taking the partial derivatives of the semi-analytical particle-tracking equation with respect to the parameters. The ADV2 Package is verified by showing that parameter estimation using advective-transport observations produces the true parameter values in a small but complicated test case when exact observations are used. To demonstrate how the ADV2 Package can be used in practice, a field application is presented. In this application, the ADV2 Package is used first in the Sensitivity-Analysis mode of MODFLOW-2000 to calculate measures of the importance of advective-transport observations relative to head-dependent flow observations when either or both are used in conjunction with hydraulic-head observations in a simulation of the sewage-discharge plume at Cape Cod, Massachusetts. The ADV2 Package is then used in the Parameter-Estimation mode of MODFLOW-2000 to determine best-fit parameter values. It is concluded that, for this problem, advective-transport observations improved the calibration of the model and the estimation of ground-water flow parameters, and the use of formal parameter-estimation methods and related techniques produced significant insight into the physical system.
Ethanol production using immobilized Saccharomyces cerevisiae in lyophilized cellulose gel.
Winkelhausen, Eleonora; Velickova, Elena; Amartey, Samuel A; Kuzmanova, Slobodanka
2010-12-01
A new lyophilization technique was used for immobilization of Saccharomyces cerevisiae cells in hydroxyethylcellulose (HEC) gels. The suitability of the lyophilized HEC gels to serve as immobilization matrices for the yeast cells was assessed by calculating the immobilization efficiency and the cell retention in three consecutive batches, each in duration of 72 h. Throughout the repeated batch fermentation, the immobilization efficiency was almost constant with an average value of 0.92 (12-216 h). The maximum value of cell retention was 0.24 g immobilized cells/g gel. Both parameters indicated that lyophilized gels are stable and capable of retaining the immobilized yeast cells. Showing the yeast cells propagation within the polymeric matrix, the scanning electron microscope images also confirmed that the lyophilization technique for immobilization of S. cerevisiae cells in the HEC gels was successful. The activity of the immobilized yeast cells was demonstrated by their capacity to convert glucose to ethanol. Ethanol yield of 0.40, 0.43 and 0.30 g ethanol/g glucose corresponding to 79%, 84% and 60% of the theoretical yield was attained in the first, second and third batches, respectively. The cell leakage was less than 10% of the average concentration of the immobilized cells.
Erythrocyte oxidative stress markers in children with sickle cell disease.
Hermann, Priscila Bacarin; Pianovski, Mara Albonei Dudeque; Henneberg, Railson; Nascimento, Aguinaldo José; Leonart, Maria Suely Soares
2016-01-01
To determine eight parameters of oxidative stress markers in erythrocytes from children with sickle cell disease and compare with the same parameters in erythrocytes from healthy children, since oxidative stress plays an important role in the pathophysiology of sickle cell disease and because this disease is a serious public health problem in many countries. Blood samples were obtained from 45 children with sickle cell disease (21 males and 24 females with a mean age of 9 years; range: 3-13 years) and 280 blood samples were obtained from children without hemoglobinopathies (137 males and 143 females with a mean age of 10 years; range: 8-11 years), as a control group. All blood samples were analyzed for methemoglobin, reduced glutathione, thiobarbituric acid reactive substances, percentage of hemolysis, reactive oxygen species, and activity of the enzymes glucose 6-phosphate dehydrogenase, superoxide dismutase, and catalase. Data were analyzed using Student's t-test and were expressed as the mean±standard deviation. A p-value of <0.05 was considered significant. Significant differences were observed between children with sickle cell disease and the control group for the parameters methemoglobin, thiobarbituric acid reactive substances, hemolysis, glucose 6-phosphate dehydrogenase activity, and reactive oxygen species, with higher levels in the patients than in the controls. Oxidative stress parameters in children's erythrocytes were determined using simple laboratory methods with small volumes of blood; these biomarkers can be useful to evaluate disease progression and outcomes in patients. Copyright © 2016 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
Pseudomonas fluorescens' view of the periodic table.
Workentine, Matthew L; Harrison, Joe J; Stenroos, Pernilla U; Ceri, Howard; Turner, Raymond J
2008-01-01
Growth in a biofilm modulates microbial metal susceptibility, sometimes increasing the ability of microorganisms to withstand toxic metal species by several orders of magnitude. In this study, a high-throughput metal toxicity screen was initiated with the aim of correlating biological toxicity data in planktonic and biofilm cells to the physiochemical properties of metal ions. To this end, Pseudomonas fluorescens ATCC 13525 was grown in the Calgary Biofilm Device (CBD) and biofilms and planktonic cells of this microorganism were exposed to gradient arrays of different metal ions. These arrays included 44 different metals with representative compounds that spanned every group of the periodic table (except for the halogens and noble gases). The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentration (MBEC) values were obtained after exposing the biofilms to metal ions for 4 h. Using these values, metal ion toxicity was correlated to the following ion-specific physicochemical parameters: standard reduction-oxidation potential, electronegativity, the solubility product of the corresponding metal-sulfide complex, the Pearson softness index, electron density and the covalent index. When the ions were grouped according to outer shell electron structure, we found that heavy metal ions gave the strongest correlations to these parameters and were more toxic on average than the other classes of the ions. Correlations were different for biofilms than for planktonic cells, indicating that chemical mechanisms of metal ion toxicity differ between the two modes of growth. We suggest that biofilms can specifically counter the toxic effects of certain physicochemical parameters, which may contribute to the increased ability of biofilms to withstand metal toxicity.
Ultrasonic Scattering Measurements of a Live Single Cell at 86 MHz
Lee, Changyang; Jung, Hayong; Lam, Kwok Ho; Yoon, Changhan; Shung, K. Kirk
2016-01-01
Cell separation and sorting techniques have been employed biomedical applications such as cancer diagnosis and cell gene expression analysis. The capability to accurately measure ultrasonic scattering properties from cells is crucial in making an ultrasonic cell sorter a reality if ultrasound scattering is to be used as the sensing mechanism as well. To assess the performance of sensing and identifying live single cells with high-frequency ultrasound, an 86-MHz lithium niobate press-focused single-element acoustic transducer was used in a high-frequency ultrasound scattering measurement system that was custom designed and developed for minimizing noise and allowing better mobility. Peak-to-peak echo amplitude, integrated backscatter (IB) coefficient, spectral parameters including spectral slope and intercept, and midband fit from spectral analysis of the backscattered echoes were measured and calculated from a live single cell of two different types on an agar surface: leukemia cells (K562 cells) and red blood cells (RBCs). The amplitudes of echo signals from K562 cells and RBCs were 48.25 ± 11.98 mVpp and 56.97 ± 7.53 mVpp, respectively. The IB coefficient was −89.39 ± 2.44 dB for K562 cells and −89.00 ± 1.19 dB for RBCs. The spectral slope and intercept were 0.30 ± 0.19 dB/MHz and −56.07 ± 17.17 dB, respectively, for K562 cells and 0.78 ± 0.092 dB/MHz and −98.18 ± 8.80 dB, respectively, for RBCs. Midband fits of K562 cells and RBCs were −31.02 ± 3.04 dB and −33.51 ± 1.55 dB, respectively. Acoustic cellular discrimination via these parameters was tested by Student’s t-test. Their values, except for the IB value, showed statistically significant difference (p < 0.001). This paper reports for the first time that ultrasonic scattering measurements can be made on a live single cell with a highly focused high-frequency ultrasound microbeam at 86 MHz. These results also suggest the feasibility of ultrasonic scattering as a sensing mechanism in the development of ultrasonic cell sorters. PMID:26559626
Spatio-temporal analysis of Modified Omori law in Bayesian framework
NASA Astrophysics Data System (ADS)
Rezanezhad, V.; Narteau, C.; Shebalin, P.; Zoeller, G.; Holschneider, M.
2017-12-01
This work presents a study of the spatio temporal evolution of the modified Omori parameters in southern California in then time period of 1981-2016. A nearest-neighbor approach is applied for earthquake clustering. This study targets small mainshocks and corresponding big aftershocks ( 2.5 ≤ mmainshocks ≤ 4.5 and 1.8 ≤ maftershocks ≤ 2.8 ). We invert for the spatio temporal behavior of c and p values (especially c) all over the area using a MCMC based maximum likelihood estimator. As parameterizing families we use Voronoi cells with randomly distributed cell centers. Considering that c value represents a physical character like stress change we expect to see a coherent c value pattern over seismologically coacting areas. This correlation of c valus can actually be seen for the San Andreas, San Jacinto and Elsinore faults. Moreover, the depth dependency of c value is studied which shows a linear behavior of log(c) with respect to aftershock's depth within 5 to 15 km depth.
Ma, Weina; Yang, Liu; Lv, Yanni; Fu, Jia; Zhang, Yanmin; He, Langchong
2017-06-23
The equilibrium dissociation constant (K D ) of drug-membrane receptor affinity is the basic parameter that reflects the strength of interaction. The cell membrane chromatography (CMC) method is an effective technique to study the characteristics of drug-membrane receptor affinity. In this study, the K D value of CMC relative standard method for the determination of drug-membrane receptor affinity was established to analyze the relative K D values of drugs binding to the membrane receptors (Epidermal growth factor receptor and angiotensin II receptor). The K D values obtained by the CMC relative standard method had a strong correlation with those obtained by the frontal analysis method. Additionally, the K D values obtained by CMC relative standard method correlated with pharmacological activity of the drug being evaluated. The CMC relative standard method is a convenient and effective method to evaluate drug-membrane receptor affinity. Copyright © 2017 Elsevier B.V. All rights reserved.
A geometrically controlled rigidity transition in a model for confluent 3D tissues
NASA Astrophysics Data System (ADS)
Merkel, Matthias; Manning, M. Lisa
2018-02-01
The origin of rigidity in disordered materials is an outstanding open problem in statistical physics. Previously, a class of 2D cellular models has been shown to undergo a rigidity transition controlled by a mechanical parameter that specifies cell shapes. Here, we generalize this model to 3D and find a rigidity transition that is similarly controlled by the preferred surface area S 0: the model is solid-like below a dimensionless surface area of {s}0\\equiv {S}0/{\\bar{V}}2/3≈ 5.413 with \\bar{V} being the average cell volume, and fluid-like above this value. We demonstrate that, unlike jamming in soft spheres, residual stresses are necessary to create rigidity. These stresses occur precisely when cells are unable to obtain their desired geometry, and we conjecture that there is a well-defined minimal surface area possible for disordered cellular structures. We show that the behavior of this minimal surface induces a linear scaling of the shear modulus with the control parameter at the transition point, which is different from the scaling observed in particulate matter. The existence of such a minimal surface may be relevant for biological tissues and foams, and helps explain why cell shapes are a good structural order parameter for rigidity transitions in biological tissues.
Determination of calibration parameters of a VRX CT system using an “Amoeba” algorithm
Jordan, Lawrence M.; DiBianca, Frank A.; Melnyk, Roman; Choudhary, Apoorva; Shukla, Hemant; Laughter, Joseph; Gaber, M. Waleed
2008-01-01
Efforts to improve the spatial resolution of CT scanners have focused mainly on reducing the source and detector element sizes, ignoring losses from the size of the secondary-ionization charge “clouds” created by the detected x-ray photons, i.e., the “physics limit.” This paper focuses on implementing a technique called “projective compression.” which allows further reduction in effective cell size while overcoming the physics limit as well. Projective compression signifies detector geometries in which the apparent cell size is smaller than the physical cell size, allowing large resolution boosts. A realization of this technique has been developed with a dual-arm “variable-resolution x-ray” (VRX) detector. Accurate values of the geometrical parameters are needed to convert VRX outputs to formats ready for optimal image reconstruction by standard CT techniques. The required calibrating data are obtained by scanning a rotating pin and fitting a theoretical parametric curve (using a multi-parameter minimization algorithm) to the resulting pin sinogram. Excellent fits are obtained for both detector-arm sections with an average (maximum) fit deviation of ~0.05 (0.1) detector cell width. Fit convergence and sensitivity to starting conditions are considered. Pre- and post-optimization reconstructions of the alignment pin and a biological subject reconstruction after calibration are shown. PMID:19430581
Determination of calibration parameters of a VRX CT system using an "Amoeba" algorithm.
Jordan, Lawrence M; Dibianca, Frank A; Melnyk, Roman; Choudhary, Apoorva; Shukla, Hemant; Laughter, Joseph; Gaber, M Waleed
2004-01-01
Efforts to improve the spatial resolution of CT scanners have focused mainly on reducing the source and detector element sizes, ignoring losses from the size of the secondary-ionization charge "clouds" created by the detected x-ray photons, i.e., the "physics limit." This paper focuses on implementing a technique called "projective compression." which allows further reduction in effective cell size while overcoming the physics limit as well. Projective compression signifies detector geometries in which the apparent cell size is smaller than the physical cell size, allowing large resolution boosts. A realization of this technique has been developed with a dual-arm "variable-resolution x-ray" (VRX) detector. Accurate values of the geometrical parameters are needed to convert VRX outputs to formats ready for optimal image reconstruction by standard CT techniques. The required calibrating data are obtained by scanning a rotating pin and fitting a theoretical parametric curve (using a multi-parameter minimization algorithm) to the resulting pin sinogram. Excellent fits are obtained for both detector-arm sections with an average (maximum) fit deviation of ~0.05 (0.1) detector cell width. Fit convergence and sensitivity to starting conditions are considered. Pre- and post-optimization reconstructions of the alignment pin and a biological subject reconstruction after calibration are shown.
Ocular Biocompatibility of Nitinol Intraocular Clips
Velez-Montoya, Raul; Erlanger, Michael
2012-01-01
Purpose. To evaluate the tolerance and biocompatibility of a preformed nitinol intraocular clip in an animal model after anterior segment surgery. Methods. Yucatan mini-pigs were used. A 30-gauge prototype injector was used to attach a shape memory nitinol clip to the iris of five pigs. Another five eyes received conventional polypropylene suture with a modified Seipser slip knot. The authors compared the surgical time of each technique. All eyes underwent standard full-field electroretinogram at baseline and 8 weeks after surgery. The animals were euthanized and eyes collected for histologic analysis after 70 days (10 weeks) postsurgery. The corneal thickness, corneal endothelial cell counts, specular microscopy parameters, retina cell counts, and electroretinogram parameters were compared between the groups. A two sample t-test for means and a P value of 0.05 were use for assessing statistical differences between measurements. Results. The injection of the nitinol clip was 15 times faster than conventional suturing. There were no statistical differences between the groups for corneal thickness, endothelial cell counts, specular microscopy parameters, retina cell counts, and electroretinogram measurements. Conclusions. The nitinol clip prototype is well tolerated and showed no evidence of toxicity in the short-term. The injectable delivery system was faster and technically less challenging than conventional suture techniques. PMID:22064995
NASA Astrophysics Data System (ADS)
Wasterlain, S.; Candusso, D.; Hissel, D.; Harel, F.; Bergman, P.; Menard, P.; Anwar, M.
A single PEMFC has been operated by varying the assembly temperature, the air dew point temperature and the anode/cathode stoichiometry rates with the aim to identify the parameters and combinations of factors affecting the cell performance. Some of the experiments were conducted with low humidified reactants (relative humidity of 12%). The FC characterizations tests have been conducted using in situ electrochemical methods based on load current and cell voltage signal analysis, namely: polarization curves, EIS measurements, cyclic and linear sweep voltammetries (CV and LSV). The impacts of the parameters on the global FC performances were observed using the polarization curves whereas EIS, CV and LSV test results were used to discriminate the different voltage loss sources. The test results suggest that some parameter sets allow maximal output voltages but can also induce material degradation. For instance, higher FC temperature and air flow values can induce significant electrical efficiency benefits, notably by increasing the reversible potential and the reaction kinetics. However, raising the cell temperature can also gradually dry the FC and increase the risk of membrane failure. LSV has also shown that elevated FC temperature and relative humidity can also accelerate the electrolyte degradation (i.e. slightly higher fuel crossover rate) and reduce the lifetime consequently.
Pan, Wei-Xing; Schmidt, Robert; Wickens, Jeffery R; Hyland, Brian I
2005-06-29
Behavioral conditioning of cue-reward pairing results in a shift of midbrain dopamine (DA) cell activity from responding to the reward to responding to the predictive cue. However, the precise time course and mechanism underlying this shift remain unclear. Here, we report a combined single-unit recording and temporal difference (TD) modeling approach to this question. The data from recordings in conscious rats showed that DA cells retain responses to predicted reward after responses to conditioned cues have developed, at least early in training. This contrasts with previous TD models that predict a gradual stepwise shift in latency with responses to rewards lost before responses develop to the conditioned cue. By exploring the TD parameter space, we demonstrate that the persistent reward responses of DA cells during conditioning are only accurately replicated by a TD model with long-lasting eligibility traces (nonzero values for the parameter lambda) and low learning rate (alpha). These physiological constraints for TD parameters suggest that eligibility traces and low per-trial rates of plastic modification may be essential features of neural circuits for reward learning in the brain. Such properties enable rapid but stable initiation of learning when the number of stimulus-reward pairings is limited, conferring significant adaptive advantages in real-world environments.
Walsh, Noreen M; Lai, Jonathan; Hanly, John G; Green, Peter J; Bosisio, Francesca; Garcias-Ladaria, Juan; Cerroni, Lorenzo
2015-01-01
Hypertrophic discoid lupus erythematosus (HDLE), a rare variant of lupus skin disease, is difficult to distinguish from squamous neoplasms and certain dermatoses microscopically. Recently, recognition of the pathogenetic significance of plasmacytoid dendritic cells (PDCS) in cutaneous lupus erythematosus (LE) and of their patterns of distribution in different manifestations of the disease prompted us to study their diagnostic value in the context of HDLE. Using immunohistochemistry (CD123) to label the cells, we examined their quantities and patterns of distribution in 27 tissue samples of HDLE from nine patients compared with 39 inflammatory and neoplastic control samples from 36 patients. Using three parameters pertaining to PDCs: (i) their representation of 10% or more of the inflammatory infiltrate, (ii) their arrangement in clusters of 10 cells or more and (iii) their presence at the dermoepidermal junction, we found them to have significant diagnostic value, with accuracies of 77%, 74% and 71%, respectively. This study supports the careful descriptive observations of previous authors in the field. It also lends validity to the diagnostic step of mapping, immunohistochemically, the density and distribution of PDCs in suspected cases of HDLE. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Peripheral white blood cells profile of biodegradable metal implant in mice animal model
NASA Astrophysics Data System (ADS)
Paramitha, Devi; Noviana, Deni; Estuningsih, Sri; Ulum, Mokhamad Fakhrul; Nasution, Ahmad Kafrawi; Hermawan, Hendra
2015-09-01
Biocompatibility or safety of the medical device is considered important. It can be determined by blood profile examination. The aim of this study was to assess the biocompatibility of biodegradable metal implant through peripheral white blood cells (WBCs) profile approach. Forty eight male ddy mice were divided into four groups according to the materials implanted: iron wire (Fe), magnesium rod (Mg), stainless steel surgical wire (SS316L) and control with sham (K). Implants were inserted and attached onto the right femoral bone on latero-medial region. In this study, peripheral white blood cells and leukocyte differentiation were the parameters examined. The result showed that the WBCs value of all groups were decreased at the first day after implantation, increased at the 10th day and continued increasing at the 30th day of observation, except Mg group which has decreased. Neutrophil, as an inflammatory cells, was increased at the early weeks and decreased at the day-30 after surgery in all groups. Despite, these values during the observation were still within the normal range. As a conclus ion, biodegradable metal implants lead to an inflammatory reaction, with no adverse effect on WBC value found.
Peripheral white blood cells profile of biodegradable metal implant in mice animal model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paramitha, Devi; Noviana, Deni, E-mail: deni@ipb.ac.id; Estuningsih, Sri
Biocompatibility or safety of the medical device is considered important. It can be determined by blood profile examination. The aim of this study was to assess the biocompatibility of biodegradable metal implant through peripheral white blood cells (WBCs) profile approach. Forty eight male ddy mice were divided into four groups according to the materials implanted: iron wire (Fe), magnesium rod (Mg), stainless steel surgical wire (SS316L) and control with sham (K). Implants were inserted and attached onto the right femoral bone on latero-medial region. In this study, peripheral white blood cells and leukocyte differentiation were the parameters examined. The resultmore » showed that the WBCs value of all groups were decreased at the first day after implantation, increased at the 10th day and continued increasing at the 30th day of observation, except Mg group which has decreased. Neutrophil, as an inflammatory cells, was increased at the early weeks and decreased at the day-30 after surgery in all groups. Despite, these values during the observation were still within the normal range. As a conclus ion, biodegradable metal implants lead to an inflammatory reaction, with no adverse effect on WBC value found.« less
Soil conservation service curve number: How to take into account spatial and temporal variability
NASA Astrophysics Data System (ADS)
Rianna, M.; Orlando, D.; Montesarchio, V.; Russo, F.; Napolitano, F.
2012-09-01
The most commonly used method to evaluate rainfall excess, is the Soil Conservation Service (SCS) runoff curve number model. This method is based on the determination of the CN valuethat is linked with a hydrological soil group, cover type, treatment, hydrologic condition and antecedent runoff condition. To calculate the antecedent runoff condition the standard procedure needs to calculate the rainfall over the entire basin during the five days previous to the beginning of the event in order to simulate and then to use that volume of rainfall to calculate the antecedent moisture condition (AMC). This is necessary in order to obtain the correct curve number value. The value of the modified parameter is then kept constant throughout the whole event. The aim of this work is to evaluate the possibility of improving the curve number method. The various assumptions are focused on modifying those related to rainfall and the determination of an AMC condition and their role in the determination of the value of the curve number parameter. In order to consider the spatial variability we assumed that the rainfall which influences the AMC and the CN value does not account for the rainfall over the entire basin, but for the rainfall within a single cell where the basin domain is discretized. Furthermore, in order to consider the temporal variability of rainfall we assumed that the value of the CN of the single cell is not maintained constant during the whole event, but instead varies throughout it according to the time interval used to define the AMC conditions.
Correlating measured transient temperature rises with damage rate processes in cultured cells
NASA Astrophysics Data System (ADS)
Denton, Michael L.; Tijerina, Amanda J.; Gonzalez, Cherry C.; Gamboa, B. Giovana; Noojin, Gary D.; Ahmed, Elharith M.; Rickman, John M.; Dyer, Phillip H.; Rockwell, Benjamin A.
2017-02-01
Thermal damage rate processes in biological tissues are usually characterized by a kinetics approach. This stems from experimental data that show how the transformation of a specified biological property of cells or biomolecule (plating efficiency for viability, change in birefringence, tensile strength, etc.) is dependent upon both time and temperature. Here, two disparate approaches were used to study thermal damage rate processes in cultured retinal pigment epithelial cells. Laser exposure (photothermal) parameters included 2-μm laser exposure of non-pigmented cells and 532-nm exposures of cells possessing a variety of melanosome particle densities. Photothermal experiments used a mid-IR camera to record temperature histories with spatial resolution of about 8 μm, while fluorescence microscopy of the cell monolayers identified threshold damage at the boundary between live and dead cells. Photothermal exposure durations ranged from 0.05-20 s, and the effects of varying ambient temperature were investigated. Temperature during heat transfer using a water-jacketed cuvette was recorded with a fast microthermister, while damage and viability of the suspended cells were determined as percentages. Exposure durations for the heat transfer experiments ranged from 50- 60 s. Empirically-determined kinetic parameters for the two heating methods were compared with each other, and with values found in the literature.
Characterization of Lateral Structure of the p-i-n Diode for Thin-Film Silicon Solar Cell.
Kiaee, Zohreh; Joo, Seung Ki
2018-03-01
The lateral structure of the p-i-n diode was characterized for thin-film silicon solar cell application. The structure can benefit from a wide intrinsic layer, which can improve efficiency without increasing cell thickness. Compared with conventional thin-film p-i-n cells, the p-i-n diode lateral structure exploited direct light irradiation on the absorber layer, one-side contact, and bifacial irradiation. Considering the effect of different carrier lifetimes and recombinations, we calculated efficiency parameters by using a commercially available simulation program as a function of intrinsic layer width, as well as the distance between p/i or n/i junctions to contacts. We then obtained excellent parameter values of 706.52 mV open-circuit voltage, 24.16 mA/Cm2 short-circuit current, 82.66% fill factor, and 14.11% efficiency from a lateral cell (thickness = 3 μm; intrinsic layer width = 53 μm) in monofacial irradiation mode (i.e., only sunlight from the front side was considered). Simulation results of the cell without using rear-side reflector in bifacial irradiation mode showed 11.26% front and 9.72% rear efficiencies. Our findings confirmed that the laterally structured p-i-n cell can be a potentially powerful means for producing highly efficient, thin-film silicon solar cells.
Wang, Jun-jun; Liao, Xiao-huan; Ye, Min; Chen, Yong
2010-09-01
To study the effect of liquiritin (Liq) on the transport of strychnine (Str) in Caco-2 cell monolayer model, the transport parameters of Str, such as apparent permeability coefficient (P app (B-->A) and P app (A-->B)) and cumulative transport amount (TRcum), were determined and comparatively analyzed when Str was used solely and co-used with Liq. The effect of drug concentrations, conveying times, P-glycoprotein (P-gp) inhibitor verapamil and conveying liquor pH values on the transport of Str were also investigated. The results indicated that the absorption of Str in Caco-2 cell monolayer model was well and the passive transference was the main intestinal absorption mechanism of Str in the Caco-2 monolayer model, along with the excretion action mediated by P-gp. Liq enhanced the absorption of Str. Meanwhile, conveying liquor pH value had significant influence on the excretion transport of Str.
Anion exchange membrane fuel cell modelling
NASA Astrophysics Data System (ADS)
Fragiacomo, P.; Astorino, E.; Chippari, G.; De Lorenzo, G.; Czarnetzki, W. T.; Schneider, W.
2018-04-01
A parametric model predicting the performance of a solid polymer electrolyte, anion exchange membrane fuel cell (AEMFC), has been developed, in Matlab environment, based on interrelated electrical and thermal models. The electrical model proposed is developed by modelling an AEMFC open-circuit output voltage, irreversible voltage losses along with a mass balance, while the thermal model is based on the energy balance. The proposed model of the AEMFC stack estimates its dynamic behaviour, in particular the operating temperature variation for different discharge current values. The results of the theoretical fuel cell (FC) stack are reported and analysed in order to highlight the FC performance and how it varies by changing the values of some parameters such as temperature and pressure. Both the electrical and thermal FC models were validated by comparing the model results with experimental data and the results of other models found in the literature.
2014-01-01
Background Fractal geometry has been the basis for the development of a diagnosis of preneoplastic and neoplastic cells that clears up the undetermination of the atypical squamous cells of undetermined significance (ASCUS). Methods Pictures of 40 cervix cytology samples diagnosed with conventional parameters were taken. A blind study was developed in which the clinic diagnosis of 10 normal cells, 10 ASCUS, 10 L-SIL and 10 H-SIL was masked. Cellular nucleus and cytoplasm were evaluated in the generalized Box-Counting space, calculating the fractal dimension and number of spaces occupied by the frontier of each object. Further, number of pixels occupied by surface of each object was calculated. Later, the mathematical features of the measures were studied to establish differences or equalities useful for diagnostic application. Finally, the sensibility, specificity, negative likelihood ratio and diagnostic concordance with Kappa coefficient were calculated. Results Simultaneous measures of the nuclear surface and the subtraction between the boundaries of cytoplasm and nucleus, lead to differentiate normality, L-SIL and H-SIL. Normality shows values less than or equal to 735 in nucleus surface and values greater or equal to 161 in cytoplasm-nucleus subtraction. L-SIL cells exhibit a nucleus surface with values greater than or equal to 972 and a subtraction between nucleus-cytoplasm higher to 130. L-SIL cells show cytoplasm-nucleus values less than 120. The rank between 120–130 in cytoplasm-nucleus subtraction corresponds to evolution between L-SIL and H-SIL. Sensibility and specificity values were 100%, the negative likelihood ratio was zero and Kappa coefficient was equal to 1. Conclusions A new diagnostic methodology of clinic applicability was developed based on fractal and euclidean geometry, which is useful for evaluation of cervix cytology. PMID:24742118
Determination of the threshold dose distribution in photodynamic action from in vitro experiments.
de Faria, Clara Maria Gonçalves; Inada, Natalia Mayumi; Kurachi, Cristina; Bagnato, Vanderlei Salvador
2016-09-01
The concept of threshold in photodynamic action on cells or microorganisms is well observed in experiments but not fully explored on in vitro experiments. The intercomparison between light and used photosensitizer among many experiments is also poorly evaluated. In this report, we present an analytical model that allows extracting from the survival rate experiments the data of the threshold dose distribution, ie, the distribution of energies and photosensitizer concentration necessary to produce death of cells. Then, we use this model to investigate photodynamic therapy (PDT) data previously published in literature. The concept of threshold dose distribution instead of "single value of threshold" is a rich concept for the comparison of photodynamic action in different situations, allowing analyses of its efficiency as well as determination of optimized conditions for PDT. We observed that, in general, as it becomes more difficult to kill a population, the distribution tends to broaden, which means it presents a large spectrum of threshold values within the same cell type population. From the distribution parameters (center peak and full width), we also observed a clear distinction among cell types regarding their response to PDT that can be quantified. Comparing data obtained from the same cell line and used photosensitizer (PS), where the only distinct condition was the light source's wavelength, we found that the differences on the distribution parameters were comparable to the differences on the PS absorption. At last, we observed evidence that the threshold dose distribution matches the curve of apoptotic activity for some PSs. Copyright © 2016 Elsevier B.V. All rights reserved.
Skinner, John P.; Tuomi, Pam A.; Mellish, Jo-Ann E.
2015-01-01
The Steller sea lion, Eumetopias jubatus, has experienced regionally divergent population trends over recent decades. One potential mechanism for this disparity is that local factors cause reduced health and, therefore, reduced survival of individuals. The use of blood parameters to assess sea lion health may help to identify whether malnutrition, disease and stress are important drivers of current trends, but such assessments require species-specific knowledge of how parameters respond to various health challenges. We used principal components analysis to identify which key blood parameters (principal analytes) best described changes in health for temporarily captive juvenile Steller sea lions in known conditions. Generalized additive mixed models were used to estimate the changes in principal analytes with food intake, time in captivity and acute trauma associated with hot-iron branding and transmitter implant surgery. Of the 17 blood parameters examined, physiological changes for juvenile sea lions were best described using the following six principal analytes: red blood cell counts, white blood cell counts, globulin, platelets, glucose and total bilirubin. The white blood cell counts and total bilirubin declined over time in captivity, whereas globulin increased. Elevated red blood cell counts, white blood cell counts and total bilirubin and reduced globulin values were associated with lower food intake. After branding, white blood cell counts were elevated for the first 30 days, while globulin and platelets were elevated for the first 15 days only. After implant surgery, red blood cell counts and globulin remained elevated for 30 days, while white blood cell counts remained elevated during the first 15 days only. Glucose was unassociated with the factors we studied. These results were used to provide expected ranges for principal analytes at different levels of food intake and in response to the physical challenges of branding and implant surgery. These results provide a more detailed reference for future evaluations of health-related assessments. PMID:27293693
Almquist, Joachim; Bendrioua, Loubna; Adiels, Caroline Beck; Goksör, Mattias; Hohmann, Stefan; Jirstrand, Mats
2015-01-01
The last decade has seen a rapid development of experimental techniques that allow data collection from individual cells. These techniques have enabled the discovery and characterization of variability within a population of genetically identical cells. Nonlinear mixed effects (NLME) modeling is an established framework for studying variability between individuals in a population, frequently used in pharmacokinetics and pharmacodynamics, but its potential for studies of cell-to-cell variability in molecular cell biology is yet to be exploited. Here we take advantage of this novel application of NLME modeling to study cell-to-cell variability in the dynamic behavior of the yeast transcription repressor Mig1. In particular, we investigate a recently discovered phenomenon where Mig1 during a short and transient period exits the nucleus when cells experience a shift from high to intermediate levels of extracellular glucose. A phenomenological model based on ordinary differential equations describing the transient dynamics of nuclear Mig1 is introduced, and according to the NLME methodology the parameters of this model are in turn modeled by a multivariate probability distribution. Using time-lapse microscopy data from nearly 200 cells, we estimate this parameter distribution according to the approach of maximizing the population likelihood. Based on the estimated distribution, parameter values for individual cells are furthermore characterized and the resulting Mig1 dynamics are compared to the single cell times-series data. The proposed NLME framework is also compared to the intuitive but limited standard two-stage (STS) approach. We demonstrate that the latter may overestimate variabilities by up to almost five fold. Finally, Monte Carlo simulations of the inferred population model are used to predict the distribution of key characteristics of the Mig1 transient response. We find that with decreasing levels of post-shift glucose, the transient response of Mig1 tend to be faster, more extended, and displays an increased cell-to-cell variability. PMID:25893847
Petrou, Panagiotis; Talias, Michael A
2014-01-01
The continuing increase of pharmaceutical expenditure calls for new approaches to pricing and reimbursement of pharmaceuticals. Value based pricing of pharmaceuticals is emerging as a useful tool and possess theoretical attributes to help health system cope with rising pharmaceutical expenditure. To assess the feasibility of introducing a value-based pricing scheme of pharmaceuticals in Cyprus and explore the integrative framework. A probabilistic Markov chain Monte Carlo model was created to simulate progression of advanced renal cell cancer for comparison of sorafenib to standard best supportive care. Literature review was performed and efficacy data were transferred from a published landmark trial, while official pricelists and clinical guidelines from Cyprus Ministry of Health were utilised for cost calculation. Based on proposed willingness to pay threshold the maximum price of sorafenib for the indication of second line renal cell cancer was assessed. Sorafenib value based price was found to be significantly lower compared to its current reference price. Feasibility of Value Based Pricing is documented and pharmacoeconomic modelling can lead to robust results. Integration of value and affordability in the price are its main advantages which have to be weighed against lack of documentation for several theoretical parameters that influence outcome. Smaller countries such as Cyprus may experience adversities in establishing and sustaining essential structures for this scheme.
Species differences in hematological values of captive cranes, geese, raptors, and quail
Gee, G.F.; Carpenter, J.W.; Hensler, G.L.
1981-01-01
Hematological and serum chemical constituents of blood were determined for 12 species, including 7 endangered species, of cranes, geese, raptors, and quail in captivity at the Patuxent Wildlife Research Center. Means, standard deviations, analysis of variance by species and sex, and a series of multiple comparisons of means were derived for each parameter investigated. Differences among some species means were observed in all blood parameters except gamma-glutamyl transpeptidase. Although sampled during the reproductively quiescent period, an influence of sex was noted in red blood cell count, hemoglobin, albumin, glucose, cholesterol, serum glutamic oxaloacetic transaminase, Ca, and P. Our data and values reported in literature indicate that most hematological parameters vary among species and, in some cases, according to methods used to determine them. Therefore, baseline data for captive and wild birds should be established by using standard methods, and should be made available to aid others for use in assessing physiological and pathological conditions of these species.
Fiocco, Ugo; Stramare, Roberto; Martini, Veronica; Coran, Alessandro; Caso, Francesco; Costa, Luisa; Felicetti, Mara; Rizzo, Gaia; Tonietto, Matteo; Scanu, Anna; Oliviero, Francesca; Raffeiner, Bernd; Vezzù, Maristella; Lunardi, Francesca; Scarpa, Raffaele; Sacerdoti, David; Rubaltelli, Leopoldo; Punzi, Leonardo; Doria, Andrea; Grisan, Enrico
2017-02-01
To develop quantitative imaging biomarkers of synovial tissue perfusion by pixel-based contrast-enhanced ultrasound (CEUS), we studied the relationship between CEUS synovial vascular perfusion and the frequencies of pathogenic T helper (Th)-17 cells in psoriatic arthritis (PsA) joints. Eight consecutive patients with PsA were enrolled in this study. Gray scale CEUS evaluation was performed on the same joint immediately after joint aspiration, by automatic assessment perfusion data, using a new quantification approach of pixel-based analysis and the gamma-variate model. The set of perfusional parameters considered by the time intensity curve includes the maximum value (peak) of the signal intensity curve, the blood volume index or area under the curve, (BVI, AUC) and the contrast mean transit time (MTT). The direct ex vivo analysis of the frequencies of SF IL17A-F + CD161 + IL23 + CD4 + T cells subsets were quantified by fluorescence-activated cell sorter (FACS). In cross-sectional analyses, when tested for multiple comparison setting, a false discovery rate at 10%, a common pattern of correlations between CEUS Peak, AUC (BVI) and MTT parameters with the IL17A-F + IL23 + - IL17A-F + CD161 + - and IL17A-F + CD161 + IL23 + CD4 + T cells subsets, as well as lack of correlation between both peak and AUC values and both CD4 + T and CD4 + IL23 + T cells, was observed. The pixel-based CEUS assessment is a truly measure synovial inflammation, as a useful tool to develop quantitative imaging biomarker for monitoring target therapeutics in PsA.
Determination of the maximum operating range of hydrodynamic stress in mammalian cell culture.
Neunstoecklin, Benjamin; Stettler, Matthieu; Solacroup, Thomas; Broly, Hervé; Morbidelli, Massimo; Soos, Miroslav
2015-01-20
Application of quality by design (QbD) requires identification of the maximum operating range for parameters affecting the cell culture process. These include hydrodynamic stress, mass transfer or gradients in dissolved oxygen and pH. Since most of these are affected by the impeller design and speed, the main goal of this work was to identify a maximum operating range for hydrodynamic stress, where no variation of cell growth, productivity and product quality can be ensured. Two scale-down models were developed operating under laminar and turbulent condition, generating repetitive oscillating hydrodynamic stress with maximum stress values ranging from 0.4 to 420Pa, to compare the effect of the different flow regimes on the cells behavior. Two manufacturing cell lines (CHO and Sp2/0) used for the synthesis of therapeutic proteins were employed in this study. For both cell lines multiple process outputs were used to determine the threshold values of hydrodynamic stress, such as cell growth, morphology, metabolism and productivity. They were found to be different in between the cell lines with values equal to 32.4±4.4Pa and 25.2±2.4Pa for CHO and Sp2/0, respectively. Below the measured thresholds both cell lines do not show any appreciable effect of the hydrodynamic stress on any critical quality attribute, while above, cells responded negatively to the elevated stress. To confirm the applicability of the proposed method, the obtained results were compared with data generated from classical small-scale reactors with a working volume of 3L. Copyright © 2014 Elsevier B.V. All rights reserved.
Wong, M; Wuethrich, P; Eggli, P; Hunziker, E
1996-05-01
A new methodology was developed to measure spatial variations in chondrocyte/matrix structural parameters and chondrocyte biosynthetic activity in articular cartilage. This technique is based on the use of a laser scanning confocal microscope that can "optically" section chemically fixed, unembedded tissue. The confocal images are used for morphometric measurement of stereologic parameters such as cell density (cells/mm3), cell volume fraction (%), surface density (l/cm), mean cell volume (micron3), and mean cell surface area (micron2). Adjacent pieces of tissue are simultaneously processed for conventional liquid emulsion autoradiography, and a semiautomated grain counting program is used to measure the silver grain density at regions corresponding to the same sites used for structural measurements. An estimate of chondrocyte biosynthetic activity in terms of grains per cell is obtained by dividing the value for grain density by that for cell density. In this paper, the newly developed methodology was applied to characterize the zone-specific behavior of adult articular cartilage in the free-swelling state. Cylinders of young adult bovine articular cartilage were labelled with either [3H]proline or [35S]sulfate, and chondrocyte biosynthesis and structural parameters were measured from the articular surface to the tidemark. The results showed that chondrocytes of the radial zone occupied twice the volume and surface area of the chondrocytes of the superficial zone but were 10 times more synthetically active. This efficient and unbiased technique may prove useful in studying the correlation between mechanically induced changes in cell form and biosynthetic activity within inhomogeneous tissue as well as metabolic changes in cartilage due to ageing and disease.
Zhang, Xiongliang; Yan, Xiaoyu; Wang, Chunyang; Tang, Tingting; Chai, Yimin
2014-01-01
Extracorporeal shock wave therapy (ESWT) has been demonstrated to have the angiogenic effect on ischemic tissue. We hypothesize that ESWT exerts the proangiogenesis effect with an energy density-dependent mode on the target cells. Endothelial progenitor cells (EPCs) of rats were obtained by cultivation of bone marrow-derived mononuclear cells. EPCs were divided into five groups of different energy densities, and each group was furthermore subdivided into four groups of different shock numbers. Thus, there were 20 subgroups in total. The expressions of angiogenic factors, apoptotic factors, inflammation mediators, and chemotactic factors were examined, and the proliferation activity was measured after ESWT. When EPCs were treated with low-energy (0.04-0.13 mJ/mm(2)) shock wave, the expressions of endothelial nitric oxide synthase, angiopoietin (Ang) 1, Ang-2, and B-cell lymphoma 2 increased and those of interleukin 6, fibroblast growth factor 2, C-X-C chemokine receptor type 4, vascular endothelial growth factor a, Bcl-2-associated X protein, and caspase 3 decreased. stromal cell-derived factor 1 changed without statistical significance. When cells were treated with high-energy (0.16 mJ/mm(2)) shock wave, most of the expressions of cytokines declined except the apoptotic factors and fibroblast growth factor 2, and cells lead to apoptosis. The proliferation activity and the ratio of Ang-1/Ang-2 reached their peak values, when cells were treated with ESWT with the intensity ranging from 0.10-0.13 mJ/mm(2) and shock number ranging from 200-300 impulses. Meanwhile, a minimal value of the ratio of Bax/Bcl-2 was observed. There is a dose-effect relationship in ESWT. The shock intensity ranging from 0.10-0.13 mJ/mm(2) and shock number ranging from 200-300 impulses were the optimal parameters for ESWT to treat cells in vitro. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.
Measurements of the fundamental thermodynamic parameters of Li/BCX and Li/SOCl2 cells
NASA Technical Reports Server (NTRS)
Kalu, E. E.; White, R. E.; Darcy, E. C.
1992-01-01
Two experimental techniques - equilibrium or reversible cell discharge and measurement of open circuit potential as a function of temperature - are used to determine the thermodynamic data needed to estimate the heat generation characteristics of Li/BCX and Li/SOCl2 cells. The results obtained showed that the reversible cell potential, the temperature dependence of the reversible cell potential, and the thermoneutral potential of the BCX cell were 3.74 V, -0.857 +/- 0.198 mV/K, and 3.994 +/- 0.0603 V, respectively. The respective values obtained for the Li/SOCl2 cell were 3.67 V, -0.776 +/- 0.255 mV/K, and 3.893 +/- 0.0776 V. The difference between the thermoneutral potential of Li/BCX and Li/SCl2 cells is attributable to the difference in their electroactive components.
NASA Astrophysics Data System (ADS)
Yadav, Sushil Kumar
2018-05-01
Photogalvanic effect was studied in Photogalvanic cell containing Rose Extract was used as Natural Dye (Photosensitizer), Nitrilotriacetic acid (NTA) as Reductant. The observed value of photopotential and photocurrent generated by this cell were 872 mV and 176 µA, respectively. The observed power at power point was 82.18 µW and the conversion efficiency was 0.79 %. The fill factor 0.4678 was experimentally determined at the power point of the cell. The photogalvanic cell can be used in dark for 42 min., showing the storage capacity of the cell against charging time was 200 min. The effect of different parameters on electrical output of the cell was observed and a mechanism has also been proposed for the generation of photocurrent in photogalvanic cell.
Bavle, Abhishek; Raj, Ashok; Kong, Maiying; Bertolone, Salvatore
2014-11-01
Children with sickle cell disease (SCD) lag in weight and height and have a delayed growth spurt compared to normal children. We studied the effect of long-term erythrocytapheresis (LTE) on the growth of children with SCD and the age at which they attained peak height velocity. A retrospective chart review was performed recording weight, height, and body mass index (BMI) measurements of 36 patients with SCD who received LTE every 3-5 weeks for an average duration of 5 years. The z-scores for weight, height, and BMI of these patients were compared with that of patients with SCD from the Cooperative Study of Sickle Cell Disease (CSSCD) and a sub-set of 64 controls matched for age, sex, and initial growth parameter z-scores at the start of LTE. The z-scores for all parameters improved significantly for our patients on LTE compared to match controls from CSSCD and the entire pediatric CSSCD cohort (P-value: <0.01). Peak height velocity was achieved 2 months earlier for females (P-value: 0.94) and 11 months earlier for males (P-value: 0.02), who started LTE before 14 years of age, compared to matched CSSCD controls. The study subjects who had not been on regular simple transfusions prior to starting LTE had a mean serum ferritin of 681 ng/ml after LTE for an average duration of 63 months. LTE improves the growth of children with SCD without the risk of iron overload. © 2014 Wiley Periodicals, Inc.
Gajski, Goran; Gerić, Marko; Oreščanin, Višnja; Garaj-Vrhovac, Vera
2018-02-01
The cytokinesis-block micronucleus cytome (CBMN Cyt) assay was used to evaluate the baseline frequency of cytogenetic damage in peripheral blood lymphocytes of the general population (average age, 38.28 ± 12.83 years) in relation to age, sex, body mass index, seasonal variations (season of sampling, period of sampling and different meteorological parameters) and lifestyle factors (smoking habit, alcohol consumption, exposure to medications and diagnostic radiation, physical activity, and family history of cancer). The background frequency of micronuclei (MNi) for the 200 subjects assayed was 5.06 ± 3.11 per 1000 binucleated cells, while the mean frequency of nucleoplasmic bridges (NPBs) was 1.21 ± 1.46 and of nuclear buds (NBUDs) 3.48 ± 2.14. The background frequency of apoptosis and necrosis was 1.58 ± 1.50 and 1.39 ± 1.56, respectively, while the mean nuclear division index (NDI) was 1.99 ± 0.14. The cut-off value, which corresponds to the 95th percentile of the distribution of 200 individual values, was 11 MNi, 4 NPBs and 7 NBUDs. The study also confirmed an association of the above mentioned parameters with age, sex and several lifestyle factors. Moreover, significant confounders based on our results are also sampling season, sampling period and different meteorological parameters that were dependent on the CBMN Cyt assay parameters. In line with the above mentioned, several factors should be taken into account when it comes to the monitoring of exposed populations using cytogenetic biomarkers. Moreover, the normal and cut-off values obtained in this study present background data for the general population, and can later serve as baseline values for further biomonitoring studies. Copyright © 2017 Elsevier Inc. All rights reserved.
Ostrakhovich, E A; Ilich-Stoianovich, O; Afanas'ev, I B
2001-01-01
Infrared pulse laser therapy was studied for its impact on the production of active forms of oxygen and nitrogen by neutrophils from patients with rheumatoid arthritis (RA). The authors determined the non-activated and PMA-activated production of superoxide anion-radical, peroxynitrite, peripheral neurophilic NAD.PH-oxidase and superoxide dismutase activities, and the red blood cell concentrations of reduced glutathione. Before therapy, non-activation RA neurophilic production of superoxide was much higher than in donors. Laser therapy made this parameter normal. Similarly, neutrophilic peroxynitrite production (defined by dihydrorhodamine oxidation) in RA patients was 1.7 times higher than the normal values. IF-laser therapy decreased peroxynitrite production to the values observed in donors. It is important that the therapy caused increased SOD activity (that was lower in RA patients prior to therapy) up to apparently control values. Thus, IF-laser therapy has a certain antioxidative effect by increasing SOD activity in RA patients' blood cells and reducing the production of highly reactive oxygen and nitrogen forms.
A life prediction methodology for encapsulated solar cells
NASA Technical Reports Server (NTRS)
Coulbert, C. D.
1978-01-01
This paper presents an approach to the development of a life prediction methodology for encapsulated solar cells which are intended to operate for twenty years or more in a terrestrial environment. Such a methodology, or solar cell life prediction model, requires the development of quantitative intermediate relationships between local environmental stress parameters and the basic chemical mechanisms of encapsulant aging leading to solar cell failures. The use of accelerated/abbreviated testing to develop these intermediate relationships and in revealing failure modes is discussed. Current field and demonstration tests of solar cell arrays and the present laboratory tests to qualify solar module designs provide very little data applicable to predicting the long-term performance of encapsulated solar cells. An approach to enhancing the value of such field tests to provide data for life prediction is described.
Beißner, Nicole; Zorn-Kruppa, Michaela; Reichl, Stephan
2018-01-30
In this study, a shipping protocol for our 3D human hemicornea (HC) construct should be developed to provide quality-maintaining shipping conditions and to allow its ready-to-use application in drug absorption studies. First, the effects of single and multiple parameters, such as the type of shipping container, storage temperature and CO 2 supply, were investigated under controlled laboratory conditions by assessing cell viability via MTT dye reaction and epithelial barrier properties via transepithelial electrical resistance (TEER) measurements. These investigations showed that TEER is more susceptible to shipping parameters than cell viability. Furthermore, the results were used to determine the optimal shipping conditions and critical values for subsequent overnight, real-time shipping experiments. Epithelial barrier properties were then investigated via TEER and the permeation of sodium fluorescein for shipped and not shipped HC. The results underscore that acceleration forces and changes in position may have a great impact on the epithelial barrier of 3D models. Low acceleration values and short changes in position caused only minor impairments. However, combined or intensive separate effects resulted in considerably low yields after shipping. Consequently, barrier-maintaining shipping of 3D in vitro models seems to be challenging, as mechanical forces have to be reduced to a minimum. Copyright © 2017 Elsevier B.V. All rights reserved.
Effects of NaCl and CaCl2 on Water Transport across Root Cells of Maize (Zea mays L.) Seedlings 1
Azaizeh, Hassan; Gunse, Benito; Steudle, Ernst
1992-01-01
The effect of salinity and calcium levels on water flows and on hydraulic parameters of individual cortical cells of excised roots of young maize (Zea mays L. cv Halamish) plants have been measured using the cell pressure probe. Maize seedlings were grown in one-third strength Hoagland solution modified by additions of NaCl and/or extra calcium so that the seedlings received one of four treatments: control; +100 millimolar NaCl; +10 millimolar CaCl2; +100 millimolar NaCl + 10 millimolar CaCl2. From the hydrostatic and osmotic relaxations of turgor, the hydraulic conductivity (Lp) and the reflection coefficient (σs) of cortical cells of different root layers were determined. Mean Lp values in the different layers (first to third, fourth to sixth, seventh to ninth) of the four different treatments ranged from 11.8 to 14.5 (Control), 2.5 to 3.8 (+NaCl), 6.9 to 8.7 (+CaCl2), and 6.6 to 7.2 · 10−7 meter per second per megapascal (+NaCl + CaCl2). These results indicate that salinization of the growth media at regular calcium levels (0.5 millimolar) decreased Lp significantly (three to six times). The addition of extra calcium (10 millimolar) to the salinized media produced compensating effects. Mean cell σs values of NaCl ranged from 1.08 to 1.16, 1.15 to 1.22, 0.94 to 1.00, and 1.32 to 1.46 in different root cell layers of the four different treatments, respectively. Some of these σs values were probably overestimated due to an underestimation of the elastic modulus of cells, σs values of close to unity were in line with the fact that root cell membranes were practically not permeable to NaCl. However, the root cylinder exhibited some permeability to NaCl as was demonstrated by the root pressure probe measurements that resulted in σsr of less than unity. Compared with the controls, salinity and calcium increased the root cell diameter. Salinized seedlings grown at regular calcium levels resulted in shorter cell length compared with control (by a factor of 2). The results demonstrate that NaCl has adverse effects on water transport parameters of root cells. Extra calcium could, in part, compensate for these effects. The data suggest a considerable apoplasmic water flow in the root cortex. However, the cell-to-cell path also contributed to the overall water transport in maize roots and appeared to be responsible for the decrease in root hydraulic conductivity reported earlier (Azaizeh H, Steudle E [1991] Plant Physiol 97: 1136-1145). Accordingly, the effect of high salinity on the cell Lp was much larger than that on root Lpr. PMID:16669016
Losa, Gabriele A; Castelli, Christian
2005-11-01
An analytical strategy combining fractal geometry and grey-level co-occurrence matrix (GLCM) statistics was devised to investigate ultrastructural changes in oestrogen-insensitive SK-BR3 human breast cancer cells undergoing apoptosis in vitro. Apoptosis was induced by 1 microM calcimycin (A23187 Ca(2+) ionophore) and assessed by measuring conventional cellular parameters during the culture period. SK-BR3 cells entered the early stage of apoptosis within 24 h of treatment with calcimycin, which induced detectable changes in nuclear components, as documented by increased values of most GLCM parameters and by the general reduction of the fractal dimensions. In these affected cells, morphonuclear traits were accompanied by the reduction of distinct gangliosides and loss of unidentifiable glycolipid molecules at the cell surface. All these changes were shown to be involved in apoptosis before the detection of conventional markers, which were only measurable during the active phases of apoptotic cell death. In overtly apoptotic cells treated with 1 microM calcimycin for 72 h, most nuclear components underwent dramatic ultrastructural changes, including marginalisation and condensation of chromatin, as reflected in a significant reduction of their fractal dimensions. Hence, both fractal and GLCM analyses confirm that the morphological reorganisation of nuclei, attributable to a loss of structural complexity, occurs early in apoptosis.
Xu, Xiao Quan; Choi, Young Jun; Sung, Yu Sub; Yoon, Ra Gyoung; Jang, Seung Won; Park, Ji Eun; Heo, Young Jin; Baek, Jung Hwan; Lee, Jeong Hyun
2016-01-01
To investigate the correlation between perfusion- and diffusion-related parameters from intravoxel incoherent motion (IVIM) and those from dynamic contrast-enhanced MR imaging (DCE-MRI) and diffusion-weighted imaging in tumors and normal muscles of the head and neck. We retrospectively enrolled 20 consecutive patients with head and neck tumors with MR imaging performed using a 3T MR scanner. Tissue diffusivity (D), pseudo-diffusion coefficient (D(*)), and perfusion fraction (f) were derived from bi-exponential fitting of IVIM data obtained with 14 different b-values in three orthogonal directions. We investigated the correlation between D, f, and D(*) and model-free parameters from the DCE-MRI (wash-in, Tmax, Emax, initial AUC60, whole AUC) and the apparent diffusion coefficient (ADC) value in the tumor and normal masseter muscle using a whole volume-of-interest approach. Pearson's correlation test was used for statistical analysis. No correlation was found between f or D(*) and any of the parameters from the DCE-MRI in all patients or in patients with squamous cell carcinoma (p > 0.05). The ADC was significantly correlated with D values in the tumors (p < 0.001, r = 0.980) and muscles (p = 0.013, r = 0.542), despite its significantly higher value than D. The difference between ADC and D showed significant correlation with f values in the tumors (p = 0.017, r = 0.528) and muscles (p = 0.003, r = 0.630), but no correlation with D(*) (p > 0.05, respectively). Intravoxel incoherent motion shows no significant correlation with model-free perfusion parameters derived from the DCE-MRI but is feasible for the analysis of diffusivity in both tumors and normal muscles of the head and neck.
Chou, Shih-Jen; Shieh, Yao-Ching; Yu, Chang-You
2008-07-01
Type C1 botulism outbreaks in Black-faced Spoonbills (Platalea minor) occurred in Taiwan from 2002 to 2003, and hematologic and biochemistry parameters from botulism-paralyzed birds and recovered birds were compared. Values for creatinine and uric acid were higher (P<0.0025) in birds with botulism than in recovered birds. Lower white blood cell counts (P<0.005) and values for alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and triglycerides (P<0.025) were observed in recovered birds. Based on these observations, we suggest that hematologic and biochemistry analyses should be performed to assess the health condition of birds recovering from botulism.
2011-01-01
Background The finding of human umbilical cord blood as one of the most likely sources of hematopoietic stem cells offers a less invasive alternative for the need of hematopoietic stem cell transplantation. Due to the once-in-a-life time chance of collecting it, an optimum cryopreservation method that can preserve the life and function of the cells contained is critically needed. Methods Until now, slow-cooling has been the routine method of cryopreservation; however, rapid-cooling offers a simple, efficient, and harmless method for preserving the life and function of the desired cells. Therefore, this study was conducted to compare the effectiveness of slow- and rapid-cooling to preserve umbilical cord blood of mononucleated cells suspected of containing hematopoietic stem cells. The parameters used in this study were differences in cell viability, malondialdehyde content, and apoptosis level. The identification of hematopoietic stem cells themselves was carried out by enumerating CD34+ in a flow cytometer. Results Our results showed that mononucleated cell viability after rapid-cooling (91.9%) was significantly higher than that after slow-cooling (75.5%), with a p value = 0.003. Interestingly, the malondialdehyde level in the mononucleated cell population after rapid-cooling (56.45 μM) was also significantly higher than that after slow-cooling (33.25 μM), with a p value < 0.001. The apoptosis level in rapid-cooling population (5.18%) was not significantly different from that of the mononucleated cell population that underwent slow-cooling (3.81%), with a p value = 0.138. However, CD34+ enumeration was much higher in the population that underwent slow-cooling (23.32 cell/μl) than in the one that underwent rapid-cooling (2.47 cell/μl), with a p value = 0.001. Conclusions Rapid-cooling is a potential cryopreservation method to be used to preserve the umbilical cord blood of mononucleated cells, although further optimization of the number of CD34+ cells after rapid-cooling is critically needed. PMID:21943045
NASA Astrophysics Data System (ADS)
Mesoloras, Geraldine
Yttrium-90 (90Y) microsphere therapy is being utilized as a treatment option for patients with primary and metastatic liver cancer due to its ability to target tumors within the liver. The success of this treatment is dependent on many factors, including the extent and type of disease and the nature of prior treatments received. Metabolic activity, as determined by PET imaging, may correlate with the number of viable cancer cells and reflect changes in viable cancer cell volume. However, contouring of PET images by hand is labor intensive and introduces an element of irreproducibility into the determination of functional target/tumor volume (FTV). A computer-assisted method to aid in the automatic contouring of FTV has the potential to substantially improve treatment individualization and outcome assessment. Commercial software to determine FTV in FDG-avid primary and metastatic liver tumors has been evaluated and optimized. Volumes determined using the automated technique were compared to those from manually drawn contours identified using the same cutoff in the standard uptake value (SUV). The reproducibility of FTV is improved through the introduction of an optimal threshold value determined from phantom experiments. Application of the optimal threshold value from the phantom experiments to patient scans was in good agreement with hand-drawn determinations of the FTV. It is concluded that computer-assisted contouring of the FTV for primary and metastatic liver tumors improves reproducibility and increases accuracy, especially when combined with the selection of an optimal SUV threshold determined from phantom experiments. A method to link the pre-treatment assessment of functional (PET based) and anatomical (CT based) parameters to post-treatment survival and time to progression was evaluated in 22 patients with colorectal cancer liver metastases treated using 90Y microspheres and chemotherapy. The values for pre-treatment parameters that were the best predictors of response were determined for FTV, anatomical tumor volume, total lesion glycolysis, and the tumor marker, CEA. Of the parameters considered, the best predictors of response were found to be pre-treatment FTV ≤153 cm3, ATV ≤163 cm3, TLG ≤144 g in the chemo-SIRT treated field, and CEA ≤11.6 ng/mL.
Synchronization of glycolytic oscillations in a yeast cell population.
Danø, S; Hynne, F; De Monte, S; d'Ovidio, F; Sørensen, P G; Westerhoff, H
2001-01-01
The mechanism of active phase synchronization in a suspension of oscillatory yeast cells has remained a puzzle for almost half a century. The difficulty of the problem stems from the fact that the synchronization phenomenon involves the entire metabolic network of glycolysis and fermentation, and consequently it cannot be addressed at the level of a single enzyme or a single chemical species. In this paper it is shown how this system in a CSTR (continuous flow stirred tank reactor) can be modelled quantitatively as a population of Stuart-Landau oscillators interacting by exchange of metabolites through the extracellular medium, thus reducing the complexity of the problem without sacrificing the biochemical realism. The parameters of the model can be derived by a systematic expansion from any full-scale model of the yeast cell kinetics with a supercritical Hopf bifurcation. Some parameter values can also be obtained directly from analysis of perturbation experiments. In the mean-field limit, equations for the study of populations having a distribution of frequencies are used to simulate the effect of the inherent variations between cells.
NASA Astrophysics Data System (ADS)
Nakanishi, Taiki; Matsunaga, Maya; Kobayashi, Atsuki; Nakazato, Kazuo; Niitsu, Kiichi
2018-03-01
A 40-GHz fully integrated CMOS-based circuit for circulating tumor cells (CTC) analysis, consisting of an on-chip vector network analyzer (VNA) and a highly sensitive coplanar-line-based detection area is presented in this paper. In this work, we introduce a fully integrated architecture that eliminates unwanted parasitic effects. The proposed analyzer was designed using 65 nm CMOS technology, and SPICE and MWS simulations were used to validate its operation. The simulation confirmed that the proposed circuit can measure S-parameter shifts resulting from the addition of various types of tumor cells to the detection area, the data of which are provided in a previous study: the |S 21| values for HepG2, A549, and HEC-1-A cells are -0.683, -0.580, and -0.623 dB, respectively. Additionally, the measurement demonstrated an S-parameters reduction of -25.7% when a silicone resin was put on the circuit. Hence, the proposed system is expected to contribute to cancer diagnosis.
NASA Astrophysics Data System (ADS)
Rangel-Kuoppa, Victor-Tapio; Albor-Aguilera, María-de-Lourdes; Hérnandez-Vásquez, César; Flores-Márquez, José-Manuel; González-Trujillo, Miguel-Ángel; Contreras-Puente, Gerardo-Silverio
2018-04-01
A new proposal for the extraction of the shunt resistance (R sh ) and saturation current (I sat ) of a current-voltage (I-V) measurement of a solar cell, within the one-diode model, is given. First, the Cheung method is extended to obtain the series resistance (R s ), the ideality factor (n) and an upper limit for I sat . In this article which is Part 1 of two parts, two procedures are proposed to obtain fitting values for R sh and I sat within some voltage range. These two procedures are used in two simulated I-V curves (one in darkness and the other one under illumination) to recover the known solar cell parameters R sh , R s , n, I sat and the light current I lig and test its accuracy. The method is compared with two different common parameter extraction methods. These three procedures are used and compared in Part 2 in the I-V curves of CdS-CdTe and CIGS-CdS solar cells.
Gabriel, Alonzo A
2012-11-01
The study characterized the influences of various combinations of process and product parameters namely, heating temperature (53, 55, 57.5, 60, 62 °C), pH (2.0, 3.0, 4.5, 6.0, 7.0), and soluble solids (SS) (1.4, 15, 35, 55, 69°Brix) on the thermal inactivation of non-adapted and acid-adapted E. coli O157:H7 (HCIPH 96055) in a defined liquid heating medium (LHM). Acid adaptation was conducted by propagating cells in a gradually acidifying nutrient broth medium, supplemented with 1% glucose. The D values of non-adapted cells ranged from 1.43 s (0.02 min) to 304.89 s (5.08 min). Acid-adapted cells had D values that ranged from 1.33 s (0.02 min) to 2628.57 s (43.81 min). Adaptation did not always result in more resistant cells as indicated by the Log (D(adapted)/D(non-adapted)) values calculated in all combinations tested, with values ranging from -1.10 to 1.40. The linear effects of temperature and pH, and the joint effects of pH and SS significantly influenced the thermal resistance of non-adapted cells. Only the linear and quadratic effects of both pH and SS significantly influenced the D values of acid-adapted cells. Generally, the D values of acid-adapted cells decreased at SS greater than 55 °Brix, suggesting the possible cancelation of thermal cross protection by acid habituation at such SS levels. The relatively wide ranges of LHM pH and SS values tested in the study allowed for better examination of the effects of these factors on the thermal death of the pathogen. The results established in this work may be used in the evaluation, control and improvement of safety of juice products; and of other liquid foods with physicochemical properties that fall within the ranges tested in this work. Copyright © 2012 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sajid, Sajid; Elseman, Ahmed Mourtada; Ji, Jun; Dou, Shangyi; Wei, Dong; Huang, Hao; Cui, Peng; Xi, Wenkang; Chu, Lihua; Li, Yingfeng; Jiang, Bing; Li, Meicheng
2018-07-01
Although perovskite solar cells with power conversion efficiencies (PCEs) more than 22% have been realized with expensive organic charge-transporting materials, their stability and high cost remain to be addressed. In this work, the perovskite configuration of MAPbX (MA = CH3NH3, X = I3, Br3, or I2Br) integrated with stable and low-cost Cu:NiO x hole-transporting material, ZnO electron-transporting material, and Al counter electrode was modeled as a planar PSC and studied theoretically. A solar cell simulation program (wxAMPS), which served as an update of the popular solar cell simulation tool (AMPS: Analysis of Microelectronic and Photonic Structures), was used. The study yielded a detailed understanding of the role of each component in the solar cell and its effect on the photovoltaic parameters as a whole. The bandgap of active materials and operating temperature of the modeled solar cell were shown to influence the solar cell performance in a significant way. Further, the simulation results reveal a strong dependence of photovoltaic parameters on the thickness and defect density of the light-absorbing layers. Under moderate simulation conditions, the MAPbBr3 and MAPbI2Br cells recorded the highest PCEs of 20.58 and 19.08%, respectively, while MAPbI3 cell gave a value of 16.14%. [Figure not available: see fulltext.
Solving the Puzzle of Metastasis: The Evolution of Cell Migration in Neoplasms
Chen, Jun; Sprouffske, Kathleen; Huang, Qihong; Maley, Carlo C.
2011-01-01
Background Metastasis represents one of the most clinically important transitions in neoplastic progression. The evolution of metastasis is a puzzle because a metastatic clone is at a disadvantage in competition for space and resources with non-metastatic clones in the primary tumor. Metastatic clones waste some of their reproductive potential on emigrating cells with little chance of establishing metastases. We suggest that resource heterogeneity within primary tumors selects for cell migration, and that cell emigration is a by-product of that selection. Methods and Findings We developed an agent-based model to simulate the evolution of neoplastic cell migration. We simulated the essential dynamics of neoangiogenesis and blood vessel occlusion that lead to resource heterogeneity in neoplasms. We observed the probability and speed of cell migration that evolves with changes in parameters that control the degree of spatial and temporal resource heterogeneity. Across a broad range of realistic parameter values, increasing degrees of spatial and temporal heterogeneity select for the evolution of increased cell migration and emigration. Conclusions We showed that variability in resources within a neoplasm (e.g. oxygen and nutrients provided by angiogenesis) is sufficient to select for cells with high motility. These cells are also more likely to emigrate from the tumor, which is the first step in metastasis and the key to the puzzle of metastasis. Thus, we have identified a novel potential solution to the puzzle of metastasis. PMID:21556134
Miled, Rabeb Bennour; Guillier, Laurent; Neves, Sandra; Augustin, Jean-Christophe; Colin, Pierre; Besse, Nathalie Gnanou
2011-06-01
Cells of six strains of Cronobacter were subjected to dry stress and stored for 2.5 months at ambient temperature. The individual cell lag time distributions of recovered cells were characterized at 25 °C and 37 °C in non-selective broth. The individual cell lag times were deduced from the times taken by cultures from individual cells to reach an optical density threshold. In parallel, growth curves for each strain at high contamination levels were determined in the same growth conditions. In general, the extreme value type II distribution with a shape parameter fixed to 5 (EVIIb) was the most effective at describing the 12 observed distributions of individual cell lag times. Recently, a model for characterizing individual cell lag time distribution from population growth parameters was developed for other food-borne pathogenic bacteria such as Listeria monocytogenes. We confirmed this model's applicability to Cronobacter by comparing the mean and the standard deviation of individual cell lag times to populational lag times observed with high initial concentration experiments. We also validated the model in realistic conditions by studying growth in powdered infant formula decimally diluted in Buffered Peptone Water, which represents the first enrichment step of the standard detection method for Cronobacter. Individual lag times and the pooling of samples significantly affect detection performances. Copyright © 2010 Elsevier Ltd. All rights reserved.
Pengon, Jutharat; Svasti, Saovaros; Kamchonwongpaisan, Sumalee; Vattanaviboon, Phantip
2018-03-01
Glucose-6-phosphate dehydrogenase (G-6-PD) deficiency and thalassemia are genetically independent hemolytic disorders. Co-inheritance of both disorders may affect red blood cell pathology to a greater extent than normally seen in either disorder alone. This study determines the prevalence and evaluates hematological changes of G-6-PD deficiency and thalassemia co-inheritance. G-6-PD deficiency was screened from 200 male thalassemia blood samples using a fluorescent spot test. Hematological parameters and red blood cell morphology were evaluated among G-6-PD deficiency/thalassemia co-inheritance, G-6-PD deficiency alone, thalassemia alone, and normal individuals. G-6-PD deficiency was detected together with hemoglobin (Hb) E heterozygote, Hb E homozygote, β-thalassemia trait, and β-thalassemia/Hb E, α-thalassemia-2 trait, and Hb H disease. Hb level, hematocrit, mean cell volume, and mean cell Hb of G-6-PD deficiency co-inherited with asymptomatic thalassemia carriers show significantly lower mean values compared to carriers with only the same thalassemia genotypes. Higher mean red blood cell distribution width was observed in G-6-PD deficiency co-inherited with Hb E heterozygote, as with numbers of hemighost cells in G-6-PD deficiency/thalassemia co-inheritance compared to those with either disorder. Apart from Hb level, hematological parameters of co-inheritance disorders were not different from individuals with a single thalassemia disease. G-6-PD deficiency co-inherited with thalassemia in males was present in 10% of the participants, resulting in worsening of red blood cell pathology compared with inheritance of thalassemia alone. Copyright © 2017 King Faisal Specialist Hospital & Research Centre. Published by Elsevier B.V. All rights reserved.
Malaria Risk Assessment for the Republic of Korea Based on Models of Mosquito Distribution
2008-06-01
Yam;lda All. kleilli Rueda All. belellme Rueda VPH 0.8 • 0.6• ~ ~ 0.’ 0.2 0 H P V VPH Figure I, Illustration of the concept of the mal-area as it...the percentage of the sampled area that these parameters cover. The value for VPH could be used as a simplified index of malaria risk to compare...combinations of the VPH variables. These statistics will consist of the percentage of cells that contain a certain value for the user defined area
Studies on some Pharmacognostic profiles of Pithecell’obium dulce Benth. Leaves (Leguminosae)
Sugumaran, M.; Vetrichelvan, T.; Venkapayya, D
2006-01-01
The macroscopical characters of the leaves, leaf constants, physico-chemical constants, extractive values, colour, consistency, pH, extractive values with different solvents, micro chemical test, fluorescence characters of liquid extracts and leaf powder after treatment with different chemical reagents under visible and UV light at 254mn, measurement of cell and tissues were studied to fix some pharmacognostical parameters for leaves of Pithecellobium, dulce Benth which will enable the future investigators for identification of the plant. Preliminary phytochemical study on different extracts of the leaves were also performed. PMID:22557213
Chen, Yu-Yuan; Chen, Jiann-Chu; Lin, Yong-Chin; Yeh, Su-Tuen; Huang, Chien-Lun
2015-01-01
White shrimp Litopenaeus vannamei immersed in seawater (35‰) containing Gracilaria tenuistipitata extract (GTE) at 0 (control), 400, and 600 mg/L for 3 h were exposed to 5 mg/L ammonia-N (ammonia as nitrogen), and immune parameters including hyaline cells (HCs), granular cells (GCs, including semi-granular cells), total hemocyte count (THC), phenoloxidase (PO) activity, respiratory bursts (RBs), superoxide dismutase (SOD) activity, lysozyme activity, and hemolymph protein level were examined 24~120 h post-stress. The immune parameters of shrimp immersed in 600 mg/L GTE returned to original values earlier, at 96~120 h post-stress, whereas in control shrimp they did not. In another experiment, shrimp were immersed in seawater containing GTE at 0 and 600 mg/L for 3 h and examined for transcript levels of immune-related genes at 24 h post-stress. Transcript levels of lipopolysaccharide and β-1,3-glucan binding protein (LGBP), peroxinectin (PX), cytMnSOD, mtMnSOD, and HSP70 were up-regulated at 24 h post-stress in GTE receiving shrimp. We concluded that white shrimp immersed in seawater containing GTE exhibited a capability for maintaining homeostasis by regulating cellular and humoral immunity against ammonia stress as evidenced by up-regulated gene expression and earlier recovery of immune parameters. PMID:26058012
Hou, Jumin; Sun, Yonghai; Chen, Fangyuan; Yu, Libo; Mao, Qian; Wang, Lu; Guo, Xiaolei; Liu, Chao
2016-04-01
Fuji, Golden Delicious, and Jonagold parenchyma were imaged by confocal laser scanning microscopy to be extracted morphology characteristics, which were used to analyze the relationship with macrotexture of apples tested by penetration and compression. Before analyzing the relationship, the significantly different morphology parameters were reduced in dimensions by principal component analysis and were proved to be availably used for distinguishing the different apple cultivars. For compression results, cell did not absolutely determine the hardness in different apple cultivars, and the pore should also be taken into consideration. With the same size in cell feret diameter, the bigger the pore feret diameter was, the softer the apple became. If no difference existed in pore feret diameter size, the cultivar became harder with a narrower distribution in cell feret diameter. The texture parameters were compared with the roundness parameters in the same or inverse changing trends to explore the relationship. High correlations were found between the texture parameters (energy required in whole penetration (Wt), fracture force (Fp), crispness) and pore solidity (R(2) > 0.924, P < 0.001). Compactness of parenchyma played an important role in fruit texture. This research could provide the comprehension about relationship between microstructure and macrotexture of apple cultivars and morphological values for modeling apple parenchyma, contributing to numerical simulation for constitutive relation of fruit. © 2016 Wiley Periodicals, Inc.
Rectification of the water permeability in COS-7 cells at 22, 10 and 0°C.
Peckys, Diana B; Kleinhans, F W; Mazur, Peter
2011-01-01
The osmotic and permeability parameters of a cell membrane are essential physico-chemical properties of a cell and particularly important with respect to cell volume changes and the regulation thereof. Here, we report the hydraulic conductivity, L(p), the non-osmotic volume, V(b), and the Arrhenius activation energy, E(a), of mammalian COS-7 cells. The ratio of V(b) to the isotonic cell volume, V(c iso), was 0.29. E(a), the activation energy required for the permeation of water through the cell membrane, was 10,700, and 12,000 cal/mol under hyper- and hypotonic conditions, respectively. Average values for L(p) were calculated from swell/shrink curves by using an integrated equation for L(p). The curves represented the volume changes of 358 individually measured cells, placed into solutions of nonpermeating solutes of 157 or 602 mOsm/kg (at 0, 10 or 22°C) and imaged over time. L(p) estimates for all six combinations of osmolality and temperature were calculated, resulting in values of 0.11, 0.21, and 0.10 µm/min/atm for exosmotic flow and 0.79, 1.73 and 1.87 µm/min/atm for endosmotic flow (at 0, 10 and 22°C, respectively). The unexpected finding of several fold higher L(p) values for endosmotic flow indicates highly asymmetric membrane permeability for water in COS-7. This phenomenon is known as rectification and has mainly been reported for plant cell, but only rarely for animal cells. Although the mechanism underlying the strong rectification found in COS-7 cells is yet unknown, it is a phenomenon of biological interest and has important practical consequences, for instance, in the development of optimal cryopreservation.
NASA Astrophysics Data System (ADS)
Pietro Carante, Mario; Aimè, Chiara; Tello Cajiao, John James; Ballarini, Francesca
2018-04-01
An upgraded version of the BIANCA II biophysical model, which describes more realistically interphase chromosome organization and the link between chromosome aberrations and cell death, was applied to V79 and AG01522 cells exposed to protons, C-ions and He-ions over a wide LET interval (0.6–502 keV µm‑1), as well as proton-irradiated U87 cells. The model assumes that (i) ionizing radiation induces DNA ‘cluster lesions’ (CLs), where by definition each CL produces two independent chromosome fragments; (ii) fragment (distance-dependent) mis-rejoining, or un-rejoining, produces chromosome aberrations; (iii) some aberrations lead to cell death. The CL yield, which mainly depends on radiation quality but is also modulated by the target cell, is an adjustable parameter. The fragment un-rejoining probability, f, is the second, and last, parameter. The value of f, which is assumed to depend on the cell type but not on radiation quality, was taken from previous studies, and only the CL yield was adjusted in the present work. Good agreement between simulations and experimental data was obtained, suggesting that BIANCA II is suitable for calculating the biological effectiveness of hadrontherapy beams. For both V79 and AG01522 cells, the mean number of CLs per micrometer was found to increase with LET in a linear-quadratic fashion before the over-killing region, where a less rapid increase, with a tendency to saturation, was observed. Although the over-killing region deserves further investigation, the possibility of fitting the CL yields is an important feature for hadrontherapy, because it allows performing predictions also at LET values where experimental data are not available. Finally, an approach was proposed to predict the ion-response of the cell line(s) of interest from the ion-response of a reference cell line and the photon response of both. A pilot study on proton-irradiated AG01522 and U87 cells, taking V79 cells as a reference, showed encouraging results.
NASA Astrophysics Data System (ADS)
Namwong, Lawit; Authayanun, Suthida; Saebea, Dang; Patcharavorachot, Yaneeporn; Arpornwichanop, Amornchai
2016-11-01
Proton-conducting solid oxide electrolysis cells (SOEC-H+) are a promising technology that can utilize carbon dioxide to produce syngas. In this work, a detailed electrochemical model was developed to predict the behavior of SOEC-H+ and to prove the assumption that the syngas is produced through a reversible water gas-shift (RWGS) reaction. The simulation results obtained from the model, which took into account all of the cell voltage losses (i.e., ohmic, activation, and concentration losses), were validated using experimental data to evaluate the unknown parameters. The developed model was employed to examine the structural and operational parameters. It is found that the cathode-supported SOEC-H+ is the best configuration because it requires the lowest cell potential. SOEC-H+ operated favorably at high temperatures and low pressures. Furthermore, the simulation results revealed that the optimal S/C molar ratio for syngas production, which can be used for methanol synthesis, is approximately 3.9 (at a constant temperature and pressure). The SOEC-H+ was optimized using a response surface methodology, which was used to determine the optimal operating conditions to minimize the cell potential and maximize the carbon dioxide flow rate.
Saric-Krsmanovic, Marija M; Bozic, Dragana M; Radivojevic, Ljiljana M; Umiljendic, Jelena S Gajic; Vrbnicanin, Sava P
2017-11-02
The effects of field dodder on physiological and anatomical processes in untreated sugar beet plants and the effects of propyzamide on field dodder were examined under controlled conditions. The experiment included the following variants: N-noninfested sugar beet plants (control); I - infested sugar beet plants (untreated), and infested plants treated with propyzamide (1500 g a.i. ha -1 (T 1 ) and 2000 g a.i. ha -1 (T 2 )). The following parameters were checked: physiological-pigment contents (chlorophyll a, chlorophyll b, total carotenoids); anatomical -leaf parameters: thickness of epidermis, parenchyma and spongy tissue, mesophyll and underside leaf epidermis, and diameter of bundle sheath cells; petiole parameters: diameter of tracheid, petiole hydraulic conductance, xylem surface, phloem cell diameter and phloem area in sugar beet plants. A conventional paraffin wax method was used to prepare the samples for microscopy. Pigment contents were measured spectrophotometrically after methanol extraction. All parameters were measured: prior to herbicide application (0 assessment), then 7, 14, 21, 28 and 35 days after application (DAA). Field dodder was found to affect the pigment contents in untreated sugar beet plants, causing significant reductions. Conversely, reduction in the treated plants decreased 27% to 4% for chlorophyll a, from 21% to 5% for chlorophyll b, and from 28% to 5% for carotenoids (T 1 ). Also, in treatment T 2, reduction decreased in infested and treated plants from 19% to 2% for chlorophyll a, from 21% to 2% for chlorophyll b, from 23% to 3% for carotenoids and stimulation of 1% and 2% was observed 28 and 35 DAA, respectively. Plants infested (untreated) by field dodder had lower values of most anatomical parameters, compared to noninfested plants. The measured anatomical parameters of sugar beet leaves and petiole had significantly higher values in noninfested plants and plants treated with propyzamide than in untreated plants. Also, the results showed that propyzamide is an adequate herbicide for control of field dodder at the stage of early infestation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding, Y; Fuller, C; Mohamed, A
2015-06-15
Purpose: Many published studies have recently demonstrated the potential value of intravoxel incoherent motion (IVIM) analysis for disease evaluation. However, few have questioned its measurement repeatability/reproducibility when applied. The purpose of this study was to determine the short-term measurement repeatability of apparent diffusion coefficient ADC, true diffusion coefficient D, pseudodiffusion coefficient D* and perfusion fraction f, in head and neck squamous cell carcinoma (HNSCC) primary tumors and metastatic nodes. Methods: Ten patients with known HNSCC were examined twice using echo-planar DW-MRI with 12 b values (0 to 800 s/mm2) 1hour to 24 hours apart before radiation treatment. All patients weremore » scanned with the customized radiation treatment immobilization devices to reduce motion artifacts and to improve image registration in repeat scans. Regions of interests were drawn in primary tumor and metastases node in each patient (Fig. 1). ADC and IVIM parameters D, D* and f were calculated by least squares data fitting. Short-term test–retest repeatability of ADC and IVIM parameters were assessed by measuring Bland–Altman limits of agreements (BA-LA). Results: Sixteen HNSCC lesions were assessed in 10 patients. Repeatability of perfusion-sensitive parameters, D* and f, in HNSCC lesions was poor (BA-LA: -144% to 88% and −57% to 96% for D* and f, respectively); a lesser extent was observed for the diffusion-sensitive parameters of ADC and D (BA-LA: −34% to 39% and −37% to 40%, for ADC and D, respectively) (Fig. 2). Conclusion: Poor repeatability of D*/f and good repeatability for ADC/D were observed in HNSCC primary tumors and metastatic nodes. Efforts should be made to improve the measurement repeatability of perfusion-sensitive IVIM parameters.« less
Baumann, Gerd; Place, Robert F; Földes-Papp, Zeno
2010-08-01
In living cell or its nucleus, the motions of molecules are complicated due to the large crowding and expected heterogeneity of the intracellular environment. Randomness in cellular systems can be either spatial (anomalous) or temporal (heterogeneous). In order to separate both processes, we introduce anomalous random walks on fractals that represented crowded environments. We report the use of numerical simulation and experimental data of single-molecule detection by fluorescence fluctuation microscopy for detecting resolution limits of different mobile fractions in crowded environment of living cells. We simulate the time scale behavior of diffusion times tau(D)(tau) for one component, e.g. the fast mobile fraction, and a second component, e.g. the slow mobile fraction. The less the anomalous exponent alpha the higher the geometric crowding of the underlying structure of motion that is quantified by the ratio of the Hausdorff dimension and the walk exponent d(f)/d(w) and specific for the type of crowding generator used. The simulated diffusion time decreases for smaller values of alpha # 1 but increases for a larger time scale tau at a given value of alpha # 1. The effect of translational anomalous motion is substantially greater if alpha differs much from 1. An alpha value close to 1 contributes little to the time dependence of subdiffusive motions. Thus, quantitative determination of molecular weights from measured diffusion times and apparent diffusion coefficients, respectively, in temporal auto- and crosscorrelation analyses and from time-dependent fluorescence imaging data are difficult to interpret and biased in crowded environments of living cells and their cellular compartments; anomalous dynamics on different time scales tau must be coupled with the quantitative analysis of how experimental parameters change with predictions from simulated subdiffusive dynamics of molecular motions and mechanistic models. We first demonstrate that the crowding exponent alpha also determines the resolution of differences in diffusion times between two components in addition to photophysical parameters well-known for normal motion in dilute solution. The resolution limit between two different kinds of single molecule species is also analyzed under translational anomalous motion with broken ergodicity. We apply our theoretical predictions of diffusion times and lower limits for the time resolution of two components to fluorescence images in human prostate cancer cells transfected with GFP-Ago2 and GFP-Ago1. In order to mimic heterogeneous behavior in crowded environments of living cells, we need to introduce so-called continuous time random walks (CTRW). CTRWs were originally performed on regular lattice. This purely stochastic molecule behavior leads to subdiffusive motion with broken ergodicity in our simulations. For the first time, we are able to quantitatively differentiate between anomalous motion without broken ergodicity and anomalous motion with broken ergodicity in time-dependent fluorescence microscopy data sets of living cells. Since the experimental conditions to measure a selfsame molecule over an extended period of time, at which biology is taken place, in living cells or even in dilute solution are very restrictive, we need to perform the time average over a subpopulation of different single molecules of the same kind. For time averages over subpopulations of single molecules, the temporal auto- and crosscorrelation functions are first found. Knowing the crowding parameter alpha for the cell type and cellular compartment type, respectively, the heterogeneous parameter gamma can be obtained from the measurements in the presence of the interacting reaction partner, e.g. ligand, with the same alpha value. The product alpha x gamma = gamma is not a simple fitting parameter in the temporal auto- and two-color crosscorrelation functions because it is related to the proper physical models of anomalous (spatial) and heterogeneous (temporal) randomness in cellular systems.We have already derived an analytical solution gamma for in the special case of gamma = 3/2. In the case of two-color crosscorrelation or/and two-color fluorescence imaging (co-localization experiments), the second component is also a two-color species gr, for example a different molecular complex with an additional ligand. Here, we first show that plausible biological mechanisms from FCS/ FCCS and fluorescence imaging in living cells are highly questionable without proper quantitative physical models of subdiffusive motion and temporal randomness. At best, such quantitative FCS/ FCCS and fluorescence imaging data are difficult to interpret under crowding and heterogeneous conditions. It is challenging to translate proper physical models of anomalous (spatial) and heterogeneous (temporal) randomness in living cells and their cellular compartments like the nucleus into biological models of the cell biological process under study testable by single-molecule approaches. Otherwise, quantitative FCS/FCCS and fluorescence imaging measurements in living cells are not well described and cannot be interpreted in a meaningful way.
Blood gases, biochemistry and haematology of Galápagos hawksbill turtles (Eretmochelys imbricata)
Muñoz-Pérez, Juan Pablo; Hirschfeld, Maximilian; Alarcón-Ruales, Daniela; Denkinger, Judith; Castañeda, Jason Guillermo; García, Juan; Lohmann, Kenneth J.
2017-01-01
Abstract The hawksbill turtle, Eretmochelys imbricata, is a marine chelonian with a circum-global distribution, but the species is critically endangered and has nearly vanished from the eastern Pacific. Although reference blood parameter intervals have been published for many chelonian species and populations, including nesting Atlantic hawksbills, no such baseline biochemical and blood gas values have been reported for wild Pacific hawksbill turtles. Blood samples were drawn from eight hawksbill turtles captured in near shore foraging locations within the Galápagos archipelago over a period of four sequential years; three of these turtles were recaptured and sampled on multiple occasions. Of the eight sea turtles sampled, five were immature and of unknown sex, and the other three were females. A portable blood analyzer was used to obtain near immediate field results for a suite of blood gas and chemistry parameters. Values affected by temperature were corrected in two ways: (i) with standard formulas and (ii) with auto-corrections made by the portable analyzer. A bench top blood chemistry analyzer was used to measure a series of biochemistry parameters from plasma. Standard laboratory haematology techniques were employed for red and white blood cell counts and to determine haematocrit manually, which was compared to the haematocrit values generated by the portable analyzer. The values reported in this study provide reference data that may be useful in comparisons among populations and in detecting changes in health status among Galápagos sea turtles. The findings might also be helpful in future efforts to demonstrate associations between specific biochemical parameters and disease or environmental disasters. PMID:28496982
Blood gases, biochemistry and haematology of Galápagos hawksbill turtles (Eretmochelys imbricata).
Muñoz-Pérez, Juan Pablo; Lewbart, Gregory A; Hirschfeld, Maximilian; Alarcón-Ruales, Daniela; Denkinger, Judith; Castañeda, Jason Guillermo; García, Juan; Lohmann, Kenneth J
2017-01-01
The hawksbill turtle, Eretmochelys imbricata , is a marine chelonian with a circum-global distribution, but the species is critically endangered and has nearly vanished from the eastern Pacific. Although reference blood parameter intervals have been published for many chelonian species and populations, including nesting Atlantic hawksbills, no such baseline biochemical and blood gas values have been reported for wild Pacific hawksbill turtles. Blood samples were drawn from eight hawksbill turtles captured in near shore foraging locations within the Galápagos archipelago over a period of four sequential years; three of these turtles were recaptured and sampled on multiple occasions. Of the eight sea turtles sampled, five were immature and of unknown sex, and the other three were females. A portable blood analyzer was used to obtain near immediate field results for a suite of blood gas and chemistry parameters. Values affected by temperature were corrected in two ways: (i) with standard formulas and (ii) with auto-corrections made by the portable analyzer. A bench top blood chemistry analyzer was used to measure a series of biochemistry parameters from plasma. Standard laboratory haematology techniques were employed for red and white blood cell counts and to determine haematocrit manually, which was compared to the haematocrit values generated by the portable analyzer. The values reported in this study provide reference data that may be useful in comparisons among populations and in detecting changes in health status among Galápagos sea turtles. The findings might also be helpful in future efforts to demonstrate associations between specific biochemical parameters and disease or environmental disasters.
Salvago, Pietro; Rizzo, Serena; Bianco, Antonino; Martines, Francesco
2017-03-01
To investigate the relationship between haematological routine parameters and audiogram shapes in patients affected by sudden sensorineural hearing loss (SSNHL). A retrospective study. All patients were divided into four groups according to the audiometric curve and mean values of haematological parameters (haemoglobin, white blood cell, neutrophils and lymphocytes relative count, platelet count, haematocrit, prothrombin time, activated partial thromboplastin time, fibrinogen and neutrophil-to-lymphocite ratio) of each group were statistically compared. The prognostic role of blood profile and coagulation test was also examined. A cohort of 183 SSNHL patients without comorbidities. With a 48.78% of complete hearing recovery, individuals affected by upsloping hearing loss presented a better prognosis instead of flat (18.36%), downsloping (19.23%) and anacusis (2.45%) groups (p = 0.0001). The multivariate analysis of complete blood count values revealed lower mean percentage of lymphocytes (p = 0.041) and higher platelet levels (p = 0.015) in case of downsloping hearing loss; with the exception of fibrinogen (p = 0.041), none of the main haematological parameters studied resulted associated with poorer prognosis. Our work suggested a lack of association between haematological parameters and a defined audiometric picture in SSNHL patients; furthermore, only fibrinogen seems to influence the prognosis of this disease.
Hirota, Morihiko; Ashikaga, Takao; Kouzuki, Hirokazu
2018-04-01
It is important to predict the potential of cosmetic ingredients to cause skin sensitization, and in accordance with the European Union cosmetic directive for the replacement of animal tests, several in vitro tests based on the adverse outcome pathway have been developed for hazard identification, such as the direct peptide reactivity assay, KeratinoSens™ and the human cell line activation test. Here, we describe the development of an artificial neural network (ANN) prediction model for skin sensitization risk assessment based on the integrated testing strategy concept, using direct peptide reactivity assay, KeratinoSens™, human cell line activation test and an in silico or structure alert parameter. We first investigated the relationship between published murine local lymph node assay EC3 values, which represent skin sensitization potency, and in vitro test results using a panel of about 134 chemicals for which all the required data were available. Predictions based on ANN analysis using combinations of parameters from all three in vitro tests showed a good correlation with local lymph node assay EC3 values. However, when the ANN model was applied to a testing set of 28 chemicals that had not been included in the training set, predicted EC3s were overestimated for some chemicals. Incorporation of an additional in silico or structure alert descriptor (obtained with TIMES-M or Toxtree software) in the ANN model improved the results. Our findings suggest that the ANN model based on the integrated testing strategy concept could be useful for evaluating the skin sensitization potential. Copyright © 2017 John Wiley & Sons, Ltd.
Lin, Yong-Chin; Chen, Jiann-Chu; C. Man, Siti Nursafura; W. Morni, Wan Zabidii; N.A. Suhaili, Awangku Shahrir; Cheng, Sha-Yen; Hsu, Chih-Hung
2012-01-01
The survival rate, weight loss, immune parameters, resistance against Vibrio alginolyticus and white-spot syndrome virus (WSSV), and expressions of lipopolysaccharide- and ß-glucan-binding protein (LGBP), peroxinectin (PX), prophenoloxidase-activating enzyme (ppA), prophenoloxidase (proPO) I, proPO II, α2-macroglobulin (α2-M), integrin ß, heat shock protein 70 (HSP70), cytosolic manganese superoxide dismutase (cytMnSOD), mitochondrial manganese superoxide dismutase (mtMnSOD), and extracellular copper and zinc superoxide dismutase (ecCuZnSOD) were examined in the white shrimp Litopenaeus vannamei (8.18 ± 0.86 g body weight) which had been denied food (starved) for up to 14–28 days. Among shrimp which had been starved for 7, 14, 21, and 28 days, 100%, 90%, 71%, and 59% survived, and they lost 3.2%, 7.3%, 9.2%, and 10.4% of their body weight, respectively. Hyaline cells (HCs), granular cells (GCs, including semi-granular cells), the total haemocyte count (THC), phenoloxidase (PO) activity, respiratory bursts (RBs), and SOD activity significantly decreased in shrimp which had been starved for 1, 1, 1, 5, 14, and 3 days, respectively. The expression of integrin ß significantly decreased after 0.5–5 days of starvation, whereas the expressions of LGBP, PX, proPO I, proPO II, ppA, and α2-M increased after 0.5–1 days. Transcripts of all genes except ecCuZnSOD decreased to the lowest level after 5 days, and tended to background values after 7 and 14 days. Cumulative mortality rates of 7-day-starved shrimp challenged with V. alginolyticus and WSSV were significantly higher than those of challenged control-shrimp for 1–7 and 1–4 days, respectively. In another experiment, immune parameters of shrimp which had been starved for 7 and 14 days and then received normal feeding (at 5% of their body weight daily) were examined after 3, 6, and 12 h, and 1, 3, and 5 days. All immune parameters of 7-day-starved shrimp were able to return to their baseline values after 5 days of re-feeding except for GCs, whereas all parameters of 14-day-starved shrimp failed to return to the baseline values even with 5 days of re-feeding. It was concluded that shrimp starved for 14 days exhibited three stages of modulation of gene expression, together with reductions in immune parameters, and decreased resistance against pathogens. PMID:24371579
Eisele, Thomas P; Keating, Joseph; Swalm, Chris; Mbogo, Charles M; Githeko, Andrew K; Regens, James L; Githure, John I; Andrews, Linda; Beier, John C
2003-12-10
BACKGROUND: Remote sensing technology provides detailed spectral and thermal images of the earth's surface from which surrogate ecological indicators of complex processes can be measured. METHODS: Remote sensing data were overlaid onto georeferenced entomological and human ecological data randomly sampled during April and May 2001 in the cities of Kisumu (population asymptotically equal to 320,000) and Malindi (population asymptotically equal to 81,000), Kenya. Grid cells of 270 meters x 270 meters were used to generate spatial sampling units for each city for the collection of entomological and human ecological field-based data. Multispectral Thermal Imager (MTI) satellite data in the visible spectrum at five meter resolution were acquired for Kisumu and Malindi during February and March 2001, respectively. The MTI data were fit and aggregated to the 270 meter x 270 meter grid cells used in field-based sampling using a geographic information system. The normalized difference vegetation index (NDVI) was calculated and scaled from MTI data for selected grid cells. Regression analysis was used to assess associations between NDVI values and entomological and human ecological variables at the grid cell level. RESULTS: Multivariate linear regression showed that as household density increased, mean grid cell NDVI decreased (global F-test = 9.81, df 3,72, P-value = <0.01; adjusted R2 = 0.26). Given household density, the number of potential anopheline larval habitats per grid cell also increased with increasing values of mean grid cell NDVI (global F-test = 14.29, df 3,36, P-value = <0.01; adjusted R2 = 0.51). CONCLUSIONS: NDVI values obtained from MTI data were successfully overlaid onto georeferenced entomological and human ecological data spatially sampled at a scale of 270 meters x 270 meters. Results demonstrate that NDVI at such a scale was sufficient to describe variations in entomological and human ecological parameters across both cities.
Lakdawalla, Darius N; Chou, Jacquelyn W; Linthicum, Mark T; MacEwan, Joanna P; Zhang, Jie; Goldman, Dana P
2015-05-01
Surrogate end points may be used as proxy for more robust clinical end points. One prominent example is the use of progression-free survival (PFS) as a surrogate for overall survival (OS) in trials for oncologic treatments. Decisions based on surrogate end points may expedite regulatory approval but may not accurately reflect drug efficacy. Payers and clinicians must balance the potential benefits of earlier treatment access based on surrogate end points against the risks of clinical uncertainty. To present a framework for evaluating the expected net benefit or cost of providing early access to new treatments on the basis of evidence of PFS benefits before OS results are available, using non-small-cell lung cancer (NSCLC) as an example. A probabilistic decision model was used to estimate expected incremental social value of the decision to grant access to a new treatment on the basis of PFS evidence. The model analyzed a hypothetical population of patients with NSCLC who could be treated during the period between PFS and OS evidence publication. Estimates for delay in publication of OS evidence following publication of PFS evidence, expected OS benefit given PFS benefit, incremental cost of new treatment, and other parameters were drawn from the literature on treatment of NSCLC. Incremental social value of early access for each additional patient per month (in 2014 US dollars). For "medium-value" model parameters, early reimbursement of drugs with any PFS benefit yields an incremental social cost of more than $170,000 per newly treated patient per month. In contrast, granting early access on the basis of PFS benefit between 1 and 3.5 months produces more than $73,000 in incremental social value. Across the full range of model parameter values, granting access for drugs with PFS benefit between 3 and 3.5 months is robustly beneficial, generating incremental social value ranging from $38,000 to more than $1 million per newly treated patient per month, whereas access for all drugs with any PFS benefit is usually not beneficial. The value of providing access to new treatments on the basis of surrogate end points, and PFS in particular, likely varies considerably. Payers and clinicians should carefully consider how to use PFS data in balancing potential benefits against costs in each particular disease.
Aydogan, Tuğba; Akçay, BetÜl İlkay Sezgin; Kardeş, Esra; Ergin, Ahmet
2017-11-01
The objective of this study is to evaluate the diagnostic ability of retinal nerve fiber layer (RNFL), macular, optic nerve head (ONH) parameters in healthy subjects, ocular hypertension (OHT), preperimetric glaucoma (PPG), and early glaucoma (EG) patients, to reveal factors affecting the diagnostic ability of spectral domain-optical coherence tomography (SD-OCT) parameters and risk factors for glaucoma. Three hundred and twenty-six eyes (89 healthy, 77 OHT, 94 PPG, and 66 EG eyes) were analyzed. RNFL, macular, and ONH parameters were measured with SD-OCT. The area under the receiver operating characteristic curve (AUC) and sensitivity at 95% specificity was calculated. Logistic regression analysis was used to determine the glaucoma risk factors. Receiver operating characteristic regression analysis was used to evaluate the influence of covariates on the diagnostic ability of parameters. In PPG patients, parameters that had the largest AUC value were average RNFL thickness (0.83) and rim volume (0.83). In EG patients, parameter that had the largest AUC value was average RNFL thickness (0.98). The logistic regression analysis showed average RNFL thickness was a risk factor for both PPG and EG. Diagnostic ability of average RNFL and average ganglion cell complex thickness increased as disease severity increased. Signal strength index did not affect diagnostic abilities. Diagnostic ability of average RNFL and rim area increased as disc area increased. When evaluating patients with glaucoma, patients at risk for glaucoma, and healthy controls RNFL parameters deserve more attention in clinical practice. Further studies are needed to fully understand the influence of covariates on the diagnostic ability of OCT parameters.
Lee, Dongyoul; Li, Mengshi; Bednarz, Bryan; Schultz, Michael K
2018-06-26
The use of targeted radionuclide therapy for cancer is on the rise. While beta-particle-emitting radionuclides have been extensively explored for targeted radionuclide therapy, alpha-particle-emitting radionuclides are emerging as effective alternatives. In this context, fundamental understanding of the interactions and dosimetry of these emitted particles with cells in the tumor microenvironment is critical to ascertaining the potential of alpha-particle-emitting radionuclides. One important parameter that can be used to assess these metrics is the S-value. In this study, we characterized several alpha-particle-emitting radionuclides (and their associated radionuclide progeny) regarding S-values in the cellular and tumor-metastasis environments. The Particle and Heavy Ion Transport code System (PHITS) was used to obtain S-values via Monte Carlo simulation for cell and tumor metastasis resulting from interactions with the alpha-particle-emitting radionuclides, lead-212 ( 212 Pb), actinium-225 ( 225 Ac) and bismuth-213 ( 213 Bi); these values were compared to the beta-particle-emitting radionuclides yttrium-90 ( 90 Y) and lutetium-177 ( 177 Lu) and an Auger-electron-emitting radionuclide indium-111 ( 111 In). The effect of cellular internalization on S-value was explored at increasing degree of internalization for each radionuclide. This aspect of S-value determination was further explored in a cell line-specific fashion for six different cancer cell lines based on the cell dimensions obtained by confocal microscopy. S-values from PHITS were in good agreement with MIRDcell S-values (cellular S-values) and the values found by Hindié et al. (tumor S-values). In the cellular model, 212 Pb and 213 Bi decay series produced S-values that were 50- to 120-fold higher than 177 Lu, while 225 Ac decay series analysis suggested S-values that were 240- to 520-fold higher than 177 Lu. S-values arising with 100% cellular internalization were two- to sixfold higher for the nucleus when compared to 0% internalization. The tumor dosimetry model defines the relative merit of radionuclides and suggests alpha particles may be effective for large tumors as well as small tumor metastases. These results from PHITS modeling substantiate emerging evidence that alpha-particle-emitting radionuclides may be an effective alternative to beta-particle-emitting radionuclides for targeted radionuclide therapy due to preferred dose-deposition profiles in the cellular and tumor metastasis context. These results further suggest that internalization of alpha-particle-emitting radionuclides via radiolabeled ligands may increase the relative biological effectiveness of radiotherapeutics.
System and method for motor parameter estimation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luhrs, Bin; Yan, Ting
2014-03-18
A system and method for determining unknown values of certain motor parameters includes a motor input device connectable to an electric motor having associated therewith values for known motor parameters and an unknown value of at least one motor parameter. The motor input device includes a processing unit that receives a first input from the electric motor comprising values for the known motor parameters for the electric motor and receive a second input comprising motor data on a plurality of reference motors, including values for motor parameters corresponding to the known motor parameters of the electric motor and values formore » motor parameters corresponding to the at least one unknown motor parameter value of the electric motor. The processor determines the unknown value of the at least one motor parameter from the first input and the second input and determines a motor management strategy for the electric motor based thereon.« less
NASA Astrophysics Data System (ADS)
Al-Ghanim, Khalid A.; Ahmad, Zubair; Al-Kahem Al-Balawi, Hmoud F.; Al-Misned, Fahad; Maboob, Shahid; Suliman, El-Amin M.
2016-01-01
Specimens of Clarias gariepinus were treated with lethal (70, 75, 80, 85, 90, and 95 mg/L) and sub-lethal concentrations (8, 12 and 16 mg/L) of uranyl acetate, a low-radiotoxicity uranium salt. The LC 50 value was registered as 81.45 mg/L. The protein and glycogen concentrations in liver and muscles were decreased in the fish exposed to sub-lethal concentrations. The red blood cell (RBC) and white blood cell (WBC) counts, haemoglobin (Hb) concentration and haematocrit (Hct) values were decreased. Different blood indices like mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH) and mean corpuscular haemoglobin concentration (MCHC) were negatively affected. Level of plasma glucose was elevated whereas protein was decreased. The level of calcium concentration (Ca) was declined in the blood of exposed fish whereas magnesium (Mg) remains unchanged. The activity level of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) was elevated in exposed fish. These effects were more pronounced in the last period of exposure and in higher concentrations. Results of the present study indicate that uranyl acetate has adverse effects on Clarias gariepinus and causes changes in the biochemical and hematological parameters of the fish.
Nagashima, Hiroaki; Watari, Akiko; Shinoda, Yasuharu; Okamoto, Hiroshi; Takuma, Shinya
2013-12-01
This case study describes the application of Quality by Design elements to the process of culturing Chinese hamster ovary cells in the production of a monoclonal antibody. All steps in the cell culture process and all process parameters in each step were identified by using a cause-and-effect diagram. Prospective risk assessment using failure mode and effects analysis identified the following four potential critical process parameters in the production culture step: initial viable cell density, culture duration, pH, and temperature. These parameters and lot-to-lot variability in raw material were then evaluated by process characterization utilizing a design of experiments approach consisting of a face-centered central composite design integrated with a full factorial design. Process characterization was conducted using a scaled down model that had been qualified by comparison with large-scale production data. Multivariate regression analysis was used to establish statistical prediction models for performance indicators and quality attributes; with these, we constructed contour plots and conducted Monte Carlo simulation to clarify the design space. The statistical analyses, especially for raw materials, identified set point values, which were most robust with respect to the lot-to-lot variability of raw materials while keeping the product quality within the acceptance criteria. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Ekunseitan, D A; Balogun, O O; Sogunle, O M; Yusuf, A O; Ayoola, A A; Egbeyale, L T; Adeyemi, O A; Allison, I B; Iyanda, A I
2013-04-01
This study was conducted to determine the effect of feeding three differently processed mixtures on health status of broilers. A total of 1080 day-old Marshal broilers were fed; discarded vegetable-fresh bovine blood-fresh rumen digesta (P1), discarded vegetable-ensiled bovine blood-fresh rumen digesta (P2) and discarded vegetable-fresh bovine blood-ensiled rumen digesta (P3) at three levels of inclusion (0, 3 and 6%). Data on blood parameters was taken and were subjected to 3 x 3 factorial arrangements in a completely randomized design. Birds fed P1 had least values (p < 0.05) of serum glucose, total protein, globulin, uric acid and creatinine at starter phase. Birds fed diets containing 3 and 6% level of inclusion recorded the highest (p < 0.05) Packed cell volume, Haemoglobin, White blood cell and Red blood cell values. However, those fed at 0% level of inclusion recorded the highest albumin value. At finisher phase, birds fed P2 and P3 had the highest glucose, uric acid and creatinine values. 6% level of inclusion significantly (p < 0.05) increased the total protein and albumin values. Therefore, for enhanced performance and without comprising the health condition of birds; broiler chickens could be fed diets containing discarded vegetable-fresh bovine blood-ensiled rumen digesta (P3) up to 6% level of inclusion.
ADC histogram analysis of muscle lymphoma - Correlation with histopathology in a rare entity.
Meyer, Hans-Jonas; Pazaitis, Nikolaos; Surov, Alexey
2018-06-21
Diffusion weighted imaging (DWI) is able to reflect histopathology architecture. A novel imaging approach, namely histogram analysis, is used to further characterize lesion on MRI. The purpose of this study is to correlate histogram parameters derived from apparent diffusion coefficient- (ADC) maps with histopathology parameters in muscle lymphoma. Eight patients (mean age 64.8 years, range 45-72 years) with histopathologically confirmed muscle lymphoma were retrospectively identified. Cell count, total nucleic and average nucleic areas were estimated using ImageJ. Additionally, Ki67-index was calculated. DWI was obtained on a 1.5T scanner by using the b values of 0 and 1000 s/mm2. Histogram analysis was performed as a whole lesion measurement by using a custom-made Matlabbased application. The correlation analysis revealed statistically significant correlation between cell count and ADCmean (p=-0.76, P=0.03) as well with ADCp75 (p=-0.79, P=0.02). Kurtosis and entropy correlated with average nucleic area (p=-0.81, P=0.02, p=0.88, P=0.007, respectively). None of the analyzed ADC parameters correlated with total nucleic area and with Ki67-index. This study identified significant correlations between cellularity and histogram parameters derived from ADC maps in muscle lymphoma. Thus, histogram analysis parameters reflect histopathology in muscle tumors. Advances in knowledge: Whole lesion ADC histogram analysis is able to reflect histopathology parameters in muscle lymphomas.
Ballistic Resistance of Honeycomb Sandwich Panels under In-Plane High-Velocity Impact
Yang, Shu; Wang, Dong; Yang, Li-Jun
2013-01-01
The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs. PMID:24187526
Ballistic resistance of honeycomb sandwich panels under in-plane high-velocity impact.
Qi, Chang; Yang, Shu; Wang, Dong; Yang, Li-Jun
2013-01-01
The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs.
Prognostic value of CD66b positive tumor-infiltrating neutrophils in testicular germ cell tumor.
Yamada, Yuta; Nakagawa, Tohru; Sugihara, Toru; Horiuchi, Takamasa; Yoshizaki, Uran; Fujimura, Tetsuya; Fukuhara, Hiroshi; Urano, Tomohiko; Takayama, Kenichi; Inoue, Satoshi; Kume, Haruki; Homma, Yukio
2016-11-18
Prognostic value of immune cells is not clear in testicular germ cell tumors (TGCTs). We aimed to investigate the prognostic value of tumor-infiltrating neutrophils in TGCTs. A total of 102 patients who underwent orchiectomy for TGCT were investigated for CD66b positive tumor-infiltrating neutrophils (CD66b + TINs). Immmunostaining for CD66b was performed in 102 sections as described. Clinicopathological parameters as well as cancer specific survival and overall survival were assessed for correlation with CD66b + TIN density. High density group was significantly correlated with tumor diameter ≥ 10 cm, presence of nodal/distant metastasis, S stage, diagnosis of nonseminomatous germ cell tumor (NGCT), and presence of venous invasion (p = 0.0198, p < 0.0001, p = 0.0275, p = 0.0004, and p = 0.0287, respectively). It was also significantly associated with cancer-specific and overall survival (logrank p = 0.0036, and p = 0.0002, respectively). Multivariate analysis showed that increased CD66b + TIN was an independent prognostic factor for overall survival (p = 0.0095). Increased CD66b + TIN was significantly associated with presence of metastasis, S stage, and nonseminomatous germ cell tumor diagnosis. It was also an independent prognostic factor of overall survival in patients with TGCT.
Ganina, K P; Petunin, Iu I; Timoshenko, Ia G
1989-01-01
A method for quantitative analysis of epithelial cell nuclear polymorphism was suggested, viz. identification of general statistical population using Petunin's criterion. This criterion was employed to assess heterogeneity of visible surface of interphase epithelial cell nuclei and to assay nuclear DNA level in fibroadenomatous hyperplasia and cancer of the breast. Heterogeneity index (h), alongside with other parameters, appeared useful for quantitative assessment of the disease: heterogeneity index values ranging 0.1-0.4 point to pronounced heterogeneity of epithelial cell nucleus surface and DNA level, and are suggestive of malignant transformation of tissue, whereas benign proliferation of the epithelium is usually characterized by 0.4 less than h less than or equal to 0.9.
Evaluation of a load cell model for dynamic calibration of the rotor systems research aircraft
NASA Technical Reports Server (NTRS)
Duval, R. W.; Bahrami, H.; Wellman, B.
1985-01-01
The Rotor Systems Research Aircraft uses load cells to isolate the rotor/transmission system from the fuselage. An analytical model of the relationship between applied rotor loads and the resulting load cell measurements is derived by applying a force-and-moment balance to the isolated rotor/transmission system. The model is then used to estimate the applied loads from measured load cell data, as obtained from a ground-based shake test. Using nominal design values for the parameters, the estimation errors, for the case of lateral forcing, were shown to be on the order of the sensor measurement noise in all but the roll axis. An unmodeled external load appears to be the source of the error in this axis.
NASA Astrophysics Data System (ADS)
Merla, Yu; Wu, Billy; Yufit, Vladimir; Martinez-Botas, Ricardo F.; Offer, Gregory J.
2018-04-01
Accurate diagnosis of lithium ion battery state-of-health (SOH) is of significant value for many applications, to improve performance, extend life and increase safety. However, in-situ or in-operando diagnosis of SOH often requires robust models. There are many models available however these often require expensive-to-measure ex-situ parameters and/or contain unmeasurable parameters that were fitted/assumed. In this work, we have developed a new empirically parameterised physics-informed equivalent circuit model. Its modular construction and low-cost parametrisation requirements allow end users to parameterise cells quickly and easily. The model is accurate to 19.6 mV for dynamic loads without any global fitting/optimisation, only that of the individual elements. The consequences of various degradation mechanisms are simulated, and the impact of a degraded cell on pack performance is explored, validated by comparison with experiment. Results show that an aged cell in a parallel pack does not have a noticeable effect on the available capacity of other cells in the pack. The model shows that cells perform better when electrodes are more porous towards the separator and have a uniform particle size distribution, validated by comparison with published data. The model is provided with this publication for readers to use.
NASA Astrophysics Data System (ADS)
Lin, Yun-Chi; Chiang, Kuo-Ping; Kang, Lee-Kuo
2018-06-01
The authors regret that Table 1 in the above article contained incorrect exponents in reporting the abundances of Synechococcus and photosynthetic picoeukaryotes. In these abundances expressed in scientific notation, the correct order of magnitude should be "× 1011" instead of "× 108". The correct Table 1 is displayed here. In addition, values reported in the first paragraph (environmental parameters) of Results and Discussion should be changed to "Based on data from flow cytometry, Synechococcus was the most abundant picophytoplankton, with an integrated abundance in the upper 100 m ranging from 3.05 × 1011 cell m-2 to 9.41 × 1011 cell m-2. Abundance of photosynthetic picoeukaryotes was slightly lower, ranging from 0.88 × 1011 cell m-2 to 1.67 × 1011 cell m-2". The corrected values are consistent with the integrated abundances of Synechococcus and picoeukaryotes reported in the Southeast Asia Time-series Station in the South China Sea (Liu et al., 2007). Since this study emphasizes on the community composition of picoeukaryotes, these changes do not affect the main conclusions of the article. We would like to thank Chih-Ching Chung who kindly reminded us about the low values of integrated abundance of Synechococcus and photosynthetic picoeukaryotes.
2014-01-01
Background The continuing increase of pharmaceutical expenditure calls for new approaches to pricing and reimbursement of pharmaceuticals. Value based pricing of pharmaceuticals is emerging as a useful tool and possess theoretical attributes to help health system cope with rising pharmaceutical expenditure. Aim To assess the feasibility of introducing a value-based pricing scheme of pharmaceuticals in Cyprus and explore the integrative framework. Methods A probabilistic Markov chain Monte Carlo model was created to simulate progression of advanced renal cell cancer for comparison of sorafenib to standard best supportive care. Literature review was performed and efficacy data were transferred from a published landmark trial, while official pricelists and clinical guidelines from Cyprus Ministry of Health were utilised for cost calculation. Based on proposed willingness to pay threshold the maximum price of sorafenib for the indication of second line renal cell cancer was assessed. Results Sorafenib value based price was found to be significantly lower compared to its current reference price. Conclusion Feasibility of Value Based Pricing is documented and pharmacoeconomic modelling can lead to robust results. Integration of value and affordability in the price are its main advantages which have to be weighed against lack of documentation for several theoretical parameters that influence outcome. Smaller countries such as Cyprus may experience adversities in establishing and sustaining essential structures for this scheme. PMID:24910539
iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM
Battye, T. Geoff G.; Kontogiannis, Luke; Johnson, Owen; Powell, Harold R.; Leslie, Andrew G. W.
2011-01-01
iMOSFLM is a graphical user interface to the diffraction data-integration program MOSFLM. It is designed to simplify data processing by dividing the process into a series of steps, which are normally carried out sequentially. Each step has its own display pane, allowing control over parameters that influence that step and providing graphical feedback to the user. Suitable values for integration parameters are set automatically, but additional menus provide a detailed level of control for experienced users. The image display and the interfaces to the different tasks (indexing, strategy calculation, cell refinement, integration and history) are described. The most important parameters for each step and the best way of assessing success or failure are discussed. PMID:21460445
On the Reproduction Number of a Gut Microbiota Model.
Barril, Carles; Calsina, Àngel; Ripoll, Jordi
2017-11-01
A spatially structured linear model of the growth of intestinal bacteria is analysed from two generational viewpoints. Firstly, the basic reproduction number associated with the bacterial population, i.e. the expected number of daughter cells per bacterium, is given explicitly in terms of biological parameters. Secondly, an alternative quantity is introduced based on the number of bacteria produced within the intestine by one bacterium originally in the external media. The latter depends on the parameters in a simpler way and provides more biological insight than the standard reproduction number, allowing the design of experimental procedures. Both quantities coincide and are equal to one at the extinction threshold, below which the bacterial population becomes extinct. Optimal values of both reproduction numbers are derived assuming parameter trade-offs.
Kong, Jaemin; Lee, Jongjin; Kim, Geunjin; Kang, Hongkyu; Choi, Youna; Lee, Kwanghee
2012-08-14
Additional post-processing techniques, such as post-thermal annealing and UV illumination, were found to be required to obtain desirable values of the cell parameters in a tandem polymer solar cell incorporated with solution-processed basic n-type titanium sub-oxide (TiO(x))/acidic p-type poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) interlayers. Subsequent to the fabrication of the tandem polymer solar cells, the open-circuit voltage (V(OC)) of the cells exhibited half of the expected value. Only after the application of the post-treatments, the V(OC) of a tandem cell increased from the initial half-cell value (∼0.6 V) to its full-cell value (∼1.2 V). The selective light-biased incident photon-to-current efficiency (IPCE) measurements indicated that the initial V(OC) originated from the back subcell and that the application of the post-processing treatments revived the front subcell, such that the net photocurrent of the tandem cell was finally governed by a recombination process of holes from the back subcell and electrons from the front subcell. Based on our experimental results, we suggest that a V(OC) enhancement could be ascribed to two types of subsequent junction formations at the interface between the TiO(x) and PEDOT:PSS interlayers: an 'ion-mediated dipole junction', resulting from the electro-kinetic migration of cationic ions in the interlayers during post-thermal annealing in the presence of a low-work-function metal cathode, and a 'photoinduced Schottky junction', formed by increasing the charge carrier density in the n-type TiO(x) interlayer during UV illumination process. The two junctions separately contributed to the formation of a recombination junction through which the electrons in TiO(x) and the holes in PEDOT:PSS were able to recombine without substantial voltage drops.
A New National MODIS-Derived Phenology Data Set Every 16 Days, 2002 through 2006
NASA Astrophysics Data System (ADS)
Hargrove, W. W.; Spruce, J.; Gasser, G.; Hoffman, F. M.; Lee, D.
2008-12-01
A new national phenology data set has been developed, comprised of a series of seamless 231m national maps, every 16 days from 2001 through 2006. The data set was developed jointly by the Eastern Forest Environmental Threat Assessment Center (EFETAC) of the USDA Forest Service, and contractors of the NASA Stennis Space Center. The data are available now for dissemination and use. The first half of the National Phenology Data Set is the cumulative area under the NDVI curve since Jan 1, and increases monotonically every 16 days until the end of the year. These cumulative data values "latch" in the event of clouds or snow, remaining at the value when we last saw this cell. The second half is a set of diagnostic parameters fit to the annual NDVI function. The spring minimum, the 20% rise, the 80% rise, the leaf-on maximum, the 80% fall, the 20% fall, and the trailing fall minimum are determined for each map cell. For each parameter, we produce both a national map of the NDVI value, and a map of the day-of-year when that NDVI value was reached. Length of growing season, as the difference between the spring and fall 20% DOYs, and date of middle of growing season can be mapped as well. The new dataset has permitted the development of a set of national phonological ecoregions, and has also proven useful for mapping Gypsy Moth defoliation, simultaneously delineating the aftermath of three Gulf Coast hurricanes, and quantifying suburban/ex-urban development surrounding metro Atlanta.
DNA damage in human germ cell exposed to the some food additives in vitro.
Pandir, Dilek
2016-08-01
The use of food additives has increased enormously in modern food technology but they have adverse effects in human healthy. The aim of this study was to investigate the DNA damage of some food additives such as citric acid (CA), benzoic acid (BA), brilliant blue (BB) and sunset yellow (SY) which were investigated in human male germ cells using comet assay. The sperm cells were incubated with different concentrations of these food additives (50, 100, 200 and 500 μg/mL) for 1 h at 32 °C. The results showed for CA, BA, BB and SY a dose dependent increase in tail DNA%, tail length and tail moment in human sperm when compared to control group. When control values were compared in the studied parameters in the treatment concentrations, SY was found to exhibit the highest level of DNA damage followed by BB > BA > CA. However, none of the food additives affected the tail DNA%, tail length and tail moment at 50 and 100 μg/mL. At 200 μg/mL of SY, the tail DNA% and tail length of sperm were 95.80 ± 0.28 and 42.56 ± 4.66, for BB the values were 95.06 ± 2.30 and 39.56 ± 3.78, whereas for BA the values were 89.05 ± 2.78 and 31.50 ± 0.71, for CA the values were 88.59 ± 6.45 and 13.59 ± 2.74, respectively. However, only the highest concentration of the used food additives significantly affected the studied parameters of sperm DNA. The present results indicate that SY and BB are more harmful than BA and CA to human sperm in vitro.
NASA Astrophysics Data System (ADS)
Baumann, Sebastian; Robl, Jörg; Wendt, Lorenz; Willingshofer, Ernst; Hilberg, Sylke
2016-04-01
Automated lineament analysis on remotely sensed data requires two general process steps: The identification of neighboring pixels showing high contrast and the conversion of these domains into lines. The target output is the lineaments' position, extent and orientation. We developed a lineament extraction tool programmed in R using digital elevation models as input data to generate morphological lineaments defined as follows: A morphological lineament represents a zone of high relief roughness, whose length significantly exceeds the width. As relief roughness any deviation from a flat plane, defined by a roughness threshold, is considered. In our novel approach a multi-directional and multi-scale roughness filter uses moving windows of different neighborhood sizes to identify threshold limited rough domains on digital elevation models. Surface roughness is calculated as the vertical elevation difference between the center cell and the different orientated straight lines connecting two edge cells of a neighborhood, divided by the horizontal distance of the edge cells. Thus multiple roughness values depending on the neighborhood sizes and orientations of the edge connecting lines are generated for each cell and their maximum and minimum values are extracted. Thereby negative signs of the roughness parameter represent concave relief structures as valleys, positive signs convex relief structures as ridges. A threshold defines domains of high relief roughness. These domains are thinned to a representative point pattern by a 3x3 neighborhood filter, highlighting maximum and minimum roughness peaks, and representing the center points of lineament segments. The orientation and extent of the lineament segments are calculated within the roughness domains, generating a straight line segment in the direction of least roughness differences. We tested our algorithm on digital elevation models of multiple sources and scales and compared the results visually with shaded relief map of these digital elevation models. The lineament segments trace the relief structure to a great extent and the calculated roughness parameter represents the physical geometry of the digital elevation model. Modifying the threshold for the surface roughness value highlights different distinct relief structures. Also the neighborhood size at which lineament segments are detected correspond with the width of the surface structure and may be a useful additional parameter for further analysis. The discrimination of concave and convex relief structures perfectly matches with valleys and ridges of the surface.
Electronic structure of ruthenium-doped iron chalcogenides
NASA Astrophysics Data System (ADS)
Winiarski, M. J.; Samsel-Czekała, M.; Ciechan, A.
2014-12-01
The structural and electronic properties of hypothetical RuxFe1-xSe and RuxFe1-xTe systems have been investigated from first principles within the density functional theory (DFT). Reasonable values of lattice parameters and chalcogen atomic positions in the tetragonal unit cell of iron chalcogenides have been obtained with the use of norm-conserving pseudopotentials. The well known discrepancies between experimental data and DFT-calculated results for structural parameters of iron chalcogenides are related to the semicore atomic states which were frozen in the used here approach. Such an approach yields valid results of the electronic structures of the investigated compounds. The Ru-based chalcogenides exhibit the same topology of the Fermi surface (FS) as that of FeSe, differing only in subtle FS nesting features. Our calculations predict that the ground states of RuSe and RuTe are nonmagnetic, whereas those of the solid solutions RuxFe1-xSe and RuxFe1-xTe become the single- and double-stripe antiferromagnetic, respectively. However, the calculated stabilization energy values are comparable for each system. The phase transitions between these magnetic arrangements may be induced by slight changes of the chalcogen atom positions and the lattice parameters a in the unit cell of iron selenides and tellurides. Since the superconductivity in iron chalcogenides is believed to be mediated by the spin fluctuations in single-stripe magnetic phase, the RuxFe1-xSe and RuxFe1-xTe systems are good candidates for new superconducting iron-based materials.
A study of tensile test on open-cell aluminum foam sandwich
NASA Astrophysics Data System (ADS)
Ibrahim, N. A.; Hazza, M. H. F. Al; Adesta, E. Y. T.; Abdullah Sidek, Atiah Bt.; Endut, N. A.
2018-01-01
Aluminum foam sandwich (AFS) panels are one of the growing materials in the various industries because of its lightweight behavior. AFS also known for having excellent stiffness to weight ratio and high-energy absorption. Due to their advantages, many researchers’ shows an interest in aluminum foam material for expanding the use of foam structure. However, there is still a gap need to be fill in order to develop reliable data on mechanical behavior of AFS with different parameters and analysis method approach. Least of researcher focusing on open-cell aluminum foam and statistical analysis. Thus, this research conducted by using open-cell aluminum foam core grade 6101 with aluminum sheets skin tested under tension. The data is analyzed using full factorial in JMP statistical analysis software (version 11). ANOVA result show a significant value of the model which less than 0.500. While scatter diagram and 3D plot surface profiler found that skins thickness gives a significant impact to stress/strain value compared to core thickness.
Nobashi, Tomomi; Koyasu, Sho; Nakamoto, Yuji; Kubo, Takeshi; Ishimori, Takayoshi; Kim, Young H; Yoshizawa, Akihiko; Togashi, Kaori
2016-01-01
To investigate the prognostic value of fluorine-18 fludeoxyglucose (FDG) positron emission tomography (PET) parameters for small-cell lung cancer (SCLC), according to the primary tumour location, adjusted by conventional prognostic factors. From 2008 to 2013, we enrolled consecutive patients with histologically proven SCLC, who had undergone FDG-PET/CT prior to initial therapy. The primary tumour location was categorized into central or peripheral types. PET parameters and clinical variables were evaluated using univariate and multivariate analysis. A total of 69 patients were enrolled in this study; 28 of these patients were categorized as having the central type and 41 patients as having the peripheral type. In univariate analysis, stage, serum neuron-specific enolase, whole-body metabolic tumour volume (WB-MTV) and whole-body total lesion glycolysis (WB-TLG) were found to be significant in both types of patients. In multivariate analysis, the independent prognostic factor was found to be stage in the central type, but WB-MTV and WB-TLG in the peripheral type. Kaplan-Meier analysis demonstrated that patients with peripheral type with limited disease and low WB-MTV or WB-TLG showed significantly better overall survival than all of the other groups (p < 0.0083). The FDG-PET volumetric parameters were demonstrated to be significant and independent prognostic factors in patients with peripheral type of SCLC, while stage was the only independent prognostic factor in patients with central type of SCLC. FDG-PET is a non-invasive method that could potentially be used to estimate the prognosis of patients, especially those with peripheral-type SCLC.
Nutrition and health in hotel staff on different shift patterns.
Seibt, R; Süße, T; Spitzer, S; Hunger, B; Rudolf, M
2015-08-01
Limited research is available that examines the nutritional behaviour and health of hotel staff working alternating and regular shifts. To analyse the nutritional behaviour and health of employees working in alternating and regular shifts. The study used an ex post facto cross-sectional analysis to compare the nutritional behaviour and health parameters of workers with alternating shifts and regular shift workers. Nutritional behaviour was assessed with the Food Frequency Questionnaire. Body dimensions (body mass index, waist hip ratio, fat mass and active cell mass), metabolic values (glucose, triglyceride, total cholesterol and low- and high-density lipoprotein), diseases and health complaints were included as health parameters. Participants worked in alternating (n = 53) and regular shifts (n = 97). The average age of subjects was 35 ± 10 years. There was no significant difference in nutritional behaviour, most surveyed body dimensions or metabolic values between the two groups. However, alternating shift workers had significantly lower fat mass and higher active cell mass but nevertheless reported more pronounced health complaints. Sex and age were also confirmed as influencing the surveyed parameters. Shift-dependent nutritional problems were not conspicuously apparent in this sample of hotel industry workers. Health parameters did not show significantly negative attributes for alternating shift workers. Conceivably, both groups could have the same level of knowledge on the health effects of nutrition and comparable opportunities to apply this. Further studies on nutritional and health behaviour in the hotel industry are necessary in order to create validated screening programmes. © The Author 2015. Published by Oxford University Press on behalf of the Society of Occupational Medicine. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bañuelos-Andrío, L; Espino-Hernández, M; Ruperez-Lucas, M; Villar-Del Campo, M C; Romero-Carrasco, C I; Rodríguez-Caravaca, G
To investigate the usefulness of procalcitonin (PCT) and other analytical parameters (white blood cell count [WBC], C-reactive protein [CRP]) as markers of acute renal damage in children after a first febrile or afebrile urinary tract infection (UTI). A retrospective study was conducted on children with a first episode of UTI admitted between January 2009 to December 2011, and in whom serum PCT, CRP and white blood cell count were measured, as well as assessing the acute renal damage with renal scintigraphy with 99m Tc-DMSA (DMSA) within the first 72h after referral. A descriptive study was performed and ROC curves were plotted, with optimal cut-off points calculated for each parameter. The 101 enrolled patients were divided into two groups according to DMSA scintigraphy results, with 64 patients being classified with acute pyelonephritis (APN), and 37 with UTI. The mean WBC, CRP and PCT values were significantly higher in patients with APN with respect to normal acute DMSA. The area under the ROC curve was 0.862 for PCR, 0.774 for WBC, and 0.731 for PCT. The optimum statistical cut-off value for PCT was 0.285ng/ml (sensitivity 71.4% and specificity 75%). Although the mean levels of fever, WBC, CRP, and PCT were significantly increased in patients with APN than in those who had UTI, the sensitivity and specificity of these analytical parameters are unable to predict the existence of acute renal damage, making the contribution by renal DMSA scintigraphy essential. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.
Modeling dynamics for oncogenesis encompassing mutations and genetic instability.
Fassoni, Artur C; Yang, Hyun M
2018-06-27
Tumorigenesis has been described as a multistep process, where each step is associated with a genetic alteration, in the direction to progressively transform a normal cell and its descendants into a malignant tumour. Into this work, we propose a mathematical model for cancer onset and development, considering three populations: normal, premalignant and cancer cells. The model takes into account three hallmarks of cancer: self-sufficiency on growth signals, insensibility to anti-growth signals and evading apoptosis. By using a nonlinear expression to describe the mutation from premalignant to cancer cells, the model includes genetic instability as an enabling characteristic of tumour progression. Mathematical analysis was performed in detail. Results indicate that apoptosis and tissue repair system are the first barriers against tumour progression. One of these mechanisms must be corrupted for cancer to develop from a single mutant cell. The results also show that the presence of aggressive cancer cells opens way to survival of less adapted premalignant cells. Numerical simulations were performed with parameter values based on experimental data of breast cancer, and the necessary time taken for cancer to reach a detectable size from a single mutant cell was estimated with respect to some parameters. We find that the rates of apoptosis and mutations have a large influence on the pace of tumour progression and on the time it takes to become clinically detectable.
Papantoniou Ir, Ioannis; Chai, Yoke Chin; Luyten, Frank P; Schrooten Ir, Jan
2013-08-01
The incorporation of Quality-by-Design (QbD) principles in tissue-engineering bioprocess development toward clinical use will ensure that manufactured constructs possess prerequisite quality characteristics addressing emerging regulatory requirements and ensuring the functional in vivo behavior. In this work, the QbD principles were applied on a manufacturing process step for the in vitro production of osteogenic three-dimensional (3D) hybrid scaffolds that involves cell matrix deposition on a 3D titanium (Ti) alloy scaffold. An osteogenic cell source (human periosteum-derived cells) cultured in a bioinstructive medium was used to functionalize regular Ti scaffolds in a perfusion bioreactor, resulting in an osteogenic hybrid carrier. A two-level three-factor fractional factorial design of experiments was employed to explore a range of production-relevant process conditions by simultaneously changing value levels of the following parameters: flow rate (0.5-2 mL/min), cell culture duration (7-21 days), and cell-seeding density (1.5×10(3)-3×10(3) cells/cm(2)). This approach allowed to evaluate the individual impact of the aforementioned process parameters upon key quality attributes of the produced hybrids, such as collagen production, mineralization level, and cell number. The use of a fractional factorial design approach helped create a design space in which hybrid scaffolds of predefined quality attributes may be robustly manufactured while minimizing the number of required experiments.
Leon, Pia; Umari, Ingrid; Mangogna, Alessandro; Zanei, Andrea; Tognetto, Daniele
2016-01-01
To evaluate and compare the intraoperative parameters and postoperative outcomes of torsional mode and longitudinal mode of phacoemulsification. Pertinent studies were identified by a computerized MEDLINE search from January 2002 to September 2013. The Meta-analysis is composed of two parts. In the first part the intraoperative parameters were considered: ultrasound time (UST) and cumulative dissipated energy (CDE). The intraoperative values were also distinctly considered for two categories (moderate and hard cataract group) depending on the nuclear opacity grade. In the second part of the study the postoperative outcomes as the best corrected visual acuity (BCVA) and the endothelial cell loss (ECL) were taken in consideration. The UST and CDE values proved statistically significant in support of torsional mode for both moderate and hard cataract group. The analysis of BCVA did not present statistically significant difference between the two surgical modalities. The ECL count was statistically significant in support of torsional mode (P<0.001). The Meta-analysis shows the superiority of the torsional mode for intraoperative parameters (UST, CDE) and postoperative ECL outcomes.
Leon, Pia; Umari, Ingrid; Mangogna, Alessandro; Zanei, Andrea; Tognetto, Daniele
2016-01-01
AIM To evaluate and compare the intraoperative parameters and postoperative outcomes of torsional mode and longitudinal mode of phacoemulsification. METHODS Pertinent studies were identified by a computerized MEDLINE search from January 2002 to September 2013. The Meta-analysis is composed of two parts. In the first part the intraoperative parameters were considered: ultrasound time (UST) and cumulative dissipated energy (CDE). The intraoperative values were also distinctly considered for two categories (moderate and hard cataract group) depending on the nuclear opacity grade. In the second part of the study the postoperative outcomes as the best corrected visual acuity (BCVA) and the endothelial cell loss (ECL) were taken in consideration. RESULTS The UST and CDE values proved statistically significant in support of torsional mode for both moderate and hard cataract group. The analysis of BCVA did not present statistically significant difference between the two surgical modalities. The ECL count was statistically significant in support of torsional mode (P<0.001). CONCLUSION The Meta-analysis shows the superiority of the torsional mode for intraoperative parameters (UST, CDE) and postoperative ECL outcomes. PMID:27366694
Mapping the parameter space of a T2-dependent model of water diffusion MR in brain tissue.
Hansen, Brian; Vestergaard-Poulsen, Peter
2006-10-01
We present a new model for describing the diffusion-weighted (DW) proton nuclear magnetic resonance signal obtained from normal grey matter. Our model is analytical and, in some respects, is an extension of earlier model schemes. We model tissue as composed of three separate compartments with individual properties of diffusion and transverse relaxation. Our study assumes slow exchange between compartments. We attempt to take cell morphology into account, along with its effect on water diffusion in tissues. Using this model, we simulate diffusion-sensitive MR signals and compare model output to experimental data from human grey matter. In doing this comparison, we perform a global search for good fits in the parameter space of the model. The characteristic nonmonoexponential behavior of the signal as a function of experimental b value is reproduced quite well, along with established values for tissue-specific parameters such as volume fraction, tortuosity and apparent diffusion coefficient. We believe that the presented approach to modeling diffusion in grey matter adds new aspects to the treatment of a longstanding problem.
Liang, Xiao; Liao, Chunyu; Soupir, Michelle L; Jarboe, Laura R; Thompson, Michael L; Dixon, Philip M
2017-01-01
E. coli bacteria move in streams freely in a planktonic state or attached to suspended particulates. Attachment is a dynamic process, and the fraction of attached microorganisms is thought to be affected by both bacterial characteristics and particulate properties. In this study, we investigated how the properties of cell surfaces and stream particulates influence attachment. Attachment assays were conducted for 77 E. coli strains and three model particulates (ferrihydrite, Ca-montmorillonite, or corn stover) under environmentally relevant conditions. Surface area, particle size distribution, and total carbon content were determined for each type of particulate. Among the three particulates, attachment fractions to corn stover were significantly larger than the attachments to 2-line ferrihydrite (p-value = 0.0036) and Ca-montmorillonite (p-value = 0.022). Furthermore, attachment to Ca-montmorillonite and corn stover was successfully modeled by a Generalized Additive Model (GAM) using cell characteristics as predictor variables. The natural logarithm of the net charge on the bacterial surface had a significant, positive, and linear impact on the attachment of E. coli bacteria to Ca-montmorillonite (p-value = 0.013), but it did not significantly impact the attachment to corn stover (p-value = 0.36). The large diversities in cell characteristics among 77 E. coli strains, particulate properties, and attachment fractions clearly demonstrated the inadequacy of using a static parameter or linear coefficient to predict the attachment behavior of E. coli in stream water quality models.
Farashi, Sajjad; Sasanpour, Pezhman; Rafii-Tabar, Hashem
2018-05-24
Purpose-Although the effect of electromagnetic fields on biological systems has attracted attraction in recent years, there has not been any conclusive result concerning the effects of interaction and the underlying mechanisms involved. Besides the complexity of biological systems, the parameters of the applied electromagnetic field have not been estimated in most of the experiments. Material and Method-In this study, we have used computational approach in order to find the excitation parameters of an external electric field which produces sensible effects in the function of insulin secretory machinery, whose failure triggers the diabetes disease. A mathematical model of the human β-cell has been used and the effects of external electric fields with different amplitudes, frequencies and wave shapes have been studied. Results-The results from our simulations show that the external electric field can influence the membrane electrical activity and perhaps the insulin secretion when its amplitude exceeds a threshold value. Furthermore, our simulations reveal that different waveforms have distinct effects on the β-cell membrane electrical activity and the characteristic features of the excitation like frequency would change the interaction mechanism. Conclusion-The results could help the researchers to investigate the possible role of the environmental electromagnetic fields on the promotion of diabetes disease.
Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots
NASA Astrophysics Data System (ADS)
Prado, Silvio J.; Marques, Gilmar E.; Alcalde, Augusto M.
2017-11-01
In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of {k \\cdot p} theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.
Photovoltaic efficiency of intermediate band solar cells based on CdTe/CdMnTe coupled quantum dots.
Prado, Silvio J; Marques, Gilmar E; Alcalde, Augusto M
2017-11-08
In this work we show the calculation of optimized efficiencies of intermediate band solar cells (IBSCs) based on Mn-doped II-VI CdTe/CdMnTe coupled quantum dot (QD) structures. We focus our attention on the combined effects of geometrical and Mn-doping parameters on optical properties and solar cell efficiency. In the framework of [Formula: see text] theory, we accomplish detailed calculations of electronic structure, transition energies, optical selection rules and their corresponding intra- and interband oscillator strengths. With these results and by following the intermediate band model, we have developed a strategy which allows us to find optimal photovoltaic efficiency values. We also show that the effects of band admixture which can lead to degradation of optical transitions and reduction of efficiency can be partly minimized by a careful selection of the structural parameters and Mn-concentration. Thus, the improvement of band engineering is mandatory for any practical implementation of QD systems as IBSC hardware. Finally, our calculations show that it is possible to reach significant efficiency, up to ∼26%, by selecting a restricted space of parameters such as quantum dot size and shape and Mn-concentration effects, to improve the modulation of optical absorption in the structures.
NASA Astrophysics Data System (ADS)
Mirzakhel, Zibah
When considering factors that contribute to cancer progression, modifications to both the biological and mechanical pathways play significant roles. However, less attention is placed on how the mechanical pathways can specifically contribute to cancerous behavior. Experimental studies have found that malignant cells are significantly softer than healthy, normal cells. In a tissue environment where healthy or malignant cells exist, a distribution of cell stiffness values is observed, with the mean values used to differentiate between these two populations. Rather than focus on the mean values, emphasis will be placed on the distribution, where instances of soft and stiff cells exist in the healthy tissue environment. Since cell deformability is a trait associated with cancer, the question arises as to whether the mechanical variation observed in healthy tissue cell stiffness distributions can influence any instances of tumor growth. To approach this, a 3D discrete model of cells is used, able to monitor and predict the behavior of individual cells while determining any instances of tumor growth in a healthy tissue. In addition to the mechanical variance, the spatial arrangement of cells will also be modeled, as cell interaction could further implicate any incidences of tumor-like malignant populations within the tissue. Results have shown that the likelihood of tumor incidence is driven by both by the increases in the mechanical variation in the distributions as well as larger clustering of cells that are mechanically similar, quantified primarily through higher proliferation rates of tumor-like soft cells. This can be observed though prominent negative shifts in the mean of the distribution, as it begins to transition and show instances of earlystage tumor growth. The model reveals the impact that both the mechanical variation and spatial arrangement of cells has on tumor progression, suggesting the use of these parameters as potential novel biomarkers. With a patient-specific approach in mind, the model may be applied for early-stage cancer detection, useful to establish a timeline on tumor progression.
Vanhaecke, E; Remon, J P; Moors, M; Raes, F; De Rudder, D; Van Peteghem, A
1990-01-01
Fifteen different isolates of Pseudomonas aeruginosa were used to study the kinetics of adhesion to 304 and 316-L stainless steel. Stainless steel plates were incubated with approximately 1.5 X 10(7) CFU/ml in 0.01 M phosphate-buffered saline (pH 7.4). After the plates were rinsed with the buffer, the number of adhering bacteria was determined by a bioluminescence assay. Measurable adhesion, even to the electropolished surfaces, occurred within 30 s. Bacterial cell surface hydrophobicity, as determined by the bacterial adherence to hydrocarbons test and the contact angle measurement test, was the major parameter influencing the adhesion rate constant for the first 30 min of adhesion. A parabolic relationship between the CAM values and the logarithm of the adhesion rate constants (In k) was established. No correlation between either the salt aggregation or the improved salt aggregation values and the bacterial adhesion rate constants could be found. Since there was no significant correlation between the bacterial electrophoretic mobilities and the In k values, the bacterial cell surface charge seemed of minor importance in the process of adhesion of P. aeruginosa to 304 and 316-L stainless steel. PMID:2107796
Stability of haematological parameters and its relevance on the athlete's biological passport model.
Lombardi, Giovanni; Lanteri, Patrizia; Colombini, Alessandra; Lippi, Giuseppe; Banfi, Giuseppe
2011-12-01
The stability of haematological parameters is crucial to guarantee accurate and reliable data for implementing and interpreting the athlete's biological passport (ABP). In this model, the values of haemoglobin, reticulocytes and out-of-doping period (OFF)-score (Hb-60√Ret) are used to monitor the possible variations of those parameters, and also to compare the thresholds developed by the statistical model for the single athlete on the basis of its personal values and the variance of parameters in the modal group. Nevertheless, a critical review of the current scientific literature dealing with the stability of the haematological parameters included in the ABP programme, and which are used for evaluating the probability of anomalies in the athlete's profile, is currently lacking. In addition, we collected information from published studies, in order to supply a useful, practical and updated review to sports physicians and haematologists. There are some parameters that are highly stable, such as haemoglobin and erythrocytes (red blood cells [RBCs]), whereas others, (e.g. reticulocytes, mean RBC volume and haematocrit) appear less stable. Regardless of the methodology, the stability of haematological parameters is improved by sample refrigeration. The stability of all parameters is highly affected from high storage temperatures, whereas the stability of RBCs and haematocrit is affected by initial freezing followed by refrigeration. Transport and rotation of tubes do not substantially influence any haematological parameter except for reticulocytes. In all the studies we reviewed that used Sysmex instrumentation, which is recommended for ABP measurements, stability was shown for 72 hours at 4 ° C for haemoglobin, RBCs and mean curpuscular haemoglobin concentration (MCHC); up to 48 hours for reticulocytes; and up to 24 hours for haematocrit. In one study, Sysmex instrumentation shows stability extended up to 72 hours at 4 ° C for all the parameters. There are significant differences among methods and instruments: Siemens Advia shows lower stability than Sysmex as regards to reticulocytes. However, the limit of 36 hours from blood collection to analysis as recommended by ABP scientists is reasonable to guarantee analytical quality, when samples are transported at 4 ° C and are accompanied by a certified steadiness of this temperature. There are some parameters that are highly stable, such as haemoglobin and RBCs; whereas others, such as reticulocytes, mean cell volume and haematocrit are more unstable. The stability of haematological parameters might be improved independently from the analytical methodology, by refrigeration of the specimens.
Predicting network modules of cell cycle regulators using relative protein abundance statistics.
Oguz, Cihan; Watson, Layne T; Baumann, William T; Tyson, John J
2017-02-28
Parameter estimation in systems biology is typically done by enforcing experimental observations through an objective function as the parameter space of a model is explored by numerical simulations. Past studies have shown that one usually finds a set of "feasible" parameter vectors that fit the available experimental data equally well, and that these alternative vectors can make different predictions under novel experimental conditions. In this study, we characterize the feasible region of a complex model of the budding yeast cell cycle under a large set of discrete experimental constraints in order to test whether the statistical features of relative protein abundance predictions are influenced by the topology of the cell cycle regulatory network. Using differential evolution, we generate an ensemble of feasible parameter vectors that reproduce the phenotypes (viable or inviable) of wild-type yeast cells and 110 mutant strains. We use this ensemble to predict the phenotypes of 129 mutant strains for which experimental data is not available. We identify 86 novel mutants that are predicted to be viable and then rank the cell cycle proteins in terms of their contributions to cumulative variability of relative protein abundance predictions. Proteins involved in "regulation of cell size" and "regulation of G1/S transition" contribute most to predictive variability, whereas proteins involved in "positive regulation of transcription involved in exit from mitosis," "mitotic spindle assembly checkpoint" and "negative regulation of cyclin-dependent protein kinase by cyclin degradation" contribute the least. These results suggest that the statistics of these predictions may be generating patterns specific to individual network modules (START, S/G2/M, and EXIT). To test this hypothesis, we develop random forest models for predicting the network modules of cell cycle regulators using relative abundance statistics as model inputs. Predictive performance is assessed by the areas under receiver operating characteristics curves (AUC). Our models generate an AUC range of 0.83-0.87 as opposed to randomized models with AUC values around 0.50. By using differential evolution and random forest modeling, we show that the model prediction statistics generate distinct network module-specific patterns within the cell cycle network.
Weber, Alain; Braybrook, Siobhan; Huflejt, Michal; Mosca, Gabriella; Routier-Kierzkowska, Anne-Lise; Smith, Richard S
2015-06-01
Growth in plants results from the interaction between genetic and signalling networks and the mechanical properties of cells and tissues. There has been a recent resurgence in research directed at understanding the mechanical aspects of growth, and their feedback on genetic regulation. This has been driven in part by the development of new micro-indentation techniques to measure the mechanical properties of plant cells in vivo. However, the interpretation of indentation experiments remains a challenge, since the force measures results from a combination of turgor pressure, cell wall stiffness, and cell and indenter geometry. In order to interpret the measurements, an accurate mechanical model of the experiment is required. Here, we used a plant cell system with a simple geometry, Nicotiana tabacum Bright Yellow-2 (BY-2) cells, to examine the sensitivity of micro-indentation to a variety of mechanical and experimental parameters. Using a finite-element mechanical model, we found that, for indentations of a few microns on turgid cells, the measurements were mostly sensitive to turgor pressure and the radius of the cell, and not to the exact indenter shape or elastic properties of the cell wall. By complementing indentation experiments with osmotic experiments to measure the elastic strain in turgid cells, we could fit the model to both turgor pressure and cell wall elasticity. This allowed us to interpret apparent stiffness values in terms of meaningful physical parameters that are relevant for morphogenesis. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Leith, John T; Davis, Paul J; Mousa, Shaker A; Hercbergs, Aleck A
2017-02-16
We investigated radiosensitization in an untreated basal cell carcinoma (TE.354.T) cell line and post-pretreatment with tetraiodothyroacetic acid (tetrac) X 1 h at 37°C, 0.2 and 2.0 µM tetrac. Radioresistant TE.354.T cells were grown in modified medium containing fibroblast growth factor-2, stem cell factor-1 and a reduced calcium level. We also added reproductively inactivated (30 Gy) "feeder cells" to the medium. The in vitro doubling time was 34.1 h, and the colony forming efficiency was 5.09 percent. These results were therefore suitable for clonogenic radiation survival assessment. The 250 kVp X-ray survival curve of control TE.354.T cells showed linear-quadratic survival parameters of α X-ray = 0.201 Gy -1 and β X-ray = 0.125 Gy -2 . Tetrac concentrations of either 0.2 or 2.0 µM produced α X-ray and β X-ray parameters of 2.010 and 0.282 Gy -1 and 2.050 and 0.837 Gy -2 , respectively. The surviving fraction at 2 Gy (SF 2 ) for control cells was 0.581, while values for 0.2 and 2.0 µM tetrac were 0.281 and 0.024. The SF 2 data show that tetrac concentrations of 0.2 and 2.0 µM sensitize otherwise radioresistant TE.354.T cells by factors of 2.1 and 24.0, respectively. Thus, radioresistant basal cell carcinoma cells may be radiosensitized pharmacologically by exposure to tetrac.
USDA-ARS?s Scientific Manuscript database
Many studies on the development of new and/ or value added nutritional meals for the US consumer have been reported. However, information on the effect of treatment parameters on microbial safety of foods extruded below 100 deg C is limited. In this study, we investigated the effect of extrusion tre...
Grunewald, J P; Röhl, F W; Kirches, E; Dietzmann, K
1998-02-01
Many studies dealing with extracranial cancer showed a strong correlation of DNA ploidy to a poor clinical outcome, recurrence, or malignancy. In brain tumors, analysis of DNA content did not always provided significant diagnostic information. In this study, DNA density and karyometric parameters of 50 meningiomas (26 Grade I, 10 Grade II, 14 Grade III) were quantitatively evaluated by digital cell image analyses of Feulgen-stained nuclei. In particular, the densitometric parameter SEXT, which describes nuclear DNA content, as well as the morphometric values LENG (a computer-assisted measurement of nuclear circumference), AREA (a computer-assisted measurement of nuclear area), FCON (a parameter that describes nuclear roundness), and CONC (a describing nuclear contour), evaluated with the software IMAGE C, were correlated to World Health Organization (WHO) grading using univariate and multivariate methods. AREA and LENG values showed significant differences between tumors of Grades I and III. FCON values were unable to distinguish WHO Grade III from Grade I/II but were useful in clearly separating Grade II from Grade I tumors. CONC values detected differences between WHO Grades II and I/III tumors but not between the latter. SEXT values clearly distinguished Grade III from Grade I/II tumors. The 1c, 2c, 2.5c, and 5c exceeding rates showed no predictive values. Only the 6c exceeding rate showed a significant difference between Grades I and III. These results outline the characteristic features of the atypical (Grade II) meningiomas, which make them a recognizable tumor entity distinct from benign and anaplastic meningiomas. The combination of DNA densitometric and morphometric findings seems to be a powerful addition to the histopathologic classification of meningiomas, as suggested by the WHO.
Massard, Christophe; Borget, Isabelle; Le Deley, Marie Cécile; Taylor, Melissa; Gomez-Roca, Carlos; Soria, Jean Charles; Farace, Françoise
2012-06-01
We hypothesised that host-related markers, possibly reflecting tumour aggressiveness, such as circulating endothelial cells (CEC) and circulating VEGFR2(+) bone marrow-derived (BMD) progenitor cells, could have prognostic value in patients with advanced cancer enrolled in early anticancer drug development trials. Baseline CECs (CD45(-)CD31(+)CD146(+)7AAD(-) cells) and circulating VEGFR2(+)-BMD progenitor cells (defined as CD45(dim)CD34(+)VEGFR2(+)7AAD(-) cells) were measured by flow-cytometry in 71 and 58 patients included in phase 1 trials testing novel anti-vascular or anti-angiogenic agents. Correlations between levels of CECs, circulating VEGFR2(+)-BMD progenitor cells, clinical and biological prognostic factors (i.e. the Royal Marsden Hospital (RMH) score), and overall survival (OS) were studied. The median value of CECs was 12 CEC/ml (range 0-154/ml). The median level of VEGFR2(+)-BMD progenitor cells was 1.3% (range 0-32.5%) of circulating BMD-CD34(+) progenitors. While OS was not correlated with CEC levels, it was significantly worse in patients with high VEGFR2(+)-BMD progenitor levels (>1%) (median OS 9.0 versus 17.0 months), and with a RMH prognostic score >0 (median OS 9.0 versus 24.2 months). The prognostic value of VEGFR2(+)-BMD progenitor levels remained significant (hazard ratio (HR) = 2.3, 95% confidence interval (CI), 1.1-4.6, p = 0.02) after multivariate analysis. A composite VEGFR2(+)-BMD progenitor level/RHM score ≥ 2 was significantly associated with an increased risk of death compared to scores of 0 or 1 (median OS 9.0 versus 18.4 months, HR = 2.6 (95%CI, 1.2-5.8, p = 0.02)). High circulating VEGFR2(+)-BMD progenitor levels are associated with poor prognostics and when combined to classical clinical and biological parameters could provide a new tool for patient selection in early anticancer drug trials. Copyright © 2012 Elsevier Ltd. All rights reserved.
The effect of prefreeze rejuvenation on postthaw storage of red blood cells in AS-3 and SAGM.
Lelkens, Charles C M; Lagerberg, Johan W M; de Korte, Dirk
2017-06-01
We investigated whether improving the metabolic status of red blood cell concentrates before freezing could extend the postthaw shelf life beyond 14 days while still meeting the requirements for hemolysis (0.8%) and total adenylate (>82% of original values). At Day 8 after collection, four leukoreduced red blood cell concentrates in saline-adenine-glucose-mannitol (SAGM) were pooled, mixed, and split (n = 4). Of these concentrates, two were rejuvenated in Rejuvesol. In addition, two leukoreduced red blood cell concentrates in phosphate-adenine-glucose-guanosine-gluconate-mannitol (PAGGGM) were pooled, mixed, and split at Day 8 after collection (n = 4). All concentrates were glycerolized, frozen, and stored for at least 2 weeks at -80°C. After thawing and deglycerolization, from each pair, one red blood cell concentrate was resuspended in SAGM, and one was suspended in AS-3. During postthaw storage at 2 to 6°C for 35 days, all concentrates were sampled weekly and analyzed for hematologic, metabolic, and morphologic parameters. Both Rejuvesol and PAGGGM treatment produced increased adenosine triphosphate and total adenylate and 2,3-diphosphoglycerate levels compared with untreated red blood cell concentrates. Regardless of prefreeze Rejuvesol or PAGGGM treatment, postthaw hemolysis remained below 0.8% during 7 days in SAGM and during 35 days in AS-3. At Day 35 of postthaw storage in AS-3, total adenylate in nonrejuvenated red blood cell concentrates had decreased to 72% of the original values; whereas, in prefreeze Rejuvesol-treated and PAGGGM-treated concentrates, adenylate values were still were at 101% and 98%, respectively. Based on maximum allowable hemolysis of 0.8% and total adenylate content greater than 82% of the original value, thawed, prefreeze Rejuvesol-treated or PAGGGM-treated red blood cell concentrates can be stored for 35 days at 2 to 6ºC in AS-3. © 2017 AABB.
Synthesis of Mn doped ZnS nanocrystals: Crystallographic and morphological study
NASA Astrophysics Data System (ADS)
Shaikh, Azharuddin Z.; Shirsath, Narendra B.; Sonawane, Prabhakar S.
2018-05-01
The influence of doping concentration on the physical properties of ZnS nanocrystals synthesized using coprecipitation method at room temperature is reported in this paper. In particular, we have studied the structural properties of Zn1-xMnxS where (x=0.01, 0.03, 0.05) by X-ray diffraction. X-ray peak broadening analysis used to calculate the crystalline sizes, lattice parameters, number of unit cell per particle and volume of unit cell. Crystalline ZnS with a cubic structure is confirmed by XRD results. The grain size of pure and Mn doped samples were found in the range of 7nm to 9nm. All the physical parameters of cubic ZnS nanocrystals were calculated are similar with standard values. The scanning electron microscope (SEM) which revealed that the synthesized nanocrystals are well-crystalline and possessing cubic phase.
A lightweight low-frequency sound insulation membrane-type acoustic metamaterial
NASA Astrophysics Data System (ADS)
Lu, Kuan; Wu, Jiu Hui; Guan, Dong; Gao, Nansha; Jing, Li
2016-02-01
A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL) at low frequencies (⩽500Hz) was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial's structure is like a sandwich with a thin (thickness=0.25mm) lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method (FEM). The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cell film shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.
Analysis of aircraft microwave measurements of the ocean surface
NASA Technical Reports Server (NTRS)
Willand, J. H.; Fowler, M. G.; Reifenstein, E. C., III; Chang, D. T.
1973-01-01
A data system was developed to process, from calibrated brightness temperature to computation of estimated parameters, the microwave measurements obtained by the NASA CV-990 aircraft during the 1972 Meteorological Expedition. A primary objective of the study was the implementation of an integrated software system at the computing facility of NASA/GSFC, and its application to the 1972 data. A single test case involving measurements away from and over a heavy rain cell was chosen to examine the effect of clouds upon the ability to infer ocean surface parameters. The results indicate substantial agreement with those of the theoretical study; namely, that the values obtained for the surface properties are consistent with available ground-truth information, and are reproducible except within the heaviest portions of the rain cell, at which nonlinear (or saturation) effects become apparent. Finally, it is seen that uncorrected instrumental effects introduce systematic errors which may limit the accuracy of the method.
NASA Astrophysics Data System (ADS)
Gillette, V. H.; Patiño, N. E.; Granada, J. R.; Mayer, R. E.
1989-08-01
Using a synthetic incoherent scattering function which describes the interaction of neutrons with molecular gases we provide analytical expressions for zero- and first-order scattering kernels, σ0( E0 → E), σ1( E0 → E), and total cross section σ0( E0). Based on these quantities, we have performed calculations of thermalization parameters and transport coefficients for H 2O, D 2O, C 6H 6 and (CH 2) n at room temperature. Comparison of such values with available experimental data and other calculations is satisfactory. We also generated nuclear data libraries for H 2O with 47 thermal groups at 300 K and performed some benchmark calculations ( 235U, 239Pu, PWR cell and typical APWR cell); the resulting reactivities are compared with experimental data and ENDF/B-IV calculations.
Modelling the balance between quiescence and cell death in normal and tumour cell populations.
Spinelli, Lorenzo; Torricelli, Alessandro; Ubezio, Paolo; Basse, Britta
2006-08-01
When considering either human adult tissues (in vivo) or cell cultures (in vitro), cell number is regulated by the relationship between quiescent cells, proliferating cells, cell death and other controls of cell cycle duration. By formulating a mathematical description we see that even small alterations of this relationship may cause a non-growing population to start growing with doubling times characteristic of human tumours. Our model consists of two age structured partial differential equations for the proliferating and quiescent cell compartments. Model parameters are death rates from and transition rates between these compartments. The partial differential equations can be solved for the steady-age distributions, giving the distribution of the cells through the cell cycle, dependent on specific model parameter values. Appropriate formulas can then be derived for various population characteristic quantities such as labelling index, proliferation fraction, doubling time and potential doubling time of the cell population. Such characteristic quantities can be estimated experimentally, although with decreasing precision from in vitro, to in vivo experimental systems and to the clinic. The model can be used to investigate the effects of a single alteration of either quiescence or cell death control on the growth of the whole population and the non-trivial dependence of the doubling time and other observable quantities on particular underlying cell cycle scenarios of death and quiescence. The model indicates that tumour evolution in vivo is a sequence of steady-states, each characterised by particular death and quiescence rate functions. We suggest that a key passage of carcinogenesis is a loss of the communication between quiescence, death and cell cycle machineries, causing a defect in their precise, cell cycle dependent relationship.
Finding Top-kappa Unexplained Activities in Video
2012-03-09
parameters that define an UAP instance affect the running time by varying the values of each parameter while keeping the others fixed to a default...value. Runtime of Top-k TUA. Table 1 reports the values we considered for each parameter along with the corresponding default value. Parameter Values...Default value k 1, 2, 5, All All τ 0.4, 0.6, 0.8 0.6 L 160, 200, 240, 280 200 # worlds 7 E+04, 4 E+05, 2 E+07 2 E+07 TABLE 1: Parameter values used in
Circulating tumor cells in clinical research and monitoring patients with colorectal cancer
Burz, Claudia; Pop, Vlad-Vasile; Buiga, Rares; Daniel, Sur; Samasca, Gabriel; Aldea, Cornel; Lupan, Iulia
2018-01-01
Colorectal cancer remains a frequent disease to which screening and target therapy exist, but despite this is still marked by a high mortality rate. Even though radical surgery may be performed in many cases, patients relapse with metastatic disease. Circulating tumor cells were incriminated for tumor recurrence, that's why vigorous research started on their field. Owning prognostic and predictive value, it was revealed their usefulness in disease monitoring. Moreover, they may serve as liquid biopsies for genetic tests in cases where tissue biopsy is contraindicated or cannot be performed. In spite of these advantages, they were not included in clinical guidelines, despite CellSearch and many other detection methods were developed to ease the identification of circulating tumor cells. This review highlights the implication of circulating tumor cells in metastasis cascade, intrinsic tumor cells mechanisms and correlations with clinical parameters along with their utility for medical practice and detection techniques. PMID:29849961
Analysis (Simulation) of Ni-63 beta-voltaic cells based on silicon solar cells
NASA Astrophysics Data System (ADS)
Gorbatsevich, A. A.; Danilin, A. B.; Korneev, V. I.; Magomedbekov, E. P.; Molin, A. A.
2016-07-01
Beta-voltaic cells based on standard silicon solar cells with bilateral coating with beta-radiation sources in the form of 63Ni isotope have been studied experimentally and by numerical simulation. The optimal parameters of the cell, including its thickness, the doping level of the substrate, the depth of the p- n junction on its front side, and the p + layer on the back side, as well as the activity of the source material, have been calculated. The limiting theoretical values of the open-circuit voltage (0.26 V), short-circuiting current (2.1 μA), the output power of the cell (0.39 μW), and the efficiency of the conversion of the radioactive energy onto the electric energy (4.8%) have been determined for a beta-source activity of 40 mCi. The results of numerical analysis have been compared with the experimental data.
Winkelman, James W; Tanasijevic, Milenko J; Zahniser, David J
2017-08-01
- A novel automated slide-based approach to the complete blood count and white blood cell differential count is introduced. - To present proof of concept for an image-based approach to complete blood count, based on a new slide preparation technique. A preliminary data comparison with the current flow-based technology is shown. - A prototype instrument uses a proprietary method and technology to deposit a precise volume of undiluted peripheral whole blood in a monolayer onto a glass microscope slide so that every cell can be distinguished, counted, and imaged. The slide is stained, and then multispectral image analysis is used to measure the complete blood count parameters. Images from a 600-cell white blood cell differential count, as well as 5000 red blood cells and a variable number of platelets, that are present in 600 high-power fields are made available for a technologist to view on a computer screen. An initial comparison of the basic complete blood count parameters was performed, comparing 1857 specimens on both the new instrument and a flow-based hematology analyzer. - Excellent correlations were obtained between the prototype instrument and a flow-based system. The primary parameters of white blood cell, red blood cell, and platelet counts resulted in correlation coefficients (r) of 0.99, 0.99, and 0.98, respectively. Other indices included hemoglobin (r = 0.99), hematocrit (r = 0.99), mean cellular volume (r = 0.90), mean corpuscular hemoglobin (r = 0.97), and mean platelet volume (r = 0.87). For the automated white blood cell differential counts, r values were calculated for neutrophils (r = 0.98), lymphocytes (r = 0.97), monocytes (r = 0.76), eosinophils (r = 0.96), and basophils (r = 0.63). - Quantitative results for components of the complete blood count and automated white blood cell differential count can be developed by image analysis of a monolayer preparation of a known volume of peripheral blood.
Aydoğan, Tuğba; Akçay, Betül İlkay Sezgin; Kardeş, Esra; Ergin, Ahmet
2017-01-01
Purpose: The objective of this study is to evaluate the diagnostic ability of retinal nerve fiber layer (RNFL), macular, optic nerve head (ONH) parameters in healthy subjects, ocular hypertension (OHT), preperimetric glaucoma (PPG), and early glaucoma (EG) patients, to reveal factors affecting the diagnostic ability of spectral domain-optical coherence tomography (SD-OCT) parameters and risk factors for glaucoma. Methods: Three hundred and twenty-six eyes (89 healthy, 77 OHT, 94 PPG, and 66 EG eyes) were analyzed. RNFL, macular, and ONH parameters were measured with SD-OCT. The area under the receiver operating characteristic curve (AUC) and sensitivity at 95% specificity was calculated. Logistic regression analysis was used to determine the glaucoma risk factors. Receiver operating characteristic regression analysis was used to evaluate the influence of covariates on the diagnostic ability of parameters. Results: In PPG patients, parameters that had the largest AUC value were average RNFL thickness (0.83) and rim volume (0.83). In EG patients, parameter that had the largest AUC value was average RNFL thickness (0.98). The logistic regression analysis showed average RNFL thickness was a risk factor for both PPG and EG. Diagnostic ability of average RNFL and average ganglion cell complex thickness increased as disease severity increased. Signal strength index did not affect diagnostic abilities. Diagnostic ability of average RNFL and rim area increased as disc area increased. Conclusion: When evaluating patients with glaucoma, patients at risk for glaucoma, and healthy controls RNFL parameters deserve more attention in clinical practice. Further studies are needed to fully understand the influence of covariates on the diagnostic ability of OCT parameters. PMID:29133640
Li, Dongxing; Redding, Gabe P; Bronlund, John E
2013-01-01
The rate of oxygen consumption by granulosa cells is a key parameter in mathematical models that describe oxygen transport across ovarian follicles. This work measured the oxygen consumption rate of bovine granulosa cells in vitro to be in the range 2.1-3.3×10⁻¹⁶ mol cell⁻¹ s⁻¹ (0.16-0.25 mol m⁻³ s⁻¹). The implications of the rates for oxygen transport in large bovine preantral follicles were examined using a mathematical model. The results indicate that oocyte oxygenation becomes increasingly constrained as preantral follicles grow, reaching hypoxic levels near the point of antrum formation. Beyond a preantral follicle radius of 134 µm, oxygen cannot reach the oocyte surface at typical values of model parameters. Since reported sizes of large bovine preantral follicles range from 58 to 145 µm in radius, this suggests that oocyte oxygenation is possible in all but the largest preantral follicles, which are on the verge of antrum formation. In preantral bovine follicles, the oxygen consumption rate of granulosa cells and fluid voidage will be the key determinants of oxygen levels across the follicle.
Model for threading dislocations in metamorphic tandem solar cells on GaAs (001) substrates
NASA Astrophysics Data System (ADS)
Song, Yifei; Kujofsa, Tedi; Ayers, John E.
2018-02-01
We present an approximate model for the threading dislocations in III-V heterostructures and have applied this model to study the defect behavior in metamorphic triple-junction solar cells. This model represents a new approach in which the coefficient for second-order threading dislocation annihilation and coalescence reactions is considered to be determined by the length of misfit dislocations, LMD, in the structure, and we therefore refer to it as the LMD model. On the basis of this model we have compared the average threading dislocation densities in the active layers of triple junction solar cells using linearly-graded buffers of varying thicknesses as well as S-graded (complementary error function) buffers with varying thicknesses and standard deviation parameters. We have shown that the threading dislocation densities in the active regions of metamorphic tandem solar cells depend not only on the thicknesses of the buffer layers but on their compositional grading profiles. The use of S-graded buffer layers instead of linear buffers resulted in lower threading dislocation densities. Moreover, the threading dislocation densities depended strongly on the standard deviation parameters used in the S-graded buffers, with smaller values providing lower threading dislocation densities.
Cabrita, Marisa; Bekman, Evguenia; Braga, José; Rino, José; Santus, Renè; Filipe, Paulo L.; Sousa, Ana E.; Ferreira, João A.
2017-01-01
We propose a novel single-deoxynucleoside-based assay that is easy to perform and provides accurate values for the absolute length (in units of time) of each of the cell cycle stages (G1, S and G2/M). This flow-cytometric assay takes advantage of the excellent stoichiometric properties of azide-fluorochrome detection of DNA substituted with 5-ethynyl-2′-deoxyuridine (EdU). We show that by pulsing cells with EdU for incremental periods of time maximal EdU-coupled fluorescence is reached when pulsing times match the length of S phase. These pulsing times, allowing labelling for a full S phase of a fraction of cells in asynchronous populations, provide accurate values for the absolute length of S phase. We characterized additional, lower intensity signals that allowed quantification of the absolute durations of G1 and G2 phases. Importantly, using this novel assay data on the lengths of G1, S and G2/M phases are obtained in parallel. Therefore, these parameters can be estimated within a time frame that is shorter than a full cell cycle. This method, which we designate as EdU-Coupled Fluorescence Intensity (E-CFI) analysis, was successfully applied to cell types with distinctive cell cycle features and shows excellent agreement with established methodologies for analysis of cell cycle kinetics. PMID:28465489
Safi Oz, Zehra; Doğan Gun, Banu; Gun, Mustafa Ozkan; Ozdamar, Sukru Oguz
2015-01-01
The aim of this study was to explore the cytomorphometric and morphological effects of Trichomonas vaginalis in exfoliated epithelial cells. Ninety-six Pap-stained cervical smears were divided into a study group and two control groups as follows: T. vaginalis cases, a first control group with inflammation, and a second control group without inflammation. Micronucleated, binucleated, karyorrhectic, karyolytic, and karyopyknotic cells and cells with perinuclear halos per 1,000 epithelial cells were counted. Nuclear and cellular areas were evaluated in 70 clearly defined cells in each smear using image analysis. The frequencies of morphological parameters in the T. vaginalis cases were higher than the values of the two control groups, and the difference among groups was found to be significant (p < 0.05). The nuclear and cytoplasmic areas of epithelial cells were diminished in patients with trichomoniasis. The mean nucleus/cytoplasm ratio in T. vaginalis patients was higher than the value in the control groups, and the difference between the study group and control group 1 was significant. However, there was no statistically significant increase between the study group and control group 2. T. vaginalis exhibited significant changes in the cellular size and nuclear structure of the cells. The rising frequency of micronuclei, nuclear abnormalities, and changing nucleus/cytoplasm ratio may reflect genotoxic damage in trichomoniasis. © 2015 S. Karger AG, Basel.
Wong, Kee H; Panek, Rafal; Dunlop, Alex; Mcquaid, Dualta; Riddell, Angela; Welsh, Liam C; Murray, Iain; Koh, Dow-Mu; Leach, Martin O; Bhide, Shreerang A; Nutting, Christopher M; Oyen, Wim J; Harrington, Kevin J; Newbold, Kate L
2018-05-01
To assess the optimal timing and predictive value of early intra-treatment changes in multimodality functional and molecular imaging (FMI) parameters as biomarkers for clinical remission in patients receiving chemoradiation for head and neck squamous cell carcinoma (HNSCC). Thirty-five patients with stage III-IVb (AJCC 7th edition) HNSCC prospectively underwent 18 F-FDG-PET/CT, and diffusion-weighted (DW), dynamic contrast-enhanced (DCE) and susceptibility-weighted MRI at baseline, week 1 and week 2 of chemoradiation. Patients with evidence of persistent or recurrent disease during follow-up were classed as non-responders. Changes in FMI parameters at week 1 and week 2 were compared between responders and non-responders with the Mann-Whitney U test. The significance threshold was set at a p value of <0.05. There were 27 responders and 8 non-responders. Responders showed a greater reduction in PET-derived tumor total lesion glycolysis (TLG 40% ; p = 0.007) and maximum standardized uptake value (SUV max ; p = 0.034) after week 1 than non-responders but these differences were absent by week 2. In contrast, it was not until week 2 that MRI-derived parameters were able to discriminate between the two groups: larger fractional increases in primary tumor apparent diffusion coefficient (ADC; p < 0.001), volume transfer constant (K trans ; p = 0.012) and interstitial space volume fraction (V e ; p = 0.047) were observed in responders versus non-responders. ADC was the most powerful predictor (∆ >17%, AUC 0.937). Early intra-treatment changes in FDG-PET, DW and DCE MRI-derived parameters are predictive of ultimate response to chemoradiation in HNSCC. However, the optimal timing for assessment with FDG-PET parameters (week 1) differed from MRI parameters (week 2). This highlighted the importance of scanning time points for the design of FMI risk-stratified interventional studies.
Mean platelet volume (MPV) predicts middle distance running performance.
Lippi, Giuseppe; Salvagno, Gian Luca; Danese, Elisa; Skafidas, Spyros; Tarperi, Cantor; Guidi, Gian Cesare; Schena, Federico
2014-01-01
Running economy and performance in middle distance running depend on several physiological factors, which include anthropometric variables, functional characteristics, training volume and intensity. Since little information is available about hematological predictors of middle distance running time, we investigated whether some hematological parameters may be associated with middle distance running performance in a large sample of recreational runners. The study population consisted in 43 amateur runners (15 females, 28 males; median age 47 years), who successfully concluded a 21.1 km half-marathon at 75-85% of their maximal aerobic power (VO2max). Whole blood was collected 10 min before the run started and immediately thereafter, and hematological testing was completed within 2 hours after sample collection. The values of lymphocytes and eosinophils exhibited a significant decrease compared to pre-run values, whereas those of mean corpuscular volume (MCV), platelets, mean platelet volume (MPV), white blood cells (WBCs), neutrophils and monocytes were significantly increased after the run. In univariate analysis, significant associations with running time were found for pre-run values of hematocrit, hemoglobin, mean corpuscular hemoglobin (MCH), red blood cell distribution width (RDW), MPV, reticulocyte hemoglobin concentration (RetCHR), and post-run values of MCH, RDW, MPV, monocytes and RetCHR. In multivariate analysis, in which running time was entered as dependent variable whereas age, sex, blood lactate, body mass index, VO2max, mean training regimen and the hematological parameters significantly associated with running performance in univariate analysis were entered as independent variables, only MPV values before and after the trial remained significantly associated with running time. After adjustment for platelet count, the MPV value before the run (p = 0.042), but not thereafter (p = 0.247), remained significantly associated with running performance. The significant association between baseline MPV and running time suggest that hyperactive platelets may exert some pleiotropic effects on endurance performance.
Elbendary, Amal M; Abd El-Latef, Mohamed Hafez; Elsorogy, Hisham I; Enaam, Kamal M
2017-08-01
To evaluate diagnostic accuracy of substructure of ganglion cell complex versus peripapillary nerve fiber layer (NFL) thickness using spectral domain optical coherence tomography (SD-OCT) in different stages of glaucoma. Thirty eyes were normal, 120 were glaucomatous. Glaucomatous eyes were classified into: early glaucoma (46), moderate glaucoma (48), and severe glaucoma (26). Perimetry and SD-OCT were done. Peripapillary NFL thickness, ganglion cell layer (GCL), macular NFL thickness, combined GCL and macular ganglion cell complex (GCC), were recorded. Area under receiver operating characteristic curves (AUCs) was used to verify performance of different OCT parameters. Peripapillary NFL, GCL, and GCC thickness values were significantly different in all stages of glaucoma. All comparisons were significantly different; normal versus early, early versus moderate and moderate versus severe. The best parameters that distinguished normal from early stage were: peripapillary NFL (AUC: 0.90), GCC (AUC: 0.75), early from moderate stage were: peripapillary NFL thickness (AUC: 0.85), GCL (0.81),GCC (0.81), moderate from severe stage were: GCC (AUC:0.95), macular NFL (AUC:0.91), GCL (AUC:0.89), and peripapillary NFL (AUC:0.88). Peripapllary NFL and GCC thinning showed paradoxical course. The most diagnosed parameter in early glaucoma was peripapillary NFL and in severe glaucoma was GCC. In severe glaucoma, macular NFL showed higher diagnostic power than GCL and peripapillary NFL. Ganglion cell complex mapping may provide good alternative to optic disc imaging in advanced glaucoma with poor fixation. Copyright © 2017 Canadian Ophthalmological Society. Published by Elsevier Inc. All rights reserved.
Bussières, E; Richaud, P; Gualde, N
1992-10-01
Evolution of some immunological parameters was observed during the first month in 20 patients with different abdomino-pelvic cancers who underwent surgery with intra-operative radiation therapy (IORT) (mean dose of 19.44 Gy, range 15, 25). Observed parameters before (DO-) and after procedure (DO+), on seventh (D7) and fourteenth (D14) days and fifth week (D30) were: lymphocyte count, lymphocyte subsets (CD19, CD3, CD4, CD8, CD56), natural killer (NK) activity, immunoglobulins, C3 and C4b fractions of complement, soluble receptor for interleukin 2 (sIL2-R). Results showed a decrease of circulating lymphocytes (DO-: 1189 +/- 168 cells/mm3; D7: 889 +/- 91; P = 0.011), of absolute number of CD3 lymphocytes (DO-: 785 +/- 114 cells/mm3; D7: 563 +/- 86; P = 0.025), of CD4 lymphocytes (DO-: 441 +/- 70 cells/mm3; DO+: 299 +/- 43; P = 0.013) and of CD8 lymphocytes (DO-:361 +/- 50 cells/mm3, D7:250 +/- 44; P = 0.006). All values returned towards preoperative levels by D30. Absolute number of NK cells was unchanged but NK activity was significantly diminished (effector target ratio 5:1 DO-:33 +/- 5%; DO+:44 +/- 7%; D7:18 +/- 3%; D14:21 +/- 4%; D30:25 +/- 4%). sIL2-R was significantly enhanced from D7 to D30. All these impairments are moderate and these observations provide some evidence of satisfactory tolerance to IORT for abdomino-pelvic cancers during the immediate postoperative period.
Identifying parameter regions for multistationarity
Conradi, Carsten; Mincheva, Maya; Wiuf, Carsten
2017-01-01
Mathematical modelling has become an established tool for studying the dynamics of biological systems. Current applications range from building models that reproduce quantitative data to identifying systems with predefined qualitative features, such as switching behaviour, bistability or oscillations. Mathematically, the latter question amounts to identifying parameter values associated with a given qualitative feature. We introduce a procedure to partition the parameter space of a parameterized system of ordinary differential equations into regions for which the system has a unique or multiple equilibria. The procedure is based on the computation of the Brouwer degree, and it creates a multivariate polynomial with parameter depending coefficients. The signs of the coefficients determine parameter regions with and without multistationarity. A particular strength of the procedure is the avoidance of numerical analysis and parameter sampling. The procedure consists of a number of steps. Each of these steps might be addressed algorithmically using various computer programs and available software, or manually. We demonstrate our procedure on several models of gene transcription and cell signalling, and show that in many cases we obtain a complete partitioning of the parameter space with respect to multistationarity. PMID:28972969
Singh, Shuchi; Agarwal, Mayank; Sarma, Shyamali; Goyal, Arun; Moholkar, Vijayanand S
2015-09-01
This paper presents investigations into mechanism of ultrasound assisted bioethanol synthesis using Parthenium hysterophorus biomass through simultaneous saccharification and fermentation (SSF) mode. Approach of coupling experimental results to mathematical model for SSF using Genetic Algorithm based optimization has been adopted. Comparison of model parameters for experiments with mechanical shaking and sonication (10% duty cycle) give an interesting mechanistic account of influence of ultrasound on SSF system. A 4-fold rise in ethanol and cell mass productivity is seen with ultrasound. The analysis reveals following facets of influence of ultrasound on SSF: increase in Monod constant for glucose for cell growth, maximal specific growth rate and inhibition constant of cell growth by glucose and reduction in specific cell death rate. Values of inhibition constant of cell growth by ethanol (K3E), and constants for growth associated (a) and non-growth associated (b) ethanol production remained unaltered with sonication. Beneficial effects of ultrasound are attributed to enhanced cellulose hydrolysis, enhanced trans-membrane transport of substrate and products as well as dilution of the toxic substances due to micro-convection induced by ultrasound. Intrinsic physiological functioning of cells remained unaffected by ultrasound as indicated by unaltered values of K3E, a and b. Copyright © 2015 Elsevier B.V. All rights reserved.
Tissue cohesion and the mechanics of cell rearrangement.
David, Robert; Luu, Olivia; Damm, Erich W; Wen, Jason W H; Nagel, Martina; Winklbauer, Rudolf
2014-10-01
Morphogenetic processes often involve the rapid rearrangement of cells held together by mutual adhesion. The dynamic nature of this adhesion endows tissues with liquid-like properties, such that large-scale shape changes appear as tissue flows. Generally, the resistance to flow (tissue viscosity) is expected to depend on the cohesion of a tissue (how strongly its cells adhere to each other), but the exact relationship between these parameters is not known. Here, we analyse the link between cohesion and viscosity to uncover basic mechanical principles of cell rearrangement. We show that for vertebrate and invertebrate tissues, viscosity varies in proportion to cohesion over a 200-fold range of values. We demonstrate that this proportionality is predicted by a cell-based model of tissue viscosity. To do so, we analyse cell adhesion in Xenopus embryonic tissues and determine a number of parameters, including tissue surface tension (as a measure of cohesion), cell contact fluctuation and cortical tension. In the tissues studied, the ratio of surface tension to viscosity, which has the dimension of a velocity, is 1.8 µm/min. This characteristic velocity reflects the rate of cell-cell boundary contraction during rearrangement, and sets a limit to rearrangement rates. Moreover, we propose that, in these tissues, cell movement is maximally efficient. Our approach to cell rearrangement mechanics links adhesion to the resistance of a tissue to plastic deformation, identifies the characteristic velocity of the process, and provides a basis for the comparison of tissues with mechanical properties that may vary by orders of magnitude. © 2014. Published by The Company of Biologists Ltd.
Ciekot-Sołtysiak, Monika; Kusy, Krzysztof; Podgórski, Tomasz; Zieliński, Jacek
2017-10-24
An extensive body of literature exists on the effects of training on haematological parameters, but the previous studies have not reported how hematological parameters respond to changes in training loads within consecutive phases of the training cycle in highly-trained athletes in extremely different sport disciplines. The aim of this study was to identify changes in red blood cell (RBC) profile in response to training loads in consecutive phases of the annual training cycle in highly-trained sprinters (8 men, aged 24 ± 3 years) and triathletes (6 men, aged 24 ± 4 years) who competed at the national and international level. Maximal oxygen uptake (VO2max), RBC, haemoglobin (Hb), haematocrit (Ht), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC) and RBC distribution width (RDW) were determined in four characteristic training phases (transition, general subphase of the preparation phase, specific subphase of the preparation phase and competition phase). Our main findings are that (1) Hb, MCH and MCHC in triathletes and MCV in both triathletes and sprinters changed significantly over the annual training cycle, (2) triathletes had significantly higher values than sprinters only in case of MCH and MCHC after the transition and general preparation phases but not after the competition phase when MCH and MCHC were higher in sprinters and (3) in triathletes, Hb, MCH and MCHC substantially decreased after the competition phase, which was not observed in sprinters. The athletes maintained normal ranges of all haematological parameters in four characteristic training phases. Although highly-trained sprinters and triathletes do not significantly differ in their levels of most haematological parameters, these groups are characterized by different patterns of changes during the annual training cycle. Our results suggest that when interpreting the values of haematological parameters in speed-power and endurance athletes, a specific phase of the annual training cycle should be taken into account.
Mukherjee, Somnath; Marwaha, Neelam; Prasad, Rajendra; Sharma, Ratti Ram; Thakral, Beenu
2010-01-01
Background & Objectives: Neonatologists often prefer fresh blood (<7 days) for neonatal transfusions. The main concerns for stored RBCs are ex vivo storage lesions that undermine red cell functions and may affect metabolic status of neonatal recipients. This study was designed to evaluate serial in vitro changes of biochemical parameters in different RBC preparations during storage to consider for neonatal transfusions even after storage beyond one week. Methods: Twenty five units each of whole blood (CPDA-1 RBC, SAGM RBC) were selected for serial biochemical parameter assessment after each fulfilled the quality criteria (volume and haematocrit). These units were tested serially for supernatant potassium, pH, lactate, haemoglobin, glucose and red cell 2,3 diphosphoglycerate (2,3 DPG) up to 21 days of storage. Results: Within each group of RBC, rise in mean concentration of potassium, lactate and plasma haemoglobin from day 1 to 21 of storage was significant in CPDA-1 RBC having the highest levels at day 21. From day 3 to 21, SAGM RBC had higher mean pH value than CPDA-1 RBC though this difference was not statistically significant. SAGM RBC had highest mean glucose concentration during storage than other two types of red cell preparations (P<0.005). Within each group, fall in mean 2,3 DPG concentration from day 1 to 7 was significant (P<0.05). A positive correlation existed between mean plasma potassium and haemoglobin in all three types of red cells (r=0.726, 0.419, 0.605 for CPDA-1 RBC, SAGM RBC and whole blood respectively, P<0.005). Interpretation & Conclusions: All the three red cell preparations tested revealed biochemical changes within acceptable limits of safety till 21 days of storage. CPDA-1 RBCs had the highest degree of these changes. PMID:21245620
Mukherjee, Somnath; Marwaha, Neelam; Prasad, Rajendra; Sharma, Ratti Ram; Thakral, Beenu
2010-12-01
Neonatologists often prefer fresh blood (<7 days) for neonatal transfusions. The main concerns for stored RBCs are ex vivo storage lesions that undermine red cell functions and may affect metabolic status of neonatal recipients. This study was designed to evaluate serial in vitro changes of biochemical parameters in different RBC preparations during storage to consider for neonatal transfusions even after storage beyond one week. Twenty five units each of whole blood (CPDA-1 RBC, SAGM RBC) were selected for serial biochemical parameter assessment after each fulfilled the quality criteria (volume and haematocrit). These units were tested serially for supernatant potassium, pH, lactate, haemoglobin, glucose and red cell 2,3 diphosphoglycerate (2,3 DPG) up to 21 days of storage. Within each group of RBC, rise in mean concentration of potassium, lactate and plasma haemoglobin from day 1 to 21 of storage was significant in CPDA-1 RBC having the highest levels at day 21. From day 3 to 21, SAGM RBC had higher mean pH value than CPDA-1 RBC though this difference was not statistically significant. SAGM RBC had highest mean glucose concentration during storage than other two types of red cell preparations (P<0.005). Within each group, fall in mean 2,3 DPG concentration from day 1 to 7 was significant (P<0.05). A positive correlation existed between mean plasma potassium and haemoglobin in all three types of red cells (r=0.726, 0.419, 0.605 for CPDA-1 RBC, SAGM RBC and whole blood respectively, P<0.005). All the three red cell preparations tested revealed biochemical changes within acceptable limits of safety till 21 days of storage. CPDA-1 RBCs had the highest degree of these changes.
Red blood cell-deformability measurement: review of techniques.
Musielak, M
2009-01-01
Cell-deformability characterization involves general measurement of highly complex relationships between cell biology and physical forces to which the cell is subjected. The review takes account of the modern technical solutions simulating the action of the force applied to the red blood cell in macro- and microcirculation. Diffraction ektacytometers and rheoscopes measure the mean deformability value for the total red blood cell population investigated and the deformation distribution index of individual cells, respectively. Deformation assays of a whole single cell are possible by means of optical tweezers. The single cell-measuring setups for micropipette aspiration and atomic force microscopy allow conducting a selective investigation of deformation parameters (e.g., cytoplasm viscosity, viscoelastic membrane properties). The distinction between instrument sensitivity to various RBC-rheological features as well as the influence of temperature on measurement are discussed. The reports quoted confront fascinating possibilities of the techniques with their medical applications since the RBC-deformability has the key position in the etiology of a wide range of conditions.
Kwak, Dai Soon; Tao, Quang Bang; Todo, Mitsugu; Jeon, Insu
2012-05-01
Knee joint implants developed by western companies have been imported to Korea and used for Korean patients. However, many clinical problems occur in knee joints of Korean patients after total knee joint replacement owing to the geometric mismatch between the western implants and Korean knee joint structures. To solve these problems, a method to determine the representative dimension parameter values of Korean knee joints is introduced to aid in the design of knee joint implants appropriate for Korean patients. Measurements of the dimension parameters of 88 male Korean knee joint subjects were carried out. The distribution of the subjects versus each measured parameter value was investigated. The measured dimension parameter values of each parameter were grouped by suitable intervals called the "size group," and average values of the size groups were calculated. The knee joint subjects were grouped as the "patient group" based on "size group numbers" of each parameter. From the iterative calculations to decrease the errors between the average dimension parameter values of each "patient group" and the dimension parameter values of the subjects, the average dimension parameter values that give less than the error criterion were determined to be the representative dimension parameter values for designing knee joint implants for Korean patients.
Accelerated tumor invasion under non-isotropic cell dispersal in glioblastomas
NASA Astrophysics Data System (ADS)
Fort, Joaquim; Solé, Ricard V.
2013-05-01
Glioblastomas are highly diffuse, malignant tumors that have so far evaded clinical treatment. The strongly invasive behavior of cells in these tumors makes them very resistant to treatment, and for this reason both experimental and theoretical efforts have been directed toward understanding the spatiotemporal pattern of tumor spreading. Although usual models assume a standard diffusion behavior, recent experiments with cell cultures indicate that cells tend to move in directions close to that of glioblastoma invasion, thus indicating that a biased random walk model may be much more appropriate. Here we show analytically that, for realistic parameter values, the speeds predicted by biased dispersal are consistent with experimentally measured data. We also find that models beyond reaction-diffusion-advection equations are necessary to capture this substantial effect of biased dispersal on glioblastoma spread.
Stretching of red blood cells using an electro-optics trap.
Haque, Md Mozzammel; Moisescu, Mihaela G; Valkai, Sándor; Dér, András; Savopol, Tudor
2015-01-01
The stretching stiffness of Red Blood Cells (RBCs) was investigated using a combination of an AC dielectrophoretic apparatus and a single-beam optical tweezer. The experiments were performed at 10 MHz, a frequency high enough to avoid conductivity losses, but below the second turnover point between positive and negative dielectrophoresis. By measuring the geometrical parameters of single healthy human RBCs as a function of the applied voltage, the elastic modulus of RBCs was determined (µ = 1.80 ± 0.5 µN/m) and compared with similar values of the literature got by other techniques. The method is expected to be an easy-to-use, alternative tool to determine the mechano-elastic properties of living cells, and, on this basis, to distinguish healthy and diseased cells.
NASA Astrophysics Data System (ADS)
Delpueyo, Xana; Vilaseca, Meritxell; Royo, Santiago; Ares, Miguel; Rey-Barroso, Laura; Sanabria, Ferran; Puig, Susana; Pellacani, Giovanni; Noguero, Fernando; Solomita, Giuseppe; Bosch, Thierry
2017-06-01
This article proposes a multispectral system that uses the analysis of the spatial distribution of color and spectral features to improve the detection of skin cancer lesions, specifically melanomas and basal cell carcinomas. The system consists of a digital camera and light-emitting diodes of eight different wavelengths (414 to 995 nm). The parameters based on spectral features of the lesions such as reflectance and color, as well as others empirically computed using reflectance values, were calculated pixel-by-pixel from the images obtained. Statistical descriptors were calculated for every segmented lesion [mean (x˜), standard deviation (σ), minimum, and maximum]; descriptors based on the first-order statistics of the histogram [entropy (Ep), energy (En), and third central moment (μ3)] were also obtained. The study analyzed 429 pigmented and nonpigmented lesions: 290 nevi and 139 malignant (95 melanomas and 44 basal cell carcinomas), which were split into training and validation sets. Fifteen parameters were found to provide the best sensitivity (87.2% melanomas and 100% basal cell carcinomas) and specificity (54.5%). The results suggest that the extraction of textural information can contribute to the diagnosis of melanomas and basal cell carcinomas as a supporting tool to dermoscopy and confocal microscopy.
Age- and gender-related hemorheological alterations in intestinal ischemia-reperfusion in the rat.
Mester, Anita; Magyar, Zsuzsanna; Molnar, Akos; Somogyi, Viktoria; Tanczos, Bence; Peto, Katalin; Nemeth, Norbert
2018-05-01
Intestinal ischemia-reperfusion (I/R) is a life-threatening clinical disorder. During I/R, the microrheological parameters of blood (red blood cell deformability and aggregation) worsen, which may contribute to microcirculatory deterioration. Age and gender also have a great influence on hemorheological parameters. We aimed to investigate the gender and age-related microrheological alterations during intestinal I/R. After the cannulation of the left femoral artery, median laparotomy was performed in Crl:WI rats under general anesthesia. In the young control animals there were no other interventions (female n = 7; male n = 7). In the young (female n = 7; male n = 7) and older I/R groups (female n = 6; male n = 6), the superior mesenteric artery was clipped for 30 min, and a 120-min reperfusion period was observed afterward. Blood samples were taken before and at the 30-min ischemia, in the 30th, 60th, and 120th min of the reperfusion. Hematological parameters, erythrocyte deformability, and aggregation were determined. Hematocrit increased significantly in the younger female I/R group. Red blood cell count was higher in male and older animals. In case of white blood cell count, male animals had higher values compared with females. Platelet count elevated in the younger male and older female I/R animals. Red blood cell deformability worsened, mainly in the male and older I/R groups. Enhanced erythrocyte aggregation was seen in all groups, being more expressed in the female I/R groups. Microrheological parameters show gender and age-related differences during intestinal I/R. These observations have importance in the planning and evaluation of experimental data. Copyright © 2018 Elsevier Inc. All rights reserved.
Regulation of NF-κB oscillation by spatial parameters in true intracellular space (TiCS)
NASA Astrophysics Data System (ADS)
Ohshima, Daisuke; Sagara, Hiroshi; Ichikawa, Kazuhisa
2013-10-01
Transcription factor NF-κB is activated by cytokine stimulation, viral infection, or hypoxic environment leading to its translocation to the nucleus. The nuclear NF-κB is exported from the nucleus to the cytoplasm again, and by repetitive import and export, NF-κB shows damped oscillation with the period of 1.5-2.0 h. Oscillation pattern of NF-κB is thought to determine the gene expression profile. We published a report on a computational simulation for the oscillation of nuclear NF-κB in a 3D spherical cell, and showed the importance of spatial parameters such as diffusion coefficient and locus of translation for determining the oscillation pattern. Although the value of diffusion coefficient is inherent to protein species, its effective value can be modified by organelle crowding in intracellular space. Here we tested this possibility by computer simulation. The results indicate that the effective value of diffusion coefficient is significantly changed by the organelle crowding, and this alters the oscillation pattern of nuclear NF-κB.
Mutation rates among RNA viruses
Drake, John W.; Holland, John J.
1999-01-01
The rate of spontaneous mutation is a key parameter in modeling the genetic structure and evolution of populations. The impact of the accumulated load of mutations and the consequences of increasing the mutation rate are important in assessing the genetic health of populations. Mutation frequencies are among the more directly measurable population parameters, although the information needed to convert them into mutation rates is often lacking. A previous analysis of mutation rates in RNA viruses (specifically in riboviruses rather than retroviruses) was constrained by the quality and quantity of available measurements and by the lack of a specific theoretical framework for converting mutation frequencies into mutation rates in this group of organisms. Here, we describe a simple relation between ribovirus mutation frequencies and mutation rates, apply it to the best (albeit far from satisfactory) available data, and observe a central value for the mutation rate per genome per replication of μg ≈ 0.76. (The rate per round of cell infection is twice this value or about 1.5.) This value is so large, and ribovirus genomes are so informationally dense, that even a modest increase extinguishes the population. PMID:10570172
A global sensitivity analysis of crop virtual water content
NASA Astrophysics Data System (ADS)
Tamea, S.; Tuninetti, M.; D'Odorico, P.; Laio, F.; Ridolfi, L.
2015-12-01
The concepts of virtual water and water footprint are becoming widely used in the scientific literature and they are proving their usefulness in a number of multidisciplinary contexts. With such growing interest a measure of data reliability (and uncertainty) is becoming pressing but, as of today, assessments of data sensitivity to model parameters, performed at the global scale, are not known. This contribution aims at filling this gap. Starting point of this study is the evaluation of the green and blue virtual water content (VWC) of four staple crops (i.e. wheat, rice, maize, and soybean) at a global high resolution scale. In each grid cell, the crop VWC is given by the ratio between the total crop evapotranspiration over the growing season and the crop actual yield, where evapotranspiration is determined with a detailed daily soil water balance and actual yield is estimated using country-based data, adjusted to account for spatial variability. The model provides estimates of the VWC at a 5x5 arc minutes and it improves on previous works by using the newest available data and including multi-cropping practices in the evaluation. The model is then used as the basis for a sensitivity analysis, in order to evaluate the role of model parameters in affecting the VWC and to understand how uncertainties in input data propagate and impact the VWC accounting. In each cell, small changes are exerted to one parameter at a time, and a sensitivity index is determined as the ratio between the relative change of VWC and the relative change of the input parameter with respect to its reference value. At the global scale, VWC is found to be most sensitive to the planting date, with a positive (direct) or negative (inverse) sensitivity index depending on the typical season of crop planting date. VWC is also markedly dependent on the length of the growing period, with an increase in length always producing an increase of VWC, but with higher spatial variability for rice than for other crops. The sensitivity to the reference evapotranspiration is highly variable with the considered crop and ranges from positive values (for soybean), to negative values (for rice and maize) and near-zero values for wheat. This variability reflects the different yield response factors of crops, which expresses their tolerance to water stress.
Prognostic impact of posttransplantation iron overload after allogeneic stem cell transplantation.
Meyer, Sara C; O'Meara, Alix; Buser, Andreas S; Tichelli, André; Passweg, Jakob R; Stern, Martin
2013-03-01
In patients referred for allogeneic hematopoietic stem cell transplantation (HSCT), iron overload is frequent and associated with increased morbidity and mortality. Both the evolution of iron overload after transplantation and its correlation with late posttransplantation events are unknown. We studied 290 patients undergoing myeloablative allogeneic HSCT between 2000 and 2009. Serum ferritin, transferrin saturation, transferrin, iron, and soluble transferrin receptor were determined regularly between 1 and 60 months after HSCT, and values were correlated with transplantation outcome. Ferritin levels peaked in the first 3 months posttransplantation and then decreased to normal values at 5 years. Transferrin saturation and iron behaved analogously, whereas transferrin and soluble transferrin receptor increased after an early nadir. Landmark survival analysis showed that hyperferritinemia had a detrimental effect on survival in all periods analyzed (0 to 6 months P < .001; 6 to 12 months P < .001; 1 to 2 years P = .02; 2 to 5 years P = .002). This effect was independent of red blood cell transfusion dependency and graft-versus-host disease. Similar trends were seen for other iron parameters. These data show the natural dynamics of iron parameters in the setting of allogeneic HSCT and provide evidence for a prognostic role of iron overload extending beyond the immediate posttransplantation period. Interventions to reduce excessive body iron might therefore be beneficial both before and after HSCT. Copyright © 2013 American Society for Blood and Marrow Transplantation. Published by Elsevier Inc. All rights reserved.
Sasidharan, Salini; Bradford, Scott A; Torkzaban, Saeed; Ye, Xueyan; Vanderzalm, Joanne; Du, Xinqiang; Page, Declan
2017-12-15
Escherichia coli transport and release experiments were conducted to investigate the pore-water velocity (v) dependency of the sticking efficiency (α), the fraction of the solid surface area that contributed to retention (S f ), the percentage of injected cells that were irreversibly retained (M irr ), and cell release under different (10-300mM) ionic strength (IS) conditions. Values of α, S f , and M irr increased with increasing IS and decreasing v, but the dependency on v was greatest at intermediate IS (30 and 50mM). Following the retention phase, successive increases in v up to 100 or 150mday -1 and flow interruption of 24h produced negligible amounts of cell release. However, excavation of the sand from the columns in excess electrolyte solution resulted in the release of >80% of the retained bacteria. These observations were explained by: (i) extended interaction energy calculations on a heterogeneous sand collector; (ii) an increase in adhesive strength with the residence time; and (iii) torque balance consideration on rough surfaces. In particular, α, S f , and M irr increased with IS due to lower energy barriers and stronger primary minima. The values of α, S f , and M irr also increased with decreasing v because the adhesive strength increased with the residence time (e.g., an increased probability to diffuse over the energy barrier) and lower hydrodynamic forces diminished cell removal. The controlling influence of lever arms at microscopic roughness locations and grain-grain contacts were used to explain negligible cell removal with large increases in v and large amounts of cell recovery following sand excavation. Results reveal the underlying causes (interaction energy, torque balance, and residence time) of the velocity dependency of E. coli retention and release parameters (k sw , α, and S f ) that are not accounted for in colloid filtration theory. Copyright © 2017 Elsevier B.V. All rights reserved.
An efficient analytical model for baffled, multi-celled membrane-type acoustic metamaterial panels
NASA Astrophysics Data System (ADS)
Langfeldt, F.; Gleine, W.; von Estorff, O.
2018-03-01
A new analytical model for the oblique incidence sound transmission loss prediction of baffled panels with multiple subwavelength sized membrane-type acoustic metamaterial (MAM) unit cells is proposed. The model employs a novel approach via the concept of the effective surface mass density and approximates the unit cell vibrations in the form of piston-like displacements. This yields a coupled system of linear equations that can be solved efficiently using well-known solution procedures. A comparison with results from finite element model simulations for both normal and diffuse field incidence shows that the analytical model delivers accurate results as long as the edge length of the MAM unit cells is smaller than half the acoustic wavelength. The computation times for the analytical calculations are 100 times smaller than for the numerical simulations. In addition to that, the effect of flexible MAM unit cell edges compared to the fixed edges assumed in the analytical model is studied numerically. It is shown that the compliance of the edges has only a small impact on the transmission loss of the panel, except at very low frequencies in the stiffness-controlled regime. The proposed analytical model is applied to investigate the effect of variations of the membrane prestress, added mass, and mass eccentricity on the diffuse transmission loss of a MAM panel with 120 unit cells. Unlike most previous investigations of MAMs, these results provide a better understanding of the acoustic performance of MAMs under more realistic conditions. For example, it is shown that by varying these parameters deliberately in a checkerboard pattern, a new anti-resonance with large transmission loss values can be introduced. A random variation of these parameters, on the other hand, is shown to have only little influence on the diffuse transmission loss, as long as the standard deviation is not too large. For very large random variations, it is shown that the peak transmission loss value can be greatly diminished.
Low Light Diagnostics in Thin-Film Photovoltaics
NASA Astrophysics Data System (ADS)
Shvydka, Diana; Karpov, Victor; Compaan, Alvin
2003-03-01
We study statistics of the major photovoltaic (PV) parameters such as open circuit voltage, short circuit current and fill factor vs. light intensity on a set of nominally identical CdTe/CdS solar cells. We found the most probable parameter values to change with the light intensity as predicted by the standard diode model, while their relative fluctuations increase dramatically under low light. The crossover light intensity is found below which the relative fluctuations of the PV parameters diverge inversely proportional to the square root of the light intensity. We propose a model where the observed fluctuations are due to lateral nonuniformities in the device structure. In particular, the crossover is attributed to the lateral nonuniformity screening length exceeding the device size. >From the practical standpoint, our study introduces a simple uniformity diagnostic technique.
Landslide susceptibility estimations in the Gerecse hills (Hungary).
NASA Astrophysics Data System (ADS)
Gerzsenyi, Dávid; Gáspár, Albert
2017-04-01
Surface movement processes are constantly posing threat to property in populated and agricultural areas in the Gerecse hills (Hungary). The affected geological formations are mainly unconsolidated sediments. Pleistocene loess and alluvial terrace sediments are overwhelmingly present, but fluvio-lacustrine sediments of the latest Miocene, and consolidated Eocene and Mesozoic limestones and marls can also be found in the area. Landslides and other surface movement processes are being studied for a long time in the area, but a comprehensive GIS-based geostatistical analysis have not yet been made for the whole area. This was the reason for choosing the Gerecse as the focus area of the study. However, the base data of our study are freely accessible from online servers, so the used method can be applied to other regions in Hungary. Qualitative data was acquired from the landslide-inventory map of the Hungarian Surface Movement Survey and from the Geological Map of Hungary (1 : 100 000). Morphometric parameters derived from the SRMT-1 DEM were used as quantitative variables. Using these parameters the distribution of elevation, slope gradient, aspect and categorized geological features were computed, both for areas affected and not affected by slope movements. Then likelihood values were computed for each parameters by comparing their distribution in the two areas. With combining the likelihood values of the four parameters relative hazard values were computed for each cell. This method is known as the "empirical probability estimation" originally published by Chung (2005). The map created this way shows each cell's place in their ranking based on the relative hazard values as a percentage for the whole study area (787 km2). These values provide information about how similar is a certain area to the areas already affected by landslides based on the four predictor variables. This map can also serve as a base for more complex landslide vulnerability studies involving economic factors. The landslide-inventory database used in the research provides information regarding the state of activity of the past surface movements, however the activity of many sites are stated as unknown. A complementary field survey have been carried out aiming to categorize these areas - near to Dunaszentmiklós and Neszmély villages - in one of the most landslide-affected part of the Gerecse. Reference: Chung, C. (2005). Using likelihood ratio functions for modeling the conditional probability of occurrence of future landslides for risk assessment. Computers & Geosciences, 32., pp. 1052-1068.
Zhu, Ye-Hua; Wang, Xun; Zhang, Jin; Chen, Yong-Hui; Kong, Wen; Huang, Yi-Ran
2014-09-01
The purpose of this study was to assess the relation between tumor enhancement on multiphase contrast-enhanced CT images and Fuhrman grade of clear cell renal cell carcinoma. A single-institution retrospective review was conducted on the records of 255 patients who underwent radical or partial nephrectomy and received a histologic diagnosis of clear cell renal cell carcinoma. Two radiologists recorded the radiographic features of each patient, including the attenuation value of the lesion, lesion size, calcification within the lesion, cystic versus solid appearance, and margin regularity. Parameters representing the extent of tumor enhancement were defined and calculated. The association between tumor enhancement and Fuhrman grade was analyzed, and multivariate analysis was performed to find independent predictors of high tumor grade. Significant differences existed in tumor enhancement among different Fuhrman grades (p < 0.001). High-grade tumors had significantly lower enhancement (p < 0.001). The enhancement parameter had a sensitivity of 0.84 and specificity of 0.93 in prediction of high tumor grade. In the multivariate analysis, more advanced age, irregular margin, and low tumor enhancement were the three independent predictors of high tumor grade. Tumor enhancement of clear cell renal cell carcinoma on multiphase contrast-enhanced CT images is associated with Fuhrman grade. Low tumor enhancement in the corticomedullary phase is an independent predictor of high tumor grade. This system may be helpful in clinical decision making about the care of patients treated by nonsurgical approaches.
Quantitative analysis of eosinophil chemotaxis tracked using a novel optical device -- TAXIScan.
Nitta, Nao; Tsuchiya, Tomoko; Yamauchi, Akira; Tamatani, Takuya; Kanegasaki, Shiro
2007-03-30
We have reported previously the development of an optically accessible, horizontal chemotaxis apparatus, in which migration of cells in the channel from a start line can be traced with time-lapse intervals using a CCD camera (JIM 282, 1-11, 2003). To obtain statistical data of migrating cells, we have developed quantitative methods to calculate various parameters in the process of chemotaxis, employing human eosinophil and CXCL12 as a model cell and a model chemoattractant, respectively. Median values of velocity and directionality of each cell within an experimental period could be calculated from the migratory pathway data obtained from time-lapse images and the data were expressed as Velocity-Directionality (VD) plot. This plot is useful for quantitatively analyzing multiple migrating cells exposed to a certain chemoattractant, and can distinguish chemotaxis from random migration. Moreover precise observation of cell migration revealed that each cell had a different lag period before starting chemotaxis, indicating variation in cell sensitivity to the chemoattractant. Thus lag time of each cell before migration, and time course of increment of the migrating cell ratio at the early stages could be calculated. We also graphed decrement of still moving cell ratio at the later stages by calculating the duration time of cell migration of each cell. These graphs could distinguish different motion patterns of chemotaxis of eosinophils, in response to a range of chemoattractants; PGD(2), fMLP, CCL3, CCL5 and CXCL12. Finally, we compared parameters of eosinophils from normal volunteers, allergy patients and asthma patients and found significant difference in response to PGD(2). The quantitative methods described here could be applicable to image data obtained with any combination of cells and chemoattractants and useful not only for basic studies of chemotaxis but also for diagnosis and for drug screening.
Yobbi, D.K.
2000-01-01
A nonlinear least-squares regression technique for estimation of ground-water flow model parameters was applied to an existing model of the regional aquifer system underlying west-central Florida. The regression technique minimizes the differences between measured and simulated water levels. Regression statistics, including parameter sensitivities and correlations, were calculated for reported parameter values in the existing model. Optimal parameter values for selected hydrologic variables of interest are estimated by nonlinear regression. Optimal estimates of parameter values are about 140 times greater than and about 0.01 times less than reported values. Independently estimating all parameters by nonlinear regression was impossible, given the existing zonation structure and number of observations, because of parameter insensitivity and correlation. Although the model yields parameter values similar to those estimated by other methods and reproduces the measured water levels reasonably accurately, a simpler parameter structure should be considered. Some possible ways of improving model calibration are to: (1) modify the defined parameter-zonation structure by omitting and/or combining parameters to be estimated; (2) carefully eliminate observation data based on evidence that they are likely to be biased; (3) collect additional water-level data; (4) assign values to insensitive parameters, and (5) estimate the most sensitive parameters first, then, using the optimized values for these parameters, estimate the entire data set.
A strategy to determine operating parameters in tissue engineering hollow fiber bioreactors
Shipley, RJ; Davidson, AJ; Chan, K; Chaudhuri, JB; Waters, SL; Ellis, MJ
2011-01-01
The development of tissue engineering hollow fiber bioreactors (HFB) requires the optimal design of the geometry and operation parameters of the system. This article provides a strategy for specifying operating conditions for the system based on mathematical models of oxygen delivery to the cell population. Analytical and numerical solutions of these models are developed based on Michaelis–Menten kinetics. Depending on the minimum oxygen concentration required to culture a functional cell population, together with the oxygen uptake kinetics, the strategy dictates the model needed to describe mass transport so that the operating conditions can be defined. If cmin ≫ Km we capture oxygen uptake using zero-order kinetics and proceed analytically. This enables operating equations to be developed that allow the user to choose the medium flow rate, lumen length, and ECS depth to provide a prescribed value of cmin. When , we use numerical techniques to solve full Michaelis–Menten kinetics and present operating data for the bioreactor. The strategy presented utilizes both analytical and numerical approaches and can be applied to any cell type with known oxygen transport properties and uptake kinetics. PMID:21370228
NASA Astrophysics Data System (ADS)
Coralli, Alberto; Villela de Miranda, Hugo; Espiúca Monteiro, Carlos Felipe; Resende da Silva, José Francisco; Valadão de Miranda, Paulo Emílio
2014-12-01
Solid oxide fuel cells are globally recognized as a very promising technology in the area of highly efficient electricity generation with a low environmental impact. This technology can be advantageously implemented in many situations in Brazil and it is well suited to the use of ethanol as a primary energy source, an important feature given the highly developed Brazilian ethanol industry. In this perspective, a simplified mathematical model is developed for a fuel cell and its balance of plant, in order to identify the optimal system structure and the most convenient values for the operational parameters, with the aim of maximizing the global electric efficiency. In this way it is discovered the best operational configuration for the desired application, which is the distributed generation in the concession area of the electricity distribution company Elektro. The data regarding this configuration are required for the continuation of the research project, i.e. the development of a prototype, a cost analysis of the developed system and a detailed perspective of the market opportunities in Brazil.
Emerging materials for solar cell applications: Electrodeposited CdTe
NASA Astrophysics Data System (ADS)
Rod, R. L.; Basol, B. M.; Stafsudd, O.
1980-09-01
Work was centered about improving electroplating processes and cell fabrication techniques, with emphasis being given to three differing n-CdTe/Au Schottky configurations. The highest values of efficiency related parameters achieved with a simulated solar irradiation of 100 mW/sq cm were 0.57V for open circuit voltage, 0.6 for fill factor, and 6 mA/sq cm for short circuit current. Four important parameters are known to control the quality of the Monosolar electrodeposition process and resultant solar cells. They are electrolyte temperature, Te concentration in the solution at a specific pH, deposition or quasi-rest potential, and flow pattern of the electrolyte (stirring). The first three considerations are believed to be fully understood and optimized. Work is underway to further understand the effects of stirring on the diffusion of ionic components and the effects on CdTe film performance. Work was accelerated during the quarter to increase the short circuit current. Parallel programs using laser irradiation of finished CdTe films, heat treatment, and changes in the electrodeposition process itself to recrystallize films were started.
Concurrently adjusting interrelated control parameters to achieve optimal engine performance
Jiang, Li; Lee, Donghoon; Yilmaz, Hakan; Stefanopoulou, Anna
2015-12-01
Methods and systems for real-time engine control optimization are provided. A value of an engine performance variable is determined, a value of a first operating condition and a value of a second operating condition of a vehicle engine are detected, and initial values for a first engine control parameter and a second engine control parameter are determined based on the detected first operating condition and the detected second operating condition. The initial values for the first engine control parameter and the second engine control parameter are adjusted based on the determined value of the engine performance variable to cause the engine performance variable to approach a target engine performance variable. In order to cause the engine performance variable to approach the target engine performance variable, adjusting the initial value for the first engine control parameter necessitates a corresponding adjustment of the initial value for the second engine control parameter.
Wieser, Stefan; Axmann, Markus; Schütz, Gerhard J.
2008-01-01
We propose here an approach for the analysis of single-molecule trajectories which is based on a comprehensive comparison of an experimental data set with multiple Monte Carlo simulations of the diffusion process. It allows quantitative data analysis, particularly whenever analytical treatment of a model is infeasible. Simulations are performed on a discrete parameter space and compared with the experimental results by a nonparametric statistical test. The method provides a matrix of p-values that assess the probability for having observed the experimental data at each setting of the model parameters. We show the testing approach for three typical situations observed in the cellular plasma membrane: i), free Brownian motion of the tracer, ii), hop diffusion of the tracer in a periodic meshwork of squares, and iii), transient binding of the tracer to slowly diffusing structures. By plotting the p-value as a function of the model parameters, one can easily identify the most consistent parameter settings but also recover mutual dependencies and ambiguities which are difficult to determine by standard fitting routines. Finally, we used the test to reanalyze previous data obtained on the diffusion of the glycosylphosphatidylinositol-protein CD59 in the plasma membrane of the human T24 cell line. PMID:18805933
A novel approach for calculating shelf life of minimally processed vegetables.
Corbo, Maria Rosaria; Del Nobile, Matteo Alessandro; Sinigaglia, Milena
2006-01-15
Shelf life of minimally processed vegetables is often calculated by using the kinetic parameters of Gompertz equation as modified by Zwietering et al. [Zwietering, M.H., Jongenburger, F.M., Roumbouts, M., van't Riet, K., 1990. Modelling of the bacterial growth curve. Applied and Environmental Microbiology 56, 1875-1881.] taking 5x10(7) CFU/g as the maximum acceptable contamination value consistent with acceptable quality of these products. As this method does not allow estimation of the standard errors of the shelf life, in this paper the modified Gompertz equation was re-parameterized to directly include the shelf life as a fitting parameter among the Gompertz parameters. Being the shelf life a fitting parameter is possible to determine its confidence interval by fitting the proposed equation to the experimental data. The goodness-of-fit of this new equation was tested by using mesophilic bacteria cell loads from different minimally processed vegetables (packaged fresh-cut lettuce, fennel and shredded carrots) that differed for some process operations or for package atmosphere. The new equation was able to describe the data well and to estimate the shelf life. The results obtained emphasize the importance of using the standard errors for the shelf life value to show significant differences among the samples.
NASA Astrophysics Data System (ADS)
Stepanova, Larisa; Bronnikov, Sergej
2018-03-01
The crack growth directional angles in the isotropic linear elastic plane with the central crack under mixed-mode loading conditions for the full range of the mixity parameter are found. Two fracture criteria of traditional linear fracture mechanics (maximum tangential stress and minimum strain energy density criteria) are used. Atomistic simulations of the central crack growth process in an infinite plane medium under mixed-mode loading using Large-scale Molecular Massively Parallel Simulator (LAMMPS), a classical molecular dynamics code, are performed. The inter-atomic potential used in this investigation is Embedded Atom Method (EAM) potential. The plane specimens with initial central crack were subjected to Mixed-Mode loadings. The simulation cell contains 400000 atoms. The crack propagation direction angles under different values of the mixity parameter in a wide range of values from pure tensile loading to pure shear loading in a wide diapason of temperatures (from 0.1 К to 800 К) are obtained and analyzed. It is shown that the crack propagation direction angles obtained by molecular dynamics method coincide with the crack propagation direction angles given by the multi-parameter fracture criteria based on the strain energy density and the multi-parameter description of the crack-tip fields.
Al-Mawali, Adhra; Pinto, Avinash Daniel; Al-Busaidi, Raiya; Al-Lawati, Rabab H; Morsi, Magdi
2018-01-01
Reference intervals for venous blood parameters differs with age, gender, geographic region, and ethnic groups. Hence local laboratory reference intervals are important to improve the diagnostic accuracy of health assessments and diseases. However, there have been no comprehensive published reference intervals established in Oman, the Gulf Cooperation Council or Middle Eastern countries. Hence, the aim of this study was to establish reference intervals for full blood count in healthy Omani adults. Venous blood specimens were collected from 2202 healthy individuals aged 18 to 69 years from January 2012 to April 2017, and analysed by Sysmex XS-1000i and Cell-Dyn Sapphire automated haematology analysers. Results were statistically analysed and compared by gender, age, and ABO blood group. The lower and upper reference limits of the haematology reference intervals were established at the 2.5th and 97.5th percentiles respectively. Reference intervals were calculated for 17 haematology parameters which included red blood cell, white blood cell, and platelet parameters. Red blood cell (RBC), haemoglobin (HGB), haematocrit (HCT), platelet and platelet haematocrit counts of the healthy donors were significantly different between males and females at all ages (p < 0.05), with males having higher mean values of RBC, HGB and HCT than females. Other complete blood count parameters showed no significant differences between genders, age groups, instruments, or blood groups. Our study showed a lower haemoglobin limit for the normal reference interval in males and females than the currently used in Oman. Data from this study established specific reference intervals which could be considered for general use in Oman. The differences in haematology reference intervals highlights the necessity to establish reference intervals for venous blood parameters among the healthy population in each country or at least in each region.
Miri-Dashe, Timzing; Osawe, Sophia; Tokdung, Monday; Daniel, Monday Tokdung Nenbammun; Daniel, Nenbammun; Choji, Rahila Pam; Mamman, Ille; Deme, Kurt; Damulak, Dapus; Abimiku, Alash'le
2014-01-01
Interpretation of laboratory test results with appropriate diagnostic accuracy requires reference or cutoff values. This study is a comprehensive determination of reference values for hematology and clinical chemistry in apparently healthy voluntary non-remunerated blood donors and pregnant women. Consented clients were clinically screened and counseled before testing for HIV, Hepatitis B, Hepatitis C and Syphilis. Standard national blood donors' questionnaire was administered to consented blood donors. Blood from qualified volunteers was used for measurement of complete hematology and chemistry parameters. Blood samples were analyzed from a total of 383 participants, 124 (32.4%) males, 125 (32.6%) non-pregnant females and 134 pregnant females (35.2%) with a mean age of 31 years. Our results showed that the red blood cells count (RBC), Hemoglobin (HB) and Hematocrit (HCT) had significant gender difference (p = 0.000) but not for total white blood count (p>0.05) which was only significantly higher in pregnant verses non-pregnant women (p = 0.000). Hemoglobin and Hematocrit values were lower in pregnancy (P = 0.000). Platelets were significantly higher in females than men (p = 0.001) but lower in pregnant women (p = .001) with marked difference in gestational period. For clinical chemistry parameters, there was no significant difference for sodium, potassium and chloride (p>0.05) but gender difference exists for Bicarbonate (HCO3), Urea nitrogen, Creatinine as well as the lipids (p<0.05). Total bilirubin was significantly higher in males than females (p = 0.000). Significant differences exist for all chemistry parameters between pregnant and non-pregnant women in this study (p<0.05), except Amylase and total cholesterol (p>0.05). Hematological and Clinical Chemistry reference ranges established in this study showed significant gender differences. Pregnant women also differed from non-pregnant females and during pregnancy. This is the first of such comprehensive study to establish reference values among adult Nigerians and difference observed underscore the need to establish reference values for different populations.
Hwang, Jusun; Gottdenker, Nicole; Min, Mi-Sook; Lee, Hang; Chun, Myung-Sun
2016-06-01
In this study, we evaluated the potential association between the habitat types of feral cats and the prevalence of selected infectious pathogens and health status based on a set of blood parameters. We live-trapped 72 feral cats from two different habitat types: an urban area (n = 48) and a rural agricultural area (n = 24). We compared blood values and the prevalence of feline immunodeficiency virus (FIV), feline leukaemia virus (FeLV) and haemotropic Mycoplasma infection in feral cats from the two contrasting habitats. Significant differences were observed in several blood values (haematocrit, red blood cells, blood urea nitrogen, creatinine) depending on the habitat type and/or sex of the cat. Two individuals from the urban area were seropositive for FIV (3.0%), and eight (12.1%) were positive for FeLV infection (five from an urban habitat and three from a rural habitat). Haemoplasma infection was more common. Based on molecular analysis, 38 cats (54.3%) were positive for haemoplasma, with a significantly higher infection rate in cats from rural habitats (70.8%) compared with urban cats (47.8%). Our study recorded haematological and serum biochemical values, and prevalence of selected pathogens in feral cat populations from two different habitat types. A subset of important laboratory parameters from rural cats showed values under or above the corresponding reference intervals for healthy domestic cats, suggesting potential differences in the health status of feral cats depending on the habitat type. Our findings provide information about the association between 1) blood values (haematological and serum biochemistry parameters) and 2) prevalence of selected pathogen infections and different habitat types; this may be important for veterinarians who work with feral and/or stray cats and for overall cat welfare management. © ISFM and AAFP 2015.
First-order kinetic gas generation model parameters for wet landfills.
Faour, Ayman A; Reinhart, Debra R; You, Huaxin
2007-01-01
Landfill gas collection data from wet landfill cells were analyzed and first-order gas generation model parameters were estimated for the US EPA landfill gas emissions model (LandGEM). Parameters were determined through statistical comparison of predicted and actual gas collection. The US EPA LandGEM model appeared to fit the data well, provided it is preceded by a lag phase, which on average was 1.5 years. The first-order reaction rate constant, k, and the methane generation potential, L(o), were estimated for a set of landfills with short-term waste placement and long-term gas collection data. Mean and 95% confidence parameter estimates for these data sets were found using mixed-effects model regression followed by bootstrap analysis. The mean values for the specific methane volume produced during the lag phase (V(sto)), L(o), and k were 33 m(3)/Megagrams (Mg), 76 m(3)/Mg, and 0.28 year(-1), respectively. Parameters were also estimated for three full scale wet landfills where waste was placed over many years. The k and L(o) estimated for these landfills were 0.21 year(-1), 115 m(3)/Mg, 0.11 year(-1), 95 m(3)/Mg, and 0.12 year(-1) and 87 m(3)/Mg, respectively. A group of data points from wet landfills cells with short-term data were also analyzed. A conservative set of parameter estimates was suggested based on the upper 95% confidence interval parameters as a k of 0.3 year(-1) and a L(o) of 100 m(3)/Mg if design is optimized and the lag is minimized.
[Acute toxicity effects of three red tide algae on Brachionus plicatilis].
Zhou, Wen-Li; Xiao, Hui; Wang, You; Zhai, Hong-Chang; Tang, Xue-Xi
2008-11-01
Acute toxicity testing method was used to study effects of different density of Prorocentrum donghaiense, Heterosigma akashiwo and Alexandrium tamarense on mortality rates and population growth parameter of Brachionus plicatilis under controlled experimental conditions. Results showed that 24 h LC50 values of Prorocentrum donghaiense, Heterosigma akashiwo and Alexandrium tamarense treatment to mortality rate of Brachionus plicatilis were 3.56, 1.21 and 0.49 (x 10(4) cells/mL) respectively. Marked density effects were presented when three species of red tide microalga showed their toxicity to Brachionus plicatilis. There were significant inhibitory effects on Brachionus plicatilis when it was exposed to cells of Prorocentrum donghaiense at the concentration of 10(4) cells/mL, filtrate and cell contents of Heterosigma akashiwo at the concentration of 10(5) cells/mL, and cells, filtrate and cell contents of Alexandrium tamarense at the concentration of 10(3) cells/mL respectively. Inhibitory effects of three species of microalga on Brachionus plicatilis were enhanced with increasing of microalgal density.
Electromechanical coupling factor of capacitive micromachined ultrasonic transducers.
Caronti, Alessandro; Carotenuto, Riccardo; Pappalardo, Massimo
2003-01-01
Recently, a linear, analytical distributed model for capacitive micromachined ultrasonic transducers (CMUTs) was presented, and an electromechanical equivalent circuit based on the theory reported was used to describe the behavior of the transducer [IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 159-168 (2002)]. The distributed model is applied here to calculate the dynamic coupling factor k(w) of a lossless CMUT, based on a definition that involves the energies stored in a dynamic vibration cycle, and the results are compared with those obtained with a lumped model. A strong discrepancy is found between the two models as the bias voltage increases. The lumped model predicts an increasing dynamic k factor up to unity, whereas the distributed model predicts a more realistic saturation of this parameter to values substantially lower. It is demonstrated that the maximum value of k(w), corresponding to an operating point close to the diaphragm collapse, is 0.4 for a CMUT single cell with a circular membrane diaphragm and no parasitic capacitance (0.36 for a cell with a circular plate diaphragm). This means that the dynamic coupling factor of a CMUT is comparable to that of a piezoceramic plate oscillating in the thickness mode. Parasitic capacitance decreases the value of k(w), because it does not contribute to the energy conversion. The effective coupling factor k(eff) is also investigated, showing that this parameter coincides with k(w) within the lumped model approximation, but a quite different result is obtained if a computation is made with the more accurate distributed model. As a consequence, k(eff), which can be measured from the transducer electrical impedance, does not give a reliable value of the actual dynamic coupling factor.
Electromechanical coupling factor of capacitive micromachined ultrasonic transducers
NASA Astrophysics Data System (ADS)
Caronti, Alessandro; Carotenuto, Riccardo; Pappalardo, Massimo
2003-01-01
Recently, a linear, analytical distributed model for capacitive micromachined ultrasonic transducers (CMUTs) was presented, and an electromechanical equivalent circuit based on the theory reported was used to describe the behavior of the transducer [IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49, 159-168 (2002)]. The distributed model is applied here to calculate the dynamic coupling factor kw of a lossless CMUT, based on a definition that involves the energies stored in a dynamic vibration cycle, and the results are compared with those obtained with a lumped model. A strong discrepancy is found between the two models as the bias voltage increases. The lumped model predicts an increasing dynamic k factor up to unity, whereas the distributed model predicts a more realistic saturation of this parameter to values substantially lower. It is demonstrated that the maximum value of kw, corresponding to an operating point close to the diaphragm collapse, is 0.4 for a CMUT single cell with a circular membrane diaphragm and no parasitic capacitance (0.36 for a cell with a circular plate diaphragm). This means that the dynamic coupling factor of a CMUT is comparable to that of a piezoceramic plate oscillating in the thickness mode. Parasitic capacitance decreases the value of kw, because it does not contribute to the energy conversion. The effective coupling factor keff is also investigated, showing that this parameter coincides with kw within the lumped model approximation, but a quite different result is obtained if a computation is made with the more accurate distributed model. As a consequence, keff, which can be measured from the transducer electrical impedance, does not give a reliable value of the actual dynamic coupling factor.
Sönmez, Mehmet Giray; Göğer, Yunus Emre; Sönmez, Leyla Öztürk; Aydın, Arif; Balasar, Mehmet; Kara, Cengiz
2016-01-01
Blood count parameters of patients referring with erectile dysfunction (ED) were examined in this study and it was investigated whether eosinophil count (EC), platelet count (PC), and mean platelet volume values among the suspected predictive parameters which may play a role in especially penile arteriogenic ED etiopathogenesis had a contribution on pathogenesis. Patients referring with ED complaint were evaluated. Depending on the medical story, ED degree was determined by measuring International Index of Erectile Function. Penile Doppler ultrasonography was taken in patients suspected to have vasculogenic ED. According to penile Doppler ultrasonography result, patients with arterial deficiency were included in the penile arteriogenic ED group and the patients with normal results were included in the nonvasculogenic ED group. A total of 36 patients participated in the study from the penile arteriogenic ED group and 32 patients from the nonvasculogenic ED group. Compared with the nonvasculogenic ED group, the penile arteriogenic ED group’s low International Index of Erectile Function score, high EC, mean platelet volume and PC values were detected to be statistically significant (p < .001, p = .021, p = .018, p = .034, respectively). No statistically significant difference was observed among the two groups when age, white blood cells, red blood cells, and hemoglobin values were considered. Pansystolic volume velocities were detected as statistically significantly low compared with the nonvasculogenic ED group in the measurements made in 5th, 10th, 15th, and 20th minutes on the right and left sides in the penile arteriogenic ED group. High MPV value and PC is a significant predictive factor for penile arteriogenic ED and vasculogenic ED and high EC is specifically predictive of arteriogenic ED. PMID:27895254
Ejaculate fractioning effect on llama sperm head morphometry as assessed by the ISAS(®) CASA system.
Soler, C; Sancho, M; García, A; Fuentes, Mc; Núñez, J; Cucho, H
2014-02-01
South American camelid sperm characteristics are poorly known compared with those of other domestic animals. The long-term duration of ejaculation makes difficult to gather all the seminal fluid, implying possible ejaculation portion losses. Thus, the aim of this research was to evaluate the characteristics of the morphology and morphometry of the spermatozoa change during ejaculation. The morphometric characterization was tested on nine specimens of the Lanuda breed, using a special artificial vagina. In five of the animals, a fractioning of the ejaculate was performed by taking samples every 5 min. for a total of 20 min. Air-dried seminal smears were stained with Hemacolor and mounted permanently with Eukitt. Morphometric analysis was carried out with the morphometry module of the ISAS(®) CASA system. Almost 350 cells were analysed per sample, with a total number of 3207 spermatozoa. Mean values were given as follows: length: 5.51 μm; width: 3.38 μm; area: 17.75 μm(2) ; perimeter: 14.8 μm; ellipticity: 0.24; elongation: 0.56; rugosity: 0.87; regularity: 1.07; and shape factor: 1.41. Different animals showed differences in their morphometric values. When we compared the values from different fractions, only two samples showed differences in morphometric parameter values and four samples showed differences in shape parameters. Multivariate analysis allowed the size classification of the cells into three classes and five classes of shapes. The distribution of classes among fractions showed no differences. Despite the individual morphometric differences observed in some fractions, the characteristics of the sperm head morphometry can be considered constant along the ejaculatory period in the llama. © 2013 Blackwell Verlag GmbH.
Clusterin immunoexpression is associated with early stage endometrial carcinomas.
Al-Maghrabi, Jaudah Ahmed; Butt, Nadeem Shafique; Anfinan, Nisrin; Sait, Khalid; Sait, Hesham; Bajouh, Osama; Khabaz, Mohamad Nidal
2016-05-01
Clusterin has anti-apoptotic, regeneration and migration stimulating effects on tumor cells. This study investigates the relation between clusterin expression and the clinicopathological parameters in endometrial carcinomas. Seventy one cases of previously diagnosed endometrial carcinoma (including 59 endometrioid adenocarcinoma, 9 serous adenocarcinoma, 1 clear cell adenocarcinoma, and 2 malignant mixed Mullerian tumor) and 30 tissue samples of non-cancerous endometrium (including 16 proliferative endometrium, 10 secretory endometrium and 4 endometrial polyps) were employed for clusterin detection using tissue microarrays and immunostaining. A total number of 23 (32.4%) cases were positive for clusterin immunostaining. Brown granular cytoplasmic expression of clusterin was detected in 33.9% of endometrioid adenocarcinomas, 22.2% papillary serous endometrial carcinomas. Three (10%) control cases showed granular cytoplasmic expression. Positive clusterin immunostaining was found more frequent in well differentiated and stage I endometrial carcinomas, showing significant statistical association (p-value=0.036 and p-value=0.002 respectively). Significant difference in clusterin expression was observed between tumor cases and control group (P-Value=0.019), i.e., endometrial carcinoma cases are more than four times likely to show positive clusterin immunostaining (odds ratio 4.313 with 95% confidence interval 1.184-15.701). This study did not find relation between clusterin expression and disease recurrence, survival or any of the other clinicopathological parameters in endometrial tumors. The results of our study confirms the diagnostic values of clusterin in supporting the diagnosis of endometrioid carcinoma. When clusterin is expressed in endometrial tumors, it is associated with lower stage. The correlation of clusterin with tumor stage suggests involvement of this molecule in endometrial tumor progression. Copyright © 2016 Elsevier GmbH. All rights reserved.
NASA Technical Reports Server (NTRS)
Rodriguez, A.; Alpen, E. L.; Powers-Risius, P.
1992-01-01
This report presents data for survival of mouse intestinal crypt cells, mouse testes weight loss as an indicator of survival of spermatogonial stem cells, and survival of rat 9L spheroid cells after irradiation in the plateau region of unmodified particle beams ranging in mass from 4He to 139La. The LET values range from 1.6 to 953 keV/microns. These studies examine the RBE-LET relationship for two normal tissues and for an in vitro tissue model, multicellular spheroids. When the RBE values are plotted as a function of LET, the resulting curve is characterized by a region in which RBE increases with LET, a peak RBE at an LET value of 100 keV/microns, and a region of decreasing RBE at LETs greater than 100 keV/microns. Inactivation cross sections (sigma) for these three biological systems have been calculated from the exponential terminal slope of the dose-response relationship for each ion. For this determination the dose is expressed as particle fluence and the parameter sigma indicates effect per particle. A plot of sigma versus LET shows that the curve for testes weight loss is shifted to the left, indicating greater radiosensitivity at lower LETs than for crypt cell and spheroid cell survival. The curves for cross section versus LET for all three model systems show similar characteristics with a relatively linear portion below 100 keV/microns and a region of lessened slope in the LET range above 100 keV/microns for testes and spheroids. The data indicate that the effectiveness per particle increases as a function of LET and, to a limited extent, Z, at LET values greater than 100 keV/microns. Previously published results for spread Bragg peaks are also summarized, and they suggest that RBE is dependent on both the LET and the Z of the particle.
The effects of clutter-rejection filtering on estimating weather spectrum parameters
NASA Technical Reports Server (NTRS)
Davis, W. T.
1989-01-01
The effects of clutter-rejection filtering on estimating the weather parameters from pulse Doppler radar measurement data are investigated. The pulse pair method of estimating the spectrum mean and spectrum width of the weather is emphasized. The loss of sensitivity, a measure of the signal power lost due to filtering, is also considered. A flexible software tool developed to investigate these effects is described. It allows for simulated weather radar data, in which the user specifies an underlying truncated Gaussian spectrum, as well as for externally generated data which may be real or simulated. The filter may be implemented in either the time or the frequency domain. The software tool is validated by comparing unfiltered spectrum mean and width estimates to their true values, and by reproducing previously published results. The effects on the weather parameter estimates using simulated weather-only data are evaluated for five filters: an ideal filter, two infinite impulse response filters, and two finite impulse response filters. Results considering external data, consisting of weather and clutter data, are evaluated on a range cell by range cell basis. Finally, it is shown theoretically and by computer simulation that a linear phase response is not required for a clutter rejection filter preceeding pulse-pair parameter estimation.
Liu, G.; Van der Mark, E. J.; Verberk, J. Q. J. C.; Van Dijk, J. C.
2013-01-01
The objective of this study was to evaluate the application of flow cytometry total cell counts (TCCs) as a parameter to assess microbial growth in drinking water distribution systems and to determine the relationships between different parameters describing the biostability of treated water. A one-year sampling program was carried out in two distribution systems in The Netherlands. Results demonstrated that, in both systems, the biomass differences measured by ATP were not significant. TCC differences were also not significant in treatment plant 1, but decreased slightly in treatment plant 2. TCC values were found to be higher at temperatures above 15°C than at temperatures below 15°C. The correlation study of parameters describing biostability found no relationship among TCC, heterotrophic plate counts, and Aeromonas. Also no relationship was found between TCC and ATP. Some correlation was found between the subgroup of high nucleic acid content bacteria and ATP (R 2 = 0.63). Overall, the results demonstrated that TCC is a valuable parameter to assess the drinking water biological quality and regrowth; it can directly and sensitively quantify biomass, detect small changes, and can be used to determine the subgroup of active HNA bacteria that are related to ATP. PMID:23819117
NASA Astrophysics Data System (ADS)
Krenn, Julia; Zangerl, Christian; Mergili, Martin
2017-04-01
r.randomwalk is a GIS-based, multi-functional, conceptual open source model application for forward and backward analyses of the propagation of mass flows. It relies on a set of empirically derived, uncertain input parameters. In contrast to many other tools, r.randomwalk accepts input parameter ranges (or, in case of two or more parameters, spaces) in order to directly account for these uncertainties. Parameter spaces represent a possibility to withdraw from discrete input values which in most cases are likely to be off target. r.randomwalk automatically performs multiple calculations with various parameter combinations in a given parameter space, resulting in the impact indicator index (III) which denotes the fraction of parameter value combinations predicting an impact on a given pixel. Still, there is a need to constrain the parameter space used for a certain process type or magnitude prior to performing forward calculations. This can be done by optimizing the parameter space in terms of bringing the model results in line with well-documented past events. As most existing parameter optimization algorithms are designed for discrete values rather than for ranges or spaces, the necessity for a new and innovative technique arises. The present study aims at developing such a technique and at applying it to derive guiding parameter spaces for the forward calculation of rock avalanches through back-calculation of multiple events. In order to automatize the work flow we have designed r.ranger, an optimization and sensitivity analysis tool for parameter spaces which can be directly coupled to r.randomwalk. With r.ranger we apply a nested approach where the total value range of each parameter is divided into various levels of subranges. All possible combinations of subranges of all parameters are tested for the performance of the associated pattern of III. Performance indicators are the area under the ROC curve (AUROC) and the factor of conservativeness (FoC). This strategy is best demonstrated for two input parameters, but can be extended arbitrarily. We use a set of small rock avalanches from western Austria, and some larger ones from Canada and New Zealand, to optimize the basal friction coefficient and the mass-to-drag ratio of the two-parameter friction model implemented with r.randomwalk. Thereby we repeat the optimization procedure with conservative and non-conservative assumptions of a set of complementary parameters and with different raster cell sizes. Our preliminary results indicate that the model performance in terms of AUROC achieved with broad parameter spaces is hardly surpassed by the performance achieved with narrow parameter spaces. However, broad spaces may result in very conservative or very non-conservative predictions. Therefore, guiding parameter spaces have to be (i) broad enough to avoid the risk of being off target; and (ii) narrow enough to ensure a reasonable level of conservativeness of the results. The next steps will consist in (i) extending the study to other types of mass flow processes in order to support forward calculations using r.randomwalk; and (ii) in applying the same strategy to the more complex, dynamic model r.avaflow.
Burnett, Jennifer L; Carns, Jennifer L; Richards-Kortum, Rebecca
2017-11-07
Optical detection of circulating haemozoin has been suggested as a needle free method to diagnose malaria using in vivo microscopy. Haemozoin is generated within infected red blood cells by the malaria parasite, serving as a highly specific, endogenous biomarker of malaria. However, phagocytosis of haemozoin by white blood cells which persist after the infection is resolved presents the potential for false positive diagnosis; therefore, the focus of this work is to identify a feature of the haemozoin signal to discriminate between infected red blood cells and haemozoin-containing white blood cells. Conventional brightfield microscopy of thin film blood smears was used to analyse haemozoin absorbance signal in vitro. Cell type and parasite maturity were morphologically determined using colocalized DAPI staining. The ability of features to discriminate between infected red blood cells and haemozoin-containing white blood cells was evaluated using images of smears from subjects infected with two species of Plasmodium, Plasmodium yoelii and Plasmodium falciparum. Discriminating features identified by blood smear microscopy were characterized in vivo in P. yoelii-infected mice. Two features of the haemozoin signal, haemozoin diameter and normalized intensity difference, were identified as potential parameters to differentiate infected red blood cells and haemozoin-containing white blood cells. Classification performance was evaluated using the area under the receiver operating characteristic curve, with area under the curve values of 0.89 for the diameter parameter and 0.85 for the intensity parameter when assessed in P. yoelii samples. Similar results were obtained from P. falciparum blood smears, showing an AUC of 0.93 or greater for both classification features. For in vivo investigations, the intensity-based metric was the best classifier, with an AUC of 0.91. This work demonstrates that size and intensity features of haemozoin absorbance signal collected by in vivo microscopy are effective classification metrics to discriminate infected red blood cells from haemozoin-containing white blood cells. This reduces the potential for false positive results associated with optical imaging strategies for in vivo diagnosis of malaria based on the endogenous biomarker haemozoin.
Marles, P J; Hoyland, J A; Parkinson, R; Freemont, A J
1991-04-01
Several methods have been described for investigating chondrocyte metabolism in vitro. In this study, in-situ hybridization (ISH) using an oligonucleotide probe (i.e. a poly-d(T) probe) to detect total messenger RNA (mRNA) in cartilage explants has been compared with radiosulphate and radioleucine uptake studies in an attempt to assess the value of ISH in investigating chondrocyte metabolism. The relative results of the three parameters indicate qualitative similarities in cells in the intermediate, deep and calcified zones but differences in the superficial zone. The relative levels of mRNA and leucine and sulphate uptake in the midzone areas could be construed as indicating that the bulk of cellular activity was directed towards the synthesis of proteoglycans. A similar relation between the three parameters, but at a lower level, was seen in chondrocytes in the calcified zone demonstrating that these cells are viable and biosynthetic. Both quantitative and qualitative differences between the three methods were observed in the superficial chondrocytes regarding the amount of mRNA compared to sulphate and leucine uptake. The results suggest that ISH can detect differences in the amount of mRNA present in chondrocytes in differing zones of cartilage and, like the radioleucine and radiosulphate studies, particularly emphasizes their functional heterogeneity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkan, A.; Hunt, T.K.
1998-07-01
Upcoming designs for AMTEC modules capable of delivering as much as 150 watts will see the introduction of higher voltages into sodium vapor at pressures spanning a wide range. In theory, with any value for two out of three parameters: voltage, pressure, and electrode geometry, a value exists for the third parameter where DC electrical breakdown can occur; due to its low ionization energy, sodium vapor may be particularly susceptible to breakdown. This destructive event is not desirable in AMTEC modules, and sets a limit on the maximum voltage that can be built-up within any single enclosed module. An experimentalmore » cell was fabricated with representative electrode configurations and a separately heated sodium reservoir to test conditions typically expected during start-up, operation, and shutdown of AMTEC cells. Breakdown voltages were investigated in both sodium vapor and, for comparison, argon gas. The dependence on electrode material and polarity was also investigated. Additional information about leakage currents and the insulating properties of {alpha}-alumina in the presence of sodium vapor was collected, revealing a reversible tendency for conductive sodium films to build up under certain conditions, electrically shorting-out previously isolated components. In conclusion, safe operating limits on voltages, temperatures, and pressures are discussed.« less
Triple point temperature of neon isotopes: Dependence on nitrogen impurity and sealed-cell model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pavese, F.; Steur, P. P. M.; Giraudi, D.
2013-09-11
This paper illustrates a study conducted at INRIM, to further check how some quantities influence the value of the triple point temperature of the neon high-purity isotopes {sup 20}Ne and {sup 22}Ne. The influence of nitrogen as a chemical impurity in neon is critical with regard to the present best total uncertainty achieved in the measurement of these triple points, but only one determination is available in the literature. Checks are reported, performed on two different samples of {sup 22}Ne known to contain a N{sub 2} amount of 157⋅10{sup −6}, using two different models of sealed cells. The model ofmore » the cell can, in principle, have some effects on the shape of the melting plateau or on the triple point temperature observed for the sample sealed in it. This can be due to cell thermal parameters, or because the INRIM cell element mod. c contains many copper wires closely packed, which can, in principle, constrain the interface and induce a premelting-like effect. The reported results on a cell mod. Bter show no evident effect from the cell model and provide a value for the effect of N{sub 2} in Ne liquidus point of 8.6(1.9) μK ppm N{sub 2}{sup −1}, only slightly different from the literature datum.« less
Augustin, Jérémy; Mandavit, Marion; Outh-Gauer, Sophie; Grard, Ophélie; Gasne, Cassandre; Lépine, Charles; Mirghani, Haïtham; Hans, Stéphane; Bonfils, Pierre; Denize, Thomas; Bruneval, Patrick; Bishop, Justin A; Fontugne, Jacqueline; Péré, Hélène; Tartour, Eric; Badoual, Cécile
2018-06-20
HPV-related and HPV-unrelated oropharyngeal squamous cell carcinomas are two distinct entities according to the Union for International Cancer Control, with a better prognosis conferred to HPV-related oropharyngeal squamous cell carcinomas. However, variable clinical outcomes are observed among patients with p16 positive oropharyngeal squamous cell carcinoma, which is a surrogate marker of HPV infection. We aimed to investigate the prognostic value of RNA CISH against E6 and E7 transcripts (HPV RNA CISH) to predict such variability. We retrospectively included 50 histologically confirmed p16 positive oropharyngeal squamous cell carcinomas (p16 positive immunostaining was defined by a strong staining in 70% or more of tumor cells). HPV RNA CISH staining was assessed semi-quantitatively to define two scores: RNA CISH "low" and RNA CISH "high". Negative HPV RNA CISH cases were scored as RNA CISH "low". This series contained 29 RNA CISH low cases (58%) and 21 RNA CISH high cases (42%). Clinical and pathologic baseline characteristics were similar between the two groups. RNA CISH high staining was associated with a better overall survival in both univariate and multivariate analyses (p = 0.033 and p = 0.042, respectively). Other recorded parameters had no prognostic value. In conclusion, HPV RNA CISH might be an independent prognostic marker in p16 positive oropharyngeal squamous cell carcinomas and might help guide therapeutics.
Burgaz, S; Karahalil, B; Bayrak, P; Taşkin, L; Yavuzaslan, F; Bökesoy, I; Anzion, R B; Bos, R P; Platin, N
1999-02-02
In this study, urinary cyclophosphamide (CP) excretion rate, as well as micronuclei (MN) in peripheral lymphocytes and in buccal epithelial cells were determined for 26 nurses handling antineoplastics and 14 referents matched for age and sex. In urine samples of 20 out of 25 exposed nurses CP excretion rate was found in a range of 0.02-9.14 microg CP/24 h. Our results of the analyses of CP in urine demonstrates that when the nurses were handling CP (and other antineoplastic drugs) this particular compound was observed in urine. The mean values (+/-SD) of MN frequencies (%) in peripheral lymphocytes from the nurses and controls were 0.61 (+/-0. 32) and 0.28 (+/-0.16), respectively (p<0.01). The mean value (+/-SD) of MN frequency (%) in buccal epithelial cells of nurses was 0.16 (+/-0.19) and also mean MN frequency in buccal epithelial cells for controls was found to be as 0.08 (+/-0.08), (p>0.05). Age, sex and smoking habits have not influenced the parameters analyzed in this study. Handling time of antineoplastics, use of protective equipment and handling frequency of drugs have no effect on urinary and cytogenetic parameters analyzed. No correlation was found between the urinary CP excretion and the cytogenetic findings in nurses. Neither could we find any relationship between two cytogenetic endpoints. Our results have identified the possible genotoxic damage of oncology nurses related to occupational exposure to at least one antineoplastic agent, which is used as a marker for drug handling. As a whole, there is concern that the present handling practices of antineoplastic drugs used in the several hospitals in Ankara will not be sufficient to prevent exposure. Copyright 1999 Elsevier Science B.V.
Hilal-Alnaqbi, Ali; Mourad, Abdel-Hamid I; Yousef, Basem F
2014-01-01
A mathematical model is developed to predict oxygen transfer in the fiber-in-fiber (FIF) bioartificial liver device. The model parameters are taken from the constructed and tested FIF modules. We extended the Krogh cylinder model by including one more zone for oxygen transfer. Cellular oxygen uptake was based on Michaelis-Menten kinetics. The effect of varying a number of important model parameters is investigated, including (1) oxygen partial pressure at the inlet, (2) the hydraulic permeability of compartment B (cell region), (3) the hydraulic permeability of the inner membrane, and (4) the oxygen diffusivity of the outer membrane. The mathematical model is validated by comparing its output against the experimentally acquired values of an oxygen transfer rate and the hydrostatic pressure drop. Three governing simultaneous linear differential equations are derived to predict and validate the experimental measurements, e.g., the flow rate and the hydrostatic pressure drop. The model output simulated the experimental measurements to a high degree of accuracy. The model predictions show that the cells in the annulus can be oxygenated well even at high cell density or at a low level of gas phase PG if the value of the oxygen diffusion coefficient Dm is 16 × 10(-5) . The mathematical model also shows that the performance of the FIF improves by increasing the permeability of polypropylene membrane (inner fiber). Moreover, the model predicted that 60% of plasma has access to the cells in the annulus within the first 10% of the FIF bioreactor axial length for a specific polypropylene membrane permeability and can reach 95% within the first 30% of its axial length. © 2013 International Union of Biochemistry and Molecular Biology, Inc.
Houssein, Alexandros; Papadimitriou, Konstantinos I; Drakakis, Emmanuel M
2015-08-01
Cytomimetic circuits represent a novel, ultra low-power, continuous-time, continuous-value class of circuits, capable of mapping on silicon cellular and molecular dynamics modelled by means of nonlinear ordinary differential equations (ODEs). Such monolithic circuits are in principle able to emulate on chip, single or multiple cell operations in a highly parallel fashion. Cytomimetic topologies can be synthesized by adopting the Nonlinear Bernoulli Cell Formalism (NBCF), a mathematical framework that exploits the striking similarities between the equations describing weakly-inverted Metal-Oxide Semiconductor (MOS) devices and coupled nonlinear ODEs, typically appearing in models of naturally encountered biochemical systems. The NBCF maps biological state variables onto strictly positive subthreshold MOS circuit currents. This paper presents the synthesis, the simulation and proof-of-concept chip results corresponding to the emulation of a complex cellular network mechanism, the skeleton model for the network of Cyclin-dependent Kinases (CdKs) driving the mammalian cell cycle. This five variable nonlinear biological model, when appropriate model parameter values are assigned, can exhibit multiple oscillatory behaviors, varying from simple periodic oscillations, to complex oscillations such as quasi-periodicity and chaos. The validity of our approach is verified by simulated results with realistic process parameters from the commercially available AMS 0.35 μm technology and by chip measurements. The fabricated chip occupies an area of 2.27 mm2 and consumes a power of 1.26 μW from a power supply of 3 V. The presented cytomimetic topology follows closely the behavior of its biological counterpart, exhibiting similar time-dependent solutions of the Cdk complexes, the transcription factors and the proteins.
A comparative method for processing immunological parameters: developing an "Immunogram".
Ortolani, Riccardo; Bellavite, Paolo; Paiola, Fiorenza; Martini, Morena; Marchesini, Martina; Veneri, Dino; Franchini, Massimo; Chirumbolo, Salvatore; Tridente, Giuseppe; Vella, Antonio
2010-04-01
The immune system is a network of numerous cells that communicate both directly and indirectly with each other. The system is very sensitive to antigenic stimuli, which are memorised, and is closely connected with the endocrine and nervous systems. Therefore, in order to study the immune system correctly, it must be considered in all its complexity by analysing its components with multiparametric tools that take its dynamic characteristic into account. We analysed lymphocyte subpopulations by using monoclonal antibodies with six different fluorochromes; the monoclonal panel employed included CD45, CD3, CD4, CD8, CD16, CD56, CD57, CD19, CD23, CD27, CD5, and HLA-DR. This panel has enabled us to measure many lymphocyte subsets in different states and with different functions: helper, suppressor, activated, effector, naïve, memory, and regulatory. A database was created to collect the values of immunological parameters of approximately 8,000 subjects who have undergone testing since 2000. When the distributions of the values for these parameters were compared with the medians of reference values published in the literature, we found that most of the values from the subjects included in the database were close to the medians in the literature. To process the data we used a comparative method that calculates the percentile rank of the values of a subject by comparing them with the values for others subjects of the same age. From this data processing we obtained a set of percentile ranks that represent the positions of the various parameters with regard to the data for other age-matched subjects included in the database. These positions, relative to both the absolute values and percentages, are plotted in a graph. We have called the final plot, which can be likened to that subject's immunological fingerprint, an "Immunogram". In order to perform the necessary calculations automatically, we developed dedicated software (Immunogramma) which provides at least two different "pictures" for each subject: the first is based on a comparison of the individual's data with those from all age-related subjects, while the second provides a comparison with only age and disease-related subjects. In addition, we can superimpose two fingerprints from the same subject, calculated at different times, in order to produce a dynamic picture, for instance before and after treatment. Finally, with the aim of interpreting the clinical and diagnostic meaning of a set of positions for the values of the measured parameters, we can also search the database to determine whether it contains other subjects who have a similar pattern for some selected immune parameters. This method helps to study and follow-up immune parameters over time. The software enables automation of the process and data sharing with other departments and laboratories, so the database can grow rapidly, thus expanding its informational capacity.
Inverse gas chromatographic determination of solubility parameters of excipients.
Adamska, Katarzyna; Voelkel, Adam
2005-11-04
The principle aim of this work was an application of inverse gas chromatography (IGC) for the estimation of solubility parameter for pharmaceutical excipients. The retention data of number of test solutes were used to calculate Flory-Huggins interaction parameter (chi1,2infinity) and than solubility parameter (delta2), corrected solubility parameter (deltaT) and its components (deltad, deltap, deltah) by using different procedures. The influence of different values of test solutes solubility parameter (delta1) over calculated values was estimated. The solubility parameter values obtained for all excipients from the slope, from Guillet and co-workers' procedure are higher than that obtained from components according Voelkel and Janas procedure. It was found that solubility parameter's value of the test solutes influences, but not significantly, values of solubility parameter of excipients.
NASA Astrophysics Data System (ADS)
Neculae, Adrian P.; Otte, Andreas; Curticapean, Dan
2013-03-01
In the brain-cell microenvironment, diffusion plays an important role: apart from delivering glucose and oxygen from the vascular system to brain cells, it also moves informational substances between cells. The brain is an extremely complex structure of interwoven, intercommunicating cells, but recent theoretical and experimental works showed that the classical laws of diffusion, cast in the framework of porous media theory, can deliver an accurate quantitative description of the way molecules are transported through this tissue. The mathematical modeling and the numerical simulations are successfully applied in the investigation of diffusion processes in tissues, replacing the costly laboratory investigations. Nevertheless, modeling must rely on highly accurate information regarding the main parameters (tortuosity, volume fraction) which characterize the tissue, obtained by structural and functional imaging. The usual techniques to measure the diffusion mechanism in brain tissue are the radiotracer method, the real time iontophoretic method and integrative optical imaging using fluorescence microscopy. A promising technique for obtaining the values for characteristic parameters of the transport equation is the direct optical investigation using optical fibers. The analysis of these parameters also reveals how the local geometry of the brain changes with time or under pathological conditions. This paper presents a set of computations concerning the mass transport inside the brain tissue, for different types of cells. By measuring the time evolution of the concentration profile of an injected substance and using suitable fitting procedures, the main parameters characterizing the tissue can be determined. This type of analysis could be an important tool in understanding the functional mechanisms of effective drug delivery in complex structures such as the brain tissue. It also offers possibilities to realize optical imaging methods for in vitro and in vivo measurements using optical fibers. The model also may help in radiotracer biomarker models for the understanding of the mechanism of action of new chemical entities.
Gillard, Pieter; Hilbrands, Robert; Van de Velde, Ursule; Ling, Zhidong; Lee, Da Hae; Weets, Ilse; Gorus, Frans; De Block, Christophe; Kaufman, Leonard; Mathieu, Chantal; Pipeleers, Daniel; Keymeulen, Bart
2013-11-01
Previous work has shown a correlation between β-cell number in cultured islet cell grafts and their ability to induce C-peptide secretion after intraportal implantation in C-peptide-negative type1 diabetic patients. In this cross-sectional study, we examined the minimal functional β-cell mass (FBM) in the implant that induces metabolic improvement. Glucose clamps assessed FBM in 42 recipients with established implants. C-peptide release during each phase was expressed as percentage of healthy control values. Its relative magnitude during a second hyperglycemic phase was most discriminative and therefore selected as a parameter to be correlated with metabolic effects. Recipients with functioning β-cell implants exhibited average FBM corresponding to 18% of that in normal control subjects (interquartile range 10-33%). Its relative magnitude negatively correlated with HbA1c levels (r = -0.47), daily insulin dose (r = -0.75), and coefficient of variation of fasting glycemia (CVfg) (r = -0.78, retained in multivariate analysis). A correlation between FBM and CVfg <25% appeared from the receiver operating characteristic curve (0.97 [95% CI 0.93-1.00]). All patients with FBM >37% exhibited CVfg <25% and a >50% reduction of their pretransplant CVfg; this occurred in none with FBM <5%. Implants with FBM >18% reduced CVfg from a median pretransplant value of 46 to <25%. Glucose clamping assesses the degree of restoration in FBM achieved by islet cell implants. Values >37% of normal control subjects appear needed to reduce glycemic variability in type 1 diabetic recipients. Further studies should examine whether the test can help guide decisions on additional islet cell transplants and on adjusting or stopping immunotherapy.
A theory of post-stall transients in axial compression systems. II - Application
NASA Technical Reports Server (NTRS)
Greitzer, E. M.; Moore, F. K.
1985-01-01
Using the theory developed in Part I, calculations have been carried out to show the evolution of the mass flow, pressure rise, and rotating-stall cell amplitude during compression system post-stall transients. In particular, it is shown that the unsteady growth or decay of the stall cell can have a significant effect on the instantaneous compressor pumping characteristic and hence on the overall system behavior. A limited parametric study is carried out to illustrate the impact of different system features on transient behavior. It is shown, for example, that the ultimate mode of system response, surge or stable rotating stall, depends not only on the B parameter, but also on the compressor length-to-radius ratio. Small values of this latter quantity tend to favor the occurrence of surge, as do large values of B. Based on the analytical and numerical results, several specific topics are suggested for future research on post-stall transients.
Pérez Plasencia, D; Flores Corral, T; Urrutia Avisrror, M; Santa Cruz Ruiz, S; Benito González, J; Mateos Pérez, M M; Gómez González, J L
2002-01-01
Computer nuclear morphometry and stereology are attractive methods because its objectivity and cheapness allowing histologic diagnosis when identifying minimal variations respectively the normality and also detect negligible disparities between anormal cells which could escape to the assessment of the pathologist. We present the data gained from several morphogenic and stereologic parameters resulting of measurements of tumoral cells procured from 40 patients with nasopharyngeal carcinomata. Middle values have been: nuclear area 27.70 microns 2; nuclear perimeter 20.80 microns; nuclear factor of form 0.81 microns; nuclear outline index 4.01; nuclear orientation angle 87.29 degrees; nuclear ellipsiticity 704.14; nuclear regularity 61.83; middle lineal length 4.30, middle linear distance 107.94; and nuclear volume 118.80 microns 3. Our series is the largest studied till now of all found in the literature. Comparison our data with those of previous publications.
Can cell kinetic parameters predict the response of tumours to radiotherapy?
McNally, N J
1989-11-01
Three potential predictive assays of the repopulation component in tumour response to therapy are considered. (1) The DNA index can easily be measured. It is of prognostic value for cancers of certain sites, aneuploidy being a bad prognostic indicator. It is not strictly an indicator of cell proliferation. (2) The in vitro labelling index is of predictive value in early stage operable breast cancer and in head and neck cancer. In the former a high pretreatment labelling index can identify patients who could benefit from adjuvant chemotherapy. (3) The tumour potential doubling time (Tpot) can be measured rapidly following in vivo labelling with bromodeoxyuridine or iododeoxyuridine. We have measured Tpot in over 100 solid tumours with a success rate of about 75 per cent. Nearly 50 per cent of the tumours have a pre-treatment potential doubling time of 5 days or less. These would be suitable candidates for accelerated fractionation.
NASA Astrophysics Data System (ADS)
Coceano, G.; Yousafzai, M. S.; Ma, W.; Ndoye, F.; Venturelli, L.; Hussain, I.; Bonin, S.; Niemela, J.; Scoles, G.; Cojoc, D.; Ferrari, E.
2016-02-01
Investigating the mechanical properties of cells could reveal a potential source of label-free markers of cancer progression, based on measurable viscoelastic parameters. The Young’s modulus has proved to be the most thoroughly studied so far, however, even for the same cell type, the elastic modulus reported in different studies spans a wide range of values, mainly due to the application of different experimental conditions. This complicates the reliable use of elasticity for the mechanical phenotyping of cells. Here we combine two complementary techniques, atomic force microscopy (AFM) and optical tweezer microscopy (OTM), providing a comprehensive mechanical comparison of three human breast cell lines: normal myoepithelial (HBL-100), luminal breast cancer (MCF-7) and basal breast cancer (MDA-MB-231) cells. The elastic modulus was measured locally by AFM and OTM on single cells, using similar indentation approaches but different measurement parameters. Peak force tapping AFM was employed at nanonewton forces and high loading rates to draw a viscoelastic map of each cell and the results indicated that the region on top of the nucleus provided the most meaningful results. OTM was employed at those locations at piconewton forces and low loading rates, to measure the elastic modulus in a real elastic regime and rule out the contribution of viscous forces typical of AFM. When measured by either AFM or OTM, the cell lines’ elasticity trend was similar for the aggressive MDA-MB-231 cells, which were found to be significantly softer than the other two cell types in both measurements. However, when comparing HBL-100 and MCF-7 cells, we found significant differences only when using OTM.
NASA Astrophysics Data System (ADS)
Molokov, Sergei; El, Gennady; Lukyanov, Alexander
2011-10-01
A unified view on the interfacial instability in a model of aluminium reduction cells in the presence of a uniform, vertical, background magnetic field is presented. The classification of instability modes is based on the asymptotic theory for high values of parameter β, which characterises the ratio of the Lorentz force based on the disturbance current, and gravity. It is shown that the spectrum of the travelling waves consists of two parts independent of the horizontal cross-section of the cell: highly unstable wall modes and stable or weakly unstable centre, or Sele's modes. The wall modes with the disturbance of the interface being localised at the sidewalls of the cell dominate the dynamics of instability. Sele's modes are characterised by a distributed disturbance over the whole horizontal extent of the cell. As β increases these modes are stabilized by the field.
Yang, Yan-Fang; Wu, Ni; Yang, Xiu-Wei
2016-07-01
To establish MDCK-pHaMDR cell model and standard operation procedure for assessing the blood-brain barrier permeability of chemical components of traditional Chinese medicine. MDCK-pHaMDR cell model was evaluated by determining the morphology features, transepithelial electrical resistance, bidirectional transport and intracellular accumulation of Rhodamine 123 and the apparent permeability of positive control drugs caffeine and atenolol. The MDCK-pHaMDR cell model had satisfactory integrity and tightness, and stable expression of P-gp. In addition, the transport results of the positive control drugs were consistent with the reported values in literature. All the parameters tested of the MDCK-pHaMDR cell model were consistent with the requirements, so the model can be used to study the blood-brain barrier permeability of chemical components of traditional Chinese medicine. Copyright© by the Chinese Pharmaceutical Association.
NASA Astrophysics Data System (ADS)
de la Cruz, Javier; Cano, Ulises; Romero, Tatiana
2016-10-01
A critical parameter for PEM fuel cell's electric contact is the nominal clamping pressure. Predicting the mechanical behavior of all components in a fuel cell stack is a very complex task due to the diversity of materials properties. Prior to the integration of a 3 kW PEMFC power plant, a numerical simulation was performed in order to obtain the mechanical stress distribution for two of the most pressure sensitive components of the stack: the membrane, and the graphite plates. The stress distribution of the above mentioned components was numerically simulated by finite element analysis and the stress magnitude for the membrane was confirmed using pressure films. Stress values were found within the elastic zone which guarantees mechanical integrity of fuel cell components. These low stress levels particularly for the membrane will allow prolonging the life and integrity of the fuel cell stack according to its design specifications.
Nadali, G; Vinante, F; Stein, H; Todeschini, G; Tecchio, C; Morosato, L; Chilosi, M; Menestrina, F; Kinney, M C; Greer, J P
1995-06-01
To determine serum levels of the soluble form of CD30 molecule (sCD30) in patients with Ki-1/CD30+ anaplastic large-cell lymphoma (ALCL), and to evaluate its correlation with clinical features at presentation and its possible role as a tumor marker to monitor response to treatment and subsequent follow-up. sCD30 serum levels were measured with an improved commercial sandwich enzyme-linked immunosorbent assay (ELISA) test kit in 24 patients with CD30+ ALCL at diagnosis and in 13 after treatment. Increased values (> 20 U/mL) at diagnosis were observed in 23 of 24 cases (median, 842.5 U/mL; range, 16 to 37,250) as compared with controls (P < .0001). These values were greater than those of 60 stage-matched cases of Hodgkin's disease (HD) (P < .0001). The highest median value was observed in patients with T-cell-type ALCL (1,690 U/mL), with a significant overall difference as compared with B- and null-cell types (P = .004). Phenotype maintained its significance when results were corrected for other parameters, such as age, sex, and stage (P = .03). sCD30 values returned to the normal range in complete remission (CR), but remained increased in one patient who only partially responded to treatment. Subsequent increases of sCD30 levels were recorded in four of four patients after relapse. sCD30 appears to be a new biologic serum tumor marker of possible use in the clinical setting of CD30+ ALCL.
Bartel, Thomas W.; Yaniv, Simone L.
1997-01-01
The 60 min creep data from National Type Evaluation Procedure (NTEP) tests performed at the National Institute of Standards and Technology (NIST) on 65 load cells have been analyzed in order to compare their creep and creep recovery responses, and to compare the 60 min creep with creep over shorter time periods. To facilitate this comparison the data were fitted to a multiple-term exponential equation, which adequately describes the creep and creep recovery responses of load cells. The use of such a curve fit reduces the effect of the random error in the indicator readings on the calculated values of the load cell creep. Examination of the fitted curves show that the creep recovery responses, after inversion by a change in sign, are generally similar in shape to the creep response, but smaller in magnitude. The average ratio of the absolute value of the maximum creep recovery to the maximum creep is 0.86; however, no reliable correlation between creep and creep recovery can be drawn from the data. The fitted curves were also used to compare the 60 min creep of the NTEP analysis with the 30 min creep and other parameters calculated according to the Organization Internationale de Métrologie Légale (OIML) R 60 analysis. The average ratio of the 30 min creep value to the 60 min value is 0.84. The OIML class C creep tolerance is less than 0.5 of the NTEP tolerance for classes III and III L. PMID:27805151
Otnes, Gaute; Barrigón, Enrique; Sundvall, Christian; Svensson, K Erik; Heurlin, Magnus; Siefer, Gerald; Samuelson, Lars; Åberg, Ingvar; Borgström, Magnus T
2018-05-09
III-V solar cells in the nanowire geometry might hold significant synthesis-cost and device-design advantages as compared to thin films and have shown impressive performance improvements in recent years. To continue this development there is a need for characterization techniques giving quick and reliable feedback for growth development. Further, characterization techniques which can improve understanding of the link between nanowire growth conditions, subsequent processing, and solar cell performance are desired. Here, we present the use of a nanoprobe system inside a scanning electron microscope to efficiently contact single nanowires and characterize them in terms of key parameters for solar cell performance. Specifically, we study single as-grown InP nanowires and use electron beam induced current characterization to understand the charge carrier collection properties, and dark current-voltage characteristics to understand the diode recombination characteristics. By correlating the single nanowire measurements to performance of fully processed nanowire array solar cells, we identify how the performance limiting parameters are related to growth and/or processing conditions. We use this understanding to achieve a more than 7-fold improvement in efficiency of our InP nanowire solar cells, grown from a different seed particle pattern than previously reported from our group. The best cell shows a certified efficiency of 15.0%; the highest reported value for a bottom-up synthesized InP nanowire solar cell. We believe the presented approach have significant potential to speed-up the development of nanowire solar cells, as well as other nanowire-based electronic/optoelectronic devices.
On cell resistance and immune response time lag in a model for the HIV infection
NASA Astrophysics Data System (ADS)
Solovey, Guillermo; Peruani, Fernando; Ponce Dawson, Silvina; Maria Zorzenon dos Santos, Rita
2004-11-01
Recently, a cellular automata model has been introduced (Phys. Rev. Lett. 87 (2001) 168102) to describe the spread of the HIV infection among target cells in lymphoid tissues. The model reproduces qualitatively the entire course of the infection displaying, in particular, the two time scales that characterize its dynamics. In this work, we investigate the robustness of the model against changes in three of its parameters. Two of them are related to the resistance of the cells to get infected. The other one describes the time interval necessary to mount specific immune responses. We have observed that an increase of the cell resistance, at any stage of the infection, leads to a reduction of the latency period, i.e., of the time interval between the primary infection and the onset of AIDS. However, during the early stages of the infection, when the cell resistance increase is combined with an increase in the initial concentration of infected cells, the original behavior is recovered. Therefore we find a long and a short latency regime (eight and one year long, respectively) depending on the value of the cell resistance. We have obtained, on the other hand, that changes on the parameter that describes the immune system time lag affects the time interval during which the primary infection occurs. Using different extended versions of the model, we also discuss how the two-time scale dynamics is affected when we include inhomogeneities on the cells properties, as for instance, on the cell resistance or on the time interval to mount specific immune responses.
NASA Astrophysics Data System (ADS)
Kar, Supratik; Roy, Juganta K.; Leszczynski, Jerzy
2017-06-01
Advances in solar cell technology require designing of new organic dye sensitizers for dye-sensitized solar cells with high power conversion efficiency to circumvent the disadvantages of silicon-based solar cells. In silico studies including quantitative structure-property relationship analysis combined with quantum chemical analysis were employed to understand the primary electron transfer mechanism and photo-physical properties of 273 arylamine organic dyes from 11 diverse chemical families explicit to iodine electrolyte. The direct quantitative structure-property relationship models enable identification of the essential electronic and structural attributes necessary for quantifying the molecular prerequisites of 11 classes of arylamine organic dyes, responsible for high power conversion efficiency of dye-sensitized solar cells. Tetrahydroquinoline, N,N'-dialkylaniline and indoline have been least explored classes under arylamine organic dyes for dye-sensitized solar cells. Therefore, the identified properties from the corresponding quantitative structure-property relationship models of the mentioned classes were employed in designing of "lead dyes". Followed by, a series of electrochemical and photo-physical parameters were computed for designed dyes to check the required variables for electron flow of dye-sensitized solar cells. The combined computational techniques yielded seven promising lead dyes each for all three chemical classes considered. Significant (130, 183, and 46%) increment in predicted %power conversion efficiency was observed comparing with the existing dye with highest experimental %power conversion efficiency value for tetrahydroquinoline, N,N'-dialkylaniline and indoline, respectively maintaining required electrochemical parameters.
Manganaro, Lorenzo; Russo, Germano; Cirio, Roberto; Dalmasso, Federico; Giordanengo, Simona; Monaco, Vincenzo; Muraro, Silvia; Sacchi, Roberto; Vignati, Anna; Attili, Andrea
2017-04-01
Advanced ion beam therapeutic techniques, such as hypofractionation, respiratory gating, or laser-based pulsed beams, have dose rate time structures which are substantially different from those found in conventional approaches. The biological impact of the time structure is mediated through the β parameter in the linear quadratic (LQ) model. The aim of this study was to assess the impact of changes in the value of the β parameter on the treatment outcomes, also accounting for noninstantaneous intrafraction dose delivery or fractionation and comparing the effects of using different primary ions. An original formulation of the microdosimetric kinetic model (MKM) is used (named MCt-MKM), in which a Monte Carlo (MC) approach was introduced to account for the stochastic spatio-temporal correlations characteristic of the irradiations and the cellular repair kinetics. A modified version of the kinetic equations, validated on experimental cell survival in vitro data, was also introduced. The model, trained on the HSG cells, was used to evaluate the relative biological effectiveness (RBE) for treatments with acute and protracted fractions. Exemplary cases of prostate cancer irradiated with different ion beams were evaluated to assess the impact of the temporal effects. The LQ parameters for a range of cell lines (V79, HSG, and T1) and ion species (H, He, C, and Ne) were evaluated and compared with the experimental data available in the literature, with good results. Notably, in contrast to the original MKM formulation, the MCt-MKM explicitly predicts an ion and LET-dependent β compatible with observations. The data from a split-dose experiment were used to experimentally determine the value of the parameter related to the cellular repair kinetics. Concerning the clinical case considered, an RBE decrease was observed, depending on the dose, ion, and LET, exceeding up to 3% of the acute value in the case of a protraction in the delivery of 10 min. The intercomparison between different ions shows that the clinical optimality is strongly dependent on a complex interplay between the different physical and biological quantities considered. The present study provides a framework for exploiting the temporal effects of dose delivery. The results show the possibility of optimizing the treatment outcomes accounting for the correlation between the specific dose rate time structure and the spatial characteristic of the LET distribution, depending on the ion type used. © 2017 American Association of Physicists in Medicine.
Intrinsic factor antibody negative atrophic gastritis; is it different from pernicious anaemia?
Amarapurkar, D N; Amarapurkar, A D
2010-01-01
H. pylori gastritis and autoimmune gastritis are the two main types of chronic atrophic gastritis. Parietal cell antibody (PCA) and intrinsic factor antibody (IFA) are characteristic of autoimmune gastritis, of which IFA is more specific. Patients who are IFA negative are considered under the category of chronic atrophic gastritis. To differentiate IFA positive from IFA negative chronic atrophic gastritis. Fifty consecutive patients of biopsy proven chronic atrophic gastritis were included in this study. All patients underwent haematological and biochemical tests including serum LDH, vitamin B12 and fasting serum gastrin levels. PCA and IFA antibodies were tested in all patients. Multiple gastric biopsies from body and antrum of the stomach were taken and evaluated for presence of intestinal metaplasia, endocrine cell hyperplasia, carcinoid and H. pylori infection. Patients were grouped as group A (IFA positive) and group B (IFA negative). The mean laboratory values and histological parameters were compared between the two groups using appropriate statistical methods. Eighteen patients were in group A (mean age 55.5 +/- 13 years, male: female = 16:2) and thirty-two in group B (mean age 49.7 +/- 13 years, male: female = 25:7). There was no statistically significant difference between median values of haemoglobin, MCV, LDH, Vitamin B12 and serum gastrin in both the groups. None of the histological parameters showed any significant difference. There was no statistically significant difference in haematological, biochemical and histological parameters in IFA positive and negative gastritis. These may be the spectrum of the same disease, where H. pylori may be responsible for initiating the process.
The power and robustness of maximum LOD score statistics.
Yoo, Y J; Mendell, N R
2008-07-01
The maximum LOD score statistic is extremely powerful for gene mapping when calculated using the correct genetic parameter value. When the mode of genetic transmission is unknown, the maximum of the LOD scores obtained using several genetic parameter values is reported. This latter statistic requires higher critical value than the maximum LOD score statistic calculated from a single genetic parameter value. In this paper, we compare the power of maximum LOD scores based on three fixed sets of genetic parameter values with the power of the LOD score obtained after maximizing over the entire range of genetic parameter values. We simulate family data under nine generating models. For generating models with non-zero phenocopy rates, LOD scores maximized over the entire range of genetic parameters yielded greater power than maximum LOD scores for fixed sets of parameter values with zero phenocopy rates. No maximum LOD score was consistently more powerful than the others for generating models with a zero phenocopy rate. The power loss of the LOD score maximized over the entire range of genetic parameters, relative to the maximum LOD score calculated using the correct genetic parameter value, appeared to be robust to the generating models.
Histogram analysis of ADC in brain tumor patients
NASA Astrophysics Data System (ADS)
Banerjee, Debrup; Wang, Jihong; Li, Jiang
2011-03-01
At various stage of progression, most brain tumors are not homogenous. In this presentation, we retrospectively studied the distribution of ADC values inside tumor volume during the course of tumor treatment and progression for a selective group of patients who underwent an anti-VEGF trial. Complete MRI studies were obtained for this selected group of patients including pre- and multiple follow-up, post-treatment imaging studies. In each MRI imaging study, multiple scan series were obtained as a standard protocol which includes T1, T2, T1-post contrast, FLAIR and DTI derived images (ADC, FA etc.) for each visit. All scan series (T1, T2, FLAIR, post-contrast T1) were registered to the corresponding DTI scan at patient's first visit. Conventionally, hyper-intensity regions on T1-post contrast images are believed to represent the core tumor region while regions highlighted by FLAIR may overestimate tumor size. Thus we annotated tumor regions on the T1-post contrast scans and ADC intensity values for pixels were extracted inside tumor regions as defined on T1-post scans. We fit a mixture Gaussian (MG) model for the extracted pixels using the Expectation-Maximization (EM) algorithm, which produced a set of parameters (mean, various and mixture coefficients) for the MG model. This procedure was performed for each visits resulting in a series of GM parameters. We studied the parameters fitted for ADC and see if they can be used as indicators for tumor progression. Additionally, we studied the ADC characteristics in the peri-tumoral region as identified by hyper-intensity on FLAIR scans. The results show that ADC histogram analysis of the tumor region supports the two compartment model that suggests the low ADC value subregion corresponding to densely packed cancer cell while the higher ADC value region corresponding to a mixture of viable and necrotic cells with superimposed edema. Careful studies of the composition and relative volume of the two compartments in tumor region may provide some insights in the early assessment of tumor response to therapy for recurrence brain cancer patients.
Blood gases, biochemistry, and hematology of Galapagos green turtles (Chelonia mydas).
Lewbart, Gregory A; Hirschfeld, Maximilian; Denkinger, Judith; Vasco, Karla; Guevara, Nataly; García, Juan; Muñoz, Juanpablo; Lohmann, Kenneth J
2014-01-01
The green turtle, Chelonia mydas, is an endangered marine chelonian with a circum-global distribution. Reference blood parameter intervals have been published for some chelonian species, but baseline hematology, biochemical, and blood gas values are lacking from the Galapagos sea turtles. Analyses were done on blood samples drawn from 28 green turtles captured in two foraging locations on San Cristóbal Island (14 from each site). Of these turtles, 20 were immature and of unknown sex; the other eight were males (five mature, three immature). A portable blood analyzer (iSTAT) was used to obtain near immediate field results for pH, lactate, pO2, pCO2, HCO3-, Hct, Hb, Na, K, iCa, and Glu. Parameter values affected by temperature were corrected in two ways: (1) with standard formulas; and (2) with auto-corrections made by the iSTAT. The two methods yielded clinically equivalent results. Standard laboratory hematology techniques were employed for the red and white blood cell counts and the hematocrit determination, which was also compared to the hematocrit values generated by the iSTAT. Of all blood analytes, only lactate concentrations were positively correlated with body size. All other values showed no significant difference between the two sample locations nor were they correlated with body size or internal temperature. For hematocrit count, the iSTAT blood analyzer yielded results indistinguishable from those obtained with high-speed centrifugation. The values reported in this study provide baseline data that may be useful in comparisons among populations and in detecting changes in health status among Galapagos sea turtles. The findings might also be helpful in future efforts to demonstrate associations between specific biochemical parameters and disease.
Blood Gases, Biochemistry, and Hematology of Galapagos Green Turtles (Chelonia Mydas)
Lewbart, Gregory A.; Hirschfeld, Maximilian; Denkinger, Judith; Vasco, Karla; Guevara, Nataly; García, Juan; Muñoz, Juanpablo; Lohmann, Kenneth J.
2014-01-01
The green turtle, Chelonia mydas, is an endangered marine chelonian with a circum-global distribution. Reference blood parameter intervals have been published for some chelonian species, but baseline hematology, biochemical, and blood gas values are lacking from the Galapagos sea turtles. Analyses were done on blood samples drawn from 28 green turtles captured in two foraging locations on San Cristóbal Island (14 from each site). Of these turtles, 20 were immature and of unknown sex; the other eight were males (five mature, three immature). A portable blood analyzer (iSTAT) was used to obtain near immediate field results for pH, lactate, pO2, pCO2, HCO3 −, Hct, Hb, Na, K, iCa, and Glu. Parameter values affected by temperature were corrected in two ways: (1) with standard formulas; and (2) with auto-corrections made by the iSTAT. The two methods yielded clinically equivalent results. Standard laboratory hematology techniques were employed for the red and white blood cell counts and the hematocrit determination, which was also compared to the hematocrit values generated by the iSTAT. Of all blood analytes, only lactate concentrations were positively correlated with body size. All other values showed no significant difference between the two sample locations nor were they correlated with body size or internal temperature. For hematocrit count, the iSTAT blood analyzer yielded results indistinguishable from those obtained with high-speed centrifugation. The values reported in this study provide baseline data that may be useful in comparisons among populations and in detecting changes in health status among Galapagos sea turtles. The findings might also be helpful in future efforts to demonstrate associations between specific biochemical parameters and disease. PMID:24824065
Assessment of gamma ray-induced DNA damage in Lasioderma serricorne using the comet assay
NASA Astrophysics Data System (ADS)
Kameya, Hiromi; Miyanoshita, Akihiro; Imamura, Taro; Todoriki, Setsuko
2012-03-01
We attempted a DNA comet assay under alkaline conditions to verify the irradiation treatment of pests. Lasioderma serricorne (Fabricius) were chosen as test insects and irradiated with gamma rays from a 60Co source at 1 kGy. We conducted the comet assay immediately after irradiation and over time for 7 day. Severe DNA fragmentation in L. serricorne cells was observed just after irradiation and the damage was repaired during the post-irradiation period in a time-dependent manner. The parameters of the comet image analysis were calculated, and the degree of DNA damage and repair were evaluated. Values for the Ratio (a percentage determined by fluorescence in the damaged area to overall luminance, including intact DNA and the damaged area of a comet image) of individual cells showed that no cells in the irradiated group were included in the Ratio<0.1 category, the lowest grade. This finding was observed consistently throughout the 7-day post-irradiation period. We suggest that the Ratio values of individual cells can be used as an index of irradiation history and conclude that the DNA comet assay under alkaline conditions, combined with comet image analysis, can be used to identify irradiation history.
Karr, Jonathan R; Williams, Alex H; Zucker, Jeremy D; Raue, Andreas; Steiert, Bernhard; Timmer, Jens; Kreutz, Clemens; Wilkinson, Simon; Allgood, Brandon A; Bot, Brian M; Hoff, Bruce R; Kellen, Michael R; Covert, Markus W; Stolovitzky, Gustavo A; Meyer, Pablo
2015-05-01
Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model's structure and in silico "experimental" data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation.
Karr, Jonathan R.; Williams, Alex H.; Zucker, Jeremy D.; Raue, Andreas; Steiert, Bernhard; Timmer, Jens; Kreutz, Clemens; Wilkinson, Simon; Allgood, Brandon A.; Bot, Brian M.; Hoff, Bruce R.; Kellen, Michael R.; Covert, Markus W.; Stolovitzky, Gustavo A.; Meyer, Pablo
2015-01-01
Whole-cell models that explicitly represent all cellular components at the molecular level have the potential to predict phenotype from genotype. However, even for simple bacteria, whole-cell models will contain thousands of parameters, many of which are poorly characterized or unknown. New algorithms are needed to estimate these parameters and enable researchers to build increasingly comprehensive models. We organized the Dialogue for Reverse Engineering Assessments and Methods (DREAM) 8 Whole-Cell Parameter Estimation Challenge to develop new parameter estimation algorithms for whole-cell models. We asked participants to identify a subset of parameters of a whole-cell model given the model’s structure and in silico “experimental” data. Here we describe the challenge, the best performing methods, and new insights into the identifiability of whole-cell models. We also describe several valuable lessons we learned toward improving future challenges. Going forward, we believe that collaborative efforts supported by inexpensive cloud computing have the potential to solve whole-cell model parameter estimation. PMID:26020786
Probing cooperative force generation in collective cancer invasion
NASA Astrophysics Data System (ADS)
Alobaidi, Amani A.; Xu, Yaopengxiao; Chen, Shaohua; Jiao, Yang; Sun, Bo
2017-08-01
Collective cellular dynamics in the three-dimensional extracellular matrix (ECM) plays a crucial role in many physiological processes such as cancer invasion. Both chemical and mechanical signaling support cell-cell communications on a variety of length scales, leading to collective migratory behaviors. Here we conduct experiments using 3D in vitro tumor models and develop a phenomenological model in order to probe the cooperativity of force generation in the collective invasion of breast cancer cells. In our model, cell-cell communication is characterized by a single parameter that quantifies the correlation length of cellular migration cycles. We devise a stochastic reconstruction method to generate realizations of cell colonies with specific contraction phase correlation functions and correlation length a. We find that as a increases, the characteristic size of regions containing cells with similar contraction phases grows. For small a values, the large fluctuations in individual cell contraction phases smooth out the temporal fluctuations in the time-dependent deformation field in the ECM. For large a values, the periodicity of an individual cell contraction cycle is clearly manifested in the temporal variation of the overall deformation field in the ECM. Through quantitative comparisons of the simulated and experimentally measured deformation fields, we find that the correlation length for collective force generation in the breast cancer diskoid in geometrically micropatterned ECM (DIGME) system is a≈ 25~μ \\text{m} , which is roughly twice the linear size of a single cell. One possible mechanism for this intermediate cell correlation length is the fiber-mediated stress propagation in the 3D ECM network in the DIGME system.
A simplified physical model for assessing solar radiation over Brazil using GOES 8 visible imagery
NASA Astrophysics Data System (ADS)
Ceballos, Juan Carlos; Bottino, Marcus Jorge; de Souza, Jaidete Monteiro
2004-01-01
Solar radiation assessment by satellite is constrained by physical limitations of imagery and by the accuracy of instantaneous local atmospheric parameters, suggesting that one should use simplified but physically consistent models for operational work. Such a model is presented for use with GOES 8 imagery applied to atmospheres with low aerosol optical depth. Fundamental satellite-derived parameters are reflectance and cloud cover. A classification method applied to a set of images shows that reflectance, usually defined as upper-threshold Rmax in algorithms assessing cloud cover, would amount ˜0.465, corresponding to the transition between a cumuliform and a stratiform cloud field. Ozone absorption is limited to the stratosphere. The model considers two spectral broadband intervals for tropospheric radiative transfer: ultraviolet and visible intervals are essentially nonabsorbing and can be processed as a single interval, while near-infrared intervals have negligible atmospheric scattering and very low cloud transmittance. Typical values of CO2 and O3 content and of precipitable water are considered. A comparison of daily values of modeled mean irradiance with data of three sites (in rural, urban industrial, and urban coastal environments), September-October 2002, exhibits a bias of +5 W m-2 and a standard deviation of ˜15 W m-2 (0.4 and 1.3 MJ m-2 for daily irradiation). A comparison with monthly means from about 80 automatic weather stations (covering a large area throughout the Brazilian territory) still shows a bias generally within ±10 W m-2 and a low standard deviation (<20 W m-2), but the bias has a trend in September-December 2002, suggesting an annual cycle of local Rmax values. Systematic (mean) errors in partial cloud cover and in nearly clear-sky situations may be enhanced using regional values for atmospheric and surface parameters, such as precipitable water, Rmax, and ground reflectance. The larger errors are observed in situations of high aerosol load (especially in regions with industrial activity or forest or agricultural fires). The last case is evident when sites in the Amazonian region or São Paulo city are selected. When considering daily values averaged within 2.5° × 2.5° cells, the standard error is lower than 20 W m-2; present results suggest an annual cycle of mean bias ranging from +10 to -10 W m-2, with an amplitude of ˜10 W m-2. These values are close to the proposed requirements of 10 W m-2 for the mean deviation and 25 W m-2 for the standard deviation. It is expected that the introduction of a reference grid containing mean values of parameters within a cell could induce a decrease in the standard deviation of mean errors and the correction of their annual cycle. A model adaptation for assessing the effect of high aerosol loads is needed in order to extend improvements to the whole Brazilian area.
Application of the SEM to the measurement of solar cell parameters
NASA Technical Reports Server (NTRS)
Weizer, V. G.; Andrews, C. W.
1977-01-01
A pair of techniques are described which make use of the SEM to measure, respectively, the minority carrier diffusion length and the metallurgical junction depth in silicon solar cells. The former technique permits the measurement of the true bulk diffusion length through the application of highly doped field layers to the back surfaces of the cells being investigated. The technique yields an absolute value of the diffusion length from a knowledge of the collected fraction of the injected carriers and the cell thickness. It is shown that the secondary emission contrast observed in the SEM on a reverse-biased diode can depict the location of the metallurgical junction if the diode has been prepared with the proper beveled geometry. The SEM provides the required contrast and the option of high magnification, permitting the measurement of extremely shallow junction depths.
Ben-Horin, Shomron; Bank, Ilan; Shinfeld, Ami; Kachel, Erez; Guetta, Victor; Livneh, Avi
2007-05-01
In contrast to pleural effusion or ascites, there are few data regarding the chemical and cell-count parameters of pericardial effusions (PEs) to aid diagnosis. In the present work, all patients who underwent pericardiocentesis during a 9-year period (1995 to 2004) at a tertiary hospital and who had available fluid laboratory results were retrospectively identified. Causes of PE were diagnosed using predetermined criteria. The results of pericardial fluid biochemical and hematologic tests were compared with blood test results and analyzed to identify cut-off points that could distinguish among the various causes or among various groups of causes. Of 173 patients who underwent pericardiocentesis in the study period, 120 had available fluid laboratory results, and these patients constituted the study population. The most common causes of PE were neoplastic, idiopathic, and effusion related to acute pericarditis (accounting for 42, 22, and 17 of 120 patients, respectively). Most fluids (118 of 120) would have been classified as exudates by adopting Light's pleural effusion criteria. Moreover, in all parameters examined, there was a considerable overlap of test results among the different pericardial disorders. Thus, no biochemical or cell-count parameter was found useful at reasonable accuracy for differentiating among the individual causes or among various groups of pericardial disorders. In conclusion, most PEs are exudates. The analysis of pericardial fluid biochemical and cell-count composition is generally not helpful for the diagnosis of most PEs.
Niemiec, J; Kolodziejski, L; Dyczek, S
2005-01-01
In literature there are still opinion differences concerning the prognostic significance of epidermal growth factor receptor (EGFR) expression and proliferative potential in patients with non small cell lung cancer (NSCLC). This prompted us to study those parameters. The Ki-67 labeling index (Ki-67 LI), EGFR labeling index (EGFR LI), and mitotic index (MI) were analyzed in the group of 78 consecutive, surgically treated squamous cell lung cancer (SqCLC) patients. The expression of Ki-67 and EGFR protein was visualized on formalin fixed, paraffin embedded sections using immunohistochemistry (IHC). Mitotic index was assessed on formalin fixed, paraffin embedded sections, stained with hematoxylin and eosin using morphological criteria. Mean values of Ki-67 LI and MI were higher for G2+G3 tumors than for G1 tumors. EGFR LI was higher for G1+G2 than for G3 tumors, and for pT3 than for pT1+pT2 tumors. Patients having tumors with Ki-67 < or =28% or (EGFR LI < or =13% or EGFR LI >80%) survived significantly shorter than those having tumors with Ki-67 LI >28% or 13%< EGFR LI < or =80%. In multivariate analysis, 13%> or = EGFR LI <80% and Ki-67 LI < or =28% were independent negative prognostic parameters influencing survivals of SqCLC patients.
Li, F P; Wang, H; Hou, J; Tang, J; Lu, Q; Wang, L L; Yu, X P
2018-05-03
To investigate the utility of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in predicting the early response to concurrent chemoradiotherapy (CRT) in oesophageal squamous cell carcinoma (OSCC). Thirty-three patients with OSCC who received CRT underwent IVIM-DWI at three time points (before CRT, at the end of radiotherapy 20 Gy, and immediately after CRT). After CRT, the patients were divided into the responders (complete response or partial response) and the non-responders (stable disease) based on RECIST 1.1. The IVIM-DWI parameters (apparent diffusion coefficient [ADC], true diffusion coefficient [D], the pseudo-diffusion coefficient [D*], and the perfusion fraction [f]) values and their percentage changes (Δvalue) at different time points were compared between the responders and the non-responders. Receiver-operating characteristic (ROC) curve analysis was used to determine the efficacy of IVIM-DWI parameters in identifying the response to CRT. The tumour regression ratio showed negative correlations with ADC pre (r=-0.610, p=0.000), ADC 20 Gy (r=-0.518, p=0.002), D pre (r=-0.584, p=0.000), and D 20 Gy (r=-0.454, p=0.008), and positive correlation with ΔD 20 Gy (r=0.361, p=0.039) and ΔD post (r=0.626, p=0.000). Compared to the non-responders, the responders exhibited lower ADC pre , D pre , ADC 20 Gy , and D 20 Gy , as well as higher ΔADC 20 Gy , ΔD 20 Gy , and ΔD post (all p<0.05). D pre had the highest sensitivity (92.9%) and value of area under the ROC curve (0.865) in differentiating the responders from the non-responders. Diffusion-related IVIM-DWI parameters (ADC and D) are potentially helpful in predicting the early treatment effect of CRT in OSCC. Copyright © 2018 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Arkuszewski, M; Krejza, J; Chen, R; Kwiatkowski, J L; Ichord, R; Zimmerman, R; Ohene-Frempong, K; Desiderio, L; Melhem, E R
2011-09-01
TCD screening is widely used to identify children with SCD at high risk of stroke. Those with high mean flow velocities in major brain arteries have increased risk of stroke. Thus, our aim was to establish reference values of interhemispheric differences and ratios of blood flow Doppler parameters in the tICA, MCA, and ACA as determined by conventional TCD in children with sickle cell anemia. Reference limits of blood flow parameters were established on the basis of a consecutive cohort of 56 children (mean age, 100 ± 40 months; range, 29-180 months; 30 females) free of neurologic deficits and intracranial stenosis detectable by MRA, with blood flow velocities <170 cm/s by conventional TCD. Reference limits were estimated by using tolerance intervals, within which are included with a probability of .90 of all possible data values from 95% of a population. Average peak systolic velocities were significantly higher in the right hemisphere in the MCA and ACA (185 ± 28 cm/s versus 179 ± 27 and 152 ± 30 cm/s versus 143 ± 34 cm/s respectively). Reference limits for left-to-right differences in the mean flow velocities were the following: -43 to 33 cm/s for the MCA; -49 to 38 cm/s for the ACA, and -38 to 34 cm/s for the tICA, respectively. Respective reference limits for left-to-right velocity ratios were the following: 0.72 to 1.25 cm/s for the MCA; 0.62 to 1.39 cm/s for the ACA, and 0.69 to 1.27 cm/s for the tICA. Flow velocities in major arteries were inversely related to age and Hct or Hgb. The study provides reference intervals of TCD flow velocities and their interhemispheric differences and ratios that may be helpful in identification of intracranial arterial stenosis in children with SCD undergoing sonographic screening for stroke prevention.
Stochastic growth logistic model with aftereffect for batch fermentation process
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah
2014-06-19
In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.
Stochastic growth logistic model with aftereffect for batch fermentation process
NASA Astrophysics Data System (ADS)
Rosli, Norhayati; Ayoubi, Tawfiqullah; Bahar, Arifah; Rahman, Haliza Abdul; Salleh, Madihah Md
2014-06-01
In this paper, the stochastic growth logistic model with aftereffect for the cell growth of C. acetobutylicum P262 and Luedeking-Piret equations for solvent production in batch fermentation system is introduced. The parameters values of the mathematical models are estimated via Levenberg-Marquardt optimization method of non-linear least squares. We apply Milstein scheme for solving the stochastic models numerically. The effciency of mathematical models is measured by comparing the simulated result and the experimental data of the microbial growth and solvent production in batch system. Low values of Root Mean-Square Error (RMSE) of stochastic models with aftereffect indicate good fits.
Alternate pathogenesis of systemic neoplasia in the bivalve mollusc Mytilus.
Moore, J D; Elston, R A; Drum, A S; Wilkinson, M T
1991-09-01
The proliferative disease systemic neoplasia, also termed hemic neoplasia or disseminated sarcoma, was studied in four Puget Sound, Washington populations of the bay mussel (Mytilus sp.). Using flow cytometric measurement of DAPI-stained cells withdrawn from the hemolymph, DNA content frequency histograms were generated for 73 individuals affected by the disease. The cells manifesting systemic neoplasia were found to exist as either of two separate types, characterized by G0G1 phase nuclear DNA contents of either approximately 4.9 x haploid (pentaploid form) or approximately 3.8 x haploid (tetraploid form). The two disease forms were found to coexist in all four mussel populations sampled, with overall relative prevalences of 66% pentaploid form, 29% tetraploid form, and 5% exhibiting both disease forms simultaneously. These findings represent the first unequivocal demonstration of multiple cell types in a bivalve neoplasia. The two forms appear to represent separate pathogenetic processes rather than sequential stages of a single pathogenesis. Two cell cycling parameters associated with proliferative activity were employed to compare the alternate forms: (i) the percentage of cells assigned to the DNA Synthesis (S) phase of the neoplastic cell cycle, and (ii) the proportion of neoplastic cell mitotic figures in hemocytological preparations. Mean values for both parameters were significantly higher for mussels with the tetraploid form of the disease, suggesting a higher rate of proliferation relative to the pentaploid form. Qualitatively, cells of the tetraploid form contained slightly lower nuclear and cytoplasmic volumes compared to those of the pentaploid form. An observed wide variation in neoplastic cell nuclear size within either disease form may reflect the distribution of cells in the G0G1, S, and G2M phases of the cell cycle. Potential etiologic relationships between the two forms are discussed.
Regan, R. Steven; Markstrom, Steven L.; Hay, Lauren E.; Viger, Roland J.; Norton, Parker A.; Driscoll, Jessica M.; LaFontaine, Jacob H.
2018-01-08
This report documents several components of the U.S. Geological Survey National Hydrologic Model of the conterminous United States for use with the Precipitation-Runoff Modeling System (PRMS). It provides descriptions of the (1) National Hydrologic Model, (2) Geospatial Fabric for National Hydrologic Modeling, (3) PRMS hydrologic simulation code, (4) parameters and estimation methods used to compute spatially and temporally distributed default values as required by PRMS, (5) National Hydrologic Model Parameter Database, and (6) model extraction tool named Bandit. The National Hydrologic Model Parameter Database contains values for all PRMS parameters used in the National Hydrologic Model. The methods and national datasets used to estimate all the PRMS parameters are described. Some parameter values are derived from characteristics of topography, land cover, soils, geology, and hydrography using traditional Geographic Information System methods. Other parameters are set to long-established default values and computation of initial values. Additionally, methods (statistical, sensitivity, calibration, and algebraic) were developed to compute parameter values on the basis of a variety of nationally-consistent datasets. Values in the National Hydrologic Model Parameter Database can periodically be updated on the basis of new parameter estimation methods and as additional national datasets become available. A companion ScienceBase resource provides a set of static parameter values as well as images of spatially-distributed parameters associated with PRMS states and fluxes for each Hydrologic Response Unit across the conterminuous United States.
Immunological monitoring of dry-cleaning shop workers--exposure to tetrachloroethylene.
Andrýs, C; Hanovcová, I; Chýlková, V; Tejral, J; Eminger, S; Procházková, J
1997-09-01
A panel of immunological parameters has been examined in a group of dry-cleaning workers (n = 21) and in a control group of administrators (n = 16) from the same plant. The results were also compared to long-term laboratory reference values (LRV) (n = 14-311). External exposure to tetrachloroethylene (PER) was represented by TWA (8 h) values in the range 11-752 mg PER/m3. Biological monitoring showed an amount from 9 to 344 mg PER/m3 in exhaled air by the end of workshift. 1. The exposed dry-cleaning workers compared to the controls from the plant had statistically significant changes in metabolic activity of phagocytes, alpha 2-macroglobulin, C3 and C4 complement component, salivary secretory IgA, and blastic transformation test. Most of the values were within the range of normal values. 2. The exposed dry-cleaning workers had several abnormal immune parameters compared to the long-term laboratory values (LRV) especially in the alpha 2-macroglobulin, C3 and percentage of T-lymphocytes. Most of the changes, even those that were statistically significant, were still within the range of normal values, but they might be classified as trends or shifts away from normal (spontaneous blastic transformation, absolute number of phagocyting cells, coeruloplasmin, circulating immunocomplexes, serum lysozyme). 3. The non-exposed controls from the same plant showed both quantitative and qualitative differences when compared to the LRV. Changes were seen in IgG, C4, CSI and in increased spontaneous metabolic activity of leucocytes, total leucocyte count, absolute number of phagocyting cells, alpha 2-macroglobulin, prealbumin, C4, circulating immunocomplexes and serum lysozyme. 4. The distribution analysis of all results detected a large number of abnormal values in both groups, more in the at-risk group. 5. As inhalation was the main route of PER exposure it was concluded that the changes might represent aspects of the response of the respiratory immune system, mainly of the alveolar macrophages. Additional postinfection effects could not be excluded in both studied groups. Individual differences in immune reactivity as well as individual range of exposure should be taken into consideration.
Efe İris, Nur; Yıldırmak, Taner; Gedik, Habip; Şimşek, Funda; Aydın, Demet; Demirel, Naciye; Yokuş, Osman
2017-06-05
The aim of this study is to investigate if neutrophil CD64 expression in febrile neutropenia patients could be used as an early indicator of bacteremia. All consecutive patients older than 18 years of age who had developed febrile neutropenia episodes due to hematological malignancies were included in the study. Those patients who had significant growth in their blood cultures constituted the case group, while those who had febrile neutropenia without any growth in their cultures and who did not have any documented infections formed the control group. Blood culture bottles were incubated in the Bact ALERT 3D system (bioMerieux, France), identification and susceptibility testing were performed using an automated broth microdilution method (VITEK 2, bioMerieux), and CD64 expression analysis was performed by the flow cytometry method. C-reactive protein (CRP) was measured by turbidimetric methods (Biosystems, Spain) and erythrocyte sedimentation rate (ESR) was measured by the Wintrobe method. In total, we prospectively evaluated 31 febrile episodes. The case group consisted of 17 patients while the control group included 14 patients. CD64 was found on neutrophils of the case group patients with a mean count of 8006 molecules/cell and of control group with a mean count of 2786 molecules/cell. CD64 levels of the case group were significantly higher than those of the control group (p=0.005). In the differentiation of the case group from the control group, a 2500 cut-off value for CD64 had significant [AUC=0.792 (0.619-0.965)] predictive value (p=0.001). In the prediction of patients with a 2500 cut-off value for CD64, sensitivity was 94.1%, positive predictive value was 76.2%, specificity was 64.3%, and negative predictive value was 90.0%. CRP levels and ESR values did not differ significantly between the groups (p=0.005). Neutrophil CD64 expression could be a good predictor as an immune parameter with high sensitivity and a negative predictive value for bacteremia in febrile neutropenic patients.
Zhu, Jingqi; Xiong, Zuogang; Zhang, Jiulong; Qiu, Yuyou; Hua, Ting; Tang, Guangyu
2017-11-14
This study aims to investigate the technical feasibility of semi-quantitative and quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of longitudinal changes of marrow perfusion in a rat osteoporosis model, using bone mineral density (BMD) measured by micro-computed tomography (micro-CT) and histopathology as the gold standards. Fifty rats were randomly assigned to the control group (n=25) and ovariectomy (OVX) group whose bilateral ovaries were excised (n=25). Semi-quantitative and quantitative DCE-MRI, micro-CT, and histopathological examinations were performed on lumbar vertebrae at baseline and 3, 6, 9, and 12 weeks after operation. The differences between the two groups in terms of semi-quantitative DCE-MRI parameter (maximum enhancement, E max ), quantitative DCE-MRI parameters (volume transfer constant, K trans ; interstitial volume, V e ; and efflux rate constant, K ep ), micro-CT parameter (BMD), and histopathological parameter (microvessel density, MVD) were compared at each of the time points using an independent-sample t test. The differences in these parameters between baseline and other time points in each group were assessed via Bonferroni's multiple comparison test. A Pearson correlation analysis was applied to assess the relationships between DCE-MRI, micro-CT, and histopathological parameters. In the OVX group, the E max values decreased significantly compared with those of the control group at weeks 6 and 9 (p=0.003 and 0.004, respectively). The K trans values decreased significantly compared with those of the control group from week 3 (p<0.05). However, the V e values decreased significantly only at week 9 (p=0.032), and no difference in the K ep was found between two groups. The BMD values of the OVX group decreased significantly compared with those of the control group from week 3 (p<0.05). Transmission electron microscopy showed tighter gaps between vascular endothelial cells with swollen mitochondria in the OVX group from week 3. The MVD values of the OVX group decreased significantly compared with those of the control group only at week 12 (p=0.023). A weak positive correlation of E max and a strong positive correlation of K trans with MVD were found. Compared with semi-quantitative DCE-MRI, the quantitative DCE-MRI parameter K trans is a more sensitive and accurate index for detecting early reduced perfusion in osteoporotic bone.
Engdal, S; Nilsen, O G
2008-06-01
1. The herbal products Natto K2, Agaricus, mistletoe, noni juice, green tea and garlic were investigated for in vitro inhibitory potential on P-glycoprotein (P-gp)-mediated transport of digoxin (30 nM) in differentiated and polarized Caco-2 cells. 2. Satisfactory cell functionality was demonstrated through measurements of assay linearity, transepithelial electric resistance (TEER), cytotoxicity, mannitol permeability, and inclusion of the positive inhibition control verapamil. 3. The most potent inhibitors of the net digoxin flux (IC(50)) were mistletoe > Natto K2 > Agaricus > green tea (0.022, 0.62, 3.81, >4.5 mg ml(-1), respectively). Mistletoe also showed the lowest IC(25) value, close to that obtained by verapamil (1.0 and 0.5 microg ml(-1), respectively). The IC(50)/IC(25) ratio was found to be a good parameter for the determination of inhibition profiles. Garlic and noni juice were classified as non-inhibitors. 4. This study shows that mistletoe, Natto K2, Agaricus and green tea inhibit P-gp in vitro. Special attention should be paid to mistletoe due to very low IC(50) and IC(25) values and to Natto K2 due to a low IC(50) value and a low IC(50)/IC(25) ratio.
Binaii, Mohammad; Ghiasi, Maryam; Farabi, Seyed Mohammad Vahid; Pourgholam, Reza; Fazli, Hasan; Safari, Reza; Alavi, Seyed Eshagh; Taghavi, Mohammad Javad; Bankehsaz, Zahra
2014-01-01
The present study investigated the effects of different dietary nettle (Urtica dioica) levels on biochemical, hematological and immunological parameters in beluga (Huso huso). Fish were divided into 4 groups before being fed for 8 weeks with 0%, 3%, 6% and 12% of nettle. The blood samples were collected on week 4 and 8. The use of nettle did not significantly change the mean cell volume, mean cell haemoglobin, lymphocytes, eosinophils, albumin, glucose, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and lysozyme activity on week 4 and 8. After 4 weeks, the total red blood cell (RBC) and hematocrit (Ht) showed a significant increase in 12% nettle group compared to the 3% nettle and control groups but haemoglobin (Hb) had a significant change in 12% nettle compared to the control. At the same time was not found a significant change in the mean cell haemoglobin concentration (MCHC), total white blood cell (WBC), neutrophils, respiratory burst activity (RB), total immunoglobulin (Ig) and total protein (TP), triglyceride (Tri) and cholesterol (Chol). After 8 weeks, the fish treated with nettle exhibited significantly increase in neutrophil and Hb levels compared to the control and between treatment groups, 12% nettle group shown the highest Hb while RBC and Hct values significantly rose in fish fed by 12% compared to the control. Supplementing 6% and 12% nettle increased the WBC and MCHC compared to the other groups. The group fed 12% showed a highly significant difference in RB, TP and Ig after 8 weeks. However, Tri and Chol were significantly decreased in the juvenile beluga fed by the 6% and 12% nettle diet compared to the other groups. The results suggest that by using this herb there will be an improvement in hemato-biochemical parameters and immune function of juvenile beluga.
Quantifying and predicting Drosophila larvae crawling phenotypes
NASA Astrophysics Data System (ADS)
Günther, Maximilian N.; Nettesheim, Guilherme; Shubeita, George T.
2016-06-01
The fruit fly Drosophila melanogaster is a widely used model for cell biology, development, disease, and neuroscience. The fly’s power as a genetic model for disease and neuroscience can be augmented by a quantitative description of its behavior. Here we show that we can accurately account for the complex and unique crawling patterns exhibited by individual Drosophila larvae using a small set of four parameters obtained from the trajectories of a few crawling larvae. The values of these parameters change for larvae from different genetic mutants, as we demonstrate for fly models of Alzheimer’s disease and the Fragile X syndrome, allowing applications such as genetic or drug screens. Using the quantitative model of larval crawling developed here we use the mutant-specific parameters to robustly simulate larval crawling, which allows estimating the feasibility of laborious experimental assays and aids in their design.
Li, Xiaoxia; Yuan, Ying; Ren, Jiliang; Shi, Yiqian; Tao, Xiaofeng
2018-03-26
We aimed to investigate the incremental prognostic value of apparent diffusion coefficient (ADC) histogram analysis in patients with head and neck squamous cell carcinoma (HNSCC) and integrate it into a multivariate prognostic model. A retrospective review of magnetic resonance imaging findings was conducted in patients with pathologically confirmed HNSCC between June 2012 and December 2015. For each tumor, six histogram parameters were derived: the 10th, 50th, and 90th percentiles of ADC (ADC 10 , ADC 50 , and ADC 90 ); mean ADC values (ADC mean ); kurtosis; and skewness. The clinical variables included age, sex, smoking status, tumor volume, and tumor node metastasis stage. The association of these histogram and clinical variables with overall survival (OS) was determined. Further validation of the histogram parameters as independent biomarkers was performed using multivariate Cox proportional hazard models combined with clinical variables, which was compared to the clinical model. Models were assessed with C index and receiver operating characteristic curve analyses for the 12- and 36-month OS. Ninety-six patients were eligible for analysis. Median follow-up was 877 days (range, 54-1516 days). A total of 29 patients died during follow-up (30%). Patients with higher ADC values (ADC 10 > 0.958 × 10 -3 mm 2 /s, ADC 50 > 1.089 × 10 -3 mm 2 /s, ADC 90 > 1.152 × 10 -3 mm 2 /s, ADC mean > 1.047 × 10 -3 mm 2 /s) and lower kurtosis (≤0.967) were significant predictors of poor OS (P < .100 for all). After adjusting for sex and tumor node metastasis stage, the ADC 90 and kurtosis are both significant predictors of OS with hazard ratios = 1.00 (95% confidence interval: 1.001-1.004) and 0.58 (95% confidence interval: 0.37-0.90), respectively. By adding the ADC parameters into the clinical model, the C index and diagnostic accuracies for the 12- and 36-month OS showed significant improvement. ADC histogram analysis has incremental prognostic value in patients with HNSCC and increases the performance of a multivariable prognostic model in addition to clinical variables. Copyright © 2018 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Delektorskaia, V V; Kushliskiĭ, N E
2013-01-01
This review deals with the analysis of up-to-date concepts ofdiferent types of human neuroendocrine tumors of the digestive system. It summarizes the information on the specifics of recent histological classifications and criteria of morphological diagnosis accounting histological, ultrastructural and immunohistochemical parameters. Current issues of the nomenclature as well as various systems of grading and staging are discussed. In the light of these criteria the results of the own research clinical value of the determination of cell proliferation in primary and metastatic gastroenteropancreatic neuroendocrine neoplasms on the basis of evaluation of the Ki67 antigen expression are also presented.
Application of phase angle for evaluation of the nutrition status of patients with anorexia nervosa.
Małecka-Massalska, Teresa; Popiołek, Joanna; Teter, Mariusz; Homa-Mlak, Iwona; Dec, Mariola; Makarewicz, Agata; Karakuła-Juchnowicz, Hanna
2017-12-30
The evaluation of the nutrition status of patients has been the subject of interest of many scientific disciplines. Any deviation from normal values is a serious clinical problem. There are multiple nutrition status evaluation methods used including diet history, scales and questionnaires, physical examination, anthropometric measurements, biochemical measurements, function tests, as well as bioelectric impedance analysis or adipometry. Phase angle, obtained by means of bioelectric impedance analysis, is another parameter that is being more and more frequently applied in nutrition status monitoring. It is proportional to body cell mass. Its direct correlation with the cellular nutrition status has been documented. High phase angle values signify well-being, while low phase angle values indicate poor condition of cells. The purpose of this paper was to review the current state of knowledge about the application of phase angle in evaluation and monitoring of the nutrition status of patients with anorexia nervosa on the basis of available literature. It was proven that the phase angle values in patients with anorexia nervosa are much lower compared to healthy people. Detailed observations showed phase angle value increase in the course of treatment. The relevance of the commonly used body mass index (BMI) has been questioned due to significant degree of generalization in the nutrition status evaluation. Thus, there is a need for new, objective parameters for nutrition status evaluation, which will assist in the treatment and monitoring of patients in a more meaningful and reliable way. The existing independent studies equivocally confirm the usefulness of phase angle in the evaluation of nutrition status of patients with anorexia nervosa and its broader application in clinical practice is only a matter of time. However, these are merely attempts and they have not yet found wider application in clinical practice in the treatment of anorexia nervosa.